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Preface

Motivated by the increasing demands for connectivity, modern wireless technologies have
experienced rapid developments. Efforts from academia, industry, and government have
pushed wireless research at an unprecedented level. As a complex solution, wireless sys-
tems comprise many components, from physical layer, to network and upper application
layer. One of the most exciting innovations in the past decade is 5G physical layer, which
includes new radio (NR), new spectrum, coding, etc. Inspired by recent physical layer
research advances in 5G and beyond wireless systems, this book intends to present the
state-of-art challenges and solutions for physical layer techniques that are already applied,
or will be utilized in wireless systems. This book covers a variety of topics, primarily on
the intersection of 5G and beyond system with NR, mobile edge computing, and machine
learning, and spectrum sharing. Ultimately, we expect to deliver a more energy-, spectral-,
and computation-efficient wireless technology.

There are twelve chapters in this book. They can be categorized into three main topics.
Chapters 1–6 focus on 5G new radio research, especially recent advancements and sys-
tematic research on non-orthogonal multiple access (NOMA). Chapters 7–9 discuss the
interactions of mobile edge computing and wireless technology. Chapters 10 and 11 focus on
secure spectrum sharing in 5G and beyond era. Chapter 12 concludes this book and further
discusses some future research directions. Below, we briefly summarize each chapter.

Chapter 1 presents an overview of 5G and beyond wireless system. We start by intro-
ducing system requirements and their technical challenges. Then the enabling technolo-
gies from NR, mobile edge computing, and heterogeneous communication architecture are
illustrated.

Chapter 2 discusses the integration of 5G networks with device-to-device (D2D) com-
munication. Specifically, the 5G system with underlaid D2D is presented. We show that
such system can increase spectral efficiency, providing that resource allocation is properly
designed.

Chapter 3 deals with NOMA-enabled practical wireless networks. The highlight is the
integration of error propagation, a well-known issue in NOMA. It shows that error propa-
gation can degrade system performance, depending on the residual value.

Chapter 4 presents 5G relay and IoT networks with NOMA. In the first part, we derive
the outage probability in the relay system and show the potential of such a configuration.
Then, in the second part, the IoT network with power transfer capability is considered.
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xiv Preface

Chapter 5 discusses the robust beamforming problem in cognitive radio system; we specif-
ically illustrate the beamforming design when bounded channel estimation error is present.

Chapter 6 is a continuation of Chapter 5. It considers a more realistic channel estimation
model, in which channel estimation error is modeled as Gaussian variable. Correspond-
ingly, beamforming design also changes.

Chapter 7 presents mobile edge computing in 5G wireless networks. The system aims at
reducing computing latency and offload computation tasks to nearby edge servers. With
the goal of maximize computation efficiency, resource allocation optimization is proposed
and designed.

Chapter 8 further considers security enhancements in mobile edge computing. Our secu-
rity design focuses on physical layer, i.e. from wire-tap channel perspective.

Chapter 9 deals with an innovative wireless system to facilitate distributed machine learn-
ing as opposed to machine learning for wireless communication. We show that efficient
information exchange via wireless can accelerate large-scale distributed machine learning.
A direct application is wireless federated learning.

Chapter 10 provides an overview for secure spectrum sharing with machine learning.
While secure spectrum sharing is not a new topic, we have witnessed advancements in this
area, especially with machine learning techniques.

Chapter 11 presents detailed machine learning methodologies for secure machine
learning. This chapter illustrates several dominant attacks and their respective mitigation
approaches.

Chapter 12 concludes this book and gives some emerging research directions in 5G and
beyond wireless networks.

We hope our readers will enjoy this book.

January 2023 Haijian Sun, University of Georgia
Rose Qingyang Hu, Utah State University
Yi Qian, University of Nebraska-Lincoln
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1

Introduction to 5G and Beyond Network

We have witnessed an unprecedented development of wireless technology for the past few
decades. Starting from 1980s, when the first mobile phone was released, major wireless
technology advanced almost every decade. From first generation (1G) to 4G. The invention
of smart devices, such as phones, tablets, and home appliances, is the main driving force
for the ever-increasing mobile traffic today. It is not surprising that mobile traffic increased
10-fold between 2014 and 2019 globally. The mobile data traffic is expected to grow much
faster than fixed IP traffic in the upcoming years [34]. Wireless technologies dramatically
changed the way people interact, communicate, and collaborate, especially at post-Covid
era. The need for faster, more efficient and secure, and intelligent communication tech-
nique remains strong. While the current wireless communication systems such as 4G long
term evolution (LTE) have been pushed to their theoretic capacity limit, different air inter-
face and radio access technologies including heterogeneous network (HetNet) [76, 77],
multiuser multi-input multi-output (MU-MIMO) [105], and device-to-device (D2D) com-
munication [51] have become potential paradigms to fulfill the gap between demands from
end users and the capacity that current air interface can provide.

1.1 5G and Beyond System Requirements

In their pioneering work [10], Andrews et al. evaluated the requirements for 5G. In short,
5G wireless communication system should provide 1,000 times aggregate data improve-
ment over 4G, support for as low as 1 ms round-trip latencies, 10 times longer battery
life for low-power devices, and also support 10,000 times or more low-rate devices in a
single macro cell, see Figure 1.1 for a brief illustration. Due to those high requirements,
the transformation from 4G to 5G cannot be simply fulfilled by extensions of current
technologies. In general, 5G and beyond system should support or deliver the following
aspects. Notably, (i) more bandwidth. Currently commercial cellular systems use frequen-
cies below 6 GHz (sub-6 GHz); in fact, there is abundant bandwidth in the millimeter-wave
(mmWave) band, for example in 28 GHz and above, which can provide more bandwidth
that previously have not been applied in cellular networks. (ii) More antennas. Higher
frequency also brings smaller form factor of large antenna arrays. Additionally, the signal
processing techniques in terms of massive MIMO and transceiver design also improved

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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2 1 Introduction to 5G and Beyond Network

High speed

Up to 10Gbps

High density

10 to 100x devices

Power efficiency

~10 years

Latency, reliability

< 1 ms end-to-end

5G

Figure 1.1 Four main goals for 5G.

significantly. (iii) New radios (NR). The physical layer in 5G will change dramatically,
specifically the 5G NR, which includes the new multiple access technology, the new
air interface, and a combination of several existing techniques. (iv) New schemes. It is
expected that ultra dense networks (UDN) will be heavily deployed. The density of small
base station (BS), such as micro BS, femto cell, and pico cells, will be much higher than
that in 4G. But they share the similarity in terms of deploying BSs with different powers
to provide seamless coverage, as well as performance improvements from short-range
communications. (v) High intelligence. It is expected that beyond 5G systems should
support higher level of intelligence. Emerging applications such as Artificial intelligence
(AI), semantic communication, and robots will surely benefit from AI-friendly wireless
technology. (vi) Pervasive wireless. It is anticipated that each person will carry more
personal devices for enhanced life style and health monitoring. To support ubiquitous
wireless connectivity, those devices need be connected. Current network architecture can
hardly support such high number of devices simultaneously.

1.1.1 Technical Challenges

The above promising technologies are able to deliver ambitious goals of 5G, but they ulti-
mately encounter some challenges. First of all, even though high-frequency bands have
major vacancy, mmWave signals are notorious for weak penetration and vulnerable block-
age; hence, the transmission characteristics are big concerns. Moreover, studies also have
shown mmWave signals have high attenuation due to atmospheric gaseous, rain, concrete
structure, glasses, even foliage. The real-world deployment of such mmWave systems needs
to be carefully studied and planned. Secondly, from the transceiver design perspective,
higher-frequency signals impose challenges in circuit design, materials, and heating issues.
Nyquist theorem sets the lower boundary for sampling rate in communication systems.
With wide bandwidth in mmWave spectrum, sampling rate can reach up to 10 Gbit/s level,
and high-speed circuit design becomes very difficult. It is also reported that the energy
efficiency for components (power amplifier, analog-to-digital converter, digital-to-analog
converter) in high frequency is low, only around 10%. One of the major concerns from
network operators is that power consumption will hike due to 5G. Furthermore, the low
efficiency in these components also brings thermal issues in hand-held devices, degrad-
ing user experiences. Thirdly, with mmWave band, performance gain largely comes from
large-scale antenna array, current design can integrate hundreds of antenna elements in a
small area (due to small wavelength of mmWave signals). Even though this can facilitate
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the beamforming, which generates narrow but stronger signals toward desired direction,
the overhead for channel estimation, precoding, and beam tracking is too large. Fourthly, in
UDN networks, since the transmitter density is high, signals can cause higher interferences
with each other. The problem will be more severe with high-density users in the same area.
Challenges in mobility management, interference management, and heterogeneity nature
of devices are severe. Lastly, it is expected to support intelligent applications in beyond
5G systems. For example, conventional communication systems are transparent of mes-
sage (i.e. they are only responsible for transmitting bits but do not know any further info).
Semantic communication, on the other hand, has knowledge of the underlying message,
and the communication scheme can be dynamically changed to fit different needs of the
message. Besides, ubiquitous wireless signals open door for sensing applications, such as
localization, monitoring, and healthcare. In recent years, intelligent communication system
has been proposed to accommodate these needs. A notable example is wireless federated
learning system to cater the distributed machine learning. However, a deep integration from
wireless design perspective is strongly desired.

Recently, there are several emerging technologies which aim to deliver the goal of 5G
and beyond, and address the challenges above. Specifically, in this book, our focus is on the
physical layer techniques, such as 5G NR non-orthogonal multiple access (NOMA) and
physical layer (PHY) mobile edge computing (MEC), high-level communication architec-
ture for pervasive Internet of Things (IoT) devices, as well as wireless federated learning
system design. We have conducted preliminary researches to address the challenges
mentioned above. Specifically, we discuss how to utilize NOMA on improving aggregated
data rate and supporting more devices simultaneously, propose schemes for wearable
IoT communications, discuss the usage of MEC on helping with power consumption
and latency, and analyze how wireless design can facilitate distributed machine learning.
Below we briefly introduce each enabling technique.

1.2 Enabling Technologies

1.2.1 5G New Radio

1.2.1.1 Non-orthogonal Multiple Access (NOMA)
Initially proposed by NTT DOCOMO as an enhancement for LTE-advanced (LTE-A) in
2013, NOMA has been recognized as one of the most promising techniques for 5G due
to its capability of supporting a higher spectral efficiency (SE) and native integration of
massive connectivity. The basic principle of NOMA is that at the transmitter side, multiple
signals are added up with different powers, forming a superimposed signal (SS). To ensure
weak user’s quality of service (QoS), at the receiver side, successive interference cancella-
tion (SIC) is used to retrieve each user’s signal sequentially from the SS. Specifically, a user
can decode the strongest signal by treating other signals as interference. If the decoded sig-
nal is its own data, SIC stops. Otherwise, the receiver subtracts the decoded signal from the
SS and continues to decode the next strongest signal. Notice that SS with SIC is not new;
in information theory, this duo is a capacity-achieving technique in the uplink communi-
cation. However, the difference is in NOMA, the weak user has a stronger power, which
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Transmitted symbol

S2

S1

Received symbol

S2

S1

NOMA transmission NOMA decoding

Figure 1.2 NOMA principles: transmission and decoding stage.

is not information-theoretic optimal. Since its design philosophy may be combined with
diverse transceivers, it has drawn tremendous attention in multiple-antenna systems and in
downlink and uplink multi-cell networks. In contrast to classic orthogonal multiple access
(OMA), NOMA provides simultaneous access to multiple users at the same time and on the
same frequency band, for example by using power-domain multiplexing. It has been shown
that NOMA is capable of achieving a higher SE and energy efficiency (EE) than OMA, such
as OFDMA, time division multiple access (TDMA), and frequency domain multiple access
(FDMA). Figure 1.2 shows the basic principle of NOMA with data encoding and decod-
ing. S1 and S2 are the symbols for users 1 and 2, respectively. We also assume user 1 has a
better channel than user 2. At the transmitter side, binary phase shift keying (BPSK) and
quadratic phase shift keying (QPSK) modulation are applied, respectively, for the two users.
Clearly, the average symbol power of S2 is larger to compensate for the unfavorable channel.
Actual transmitted symbol is simply the addition of these two. At the receiver side, symbols
with the highest power will be decoded first, in this example, S2. Besides, since the received
symbol is on the right side of y-axis, for BPSK, it will be decoded as S2, and then removed
from the composite signal, which only has S1 left. Notice that the symbols can use the same
modulation scheme as long as they have different power. Most NOMA works, however, do
not consider any specific modulation, rather they apply the Gaussian coding and perform
analysis based on information-theoretic perspective.

The disadvantage of NOMA, however, lies in the following aspects. Firstly, NOMA
requires a more complicated receiver structure to perform SIC; hence, the cost will be
higher and receiver architecture will also be changed accordingly. Secondly, during SIC
procedure, one user will decode signal from others; this will cause security and privacy
concerns. Lastly, depending on implementation, this successive decoding will impose
certain delays for users.

Starting from 3rd Generation Partnership Project (3GPP) LTE Release-13, NOMA, as one
of the techniques in multi-user superposed transmission (MUST), has become part of the
standardization. In 2017, with LTE Release-14, 15 MUST schemes have been proposed for
the uplink NR. Additionally, NOMA has attracted extensive attention from industry. NTT
DoCoMo and MediaTek collaborated to have a field test of NOMA in Nov. 2017. With a sim-
ple scenario of one base station and three users, they were able to achieve 2.3 time spectral
efficiency compared with current technology.1

1 MediaTek Newsroom, Nov. 2017.
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Nevertheless, we have applied NOMA in many schemes and systematically studied its
performance, for example NOMA with D2D, with MIMO, relay networks, and cognitive
radio. More importantly, we have reviewed the fundamental principle of NOMA and
pointed out the error propagation phenomenon. Furthermore, we have also considered
the channel imperfection and its impact to NOMA performance.

1.2.1.2 Channel Codes
Channel coding is instrumental for achieving higher capacity and reliability. For example,
low-density parity-check (LDPC) has been extensively used in 4G, replacing convolutional
and turbo codes in previous generations. In 5G NR, polar codes are identified as another
promising capacity-achieving coding technique. Polar codes have been adopted in 5G
standardization process. For example, 3GPP incorporates polar codes for both uplink
and downlink control information communication service, such as enhanced mobile
broadband (eMBB), massive machine type communications (mMTC), and ultra-reliable
and low latency communications (URLLC). Channel codes for 5G NR should be flexible
to support the variable rate and length for both data and control packets. To address that,
LDPC has developed several variations, such as quasi-cyclic (QC) LDPC codes for better
rate matching and interleaving, as well as parallelism for efficient encoding and decoding
[59]; Multi-edge (ME) LDPC mainly for throughput improvement and can scale well in
larger block lengths. On the other hand, newly introduced polar code takes advantage
of channel polarization, a natural behavior due to signal propagation. Correspondingly,
encoding is recursively performed by the channel transformation matrix and creates
channels that are either perfectly noiseless or completely noisy. A detailed tutorial of polar
codes can be found in [16].

1.2.1.3 Massive MIMO
Massive MIMO refers to applying large-scale antenna elements at transmitter and/or
receiver side, usually the number of antenna is hundreds or more. MIMO can exploit spa-
tial diversity or multiplexing, and improve system reliability (for example, lower bit error
rate) and throughput, respectively. Compared with legacy MIMO system, massive MIMO
brings significant improvements in diversity and multiplexing to fully exploit wireless
channel characteristics. One prominent aspect is massive MIMO can generate very narrow
beams toward the receiver side. Hence, it can not only increase reception power, but also
benefit network capacity and coverage, and ultimately provide better user experience.

These benefits come at a price. Like MIMO, performance gain from massive MIMO
largely comes from beamforming and advanced signal processing techniques, which
require channel information. If both transmitter and receiver have massive MIMO
antennas, their channel is a matrix with hundreds by hundreds of elements. Overhead
for accurate channel estimation is prohibitively large. For example, orthogonal pilots are
usually applied to obtain channel information; in the case of massive MIMO, maintaining
pilot orthogonality is difficult, not to mention practical challenges such as pilot contamina-
tion and offset (time and frequency). To address these challenges, prior works have studied
robust beamforming design, such that the requirement for accurate channel information
can be relaxed. Furthermore, signal processing in massive MIMO is also sophisticated.
Traditional optimization methods for throughput maximization or bit error rate (BER)
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minimization become problematic due to high computation complexity, which hinders
the deployment in mobile devices.

It is worth to note that other approaches such as applying out-of-band information,
including vision, location, and geometry data to assist beamforming are also studied.
Out-of-band information provides complementary details for assisting beamforming
steering. These emerging solutions are primarily motivated and enabled by machine
learning.

1.2.1.4 Other 5G NR Techniques
5G NR also has other innovations. Recent 3GPP releases 15, 16, and 17 gradually bring more
flexibility and enhancement on several aspects. For example, dynamic slot structure caters
to different communication needs, for either low-latency or high data-rate application. This
structure allows for customized slot design, for examples, adding a longer or shorter cyclic
prefix, changing the data frame length, or providing extra guard space. Another innovation
is spectrum sharing. In contrast to static database-aided spectrum sharing, which detects
secondary users’ interference and only allows them to access bands in an opportunistic way,
current spectrum sharing is more dynamic, enabled by advanced machine learning-based
approach, hence is more efficient and accurate.

1.2.2 Mobile Edge Computing (MEC)

Due to the size, battery, and cost limitations, mobile devices can experience performance
bottleneck when computation-intensive tasks are added. More than one decade ago, people
solved this problem by introducing the concept of cloud computing. Mobile devices do not
perform large-scale computation locally; instead, they send these tasks to remote servers
for faster and more secure processing, storage, and sharing. The centralized nature of
cloud-based computing can reduce the expenditure cost while providing easier deployment
process. However, cloud servers may be located in remote areas, which causes inevitably
longer end-to-end transmission and processing delay.

MEC is a new alternative paradigm for the upcoming 5G systems. Instead of transmitting
data to the remote servers for processing, MEC provides certain computation capacities
locally, for example within the base station in the wireless cellular networks. This paradigm
shift can effectively reduce long backhaul latency and energy consumption, as well as
support a more flexible infrastructure in a cost-effective way. MEC has attracted extensive
research interests recently, not only in the architectural level, but also in specific tasks
such as cooperative computation offloading. Computation offloading, which leverages the
powerful MEC servers in proximity and sends the computation-intensive tasks for further
processing, is a desirable scheme to overcome the physical limitations of user devices
(Figure 1.3).

We see this paradigm shift in a more fundamental way. In cloud computing era, even
though the data transmission speed is not high, the bottleneck comes mainly from the
computation capacity. With Moore’s law still being effective, performance of integrated
circuit chips grows exponentially. On the other hand, communication technology makes
the speed increase almost linearly. Since the goal is to reduce processing speed, it is more
beneficial to perform task execution both locally and remotely.
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Figure 1.3 Paradigm shift from cloud computing to mobile edge computing.

In order to reduce latency as well as to improve system efficiency, we propose a joint
processing scheme in which the total task can be divided into two parts, one for local
computing and the other for offloading. To cope with the ever-increasing concerns on
energy efficiency, we evaluate the system performance by a new metric, computational
efficiency (CE). It is defined as the total number of bits computed with the total energy
consumption. The objective is to maximize each user’s CE with time constraints (users
should finish their task before a required time), energy constraint (each user is powered by
battery; hence, the total energy should be below a threshold), and task constraint (each user
should finish a minimum number of data bits). Later we show CE is a more appropriate
method in terms of finding the balance of more tasks and less energy.

1.2.3 Hybrid and Heterogeneous Communication Architecture
for Pervasive IoTs

Recent years have witnessed the unprecedented growth of wearable devices owing to the
swift advances in chip design, computing, sensing, and communications technologies.
While wearable devices are not new, the past few years have seen a surge in their large-scale
use and popularity. A wearable device or simply a wearable refers to a device that can
be worn on the body. This rapid rise in popularity was spurred, in part, by technological
innovation. Emerging system on chip (SoC) and system in package (SiP) have scaled down
the printed circuit board (PCB) size, decreased power consumption, and most importantly,
have made it possible to design wearables in a variety of desired shapes (Figure 1.4).
Wearable devices provide easier access to information and convenience for their users.
They have varying form factors, from low-end health and fitness trackers to high-end
virtual reality (VR) devices, augmented reality (AR) helmets, and smart watches. These
devices can collect data on heart rates, steps, locations, surrounding buildings, sleeping
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Figure 1.4 Wearable devices may have varying forms, from small medical sensors to
entertainment helmets.

cycles, and even brain waves. Yet computing limitations continue to hinder wearables’
ability to process data locally. As a result, most devices choose to offload their collected
data to other powerful devices or to the clouds. This necessary communication plays a key
role in wearable devices. Different applications provided by different wearables may have
varying communication requirements. For example, while medical sensors have stringent
requirements on latency and reliability, they have a low data rate need. On the other hand,
AR/VR devices need both high throughput and low latency for a better user experience.

Wearable devices may not be able to take full advantage of current communication archi-
tecture, due to their potential cost and hardware complexity. On the other hand, wearable
devices have succeeded in becoming more and more involved in everyday activities requir-
ing voice, image, and video inputs. Human beings are generally sensitive to an approximate
100 ms audible delay and can catch visual delays of less than 10 ms. Furthermore, cell
phones and tablets now use primarily touch interaction, a “tactile interaction” that requires
a more rigorous delay control, such as 1 ms. A promising heterogeneous and hybrid network
architecture is shown in Figure 1.5. It contains small BS (SBS), marco BS (MBS), remote
radio head (RRH), and network slice.

1.3 Book Outline

In face of several challenges by 5G and beyond system, this book focuses on technologies
that can improve spectral, energy, and computation efficiency. As mentioned above, we
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Figure 1.5 A promising network architecture for pervasive IoT communication needs.

mainly study physical layer techniques. Specifically, our first focus (Chapters 1–6) is to pro-
vide reader with latest research efforts on 5G NOMA. We have studied NOMA in a system-
atic way, including applying NOMA to address spectral efficiency and number of connected
devices challenges under various network schemes. Our next focus (Chapters 7 and 8) is
MEC. MEC is used to reduce computation delay, and we primarily investigate its role for
computation offloading. Chapter 9 discusses the emerging wireless paradigm to facilitate
distributed machine learning. Chapters 10 and 11 review secure spectrum sharing with
machine learning techniques. Lastly, Chapter 12 concludes this book and discusses current
and further research directions on 5G and beyond wireless systems.
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2

5G Wireless Networks with Underlaid D2D Communications

2.1 Background

2.1.1 MU-MIMO

The narrow beam enabled by massive MIMO brings unprecedented spatial multiplexing.
Hundreds of beams can be generated from the BS toward each user, with little interference
in the space. This brings new opportunity for multi-user MIMO (MU-MIMO) in the 5G
era. MU-MIMO is one type of MIMO technology for wireless communication, in which
multiple spatially distributed users with one or more antennas can be transmitted at the
same time and frequency by the base station with multiple antennas, at the cost of compli-
cated signal processing and large overhead. Nevertheless, MU-MIMO can greatly improve
the system capacity by exploiting the spatial diversity gain among multiple users. The
major benefits are improved system throughput (sum rate of users), power, and spectral
efficiency. It is expected that massive MIMO will be an important component in 5G cellular
networks.

2.1.2 D2D Communication

D2D communication is proposed as another 5G enabler. Compared with traditional
BS-centric communication, D2D allows users to initiate and communicate directly,
with little or no BS intervention. Intuitively, D2D can reduce signal overhead from/to
the BS, lower their transmission power if the receiver is in close proximity, and reduce
communication latency. Due to its advantages on power and spectral efficiency, as well as
the latency improvement, D2D seeks for larger roles in 5G. However, D2D scheme faces
many practical challenges. One is the spectrum coordination. In BS-centric networks,
spectrum is allocated by BS, and each user in the system is also synchronized such that
they can only use spectrum at their designated slot. D2D is more autonomous and lacks
central coordination; hence, spectrum sharing among different users can be problematic.
More importantly, D2D will co-exist with cellular users. To ensure cellular users (CUs) per-
formance, usually D2D users (DUs) access spectrum in an opportunistic approach, similar
to cognitive networks. The other challenge is QoS. It is difficult to achieve guaranteed QoS,

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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primarily due to the lack of centralized resource management. In recent years, BS-assisted
D2D emerged. The idea is to allow the BS to assist user and resource coordination, but the
level of assistance is less than that in cellular networks.

Nevertheless, to better take advantage of scarce spectrum, DUs can be supported in an
underlaid mode, in which they can share the same spectrum with cellular users. In this
way, careful interference coordination mechanism is required.

2.1.3 MU-MIMO and D2D in 5G

In recent years, several research have explored the combination of MU-MIMO and D2D
in the same system. Early work [100] studied a pair of DUs in the presence of cellular net-
works, and a resource allocation problem was formulated to maximize network throughput.
Later in [204], a more general scheme with multiple pairs of DUs underlying a MU-MIMO
cellular network was investigated. With the opportunistic D2D feature, Karakus and Dig-
gavi [93] proved that D2D and MU-MIMO cooperation can boost signal-to-noise ratio (SNR)
performance, especially for users at network edge.

As we mentioned in Chapter 1, NOMA can further improve spectral and power efficiency.
A more interesting yet challenging question is how to jointly consider NOMA, D2D, and
MU-MIMO. The key part of MU-MIMO is to design a suitable precoding matrix for trans-
mitters based on various objective functions, such as overall system capacity or minimum
power consumption. When jointly considering MU-MIMO, NOMA, and D2D, a tight coor-
dination among these three mechanisms should be carefully designed so that the overall
system performance can be maximized. In [97], NOMA and MU-MIMO are jointly designed
to improve the total system throughput. In this chapter, we propose a new mechanism that
jointly coordinates beamforming-based MU-MIMO, NOMA, and D2D communications
in a downlink cellular network. By supporting DUs in a NOMA/MU-MIMO cellular
network, more complicated interference scenarios arise. To address that, we develop two
different precoding schemes. One aims to cancel out the BS to DUs interference, while the
other one aims to minimize interference among cellular users that coordinate with each
other through NOMA and MU-MIMO beamforming. Beamforming is designed together
with NOMA pairing and power allocation to significantly improve overall system sum
throughput.

Compared with its OMA counterpart, NOMA has a superior performance in terms of
spectral efficiency. However, multiuser detection (MUD) is required at the receiver side,
which induces a more complex receiver structure and algorithm. In [45], the impact of user
pairing on the performance of both fixed power allocation and cognitive radio (CR) inspired
NOMA (CR-NOMA) is studied. For the fixed one, NOMA tends to pair users with larger
channel gain difference. In [215], a genetic algorithm (GA)-based NOMA pairing in the
HetNet is presented, where GA will help reduce the computation workload.

2.2 NOMA-Aided Network with Underlaid D2D

We consider a downlink MU-MIMO cellular network that jointly supports NOMA,
MU-MIMO, and underlying DUs. M CUs are randomly distributed, each equipped with
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Figure 2.1 System model.

a single antenna [179]. Each BS has N antennas and thus can maximally generate N
beamforming vectors. Each beam can support multiple single antenna users by using
NOMA, compared with one user in the conventional MU-MIMO system. Furthermore, a
total number of P underlaid DU pairs, denoted as DU1, DU2, …, DUP, are also randomly
distributed, to further exploit current spectrum reuse (Figure 2.1).

For beam n, NOMA allows a set of𝚽n = {u(n, 1),u(n, 2),… ,u(n,K)}CUs to be scheduled
on the same radio resource simultaneously, K ≥ 2. We use u(n, k) to denote the CU that is
served by beam n with NOMA sequence k in that beam. Assume xn is the transmitted signal
in the n-th beam, and according to NOMA, xn is a superimposed signal of a total K users in
beam n,

xn =
K∑

k=1

√
λu(n,k)Pnsu(n,k). (2.1)

Here 𝔼(|su(n,k)|2) = 1, 𝔼(.) is the expectation function. λu(n,k) is the fraction of the allocated
power to user u(n, k),

∑K
k=1 λu(n,k) = 1. Pn is the total transmitted power for beam n. The total

transmission power of a BS is equally partitioned among N beams, i.e. Pn = PMBS

N
, where

PMBS is the total BS transmission power.
At each MBS, a precoding scheme is applied to support MU-MIMO. We denote the pre-

coding matrix as W, which consists of N vectors, i.e.

W = [w1,w2,… ,wN ], (2.2)

where wn ∈ ℂN×1 is the beamforming vector of the n-th beam. The received signals at u(n, k)
and DU p can be, respectively, expressed as

yu(n,k) = hu(n,k)

N∑
n=1

wnxn +
P∑

p=1

√
PDhp,u(n,k)sp + nu(n,k), (2.3)

yDUp
=

P∑
p′=1

√
PDhp′ ,ps′p + hp

N∑
n=1

wnxn + np, (2.4)
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where sp is the transmitted signal of DU p. We also have 𝔼(|sp|2) = 1. PD is the transmission
power of DUs. hu(n,k) and hp are the channel gains for downlink CU u(n, k) and for DU p,
respectively. hp,u(n,k) is the channel gain between DU p and CU u(n, k), and similarly hp′ ,p
is the channel gain between the transmitter of DU p′ and the receiver of DU p. We assume
the channel information is perfectly now at the BS. nu(n,k) and np are i.i.d. additive white
Gaussian noise at CU u(n, k) and DU p, respectively. (nu(n,k),np) ∼  (0, 1).

2.3 NOMA with SIC and Problem Formation

2.3.1 NOMA with SIC

NOMA is a technique that enables multiple users to share the same spectrum resource
simultaneously by employing interference cancellation at the receiver. Within a NOMA
group, CU with a weaker channel is normally allocated a higher downlink transmission
power so that the strongest received signal within that NOMA group corresponds to the
CU with the weakest channel gain in that group. The key idea of SIC is that the received
SS is decoded in the ascending order of the respective channel gains or in the descending
order of the received signal strength, for all the signals that constitute the SS. The receiver
decodes the strongest user signal by treating weaker signals in the SS as interference. The
decoded signal can be either the desired signal or can be subtracted from the SS. The decod-
ing process will continue until the receiver successfully decodes its own signal [158].

Channel gains for CUs in the same NOMA group in beam n can be sorted as |hu(n,1)| ≤|hu(n,2)| ≤ · · · ≤ |hu(n,K)|. Since the decoding order follows the ascending order of channel
gains, CU j will decode CU i message, if i < j. SIC then removes the decoded message from
its observation. CU i treats signals from CUs with index j > i as interference. Assuming
perfect interference cancellation, we can rewrite (2.3) as

yu(n,k) = hu(n,k)wn

√
λu(n,k)Pnsu(n,k) + hu(n,k)wn

K∑
k′=1,k′≠k

√
λu(n,k′)Pnsu(n,k′)

+ hu(n,k)

N∑
n′=1,n′≠n

wn′

K∑
k′=1

√
λu(n′ ,k′)Pn′su(n′ ,k′) +

P∑
p=1

√
PDhp,u(n,k)sp + nu(n,k),

where the second term on the right side is the interference from users in the same NOMA
group. The third term represents inter-beam interference. After applying SIC, the received
signal-to-noise-plus-interference-ratio (SINR) 𝛾u(n,k) of CU u(n, k) becomes

𝛾u(n,k) =
λu(n,k)Pn|hu(n,k)wn|2

IN
u(n,k) + IU

u(n,k) + ID
u(n,k) + 𝜎

2
n
, (2.5)

where

IN
u(n,k) =

K∑
k′=k+1

λu(n,k′)Pn|hu(n,k)wn|2, (2.6)

IU
u(n,k) =

N∑
n′=1,n′≠n

Pn′ |hu(n,k)wn′ |2, (2.7)
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ID
u(n,k) =

P∑
p=1

PD|hp,u(n,k)|2, (2.8)

respectively represent SIC, inter-beam, and DU interference to CU u(n, k).
Similarly, SINR 𝛾DUp

of the DU p is expressed as

𝛾DUp
=

PD|hp,p|2∑P
p′=1,p′≠p PD|hp′ ,p|2 +∑N

n=1 Pn|hpwn|2 + 𝜎2
n

. (2.9)

Given SINR, the corresponding user data rate can be calculated as f (𝔼{𝛾}) by using
Shannon capacity formula,

f (𝔼{𝛾}) = log(1 + 𝔼{𝛾}). (2.10)

Here we normalize the bandwidth at MBS to 1.

2.3.2 Problem Formation

The design objective is to maximize the total system sum throughput from both CUs and
DUs. To this end, we need to determine (i) the NOMA set of each beam, i.e. 𝚽n; (ii) the
power allocation factor λu(n,k) for each user k in the NOMA set of beam n; and (iii) the
precoding vector wn. Therefore, the problem can be formulated as follows.

max
Φn ,wn,λu(n,k)

N∑
n=1

K∑
k=1

f (𝔼{𝛾u(n,k)}) +
P∑

p=1
f (𝔼{𝛾DUp

}) (2.11)

subject to
K∑

k=1
λu(n,k) = 1, n = 1, 2,… ,N, (2.12)

f (𝔼{𝛾u(n,k)}) > R0, ∀k ≠ K, (2.13)

wn ∈ ℂN×1. (2.14)

Constraint (2.12) is the summation of user power in one beam. Constraint (2.13) sets a
lower rate limit for users that experience SIC interference in NOMA to ensure good user
experience. 𝛾u(n,k) and 𝛾DUp

are rates calculated based on (2.5) and (2.9), respectively. The
optimization problem is a non-convex problem that needs to determine Φn,wn, λu(n,k)
jointly. To make this problem feasible to solve, in Section 2.4, we seek a heuristic solution
by decomposing the original problem into two sub-problems. We first develop different
precoding methods, which aim to suppress either the inter-beam interference among CUs
or the interference from CUs to DUs. Based on the precoding matrices, we further define a
user grouping and power allocation algorithm for NOMA.

2.4 Precoding and User Grouping Algorithm

In this section, we first construct a beamforming vector wn for each beam that can effec-
tively reduce or eliminate some interferences. Based on the selected precoding scheme, we
further solve the user grouping and power allocation problem, in order to maximize the
total system throughput.
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2.4.1 Zero-Forcing Beamforming

Normally the number of transmit antennas nT should be larger than or equal to the number
of receiver antennas nR, i.e. nT ≥ nR, so that the transmitter side will have enough degree of
freedom to generate a precoding matrix that can effectively eliminate the inter-user inter-
ference. In this chapter, each MBS has N transmit antennas and can generate N beams.
Within each beam, K(K ≥ 2) users can be supported by using NOMA. Thus, the total num-
ber of receive antennas in this case is N × K, which is larger than N. Existing literatures
have observed and addressed this issue. In [167], a coordinated transmit-receive block diag-
onalization algorithm is put forward. However, the receive antenna set employs a joint
precoding matrix, which requires information exchange among different users and con-
sequently adds extra complexity. Here, we consider two zero-forcing precoding methods.
The first one aims to minimize the inter-beam interference for CUs, while the second one
aims to eliminate the interference from MBS to DUs.

2.4.1.1 First ZF Precoding
In this scheme, we first select one user from each beam and then generate the beamform-
ing matrix based on N selected users. Specifically, users with the largest channel gain in
each beam are selected. The channel gain vector for these N selected CUs is denoted as
H = [hu(1,K),hu(2,K) …hu(N,K)]. The zero-forcing beamforming vector is calculated based on:

hu(n,K)wm = 0, if m ≠ n. (2.15)

Thus, wm should lie in the null space of H̃n [167]. Here, H̃n is defined as

H̃n = [hu(1,K),… ,hu(n−1,K),hu(n+1,K),… ,hu(N,K)], (2.16)

which consists of downlink channel vectors for CUs from all beams except from beam n.

2.4.1.2 Second ZF Precoding
The first zero forcing (ZF)-based method helps reduce inter-beam interference IU

u(n,K) = 0
in (2.5). Since we aim to maximize the total sum rate in the system, the total through-
put from DUs contributes to the total throughput as well. Therefore, the second precoding
method helps reduce the interference between CUs and DUs, i.e.

∑N
n=1 Pn|hpwn|2 = 0 in

(2.9). Hence we should set hpwn = 0, for all n. Or equivalently,

wn = null(HD), (2.17)

where HD = [h1,… ,hP], and null(.) is the null space or kernel of a matrix.

2.4.2 User Grouping and Optimal Power Allocation

After the beamforming vector is determined, we need to group NOMA users into each beam
and further decide power allocation for CUs within each NOMA group. One way is to do
an exhaustive search, but the complexity will grow exponentially with N. Inspired by Ding
et al. [45] and Kimy et al. [97], NOMA would prefer to group users with greater channel dif-
ferences. On the other hand, precoding matrix W is designed to minimize inter-beam inter-
ference or CU to DU interference. When combining NOMA and precoding, NOMA groups
users with highly correlated channels so that using the precoding matrix generated by the



�

� �

�

2.4 Precoding and User Grouping Algorithm 17

representative CU in each beam can achieve a small inter-beam or CU-DU interference.
Therefore, the criterion for NOMA user grouping is to choose CUs with highly correlated
channels but with big channel gain differences in each beam. For simplicity, we set K = 2.
In each NOMA pair, we denote the user with a weaker channel gain as the first user while
the stronger one as the second user.

2.4.2.1 First ZF Precoding
Since the beamforming matrix is designed based on the null space of the second users in all
N beams, second users will not receive any inter-beam interference. Thus their SINR is

𝛾u(n,2) =
λu(n,2)Pn|hu(n,2)|2

ID
u(n,2) + 𝜎

2
n

. (2.18)

The first users, on the other hand, will receive non-zero inter-beam interference as the pre-
coded signals from other beams will have components projected into the first user signal
space. Their SINR is expressed as

𝛾u(n,1) =
(1 − λu(n,2))Pn|hu(n,1)wn|2

|hu(n,1)wn|2λu(n,2)Pn + ID
u(n,1) + IU

u(n,1) + 𝜎
2
n
. (2.19)

The optimal power allocation factor λu(n,2) is yet to be solved. Based on the optimization
problem proposed in Section 2.3, we form a new problem that aims to maximize the sum
capacity in each beam.

max
λu(n,2)

2∑
k=1

f (𝔼{𝛾u(n,k)}) (2.20)

subject to

0 < λu(n,2) < 1, (2.21)

f (𝔼{𝛾u(n,1)}) ≥ R0. (2.22)

The problem defined above is convex with respect to λu(n,2) and its Karush–Kuhn–Tucker
(KKT) conditions are given as follows.

𝜕

(∑2
k=1 f (𝔼{𝛾u(n,k)})

)
𝜕λ∗u(n,2)

= 𝜇
𝜕
(

R0 − f (𝔼{𝛾u(n,1)})
)

𝜕λ∗u(n,2)
, (2.23)

R0 − f (𝔼{𝛾u(n,1)})|λ∗u(n,2) ≤ 0, (2.24)

𝜇 ≥ 0, (2.25)

𝜇

(
R0 − f (𝔼{𝛾u(n,1)})|λ∗u(n,2)

)
= 0. (2.26)

Equation (2.23) is the stationarity condition and 𝜇 is KKT multiplier, (2.24) is the primal
feasibility, (2.25) is dual feasibility, and (2.26) is the complementary slackness.

Solving for (2.23), we can get

λ∗u(n,2) =
(D2 + 1)

(
(D1 + 1 + Σ)2 − (1 + 𝜇)1

)
12𝜌(𝜇 − D2)

, (2.27)
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where, 𝜌 = Pn∕𝜎2
n is the transmit SNR, 2 = |hu(n,2)|2, 1 = |hu(n,1)wn|2 is the channel gain

for users 2 and 1, D1 = ID
u(n,1)∕𝜎

2
n, D2 = ID

u(n,2)∕𝜎
2
n is the interference-to-noise ratio of users

1 and 2, respectively. Σ = IU
u(n,1)∕𝜎

2
n is the inter-beam interference-to-noise ratio.

Clearly, 𝜇 ≠ 0. Otherwise, λ∗u(n,2) < 0 cannot satisfy (2.21). Therefore, we can solve (2.26)
for the optimal λ∗u(n,2),

λ∗u(n,2) =
𝜌1 + D1 + 1 + Σ

2R0𝜌1
−

D1 + 1 + Σ
𝜌1

, (2.28)

λ∗u(n,1) = 1 − λ∗u(n,2). (2.29)

2.4.2.2 Second ZF Precoding
In the second ZF precoding, the inter-beam interference remains for both first and second
users. Their respective SINR are as follows.

𝛾u(n,2) =
λ2𝜌

′
2

Σ′
2 + ′

D2 + 1
, (2.30)

𝛾u(n,1) =
(1 − λ2)𝜌′

1

λ2𝜌
′
1 + Σ′

1 + ′
D1 + 1

. (2.31)

Similarly, λ2 is the power allocation factor for the user with stronger channel.
′

1 = |hu(n,1)wZF2|2, ′
2 = |hu(n,2)wZF2|2 are the channel gains for users 1 and 2, respec-

tively. Σ′
2 =

∑N
n′=1,n′≠n 𝜌|hu(n,2)wZF2|2 and Σ′

1 =
∑N

n′=1,n′≠n 𝜌|hu(n,1)wZF2|2. ′
D1 has the same

format as D1 but with different precoding vector, the same to ′
D2. We form a similar

optimization problem as in (2.20) and detailed derivations are omitted here. The respective
optimal power allocation factor for the second and first users is

λ∗2 =
𝜌′

1 + ′
D1 + 1 + Σ′

1

2R0𝜌′
1

−
′

D1 + 1 + Σ′
1

𝜌′
1

, (2.32)

λ∗1 = 1 − λ∗2. (2.33)

2.5 Numerical Results

In this section, we present the performance results from simulation. The coverage area of
MBS is circular with a radius of 500 m. The number of transmit antennas is N = 3. The
total numbers of CUs and DUs are M = [8, 16, 32, 60, 90] and P = 2, respectively. M varies
in order to study the multi-user diversity effect. The distance with each DU pair is fixed
at 30 m. The wireless channel consists of pathloss, shadowing, and Rayleigh fading with a
pathloss exponent 2. PMBS and PD are set to 30 Watt and 1 Watt, respectively.

For comparison purpose, instead of using NOMA in each beam, we apply a traditional
TDMA scheme here to support these 2 users in each beam. Specifically, we allocate an equal
number of time slots to 2 TDMA users. The scheme is also referred as “Naive TDMA.”

RTDMA = 1
2
(
log(1 + 𝛾1) + log(1 + 𝛾2)

)
. (2.34)

Figure 2.2 presents the system capacity of two proposed ZF precoding methods as the num-
ber of users grows, and the results are scaled over the highest achievable rate. Here we
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Figure 2.2 System capacity of two proposed ZF precoding methods vs. TDMA as the number of
user grows (R0 = 0.5 bit/s/Hz).

set R0 = 0.5 bit/s/Hz. We can see that NOMA outperforms naive TDMA in both precod-
ing schemes when the number of CUs is large. However, when the number is small, lim-
ited number of CUs can be chosen to perform NOMA; thus, the performance gain is not
obvious, even worse than TDMA. We also find that using ZF2 leads to a higher overall
system throughput than ZF1. Because with ZF2, DUs experience a much lower interfer-
ence than with ZF1 so that the throughput elevation from DUs exceeds the throughput
degradation from CUs due to inter-beam interference, which results a net gain on overall
system throughput. Moreover, as the user number increases, the system benefits more from
NOMA+MU-MIMO due to a higher multiuser diversity gain.

DUs normally are considered as a complementary communication method. So we are
particularly interested in the performance of CUs. In Figure 2.3, the throughput of CUs
is calculated. NOMA shows a superior spectral efficiency compared with naive TDMA. In
this case, ZF1 has a much better performance than ZF2 since ZF1 precoding eliminates
inter-beam interference for CUs, while ZF2 aims to eliminate interference from CUs to
DUs. But if we combine results from both Figures 2.2 and 2.3, we can see that the overall
throughput is higher with ZF2 since DUs are configured with a very good channel setting
so that they contribute to overall throughput significantly.

2.6 Summary

In this chapter, we study the performance of a cellular network that supports NOMA,
MU-MIMO, and D2D communications. Specifically, we use NOMA and MU-MIMO for
the cellular downlink users to improve overall system spectrum efficiency. D2D users
are further supported in the underlay mode to exploit the frequency reuse again. Two
different precoding mechanisms are defined. We formulate an optimization problem
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Figure 2.3 CUs capacity of two proposed ZF precoding methods vs. TDMA as the number of user
grows (R0 = 0.5 bit/s/Hz).

aiming to maximize the system performance and develop a suboptimal approach to solve
the problem in two steps. Simulation results show NOMA and MU-MIMO altogether will
improve the overall cellular user throughput significantly. When underlay D2D users are
added, two different precoding schemes lead to different performance, with one favoring
CUEs and one favoring DUEs. But both lead to a net system gain.
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5G NOMA-Enabled Wireless Networks

3.1 Background

In Chapter 2, we incorporated NOMA with MU-MIMO in a D2D underlaid system. The
advantages of applying NOMA in such a scheme are in two folds: (i) it can support more
users simultaneously; (ii) overall system performance in terms of total throughput is also
improved. Intuitively, NOMA will create a win-win situation for a pair of users with
strong and weak channel condition. The reason is that the stronger user is typically
bandwidth-limited, while the weaker user is interference-limited. In NOMA, signals for
both users are set to transmit simultaneously, so the bandwidth-limited user can get more
spectrum resources, while the interference-limited user can obtain a larger portion of
power. This will benefit the whole system in terms of fairness and throughput.

In [214], the concept of NOMA is discussed from the information theoretic perspective,
and the conclusion is that NOMA can have a better performance compared with OMA in
terms of both system sum rate and user individual rate, especially when the users channel
gains are distinct. In [171] and [170], a similar downlink MIMO and NOMA system model
is proposed, and the authors solved the optimization problem with bisection power search
algorithm and applied the singular value decomposition (SVD) if the channel state infor-
mation (CSI) is available at the BS, or equally distribute powers among different antennas
if CSI is unknown for the precoding design.

These works, however, all assume a perfect subtraction of previous user signals in SIC
such that there’s no residual interference which will affect the current decoding. This
assumption turns out to be a strong one since various factors can actually cause errors,
such as deep fading, imperfect decoding, and channel estimation errors [140]. In the case
of decoding more users’ signal, errors from previous will accumulate and greatly affect the
next stage (we refer this as error propagation). In this chapter, we take error propagation
into consideration, a concept that already exists in code division multiple access (CDMA)
systems. Similar papers can be found in [8] and [9]. In fact, CDMA shares some common
features with NOMA. Both of them exploit the multiuser interference to achieve a higher
performance rather than simply avoid it. Performance gain also largely depends on some
assumptions like perfect channel estimation and power allocation, and violations can cause

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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serious performance degradation. In this chapter, we propose a general error propagation
model in a downlink MIMO NOMA system, where decoding errors are modeled as residual
interference. An optimization problem is formulated to maximize the total data rate of two
users.

3.2 Error Propagation in NOMA

We consider a downlink wireless communication which jointly supports NOMA and
MU-MIMO. In the system, a BS with power PBS is equipped with M antennas. Two user
equipments (UEs) are randomly deployed in this area, each has N antennas [172].

Due to the usage of NOMA, two UEs can receive signals from the BS simultaneously.
Besides, the BS is assumed to have an accurate CSI of UEs based on training sequences and
feedback mechanism. We denote Hk and Hn(both with dimension ℂN×M) as the channel
gain matrix of UE k and UE n, respectively. hij is the element from ith row and jth col-
umn in the matrix, and it is modeled as the product of large-scale path loss and fading, i.e.
hij = l−𝛼ij h0, where lij is the distance between UE and BS, 𝛼 is the path loss exponent, and h0
is the Gaussian random variable with distribution h0 ∼  (0, 1).

The transmitted signal from the BS is:

xBS = Wnxn + Wkxk, (3.1)

where Wn and Wk are precoding matrices with dimension ℂM×N , xn and xk ∈ ℂN×1 are
messages for UE n and UE k, respectively. 𝔼(xnxH

n ) = 𝔼(xnxH
n ) = IN , 𝔼(.) is the expectation

function and IN is a N × N identity matrix.
The received signal at UE n is

yn = HnxBS + nn. (3.2)

Similarly, UE k will receive,

yk = HkxBS + nk, (3.3)

where ni, i = {n, k} is the i.i.d additive gaussian noise which follows  (0, 𝜎2IN ).

3.3 SIC and Problem Formulation

The key idea of SIC can be summarized as a process of decoding, reconstruction, and sub-
traction (DRS). Upon the reception of the composite signal, DRS will start with the strongest
user signal and treat others as interference. After the successful decoding, the data will
re-encode based on user channel estimation and constellation. The reconstructed signal
should be fairly close to the received signal if everything is perfect. Then, the user will sub-
tract this signal from the aggregated signal so that the next DRS will see less interference if
the intended message is not decoded [158]. However, DRS can be affected by error propa-
gation, and we will show this concept below.
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3.3.1 SIC with Error Propagation

Sequential decoding can be affected by error propagation. Consider a simpler system with
one BS and two UEs, in which UE 1 and UE 2 form a NOMA pair. The power of the BS
is P and the channel gains for UE 1 and UE 2 are h1 and h2, respectively. Without loss of
generality, let h1 > h2. The transmitted signal can be expressed as

xt =
√
𝜃1Ps1 +

√
𝜃2Ps2, (3.4)

where 𝜃1 and 𝜃2 are power allocation factors, 𝜃1 < 𝜃2 for QoS consideration, and 𝜃1 + 𝜃2 = 1.
s1 and s2 are normalized signals.

At the receiver side, UE 1 will get y1 = h1xt + n1 = h1(
√
𝜃1Ps1 +

√
𝜃2Ps2) + n1. Clearly the

signal for UE 2 has a larger power than that for UE 1, thus, at the first stage, UE 1 will decode
UE 2’s signal. Let R1,2 denote the achievable data rate for UE 1 to detect UE 2’s message,
it can be expressed as,

R1,2 = log2

(
1 +

𝜃2P|h1|2
𝜃1P|h1|2 + n2

1

)
. (3.5)

UE 1 then reconstructs this message according to a prior known constellation and channel
gain. After that UE 1 will subtract UE 2’s signal and decode its own, and the data rate is
given by,

R1 = log2

(
1 +

𝜃1P|h1|2
n2

1

)
. (3.6)

The received signal for UE 2 is y2 = h2xt + n2 = h2(
√
𝜃1Ps1 +

√
𝜃2Ps2) + n2, since the

desired signal has a larger power, so it can be detected directly. The achievable data rate for
UE 2 is simply

R2 = log2

(
1 +

𝜃2P|h2|2
𝜃1P|h2|2 + n2

2

)
. (3.7)

The above procedure, however, depends on the perfect DRS of UE 2’s signal at UE 1,
which is a strong assumption, since various factors such as deep fading can affect the signal
detection and decoding. Assuming at UE 1 side, the DRS procedure is not perfect, there will
be residual signal power at stage 2 when decoding its own message. As a result, the data rate
for UE 1 becomes,

R′
1 = log2

(
1 +

𝜃1P|h1|2
𝛽𝜃2P|h1|2 + n2

1

)
, (3.8)

where 𝛽 is the error propagation factor, which is inversely proportional to the signal-to-
noise-plus-interference-ratio (SINR) of (3.5), i.e. 𝛽 ∝ 𝜃1P|h1|2+n2

1
𝜃2P|h1|2 and 0 ≤ 𝛽 ≤ 1. 𝛽 = 0 repre-

sents the perfect decoding, which is the same as (3.6). While 𝛽 = 1 is the worst case that the
DRS of UE 2 is totally unsuccessful and UE 1 has to treat its entire signal as interference.
(In this case, it has the same result as without SIC.)

In our system model, if we assume HnHH
n ≻ HkHH

k , here ≻means if A ≻ B, then (A − B)
is a positive definite matrix. This assumption implies UE n has a better channel condition
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and hence can decode UE k’s message. Thus, at UE n, we have

Rn,k = log2 det
(
I + (𝜎2I + HnWnWH

n HH
n )−1HnWkWH

k HH
n
)
, (3.9)

which is the maximum achievable rate for UE k at UE n. Considering the error propagation,
the data rate for UE n’s own message would be,

Rn = log2 det
(
I + (𝜎2I + 𝛽HnWkWH

k HH
n )−1HnWnWH

n HH
n
)
. (3.10)

The error propagation factor 𝛽 is assumed be a fixed value.
While at UE k, the desired signal can be decoded directly.

Rk,k = log2 det
(
I + (𝜎2I + HkWnWH

n HH
k )

−1HkWkWH
k HH

k
)
. (3.11)

In order for UE k to have a fairly small BER, the maximum allowable data rate for
UE k is,

Rk = min {Rn,k,Rk,k}. (3.12)

Here we normalize the bandwidth at the BS to 1.
Next, we show that Rk = Rk,k, the proof follows appendix A in [171] and can be briefly

summarized as follows.

Proof: Since HnHH
n ≻ HkHH

k , we can write Hn = MHk, where M is a N × N matrix and
MMH ≻ IN .

Due to the property of determinant operation, we can rewrite Rn,k as

Rn,k = log2 det
(
I + WH

k HH
n (𝜎2I + HnWnwH

n HH
n )−1HnWk

)
(3.13)

Define Qn,k = WH
k HH

n (𝜎2I + HnWnWH
n HH

n )−1HnWk and Qk,k = WH
k HH

k (𝜎
2I + HkWnWH

n
HH

k )
−1HkWk, then we substitute Hn = MHk in Qn,k.

Qn,k = WH
k HH

n (𝜎2I + MHkWnWH
n HH

k MH)−1HnWk

= WH
k HH

k (𝜎
2(MHM)−1 + HkWnWH

n HH
k )

−1HkWk

≻WH
k HH

k (𝜎
2I + HkWnwH

n HH
k )

−1HkWk

= Qk,k (3.14)

Thus, log2 det (I + Qn,k) > log2 det (I + Qk,k), which means Rn,k > Rk,k, so Rk = Rk,k.

3.3.2 Problem Formation

In this chapter, we intend to maximize the system throughput by applying NOMA and
MU-MIMO. The problem can be formed as following.

max
Wn ,Wk

(Rn + Rk) (3.15a)

tr(WnWH
n + WkWH

k ) ≤ PBS, (3.15b)

Rk ≥ R0. (3.15c)
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Equation (3.15b) is the constraint for maximum allowed power from the BS. 3.15c sets
a minimum data rate for the weaker UE. Rn and Rk can be calculated based on (3.10) and
(3.11), respectively. One note here is due to the error propagation, the stronger UE may
suffer severe residual interference from the weaker one; thus, its data rate may be lower.
However, we do not consider this situation in the chapter; the lower data rate limit is only
for the weaker UE.

When a resource block (RB) is available, the BS needs to determine the following: (i) How
to properly design the precoding matrix; (ii) How to allocate the power to each UE.

The above optimization problem is hard to solve, and the reason is that it imposes the
error propagation, which makes the utility function 3.15a hard to track. Besides, when cal-
culating Ri, we also need to determine the precoding matrix Wi, for i = n, k. In Section
3.4, we propose a unified precoding matrix formation algorithm, and then we focus on the
power allocation with residual interference.

3.4 Precoding and Power Allocation

3.4.1 Precoding Design

Let tr(WnWH
n ) = Pn and tr(WkWH

k ) = Pk. The optimization problem can be revised as:

max
Wn ,Wk

(Rn + Rk) (3.16)

subject to

tr(WnWH
n ) = Pn, (3.17)

tr(WkWH
k ) ≤ PBS − Pn, (3.18)

Rk ≥ R0. (3.19)

The introduced error propagation model increases the complexity of the optimization
problem. Basically it is a MIMO broadcast channel (BC) in the downlink. So it can be
converted to multiple access channel (MAC) in the uplink using BC-MAC duality. But it
requires extensive matrix calculation and is not easy to solve. Here in this chapter, we intro-
duce the equivalent channel and its respective precoding solution.

From (3.10), we denote Hneq as the equivalent channel of UE n and it can be expressed
as (𝜎2I + 𝛽HnWkWH

k HH
n )−1∕2Hn. We then rewrite (3.10) in terms of the equivalent channel

Hneq.

Rn = log2 det (I + HneqWnWH
n HnH

eq). (3.20)

Similarly, (3.11) can be expressed as,

Rk = log2 det (I + HkeqWkWH
k HkH

eq), (3.21)

where Hkeq = (𝜎2I + HkWnWH
n HH

k )
−1∕2Hk.

Thus, we can treat the problem as two point-to-point MIMO UEs with a total power con-
straint, which is already well known in the literature [63]. However, due to the imposed
minimum data rate requirement for UE k, It is not necessarily the optimal solution. The sub-
optimal precoding can be formed as follows. First, take the SVD of the equivalent channel,

UnEnUH
n = HnH

eqHneq, (3.22)
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where Un is the unitary matrix and its columns are a set of orthonormal eigenvectors of
HnH

eqHneq, En is a diagonal matrix. Therefore, the precoding matrix can be formed as,

WnWH
n = UnẼnUH

n , (3.23)

where Ẽn is calculated from water-filling process with respect to the elements in the
diagonal matrix En, i.e. Ẽn = ⌈λnI − (En)−1⌉+, here λn is a parameter to ensure the power
constraint tr(WnWH

n ) = Pn, and ⌈a⌉+ = max (a, 0).
The precoding matrix for UE k can be formed in the same way. However, two problems

remain here: (i) The calculation of Wn involves Wk and vice versa; (ii) Power Pn and Pk are
unknown. Next, we propose an iterative way to solve for precoding generation under the
assumption that each UE’s power is known as a prior.

We start with WkWH
k = Pk

M
IM , and calculate Hneq, WnWH

n and Hkeq sequentially, then
update WkWH

k according to the new Hkeq. The process will continue until it reaches the
maximum iteration number. To make further clarification, the algorithm for precoding
design is summarized in Algorithm 3.1.

Algorithm 3.1 Iterative Precoding Design
1: Initialization: Given power Pn and Pk, maximum iteration number MAXITER.
2: 𝐖k𝐖H

k = Pk
M
𝐈M .

3: for i = 1 to MAXITER do
4: Calculate 𝐇neq based on 𝐖k𝐰H

k
5: Solve for 𝐖n𝐖H

n from the SVD of 𝐇nH
eq𝐇neq.

6: Calculate 𝐇keq based on 𝐖n𝐖H
n

7: Update 𝐖k𝐖H
k from the SVD of 𝐇kH

eq𝐇keq.
8: end for
9: Output Rn, Rk, 𝐖k𝐖H

k and 𝐖n𝐖H
n .

A note here is that the covariance matrix WkWH
k and WnWH

n actually characterize the
data rate, not Wn or Wk individually. And an easy way to find Wn and Wk is,

Wn = UnẼ
1
2
n ,Wk = UkẼ

1
2
k , (3.24)

which is rather straightforward.

3.4.2 Case Studies for Power Allocation

In this section, two case studies are investigated.

3.4.2.1 Case I
The error propagation factor 𝛽 is a small value. In this special case, we can omit the impact
of imperfect DRS process and Rn becomes,

Rn = log2 det
(
I + (𝜎2I)−1HnWnWH

n HH
n
)
. (3.25)
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Since the sum rate (Rn + Rk) is a monotone increasing function of Pn, as shown in [171],
we only need to find the minimum power for the weak user k to meet the data rate require-
ment, and then allocate the rest of the power to UE n. In this case, we can get the optimal
power by using bisection search algorithm [170, 171].

3.4.2.2 Case II
𝛽 is large. In this case, we may discard the ambient (thermal) noise and Rn is only affected
by the residual interference from UE k.

Rn = log2 det
(
I + (𝛽HnWkWH

k HH
n )−1HnWnWH

n HH
n
)
. (3.26)

This can happen when the received SINR for UE k is relatively small, causing a higher
error probability. The sum rate in this case is neither an increasing nor decreasing function
of Pn, and hence is difficult to track. As we will see later in the simulation section, sum rate
is affected by the choice of 𝛽. As a preliminary research, we present some results on how
the power allocation will affect the sum rate.

3.5 Numerical Results

In this section, we present our simulation results. The total power of the BS is 2 Watts. The
number of BS and UE antennas is both equal to 2. The average channel gain for UE n and UE
k is 0 and 5 dB, respectively. As for the small 𝛽, we choose 𝛽 = 0.05, while the large 𝛽 equals
0.65. 𝜎 = 0.5 in our system. The minimum data rate for UE k is 1 bits/s/Hz. For comparison
purposes, we also list the results with precoding as WkWH

k = Pk
M

IM and WnWH
n = Pn

M
IM .
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Figure 3.1 UE rate with different precoding matrix as Pn increases (𝛽 = 0.05).
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MAXITER = 5 as our iterative precoding algorithm converges very fast. All the results come
from 10,000 independent Monte Carlo experiments to ensure the confidence level.

Figure 3.1 shows the rates of UE n and UE k as Pn changes, respectively. 𝛽 is set to be
0.05 for error propagation in this case. We can see that the rate of UE n increases when
Pn increases, while the rate of UE k decreases when Pn increases. It is obvious that the
rate of a UE increases when its assigned power increases since the SINR increases. We
can also see the rate of UE n increases faster than the rate of UE k when their power
increase individually. Since UE n is a user with better channel condition, increasing power
slightly can increase the rate a lot. Since 𝛽 is small, the residual interference from UE k
does not affect the performance of UE n too much. UE rates are also shown for identity
matrix precoding method. The performance of the identity matrix precoding method has a
similar trend to the performance of the proposed precoding design, but the identity matrix
precoding method does not perform as well as the proposed precoding design. Another
note is the gap between two precoding matrices is small with UE n; this is because as
the SINR increases, the water-filling algorithm has a similar performance compared with
equal power distribution.

Figure 3.2 shows the sum rate of UE n and UE k as Pn changes when 𝛽 = 0.05. We can see
that the sum rate increases while Pn increases. From Figure 3.1, it has been shown that the
rate of UE n increases faster than the decreasing speed of rate of UE k when Pn increases.
Therefore, the sum rate of UE n and UE k increases while Pn increases. Figure 3.2 also shows
the proposed precoding design performs better than identity matrix precoding method with
respect to sum rate.

Figure 3.3 shows the rates of UE n and UE k as Pn changes when 𝛽 is set to be 0.65 for
error propagation. We can still see that the rate of UE n increases when Pn increases, while
the rate of UE k decreases when Pn increases. However, the rate of UE n increases faster
than the decreasing speed of rate of UE k when Pn increases. The rate of UE n increases
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Figure 3.2 Sum rate with different precoding matrix as Pn increases (𝛽 = 0.05).
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Figure 3.4 Sum rate with different precoding matrix as Pn increases (𝛽 = 0.65).

slower than the decreasing speed of rate of UE k when Pn > 0.76. The reason is that when
Pn < 0.76, the interference from UE n is smaller than the noise; therefore, the SINR
decreases slowly. However, when Pn > 0.76, the interference becomes dominant and
causes the SINR to decrease rapidly. Compared with Figure 3.1, the rate of UE n increases
slower than that in Figure 3.1. Since a bigger 𝛽 is used in this case, residual interference
from UE k has a bigger effect to UE n. Therefore, the rate of UE n increases slower because
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of stronger residual interference from UE k. For the identity matrix precoding method, the
rate of UE n increases slower than the rate of UE k when their power increases individually
because UE n has a strong residual interference from UE k. We can see that the proposed
precoding design performs much better than the identity matrix precoding method because
it is designed to optimize the UE sum rate.

Figure 3.4 shows the sum rate of UE n and UE k as Pn changes when 𝛽 = 0.65. We can
see that the proposed precoding design performs much better than the identity matrix pre-
coding method because it is designed to optimize the UE sum rate.

3.6 Summary

In this chapter, we consider a downlink wireless network which jointly incorporates NOMA
and MIMO. A sum rate optimization problem is formulated with error propagation in SIC.
In order to solve the problem, we introduce the concept of equivalent channel and pro-
pose a sequential solution which solves for precoding matrix by applying an iterative algo-
rithm first. Then we investigate the impact of power allocation by two cases: small error
propagation factor and large error propagation factor. Simulations are performed to verify
the superiority of proposed precoding design and our analyses on power allocation with
residual interference.
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4

NOMA in Relay and IoT for 5G Wireless Networks

4.1 Outage Probability Study in a NOMA Relay System

4.1.1 Background

In Chapters 2 and 3, we have shown NOMA in D2D underlaid MIMO networks and the
SIC error propagation. Existing works also evaluated NOMA’s performance under outage
analysis. In [214], the authors analyzed the performance of NOMA theoretically and they
concluded that the disparity, either from user channels or intentionally created by allocat-
ing different power factor, can further be beneficial to the system performance. A similar
conclusion was drawn from cognitive radio NOMA (CR-NOMA) in [45]. Outage probabil-
ity is a metric widely used in performance evaluation. It is shown in [44] that the outage
performance of NOMA is superior to the traditional OMA in a group of randomly deployed
users.

This chapter develops a precoding and power allocation strategy to further enhance the
system performance in terms of sum rate. Similarly, both [171] and [170] apply NOMA
into MIMO scheme. The algorithms in their studies can be applied with or without CSI. In
[159] and [215] system-level performance of using NOMA in LTE and heterogeneous net-
works is evaluated, and the results show promising improvements over existing radio access
technologies (RATs). In [141], random beamforming together with intra-beam superposi-
tion coding and SIC with BS cooperation is investigated. Relay cooperative communica-
tion has been studied in the following studies. Men and Ge [129] uses a single-antenna
amplified-and-forward (AF) relay to help the transmission between multi-antenna BS and
users. Kim and Lee [96] uses relay to help the transmission to a poor-channel user. Ding
et al. [46] investigates the system performance under a selection of multiple relays.

As NOMA uses SIC at the receiver to decode multiple user information, the performance
of SIC can greatly impact NOMA. Most existing studies assume perfect SIC in NOMA study
with a few like [140] considering SIC error due to imperfect channel knowledge. One of our
earlier studies [172] investigates the sum rate performance in a MIMO+NOMA system, and
it considers error propagation in the SIC process. The idea was inspired by the decoding pro-
cess in CDMA systems [8]. It assumes there is a residual power from previously decoded
signals, and this residual power can arise due to channel estimation error, imperfect con-
stellation mapping, or channel fading. SIC error propagation causes a chain effect and it
affects the last decoded user most.

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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In this chapter, two NOMA relay schemes are presented and evaluated, namely NOMA
cooperative scheme and NOMA TDMA scheme. In NOMA cooperative scheme, the com-
pletion of one round information transmission consists of two time slots. In the first slot the
BS uses NOMA to send the superimposed signal to two relays. Upon receiving the signal,
these two relays will decode the signals by using SIC and then form a cooperative commu-
nication pair to send the precoded signals to the respective recipients in the second time
slot. Dirty paper code (DPC) is used as precoding at relays to eliminate the inter-user inter-
ference in the second time slot. As a comparison, NOMA TDMA scheme uses three times
slots to complete one round information transmission. The first time slot does the same as
in scheme one. After relays decode the message, the first relay sends one signal to user one
in the second slot and the second relay send another signal to user 2 in the following slot.
Analytical models on outage performance are derived for both schemes in this chapter.

4.1.2 System Model

The study considers a downlink wireless communication system that consists of one
access point (AP) and a number of UEs [175]. Each UE can either function as a relay
when needed or as a regular UE. The transmit powers of AP and UE are Ps and Pr ,
respectively. With NOMA, the AP can communicate with two UEs simultaneously. In
the case that the channels between AP and these two UEs are poor, two other UEs are
selected as relays for multi-hop cooperative transmission. Relays operate in a half-duplex
decode-and-forward (DF) mode. The AP and UEs in the system are equipped with a
single antenna. For notational simplicity, we denote AP, relay 1, relay 2, UE 1, and UE 2
with subscripts b, r1, r2,u1, and u2 in the equations, respectively. Furthermore, it is
assumed that channels between the AP and two relays are two independent random
variables (RVs) following a complex Gaussian distribution with zero mean but different
variances, i.e. hb,r1 ∼  (0, 𝜎2

b,r1), hb,r2 ∼  (0, 𝜎2
b,r2). Without loss of generality, we

assume |hb,r1|2 > |hb,r2|2 and thus 𝛼s < 𝛽s is satisfied to provide sufficient decoding capa-
bility for NOMA weaker user. On the other hand, channels between relays and UEs can
be modeled as independent complex Gaussian RVs with zero mean and unit variance,
i.e. hi,j ∼  (0, 1). i = {r1, r2}, j = {u1,u2}.

4.1.2.1 NOMA Cooperative Scheme
Each round of NOMA cooperative transmission consists of two time slots. In the first time
slot, the AP transmits a composite signal xs =

√
𝛼sPsx1 +

√
𝛽sPsx2 according to the NOMA

principle, where x1 and x2 are signals intended for users 1 and 2, respectively; 𝛼s and 𝛽s are
the corresponding power allocation factors and satisfy 𝛼s + 𝛽s = 1. The received signals at
two relays are, respectively, expressed as

yb,r1 = hb,r1(
√
𝛼sPsx1 +

√
𝛽sPsx2) + nb,r1, (4.1)

and

yb,r2 = hb,r2(
√
𝛼sPsx1 +

√
𝛽sPsx2) + nb,r2. (4.2)

nb,r1 and nb,r2 are additive white Gaussian noise (AWGN) and follow nb,i ∼  (0,N0),
i = {r1, r2}. Both relays use SIC to decode the received signals. We first present the
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analysis by assuming perfect SIC and the results with imperfect SIC will be presented
later. For relay 1, x2 will be decoded first by treating x1 as interference and the achievable
signal-to-interference-noise ratio (SINR) for x2 is

𝛾r1,x2 =
𝛽sPs|hb,r1|2

𝛼sPs|hb,r1|2 + N0
. (4.3)

Relay 1 then subtracts x2 from the composite signal and decodes x1 with only AWGN. Thus,
the achievable SINR becomes

𝛾r1,x1 =
𝛼sPs|hb,r1|2

N0
. (4.4)

Similarly, at relay 2, the SINR for x2 and x1 can be expressed as

𝛾r2,x2 =
𝛽sPs|hb,r2|2

𝛼sPs|hb,r2|2 + N0
, (4.5)

and

𝛾r2,x1 =
𝛼sPs|hb,r2|2

N0
, (4.6)

respectively.
In the second time slot, relay 1 transmits x1 to user 1 while relay 2 transmits x2 to user 2

by using precoded cooperative transmission. The received signals at users 1 and 2 are
expressed as

yu1 = hr1,u1x̂1 + hr2,u1x̂2 + nu1, (4.7)
yu2 = hr1,u2x̂1 + hr2,u2x̂2 + nu2,

where AWGN ni ∼  (0,N0), i = {u1,u2}. If we re-write the above equation in the matrix
format, we can get y = Hx̂ + n and y = [yu1 yu2]T . x̂ = [x̂1 x̂2]T is the precoded transmit-
ted signal vector. The precoding mechanism will be discussed later. n = [nu1 nu2]T and

H =
[

hr1,u1 hr2,u1
hr1,u2 hr2,u2

]
. (4.8)

To further minimize inter-user interference, DPC is applied at relays as the precoding
scheme. Assume H is a full-rank matrix and it can be decomposed as H = LQ, where L
is a 2 × 2 lower triangular matrix and Q is a semi-orthogonal matrix, QQH = I2. Thus, let
W = QHG and G is given as

G =
⎡⎢⎢⎣

1 0

−
l2,1

l2,2
1

⎤⎥⎥⎦
, (4.9)

where li,j is the (i, j)-th entry of matrix L.
The received signals at two users can be expressed as

y = Hx̂ + n = HWx + n

=
[

l1,1 0
0 l2,2

] [
x1
x2

]
+
[

nu1
nu2

]
. (4.10)
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Figure 4.1 NOMA cooperative scheme.

Therefore, SINRs for users 1 and 2 can be written as

𝛾u1 =
|l1,1|2Pr

N0
, 𝛾u2 =

|l2,2|2Pr

N0
. (4.11)

An illustration of NOMA cooperative scheme is shown in Figure 4.1.
For a fair comparison, the user sum rate achieved in one round communication is nor-

malized with respect to the number of time slots in each round. Thus the achievable sum
rate for users 1 and 2 is expressed as

RNC
i = 1

2
log2(1 + 𝛾i), i = {u1,u2}, (4.12)

where the factor 1∕2 is used to account for two time slots needed to complete one round
transmission.

4.1.2.2 NOMA TDMA Scheme
NOMA TDMA scheme needs three time slots to complete one round communication. The
first slot does the same as the first time slot in the NOMA cooperative scheme. Afterwards,
relay 1 sends x1 to user 1 in the second time slot, while relay 2 sends x2 to user 2 in the third
time slot, as shown in Figure 4.2.

First phase

User 1Relay 2

Relay 2 User 2

Third phase

Second phase

AP

h b,r1

h
b,r2

hr1,u1

hr2,u2

Figure 4.2 NOMA TDMA scheme.
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By receiving messages separately in time slots 2 and 3, users 1 and 2 will not experience
interference from each other. As a result, the achievable sum rate is

RNT
i = 1

3
log2

(
1 +

|hj,i|2Pr

N0

)
, (4.13)

where i = {u1,u2}, j = {r1, r2}. Likewise, we use the factor 1
3

to indicate three time slots in
this scenario. Note that when calculating the first time slot data rate, we also need to use
the factor 1∕3, i.e.

Ri,j =
1
3

log2(1 + 𝛾i,j), (4.14)

where i = {r1, r2}, j = {x1, x2}.

4.1.3 Outage Probability Analysis

In this section, we analyze the system performance in terms of outage probability, which
represents the probability of an event that the achieved data rate is less than a predefined
one. Outage probability is a good metric for QoS in the system design. A closed-form ana-
lytical outage probability is derived for different users, based on which a high SNR approx-
imation will also be presented.

4.1.3.1 Outage Probability in NOMA Cooperative Scheme
Let R1 and R2 denote the predefined minimum rates for users 1 and 2, respectively. An
outage occurs when the achievable data rate is less than the minimum data rate. Define
u1,NC as the event of an outage at user 1. We first consider the complementary event of
NC

u1 , which is denoted as C
u1,NC. The second time slot transmission relies on the successful

decoding at the first time slot. For a DF relaying scheme, C
u1,NC happens when relay 1

successfully decodes x1, and relay 2 successfully decodes x2, and user 1 successfully decodes
x1. Thus, the outage probability can be calculated as

P(u1,NC) = 1 − P(C
u1,NC)

= 1 − P
(
min {Rr1,x1,Ru1} > R1 and min {Rr1,x2,Rr2,x2} > R2

)
. (4.15)

Similarly, the outage probability for user 2 is

P(u2,NC) = 1 − P(C
u2,NC)

= 1 − P
(

Rr1,x1 > R1 and min {Rr1,x2,Rr2,x2,Ru2} > R2
)
. (4.16)

Lemma 4.1 ([68], Theorem 2.3.18) Let H be a 2 × 2 matrix and its entries follow i.i.d.
Gaussian distribution with zero mean and unit variance. If H = LQ, where L is a lower trian-
gle matrix and Q is a semi-orthogonal matrix, then |l1,1|2 ∼ 𝜒2(4) and |l2,2|2 ∼ exp(1).

Theorem 4.1 The outage probabilities for users 1 and 2 in NOMA cooperative scheme can
be expressed as

P(u1,NC) = 1 − e
− 𝜙1
𝜎2

b,r1 e
− 𝜙2
𝜎2

b,r2 (𝜙3 + 1)e−𝜙3 , (4.17)
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and

P(u2,NC) = 1 − e
− 𝜙1
𝜎2

b,r1 e
− 𝜙2
𝜎2

b,r2 e−𝜙4 , (4.18)

where 𝜌s ≜
Ps
N0

, 𝜌r ≜
Pr
N0

, z1 ≜ 22R1 − 1, z2 ≜ 22R2 − 1, 𝜙1 = max { z1
𝛼s𝜌s
, 𝜙2}, 𝜙2 = z2

(𝛽s−z2𝛼s)𝜌s
,

𝜙3 = z1
𝜌r

, 𝜙4 = z2
𝜌r

.

Proof: From equation (4.15),

P(u1,NC) = 1 − P
(
min {Rr1,x1,Ru1} > R1 and min {Rr1,x2,Rr2,x2} > R2

)
= 1 − P

(
min

{1
2

log2(1 + 𝛾r1,x1),
1
2

log2(1 + 𝛾u1)
}
> R1

)
∗

P
(

min
{1

2
log2(1 + 𝛾r1,x2),

1
2

log2(1 + 𝛾r2,x2)
}
> R2

)
a
= 1 − P

(|hb,r1|2 > 𝜙1
)

P
(|hb,r2|2 > 𝜙2

)
P
(|l1,1|2 > 𝜙3

)
b
= 1 − e

− 𝜙1
𝜎2

b,r1 e
− 𝜙2
𝜎2

b,r2 (𝜙3 + 1)e−𝜙3 .

Here,
a
= holds when 𝛽s > max {z2𝛼s, 𝛼s}.

b
= holds since both |hb,r1|2 and |hb,r2|2 follow an

exponential distribution with parameter 1 while |l1,1|2 follows a chi-squared distribution
with a degree of freedom 4.

Similarly,

P(u2,NC) = 1 − P
(

Rr1,x1 > R1 and min {Rr1,x2,Rr2,x2,Ru2} > R2
)

= 1 − P
(1

2
log2(1 + 𝛾r1,x1) > R1

)
∗

P
(

min
{1

2
log2(1 + 𝛾r1,x2),

1
2

log2(1 + 𝛾r2,x2),
1
2

log2(1 + 𝛾u2)
}
> R2

)

= 1 − P
(|hb,r1|2 > 𝜙1

)
P
(|hb,r2|2 > 𝜙2

)
P
(|l2,2|2 > 𝜙4

)

= 1 − e
− 𝜙1
𝜎2

b,r1 e
− 𝜙2
𝜎2

b,r2 e−𝜙4 .

Since limx→0(1 − e−x) ≃ x, in the high SNR regime, i.e. when 𝜌s, 𝜌r → ∞, user 2 outage
probability at high SNR can be approximated as:

P(u2,NC) =
𝜙1

𝜎2
b,r1

+
𝜙2

𝜎2
b,r2

+ 𝜙4. (4.19)

4.1.4 Outage Probability in NOMA TDMA Scheme

As previously stated the first time slot in this scheme also uses NOMA transmission from
the AP to two relays. Afterwards two relays will transmit x1 and x2 to the respective recip-
ient in the following two time slots separately. Similar to NOMA cooperative scheme, the
expressions for outage probabilities for users 1 and 2 are, respectively, expressed as

P(u1,NT) = 1 − P
(
min {Rr1,x1,Ru1} > R1 and Rr1,x2 > R2

)
, (4.20)

and

P(u2,NT) = 1 − P
(
min {Rr2,x2,Ru2} > R2

)
. (4.21)

We have the following theorem for the outage probabilities.



�

� �

�

4.1 Outage Probability Study in a NOMA Relay System 37

Theorem 4.2 The outage probabilities for users 1 and 2 in NOMA TDMA scheme can be
calculated as

P(u1,NT) = 1 − e
− 𝜙5
𝜎2

b,r1 e−𝜙6 , (4.22)

and

P(u2,NT) = 1 − e
− 𝜙7
𝜎2

b,r2 e−𝜙8 , (4.23)

where 𝜙5 = max { z3

𝛼s𝜌s
, 𝜙7}, 𝜙6 = z3

𝜌r
, 𝜙7 = z4

(𝛽s−z4𝛼s)𝜌s
, 𝜙8 = z4

𝜌r
, z3 = 23R1 − 1, and z4 = 23R2 − 1.

The proof is similar to Theorem 4.1 and thus is not detailed here. Note that in order for
this theorem to hold, we need to have 𝛽s > max {z4𝛼s, 𝛼s}.

4.1.5 Outage Probability with Error Propagation in SIC

In Section 4.1.3, we have derived the outage performance for users 1 and 2 by assuming both
relays can decode NOMA signals correctly by using SIC. In what follows, we introduce the
concept of error propagation in SIC, which can affect the system performance such as sum
rate and outage probability.

The process of SIC consists of decoding, reconstruction, and subtraction (DRS) [172].
Take relay 1 as an example; upon receiving the superimposed signal, x2 will be decoded
first by treating x1 as interference. Then a reconstruction process will take place where relay
1 estimates its channel gain and uses the decoded signal x̂2. Therefore, the superposition
signal for the next decoding symbol x1 will be updated to

yr1,x1 = yb,r1 − ĥb,r1x̂2, (4.24)

where ĥb,r1 is the estimated channel gain for relay 1. Existing studies assume the perfect
decoding and cancellation of x2, and thus we have yr1,x1 = hb,r1

√
𝛼sPsx1 + nb,r1. We argue

that this is a strong assumption since neither the channel estimation nor signal decoding
can be perfect. While we desire to let ĥk and ŝM as close to hk and sM as possible, factors
such as synchronization, phase ambiguity, and deep fading can seriously degrade the SIC
process and errors can be accumulated and affect the UE to be decoded afterwards. We refer
this process as EP.
𝜃 is defined as the EP factor in this chapter. Since there is a residual power when decoding

the second signal, (4.4) and (4.6) can be updated to,

𝛾EP
r1,x1 =

𝛼sPs|hb,r1|2
N0 + 𝜃𝛽sPs|hb,r1|2 , (4.25)

𝛾EP
r2,x1 =

𝛼sPs|hb,r2|2
N0 + 𝜃𝛽sPs|hb,r2|2 .

𝜃 represents the amount of residual power from the previous decoding and 0 ≤ 𝜃 ≤ 1. When
𝜃 = 0, the results agree with perfect cancellation. 𝜃 = 1 is the worst case when SIC fails to
decode the first signal and the second stage decoding has to treat the entire first signal as
interference. Besides, 𝜃 should be inversely proportional to the SNR of x2. In this chapter,
we assume 𝜃 is a constant for simplicity.

Similarly, the outage probability analysis is given as follows.
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4.1.5.1 Outage Probability in NOMA Cooperative Scheme with EP
Define EP

i,NC, i = {u1,u2} as the outage event of user i in the NOMA cooperative scheme.
Then, we have the following theorem for the outage probability.

Theorem 4.3 The outage probabilities for users 1 and 2 in the NOMA cooperative scheme
when considering EP in SIC are, respectively, derived as

P(EP
u1,NC) = 1 − e−max { z1

(𝛼s−z1𝜃𝛽s )𝜌s
,𝜙2}∕𝜎2

b,r1 e−𝜙2∕𝜎2
b,r2 (𝜙3 + 1)e−𝜙3 , (4.26)

and

P(EP
u2,NC) = 1 − e−max { z1

(𝛼s−z1𝜃𝛽s )𝜌s
,𝜙2}∕𝜎2

b,r1 e−𝜙2∕𝜎2
b,r2 e−𝜙4 . (4.27)

4.1.5.2 Outage Probability in NOMA TDMA Scheme with EP
Similarly, we also consider EP in SIC in the second scheme. Let EP

i,NT , i = {u1,u2} be the
event of an outage. We have the following theorem for the analytical results of outage prob-
abilities.

Theorem 4.4 The outage probabilities for users 1 and 2 in NOMA TDMA transmission
when considering EP in SIC are

P(EP
u1,NT) = 1 − e−max { z3

(𝛼s−z3𝜃𝛽s )𝜌s
,𝜙7}∕𝜎2

b,r1 e−𝜙6 , (4.28)

and

P(EP
u2,NT) = 1 − e

− 𝜙7
𝜎2

b,r2 e−𝜙8 . (4.29)

Remark 4.1 The constraint for Theorem 4.3 to hold is 𝛼s
z1𝜃

> 𝛽s > max {z2𝛼s, 𝛼s},
which has one additional constraint (𝛼s > z1𝜃𝛽s) compared with Theorem 4.1. Similarly,
Theorem 4.4 holds when 𝛼s

z3𝜃
> 𝛽s > max {z4𝛼s, 𝛼s}, which also posts another constraint.

These additional constraints can potentially increase the outage probability.

Remark 4.2 We show that power allocation factors impact the outage probability. Specif-
ically, if the constraints in Remark 4.1 cannot be satisfied, the outage probability will always
be 1 for both users, which indicates the failure of both schemes. The reason is that if x2 can-
not be decoded in the first time slot, then the second or third time slot cannot proceed. If the
maximum value of 𝛽s is less than 𝛼s

z1
Ω1, where Ω1 = min {z2(1 + z1),

1
𝜃
,

z2(1+z1)
1+z2𝜃

}, the outage
probability under NOMA cooperative scheme is the same for both with EP or without EP
cases. Likewise, for NOMA TDMA scheme, the outage probability is the same for user 1 in
both EP or no EP cases when 𝛽s <

𝛼s
z3
Ω2, where Ω2 = min {z4(1 + z3),

1
𝜃
,

z4(1+z3)
1+z4𝜃

}. The reason
is that if we limit the value of 𝛽s, the bottleneck of the data rate does not come from the first
time slot transmission, which may be directly affected by the EP. However, for user 2, the
outage probability is always identical with or with not EP since under this circumstance
user 2 is not impacted by EP.
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Figure 4.3 Theorem 4.1 and 4.2. 𝛼s = 0.2, 𝛽s = 0.8. R1 = R2 = 0.5 bps/Hz.

4.1.6 Numerical Results

In this section, performance evaluation on the proposed schemes are provided based on
both simulation and analysis. Some basic parameters are set as follows. The channel gains
of hb,r1 and hb,r2 are 5 and 1, respectively, i.e. 𝜎2

b,r1 = 5, 𝜎2
b,r2 = 1. The transmission SNR of

the AP ranges from 10 to 50 dB, and the transmit power of both relays is set to half of the
AP’s power, which means there is a 3 dB difference between Ps and Pr .

Figure 4.3 illustrates the outage performance in both schemes with perfect SIC, i.e. no
EP in SIC, as a function of the AP transmit SNR in dB. The predefined minimum data
rates R1 and R2 are both set to 0.5 bps/Hz. Besides, 𝛼s = 0.2 and 𝛽s = 0.8 are constraints.
Apparently, optimizing 𝛼s and 𝛽s based on channel condition and transmit SNR will further
improve the outage probability performance, and this can be explored in the future work.
It is observed that all the outage probabilities decrease with the increment of SNR. The
analytical results match the simulation results very well, which validates the earlier analysis
in Theorem 4.1 and Theorem 4.2. Because of this, we only present the analytical results
for better illustrations in the figures for the following parts.

Further, by comparing the performance of NOMA cooperative and NOMA TDMA
schemes, one can conclude that NOMA cooperative scheme achieves lower outage
probabilities than the NOMA TDMA scheme, which uses three time slots in one round
communication, and hence the added factor 1

3
decreases the total sum rate. In both

schemes, user 1 outperforms user 2 since user 2’s message x2 is decoded first, which has a
higher interference term.

Figure 4.4 presents the result for Theorem 4.3. A new set of parameters is selected
to satisfy Remark 4.1 and Remark 4.2. The corresponding parameters are 𝛼s = 0.36,



�

� �

�

40 4 NOMA in Relay and IoT for 5G Wireless Networks

10 15 20 25 30 35 40 45 50

Transmission SNR of the AP in dB

10–5

10–4

10–3

10–2

10–1

100

O
u
ta

g
e
 p

ro
b
a
b
ili

ty

p out1 w/o EP--ana

p out2 w/o EP--ana

p out1 w/EP--ana(θ = 0.7)

p out2 w/EP--ana(θ = 0.7)

p out1 w/EP--ana(θ = 0.9)

p out2 w/EP--ana(θ = 0.9)

Figure 4.4 Theorem 4.3. 𝛼s = 0.36, 𝛽s = 0.64. R1 = R2 = 0.4 bps/Hz. 𝜃 = 0.7 and 𝜃 = 0.9.

𝛽s = 0.64,R1 = R2 = 0.4 bps/Hz. The curve without EP is also plotted for reference. One
can see that SIC EP degrades the outage performance largely when 𝜃 = 0.7. However,
when 𝜃 = 0.9, the condition 𝛼s

z1𝜃
> 𝛽s is not satisfied any more, making both the analytical

and simulated outage probabilities to 1.
The result for Theorem 4.4 is shown in Figure 4.5. Likewise, we plot the case with-

out EP for reference. The parameters for this scheme are 𝛼s = 0.36, 𝛽s = 0.64,R1 = R2 =
0.4 bps/Hz. These parameters are selected to meet the requirements of Remark 4.1 and
Remark 4.2. When EP is considered, the performance becomes worse for user 1, while user 2
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Figure 4.5 Theorem 4.4. 𝛼s = 0.36, 𝛽s = 0.64. R1 = R2 = 0.4 bps/Hz. 𝜃 = 0.4 and 𝜃 = 0.6.
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outage probability remains the same. When 𝜃 = 0.6, the condition 𝛼s
z1𝜃

> 𝛽s is not satisfied.
As expected, the outage probability becomes 1 for user 1.

4.2 NOMA in a mmWave-Based IoT Wireless System
with SWIPT

4.2.1 Introduction

The unprecedented growth of mobile devices including smart phones, tablets, laptops, and
IoT devices drives the wireless telecommunication industry to a new level. The require-
ments come from various aspects such as higher data rate, fairness, tremendous connec-
tivity, and low latency from different applications and various end users. Therefore, as a
new generation technology, 5G emerges with its goal to provide 1000 times higher data rate,
1 ms low latency, and support billions of upcoming IoT devices. Among these features, 1000
times capacity can be achieved by the new mmWave spectrum, novel network architectures,
and new radio access technologies (RATs) [78].

Due to the ad hoc deployment nature of most low-power nodes and devices, they may
have limited access to wireline power charging facilities and also have limited battery life.
In this section, low-power relay nodes and devices are assumed to be capable of energy har-
vest functionality. More specifically, simultaneous wireless information and power transfer
(SWIPT) is considered. SWIPT can have two implementation modes, namely time switch-
ing (TS) mode and power splitting (PS) mode [108]. In the TS mode, a dedicated resource
is used for energy transfer from which the harvested energy is then used for future infor-
mation transmission. In the PS mode, upon receiving the radio signal, the energy harvest
node splits the signal into two parts. The first part is used for signal decoding, while the
second part is used for energy charging. A linear energy harvest model, which assumes the
output power of the energy harvest circuit grows linearly with the input power, is applied
in most existing works. Cooperative NOMA system with SWIPT is studied in [110], where
they proposed different user selection schemes and evaluated the performance with outage
probability. This paradigm is proved impractical based on field test results as shown in [21].
As a result, a more practical yet more complicated non-linear model which better matches
current circuit design is considered in this chapter. Thus the wireless heterogeneous system
in this study consists of higher-power MBSs and low-power relays with SWIPT that is based
on the non-linear energy harvesting model. Downlink NOMA is first used to transmit com-
posite signals to UE and relay. Relay then harvests the energy by using non-linear model in
PS mode. With the harvested energy, relay sends the received signal to the cell edge UE.

4.2.2 System Model

The system model is based on a mmWave downlink wireless heterogeneous system that
consists of high-power MBSs, low-power relays, and low-power IoT devices, such as sensors
or wearable devices [176]. At mmwave band, MBSs are equipped with a large number of
antennas, which have narrow half-power-beamwidth (HPBW) to combat with the severe
pathloss and each transmission is conducted with a single antenna. While each low-power
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relay or IoT device is equipped with a single antenna due to the size and power constraints. It
is assumed that MBSs can coordinate the transmission direction; hence, inter-cell and intra
cell interference can be eliminated by carefully aligning the beam directions. Furthermore,
relaying and NOMA are used to help reach UEs out of coverage due to severe blockage at
mmWave band. Without loss of generality, IoT UE 1 and IoT UE 2 are selected, where UE 1
is in the beamforming coverage area while there is a severe blockage between BS and UE 2
so that a direct transmission link between the MBS and UE 2 is difficult to establish. Thus
BS can communicate to UE 2 through relays. In this chapter we assume D2D relaying mode
is used so that the relay can communication with a UE in close proximity and we assume the
relay is capable of rechargeable functionality. So the power consumed for relaying comes
directly from electromagnetic waves, which can relieve the concern on limited battery life
for typical IoT devices. With NOMA and relay, complete transmission cycle consists of two
phases. In the first phase, the BS sends a composite signal to UE 1 and a selected relay device
simultaneously by applying NOMA. After receiving the signal, the relay device splits the
signal into two parts. One part is for information decoding and the other part is for energy
harvesting. In the second phase, the BS sends another message to UE 1 while the relay
device sends the decoded message to UE 2 by using the harvested energy in phase 1.

Denote the channel between BS and UE 1, BS and relay device, relay device and UE 2,
as h′

B1, h′
BR, and h′

R2, respectively. Frequency flat quasi-static block fading model is used
here, so the channel does not change during the two transmission phases while the chan-
nel changes from cycle to cycle. Additionally, h′

i =
hi
√

a0√
1+d𝛼i

, where hi is modeled as Rayleigh

fading with hi ∼  (0, 1), i = {B1,BR,R2} [47]. a0 is antenna-specific gain for the BS and
a0 = 1 when i = R2. An illustration of the system model is in Figure 4.6. In the following,
the transmission process for each cycle is illustrated.

4.2.2.1 Phase 1 Transmission
In this phase, the BS sends the superimposed message to both UE 1 and the relay. The
message is given as x =

√
λ1PBSx1 +

√
λ2PBSx2, where λ1 and λ2 are power allocation factors

for UE 1 and the relay, respectively, with λ1 + λ2 = 1. x1 and x2 are normalized intended

Obstacles

MBS N

UE 1

UE i

UE k
MBS 1 UE 2

Relay

UE j

BS transmission
Relay transmission

Figure 4.6 System model.
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signal for UE 1 and UE 2. PBS is the transmission power of the BS. At the receiver side, UE 1
observes y1

UE1, which is expressed as

y1
UE1 =

hB1
√

a0√
1 + d𝛼B1

x + nB1

=
hB1

√
a0√

1 + d𝛼B1

(
√
λ1PBSx1 +

√
λ2PBSx2) + nB1, (4.30)

where nB1 is the additive Gaussian white noise (AWGN) with variance 𝜎2, dB1 is the distance
from the BS to UE 1, 𝛼 is the path loss exponent for line-of-sight (LOS).

Without loss of generality, we assume |hB1|2 > |hBR|2. Hence according to NOMA proto-
col, λ1 < λ2 is set to ensure QoS at the weak receiver. With this setting, UE 1 first decodes
signal x2 with its SINR formulated as

𝛾1
UE1,x2

=
λ2𝜌B1|hB1|2

λ1𝜌B1|hB1|2 + 1
, (4.31)

where 𝜌B1 = PBSa0

𝜎2(1+d𝛼B1)
is the transmission SNR from the BS to UE 1. The superscript “1”

indicates the first phase. SIC is performed to remove x2 from the superimposed signal, then
UE 1 can decode its own message with the following SINR

𝛾1
UE1,x1

= λ1𝜌B1|hB1|2. (4.32)

At the relay side, it first splits the observation into two parts. One part is for the recharge-
able unit, which consists of a super capacitor or a short-term high efficiency battery. The
other part is for information decoding, which can be expressed as

yD
R =

hBR
√

a0√
1 + d𝛼BR

x
√

1 − 𝛽 + nBR

=
hBR

√
a0√

1 + d𝛼BR

√
1 − 𝛽(

√
λ1PBSx1 +

√
λ2PBSx2) + nBR, (4.33)

where 𝛽 is the power split coefficient indicating the portion of power assigned to energy
harvest unit. nBR has the same distribution with nB1. Signal yD

R goes through the decoding
unit for x2, the corresponding SINR is

𝛾1
R,x2

=
(1 − 𝛽)λ2𝜌BR|hBR|2

(1 − 𝛽)λ1𝜌BR|hBR|2 + 1
, (4.34)

where 𝜌BR = PBSa0

𝜎2(1+d𝛼BR)
is the transmission SNR from the BS to the relay.

The remaining power PC
R = |hBR|2𝛽𝜌BR𝜎

2 is harvested by the relay. In this chapter,
we adopt the non-linear energy harvest model, which is more precise in modeling the
power-in-power-out relation in current wireless charging technology. Specifically, the
harvested energy can be expressed as a logistic (sigmoidal) function

PEH
R = M

1 + exp
(
−a(PC

R − b)
) , (4.35)

where M, a, b are constants and represent different physical meanings in wireless charging.
M denotes the maximum harvested power at the relay when the energy harvesting circuit
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Figure 4.7 Power-in-power-out response in the non-linear energy harvest model.

is saturated. a together with b capture the joint effect of resistance, capacitance, and circuit
sensitivity [19].

Boshkovska et al. [21] provides a more sophisticated model, which captures the
zero-input-zero-output feature in wireless charging and can be modeled in the following.

PEH
R = Ψ − MΩ

1 − Ω
, Ω = 1

1 + exp(ab)
, (4.36)

where Ψ = M
1+exp(−a(PC

R−b)) .
In the subsequent analysis, we use model (4.35) based on the following reasons. (i) Our

model does not have zero-power input case; (ii) The general logistic function can reduce
the complexity in outage analysis; (iii) (4.35) can provide sufficient precision.

Figure 4.7 presents the power-in-power-out relation with 1000 independent events, based
on which the parameters are estimated as follows, 𝛽 = 0.6, 𝜎 = 0.0995, M = 10, a = 1,
b = 𝛽𝜌BR𝜎

2, and 𝜌BR = 30 dB.

4.2.2.2 Phase 2 Transmission
During the second phase, the relay sends x2 to UE 2 with the energy harvested in Phase 1.
Meanwhile, the BS sends another signal x3 to UE 1. The received signal at UE 1 and UE 2
is expressed as

y2
UE1 =

√
PBS

hB1
√

a0√
1 + d𝛼B1

x3 +
√

PEH
R

hR1√
1 + d𝛼R1

x2 + nB1, (4.37)

and

y2
UE2 =

√
PEH

R
hR2√

1 + d𝛼R2

x2 + nB2, (4.38)

respectively.
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Since UE 1 already decodes x2 in Phase 1, by appropriately estimating the channel hR1, it
can employ SIC to subtract x2 from its observation [96]. The remaining SINR becomes

𝛾2
UE1,x3

= 𝜌B1|hB1|2. (4.39)

For UE 2, since there is a severe blockage between BS and itself, it has a negligible interfer-
ence from BS. The achievable SINR at UE 2 is

𝛾2
UE2.x2

= 𝜌EH|hR2|2, (4.40)

with 𝜌EH = PEH
R

𝜎2(1+d𝛼R2)
.

4.2.3 Outage Analysis

In this section, we will provide mathematical analysis on the outage probability of the pro-
posed scheme. The outage probability is defined as the probability of events where certain
measurements such as SINR or data rate cannot meet the pre-defined threshold.

4.2.3.1 UE 1 Outage Probability
Define the minimum data rates for messages x1, x2, and x3 as R1,R2, and R3, respectively.
Below the minimum data rate, a UE will have an outage. Since UE 1 involves in both phases,
outage occurs when UE 1 fails to decode x2 and x1 in phase 1 or fails to decode x3 in phase 2.
For simplicity, we can consider the complementary event first. Specifically, we can derive
the outage probability of UE 1 as follows.

P(UE1) = 1 − P(C
UE1)

= 1 − P
(1

2
log2(1 + 𝛾1

UE1,x2
) > R2 and 1

2
log2(1 + 𝛾1

UE1,x1
) > R1

and 1
2

log2(1 + 𝛾2
UE1,x3

) > R3

)
.

Notice that channel hB1 ∼  (0, 1) and |hB1|2 ∼ exp(1). Define z1 = 22R1 − 1, z2 = 22R2 − 1
and z3 = 22R3 − 1.

P(UE1) = P(|hB1|2 > 𝜙1)

= 1 − e−𝜙1 , (4.41)

where 𝜙1 = max { z2
λ2𝜌B1−z2λ1𝜌B1

,
z1

λ1𝜌B1
,

z3

𝜌B1
}.

Note that the above outage probability is conditioned on λ2 > z2λ1. Otherwise the
outage occurs with probability 1.

4.2.3.2 UE 2 Outage Probability
For UE 2, since the BS only transmits x2 via the relay. Thus the bottleneck of this trans-
mission depends on the minimum data rate in two phases. The outage probability for
UE 2 is

P(UE2) = 1 − P(C
UE2)

= 1 − P
(

min
{1

2
log(1 + 𝛾1

R,x2
), 1

2
log(1 + 𝛾2

UE2,x2
)
}
> R2

)

= 1 − P
(

min {𝛾1
R,x2
, 𝛾2

UE2,x2
)} > z2}

)
. (4.42)

The following theorem provides an analytical result for the outage probability of UE 2.
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Theorem 4.5 The outage probability for UE 2 in the proposed non-linear energy harvest
model is P(UE2) = 1 − c2

c4
e−c1 (c3e−c1c4 )−

1
c4 Γ( 1

c4
, c3e−c1c4 ), where c1, c2, c3 and c4 are constants

and defined in the following proof.

Proof: Let c = (1 + d𝛼R2), the outage probability becomes

P(UE2) = 1 − P(min {𝛾1
R,x2
, 𝛾2

UE2,x2
} > z2)

= 1 − P(𝛾1
R,x2

> z2, 𝛾
2
UE2,x2

> z2).
(4.43)

Let probability P(𝛾1
R,x2

> z2, 𝛾
2
UE2,x2

> z2) be P1 for conciseness. Furthermore, let |hBR|2 = x
and |hR2|2 = y. x and y both follow an exponential distribution with parameter 1, and they
are independent to each other.

P1 = P

(
(1 − 𝛽)λ2𝜌BRx

(1 − 𝛽)λ1𝜌BRx + 1
> z2,

PEH
R

𝜎2c
y > z2

)

a
= P

(
x >

z2

(1 − 𝛽)𝜌BR(λ2 − λ1z2)
,

M
𝜎2c(1 + exp(−a(𝛽𝜌BR𝜎

2x − b)))
y > z2

)
,

(4.44)

where
a
= is conditioned on λ2 > λ1z2. Otherwise the outage probability will be always equal

to one, as already observed in the existing literature. Define f (x) = M
𝜎2c(1+exp(−a(𝛽𝜌BR𝜎

2x−b)))
and

let c1 = z2
(1−𝛽)𝜌BR(λ2−λ1z2)

. The above joint probability can be evaluated as

P1 =
∫

∞

c1
∫

∞

z2
f (x)

e−xe−ydxdy

=
∫

∞

c1

exp
(
−x −

z2

f (x)

)
dx.

= e
−

z2𝜎
2c

M
∫

∞

c1

exp
(
−x −

z2𝜎
2c

M
eab exp(−a𝛽𝜌BR𝜎

2x)
)

dx.

(4.45)

For notation simplicity, define c2 = e−
z2𝜎2c

M , c3 = z2𝜎
2c

M
eab and c4 = a𝛽𝜌BR𝜎

2. Then P1 can be
simplified as

P1 = c2 ∫

∞

c1

exp(−c3e−c4x − x)dx. (4.46)

Let u = xc4 − c1c4,u ∈ [0,∞]. According to ([65], 3.331-1)

P1 =
c2

c4
e−c1

∫

∞

0
exp

(
−c3e−c1c4 e−u − u

c4

)
du

=
c2

c4
e−c1 (c3e−c1c4 )−

1
c4 Γ

(
1
c4
, c3e−c1c4

)
.

(4.47)

Γ(𝜇2, 𝜇1) is the lower incomplete gamma function, which is

Γ(𝜇2, 𝜇1) = ∫

𝜇1

0
e−tt𝜇2−1dt, (4.48)

where 𝜇2 > 0.
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4.2.3.3 Outage at High SNR
In this section, we provide the approximation for the outage probability at high SNR region.
Specifically, if 𝜌B1, 𝜌BR → ∞, the outage probability for UE 1 becomes

P(H
UE1) = 𝜙1 = max

{
z2

λ2𝜌B1 − z2λ1𝜌B1
,

z1

λ1𝜌B1
,

z3

𝜌B1

}
, (4.49)

since limx→0(1 − e−x) ≃ x.
For UE 2, the maximum charging power is M even when PC

R becomes infinity. Thus, the
high approximation becomes

P(H
UE2) = 1 − P

(
λ2

λ1
> z2,

M
𝜎2(1 + d𝛼R2

)
|hR2|2 > z2

)
. (4.50)

When λ2
λ1
> z2, the result becomes

P(H
UE2) = 1 − e−

z2𝜎2 (1+d𝛼R2
)

M . (4.51)

Otherwise, if λ2
λ1
< z2, the outage probability will be always one in the high SNR regime.

4.2.3.4 Diversity Analysis for UE 2
Based on the definition of diversity, we have

dUE2 = − lim
𝜌BR→∞

log P(UE2)
log 𝜌BR

= 0. (4.52)

This means in the non-linear energy harvest model, no diversity will be achieved. The rea-
son is that as the input power increases, the power harvested becomes saturated, which
limits the further data rate growth, hence the outage probability performance.

4.2.4 Numerical Results

In this section, numerical performance results are presented based on both simulations and
analysis. The parameters for evaluation are chosen in the following. a0 = 4, which indicates
the horn antenna gain is 6 dB. λ1 = 0.4, λ2 = 0.6. M = 4, which means the maximum charg-
ing power for the relay is 4 Watts. For illustration purposes, the distance dBR, dR2, and dB1
are small, which are set to 8, 2, and 10, respectively. Similar settings can also be found in
[108]. Furthermore, the predefined thresholds for data rates are R1 = R3 = 0.5 bps/Hz and
R2 = 0.3 bps/Hz.

Figure 4.8 shows the outage probability of UE 1 and UE 2 with regards of the transmission
SNR in dB. “ana” stands for analytical result while “sim” is the simulation one. The perfor-
mance can be optimized by carefully choosing λ1 and λ2. The detailed study on how to select
λ1 and λ2 values to achieve optimal performance is not the focus of this chapter and hence
not extended. Further, since a and b can also impact the system performance, the outage
probability of UE 2 is evaluated with different a, b values. By fixing 𝛽 = 0.8, both the sim-
ulation and analytical results are presented. As we can see from Figure 4.8, the analytical
results match well with the simulation ones for UE 1. As expected, the outage probabil-
ity decreases linearly in log scale with the increase of transmission SNR. For UE 2, when
a = 2.5, b = 3, the outage probability of UE 2 is lower than the case with a = 6.5, b = 4,
which indicates that energy harvest circuit will affect the system performance. Also, as the
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Figure 4.8 Outage performance for both UEs with comparison to analytical results.

transmission SNR becomes larger, the gap becomes less apparent. The reason is as SNR
becomes larger, the harvested energy becomes a constant M; thus, the outage performance
becomes the same regarding different a and b values, as shown in the high SNR approxi-
mation part. Note that the non-linear response will only make sure the harvested energy
does not exceed M. In some rare occasions, we can have PC

R < PEH
R , which clearly violates

the physical meaning in our model. So these events are excluded from the results.
The outage performance for UE 2 as the function of 𝛽 is shown in Figure 4.9. The param-

eters used for this study are a = 2, 𝜌BR = 40 dB. The simulation and analytical results for
UE 2 are both presented here and they match well with each other. With the increase of 𝛽,
the outage probability also increases. The increase slope slows down as 𝛽 further increases,
due to the fact that 𝛽 is the portion of power assigned to energy harvest unit. The less power
remained for transmitting, the higher outage probability it will have. The inconsistence
between simulation and analytical results when 𝛽 = 0.1 comes from the excluded events
when PC

R < PEH
R .

4.2.5 Summary

In the first part of the chapter, we analyze the outage performance of two NOMA relay-
ing schemes. NOMA cooperative scheme needs two time slots to complete one round
communication. It uses NOMA in the first time slot and uses DPC precoding in the second
time slot for cooperation. NOMA TDMA scheme needs three time slots to complete
one round communication. It uses NOMA in the first time slots and then TDMA in the
second and third time slots. SIC error propagation is considered in the analysis and the
performance degradation is evaluated. The analytical results agree with the simulation
results very well. Future work can optimize the power allocation factor 𝛼s and 𝛽s to achieve
the best outage performance under different schemes.
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Figure 4.9 Outage performance for UE 2 as the function of 𝛽 .

In the second part, we consider applying NOMA and D2D relaying in a mmWave-based
wireless system that consists of high-power base stations and low-power IoT devices. The
lower-power IoT devices do not have external power supplies and have limited battery life.
In order to prolong battery life and also to motivate low-power IoT devices to help relay sig-
nals from others, low-power IoT devices can harvest energy from electromagnetic signals.
To make the energy harvest model more realistic, non-linear energy harvesting model is
used. The theoretical analysis on outage probability is given for the proposed scheme and
system model. Simulation results validate the accuracy of the analysis.
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5

Robust Beamforming in NOMA Cognitive Radio Networks:
Bounded CSI

5.1 Background

As a promising technique of improving the spectral efficiency (SE), cognitive radio (CR)
techniques have also been investigated for decades, where the secondary users (SUs) may
access the spectrum bands of the primary users (PUs), as long as the interference caused
by SUs is tolerable [234]. According to [64], in order to implement CR in practice, three
operational models have been proposed, namely, opportunistic spectrum access, spectrum
sharing, and sensing-based enhanced spectrum sharing. In 5G era, it is envisioned that the
combination of NOMA with CR is capable of further improving the SE. As a benefit of its
low implementation complexity, spectrum sharing has been widely applied. In [111–119],
the authors analyzed the performance of a spectrum sharing CR combined with NOMA. It
was shown that the SE can be significantly improved by using NOMA in CR compared to
that achieved by using OMA in CR.

On the other hand, the increasing greenhouse gas emissions have become a major con-
cern also in the design of wireless communication networks. According to [81], cellular
networks world-wide consume approximately 60 billion kWh energy per year. Moreover,
this energy consumption is explosively increasing due to the unprecedented expansion of
wireless networks to support ubiquitous coverage and connectivity. Furthermore, because
of the rapid proliferation of IoT applications, most battery-driven power-limited IoT devices
become useless if their battery power is depleted. Thus it is critical to use energy in an
efficient way or to harness renewable energy sources. As remedy, energy harvesting (EH)
exploits the pervasive frequency radio signals for replenishing the batteries [118]. There
have been two research thrusts on EH using RF technology. One focuses on wirelessly pow-
ered networks, where a so-called harvest-then-transmit protocol is applied [22]. The other
one uses SWIPT [138–143], which is the focus of this chapter. The contributions of SWIPT
in CR have been extensively studied. Specifically, authors of [186] considered the optimal
beamforming design in a multiple-input single-output (MISO) CR downlink network. A
similar power splitting structure to that of our work is applied at the user side. Hu et al. [79],
on the other hand, investigated the objective function of EH energy maximization, and a
resource allocation problem was formulated to address that goal. Additionally, Mohjazi et al.
[135] considered the underlay scheme in CR network and proposed the optimal beamform-
ing design. To address both the SE and EE, a MISO NOMA CR using SWIPT is considered

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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based on a practical non-linear EH model. Robust beamforming design problems are stud-
ied under a pair of CSI error models. The related contributions and the motivation of our
work are summarized as follows.

5.1.1 Related Work and Motivation

The prior contributions related to this chapter can be divided into two categories based on
the EH model adopted, i.e. the linear [138–173, 178, 180–194, 196–225] and the non-linear
EH model [22, 24–121, 123–173, 178, 180–194, 196–198]. In the linear EH model, the power
harvested increases linearly with the input power, while the EH under the non-linear model
exhibits more realistic non-linear characteristics especially at the power-tail.

5.1.1.1 Linear EH Model
In [110], Liu et al. analyzed the performance of a cooperative NOMA system relying on
SWIPT, which outperformed OMA. Do et al. [49] extended [110] and studied the beneficial
effect of the user selection scheme on the performance of a cooperative NOMA system
using SWIPT. In [219], Yang et al. presented a theoretical analysis of two power allocation
schemes conceived for a cooperative NOMA system with SWIPT. It was shown that
the outage probability achieved under NOMA is lower than that obtained under OMA.
Diamantoulakis et al. [41] studied the optimal resource allocation design of wireless-
powered NOMA systems. The optimal power and time allocation were designed for
maximizing the max-min fairness among users. In their following work [42], a joint
downlink and uplink scheme was considered in a wireless powered network, followed
by comparisons between NOMA and TDMA. The results show that NOMA is more
energy efficient in the downlink of SWIPT networks. In order to improve the EE, multiple
antennas were applied in a NOMA system associated with SWIPT, and the transmit
beamforming and the power splitting factor were jointly optimized for maximizing the
transmit rate of users [216].

The contributions in [110–121, 123–173, 178, 180–194, 196–216] investigated conven-
tional wireless NOMA systems, which did not consider the interference between the
secondary network and the primary network. Recently, authors of [135, 138] and [238]
studied optimal resource allocation problems in CR associated with SWIPT. In [138], an
optimal transmit beamforming scheme was proposed in a multi-objective optimization
framework. It was shown that there are several tradeoffs in CR-aided SWIPT. Based on the
work in [138], the authors proposed a jointly optimal beamforming and power splitting
scheme to minimize the transmit power of the base station in multiple-user CR-aided
SWIPT [135]. Considering the practical imperfect CSI, Zhou et al. [236] studied robust
beamforming design problems in MISO CR-aided SWIPT, where the bounded and the gaus-
sian CSI error models were applied. It was shown that the performance achieved under the
gaussian CSI error model is better than that obtained under the bounded CSI error model.
The work in [236] was then extended to MIMO CR-aided SWIPT in [54] and [213], where
the bounded CSI error model was applied in [54] and the gaussian CSI error model was used
in [213] and [98]. In contrast to [135–173, 178, 180–194, 196–213], Zhou et al. [238] studied
robust resource allocation problems in CR-aided SWIPT under opportunistic spectrum
access.
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5.1.1.2 Non-linear EH Model
In [22], robust resource allocation schemes were proposed for maximizing the sum trans-
mission rate or the max-min transmission rate of MIMO-assisted wireless powered com-
munication networks, where a practical non-linear EH model is considered. It was shown
that a performance gain can be obtained under a practical non-linear EH model over that
attained under the linear EH model, see Figure 4.7. In order to maximize the power-efficient
and sum-energy harvested by SWIPT systems, Boshkovska et al. designed optimal beam-
forming schemes in [24] and [20]. Recently, under the idealized perfect CSI assumption,
the rate-energy region was quantified in MIMO systems relying on SWIPT and the practi-
cal non-linear EH model in [212]. In order to improve the security of a SWIPT system, a
robust beamforming design problem was studied under a bounded CSI error model in [23].
The investigations in [22–24] were performed in the context of conventional SWIPT sys-
tems. Recently, Wang et al. [198] extended a range of classic resource allocation problems
into a wireless powered CR counterpart. The optimal channel and power allocation scheme
were proposed for maximizing the sum transmission rate.

The resource allocation schemes proposed in [110–121, 123–173, 178, 180–194, 196–216]
investigated a conventional NOMA system with SWIPT. The mutual interference should
be considered and the QoS of the PUs should be protected in NOMA CR. Moreover, the
resource allocation schemes proposed in [135–173, 178, 180–194, 196–238] are based on
the classic OMA scheme. Thus, these schemes are not applicable to NOMA CR with
SWIPT due to the difference between OMA and NOMA. Furthermore, an idealized linear
EH model was applied in [138–173, 178, 180–194, 196–238], which is impractical since
the practical power conversion circuit results in a non-linear end-to-end wireless power
transfer. Therefore, it is of great importance to design optimal resource allocation schemes
for NOMA CR-aided SWIPT based on the practical non-linear EH model.

Although the practical non-linear EH model was applied in [22, 24–121, 123–173, 178,
180–194, 196–198], the authors of [22–24] considered conventional OMA systems using
SWIPT. Moreover, the resource allocation scheme proposed in [238] is based on OMA and
cannot be directly introduced in NOMA CR-aided SWIPT. However, at the time of writing,
there is a scarcity of investigations on robust resource allocation design for NOMA CR-aided
SWIPT under the practical non-linear EH model. Several challenges have to be addressed
to design robust resource allocation schemes for NOMA CR-aided SWIPT. For example,
the impact of the CSI error and of the residual interference due to the imperfect SIC should
be considered, which makes the robust resource allocation problem quite challenging.
Thus, we study robust resource allocation problems in NOMA CR-aided SWIPT.

5.1.2 Contributions

This chapter expands [22] in three major contexts. Firstly, a NOMA MISO CR-aided SWIPT
is considered, while a OMA MIMO wireless powered network was used in [22]. Secondly,
the work in [22] relies on the bounded CSI error model, while both the bounded and the
gaussian CSI error model are applied in our work. Thirdly, we consider the minimum trans-
mit power as the optimization objective, which is not considered in [22].
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5.2 System and Energy Harvesting Models

5.2.1 System Model

We consider a downlink CR system with one cognitive base station (CBS), one primary base
station (PBS), N PUs, and K SUs [174]. The CBS is equipped with M antennas, while each
user and PBS have a single antenna. It is assumed that the SUs are energy-constrained and
energy harvest circuits are used. Specifically, the receiver architecture relies on a power
splitting design. Once the signal is detected by the receiver, it will be divided into two
parts. One part is used for information detection, while the other part for energy harvest-
ing. Similar structures can be found in [110, 216]. To better utilize the radio resources,
all UEs are allowed to access the same resource simultaneously. To be specific, the PBS
sends messages to all PUs, while the CBS communicates with all SUs simultaneously by
applying NOMA principles by controlling the interference from the CBS to PUs below a
certain level [111] (Figure 5.1). Let us denote the set of SUs and PUs as  = {1, 2,… ,K}
and  = {1, 2,… ,N}, respectively. The signal received by the kth SU can be expressed as

yS
k = h†

kx + nS
k , k ∈ , (5.1)

where hk ∈ ℂM×1 is the channel gain between the CBS and the kth SU, while nS
k is the

joint effect of additive white Gaussian noise (AWGN) and interference from the PBS. nS
k ∼

 (0, 𝜎2
k,S), where 𝜎2

k,S is the power. This interference model represents a worst-case sce-
nario [138]. Furthermore, x is the message transmitted to SUs after precoding. According
to the NOMA principle, we have:

x =
K∑

k=1
wksk + v, (5.2)

Secondary network
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Figure 5.1 (a) An illustration of the system model. (b) The power splitting architecture of SUs.
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where wk ∈ ℂM×1 is the precoding vector for the k-th UE and sk is the corresponding
intended message. Furthermore, v ∈ ℂM×1 is the energy vector allowing us to improve the
energy harvesting efficiency at the SUs. We assume that sk is unitary, i.e. 𝔼[|sk|2] = 1, and
v obeys the complex Gaussian distribution, i.e. v ∼  (𝟎,V), where V is the covariance
matrix of v.

Likewise, the extra interference arriving from the CBS to the n-th PU is

yP
n = g†

nx, n ∈ , (5.3)

where g†
n ∈ ℂM×1 is the channel gain between the CBS and the n-th PU [236].

5.2.2 Non-linear EH Model

Most of the existing literature considered an idealized linear energy harvesting
model, where the energy collected by the k-th SU is expressed as ELinear

k = 𝜂EIn
k ,

EIn
k = 𝜌

(
h†

k(
∑K

j=1 wjw
†
j + V)hk + 𝜎2

k,S

)
is the input power, where 𝜌 is the power split-

ting factor that controls the amount of received energy allocated to energy harvesting,
0 < 𝜌 < 1, while 𝜂 is the energy conversion efficiency factor, 0 < 𝜂 ≤ 1. However, measure-
ments relying on real-world testbeds show that a typical energy harvesting model exhibits
a non-linear end-to-end characteristic. To be specific, the harvested energy first grows
almost linearly with the increase of the input power, and then saturates when the input
power reaches a certain level. Several models have been proposed in the literature and one
of the most popular ones is [22], which is formulated as follows:

EPractical
k =

ΨPractical
k − MkΩk

1 − Ωk
,Ωk = 1

1 + exp(akbk)
, (5.4a)

ΨPractical
k =

Mk

1 + exp
(
−ak(EIn

k − bk)
) , (5.4b)

where EPractical
k is the actual energy harvested from the circuit. Furthermore, ΨPractical

k rep-
resents a function of the input power EIn

k . Additionally, Mk is the maximum power that a
receiver can harvest, while ak together with bk characterizes the physical hardware in terms
of its circuit sensitivity, limitations, and leakage currents [22].

On the other hand, the signal received in the k-th SU information decoding circuit is

yD
k =

√
1 − 𝜌(h†

kx + nS
k) + nD

k , (5.5)

where nD
k is the AWGN imposed by the information decoding receiver.

5.2.3 Bounded CSI Error Model

In this model, we consider a bounded error imposed on the estimated CSI, which can be
treated as the worst-case scenario. Specifically, the channels can be modeled as follows.

hk = ĥk + Δhk, ∀k ∈ , (5.6a)

𝚪k ≜
{
Δhk ∈ ℂM×1 ∶ ||Δhk||2 ≤ 𝜑2

k
}
, (5.6b)

gn = ĝn + Δgn, ∀n ∈ , (5.6c)
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𝚯n ≜
{
Δgn ∈ ℂM×1 ∶ ||Δgn||2 ≤ 𝜓2

n
}
, (5.6d)

where ĥk and ĝn are the estimated channel vectors for hk and gn, respectively, while 𝚪k
and 𝚯n define the set of channel variations due to estimation errors. The model defines all
the uncertainty regions that are confined by power constraints. Furthermore, we use block
Rayleigh fading channels, which remain constant within each block, but change from block
to block independently.

5.2.3.1 NOMA Transmission
Without loss of generality, we sort the estimated channel of SUs in the ascending order,
i.e. ||ĥ1||2 ≤ ||ĥ2||2 ≤ · · · ||ĥK||2. According to the SIC principle, SU i can detect and remove
SU k’s signal, for 1 ≤ k < i ≤ K. Thus, when SU i decodes signal sk, the signals of the pre-
vious (k − 1) SUs have already been removed from the composite received signal. Due to
channel estimation errors, however, these (k − 1) signals may not be completely removed,
leaving some residual signals as interference. Therefore, the signal at UE i when decoding
sk becomes

yS
i,k =

√
1 − 𝜌

(
h†

i wksk +
k−1∑
j=1

Δh†
i wjsj +

K∑
j=k+1

h†
i wjsj + h†

i v + nS
k

)
+ nD

k

Here, the first term is the desired received signal, the second term is the interference
due to imperfect channel estimation, and the third term represents the NOMA interfer-
ence. For notational simplicity, let us denote Wk = wkw†

k, V = vv†, Sk
i = h†

i Wkhi, and
Tj

i = Δh†
i WjΔhi. The corresponding SINR for the i-th SU after the SIC applied at the

receiver is given by:

SINRk
i =

Sk
i∑k−1

j=1 Tj
i +

∑K
j=k+1 Sj

i + h†
i Vhi + 𝜎2

k,S +
𝜎2

D
(1−𝜌)

.

Since the signal sk can be detected at every SU i, as long as k < i, there will be a
set of SINRs for signal sk. For CBS, the maximum data rate for SU k should be
Rk = log2(1 + mink≤ i≤K SINRk

i ). Moreover, the channel estimation error should be
considered. The worst-case data rate for SU k becomes

Rk = log2

(
1 + min

Δhi∈𝚪i
{min
k≤i≤K

SINRk
i }
)
. (5.7)

5.3 Power Minimization-Based Problem Formulation

Since x is a composite signal consisting of all SUs’ messages, SIC is applied at the receiver
side to detect the received signal. The detection is carried out in the same order of the
channel gains, i.e. the SUs with lower channel gain will be decoded first. A pair of imper-
fect CSI error models are considered, namely a bounded and a gaussian model. We adopt
both of these in this chapter and assume that all SUs have a perfect knowledge of their
own CSI.
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5.3.1 Problem Formulation

In this section, we seek to find the precoding vectors wk, k ∈ , the energy vector v, and
the power split ratio 𝜌, which altogether achieve a satisfactory QoS for all users, and at the
same time, they can harvest part of the energy for their future usage. Thus, the problem can
be formulated as follows:

P1 ∶ min
Wk∈ℂM×M ,V∈ℂM×M ,𝜌

Tr

( K∑
k=1

Wk + V

)
(5.8a)

s.t. C1 ∶ Rk ≥ Rk,min (5.8b)

C2 ∶ EPractical
k ≥ Pk,s, ∀Δhk ∈ 𝚪k, ∀k ∈ , (5.8c)

C3 ∶ g†
n

( K∑
j=1

Wj + V

)
gn ≤ Pn,p, ∀Δgn ∈ 𝚯n, (5.8d)

C4 ∶ Tr

( K∑
k=1

Wk + V

)
≤ PB, (5.8e)

C5 ∶ 0 < 𝜌 < 1, (5.8f)

C6 ∶ V ≻ 𝟎,Wk ≻ 𝟎, (5.8g)

C7 ∶ Rank(Wk) = 1, ∀k ∈ . (5.8h)

Our goal is to minimize the total transmitted power. The constraint C1 ensures that SU k
does attain the predefined minimum data rate; C2 allows each SU to harvest the amount of
energy that at least compensates the static power dissipation Pk,s; C3 is the interference limit
for the n-th PU; C4 represents the maximum transmit power constraint of the BS; in C5,
the power split factor should be in the range of (0, 1). The optimization problem P1 is hard
to solve due to its non-convexity constraints C1 and C2. Moreover, the realistic imperfect
CSI imposes another challenge on the original problem. In the following, we transform the
variables.

Let us introduce 𝛾k,min ≜ (2Rk,min − 1). Then C1 in (5.8b) becomes

min
Δhi∈𝚪i

Sk
i∑k−1

j=1 Tj
i +

∑K
j=k+1 Sj

i + h†
i Vhi + 𝜎2

k,S +
𝜎2

D
(1−𝜌)

≥ 𝛾k,min , (5.9)

where i = {k, k + 1,… ,K},∀k ∈ . For the notational simplicity, we denote the above con-
straint as Ξi,k. Thus, P1 becomes

P2 ∶ min
Wk∈ℂM×M ,V∈ℂM×M ,𝜌

Tr

( K∑
k=1

Wk + V

)
(5.10a)

s.t. C1 ∶ Ξi,k (5.10b)

C2 ∶ EPractical
k ≥ Pk,s, ∀Δhk ∈ 𝚪k, ∀k ∈ , (5.10c)
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C3 ∶ g†
n

( K∑
j=1

Wj + V

)
gn ≤ Pn,p, ∀Δgn ∈ 𝚯n, (5.10d)

(5.8e) − (5.8h). (5.10e)

Here, C6 comes from the fact that both V and Wk are positive semi-definite matrices. The
extra constraint that the rank of Wk should be 1 is also non-convex. In what follows, we
first reformulate C1 in (5.10b) according to the -Procedure of [25].

Lemma 5.1 C1 in (5.10b) can be reformulated as[
𝛼i,kI + Ck − 𝛾k,min

∑k−1
j=1 Wj Ckĥi

ĥi
†
Ck −𝛼i,k𝜑

2
k + Φk

]
≻ 𝟎, (5.11)

∀k ∈ , i = {k, k + 1,… ,K}, where Ck = Wk − 𝛾k,min(
∑K

j=k+1 Wj + V) and Φk = ĥi
†
Ckĥi −

𝛾k,min

(
𝜎2

k,S +
𝜎2

D
(1−𝜌)

)
, and 𝛼i,k is a slack variable conditioned on 𝛼i,k ≥ 0.

Proof: Given hi = ĥi + Δhi and (5.9), we have

Δh†
i

(
𝛾k,min

(∑
j≠k

Wj + V

)
− Wk

)
Δhi + 2 Re

{
ĥi

†
(
𝛾k,min

( K∑
j=k+1

Wj + V

)
− Wk

)
Δhi

}

+ 2ĥi
†
(
𝛾k,min

( K∑
j=k+1

Wj + V

)
− Wk

)
ĥi + 2𝛾k,min

(
𝜎2

k,S +
𝜎2

D

(1 − 𝜌)

)
≤ 0. (5.12)

From the fact thatΔh†
i Δhi − 𝜑2

k ≤ 0 and according to the-Procedure, the lemma is proved.

Similarly, C3 in (5.10d) can be transformed into[
𝛽nI − 𝚺 −𝚺ĝn
−ĝ†

n𝚺 −𝛽n𝜓
2
n − ĝ†

n𝚺ĝn + Pn,p

]
≻ 𝟎, ∀n ∈ , (5.13)

where 𝚺 =
∑K

j=1 Wj + V, and 𝛽n ≥ 0 is also a slack variable.
Next, we apply similar manipulations to 5.10c, which becomes

min
Δhk∈𝚪k

𝜌

(
h†

k𝚺hk + 𝜎2
k,S

)
≥ Dk, (5.14)

where Dk = − ln
(

1
Pk,s(1−Ωk)∕Mk+Ωk

− 1
)
∕ak + bk is a constant. This condition holds, provided

that ak > 0, which is always true in real systems.
Then, applying the -Procedure to (5.14), we have the following[

𝜃kI + 𝚺 𝚺ĥk

ĥ
†
k𝚺 −𝜃k𝜑

2
k + ĥ

†
k𝚺ĥk + 𝜎2

k,S −
Dk
𝜌

]
≻ 𝟎, (5.15)

∀k ∈ , where 𝜃k ≥ 0.
Therefore, P2 becomes

P3 ∶ min
Wk ,V,𝜌,{𝛼i,k},{𝛽n},{𝜃k}

Tr

( K∑
k=1

Wk + V

)
(5.16a)

.



�

� �

�

5.3 Power Minimization-Based Problem Formulation 59

s.t. (5.11), (5.13), (5.15), (5.8e), (5.8f), (5.8g), (5.16b)

𝛼i,k, 𝛽n, 𝜃k ≥ 0,

∀k ∈ , i = {k, k + 1,… ,K}, ∀n ∈ . (5.16c)

Observe that we drop (5.8h), since it is not a convex term. This relaxation is commonly
referred to as the semi-definite relaxation (SDR) technique. For the specific problem in P2,
the following theorem proves that the optimal Wk has a limited rank.

Theorem 5.1 If P2 is feasible, the rank of Wk, k ∈  is always less than or equal to 2.

Proof: See Appendix A.

The transformed problem P3 is not convex because of the coupling variables 𝜌 in (5.15)
and (1 − 𝜌) in the denominator of (5.11). To be able to take advantage of the CVX software
package, we introduce a pair of auxiliary variables. Specifically, let p = 1

1−𝜌
and q = 1

𝜌
. In this

way, (5.11), (5.13), and (5.15) become convex terms. Then, we have additional constraints
for p and q:

p ≥
1

1 − 𝜌
and q ≥

1
𝜌
. (5.17)

It may be readily verified that this transformation does not change the optimal solution
of P3.

5.3.2 Matrix Decomposition

Now we proceed to find the solution of the problem P2, after which there is one more step
to get the original solution for wk. If Wk yields rank 1, we can simply write W⋆

k = w⋆

k w⋆†
k .

Otherwise, if Rank(W⋆

k ) = 2, we have several optional approaches to extract w⋆

k . To name
a few, we list two methodologies here.

1. Eigen-decomposition. Let us denote two eigenvalues of W⋆

k by λ1 and λ2, where λ1 > λ2 ≥

0. Clearly, W⋆

k = λ1w1kw†
1k + λ2w2kw†

2k, wik, i = {1, 2} are the corresponding eigenvec-
tors. To get the rank 1 approximation from a rank 2 matrix, we can let the solution of the
original problem be ŵk =

√
λ1w1kw†

1k, provided it is feasible.
2. Randomization technique. Similar to eigen-decomposition, we first decompose W⋆

k
according to W⋆

k = UkTkU†
k. Then, we let ŵk = UkT1∕2

k ek, where the m-th element of ek
is [ek]m = ej𝜃k,m and 𝜃k,m obeys an independent and uniform distribution within [0, 2𝜋).

The above two methods are essentially the same. If we want to get a more precise result,
another scaling factor can be added. Specifically, let us define ck as the scaling factor yet
to be determined. Certainly, the problem can be transformed in terms of Wk and ck, once
we get the optimal value, we can apply either one of the above methods to get a better
result. Another point worth noting here is that when the rank of Wk is 2, there only
exists the approximation result of w⋆

k , and this approximation always provides an upper
bound.
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5.4 Maximum Harvested Energy Problem Formulation

In contrast to Section 5.3, where the minimum transmission power problem is considered,
in the following we consider the optimization problem of maximizing the total harvested
energy. This problem has important real-world applications, since most of the consumer
electronics products are battery-driven and thus their energy efficiency is critical. In this
section, we first formulate the problem, then we transform it in a convex way so that an
existing software package can solve it efficiently. A one-dimensional search algorithm will
be used.

Upon considering the imperfect CSI model used in (5.6), the maximum total harvested
energy of all SUs can be formulated as follows:

P6 ∶ max
Wk∈ℂM×M ,V∈ℂM×M ,
𝜌,{𝛼i,k},{𝛽n},{𝜃k}

K∑
k=1

EPractical
k (5.18a)

s.t. (5.11), (5.13), (5.8e), (5.8f), (5.8g), (5.8h), (5.18b)

𝛼i,k, 𝛽n, 𝜃k ≥ 0, ∀k ∈ , i = {k, k + 1,… ,K}, ∀n ∈ . (5.18c)

The rank operation is not convex; thus, we drop the constraint (5.8h) first, as previously
in P3. Additionally, the objective function relies on a realistic non-linear energy harvesting
model, and it is not convex either. Essentially, it is a sum-of-ratio problem, and its global
optimization is possible by applying the following transformations:

max
Wk∈ℂM×M ,V∈ℂM×M

𝜌,{𝛼i,k},{𝛽n},{𝜃k},{𝜏k}

K∑
k=1

Mk

1 + exp
(
−ak(𝜏k − bk)

) (5.19a)

EIn
k ≥ 𝜏k, ∀Δhk.∀k ∈ . (5.19b)

After applying the -Procedure of [25] to (5.19b), it becomes[
𝜃kI + 𝚺 𝚺ĥk

ĥ
†
k𝚺 −𝜃k𝜑

2
k + ĥ

†
k𝚺ĥk + 𝜎2

k,S −
𝜏k
𝜌

]
≻ 𝟎, (5.20)

∀k ∈ . Furthermore, according to [24, 92], if P6 has the optimal solutions W⋆

k and V⋆,
there exist two sets of vectors𝝁 = {𝜇1, 𝜇2,… , 𝜇K} and 𝝐 = {𝜖1, 𝜖2,… , 𝜖K} such that the solu-
tions are also optimal for the following equivalent parametric optimization problem:

P7 ∶ max
Wk∈ℂM×M

V∈ℂM×M

𝜌,{𝛼i,k},{𝛽n},{𝜃k},{𝜏k}

K∑
k=1

𝜇k
{

Mk − 𝜖k
(
1 + exp(−ak(𝜏k − bk))

)}
. (5.21)

The optimal solutions and the vectors should satisfy

𝜖k
(
1 + exp(−ak(𝜏⋆k − bk))

)
− Mk = 0, (5.22a)

𝜇k
(
1 + exp(−ak(𝜏⋆k − bk))

)
− 1 = 0,∀k ∈ , (5.22b)

where EIn,⋆
k = 𝜌⋆

(
h†

k(
∑K

j=1 W⋆

j + V⋆)hk + 𝜎2
k,S

)
≥ 𝜏⋆k .
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Now, the objective function has the log-concave form and it can be solved given the sets 𝝁
and 𝝐. The iterative update of the vector sets can be carried out in the following way. Let us
define the function  (𝝁, 𝝐) =

[
𝜖k

(
1 + exp(−ak(𝜏⋆k − bk))

)
− Mk,… , 𝜇k

(
1 + exp(−ak(𝜏⋆k −

bk))
)
− 1

]
, ∀k ∈ . The next set of values of 𝝁 and 𝝐 can be updated by solving  (𝝁, 𝝐) = 𝟎.

Specifically, in the q-th iteration, we update them as:

𝝁
q+1 = 𝝁

q +𝜛qpq, 𝝐q+1 = 𝝐
q +𝜛qpq, (5.23)

where pq = [ ′(𝝁, 𝝐)] (𝝁, 𝝐),  ′(𝝁, 𝝐) is the Jacobian matrix of  (𝝁, 𝝐),𝜛q is the largest𝜛 l

that satisfies || (𝝁q +𝜛 lpq, 𝝐q +𝜛 lpq)|| ≤ (1 − t𝜛 l)|| (𝝁, 𝝐)||, l = 1, 2,…, 0 < 𝜛 l < 1, and
0 < t < 1 [24, 92].

A two-loop algorithm is proposed for solving the problem. The outer loop gives 𝝁 and
𝝐 as the inputs of the inner loop, while the inner loop finds W⋆

k and V⋆. Observe that in
(5.20), there is a coupling variable 𝜏k

𝜌
, which is convex with a given 𝜌. Therefore, in the inner

loop, we have to perform a one-dimensional search for 𝜌 as well. The detailed algorithm is
formulated in Algorithm 5.1.

Algorithm 5.1 Robust Precoding Design for EH Maximization Problem
1: Input: Minimum required data rate Rk of SU k, noise power 𝜎2

k,S and 𝜎2
D, channel uncer-

tainty 𝜑2
k and 𝜓2

n , maximum allowed interference power Pn,p for PU n, maximum BS
transmitted power PB, and randomly generated estimated channel �̂�k and �̂�n.

2: Initialization: Iteration number q = 0, p = 1, initial value of 𝜌 as 𝜌start, step s, end value
𝜌end, 𝜇0, and 𝜖0, loop stop criteria mth.

3: One-dimensional Search:
4: for 𝜌 = 𝜌start: s: 𝜌end do
5: repeat: {Outer Loop}
6: Solve for the optimization problem 𝐏7: {Inner Loop}
7: if (𝐏7 is feasible) then
8: Obtain 𝐖q

k and 𝐕q.
9: else

10: Break from the outer loop.
11: end if
12: Update 𝜇q+1 and 𝜖q+1 according to (5.23), then let q = q + 1.
13: until ||𝜇q+1

k

{
Mk − 𝜖

q+1
k

(
1 + exp(−ak(𝜏k − bk))

)} || < mth

14: Calculate Ei
sum =

∑
k EPractical

k , then let i = i + 1, q = 0.
15: end for
16: Find the maximum value among all Ei

sum, and the precoding and energy matrix.
17: Output: Use either of the methods to get the precoding vector 𝐰opt

k and 𝐕opt.

5.4.1 Complexity Analysis

For the CBS power minimization problem under the bounded CSI model, P3 has K(K+1)
2

lin-
ear matrix inequality (LMI) constraints of size (M + 1) in (13) due to the higher decoding
complexity. Furthermore, we have N LMI constraints of size (M + 1) in (15) and K LMI
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constraints of size (M + 1) in (17). Additionally, in (12g), there are (K + 1) LMI constraints
associated with size M, and a total of K(K+1)

2
+ 2N + K + 2 linear constraints. Thus, accord-

ing to [236] and the reference therein, the total complexity becomes

CB
com = ln(𝜏−1)n

√
Ψ1

comp

((
K(K + 1)

2
+ N + 2K + 1

)
[(M + 1)3 + n(M + 1)2]

+ (K + 1)(M3 + nM2) + K(K + 1)
2

+ 2N + K + 2 + n2
)
, (5.24)

where n = 
(
(K + 1)M2 + N + K + K(K+1)

2

)
, is the big-O notation. Furthermore, we have

Ψ1
comp = (K(K+1)

2
+ N + 2K + 1)M + K2 + 4N + 3K + 4, and 𝜏 is the accuracy of iteration.

For the maximum harvested energy problem, with bounded channel model, since the
difference with that of power minimization problem is that a maximum of Tmax num-
ber of iterations will be performed for one-dimensional search. Hence, the complexity is
Tmax CB

com.

5.5 Numerical Results

In this section, we present our simulation results for characterizing the performance of the
proposed robust beamforming conceived with NOMA under the bounded estimation error
models. Unless otherwise stated, the parameters are chosen as in Table 5.1.

5.5.1 Power Minimization Problem

Figure 5.2 shows the empirical CDFs of the minimum transmit power of the CBS for both
the imperfect CSI estimation error models. The maximum power PB is set to 2 Watts. For
comparison, we also include the case of OMA, since it represents the traditional access tech-
nology. Observe that in order to reduce the inter-user interference, each OMA user relies
exclusively on a single time slot. Thus, a total of K time slots are required instead of a sin-
gle one in our scheme. To make a fair comparison, each SU’s achievable data rate should
be averaged over all K time slots, which becomes ROMA

k = 1
K

log2(1 + SINROMA
k ). Reduced

Table 5.1 Simulation parameters.

Parameters Values

Number of SUs and PUs K = 3, N = 2
Noise powers 𝜎2

k,S = 0.1, 𝜎2
D = 0.01

Minimum required EH power Pk,s = 0.01 Watt
Maximum tolerable interference of PUs Pn,p = −18 dBm
Estimated channel gains ĥk ∼  (𝟎, 0.8I) ĝn ∼  (𝟎, 0.1I)
Outage probability threshold 𝜉k = 𝜉k,s = 𝜉n,p = 0.05
Non-linear EH model Mk = 24 mW, ak = 150 bk = 0.014 [24]
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Figure 5.2 The empirical CDF of the minimum transmit power of the CBS under different channel
conditions. CBS antenna number M = 10, PB = 2 Watts, Rmin = 1 bit/s/Hz.

interference is achieved at the cost of a lower spectral and energy efficiency. We also observe
that under both channel error models, the performance of NOMA is better than that of
OMA. This is because for OMA, the lower spectral efficiency makes the SU data rate require-
ment harder to be satisfied. Hence the CBS has to apply a higher transmission power to
compensate for that, which leads to a much higher energy consumption. Figure 5.2 is gen-
erated from 1,000 independent realizations of different channel conditions. As expected, the
performance under perfect CSI is the best, since no additional power is used to compensate
for the channel uncertainties.

Figure 5.3 shows the minimum transmit power of the CBS as a function of the minimum
required SNR of SUs, 𝛾k,min. As the SNR increases, the power increases under all CSI cases.
Also, perfect CSI requires the least power, followed by NOMA in the bounded CSI model
and OMA bounded CSI model. Besides, compared to OMA, the CBS power in NOMA grows
slowly. In the parameter setting, 𝛾k,min plays a more important role in the constraints. For
𝛾k,min = 2 in the NOMA case, the equivalent SNR for OMA will be 26. Thus, the gap between
OMA and NOMA further increases with the required SNR.

The impact of the CBS antenna number is illustrated in Figure 5.4, where the perfor-
mance with different CBS antenna numbers and channel uncertainties is plotted. Specifi-
cally, Figure 5.4 illustrates how the number of antennas affects the overall performance. The
power required increases, when the SNR of SUs grows, regardless of how many antennas
are mounted at the CBS. It is also observed that the minimum power required decreases
when the number of antennas increases, since a larger number of antennas result in a
higher degree of freedom (DoF). Clearly, channel estimation error affects the bounded CSI
scenario (Figure 5.5).
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Figure 5.3 The minimum transmit power of the CBS vs. the required SNR of SUs for M = 10,
PB = 8 Watts.
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Figure 5.4 Impact of the number of CBS antennas on the minimum transmitted power required in
two imperfect CSI scenarios, M = 15, Rmin = 1 bit/s/Hz, PB = 8 Watts.

5.5.2 Energy Harvesting Maximization Problem

In this section, we present results for the maximum EH as our objective function. The CBS
power is PB = 2 Watts. Figure 5.6 characterizes the average maximum EH power vs. the
interference tolerated by the PUs. One can observe that the energy harvested monotonically
increases, when the maximum interference tolerated by the PUs grows, where a higher
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Figure 5.5 Impact of channel uncertainties 𝜓n and 𝜑k on the overall minimum transmit power of
the CBS, M = 15, Rmin = 1 bit/s/Hz, PB = 8 Watts.
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Figure 5.6 Average maximum EH power under different interferences tolerated by the PUs,
M = 10.

Pn,p allows for a larger transmission power, leading to the increase of the harvested energy.
When the channel conditions are better, less power is required for satisfying the data rate
requirements. Hence more power can be reserved for EH. This also explains that when the
required SNR is low, a high EH power can be achieved.
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Figure 5.7 Average maximum EH power vs. the minimum SNR required by the SUs, M = 10.

The impact of minimum SNRs required by the SUs is illustrated in Figure 5.7. The number
of CBS antennas is M = 10 and the interference threshold Pn,p is set to −24 dBm. We also
list the results for the OMA cases. As expected, we can see that the maximum EH power
decreases significantly when the SNR grows. This is because more power has to be used for
information detection, which leaves less power for energy harvesting.

Figure 5.8 shows the average total EH power vs. the number of SUs. It can be observed that
the total EH power grows, when the number of SUs increases, since more nodes participate
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Figure 5.8 Average total EH power vs. the number of SUs for Pn,p = −24 dBm, rmin = 1 bit/s/Hz.
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in the harvesting process. Additionally, we can see that when the number of antennas is
higher, more EH power can be achieved. This is because more antennas give a higher system
DoF; therefore, less power is sufficient for information detection.

5.6 Summary

In this chapter, we considered MISO-NOMA CR-aided SWIPT under the bounded CSI esti-
mation error model. A non-linear EH model was applied. Robust beamforming and power
splitting control were jointly designed for achieving the minimum transmission power and
maximum EH. We transformed the non-convex minimum transmission power optimiza-
tion problems into a convex form while applying a one-dimensional search algorithm to
solve the maximum EH problem. Our simulation results showed that the performance
achieved by using NOMA is better than that obtained by using the traditional OMA.
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6

Robust Beamforming in NOMA Cognitive Radio Networks:
Gaussian CSI

6.1 Gaussian CSI Error Model

In Chapter 5, we introduced a bounded channel model that defines a confined region for
the channel variations. It provides a worst-case estimation. Another commonly used more
realistic estimation model assumes that the channel estimation error obeys the Gaussian
distribution [197, 225, 236], which is formulated as follows:

hk = ĥk + Δhk, Δhk ∼  (𝟎,Hk), ∀k ∈ , (6.1a)

gn = ĝn + Δgn, Δgn ∼  (𝟎,Gn), ∀n ∈  , (6.1b)

where Δhk and Δgn are the channel estimation error vectors, while ĥk and ĝn are the chan-
nel vectors estimated at the BS side. Furthermore, Hk and Gn are the covariance matrices
of the estimation error vectors.

6.2 Power Minimization-Based Problem Formulation

Even though we use a different channel model, the residual interference due to imperfect
CSI estimation affects the message detection similarly to the bounded error model. Thus the
achievable data rate expression of SU k remains the same except that Δhk is in a new set. In
contrast to the existing NOMA contributions on imperfect CSI [172], in this chapter we use
the above-mentioned Gaussian estimation error model to form an optimization problem as
follows [174]:

P1 ∶ min
Wk∈ℂM×M ,V∈ℂM×M ,𝜌

Tr

( K∑
k=1

Wk + V

)
(6.2a)

s.t. C1 ∶ Pr {Rk ≥ Rk,min } ≥ 1 − 𝜉k, ∀k ∈ , (6.2b)

C2 ∶ Pr {EPractical
k ≥ Pk,s} ≥ 1 − 𝜉k,s, (6.2c)

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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∀Δhk ∼  (𝟎,Hk), ∀k ∈ ,

C3 ∶ Pr
{

g†
n𝚺gn ≤ Pn,p

}
≥ 1 − 𝜉n,p, (6.2d)

∀Δgn ∼  (𝟎,Gn),∀n ∈  ,

C4 ∶ Tr

( K∑
k=1

Wk + V

)
≤ PB, (6.2e)

C5 ∶ 0 < 𝜌 < 1, (6.2f)

C6 ∶ V ≻ 𝟎,Wk ≻ 𝟎, (6.2g)

C7 ∶ Rank(Wk) = 1, ∀k ∈ . (6.2h)

Similar to Chapter 5, we seek to find the precoding vectors wk, k ∈ , the energy
vector v, and the power split ratio 𝜌, which altogether achieve a satisfactory QoS for all
users, and at the same time, they can harvest part of the energy for their future usage.
Here, we assume that the probability of having a rate of Rk is higher than Rk,min , which is a
predefined value, and we use the threshold 𝜉k to control the probability. Likewise, 𝜉k,s and
𝜉n,p, where k ∈  and n ∈  , are used for controlling the outage probability of harvested
energy of the kth SU and the interference experienced by the n-th PU, respectively. P1 is
hard to solve owing to its non-convexity, together with constraints C1 − C3, which involve
probability and uncertainty. Inspired by Zhou et al. [236], we solve the resulted optimization
problem with the aid of approximations by applying Bernstein-type inequalities [194].

6.2.1 Bernstein-Type Inequality I

Let f (z) = z†Az + 2Re{z†b} + c, where A ∈ ℍN , b ∈ ℂN×1, c ∈ ℝ, and z ∼  (𝟎, I). For
any 𝜉 ∈ (0,1], an approximate and convex form of [194]

Pr {f (z) ≥ 0} ≥ 1 − 𝜉, (6.3)

can be written as

Tr(A) −
√
−2 ln(𝜉)𝜐1 + ln(𝜉)𝜐2 + c ≥ 0, (6.4a)

||||||
||||||

[
vec(A)√

2b

]||||||
||||||
≤ 𝜐1, (6.4b)

𝜐2I + A ≻ 𝟎, 𝜐2 ≥ 0. (6.4c)

Here, 𝜐1 and 𝜐2 are slack variables.
In order to use the above lemma, we have to transform Δhi to a standard complex

Gaussian vector. Let Δhi = H1∕2
i h̃i, where h̃i ∼  (𝟎, I). Substituting it into (5.9), the

convex approximation becomes

Tr

(
H1∕2

i (Ck − 𝛾k,min

k−1∑
j=1

Wj)H
1∕2
i

)
−
√
−2 ln(𝜉k)𝜐1i,k + ln(𝜉k)𝜐2i,k + ci,k ≥ 0, (6.5a)
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ci,k = ĥ
†
i Ckĥi − rk,min

(
𝜎2

k,S +
𝜎2

D

1 − 𝜌

)
, (6.5b)

||||||||

||||||||

⎡⎢⎢⎢⎣
vec

(
H1∕2

i (Ck − 𝛾k,min

k−1∑
j=1

Wj)H
1∕2
i

)

√
2H1∕2

i Ckĥi

⎤⎥⎥⎥⎦

||||||||

||||||||
≤ 𝜐1i,k, (6.5c)

𝜐2i,kI +

(
H1∕2

i (Ck − 𝛾k,min

k−1∑
j=1

Wj)H
1∕2
i

)
≻ 𝟎,

𝜐2i,k ≥ 0,∀k ∈ , i = {k,… ,K}, (6.5d)

where 𝜐1i,k and 𝜐2i,k are slack variables.
For (6.2d), we use a simple transformation similar as that in (5.14), which leads to:

Pr
{
𝜌(h†

k𝚺hk + 𝜎2
k,S) ≥ Dk

}
≥ 1 − 𝜉k,s. (6.6)

Furthermore, by applying the inequalities in (6.4), (6.6) can be expressed as

Tr
(

H1∕2
k 𝚺H1∕2

k

)
−
√

−2 ln(𝜉k,s)𝜐1k,s + ln(𝜉k,s)𝜐2k,s + ck,s ≥ 0, (6.7a)

ck,s = ĥ
†
k𝚺ĥk + 𝜎2

k,S −
Dk

𝜌
, (6.7b)

||||||
||||||

[
vec

(
H1∕2

k 𝚺H1∕2
k

)
√

2H1∕2
k 𝚺ĥk

]||||||
||||||
≤ 𝜐1k,s, (6.7c)

𝜐2k,sI +
(

H1∕2
k 𝚺H1∕2

k

)
≻ 𝟎, 𝜐2k,s ≥ 0, ∀k ∈ , (6.7d)

where 𝜐1k,s and 𝜐2k,s, k ∈ , are slack variables.

6.2.2 Bernstein-Type Inequality II

Let f (z) = z†Az + 2Re{z†b} + c, where A ∈ ℍN , b ∈ ℂN×1, c ∈ ℝ, and z ∼  (𝟎, I).
For any 𝜉 ∈ (0, 1], an approximate and convex form for [13]

Pr {f (z) ≤ 0} ≥ 1 − 𝜉, (6.8)

can be written as

Tr(A) +
√
−2 ln(𝜉)𝜐1 − ln(𝜉)𝜐2 + c ≥ 0, (6.9a)

||||||
||||||

[
vec(A)√

2b

]||||||
||||||
≤ 𝜐1, (6.9b)

𝜐2I − A ≻ 𝟎, 𝜐2 ≥ 0, (6.9c)

where 𝜐1 and 𝜐2 are slack variables.
We apply Bernstein-type Inequality II to (6.2e), and let Δgn = G1∕2

n g̃n, where
g̃n ∼  (𝟎, I) is a standard Gaussian vector. We can have the following convex-form
approximation.

Tr(G1∕2
n 𝚺G1∕2

n ) +
√

−2 ln(𝜉n,p)𝜐1,n − ln(𝜉n,p)𝜐2,n + cn ≥ 0, (6.10a)
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cn = ĝ†
n𝚺ĝn − Pn,p, (6.10b)

||||||
||||||

[
vec(G1∕2

n 𝚺G1∕2
n )√

2G1∕2
n 𝚺ĝn

]||||||
||||||
≤ 𝜐1,n, (6.10c)

𝜐2,nI − G1∕2
n 𝚺G1∕2

n ≻ 𝟎, 𝜐2,n ≥ 0,∀n ∈  , (6.10d)

where 𝜐1,n and 𝜐2,n are slack variables.
Lastly, we relax P4 by dropping the constraint that Wk should have rank 1 for now, since

it is not a convex one. The relaxed version of the problem is

P2 ∶ min
Wk ,V,𝜌,{𝜐1i,k},{𝜐2i,k},

{𝜐1k,s},{𝜐2k,s},{𝜐1,n},{𝜐2,n}

Tr

( K∑
k=1

Wk + V

)
, (6.11a)

s.t. (6.5), (6.7), (6.10), (6.2e), (6.2f), (6.2g). (6.11b)

Likewise, the coupling variables in (6.5b) and (6.7b) make P2 a non-convex problem. Thus
we can still use the transformation in (5.17), which converts P2 into an equivalent optimiza-
tion problem.

6.3 Maximum Harvested Energy Problem Formulation

In contrast to Section 6.2, where the minimum transmission power problem is considered,
in the following we consider the optimization problem of maximizing the total harvested
energy. This problem has important real-world applications, since most of the consumer
electronics products are battery-driven and thus their energy efficiency is critical. In this
section, we first formulate the problem, then we transform it in a convex way so that an
existing software package can solve it efficiently. A one-dimensional search algorithm will
be used. Furthermore, we also consider our previous pair of channel models.

In this section, we formulate the maximum harvested energy under the Gaussian CSI
error model formulated is as follows:

P3 ∶ max
Wk∈ℂM×M ,V∈ℂM×M ,𝜌

K∑
k=1

EPractical
k (6.12a)

s.t. (6.2b), (6.2e), (6.2e), (6.2f), (6.2g), (6.2h). (6.12b)

We first simplify the objective function and then a new approximation will be formulated
based on the Bernstein-type Inequality [13, 194]. By involving a simple transformation,
we arrive at:

P4 ∶ max
Wk ,V,𝜌

K∑
k=1
𝜇k

{
Mk − 𝜖k

(
1 + exp(−ak(𝜏k − bk))

)}
(6.13a)

s.t. Pr (EIn
k ≥ 𝜏k) ≥ 1 −𝜛, ∀Δhk ∼  (𝟎,Hk),∀k ∈ , (6.13b)

(6.2b), (6.2e), (6.2e), (6.2f), (6.2g), (6.2h). (6.13c)



�

� �

�

6.4 Numerical Results 73

Observe however that the transformation from (6.12a) to (6.13a) and (6.13b) is not exactly
equivalent. The equivalent form should let EIn

k ≥ 𝜏k in (6.13b). However, by setting𝜛 to be a
very small value, the transformation can be valid and it is also consistent with our Gaussian
CSI error model. By applying the Bernstein-type Inequality I [194], (6.13b) becomes,

Tr
(

H1∕2
k 𝚺H1∕2

k

)
−
√
−2 ln(𝜛)𝜐1k,s + ln(𝜛)𝜐2k,s + ck,s ≥ 0, (6.14a)

ck,s = ĥ
†
k𝚺ĥk + 𝜎2

k,S −
𝜏k

𝜌
, (6.14b)

||||||
||||||

[
vec

(
H1∕2

k 𝚺H1∕2
k

)
√

2H1∕2
k 𝚺ĥk

]||||||
||||||
≤ 𝜐1k,s, (6.14c)

𝜐2k,sI +
(

H1∕2
k 𝚺H1∕2

k

)
≻ 𝟎, 𝜐2k,s ≥ 0, ∀k ∈ , (6.14d)

where 𝜐1k,s and 𝜐2k,s, k ∈  are slack variables.
We also relax the problem by dropping the constraint that the rank of Wk must be 1,

and the optimization problem becomes

P5 ∶ max
Wk,V, 𝜌, {𝜐1i,k}
{𝜐2i,k}, {𝜐1k,s}

{𝜐2k,s}, {𝜐1,n}, {𝜐2,n}

K∑
k=1
𝜇k

{
Mk − 𝜖k

(
1 + exp(−ak(𝜏k − bk))

)}
,

s.t. (6.14), (6.5), (6.10), (6.2e), (6.2f), (6.2g). (6.15a)

Still, the coupling variable in (6.14) can be tackled by fixing 𝜌. A similar one-dimensional
search for 𝜌, together with a two-loop algorithm, can solve P5; the detailed step will be
omitted here for space considerations.

6.3.1 Complexity Analysis

Similarly, under Gaussian error model, there are 3K(K+3
2
) + 3N + 2 linear constraints,

K(K+1)
2

+ 2K + N + 1 LMI of size M, and K(K+1)
2

+ K + N second-order cone (SoC)
constraints. Thus, the complexity becomes:

CG
com = ln(𝜏−1)n

√
Ψ2

comp

((
K(K + 1)

2
+ 2K + N + 1

)
(6.16)

[M3 + nM2] + 3K
(K + 3

2

)
+ 3N + 2+

(
K(K + 1)

2
+K +N

)
[(M2 +M + 1)2] +n2

)

where Ψ2
comp = 3K2 + 10K + 6N + 3.

For the maximum harvested energy problem, with Gaussian error model, the complexity
is T ′

max CG
com; correspondingly, T ′

max is the number of unitary search.

6.4 Numerical Results

In this section, simulation results for characterizing the performance of the proposed
robust beamforming were conceived with NOMA under both bounded and Gaussian esti-
mation error models. Unless otherwise stated, the parameters are chosen as in Table 6.1.
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Table 6.1 Simulation parameters

Parameters Values

Number of SUs and PUs K = 3, N = 2
Noise powers 𝜎2

k,S = 0.1, 𝜎2
D = 0.01

Minimum required EH power Pk,s = 0.01 Watt
Maximum tolerable interference of PUs Pn,p = −18 dBm
Estimated channel gains ĥk ∼  (𝟎, 0.8I) ĝn ∼  (𝟎, 0.1I)
Outage probability threshold 𝜉k = 𝜉k,s = 𝜉n,p = 0.05
Gaussian CSI estimation 𝜛2

k = 0.001, 𝜛2
n = 0.0001 [236]

Non-linear EH model Mk = 24 mW, ak = 150 bk = 0.014 [24]

The performance comparison between bounded and Gaussian channel estimation models,
as well as NOMA vs. OMA, is highlighted. To achieve a fair comparison between the two
channel estimation error models, if the covariance matrices of the channel estimation
error vector Δhk and Δgn under the Gaussian model are 𝜛2

k I and 𝜛2
nI, respectively, then

the bounded CSI radius under the worst-case scenario of 𝜑k and 𝜓n should be [198]

𝜑k =

√
𝜛2

k F−1
2M(1 − 𝜉k)

2
, 𝜓n =

√
𝜛2

nF−1
2M(1 − 𝜉n,p)

2
, (6.17)

where F−1
2M(•) represents the complementary cumulative distribution function (CCDF) of

the chi-square distribution with 2M degrees of freedom.

6.4.1 Power Minimization Problem

Figure 6.1 shows the empirical CDFs of the minimum transmit power of the cognitive
base station (CBS) for both the imperfect CSI estimation error models. The maximum
power PB is set to 2 Watts. For comparison, we also include the case of OMA, since it
represents the traditional access technology. Observe that in order to reduce the inter-user
interference, each OMA user relies exclusively on a single time slot. Thus, a total of K
time slots are required instead of a single one in our scheme. To make a fair comparison,
each SU’s achievable data rate should be averaged over all K time slots, which becomes
ROMA

k = 1
K

log2(1 + SINROMA
k ). Reduced interference is achieved at the cost of a lower

spectral and energy efficiency. We also observe that under both channel error models, the
performance of NOMA is better than that of OMA. This is because for OMA, the lower
spectral efficiency makes the SU data rate requirement harder to be satisfied. Hence the
CBS has to apply a higher transmission power to compensate for that, which leads to a
much higher energy consumption. Figure 6.1 is generated from 1,000 independent real-
izations of different channel conditions. As expected, the performance under perfect CSI
is the best, since no additional power is used to compensate for the channel uncertainties.
Furthermore, in both the OMA and NOMA schemes, the performance under the Gaussian
CSI channel estimation is better than that under the bounded CSI channel estimations,
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Figure 6.1 The empirical CDF of the minimum transmit power of the CBS under different channel
conditions. CBS antenna number M = 10, PB = 2 Watts, Rmin = 1 bit/s/Hz.

as bounded CSI represents the worst-case scenario. Observe that the minimum power in
the OMA-bounded CSI is over 2 Watts since we only limit the power of each time slot to 2
Watts and it is very likely that the total power over K slots will beyond that limit.

Figure 6.2 shows the minimum transmit power of the CBS as a function of the mini-
mum required SNR of SUs, 𝛾k,min. As the SNR increases, the power increases under all CSI
cases. Also, perfect CSI requires the least power, followed by NOMA relying on the Gaus-
sian CSI error model, NOMA in the bounded CSI model, OMA Gaussian CSI model, and
OMA-bounded CSI model. Besides, compared to OMA, the CBS power in NOMA grows
more slowly. In the parameter setting, 𝛾k,min plays a more important role in the constraints.
For 𝛾k,min = 2 in the NOMA case, the equivalent SNR for OMA will be 26. Thus, the gap
between OMA and NOMA further increases with the required SNR.

The impact of the CBS antenna number is illustrated in Figure 6.3a, where the perfor-
mance with different CBS antenna numbers and channel uncertainties is plotted. Specifi-
cally, Figure 6.3a illustrates how the number of antennas affects the overall performance.
The power required increases, when the SNR of SUs grows, regardless of how many anten-
nas are mounted at the CBS. It is also observed that the minimum power required decreases
when the number of antennas increases, since a larger number of antennas result in a
higher degree of freedom (DoF). Besides, we also notice that the performance under the
Gaussian error model is better than that under the bounded channel error case. In Figure
6.4b, the impact of channel uncertainties is illustrated. We set 𝜓2

n = 𝜑2
k = [0.01 ∶ 0.05], the

corresponding covariance matrices in Gaussian CSI estimation error scenario also change
according to (6.17). Clearly, channel estimation error affects the bounded CSI scenario the
most, since under worst-case CSI, the channel estimation error channel becomes worse;
thus, it needs more power to meet the data rate constraints. Nevertheless, the channel
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Figure 6.2 The minimum transmit power of the CBS vs. the required SNR of SUs for M = 10,
PB = 8 Watts.
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Figure 6.3 Impact of the number of CBS antennas on the minimum transmitted power required in
two imperfect CSI scenarios, M = 15, Rmin = 1 bit/s/Hz, PB = 8 Watts.

estimation error does not have much impact on the Gaussian channel estimation error
scenario.

6.4.2 Energy Harvesting Maximization Problem

In this section, we present simulation results where maximum EH is the objective function.
The CBS power is PB = 2 Watts, other parameters are the same as in Table 5.1. Figure 6.5
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Figure 6.4 Impact of channel uncertainties 𝜓n and 𝜑k on the overall minimum transmit power of
the CBS, M = 15, Rmin = 1 bit/s/Hz, PB = 8 Watts.
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Figure 6.5 Average maximum EH power under different interferences tolerated by the PUs,
M = 10.

characterizes the average maximum EH power vs. the interference tolerated by the to PUs.
One can observe that the energy harvested monotonically increases, when the maximum
interference tolerated by the PUs grows, where a higher Pn,p allows for a larger transmis-
sion power, leading to the increase of the harvested energy. Additionally, we can see that
under the Gaussian channel estimation error, the performance is better than that under the
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bounded channel estimation error case. When the channel conditions are better, less power
is required for satisfying the data rate requirements. Hence more power can be reserved
for EH. This also explains that when the required SNR is low, a high EH power can be
achieved.

The impact of minimum SNRs required by the SUs is illustrated in Figure 6.6. The number
of CBS antennas is M = 10 and the interference threshold Pn,p is set to −24 dBm. We also
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Figure 6.6 Average maximum EH power vs. the minimum SNR required by the SUs, M = 10.
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Figure 6.7 Average total EH power vs. the number of SUs for Pn,p = −24 dBm, rmin = 1 bit/s/Hz.
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list the results for the OMA cases. As expected, the average maximum EH power decreases,
when the required SNR increases. Similar observations show that under perfect CSI, the
performance is the best, while the OMA-bounded CSI estimation scenario is the worst.
Moreover, we can see that the maximum EH power decreases significantly when the SNR
grows. This is because more power has to be used for information detection, which leaves
less power for energy harvesting.

Figure 6.7 shows the average total EH power vs. the number of SUs. It can be observed that
the total EH power grows, when the number of SUs increases, since more nodes participate
in the harvesting process. Additionally, we can see that when the number of antennas is
higher, more EH power can be achieved. This is because more antennas give a higher system
DoF; therefore, less power is sufficient for information detection.

6.5 Summary

This chapter extends Chapter 5 and considered a more realistic Gaussian CSI estimation
model. A similar min power and max EH problem is formulated followed by solutions and
numerical results. As for future research directions, the system model can be generalized
to account for more use cases, for example, considering the physical layer security and the
interference arising from multiple cells.
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7

Mobile Edge Computing in 5G Wireless Networks

7.1 Background

In Chapters 2–6, we mainly addressed the spectral and large number of device connection
challenges for the future 5G systems. However, the ever-increasing demand for various
applications such as gaming, autonomous driving, and augmented reality/virtual reality
(AR/VR) have been recognized as one of the driving forces for the prosperity of the smart
devices [142]. Due to the limitations on size, battery, and cost, these small-size smart devices
can experience performance bottleneck when computation-intensive tasks need to be exe-
cuted. One option is to deploy centralized services such as cloud centers to help the data
processing. However, cloud servers can be located far away, which can inevitably cause
longer end-to-end transmission delay [142].

In contrast to the centralized infrastructure, recent network paradigms such as MEC tend
to allocate resources to devices in close proximity for joint processing. For example, the work
in [181] used unmanned aerial vehicles (UAVs) to help D2D wireless networks [109]. This
paradigm shift can effectively reduce the long backhaul latency and energy consumption,
as well as support a more flexible infrastructure in a cost-effective way. Furthermore, MEC
together with virtual machine (VM) migration can effectively increase the scalability [154]
while reducing service delay [153]. Due to these advantages, MEC has attracted extensive
research attention in various vertical segments.

One important feature of MEC is performing computation offloading, which leverages
the powerful MEC servers in proximity and sends the computation-intensive tasks to MEC
servers for processing. It can help overcome the physical limitations of local small devices.
Current research involves two categories of offloading: binary [15] and partial [126–173,
178, 180–194, 196–220]. Binary offloading executes the task as a whole, either locally or
in the MEC server, while partial offloading assumes the task can be partitioned into two
parts, one for local processing and one for offloading. Even though the former is easier in
implementation, for a very large dataset, partial offloading can help reduce the latency and
energy consumption on the local devices more effectively.

Previous works either target on minimizing the total energy consumption or maximizing
total computed bits. Energy-efficient communication has received tremendous industrial

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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and academic attention in various systems such as multi-hop and heterogeneous net-
works [78]. By applying energy efficiency as the performance metric, QoS can be obtained,
together with a reduction on energy consumption [209]. Energy efficiency defined in
traditional communication systems in bits transmitted per Joule is an important metric
to evaluate the overall system energy consumed. However, in the new communications
systems, there exist a large number of computation-constrained and power-limited devices
(such as IoT devices) that will need to support delay-critical yet computation-intensive
tasks. Offloading through communications to MEC servers in order to compute the
tasks timely becomes critically important to meet the short delay budget requirement,
while communications throughput requirements may become secondary. To capture the
efficiency of energy used for both computing and communication in such a scenario, we
propose the metric computation efficiency, which is defined as the number of total com-
puted bits divided by the energy consumed. We argue that this metric is more appropriate
since it can measure how efficient the system is, in terms of computed bits per Joule, for a
system involving massive computation needs.

Our work expands [199] and [209] in two major aspects. Firstly, we consider maximizing
the computation efficiency instead of purely maximizing computed data bits or minimizing
energy consumption compared with [199]. Secondly, we combine local computing and data
offloading in a hybrid approach instead of offloading only [209]. This chapter presents the
following advances in the MEC offloading system.

1. We propose a new performance metric in MEC networks: computation efficiency, which
is defined as the number of computed bits divided by the corresponding energy con-
sumption. Computation efficiency can drive toward efficient on-board power utilization
while achieving satisfactory QoS.

2. The fundamental trade-off between local computing and data offloading is analyzed.
Results show that with practical parameter settings, when data size is small, more data
will be processed locally. But when the data grows, offloading will play a more important
role in improving the computation efficiency.

7.2 System Model

In this chapter, we consider a downlink MEC network which consists of one MEC server
and K randomly located UEs [173]. The server has a single antenna and so does each UE.
Assume the channel between the server and the UE is a block-fading-based model, i.e. the
channel remains constant during a time slot with length T but varies from time to time.
The channel state information is assumed to be available at the server. At the beginning of
a particular time T, each UE has a computation-intensive task to compute. Due to the com-
putation resource limit or power limit or both, these tasks are offloaded to the nearby MEC
server for a more powerful processing if needed. In this chapter, we assume the task-input
bits are bit-wise independent and can be arbitrarily divided into different groups and exe-
cuted by different entities in MEC system, e.g. parallel execution at the mobile and MEC
server [199]. Partial offloading is used here. Thus the system can support data offloading
and local computing simultaneously.
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7.2.1 Data Offloading

Denote the set of UEs as  = {1,2,… ,K}. A UE can offload part of the computation bits
to the server. To reduce the interference between different UEs, UEs doing offloading are
allocated a portion of T and transmit sequentially, such as in the TDMA mode. Specifi-
cally, let gk, pk, and tk, respectively, represent the channel between the server and UE k, the
transmission power, and time duration allocated to UE k. The total number of offloaded
bits is rk = B log2

(
1 + pkgk

𝜎2

)
tk, ∀k ∈ , where 𝜎2 is the noise power and B is the system

bandwidth.
Under this mode, the corresponding energy consumption for UE k is ek = pktk + prtk,

where pktk denotes the over-the-air information transmission energy consumption, and pr
is the constant circuit power for transmit signal processing, which is the same for all UEs.

7.2.2 Local Computing

In addition to offloading, part of the bits can be computed locally by UEs. Let Ck be the
number of computation cycles needed to process one bit of data for UE k. Clearly, each UE
can compute the data throughout the entire block T. Furthermore, fk denotes the proces-
sor’s computing speed in the unit of cycles per second, and similar to [15], this speed holds
constant. Therefore, the total number of bits locally computed is rlocal

k = Tfk
Ck
.The energy con-

sumption of local computing is modeled as a function of the processor speed fk. Specifically,
Elocal

k = 𝜖k f 3
k T, where 𝜖k is the computation energy efficiency coefficient of the processor’s

chip [15, 197].

7.3 Problem Formulation

In this section, we form an optimization problem that maximizes the total computation
energy efficiency among all UEs. Mathematically, the problem is expressed as follows.

P1 max
{tk},{fk},{pk}

∑
k

wk

B log2

(
1 + pkgk

𝜎2

)
tk +

Tfk
Ck

𝜖k f 3
k T + pktk + prtk

(7.1a)

s.t. C1 ∶
∑

k
tk ≤ T, (7.1b)

C2 ∶ B log2

(
1 +

pkgk

𝜎2

)
tk +

Tfk

Ck
≥ Lk,∀k, (7.1c)

C3 ∶ 𝜖k f 3
k T + pktk + prtk ≤ Eth

k ,∀k, (7.1d)

C4 ∶ 0 ≤ fk ≤ f max
k ,∀k, (7.1e)

C5 ∶ tk ≥ 0,∀k, (7.1f)

where wk is the weighting factor that can be used to prioritize different QoS requirements
of UEs. P1 is a resource allocation problem that optimizes the offloading transmission time
tk and power pk, as well as local computing chip frequency fk. C1 states that all the tasks
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should be completed before the end of the block. Notice that here we omit the processing
and transmission time at the server by following [15, 199]. Lk in C2 denotes the minimum
data bits for computing for UE k. Eth

k in C3 is the total energy available in UE k. C4 defines
the maximum CPU frequency of each UE.

The above problem is non-convex since the objective function involves sum-of-ratio max-
imization. Also, the coupling of some variables makes the optimization problem even more
complicated. To address the coupling problem, let Pk = pktk. Besides, for notational brevity,
denote Rk(Pk, tk, fk) = B log2

(
1 + Pkgk

tk𝜎
2

)
tk +

Tfk
Ck

, and Ek(Pk, tk, fk) = 𝜖k f 3
k T + Pk + prtk. We

first employ simple transformations and the original problem becomes:

P2 ∶ max
{tk},{fk},{Pk},{𝛽k}

∑
k

wk𝛽k (7.2a)

s.t. C1 ∶ Rk(Pk, tk, fk) ≥ 𝛽kEk(Pk, tk, fk), (7.2b)

C2 ∶
∑

k
tk ≤ T, (7.2c)

C3 ∶ tk ≥ 0,∀k, (7.2d)

C4 ∶ 0 ≤ fk ≤ f max
k ,∀k, (7.2e)

C5 ∶ Rk(Pk, tk, fk) ≥ Lk, (7.2f)

C6 ∶ Ek(Pk, tk, fk) ≤ Eth
k ,∀k. (7.2g)

Lemma 7.1 For ∀k, if ({t∗k}, {f ∗k }, {P∗
k}, {𝛽

∗
k}) is the optimal solution of P2, there must exist

{λ∗k} such that ({t∗k}, {f ∗k }, {P∗
k}) satisfies the Karush–Kuhn–Tucker condition of the following

problem for λk = λ∗k and 𝛽k = 𝛽∗k .

P3 ∶ max
{tk},{fk},{Pk}

∑
k
λk(wkRk − 𝛽kEk) (7.3a)

s.t. (7.2c) − (7.2g). (7.3b)

Furthermore, ({t∗k}, {f ∗k }, {P∗
k}) satisfies the following equations for λk = λ★k and 𝛽k = 𝛽★k :

λk =
wk

Ek(Pk, tk, fk)
, 𝛽k =

wkRk(Pk, tk, fk)
Ek(Pk, tk, fk)

,∀k. (7.4)

Lemma 7.1 can be proved by taking the derivative of the Lagrange function of P2. λk is
the non-negative multiplier of (7.2b). A detailed proof can be obtained in [92]. Lemma 7.1
implies that the optimal solution of P2 can be obtained by solving the equations of (7.4)
among the solutions of P3.

The Lagrange function of P3 is

(tk,Pk, fk, 𝛼k, 𝜇k, 𝜃k,nk,m) (7.5)

=
∑

k
λk(wkRk − 𝛽kEk) −

∑
k
𝛼k(Ek − Eth

k )

−
∑

k
𝜇k(Lk − Rk) −

∑
k

nk(fk − f max
k ) − m

(∑
k

tk − T

)
,
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where 𝛼k, 𝜇k, 𝜃k,nk, and m are non-negative Lagrange multipliers for the respective con-
straints. It can be readily proved that P3 is convex for given λk and 𝛽k,∀k, and satisfies
Slater’s condition. Thus, strong duality holds between the primal and dual problems, which
means solving P3 is equivalent to solving the dual problem. Notice that the dual function is
𝜓(𝛼k, 𝜇k, 𝜃k,nk,m) = max

{tk},{fk},{Pk}

(

tk,Pk, fk, 𝛼k, 𝜇k, 𝜃k,nk,m
)
. The dual problem becomes

P4 ∶ min
𝛼k ,𝜇k ,
𝜃k ,nk ,m

𝜓(𝛼k, 𝜇k, 𝜃k,nk,m). (7.6)

In the following, we first obtain the optimal solutions for the given auxiliary variables
(λk, 𝛽k) and Lagrange multipliers (𝛼k, 𝜇k, 𝜃k,nk,m). Then the Lagrange multipliers are
updated via gradient descent method. Lastly, the auxiliary variables are updated as well.

7.3.1 Update pk , tk , and fk

Equation (7.5) can be re-organized as

(tk,Pk, fk, 𝛼k, 𝜇k, 𝜃k,nk,m) (7.7)

=
∑

k

(
(λkwk + 𝜇k)Rk − (𝛼k + λk𝛽k)Ek − nk fk − mtk

+ 𝛼kEth
k − 𝜇kLk + nk f max

k

)
+ mT.

To maximize the dual function,𝜓(𝛼k, 𝜇k, 𝜃k,nk,m) can be decomposed into K sub-problems.
Specifically, the k-th problem is

𝜓k = max
{tk}, {fk}, {Pk}

k(tk,Pk, fk, 𝛼k, 𝜇k, 𝜃k,nk,m) (7.8)

= max
{tk}, {fk}, {Pk}

(λkwk + 𝜇k)Rk − (𝛼k + λk𝛽k)Ek − nk fk − mtk + Ψ,

where Ψ denotes the constant value that is irrelevant to the optimizing variables.

Proposition 7.1 The optimal transmit power and duration for the k-th UE should be

p∗
k =

[
(λkwk+𝜇k)B
(λk𝛽k+𝛼k) ln 2

− 𝜎2

gk

]+
andf ∗k =

√√√√
[(

(λk wk+𝜇k )
ck

−nk

)
1
𝜖k

3(λk𝛽k+𝛼k)

]+

respectively, where [x]+ = max (x, 0).

Proof: Taking the derivative of the Lagrange function 𝜓k w.r.t. Pk yields

𝜕𝜓k

𝜕Pk
=

(λkwk + 𝜇k)Btkgk

(tk𝜎
2 + Pkgk) ln 2

− λk𝛽k − 𝛼k. (7.9)

Let 𝜕𝜓k
𝜕Pk

= 0, the optimal P∗
k can be obtained. Notice that the optimal p∗

k is equal to P∗
k

tk
. Simi-

larly, let 𝜕𝜓k
𝜕fk

= 0, we can get the optimal expression for fk.

● Remark: In order to maximize EE, user k with a higher channel gain gk should transmit
with a higher power pk. This can be seen from the optimal expression of p∗

k. Notice that
the similar conclusion is also drawn in [209].
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For tk, the partial derivative expression of 𝜓k w.r.t. tk becomes

𝜕𝜓k

𝜕tk
= (λkwk + 𝜇k)B log2

(
1 +

pkgk

𝜎2

)
− (𝛼k + λk𝛽k)(pk + pr) + m. (7.10)

Clearly, the optimization problem is a linear function of tk. Therefore, the following problem
can be solved efficiently by interior point methods.

P5 ∶ max
{tk}

∑
k
λk(wkRk − 𝛽kEk) (7.11a)

s.t. (7.2c), (7.2d), (7.2f), (7.2g). (7.11b)

7.3.2 Update Lagrange Multipliers

Now, we proceed to update the Lagrange multipliers 𝛼k, 𝜇k,nk, and m. From the problem
definition, with known Pk, tk, and fk, the dual problem is always convex. Specifically,
min
𝛼k ,𝜇k ,
𝜃k ,nk ,m

𝜓(𝛼k, 𝜇k, 𝜃k,nk,m) is an affine function w.r.t. dual variables. Thus, we can apply

the simple gradient method for the variable update. Specifically, we choose initial
𝛼k(0), 𝜇k(0),nk(0), and m(0) as the center of the ellipsoid which contains the optimal
Lagrange variables. Then, we reduce the volume of the ellipsoid using gradient descent
method as the following.

𝛼k(i + 1) = 𝛼k(i) + Δ𝛼k(E∗
k − Eth

k ), (7.12a)

𝜇k(i + 1) = 𝜇k(i) + Δ𝜇k(Lk − R∗
k), (7.12b)

nk(i + 1) = nk(i) + Δnk(f ∗k − f max
k ), (7.12c)

m(i + 1) = m(i) + Δm

(∑
k

t∗k − T

)
, (7.12d)

where Δ𝛼k,Δ𝜇k,Δnk, and Δm are the respective step size, i is the iteration index. Notice
that all the Lagrange variables must be non-negative. If a negative value is obtained, the
Lagrange variable will be set to 0 instead.

7.3.3 Update Auxiliary Variables

Lastly, the auxiliary variables λk and 𝛽k are updated in the following way.
Notice that in Lemma 7.1, the optimal solution P∗

k , t
∗
k , and f ∗k should also satisfy the

following system conditions:

𝛽kEk(P∗
k , t

∗
k , f

∗
k ) − wkRk(P∗

k , t
∗
k , f

∗
k ) = 0, (7.13)

λkEk(P∗
k , t

∗
k , f

∗
k ) − 1 = 0. (7.14)

Similarly, according to [92], we define functions for notational brevity. Specifically, let
Tj(𝛽j) = 𝛽jEk − wkRk and Tj+K(λj) = λjEk − 1, j ∈ {1,2,… ,K}. The optimal solution for λk
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and 𝛽k can be obtained by solving T(λk, 𝛽k) = [T1,T2,… ,T2K] = 𝟎. We can apply iterative
method to update the auxiliary variables. Specifically,

λk(i + 1) = (1 − 𝜃(i))λk(i) +
𝜃(i)

Ek(P∗
k , t

∗
k , f

∗
k )
, (7.15)

𝛽k(i + 1) = (1 − 𝜃(i))𝛽k(i) + 𝜃(i)
wkRk(P∗

k , t
∗
k , f

∗
k )

Ek(P∗
k , t

∗
k , f

∗
k )

, (7.16)

where 𝜃(i) is the largest 𝜃 that satisfies ||T(λk(i) + 𝜃lqi
K+1∶2K , 𝛽k(i) + 𝜃lqi

1∶K)|| ≤ (1 − z𝜃l)
||T(λk(i), 𝛽k(i)||, q is the Jacobian matrix of T, l ∈ {1,2,…}, 𝜃l ∈ (0,1), and z ∈ (0,1). Note
that when 𝜃(i) = 1, it becomes the standard Newton method. To summarize, we list the
detailed algorithm in Algorithm 7.1.

Algorithm 7.1 Computation Efficiency Maximization Algorithm
1: Initialization: the algorithm accuracy indicator t1 and t2, set i = 0, 𝜆k(i) and 𝛽k(i)
2: while ||𝐓(𝜆k, 𝛽k)|| > t1 do
3: Initialization: 𝛼k(j), 𝜇k(j),nk(j), and m(j), and let j = 0
4: while |𝛼k(j + 1) − 𝛼k(j)| > t2 do
5: Calculate p∗

k and f ∗k based on Proposition 7.1.
6: Solve for problem 𝐏5, obtain the timing variable tk.
7: Update Lagrange variables based on gradient descent method in (7.12).
8: Let j = j + 1.
9: end while

10: Let i = i + 1, update auxiliary variables 𝜆k(i + 1) and 𝛽k(i + 1) from (7.15) and (7.16).
11: end while
12: Output the optimal computation efficiency.

Notice that in the inner loop, the stop criterion can also be the convergence of other
Lagrange multipliers or the condition that their combined value is less than a threshold.

7.3.4 Complexity Analysis

Since the algorithm involves the iteration process for three variables, we analyze the com-
plexity in a sequential way. Firstly, pk and fk have a linear complexity with the user number
K. The updating of Lagrange variables is of (K2) complexity since the total number of
variables is 3K + 1. Here (x) means the upper bound for the complexity grows with order
x. Finally, auxiliary variables λk and 𝛽k have a complexity independent of K. Thus, our
proposed algorithm has a total complexity in (K3).

7.4 Numerical Results

In this section, we present our simulation results of the joint offloading and computation
scheme. The parameters are set as follows. The system bandwidth is B = 200 kHz, block
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length T = 1s, total number of UEs K = 2, Ck = 103 cycles needed for one bit raw data pro-
cessing, the chip computing efficiency 𝜖k = 10−24, and static circuit power pr = 50 mW. The
channels between the MEC server and each UE are modeled as the joint effect of large-scale
and small-scale fading, with gk∕𝜎2 = Gkhk, G1 = 7, and G2 = 3. hk is the unitary Gaussian
random variable. Lastly, the maximum computation capacity of each UE is set equally
as f max

k = 109 Hz. Eth
1 = Eth

2 = 2 Joule. All the results are averaged over different random
channel realizations.

In Figure 7.1, we present the comparison results among three schemes, namely, the pro-
posed scheme in this chapter, offloading only scheme, and local computing only scheme.
We set L1 = L2 and w1 = w2 = 1, which means the minimum required data bits for all UEs
are the same. In Figure 7.1, the computation efficiency of all the schemes decreases with
the increase of the minimum required data bits. This suggests that the energy required to
compute grows faster than the growth of the data bits. It is evident that our proposed algo-
rithm outperforms other schemes. Additionally, we notice that when the data size is small,
the proposed scheme’s performance is closer to that of local computing only; when the data
size grows, the performance will approach that of offloading only. This phenomenon can be
explained by the following. Firstly, in the real-world applications, processor clock speed in
a mobile device can reach MHz level. Thus, when the data size is relatively small, the pre-
ferred choice is to compute locally. Furthermore, based on the channel gain between UEs
and the BS, and also the available bandwidth, data offloading may not be the ideal choice
since it may take a longer time and a higher energy for small data offloading than for small
data computing locally. On the other hand, when the data size is large, offloading to more
computation powerful MEC server can become a much better choice. Moreover, the energy
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Figure 7.1 Performance comparison of different schemes.
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Figure 7.2 Performance comparison of our proposed scheme and the binary offloading.

decrease in local computing is more dramatic than the energy used in offloading when
data size shrinks. According to the equation for local computing only, the computation
efficiency is rlocal

k
Elocal

k
= 1

Ck𝜖k f 2
k
∝ 1

r2
k
, which indicates that its efficiency is inversely proportional

to the square of the data size, while the offloading has a much slower deceasing rate thanks
to the log function.

Compared with partial offloading, another MEC offloading scheme is the binary
offloading, where each UE either completely offloads all the data to the MEC server or
computes all the data locally. To compare its performance with our proposed scheme, we
show the result in Figure 7.2. It can be seen that our proposed joint scheme outperforms
the binary offloading in terms of computation efficiency, which indicates the superiority
of the proposed algorithms.

Figure 7.3 illustrates the trade-off between two strategies: data offloading and local
computing in our proposed scheme. The vertical axis represents the number of data bits
(in percentage) calculated by either scheme with respect to the whole task. It can be readily
shown that for both UEs, the local computing amount (in percentage) will decrease with
the increase of the preset data amount. By contrast, data offloading plays a more and
more important when the data becomes large. This can further prove our point in Figure
7.1, where the proposed scheme adaptively adjusts the amount of data that go through
local computing or offloading. Additionally, for UE 1, the trade-off point happens around
L1 = 4 × 104 and for UE 2 around L2 = 6 × 104. Since UE 1 has a better channel gain than
UE 2, the influence from data offloading is more prominent; thus, the trade-off point is in
an earlier position, while for UE 2, local computing continues to have a more influential
role until the trade-off point L2 = 6 × 104.
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Figure 7.3 Trade-off between offloading and local computing.

7.5 Summary

In this chapter, we present a new evaluation metric in MEC systems, i.e. the computa-
tion efficiency. An optimization problem is formulated which aims at maximizing the total
computation efficiency with weight factors. The problem is recognized as the sum-of-ratio
problem and an iterative algorithm is applied in the outer loop. For the inner loop, the
problem can be converted to standard convex optimization and, to gain a better insight, we
propose to solve it via gradient descent method. Simulation results reveal the fundamental
trade-off of two combined schemes: local computing and offloading.
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8

Toward Green MEC Offloading with Security Enhancement

8.1 Background

In Chapter 7, our work proposed a new computation efficiency metric for evaluating MEC
performance. Computation efficiency is similar to energy efficiency in wireless communi-
cation, which is defined as the number of bits computed divided by the total energy
consumed. Several subsequent studies have adopted our metric and studied its per-
formance under different scenarios. For example, Zhou and Hu [233] investigated
computation efficiency maximization under wireless-powered MEC systems. It also
compared two offloading schemes: joint and binary. An orthogonal frequency division
multiple access (OFDMA)-based MEC system with computation efficiency maximization
is proposed in [211], aiming for power and channel optimal allocation. Lastly, Zhang et al.
[230] applied computation efficiency in an unmanned aerial vehicle (UAV)-enabled MEC
offloading system, which also seeks for computation efficiency maximization.

On the other hand, wireless offloading will unavoidably suffer from potential malicious
activities due to the existence of eavesdropper. From physical layer information-theoretic
perspective, achievable data rate with eavesdropper can be modeled as the difference of
mutual information from transmitter to receiver and from transmitter to eavesdropper,
regardless of security protection mechanisms. It can be considered as the lower bound
of the actual data rate. This simplified analysis model has been adopted in various
studies [30, 208].

This chapter highlights the following research contributions.

1. We consider a secure offloading model, which allows wireless transmission with
the presence of eavesdroppers. We adopt the physical layer security model from
information-theoretic perspective and is irrelevant of encryption schemes.

2. Computation efficiency is applied as the main metric, which finds the balance between
maximizing computation bits and minimizing total energy consumption.

3. An iterative algorithm together with convex approximation is proposed to tackle a
non-convex problem and has good convergence speed and performance.

This chapter is organized as follows. Section 8.2 describes the secure offloading and
computation model. An optimization problem is formulated in Section 8.3, followed by its
approximation solution. Numeric results are presented in Section 8.4. Finally, Section 8.5
concludes this chapter.

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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8.2 System Model

We consider a typical MEC system with one server and K UEs, the MEC system also mounts
a wireless access point (AP) to communicate with other devices. We assume that both
the AP and the UEs have a single antenna [177]. There also exists a malicious eavesdrop-
per that tries to intercept confidential information. Denoted as Eve, the eavesdropper only
has one antenna. At the beginning of a reference time ts, each UE has a large number of
computation-intensive tasks to be computed, because of the limited computation resources
at UE, due to either device size or power constraints or both, UEs cannot finish their tasks
before te. For timely processing, we require te − ts ≤ T. Hence, UEs will offload part of their
computation bits to the MEC server, where a more powerful processing can be supported.
In general, each UE supports the following operation modes (Figure 8.1).

8.2.1 Secure Offloading

In the presence of Eve, each UE must securely offload part of their task to the MEC server.
We assume the channel between each UE and the AP in MEC server follows block static
model where it remains the same within the block time T1 (T1 ≥ T) but varies from one
block to another. We denote the channel between UE k and the AP be hk, where hk = lkh0
is the joint effect of large-scale lk and small-scale h0 fading. Similarly, the channel between
each UE and the Eve is gk.

We consider the active eavesdropper scenario, where the Eve is also a user in the system,
its listening and transmitting can be captured by UEs (from authentication, etc.). Therefore
in this setting, we assume the channel between UE k and the Eve can be perfectly estimated,
i.e. gk can be perfectly estimated. Similar setting can also be found in [208].

Let the number of total bits be computed for each UE be Lk; since each UE cannot finish
the calculation before the required time slot, it will send to MEC server for joint processing.
Specifically, mk is the number of bits that UEs offloads to the MEC securely. The signal
received at the AP and Eve becomes:

yk = hH
k sk + nk,∀k = 1,… ,K, (8.1)

yk
e = gH

k sk + nk
e ,∀k = 1,… ,K, (8.2)

User 1

MEC server with AP

...

User 2

User K

...

Eve

Offloading

Result downloading

Malicious listening

Figure 8.1 Secure MEC partial
offloading model.
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here, sk ∈ ℂ is the information-bearing signal for UE k, nk ∈  (0, 𝜎2
k) and nk

e ∈  (0, 𝜎2
ek)

are the complex Gaussian noise at the AP and Eve, respectively. The secrecy rate, from
information-theoretic perspective, is given as

Rsec
k,a =

[
log

(
1 +

pkh2
k

𝜎2
k

)
− log

(
1 +

pkg2
k

𝜎2
ek

)]+

, (8.3)

where [a]+ = max (a, 0).
For offloading, the energy consumption consists of two parts: transmission and fixed cir-

cuit. In particular, Eoff
k = pktk + prtk, where pr, a constant, is the power of other circuit except

for the transmission unit.
The rest Lk − mk bits will be calculated locally, which will be described below.

8.2.2 Local Computing

Traditionally, users will process all the computation locally. To model such a process, we
first define some parameters. First, we assume user k’s CPU needs Ck cycles to finish the
computation of a single bit of data. Also, let fk be the clock speed of the CPU. For simplicity,
we assume the clock speed does not change. Each user is allowed to start the local comput-
ing from the beginning to the end of the process; thus, the total number of computation bits
becomes Tfk∕Ck.

Energy consumption for local computing can be modeled as Ecomp
k = 𝜖kf 3

k T, where 𝜖k is
the CPU energy coefficient [197, 209].

8.2.3 Receiving Computed Results

After receiving the computation task from each user, MEC server will start the calcula-
tion. When finished, it will send the result back to each user. Here, like [220, 233], we
assume this process takes negligible time because of two reasons: 1) MEC server has pow-
erful multi-thread processor, 2) compared with data bits to be computed, result takes way
less space; hence, downlink transmission is almost instant.

The whole process is illustrated in Figure 8.2.

8.2.4 Computation Efficiency in MEC Systems

Like previously mentioned, we define computation efficiency as the total number of calcu-

lated bits divided by total energy consumed. Thus, CEk =
BRsec

k,atk+
Tfk
Ck

pktk+pr tk+𝜖kf 3
k T

[173], where B is the
bandwidth for offloading.

Figure 8.2 Time sharing offloading
scheduling.
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8.3 Computation Efficiency Maximization with Active
Eavesdropper

We consider a green MEC system where the objective is to maximize the computation effi-
ciency; the optimization problem is formulated as follows.

P1 max
{tk},{fk},
{mk},{pk}

∑
k

wk

BRsec
k,atk +

Tfk
Ck

𝜖kf 3
k T + pktk + prtk

(8.4a)

s.t. C1 ∶
∑

k
tk ≤ T, (8.4b)

C2 ∶ BRsec
k,atk ≥ mk,∀k, (8.4c)

C3 ∶ Lk −
Tf max

k

Ck
≤ mk ≤ Lk,∀k, (8.4d)

C4 ∶ 𝜖kf 3
k T + pktk + prtk ≤ Eth

k ,∀k, (8.4e)

C6 ∶ 0 ≤ fk ≤ f max
k , tk ≥ 0, pk ≥ 0 ∀k (8.4f)

Our objective is to find the maximum value of the weighted summation for each UE’s
computation efficiency, wk is the weight for UE k. The variables to be optimized here are
the transmitted time for each UE tk, the CPU frequency fk, and the transmitted power for
each user pk. (8.4b) is the time constraint which requires the whole process ends before
time T, (8.4c) combined with (8.4d) is the requirement for offloading and local computing
rate. Furthermore, (8.4e) is the energy consumption constraint for each UE, where Eth

k is
the maximum allowed energy. Lastly, fk, tk, and pk should be non-negative variables, which
is defined in (8.4f).1

Clearly, the formulated problem is non-convex, due to its sum-of-ratio objective function
and C2, C4, C5, especially the coupling variables pk and tk. In the following, we tackle each
non-convex term, mainly with successive convex approximation (SCA).

8.3.1 SCA-Based Optimization Algorithm

Firstly, we transform (8.4c) and (8.4e). Notice that we group these two constraints since they

both involve with coupling variables. Let p̃k = pktk, then Rsec
k,atk = tk log

(
1 + 1

𝜎2
k

p̃kh2
k∕tk

)
−

tk log
(

1 + 1
𝜎2

ek
p̃kg2

k∕tk

)
. For a function in the form of f (x, y) = y log

(
1 + x

y

)
, it represents

the entropy between x and y, and it is a concave function. Thus, Rsec
k,a is still non-convex

due to the difference of concave and convex functions. For approximation, we apply SCA

1 Theoretically, mk should be an integer value, and (8.4d) becomes mk ∈
{

Lk −
Tf max

k
Ck

,Lk −
Tf max

k
Ck

+

1, … ,Lk

}
. However, we simplify this and allow mk to be fractional value, a feasible solution can take the

round value if it is fractional, in [15], they also take the same approximation. When Lk is very large as the
most real-world cases, the approximation has minimal impact to the original problem.
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algorithm. Specifically, the entropy function has first-order Taylor series expansion at
(x, y) = (x0, y0)

f (x, y) = y0 log
(

1 +
x0

y0

)
+
[

log
(

1 +
x0

y0

)
−

x0

x0 + y0

]
(y − y0) +

y0

x0 + y0
(x − x0),

where (x0, y0) is the differentiable point. It is easy to verify that given (x0, y0), f (x, y) becomes
an affine form, which is convex. In optimization problems, we solve for (x, y) with given
feasible point (x0, y0) first, then in the next round, (x0, y0) becomes the previous round’s
(x, y). The process will continue until converges. SCA-based approach works well in the
iterative algorithms and received much attention recently.

In the following, to simplify notations, we first transform (8.4d) to equation sets below:

𝜏k ≥
1
𝜎2

ek

p̃kg2
k, (8.5a)

tk log
(

1 +
Nk

tk

)
− tk log

(
1 +

𝜏k

tk

)
≥

mk

B
, (8.5b)

Nk ≤
1
𝜎2

k

p̃kh2
k, (8.5c)

where 𝜏k and Nk are auxiliary variables. It is easy to verify that the transformation is equiv-
alent. Furthermore, (8.5b) should be transformed according to f (𝜏k, tk) and f (Nk, tk) that
mentioned above.

8.3.2 Objective Function

Next, the objective function needs to be converted to the convex form as well. Currently, it
is the summation of the fractional functions (represent each UE’s computation efficiency).
Traditional Dinkelbach’s method cannot be applied directly since it can only deal with one
fractional function. Instead, following [92], we can generalize Dinkelbach’s algorithm to
tackle one fractional function to multiple ones by a simple transformation.

P3 max
{tk},{fk},{mk},{p̃k},{𝛽k},{𝜏k},{Nk}

∑
k

wk𝛽k (8.6a)

s.t. C1 ∶ Rk ≥ 𝛽kEk,∀k, (8.6b)

C2 ∶
∑

k
tk ≤ T, (8.6c)

C3 ∶ Lk −
Tf max

k

Ck
≤ mk ≤ Lk,∀k, (8.6d)

C4 ∶ 𝜖kf 3
k T + p̃k + prtk ≤ Eth

k ,∀k, (8.6e)

C5 ∶ 0 ≤ fk ≤ f max
k , tk ≥ 0, p̃k ≥ 0 ∀k, (8.6f)

C6 ∶ (8.5a)–(8.5c). (8.6g)
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Here, we let Rk = BRsec
k tk +

Tfk
Ck

, and Ek = 𝜖kf 3
k T + p̃k + prtk, for notational simplicity. 𝛽k is

the auxiliary variable.

max
{tk},{fk},{mk},
{p̃k},{𝜏k},{Nk}

∑
k
λk

{
(v(i)k − 𝜃(i)k )(tk − t(i)k ) +

t(i)k

t(i)k + N(i)
k

(Nk − N(i)
k ) (8.7a)

−
t(i)k

t(i)k + 𝜏 (i)k

(𝜏k − 𝜏
(i)
k )

}
wkB +

∑
k

λkwkTfk

Ck
−
∑

k
λk𝛽k

(
𝜖kf 3

k T + p̃k + prtk
)

s.t. B

{
(v(i)k − 𝜃(i)k )(tk − t(i)k ) +

t(i)k

t(i)k + N(i)
k

(Nk − N(i)
k ) (8.7b)

−
t(i)k

t(i)k + 𝜏 (i)k

(𝜏k − 𝜏
(i)
k ) + 𝜑(i)

k

}
+

Tfk

Ck
≥ Lk,

(8.6c), (8.6e), (8.6f), (8.5a), (8.5c) (8.7c)

P3 can be solved with the following Lemma.

Lemma 8.1 For ∀k, if ({t∗k}, {f ∗k }, {m∗
k}, {p̃∗

k}, {𝛽
∗
k}, {𝜏

∗
k}, {N∗

k}) is the optimal solution of
P3, there must exist {λ∗k} such that ({t∗k}, {f ∗k }, {m∗

k}, {p̃∗
k}, {𝜏

∗
k}, {N∗

k}) satisfies the Karush–
Kuhn–Tucker (KKT) condition of the following problem for λk = λ∗k and 𝛽k = 𝛽∗k .

P4 ∶ max
{tk},{fk},{Pk}

∑
k
λk(wkRk − 𝛽kEk) (8.8a)

s.t. (8.6c)–(8.6g) (8.8b)

Furthermore, ({t∗k}, {f ∗k }, {m∗
k}, {p̃∗

k}, {𝜏
∗
k}, {N∗

k}) satisfies the following equations for λk = λ⋆k
and 𝛽k = 𝛽⋆k :

λk =
wk

Ek
, 𝛽k =

wkRk

Ek
,∀k. (8.9)

Please refer to [92] for the detailed proof.
Based on the above Lemma, P3 can be solved iteratively. At each iteration, the objective

function becomes a convex one with giving λk and 𝛽k in (8.8a), then the auxiliary value of
λk and 𝛽k will be updated according to Section 8.3.3.

8.3.3 Proposed Solution to P4 with given (𝛌k , 𝜷k)

To summarize, for given (λk, 𝛽k), a complete version of P4 is illustrated at the top of

next page. Where 𝜃
(i)
k =

[
log

(
1 + 𝜏

(i)
k

t(i)k

)
− 𝜏

(i)
k

𝜏
(i)
k +t(i)k

]
, v(i)k =

[
log

(
1 + N(i)

k

t(i)k

)
− N(i)

k

N(i)
k +t(i)k

]
, and

𝜑
(i)
k = t(i)k log(1 + N(i)

k ∕t(i)k ) − t(i)k log(1 + 𝜏 (i)k ∕t(i)k ) is replaced for notational simplicity.
It is easy to verify that, for given v(i)k , 𝜃

(i)
k , t

(i)
k ,N

(i)
k , and 𝜏 (i)k at each iteration, P4 is a convex

optimization problem and can be solved by standard method such as interior-point algo-
rithm. The optimized variable, once computed from the optimization problem, will be used
to update v(i)k , 𝜃

(i)
k , t

(i)
k ,N

(i)
k , and 𝜏 (i)k for the input of next iteration. Furthermore, the conver-

gence of this iterative algorithm can be guaranteed by concave–convex procedure (CCCP).



�

� �

�

8.4 Numerical Results 97

Notice that for SCA algorithm, it is vital to select an appropriate initial value. The initial
point used for iterative algorithm should be feasible for the optimization problem. We will
discuss more details in the simulation part.

8.3.4 Update (𝛌k , 𝜷k)

In this part, we give descriptions for updating the auxiliary variables λk and 𝛽k.
Notice that in Lemma 1, the optimal solution p̃∗

k, t
∗
k , and f ∗k should also satisfy the following

system conditions:

𝛽kEk(p̃∗
k, t

∗
k , f

∗
k ) − wkRk(p̃∗

k, t
∗
k , f

∗
k ) = 0, (8.10)

λkEk(p̃∗
k, t

∗
k , f

∗
k ) − wk = 0. (8.11)

Similarly, according to [92], we define functions for notational brevity. Specifically, let
Tj(𝛽j) = 𝛽jEk − wkRk and Tj+K(λj) = λjEk − 1, j ∈ {1,2,… ,K}. The optimal solution for λk
and 𝛽k can be obtained by solving T(λk, 𝛽k) = [T1,T2,… ,T2K] = 𝟎. We can apply iterative
method to update the auxiliary variables. Specifically,

λk(i + 1) = (1 − 𝜃(i))λk(i) +
𝜃(i)

Ek(p̃∗
k, t

∗
k , f

∗
k )
, (8.12)

𝛽k(i + 1) = (1 − 𝜃(i))𝛽k(i) + 𝜃(i)
wkRk(p̃∗

k, t
∗
k , f

∗
k )

Ek(p̃∗
k, t

∗
k , f

∗
k )

, (8.13)

where 𝜃(i) is the largest 𝜃 that satisfies ||T(λk(i) + 𝜃lqi
K+1∶2K , 𝛽k(i) + 𝜃lqi

1∶K)|| ≤ (1 −
z𝜃l)||T(λk(i), 𝛽k(i)||, q is the Jacobian matrix of T, l ∈ {1,2,…}, 𝜃l ∈ (0,1), and z ∈ (0,1).
This update is also available in our prior study [173]. To summarize, we list the detailed
algorithm in Algorithm 8.1.

Algorithm 8.1 Secure Computation Efficiency Maximization Algorithm
1: Initialization: the algorithm accuracy indicator u1 and u2, set i = 0, give initial values

for v(i)k , 𝜃
(i)
k , t

(i)
k ,N

(i)
k , 𝜏 (i)k , 𝜆(i)k , and 𝛽(i)k .

2: while ||𝐓(𝜆k, 𝛽k)|| > u1 do
3: while |𝛼k(j + 1) − 𝛼k(j)| > u2 do
4: Solve for problem 𝐏4, obtain the intermediate optimal values

{tk}, {fk}, {mk}, {p̃k}, {𝜏k}, and {Nk}.
5: Let j = j + 1.
6: end while
7: Let i = i + 1, update auxiliary variables 𝜆k(i + 1) and 𝛽k(i + 1) from (8.12) and (8.13).
8: end while
9: Output the optimal computation efficiency.

8.4 Numerical Results

In this section, simulation results from our proposed scheme and algorithm are presented.
Parameters for the simulation are given as follows. We assume the bandwidth for the system
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is B = 200 KHz, number of users K = 2, time threshold T = 1 s. For local computation, the
CPU needs Ck = 1000 operations to process one bit of data. In addition, the scaling fac-
tor for energy consumption 𝜖k = 1 × 10−24, CPU for each user has a maximum frequency
f max
k = 1 × 109 Hz. For offloading, we assume the channel from user to the server to be

h2
k∕𝜎

2 = Hkh0, where h0 is the normal Gaussian variable. Similarly, g2
k∕𝜎

2 = Gkh0. The value
of Hk and Gk will be given later. We apply no bias to both users hence set w1 = w2 = 1. Lastly,
the maximum allowed energy consumption is Ek = 1 Joule.

In Figure 8.3, we show the convergence performance of our iterative algorithm. Here, we
set H1 = 7,H2 = 5, G1 = G2 = 1, and L1 = L2 = {50,000, 60,000}. As a typical case, we only
present the result for optimal time allocation tk here. It can be seen that our iterative algo-
rithm has a good convergence speed; it only takes around 6 iterations to achieve the optimal
value. In fact, we test with different initial points and manage to get the same performance.
The other observation from Figure 8.3 is that, when the required computation bits becomes
larger, the transmission time is also longer. Intuitively, this explains that more offloading
bits are required.

In Figure 8.4, the computation efficiency under different Eves channels is presented. The
x-axis is the number of required total computation bits. The first observation is that, under
all scenarios, computation efficiency decreases with the increasing data size. If we break
down the two parts for computation efficiency, we can easily see that pure local computing
efficiency is square proportionally decreasing with the increasing of data size. Also, if the
bit size is large, offloading part is also decreasing, due to, in part of the circuit power in the
denominator.

Additionally, Figure 8.4 also shows the relationship between computation efficiency with
security threads from Eve. Specifically, we set channels from Eve to users to be different.
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Figure 8.3 Iterative algorithm convergence analysis.
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Figure 8.4 Computation efficiency vs. required computation bits under different Eve channels.

If the channel of Eve is stronger, we see a setback in the performance; this is due to the
impact from offloading, where achievable data rate is smaller.

Lastly, we compare our proposed joint offloading and local computation scheme with
other two schemes: local computing only and offloading only. Here, we set G1 = G2 = 1
(Figure 8.5). Clearly the proposed scheme outperforms both other two in terms of
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scheme.
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computation efficiency, which verifies the superiority of our scheme. Similar efficiency
decreasing is also observed.

8.5 Summary

In this work, we studied the computation efficiency for a joint offloading and local comput-
ing scheme under possible Eve. We model the effect from Eve with physical layer security
and mutual entropy. An optimization problem is formulated which considers some prac-
tical constraints. This non-convex problem is transformed with SCA and a general ratio
iterative algorithm. In the future, we plan to generalize the chapter with multiple-antenna
user/server and other access techniques.
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9

Wireless Systems for Distributed Machine Learning

9.1 Background

Machine learning (ML) techniques especially deep learning have achieved remarkable
performance in various applications such as object detection and content recommenda-
tion. State-of-the-art ML exploits the growing computation power of mobile devices that
are capable of collecting, sharing, and processing data. Although such devices are still
resource-constrained compared with the high-performance computing (HPC) centers,
crowd-sourcing a large number of them can build powerful ML models.

Distributed ML requires devices to periodically share model attributes. Communication
can become a severe challenge, especially when wirelessly connected devices participate
in the distributed ML. Recently, federated learning (FL) is proposed to address this chal-
lenge by selecting a portion of the devices during each round for updating. Study shows
FL can achieve multi-fold performance benefits including improving communication effi-
ciency, preserving privacy, as well as handling heterogeneous datasets [128]. From wireless
connection perspective, NOMA has been recognized as a new access technology in 5G to
improve spectrum efficiency. NOMA allows multiple users to share the same radio resource
simultaneously. To mitigate the interference, SIC is applied at the receiver side. SIC starts
the decoding for the signal with the strongest received power and subtracts the decoded sig-
nal from the composite received message [229]. The process is sequentially carried out until
the intended signals are all decoded. To further realize more efficient communication in FL,
study in [106] found that 99.9% of the attributes exchanges are redundant and deep gradi-
ent compression was applied to reduce the message size for transmission. Li et al. [103]
proposed a modification to tackle FL in heterogeneous networks. The above two works
did not consider the constraint of the actual wireless communication process. The work
presented in [6] exploited the medium access control (MAC) property and used both ana-
log and digital communications to directly get the model average. However, they did not
consider the effects from wireless fading channels. Besides, gradient projection transmitted
over MAC directly leads to a higher bit error rate (BER). In this chapter we propose to use
NOMA in the uplink FL communication by considering the fading channels and adaptively
compresses the gradient for the optimal transmission. This chapter highlights the following
research contributions.

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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● We utilize NOMA-enabled adaptive FL model update to reduce the aggregation latency.
The study shows that NOMA can achieve superior performance in terms of communi-
cation latency compared with the traditional time division multiplexing access (TDMA)
approach, which is commonly utilized in the existing FL schemes.

● Considering the capacity limitation in wireless fading channels, we further propose to
apply adaptive quantization and sparsification to compress model updates in the uplink
NOMA-based FL in order to save bandwidth. We demonstrate the effectiveness of the
proposed scheme with several distinct datasets. Results show that the communication
latency for the NOMA-based FL update with gradient compression is significantly
reduced by at least 7× with no compromise on the test learning accuracy.

This chapter is organized as follows. Section 9.2 introduces the system model, FL update
mechanism, and two compression techniques. Section 9.3 presents the NOMA transmission
scheme, user scheduling, and adaptive transmission scheme. Simulation results are shown
in Section 9.4 to verify the proposed schemes. Lastly, Section 9.5 concludes the chapter.

9.2 System Model

In this section, we introduce the FL model update and FL model compression schemes
including quantization and sparsification. The main notations used in the chapter are sum-
marized in Table 9.1.

9.2.1 FL Model Update

The system considers a total of N edge devices that distributively and collaboratively build
a global learning model [178]. Each device or user collects and maintains its own raw data

Table 9.1 Summary of notations.

Notation Definition

N; K; C Number of edge devices connected to PS; number of edge devices participating
FL in each round; fraction of participating devices, i.e. C = K∕N, 0 < C < 1

xj; yj; 𝜽j Features of data point j; label of data point j; parameter set describe the mapping
from xj to yj

f (•); 𝜂 Loss function; learning rate
k; |k| Dataset on user k; cardinality of the dataset k

hk; Lk; h0 Channel coefficient of user k; large-scale fading of user k; small-scale fading,
h0 ∼  (0, 1)

pk; 𝛿k; dk Power of user k; transmitter and receiver antenna gain; distance between user k
and PS

λ; 𝛼; nt Signal wavelength; path-loss exponent; additive noise
gk; st

k; Rk Gradient of user k; encoded gradient update from user k at communication
round t; data rate of user k

GS(•); GQ(•) Gradient sparsification function; gradient quantization function
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locally. ML generally finds the mapping between features xj and label yj. A loss function
f (xj, yj;𝜽j) is used to capture the error between this mapping. Typical loss functions used
include linear regression and root-mean-squared error.

Each user performs learning algorithms locally. Essentially, local learning at user n aims
to solve the following problem:

min
𝜽

Fn(𝜽) =
1

|n|
∑
j∈n

f (xj, yj;𝜽j). (9.1)

Different from the traditional learning process where {1,2,… ,N} are placed in the
same location, FL can rely on the distributed stochastic gradient descent (SGD) method to
perform update in each iteration. Specifically, the loss function in (9.1) can be generalized
across multiple devices as:

min
𝜽

f (𝜽) =
N∑

n=1

|n||| Fn(𝜽), (9.2)

where || = ∑N
n=1 |n|.

In each training round, FL selects a portion of the total devices to participate the global
update. Initially the PS sets the model as 𝜽0 and sends it to all the users. Afterwards each
user iteratively performs the local training and updates the gradient gk = ∇Fk(𝜽). In the
FL setting, each user can actually run multiple iterations on gradient calculations in each
round. More specifically, in round t, user k calculates 𝜽

t
k = 𝜽

t
k − 𝜂∇Fk(𝜽) multiple times.

The participating users then send their locally trained gradients to the PS for aggregation.
The PS further calculates 𝜽t+1 = 𝜽

t −
∑K

k=1
|k||| 𝜽

t
k and sends 𝜽t+1 to all the users for the next

round update. A brief illustration of the FL model update is shown in Figure 9.1a.
Furthermore, each scheduled device needs to adjust their update size in order to fit that

into the data rate supported by the dynamic fading channel. If user k’s total update size
exceeds the maximally allowable data rate mk, model compression needs be applied. In the
following we briefly introduce two lossy compression algorithms and their rationales.

PS .
.
.

UE 1
θ t+1

θ t+1

θ t+1

θ t
1

θ t
2

θ t
K

UE 2

UE K

...

NOMA Round 1 NOMA Round 2

NOMA update protocol

K users K users

FL update model

(a) (b)

Figure 9.1 An illustration of the proposed scheme. (a) A general FL model update. (b) NOMA
update protocol in each round. Shaded area is for uplink and blank is for downlink.
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9.2.2 Gradient Quantization

It is well-known that quantization can help compress the size of a large data. Standard
algorithms in ML typically use 32-bit floating-point to represent each model parameter.
Cost to store, transmit, and manipulate those data tends to be high. Alternatively, a simple
implementation uses less bits for such a representation. Even though quantization creates
“rounding errors,” existing works show that this approach demonstrates a good model
convergence [106] at the cost of more communication rounds. In this work, we adopt
DoReFa scheme [235] suitable for quantizing gradients within [−1, 1], which is true for
most ML models. Specifically, mapping can be established with the function qk(x) =

1
a
⌊ax⌉.

Here, ⌊•⌉ rounds the value to the nearest integer, x is the gradient value, and a = 2b − 1,
where b is the quantization bit length.

9.2.3 Gradient Sparsification

Sparsification refers to the approach that sends the selected gradients instead of sending all
of them. Empirical experiments have shown that a large portion of the gradient updates in
a distributed SGD are redundant. Therefore, we can first map the smallest gradients to zero
and then make a sparse update. For example, the threshold-based sparsification only keeps
the gradients larger than a known threshold and sets the rest of small gradients to 0. The
selection normally is based on the absolute gradient value. After sparsification, the non-zero
gradients are uploaded to the PS. This chapter employs a similar method to perform gradient
sparsification. Since the PS averages the gradient values in an element-wise way, it is impor-
tant to take the non-zero index into consideration. Additionally, we update the relative
distance (delta) between adjacent non-zero values rather than recording its absolute posi-
tion. Moreover, the well-known non-linear coding called Golomb code is applied to encode
the delta value, which uses variant-length bits to further save space. Specifically, for user
k, the average number of bits used for encoding delta with Golomb coding is b

k
pos = b∗

k +
1

1−(1−rk
s )2

b∗k
, where b∗

k = 1 + ⌊log2(
log2(𝜙−1)
log2(1−rk

s )
)⌋, 𝜙 =

√
5+1
2

, and rk
s is the sparsification ratio.

9.3 FL Model Update with Adaptive NOMA Transmission

9.3.1 Uplink NOMA Transmission

In a typical wireless setting, traditional FL update uses TDMA for uplink transmission.
The PS needs to wait until receiving the last user’s message and then averages the received
information from all the users. NOMA allows multiple users to share the uplink channel
simultaneously. The channel coefficient between user k and the PS is hk = Lkh0. To simplify

the analysis, we assume Lk follows the free-space path loss model Lk =
√
𝛿kλ

4𝜋d𝛼∕2
k

.

Let the encoded gradient update st
k be the transformation from 𝜽

t
k in the local update

stage. Additionally, we normalize the transmitted symbols ||st
k||22 = 1. According to NOMA

principle, all the selected K users share the same bandwidth simultaneously. In particular,
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all the transmitted signals from multiple NOMA users are superposed [44]. The received
signal at the PS at t thus can be expressed as:

yt =
K∑

k=1

√
pkhkst

k + nt, (9.3)

where st
k is symbolized representation of st

k at time slot t, nt ∼  (0, 𝜎2), 𝜎2 is noise vari-
ance of the received signal.

SIC is carried out at the PS side. Specifically, PS decodes the strongest signal first by treat-
ing others as interference. After successful decoding, PS subtracts the decoded signal from
the superposed signal. The process stops until the PS decodes all the participants’ messages.
Without loss of generality, we assume p1h2

1 > p2h2
2 > · · · > pK h2

K . Therefore, the achievable
data rate for user k is:

Rk = log2

⎧⎪⎨⎪⎩
1 +

pkh2
k

𝜏(
∑K

j=k+1 pjh2
j + 𝜎2)

⎫⎪⎬⎪⎭
,∀k = {1,…K − 1}, (9.4)

where 𝜏 > 1 accounts for performance degradation from finite length symbol, imperfect
channel estimation, and decoding error, etc. User K is the last decoded user hence its rate
is RK = log2(1 + pK h2

K
𝜏𝜎2 ).

At the beginning of each round t, the PS notifies participating users to start the simultane-
ous transmission. The maximum number of allowable bits for user k is mk = BRktk, where
B is the system bandwidth, tk is the NOMA transmission duration. The proposed uplink
NOMA transmission is shown in Figure 9.1b.

9.3.2 NOMA Scheduling

To select K users from a total of N to participate the model update, we should consider
both the learning process and the communication process. The selection criterion is decided
based on two rules: (1) NOMA fairness; (2) time budget.

1. NOMA fairness: During the PS update, the weighted average is applied, i.e. 𝜽t+1 = 𝜽
t −∑K

k=1
|k||| 𝜽

t
k. Therefore we use the following “effective update capacity”

Rk
ef =

BRktk|k| , (9.5)

to account for the actual contribution for the weighted average update. As discussed later
on in Section 9.4, FL experiences performance degradation when data rate is heteroge-
neously distributed. Therefore, to make sure every user has a quality update, we use a
widely accepted Jain’s fairness index, which is defined as:

Ju =
( 1

K

∑K
k=1 Rk

ef )
2

1
K

∑K
k=1 (Rk

ef )
2
. (9.6)

For the maximum fairness, Ju should be close to 1. In practice, PS selects users with high
effective update capacities and ensures Ju to be close to 1. We adopt a similar scheduling
algorithm in [3].



�

� �

�

106 9 Wireless Systems for Distributed Machine Learning

2. Time budget: Another factor is the computation time at each device. Since NOMA is a
synchronous system, the PS needs to set a hard time budget for the local computation.
All the devices may have heterogeneous capacities; hence, they need to estimate the time
spent on the training in each iteration. The scheduling used in this chapter selects those
who can not only finish the calculation on time but also complete the most iterations of
computing in each round.

9.3.3 Adaptive Transmission

For the selected user k in each round, we calculate the maximum throughput mk under
the NOMA scheme. The total bit length of gradient G is known once we have deter-
mined the ML structure. Thus the compression rate for quantization rk

q is calculated as
rk

q = max { G
mk
, 1}. The quantization bit length bk

q is calculated by bk
q = ⌊ 1

rk
q
32⌋, where ⌊•⌋

takes the floor operation, 32 is bit-length of each parameter representation. Afterwards,
every gradient value in user k is represented by bits with a length of bk

q.
Similarly, under sparsification, compression ratio rk

s can be calculated by solving the
following equation

Grk
s +

Grk
s

32
b

k
pos = mk. (9.7)

Hence rk
s = min {rk

s (n), 1}, rk
s (n) is the numeric solution for (9.7). Once rk

s is obtained, we
set (1 − rk

s ) portion of the smallest gradient values to zero.
For both compression methods, it is important to keep the gradient residuals for the next

round.1 Δ𝜽t
k = 𝜽

t
k − GS(𝜽t

k) or Δ𝜽t
k = 𝜽

t
k − GQ(𝜽t

k), where GS(•) and GQ(•) are sparsification
and quantization functions, respectively. By using them we can effectively reduce the
compression accumulation errors. Algorithm 9.1 summarizes the proposed scheme.

Algorithm 9.1 Adaptive FL Update with Uplink NOMA and Gradient Compression
1: Initialization: PS gives initial 𝜃0, maximum rounds T.
2: for each FL update round t do
3: PS selects K = CN users and calculates their maximum achievable data rates mk.

Then sends synchronous pilots, mk, and 𝜃t to users.
4: for each selected user k in parallel do
5: Update local gradient one or multiple times: 𝜃t

k = 𝜃t
k − 𝜂∇Fk(𝜃), according to time

budget.
6: Based on mk and size of gradient, apply either sparsification GS(𝜃t

k) or quantization
GQ(𝜃t

k).
7: Gradient residual Δ𝜃t

k will be kept locally for next round update.
8: Send gradients to the PS at the beginning of synchronous time slot.
9: end for

10: PS applies SIC to decode gradient from K users.
11: PS performs weighted average: 𝜃t+1 = 𝜃t −

∑K
k=1

|k||| 𝜃t
k.

12: end for

1 Intuitively, some residuals can be accumulated to exceed the minimum threshold and can be used to
help speed up the model convergence.
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Note: Compared with the TDMA-based scheme, our proposed NOMA-based scheme
achieves a lower latency performance. However, at the PS side, the signal decoding
complexity is elevated as NOMA requires a multi-user detection (MUD) receiver to decode
user messages successively.

9.4 Scheduling and Power Optimization

In Section 9.3, each round chooses K users randomly, and their transmission power is fixed.
A careful user scheduling and power allocation can further improve system performance.
In the following, we provide problem formulation and its solution [122].

9.4.1 Problem Formulation

Here we provide the formulated optimization problem with the following three constraints
considered in our system model.

● C1: Each device can be scheduled at most once across different rounds.
● C2: At most K devices are allowed to participate the FL update in each round under

NOMA.
● C3: Transmission power of each device in each round is bounded by a maximum value.

We aim to maximize a weighted sum rate of all participated devices, the optimization
problem is formulated as

max
∑
m,t

wt
mΛt

mRt
m (9.8a)

s.t.
∑

t
Λt

m ≤ 1,∀m, (9.8b)

∑
m
Λt

m ≤ K,∀t, (9.8c)

0 ≤ pt
m ≤ pt max

m ,∀(m, t) ∈  ×  , (9.8d)

Λt
m ∈ {0, 1},∀(m, t) ∈  ×  , (9.8e)

where wt
m is the data rate weight of device m scheduled at round t. In FL, PS performs

weighted average to generate the current global model; hence, a natural selection for the
data rate weight can be wt

m = |m||| , which also clearly outlines the significance of each
device’s update. Λt

m = {0, 1} is a binary variable that equals 1 if device m is scheduled at
t and is 0 otherwise. Here, the constraint in (9.8b) corresponds to constraint C1, constraint
in (9.8c) corresponds to constraint C2, and constraint in (9.8d) corresponds to constraint
C3. Finding the maximum weight sum data rate under these constraints involves travers-
ing all possible scheduling patterns, which possess very high complexity when the number
of total devices is large and selected devices for scheduling are small, i.e. M ≫ K. Toward
that, we propose the following scheduling algorithm to address this complexity issue and
power allocation to solve the optimization problem (9.8a).
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9.5 Scheduling Algorithm and Power Allocation

Figure 9.2 shows the diagram of the user scheduling. Each column represents a FL round
for model update, and there are a total of T columns. Each block in a specific column repre-
sents a scheduled user and at most K users are scheduled to participate FL update in each
round. The power of the scheduled user k in round t is pt

k. (i1, i2,… , iK), (j1, j2,… , jK) and
(l1, l2,… , lK) are different user combinations.

For the proposed joint scheduling and power allocation scheme, first, all possible user
schedules are found. Then optimal power allocation is applied for each schedule to find the
optimal one. The scheduling problem which aims to maximize weighted sum rate is trans-
formed under graph theory. Specifically, we introduce the maximum weight independent
set problem first. An independent set is a sub-graph of an undirected graph where there
exists no edge between any two vertices. When the weight of each vertex is set to be equal
to the sum data rate of users scheduled in the specific round, the sum of the weight of all
vertices in an independent set equals to the sum data rate of a possible user schedule. The
maximum weight independent set then corresponds to the schedule pattern that maximizes
the sum data rate. The maximum weight independent set problem involves searching for
all possible independent sets and then finding the maximum weight one. Thus a critical
step is to construct the scheduling graph in order to find all the scheduling patterns.

9.5.1 Scheduling Graph Construction

Let  be the set that includes all the possible scheduling patterns for all the devices and
rounds. s ∈  is a possible schedule. The scheduling graph can be constructed as follows.
First, we need to generate vertices. In this graph, a vertex vj = (j1, j2,… , jK)t indicates that
devices j1, j2,… , jK are scheduled at time t. There are a total of

(
M
K

)
× T vertices. When

creating the edges, the following constraints need to be satisfied.

● C1: Each device can be scheduled at most once.
● C2: At most K devices can be scheduled in one round.

For two vertices vi = (i1, i2,… , iK)ti and vj = (j1, j2,… , jK)tj, if ik ∈ {j1, j2,… , jK},
∀k = {1,…K} (violates C1) or ti = tj (violates C2), vi and vj are connected and an edge
exists between these two vertices. Then when we select vertices from independent set,

UE u1

Round 1

p1
i
1

p1
i
2

p2
j
1

p2
j
2

pT
l
1

pT
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Round 2 Round T
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Figure 9.2 Scheduling diagram.
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Figure 9.3 A scheduling graph example.
(1)2

(3)2

(4)2

(2)2

(3)1

(4)1

(2)1

(1)1

both C1 and C2 will be satisfied. Let us construct a scheduling graph example with M = 4,
K = 1, and T = 2, as shown in Figure 9.3. In this case there are

(
4
1

)
× 2 = 8 vertices. From

this figure, we can find out that the possible independent sets for vertex (1)1 (green node)
are {{(1)1, (2)2}, {(1)1, (3)2}, {(1)1, (4)2}}. Similarly, we can find all the independent sets for
each vertex in the graph. Because of the edge connection constraints, each independent set
has at most T vertices. Since the FL rounds are continuous and the number of FL rounds
is T, the independent sets with T vertices are only considered.

9.5.2 Optimal scheduling Pattern

When scheduling graph is constructed, we calculate the weight of each vertex as sum data
rate of users scheduled in a specified round, that is

w(vj) =
∑
k∈vj

wt
kRt

k,∀t ∈ s. (9.9)

Then the sum of the weight of all vertices in an independent set equals the sum data rate of
a possible schedule, that is∑

j
w(vj) =

∑
k,t

wt
kRt

k,∀(k, t) ∈ S. (9.10)

where vj represents vertex in an independent set.
The objective function in (9.8a) is actually equal to the problem maximizing the (9.10),

which is the maximum weight independent set problem. The maximum weight sum rate
problem then can be transformed as a maximum weight independent set problem. And the
optimal schedule can be selected in the Algorithm 9.2:

Algorithm 9.2 Optimal scheduling selection.
1: Require: ,,  , pt

m, and ht
m.

2: Initialize O = ∅
3: Construct scheduling graph G
4: Compute w(v),∀v ∈ GG ≠ ∅
5: Q =

{
v|w(v) ≥

∑
u∈J(v)

w(u)
𝛽(u)+1

}
6: Select v∗ = maxv∈Q

w(v)
𝛽(v)+1

7: Set O = O ∪ {v∗}
8: Set G = G − J(v∗)
9: Output O
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here, O is the maximum weight independent set in the graph, which is the schedule pattern
corresponding maximum weight sum data rate. J(v) is the sub-graph of G containing vertex
v and the vertices adjacent to v, 𝛽(v) is the degree of v, which is the number of vertices
adjacent to v. Q is the set of vertices where the weight of vertex v is larger than the average
weight of J(v). v∗ is selected by making the average weight of J(v) maximization.

9.5.3 Power Allocation

Once the user scheduling is determined, device power can be allocated according to the
channel condition to achieve the maximum sum data rate. Power allocation in NOMA has
been extensively investigated in the existing works. To achieve the maximum sum data rate
under fairness constraints, a similar algorithm to [149] is used here. We notice that the
objective function (9.8a) as a logarithmic function of SINR is monotonically increasing.
It can be transformed into a product of exponential linear fraction functions. Due to the
properties of logarithm function, the optimal power allocation problem for a specified user
combination is

max
K∏

k=1
(
𝜇k(p)
𝜙k(p)

)wk , (9.11a)

s.t. 0 ≤ pk ≤ pmax
k ,∀k ∈ . (9.11b)

where p = (pk,∀k ∈ ) is the power vector, 𝜇k(p) =
∑K

j=k pjh2
j + 𝜎

2 and 𝜙k(p) =∑K
j=k+1 pjh2

j + 𝜎
2. Let zk = 𝜇k(p)

𝜙k(p)
for all k, the problem then can be re-formulated as

max
K∏

k=1
(zk)wk (9.12a)

s.t. 0 ≤ zk ≤
𝜇k(p)
𝜙k(p)

,∀k ∈ , (9.12b)

0 ≤ pk ≤ pmax
k ,∀k ∈ . (9.12c)

Notice that 𝜏(e) =
K∏

k=1
(ek)wk is an increasing function for all positive ek, where e is the col-

lection of all ek. Besides, for two vectors el and em, if el ≻ em, where ≻means element-wise
greater than, we have 𝜏(el) > 𝜏(em). Clearly, the optimal solution occurs where z∗k = 𝜇k(p∗)

𝜙k(p∗)
,

and pk in the feasible set. This can be regarded as a multiplicative linear fractional
programming (MLFP) problem, where K linear equations are formulated as below:

z∗k𝜙k(p∗) − 𝜇k(p∗) = 0,∀k ∈ . (9.13)

Notice that (9.13) contains random channel gain components; hence, those K linear
equations are independent with probability 1, which suggests a unique optimal power allo-
cation p∗. To solve (9.13) efficiently, however, requires constructing of feasible polyblock
and sequentially reduce its size, see [149] for the detailed algorithm.
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9.6 Numerical Results

In this section, we present the experimental FL update results for both TDMA-based origi-
nal FedAvg [128] and NOMA compression-based FedAvg schemes by using diverse learning
models and federated datasets. The channel parameters are given as follows. The uplink
bandwidth is B = 5 MHz, path loss exponent 𝛼 = 3, additive noise power density 𝜎2 = −174
dBm/Hz. The number of the selected users is set as two values, K = 10 and K = 20, for dif-
ferent runs. All the users are randomly distributed in a disk region with a radius 500m and
they have the same transmission power pk = 0.1 watts. Uplink transmission time slot is 0.5
s. Downlink transmission from the PS to all the users uses broadcast and is uncompressed.
The transmission time is calculated as Td = max k

32∗
Bdlog2(1+Pd𝛾k)

, where is the number of the

total updated parameters, Bd is the downlink bandwidth at 10 MHz. Pd = 2 watts is the
PS power, 𝛾k is the SNR from the PS to k-th user. To prove the generality of the proposed
scheme, we use convex loss function on image classification problems with MNIST (Mod-
ified National Institute of Standards and Technology database, a database of handwritten
digit images) and Federated Extended MNIST (FEMNIST) datasets and non-convex loss
function on text sentiment analysis task on tweets from Sentiment140 (Sent140). The con-
vex problem is solved with LeNet-300-100 model, which is a fully connected network with
two hidden layers. The first layer consists of 300 neurons and the second layer consists
of 100 neurons. The non-convex problem uses a long short-term memory (LSTM) classi-
fier. We further employ the datasets from [103] so that the data points on different devices
are non-i.i.d., i.e. the number of data points and their high-level model representations
vary across different devices. Each device trains the learning model individually and then
uploads the model parameters to the PS for the weighted average. The statistics of the
datasets are summarized in Table 9.2.

For hyperparameters in FL, we use batch size = 10 on all datasets. The learning rate and
number of communication rounds are fixed for each dataset but may vary among different
datasets. Specifically, we use learning rate 𝜂 = 0.001 and maximum communication round
T = 100 for MNIST, 𝜂 = 0.003, T = 300 for FEMNIST, and 𝜂 = 0.05, T = 100 for Sent140.
For each user, it uses the majority portion of the data for training and the rest for testing.
Testing is performed at each device and accuracy is calculated by taking the average across
all the devices.

Figure 9.4 presents the test accuracy result from the MNIST dataset. In the proposed
scheme, NOMA is used in the uplink channel and the model parameters are compressed
with either adaptive quantization or sparsification. The average compression ratio for
adaptive quantization at each round is 0.55 for K = 10 and 0.33 for K = 20. For adaptive

Table 9.2 Statistics of datasets.

Dataset No. of arameters ( ) No. of devices (N) No. of data ()

MNIST 266,610 1,000 69,035
FEMNIST 266,610 200 18,345
Sent140 243,861 660 40,783
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Figure 9.4 Test accuracy comparison under different scenarios, when K = 10, K = 20, and original
TDMA-based FedAvg with our proposed NOMA compression-based FedAvg.

sparsification, the average compression ratio is 0.53 and 0.31. As a comparison, original
FedAvg algorithm [128] with no gradient compression (32-bit per parameter) is also
implemented with TDMA as the access scheme. It can be readily observed that all the
schemes except the adaptive quantization with K = 20 users achieve a similar accuracy
(over 80%) at round 100. The reason is that, when K = 20 users participate the model
updates simultaneously with NOMA, mutual interference within each round causes
significant data rate degradation for the first few decoded users, which then leads to a more
aggressive compression strategy, especially for quantization where most of the parameters
are set to 0.

While Figure 9.4 shows that the proposed scheme has a comparable accuracy with the
original FedAvg. For simplicity, we only show the scenario with K = 10. With the simulation
settings, each round for NOMA and compression-based FedAvg scheme corresponds to tk +
Td second and each round for the original FedAvg scheme corresponds to Ktd + Td seconds.
Thus NOMA and compression-based FedAvg scheme takes around 70s time to achieve 85%
accuracy. In Figure 9.5, in order to achieve the same accuracy, the original TDMA-based
FedAvg takes more than 500 s. NOMA-aided FL can save 7.4× communication time dur-
ing the update process. Alternatively, with 500 s training in NOMA-based protocol, we see
the accuracy improves only from 85% to 88.6% for adaptive quantization and to 90% for
adaptive sparsification. Notice that under K = 20, the time difference is more prominent.

The proposed NOMA-enabled adaptive compression scheme is also proved to be effec-
tive for non-i.i.d. FEMNIST dataset (Figure 9.6) and non-convex loss functions for Sent140
(Figure 9.7). Under all scenarios, we observe test accuracy fluctuations, especially for the
FEMNIST dataset as it is a highly non-i.i.d. scenario and almost every device has a distinct
data distribution. Nevertheless, one can observe similar performance between the proposed
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Figure 9.5 Test accuracy comparison between original TDMA-based FedAvg and NOMA
compression-based FedAvg update with communication time.

Figure 9.6 Test accuracy on
FEMNIST datasets: Test accuracy
comparison vs communication
rounds.
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algorithm and the original FedAvg in terms of accuracy. Notice that the original FedAvg
and our adaptive sparsification scheme have almost identical result at each round; hence,
they can be hardly differentiated from the curves. Again the adaptive quantization gives a
relatively worse performance than other two schemes.

From latency performance perspective, in the final round of FEMNIST dataset, to obtain
79.5% of accuracy, TDMA-based original FedAvg takes approximately 1600 s, while both
NOMA-enabled adaptive compression schemes consume around 200 s. Similarly, Sent140
achieves 73.5% accuracy with 75 s with our scheme but over 510 s with TDMA-based
FedAvg. These results have again proved the remarkable low latency performance of the
proposed algorithm.
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Figure 9.7 Test accuracy on Sent140
datasets: Test accuracy comparison vs
communication rounds.

9.7 Summary

In this work, we proposed to apply NOMA in the uplink FL model update. We considered
wireless fading channels during the update process and adaptively compressed gradient
values according to either sparsification or quantization method. To further improve sys-
tem performance, we designed user scheduling and power allocation algorithm. Simulation
results from three different datasets demonstrated that the proposed scheme can signifi-
cantly reduce the communication latency without any compromise on the test accuracy.
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Secure Spectrum Sharing with Machine Learning: An Overview

10.1 Background

The exponential growth of Internet-connected systems has generated numerous challenges
for current and future wireless systems. One main issue is spectrum shortage. Even though
Chapters 2–9 have discussed using 5G NR technology (mainly NOMA), as well as CR to
alleviate this challenge, it is still urgent to call for an adaptive, reliable, and scalable spec-
trum sharing (SS) mechanism, such that the scarce spectrum resources can be efficiently
utilized. Furthermore, the complicated communication environment brings more risks to
the users and systems. Thus, security and privacy issues have become the primary concern
in 5G networks. As an example, the recent spectrum battle between federal aviation admin-
istration (FAA) and several Internet service providers (ISPs) over 5G C-band has brought
attention on the radio security for airplanes when 5G is in active deployments [195].

Different from traditional exclusive frequency allocations, SS by definition involves
multiple entities and uses the spectrum in a shared way in order to increase the efficiency
of the limited spectrum resources. According to [40], SS can fall into two main categories:
horizontal sharing and vertical sharing. In horizontal sharing, it implies that all the
networks and users have equal rights to access the spectrum. Such methods allow the users
to co-exist peacefully and efficiently. Vertical sharing, on the other hand, allows multi-type
users to access the spectrum resources with different rights. Therefore, secondary users
(SUs) can use the spectrum without harming the performance of primary users (PUs). By
enabling SUs to access the spectrum owned by the PUs, the limited spectrum resource can
support more devices.

One of the technical challenges in the vertical SS system is how to guarantee the perfor-
mance of different types of users while achieving the highest SE. To this end, the spectrum
access mechanism, interference control, resource allocation, and fairness all need to be
tackled in a dynamic and collaborative way. Since the concept of SS was first introduced,
different SS frameworks based on various application scenarios have been developed by
researchers.

This chapter provides a comprehensive and systematical review on secure SS in 5G
and beyond systems. The focus is more at introducing the machine learning (ML)-based
methodologies, such as deep reinforcement learning.

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.



�

� �

�

116 10 Secure Spectrum Sharing with Machine Learning: An Overview

10.1.1 SS: A Brief History

The concept of vertical SS was first brought up by decentralized and opportunistic cognitive
radio (CR) techniques, where SUs exploited the idle spectrum with sensing ability to trans-
mit their information without causing any harmful interference to the licensed PUs [132].

Traditional CR techniques enabled SUs to take advantage of spectrum opportunities by
learning/monitoring the environment and adjusting their transmission parameters adap-
tively. However, the opportunistic access to the bands without a license in CRN makes it
challenging to guarantee the QoS and maintain a low level of interference when multiple
service providers co-exist. In particular, with the increase of primary wireless devices and
activities in the network, SUs may have very limited access opportunities to the spectrum
resource. Therefore, new licensed spectrum access methods are needed to provide more
predictable and controllable solutions to meet the high QoS requirement for both SUs and
PUs [183].

In 2012, Qualcomm and Nokia initially proposed the concept of Authorized Shared
Access (ASA), which was further extended to the Licensed Shared Access (LSA) frame-
work by several European institutions, including the European Conference of Postal and
Telecommunications Administrations (CEPT), the European Commission (EC), and the
Radio Spectrum Policy Group (RSPG) of the European Union (EU). The main objective of
LSA is to allow new users to work in already-occupied frequency bands while maintaining
existing incumbent services on a long-term basis. The LSA framework is currently switched
to explore the 3.4–3.8 GHz band from the 2.3–2.4 GHz band, enabling coexistence between
incumbents and 5G applications [127, 144].

Similar to the LSA framework, the US Federal Communications Commission (FCC)
proposed the Citizens Broadband Radio Service (CBRS) in order to open and share the fre-
quency band 3.55–3.7 GHz. It sought to improve spectrum usage by allowing commercial
users to share the band with incumbent military radars and satellite earth stations. In this
approach, the access and user coordination are controlled by the corresponding Spectrum
Access System (SAS). SAS comprises three types of users with different levels of priority.
The first type is Incumbent Users (IUs), which have the highest spectrum access priority.
The second is the Priority Access License (PAL) users, which can exclusively access the
spectrum without the existence of IUs. The third is General Authorized Access (GAA)
users, who have sensing-assisted unlicensed access in the absence of the incumbent and
PAL users. SAS determines the maximum allowable transmission power level and the
available frequencies at a given location to be assigned to PAL and GAA users [127, 144].

It should be noted that both LSA and SAS systems are defined for usage in a specific fre-
quency band. LSA is mainly based on database-assisted SS, while SAS combines a database
with Environmental Sensing Capability (ESC) protections. Thus in SAS, the radio resources
allocation decision is obtained with assistance from the spectrum database and sensing
results. The ESC can more effectively protect IUs from harmful interference while guaran-
teeing their privacy. The database can provide a more stable service for SUs than CRN [75].

Much research has been devoted to increasing licensed systems’ capacities by the
extension of Long-Term Evolution (LTE) over the unlicensed spectrum band. Several
concepts have been proposed, such as LTE in unlicensed bands (LTE-U), License Assisted
Access (LAA) in LTE Advanced (LTE-A), and LTE Wireless Local Area Network (WLAN)
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Aggregation (LWA). By allowing LTE users to operate on the unlicensed band without
causing any harmful interference to original users such as WiFi devices, coexisting
technologies can have a great impact on the spectrum access in the immediate future [144].

The emergence of IoT networks presents new challenges to wireless communica-
tion design from both spectrum and energy aspects. Supporting communication with
power-limited IoT devices, Ambient Backscatter Communication (AmBC) has attracted
extensive attention as a promising technology for SS communications. In AmBC systems,
backscatter devices can use surrounding signals from ambient RF sources to communicate
with each other. By modulating and reflecting surrounding ambient signals, the backscatter
transmitter can transmit data to the receiver without consuming new spectrum resources.
The receiver can decode and obtain useful information after receiving the signal. Therefore,
the AmBC system does not require a dedicated frequency spectrum, and the number of
RF components is minimized at backscatter devices. Those devices can transmit data with
sufficient harvested energy from RF sources [188], which can also improve system energy
efficiency significantly.

In summary, as shown in Figure 10.1, spectrum sharing originated from the concept
of opportunistic access. Database-supported access frameworks on a specific licensed
frequency band were then developed to connect new users to the unused licensed band
without degrading the performance of IUs to improve the SE. As the number of devices
as well as the demand for network capacity has increased, the expansion of licensed band
services to the unlicensed band has been proposed. LTE-U provides a view of how to use the
unlicensed band to improve the licensed users’ performance. Finally, symbiotic schemes
such as AmBC help researchers deal with the massive growth of IoT devices that normally
have power and resource limitations, providing a new paradigm for spectrum sharing.
Although these research studies share some overlapping features such as sensing and
access control, they each have their distinctive focuses. 5G has a very broad technical scope
and needs to address a variety of device communication problems. Therefore, investigating
SS issues under different frameworks can provide very instrumental insights for future
communication development.

With the advancement of computing technologies such as GPU and algorithm develop-
ment, ML has garnered tremendous interest and recently demonstrated astonishing poten-
tial for tackling large-scale, highly dynamic, very complicated problems that traditional
techniques cannot easily handle. ML algorithms have gained advantages in processing,
classification, decision-making, recognition, and other problems [17].

SS frameworks naturally share common features with ML, making the combination of
ML with SS networks very appealing. For all the frameworks mentioned above, users/
coordinators in the SS network need to observe the spectrum resource usage and make
corresponding decisions in accordance with the three main conditions for intelligence,

Figure 10.1 Spectrum sharing
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i.e. perception, learning, and reasoning [17]. In ML, the intelligent agent first senses the
surrounding environment and internal states through perception to obtain information.
It further transforms that information into knowledge by using different classification
methodologies and generalizes the hypothesis. Based on the obtained knowledge, it then
achieves certain goals through reasoning.

The combination of SS with ML techniques has the potential to adaptively tackle
complicated and dynamic allocation and classification problems such as channel selection,
interference control, and resource allocation. Applying ML to different SS frameworks has
become a research hotspot and a promising frontier in the field of future communications.
Toward that end, this study aims to provide a timely and comprehensive survey in this
up-and-coming field.

10.1.2 Security Issues in SS

The development of SS techniques will help relieve spectrum scarcity. However, due to
the dynamic access of spectrum resources by a variety of users, SS systems can be exposed
to malicious attackers. In the first place, the lack of ownership of the spectrum leaves
unlicensed users highly susceptible to malicious attacks. Therefore, it is hard to protect
their opportunistic spectrum access from adversaries. In the second, the dynamic spectrum
availability and distributed network structures make it challenging to implement adequate
security countermeasures. Moreover, in some SS systems, PUs may contain sensitive
information, which can be effortlessly obtained by malicious SUs during the SS process.
Finally, new technologies such as ML may also be exploited by attackers with even more
complicated and unpredictable attacks [206]. Clearly, security issues are of great concern
and impose unique challenges in the SS network.

According to [145], security requirements in most of the spectrum-sharing scenarios
include confidentiality, integrity, availability, authentication, non-repudiation, compliance,
access control, and privacy. Confidentiality means sensitive information should not be dis-
closed to unauthorized users, especially in database-assisted SS systems. Integrity ensures
that information communicated among users is protected from malicious alteration,
insertion, deletion, or replay. Availability assures users access to the spectrum/database
when it is required. Authentication requires that the users should be able to establish
and verify their identity. Non-repudiation means users should be able to deny having
received/sent a message or to deny having accessed the spectrum at a specified location and
time. Compliance means the network should be able to detect non-compliant behavior that
results in harmful interference. Access control indicates that users should not access the
spectrum/database without credentials. Privacy means users’ sensitive/private information
should be protected.

Diverse security threats in different network layers can prevent the SS system from meet-
ing the above requirements. In this chapter, we will mainly focus on the threats and mitiga-
tion strategies in the physical layer of the SS network. We investigate works related to two
classical spectrum sensing attacks in the SS network, i.e. PUE attacks and SSDF attacks,
which aim to disturb the spectrum observation and users’ access to the system. We also
studied methods of preventing two attacks that commonly exist in wireless communica-
tion networks, i.e. jamming attacks and eavesdropping attacks. The special features of the
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SS network provide new defense solutions for these common attacks. Since PUs need to
open their exclusive license spectrum to coexist with multi-type users in some SS frame-
works, we also investigated privacy issues and corresponding countermeasures.

To further enhance the security performance of the SS system, ML has become an
important part of security and privacy protections in various applications. ML is a powerful
tool for data exploration and can distinguish normal and abnormal behaviors based
on how devices in the SS system interact with each other during spectrum access. The
behavioral data of each component in the SS network can be collected and analyzed
to determine normal patterns of interaction, thereby allowing the system to identify
malicious behaviors early on. Furthermore, ML can also be used to intelligently predict
new attacks, which often are the mutations of previous attacks by exploring the existing
records. Consequently, the SS network must transition from merely facilitating secure
communication to security-based intelligence enabled by ML for effective and secure
systems. The state-of-the-art learning-based security solutions for SS systems will also be
comprehensively reviewed in this chapter.

10.2 ML-Based Methodologies for SS

In this section, key processes in the CRN network are first introduced, which are shared
by most spectrum frameworks. Summarizing the roles that ML plays in these processes
can help us to better understand the combination of ML and other frameworks. It also
allows us to better assess the security risks in existing SS frameworks with a comprehensive
understanding of the mechanism behind each SS technique. The special problems faced by
database-assisted SS frameworks (such as LSA and CBRS) are then investigated, i.e. how
to protect IUs when unlicensed users are introduced into licensed spectrum bands. Next,
a discussion of the application of ML to the coexistence of licensed LTE systems and unli-
censed WiFi systems in unlicensed frequency bands is presented. Finally, a comprehensive
study of the AmBC system using ML is conducted to gain insight into the symbiosis-based
SS framework as well as the benefits of the combination of AmBC and CRN. The content
structure is as illustrated in Figure 10.2.

10.2.1 ML-Based CRN

In CRN, unlicensed SUs need to identify the vacant or unoccupied licensed frequency band
(spectrum hole) owned by licensed PUs [73]. After spotting the spectrum hole, SUs can
access it without visibly interfering with any PU. If a PU’s activity reappears, the SUs must
vacate the spectrum immediately. This dynamic and uncertain environment creates unique
and complex challenges within the CRN. However, ML algorithms are very effective in
dealing with such challenges and can help improve system performance.

As shown in Figure 10.3, the major steps in CRN can be summarized as spectrum sensing,
spectrum selection, spectrum access, and spectrum handoff [2]. The CR agent first uses the
sensing function to monitor the unused spectrum and search for possible access opportuni-
ties for SUs. Based on the sensing results, the spectrum selection function helps SUs select
the best available channels and the spectrum access mechanisms provide fair spectrum
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scheduling among vying SUs. Since a channel must be vacated when the PU reappears, the
corresponding SU must perform a spectrum handoff function to switch to another available
channel or wait until the channel becomes idle again. It is worth noting that most of the
existing vertical SS approaches adopted these four steps in their frameworks.

10.2.1.1 Spectrum Sensing
Before an SU accesses the licensed channel, it needs to first observe and measure the state of
the spectral occupancy (i.e. idle/busy) by performing spectrum sensing. During this proce-
dure, the SU needs to distinguish the signal of PUs from background noise and interference.
As such, spectrum sensing can be formed as a classification problem.

Automatic modulation recognition is a keystone of CR adaptive modulation and demod-
ulation capabilities to sense and learn environments and make corresponding adjustments.
Automatic modulation recognition can be deemed equivalent to a classification problem,
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and deep learning (DL) achieves outstanding performance in various classification tasks.
Several existing works investigate the combination of DL with automatic modulation recog-
nition in CRNs.

In [130], a DL-based automated modulation classification method that employed Spectral
Correlation Function (SCF) was proposed. Deep Belief Network (DBN) was applied for pat-
tern recognition and classification. By using noise-resilient SCF signatures and DBN that
are effective in learning complex patterns, the proposed method can achieve high accuracy
in modulation detection and classification even in the presence of environmental noises.
The efficiency of the proposed method was verified in classifying 4FSK, 16QAM, BPSK,
QPSK, and OFDM modulation based on various environments settings.

ML provides effective tools for automating CR functionalities by reliably extracting and
learning intrinsic spectrum dynamics. However, there are two critical challenges. First,
ML requires a significant amount of training data to capture complex channel and emitter
characteristics and train the algorithm of classifiers. Second, the training data that has
been identified for one spectrum environment cannot be used for another, especially when
channel and emitter conditions change [39]. To address these challenges, various robust
spectrum sensing mechanisms have been developed. A new approach to training data
augmentation and domain adaptation was presented in [39]. A Generative Adversarial
Network (GAN) with DL structures was employed to generate additional synthetic training
data to improve classifier accuracy and adapt training data to spectrum dynamics. This
approach can be used to perform spectrum sensing when only limited training data is avail-
able and no knowledge of spectrum statistics is assumed. Another robust spectrum sensing
framework based on DL was proposed in [148]. The received signals at the SU’s receiver
were filtered, sampled, and then directly fed into a convolutional neural network (CNN).
To improve the adaptive ability of the classifier, Transfer Learning (TL) was incorporated
into the framework to improve robustness.

Besides improving the accuracy and robustness of spectrum sensing, another substantial
sensing performance improvement comes from using ML to help the SU make efficient
decisions regarding which channel to sense and when or how often to sense.

The prediction ability can enable SUs to perform spectrum sensing in a more efficient
manner. By enabling SUs to determine the channel selection for data transmission and
predicting the period of channel idle status, sensing time can be significantly reduced.
Therefore, the authors in [152] proposed an ML-based method that employed a Reinforce-
ment Learning (RL) algorithm for channel selection and a Bayesian algorithm to determine
the length of time for which sensing operation can be skipped. It was shown that the pro-
posed method could effectively reduce the sensing operations while keeping interference
with PUs at an acceptable level. This work also showed that by skipping unnecessary sens-
ing, SUs can save more energy and achieve higher throughput by spending the saved sensing
time for transmission. A Hidden Markov Model (HMM)-based Cooperative Spectrum
Sensing (CSS) method was proposed in [91] to predict the status of the network environ-
ment. First, the concept of an Interference Zone (IZ) was introduced to indicate the presence
of PUs. Then, by combining the sensing results from SUs located in different IZs, the Fusion
Center employed a fusion rule for modeling specific HMM. Moreover, the system adopted a
Baum–Welch (BW) algorithm to estimate the parameters of the HMM-based past spectrum
sensing results. The estimated parameters were then passed to a forward algorithm to
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predict the activity of PUs. Finally, SUs were classified into two categories according to the
prediction results, i.e. Interfered by PU (IP) and Not Interfered by PU (NIP). SUs marked
as IP do not need to perform spectrum sensing to avoid unnecessary energy consumption.

10.2.1.2 Spectrum Selection
After the system receives spectrum sensing results, the spectrum selection is performed to
capture the best available spectrum to meet user needs. As a decision-making problem, it
requires the system to adaptively capture the optimal choice based on observations of the
environment. RL algorithms are appealing tools for designing systems that need to perform
adaptive decision-making. In RL, a learner takes actions by trial and error, and learns the
action patterns suitable for various situations based on the rewards obtained from these
actions. Exploration actions are selected in situations even when the knowledge about the
environment is uncertain. This mechanism fits into the spectrum selection problems.

As shown in Figure 10.4, at the beginning of the RL cycle, the agent receives a full or
partial observation of current states and the corresponding reward. Combining those states
and rewards, the policy is updated by each agent during the learning stage. Then the agent
performs a certain selection action based on the updated policy at the decision stage. With
RL, CRN can be modeled as a distributed self-organized multi-agent system in which each
SU or agent performs spectrum selection by efficiently interacting with the environment
through a learning policy. In this approach, other SUs’ decisions can be considered as a
part of the responses of the environment for each SU.

A distributed Learning Automata (LA)-based spectrum selection scheme was studied in
[53]. It aimed to enable the SUs to sense the RF environment intelligently and to learn its
different responses. On the other hand, the activity information of PUs and other SUs was
not available, and different SUs could not exchange their information. The self-organized
SUs performed the channel selection as the action and received the corresponding response
indicating how favorable the action was. Based on the response, SUs could determine the
optimal spectrum selection to achieve a lower transmission delay and lower interference to
PUs and other SUs.

Wireless environment
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Action
Decision

Learning

Observation

Spectrum

sensing

Figure 10.4 The reinforcement learning cycle.
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Two Q-learning-based spectrum assignment methods were developed in [239]. The inde-
pendent Q-learning-based scheme was designed for a case in which the SUs could not
exchange information, while the collaborative Q-learning-based scheme was designed for
a case in which information could be exchanged among SUs. It was shown that the col-
laborative Q-learning-based assignment method performed better than the independent
Q-learning-based method.

Most cases fell short of the perfect CSI, and imperfect CSI can degrade the performance
of system spectrum selection. To overcome this challenge, an RL-based robust decentral-
ized multi-agent resource allocation scheme was proposed in [95]. They introduced cloud
computing to enlarge storage space, reduce operating expenditures, and enhance the flexi-
bility of cooperation. A cooperative framework in a multi-agent system was then developed
to improve the performance of their proposed scheme in terms of network capacity, outage
probability, and convergence speed.

To better manage users in a CRN, the clustering operation organizes SUs into logical
groups based on their common features. Clustering can provide network scalability,
spectrum stability, and fulfill cooperative tasks. In each cluster, one SU can either act as
a leader (or cluster head) that manages essential CR operations, such as channel sensing
and routing, or as a member node that associates itself with the cluster head. Cluster size
represents the number of nodes in a cluster and affects various performance metrics. In
the CRN, the cluster size adjustment and cluster head selection can significantly impact
system performance.

In [89], the authors proposed a first-of-its-kind cluster size adjustment scheme based on
RL. The proposed scheme adapts the cluster size according to the number of white spaces to
improve network scalability and cluster stability. It was shown that their proposed scheme
improved network scalability by creating larger clusters and improved cluster stability by
reducing the number of re-clusterings (the number of cluster splits) and clustering overhead
while reducing interference between licensed and unlicensed users in CRNs.

Using Q-value to evaluate the channel quality in Cluster-based CR Ad-Hoc Networks
(CRAHN), a Q-learning-based cluster formation mechanism was studied in [74]. Channel
quality, residual energy, and network conditions were jointly considered to form a dis-
tributed cluster network. All the nodes built their neighboring topology by exchanging the
channel status and neighbor list information. Each node then selected the optimal cluster
head candidate. Distributed cluster head selections, optimum common active data channel
decisions, and gateway node selection procedures were presented. It was shown that the
proposed approach could extend the network lifetime and enhance reachability.

10.2.1.3 Spectrum Access
One important question in CRNs spectrum access is how to assign limited resources, such
as available spectrum channels and transmit powers, to maximize the system throughput
and efficiency. Numerous related works based on RL [94, 147, 241], DL [113, 115], and Deep
RL (DRL) [101, 161] have been carried out.

An RL-based resource allocation approach entitled Q-Learning and State-Action-Reward-
State-Action (SARSA) was proposed in [94] that mitigated interference without the require-
ments of the network model information. Users in this method act as multiple agents
and cooperate in a decentralized manner. A stochastic dynamic algorithm was formed to
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determine the best resource allocation strategy. It was shown that the energy efficiency
could be significantly improved by the proposed approach without sacrificing user QoS.

An energy harvesting-enabled CRN was investigated in [147]. To achieve higher
throughput, a harvest-or-transmit policy for SUs transmit power optimization was pro-
posed. A Q-learning-based online policy was developed first to deal with the underlying
Markov process without any prior knowledge. An infinite horizon stochastic dynamic
programming-based optimal online policy was then proposed by assuming that the full
statistical knowledge of the governing Markov process was known. Finally, a generalized
Benders decomposition algorithm-based offline policy was given, where the energy
arrivals and channel states information were known before all transmitters for a given time
deadline.

By combining Multi-Armed Bandit (MAB) and matching theory, the ML-assisted Oppor-
tunistic Spectrum Access (OSA) approach was developed in [241]. A single SU case was first
considered without the volatility of channel availability information. Next, the upper confi-
dence bound algorithm-based Occurrence-Aware OSA (OA-OSA) framework was designed
to achieve the long-term optimal network throughput performance and the trade-off
between exploration and exploitation. The OA-OSA was then extended to the multi-SU
scenario with channel access competitions by integrating the Gale–Shapley algorithm.

In [115], by considering the OFDMA-based resource allocation for the underlying
SUs, researchers aimed to minimize the weighted sum of the secondary interference
power under the constraints of QoS, power consumption, and data rate. A Damped
Three-Dimensional (D3D) Message-Passing Algorithm (MPA) based on DL was pro-
posed, and an analogous back-propagation algorithm was developed to learn the optimal
parameters. A sub-optimal resource allocation method was developed based on a damped
two-dimensional MPA to improve computational efficiency. By considering the EE and SE,
as well as Computing Efficiency (CE) for both PUs and SUs, a DL-based resource allocation
algorithm in CRNs was proposed in [113] to minimize the weighted sum of the secondary
interference power. It was shown that the proposed scheme significantly improved both
the SE and EE for PUs and SUs.

Insufficient specificity and function approximation can impose some limitations on RL
algorithms, but neural networks can be used to compensate for them. DRL algorithms are
capable of combining the process of RL with deep neural networks to approximate the
Q action-value function. Compared with conventional RL, DRL can significantly improve
learning performance and learning speed. DRL has attracted a lot of attention in research for
solving the problems in CR networks such as resource allocation, spectrum management,
and power control.

In [161], the authors presented a DRL-based resource allocation method for CRN to max-
imize the secondary network performance while meeting the primary link interference
constraint. By adopting a Mean Opinion Score (MOS) as the performance metric, the pro-
posed model seamlessly integrates resource allocations among heterogeneous traffic. The
resource allocation problem was solved by utilizing a Deep Q Network (DQN) algorithm
where a neural network approximated the Q action-value function. TL was incorporated
into the learning procedure to further improve the learning performance. It was shown
that TL reduced the number of iterations for convergence by approximately 25% and 72%
compared to the DQN algorithm without utilizing TL or standard Q-learning, respectively.



�

� �

�

10.2 ML-Based Methodologies for SS 125

10.2.1.4 Spectrum Handoff
Spectrum handoff is intended to maintain seamless communication during the transition
to a better spectrum. However, enabling spectrum handoff for multimedia applications in
a CRN is challenging due to multiple interruptions from PUs, contentions among SUs, and
heterogeneous Quality-of-Experience (QoE) requirements. Although an SU may not know
exactly when the PU comes back, it always wants to achieve reliable spectrum usage to
support the QoS requirements. If the quality of the current channel degrades, the SU can
make one of the following three decisions:

(1) Stay in the same channel and wait for it to become idle again (called stay-and-wait).
(2) Stay in the same channel and adapt to the varying channel conditions (called

stay-and-adjust).
(3) Switch to another channel that meets the QoS requirement (called spectrum handoff).

In [207], a learning-based and QoE-driven spectrum handoff scheme was proposed to
maximize the multimedia users’ satisfaction. A mixed preemptive and non-preemptive
resume priority (PRP/NPRP) M/G/1 queueing model was designed for the spectrum usage
behaviors of prioritized multimedia applications. The RL-assisted QoE-driven spectrum
handoff scheme was developed to maximize the quality of video transmissions in the long
term. Their proposed learning scheme could adaptively perform spectrum handoff based
on the variation of channel conditions and traffic loads.

To address limitations of PRP/NPRP queuing models, the authors in [210] employed a
hybrid queuing model with discretion rules to characterize the SUs’ spectrum access pri-
orities. The channel waiting time during spectrum handoff was then calculated according
to this hybrid queuing model. The multi-teacher knowledge transfer method was further
proposed to accelerate the algorithm, wherein the multiple SUs that already had mature
spectrum adaptation strategies could share their knowledge with an inexperienced SU.

10.2.2 Database-Assisted SS

The sensing-driven OSA system aims to explore the spectrum holes in the unlicensed band,
which can be inefficient and unreliable, especially when the number of wireless communi-
cation devices increases rapidly. To better serve the secondary system, a specific spectrum
band like 3.5 GHz is opened to the public. Database-assisted Dynamic SS (DSS) systems
such as LSA and SAS have been proposed to better coordinate the users in different systems
with various spectrum access priorities.

LSA has two types of users: incumbents and SUs, where incumbents send their spec-
trum usage information to a database center called LSA Repository [136]. The system then
decides whether the SUs can access the spectrum resource with this information or not
and no sensing ability is required for those users. The SAS system also maintains a sim-
ilar database for three different types of users. The difference is that the IUs in the SAS
system may have very sensitive information and do not want to offer it to the database
[136]. Instead, to protect the IUs, the Exclusion/Protection Zone (EZ) is applied where the
SUs (PAL and GAA users) are banned from accessing the spectrum in these areas to pre-
vent them from harmful interference to IUs. Environment sensing capability (ESC)-based
incumbent detection also requires users in tiers 2 and 3 to perform sensing. The system then
decides the spectrum access based on the EZ and ESC nodes’ sensing results [14].
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The existing ML-based works for database-assisted SS networks are mainly focused on the
EZ adjustment [71, 218], ESC performance improvement [185, 202], and spectrum access
coordination [29, 182, 226, 228].

10.2.2.1 ML-Based EZ Optimization
In a database-driven SS network, even with the SS policy provided by the database, harm-
ful interference still can occur between a PU and an SU due to unexpected propagation
paths. In a common solution, a primary EZ is provided for the PUs that prevents SUs from
using the same spectrum in EZ to keep interference at an acceptable level. However, the
size of EZ needs to be optimized to efficiently cover the regions where interference may
occur and a region’s shape is usually not circular.

In [218], an ML-based framework was developed to deal with the interference by dynam-
ically adjusting the EZ. By considering the propagation characteristics and shadow fading,
the framework employed under-sampling and over-sampling schemes to solve an imbal-
anced data problem which can degrade the estimation accuracy of the appropriate shape
of EZ. It was shown that their proposed method could significantly reduce the area of the
EZ by 54% compared with the fixed circular EZ setting. Furthermore, the proposed sam-
pling scheme could achieve a 1% interference probability with 21% fewer iterations and a
6% smaller area compared with the existing sampling benchmarks.

Using VHF-band radio sensors and the ML technique, an outdoor location estimation
scheme of a high-priority DSS system was proposed in [71]. The delay profiles measured
in the very high frequency (VHF) band were employed to estimate location. The precision
of the EZ could then be improved based on the estimated location of the PUs. By using
the ARIB STD-T103 system operating in the VHF-band, they measured delay profiles in
a mountainous environment in Japan with the Deep Neural Network (DNN). With the
trained DNN, the location cluster of the high-priority terminal could be predicted with-
out GPS by simply measuring the delay profile of the PUs. It was shown that their method
could significantly improve the total correct localization rate by up to 80.0%.

10.2.2.2 Incumbent Detection
According to the FCC, the IUs in the CBRS band include authorized federal users such as
U.S. Navy shipborne SPN-43 air traffic control radar operating in the 3550–3700 MHz band,
Fixed Satellite Service (space-to-Earth) earth stations operating in the 3600–3650 MHz
band, and for a finite period, grandfathered wireless broadband licensees operating in the
3650–3700 MHz band. Due to security restrictions, the SAS cannot access the information
of those IUs. To alleviate harmful interference from PAL and GAA users, the Environ-
mental Sensing Capability (ESC) enabled by sensor networks could detect transmissions
from the Department of Defense radar systems and transmitted that information to the
SAS. The SAS could then assign the spectrum resources to users with different priorities
dynamically. However, the single sensor detection lacked precision due to its geolocation,
while distributed multiple sensor networks led to a high information exchange overhead.
Moreover, the extreme operational characteristics of incumbent military wireless applica-
tions could overwhelm the existing spectrum sensing methods. Several studies have sought
to address these issues.
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An ML-based spectrum sensing system called Federated Incumbent Detection in CBRS
(FaIR) was proposed in [185]. FL was adopted for ESCs to collaborate and train a data-driven
ML model for IU detection with minimal communication overhead. Unlike a naive dis-
tributed sensing and centralized model framework, their proposed method could exploit
the spatial diversity of the ESCs and improve detection performance.

Because the existing ESC-based methods had the potential to incur a high communica-
tion overhead and lead to leakage of sensitive information, a compressed sensing (CS)-based
FL framework was proposed in [202] for IU detection. To protect privacy, local learning
models transmitted updating parameters instead of raw spectrum data to the central server.
A Multiple Measurement Vector (MMV) CS model was further adopted to aggregate these
parameters. Based on the aggregated parameters, the central server could gain a global
learning model and send the global parameters back to local learning models. Their pro-
posed framework could significantly improve communication and training efficiency while
guaranteeing detection performance compared with the raw training sample method.

10.2.2.3 Channel Selection and Transaction
In the database-assisted SS system, each user needs to choose a proper vacant channel in
order to avoid severe interference with others. When economic approaches are adopted to
model the SS system, idle channels can be traded as commodities. For this reason, channel
selection and spectrum trade problems are critical to the database-assisted SS system, and
many works based on game theory have been proposed to solve them.

In [29], a database-assisted distributed white-space Access Point (AP) network design was
studied. The cooperative channel selection problem was first considered to maximize sys-
tem throughput, where all APs were owned by one network operator. A distributed channel
selection problem was then formed between APs that belonged to different operators, and a
non-cooperative state-based game was formulated by considering the mobility of SUs. It was
also shown that this algorithm was robust to perturbation from SUs’ leaving and entering
the system.

In [226], a method of idle channels sharing in overlapped licensed areas among PUs
and SUs was proposed. Based on supply and demand fluctuations in different areas, SUs
were grouped based on their suppliers, and channel transaction quotas were set by PUs for
these SU groups accordingly. By applying evolutionary games, the PUs could obtain quotas
of Evolutionary Stable Strategy (ESS) to maximize their incomes. Furthermore, a learning
process was designed for the PUs to attain the optimal realizable integer quotas.

10.2.3 ML-Based LTE-U/LTE-LAA

LTE-U has emerged as an effective technique for alleviating spectrum scarcity. Using
LTE-U along with advanced techniques such as carrier aggregation can boost the per-
formance of existing cellular networks. However, LTE was initially designed to operate
in the licensed spectrum exclusively and was not for harmonious coexistence with other
possible co-located technologies [180]. For this reason, introducing LTE into the unlicensed
spectrum can cause significant coexistence issues with other well-established unlicensed
technologies such as Wi-Fi, IEEE 802.15.4, or Bluetooth. To enable fair spectrum sharing
with other technologies operating in the unlicensed spectrum, in particular with Wi-Fi,
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new coexistence technologies are needed. On the other hand, not much research atten-
tion has been given to studying cooperation between the technologies. Networks that
participate in a cooperation scheme can exchange information directly or indirectly (via a
third-party entity) to improve the efficiency of spectrum usage in a fairway.

To standardize LAA technology in the 5 GHz spectrum, the 3GPP standardization group
aims to develop a single global framework of LTE in the unlicensed bands. The framework
should guarantee that the operation of LTE does not critically affect the performance
of WiFi networks. Initially they only considered the downlink operation LTE-A (LTE
Advanced) Carrier Aggregation (CA) in the unlicensed band. This was later expanded to
include the simultaneously operate downlink and uplink [146]. The LTE LAA employed a
Listen Before Talk (LBT) mechanism to avoid collision and interference between users.

LTE-U is another option for operating LTE in an unlicensed spectrum, where LTE base
stations exploit transmission gaps to facilitate coexistence with WiFi networks. The devel-
opment of LTE-U technology is led by the LTE-U Forum, an industry alliance. LTE-U has
been designed to operate as an unlicensed LTE in countries where the LBT technique is
not mandatory, such as the United States and China. LTE-U defines the operation of pri-
mary cells in a licensed band with one or two secondary cells (SCells), every 20 MHz in
the 5 GHz unlicensed band: U-NII-1 and/or U-NII-3 bands, spanning 5150-5250 MHz and
5725-5825 MHz, respectively [146].

10.2.3.1 ML-Based LBT Methods
According to LTE LAA standards in 3GPP Release 13, the LTE system must perform the LBT
procedure (also known as Clear Channel Assessment, CCA) and sense the channel prior to
a transmission in the unlicensed spectrum. As shown in Figure 10.5, when the channel is
sensed to be busy, the LTE system must defer its transmission by performing an exponential
backoff. If the channel is sensed to be idle, it performs a transmission burst with a duration
from 2 to 10 ms, depending on the channel access priority class [124].

To exploit the benefits of communications in an unlicensed spectrum using LTE-LAA,
a DL approach for the resource allocation of LTE-LAA small base stations (SBSs) was
proposed in [28]. The proposed method employs a proactive coexistence mechanism that
enables future delay-tolerant LTE-LAA data requests to be served within a given prediction
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Figure 10.5 LBT-based method.
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window before their actual arrival time. Therefore, it can improve the utilization of the
unlicensed spectrum during off-peak hours while maximizing the total served LTE-LAA
workloads.

To achieve long-term equal-weighted fairness between wireless local area networks and
LTE-LAA operators, a non-cooperative game model was formulated where SBSs were mod-
eled as homo egualis agents to predict a future action sequence. The proposed method
enables multiple SBSs to proactively perform dynamic channel selection, carrier aggrega-
tion, and fractional spectrum access while guaranteeing equal opportunities for existing
WiFi networks and other LTE-LAA operators.

10.2.3.2 ML-Based Duty Cycle Methods
Carrier Sensing Adaptive Transmission (CSAT) is a technique that can enable coexistence
between LTE and Wi-Fi based on minor modifications of the 3GPP LTE Release 10/11/12
Carrier Aggregation protocols. As shown in Figure 10.6, CSAT introduces the use of duty
cycle periods and divides the time into LTE “ON” and LTE “OFF” slots. During the LTE
“OFF” period, also known as the “mute” period, LTE remains silent, gives other coexisting
networks, such as Wi-Fi, an opportunity to transmit. During the LTE “ON” period, LTE
accesses the channel without sensing it before transmission. Moreover, CSAT allows short
transmission gaps during the LTE “ON” period to allow for latency-sensitive applications,
such as VoIP in co-located networks. In CSAT, eNB senses the medium during a time period
ranging from 10 to 100 ms and according to the observed channel utilization (based on the
estimated number of Wi-Fi APs) defines the duration of the LTE “ON” and LTE “OFF”
periods [180].

The existing work of LTE-U mainly focuses on using different RL algorithms to adjust the
duty cycle and other network resources to maintain fairness between LTE and WiFi users,
as well as to seek for a higher system capacity performance.

To investigate the application of LTE-U technology in the 3.5 GHz CBRS band, an
MAB-based SS technique was developed in [146] for a seamless coexistence with WiFi.
Assuming LTE-U to operate as a GAA user, they used MAB to adaptively optimize the
duty cycle of LTE-U transmissions. Downlink power control was incorporated to achieve
high EE and interference suppression. The study showed significant improvement in the
aggregate capacity and cell-edge throughput of coexisting LTE-U and WiFi networks for
different base station and user densities.

10.2.3.3 Game-Theory-Based Methods
The coexistence of LTE systems and WiFi system can usually be formed as a game the-
ory problem, where each part must compete for the same unlicensed spectrum resource
and finally reach an agreement with each other. Some game-theory-based LTE-U works
are discussed in this section.

LTE “OFF” LTE “OFF”LTE “ON” LTE “ON”

Figure 10.6 Duty cycle-based method.
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Figure 10.7 The coexistence of LTE-U and WiFi in an unlicensed spectrum. Source: [26]
(© [2016] IEEE).

An SS scheme adapted for the operation of LTE-U and WiFi systems was proposed in [26].
The decision tree learning and repeated game were adopted to optimize unlicensed spec-
trum resource. As shown in Figure 10.7, the control plane was decoupled from the data
plane and provided the system with a great capacity for processing data. Controllers learned
the latest dataset in the pool to build decision trees and deduce the network status of the
opponent. Repeated games for sharing spectrum resources were then employed to maxi-
mize resource utilization in the coexistence system. An incentive mechanism was further
included to increase operators’ motivation to share their spectrum resources.

10.2.3.4 Distributed-Algorithm-Based Methods
In [31], the authors investigated the uplink–downlink decoupling resource allocation prob-
lem for LTE-U-enabled Small Cell Networks (SCNs). By incorporating user association,
spectrum allocation, and load balancing, the problem was formulated as a non-cooperative
game. An Echo State Network (ESN)-based distributed algorithm was developed to address
this problem. It was shown that even with limited information on the network’s and
users’ states, the proposed algorithm could help the SBS to choose their optimal resource
allocation strategies autonomously. Furthermore, the proposed method could significantly
improve the sum rate of the 50th percentile of users and achieve a 167% increase compared
to a Q-learning algorithm.

In [32, 33], a cache-enabled Unmanned Aerial Vehicles (UAVs) communication network
serving wireless ground users over the LTE-U bands was considered. The problem under
investigation was joint caching and resource allocation. By jointly incorporating user associ-
ation, spectrum allocation, and content caching, a resource allocation problem was formed
and a distributed algorithm based on the Liquid State Machine (LSM) was proposed. The
proposed LSM algorithm would enable the cloud to predict users’ content request distri-
bution with limited information about network and users. The proposed algorithm will
also help UAVs choose the optimal resource allocation strategies depending on the network
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states autonomously. It was shown that the proposed approach yields up to 33.3% and 50.3%
gains in terms of the number of users that have stable queues compared to Q-learning with
cache and Q-learning without cache. It was also shown that LSM significantly improves the
convergence time of up to 33.3% compared to Q-learning.

10.2.4 Ambient Backscatter Networks

To increase SE, a cutting-edge technology named AmBC has received significant attention
as a new SS framework [107]. In backscatter communication (e.g. RFID), a device commu-
nicates by modulating its reflections of an incident RF signal without generating its own
radio waves. Hence, it is in the orders of magnitude more energy-efficient than conventional
radio communication. AmBC system enables two devices to communicate using ambient
RF as the only source of power. It leverages existing TV and cellular transmissions to elim-
inate the need for wires and batteries, thus enabling ubiquitous communication where
devices can communicate among themselves at unprecedented scales and in locations that
were previously inaccessible.

In particular, in an AmBC system as illustrated in Figure 10.8, the backscatter transmitter
can transmit data to the backscatter receiver by modulating and reflecting surrounding
ambient signals. Hence, the communication in the AmBC system does not require dedi-
cated frequency spectrum. Based on the received signals from the backscatter transmitter
and the RF source or carrier emitter, the receiver then can decode and obtain useful
information from the transmitter. By separating the carrier emitter and the backscatter
receiver, the number of RF components is minimized at backscatter devices and the devices
can operate actively, i.e. backscatter transmitters can transmit data without initiation from
receivers when they harvest sufficient energy from the RF source [188]. Therefore, AmBC
systems can share spectrum with existing systems and achieve better spectral efficiency
than that of RFID systems.

The existing ML-based works for AmBC systems are mainly focused on the information
extraction and mode selections.

10.2.4.1 Information Extraction
Since ambient backscatter uses uncontrollable RF signals that already have information
encoded in them, it needs a different mechanism to extract the backscattered information.
Several existing works have proposed different ML-based methods to help extract
information.

Figure 10.8 AmBC network. Source: [188]
(© [2018] IEEE).
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To solve the individual channel estimation in the AmBC system, the authors in [120]
designed a communication protocol for the reader and the tag to obtain all the channel
parameters. Based on the protocol, they proposed an ML-aided semi-blind estimator which
utilizes an Expectation-Maximization (EM) algorithm and a few pilots from RF resources
together with some superimposed pilots at the reader. The maximum likelihood estimator
was applied to obtain the uplink channel between the reader and the tags, while the super-
imposed pilots from the reader were used to estimate the downlink channel. Finally, the
Cramer–Rao Bounds (CRB) of the proposed channel estimators were derived.

In an AmBC system, the readers receive the backscattered signal from the backscatter
device (BD) and the Direct-Link Interference (DLI) from the RF source simultaneously. Due
to the randomness of ambient RF sources, it is challenging to distinguish backscatter sym-
bols from DLI. Furthermore, the existence of DLI can further cause the conventional Energy
Detector (ED) to fall into severe error-floor problems. To tackle this issue, the authors in
[67] developed a novel error-floor free detector by using multiple receive antennas at the
reader side. They first considered the perfect CSI case and used beamforming-assisted ED
and likelihood ratio-based detector to decode the backscatter symbol. Based on this, a novel
statistical clustering framework was designed for joint CSI feature learning and backscatter
symbol detection. It was verified that their method can achieve comparable performance
with perfect CSI and significantly outperformed the conventional ED.

An ML-assisted AmBC information extraction method was proposed in [200]. The
information was modulated on top of the unknown Gaussian-distributed ambient RF
signals. The binary phase-shift keying backscatter signals encoded by Hadamard codes can
be decoded by the proposed method. By eliminating the direct path signal and correlating
the residual signal with the coarse estimate of the ambient signal, the proposed method
first extracted the learnable features for the tag signal. k-nearest neighbors’ classification
algorithm was then employed to recover the tag signals. Finally, a Hadamard decoder was
used to retrieve the original information bits from the recovered signals.

The energy detector or Minimum Mean Square Error (MMSE) detector utilized in exist-
ing AmBC systems to detect tag signals suffers from a high BER. To overcome this chal-
lenge, Support Vector Machine (SVM) and random forest methods were proposed in [80] for
detecting the tag signals in an AmBC system by changing the detection problem into a clas-
sification problem. To minimize the BER, the proposed method could classify the received
signals into different groups based on their energy features.

10.2.4.2 Operating Mode Selection and User Coordination
Due to their passive nature, Backscatter Devices (BDs) in AmBC systems must harvest
energy to power operations such as circuit power consumption, transmission, and sensing.
BDs need to determine when to switch between communication and energy harvesting
modes but the highly dynamic nature and randomness of RF source activities make this
switch operation challenging [205]. Moreover, although the BD can perform the backscat-
ter and energy harvesting simultaneously, it is impractical and inefficient when the amount
of harvested energy is relatively small and can only supply internal operations. Therefore,
how to efficiently determine the tradeoff between energy harvesting and backscattering
RF signals is critical in a dynamic environment [189]. Researchers have proposed various
solutions based on RL algorithms.
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By adaptively selecting the operating mode in a fading channel environment, the through-
put maximization problem of the AmBC system was solved in [205]. With the given channel
distributions, the problem was modeled as an infinite-horizon Markov Decision Process
(MDP) and the optimal mode switching policy was obtained by the value iteration
algorithm. When the channel distribution information was unavailable, the Q-learning
algorithm was employed to explore a suboptimal strategy through repeated interactions
with the environment. The efficacy of their proposed Q-learning method showed that
close-to-optimal throughput performance could be achieved.

The authors in [189] proposed an MDP framework to determine the optimal policy
for allowing the secondary transmitter to maximize system throughput. The MDP-based
optimization requires complete knowledge of environmental parameters such as the
probability of a channel state and the successful packet transmission ratio. To cope with
these impractical constraints, a low-complexity online RL algorithm was developed that
allowed the secondary transmitter to learn from its decisions to discover the optimal policy.
To minimize interference, a multicluster AmBC power allocation problem was developed
in [87] for short-range information sharing. A Q-learning-based power allocation method
was designed to minimize the interference while improving the received SINR. It was
shown that the received signal levels could be significantly improved by their proposed
scheme.

By considering the strict latency requirements, the authors in [88] employed DQN to solve
the communication rate maximization problem for wireless powered ambient backscat-
ter tags. A Q-learning model for ambient backscatter scenarios was developed first, and
an algorithm was then proposed that used DNNs to approximate the complex Q-network
table.

10.2.4.3 AmBC-CR Methods
Several works combined AmBC with CRN. An RF-powered backscatter CRN enables the
secondary transmitter not only to harvest energy from primary signals, but also to backscat-
ter these signals to the secondary receiver for data transmission [72]. Such a combination
can provide SUs with potential connection options instead of simply waiting for access
opportunities. When the primary channels in RF-powered CRNs that employ AmBC are
mostly busy, instead restricting their activity to harvesting energy, the secondary trans-
mitters can use a fraction of the wait time to transmit data by modulating and backscat-
tering the received signals through the AmBC Thus, AmBC enables secondary systems
to maximize their performance by simultaneously optimize spectrum usage and energy
harvesting.

In an AmBC-assisted CRN network, the mode selection between signal backscatter and
energy harvest is critical to achieving high RF-powered SU (RSU) throughput. The dynam-
ics of the primary channel, energy storage capability, and data to be sent all need to be
considered when making decision. An MDP-based framework was developed in [84] to
determine optimal decisions with consideration to states such as energy, data, and primary
channel. It was then expanded to include a scenario in which the state information was
unavailable at the RSU. A low complexity online RL algorithm was proposed to enable the
RSU to find the optimal solution without requiring prior and complete information from
the environment.
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10.3 Summary

In this chapter, we have reviewed four SS application scenarios: an opportunistic
access-based CRN, a database-assisted SS, an LTE-U/LTE-LAA, and a symbiotic SS
mechanism-based AmBC network. The uses of ML in approaching SS related problems
with regards to the characteristics of SS frameworks were considered.
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In this chapter, the security concerns of SS will be analyzed, following by some mitigation
mechanisms.

11.1 Security Concerns in SS

While the ML-based SS networks can help improve the SE, they can also be a double-edged
sword. The dynamic access frameworks introduce more security and privacy risks into the
system. As shown in Figure 11.1, when SUs observe the activity of PUs, the sensing pro-
cedure can be disturbed by the malicious attackers by launching the PUE attacks or SSDF
attacks. The attackers may also exploit these opportunities to harm the privacy of PUs.
Besides these, the system also suffers the same security issues found in traditional wireless
communications, such as jamming attacks and eavesdropping attacks. In this section, we
will discuss these physical layer attacks and potential countermeasures [195].

11.1.1 Primary User Emulation Attack

In CRN, a PUE attack denotes a PU-like signals sent by an attacker during the spectrum
sensing period that can exclude legitimate SU access to the channels. The attackers may
be selfish users who want to use the spectrum exclusively or malicious attackers who want
to disrupt the normal operation of the system. PUE attacks can cause service degradation,
denial of service (DoS), connection unreliability, and bandwidth waste [223].

PUE attacks can damage required security such as availability, authentication,
non-reputation, compliance, and access control [145]. Countermeasures to PUE attacks
seek to enhance spectrum management. When defending against PUE attacks, it is impor-
tant to differentiate between malicious users and legitimate users. This can be determined
by their location, received signal strength, received signal power, and other features.

11.1.2 Spectrum Sensing Data Falsification Attack

CSS as one promising approach for PUs’ activities detection involves exploiting the spatial
location diversity of multiple SUs. A group of SUs collaborate to perform the spectrum
sensing by exchanging locally collected information. An SSDF attack (also known as the

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
© 2024 John Wiley & Sons Ltd. Published 2024 by John Wiley & Sons Ltd.
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Byzantine attack) is launched in CSS by sending false local spectrum sensing results to
others, leading to flawed spectrum sensing decisions [222]. SSDF attacks aim to decrease
detection probability and disturb normal operations of the primary system. It may also
seek to increase the probability of false alarms in order to deprive honest SUs of access
opportunities [227]. SSDF attacks harm the system’s integrity and availability.

SSDF attackers can be classified into three types: selfish SSDF, interference SSDF, and
confusing SSDF [222].

(1) A selfish SSDF attacker seeks to gain exclusive access to the target spectrum. It falsely
reports the existence of relatively high PU activities to block other SUs from using the
spectrum when the PU does not exist.

(2) An interference SSDF attacker falsely reports low PU activities leading other SUs to
wrongly conclude that they can use the spectrum without interfering with any PUs. This
type of attack seeks to either cause the inference to the PU or inhibit the communication
of other SUs.

(3) A confusing SSDF attacker seeks to disturb the SUs to prevent them from reaching
consensus by randomly reporting the true or false results about the existence of PUs.

The majority of existing defense methods can be divided into two categories: one mak-
ing direct judgments based on the current spectrum sensing data while the other uses the
historical spectrum sensing data to update sensors’ reputation.

11.1.3 Jamming Attacks

The open nature of wireless communication leaves it vulnerable to various attacks. One of
the most common attacks in wireless communication as well as SS networks is the jamming
attack. Attackers transmit signals to interfere with the victims’ communications in order
to cause a DoS and compromise availability of communication links [104]. Traditional
anti-jamming methods used in wireless communications include sequence-based fre-
quency hopping spread spectrum (FHSS) and direct sequence spread spectrum (DSSS).
However, the fixed transmission patterns of these methods leave them helpless against
dynamic jamming attacks and cause low spectrum efficiency.

SS techniques enable flexible access to different channels, allowing users to avoid
attackers by exploiting that flexibility. The ML techniques provide more adaptive channel



�

� �

�

11.1 Security Concerns in SS 137

selection ability to systems in order to avoid jamming attacks. They also give the system
the ability to learn and predict the behavior of jammers to increase anti-jamming channel
selection efficiency. The attackers may also use different ML-based methods to improve
their attack strategies [206] rendering the study of advanced jamming attacks and
corresponding countermeasures of vital importance to the SS system.

11.1.4 Intercept/Eavesdrop

Eavesdropping is another common attack in wireless communications. Due to the broad-
cast nature of radio propagation, any active transmissions operated over the shared
spectrum by different wireless networks are extremely vulnerable to eavesdropping. It is
therefore important to investigate the confidentiality protection of SS communications
against eavesdropping attacks [242].

There are two major categories of secure communication techniques that guard against
eavesdropping. One focuses on traditional cryptographic techniques and the other is the
physical layer security. Cryptographic techniques involve encryption and decryption of
information at the transmitter and receiver. In the physical layer security method, the
secrecy rate can be achieved by the mutual information difference between the legitimate
user and the eavesdropper. However, the security rate can be limited since it depends
on the difference between the channel condition from the transmitter to the legitimate
receiver and that from the transmitter to the eavesdroppers. Many promising techniques
have been proposed to address this issue, including artificial noise (AN) and cooperative
jammer (CJ) [203]. The advantage of physical layer security over cryptographic is that
it can achieve secure communications without extra overhead caused by protecting the
security key and can therefore be used in relatively simple communication systems.

11.1.5 Privacy Issues in Database-Assisted SS Systems

According to [121], there are several differences between security issues and privacy issues.
Security issues refer to unauthorized/malicious access, change, or denial of data. Privacy
issues refer to the unintentional disclosure of sensitive information from some open-access
data. The former is usually the work of malicious attackers who wish to disturb the system.
In the latter, malicious users usually only collect information that does not immediately
cause direct harm to the system. The goals of security protection are confidentiality,
integrity, and availability. The goals of privacy protection are anonymity, unlinkability, and
unobservability.

Ensuring privacy in SS networks is very important. In some SS systems like SAS in the
CBRS band, the IUs can be radar devices and military ships carrying very sensitive infor-
mation. Opening these incumbents’ exclusive spectrum to sharing could usher in potential
privacy threats to the system. Furthermore, the distribution structure of the SS network
increases the risk of privacy leakage. Finally, in order to train itself, ML requires huge
amounts of data that may contain various private user information that must be protected
during training and communication.

One possible attack is the database inference attack (DIA), where malicious users can
obtain PU location and other private information through collected data and sophisticated
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inference techniques. In another form of attack, the operational privacy threat of SUs comes
from the untrustworthy database that collects the location information sent from SUs on
the set of available channels in their region.

The protection of PUs privacy cannot be addressed by strictly controlling access to the
database, since each SU must access it to enable the spectrum sharing process. One possible
solution might be to reveal obfuscated information instead of the original information to SU
queries. By doing this, the system can use the obfuscated information to help determine the
channel status while reducing leakage of PU’s privacy information. SUs’ privacy can also be
protected by sending an obfuscated version of the original information of SUs. Some works
also looked at the question of how much information to share with the database and the
dynamic question of whether to share information with the database.

ML algorithms require massive amount of data to train their models. These data usually
include a lot of user-specific sensitive info and need to be exchanged in some distributed
systems. Sensitive information may leak out during the training process that would have
remained secure using the above spectrum sensing procedure. Three main strategies may
be used to maintain privacy in ML work flow: differential privacy, homomorphic encryp-
tion, and Secure Function Evaluation (SFE)/Secure Multi-party Computation (SMC)
[102]. In the differential privacy method, publicly shared dataset information describes
the patterns of groups within the dataset but withholds information about individuals.
In homomorphic encryption, the operation on encrypted data can be used to secure the
learning process by computing on encrypted data. When user-generated data are dis-
tributed among different data owners, SFE can enable multiple parties to collaboratively
compute an agreed-upon function without leaking input information regarding any party
other than what can be inferred from the output.

11.2 ML-Assisted Secure SS

In this section, the latest research in ML-related security will be comprehensively surveyed.
The contents are organized as in Figure 11.2. Details of existing works will be reviewed in
each category.

11.2.1 State-of-the-Art Methods of Defense Against PUE Attack

In this section, different ML-based PUE attacker detection methods in [4, 12, 50, 52, 60, 86]
will first be presented. To address the limitations of training data and inconsistent commu-
nication environments, the robust detection methods in [35, 125, 162, 168] will be further
discussed. Finally, the ML-based attack strategies included in [37, 38, 156] will be discussed
to provide an attacker’s perspective on PUE defense method design.

11.2.1.1 ML-Based Detection Methods
A typical PUE attack is illustrated in Figure 11.3. In defending against such attacks, the
most important step is distinguishing malicious attackers from legitimate PUs. This can
be achieved using specific features extracted from received signals. Distinct features
may reflect the transmitters’ characters, rendering them unique and differentiable.
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Figure 11.3 Illustration of PUE attacks.
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User location-based method is a common and easy way to differentiate between attackers
and PUs. Malicious attackers are rarely in the same place as PUs. Since the received signal
strength (RSS) varies by location, it can be adopted to identify location and, by the same
token, user type. Some other methods are based on statistical analysis. They use features
such as signal power, spectrum occupancy time, and cyclostationarity extracted from
received signals to analyze transmitters. Finally, the physical layer approaches use the
hardware behaviors of transmitters or channel behaviors to detect attackers. For example,
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phase and frequency shifts are commonly used as transmitter fingerprints. A detection
problem based on received signals is a classification problem, which ML is particularly
good at solving.

To detect and defend against PUE attacks, an adaptive learning-based detection method
in CRN was developed in [12] by analyzing the transmitters’ power features. Specifically,
cyclostationary feature analysis was used to differentiate attackers from low-power PUs.
The proposed method also estimated the distance variance and communication time to
improve classification accuracy and communication rate.

A k-nearest neighbor (KNN) classifier-based detection method was used to classify mali-
cious users to forestall PUE attacks in [86]. KNN was trained with the parameters such as
data rate, distance, power, frequency of request. Moreover, Elliptical Curve Cryptography
(ECC) was applied to encrypt the data and improve network security. the proposed classi-
fier achieved a higher accuracy detection performance than the Artificial Neural Network
(ANN)-based method.

A channel-based method that relied on the behavior of the multi-path channel was inves-
tigated in [4], where the authors proposed an ML framework based on various classification
models for detecting PUE attacks. It was trained/tested using four features vectors extracted
by the Pattern Described Link-Signature (PDLS) method. By using this method, legitimate
and malicious users could be effectively distinguished.

When signal activity patterns can be regarded as a possible sequence relating to some
“features” of the channel and previous internal states, the Recurrent Neural Network
(RNN) is a good tool for PUE detection. An RNN-based PUE attack detection method was
first introduced in [50]. It exploited series’ temporal dependency for better series prediction
and abnormal activity detection. To deal with the gradient vanishing issues inherent to
RNN, an advanced version of RNN that took advantage of the Long Short Term Memory
(LSTM) units and processed time series with long-term memory more efficiently was
further proposed. It was shown that the LSTM-based method could significantly improve
the detector’s performance.

The authors in [60] investigated the joint detection of PUE and jamming attacks in CRN.
A sparse coding of the compressed received signal-based detection algorithm was proposed.
Based on the channel dependent dictionary, convergence patterns in sparse coding were
employed to differentiate the spectrum hole, legitimate PU, and emulators or jammers. An
ML-based classification was adopted to perform the decision-making operation. The effec-
tiveness and advantages of the proposed algorithm were verified in terms of the confusion
matrix quality metric.

By detecting PUE attacks and enhancing the probability of detection, a hybrid Genetic
Artificial Bee Colony (GABC) algorithm was proposed in [52] to optimize spectrum
utilization. A Genetic Algorithm was used to compensate for the Artificial Bee Colony
algorithm’s less than optimal exploitation of solutions by using crossover and mutation
operations. The proposed GABC incorporated the Genetic operators into the Artificial Bee
Colony algorithm to achieve balance between exploitation and exploration in order to find
the optimal solution.

11.2.1.2 Robust Detection Methods
Most of the classification approaches discussed above require a certain dataset to train the
network. However, an unfamiliar environment and attackers may lead to classifier failure
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due to an unsuitable reference model. Hence, robust detection methods are very important
when adapting to the changes in the environment and more practicable in the real world.

In [35], defense strategies against PUE attacks from malicious SUs were investigated.
Greedy SUs manipulated unsupervised learning clustering algorithms through various
attack strategies to evict other SUs from the idle channel. Corresponding countermea-
sures to these manipulation attacks were developed, and the robustness of unsupervised
learning for signal classification in an evolving RF environment was evaluated. By using
both k-means clustering and Self-Organizing Maps (SOMs), the proposed method could
perform signal classification in the absence of training data. With intentional attacks from
SUs, the robustness of the classifier to avoid misclassification was verified. It was shown
that the efficacy of attacks could be reduced by 75.9%.

By adopting the TL algorithms, the authors in [162] developed a PUE defense approach
that used knowledge about PUs and SUs from past time frames to improve the detection
process in future time frames. The proposed approach extracted high-level representations
of the environment and accumulated them to form an abstract knowledge database. This
database enabled the CR system to accurately detect PUE attacks even if an insufficient
amount of fingerprint data was available in the current time frame. The final detection
decisions were used to update the abstract knowledge database for future runs.

A semi-supervised distributed learning algorithm was proposed for PUE attack detection.
By enabling edge devices to perform data clustering and session classification locally, it
could deal efficiently with varying bandwidth, signature changes, etc. The labeled data was
fed into a trained supervised learning-based classifier for classification. Based on the error
rate, it adjusted the training vectors and improved the overall performance. It was shown
that the proposed method could significantly reduce false alarms in the secondary network
and improve overall detection accuracy in the primary network.

In [125], an adaptive Bayesian learning automaton algorithm-based scheme named
Multi-channel Bayesian Learning Automata (MBLA) was proposed to defend against PUE
attackers. The SU in the considered model adopted Uncoordinated Frequency Hopping
(UFH) to avoid PUE attacks. To improve the speed and accuracy of the learning process
in non-stationary environments, MBLA utilized two different channels simultaneously to
perform the optimal frequency channel selections. Statistical information about channels
and PUs was assumed unavailable. An SU synchronized with its receiver and sent its
data on various channels obtained by the MBLA. The scheme extracted the best strategies
for the attacker and the SU and then evaluated the proposed scheme in terms of the SU
throughput in the presence of the PUE attacker.

11.2.1.3 ML-Based Attack Methods
Throughout the above discussions, various PUE attack detection and defense strategies
have been offered. However, the best-attack strategies have not been discussed. A better
understanding of optimal attack strategies can enable researchers to quantify the sever-
ity or impact of a PUE attacker on an SU’s throughput. It can also shed light on practical
defense strategy design as the attackers can also exploit ML algorithms to improve their
performance.

In [156], the authors presented two GAN-based models that successfully emulated the
PUs. Depending on whether any prior knowledge of the PU’s feature space was available,
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they proposed a dumb generator model and a smart generator model. Two DNN-based dis-
criminator models were developed to distinguish the PU and the Emulated PU (EPU) from
the corresponding generators. With iterative and sequential training, the generator and
discriminator of each GAN model became smarter and smarter. It was shown that discrimi-
nators were able to detect about 50% of PUE attackers without the GAN training during the
deployment phase, and both the GAN models could achieve 100% accuracy during the train-
ing phase. After the GAN training, the discriminators of the dumb generator could achieve
98% accuracy while the smart generator-based model could achieve 99.5% accuracy.

Optimal PUE attack strategies were investigated in [37], where prior knowledge on
PU activity characteristics and SU access strategies was not available. Based on previous
attacking experience, a non-stochastic online learning problem was formulated to deter-
mine attacking channel decisions for attackers. Since a PUE attacker never knows if an
SU has ever tried to access the attacked channel or not, it cannot observe the reward.
Therefore, an Attack-But-Observe-Another (ABOA) scheme was proposed to solve this
issue. The attackers in this scheme attack one channel in the spectrum sensing phase but
observe one or more other channels in the data transmission phase. Two non-stochastic
online learning-based attacking algorithms, EXP3-DO and OPT-RO, were proposed to
select the observing channel deterministically based on the attacking channel and uniform
randomly, respectively.

11.2.2 State-of-the-Art Methods of Defense Against SSDF Attack

CSS can help overcome the fading environments and improve the system sensing per-
formance. Different from single-user-based SS, each SU needs to transmit the sensing
results to a Fusion Center (FC) in CSS. FC then combines those results and makes a final
decision about the PU’s presence. SSDF is the most common attack in CSS. As shown
in Figure 11.4, sending falsified sensing data to the FC can lead to an incorrect fusion
result, cause interference with PUs, and cause DoS to SUs. To defend against SSDF attacks,
the most important step is to differentiate attackers from legal SUs. The existing defense
methods fall into two groups, namely outlier detection approaches and reputation-based
approaches. In outlier detection methods, the abnormal user is excluded from the network.
In reputation-based methods, on the other hand, SUs are assigned a reputation degree that

PU
FC

SU

SU

SU

SSDF

SSDF
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Figure 11.4 Illustration of SSDF attack.
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reflects their detection performance. Since SUs are not eliminated and their reports are not
excluded, reputation-based methods can use the collected information more thoroughly
than outlier detection techniques.

11.2.2.1 Outlier Detection Methods
To mitigate SSDF attacks, the authors in [55] proposed a Support Vector Data Description
(SVDD) algorithm in the sensing phase that could distinguish malicious nodes from legal
ones and remove them in the decision phase. The boundary around the target data was con-
structed by enclosing the target data within a minimum hyper-sphere. Enlightened by the
SVM, the SVDD decision boundary was described by a few support vectors. The spectrum
sensing result was then decided according to the voting results from trusted nodes.

In [1], the authors designed a Bayesian nonparametric clustering scheme to sense the
primary channel status and identify malicious users in CSS. By forming a single cluster
consisting of all legal users and a separate cluster that included every variety of attacker
(selfish, mischievous, jamming) in the feature space, their proposed approach could detect
and identify multiple attacks simultaneously. Furthermore, based on observations from the
collaborating CR users, it could discern malicious users from the legitimate ones and obtain
the real PU traffic pattern.

In [139], Bayesian learning-based SSDF defense schemes were proposed. First, a Bayesian
offline learning algorithm was proposed where the spectrum state was unavailable for
training. A Bayesian online learning framework was then designed by incorporating the
time-varying attributes of the sensors. The framework consisted of the historical data
learning part and the current data learning part. The vector of sensors’ weight was updated
by considering both the historical and the current spectrum sensing data. Finally, an SSDF
attack behavior recognition algorithm based on the proposed framework was designed to
identify SSDF attacks more accurately than offline learning.

11.2.2.2 Reputation-Based Detection Methods
One of the critical issues in combating SSDF attacks is distinguishing the attackers’ error
reports from the SUs’ reports in the FC. A Bayesian reputation model-based SSDF defense
scheme for CRNs was proposed in [131]. The proposed method modeled cooperation as
a service-evaluation process and SUs’ reputation degrees reflected their service quality.
Reputation degrees of SUs were updated based on the Bayesian reputation model, and the
behaviors of malicious SUs could be effectively tracked by this means.

In [83], a three-layer Bayesian model was designed to combat SSDF attacks. The model
consisted of a processing layer, an integrating layer, and an inferring layer. The process-
ing layer was based on the HMM model, where original data was used to train parameters
and the trained emission distributions were then passed to the second layer. By employing
different algorithms in the integrating layer, emission distributions were processed to obtain
reputation values, balance values, and specificity values of different SUs. By using different
thresholds, these continuous values could be rendered discrete and then transferred to the
inferring layer. Finally, by using the discrete values as evidence, a Bayesian network was
built in the third layer to calculate the safety probabilities of SUs.

In [160], several ML techniques such as SVM, Neural Network, Naive Bayes, and Ensem-
ble classifiers were implemented to detect SSDF attacks in a CRN. The learning techniques
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were investigated under two experimental scenarios: (i) the training and test data were
drawn from the same data-set, and (ii) separate datasets were used for training and test-
ing. The robustness of the proposed ensemble method was verified compared with other
benchmarks.

An SVM-based scheme was proposed in [240] to deal with SSDF attacks. SUs’ behaviors
were analyzed from multi-round records of energy values, and their classification accuracy
was obtained. Furthermore, the concepts of recognition probability and misclassification
probability were introduced, and the tradeoff relationship between misclassification
probability and threshold of classification accuracy was obtained. As a result, the proposed
scheme enabled excellent adaptability for Malicious SU (MSU) detection in various
scenarios.

11.2.2.3 SSDF and PUE Combination Attacks
The combination of the SSDF attack and the PUE attack presents more challenges to the
network. If SUs are be attacked or mislead by the PUE attack, the performance of exist-
ing SSDF defense methods is degraded. Even if the PUE attacker is detected, neighboring
SUs can still submit flawed sensing reports due to the contaminated signal from the PUE
attack. Investigating the combination of attacks and corresponding ML-based countermea-
sures in existing works can provide a comprehensive understanding of secure design in
SS networks.

Secure sensing under both PUE and SSDF attacks in CRN was investigated in [99].
Directly excluding attacked SUs from the sensing cooperation process requires lots of
information, i.e. the attack strength, geographical locations of SUs, etc. Therefore, a novel
secure sensing algorithm was developed to deal with the problem. To be specific, Unsu-
pervised ML (UML) was adopted to identify contaminated sensing reports from trusted
users by examining their sensing history. These contaminated sensing reports were then
excluded from CSS. Moreover, considering that identification errors might occur during
the UML process, each SU was assigned an identity value to account for its reliability.
The identity value was also used to alleviate the misidentification impact on real trusted
users.

To defend against various malicious attacks and interference in full-duplex CRNs
(FD-CRNs), an ensemble ML (EML)-based robust CSS framework was proposed in
[231, 232]. SUs were assumed to have the ability to sense and transmit over the same
frequency band simultaneously. The self-interference and co-channel interference were
inevitably introduced into the system and complicated the sensing environment. By
investigating spectrum waste probability, collision probability, and secondary throughput
in both FD LBT and Listen-and-talk protocols, the robust and accurate fusion performance
of the proposed EML approach was verified.

11.2.3 State-of-the-Art Methods of Defense Against Jamming Attacks

A jamming attack is a common in wireless communication systems and there have been
many works on this subject. Due to the nature of SS, jamming attack is effective, hence
can cause severe damages. In the following, we review latest advances in anti-jamming
with ML.
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11.2.3.1 ML-Based Anti-Jamming Methods
In the SS network, except for the very rapid change of dynamic spectrum characteristics
in the channel, the inclusion of random jammers makes efficient communication more
challenging.

To defend against jamming attacks, the most common countermeasure strategies are
dynamic channel assignments based on different ML algorithms. The jamming attack sce-
nario can be modeled by using the stochastic zero-sum game and MDP framework. The
time-varying characteristics of the channel as well as the jammer’s random strategy can be
learned by the SU using RL algorithms.

A stochastic game framework was proposed in [193] for anti-jamming defense. At each
stage of the game, SUs observe the spectrum availability, the channel quality, and the
attackers’ strategy from the status of jammed channels. Based on observation results,
the number of reserved channels and the channel switch action policy are decided. SUs
employ Minimax-Q learning to learn the optimal policy, maximizing the expected sum of
discounted spectrum-efficient throughput. It was shown the proposed stationary policy in
the anti-jamming game performed better than the myopic learning and random defense
strategy because it successfully accommodated the environment dynamics and strategic
behavior of the cognitive attackers. To further improve system performance, the authors
used the QV and the SARSA RL algorithms in [164] to replace the Minimax-Q learning
in [193]. Minimax-Q learning is an off-policy and greedy algorithm, whereas the QV and
SARSA are on-policy algorithms. It was shown that QV learning can achieve the best
performance as the value of both Q and V is updated.

In [206], the authors first investigated an anti-jamming game model where the SU could
access only one channel at a time and hopped among different channels. An MDP-based
channel hopping defense strategy with the assumption of perfect knowledge was derived
by analyzing interactions between the SU and attackers. Based on this, they proposed two
learning schemes by which SUs gained knowledge of adversaries in order to handle cases
without perfect knowledge. The schemes were then extended to a scenario where SUs could
access all available channels simultaneously and redefined the anti-jamming game with
randomized power allocation as the defense strategy. The Nash equilibrium was derived
for this Colonel Blotto game, which minimized the worst-case damage.

In [69], a game model was formed to integrate anti-jamming and jamming subgames into
a stochastic framework. Q-learning was applied to find an optimal channel access strategy.
It was shown that Minimax-Q learning was more suitable than Nash-Q learning for an
aggressive environment. For distributed mobile ad hoc networking scenarios, Friend-or-foe
Q-learning provided the best solution where centralized control was nearly unavailable.

By employing the Double Q-learning algorithm to defend against the jamming attacks,
Multi-Objective Ant Colony Optimization (MOACO) and greedy-based optimization
methods were proposed in [192]. A Q-learning-assisted cluster-based data utilization was
proposed that could enhance inter-cluster data aggregation. The network lifetime was
improved using AI-based modeling with intra-network to enhance green communication.
Unlike the artificial bee colony and genetic algorithm, the throughput, device lifetime, and
jamming prediction were promoted using the proposed MOACO.

A Wideband Autonomous CR (WACR) anti-jamming method presented in [123] evaded
a jammer that swept across the whole wideband spectrum range. The WACR equipped
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spectrum knowledge acquisition ability to detect and identify the location of the sweeping
jammer. A Q-learning-based method was proposed to allow the anti-jamming operation to
cover over several hundred MHz of a wide spectrum in real-time. An anti-jamming-based
secure communication protocol was then developed that selected a spectrum position with
enough contiguous idle spectrum to resist interference by both deliberate jammers and
inadvertent disruptions. The communication then switched to this position until the jam-
mer arrived. When the jammer began to interfere with the CR’s transmission, it switched to
a new spectrum band that led to the longest possible uninterrupted transmission as learned
through Q-learning. By including more agents in the system, the authors in [11] further
proposed an advanced RL-based anti-jamming approach. The considered system model
allowed multiple WACRs to operate over the same spectrum band simultaneously. Each
radio attempted to evade other WACRs’ transmissions and avoid jammer signals that swept
across the whole spectrum band of interest. The WACR first detected and identified the
frequency location of this sweeping jammer and the signals of other WACRs. A sub-band
selection policy was then given by the RL-based approach based on the detection results to
avoid both the jammer signal and interference from other radios.

To enable network devices to detect and predict jamming signals in a system with multi-
ple jamming modes and noises, it is critical to develop a rapid jamming detection counter-
measure. To this end, the authors in [27] proposed a DL-based jamming pattern recognition
by using spectrum waterfall. In addition, the simplified Le-Net5 structure was employed to
reduce the complexity of the calculation. As a result, the proposed method achieved a rapid
recognition performance.

By directly using temporal and spectral information like spectrum waterfall, the authors
in [114] developed a novel anti-jamming approach that did not require knowledge of
jamming patterns and parameters. First, a recursive CNN was designed to overcome
the infinite-state issues of spectrum waterfall. Furthermore, a DRL algorithm-based
anti-jamming method relying only on locally observed information was proposed to
obtain optimal anti-jamming strategies. The proposed method could explore the unknown
environment and combat advanced jamming attacks in a more practical fashion.

A sequential DRL algorithm without prior information was proposed in [116] to defend
against jamming attacks. The jamming patterns were first identified by DL and sliding
window principles. Those recognized patterns were then passed to an RL-based model to
inform online channel selection. To better achieve the tradeoff between throughput and
overhead, channel switching cost was introduced to the system. It was shown that the
proposed method could make anti-jamming channel selection decisions quickly without
modeling the jammer’s characteristics.

11.2.3.2 Attacker Enhanced Anti-Jamming Methods
Although ML provides many effective solutions for system defense when fighting jamming
attacks, it can also be exploited by attackers to develop more effective attack strategies.
Considering intelligent attackers when designing defensive measures can help avoid overly
clumsy assumptions and enhance protection schemes more reliable and practical.

In addition to anti-jamming techniques, knowing intelligent jamming strategies is also
crucial. An intelligent jammer that can adapt to its surroundings was investigated in
[7] under an electronic warfare-type scenario. To be more practical, the delay of packet
exchange information between the victim senders and the receivers was considered by the
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jammer, as opposed to the traditional assumption where the feedback is instantaneously
available. Furthermore, to implement delayed learning in scenarios where rewards were
associated with state transitions, a new method was developed. The advanced benefits of
the proposed framework were verified by studying the optimal jamming strategies against
an 802.11-type wireless network that used the RTS-CTS protocol to communicate and
deliver information.

To jam the SU communications without interfering with the PUs, a cognitive jammer
with sensing capability can exploit the same statistic information and stochastic
dynamic decision-making process that SUs would follow. To this end, an anti-jamming
multi-channel access problem was formulated in [196] as a non-stochastic multi-armed
bandit problem. By taking advantage of shared information among the transceivers, a
protocol was developed that enabled SUs to selectively sense channels with a high prob-
ability of non-occupancy by jammers and PUs based on the sensing and access historical
information.

To proactively avoid jammed channels, Q-learning was employed to learn strategies of
jammers in [165, 166]. Due to the time-consuming training process required by Q learning
for learning the behaviors of jammers, a wideband spectrum sensing ability was adopted
to speed up the learning process. Prior learned information was also used to minimize the
number of collisions with the jammer in the training phase. Finally, the effectiveness and
improvement of the modified algorithm were verified.

As shown in Figure 11.5, an adversarial ML approach launching jamming attacks and
introducing a defense strategy was presented in [157, 163]. A transmitter T first sensed
channels and identified spectrum opportunities, then transmitted data in idle channels.
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Figure 11.5 System model for attacker’s learning. Source: [163] (© [2018] IEEE).
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In the meantime, an attacker A also sensed channels and identified busy channels with
the intention of jamming legitimate users’ transmissions. A pre-trained ML algorithm
was implemented at T to classify a channel as idle or busy. This classifier was unknown
to the attacker, while A also sensed the channel to capture T’s decisions by tracking
the acknowledgments. By applying a DL with inference attack, the attacker also built a
classifier that was functionally equivalent to the one at the transmitter. Therefore, A could
reliably predict successful transmissions based on the sensing results and effectively
jam these transmissions. By exploiting the sensitivity of DL to training errors, a defense
scheme was then developed by T to defend adversarial DL. The transmitter deliberately
used a small number of wrong actions to launch a poisoning attack on the attacker when
it accesses the spectrum. The goal is to prevent A from building a reliable classifier. To
this end, T systematically decided when to take wrong actions to balance the conflicting
effects of deceiving A and making correct transmission decisions. This defense scheme
successfully fools the attacker into making prediction errors and allows the transmitter to
sustain its performance under intelligent jamming attacks.

11.2.3.3 AmBC Empowered Anti-Jamming Methods
Users in the AmBC network are vulnerable to interference and jamming since their oper-
ations are based on ambient RF signals with a limited power supply. However, every cloud
has a silver lining. The jamming attacks can be used as additional sources of energy and
information by AmBC empowered systems.

To observe the performance of the AmBC system under a jamming attack, the interaction
between a user and an intelligent jammer was modeled as a game in [151]. The backscat-
tering time utility functions of both user and jammer were designed, and the closed-form
expression for the equilibrium of the Stackelberg game was obtained. As the system SNR
information and transmission strategy of the jammer were not available, Q learning was
employed to obtain the optimal strategy in a dynamic iterative manner. Hot booting
Q-learning was further introduced to accelerate the convergence of traditional Q learning.

Most jamming countermeasures focus on how to enable users to efficiently escape the
invaded channel. AmBC opens the possibility of fighting against the malicious jammer.
As shown in Figure 11.6, a method that allowed wireless nodes to fight against a
jamming attack instead of escaping was proposed in [85, 190]. By first learning the
adversary’s jamming strategy, the users could decide whether or not to adopt the rate or
backscatter modulated information on the jamming signals. A dueling neural network
architecture-based DRL algorithm was developed to deal with unknown jamming attacks
such as jamming strategies, jamming power levels, and jamming capability. The proposed
algorithm allowed the transmitter to effectively learn about the jammer and conceive
optimal countermeasure actions such as adapting the transmission rate, backscattering,
harvesting energy, or staying idle. The system performance in terms of learning speed,
throughput, and packet loss was significantly improved by the proposed algorithm.

An RL-based jamming defense method was developed in [191], where the transmitter
could obtain the optimal operation policy through real-time interaction processes with the
malicious attacker. To be specific, when the jammer attacked the channel, the transmit-
ter could leverage the jamming signals to transmit data by using the ambient backscatter
technique or harvest energy from the jamming signals to support its operation. Thus, the



�

� �

�

11.2 ML-Assisted Secure SS 149

Ambient RF source (e.g.

TV/AM/FM radio towers)

Transmitter

Actively transmit signals

Backscatter signals

Data queue

Energy

storage

Smart jammer

Gateway

Figure 11.6 Anti-jamming attack in AmBC-CRN. Source: [190] (© [2019] IEEE).

proposed method enabled the transmitter to transmit data even under jamming attacks.
It was also observed that the more power the jammer used to attack the channel, the better
the network performed.

11.2.4 State-of-the-Art Methods of Defense Against Intercept/Eavesdrop

In eavesdropping attacks, an attacker tries to intercept private information from the
legalized communication system. The basic principle of all defense methods is keeping
leakage of information at an acceptable level. The encryption methods aim to totally block
this leakage, while the physical layer security methods maintain the leakage rate under
the required threshold by using different methods such as providing a higher channel
difference, introducing friendly jammers, and/or adding artificial noise. Many ML-based
works have been proposed to defend against eavesdropping attacks.

11.2.4.1 RL-Based Anti-Eavesdropping Methods
A multilevel Stackelberg game-based secrecy transmission of CRN under an eavesdropper
attack was considered in [169]. To protect the achievable rate, some SUs acted as the trusted
decode and forward relays. Moreover, to proactively protect the legitimated transceivers,
some SUs offered friendly jamming services and requested corresponding service charge
prices. Furthermore, an advanced encryption method was adopted to increase the effective
security level when users accessed the primary spectrum in the presence of eavesdroppers.
By this means, the achievable rate was maximized and the consumed power minimized.
Finally, a fuzzy-based MDP Outcome Prediction (MDPOP) Q learning algorithm was
proposed to eradicate eavesdropping occurrence in CRNs.

In [82], a DRL-based relay selection for secure buffer-aided CRNs was investigated.
Considering that an eavesdropper keeps intercepting the signals from the source and relays,
the relay selection problem was modeled as an MDP problem to protect the transmission
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data. A DQN-based approach was introduced to solve this MDP problem, and the 𝜖-greedy
strategy was applied to balance the exploitation and exploration.

A secure EE-based communications problem with energy harvesting ability in CRN was
investigated in [48]. With the limited energy supply and presence of passive eavesdroppers,
a TL actor-critic learning-based algorithm was introduced to help the SUs determine their
operation mode to achieve a higher security level. In particular, SUs interact with the envi-
ronment directly and choose to either stay idle to save energy or transmit the encrypted
sensing results to FC by using a suitable private-key encryption method to maximize the
long-term effective security level of the network.

In real applications, some government agencies need to locate suspicious communica-
tions via legitimate eavesdropping in an efficient manner. To this end, it is necessary to study
the optimal attack strategies for energy-constrained eavesdroppers. A full-duplex active
eavesdropper with a limited energy budget was considered in [184]. It sought to capture data
and interfere with suspicious transmission links. A legitimate attack optimization problem
was formulated based on a partially observable MDP framework to maximize the achievable
wiretap rate while minimizing the suspicious throughput over a Rayleigh fading channel.
Based on the available energy and beliefs regarding licensed channel activity, eavesdrop-
pers needed to determine the course of action with maximum long-term system benefits.
This may be either passive eavesdropping without jamming or active eavesdropping with
an optimal amount of jamming energy.

11.2.5 State-of-the-Art ML-Based Privacy Protection Methods

In this section, privacy protections for PU, SU, and ML in different SS frameworks are
sequentially reviewed.

11.2.5.1 Privacy Protection for PUs in SS Networks
In some SS networks such as SAS and LSA, leakage of PU’s privacy can cause serious secu-
rity threats. Potential malicious adversaries may exploit attacking technologies such as DIA
to obtain information about the IU and that can later be used to develop attack strategies.
To defend the DIA and protect IUs, one viable approach is to obfuscate the information
revealed by the database. There are a lot of works using ML-based obfuscation techniques
to counter inference attacks.

The authors in [43] investigated whether or not a malicious opponent could infer the
radar’s location through veiled radar information contained in the system’s precoder.
An ML-based location inference attack was simulated for two specific precoder schemes.
It was verified that radar privacy could be compromised by system information leaked
through the precoder, introducing various degrees of risks.

The tradeoff between privacy preservation and spectrum efficiency was examined in [36].
A generalized SS system architecture was proposed and a multi-utility user privacy opti-
mization problem was formulated. Potential adversary inference attacks were used to
measure privacy, and an efficient heuristic strategy was developed to solve the problem.
Compared with existing obfuscation strategies, the proposed approach can achieve a 50%
increase in privacy with an insignificant impact on SE.
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In [187], the authors first showed that adversarial SUs could employ a Bayesian
learning-based inference algorithm to accurately locate a non-stationary radar system
using only information gathered from seemingly innocuous query replies obtained from
a SAS. Several obfuscation techniques were then proposed and implemented in the SAS
for countering such inference attacks. Finally, the obfuscation techniques’ efficacy in
minimizing spectral efficiency loss while preserving incumbent privacy was investigated.

The authors in [202] proposed a CS-based federated learning framework to achieve IU
detection for improving communication efficiency while protecting the privacy of train-
ing samples. By using an MMV CS model, each sensor transmitted the updated aggregated
parameters instead of the raw spectrum data to the central server to protect privacy. They
demonstrated that the detection performance was as good as the scheme under the raw
training samples, while significantly improving the communication and training efficiency.

11.2.5.2 Privacy Protection for SUs in SS Networks
In [61], several location privacy-related attacks in CSS-based CRNs were first identified.
Such attacks can threaten SUs’ location privacy by correlating their sensing reports and
their physical location. To prevent leakage of location privacy, a privacy-preserving frame-
work was proposed. It was demonstrated that without efficient protection, the attackers
could compromise a SU’s location privacy at a success rate of more than 90%. A proposed
privacy-preserving framework was further introduced and verified, which could signifi-
cantly improve the location privacy of SUs with a minimal effect on the performance of
collaborative sensing.

To protect the location privacy of SUs while allowing them to sense vicinity spectrum
availability, two location privacy-preserving schemes for database-driven CRNs were
studied in [66]. The spectrum databases’ structured nature and SUs’ queries were exploited
by those schemes to create a compact representation of databases that could be queried by
SUs without requiring them to share their location with the database, thereby eliminating
the possibility of location leakage. Based on whether a user is a member of a set or not, the
first method, location privacy in database-driven CRNs (LPDB), constructed a compact
version of the database and provided optimal location privacy to SUs in the coverage
area. It achieved unconditional security with an acceptable communication overhead.
The second method, LPDB with two servers (LPDBQS), minimized SUs’ overhead with an
additional network entity cost. The tradeoff between cost and performance provided more
options for system design based on specific requirements.

In [237], an aggregative game was used to model SS in large-scale, heterogeneous, and
dynamic network. By utilizing past channel access experience, an online learning algorithm
was proposed to improve the utility of each user. Considering the heterogeneous impact of
users, a multi-dimensional aggregative game was used to model the SS of the large-scale
wireless network. A mediated privacy-preserving and truthful mechanism was developed
to achieve an 𝜂-approximate ex-post NE and provided no regret guarantee for each user.
It was shown that the proposed method satisfied joint differential privacy.

11.2.5.3 Privacy Protection for ML Algorithms
The sensitive training data in ML-based applications faced distinct privacy issues.
Malicious attackers can obtain private information through the structure of models or
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their observations. To investigate the privacy leakage of training data, the authors in [221]
introduced novel formal definitions of advantage for membership and attribute inference
attacks. Attacks in different learning algorithms and model properties were analyzed based
on these definitions. It was shown that overfit could increase the risk of privacy leakages.

Secure Multi Party Computation (MPC) allows different entities to share joint data to
train their models without releasing any private information in the training data. The
MPC-based privacy-preserving method was investigated in [134] for linear regression,
logistic regression, and neural network training using the stochastic gradient descent
method. A two-server model was considered, and the training data was securely dis-
tributed among two non-colluding servers. Different models were trained on the joint data
using secure Two Party Computation (2PC). It was shown that their new techniques could
significantly increase speed while guaranteeing performance without leaking data privacy.

Cloud computing frameworks provide many benefits to the communication networks,
such as powerful processability and unlimited storage space. However, some cloud services
are provided by third parties such as Amazon AWS, Google Cloud, Microsoft Azure, etc.
Users may hesitate to entrust their sensitive data to these entities, and rightly so.

To protect different data owners’ privacy, the authors in [70] introduced a new efficient
method that allowed all participants to publicly verify the veracity of the encrypted data.
A Unidirectional Proxy Re-Encryption (UPRE) method was also adopted to lower the com-
putation costs. A noise was further added to the encrypted data to preserve the private
information while guaranteeing the effectiveness of ML training on cloud.

A cloud-assisted privacy-preserving ML framework was developed in [224]. By using out-
sourced ML algorithms, the cloud server first generated a model, then processed testing
data from the network with the generated model in real-time. The proposed framework
adopted a differential privacy method of performing privacy-preserving data analysis and
homomorphic encryption in order to conduct valid operations over encrypted data.

FL allowed decoupling of data provision and ML model aggregation and shows promise
as a framework for addressing privacy problems for distributed ML [178]. It enables
the users to cooperatively learn a global model without sacrificing data privacy directly.
The information transmitted for FL consists of minimal updates to improve a particular
machine learning model. However, the design of FL still needs the protection of parameters
as well as investigations on the tradeoffs between the privacy-security-level and the system
performance. The study [62] suggested that FL could expose intermediate results such
as stochastic gradient descent, and the transmission of these gradients may actually leak
private information when exposed together with a data structure. It is still possible for
adversaries to reconstruct the raw data approximately, especially when the architecture
and parameters are not completely protected.

To investigate the leakage of private information in users’ data, the performance of mali-
cious servers was studied in [201]. A GAN-based framework with a multi-task discriminator
capable of discriminating category, reality, and client identity included in input samples
simultaneously was introduced. It was shown that the generator could easily recover the
specific private data of users, particularly client identity.

An efficient and robust protocol for high-dimensional data secure aggregation was pro-
posed in [18] that can be used in FL. Using this protocol, a server was able to compute the
sum of large user-held data vectors from mobile devices to aggregate user-provided model
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updates for a DNN model without distinguishing individual user’s contributions. In addi-
tion, the effectiveness and efficiency of the proposed protocol were verified.

A GAN-based privacy-preserving method was proposed in [155] to obfuscate users’
sensitive information. The proposed method employed a generator to produce an optimal
obfuscation method for data protection. At the same time, a classifier was used to deobfus-
cate the data. These two nets continued to play against each other until they achieved an
equilibrium. This process can raise the level of protection. By investigating location privacy
protection on the Gowalla dataset and synthetic data, it was shown that the proposed
approach could achieve privacy protection and deal with the Bayes error.

To alleviate the threat of black-box inference attacks against ML models, a mechanism
to train models with membership privacy was introduced in [137]. By formulating a
min-max game, an adversarial training algorithm was designed to minimize the prediction
loss of the model and the maximum gain of the inference attacks. The effectiveness of
the min-max strategy on defending membership inference attacks was verified without
significantly downgrading the model’s prediction accuracy.

To defend against the attribute inference attacks, a countermeasure named AttriGuard
was proposed in [90]. AttriGuard works in two phases. In Phase I, the minimum noise was
found by adapting existing evasion attacks in adversarial ML. This noise protects users’
attribute values by adding itself to the user’s public data. In Phase II, the proposed method
sampled one attribute value according to a certain probability distribution and added the
corresponding noise found in Phase I to the user’s public data.

Blockchain techniques offer new security and privacy protection options to the
distributed network. It can enhance security and privacy protection by providing
authentication, access control, and confidentiality [58]. The authors in [5] developed a
blockchain-based method to protect the user’s security in the SS network. A Multiple
Operators SS (MOSS) smart contract framework was proposed to allow users to share their
spectrum decentralized and secure.

Moreover, a combination of blockchain and a DRL framework named DeepCoin has been
proposed in [57] to preserve the energy system to defend against Byzantine attacks. By using
short signatures and functions to generate the blocks, it can prevent smart grid attacks.
Furthermore, the DRL in their framework can detect network attacks and fraudulent trans-
actions for the blockchain-based energy network by using recurrent neural networks. The
performance of their proposed method has been verified.

11.3 Summary

In this chapter, a comprehensive investigation of state-of-the- art ML-based SS solutions was
presented. It has been noted that the dynamic access and sharing paradigms of SS networks
may open the system to many security concerns. Two typical spectrum sensing attacks were
discussed, i.e. PUE and SSDF. Two common attacks, i.e. jamming and eavesdropping, dur-
ing wireless access and transmission in the context of the SS network were also addressed.
Furthermore, the coexistence of different types of users and the application of ML all require
massive information exchanges, generating tremendous concerns about privacy.
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Open Issues and Future Directions for 5G and Beyond Wireless
Networks

Wireless communication is a fast-growing field that attracts much research attention,
from both industry and academia. As we progress to the next decade, the need for wireless
connectivity will continue to grow, and the big challenge arises when the expected wireless
system support new applications, such as metaverse, vehicle communication, and at
space-air-ground domain. The demand–supply relationship in wireless communication
will continue to push technologies forward. In this chapter, we briefly summarize active
research for the next-generation wireless systems.

12.1 Joint Communication and Sensing

Future wireless system not only desires for highly reliable and faster connectivity, but
also the ability to sense surrounding dynamics with ubiquitous wireless signals [133].
Such sensing capabilities include range and velocity estimation, object detection, collision
avoidance, and localization. In the past, communication and sensing have been designed
separately, where either communication or sensing is the main target design, the other
as the by-product. However, integrating both functionalities within one system has clear
advantages in providing better power and spectral efficiency, as well as reducing hardware
and signaling cost through efficient resource coordination [56, 117].

Joint communication and sensing has attracted extensive attention from the perspec-
tive of jointly considering and unifying two operations, especially in emerging applications
like vehicle-to-everything (V2X), where simultaneous information exchange and radar-like
parameter estimation are critical. Yet, achieving integration gain from Joint communica-
tion and sensing system faces numerous challenges. Among them, Joint communication
and sensing physical layer design such as waveform optimization, collaborative resource
allocation, and beamforming are of paramount importance.

12.2 Space-Air-Ground Communication

One limitation for 5G wireless system is that it provides network access mainly for terres-
trial (ground) communication. Emerging applications in the space, such as satellite, and

5G and Beyond Wireless Communication Networks, First Edition. Haijian Sun, Rose Qingyang Hu, and Yi Qian.
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air communication for UAVs have different needs. Besides, their design philosophy is very
much different. For example, UAV communication expects LoS scenarios (signal propa-
gation is in favor condition) but power and trajectory optimization are more important
design factors. Recently, the space-air-ground integrated network (SAGIN) has been pro-
posed. SAGIN provides seamless coverage for larger areas, including sea, space, ground,
and air.

SAGIN has to consider various factors from each segment, current design focuses on pro-
tocol optimization, resource allocation, performance analysis, mobility management, and
inter-segment operation [112]. Furthermore, the network design and system integration in
SAGIN are of great significance.

12.3 Semantic Communication

Communication should be used not only for exchanging data bits, but also for semantic
exchange. In fact, many scenarios involve semantic information. For example, transmitting
natural languages. Current solution needs to convert language into bits via upper layer oper-
ations, then simply send those bits through medium. In [150], the difference between bit
and semantic transmission is shown in Figure 1 therein. Essentially, semantic communi-
cation will utilize advanced ML techniques to perform semantic encoding at transmitter
and correspondingly semantic decoding at the receiver end, avoiding the source encod-
ing/decoding directly. The challenge is that current system will undergo significant mod-
ifications, for example, the need for new metric for semantic entropy, semantic channel,
and noise factor. Nevertheless, semantic communication is regarded as an important com-
ponent in 5G beyond.

12.4 Data-Driven Communication System Design

The exponential growth of data traffic and recent advancement on ML fuel the data-driven
communication system design. In particular, collected data can help innovative designs on
modulation, coding, scheduling, architecture, resource management, and even end-to-end
[217]. ML is one of the most powerful tools and can effectively explore massive data and
make accurate predictions and plannings. For example, future communication design
may not start from problem formulation and then be solved with traditional convex
(or non-convex) optimization. Rather, the model design can learn from data and reach
something we have yet seen. Another big challenge that data-driven approach can address
is the network scalability, which is of critical importance in massive IoT era.
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Appendix A

Proof of Theorem 5.1

To prove the Theorem, we first consider the KKT conditions of P3. Specifically, with some
simple algebraic manipulation, (5.11) can be rewritten as

[
𝛼i,kI 𝟎
𝟎 ti,k

]
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[
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I ĝn
]
⪰ 𝟎, ∀n ∈  , (A.2)

and [
𝜃kI 𝟎
𝟎 mk

]
+

[
I

ĥ
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For notational simplicity, we let Xi =
[
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]
and Yn =

[
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]
. Also, denote
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+
as the KKT multiplier. Then the Lagrange dual function  can be expressed as
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]
and 𝜅 are the terms irrelevant of Wk. Taking the partial

derivative of the dual function regarding Wk, we have
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In addition, the dual problem needs to satisfy the completeness slackness([
𝛼i,kI 𝟎
𝟎 ti,k

]
+ X†

i CkXi + Mk

)
Ai,k = 𝟎, (A.6a)

EkWk = 𝟎,∀k ∈ , i = {k + 1,… ,K},∀n ∈  . (A.6b)

Right multiplying Wk with (A.5), and substituting (A.6b), we can get(∑
i

XiAi,kX†
i +

∑
k

XkBkX†
k

)
Wk =

[
(1 + z)I + 𝛾k,min

∑
i

K∑
j=k+1

Ai,j

+𝛾k,min

∑
i

k−1∑
j=1

XiAi,jX
†
i +

∑
n

YnDnY†
n

]
Wk. (A.7)

Since all the KKT multipliers are positive numbers or positive semidefinite matrix,{
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After a simple transformation, we have
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From the fact that (5.11) is a positive semidefinite matrix,
(
𝛼i,kI + Ck − 𝛾k,min

∑k−1
j=1 Wj

)
would be a non-singular matrix, thus the rank of the left term of the above equation is the
same as

∑
iXiAi,kX†

i . Also, it is easy to verify that the right term has a rank 1.
Similarly, we can prove that Rank(

∑
nYnDnY†

n ) = 1. Therefore, the following equation
holds.
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which proves the theorem.
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