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New technological developments have 
made heat transfer systems more complex 
than ever before. It is nearly impossible 
for one person to maintain expertise in 
more than a handful of the major sub
fields of heat convection technology. 
Handbook of Single-Phase Convect ive 
Heat Transfer brings together research 
and design information in single
phase convective heat transfer which ap
pears in almost all types of heat transfer 
equipment.

This practical and handy reference repre
sents the collective work of the world's 
leading authorities in heat transfer re
search and applications. In fact, this vol
ume is the most extensive compilation of 
engineering and design data and reliable 
information ever published in this field. It. 
includes recent major developments in 
both fundamentals and applications, and 
provides valuable information to practic
ing engineers for convection heat transfer 
problems they face every day.

Readers will find a thorough study of nat
ural and forced convection under a wide 
range of design conditions, as well as ra
diation interaction, fouling conditions, 
and methods of single-phase heat transfer 
augmentation. Comprehensive and reli
able design and research information is 
presented through extensive tables, 
charts, and empirical correlations for a 
wide variety of applications.

Beyond its usefulness to engineers, 
Handbook of Single-Phase Convective 
Heat Transfer will furnish researchers, 
academicians, and students with a view 
of the state of the art in this important 
field.

About the editors

Sadik Kakac is currently Professor of 
Mechanical Engineering at the University 
of Miami, Coral Gables, Florida. He re
ceived his Dipl. Ing. (1955) in mechanical 
engineering from the Technical Univer
sity of Istanbul and his S.M. (1959) in me- 
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CONVERSION FACTORS
Area: 1 nr = 1550.0 in2 = 10.7639 ft2 = 1 19599 yd2 = 2.47104 X 10 4 acre = 1 X 10 4 ha 

= 10 6 km2 = 3 8610 X 10-7 mi2

Density: 1 kg/m3 = 0.06243 lbm/ft' = 0.01002 lbm/U.K. gallon = 8.3454 X 10 3 lbm/U.S. gal
lon = 1 9403 X 10-3 slug/ft3 = 10-3 g/cm3

Energy: 1 kJ = 737 56 ft • lb, = 238 85 cal = 0.94783 Btu = 3.7251 X IO"4 hp ■ hr = 2.7778 X 
!()-4 kW ■ hr

Force 1 lbz = 1 slug ■ ft/s2

Heat transfer coefficient: 1 W/(m2 • K) = 0 8598 kcal/(m" ■ hr ■ °C) = 0.1761 Btu/(ff • hr • 
°F) = IO’4 W/(cm2 • K) = 0.2388 X IO-4 cal/(cm2 • s ■ °C)

Inertia: 1 kg • nr = 3 41717 X 103 lb,„ — lb„, - in2 = 0.73756 slug ■ ft2

Length: 1 m = IO10 Angstrom units = 39.370 in = 3.28084 ft = 4 971 links = 1 0936 yd = 
0.54681 fathoms = 0.04971 chain = 4.97097 X 10 1 furlong = IO-3 km = 5.3961 X 10 4 
UK nautical miles = 5.3996 X 10 4 U S. nautical miles = 6.2137 X 10~4 mi

Mass: 1 kg = 2 20462 lbm = 0.06852 slug = 1.1023 X IO-3 US. ton = IO-3 tonne = 9.8421 X 
10’4 U.K ton

Mass flow rate: 1 kg/s = 2.20462 lbm/s = 132.28 lb„,/mm = 7936.64 lbm/hr = 3.54314 long 
ton/hr = 3 96832 short ton/hr

Power. 1 W = 44 2537 ft • Ib/nun = 3 41214 Btu/hr = 1 J/s = 0.73756 ft ■ lby/s = 0.23885 
cal/s = 0.8598 kcal/hr

Pressure: 1 bar = 105 N/nr — 10’ Pa = 750.06 mm Hg at 0°C = 401.47 in. H?O at 32°F = 
29.530 in. Hg at 0°C = 14.504 Ib/in.2 = 14 504 psia = 1.01972 kg/cm2 = 0.98692 atm = 0.1 
MPa

Specific energy: 1 kJ/kg = 334 55 ft lbz/lb„, = 0.4299 Btu/lb„, = 0.2388 cal/g

Specific energy per degree: 1 kJ/(kg ■ K) = 0.23885 Btu/(lbm • °F) = 0.23885 cal/(g °C)

Surface tension: 1 N/m = 5 71015 X 10 3 lby/in

Temperature: T(K) = T(°C) + 273.15 = |T(°F) + 459 67]/! 8 = T(°R)/1 8

Temperature difference: AT(K) = AT(°C) = AT(°F)/1.8 = A7'(°R)/1.8

Thermal conductivity: 1 W/(m K) = 0.8604 kcal/(m hr • °C) = 0.5782 Btu/(ft • hr ■ °F) = 
0 01 W/(cm K) = 2 390 X IO-3 cal/(cm • s • °C)

Thermal diffusivity: 1 m2/s = 38750 ft2/hr = 3600 nr/hr = 10.764 ft2/s

Torque; 1 N • m = 141.61 oz • in = 8.85073 tty ■ in = 0.73756 lby ft = 0 10197 kgy • m

Velocity: 1 m/s = 100 cm/s = 196.85 ft/min = 3 28084 ft/s = 2.23694 mi/hr = 2.23694 inph 
= 3.6 km/hr = 1.94260 U.K knot = 1 94384 Int knot

Viscosity, dynamic: 1 N ■ s/m2 = 1 Pa ■ s = 107 pP = 2419.1 lb„,/(ft ■ hr) = 103 cP = 75 188 
slug/(ft ■ hr) = 10 P = 0.6720 lbm/(ft • s) = 0.02089 lb, • s/ft2

Viscosity, kinematic: (see Hiermal diffusivity)

Volume: 1 m3 = 61024 in3 = 1000 liters = 219.97 U.K. gallon = 264.17 U.S. gallon = 35.3147 
ft3 = 1.30795 yd3 = 1 stere = 0.81071 X 10“3 acre-foot

Volume flow rate: 1 m3/s = 35.3147 ft3/s = 2.118.9 ft3/min = 13198 U.K. gallon/min = 791890 
U K gallon/hr = 15850 U S gallon/min = 951019 U.S. gallon/hr
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PREFACE

The field of heat transfer has grown enormously in the last 20 years with the explosion 
of scientific and engineering research. It has increased tremendously the depth of our 
understanding. It is no longer possible for a single individual to be intimately familiar 
with and/or be an expert in even some major subfields of heat transfer. One such 
subfield of great industrial importance is single-phase convective heat transfer. This is 
the subject that we have tried here in considerable depth with the dedicated effort of 25 
specialists.

This handbook is intended to furnish the latest design and research information in 
the area of single-phase convective heat transfer to practicing engineers, researchers, 
academicians, and students. It consists of 22 chapters, a brief description of which is 
provided next.

Chapter 1. This chapter provides the reader with basic concepts and fundamentals of 
heat transfer. Four general laws are stated in terms of a system, and then control
volume forms are given. Particular laws of heat transfer are stated. Governing 
equations of convective heat transfer are formulated and are presented in tabular 
form for rectangular, cylindrical, and spherical coordinates. Boundary-layer ap
proximations for laminar and turbulent flow are presented.

Chapter 2. This chapter deals with external flow forced convection. Fundamental 
equations in general form and definitions are presented first. Then, Reynolds 
equations for turbulent flow are described; reduced forms for inviscid flow and 
viscous flow are given. Summaries of the common turbulent models are presented. 
The flow over a flat plate and in other geometries is discussed; important correla
tions for heat transfer and friction coefficients are provided. General formulas and 
data correlations for use in preliminary design and as benchmark checks for 
computer codes are also discussed in this chapter. In addition, the capabilities of 
computational procedures for forced convection over external surfaces are also 
discussed.

Chapter 3. This chapter presents an up-to-date compilation of analytical solutions for 
laminar fluid flow and forced convection heat transfer in circular and noncircular 
ducts. The solutions are presented for four types of laminar flows of Newtonian 
fluids, viz., fully developed, hydrodynamically developing, thermally developing, 
and simultaneously developing flows. The most solutions are given in terms of 
mathematical expressions and in graphical form to elicit the general trends. In all, 
results are presented for 70 duct geometries covering a variety of thermal boundary 
conditions.

vii
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Chapter 4. In this chapter, the heat transfer and fluid flow characteristics of turbulent 
flows in ducts are considered. The turbulent pressure drop and heat transfer for 
various entry and wall surface conditions are presented. Other effects such as the 
influences of thermal boundary conditions, entrance shape, high velocity, porous 
walls, Prandtl number, body force, and internal heat generation on turbulent forced 
convection are discussed. Turbulent flows in planar ducts, rectangular ducts, and 
other-shaped ducts are presented. Various turbulence models are discussed. Correla
tions covering a number of geometries and conditions for turbulent flow in ducts are 
provided, along with constraints, if any, on their practical application.

Chapter 5. Based on an extensive literature search, dimensionless heat transfer and 
flow friction design data are presented for curved ducts with circular, square, and 
rectangular cross sections. These design data are based on the theoretical analyses 
and experimental measurements on laminar and turbulent flows of Newtonian and 
non-Newtonian fluids through curved ducts. The results are presented in terms of 
design correlations, graphs, or tables.

Chapter 6. This chapter deals with convective heat transfer in cross flow. Correlations 
for the local and average heat transfer coefficients of single tubes and bodies for 
cross flow are presented, and the factors influencing heat transfer are discussed. 
Heat transfer from smooth and rough tube bundles, and the drag of smooth and 
yawed tube bundles are treated, as well as heat transfer from finned tube bundles. 
Heat transfer correlations are presented in tabular forms. Extensive design informa
tion for convective heat transfer in cross flow is also provided in graphical form.

Chapter 7. Longitudinal flow over tube or rod bundles is common in most fuel 
elements of nuclear power reactors. Other applications of this geometry are encoun
tered in shell-and-tube heat exchangers, boilers, condensers, etc. This chapter 
provides information on heat transfer and friction coefficients for laminar, transi
tional, and turbulent flow over rod bundles for various conditions. Various correla
tions useful to the designers are presented, and effects of spacers are discussed. 
V aluable information is provided in graphical forms.

Chapter 8. This chapter provides the reader with a short introduction to the fundamen
tals of liquid metal heat transfer, followed by detailed discussions of laminar and 
turbulent liquid metal heat transfer correlations. Thermal entry lengths, variable 
fluid properties, and natural convection are also treated in this chapter. Flows in 
various geometries, including round pipes, annuli, parallel plates, and various 
tube-bank geometries, are also covered. Both laminar and turbulent entry-length 
correlations are presented. Correlations covering a number of plate geometries in 
natural convection heat transfer are presented, as well as the correlation for heat 
transfer from horizontal cylinders.

Chapter 9. This chapter discusses the convective heat transfer with electric and 
magnetic fields. The important basic concepts of electrohydrodynamics (EHD) and 
of magnetohydrodynamics (MHD) are presented. EHD in external boundary layers 
and in confined flows is treated. The experimental and mathematical limitations of 
the existing literature have been emphasized. Governing equations and dimension
less groups are presented. The basic physics of magnetic field effects in electrically 
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conducting liquids is discussed. MHD in confined flows, in external flows, and in 
natural convection are presented.

Chapter 10. Bends and fittings are most commonly used in pipelines, for which 
considerable pressure drop information has been summarized in the literature. A 
first attempt is made here to compile the available heat transfer information for 
bends with 90°, 180°, and other angles. Experimental and theoretical results for 
laminar and turbulent flow friction factors and Nusselt numbers are presented 
for bends having circular, square, and rectangular cross sections.

Chapter 11. This chapter is mainly concerned with the transient response of duct flows. 
The parallel-plate channel and circular duct, which are the two commonly encoun
tered geometries in practice, are considered with both laminar and turbulent flows. 
The results of transient laminar forced convection in ducts for a step change in wall 
temperature and in wall heat flux are presented. Transient laminar forced convec
tion in circular ducts with arbitrary time variations in wall temperature and with 
unsteady flow is also considered. The chapter also discusses transient turbulent 
forced convection in circular ducts with a step change in wall temperature, and in 
parallel-plate channels for a step change in wall temperature and wall heat flux.

Chapter 12. This chapter presents the basic considerations for the study of natural
convection heat transfer. The governing equations, along with their important 
simplifications, are presented to indicate the dimensionless parameters that arise 
and the basic nature of the transport process. Laminar natural convection over flat 
surfaces, cylinders, and spheres is discussed in detail, and the resulting heat transfer 
expressions presented. Transient effects and turbulent flow are outlined, since many 
practical problems involve these effects. Recommended empirical correlations for a 
variety of external natural convection heat transfer processes are given, along with 
the constraints, if any, on their application to physical problems.

Chapter 13. This chapter provides important basic information on the physics of the 
natural convection phenomena in enclosures; the formalism of the mathematical 
formulation of the natural convection problem; the available solution techniques; 
some significant results in the field, including both theoretical and experimental data 
and their correlation; and a brief description of recent studies of basic natural 
convection phenomena interacting with other heat transfer processes in an en
closure. Some emphasis is placed on the modern development in this field, including 
numerical and experimental techniques, laminar and turbulent flows, and two
dimensional and three-dimensional phenomena. Areas of future research are also 
delineated.

I ''I* '' Chapter 14. This chapter deals with mixed convection in external flows. Results on the 
local Nusselt number are presented for various flow configurations, and instability 
studies conducted for these flows are described. This chapter summarizes and 
presents comprehensive correlations for the local and average Nusselt numbers that 
cover the entire mixed-convection regime, from pure forced convection to pure free 
convection, for various flow configurations of engineering interest, and for laminar 
as well as turbulent flows under the heating conditions of uniform wall temperature 
(UWT) and uniform surface heat flux (UHF). The instability characteristics of 
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laminar mixed convection along flat plates, with regard to both wave and vortex 
instability, are also summarized.

■ Chapter 15. This chapter discusses combined free and forced convection in internal
/ ‘ V flow. The best available information is summarized, and correlations are presented 

for ducts in the vertical and horizontal orientations. Results are categorized accord
ing to laminar, transitional, and turbulent flow, and according to duct geometry, 
heating conditions, buoyancy-assisted or buoyancy-opposed flow, and whether or 
not the flow is hydrodynamically or thermally fully developed. The effects of 
secondary flow in horizontal ducts are indicated, and the contrasting influences 
of buoyancy forces on mixed convection in laminar flow and in turbulent flow are 
discussed.

Chapter 16. This is an up-to-date review of the literature on convective heat transfer in 
porous media. It emphasizes scale analysis as a means of identifying and sorting out 
the proper heat transfer scales of forced and natural convection through porous 
media. The engineering heat transfer correlations assembled in this chapter are all 
scaling-correct correlations, i.e., their analytical forms are the ones recommended by 
the appropriate scale analysis. In many instances, classical experimental and 
numerical results are here condensed into scaling-correct correlations.

Chapter 17. This chapter discusses special heat transfer surface geometries that yield 
higher heat transfer coefficients than “plain” surfaces do. The major emphasis of the 
chapter is on forced convection of gases and liquids. The enhancement geometries 
covered include finned surfaces for gases and tube-side enhancement for laminar 
and turbulent flow of gases. Design equations are provided to calculate the heat 
transfer coefficient and friction factor for all of the enhancement geometries 
discussed. Performance Evaluation Criteria are described, which are used to calcu
late the performance improvement provided by an enhanced surface, relative to that 
of a plain surface for specific design objectives and operating constraints.

Chapter 18. This chapter deals with the effect of temperature-dependent fluid proper
ties on convective heat transfer. Correlations for heat transfer and friction coeffi
cients which take into account temperature-dependent properties are described for 
viscous liquids and gases both for laminar and turbulent flow. Many solutions are 
sun eyed which have been proposed to describe these effects as they occur in 
practical applications. Tabular forms of correlations for heat transfer and friction 
coefficients for turbulent flow in ducts with variable physical properties are pro
vided. The particular characteristics of fluids at supercritical pressure are described, 
the role of property variations in influencing flow and heat transfer is discussed, and 
correlations of supercritical forced convection are presented. The chapter also 
surveys and summarizes the available solutions and experimental studies on temper
ature-dependent effects as they occur in natural convection.

Chapter 19. When heat transfer by radiation is of the same order of magnitude as 
convection, radiation and convection need to be treated simultaneously. In such 
situations, in the analysis of the problem distinction should be made between cases 
involving a completely transparent fluid and a fluid that absorbs, emits, and perhaps 
scatters radiation. In this chapter, radiation transfer in nonparticipating and par
ticipating media is discussed for such cases, and typical heat transfer results arc 
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presented on the effects of radiation parameters such as the conduction-to-radiation 
parameter, optical thickness, surface reflectivity, and single-scattering albedo on the 
Nusselt number and temperature distribution for forced convection over a flat plate 
and inside a parallel-plate duct.

Chapter 20. The basic definitions of non-Newtonian fluids and their rheological 
properties are presented. Methods of measuring these rheological properties are 
described. Analyses are made of the flow and heat transfer characteristics of 
non-Newtonian flows in both ducts and over external surfaces in laminar and 
turbulent flows. Both free and forced convection are considered. Emphasis has been 
placed on the presentation of results in a form suitable for engineering design 
calculations.

Chapter 21. This chapter is concerned with the fouling of heat transfer surfaces; a 
reasonable balance between gas-side and liquid-side fouling is maintained 
throughout. The treatment is design-oriented and includes tabulated values of 
liquid-side and gas-side fouling factors, along with properties of representative 
fouling deposits. Detailed procedures are presented for taking into account the 
effects of fouling on both pressure drop and heat transfer. A considerable amount of 
material on techniques available to combat fouling is also presented and discussed.

Chapter 22. Tables are given of the thermophysical properties: specific volume, specific 
enthalpy, specific entropy, specific heat at constant pressure, viscosity, thermal 
conductivity, and Prandtl number as a function of temperature. For saturated liquid 
and vapor, these are given for air, carbon dioxide, cesium, lithium, mercury, 
potassium, Refrigerant 12, Refrigerant 22, rubidium, sodium, and steam. Similar 
saturated tables for ice-water-steam are given as a function of pressure. Wherever 
possible, the different tables are presented at equal temperatures and temperature 
increments to facilitate comparisons in design and also computer programming of 
the data.

Most of the results of engineering utility are presented in terms of equations, tables, 
and/or figures. Where appropriate, most results are presented in nondimensional form; 
and the dimensional results are presented in two unit systems—the International 
System (SI) and the U.S. Customary System (USCS)—to allow for the worldwide use 
of this handbook. Although the nomenclature is listed at the end of each chapter, the 
editors have made a diligent effort to make most of the symbols common throughout 
the handbook.

The success of this handbook rests with the quality of the information provided by 
the contributors. We are grateful to them for providing excellent material in a timely 
manner and within the length limitations. The editorial staff at John Wiley has 
provided superb cooperation and continued support throughout the compilation of this 
handbook, from the inception of the idea to the final production. In particular, we 
sincerely appreciate the cordial and prompt support of Mr. Frank Cerra on all matters 
of concern. We also gratefully acknowledge the outstanding editorial work of Mr. 
Joseph Fineman, the efficient work and outstanding cooperation of Lisa VanHorn 
during the production and the excellent figures prepared by Mr. Ali Akgune§ of the 
Middle East Technical University, Ankara, Turkey. We also wish to thank the 
professional staff of John Wiley & Sons, Inc. who were involved with the pubheation of 
this Handbook. The first editor would like to express his appreciation to Norman 
Einspruch, Dean of the College of Engineering at the University of Miami for 
suggesting the idea of preparing a handbook.
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Every effort has been made by the editors to minimize typographical errors. Each 
chapter has been independently reviewed by other experts in the field to enhance the 
quality and the correctness. If any errors come to the attention of readers, we would 
greatly appreciate being informed of them so that they can be eliminated in the 
subsequent printing. Of course, we would also appreciate any more general comments 
related to any chapter.

S. Kaka£ 
R. K. Shah 
W. Aung

Coral Cables, Florida 
Lockport, New York 
Washington, D.C.
June 1987
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1-2 BASICS OF HEAT TRANSFER

1.1 INTRODUCTION

Convective heat transfer is the study of heat transport processes between the layers of a 
fluid when the fluid is in motion and/or between a fluid in motion and a boundary 
surface in contact with it when they are at different temperatures.

Heat is that form of energy which crosses the boundary of a thermodynamic system 
by virtue of a temperature difference existing between the system and its surroundings. 
Heat flow is vectorial in the sense that it is in the direction of negative temperature 
gradients, i.e., from higher toward lower temperatures.

The science of heat transfer is based upon foundations comprising both theory and 
experiment. As in other engineering disciplines, the theoretical part is constructed from 
one or more physical (or natural) laws. The physical laws are statements, in terms of 
various concepts, which have been found to be true through many years of experimen
tal observations. A physical law is called a general law if its application is independent 
of the medium under consideration. Otherwise, it is called a particular law. There are, 
in fact, the following four general laws among others upon which all the analyses 
concerning heat transfer, either directly or indirectly, depend:

1 The law of conservation of mass
2. The first law of thermodynamics
3. The second law of thermodynamics
4. Newton’s second law of motion

In addition to the general laws, it is usually necessary to bring certain particular laws 
into an analysis. Examples are Fourier’s law of heat conduction, Newton’s law of 
cooling, the Stefan-Boltzmann law of radiation, Newton’s law of viscosity, the ideal-gas 
law, etc.

1.2 MODES OF HEAT TRANSFER

The mechanism by which heat is transferred in a heat exchange or an energy 
conversion system is, in fact, quite complex. There appear, however, to be three rather 
basic and distinct modes of heat transfer. These are conduction, convection, and 
radiation.

Conduction is the process of heat transfer by molecular motion, supplemented in 
some cases by the flow of free electrons, through a body (solid, liquid, or gaseous) from 
a region of high temperature to a region of low temperature. Heat transfer by 
conduction also takes place across the interface between two bodies in contact when 
they are at different temperatures.

The mechanism of heat conduction in liquids and gases has been postulated as the 
transfer of kinetic energy of the molecular movement. Transfer of thermal energy to a 
fluid increases its internal energy by increasing the kinetic energy of its vibrating 
molecules, and is measured by the increase of its temperature. Heat conduction is thus 
the transfer of kinetic energy of the more energetic molecules in the high-temperature 
region by successive collisions to the molecules in the low-temperature region.

Heat conduction in solids with crystalline structure, such as quartz, depends on 
energy transfer by molecular and lattice vibrations and free-electron drift. In general, 
energy transfer by molecular and lattice vibrations is not as large as the transfer by free 
electrons. This is the reason why good electrical conductors are always good heat 
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conductors, and electrical insulators are usually good heat insulators. In the case of 
amorphous solids, such as glass, heat conduction depends only on the molecular 
transport of energy.

I hernial radiation, <jr simply radiation, is heat transfer in the form of electromag
netic waves. All substances, solid bodies as well as liquids and gases, emit radiation as a 
result of their temperature, and they are also capable of absorbing such energy, 
furthermore, radiation can pass through certain types of substances (called transparent 
and semitransparent materials) a well as through vacuum, whereas for heat conduction 
to take place a material medium is absolutely necessary.

Conduction is the only mechanism by which heat can flow in opaque solids, 
through certain transparent or semitransparent solids, such as glass and quartz, energy 
flow can be by radiation as well as by conduction. With gases and liquids, if there is no 
observable fluid motion, the heat transfer mechanism will be conduction (and radia
tion). However, if there is macroscopic fluid motion, energy can also be transported in 
the form of internal energy by the movement of the fluid itself. The process of energy 
transport by the combined effects of heat conduction (and radiation) and the move
ment of fluid is referred to as convection or convective heat transfer.

1.3 STATEMENTS OF GENERAL LAWS

In the following sections, the four general laws referred to in Sec. 1.1 are stated first in 
terms of a system, and then the control-volume forms are given.

1.3.1 Law of Conservation of Mass
A system is any arbitrary collection of matter of fixed identity bounded by a closed 
surface, which can be a real or an imaginary one. All other systems that interact with 
the system under consideration are known as its surroundings. The law of conservation 
of mass simply states that, in the absence of any mass-energy conversion, the mass of a 
system remains constant. Thus, for a system

dm
— =0, or m = constant (1.1)
dt

where m is the mass of the system.
A control volume is any defined region in space, across the boundaries of which 

matter, energy, and momentum may flow, within which matter, energy, and momentum 
storage may take place, and on which external forces may act. Its position and/or size 
may change with time. Consider now a control volume fixed in space and of fixed size 
and shape, as illustrated in Fig. 1.1. Matter (e.g., a fluid) flows across its boundaries. 
The law of conservation of mass for this control volume can then be expressed as

dmc v
—— = m,n - mout (1.2a)
dt

where m ,. is the instantaneous mass inside the control volume, and m n and are 
the instaneous mass flow rates into and out of the control volume, respectively. 
Equation (1.2a) can also be written as [1,2]

<9 r r— f p dV = - / pV-hdA (1.2b)
dt^c.V. Jc.s.
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Figure 1.1. Flow through a control volume.

where d\! is an element of the control volume, p is the local density of that element, 
and c.v. designates the control volume fixed in space and bounded by the control 
surface (c.s.). Finally, V is the velocity vector, and n is the outward-pointing unit vector 
normal to the control surface.

The control-volume form of the law of conservation of mass states that the net rate 
of mass flow into a control volume is equal to the time rate of change of mass within 
the control volume.

1.3.2 Newton’s Second Law of Motion
Newton’s second law of motion states that the net force F acting on a system in an 
inertial coordinate system is equal to the time rate of change of the total linear 
momentum M of the system; that is,

JM
F =-----

dt

which, for the control volume shown in Fig. 1.1, reduces to [1,2]

F = T [ VpdV + f NpV -ndA 
ut •'c.v. •'c.s.

(1 3)

(1.4)

This result is usually called the momentum theorem or the law of conservation of linear 
momentum and states that the net force acting instantaneously on a control volume is 
equal to the time rate of change of linear momentum within the control volume plus 
the net flow rate of linear momentum out of the control volume.

Equation (1.4) is a vector relation. Referred to the rectangular coordinates x, y, and 
z, the component in the x direction, for example, can be written as

Fx = — ( up dM + f upV • n dA 
vt •'c.v. •'c.s.

(1.5)

where u and Fx are the x components of the velocity vector V and the force vector F, 
respectively.
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1.3.3 First Law of Thermodynamics
The thermodynamic state of a system is its conditions, as described by a list of the 
values of all its properties. A property of a system is cither a directly or an indirectly 
observable characteristic of the system and can, in principle, be quantitatively evaluated. 
Volume, mass, pressure, temperature, etc., are all properties. If all the properties of a 
system remain unchanged, then the system is said to be in an equilibrium state. A 
process is a change of state and is described in part by the series of states passed 
through by the system. A cycle is a process wherein the initial and final states of a 
system are the same.

When a system undergoes a cyclic process, the first law of thermodynamics can be 
expressed as

(f)8Q = (fi8W (1.6)

where the cyclic integral 8Q represents the net heat transfer to the system and the 
cychc integral 8 W is the net work done by the system during the process. Both heat 
and work are path functions; that is, the amount of heat transferred or the amount of 
work done when a system undergoes a change of state depends on the path the system 
follows during the change of state. This is why the differentials of heat and work are 
inexact differentials, denoted by the symbols 8Q and 8 W. For a process which involves 
an infinitesimal change of state during a time interval dt, the first law of thermody
namics is given by

dE = 8Q — 8W (1.7)

where 8Q and 8IV are the small amounts of heat added to the system and the work 
done by the system, respectively, and dE is the corresponding increase in the total 
energy of the system during the time internal dt. The energy £ is a property of the 
system and, like all other properties, is a point function. That is, dE depends upon the 
initial and final states only, and not on the path followed between the two states. For a 
more complete discussion of point and path functions, the reader is referred to Refs. 3, 
4. The property £ represents all energies of a system and is customarily separated into 
three parts: bulk kinetic energy, bulk potential energy, and internal energy; that is,

£=KE + PE + ^ (1.8)

The internal energy dl represents the energy associated with molecular and atomic 
structure and behavior of a system.

Equation (1.7) can also be written as

dE 
dt

or

dE , x
— =<7-P (1.9b)
dt

where q = 8Q/dt represents the rate of heat transfer to the system and P = 8W/dt is 
the rate of work done (power) by the system.

a rate equation,

8W 
~dt

8Q 
dt

(1.9a)
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Consider now the control volume illustrated in Fig 1.1, and define a system whose 
boundary at time t happens to correspond exactly to that of the control volume. At 
some later time t + Az the system moves to another location and occupies a different 
volume in space. The first law of thermodynamics for this change is

AE = vQ - VW (110)

where vQ is the heat transferred to the system and v W is the work done by the 
system, and A E is the corresponding increase in the energy of the system during time 
interval Az. Dividing Eq. (1.10) by Az, one obtains

AE V<2 VlF
Az Az Az

As Az -» 0, the left-hand side of Eq. (1.11) becomes [1,2]

A E d f [•
lim = — ep dV + epN • n dA 

Az—o Az 5Z4.V. Jc.s.

(111)

(1-12)

where e represents the energy per unit mass.
The first term on the right-hand side of Eq. (1.11) represents, as Az 0, the rate of 

heat transfer across the control surface; that is,

r hm ——
Az—0 Az

8Q 
dt ?c.s. (113)

Similarly, the second term becomes

VW 8W 
lim —— =----  = P

Az—o Az dt
(114)

which is the rate of work done (power) by the matter in the control volume (i.e., the 
system) on its surroundings at any time z. Hence, as Az -> 0, Eq. (1.11) becomes

— f ep d'J + f epN • n dA = qc s - P 
VI ^c.v. ‘'c.S.

(1.15)

which is the control-volume form of the first law of thermodynamics. However, a final 
form of this expression can be obtained after further consideration of the power term 
P. Work can be done by the system against its surroundings in a variety of ways. In the 
following discussion, only the work done against normal (hydrostatic pressure) and 
tangential (shear) stresses, the work done by the system that could cause a shaft to 
rotate (shaft work), and the power drawn to the system from an external electric circuit 
are considered. Capillary and magnetic effects will be neglected.

The net rate of work done by the system against normal stresses (pressure) is called 
ftnw work. and can be written as [2,4]

^normal f * n ^4
•'c.s.

where p is the pressure at the control surface.

(1.16)
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Let Pshaft be the rate at which the system does shaft work, and Pshear be the rate at 
which the system does work against shear stresses. The rate of work done on the system 
due to power drawn from an external electric circuit can be written as fc v q"' dV, 
where q”' is the rate of internal energy generation per unit volume due to the power 
drawn to the system. Hence, Eq. (1.15) reduces to

4- f epdV+f le+-}pV-fidA
vt •'c.V. ^C.S.\ P /

= ?cs. - Pshaft - Pshear + f Qe" dV (1.17)
•'ey.

The energy per unit mass may be written as

e = *+|K 2 + gz (1.18)

where a, | V2 and gz are the internal, bulk kinetic and bulk potential energies per unit 
mass, respectively. Hence, Eq. (1.17) becomes

— f ep dV + f (i + |F2 + gz) pV • n dA
*c.s.

= ^cs.- Pshaft- Pshear + / 7"' (1.19)
•'ey.

where
p

i = a+- (1.20)
P

is the enthalpy per unit mass. Equation (1.19) is the first law of thermodynamics for the 
control volume.

1.3.4 Second Law of Thermodynamics
The first law of thermodynamics, which embodies the idea of conservation of energy, 
gives means for quantitative calculation of changes in the state of a system due to 
interactions between the system and its surroundings, but tells nothing about the 
direction that a process might take. On the other hand, observations concerning the 
unidirectionality of naturally occurring processes have led to the formulation of 
the second law of thermodynamics, which gives a sense of direction to energy-transfer 
processes.

The second law of thermodynamics leads to a thermodynamic property—entropy. 
For any reversible process that a system undergoes during a time interval dt, the 
change in the entropy S of the system is given by

(1.21)

For an irreversible process, the change, however, is

(1-22)
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TABLE 1.1 Summary of General Laws [1,5]

Law For a System For a Control Volume

Law of conservation dm
= 0

d ( p dV = - f pV • ndA
of mass dt dt -'ey Jc.s

Newton’s second F F = — f pVdV + f VpV • n dA
law of motion dt dt •'c.v. •'c.s.

First law of dE
Z7 P

d f epdV+ f (i + Iff2 + gz 
“'C.V. •'c.s.

) pV • n dA

thermodynamics dt
- ? r

“ Qc s. ^shaft ^shear + / de•'c.v.
' d\!

Second law of 
thermodynamics

dS 
~dt

J. 8Q
~ T dt

d
Tt-

f f c 1 SQ[ spdV+f spV-ndA> — — 
'c.v. •'c.S. ‘'c.S. ' dt

where 8Q is the small amount of heat added to the system during the time interval dt, 
and T is the temperature of the system at the time of heat transfer. Equations (1.21) 
and (1.22) may be taken as the mathematical statement of the second law, which can 
also be written in rate form as

dS 1 8Q 
~dt ~ ~T~dt (1-23)

The control-volume form of the second law is given by [1,2]

9 f r r 18Q-f sp dV + J spV • n dA > J - — (1.24)
dt •'c.v. *c.s.  *c.s.  J dt

where .v is the entropy per unit mass, and the equality applies to reversible processes 
and the inequality to irreversible processes.

The efficient performance of systems in industrial applications involving heat 
transfer processes corresponds to the least generation of entropy; that is, the rate of 
loss of useful work in a process is directly proportional to the rate of entropy 
production during that process.

Table 1.1 summarizes the general laws discussed in this section.

1.4 STATEMENTS OF PARTICULAR LAWS

In the following sections the particular laws of heat transfer are reviewed.

1.4.1 Fourier’s Law of Heat Conduction

Since the mechanism of heat conduction on the molecular level is thought to be the 
exchange of kinetic energy between the molecules, the most fundamental approach in 
analyzing heat conduction in a substance would be to apply the laws of motion to each 
individual molecule or a statistical group of molecules, subsequent to some initial state 
of affairs. In most engineering problems, however, primary interest does not lie in the 
molecular behavior of a substance, but rather in how the substance behaves as a 
continuous medium. In heat conduction (and, therefore, heat convection) studies, the 
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molecular structure is neglected and the matter is considered to be a continuous 
medium (continuum), which fortunately is a valid approximation to many practical 
problems where only macroscopic information is of interest. Such a model may be used 
provided that the size and the mean free path of molecules are small compared with 
other dimensions existing in the medium. This approach, also known as the phenomeno
logical approach to heat transfer problems, is simpler than microscopic approaches and 
usually provides the answers required in engineering.

Fourier’s law of heat conduction, which is the basic law governing heat conduction 
based on the continuum concept, states that the heat flux (i.e., the rate of heat transfer 
per unit area) due to conduction in a given direction at a point within a medium (solid, 
liquid or gaseous) is proportional to the temperature gradient in the same direction at 
the same point. For heat conduction in any direction n, this law is given by

dT
qn=~k~ (1.25)dn

where q” is the magnitude of the heat flux in the n direction, and dT/dn is the 
temperature gradient in the same direction. Here k is a proportionality constant known 
as the thermal conductivity of the material of the medium under consideration, and is a 
positive quantity. The minus sign is included so that heat flow is positive in the 
direction of a negative temperature gradient.

Thermal conductivity is a thermophysical property and has the units W/(m • K) in 
the SI system. A medium is said to be homogeneous if its thermal conductivity does not 
vary from point to point within the medium, and heterogeneous if there is such a 
variation. Further, a medium is said to be isotropic if its thermal conductivity is the 
same in all directions, and anisotropic if there exists directional variation in thermal 
conductivity.

In anisotropic media the heat flux due to conduction in a given direction may also 
be proportional to the temperature gradients in other directions, and therefore Eq. 
(1.25) may not be valid [6],

In an isotropic medium, there is an equation like Eq. (1.25) in each coordinate 
direction. For example, in rectangular coordinates, the heat-flux relations can be 
written as

dT dT dT
q"=-k—, q” = -k— and q” = ~k— (1 26a,b,c)

dx y dy dz

These are, in fact, the three components in the x, r, and z directions of the heat flux 
lector

q" = -k^T (1.27)

which is the vector form of Fourier’s law in isotropic media.

1.4.2 Newton’s Law of Cooling
Convection has already been defined in Sec. 1.2 as the process of heat transport in a 
fluid by the combined action of heat conduction (and radiation) and fluid motion. As a 
mechanism of heat transfer it is important not only between the layers of a fluid but 
also between a fluid and a solid surface when they are in contact.

When a fluid flows over a solid surface as illustrated in Fig. 1.2, it is an experimental 
observation that the fluid particles adjacent to the surface stick to it and therefore have
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Figure 1.2. Velocity and thermal boundary layers along a solid surface.

zero velocity relative to the surface. Other fluid particles attempting to slide over the 
stationary ones at the surface are retarded as a result of viscous forces between the fluid 
particles. The velocity of the fluid particles thus asymptotically approaches that of the 
undisturbed free stream over a distance 8 (velocity boundary-layer thickness} from the 
surface, with the resulting velocity distribution shown in Fig. 1.2.

As illustrated in Fig. 1.2, if TM. > Tx, then heat will flow from the solid to the fluid 
particles at the surface. The energy thus transmitted increases the internal energy of the 
fluid particles (sensible heat storage) and is carried away by the motion of the fluid. 
The temperature distribution in the fluid adjacent to the surface will then appear as 
shown in Fig. 1.2, asymptotically approaching the free-stream value Tx in a short 
distance ST (thermal boundary-layer thickness} from the surface.

Since the fluid particles at the surface are stationary, the heat flux from the surface 
to the fluid will be

/ 9Tf\
(128) \ dn ' w

where kj is the thermal conductivity of the fluid, Tf is the temperature distribution in 
the fluid, the subscript w means the derivative is evaluated at the surface, and n 
denotes the normal direction from the surface.

In 1701, Newton expressed the heat flux from a solid surface to a fluid by the 
equation

q'' = h(Tw-Tx) (1.29)

where h is called heat transfer coefficient, film conductance or film coefficient. In the 
literature, Eq. (1.29) is known as Newton's law of cooling. In fact, it is not a law, but the 
defining equation for the heat transfer coefficient; i.e.,

q" _ -kf(dTf/dn)

The heat transfer coefficient has the units W/(m2 • K) in the SI system. It should be 
noted that h is also given by

—k(dT/dn}
h = (1-31)

1 M> ^OO
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TABLE 1.2 Approximate Values of the Heat Transfer Coefficient h

Fluid
/i.W/(m2 • K)

Free Convection Forced Convection

Gases 5-30 30-300
Water 30-300 300-10,000
Viscous oils 5-100 30-3,000
Liquid metals 50-500 500-20,000
Boiling water 2,000-20,000 3,000-100,000
Condensing

water vapor 3,000-30,000 3,000-200,000

where ks is the thermal conductivity of the solid and Ts is the temperature distribution 
in the solid.

If the fluid motion involved in the process is induced by some external means such 
as a pump, blower, or fan, then the process is referred to as forced convection. If the 
fluid motion is caused by any body force within the system, such as those resulting 
from the density gradients near the surface, then the process is called natural (or free) 
convection.

Certain convective heat transfer processes, in addition to sensible heat storage, may 
also involve latent heat storage (or release) due to a phase change. Boiling and 
condensation are two such cases.

The heat transfer coefficient is actually a complicated function of the flow condi
tions, thermophysical properties (viscosity, thermal conductivity, specific heat, density) 
of the fluid, and geometry and dimensions of the surface. Its numerical value, in 
general, is not uniform over the surface. Table 1.2 gives the order of magnitude of the 
range of values of the heat transfer coefficient under various conditions.

1.4.3 Stefan-Boltzmann Law of Radiation
As mentioned in Sec. 1.2, all substances emit energy in the form of electromagnetic 
waves (i.e., thermal radiation) as a result of their temperature, and are also capable of 
absorbing such energy. When thermal radiation is incident on a body, part of it is 
reflected by the surface as illustrated in Fig. 1.3. The remainder may be absorbed as it 
travels through the body. If the material of the body is a strong absorber of thermal 
radiation, the energy that penetrates into the body will be absorbed and converted into 
internal energy within a very thin layer adjacent to the surface. Such a body is called 
opaque. If the thickness of the material required to substantially absorb radiation is 
large compared to the thickness of the body, then most of the radiation will be 
transmitted through the body. Such a body is called transparent.

When radiation impinges on a surface, the fraction that is reflected is defined as the 
reflectivity p, the fraction absorbed as the absorptivity a, and the fraction transmitted as 
the transmissivity f. Thus,

p + a + f = 1 (1.32)

For opaque substances, f = 0, and therefore Eq. (1-32) reduces to

p + a = 1 (1-33)
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Semitransparent 
medium

Figure 1.3. Absorption, reflection, and transmission of radiation.

An ideal body which absorbs all the impinging radiation energy without reflection 
and transmission is called a blackbody. Therefore, for a blackbody Eq. (1.32) reduces to 
5 = 1. Only a few materials, such as carbon black and platinum black, approach the 
blackbody in their ability to absorb radiation energy. A blackbody also emits the 
maximum possible amount of thermal radiation [7]. The total emission of radiation per 
unit surface area per unit time from a blackbody is related to the fourth power of the 
absolute temperature T of the surface by the Stefan-Boltzmann law of radiation, which 
is

q'r'b = sr (1.34)

where 5 is the Stefan-Boltzmann constant with the value 5.6697 X 10 x W/(m2 • K4) 
in the SI system.

Real bodies (surfaces) do not meet the specifications of a blackbody, but emit 
radiation at a lower rate than a blackbody of the same size and shape and at the same 
temperature. If q" is the radiative flux (i.e., radiation emitted per unit surface area per 
unit time) from a real surface at the absolute temperature T, then the emissivity of the 
surface is defined as

(1.35)

Thus, for a blackbody c = 1. For a real body exchanging radiation only with other 
bodies at the same temperature (i.e., for thermal equilibrium) it can be shown that 
5 = e, which is a statement of Kirchhoffs law in thermal radiation [7], The magnitude 
of emissivity depends upon the material, its state, and the surface conditions.

If two isothermal surfaces Ax and A2, having emissivities tj and e2 and absolute 
temperatures T\ and T2, respectively, exchange heat by radiation only, then the net rate 
of heat exchange between these two surfaces is given by

<7, = 5A^i2(^i4 - Tf) (1.36)

where Kirchhoff’s law is assumed to be valid. If Ax and J, are two large parallel 
surfaces with negligible losses from the edges as shown in Fig. 1.4a, then the factor
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Figure 1.4. Two isothermal surfaces A1 and A2 exchanging radiation energy.

in Eq (1.36') is given by

111
(1-37)J^12 + e2

If At is completely enclosed by the surface A2 as shown in Fig. 1.46, then

111 A,
= — + — — 1 + —

^12 -^12 el ^2
(1-38)

where F12 is a purely geometric factor called radiation shape factor or configuration 
factor between the surfaces Al and ^42, and is equal to the fraction of the radiation 
leaving surface Ax that directly reaches surface A2. Radiation shape factors are given in 
the form of equations and charts for several configurations in the literature [7, 8]. For 
surfaces Ar and t!2 it is clear that

2
E^ = l, z = 1,2 (1.39)
j=i

Obviously, if the surface At is a completely convex or a plane surface, then Fn = 0. 
In certain applications it may be convenient to define a radiation heat transfer 

coefficient hr as

(1.40)

When this concept is applied to Eq. (1.36), hr becomes

hr = 5^(7; + r2)(r2 + r22) (1.41)

The particular laws of heat transfer are summarized in Table 1.3.

TABLE 1.3 Summary of the Particular Laws of Heat Transfer

Mode Mechanism Particular Law

Conduction Diffusion of
thermal energy q'n' = —kdT/dn

Convection Diffusion and transport
of thermal energy q" = h{Tw - Tx)

Radiation Heat transfer by
electromagnetic waves q'' = hr(T\ - T2)
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1.5 GOVERNING EQUATIONS OF CONVECTIVE 
HEAT TRANSFER

In this section, the governing equations of convective heat transfer will be given for 
fluids which behave as a continuum. Ordinary fluids, such as air, water, and oils, 
behave as a continuum at atmospheric pressures and temperatures, and also exhibit a 
linear relation between the applied shear stress and the rate of strain. Such fluids are 
called Newtonian fluids. The expression relating the shear stress to the rate of strain 
(velocity gradient) for a Newtonian fluid in simple shear flow, where only one velocity 
component is different from zero, is given by

du ,
t = (1.42)

where the proportionality constant p is called the dynamic viscosity or, more simply, 
the viscosity of the fluid. The viscosity is constant for each Newtonian fluid at a given 
temperature and pressure. For non-Newtonian fluids, the viscosity, at a given pressure 
and temperature, is also a function of the velocity gradient. Colloidal suspensions and 
emulsions are examples of non-Newtonian fluids. The above relation (1.42) is a 
particular law in fluid mechanics and also known as Newton's law of viscosity. For two- 
and three-dimensional flows the expressions relating the stresses to the strain rates are 
more complicated and are introduced later in Section 1.5.2.

The main objective of convective heat transfer studies is to determine the tempera
ture distribution in a fluid, so that heat fluxes between the fluid and solid boundaries in 
contact with it can be calculated. Although it is desirable that such calculations should 
be possible for any boundary, initial and inlet conditions, there are certain mathemati
cal difficulties in finding the temperature distribution in a fluid. In a given flow field, 
using Newton’s second law of motion, together with the law of conservation of mass 
and the first law of thermodynamics, one can set up a system of five simultaneous 
partial differential equations for the three velocity components (e.g., u, v, and w in the 
x, y, and z directions in rectangular coordinates), the pressure p, and the temperature 
T. If the density of the fluid changes with pressure and temperature, that is, if the fluid 
is compressible, then a sixth equation has to be introduced to relate density to 
temperature and pressure, such as the equation of state for a perfect gas. Finally, if 
there are large temperature differences within the fluid and between the fluid and the 
bounding surfaces, then additional information for the variation of other thermophysi
cal properties with temperature is also required.

1.5 1 Continuity Equation

Consider the flow of a single-phase and single-component fluid (invariant in composi
tion), and define an elemental control volume with dimensions Ax, Ay, and Az at a 
location (x, y, z) in the flow field as shown in Fig. 1.5. Let V (= ui + i)j + wk) be the 
velocity vector at (x, y, z). In Fig. 1.5, the mass flow rates entering and leaving the 
control volume are also indicated. Hence, the net rate of mass entering the control 
volume is given by

d(pu) 5(pw) d(pw')
dx dy dz

Ax AyAz (1-43)
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Figure 1.5. Elemental control volume in a flow field for the derivation of the continuity equation. 
The mass flow rates in and out of the control volume in the x, y, and z directions are also 
indicated.

The rate of increase of mass within the control volume is

dp
— Ax AyAz (1.44)

The law of conservation of mass, Eq. (1.2b), therefore leads to

dp d(pu) d(pv) d(pw)
dt + dx dy dz (1.45)

which is called the continuity equation and is the mathematical expression of the law of 
conservation of mass for an elemental control volume within a fluid flow field. The 
continuity equation (1.45) can also be written as

t?p
— + V «(pV) = 0 
at

(1.46)

where

/ , d(<PV^ , 
v *(pv)   ------ -— + —— + —-—

dx dy dz
(1-47)
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or it can be rearranged as

where

Dp
------ I- pV * V = 0
Dt

(1.48)

D d
----- 1- V • V =

d d
+ “V

d
+ v—

d
+ w— (1.49)Dr = dt Tt dx dy dz

The differential operator of Eq. (1.49) is often called the substantial derivative, or 
sometimes the derivative following the motion of the fluid.

For steadv flows, dp/dt = 0, and the continuity equation (1.46) reduces to

V ’(pV) = 0

For incompressible fluids, p = constant, and Eq. (1.46) becomes

or

V • V = 0

du dv dw
—— + ~— + ——
dx dy dz

(1-50)

(1.51a)

(1.51b)

which is valid for steady as well as unsteady flows.
The continuity equation in any other coordinate system can be derived similarly, or 

it can be obtained from Eq. (1.45) for rectangular coordinates by coordinate transfor
mation. In Table 1.4, the continuity equation is tabulated in rectangular, cylindrical

TABLE 1.4 The Continuity Equation in Several Coordinate Systems

dp
General Compressible — + V • (pV) = 0

Incompressible V • V = 0

Rectangular 
coordinates 
(v,)’,z)

dp d d d
Compressible -77 + —(p«) + ~(p«) + —(pie) = 0

dt dx dy dz

du dv dw
Incompressible ------ 1-------- 1------ = 0

dx dy dz

Cylindrical 
coordinates 
(r,0,z)

dp 1 d Id d
Compressible — + (pn>r) + - —(pt>9) + — (pw) = 0

dt r dr r d0 dz

dvr vr 1 dug dw
Incompressible ------- 1------- 1------------ 1------ = 0

dr r r 30 dz

dp 1 d Id Id

Spherical 
coordinates 
(r, 0,

Compressible + (pr\) + . (pvesm0) + . „ .(prU - 0
dt r dr rsinP du rsino 3<J> 9

1 a , 1 a 1 du*
Incompressible -(r\) + . (^sin0) + . - 0

r dr sin P 30 sin6 d<j>
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Figure 1.6. Velocity components in (a) cylindrical and (b) spherical coordinate systems.

and spherical coordinates. In addition, the velocity components in cylindrical and 
spherical coordinates are shown in Fig. 1.6.

1.5.2 Equations of Motion
The dynamic behavior of fluid motion is governed by a set of equations called the 
momentum equations or the equations of motion. These equations are obtained by 
applying either Newton’s second law of motion (1.3) to an elemental fluid particle or 
the law of conservation of linear momentum, Eq. (1.4), to an elemental control volume 
in the flow field. In distinction to the approach followed in the derivation of the 
continuity equation, where an elemental volume element was used, consider here an 
elemental fluid particle and follow its motion. Newton’s second law of motion, Eq. 
(1.3), for a fluid particle of mass m may be rewritten as

dM J(wV)
F = -----  = ---------- = ma

dt dt
(1.52)

where F is the net force acting on the fluid particle, and a is its acceleration.
A fluid particle situated at (x, y, z) at any time t will be at the new location 

(x + Ax, y + Ay, z + Az) at t + Az. The total change in the velocity of the particle 
can be written as

av av av av
AV = ---- Az + ----- Ax + ----- A y + ----- Az

dt dx dy ' dz
(1-53)

The acceleration of the particle situated at (x, y, z) at the instant z, therefore, becomes

av av av av av z>v
lim = —----- 1- m—----- 1- v—-----1- w— = —-
Ar-»o Az dt dx dy dz Dt

(1.54)

The forces acting on a fluid particle can be of two types; namely, body forces such 
as forces of gravitational, electrical or magnetic origin, and surface (contact) forces. 
Let f = /vi +■ / j + /.k be the body force per unit mass acting on the fluid particle at 
(x, y, z). In addition, denote the surface stresses (surface forces per unit area) which lie
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Figure 1.7. Normal and shear stresses acting on a surface element whose normal is in the x 
direction.

in the plane of the surface by the symbol t (shear stress), and the stresses normal to the 
plane of the surface by a (normal stress). Two subscripts are attached to each of the 
stress symbols: the first indicates the direction of the normal to the surface on which 
the stress acts, and the second indicates the direction in which the stress acts. The 
normal and shear stresses on a surface are reported in terms of a right-handed 
coordinate system in which the outwardly directed surface normal indicates the positive 
direction as illustrated in Fig. 1.7.

The state of stress at a point within a fluid is determined when each element of the 
following stress tensor is known:

(7 T Txx 'xy *xz
TOTyx yy yz
tzx 7,y, a,.

Consider now an elemental fluid particle situated at the location (x, y, z) at time t 
in a flow field as shown in Fig. 1.8. The acceleration of this particle in the x direction is 
the x component of the acceleration vector a given by Eq. (1.54), that is,

Du du du du du
— ~ u~^-----v~^------- w~—Dt dt dx dy dz (1.55)

Referring to Fig. 1.8, the net force acting on this fluid particle in the x direction is

d(Jxx dTyx + 
dx dy dz

&xhyhz (1.56)
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Figure 1.8. Normal and shear stresses acting on an element of fluid. Only the stresses on the 
surfaces with normals in the x and y directions (both positive and negative) are shown.

Thus, the x component of Newton’s second law of motion (1.52) gives

Du
P~Dt

do
~pfx + -^ + 

ox
9ryx 
dy

+ dTzx 
dz

(1.57a)

Similar considerations in the y and z directions result in

Dv dr do dr
P~5t = Pfy + +dx

yy

dy
+ —— 

dz
(1.57b)

and

Dw dr dr dozz
P~Dt = pf. + ^ + 

ox
yz

dy
-1----------

dz
(1.57c)

Equations (1.57a), (1.57b) and (1.57c) are called the momentum equations or the 
equations of motion. In order to make use of them, the relations between the stresses 
and the deformation of the fluid particle must be known. It has been found experimen
tally that, to a high degree of accuracy, stresses in many fluids are related linearly to 
rates of strain (derivatives of the velocity components). It can be shown [9,10] that for
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Newtonian fluids the expressions are

du
°xx = ~P + 2g— - W • V

dv
°vv = ~p + 2g------ f gV • V

dw
= -p + 2g— jgV • V 

dz

T xy = P\
( dv

dx
+

du 

dy

( dw du
Txz = Tzx = ( dx

+
dz

( dw dv
T>- = Tzy = P I dy +

dz

(1.58a)

(1 58b)

(1.58c)

(1.58d)

(1.58e)

(1.58f)

where g is the dynamic viscosity of the fluid and p the pressure.
Substitution of Eqs. (1.58a) through (1.58f) into the momentum equations (1.57a), 

(1.57b), and (1.57c) gives

Du
P~Dt = pA-

dp 
dx

dud . „„
+ y P 2— - fv 

dx \ dxdx

Dv
PTt

Dw
P^

d 
dy

I dv du 
g ----- H--------

\ dx dy

dp d
dy dx

dv

d
dz

dw du\ 
dx dz I

(1.59a)

dv
dx

du 
dy

d , _
+ y- g 2— - jv -V 

dy \ dydy

d
dz

dw dv
—— + —— 
dy dz

(1.59b)

dp d dw 
dx

du 
dz

d 
dy

dw 
dy

dv 
dz

dwd ,
+ y P 2— -fv -V 

dz \ dzdz
(1.59c)

= pZ -

V

These relations are the famous Navier-Stokes equations, and nearly all analytical 
investigations involving viscous fluids are based on them. They are general in the sense 
that they are valid for compressible Newtonian fluids with varying viscosity.

When the density and viscosity are constant—that is, when the fluid is incom
pressible and the temperature variations are small—the Navier-Stokes equations (1.59)
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simplify to

Du
P~Dt = pfx - v + dx

J 
fiv u (1.60a)

Dv
PTt = P/v-

dy
7

/XV V (1.60b)

Dw
P^ = pA - dz

J w (1.60c)

These equations may conveniently be summarized in vector notation as

DV 1
— =f--Vp + fV2V
Dt p

(1.61)

where v — p/p is the kinematic viscosity of the fluid, f is the body force vector per unit 
mass, and V 2 is the Laplacian operator given by

d2 d2
dx2 dy2

d2 
dz2

(1.62)

Rectangular coordinates may not always be the most useful coordinate system. In 
problems involving flows through circular tubes, for example, cylindrical coordinates 
are the most convenient. Similarly, for problems with flows around spheres the use of 
spherical coordinates is more appropriate. The Navier-Stokes equations in cylindrical 
and spherical coordinates, however, may be obtained from the above results by 
coordinate transformation, which is a straightforward but tedious procedure. In Table 
5.1, the Navier-Stokes equations for an incompressible fluid with constant viscosity are 
tabulated in rectangular as well as in cylindrical and spherical coordinates.

Any fluid flow problem which involves the determination of the velocity compo
nents and the pressure distribution as a function of space coordinates and time requires 
the simultaneous solution of the continuity and the Navier-Stokes equations under 
suitable boundary and initial conditions. Although these equations are, in general, too 
complicated to be solved analytically, they may be solved by numerical methods. In 
many cases, however, the nature of the flow is such that they can be simplified 
considerably for an analytical solution.

1.5.3 Energy Equation
Consider a fluid element of mass p Ax AyAz situated at the location (x, y, z) at time t 
in a flow field as shown in Fig. 1.8. The first law of thermodynamics. Eq. (1.9b), when 
applied to this fluid element, states that the net rate of heat transfer to the element 
minus the net rate of work done by the element must be equal to the rate of increase of 
energy of the element. The net rate of heat transfer to the element (ignoring radiation 
effects) is given by

d 
dx dy

d
hxbyhz (1.63a)
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TABLE 1.5 The Equations of Motion for an Incompressible Newtonian Fluid with 
Constant Viscosity in Several Coordinate Systems

RECTANGULAR COORDINATES (x, y, z)

du du du du 1 dp 1 d2u d2U d2u\
x component ~dt + U~d^ + V— +

<?>■ “Tz " —7— + ’’I  7 + 
p dx y dx2 ----7 + dy2 dz2 /

dv dv dv dv 1 dp ( d2v d2V d2v \
y componem Tt + u— 

dx
+ V— + 

dy
------ 4- rl ----- y 4
p dy y dx2 W + dz2 y

dw dw dw dw 1 dp / d2w d2w 32h \
z component ~d7 + + v— + w— = f. - dy dz Jz pi): 1 dx

+ ---- T
dy

+ aT2” )

CYLINDRICAL COORDINATES ( r, d, z)

dvr dvr vg dvr
r component — + v— + y — -

i dp Id'
= fr-----T + Tp dr \ dr

n dvg dvg Vg dvg
d component -------b v.------- 1------- — +

dt dr r dd
1 dp Id

= fe------ + 4 T
pr dd y dr

dw dw Vg dw
z component ------ 1- v,------ 1-------- -  +

dt r dr r dd
1 dp lid
p dz \ r dr

SPHERIC

dvr dvr Vg dvr

ve dvr
— + w----
r dz
1 3 1 d2vr 2 dvg d2vr\
r dry rJ] r2 dO2 r2 dd dz2 /

vrt’g dvg
-------r dz
’1 a 1 d2Vg 2 dvr d2Vg\
[r dr+ r2 dd2 + r2 dd + dz2 /

dw
a------

dz
f aw\ 1 d2w d2w I
\ dr ) r2 dd2 dz2 /

AL COORDINATES (r, d, 4>)a

v^ dvr vj + V2
I CUlHUUllLUl „ I Ur n I 1 . _ n

dt dr r dd r sin 0 d<f> r
t 1 dp 2vr 2 dve 2 n 2 dv*
Jr n F V urp dr \

dvg dvg ve dvg
u component ------- F v—---- 1-------— 4-

dt dr r du
. 1 9P (2

= fe------ 77 + " v vpr du \

dv*  dv^, vg dv^
<l> component------- 1- v—---- 1---------— +

dt dr r dv
1 dp 

prsiad d<f>

r2 r2 dd r2 r2sind d<)>

dve vfve v^cotd

rsin# a</> r r
2 dvr Vg 2 cos d dv^\
r2 dd r2sin2a r2sin20 a<J> )

dv* Vr V»V4> t 0
. . „ + + cot a

rsin# a<J> r r
f . v^ 2 dvr 2 cos a c
, r2sin2a r2sina a</> r2sin2a )

o 1 d I , d\ 1 d ( 9 \ 1 92rIn these relations, V =-^— r— H--- --------- r sin# — 1 H--- ---- ------- -
r2 dry dr) r2sind dd\ 90) r2sin2# a<f>2
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which can also be written as

V ’(^VT) ^x^yLz (1 63b)

where k is the thermal conductivity of the fluid. The net rate of work done by the fluid 
element against the surface and body forces is

d . d
+ »TXV + WTXZ) + ^(UTVX + V°yy + WV)

d
+ — ( UT.V + VT.v + WO..) + pV • f A x A y A z (1-64)

The rate of increase of internal and kinetic energies of the element can be written as

pAxAjAz — [# + |(w2 + v2 + w2)] (1.65)

where a is the internal energy of the fluid per unit mass. Noting the fact that the 
change in potential energy has already been included in the work of term of Eq. (1.64) 
by considering the work done against the body forces, the first law of thermodynamics 
for the element under consideration becomes

p— [ a + |( u2 + v2 + w2)] = V *(kvT)

d
+ ~dx^U(J^ + yTt’' + WTx:^

d
+ ~^(UTyx ■+ V°yy + WTyz)

+ ^~(ut2X + VT . + wj + pV • f (1.66) 
dz

This result is also known as the total energy equation because it comprises both thermal 
and mechanical energies.

If the momentum equations (1.57a), (1.57b), and (1.57c) are multiplied by u, v, and 
H', respectively, then the resulting expressions can be summed to yield

+ l?
' dTxy d°yy

dx
+

dy
+ dz )

+ w
/ drxz
1 ------- ■ • ' + -----  *
y dx dy dz )

+ pV-f (1.67)
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which is an energy equation obtained directly from the laws of mechanics and is 
appropriately called the mechanical energy equation.

Subtraction of the mechanical energy equation (1.67) from the total energy equation 
(1.66) gives

Du du dv dw
p_.v .(kvT) + +

I dv du\ ( dw dv\ I du dw\ 
“Ft I —' + — I “F t I ---- “F — I ~F t_„| — ~F ----- I (1.68)dx dy j dy dz] ' \ dz dx /

which is called the thermal energy equation or, for short, the energy equation.
Equations (1.58), which are the relations between stresses and strains for Newtonian 

fluids, yield

du dv dw
-------- 1" ----- 1"' dx ’dy dz

;md

V - Mv-v)2 + 2fi
/ du\
\ dx /

2 / dv\2
+ k)+

d w \ 2
(^7) (1.69)

^xy
1 dv du}

—— + ~— 
dx dy! =

dv
“7— + 
dx

du \2 
dy] (1.70a)

I dw dv'' 
~— + ~~ 
dy dz =

dw
dy +

dv\2 
dz /

(1.70b)

T,x
du dw\
~— + ——

( dz dx =
du

JTz +
dw \2 
dx /

(1.70c)

When these relations are substituted into the energy equation (1.68), it reduces to

Da
p— - V -pv • v + p* (1.71)

where

du dw 
~~— + —— 
dz dx

2
-Kv-V)2 (1.72)

which is called the dissipation function. The first term on the right-hand side of Eq. 
(1.71) represents the net rate of heat conduction to the fluid particle per unit volume; 
the second term, -pV ’V, is the rate of reversible work done on the fluid particle per 
unit volume; and the last term, p.0, is the rate at which viscous forces do irreversible 
work (i.e., viscous dissipation, or viscous heating) per unit volume.
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Finally, the energy equation (1.71) may also be written in terms of the fluid enthalpy 
(i = a + p/p) as

Di Dp
P-5-,-V(kVT') + -+lrt (1-73)

For a perfect gas da = ct. dT and di = cp dT, where c,, and c are the specific heats 
at constant volume and constant pressure, respectively. Hence, for a perfect gas, the 
energy equation (1.73) takes the form

DT Dp
pc — = v ’(kVF) + — +/H5 (1-74)

In Eqs. (1.73) and (1.74), the term Dp/Dt is usually negligible except above sonic 
velocities. Therefore, for low-speed flows with constant thermal conductivity, the 
energy equation (1.74) reduces to

DT 
~Dt

u,
= aV2T +---- O

Pcp
(1.75)

where a = k/pcp is the thermal diffusivity of the fluid and

d2T d2T d2T
V2T = V • VT = —7 + —7 + —7 

dx2 dy2 dz2
(1-76)

For an incompressible fluid da = cdT, where c = cv = cp. Thus, the energy equa
tion (1.71) for an incompressible fluid takes the form

DT
pc— = ^(k^T) + p® (1 77)

with

(1-78)

When the thermal conductivity is constant, the energy equation (1.77) for incom
pressible fluids reduces to

DT 
~Dt = aV2T + —O 

pc
(1.79)

The energy equation in cylindrical and spherical coordinates can be derived by 
following an approach similar to the one above, or they can be obtained from the 
equation in rectangular coordinates by coordinate transformations. The energy equa
tion for Newtonian fluids in rectangular, cylindrical and spherical coordinates is listed 
in Table 1.6. In this table, an additional term q—representing the rate of internal
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TABLE 1.6 The Energy Equation for Newtonian Fluids in Several Coordinate Systems

RECTANGULAR COORDINATES

RECTANGULAR COORDINATES (PERFECT GAS)

RECTANGULAR COORDINATES (INCOMPRESSIBLE FLUID)

DT
pc—— = V •(/eV?’) + q"' + p®

D d d d d
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TABLE 1.6 (continued)

Cylindrical Coordinates (incompressible fluid)

SPHERICAL COORDINATES (INCOMPRESSIBLE FLUID)

DT
P?— = V •(kvT) + q'" +

D d d ve d d
---- “ ---- -------7 + ----~---7 ----  Dt dt dr r dO rsinf) d$

V • (I VT) = -r — r2k—— H—z——- — k sin8 —— H— . —— k ——
r~ dr \ dr ] r2sin 8 dO \ dO / r~sm~8 d<f> ( d<j> y
\ d I dT\ 1 d / dT\ 1 d [ dT\

thermal energy generation per unit volume within the fluid due to chemical, nuclear, 
electrical, etc., sources—has been included for completeness.

The continuity, Navier-Stokes, and energy equations presented in the preceding 
sections provide a comprehensive description of the thermal energy transfer in a flow 
field. These equations, however, present insurmountable mathematical difficulties due 
to the number of equations to be simultaneously satisfied and the presence of nonlinear 
terms such as u du/dx. Because of the nonlinearities, the superposition principle is not 
applicable and complex flows may not be compounded from simple flows.

Exact solutions to these equations have been obtained for some simple cases [10], In 
some of these cases, the troublesome nonlinear terms are either extremely small or 
identically zero. The flows represented by these solutions are referred to as slow motions 
or creeping flows. These solutions are important in the theory of lubrication and in the 
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investigation of the settling of small particles in fluids. In most of the practical 
applications, however, flows of ordinary fluids, such as air and water, are generally 
quite different than creeping flows. In such flows the nonlinear terms are most often of 
greater magnitude than other terms in the Navier-Stokes equations.

The Reynolds number is a dimensionless quantity which measures the ratio of the 
inertia effects to the viscous effects in a fluid, and is defined as

pVL
Re =------ (1.80)

where p is the fluid density, V is the fluid velocity, L represents a characteristic 
dimension in the flow field, and g is the fluid viscosity.

Creeping flows are therefore characterized by small Reynolds numbers, whereas 
practical flows have Reynolds numbers which are most often large compared to unity. 
For example, experiments have indicated that the theory of slow motions may be used 
to predict the drag force exerted on a sphere moving at constant speed relative to a 
fluid when the Reynolds number (with the sphere diameter as the characteristic 
dimension) is less than about 1.

Finally, two important observations are worth mentioning. First, the velocity and 
temperature fields will be coupled if the fluid has temperature-dependent density 
and/or viscosity. Secondly, the temperature field can become similar to the velocity 
field under certain conditions. It can be seen from Eqs. (1.61) and (1.75), for example, 
that it is the terms in Vp, f, and 0 that prevent similarity between these two equations. 
Further, the viscosity p and the thermal conductivity k may be different functions of 
temperature. If Vp, 0, and f are zero and if the Prandtl number Pr = v/a = 1, then 
the solutions for the velocity and temperature fields will be similar, provided that the 
corresponding boundary conditions are also similar.

1.6 BOUNDARY-LAYER APPROXIMATIONS — LAMINAR FLOW

L. Prandtl, in 1904, made a significant contribution to the field of fluid mechanics (and, 
therefore, to heat transfer) when he introduced the boundary-layer concept, which 
allowed flows at high Reynolds numbers to be studied mathematically. According to 
his theory, under certain conditions viscous forces in a flow field are of importance only 
in the immediate vicinity of the boundary surface, where the velocity gradient normal 
to the surface is large (see Fig. 1.2). In regions away from the boundary surface, the 
fluid motion may be considered frictionless (i.e., potential flow), because of negligible 
velocity gradients. There is, in fact, no precise division between the potential flow and 
boundary-layer regions, because the velocity component parallel to the surface ap
proaches asymptotically its free-stream value (i.e., its value away from the surface). 
However, it is customary to define the boundary layer as that region where the velocity 
component parallel to the surface is less than 99% of its free-stream value.

Consider, for example, the case of a steady, two-dimensional incompressible laminar 
boundary-layer flow over a surface with a free-stream velocity U^x). Assume that the 
body forces are negligible and the viscosity is constant. By the use of Prandtl’s 
boundary-layer approximations, the continuity, Navier-Stokes, and energy equations 
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reduce to [5,10]

Pcp

du
dx

dv 
+ — = 0 (1.81)

du du d2u
u~ ' 

dx
F v — 

dy
= ux-— + v—2 

ax dy
(1.82)

dT dT\ d I dT\ I du\2
u— + v— = —— k—— I + u — (1.83)

dx dy ' dy \ dy 1 \ dy )

where v denotes the direction parallel to the surface and y the direction normal to the 
surface. Equations (1.81), (1.82) and (1.83) are called Prandtl’s laminar boundary-layer 
equations, for which the following boundary conditions apply:

dT
at y = 0: u = v = 0 and T -- TH or — k— = q"

dy

as y -» oo: u —> x) and T -» 7^,

In addition, the initial velocity and temperature distributions at x = 0 must be 
specified.

1.7 TURBULENT FLOW

A turbulent flow is characterized by disorderly displacement of individual fluid 
particles within the flow field. Most flows of practical importance are turbulent. The 
continuity, Navier-Stokes, and energy equations, which were described in Sec. 1.5, are 
also valid for turbulent flows. It must be noted, however, that the velocity components, 
pressure, and temperature in these equations would have to be the instantaneous 
values. In turbulent flow, the instantaneous values always vary with time, and the 
variations are completely random with minor fluctuations about the mean values (Fig. 
1.9). These random fluctuations are so complex that any direct mathematical treatment 
of the governing equations becomes impossible.

Methods of analysis of heat transfer in turbulent flows are by no means complete at 
present because of our limited understanding of the mechanism of turbulence. How
ever, many analytical procedures and empirical correlations have been proposed by 
various investigators. In order to attack problems involving turbulence, analytically or 
numerically, it is convenient to define mean and fluctuating components of velocity, 
pressure, temperature, etc., as

T) = Tj + T]' . (1-84)

where q may represent w, v, w, p, T, etc. The fluctuating components t/' can have 
both positive and negative values, and the mean values are defined according to

rj = (1.85)
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Figure 1.9. Variation of the velocity component u with time.

where At is sufficiently large to obtain a true average; that is, large enough for 
recording turbulent fluctuations, but sufficiently small for the quantity to be unaffected 
by external disturbances on the flow. Hence, it is obvious that

fto+^ri]' dt = 0 (1.86)
Jt0

A turbulent flow is called steady if the mean values u, v, w, p, T, etc., do not 
change with time. This is reasonable, because instruments with long enough response 
times (e.g., a thermocouple), when placed in a turbulent stream, show readings that are 
entirely stable with time.

In some cases, thermophysical properties such as density, viscosity, specific heat, 
and thermal conductivity may also fluctuate, but such fluctuations are usually ne
glected.

Consider now a steady, two-dimensional turbulent flow with constant thermophysi
cal properties implying that u = u(x, y), v = v(x, y), w = 0, p = p(x, y) and T = 
T(x, y). Even in this case, u' = u'(x, y, z, f), u' = v'(x, y, z, t), w' = w'(x, y, z, t), 
p' = p'(x, y, z, t) and I" = T'(x, y, z, t). If one, however, assumes that

u' = u'(x,y,t) p'=p'(x,y,t)

v'= v'(x, y, t) T' = T'(x, y,t)

w' = 0

then substitution of the instantaneous velocity components, pressure, and temperature 
as defined by Eq. (1.84) into Eqs. (1.51a), (1.60), and (1.79), and time-averaging the 
resulting equations, yield the following continuity, momentum, and energy equations 
for turbulent flows [5]:

Continuity equation.

du du
(1.87a)
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and

du' dv'
—--- + —

dy
(1.87b)

Momentum equations.
x component:

du _du 1 dp __ d ____ d ____
+ -----— + yV2u- — («'«') + — (v'u')

dx dy p dx dy

T component:

_ dv _ dv 1 dp
u— + v— = f -

dx dy p dy

Energy equation.

(1.88)

d 9 /~\ 
r~(uv) + TU v) dx dy

(1-89)

dT dT d ____ _ d ____ _
u—-----1- v—— = aV2T —

dx dy
—(«'r) + - 
dx dy

(1.90)

where the dissipation term in Eq. (1.79) has been neglected.

Prandtl’s order-of-magnitude analysis can also be applied to the above equations in 
the same way as for laminar flow, and the two-dimensional turbulent boundary-layer 
equations for steady, constant-property flow with negligible body forces and heat 
dissipation become [5]

du dv
—— T ~— = 0 
dx dy

(1.91)

_du du 1 dp d [ du
+ effl)— (1.92)

dx dy p dx dy [

df dr d [ dr'
u— + V— = — (a + eJ — 

dx dy dy [ dy
(1-93)

where em and eh are called eddy diffusivity of momentum and eddy diffusivity of heat. 
respectively, which were introduced by Boussinesq [10] as

— v'u'
du

(1.94)

and

___ dr
-V'T' = 

dy
(1.95)

Both f,„ and eh arc flow parameters, and not fluid properties.
The time-averaged two-dimensional boundary-layer equations for mass, momentum, 

and energy in cylindrical coordinates for steady flows with constant thermophysical
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properties and with negligible body forces and heat dissipation can be obtained as

du Id — ------
dx r dr

Or) = 0 (1.96)

_ du 
u1e<

du
+ v— = 

dr
1 dp 
p dx

i d
r dr

du
(1-97)

_ dT 
u^—

dT 
+ =

1 d F
- — /•(«

dT'
(1.98)

dx dr r dr dr

As seen from these equations, there are five unknowns (u, v, T, cm, and eA) but only 
three equations. Additional information can, however, be obtained from turbulence 
modeling, which provides generally applicable expressions for em and eh.

1.8 FINAL REMARKS

In this chapter, the basics of heat transfer are reviewed. The intention is to present the 
fundamental concepts and working relations to be referred to later in the following 
chapters, where various topics of single-phase convection heat transfer are discussed in 
depth. The material in this chapter can also be used by engineering students, scientists, 
and practicing engineers who have interest in heat transfer problems. This chapter, 
being a short review, does not cover all the details, but the references at the end of this 
as well as the following chapters can be consulted for further information.

NOMENCLATURE

A surface area, heat transfer area, m2, ft2
a acceleration, m/s2, ft/s2
cp specific heat at constant pressure, J/(kg • K), Btu/(lbm ■ °F)
cv specific heat at constant volume, J/(kg • K), Btu/(lbm • °F)
E energy, J, Btu
e energy per unit mass, J/kg, Btu/lbm
F, F force, N, lb,
Ft, radiation shape factor
f body force per unit mass, N/kg, lby/lbm
g gravitational acceleration, m/s2, ft/s2
h heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 • °F)
hr radiation heat transfer coefficient, W/(m2 • K), Btu/(hr ■ ft2 • °F)
i enthalpy per unit mass, J/kg, Btu/lbm
i unit vector in x direction
j unit vector in y direction
KE kinetic energy, J, Btu
A thermal conductivity, W/(m • K), Btu/(hr • ft • °F)
A thermal conductivity of solid, W/(m ■ K), Btu/(hr • ft • °F)
/ unit vector in z direction
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M linear momentum, kg • m/s, lby • ft/s
m mass, kg, lbm
m mass flow rate, kg/s, lbm/hr
n distance, m, ft
n unit vector in n direction
P power, W, Btu/hr
PE potential energy, J, Btu
Pr Prandtl number = pcp/k = v/a
Pr, turbulent Prandtl number
p pressure. Pa, lbf/ft2
Q cumulative heat, J, Btu
q heat transfer rate, W, Btu/hr
q", q" heat flux, W/m2, Btu/(hr • ft2) 
q” wall heat flux, W/m2, Btu/(hr ■ ft2) 
q volumetric heat generation rate, W/m3, Btu/(hr • ft3)
q”’ volumetric heat generation rate due to electrical sources, W/m3, Btu/ 

(hr • ft3)
Re Reynolds number = pVL/p,
r radial coordinate, m, ft

entropy per unit mass, J/(kg • K), Btu/(lbm • °R)
T temperature, °C, K, °F, °R
Ts temperature of solid, °C, K, °F, °R
Tm wall temperature, °C, K, °F, °R
7/ free-stream temperature, °C, K, °F, °R
t time, s

internal energy, J, Btu
1/ free-stream velocity, m/s, ft/s
u internal energy per unit mass, J/kg, Btu/lbm
u velocity component in x direction, m/s, ft/s
V, V velocity, m/s, ft/s
V volume, m3, ft3
v velocity component in y direction, m/s, ft/s
ve velocity component in 0 direction, m/s, ft/s

velocity component in <f> direction, m/s, ft/s 
W work, J, Btu

velocity component in z direction, m/s, ft/s
x rectangular coordinate, distance parallel to surface, m, ft
y rectangular coordinate, distance parallel to surface, m, ft
z rectangular coordinate, m, ft

Greek Symbols
a absorptivity
a thermal diffusivity = k/pcp, m2/s, ft2/s



1-34 BASICS OF HEAT TRANSFER

8
8 
8t 
A

velocity boundary-layer thickness, m, ft 
inexact differential operator
thermal boundary-layer thickness, m, ft 
finite increment

€ emissivity

V 
e

eddy diffusivity of heat, m2/s, ft2/s
eddy diffusivity of momentum, m2/s, ft2/s 
general variable
latitude angle in cylindrical coordinates, rad, deg

V

dynamic viscosity, Pa • s, lbm/(hr • ft) 
kinematic viscosity, n?/s, ft2/s

p 

p 

a

density, kg/m3, lbm/ft3
reflectivity
Stefan-Boltzmann constant = 5.6697 X 10“8 W/(m2 • K4) = 0.17 X 10-8

Btu/(hr • ft2 • R4)
<i shear stress, Pa, lbf/ft2
T

T

0

shear stress between fluid layers, Pa, lb{/ft2
transmissivity
azimuth angle in spherical coordinates, rad, deg
viscous dissipation function, W/m3, Btu/(hr • ft3)
geometric shape and emissivity factor for radiation from one gray body to 

another

Subscripts
b blackbody
c.v control volume
c.s. control surface
f fluid
irr irreversible
n normal direction
r radiation
rev reversible
H’ wall condition
X x direction
r y direction
r
e

z direction
0 direction
<£> direction

00 free-stream conditions

Superscripts and Accents
mean value
randomly fluctuating value
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rate
unit vector
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2.1 INTRODUCTION

In the most common example of external flow forced convection one is called upon to 
compute the heat transferred to or from a body moving through a large (for practical 
purposes, infinite) ambient medium, uniform in properties and at rest. In the analysis 
of such problems, it is found that it is only the relative motion that matters, and it is 
frequently convenient to attach the coordinate reference frame to the body and 
consider the fluid to be moving past the body (now at rest) with uniform velocity. Such 
circumstances arise very frequently in applications, a very common example being the 
convective heat transfer between vehicles (or other objects of all sorts) and the earth’s 
atmosphere.

The essential difference between the formulation of the convective problem for 
internal and external flows arises through the boundary conditions to the governing 
equations. In the external flow formulation, the fluid velocity and temperature ap
proach known “free-stream” values at large distances from the convective surface. 
Sufficiently far from the surface, the flow can almost always be treated as inviscid, and 
frequently as irrotational. The designation “internal flow” on the other hand indicates 
that the flow is confined within a finite-size passage or device. Flow generally enters or 
leaves the device, of course, but inside, boundary conditions on velocity, temperature, 
or fluxes are imposed at solid surfaces or symmetry fines or surfaces. Parts of the flow 
may occasionally be treated as inviscid, but this is not the most common approach in 
analysis. In steady flow, the mass flux through the passage is constant and usually 
known. The mass flux is generally not specified or known for external flow problems.

External convection problems can be relatively simple, as in the case of low speed 
laminar flow over an isothermal flat plate, or very complex, as in the flow about the 
space-shuttle orbiter during atmospheric reentry. Features which tend to complicate the 
analysis of convective flows include turbulence, the presence of two or more phases 
(gas-liquid, gas-solid, liquid-solid flows), unsteady effects, and complex geometries 
which cause flows to be three-dimensional or cause regions of flow reversal and 
recirculation to occur.

In the simplest cases of external flow, the effects of the presence of a body in a large 
fluid stream are confined to a thin layer of fluid immediately adjacent to the body 
surface. This region is the well-known Prandtl “boundary layer” [1]. As the distance 
normal to the surface is increased, the fluid properties approach those of the external 
stream. As long as the flow does not separate, the Reynolds number is moderate to 
large, and the Prandtl number is of the order of 1 or larger, the boundary layer remains 
thin and has a negligible effect on the external flow. In this case, the heat transfer to the 
body can be obtained from a solution to the boundary-layer form of the governing 
equations. However, in order to solve these equations, the velocity and temperature at 
the outer edge of the boundary layer are required as boundary conditions. These can be 
obtained from the solution for the inviscid flow about the body. It is possible to obtain 
an improved inviscid flow solution by augmenting the physical thickness of the body by 
the boundary-layer displacement thickness. The improved edge conditions from the 
inviscid solution can then be used to obtain yet another viscous flow solution. This 
iterative procedure can account for “viscous-inviscid interaction.” However, interac
tion should not be necessary for fully attached flows except at very small Reynolds 
numbers. In this simplest case, the flow problem has been divided into two distinct 
regions and the solutions for the two regions can be obtained independently, although 
the boundary conditions for the viscous region must be obtained from the solution for 
the inviscid flow. In the case of a thin flat plate placed parallel to a uniform stream, the 
edge conditions are constant at the stream values; i.e., the thin plate causes no 
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disturbance in the inviscid flow, and no further attention need be given to obtaining the 
solution for the inviscid flow.

In many important external flows, the effects of viscosity are not confined to a thin 
layer next to the solid body. This situation occurs when the flow separates from the 
body due to an adverse pressure gradient or an abrupt change in the geometry. Then 
the strategy of solving the flow problem in two independent parts, one viscous and one 
inviscid, in a noniterative fashion fails. The major cause of the failure is that the 
inviscid flow solution over the solid body is no longer a good approximation. The 
“displacement effect” of the separated regions locally alters the pressure distribution in 
a significant manner. Even in this situation it is often possible to treat the viscous flow 
using the boundary-layer approximation. However, the displacement effect of the 
viscous region must be taken into account in the inviscid solution procedure. Because 
of this, the two solutions are no longer independent, and an iterative viscous-inviscid 
interaction procedure is required if the problem is to be modeled as having viscous and 
inviscid parts. Alternatively, a solution can be obtained by solving a single set of more 
complex governing equations, valid in all regions of the flow. In addition to flow 
separation, the other effects mentioned above (turbulence, multiphase flow, three
dimensional effects, etc.) force the use of more complex governing equations or 
recourse to empirically based approximations, or both.

Traditionally, both experimental and analytical methods have been used to obtain 
heat transfer information needed for design purposes. The traditional analytical method 
made use of simplifying assumptions in order to obtain closed-form solutions to 
problems. Correlations based on experimental measurements were sometimes incor
porated into an analytical method for especially complicated problems. With the 
advent of the digital computer, a third method, the numerical or computational 
approach, has become available.

In the computational approach, a fairly complete mathematical description of the 
heat transfer phenomena is retained, and the governing equations, usually in partial 
differential form, are solved numerically. If the mathematical description is complete 
and involves few assumptions, the numerical solution provides a “computer simulation” 
for the physical process.

Although experimentation continues to be important, and in some instances essen
tial, the trend is clearly toward greater reliance on computer-based predictions in 
design. The trend can be explained by economics. Over the years, computer speed has 
increased much more rapidly than computer costs. The net effect has been a significant 
decrease in the cost of performing a given calculation. On the other hand, the costs of 
performing experiments have been steadily increasing. The result of these trends has 
been to encourage the maximum use of computational tools to reduce the range of 
conditions over which testing is required.

Both experimentation and computer simulation have limitations. It should be clear 
that neither approach is capable of providing all of the information of interest to 
designers in every application. Existing test facilities are not always capable of 
simulating the severe operating conditions occurring in some applications. This may 
present no difficulty for a computer simulation, but computer storage and speed may 
Emit the usefulness of the computer in some applications. Other limitations arise from 
our inability to understand and mathematically model certain complex phenomena.

While an ever increasing number of heat transfer engineers are using computational 
methods to solve problems in convective heat transfer, a need still exists for general 
formulas and data correlations that can be used in preliminary design, and as 
benchmark checks for computer codes. These will be included in this chapter. In 
addition, the capabilities of computational procedures for forced convection over
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external surfaces will be discussed. Details of computer codes can be found elsewhere 
in the technical literature and will not be included in this chapter.

2.2 FUNDAMENTAL EQUATIONS AND DEFINITIONS

2.2.1 The Basic Conservation Equations
The governing equations for single-phase external forced convection are based on the 
fundamental conservation laws for mass, momentum, and energy. It will be assumed 
that the fluid behaves as a continuum and can be treated as a single chemical specie. 
Gravity and other body forces will be neglected. Flows in which body forces become 
important are treated in other chapters in this handbook. Detailed derivations of the 
equations will not be presented here. They can be found in [1,2].

Continuity Equation. Conservation of mass applied to a fluid in motion yields the 
following continuity equation:

<9p
— + V • ( pV) = 0 
ot (2.1)

It is often convenient to use the substantial derivative to write the continuity equation 
in the form

Dp
— + p(v • V) = 0 (2-2)

For a Cartesian coordinate system, where u, v, w represent the components of the 
velocity in the x, y, z directions, Eq. (2.1) becomes

dp d(pu) d(pv) d(pw)+ —------ +--------- + —: L = o
dt dx dy dz (2-3)

For a flow in which the density remains constant, wre find

^=0 
Dt (2-4)

which reduces Eq. (2.2) to v • V = 0 or, in the Cartesian coordinate system,

du dv dw
T- 3" ~— + —— = 0 dx dy dz (2-5)

Momentum Equations. Application of Newton’s second law to a fluid in which body 
forces are negligible yields

d
—(pV) + v -pW = v - n 
ot (2.6)
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The term V • pVV can be expanded as

V • pW = pV • V V 4- V( v • pV) (2.7)

When this expression is used with the continuity equation (2.6), the momentum 
equation becomes

Z)V
Dt (2-8)

where II is the stress tensor. For all gases which can be treated as a continuum and 
most liquids, it has been observed that the stresses are linearly dependent on the rates 
of deformation of the fluid. Such a fluid is known as a Newtonian fluid. For Newtonian 
fluids it is possible to derive a relationship between the stress tensor and the pressure 
and velocity components [1,2]. In Cartesian tensor notation, this relationship becomes

n(/ = -p8tJ + p
dul dut \ 
dxf dx, /

duk
+ O'—- 

' dx.
(2-9)

where 8,, is the Kronecker delta function (8,y = 1 if i = j and 8(y = 0 if i ¥= j); 
tq, u2,u3 are the three components of the velocity vector in the xq, x2, x3 coordinate 
directions; p is the dynamic viscosity; and p' is the second coefficient of viscosity. For 
an incompressible fluid, the term involving the second coefficient of viscosity vanishes. 
The combination jp + p' is known as the bulk viscosity and is generally believed to be 
negligible whenever the time characterizing global processes in the flow is large 
compared to that of the molecular relaxation time. The assumption that the bulk 
viscosity is zero (known as the Stokes hypothesis') allows p' to be evaluated as 
p' = — fp, and the stress tensor can be written as

(210)

The stress tensor is frequently split in the following manner:

n(/ = -pS,, + r,7 (2.11)

where r, ; represents the viscous stress tensor given by

, ^uk
(2-12)

Upon substituting Eq. (2.10) into Eq. (2.8), the Navier-Stokes equation is obtained:

£>u, dp d
Dt dXj dxj

2. duk

-5 (2.13)

Equation (2.13) can be separated into the following three scalar Navier-Stokes equa-
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tions:

Du dp d
p — =---------+ —

Dt dx dx

( du
2 — 

dx

dv dw \ 
dy dz I

(2-14)

(2.15)

d I+ Tz H2
dw du dv 
dz dx dy

(2-16)

In some applications it is convenient to write the Navier-Stokes equations in divergence 
(or conservation-law) form as

dpu d . . d
~----- 1 ~Z~ ( P“ + P ~ ) + T- ( PUl' — T,„)dt dxy r xx> dyK xy'

+ -^(puw> - rX2) = 0 (2.17)

dpv d d , >
— + -(pW,-Tv) + — +p-T„)

d
+ ^(pvw - Tyz) =0 (2.18)

dpw d d
~)7 + ’ T«) +

+ -^(p“'2+? - - o (2.19)
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where the components of the viscous stress tensor r,y are given by

For an incompressible flow in which viscosity variations can be neglected, the 
Navier-Stokes equations reduce to the much simpler form

DV ,
p— = -Vp + PV2V (2.20)

Energy Equation. In terms of the total enthalpy H = i + m,m,/2, the energy equation 
for a fluid in motion can be written as

d d , x dp d
+ + <2-21)

where the heat flux qj can be evaluated from Fourier’s law,

dT 
qj = ~k^~ dx,

(2 22)

Utilizing the substantial derivative and making use of the continuity equation, we can 
write the left-hand side of Eq. (2.21) as p DH/Dt.

It is sometimes more convenient to express the energy equation in terms of the static 
enthalpy rather than the total enthalpy. Then Eq. (2.21) becomes

d d dp dp du, dqt
^Pl} + ^(p‘“'> ~Tt + + (2 23)

where t, du,/dx is commonly identified as the dissipation function <£>. The value of 
the dissipation function represents the rate at which mechanical energy is converted to 
thermal energy, per unit volume. Utilizing the definition of the substantial derivative
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permits Eq. (2.23) to be written in the form

Di Dp
p— = — — V • fl + $PDt Dt

(224)

Equation (2.23) can also be written in terms of the internal energy a as

Da
p— = -V • q - pV • V + <J> 

Dt
(2-25)

It is frequently convenient to treat the temperature as the primary thermal depen
dent variable. In this case, Eq. (2.24) can also be written as

DT Dp
(2.26)

and Eq. (2.25) as

DT dp 
dT

(V • v) - V • q + <f>
V

(2.27)

In the above, = -(l/p)(5p/5T) is the coefficient of thermal expansion (equal to 
1/T for an ideal gas). The dissipation function <J> is given by

du\~ / dv\2 / dw\2 ( dv du\2 . dw dv\2
— I + 2 — I + 2 -- I + —— + —— I + I ■ + I
dx / \ dy) \ dz ) \ dx dy j ( dy dz )

du dw\2
~T~ + "7“ dz dx

2 I du dv dw \2

3 \ dx dy dz J
(2.28)

When the flow can be treated as incompressible with constant thermal conductivity, 
Eq. (2.27) reduces to

DT Q 
pcv— = kV T+ * (2.29)

and the last term in the dissipation function, equal to — ju(V ’V)2, can be neglected. 
In many low-speed flows, the dissipation function can be neglected entirely.

2.2.2 Coordinate Systems
The basic equations for convection are derived from fundamental conservation princi
ples. Thus, a form of these equations can be formulated for any coordinate system. The 
equations have been expressed in terms of a Cartesian coordinate system thus far in 
this chapter. For many applications it is more convenient to use a different coordinate 
system. Whenever possible, a coordinate line should He on the boundary of the body 
undergoing convection. It is also convenient if the coordinate lines are orthogonal, 
because in this case the equations appear in their simplest form. This is not essential, 
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however. The conservation principles can be formulated in coordinate systems which 
are not orthogonal. Nonorthogonal but body-conforming coordinate systems are fre
quently used in the numerical solution of convective flows. The generation of such 
body-conforming coordinate systems is discussed in considerable detail in [3],

Here the conservation equations will be formulated in a generalized orthogonal 
curvilinear coordinate system. Utilizing the development in [4], xq, Xj, x3 are defined 
as a set of generalized orthogonal curvilinear coordinates with ij ,i2,i3 the correspond
ing unit vectors. The rectangular Cartesian coordinates are related to the generalized 
curvilinear coordinates by

x — x(x1, x2, x3)

y = y(x1;x2,x3)

z = z(x3, x2, x3)

so that if the Jacobian d(x, y, z')/d(x1, x2, x3) is nonzero, then

x2 = x3(x, y, z)

x2 = x2(x,y,z)

x3 = x3(x, y, z)

The elemental arc length in Cartesian coordinates is

(di)2 = ( dx)2 + (dy)2 + (dz)2

and, in terms of the curvilinear coordinates,

(ds)2 = (/q dxxy + (A2dx2)2 + (/i3 dx3)2

where the metric coefficients hlt h2, and h3 are given by

Or/ = 1
/ dx \

\ /

2

+

2

1 +
1 dz \2

i /

O)M( dx )
I dx2 \

2

+
[dy 

dx2 )

2
I + (dz r

\ dx2 /

f dx )
2

f dy 'l
2

fdz r(M2 = l\ ^X3 J1 +

\ /
+ 1

\ /

If 4> is an arbitrary scalar and A is an arbitrary vector, the expressions for the gradient, 
divergence, curl, and Laplacian operator in the generalized curvilinear coordinates
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become

V<#> =
1 dtp ~ 1 dtp * 1 d<p
hx dxv 1 h2 dx2 2 A, dx

(2.30)

1 

h3h2h3
d ,

——(h3h3A3} 
dx.

d d , x
— (h3h3A2) + —(A1A2z43) 
u%2 QX3

(2.31)

1 

hih2h3

9(h3A3) _ 
dx2

, d(h2A2)
+ h3

dx.

9(h2A2) 
dx3

9x2

d(h3Ax) 
dx3

d(h3A3)\
dx

(2.32)

d
dx

h2h3 dtp
A, dx

d 
dx2

h3h3 dtp
h2 dx2

d 
dx3

h3h2 d<p
h3 dx3

(2.33)

1

1 2 3
h

2

d

h + ^2

>3

The expression V • v V which is contained in the momentum-equation term £>V/Dt
can be evaluated as

1 u, du, u-, du, u-, du, u,u7 dh,
V-vV= — — + ——- + ——- + —-

1 Aj dx3 h2 dx2 h3 dx3 hrh2 dx2

u3u3 dh3 u2 dh2 u3 dh3 \

h3h3 dx3 h3h2 dx3 h3h3 dx3 1

/ tq d^ u2 du-2 u3 dt^ u3 dh3

( h3 dx3 h2 dx2 h3 dx3 h3h2 dx2

w1w2 dh2 u2u3 dh2 u3 dh3 ]
h3h2 dx3 h2h3 dx3 h2h3 dx2

1 u3 du3 u2 du3 u3 du3 u3 dh3
1 h3 dx3 h2 dx2 h3 dx3 h1h3 dx3

u2 dh2 m1u3 dh3 u2u3 dh3)
h2h3 dx3 hxh3 dx3 h2h3 dx2

13 (2.34)

where u3,u2, u3 are the velocity components in the xl; x2, x3 coordinate directions.
The components of the stress tensor given by Eq. (2.10) can be expressed in terms of 

the generalized curvilinear coordinate as

nA1A1 = ~P + - eX2A2 - ev,J

n<2x2 = -p + M2eA2A2 - <\1M - <?A-3Vl) 

n<3'3 = ~P + iM(2Tv,X, -
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nViVi = n<Oi = fj.eXi (i

11, v = 1I„ , = uer . xlx2 X2X1 ' xlx2 (2-35)

where the expressions for the strains are

ex\xi

1 du3 u2 dh3 u3 dh3

/i1 dx3 ^1^2 dx2 ^1^3 ^x3

1 u3 dh2 Wi dh2
X2X: h2 dx2 h2h3 dx3 h3h2 dx3

1 du-, u, dh-, u-> dh3, =--------i + —A------A +-------------
X3X3 h3 dx3 h3h3 dx3 h2h3 dx2

(2.36)

The components of V • II are

d , \ d , x d ,
-----------A ) + 7- 
/?3[Sx1V 2 3 X1X,y dx2X 13 AM2/ dx3y 1 - '1A,/

1 dh3 11 1 dh3 , । 1 dh2
+ 11x2X3” 11x1X1 ~hih3~dx3 ~ 11x2X2M?a^Z 

(2.37)

1 dh3 1 dhx 1 dh2 1 dh3
+ ^X'X1 h3h2 dx2 X1X3 h3h3 dx3 X2X2 h3h2 dx3 XyXy h3h3 dxx

1
h! h 2 h 3

d / x d , x d , .

1 dh2 1 dh2 1 dh3 1 dhx
+ IIx;X3 Ml ~dT3 + H* 1*2 Ml - 11x3X3 Ml dx2 11x1X1 h3h2 dx2

1 
hlh2h3

d , x d z x d , .

1 dh3
+ 11x1X3
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In generalized curvilinear coordinates, the dissipation function becomes 

$ = + eX2X2 + eX3X3)

+ ex2X3 + ex3x3 + ex1x2 ~ 3 ( ex1x1 + Sx2x2 ex3x3) ] (2.38)

The above expressions can now be used to derive the conservation equations in any 
orthogonal curvilinear coordinate system. Examples of the most common orthogonal 
coordinate systems are given below.

1. Cartesian coordinates:

X1 = X, = 1, u3 = u

x2 = y, /i2 = 1, «2 = V

X, = z, h3 = 1, U3 = M’

2. Cylindrical coordinates:

Xi = r, ^ = 1, u3 = ur

x2 = 0, Zi2 = r, u2 = Ug

x3 = z, h3 = 1, «3 = «z

3. Spherical coordinates:

= r, hr = 1, «1 =

x2 - 9, h2 = r, m2 = Ug

x3 = <f>, h3 = r sin 0, u3 = u^

4. 2D or axisymmetric body intrinsic coordinates:

*1 = hr = l + K(Ov, ur = u

x2 = 7], h2 = 1, u2 = V

X- = <j>, h3 = [r(0 + V COS u3 = w = 0

where 7C(£) is the local body curvature, r(£) is the cylindrical radius, and

_ ( 0 for 2D flow
\ 1 for axisymmetric flow

These coordinate systems are illustrated in Fig. 2.1.

2.2.3 Reynolds Equations for Turbulent Flow
The unsteady Navier-Stokes equations are generally considered to be valid for turbu
lent flows in the continuum regime. However, the complexity and random nature of the 
turbulent motion has so far made exact analytical solutions of the Navier-Stokes



Figure 2.1. Orthogonal coordinate systems: (a) Cartesian coordinates (a, r, z); (b) cylindrical 
coordinates (r, 6. z); (c) spherical coordinates (r, 0, <f>); (d) 2D or axisymmetric body intrinsic 
coordinates (£, tj, <J>). (Adapted from [4] by permission.)

2*13
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equations for these flows impossible. Even computer simulations based on the Navier- 
Stokes equations are beyond reach at present for practical problems. This is because 
extremely large numbers of grid points are required to resolve the small time and space 
scales of the turbulent motion. If computer technology continues to advance at about 
the present rate, it is conceivable that at some time during the next century, computer 
simulations of flows of practical interest will be possible by solving the unsteady 
Navier-Stokes equations. However, some authorities believe this will never be possible.

Most of the present-day prediction methods for turbulent flows are based on the 
time-averaged Navier-Stokes equations. These equations are also referred to as the 
Reynolds equations of motion or the Reynolds-averaged equations. Time-averaging 
the equations of motion gives rise to new terms which can be interpreted as “apparent” 
stress gradients and heat-flux quantities associated with the turbulent motion. These 
new quantities must be related to the mean flow variables through turbulence models. 
This process introduces further assumptions and approximations. Thus, this attack on 
the turbulent flow problem through solving the Reynolds equations of motion does not 
follow entirely from first principles, since additional assumptions must be made to 
“close” the system of equations.

The Reynolds equations are derived by decomposing the dependent variables in the 
conservation equations into time-mean (obtained over an appropriate time interval) 
and fluctuating components and then time-averaging the entire equation. Two types of 
averaging are presently used, the classical Reynolds averaging and the mass-weighted 
averaging suggested by Favre [5]. For flows in which density fluctuations can be 
neglected, the two formulations become identical.

In the conventional averaging procedure, following Reynolds, we define the time 
average f of a quantity f as

<2'3”

We require that At be large compared to the period of the random fluctuations 
associated with the turbulence, but small compared to the time constant for any slow 
variations in the flow field associated with ordinary unsteady flows. The interval A t is 
sometimes taken to approach infinity as a limit, but this should be interpreted as being 
relative to the characteristic fluctuation period of the turbulence. For practical mea
surements, A t must be finite.

In the conventional Reynolds decomposition, the randomly changing flow variables 
are replaced by time averages plus fluctuations about the average. For a Cartesian 
coordinate system this gives

u = u + u', v = v + v', w = w +w', p = p + p'
, - - - (2-40)

p=p+p, i = i + i , T=T+T’, H = H + H'

where the total enthalpy H is defined by H = i’ + u, u,/2. Fluctuations in other fluid 
properties such as viscosity, thermal conductivity, and specific heat are usually small 
and will be neglected here.

By definition, the time average of a fluctuating quantity is zero:

(2-4i)
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It should be clear from these definitions that for symbolic flow variables f and g, the 
following relations hold:

7 g'= 0, fg=fg, f+g=f+g (2.42)

It should also be clear that, whereas f'= 0, the time average of the product of two 
fluctuating quantities is, in general, not equal to zero, i.e., /'/'¥= 0. In fact, the 
root-mean-square of the velocity fluctuations is known as the turbulence intensity.

For treatment of compressible flows and mixtures of gases in particular, the 
mass-weighted averaging is convenient. In this approach, mass-averaged variables are 
defined according to f = pf/p. This gives

pu pv pw pi _ pT .. pH
u=—, v=—, w=—, ~i=—, T=—, H = — (2.43)

P p p p p p

It should be noted that only the velocity components and thermal variables are 
mass-averaged. Fluid properties such as the density and pressure are treated as before.

To substitute into the conservation equations, new fluctuating quantities are defined 
by

u = u + u", v = v + v”, w = w + w", i = ~i + z", T = f + T", H = H + H"

(2-44)

It is important to note that the time averages of the doubly primed fluctuating 
quantities (u", v", etc.) are not equal to zero, in general, unless p1 = 0. In fact, it can be 
shown that u"= — p'u'/p, v"= — p'v'/p, etc. Instead, the time average of the doubly 
primed fluctuation multiplied by the density is equal to zero:

pf = 0 (2.45)

The above identity can be established by expanding pf= p(f + /") and using the 
definition of f.

Reynolds Form of the Continuity Equation. Starting with the continuity equation 
written in the Cartesian coordinate system, Eq. (2.3), the variables are first decomposed 
into conventional time-averaged variables plus fluctuating components as given by Eq. 
(2.40). The entire equation is then time-averaged. Several of the terms are identically 
zero because of the identity of Eq. (2.41). Finally, the Reynolds form of the continuity 
equation is conventionally averaged variables can be written

- + —(pSy +- 0 (2.46)

To develop the Reynolds form of the continuity equation in mass-weighted vari
ables, the variables in Eq. (2.3) are decomposed as indicated by Eq. (2.44) except for 
the density, which is decomposed according to Eq. (2.40). When the entire continuity 
equation is time-averaged, several terms are observed to be identically zero because of 
Eqs. (2.41) and (2.45). Finally, the continuity equation in mass-weighted variables can 
be written as

dp d
-J- +vNpSJ-O (2.47)
dt dXj J
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It is noted that Eq. (2.47) is more compact in form than Eq. (2.46). For incompressible 
flows, p' = 0 and the differences between the conventional and mass-weighted vari
ables vanish, so that the continuity equation can be written as

^-0
dXj

(2.48)

Reynolds Form of the Momentum Equations. Working first with the conventionalh 
averaged variables, the dependent variables in Eqs. (2.17) to (2.14) are replaced with 
the time averages plus fluctuations according to Eq. (2.40). Next the entire equation is 
time-averaged. Terms which are linear in fluctuating quantities become zero when 
time-averaged, as thev did in the continuity equation. Several terms disappear in this 
manner, while others can be grouped together and found equal to zero through use of 
the continuity equation. The resulting Reynolds momentum equation (all three compo
nents) can be written

dp d , _ _____ ____ = - 7; + 77 - P u uj. (2 49)

where

(2.50)

To develop the Reynolds momentum equation in mass-weighted variables, the 
decomposition indicated by Eq. (2.44) is used to represent the instantaneous variables 
in Eqs. (2.17)—(2.19). Next, the entire equation is time-averaged and the identitv (2.45) 
is used to eliminate terms. The complete Reynolds momentum equation in mass- 
weighted variables becomes

d _ d _ dp d / ______ ,
+ ^(v - P<«,") (2.51)

where, neglecting viscosity fluctuations, ti; becomes

317,
- —-

3 iJdxk (2 52)
du "

The momentum equation (2.51) in mass-weighted variables is simpler in form than 
the corresponding equation using conventional variables. It is noted, however, that 
even when viscosity fluctuations are neglected, r,, is more complex in Eq. (2.52) than 
t(/ which appeared in the conventionally averaged equation (2.50). In practice, the 
viscous terms involving the doubly primed fluctuations are expected to be small and are 
likely candidates for being neglected on the basis of order-of-magnitude arguments.
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For incompressible flows the momentum equation can be written in the simpler 
form

d _ d dp d i ___ xa/'8') + ^(p*A)  - + — (?„ - ,„;„;) (2.53)

where r, , takes on the reduced form

(2-54)

As noted in connection with the continuity equation, there is no difference between 
the mass-weighted and conventional variables for incompressible flow.

Reynolds Form of the Energy Equation. The thermal variables H, z, and T are all 
related, and the energy equation takes on different forms depending upon which one is 
chosen to be the transported thermal variable. To develop one common form, the 
energy equation as given by Eq. (2.21) is used as a starting point. To obtain the 
Reynolds energy equation in conventionally averaged variables, the dependent vari
ables in Eq. (2.21) are replaced with the decomposition of Eq. (2.40). After time 
averaging, the equation becomes

d , _ ___ .. d ( _ ____ ________________ ____ dT\
— \pH + p'H') + ---- PujH + pu'H' + p'u'H + p'u’jH’ + up'H' — k----
d t d Xj 1 d Xj j

dp d[[ 9uk\
= — + — mJ

dt dXj ( ( 1 dxk)

di/k
(2.55)

It is frequently desirable to utilize the static temperature as the primary thermal 
variable in the energy equation. Letting i = cpT in Eq. (2.23), replacing the variables in 
Eq. (2.23) with the decomposition of Eq. (2.40) and time averaging gives

d , __ ----- v d _
-(c,pT+c,p'r) + —(pC,rUj)

dp 
dt

+ </» (2.56)

where

_ du, du, du\
= = T‘JT~ + (2-57)

J dXj dXj J dXj

The tz in Eq (2.57) should be evaluated as indicated by Eq. (2.50).
To develop the Reynolds form of the energy equation in mass-weighted variables, 

the dependent variables in Eq. (2.21) are replaced with the decomposition of Eq. (2.44)
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and the entire equation is time-averaged. The result can be written

d . d
+ 77

~ ______ ar
pUjH + pu''H" - k—

= ^7 + 77^j + (2’58)

where t, ; can be evaluated by means of Eq. (2.52) in terms of mass-weighted variables.
In terms of static temperature, the Reynolds energy equation in mass-weighted 

variables becomes

d , d , dp dp dp
+ T^,<pc-T“^ " 77 + + X 

where

d /
---- 1

dT dT” ______ )
k— + k--------c pT"u”

dXj dXj F J
1 + <J> (2.59)

_ 3u,
*- ■

du, du!-
T- ■------- + T- ■--------
'J dxj ‘J dXJ

(2.60)

For incompressible flows, the energy equation can be written in terms of the total 
enthalpy as

dpH d 
dt dxj

_ _____ dr\
pu.H + pu'H' - k— 

°xj

dp d I _ / du/ dut
-77 + ~r~ \ l* ui v + dt dXj I I dXj dxj

(2.61)

and in terms of the static temperature as

d . d _
77(pc'r) +

_ dp dp’ d
~ W.T— *1  iff-"— “l“ T—

dt J dxj J dxj dxj

I dT ____ ’
------PcpT'uj

\ °XJ
+ </> (2.62)

where <f> is reduced slightly in complexity due to the vanishing of the volumetric 
dilation term in f,- • for incompressible flow.

Comments on the Reynolds Equations. The Reynolds equations enforce the con
servation principles in terms of time-averaged variables. In comparing the Reynolds 
equations with the Navier-Stokes equations, some differences are noted. The Reynolds 
equations contain terms involving velocity, density, and temperature fluctuations. 
Among these new terms can be identified “apparent” or turbulent stress and heat-flux 
quantities. For example, all the terms containing fluctuations on the right-hand side of 
Eqs. (2.49) and (2.51) represent apparent turbulent stresses. Similarly, terms in the
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energy equation containing the time average of the product of a temperature fluctua
tion and a velocity fluctuation can be identified in turbulent heat-flux terms. These new 
quantities originated from the momentum and energy flux terms of the Navier-Stokes 
equations.

The Reynolds equations cannot be solved in the form given, because the apparent 
turbulent stresses and heat-flux quantities must be viewed as new unknowns. To 
proceed further, it is necessary to find additional equations involving the new un
knowns or make assumptions regarding the relationship between the apparent turbu
lent quantities and the time-mean flow variables. This is known as the closure problem. 
The process of obtaining closure, commonly called “turbulence modeling,” will be 
discussed in a later section.

2.2.4 Reduced Forms of the Equations
Inviscid Flow. As was pointed out in the introduction to this chapter, there are many 
flows in which the important effects of viscosity and heat conduction can be limited to 
a thin boundary layer near solid surfaces. If this boundary layer is very thin compared 
to the characteristic length of the flow field, the inviscid (nonviscous, nonconducting) 
portion of the flow can be solved independently of the boundary layer. The appropriate 
equations for the inviscid flow are obtained by dropping both viscous and heat transfer 
terms from the complete Navier-Stokes equations. These simplified equations are 
generally known as the Euler equations. The solution of these equations provides the 
edge (or boundary) conditions needed for the solution to the boundary-layer form of 
the conservation equations, from which heat transfer information can be obtained.

The continuity equation contains no viscous or heat conduction terms, so that the 
various forms of the continuity equation given previously apply to the inviscid flow. 
However, if the steady form of the continuity equation reduces to two terms for a given 
coordinate system, it becomes possible to discard the continuity equation by intro
ducing the so-called stream function. This can be done whether the flow is viscous or 
nonviscous. If the stream function ip is defined such that

dip
Pu= dy

(2.63) 
dip

pv=~Tx

it can be seen by substitution that Eq. (2.3) is satisfied for steady flow. Hence, the 
continuity equation does not need to be solved, and the number of dependent variables 
is reduced by one. The disadvantage is that the velocity derivatives in the remaining 
equations are replaced using Eq. (2.63), so that these remaining equations will now 
contain derivatives which are one order higher. For a steady, incompressible flow, the 
density can be eliminated from the continuity equation and in Cartesian coordinates 
the stream function is defined by

dip 
“= 3v

,, (2M)
dip

v = —— 
dx

For a steady, axisymmetric, compressible flow in cylindrical coordinates, the continuity
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equation is given by 

15 d
~V^rpu^ + ~a~(pu^ = 0 (2-65)
r or oz

and the stream function is defined by

For the case of three-dimensional flows, it is possible to use two stream functions to 
replace the continuity equation. However, the complexity of this approach usually 
makes it less attractive than using the continuity equation in its original form.

When the viscous terms are dropped from the Navier-Stokes equations (2.8), the 
Euler equation is obtained:

DV , x
p— = -vp (2.67)

For steady flow, this can be written

1
V-vV=--vp (2.68)

P

Integrating this along a streamline in the flow gives

V2 dp
------ 1----- = constant (2.69) 

2 P

The integral in this equation can be evaluated if the flow is assumed barotropic. A 
barotropic fluid is one in which p is a function only of p (or a constant), i.e., p = p(p). 
Incompressible flows and isentropic flows are examples of barotropic flows. For an 
incompressible flow, Eq. (2.69) can be integrated to give

p + | pF2 = constant (2.70)

which is Bernoulli’s equation. For an isentropic, compressible flow, p = constant • p1/Y 
and Eq. (2.69) can be integrated to give

F2 IP
— -I------------- = constant (2.71)2 y - 1 p V ’

which is sometimes referred to as the Bernoulli equation for compressible flow.
It is important to remember that the integration resulting in Eqs. (2.70) and (2.71) 

was carried out along a specific streamline. The constants appearing in the equations 
can vary from streamline and streamline. However, the integration can be carried out 
between arbitrary points in a flow field which is irrotational, that is, in a flow in which 
the particles do not rotate. In this case, Eqs. (2.70) and (2.71) remain valid throughout
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the flow with the same constants on the right-hand side A proof of this result can be 
found in standard works on fluid mechanics such as Owczarek [6], The inviscid 
portions of many flows arising in applications are, in fact, irrotational.

For flows which can be treated as irrotational, further useful results can be 
developed. The condition of irrotationality,

V X V = 0 (2.72)

expressed in the Cartesian coordinate system for a two-dimensional, steady, incom
pressible flow gives

dv du
dx dy

(2.73)

When the stream function is introduced, the result is

V2>A = 0 (2-74)

Thus, the stream function satisfies Laplace’s equation for the steady, irrotational flow 
of an incompressible fluid.

Also, because of Eq. (2.72), the velocity V can be expressed as the gradient of a 
single-valued point function </>, the velocity potential. Requiring that the continuity 
equation be satisfied for the steady flow of an incompressible fluid gives

V • V = V *(V<}>)  = V2<> = 0 (2.75)

which is the Laplace equation for the velocity potential. It should be noted that Eq. 
(2.75) is valid regardless of the dimension of the flow.

The implications of Eqs. (2.74) and (2.75) are quite far reaching. At first glance it 
may appear that these equations only enforce conservation of mass for an irrotational 
flow. However, as a consequence of the irrotationality of the flow, a solution to these 
equations which satisfies the Bernoulli equation anywhere (such as on the boundaries) 
will satisfy the Bernoulli equation having the same constant throughout the flow 
domain. Thus, if the flow can be assumed to be incompressible, steady, and irrota
tional, a solution which satisfies the continuity and Euler momentum equations can be 
obtained by solving the Laplace equation for stream function or velocity potential, 
subject to the correct boundary conditions. The correct boundary conditions may vary 
from problem to problem, but the conditions imposed must be consistent with a flow 
which satisfies the continuity and Euler momentum equations. Many analytical and 
numerical procedures are available for solving Laplace’s equation. Thus, it is only a 
modest task to obtain at least an approximate solution for steady, incompressible, 
inviscid flows.

If the viscous and heat conduction terms are dropped from the energy equation 
(2.21), one obtains

X 9 I dp
--------- + t) = — 

dt dx, J dt
(2-76)

Using the continuity equation, Eq. (2.76) can be written as

DH dp
Dt ~ dt (2.77)
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which, for a steady flow, can be written as

V • vH = 0

This equation can be integrated along a streamline to give

V2
H = i 3------ = constant

2

(2.78)

(2 79)

It is observed that Eq. (2.79) will satisfy Eq. (2.78) exactly throughout the flow. This 
means that if a constant value of H is implied by the boundary conditions of a flow, 
i.e., H = constant or dH/dn = 0 at all boundaries, then H = constant is a solution to 
Eq. (2.78). Such an inviscid flow frequently occurs, and is known as an isoenergetic or 
homoenergic flow. It is interesting to note that Eq. (2.79) becomes identical to Eq. (2.71) 
for the isentropic flow of a perfect gas.

It is worth noting that for a perfect gas with constant specific heat, Eq. (2.79) can be 
written as

V2
T 3-------= constant

2cp
(2.80)

(2.83)

In this form, the constant can be identified as the stagnation temperature To. If a 
stagnation process is also isentropic, the stagnation pressure is given by

(2-81)

It is possible to derive additional relationships which prove to be quite useful in 
particular applications. Some of these are based on the first and second laws of 
thermodynamics, which result in the following relationship among properties:

dp
T ds = di------  (2.82)

P

Upon combining this with the Euler momentum equation, it is possible to show that

3V ( V2
—----- VXu=T Vs- —vt y 2

where u is the vorticity vector,

w = V X V

Equation (2.83) is known as Crocco’s equation. This equation provides a relationship 
between vorticity and entropy. Using Eq. (2.83) along with Eq. (2.78), it can be shown 
that the entropy remains constant along a streamline for a steady, inviscid, adiabatic 
flow. Furthermore, for an irrotational, isoenergic flow, Crocco’s equation indicates that 
the entropy remains constant everywhere.

The Mach number, an important dimensionless parameter, is defined as the ratio of 
the local speed of the fluid to the speed of sound, a, defined by

PpV/2
° = T (2.84)

\ dPh
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where the subscript indicates an isentropic process. For a perfect gas, p/py = constant 
and Eq. (2.84) becomes

a = (yRT)1/2 (2.85)

where R is the gas constant from the perfect-gas equation of state.
The velocity potential can be used in a restricted class of compressible flows to 

obtain a simple equation governing the inviscid flow. This equation is not as simple as 
the Laplace equation obtained in the incompressible case, but it is nevertheless useful 
in applications. The flow is assumed to be steady, irrotational, and isentropic. The 
velocity components are defined as the gradient of the potential <J>, just as in the 
incompressible case. In Cartesian coordinates this gives

d<$> d(/> d(p
u = v = —— w = —

dx dy dz
(2.86)

These velocity components are substituted into the continuity equation to obtain

a 9 , x d
+ + " 0 (2'87)

The Euler momentum and energy equations reduce to Eq. (2.69) with the assumptions 
of steady, irrotational, and isentropic flow. This provides a means of evaluating the 
derivatives of density appearing in Eq. (2.87) in terms of the velocity potential. After 
simplifying. Eq. (2.87) becomes

2<M>v 2<M> 2</yk
a2 ^xy a2 ^x: (2.88)

where the subscripts denote differentiation. Equation (2.88) is known as the velocity 
potential equation. For an incompressible flow, a -> oo and Eq. (2.88) reduces to 
Laplace’s equation.

Reduced forms of Eq. (2.88), such as the transonic small-disturbance equation [4] 
and the Prandtl-Glauert equation [4], are sometimes useful in applications. Because 
further simplifications of Eq. (2.88) are common in the literature, Eq. (2.88) is 
sometimes referred to as the full potential equation.

The velocity potential equation can be used for both supersonic and subsonic flows. 
The main restriction on its use in applications arises from the assumption of isentropic, 
irrotational flow. The entropy (and often the vorticity) of the flow changes across a 
shock wave. Numerical solutions to Eq. (2.88) are capable of capturing a shock in the 
solution domain, but the solutions show no change in entropy or rotation. When the 
normal Mach number upstream of a shock is less than about 1.3, the errors introduced 
by the assumptions of isentropic irrotational flow are usually very small.

Viscous Flow. In this subsection the boundary-layer form of the governing equations 
are presented. These equations are obtained from the full Navier-Stokes equations by 
dropping those terms which are small when the effects of viscosity and heat conduction 
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are limited to a region which is thin relative to the characteristic length of the object 
immersed in the flow.

The concept of a boundary layer originated with Ludwig Prandtl in 1904. Prandtl 
reasoned from experimental evidence that for sufficiently large Reynolds numbers 
(Re = pUL/p), a thin region existed near a solid boundary where viscous effects were 
at least as important as inertia effects no matter how small the viscosity of the fluid 
might be. Prandtl used an order-of-magnitude analysis as the basis for eliminating 
terms from the governing equations. His conclusions were that second derivatives of 
the velocity components in the streamwise direction were negligible compared to 
corresponding derivatives transverse to the main flow direction and that the entire 
momentum equation for the transverse direction could be neglected. Applying a similar 
order-of-magnitude analysis to the energy equation indicates that for sufficiently large 
values of the Peclet number (Pe = Re Pr), conduction effects in the streamwise direc
tion can be neglected and the dissipation function can be greatly simplified.

The perceptive work of Prandtl in 1904 set the stage for the analysis of a wide range 
of important problems in convective heat transfer. Although the boundary-layer 
equations were challenging in view of the analytical techniques available in 1904, they 
were nevertheless just within reach of existing and emerging methods. It was not until 
the modem digital computer became widely used in the 1960s and 1970s that numerical 
solution of more complete mathematical formulations became commonplace.

The Euler and boundary-layer equations are not the only “reduced” forms of the 
conservation equations in common use today. Other forms intermediate in complexity 
between the Navier-Stokes and boundary-layer equations have been found useful in 
numerical solutions to particular classes of problems. Generally, these reduced forms 
allow a few terms to be neglected in the Navier-Stokes equations, but do not permit the 
neglect of an entire momentum equation as in the case of the boundary-layer equa
tions. Consequently, these reduced forms require an order of magnitude greater effort 
for solution than do the boundary-layer equations. A discussion of these forms can be 
found in texts which emphasize the computational aspects of convective problems [4], 
The boundary-layer forms of the conservation equations will be given below because of 
their wide range of applicability in convective problems. Other reduced forms of the 
Navier-Stokes equations are somewhat less important for the understanding of convec
tion processes and will not be covered in detail in this chapter.

y

Figure 2.2. Boundary-layer configuration and coordinate system. (Adapted from [4] by permis
sion.)
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Historically, the boundary-layer equations were first developed for steady, two
dimensional, incompressible, constant-property flow along an isothermal surface. The 
thickness of the viscous and thermal boundary layers are assumed to be small relative 
to a characteristic length in the primary flow direction. That is, 8/L « 1 and 
8,/L 1. See Fig. 2.2 for the flow configuration and coordinate system being used for
the boundary layer. Details of the order-of-magnitude analysis can be found in most 
textbooks covering convective heat transfer [2, 4] and will not be repeated. The 
Reynolds number and Peclet numbers were assumed to be of the same order of 
magnitude in the analysis. The results for steady, two-dimensional, incompressible, 
constant-property flow can be written as follows:

Continuity:

du dv
—— + —— 
dx dy

(2.89)

Momentum:

du du 1 dp d2u
--------1- v---- = 1- V----- V 
dx dy-------p dx dy2

(2.90)

Energy:

dT dT d2T /3Tu dp 
-------- 1- v---- = a----y -I — 
dx dy----- dy------ pcp dx

p / du \2 
pcp \ dy] (2-91)

where v is the kinematic viscosity p/p, and a is the thermal diffusivity k/pcp. 
It should be pointed out that the last two terms in Eq. (2.91) were retained from 
the order-of-magnitude analysis on the basis that the Eckert number Ec = 
2(7^ — 2^)/(Tw — Tx) was of the order of 1. Should Ec become of the order 0.1 or 
smaller for a particular flow, neglecting those terms should be permissible.

To complete the mathematical formulation, initial and boundary conditions must 
be specified. The steady boundary-layer momentum and energy equations are 
mathematically parabolic with the streamwise direction being the marching direc
tion. Initial distributions of u and T must be provided. The usual boundary 
conditions are

w(x,0) = v(x,0) = 0

T(x,0) = Tw(x) or
dr <?(*)

lim u(x, j’) = ue(x), 
y^> oo

lim T(x, y) = Te(x) 
y-~*  oo

(2.92)
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where the subscript e refers to conditions at the edge of the boundary layer. The 
pressure gradient term in Eqs. (2.90) and (2.91) is to be evaluated from the given 
boundary information. With ue(x) specified, dp/dx can be evaluated from an 
application of the equations which govern the inviscid outer flow (Euler’s equations), 
giving dp/dx = —pue due/dx.

Next, the boundary-layer approximation is extended to an incompressible, 
constant-property two-dimensional turbulent flow. Under the incompressible as
sumption, p' = 0 and the Reynolds equations simplify considerably. As before, it is 
assumed that 8/L «: 1, 8,/L « 1, but experimental evidence must be used for 
guidance in establishing the magnitude estimates for the Reynolds stress and 
heat-flux terms. Experiments indicate that the Reynolds stresses can be at least as 
large as the laminar counterparts, and that u'2, u'v', v'2, while differing in magni
tudes and distribution somewhat, are nevertheless of the same order of magnitude in 
the boundary layer. In the energy equation, T'v' and T'u' are observed to be of the 
same order of magnitude and at least as large as the laminar heat-flux term. Triple 
correlations such as u'u'u' are expected to be an order of magnitude smaller than 
double correlations. Again it is assumed that the Prandtl and Eckert numbers are 
near 1 in order of magnitude. With these assumptions, the boundary-layer form of 
the equations for two-dimensional incompressible turbulent flow are

Continuity:

du dv 
~— + —— 
dx dy

(2.93)

Momentum:

_ du du dp d2u d .____
P“V + P^T---------~T + (2.94)

dx dy dx dy dyv 7

Energy:

_dT _dT _ dp d2T d z___ x
P^«T- + PCPV^~ = + ~ Pcp^~\v'T')! dx p dy dx dy pdy

___ du
Pv'u'— 

dy
(2.95)

It should be noted that only one Reynolds stress term and one Reynolds 
heat-flux remain in the governing equations after the boundary-layer approximation 
is invoked. The first and last two terms on the right-hand side of Eq. (2.95) can be 
neglected in some applications. However, it is not correct to neglect these terms 
categorically for incompressible flows. Equation (2.95) can be easily solved by 
numerical methods in its entirety, so further reductions should not be made unless it 
is very clear that the terms neglected will indeed be negligible. The boundary 
conditions remain unchanged for turbulent flow. For completeness it should be 
mentioned that terms do appear in the y-momentum equation for turbulent flow 
which are of the same order of magnitude as those included in Eqs. (2.93)—(2.95).
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namely,

1 d~P d l~\
= ")■ p dy dy ' '

These terms have not be listed above with the boundary-layer equations, because 
they contribute no information about the mean velocities or temperature.

The order-of-magnitude reduction of the Reynolds equations to boundary-layer 
form is a lengthier process for compressible flow. Only the results will be presented 
here. Details of the arguments for elimination of terms are given by Schubauer and 
Tchen [7], van Driest [8], and Cebeci and Smith [9]. As was the case for incom
pressible flow, guidance must be obtained from experimental observations in 
assessing the magnitudes of turbulence quantities. An estimate must be made for 
p'/p for compressible flows.

Measurements in gases for Mach numbers less than about 5 indicate that 
temperature fluctuations are nearly isobaric for adiabatic flows. This suggests that 
T'/T « — p'/p. However, there is evidence that appreciable pressure fluctuations 
exist (8 to 10% of the mean wall static pressure) at Me = 5, and it is speculated that 
p'/p increases with increasing Mach number. In the absence of specific experimen
tal evidence to the contrary, it is common to base the order-of-magnitude estimates 
of fluctuating terms on the assumption that the pressure fluctuations are small. This 
appears to be a safe assumption for Me < 5, and good predictions based on this 
assumption have been noted for Mach numbers as high as 7.5. The isobaric 
assumption will be adopted here. It is primarily the correlation terms involving the 
density fluctuations which may increase in magnitude with increasing Mach number 
above Me ~ 5.

The difference between u and ii vanishes under the boundary-layer approxima
tion. This follows because p'u' is expected to be small compared to pu and can be 
neglected in the momentum equation. Also, T = T and H = H are observed to be 
consistent with the boundary-layer approximation. On the other hand, p'v' and pv 
are both of about the same order of magnitude in a thin shear layer. Thus, v ¥= v.

Below, the unsteady boundary-layer equations for a compressible fluid are 
written in a form applicable to both two-dimensional and axisymmetric turbulent 
flow. For convenience the use of bars over time-mean quantities will be dropped, 
and the quantity v = (pv + p'v')/p will be utilized. The equations are also valid for 
laminar flow when the terms involving fluctuating quantities are set equal to zero. 
The coordinate system is indicated in Fig. 2.3.

Figure 2.3. Notation and coordinate system for boundary-layer flow over an axisymmetric body. 
(Adapted from [4] by permission.)
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Continuity:

+ ~r(rmpu) + 7“(r>£;) = 0 (296)
dt dx oy

Momentum:

du du
P^~ + +dt dx

du dp 13
pv— = +---------P dy dx rm dy

du ___
Py.----- pu'v'

dv
(2.97)

Energy':

dH dH dH dp Id
+ putx + pl'yr ’ t, + V’Ty

,i ?SH
r I---------\ Pr d y

pCpV'T'

State:

du -----
Py.----- pv'u'

dy .
(2.98)

P = P(P,T) (2.99)

In the above, m is a flow index equal to unity for axisymmetric flow (rm = r) 
and equal to zero for two-dimensional flow (rm = 1). The energy equation (2.98) has 
been written in terms of the total enthalpy. This is the most common choice for 
compressible flows, especially when numerical methods of solution are to be 
utilized, because the percentage variation of H across the flow is nearly always less 
than the variation in T. Thus, for the same grid, it is expected that the H 
distribution can be determined more accurately than the T distribution from solving 
the energy equation. On the other hand, use of the static temperature as the primary 
thermal variable is possible, and numerous examples of this can be found in the 
literature.

It should be noted that the boundary-layer equations for compressible flow are 
not significantly more complex than for incompressible flow. Only one Reynolds 
stress and one heat-flux term appear, regardless of whether the flow is compressible 
or incompressible. As for purely laminar flows, the main difference is in the property 
variations of p., k, and p for the compressible case, which nearly always requires 
that a solution be obtained for some form of the energy equation, even when heat 
transfer results are not of primary interest.

The boundary-layer approximation remains valid for a flow in which the turning 
of the mainstream results in a three-dimensional flow as long as velocity derivatives 
with respect to only one coordinate direction are large. That is, the three-dimen
sional boundary layer remains “ thin” with respect to only one coordinate direction. 
The three-dimensional unsteady boundary-layer equations in Cartesian coordinates, 
applicable to a compressible turbulent flow, are given below (the v direction is 
normal to the wall):

Continuity:

dp dpu dpv dpw
  +   _|_ -------- 

dt dx------- dy-------dz (2.100)
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x momentum:

du du du du dp d I du ____
Tt + pvl~ + pw^~ = + V — pu'vdt dx dy dz dx dy

z momentum:

dw dw dw dw dp d [ dw ____
~77 + pli~77 + p”7~ + pw~7~ = + IT ----- pw>v‘dt dx dy dz dz dy \ dy

Energy:

dH dH dH dH dp
+ pu—----1- pv—-----1- pw----- = —

dt dx dy dz dt

(2.101)

(2.102)

d ( fl dH ___ / 1 \
+ “F 1 ------PCrv'T' + P 1 -dy ( Pr dy 1 \ Pr /

du
U~dy

5w] __ ___
— puv'u' — pwv'w'

d y

(2.103)

For a three-dimensional flow, the boundary-layer approximation permits H to be 
written as

2 2U W
H = cnT -I-------- 1------

p 2 2

For external flows, the pressure gradient terms can be evaluated from a solution to 
the inviscid flow (Euler) equations.

It is common to employ body-intrinsic curvilinear coordinates to compute the 
three-dimensional boundary layers occurring on wings and other shapes of practical 
interest. Often, this curvilinear coordinate system is nonorthogonal. An example of 
this can be found in Cebeci et al. [10], The orthogonal system is somewhat more 
common (see, for example, Blottner and Ellis [11]). One coordinate, x2, is almost 
always taken to be orthogonal to the body surface. This convention will be followed 
here.

Below we record the three-dimensional boundary-layer equations in the orthogo
nal curvilinear coordinate system described previously. Typically, Xj will be di
rected roughly in the primary flow direction and x3 will be in the crossflow 
direction. The metric coefficients (h3, h2, h3) are as defined previously; however, hi 
will be taken as unity as a result of the boundary-layer approximation. In addition, 
use will be made of the geodesic curvatures of the surface coordinate lines,

1 dh, 1 dh3
= and = (2.104)

With this notation, the boundary-layer form of the conservation equations for a 
compressible, turbulent flow can be written:

Continuity:

d d d
-g—(ph3u7) + -7— (h^puT) + —(p/ii«3) = 0
dx3 dx2 dx3

(2.105)
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jq momentum:

pux du3 _ du3 pu3 du3 2
—------- -------1- pu2------ b -7— ~ F pu1u3K1 pu3K3
h3 dx3 dx2 h3 dx3

1 dp d I du3 ------\ . .
— 7— + 7— MT-------- P«{ “2 (2.106)

dxr dx2 y dx2 ]

x3 momentum:

pu3 duj _ du3 pu3 du3
— — + pu2—~ + — — + puvu3K3 - pu3Kx 

/i-j. dx^ dX2 ^3 d^3

— t~ + T— Mt------ P«3»2 (2.107)
h dx^ dx% y dX2 I

Energy:

pu3 dH dH pu3 dH
----------------- H pw->T 1—; z— h3 dx{ 2 dx2 h3 dx3

d [ m dH ____
— ---------\---------- 2------------PC„UjT'

dx2 ( Pr dx2 p

- pu3u'2u[ - pu3u2u3 (2.108)

As always, an equation of state, p = p(p,T), is needed to close the system of 
equations for a compressible flow. The above equations remain valid for a laminar flow 
when the fluctuating quantities are set equal to zero.

2.2.5 Dimensionless Parameters for External Forced Convection
Dimensionless parameters play an important role in the analysis of convective flows. It 
is well known that the number of variables influencing friction, heat transfer, and other 
quantities of engineering interest can be reduced by arranging the variables into 
dimensionless groups. Dimensionless groups also frequently appear as parameters in 
nondimensional forms of the governing conservation equations. A few of these have 
already been introduced. The major nondimensional groups for external forced convec
tion are defined in this section.

The Mach number (M = V/a) is the ratio of the local speed of the fluid to the local 
speed of sound. The speed of sound, a, is defined by Eq. (2.84). The Mach number 
provides one measure of the importance of compressibility effects in the flow.

The pressure coefficient [Cp = (pw - px)/ ^p^V^] ratio °f difference 
between the surface and free-stream pressures to the free-stream dynamic pressure. The 
pressure coefficient is also known as the Euler number.

The Reynolds number (Rez = pVL/p.) is the ratio of inertial to viscous forces. 
Various reference conditions may be used to define p, V, and p. In particular, the 
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quantity L is a characteristic length which may be defined in several ways. For 
example, it may be the distance along the body in the main flow direction measured 
from the stagnation point to the local point x of interest; it may be the characteristic 
dimension of the body immersed in the flow; or it may be the momentum thickness 0 
or the displacement thickness 8*  of the viscous flow.

The Prandtl number (Pr = pcp/k) is the ratio of the momentum diffusivity to the 
thermal diffusivity.

The Peclet number (Pe = Re Pr) is the product of the Reynolds and Prandtl 
numbers. It can be thought of as the ratio of transport by convection to transport by 
thermal diffusion, or as a Reynolds number in which the diffusivity of momentum is 
replaced by the thermal diffusivity.

The skin-friction coefficient (ty = 2rw/peu2) is the wall shear stress divided by the 
dynamic pressure of the flow at the outer edge of the boundary layer. Sometimes, in 
pressure gradient flows in which the edge values are changing, the dynamic pressure of 
the undisturbed flow upstream of the object (pxV£/2) is used in the denominator. The 
average skin friction coefficient over an object of area A is defined as

J JwdA

Cf= APooV^/2' ■

The Eckert number [Ec = u2e/cp(Tw - Te) = 2(Te o - Te)/(TW - Te)] is propor
tional to the ratio of the temperature rise of the fluid in an adiabatic compression to the 
temperature difference between the wall and the fluid at the edge of the boundary layer. 
The Eckert number can be expressed in terms of the Mach number for a perfect gas:

The Nusselt number [Nu = qwL/k(Tw - Tref)] is one of the two major nondimen- 
sional parameters containing information on the wall heat flux. It can be thought of as 
the ratio of the actual wall heat flux to that which would occur by conduction alone 
across a layer of thickness L. In the above, qK is the heat flux at the wall; L is a 
characteristic length which is usually the distance from the stagnation point to the 
point of interest, x; and Tref is a reference temperature for the fluid. In low-speed 
flows, Tref is usually taken as Te, the static temperature at the edge of the thermal 
boundary layer. However, this is not correct for high-speed flows, as will be discussed 
below. The group qw/( Tw — Tre[) is also defined as the local heat transfer coefficient h 
through Newton’s law of cooling. Thus, the Nusselt number can be written as 
Nu = hL/k. It is logical to require that the temperature difference TH. - Tre[ represent 
a “potential” for heat transfer. That is, when Tw = Tre[ we should expect no heat 
transfer to occur. This will only be the case if Tref is the adiabatic wall temperature, 
Taw, of the fluid. For a simple adiabatic flow to stagnation, Taw is expected to be equal 
to the stagnation temperature of the fluid, To. For flow along adiabatic surfaces, Taw is 
found to be mostly a function of the Prandtl number of the fluid. The adiabatic wall 
temperature is related to the total and static temperatures through the recovery factor r 
as follows:

Taw = Te + r(Teo -Te) (2.109)

where Te o is the stagnation temperature of the flow at the outer edge of the thermal 
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boundary layer. The recovery factor can be well approximated as

/ Pr1/2 for laminar flow r = <
l Pr1/ J for turbulent flow

Thus, the correct fluid temperature to use in Newton’s law of cooling is Taw, not Te, 
but the difference is so small for low-speed flows (M < 0.3) that Te is normally used. It 
is essential, however, that Taw be used in high-speed flows. The average Nusselt 
number for a two-dimensional flow is defined as

ST" = 1 fL dX 
u lJ0 k(Tw- Tref)

Wall heat flux is also nondimensionalized as the Stanton number [St = 
qw/peuecp(Tw ~ Tref) = Nu/Re Pr]. As with the Nusselt number, Tref should be taken 
as the adiabatic wall temperature of the fluid. If the specific heat varies appreciably, it 
is more appropriate to use the static enthalpy in the definition of the recovery factor, in 
Newton’s law of cooling, and in the Stanton number. Accordingly, we find

iaw = ie + r0e.o - ‘e) (2.110)

;.rd

The average Stanton number is defined as

- 1 f
St = — St dA

A J a

2.3 TURBULENCE MODELS

2.3.1 Background
The need for turbulence modeling was pointed out in Sec. 2.2.3. In order to predict 
turbulent flows from solutions to the Reynolds equations, it becomes necessary to make 
closing assumptions about the apparent turbulent stress and heat-flux quantities. It is 
the implementation of the closing assumptions in order to evaluate the apparent 
turbulent stresses and heat fluxes appearing in the Reynolds equations that char
acterizes turbulence modeling.

All presently known turbulence models have limitations. The ultimate model has yet 
to be developed. On the other hand, it has generally been possible to develop models 
with reasonable accuracy only over a limited range of flow conditions. All proposed 
models should be verified by comparisons with experimental data, and care should be 
taken in interpreting predictions of models outside of the range of conditions over 
which they have been verified. Because of the need to rely heavily on experimental data 
in establishing turbulence models, numerical solutions to the Reynolds equations have 
been sometimes regarded as mere correlations of experimental data. This is perhaps the 
correct way to view such numerical simulations at the present time. An advantage of 
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the computer simulations is that they usually provide considerable detailed information 
about the flow, much more than is obtained from a simple conventional correlation for 
the Nusselt number.

The literature on turbulence models is extensive. Scores of models have been 
suggested. None of them are both general and accurate. Only a few of the most 
commonly used models will be described in this section. The rationale which has 
guided the development of turbulence models will be briefly described.

2.3.2 Modeling Terminology
Boussinesq [12] suggested more than one hundred years ago that the apparent turbulent 
shearing stresses might be related to the rate of mean strain through an apparent scalar 
turbulent or “eddy” viscosity. For the general Reynolds stress tensor, the Boussinesq 
assumption gives

------- I dUj du:\ ( duk+ +pd (2.111)
\ J 1 / \ K /

where_jxr is the turbulent viscosity and k is the kinetic energy of turbulence, 
k = u' u'/2. Following the convention introduced in Sec. 5.3.2, bars are being omitted 
over the time-mean variables.

By analogy with kinetic theory, by which the molecular viscosity for gases can be 
evaluated with reasonable accuracy, it might be expected that the turbulent viscosity 
could be modeled as

fiT = pvTl (2.112)

where vT and I are characteristic velocity and length scales of the turbulence, 
respectively. The problem, of course, is to find suitable means for evaluating vT and /.

Turbulence models to close the Reynolds equations can be divided into two 
categories according to whether or not the Boussinesq assumption is used. Models 
using the Boussinesq assumption will be referred to as turbulent-viscosity models. Most 
models currently employed in engineering calculations are of this type. Experimental 
evidence indicates that the turbulent-viscosity hypothesis is a valid one in many flow 
circumstances. There are exceptions, however, and there is no physical requirement that 
it hold. Models which effect closure of the Reynolds equations without this assumption 
include those known as Reynolds-stress or stress-equation models.

The other common classification of models is according to the number of supple
mentary partial differential equations which must be solved in order to supply the 
modeling parameters. This number ranges from zero for the simplest algebraic models 
to twelve for the most complex of the Reynolds stress models [13]. Reference is also 
sometimes made to the “order” of the closure. According to this terminology, a 
first-order closure evaluates the Reynolds stresses through functions of the mean 
velocity and geometry alone. A second-order closure employs a solution to a modeled 
form of a transport partial differential equation for one or more of the characteristics 
of turbulence.

A third category of turbulence models includes all of those that are not based 
entirely on the Reynolds equations. A promising computational approach known as 
“large-eddy simulation” falls into this category. In this approach [14], an attempt is 
made to resolve the large-scale turbulent motion from first principles by numerically 
solving a “filtered” set of equations governing this large-scale three-dimensional 
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time-dependent motion. Turbulence modeling is employed to approximate the effects 
of the “ subgrid” scale turbulence. Such calculations have shown much promise, but the 
technique is much too costly at present to be considered as an engineering tool.

2.3.3 Summary of Common Models
Much of the early work on turbulence modeling was done for flows in which the 
boundary-layer form of the conservation equations was adequate. For such flows, the 
modeling task reduces to finding expressions for - pv' u' and -pcpv'T'. A large 
fraction of external convective problems can still be solved through the use of the 
boundary-layer equations. Thus, the highest priority will be given to discussing ways in 
which — pv'u' and —pcpv'T' can be evaluated.

Simple Algebraic or Zero-Equation Models. Algebraic turbulence models invari
ably utilize the Bossinesq assumption. One of the most successful models of this type 
was suggested by Prandtl in the 1920s:

2 dU 
pT = P^ T- 

9y
(2.113)

where /, a “mixing length,” can be thought of as a transverse distance over which 
particles maintain their original momentum, somewhat on the order of a mean free 
path for the collision or mixing of globules of fluid. The product l\du/dy\ can be 
interpreted as the characteristic velocity of turbulence, vT. In Eq. (2.113), u is the 
component of velocity in the primary flow direction and y is the coordinate transverse 
to the primary flow direction.

For three-dimensional thin shear layers, Prandtl’s formula can be interpreted as

(21M)

This formula treats the turbulent viscosity as a scalar and gives qualitatively correct 
trends, especially near the wall. There is increasing experimental evidence, however, 
that in the outer layer, the turbulent viscosity should be treated as a tensor (i.e., 
dependent upon the direction of strain) in order to provide the best agreement with 
measurements. For flows in comers or in other geometries where a single “ transverse” 
direction is not clearly defined, Prandtl’s formula must be modified further (see, for 
example, Patankar et al. [15]).

The evaluation of I in the mixing length varies with the type of flow being 
considered, wall boundary layer, jet, wake, etc. For flow along a solid surface (internal 
or external flow), good results are observed by evaluating / according to

Z,- = kj(1 - e~y+/A+)

in the inner region closest to the solid boundaries and switching to

Zo = C,8

(2.115)

(2.116)

when /, predicted by Eq. (2.115) first exceeds Zo. The constant Q in Eq. (2.116) is 
usually assigned a value of 0.089, and 8 is the velocity boundary-layer thickness.
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In Eq. (2.115), k is the von Karman constant, usually taken as 0.41, and A is the 
damping constant, most commonly evaluated as 26. The quantity in parentheses is the 
van Driest damping function [16] and is the most common expression used to bridge 
the gap between the fully turbulent region where I — k y and the viscous sublayer 
where I -» 0. The parameter y+ is defined as

y(\^\/pw)1/2

Numerous variations on the exponential function of Eq. (2.115) have been utilized 
in order to take account of effects of property variations, pressure gradients, blowing, 
and surface roughness. A discussion of modifications to account for several of these 
effects can be found in Cebeci and Smith [9], It appears reasonably clear from 
comparisons in the literature, however, that the inner-layer model as stated [Eq. 
(2.115)] requires no modification to accurately predict the variable-property flows of 
gases with moderate pressure gradients on smooth surfaces.

The expression for Eq. (2.115), is responsible for producing the inner, “law- 
of-the-wall” region of the turbulent flow, and l0 [Eq. (2.116)] produces the outer 
“wakelike” region. These two zones are indicated in Fig. 2.4, which depicts a typical 
velocity distribution for an incompressible turbulent boundary layer on a smooth 
impermeable plate using “law-of-the-wall” coordinates. Refl = peue6/p.e is the Reynolds 
number based on the momentum thickness 6, which for two-dimensional flow is

Figure 2.4. Zones in a turbulent boundary for a typical incompressible flow over a smooth flat 
plate. (Adapted from [4] by permission.)
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defined as

Jo peue \
— dy 
Ue!

The nondimensional velocity u+ is defined as u+ = u/(^rwl/pw)1//2. The inner and 
outer regions are indicated in the figure. Under normal conditions, the inner law- 
of-the-wall zone only includes about 20% of the boundary layer. The log-linear zone is 
the characteristic “signature” of a turbulent wall boundary layer, although the law-of- 
the-wall plot changes somewhat in general appearance as the Reynolds and Mach 
numbers are varied.

It is worth noting that at low momentum-thickness Reynolds numbers (i.e., near the 
origin of the turbulent boundary layer), both inner and outer regions tend toward zero 
and problems might be expected with the two-region turbulence model employing Eqs. 
(2.115) and (2.116). The difficulty occurs because the smaller <5’s occurring near the 
origin of the turbulent boundary layer are causing the switch to the outer model to 
occur before the wall damping effect has permitted the fully turbulent law-of-the-wall 
zone to develop. This causes the finite difference scheme using such a model to 
underpredict the wall shear stress. The discrepancy is nearly negligible for incom
pressible flow, but the effect is more serious for compressible flows, persisting at higher 
and higher Reynolds numbers as the Mach number increases, due to the relative 
thickening of the viscous sublayer from thermal effects [17]. Naturally, details of the 
effects are influenced by the extent of wall cooling in the compressible flow.

Predictions can be brought into good agreement with measurements at low 
Reynolds numbers by simply delaying the switch from the inner model, Eq. (2.115), to 
the outer model, Eq. (2.116) until y+ > 50. If, at y+ = 50 in the flow, 1/8 < 0.089, 
then no adjustment is necessary. On the other hand, if Eq. (2.115) predicts 1/8 > 0.089, 
then the mixing length becomes constant in the outer region at the value computed at 
j-+ = 50 by Eq. (2.115). This simple adjustment ensures the existence of the log-linear 
region in the flow, which is in agreement with the preponderance of measurements.

An alternative treatment to Eq. (2.116) is often used to evaluate the turbulent 
viscosity in the outer region [9]. This follows the Clauser formulation,

/U(outer) = (2.117)

where a brings in the low Reynolds number effects. Cebeci and Smith [9] recommend

1.55
a = 0.0168-------  (2.118)

I + tt

where 77 = 0.55[l — exp(-0.243z1/2 — 0.298z)] and z = (Ree/425 - 1). For Refl 
greater than 5000, a « 0.0168. The parameter 8/ is the kinematic displacement 
thickness defined as

/•OO ( U \
8/ = f 1--U 

Jo \ ue)

Other modeling procedures have been used successfully for the inner and outer 
regions. The use of wall functions based on a Couette flow assumption (Patankar and 
Spalding [18]) in the near-wall region is advocated by some. This approach probably 
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has not been quite as well refined to include variable properties, transpiration, and 
other near-wall effects as the van Driest function.

Closure for the Reynolds heat-flux term, pcpv'T', is usually handled in algebraic 
models by a form of the Reynolds analogy which is based on the similarity between the 
transport of heat and momentum. The Reynolds analogy is applied to the apparent 
turbulent conductivity in the assumed Boussinesq form, pcpv'T' = -kTdT/dy. In 
turbulent flow, this additional transport of heat is caused by the turbulent motion. 
Experiments confirm that the ratio of the diffusivities for the turbulent transport of 
heat and momentum, called the turbulent Prandtl number, Pr7 = pTc /kT, is a 
well-behaved function across the flow. Most algebraic turbulence models do well by 
letting the turbulent Prandtl number be a constant near 1; most commonly, Pr7 = 0.9. 
Experiments indicate the for wall shear flows Prr varies somewhat, from between 0.6 
and 0.7 at the outer edge of the boundary layer to about 1.5 near the wall, although the 
evidence is not conclusive. Several semiempirical distributions for Prr have been 
proposed [9,19,20]. Using the turbulent Prandtl number, the apparent turbulent heat 
flux is related to the turbulent viscosity and mean flow variables as

— pCpV'T' =
cp^t dT
Prr dy

(2.119)

and closure has been completed.
For other than boundary-layer flows, it may be necessary to model other Reynolds 

heat-flux terms. To do so, the turbulent conductivity kT = cpp.T/Prr is normally 
considered as a scalar and the Boussinesq-type approximation is extended to other 
components of the temperature gradient. As an example, we would evaluate - pcpu'T' 
as

-pcpu'T' =
CpV-T dT
Prr dx

To summarize, a recommended base-line algebraic model for wall boundary layers 
consists of evaluating the turbulent viscosity by Prandtl’s mixing-length formula, Eq. 
(2.113), where / is given by Eq. (2.115) for the inner region, and then using Eq. (2.116) 
with Eq. (2.113) for the outer region. Alternatively, the Clauser formulation, Eq. 
(2.117), can be used in the outer region. The apparent turbulent heat flux can be 
evaluated through Eq. (2.119) using a turbulent Prandtl number of 0.9. This simplest 
form of modeling has employed four empirical adjustable constants: k, A \ or a, 
and Prr.

Algebraic models have accummulated an impressive record of good performance for 
simple viscous flows but need to be modified in order to accurately predict flows with 
“compHeating” features. It should be noted that compressible flows do not represent a 
“complication” in general. The turbulence structure of the flow appears to remain 
essentially unchanged for Mach numbers up through at least 5. Naturally, the variation 
of density and other properties must be taken account of in the form of the conserva
tion equations used with the turbulence model. Wall roughness, transpiration, and 
strong pressure gradients are examples of comphcating features which require that 
adjustments or extensions be made to the simplest form of algebraic turbulence models 
in order to obtain predictions in agreement with experimental measurements. Such 
adjustments will not be given in detail here. Recommended adjustments to account for 
the effects of surface roughness can be found in [9,21-25]. Recommended modifica
tions to account for wall blowing or suction can be found in [9,21,26-28], Modifica
tions to account for strong pressure gradients are discussed in [9,21,24,26-28],
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TABLE 2.1 Some One-Half-Equation Models

Model
Transport Equation 

Used as Basis for ODE

Model Parameter 
Determined by 
ODE Solution References

A Turbulence kinetic 
energy

lx McDonald and
Camerata [29] 

Kreskovsky
et al. [30] 

McDonald and
Kreskovsky [31]

B Turbulence kinetic 
energy

Chan [32]

C Turbulence kinetic 
energy

Adams and
Hodge [24]

D Empirical ODE 
for /X’7’(outer)

M'T(outer) Shang and
Hankey [33]

E Empirical ODE 
for /J.T(outer)

M'T(outer) Reyhner [34]

F Empirical ODE for Malik and
Pletcher [35]

Pletcher [36]
G Turbulence kinetic 

energy
T 'max Johnson and 

King [37]

Philosophically, the strongest motivation for turning to more complex models is the 
observation that the algebraic model evaluates the turbulent viscosity only in terms of 
local flow parameters, yet it would seem that a turbulence model ought to provide a 
mechanism by which effects upstream can influence the turbulence structure (and 
viscosity) downstream. Further, with the simplest models, ad hoc additions and 
corrections are frequently required to handle specific effects, and constants need to be 
changed to handle different classes of shear flows.

If the general form for the turbulent viscosity is accepted as = pvTl, then a 
logical way to extend the generality of turbulent viscosity models is to permit vT or / or 
both to be more complex (and thus more general) functions of the flow capable of 
being influenced by upstream (historic) effects. This rationale serves to motivate several 
of the more complex turbulence models.

One-Half Equation Models. A one-half equation model is defined as one in which 
the value of the model parameter (vT, I, or pT itself) is permitted to vary with the 
primary flow direction in a manner determined by the solution to an ordinary! 
differential equation (ODE). The ODE usually results for either neglecting or assuming 
the variation of the model parameter with one coordinate direction. Extended mixing
length models and relaxation models fall into this category. A one-equation model is 
one in which an additional partial differential equation is solved for a model parame
ter. The main features of several one-half equation models are tabulated in Table 2.1.

The first three models in Table 2.1 differ in detail, although all three utilize an 
integral form of a transport equation for turbulence kinetic energy as a basis for letting 
the flow history influence the turbulent viscosity. Models of this type have been refined 
to allow prediction of transition, roughness effects, transpiration, pressure gradients, 
and qualitative features of relaminarization. Most of the test cases reported for the 
models have involved external rather than channel flows.
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Although models D, E, and F appear to be purely empirical relaxation or lag 
models, Birch [38] shows that models of this type are actually equivalent to one-dimen
sional versions of transport partial differential equations for the quantities concerned 
except that these transport equations are not generally derivable from the Navier-Stokes 
equations. This is no serious drawback, since transport equations cannot be solved 
without considerable empirical simplification and modeling of terms; so that in the 
end, these transport equations tend to have a similar form characterized by generation, 
dissipation, diffusion, and source terms, regardless of the origin of the equation. 
Models F and G have been used with fairly good success in predicting boundary-layer 
flows with separation [36,37],

One-Equation Models. The obvious shortcoming of algebraic viscosity models which 
normally evaluate vT in the expression pT = pvTl by vT = l\du/dy\ is that pT = kT 
= 0 whenever du/dy = 0. This would suggest that pT and kT would be zero at the 
centerline of a pipe, in regions near the mixing of a wall jet with a mainstream and in 
flow through an annulus or between parallel plates where one wall is heated and the 
other cooled. Measurements (and common sense) indicate that pT and kT are not zero 
under all conditions whenever du/dy = 0. The mixing-length models can be modified 
to overcome this deficiency, but this conceptual shortcoming provides motivation for 
considering other interpretations for pT and kT. In fairness to the algebraic models, it 
should be mentioned that this defect is not always crucial, because Reynolds stresses 
and heat fluxes are frequently small when du/dy = 0. Some examples illustrating this 
point are given in [39].

It was the suggestion of Prandtl and Komogorov in the 1940s to let vT in p,T = pvTl 
be proportional to the square root of the kinetic energy of turbulence, k = ju' u'. Thus 
the turbulent viscosity can be evaluated as

pT = CkpFk^2 (2.120)

and p.T no longer becomes equal to zero when du/dy = 0. The kinetic energy of 
turbulence is a measurable quantity and is easily interpreted physically. Now a means 
for predicting k will be considered.

A transport partial differential equation can be developed for k from the Navier- 
Stokes equations. For incompressible two-dimensional boundary-layer flows, the equa
tion takes the form

Dk d2k d . ----- --------- . ------ du
p— = ~ ^~\Pv'k' + V'P') ~ PV'U'~TDt dyl dyx ' dy

(2.121)

which is commonly modeled as

Particle Diffusion Generation
rate rate for k rate for k
increase

CDp(kf/2

I

Dissipation 
rate for k

(2.122)

of k
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The physical interpretation of the various terms is indicated for Eq. (2.122). This 
modeled transport equation is then added to the system of PDEs to be solved for the 
problem at hand. Note that a length parameter I needs to be specified algebraically. In 
the above, PrA is a Prandtl number for turbulence kinetic energy (~ 1), Ck = 0.548, 
and CD ® 0.164 if / is taken as_the ordinary mixing length.

The above modeling for the k transport equation is only valid in the fully turbulent 
regime, i.e., away from any wall damping effects. For typical wall flows, this means y *"  
greater than about 30. Inner boundary conditions for the k equation are often supplied 
through the use of wall functions [40]. Another way of treating the inner boundary 
condition for k is to make use of the experimental observation that very near the wall 
convection and diffusion of k are usually negligible. Thus, generation and dissipation 
of k are in balance, and it can be shown that the turbulence kinetic energy model 
reduces to Prandtl’s mixing-length formulation, Eq. (2.113), under these conditions. At 
the location where the diffusion and convection are first neglected, an inner boundary 
condition can be established for k as

- t(t)y,) - (2-123)
PC£)

where yc is a point within the region where the logarithmic law of the wall is expected 
to be valid. For y < yc the Prandtl-type algebraic inner-region model [Eqs. (2.113) and 
(2.115)] can be used.

The one-equation model has been extended to compressible flows by Rubesin [41], 
and the results appear encouraging. Apparently for flows containing shock
wave interactions which greatly affect the stream turbulence level, the predictions of 
Rubesin’s one-equation model provide a definite improvement over those from alge
braic models. On the whole, however, the performance of most one-equation models 
(for both incompressible and compressible flows) has been disappointing in that 
relatively few cases have been observed in which these models offer an improvement 
over the predictions of the algebraic models. In fact, several flows can be predicted 
more accurately by the one-half-equation models than by the representative one-equa
tion model of the Prandtl-Kolmogorov type, which merely alters the velocity of 
turbulence used in the viscosity expression. The reason for this may be that in most 
flows, an improvement in the specification of a characteristic length scale / will have 
more effect than a change in the velocity of turbulence, vT, and many of the one-half 
equation models fisted in Table 2.1 offer an improvement in this length scale.

Other one-equation models have been suggested which deviate somewhat from the 
Prandtl-Kolmogorov pattern. The most notable of these is by Bradshaw et al. [42], The 
turbulence energy equation is used in the Bradshaw model, but the modeling is 
different both in the momentum equation, where the turbulent shearing stress is 
assumed proportional to ~k, and in the turbulence energy equation. The details will not 
be given here, but an interesting feature of the Bradshaw method is that as a 
consequence of the form of modeling used for the turbulent transport terms, the system 
of equations becomes hyperbolic and can be solved by a procedure similar to the 
method of characteristics. The Bradshaw method has enjoyed good success in the 
prediction of the wall boundary layers. Even so, the predictions have not been notably 
superior to those of the algebraic models, one-half equation models, or other one-equa
tion models.
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One and One-Half-and Two-Equation Models. One conceptual advance made by 
moving from a purely algebraic mixing length model to a one-equation model was that 
the latter permitted one model parameter to vary throughout the flow, being governed 
by a PDE of its own. In the one-equation models, a length parameter still appears 
which is generally evaluated by an algebraic expression dependent upon only local flow 
parameters. It is reasonable to expect that the length scale in turbulence models should 
also depend on the upstream “history” of the flow and not just local flow conditions. 
An obvious way to provide more complex dependence of / on the flow is to derive a 
transport equation for the variation of /. If the equation for I added to the system is an 
ordinary differential equation, the resulting model is logically termed a one and 
one-half equation model. Applications of a one and one-half equation models can be 
found in [36,39],

Frequently, the equation from which the length scale is obtained is a partial 
differential equation, and the model is then referred to as a two-equation turbulence 
model.

Although a transport PDE can be developed for a length scale, the terms of this 
equation are not easily modeled and some workers have experienced better success by 
solving a transport equation for a length-scale-related parameter rather than the length 
scale itself. This point is discussed by Launder and Spalding [40],

One of the most frequently used two-equation models is the ~k — £ model first 
proposed by Harlow and Nakayama [43]. The description here follows the papers of 
Jones and Launder [44] and Launder and Spalding [40]. The parameter e is a 
turbulence dissipation rate and is assumed to be related to other model parameters 
through c = CDlc3/2/l. The turbulent viscosity is related to £ through

C ok2
pT = Ckplk1/2 = (2.124)

where = CDCk = 0.09.
In the ~k-t model the turbulence kinetic energy is obtained by solving Eq. (2.122), 

but the last term on the right is recognized as pc A parabolic transport equation for £ 
is added to close the system. For two-dimensional incompressible boundary-layer flow 
the equation takes the form

Df. d I pT de \ C2pTi I du\2 C2pf.2
V Dt dy ( Pr£ dy / ~k \ dy / k (2.125)

The terms on the right-hand side of Eq. (2.125) from left to right can be interpreted 
as the diffusion, generation, and dissipation rates of e. Typical values of the model 
constants are tabulated in Table 2.2.

The above form of the transport equation for £ is not appropriate for the near-wall 
region, i.e., the viscous sublayer. This is just as noted for the turbulence kinetic energy 
equation (2.122) presented earlier. Inner boundary conditions for £ can be provided at

TABLE 2.2 Model Constants fork-e Two-Equation Model

Q c3 Pr* Pr€ Prr

0.09 1.44 1.92 1.0 1.3 0.9
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the same point yc used for imposing boundary conditions on k [see Eq. (2.123)]. At the 
point yc, Prandtl’s mixing-length formulation is assumed to be valid and

C„Tc^ CD[k(y^/2
€ = -------------  = --------------------------
I Ky

The quantity ~k(yc) can be evaluated as indicated in Eq. (2.123).
Many applications of the ~k-(. model have made use of wall functions [40]_to treat 

the near-wall region. Alternatively, additional terms have been added to the k and e 
equations to extend their applicability to the viscous sublayer by Jones and Launder 
[44], Chien [95], and others. In this connection, the viscous sublayer is often referred to 
as the region of low turbulence Reynolds number (kl/2l/v). This inner modeling is 
crucial for complex turbulent flows, as for example those containing separated regions 
or severe property variations. The uncertainty of such inner-region modeling for 
complex flows appears to limit the range of applicability of the k-e model (and nearly 
all other models) at the present time. The ~k-t models that have been modified so that 
they are applicable in the viscous sublayer [44,45] are known as low Reynolds number 

models. Details of such models will not be given here. Modifications to the k-e 
model to include the effects of buoyancy and streamline curvature on the turbulence 
structure have also been proposed. The most common k-e closure for the Reynolds 
heat-flux terms utilizes the same turbulent Prandtl number formulation as used with 
algebraic models [Eq. (2.119)].

Numerous other two-equation models have been suggested, the most frequently 
used being the Ng-Spalding [46] model and the Wilcox-Traci model [47], the latter 
being a modification to the earlier Saffman-Wilcox model [48], All of these models 
employ a modeled form of the turbulence kinetic energy equation, but the modeling for 
the gradient diffusion term is different. The most striking difference, however, is in the 
choice of dependent variable for the second model transport equation from which the 
length scale is determined.

Reynolds Stress Models. Reynolds stress models (sometimes called stress-equation 
models) are those models that do not assume that the turbulent shearing stress is 
proportional to the rate of mean strain. That is, for a two-dimensional incompressible 
flow

_ ! du dv\ 
-pu'v' =# Mr — + Al \ ay ax )

These models have been used to date largely as tools or subjects in turbulence 
research rather than to solve engineering problems. Thus, details will not be given here. 
Exact transport equations can be derived for the Reynolds stresses. However, these 
equations contain terms which must be modeled. Such modeling, which generally 
follows the pioneering work of Rotta [49], requires the solution of at least three 
additional transport PDEs. For a flow in which normal stresses are important, five 
additional equations are usually required. The most widely used Reynolds stress 
models at the present time are those of Hanjalic and Launder [50], Launder et al. [51], 
and Donaldson [52],

Reynolds stress models are not restricted by the Boussinesq approximation relating 
turbulent stresses to rates of mean strain and contain the greatest number of model 
PDEs and constants of the models discussed. Thus, it would seem that these models
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ought to have the best chance of emerging as “ ultimate” turbulence models if success is 
to be achieved at all through the time-averaged Navier-Stokes equations. Nevertheless, 
these models still must utilize approximations and assumptions in modeling terms 
which presently cannot be measured. These Reynolds stress models are perhaps still in 
their infancy, and it may be some time yet before they have been tested and refined to 
the point that they become commonplace in engineering calculations. Since simpler 
models perform adequately for many flows, the expectation is that the Reynolds stress 
models may only be used in engineering predictions where the flow complexity 
demands it. At the present time, the Reynolds stress models have not even been tested 
for many types of complex flows.

A simplification of the Reynolds stress modeling known as an algebraic stress or 
flux model is gaining in popularity. This approach is discussed in detail in [53], In the 
algebraic stress modeling, it is generally assumed that the transport of the Reynolds 
stresses is proportional to the transport of turbulence kinetic energy. For boundary-layer 
flows without buoyancy effects, the algebraic Reynolds stress model results in

___ A2 du
-u'v' = C —— 

dy

which is identical to the results obtained from the k-f model. However, in the algebraic 
Reynolds stress model, becomes a function of the ratio of production to dissipation 
of turbulence kinetic energy rather than a constant. These models show considerable 
promise as useful extensions of the k-f modeling approach.

2.4 FLOW OVER A FLAT PLATE

2.4.1 Incompressible Flow
A flat plate is a surface at constant pressure with a sharp leading edge. The boundary
layer equations in the form of Eqs. (2.89)—(2.91) are valid in this case. If the properties 
are assumed to be constant, the boundary-layer momentum and continuity equations 
can be solved independently of the energy equation. Historically, this was first done 
using the similarity variables proposed by Blasius [54], which permits the governing 
equations to be combined into a single third-order ODE. The solution of this equation 
is very well known, and tabulated results can be found many places, including [1]. The 
local skin friction coefficient is given by

C/= 0.332 Rex-1/2 (2.126)

Pohlhausen [55] utilized the Blasius velocity solution to solve the energy equation 
under constant-property assumptions for low-speed flow where viscous dissipation can 
be neglected. The solution obtained by Pohlhausen for the local Nusselt number is well 
represented by

hx
Nu = — = 0.332 Re/2 Pr1/3 for 0.6 < Pr < 10 (2.127)

k

When written in terms of the Stanton number

St = y Pr“2/3 (2.128)
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a close relationship between skin friction and heat transfer is observed. When Pr = 1, 
the Stanton number is identically equal to cy/2. The function of Prandtl number which 
serves as the proportionality factor between St and cy/2 is sometimes referred to as the 
Reynolds analogy factor. Within this same range of Prandtl numbers, 8/8T = Pr1/3 for 
a constant-temperature plate. For Pr > 10, the following expression is recommended:

Nu = 0.339 Re[/2Pr1/3 (2.129)

For fluids of small Prandtl number, such as liquid metals, the local Nusselt number can 
be evaluated from

Nu = 0.564(RexPr)1/2 (2.130)

Integral methods [56] have been used to show that for constant-property laminar flow 
under uniform heat flux conditions, the local Nusselt number can be obtained from

Nu = 0.453 Re3/2Pr1/3 (2.131)

This equation is expected to be valid for moderate Prandtl number range 0.6 to 10. The 
effects of viscous dissipation and variable fluid properties are not included in the above 
expressions for the Nusselt number.

For constant fluid properties, the effect of viscous dissipation on laminar forced 
convection over a flat plate can be obtained by superimposing two solutions obtained 
for the energy equation by Pohlhausen [55]. The first solution is for the simple flat-plate 
problem without dissipation, resulting in the solution of Eq. (2.127) for Prandtl 
numbers near unity. The second is the “thermometer” problem of determining the 
temperature of an insulated plate when viscous dissipation is important. In that case 
the heat transfer is to be computed using the adiabatic wall temperature Taw according 
to

qw = h(Tw- Taw) (2.132)

as was indicated in Sec. 2.2.5. The adiabatic wall temperature is computed using the 
recovery factor according to

U'eTa„ = Te + r—
2cp

where r is a function of Prandtl number for the laminar flat-plate flow.
The solution for r for the constant-property laminar boundary layer is shown in 

Fig. 2.5. Approximations to the solution are

r = Pr1/2, 0.5 < Pr < 47 (2.133)

r=1.9Pr1/3, Pr > 47 (2.134)

The heat transfer coefficient is still given by Eq. (2.127). The effects of viscous 
dissipation appear in the calculation of heat transfer for this case with constant 
properties only through the adiabatic wall temperature used in Newton’s law of 
cooling. Further details on this solution are discussed in [1,2], Average Nusselt 
numbers over a plate of length L can be easily obtained by integrating the local values



FLOW OVER A FLAT PLATE 2*45

Figure 2.5. Dependence of adiabatic wall temperature on Prandtl number for a laminar boundary 
layer on a flat plate (adapted from [1] by permission).

over the length according to

__ hL 1 hx 
Nu = — = - — dx. 

k LJ0 k

For turbulent flow over a flat plate under constant-property conditions, the local 
skin friction coefficient is given by

cf = 0.0592 Re^1/5 for 5 X 105 < Rex < 107 (2.135)

An expression valid for much higher Reynolds numbers was given by Schultz-Grunow 
[57]:

C/ = 0.185(logloReJ’1584 (2.136)

It is interesting that the Stanton number for turbulent flow over an isothermal plate 
is well correlated by Eq. (2.128) when the skin friction coefficient is evaluated by Eq. 
(2.135). That is, the same Reynolds analogy factor, Pr“2/3, works for both laminar and 
turbulent boundary-layer flow in a limited range of Prandtl numbers. In terms of the 
Nusselt number, this gives

Nu = 0.0296 Re4/5Pr1/3 for 0.6 < Pr < 60 (2.137)

In a typical application, laminar-turbulent transition will occur on the flat plate. In 
order to obtain the average Nusselt number for the plate, both the laminar and
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turbulent portions of the flow need to be taken into account. Thus

- 1
h = - Alan. dx + L •'o Xj d X

where it is assumed that transition occurs at x = xc. Using Eqs. (2.127) and (2.134) 
gives

Nu = [0.664R^ + o.O37(Re4/5 - Rex4<5)] Pr1/3 (2.138)

If the typical transition Reynolds number of ReA c = 5 X 105 is assumed, Eq. (2.138) 
reduces to

Nu = (0.037Re£/5 - 871)Pr1/3 (2.139)

for 0.6 < Pr < 60 and 5 X 105 < ReL < 108. When L » xc or the boundary layer is 
tripped at the leading edge, the laminar portion of the flow can be neglected and Eqs. 
(2.138) and (2.139) reduce to

Nu = 0.037 Re£/5Pr1/3 (2.140)

For uniform heat flux, integral methods have been used [56] to obtain the following 
expression for the local Nusselt number:

Nu = 0.0308 Re4/5Pr1/3 (2-141)

All of the above expressions for the Nusselt number are restricted to situations 
where the wall boundary conditions are imposed all along the plate starting from the 
leading edge. A common exception occurs when an unheated starting, length (Tw = 7^) 
exists upstream of a heated section (Tw + Tx). For laminar flow, integral methods [56] 
have been used to obtain an approximate solution for this case in the form

Nu|f=0
[1 - (fA)J/4]1/3

(2.142)

where f is the value of x at which heating (or cooling) starts and Nu|^ = 0 is the value of 
the local Nusselt number given by Eq. (2.127). For turbulent flow the corresponding 
expression for the local Nusselt number is

Nu = Nuk=o 
[1-({A)9/T9

(2.143)

A wide range of wall boundary conditions can be handled if the convection solution 
is obtained by numerical methods. The wall temperature or wall heat flux can be varied 
in an arbitrary manner. Such an approach typically employs a finite difference 
procedure to solve the boundary-layer form of the momentum, energy, and continuity 
equations for a free stream of constant velocity and temperature. For flat-plate flows, 
the algebraic turbulence models discussed in Sec. 2.3.3 work well. Examples of such 
numerical procedures and computed results can be found in [4,58],
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2.4.2 Compressible Flow; Effects of Property Variations
All of the results for heat transfer presented in the previous subsection were obtained 
under the assumption that the fluid properties remained constant throughout the flow. 
Clearly, this is an idealization, since the properties of most fluids vary with temper
ature, and thus will vary throughout the thermal boundary layer. In this section, ways 
of including the effects of property variations will be presented.

For gases, the specific heat and Prandtl number do not vary significantly over a 
fairly wide range of temperatures and are nearly independent of pressure. For air near 
standard conditions in the stagnation state, the assumption of constant specific heat 
and Prandtl number is a reasonable one for flows at Mach numbers up through at least 
5. The viscosity and thermal conductivity of gases increase with temperature, and the 
variation should be taken into account. Density variations for gases can be significant 
but can usually be determined as a function of temperature and pressure from the 
ideal-gas equation of state.

For most liquids, the specific heat and thermal conductivity are relatively indepen
dent of temperature, but the viscosity decreases significantly as the temperature 
increases. The density of liquids varies only a little with temperature. The Prandtl 
number for liquids varies significantly with temperature, due primarily to the strong 
temperature dependence of the viscosity.

When numerical methods are used to obtain solutions to the governing equations, it 
is a fairly easy task to let the properties vary in the solution procedure. Very little 
complication is added to the solution procedure in doing so. However, it has also been 
observed that many of the constant-property solutions and correlations can be “cor
rected” in a simple manner to take account of property variations. This is frequently 
the case for the flow of liquids in general and gases at low speeds where viscous 
dissipation is not significant.

For very small temperature differences (perhaps < 5°C for liquids and < 50°C for 
gases) between the free stream and wall, reasonably accurate predictions can be 
obtained by using the equations of this section with all properties evaluated at the film 
temperature defined as

T + T
(2-144)

Use of this reference temperature for property evaluation in gases is only recommended 
for low-speed (Me < 0.3) flows. For greater temperature differences with liquids, there 
is relatively little specific information available. It is tentatively recommended that the 
correction factors provided elsewhere in this handbook for the flow of liquids in tubes 
be used.

For gases, as the velocity increases, the conversion of mechanical energy to thermal 
energy due to the effects of viscosity becomes increasingly important. This effect clearly 
alters the temperature distribution in the fluid. This was discussed earlier under the 
assumption of constant fluid properties. In general, the temperature variations 
throughout the fluid will influence fluid properties, which in turn will alter the skin 
friction and surface heat transfer. Extremely high velocities, generally associated with 
hypersonic flow (Mach numbers greater than about 7) in air lead to very high 
temperatures, dissociation and chemical reactions. These conditions will not be consid
ered in this chapter.
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According to Eq. (2.109), the adiabatic wall temperature for flat-plate flow can be 
related to the free-stream static and stagnation temperatures by

Taw = + r(T0 -. Tj (2.145)

For an ideal gas with constant specific heat, Taw can be expressed in terms of 
free-stream Mach number:

T = T aw ex — rMi2 00
(2.146)1 +

where y is the ratio of specific heats cp/c,,. From Eq. (2.146) it is easy to estimate the 
flight Mach number at which active cooling will be required in order to keep the 
surface temperature of a structure below a specified level.

Eckert [59] made the remarkable observation that if the specific heat can be treated 
as constant and all fluid properties are evaluated at an appropriate reference temper
ature T*,  the low-speed constant-property correlating equations for Nu can be used for 
air for Mach numbers up to 20, the errors being less than a few percent. The Eckert 
reference temperature is given by

T*  = 0.5(Tw + Te) + 0.22(Taw - Te) (2.147)

If the assumption of constant specific heat is not valid due to very large temperature 
differences, the total enthalpy can conveniently be used as the dependent variable in 
the energy equation. In this case, all properties should be evaluated at the temperature 
corresponding to the reference enthalpy z*:

z*  = 0.5(iw + ze) + 0.22(iaw - zj (2.148)

Following the Eckert reference-property method, Eq. (2.127) can be used to com
pute the Nusselt number for laminar flow on a flat plate. The fluid properties in the 
Reynolds number, the Prandtl number, and the Nusselt number should be evaluated at 
the value obtained from Eqs. (2.147) or (2.148). The recovery factor is taken as 
r = (Pr*) 1/2, where the asterisk denotes that the Prandtl number should be evaluated at 
the reference temperature. The wall heat flux can then be computed from Eq. (2.132) 
using Tuh computed from Eq. (2.145) or Eq. (2.146). For turbulent flow on a flat plate, 
a similar procedure is followed. Equation (2.137) can be used to compute the Nusselt 
number, but the properties in this equation should be evaluated at the Eckert reference 
temperature. The recovery factor can be taken as r = (Pr*) 1/3 for turbulent flow. The 
wall heat flux is computed using Eq. (2.132) as for laminar flow.

Van Driest [60] used a method developed by Crocco [61] to obtain solutions to the 
compressible laminar boundary-layer equations for air at a constant Prandtl number of 
0.75. The specific heat was assumed to be constant, and the viscosity was evaluated as a 
function of temperature through the use of the Sutherland equation

= 7/7 (2.149)
I L 1^2

where C( and C2 are constants for a given gas. For air, Q = 1.458 X 10~6 kg/ 
(m ■ s ■ K1/2) and C2 = 110.4 K. Rather detailed results are given in [60] for skin 
friction coefficient, Stanton number, and velocity and temperature profiles. Van Driest’s
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Figure 2.6. Local skin friction coefficient for compressible laminar boundary-layer flow along a 
ffat plate. Pr = 0.75, according to van Driest [60],

solution for the skin friction coefficient is shown in Fig. 2.6 as a function of wall-to- 
stream temperature ratio and Mach number. For fixed temperature conditions, the skin 
friction coefficient is seen to decrease with increasing Mach number. For fixed 
free-stream conditions, lowering the wall temperature increases the skin friction coeffi
cient. Similar trends are observed for the Stanton number, as can be seen in Fig. 2.7. 
Van Driest observed for Pr = 0.75 that the Stanton number from his solution was 
within 1% of that predicted by using Eq. (2.128), i.e., the Reynolds analogy factor is 
almost exactly Pr-2/3.

Thus, for laminar flat-plate flow in the compressible regime, the practicing engineer 
can choose from among several sources for information on heat transfer. For some 
purposes, the graphical solutions given in Fig. 2.7 or in [60] will suffice. The Eckert 
reference-property method can also be used along with the incompressible expression 
for Nusselt number. Finite difference solutions to the boundary-layer equations give 
very accurate results for this type of flow, and many engineers will have access to the 
required computer programs. Of these three sources, it is only the last which can be 
used for flows in which the wall temperature or heat flux varies in an arbitrary manner. 
With numerical methods it is also possible to solve combined conduction and convec
tion problems.

For compressible turbulent flow over a flat plate, finite difference methods can be 
used to solve the boundary-layer equations with appropriate turbulence modeling. The 
algebraic turbulence models discussed in Sec. 2.3.3 are adequate for flat-plate flows, but 
as the Mach number increases, the low Reynolds number effects mentioned in that 
section become increasingly important. The algebraic turbulence model is easily 
modified to account for this [9,17],

Several empirical formulas have been proposed for calculating the skin friction and 
heat transfer coefficients for compressible turbulent boundary layers on flat plates. 
Those developed by Spalding and Chi [62] and van Driest [63] have higher accuracy
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Figure 2.7. Local Stanton number for compressible laminar boundary-layer flow along a flat 
plate, Pr = 0.75, according to van Driest [60].

than the rest, according to studies by Hopkins and Keener [64] and Cary and Bertram 
[65].

Both methods define compressibility factors by the following relationships:

cf,i = cfFc (2.150)

Refl,( = (2.151)

Re , = d Rcy = FR Rev
A) Fe c

(2.152)

The subscript i denotes incompressible values, and the factors Fc, FReg and FRe are 
functions of Mach number, ratio of wall temperature to total temperature, and 
recovery factor. Spalding and Chi assumed that a unique relationship exists between 
c • F and FRe Rev. The quantity Fr is obtained by means of a mixing-length theory, and 
FRe is obtained semiempirically. According to Spalding and Chi [62],

T /T - 1_  a w/ * e x

(sin-1a + sin-1/!)2

(j, \ 0.772 / -r- \ -1.474
*aw | । *w |
7* I I T* I*e ) \ -*e )

_ __________ Taw/Te + Tw/Te ~ 2_______
[(Taw/Te + Tw/Te)2 - 4(FW/Te)]1/2

$ _ _____________Kw/Te ~ _____________

[(TaH/Te + TM./Te)2 - 4(7]t./Te)]1/2 

(2.153)

(2.154)

(2.155)

(2.156)
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In tbe van Driest method. F is evaluated as indicated above, but FRes is given by

rw
(2.157)

A power-law formula is used to relate viscosity to temperature, y ct Tu.
Van Driest actually proposed two expressions for the skin friction coefficient. One 

was based entirely on Prandtl’s mixing-length expression, I = k y, and the other on the 
von Karman similarity law

du/dy 
d2u/dy2

(2.158)

The expression based on the von Karman similarity law, known as van Driest II, is in 
better agreement with experimental data than the expression based only on the 
mixing-length formula. Defining

G = (2.159)

the van Driest II formula can be written as

0.242(sin xa + sin 7?)
= 0.41 + log10(Rexcz) Wlog10(Tw/Te) (2.160)

Gf^TjrJ

where x is the distance measured from the effective origin of the turbulent flow. 
According to van Driest, the average skin friction coefficient can be obtained from

0.242(sin xa + sin 1jB)

G^cf(Tw/Te)
= log^Re^) - wlog10(7;/re) (2.161)

X
 10

Figure 2.8. Average skin friction coefficient for the compressible turbulent boundary-layer flow 
of air along a flat plate according to van Driest II [63],
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Figure 2.9. Effect of compressibility on local skin-friction coefficient for the turbulent flow of air 
along a flat plate according to van Driest II [63].

The variation of the average skin friction coefficient with Mach and Reynolds numbers 
can be seen in Fig. 2.8 for an adiabatic plate according to van Driest II. The recovery 
factor was assumed to be 0.89. The effects of compressibility on the local skin friction 
coefficient can be seen in Fig. 2.9 for Rev = 107. The effect of compressibility on the 
average skin friction is nearly identical.

Predictions of heat transfer are obtained for compressible turbulent flow over a flat 
plate by using a Reynolds analogy factor along with a prediction for skin friction. For 
Mach numbers less than about 5 and near-adiabatic wall conditions,

St = 1.16^| (2.162)

adequately represents the available experimental data. Thus, the skin friction coefficient 
should first be obtained from the van Driest II or Spalding-Chi prediction, and then 
the Stanton number can be computed by Eq. (2.162). More uncertainty exists about the 
appropriate Reynolds analogy factor for highly cooled walls at any Mach number and 
at Mach numbers greater than 5 at any wall temperature. Recent data [65] indicate that 
for Mach numbers greater than 6 and Tw/T0 less than about 0.3, the Reynolds analogy 
factor is more nearly 1.0. The results presented by Cary [66] for a Mach number of 11.3 
showed Reynolds analogy factors scattering between 0.8 and 1.4, with no particular 
trend evident for T„/To. Studies by Hopkins et al. [67] suggest that for 5 < Me < 7.5 
and 0.1 < Tw/Taw < 0.6, predictions of heat transfer will be within 10% using the 
van Driest II theory for skin friction and a Reynolds analogy factor of 1.0.

2.4.3 Effects of Blowing and Suction

One way to provide cooling for a surface exposed to a hot external stream is to inject a 
coolant into the hot boundary layer formed on the surface. This can be done through a 
porous section of the surface, through discrete holes or through slots. Cooling provided 
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through a porous material which distributes the coolant fairly uniformly and in a 
direction normal to the surface is known as transpiration cooling. In this mode, the 
fluid at the surface possesses an effective component of velocity in the normal direction, 

. When the fluid is injected through slots or large discrete holes, the cooling mode is 
usually referred to as film cooling. Often the slots or holes are not normal to the 
surface, so that the coolant emerges with a tangential component of velocity. Film or 
transpiration cooling is quite commonly used to cool turbine blades. The coolant may 
be a gas or a Equid which changes phase prior to or even after ejection from the 
surface.

Systems can be designed to operate more or less continuously with film or transpira
tion cooling. Another type of closely related cooling system is known as ablation. An 
ablation cooling system is one in which the outer solid material is designed to sublime 
or chemically react with the convecting fluid, absorbing heat in the process. This 
protects an underlying structure. The advantage of this method is its relative simplicity. 
It requires no active components such as pumps, ducting, or storage vessels. The main 
disadvantage is that once the ablating material is consumed, the cooling ends. That is, 
it is not suited for systems which must operate continuously, or for long periods of 
time.

The analysis of flows in which cooling is enhanced by transpiration, film cooling, or 
ablation is generally not easy. Only the simplest cases will be considered here.

Transpiration is the easiest mode to analyze. When the boundary-layer and coolant 
gases are the same and the blowing rates are moderate (so that the boundary-layer 
theory is applicable), the boundary-layer equations are applicable. The injection at the 
surface only changes the boundary conditions. Instead of being equal to zero, the 
normal component of velocity becomes equal to the injection velocity. There exist, in 
fact, similarity solutions for laminar boundary layers with blowing and suction. The 
similarity condition requires that the blowing rate vw/ue be proportional to x-1/2. For 
this solution, the wall temperature is constant.

It is not easy in practice to adjust the blowing rates to be proportional to ,v-1/2. 
With modem numerical methods, it is relatively easy to solve the boundary-layer 
equations without the similarity constraint to provide heat transfer predictions for 
arbitrary distributions of the blowing parameter. During the 1950s, however, before 
numerical techniques for solving the boundary-layer equations for nonsimilar flows 
were well developed, the similarity solutions provided considerable guidance on the 
general capabilities of transpiration cooling systems. Examples of these solutions can 
be found in the work of Emmons and Leigh [68], Hartnett and Eckert [69], and Low 
[70]. Numerical results for laminar boundary layers with uniform injection can be 
found in the work of Libby and Chen [71].

In many practical applications of film or transpiration cooling, the boundary-layer 
flow is turbulent. A considerable amount of experimental data has been accumulated 
for the transpiration of air into a turbulent low-speed air stream [72], The experiments 
included flows with both blowing and suction over a range of pressure gradients. 
Property variations were small. The results can be well correlated making use of the 
parameters

2PhTw 

CfPeUe

and
Pwvw

St peue

(2.163)

(2.164)
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For flows with zero pressure gradient, a simple analysis based on a Couette-flow 
approximation to account for the effects of transpiration leads to the correlation

cf ^(l "*■  1 /s
- = 0.0287—-------— Re?1/5
2 Bf

(2.165)

or, with the understanding that cf0 is the skin friction coefficient without blowing to be 
evaluated at the same x Reynolds number as the flow with blowing,

Cf ln(l + By) 

c/o
(2 166)

This result is in excellent agreement with the available experimental data. For the same 
condition of zero pressure gradient, the Stanton number can be obtained from

StPr04 = 0.0287 + R<1/5 (2.167)

The results with transpiration can be most easily generalized to include flows with 
pressure gradients by using the Reynolds number based on momentum thickness when 
dealing with the skin friction coefficient, and using the Reynolds number based on the 
enthalpy thickness A defined as

r«> pu(H - He)
’o peue(Hw-He) y

when dealing with the Stanton number. For a wide range of pressure gradients, the skin 
friction coefficient for turbulent flows with transpiration can be obtained from

CJ.
2

ln(l + Bf) ' 
= 0.0125 ———

1.25
(1 + By)1^-1/4 (2.168)

which can be developed from Eq. (2.165) making use of the momentum integral 
equation [56]. The Stanton number can be obtained from

StPr04 = 0.0125
ln(l + BJ 1.25

(1 + B^)1/4ReA 1/4 (2.169)

The constants and Reynolds number functions in Eqs. (2.168) and (2.169) are the same 
as observed for flows without transpiration [56], Thus, the results implied in Eqs. 
(2.168) and (2.169) can be written in the form

cf

cfo e

St
St0

ln(l + B)l125
n 1 (2.170)

In Eq. (2.170), B = Bf when cf is to be determined, and B = Bh when St is to be 
determined. When cf is being evaluated, c/0 in Eq. (2.170) is taken as the skin friction 
coefficient for a flow without transpiration, but at the same value of Re„ as the
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Figure 2.10. Effect of transpiration on Stanton number and skin friction coefficient for an 
incompressible turbulent boundary layer. Data of Kays and Moffat [72], (Adapted from [56] by 
permission.)

transpired flow. Similarly, when St is being evaluated, St0 is taken as the Stanton 
number for a flow without transpiration, but at the same ReA as the transpired flow.

The range of applicability of Eq. (2.170) appears to be quite broad. Experimental 
results for St and Cj are shown in Fig. 2.10 along with Eq. (2.170). The data were 
obtained for flows with blowing and suction over a range of both favorable and adverse 
pressure gradients. Older reviews of the status of research on turbulent flows with 
transpiration can be found in [73,74],

In general, blowing reduces both the local skin friction coefficient and the local 
Stanton number. The effect of suction is just the opposite. Qualitatively, the effect of 
blowing on the skin friction coefficient and the Stanton number is similar to that of 
imposing an adverse pressure gradient, whereas the effect of suction is similar to 
imposing a favorable pressure gradient. Suction is primarily used to control boundary
layer growth, especially to delay or eliminate separation by removing low-momentum 
fluid from the boundary layer. Suction can also be used to delay laminar-turbulent 
transition.

Predictions based on boundary-layer theory with mass injection can give some 
guidance in the design of ablation systems. However, the solution of the complete 
ablation problem with phase changes and chemical reactions is difficult and requires 
considerations which are beyond the scope of this chapter. Likewise, film cooling from 
slots or discrete holes is difficult to analyze, and few general results are available. Such 
flows can be dealt with through numerical methods, however.

The experimental results available for compressible turbulent flows with transpira
tion are limited in number and cover a relatively narrow range of flow conditions. For 
the most part, the data are for zero pressure gradient flows. Representative experimen
tal data for compressible flows can be found in [75-80], The experimental uncertainty 
is greater for the compressible flows, and no simple correlation can be recommended 
with confidence. The data trends are discussed in [81].
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In recent years, finite difference solutions to the boundary-layer equations have been 
reasonably well established as being reliable for flows with transpiration. For laminar 
flows, the calculation proceeds in a very straightforward manner, the only change being 
a modification to the wall boundary condition. For the turbulent case, most investiga
tors have reported a need to modify the turbulence model in order to accurately predict 
flows with all but the smallest blowing and suction rates. It appears that the modifica
tion can be implemented in algebraic models by making adjustments to the van Driest 
wall damping function. Several schemes for these modifications have been proposed. 
Descriptions of two of these can be found in [9,26]. The effect of these modifications is 
to decrease the magnitude of the damping constant A f [see Eq. (2.115)] for flows with 
blowing and to increase its magnitude for flows with suction. Several comparisons of 
finite difference predictions with experimental measurements, including some at super
sonic speeds, can be found in [9,26],

2.5 FLOWS WITH PRESSURE GRADIENTS

2.5.1 Similarity Solutions for Laminar Flow
In a previous section, the similarity solution for the boundary layer on a flat plate was 
discussed. In 1931, Falkner and Skan [82] discovered the similarity transformation 
appropriate for two-dimensional incompressible wedge flow for which the inviscid 
solution is given by

ue = Cxm (2.171)

where m is related to the wedge angle by

2m
P = —— (2.172)1 + m

The inviscid solution, of course, provides the boundary condition needed at the outer 
edge of the boundary layer. Included in the wedge-flow family of boundary-layer 
solutions is the important special case of two-dimensional stagnation flow (see Fig. 
2.11). For the stagnation flow indicated in Fig. 2.11, = m = 1 and uc = Cx It has
been shown that in the local neighborhood of a stagnation point in any symmetric 
incompressible two-dimensional flow, the solution to the Falkner-Skan equation for 
P = m = 1 is valid. This is because near the stagnation point, the velocity at the outer 
edge of the boundary layer varies linearly with distance. For example, for flow over a

(a) (b)

Figure 2.11. Wedge flow: (a) general configuration; (/>) two-dimensional stagnation flow.
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TABLE 2.3 Laminar Wedge Flow Results

p m CyRex/2/2 Case

1.6 5 2.6344
1.0 1 1.2326 2D stagnation
0.5 1

3 0.75746
0 0 0.33206 Flat plate

-0.14 -0.06542 0.16372
-0.1988 -0.09041 0 Separation

TABLE 2.4 Nux/ Re1/2 for Laminar Wedge Flow

m
Nux/Re/2

Pr = 0.7 0.8 1.0 5.0 10.0

- 0.0753 0.242 2.53 0.272 0.457 0.570
0 0.292 0.307 0.332 0.585 0.730
0.111 0.331 0.348 0.378 0.669 0.851
0.333 0.384 0.403 0.440 0.792 1.013
1.0 0.496 0.523 0.570 1.043 1.344
4.0 0.813 0.858 0.938 1.736 2.236

circular cylinder placed with its axis normal to the flow, it is well known that the 
inviscid solution is given by ue = 2uxsm(x/R), where x is the distance along the 
surface measured from the stagnation point and R is the radius of the cylinder. 
Clearly, very near the stagnation point, ue ~ 2uxx/R.

The skin friction parameter from the solution to the Falker-Skan equation for some 
typical flows [83] is given in Table 2.3. The stagnation flow (m = 1) and the flat plate 
flow (m = 0) are the two wedge-flow cases which commonly occur in practice. 
Assuming constant properties and neglecting viscous dissipation, the energy equation 
can be readily solved once the solution for the velocity field has been obtained. Results 
for constant wall and free-stream temperatures were obtained by Eckert [84] and, more 
recently, by Evans [85], A few of these heat transfer results are presented in terms of 
Nux/Rex/2 for several values of Pr in Table 2.4. The heat transfer solution for the 
stagnation point in any symmetric two-dimensional flow (such as flow about a circular 
cylinder) is given by the similarity solution for m = 1. Near the stagnation point, ue 
used in Rex is proportional to x, so that the x cancels out of the expression Nux/Re[./2 
at the stagnation point. Thus, a finite, nonsingular solution is obtained for the heat 
transfer coefficient.

Similarity solutions also exist for certain axisymmetric flows. The relationship 
between similarity solutions for two-dimensional and axisymmetric flows is conveni
ently developed by using the Mangier [86] transformation. Details of solutions for 
axisymmetric flows can be found in [2,58]. The Mangier transformation indicates that 
the stagnation-point solution for the flow about an axisymmetric body with a blunt 
nose (such as a sphere) can be obtained from the two-dimensional Falkner-Skan 
solution with m = f. The heat transfer results for an axisymmetric stagnation flow can 
be expressed as

Nux.
—7~----7— = 0.76 (2.173)Pr04Rei/2 v ’



2-58 EXTERNAI FLOW FORCED CONVECTION

Near the stagnation point, ue used in Re*  is again proportional to x, so that the x 
cancels out of Eq. (2.173). For the sphere, the limiting expression for ue becomes 
ue = 2moox/^ as * 0, where R is the radius of the sphere. Axisymmetric bodies
with sharp conical noses also admit similarity solutions near the nose. The results for 
the cone in incompressible flow are discussed in [58],

Flows very near stagnation regions are invariably laminar. Thus, the results given 
above are adequate for design purposes when the properties can be assumed to be 
constant. There is experimental evidence, however, that the heat transfer rate in 
stagnation regions is influenced by the turbulence level of the free stream. The 
mechanism responsible for this behavior is not well understood, and there are insuffi
cient data to establish a reliable and accurate correlation to account for the effect.

Similarity solutions are also available for the compressible laminar boundary-layer 
equations. These are perhaps easiest to obtain if the compressible boundary-layer 
equations are first reduced to almost the same form as for incompressible flow through 
the use of the Illingworth-Stewartson transformation [87,88], The development of this 
transformation and the procedure for obtaining similarity solutions for compressible 
laminar flows are outlined in [1]. Sample results are also presented in [1], As for the 
incompressible case, it is mainly the similarity flows for stagnation points and the flat 
plate that are of interest in applications. However, all similarity solutions are intrin
sically important because of the great accuracy with which the numerical solutions to 
the resulting ordinary differential equations can be obtained. These solutions can 
provide benchmarks against which the accuracy of more approximate methods can be 
judged.

The heat transfer results for the stagnation line on a uniform-temperature circular 
cylinder in cross flow were obtained by a similarity solution to the boundary-layer 
equations by Cohen [89] for a compressible flow. For < 8840 m/s the solution is 
well represented by

Nuw ( lLepe \
-------- -— = 0 57 
Pr°;4Rey2

where the properties in the expression on the left-hand side are to be evaluated at the 
wall temperature. Here

Nuw
(Hw-He}kw

and Rew
(due/dx}L2pw

Pm,

where L is a reference length which cancels from the correlation. For incompressible 
flow, Eq. (2.174) gives results identical to that obtained from Table 2.4 for m = 1. The 
velocity gradient in the Reynolds number is to be obtained from the inviscid flow 
solution, which for a cylinder is well approximated for 4 < Mx < 10 by modified 
Newtonian theory as 

rn dUe 
dx

143 / At - Poo

Moo V Pst (2.175)

where rn is the radius of the cylinder, and pst and pst are the inviscid flow conditions 
on the stagnation fine of the cylinder.

A similar relationship was obtained by Cohen [89] for an axisymmetric stagnation 
point for speeds less than 9144 m/s, and for 10-4 atm < pst < 102 atm, 300 K < Tw



FLOWS WITH PRESSURE GRADIENTS 2 *59

< 1722 K,

Nu„, 
Pr°4Rey2

0.7671 (2.176)

The parameters Nu„, and ReH. are defined as for Eq. (2.174), and the velocity gradient 
in the Reynolds number is well approximated for a sphere for 3 < Mx < 10 by 
modified Newtonian flow theory as

rn due 
ux dx

1-54 / At - px 
“oo V At (2.177)

where rn is the radius of the sphere, and /?st and pst are the inviscid flow conditions at 
the stagnation point.

As with all heat transfer calculations for compressible flows, the adiabatic wall 
temperature (or enthalpy) is used as the fluid reference temperature in Newton’s law of 
cooling to compute the heat flux at a stagnation point. However, it should be noted 
that the adiabatic wall temperature and enthalpy are identical to the stagnation (or 
total) values at a stagnation point.

2.5.2 General Laminar and Turbulent Flows
Finite difference solutions to the boundary-layer equations can be easily obtained for 
attached laminar flows in pressure gradients. In such cases, the pressure gradient can be 
obtained from numerical results for the inviscid flow. When the flow separates so that 
regions of recirculation are present, the solution procedure becomes more involved. An 
iterative viscous-inviscid interaction calculation procedure must be used, or, as an 
alternative, the full Navier-Stokes equations can be solved numerically throughout the 
flow. The situation is much the same for turbulent flow, except that turbulence 
modeling must be included in the computational approach. For mild to moderate 
pressure gradients, algebraic turbulence models work well with little or no adjustment. 
As was mentioned in Sec. 2.3.3, several investigators have suggested modifications to 
algebraic turbulence models to include the effects of pressure gradients. Turbulence 
modeling in flows with separation remains somewhat more uncertain, however.

Although certain classes of flows can be solved numerically in almost a routine 
fashion, limitations do exist. As a flow becomes turbulent, three-dimensional, or 
time-dependent, the difficulties (and generally, the cost) associated with obtaining 
reliable numerical predictions increase. Many flows over bodies tend to become 
unsteady as the Reynolds number increases, due to vortex shedding. These are 
especially difficult to predict with accuracy using current methods.

Relatively few extensive studies, either computational or experimental, have been 
reported for three-dimensional convective flows. For the most part, incompressible 
three-dimensional flows over bodies have been computed by solving the three-dimen
sional boundary-layer equations along with the governing equations for the inviscid 
flow. Often, results have been limited to stagnation regions and planes of symmetry. 
Reviews citing results obtained from numerical solutions to the three-dimensional 
boundary-layer equations have been prepared by Blottner [90] and Bushnell et al. [21], 

In the compressible flow regime, the accurate prediction of the aerodynamic heating 
associated with the three-dimensional flow over bodies is of considerable interest. 
Solutions for the heat transfer rates for laminar boundary-layer flow at a three-dimen
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sional stagnation point have been reported in [91,92]. For flows over bodies at 
supersonic speeds, it is becoming increasingly common to obtain numerical solutions 
by solving a reduced (or “parabolized”) form of the Navier-Stokes equations. These 
equations are solved in both viscous and inviscid regions and differ from the three
dimensional boundary-layer equations primarily through the inclusion of a momentum 
equation in all three coordinate directions. An early example of this approach was 
reported by Lubard and Helliwell [93]. More recently, Venkatapathy et al. [94] used 
this strategy to obtain numerical solutions, including heat transfer rates, for the 
three-dimensional flow about the Space Shuttle.

Heat transfer from several simple shapes which induce pressure gradients has been 
studied experimentally. These include the sphere and cylinders of various cross sections 
(circular, square, hexagonal) in cross flow, which are considered in detail in Chap. 6.

2.6 CONCLUDING REMARKS

The literature related to external flow forced convection is very extensive. Conse
quently, it has not been possible to include all of the available useful information in 
this chapter. It is intended, however, that the combination of the specific information 
provided plus the references cited will cover the most important aspects of the subject.

An attempt has been made to include the fundamental equations and concepts. This 
should serve the needs of those who will use computational methods to solve problems 
in convective heat transfer. This approach is becoming increasingly common. General 
formulas and data correlations for the configurations that occur most frequently in 
applications have also been included.

NOMENCLATURE

A + van Driest damping constant, Eq. (2.115)
a speed of sound, Eq. (2.84), m/s, ft/s
Bt blowing function, Eq. (2.163)
Bh blowing function, Eq. (2.164)
Ct constant, Eq. (2.116)
C2, C3 constants, Table 2.2, Eq. (2.125)
CD constant in Eq. (2.122)
C\ constant, Eq. (2.120)
Cp constant, Table 2.2, Eq. (2.124)
C, pressure coefficient, (pw - Pa0 )/(jPaoV£)
cf local skin friction coefficient, 2 tm,/peu^
cp specific heat at constant pressure, J/(kg • K), Btu/(lb„, • °F)
cu specific heat at constant volume, J/(kg • K), Btu/(Jb,„ • °F)
Ec Eckert number, u^/[cp(Tw - Tt)]
F turbulent boundary-layer transformation function, Eq. (2.153)
FRe* turbulent boundary-layer transformation function, Eq. (2.152)
F..e turbulent boundary-layer transformation function, Eq. (2.154), Eq.

(2.157)



NOMENCLATURE 2*61

H total enthalpy per unit mass, J/kg, Btu/lb„,
h heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 • CF)
h1,h2,h3 metric coefficients
i enthalpy per unit mass, J/kg, Btu/lbm
h.i2,i3 unit vectors in a generalized curvilinear coordinate system 
X',, A3 geodesic curvatures, Eq. (2.104), m-1, ft-1
k thermal conductivity, W/(m • K), Btu/(hr • ft • °F)
A kinetic energy of turbulence per unit mass, J/kg, Btu/lbm
7 reference length, m, ft
I mixing length, m, ft
M Mach number = V/a
m flow index = 0 (two-dimensional), = 1 (axisymmetric)
Nu Nusselt number = hx/k
Pe Peclet number = Re Pr
Pr

Pr;

Prr

P
<1
R
Re£ 
Re, 
Re^ 
ReA 
r
St
s 
T
I
u
u3, u2, u3 
Mr 

ue 
uz 
u*
V
V
v
Vi’

X

J'

Prandtl number = cpp/k
turbulent Prandtl number for turbulent kinetic energy; see Eq. (2.122)
turbulent Prandtl number for dissipation rate of turbulent kinetic 

energy; see Eq. (2.125)
turbulent Prandtl number = pTcp/kT
pressure, Pa, lby/ft2
heat flux, W/m2, Btu/(hr • ft2)
gas constant, J/(kg • K), ft ■ lby/(lbm • °R)
Reynolds number based on length L, = pueL/p
Reynolds number based on length x
Reynolds number based on momentum thickness
Reynolds number based on enthalpy thickness
radius, radial distance, m, ft
Stanton number = Nu/(RePr)
entropy per unit mass, J/(kg • K), Btu/(lb,„ • °R)
temperature, K, °R
time, s
velocity component in x direction, m/s, ft/s
velocity components in a generalized coordinate system, m/s, ft/s
velocity component in r direction, m/s, ft/s
velocity component in fl direction, m/s, ft/s
velocity component in z direction, m/s, ft/s
nondimensional velocity = u/(rw/pw)1/2
velocity vector, m/s, ft/s
magnitude of velocity vector, m/s, ft/s
velocity component in y direction, m/s, ft/s
velocity component in z direction, m/s, ft/s
rectangular coordinate, m, ft
rectangular coordinate normal to surface, m, ft
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z
nondimensional distance from surface = (th./p„.)1/2y/vw 
rectangular coordinate, m, ft

Greek Symbols
a turbulence model parameter, Eq. (2.118)
a van Driest function, Eq. (2.155)

m
 02 _p

? 
O

; > 
-<

 "Co 
to

 to
 SS thermal diffusivity = k/pcp, m2/s, ft2/s 

wedge angle parameter, Eq. (2.172) 
coefficient of thermal expansion = — (l/p)(dp/dT)p 
van Driest function, Eq. (2.156) 
ratio of specific heats = cp/cv
enthalpy thickness = f™[pu(H - He)/peue(Hw - He)] dy. m, ft 
boundary-layer thickness, m, ft 
kinematic displacement thickness, /o°(l — u/ue) dv, m, ft 
thermal boundary-layer thickness, m, ft 
Kronecker delta
dissipation rate of turbulent kinetic energy, J/(kg • s), Btu/(lb,„ • s) 
momentum thickness, /“(pw/peue)(l — u/ue) dy, m, ft

K von Karman mixing-length constant

p'
V 
n

dynamic viscosity, Pa • s, lbm/(ft • s)
second coefficient of viscosity, Pa • s, lbm/(ft ■ s) 
kinematic viscosity, m2/s, ft2/s
stress tensor

r turbulence model parameter, Eq. (2.118)
P
T

density, kg/m3, lb„,/ft3 
viscous stress tensor

T 

< 

<■ 

’P

shear stress, Pa, lby/ft2
dissipation function, N/(m2 • s), lby/(ft2 • s) 
velocity potential function
stream function
vorticity, s”1

Subscripts
aw adiabatic wall conditions
e 
f 
i

evaluated at boundary-layer edge 
film temperature, Eq. (2.144) 
incompressible value

max
0
st
T

maximum value 
total value 
stagnation conditions 
turbulent quantity

w wall conditions
oc free-stream conditions
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Superscripts and Accents
mean value
random fluctuating value
properties to be evaluated at reference enthalpy or temperature condi

tion
mass-weighted average

w pow’er in viscosity-temperature relation
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3.1 Introduction
3 1 1 Types of Laminar Duct Flows
3 1.2 Fluid Flow Parameters
3.1.3 Heat Transfer Parameters
3.1.4 Thermal Boundary Conditions

3.2 Circular Duct
3.2.1 Fully Developed Flow
3.2 2 Hydrodynamically Developing Flow
3.2.3 Thermally Developing Flow
3 2 4 Simultaneously Developing Flow

3.3 Flat Duct
3.3.1 Fully Developed Flow
3.3.2 Hydrodynamically Developing Flow
3.3.3 Thermally Developing Flow
3.3.4 Simultaneously Developing Flow

3.4 Rectangular Ducts
3 4.1 Fully Developed Flow
3.4.2 Hydrodynamically Developing Flow
3.4.3 Thermally Developing Flow
3.4.4 Simultaneously Developing Flow

3.5 Triangular Ducts
3.5.1 Fully Developed Flow
3.5.2 Hydrodynamically Developing Flow
3 5.3 Thermally Developing Flow
3.5.4 Simultaneously Developing Flow

3.6 Elliptical Ducts
3.6.1 Fully Developed Flow
3.6.2 Hydrodynamically Developing Flow
3.6.3 Thermally Developing Flow

3.7 Additional Singly Connected Ducts
3.7.1 Sine Ducts
3.7.2 Trapezoidal Ducts
3.7.3 Rhombic Ducts
3.7.4 Quadrilateral Ducts

3»1
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3 7 5 Regular Polygonal Ducts
3.7.6 Circular Sector Ducts
3.7.7 Circular Segment Ducts
3.7.8 Annular Sector Ducts
3.7.9 Stadium-Shaped and Modified Stadium-Shaped Ducts
3 7.10 Circumferentially Corrugated Circular Ducts
3 7.11 Flat Duct with Spanwide-Periodic Triangular Corrugations at One Wall
3.7.12 Flat Duct with Spanwise-Periodic Rectangular Corrugations at One Wall
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3.1 INTRODUCTION

This chapter deals with laminar fluid flow and forced convection heat transfer char
acteristics of a variety of ducts which are of interest in a wide variety of heating and 
cooling devices used in aerospace, electronics, nuclear engineering, instrumentation, 
biomechanics, and slurry, oil, and water transport as well as in food, glass, polymer, 
and metal processing.

The results presented here are applicable to straight ducts with axially unchanging 
cross sections. Also, the duct walls in all cases are considered as smooth, nonporous, 
rigid, and stationary. Furthermore, the duct walls are assumed to be uniformly thin, so 
that the temperature distribution within the solid wall has negligible influence on the 
convective heat transfer in the flowing fluid.

The scope of the chapter is restricted to steady, incompressible and laminar flow of 
constant-property Newtonian fluids only. All forms of body forces are neglected. Also 
omitted are the effects of natural convection, phase change, mass transfer, and chemical 
reactions. The effects of thermal energy soures, viscous dissipation (i.e., internal 
friction), flow work (i.e., work done by pressure forces), and fluid axial conduction are 
included at appropriate places.

In the ensuing sections of this chapter, a uniform format is adopted to present 
information for the most important singly and doubly connected ducts covering the 
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four types of flows to be deseribed shortly. A limited amount of information is also 
presented for some unusual singly connected ducts which may be of interest in special 
situations. The singly connected ducts, such as circular, rectangular, triangular, ellipti
cal, and the like, are characterized by the fact that the periphery of their bounding 
surface can be represented by a single closed curve which can be continuously 
contracted into a point without leaving the free-flow area of the duct cross section. The 
doubly connected ducts, such as annular concentric and eccentric geometries, are 
characterized by the fact that the peripheries of their bounding surfaces can be 
represented by a set of two closed curves which cannot be continuously contracted into 
a point without leaving the free-flow area of the duct cross section.

The most important fluid flow and heat transfer results are presented here in terms 
of mathematical expressions as well as in graphical form to display the general trends. 
Due to vastness of the subject and the space limitations, all the computed results are 
not presented in tabular form. However, frequent references are made to Shah and 
London’s monograph [1], which contains an extensive tabulation of the computed 
results collected from worldwide sources.

3.1.1 Types of Laminar Duct Flows
There are four types of laminar duct flows, namely, fully developed, hydrodynamically 
developing, thermally developing, and simultaneously developing? A brief description 
of these flows is given here with an aid of Fig. 3.1 which depicts a fluid with uniform 
velocity um and temperature Te entering a duct of arbitrary cross section at x = 0.

Referring to Fig. 3.1a, suppose that the temperature of the duct wall is held at the 
entering fluid temperature (Tj,. = Te) and there is no generation or dissipation of heat 
within the fluid. In this case, the fluid experiences no gain or loss of heat. In such an 
isothermal flow, the effect of viscosity gradually spreads across the duct cross section 
commencing at x = 0. The extent to which the viscous effects diffuse normally from 
the duct wall is represented by the hydrodynamic boundary-layer thickness S, which 
varies with the axial coordinate x. In accordance with Prandtl’s bound ary-layer theory, 
the hydrodynamic boundary-layer thickness divides the flow field into two regions: a 
viscous region near the duct wall and an essentially inviscid region around the duct 
axis.

At x = Lhv, the viscous effects have completely spread across the duct cross section. 
The region 0 < x < Lhv is called the hydrodynamic entrance region, and the fluid flow 
in this region is called the hydrodynamically developing flow. As shown in Fig. 3.1a, the 
axial velocity profile in the hydrodynamic entrance region varies with all three space 
coordinates, i.e., u = u(x, y, z). For hydrodynamically developed flow, the axial 
velocity profile becomes independent of the axial coordinate and varies with the 
transverse coordinates alone, i.e., u = u(y, z).

After the flow becomes hydrodynamically developed (x > Lhy, Fig. 3.1a), suppose 
that the duct wall temperature is raised above the entering fluid temperature, i.e., 
TH > Te. In this case, the thermal effects diffuse gradually from the duct wall, 
commencing at x = Lhy. The extent of diffusion of the thermal effects is denoted by 
the thermal boundary-layer thickness 5,, which also varies with the axial coordinate x. 
According to Prandtl’s boundary-layer theory, the thermal boundary-layer thickness 
divides the flow field into two regions: a heat-affected region near the duct wall and an

+Throughout this chapter, thermally developing and hydrodynamically developed flow is 
simply referred to as “thermally developing flow”; thermally and hydrodynamically developing 
flow is referred to as “simultaneously developing flow.”
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Figure 3.1. Types of laminar duct flows for constant wall temperature boundary condition: (a) 
hydrodynamically developing flow followed by thermally developing and hydrodynamically 
developed flow; (b) simultaneously developing flow, Pr > 1; (c) simultaneously developing flow 
Pr < 1. Solid lines denote the velocity profiles, the dashed lines the temperature profiles.

essentially unaffected region around the duct axis. At x = Llh, the thermal effects have 
completely spread across the duct cross section. The region Lhv < x < Llh is termed 
the thermal entrance region, and the fluid flow in this region is called the thermally 
developing flow. It may be emphasized that the thermally developing flow is already 
hydrodynamically developed in Fig. 3.1a. As shown in this figure, in the thermal 
entrance region the local dimensionless fluid temperature 0 = (TM - - T ).
where Tm is the fluid bulk mean temperature, varies with all three space coordinates, 
i.e., 0 = 0(x, y, z).

For Lth < x < oo in Fig. 3.1a, the viscous and thermal effects have completely 
diffused across the duct cross section. This region is referred to as the fully developed 
region. The fluid flow in this region is termed the fully developed flow. In the fully 
developed region, the dimensionless temperature 0 varies with the transverse coordi
nates alone although the local fluid temperature T varies w'ith all three space coordi
nates, and fluid bulk mean temperature Tm varies with the axial coordinate alone.

The fourth type of flow, called simultaneously developing flow, is illustrated in Figs. 
3.1/? and c. In this case, the viscous and thermal effects diffuse simultaneously from the 
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duct wall, commencing at x = 0. Depending on the value of the Prandtl number Pr, 
the two effects diffuse at different rates. In Fig. 3.1 b, Pr > 1 and 8 > 3,, whereas in 
Fig. 3.1c, Pr < 1 and 3 < 8r This relationship among Pr, 8, and 8, is easy to infer 
from the definition of the Prandtl number, which for this purpose can be expressed as 
Pr = v/a, a ratio of kinematic viscosity to thermal diffusivity. The kinematic viscosity 
is the diffusion rate for momentum or for velocity in the same sense that the thermal 
diffusivity is the diffusion rate for heat or for temperature. When Pr = 1, the viscous 
and thermal effects diffuse through the fluid at the same rate. This equality of diffusion 
rates does not guarantee that the hydrodynamic and thermal boundary layers in 
internal duct flows will be of the same thickness at a given axial location. The reason 
for this apparent paradox lies in the fact that with Pr = 1, the applicable momentum 
and energy differential equations do not become analogous. In external laminar flow 
over a flat plate, on the other hand, the energy and momentum equations do become 
analogous when Pr = 1, and for the case when the boundary conditions for the 
momentum and thermal problems are also analogous, we get 8 = 8, for all values of x.

As depicted in Fig. 3.13 and c, within the region 0 < x < Lc, the viscous and 
thermal effects diffuse simultaneously across the duct cross section. Accordingly, this 
region is referred to as the combined entrance region. It is apparent that the length Lc 
of the combined entrance region is dependent on Pr. For Pr > 1, Lc — Lth and for 
Pr < 1, L( = L hv. It may also be noted that in the combined entrance region both the 
axial velocity and the dimensionless temperature vary with all three space coordinates, 
i.e., u = u(x, y, z) and 0 = 0(x, y, z). The region Lc < x < oo is the fully developed 
region, similar to the one depicted in Fig. 3.1a with axially invariant w(y, z) and 
0(y, z).

3.1.2 Fluid Flow Parameters
The fluid flow characteristics of all the ducts are expressed in terms of certain 
hydrodynamic parameters which are defined here. The various symbols are fisted in the 
Nomenclature section at the end of the chapter.

For the hydrodynamically developing flow, the dimensionless axial distance x* is 
defined as 

where the hydraulic diameter Dh equals 4 times the duct cross-section area divided 
by the wetted perimeter P. The hydraulic diameter is consistently used as the character
istic dimension in all the hydrodynamic and thermal parameters such as the Reynolds 
number Re = umDh/v and the Nusselt number Nu = hDh/k.

The hydrodynamic entrance length Lhv is defined as the axial distance required to 
attain 99% of the ultimate fully developed maximum velocity when the entering flow is 
uniform. The dimensionless hydrodynamic entrance length is expressed as = 
Lhy/(DARe).

The Fanning friction factor f is defined as the ratio of the wall shear stress t„ to the 
flow kinetic energy per unit volume, pu^/lgy.

f= 
pu2m/2gc

In the hydrodynamic entrance region, the apparent Fanning friction factor /app 
incorporates the combined effect of wall shear and the change in momentum flow rate
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due to the developing velocity profile. It is based on the total pressure drop from the 
duct inlet (x = 0) to the point of interest and is defined as

Pq-P = 
pu2m/2gc }™rh (3-3)

The incremental pressure drop number K(x) in the hydrodynamic entrance region is 
defined as

^(*)  = (/aPP -/fd)- 
rh

(3-4)

where //<y is the Fanning friction factor for fully developed laminar flow. K(x) is 
sometimes referred to as the incremental pressure defect. It increases monotonically 
from a value of zero at x = 0 to a constant value in the hydrodynamically developed 
region at x > Lhy. This constant value is designated as Ai(oo), and in the viscometry 
literature it is referred to as Hagenbach’s factor.

The Fanning friction factor, axial pressure drop, and incremental pressure drop 
number are related as

^P*  = (/aPpRe)(4x+) = K(x) + (/Re)(4x+) (3.5)

In practical calculations, the following dimensional form of Eq. (3.5) is found to be 
useful:

. 4(/appRe)/iumx 4(/Re)^wmx K(x)pu2m
&P =------ -—ri------=-------s-------------+ — --------- (3.6)2gcA 2g(Z>; 2gf

3.1.3 Heat Transfer Parameters
The fluid bulk mean temperature, also referred to as the “mixing cup” or “flow 
average” temperature Tm, is defined as

= "TdA< (3.7)

The circumferentially averaged but axially local heat transfer coefficient hx is 
defined by

q'' = hx(Tw<m- Tm) (3.8)

where m is the wall mean temperature and Tm is the fluid bulk mean temperature 
given by Eq. (3.7). In Eq. (3.8), the heat flux q'f and the temperature difference 

~ are vector quantities. In this equation, the direction of heat transfer is from 
the wall to the fluid, and consistently the temperature drop is from the wall to the fluid. 
In contrast, if qf represents the heat flux from the fluid to the wall, the temperature 
difference entering Eq. (3.8) will be Tm - Tw m.

The flow-length average heat transfer coefficient hm is the integrated average of hx 
from x = 0 to x, being given by

1 fx 
hm = — / h dx 

x Jq
(3.9)
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The ratio of the convective conductance h to the pure molecular conductance k/Dh 
is defined as a Nusselt number Nu. The circumferentially averaged but axially local 
Nusselt number is defined as

hxDh
Nu = 

' k (3.10)

The mean Nusselt number based on hm in the thermal entrance region is defined as

nt 1 Txt j h”'D>'
Num = — / Nu dx =-------  = —-----— (3-11)

The expressions for (AT)„, could be complicated and dependent upon thermal boundary 
conditions. Refer to [1] for specific formulas for the @ and (m) boundary conditions.

The dimensionless axial distance x*  is defined as

x/Dh = X/Dh
Pe Re Pr (3-12)

where Pe = umDh/a is the Peclet number and Pr = v/a. is the Prandtl number. It may 
be noted that x*  is related to x+ simply as x*  = x^/Pr. The Graetz number is 
related to x*  as Gz = Wcp/kL = P/(4D/1x*).

The thermal entrance length Lth is defined as the axial distance required to achieve 
a value of the local Nusselt number NuY, which is 1.05 times the fully developed 
Nusselt number value. The dimensionless thermal entrance length is expressed as 
L' = Llh/(DhPe).

3.1.4 Thermal Boundary Conditions
In order to accurately interpret the highly sophisticated heat transfer results presented 
in the ensuing sections of this chapter, a clear understanding of the thermal boundary 
conditions imposed on the duct wall(s) is absolutely essential. A systematic exposition 
of the boundary conditions is provided by Shah and London [1], We give here only a 
brief description of the specific boundary conditions that are pertinent to this chapter.

Table 3.1 contains a description of the eight most important thermal boundary 
conditions that are treated in the context of the singly connected ducts in Secs. 3.2 to 
3.7. All boundary conditions of Table 3.1 are also applicable to doubly connected 
ducts. Since a doubly connected duct possesses two walls, each boundary condition of 
Table 3.1 can be independently applied to each wall, resulting in numerous possible 
combinations of the boundary conditions. Four types of fundamental boundary condi
tions analyzed in the context of doubly connected ducts are of special importance, as 
suitable combinations of them via superposition techniques lead to solutions of all 
problems of practical interest involving thermally developing flows. These boundary 
conditions are described near the beginning of Sec. 3.3.1 on p. 3 • 30. Table 3.2 
contains a description of the three important thermal boundary conditions treated in 
the context of the doubly connected ducts covered in Secs. 3.8 to 3.10. The applications 
of the doubly connected ducts with (?) , (m) and (h?) boundary conditions are the same 
as those of the singly connected ducts with the corresponding boundary conditions. 
Hence, they are not included in Table 3.2.

It may be noted that (m) to (h4) thermal boundary conditions for the symmetrically 
heated ducts with no sharp comers (e.g., circular, flat and concentric annular ducts) are 
identical. Hence, they will be designated simply as (h) for these geometries.
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TABLE 3.1. Thermal Boundary Conditions for Singly Connected Ducts

Designation Description Mathematical Formulation0

Uniform wall temperature, with cir- = constant
cumferentially and axially constant wall 
temperature

© Convective, with axially constant wall ^h-0 = K 0 ( : )
temperature and finite thermal resis
tance normal to the wall

Tw = Tw(x, j,z)

/ dT\Mir = ^<^0 - r) 
\ on / w

1 1
h0 kw he

© Radiative, with axially constant environ- Tu = r (>’•-’)
ment temperature and wall heat flux 
proportional to the fourth power of the

Tw = Tw(x,y, z) 
/

absolute wall temperature -k — =v(©4- r4) 
\ 9n ) w

(Hl) Constant wall heat flux, with circumferen- q" = ’)
tially constant wall temperature and 
axially constant wall heat flux

r = r©)

Applications

Condensers, evaporators, automotive 
radiators (at high liquid flow rates), 
with negligible wall thermal resistance

Same as for @ except that the wall 
thermal resistance is finite in these 
applications

High-temperature systems such as space 
radiators, liquid-metal exchangers, and 
exchangers involving heat-radiating 
gases

Electric resistance heating, nuclear heat
ing, counterflow heat exchangers hav
ing nearly identical fluid capacity rates 
(pumAccp), all involving highly conduc
tive wall materials



Uniform wall heat flux, axially and cir
cumferentially

q'.' = constant

H4

H5

Convective, with axially constant wall 
heat flux and finite thermal resistance 
normal to the wall

Conductive, with axially constant wall 
heat flux and finite heat conduction 
along the wall circumference

Exponential wall heat flux, with cir
cumferentially constant wall tempera
ture and exponentially varying wall 
heat flux along the duct axis

q'w = '?"(”•-)
/ dT\

M ~k~ I = ^0 (^0 “ )

= q„ (y,

qX[^\ !
k \ dn / w k \ ds2 / w

Same as (m) except that the thermal 
conductivity of the wall material is low 
(e.g., glass-ceramic, Teflon) and the 
wall thickness is uniform

Same as (m) except that the thermal 

resistance normal to the wall is finite 
and there is negligible heat conduction 
along the duct circumference

Same as (m) except that the circumferen

tial heat conduction is finite

K = C,(a)
q» = Qo exp(wx*)

Parallel and counter flow heat exchangers 
with appropriate values of m

“See the Nomenclature section for meaning of the symbols. In particular, w denotes the interior and wO the exterior of the duct wall; n and s 
designate normal and circumferential directions.
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TABLE 3.2. Thermal Boundary Conditions for Doubly Connected Ducts

Designation Description
Mathematical
Formulation3

Uniform wall temperature, with cir
cumferentially and axially con
stant and equal temperatures at 
both walls

Twl = Ki = constant

Unequal wall heat flux, with two 
heat fluxes of such magnitude that 
they give rise to circumferentially 
uniform and equal wall tempera
tures along the peripheries of the 
two walls

© Unequal wall heat flux, with two 
unequal and uniform heat fluxes 
of such magnitude that they give 
rise to equal mean wall tempera
tures along the peripheries of the 
two walls

^2 =
rwl,m(v) = Tw2.m(x)

"The subscripts 1 and 2 refer to the two walls of the doubly connected duct. If preferred, these subscripts 
may be replaced by i and o respectively denoting inside and outside duct walls.

3.2 CIRCULAR DUCT

The circular duct is the most widely used geometry in fluid flow and heat transfer 
devices. Accordingly, its fluid flow and heat transfer characteristics have been analyzed 
in great detail for various boundary conditions. Also available in the literature is a 
great deal of information on the effects of viscous dissipation, fluid axial conduction, 
thermal energy soures and axial momentum diffusion. Several results of practical 
interest are now outlined.

3.2.1 Fully Developed Flow
The fully developed velocity distribution for the circular duct with origin at the duct 
axis is given by

u
— =2 (313)

which is widely known as the Hagen-Poiseuille parabolic profile. The mean velocity um 
and the fully developed friction factor corresponding to Eq. (3.13) are

1
8p,

f Re = 16 (3-14)

The heat transfer results for the fully developed flow will now be presented for 
various thermal boundary conditions imposed on the duct wall. A brief description of 
the boundary conditions together with their alphanumeric designation is provided in 
Table 3.1.
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Uniform Wall Temperature, (t). The fully developed (!) temperature distribution in 
circular ducts for nondissipative flow in the absence of flow work, thermal energy 
sources, and fluid axial conduction is given exactly by the following rapidly convergent 
infinite series [2]:

where the coefficients C2„ are given by

Co = 1, C2 = - = -1.828397

A2o 

(2n)2

Xo = 2.7043644199

(3.15)

(3 16|

(3-17)

An important requirement to be satisfied by the coefficients of Eq. (3.16) is that 
their sum must vanish. This constraint, conjoined with the bounds on the values of r/a 
(namely, 0 < r/a < 1), guarantees the rapid convergence of the infinite series in Eq. 
(3.15). For n = 0,2,4,6,8, and 10, the sum of the coefficients in Eq. (3.16) is 
1,0.464460,0.050564,0.002441,0.000066, and 0, respectively. Thus for all practical 
purposes, the series in Eq. (3.15) may be considered fully convergent for n = 10.

The fluid bulk mean temperature in Eq. (3.15) is given by the following asymptotic 
formula applicable for x*  > 0.0335 [2]:

TW ~ Tm 
Tw ~ Tc

= 0.819048 exp( —2AqX*) (3.18)

Referring to Eq. (3.15), it may be noted that although the local temperature T is a 
function of both the radial and axial coordinates and the fluid bulk mean temperature 
Tm is a function of the axial coordinate, the dimensionless temperature (T„. - T)/ 
(Tw - Tni) is a function of the radial coordinate alone. Such a temperature profile is 
referred to as hydrodynamically and thermally developed, or briefly as a fully de
veloped temperature profile.

The fully developed Nusselt number corresponding to the temperature distribution 
of Eq. (3.15) can be shown to be

X2
Nut = — = 3.6567935

T 2 (3-19)

The influence of fluid axial conduction for the fully developed flow with the @ 
boundary condition is negligible when the Peclet number Pe(= umDm/a) > 10. For 
lower Peclet numbers, the following asymptotic formulas presented by Michelsen and 
Villadsen [3] are recommended:

_ (4.180654 - 0.183460 Pe
NUt “ \ 3.656794 + 4.487/Pe2

for 
for

Pe <
Pe >

1.5
5 (3.20)
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The effect of viscous dissipation, i.e., heating or cooling of the fluid due to internal 
friction, is extremely important in situations such as flow of heavy oils in long 
pipelines, flow of lubricant between fast moving parts, flow of plastics through dies in 
high-speed extrusion, and flow of air around an earth satellite or a rocket. It is taken 
into account via a dimensionless parameter called the Brinkman number Br =

m ~ Ou anc* Cheng [4] showed that when viscous dissipation is 
taken into consideration, the fully developed Nusselt number attains a value of y 
independent of Br. This value is 2.6 times higher than the NuT value of Eq. (3.19).

Uniform Wall Heat Flux, The fully developed temperature distribution and 
Nusselt number in a circular duct with the @ boundary condition for nondissipative 
flow in the absence of flow work, but with thermal energy sources, finite viscous 
dissipation, and finite fluid axial conduction, is given by the following set of equations 
derived by the present authors by recasting the results of Tyagi [5]:

T - T w
T - T w m

(12 + y) - (4 + y)(r/a)2

44 + 3y
(3-21)

K - Tm 44 + 3y 1
192 Nuh

y = S'*  + 64 Br'

(3.22)

(3.23)

Here S*  is the dimensionless thermal energy source number S*  = SDh/q", and Br' is 
the dimensionless Brinkman number Br' = liUm/qi'DhJgc for the (h) boundary condi
tion.

For the case of negligible viscous dissipation and no thermal energy sources we have 
y = 0, and from Eq. (3.22) NuH = y = 4.363636, a value 19% higher than NuT of Eq. 
(3.19).

Since the fluid axial conduction is constant for the (h) case, NuH of Eq. (3.22) is 
also valid for finite fluid axial conduction; the additional parameter Pe does not come 
into the picture for this case.

The effect of circumferential heat-flux variation could be important in practical 
applications involving radiantly heated tubes of low thermal conductivity materials like 
ceramics or for tubes with internal thermal energy generation. For the cosine heat-flux 
variation represented by q"(0) = q"(l + bcosO), Reynolds [6] presented the follow
ing solutions for local peripheral variations for the case of y = 0:

Nu„(S) -
1 + b cos 0
+ (6/2) cos 0

q'n'JK/k
11 b

= — -I— cos 0
48 2

(3-24)

(3-25)

Convectively Heated or Cooled Duct Wall, @. For the @ boundary condition, 
the wall temperature is constant axially and the duct has a finite thermal resistance 
normal to the wall. This thermal resistance is incorporated in an external convective 
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heat transfer coefficient he, which in turn is incorporated in the dimensionless Biot 
number defined as Bi = heDh/k. The Biot number could also include the effect of the 
wall thermal resistance, if any. In this case Bi = !//?„,, where Rw = kbw/kMDh + 
k/heDh. The (h) and (?) boundary conditions are the limiting cases of the (ij) 
boundary condition corresponding to Bi = 0 and oo, respectively.

For constant he, Hickman [7] developed the following asymptotic formula:

NuT3
TT + Bi

1 +
(3.26)

The overall mean Nusselt number Nu. 
lated to NuT3 and Bi as [1]

h„Dh/k = <l»Dh/[k(Ja - Tm)] is re-

1 1 1
Nuo,m NuT3 Bi

(3.27)

Sparrow et al. [8] found that Nuo m is quite insensitive to the circumferential 
variation of Bi and hence he.

Radiantly Heated or Cooled Duct Wall, (?4). The (t4) boundary condition was 
investigated by Kadaner et al. [9]. They provided the following simple formula for the 
fully developed Nusselt number, reproducing their solution within 0.5%:

NuT4
8.728 + 3.66Sk(7(,/TJ

2 + Sk(7]J/Te,)3
(3.28)

Here Sk is the dimensionless Stark number defined as Sk = ewoT^Dh/k, and Tu and Te 
are the absolute temperatures respectively of the external environment and of the 
internal fluid at the point of impingement of the radiation flux.

NuT4 of Eq. (3.28) reduces to NuH and NuT respectively for Sk = 0 and oo. This 
indicates that the @ and (?) boundary conditions are the limiting cases of the (t4) 
boundary condition.

Exponentially Varying Wall Heat Flux, (®. The exponentially varying wall heat flux 
can be represented by q” = q" exp( mx*  ), where the exponent m can assume both 
positive and negative values corresponding to exponential growth or decay of the wall 
heat flux. The restricted range of the exponent, — 4NuT < m < 0 (where NuT = 
3.6568), is of special interest, as in this range the fluid in the duct can be convectively 
heated or cooled by an external environment with uniform temperature and uniform 
heat transfer coefficient. The case of m = 0 corresponds to the @ boundary condition, 
and m = — 4NuT corresponds to the (?) boundary condition. Since the (?) and (h) 
boundary conditions are the limiting cases of the (t?) and (t4) boundary conditions, 
it follows that the (?), ®, and @ boundary conditions constitute a subclass of 
the (hs) boundary condition. This relationship among the boundary conditions was 
clearly expounded by Sparrow and Patankar [10],

The Nusselt number NuH5 determined by Shah and London [1] for -51.36 < m < 
100 from the theoretical formula can be represented by the following correlation with a 
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maximum error of 3%:

NuH5 = 4.3573 + 0.0424m - 2.8368 X 10”4m2 + 3.6250 X 10'6m3

-7.6497 X 10“8m4 + 9.1222 X 10“1(W - 3.8446 X 10“12m6 (3.29)1

1 Note that NuH5 = 0 for m < -51.36.

3.2.2 Hydrodynamically Developing Flow
The problem of hydrodynamic flow development in a circular duct has stimulated 
numerous investigations; attempts to describe the flow theoretically extend back to 
1891. Depending on the value of the Reynolds number, the various solutions can be 
categorized as (1) solutions involving boundary-layer theory simplifications valid for 
large Reynolds numbers, Re -> oc, (2) solutions involving Navier-Stokes equations 
with low Reynolds numbers, Re < 400, and (3) creeping flow solutions with Re 0. 
The results pertaining to each solution category are presented separately.

Solutions Involving Boundary-Layer Theory Simplifications. A variety of analyti
cal and numerical techniques with a varying degree of approximation have been 
employed in developing the solutions in this category. In accordance with Prandtl’s 
boundary-layer theory simplifications, these solutions neglect the effects of axial 
momentum diffusion and radial pressure variation. It may also be noted that all these 
solutions employ the simplest entry condition of uniform velocity at the duct inlet.

The various solutions in this category have been reviewed and classified in [1], 
Among them, the numerical solution by Hornbeck [11] is believed to be the most 
accurate. The dimensionless axial velocity and pressure drop values computed by 
Hornbeck are presented in Table 3.3. According to these results,

L^y = 0.0565, K(oo) = 1.28 (3.30)

For practical computations, the dimensionless axial pressure drop in the hydrody
namic entrance region can be computed from the following correlation proposed by 
Shah as reported in [1]:

Ap*  = 13.74(x+)1/2 +
1.25 + 64x+ - 13.74(x+)1/2

1 + 0.00021(x+)~2
(3.31)

The A/>*  values computed from Eq. (3.31) are in excellent accord with the values in 
Table 3.3.

Solutions Involving the Navier-Stokes Equations. The solutions based on the 
boundary-layer theory simplifications are not very accurate in the neighborhood of the 
duct inlet, approximately one diameter both upstream and downstream of the inlet 
section at x = 0. In this region, the neglected effects of the axial momentum diffusion 
and radial pressure variation are of importance. They are taken into account by the 
solutions in this category. The proper accounting of the effects introduces the Reynolds 
number as a parameter in the solution and also requires careful specification of the 
inlet velocity profile.
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Axial Velocity u/u_________________________________ Pressure

TABLE 3.3. Axial Velocity and Pressure Distribution in the Hydrodynamic Entrance Region of a Circular Duct [11]

.V 4 r/a = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Drop A/?*

0.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0 0.0000
0.00050 1.1503 1.1503 1.1503 1.1503 1.1503 1.1503 1.1502 1.1485 1.1293 0.8434 0 0.3220
0.00125 1.2269 1.2269 1.2269 1.2269 1.2268 1.2264 1.2230 1.2016 1.0950 0.6893 0 0.5034
0.00250 1.3126 1.3126 1.3125 1.3124 1.3115 1.3068 1.2867 1.2144 1.0098 0.5908 0 0.7204
0.00375 1.3782 1.3781 1.3779 1.3770 1.3733 1.3596 1.3160 1.2000 0.9511 0.5417 0 0.8960

0.00500 1.4332 1.4331 1.4324 1.4299 1.4214 1.3959 1.3292 1.1814 0.9107 0.5102 0 1 0506
0.00750 1.5239 1.5232 1.5204 1.5120 1.4902 1.4395 1.3349 1.1476 0.8585 0.4720 0 1.3212
0.01000 1.5977 1.5960 1.5893 1.5727 1.5358 1.4623 1.3308 1.1218 0.8261 0.4496 0 1.5610
0.01250 1.6595 1.6562 1.6448 1.6188 1.5675 1.4751 1.3245 1.1023 0.8040 0.4346 0 1.7822
0.01750 1.7555 1.7488 1.7269 1.6831 1.6073 1.4874 1.3125 1.0757 0.7756 0.4159 0 2.1900

0.02250 1.8240 1.8142 1.7829 1.7244 1.6306 1.4927 1.3034 1.0588 0.7584 0.4047 0 2.5692
0.03000 1.8920 1.8785 1.8366 1.7626 1.6509 1.4962 1.2943 1.0433 0.7429 0.3947 0 3.1064
0.04000 1.9431 1.9266 1.8763 1.7901 1.6650 1.4981 1.2875 1.0321 0.7319 0.3877 0 3.7894
0.05000 1.9698 1.9517 1.8969 1.8042 1.6721 1.4990 1.2840 1.0264 0.7263 0.3840 0 4.4520
0.06250 1.9863 1.9672 1.9095 1.8128 1.6764 1.4996 1.2818 1.0229 0.7229 0.3818 0 5.2688

00 2.0000 1.9800 1.9200 1.8200 1.6800 1.5000 1.2800 1.0200 0.7200 0.3800 0 —



3-16 LAMINAR CONVECTIVE HEAT TRANSFER IN DUCTS

When the effects of axial momentum diffusion and radial pressure variation are 
taken into account by the use of the Navier-Stokes equations, the velocity profiles 
display peculiar behavior in the neighborhood of the duct inlet (xF< 0.005) for 
Re < 400. They exhibit a local minimum at the duct centerline and symmetrically 
placed maxima near the duct wall, unlike the convex velocity profile found by the 
boundary-layer analysis. This phenomenon is referred to as the velocity overshoot, and 
its physical existence has been confirmed by experimental measurements [1].

The details of various solutions in this category are available in [1], They indicate 
that the effects of the axial momentum diffusion and radial pressure variation are 
important in the neighborhood of the duct inlet (x + < 0.005) for Re < 400 only. For 
higher values of x’, boundary-layer type analyses, such as the one by Hornbeck [11], 
are quite satisfactory.

Based on the analysis by Chen [12], it is found that the Reynolds number 
dependence of L^y and K(co) is given by

0.60
LT = 0.056 + —----------------- - (3hy Re(l + 0.035 Re)

38
7C(oo) = 1.20 + — (3.33)

Re

Creeping Flow Solutions. Creeping flow is the generic name given to flows with 
vanishingly small Reynolds numbers. It represents an asymptotic limit of laminar flow 
and occurs when the viscous forces completely overwhelm the inertia forces. The 
creeping flow problem is also referred to as the Stokes flow problem. The practical 
applications of this flow occur in processes involving highly viscous liquids at low 
velocities. Some notable examples are lubrication, viscometry, glass processing, and 
polymer processing.

The creeping flow problem in the entrance region of a circular duct has been solved 
by a number of investigators as summarized in [1], Based on these investigations, it is 
observed that the hyrodynamic entrance length (Lhy/Z>A) approaches the value 0.60 as 
Re -> 0 with the inlet condition of uniform flow.

Weissberg [13] proposed the following expression for the pressure drop in the 
entrance region of a circular tube with creeping flow:

/ 3tt \
Ap*  = 64 x++------- (3.34)P 1 16Re/ 7

Linehan and Hirsch [14] experimentally verified Eq. (3.34) within 6%. Note that while 
Eq. (3.34) is valid for Re -> 0 (i.e., Re < 1), Eq (3.31) is valid for high Reynolds 
number flow (Re > 400). For 1 < Re < 400, no analytical expression for Ap*  is 
available. In this case, the numerical results based on a full set of Navier-Stokes 
equations must be used.

3.2.3 Thermally Developing Flow

This section deals with the laminar convection heat transfer problem in which the 
velocity profile is specified to be the fully developed parabolic distribution given by Eq. 
(3.13) but the temperature profile is allowed to develop under a variety of thermal 
boundary conditions specified at the duct wall. The results are presented for four
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boundary conditions.

Specified Axial Wall Temperature Distribution. Consider the case when the duct 
wall is maintained at a constant temperature different from the uniform temperature of 
the fluid at the entrance, and the fluid axial conduction, viscous dissipation, flow work, 
and thermal energy sources are negligible. This problem was first solved by Graetz [15] 
in 1885. Subsequently, Nusselt [16] solved the same problem independently in 1910. 
This celebrated problem is now widely known as the Graetz problem or the Graetz- 
Nusselt problem. Its solution is given by the following set of equations:

F = EQ/?„(-)exp(-2X2x*)
■G G n = o ' a '

T - T 00 G
^=~77L=8E7fexP(-2X>*)  

1w n = o

E Gn exp( -2X2„x*)
= n = 0________________________

2 E (^X)exP(“2X2„x*)
n = 0

Nu«.t = ~ 4 * 4x*

(3-35)

(3.36)

(3.37)

(3.38)

Here X„, Rn(r/a), and C„ are the eigenvalues, eigenfunctions, and constants, respec
tively, and Gn = -(C„/2) A[,(l), where /?',(!) is the derivative of R„(r/a) evaluated at 
r/a = 1. The values of X„, C„, and Gn are furnished in Table 3.4, and those of 
Rlt(r/a) in Table 3.5.

Table 3.4 lists the first 11 eigenvalues and constants of the Graetz problem. The 
higher values can be computed from the following formulas developed by Newman

TABLE 3.4. Eigenvalues and Constants of the Graetz Problem [17]

n K c„ Gn

0 2.70436 44199 1.47643 54070 0.74877 4555
1 6.67903 14493 -0.80612 38956 0.54382 7956
2 10.67337 95381 0.58876 21541 0.46286 1060
3 14.67107 84627 -0.47585 04282 0.41541 8455
4 18.66987 18645 0.40502 18107 0.38291 9188

5 22.66914 33588 -0.35575 65063 0.35868 5566
6 26.66866 19960 0.31916 90532 0.33962 2164
7 30.66832 33409 -0.29073 58292 0.32406 2211
8 34.66807 38224 0.26789 11826 0.31101 4074
9 38.66788 33469 -0.24906 25329 0.29984 4038

10 42.66773 38055 0.23322 77932 0.29012 4676
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TABLE 3.5. Eigenfunctions Rn(r/ a) of the Graetz Problem [17,18]a

n

Rn(r/a)

r/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.98184 0.92889 0.84547 0.73809 0.61460 0.48310 0.35101 0.22426 0.10674
1 0.89181 0.60470 0.23386 -0.10959 -0.34214 -0.43218 -0.39763 -0.28449 -0.14113
2 0.73545 0.15247 -0.31521 -0.39208 -0.14234 0.16968 0.33149 0.30272 0.16262
3 0.53108 -0.23303 -0.35914 0.06793 0.31507 0.11417 -0.19604 -0.29224 -0.17762
4 0.30229 -0.40260 0.00054 0.29907 -0.07973 -0.25523 0.03610 0.25918 -0.18817

5 0.07488 -0.32121 0.28982 -0.04766 -0.20532 0.19750 0.10372 -0.20893 -0.19522
6 -0.12642 -0.07613 0.20122 -0.25168 0.19395 -0.01391 -0.18883 0.14716 0.19927
7 -0.28107 0.17716 -0.10751 0.03452 0.05514 -0.15368 0.20290 -0.07985 -0.20068
8 -0.37523 0.29974 -0.25305 0.22174 -0.20502 0.19303 -0.15099 0.01298 0.19967
9 -0.40326 0.23915 -0.08558 -0.02483 0.08126 -0.09176 0.05652 0.04787 -0.19645

10 -0.36817 0.04829 0.16645 -0.20058 0.13289 -0.06474 0.04681 -0.09797 0.19120
11 -0.28088 -0.15310 0.19847 0.01714 -0.15931 0.16099 -0.12577 0.13375 -0.18409
12 -0.15836 -0.24999 -0.00845 0.18456 -0.01927 -0.13393 0.15742 -0.15311 0.17527
13 -0.02118 -0.19545 -0.18955 -0.01074 0.15967 0.01258 -0.13539 0.15549 -0.16491
14 0.10953 -0.03182 -0.13083 -0.17183 -0.08560 0.10927 0.07069 -0.14189 0.15319

“ For all values of n,. «„(0) = 1 and «„(1) = 0.

[19]:

X„ = X + S,X‘4/3 + S2X~x/3 + S3X~1O/3 + S4X 11/3 + O(X 14/3) (3.39)

C Lx L2
L1 + x4/3 + x*/ 3

^3

X7/3
+ ^10/3 ^11/3 + ) (3.40)

where

X = 4n + f, n = 0,1,2,... (3.41)

Sj = 0.159152288, S2 = 0.0114856354, S3 = -0.224731440

S4 = -0.033772601, C = 1.012787288 (3-42)

and

I j = 0.144335160, Z2 = 0.115555556, L3 = -0.21220305

L4 = -0.187130142, L5 = 0.0918850832 (3.43)

The temperature distribution for the Graetz problem is displayed in Fig. 3.2 as 
presented by Grigull and Tratz [20], The local and mean Nusselt numbers computed 
from Eqs. (3.37) to (3.43) and certain asymptotic formulas to be presented shortly are 
displayed in Fig. 3.3. From the tabulated values of the Nusselt number available in [1], 
the thermal entrance length for the Graetz problem as defined in Sec. 3.1.3 is found to 
be

L*h,T = 0.0334654 (3-44)
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Figure 3.2. Temperature distribution in the thermal entrance region of a circular duct with the @ 
boundary condition (Graetz solution) [20].

The infinite series of Eq. (3.37) converges uniformly for all nonzero values of x*,  
but the convergence is extremely slow as x*  approaches zero. Therefore, for x*  < 10-4, 
Leveque’s asymptotic solution [21] is employed, which becomes increasingly accurate as 
x*  —> 0. The temperature distribution and the Nusselt number due to Leveque are 
given by

where

Th. - T 1 , 1

1 - (r/a)
(9x*) 1/3

Nux T =
2 

r(t)(9x*) 1/3
= iNum>T

(3.45)

(3-46)

(3-47)
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Figure 3.3. Local and mean Nusselt numbers in the thermal entrance region of a circular duct 
with the (t) and @ boundary conditions [1].

The integral appearing in Eq. (3.45) has been tabulated by Abramowitz [22], and T(|) 
has the value 0.8929795116.

Based on the Graetz and extended Leveque solutions, the local and mean Nusselt 
numbers can be computed from the following simple formulas [1]:

_ f 1.077x*~ 1/3 - 0.7 for x*  < 0.01
T ( 3.657 ± 6.874(103x*)~° ’488e“57'2** for x*  > 0.01 (3.48)

Nu„,t =
[ 1.615x* -1/3 - 0.7

1.615x* “1/3 - 0.2
1 3.657 + (0.0499/x*)

for x*  < 0.005
for 0.005 < x*  < 0.03 
for x*  > 0.03

(3.49)

The values calculated from the expressions in Eqs. (3.48) and (3.49) are higher ( + ) or 
lower (-) than those tabulated in [1] by ±0.5, ±0.2, ±2.2, ±3.0, and ±2.1%, 
respectively. Except for the end points of the range, the error is much less than 
specified.

Hausen [23] presented the following correlation for the mean Nusselt numbers of 
Graetz's solution for the entire range of x *:

Nu„, T = 3.66 ±
0.0668

x* 1//3(0.04 ± x* 2/3) (3.50)
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whence by differentiating with respect to x*,  the present authors arrived at the 
following correlation for the local Nussclt numbers of Graetz’s solution:

NuyT = 3.66 +
0.0018

x* 1/3(0.04 + x* 2/3)2
(3.51)

The predictions of Eqs. (3.50) and (3.51) are higher than the tabulated values in [1] by 
amounts ranging from 14% for x*  < 0.0001 to 0% for x*  -> oo. For 0.0001 < x*  < 
0.001, they are 14 to 1% higher; for 0.001 < x*  < 0.01, 7 to 3% higher, and for 
0.01 < x*  < oo, 3 to 0% higher.

The effect of fluid axial conduction on the Graetz solution has been investigated 
quite extensively, as summarized in [1], It is determined from the analysis of Hennecke 
[24], It shows that except in the neighborhood of the duct inlet (x*  < 10“2), the effect 
of fluid axial conduction is negligible for Pe > 50. Hennecke’s analysis further shows 
that the thermal entrance length L* h T increases from 0.033 of Eq. (3.44) for Pe = oo to 
0.5 for Pe = 1.

The effect of viscous dissipation on the solution of the Graetz problem was first 
studied by Brinkman [25], after whom the viscous dissipation parameter Br is named. 
He treated the fluid viscosity as constant and considered the duct wall temperature to 
be the same as the entering fluid temperature. Ou and Cheng [4] studied the viscous 
dissipation effect in greater detail with constant fluid viscosity for the case where the 
duct wall temperature is different from the entering fluid temperature. The resulting 
Nusselt numbers exhibit peculiar behavior which is explained in [1],

Several other additional effects have also been investigated in the context of the 
Graetz problem. They include the effects of nonuniform inlet temperature profiles, 
axial variation of the wall temperature, circumferential variation of the wall tempera
ture, internal thermal energy generation, nonparabolic velocity profiles, polynomial 
wall temperature variation, and sinusoidal wall temperature variation. For details refer 
to [I]-

Convectively Heated or Cooled Duct Wall, (r?). The problem of heat transfer with 
the convective boundary condition (t?) in the absence of viscous dissipation, fluid axial 
conduction, flow work, and internal heat sources has been investigated quite exten
sively as described in [1], The local Nusselt numbers Nux T3 of Hsu [26] are presented 
in Fig. 3.4 with the Biot number Bi as the parameter. The curves corresponding to 
Bi = 0 and oo are respectively identical with the Nux H and Nuy T curves of Fig. 3.3 
since the (h) and (t) boundary conditions are the limiting cases of the (tj) boundary 
condition.

Radiatively Heated or Cooled Duct Wall, (T4). The problem of heat transfer with the 
radiative boundary condition (t4) in the absence of viscous dissipation, fluid axial 
conduction, flow work, and internal heat sources has been investigated in some depth, 
as summarized in [1], The local Nusselt numbers normalized with respect to Nuv H are 
given by the following formula due to Kadaner et al. [9]:

Nu,. T4 0.0061 - 0.0053 In x*  / Sk
---- —— =0.94-------------------------------- In —
Nux H 1 + 0.0242 In x*  \ 2

(3-52)

It represents their analytical solution within 2% in the ranges 0.001 < x*  < 0.2 and 
0.2 < Sk < 100 for zero ambient temperature. Nuv H of Eq. (3.52) is available from
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Figure 3.4. Local and mean Nusselt numbers in the thermal entrance region of a circular duct 
with the (t5) boundary condition [26].

Fig. 3.3. Nux T4 with Sk = 0 and oo respectively correspond to Nuv. H and Nuv T of 
Fig. 3.3, since the @ and (t) boundary conditions are the limiting cases of the (T4) 
boundary condition.

Specified Heat Flux Distribution. Similar to the Graetz problem with the (t) 
boundary condition, the (h) thermal entry length problem is of great practical interest. 
It is identical to the Graetz problem except for the thermal boundary condition. 
According to Siegel et al. [27], the @ temperature distribution and the local Nusselt 
numbers are given by

0 =
t -t i/nI 2

I 11 1 °° z \-1
NUx-H = ^48 + 2 E Q^M(l)exp(-2^2x*) (3.55)

----------  — 4x * + — I — I 
q"Dh/k-------------2\a)

0m

1(r\4 7
8U/ ” 48

1 £+ 7 E CnRn
2 n = l

exp(-2/?2x*)

Tm ~ Te

QwDh/k
= 4x*

(3.53)

(3.54)

=
1
2 E Q*„(i)

n = l

1 ~ exp(~2^2x*)  

2^2x*
(3.56)
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TABLE 3.6. Eigenvalues and Constants for the Thermal Entry Length 
Solution for a Circular Duct with the (h) Boundary Condition [28]

n ft *„(1) G
1 25.679611 -0.49251658 0.40348318
2 83.861753 0.39550848 -0.17510993
3 174.16674 -0.34587367 0.10559168
4 296.53630 0.31404646 -0.073282370
5 450.94720 -0.29125144 0.055036482

6 637.38735 0.27380691 -0.043484355
7 855.849532 -0.25985296 O.O35595O85
8 1106.329035 0.24833186 -0.029908452
9 1388.822594 -0.23859024 0.025640098

10 1703.3278521 0.23019903 -0.022333685

11 2049.843045 -0.22286280 0.019706916
12 2438.366825 0.21637034 -0.017576456
13 2838.898142 -0.21056596 0.015818436
14 3281.436173 0.20533190 -0.014346369
15 3755.980271 -0.20057716 0.013098171

16 4262.529926 0.19623013 -0.012028202
17 4801.084747 -0.19223350 0.011102223
18 5371.644444 0.18854081 -0.010294071
19 5974.208812 -0.18511389 0.0095834495
20 6608.777727 0.18192104 -0.0089543767

Here R„(r/a), and Cn are eigenvalues, eigenfunctions, and constants, respectively. 
The first seven of these quantities were determined by Siegel et al. [27]. Hsu [28] 
extended their work and reported the first 20 values for each of , R„(1), and C„, 
which are listed in Table 3.6. In addition, Hsu [28] graphically presented the first ten 
eigenfunctions Rn for the radius range 0 < r/a < 1. He also presented approximate 
formulas for higher eigenvalues and constants. Of particular interest are

A, = 4n + f (3.57)

/?„(1) = (-1)" 0.774759003£T1/3 (3.58)

Cn = (-1)'' 3.099036005)3,7 4/3 (3.59)

The @ temperature distribution as presented by Grigull and Tratz [20] is depicted 
in Tig. 3.5. The local Nusselt numbers Nux H for x*  > 10 4 are presented in Fig. 3.3. 
From these results, the thermal entrance length is found to be

L* hH = 0.0430527 (3.60)

The infinite series of Eqs. (3.55) and (3.56) converge uniformly for all nonzero value 
of x*,  but the convergence becomes extremely slow as x*  approaches zero. The
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Figure 3.5. Temperature distribution in the thermal entrance region of a circular duct with the @ 
boundary condition [20].

I eveque-type asymptotic formulas applicable in the neighborhood of the duct inlet are 
obtained by Bird et al. [29] as

nux.h =

T-Te _ (9x*) 1/3 ( e'* ’ r(j,x3)11
tfD.A " 2 1 r(l) ~ T ~ r(i) ]j

2r(i) 
(9x*) 1/3 = 3Nu,„,h

(3.61)

(3.62)

Here x is defined in Eq. (3.46), T(j) = 1.3541179394, and T(j, x3) is an incomplete 
gamma function.

Based on the Graetz-type and the Leveque-type solutions for the (h) thermal 
entrance length problem, the local and mean Nusselt numbers can be computed from 
[1]

[1.302x* “1/3 - 1
Nu„ H = ( 1.302x* “1/3 - 0.5

(4.364 + 8.68(103x*)  °'506e-41**

for x*  < 0.00005
for 0.00005 < x*  < 0.0015 (3.63)
for x*  > 0.0015

1.953x*  1//3 for x*  < 0.03
4.364 + 0.0722/x*  for x*  > 0.03 (3.64)
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These empirical equations yield Nux H and Nu„, H within ± 1 and + 3% respectively of 
the values from the exact solution.

The effect of fluid axial conduction on the (h) thermal entrance length problem has 
been investigated quite extensively, as reviewed in [1], From the analysis of Hennecke 
[24], it is concluded that the effect of fluid axial conduction is negligible for Pe > 10 
when x*  > 0.005.

The effect of viscous dissipation on the solution of the @ problem was first studied 
by Brinkman [25], who considered the duct wall to be adiabatic, i.e., q” = 0. He found 
the fluid temperature to rise rapidly near the wall for increasing a *.  Ou and Cheng [30] 
studied the viscous dissipation effect in greater detail for a nonadiabatic wall.

The effect of exponential variation of the wall heat flux as represented by q" = 
qo exp( mx * ) can be readily taken into account by the superposition method. Based on 
the analysis by Siegel et al. [27] for the @ problem, the local Nusselt number for the (hs) 
problem can be determined from the following formula:

/ » -C » fllft2 \ 1
Nux,h5 = E -----" n t1 - exp[-(w + 2ft2)x*]}  (3.65)

\ n = l m +

The constants C„, Rn (1), and (i~ of Eq. (3.65) are available in Table 3.6 for n up to 20, 
and for higher values of n they can be determined from Eqs. (3.57) to (3.59).

Several other additional effects have also been investigated in the context of the (h) 
thermal entrance length problem. They include the effects of nonuniform inlet tempera
ture distribution, internal thermal energy generation, sinusoidal variation of wall heat 
flux, arbitrary wall heat-flux variation, and peripherally variable but axially constant 
wall heat flux. For details, refer to [1],

One of the principal idealizations involved in all the solutions presented so far has 
been that the duct has a uniform wall thickness and there does not exist simultaneous 
heat conduction in the wall in the axial, normal, and circumferential directions. In 
reality, this may not be true for thick-walled ducts, and the heat transfer problem for 
the solid wall must be analyzed simultaneously with the heat transfer problem for the 
fluid. This combined problem is referred to as a conjugate problem, and its solution 
entails several additional parameters. The conjugate problem for the circular duct has 
been analyzed extensively, as summarized by Barozzi and Pagliarini [31],

3.2.4 Simultaneously Developing Flow
All the heat transfer results presented so far have been based on the idealization of the 
fully developed velocity profile at the point in the duct where heating or cooling begins. 
For high Prandtl number fluids, such as viscous liquids, this idealization does not 
seriously restrict the usefulness of the results, because the velocity profile develops 
much more rapidly than the temperature profile. However, for the Prandtl number 
range near unity, which includes gases, the velocity and the temperature profiles 
develop at similar rates. Consequently, the idealization of a fully developed velocity 
profile at the duct inlet may lead to a considerable error in the predicted performance. 
In such cases, the results pertaining to simultaneously developing velocity and tempera
ture fields should be applied. Such results for a variety of thermal boundary conditions 
are now summarized.

Uniform Wall Temperature, The @ simultaneously developing flow has been 
extensively analyzed in the literature, as reviewed in [1], The most accurate Nuv T and 
Nu,„ T are presented in Figs. 3.6 and 3.7; the tabulated results are available in [1],



X*

Figure 3.6. Local Nusselt numbers for simultaneously developing flow in a circular duct with the 
0 boundary condition [1].

Figure 3.7. Mean Nusselt numbers for simultaneously developing flow in a circular duct with the 
0) boundary condition [1],

3*26
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For the fluid with Pr = oo, the velocity profile has already developed before the 
temperature profile starts developing. So this limiting case corresponds to the previ
ously discussed case of thermally developing but hydrodynamically developed flow. 
Accordingly, the curves corresponding to Pr = oo in Figs. 3.6 and 3.7 are identical with 
the curves of Fig. 3.3. It must be emphasized that when the velocity profile is fully 
developed for any fluid (i.e., any Pr), the applicable Nusselt numbers are those 
corresponding to Pr = oo in Figs. 3.6 and 3.7.

For a fluid with Pr = 0. the temperature profile develops very much faster than the 
velocity profile. So in this limiting case, while the temperature profile develops, the 
velocity profile remains perfectly uniform (i.e., slug flow). This solution was first 
obtained by Graetz [15] in 1883. Graetz’s solution was rediscovered by Leveque [21] in 
1928. It can be expressed by the following set of equations:

Tw . - T ” exp(—4y2x*)  J0[yn(r/a)] 
o = -- ----- — = 2 2^ ----------------- 77~\-------- ----  (3-66)

Tw~Te „=1 Yn-MYj

Tw — T “ exp(-4y2x*)
- 4 E 2 <3-67)

*w e n = l Yn

E exp(-4y2x*)
Na J T = —----- 7------y—r (3.68)

~ exp(- 4y2x*)  
2-- 2

„ = 1 Yn

ln#m NuJ \ =------- (3.69)

Here /)[y„(r/u)] and Jjfy,,) are Bessel functions of the first kind and order 0 and 1,

TABLE 3.7. Eigenvalues for the Graetz Solution for Slug Flow 
in a Circular Duct with the (t) Boundary Condition9

n Y„ n Yn

1 2.40482 55577 11 33.77582 02136
2 5.52007 81103 12 36.91709 83537
3 8.65372 97129 13 40.05842 57646
4 11.79153 44391 14 43.19979 17132
5 14.93091 77086 15 46.34118 83717

6 18.07106 39679 16 49.48260 98974
7 21.21163 66299 17 52.62405 18411
8 24.35242 15308 18 55.76551 07550
9 27.49347 91320 19 58.90698 39261

10 30.63460 64684 20 62.04846 91902

“The higher eigenvalues of the problem can be computed to a high degree of 
accuracy from the asymptotic formula

w 1 31 3779
Yn-4(4w !) + 2%(4„ _ i) 6w3(4„ .. i)3 + 15w5(4n - l)5
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respectively y„ are the eigenvalues, being the zeros of T0(y) = 0. The first 20 
eigenvalues are fisted in Table 3.7.

The local and mean Nusselt numbers computed from Eqs. (3.68) and (3.69) are 
displayed in Figs. 3.6 and 3.7 corresponding to Pr = 0. Note that the curves corre
sponding to Pr = 0 approach the asymptotic value of 5.7832, whereas the remainder of 
the curves approach the asymptotic value of 3.6568.

The thermal entrance lengths for the simultaneously developing flow with the (t) 
boundary' condition are found to be [1,32]

( 0.028
^t*h.T  = 0.037

0.033

for Pr = 0 
for Pr = 0.7 
for Pr = oo

(3.70)

Uniform Wall Heat Flux, @. The simultaneously developing flow in a circular duct 
with the ® boundary condition has been extensively analyzed in the literature. The 
most accurate results are presented in Fig. 3.8, and tabulated values for Pr = 0.7, 2, 5, 
and oo are available in [1]. The results for Pr = 0 are obtained from the following set of 
exact equations derived from the transient temperature distribution of the analogous 
heat conduction problem [32]:

T~Te , * , i/n2 1 £ exp(—4X2x*)  J0[X„(r/a)]
q^Dh/k ' 4\a) 8

q’.'Dh/k

exp(-4X2x*) \ 1

1 - exp(-4X2 x*)  \ 1
4X2x* I

(3.71)

(3.72)

(3.73)

(3.74)

Here X„ are the eigenvalues, being the zeros of Jx(X) = 0, where ^(X) is Bessel 
function of the first kind and first order. The first 20 eigenvalues are listed in Table 3.8.

The local Nusselt numbers computed from Eq. (3.73) are displayed in Fig. 3.8, 
corresponding to Pr = 0. The curve corresponding to Pr = oo in Fig. 3.8 is identical 
with the NuA. H curve of Fig. 3.3. Also note that the curve corresponding to Pr = 0 
approaches the asymptotic value of 8, whereas remainder of the curves approach the 
asymptotic value of 4.3636.

The thermal entrance lengths for the simultaneously developing (h) problem are 
given by [1,32]

f 0.042 for Pr = 0
Lt*h,H  = { 0.053 for Pr = 0.7 

\ 0.043 for Pr = oo
(3-75)



Figure 3,8 I - —1 Nusselt numbers for simultaneously developing flow in a circular duct with the 
fT, boundary condition [1,32],

TABLE 3.8 Eigenvalues for the @ Problem Solution with 
Pr = 0 (Slug Flow) in a Circular Duct®

'The higher eigenvalues of the problem can be computed to a high degree of 
accuracy from the asymptotic formula

n n A.

1 3 83170 59702 11 35.33230 75501
2 7.01558 66698 12 38.47476 62348
3 10.17346 81351 13 41.61709 42128
4 13.32369 19363 14 44.75931 89977
c 16.47063 00509 15 47.90146 08872

6 19.61585 85105 16 51.04353 51836
7 22.76008 43806 17 54.18555 36411
8 25.90367 20876 18 57.32752 54379
9 29.04682 85340 19 60.46945 78453

10 32.18967 99110 20 63.61135 66985

■n 3 3 1179
4^4/i + 1) 2ir(4n+l) 2w3(4n + I)3 5ws(4n + I)5

3-29
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Convective Boundary Condition, (B). The simultaneously developing flow with the 
convective boundary condition (B) has been analyzed in great detail by Javeri [33]. His 
Nu, T, prediction for a full range of Pr and 4 < Bi < 2000 are available in [1], For 
Bi = oo, the Nuv T3 are identical to Nuv T of Fig. 3.6, and for Bi = 0 they are identical 
to Nu v H of Fig. 3.8.

3.3 FLAT DUCT

Due to its simplicity, the problem of the flat duct (i.e., parallel plate channel), has 
attracted more investigation than perhaps is warranted by its practical utility. However, 
since this duct is the limiting geometry for the family of rectangular and concentric 
annular ducts, the results presented here are of considerable interest.

3.3.1 Fully Developed Flow
The fully developed velocity distribution and Fanning friction factor for a flat duct 
with hydraulic diameter Dh = 4 b (b being the half spacing between the plates) and 
origin at the duct axis are given by

b2, /Re = 24

(3.76)

(3.77)

The heat transfer results for various thermal boundary conditions are presented 
next

Uniform Wall Temperature and Wall Heat Flux, @ and @. The two walls of the 
flat duct present the choice of imposing different boundary conditions on each wall, 
resulting in numerous combinations of the (t) and @ boundary conditions. It can be 
shown that once the solutions to the following four fundamental boundary conditions 
(see Fig. 3.9) are obtained, then by simple superposition any combination of the @ 
and ® boundary conditions can be handled:

1. Fundamental boundary’ condition of the first kind: specification of the uniform 
temperature (different from the entering fluid temperature) at one wall with the 
other wall at the uniform entering fluid temperature.

2. Fundamental boundary condition of the second kind: specification of the uniform 
wall heat flux at one wall with the other wall insulated (i.e., adiabatic with zero 
heat flux).

3. Fundamental boundary condition of the third kind: specification of the uniform 
temperature (different from the entering fluid temperature) at one wall with the 
other wall insulated.

4. Fundamental boundary condition of the fourth kind: specification of the uniform 
wall heat flux at one wall with the other wall maintained at the entering fluid 
temperature.
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i

Second kind

Figure 3.9. Four kinds of fundamental boundary conditions for a flat duct.

With the subscripts 1 and 2 referring to the walls labeled 1 and 2 in Fig. 3.9, the 
fully developed Nusselt numbers for the four solutions are [1]

combinations illustrated in Fig. 3.10 are of particular interest. The Nusselt numbers for 
these special cases are outlined below. They are defined by

First kind: Nuj = Nu2 = 4 (3.78)

Second kind: NU1 = 0, Nu2 = 5.385 (3.79)

Third kind: NU1 = 0, Nu2 = 4.861 (3.80)

Fourth kind: Nuj -- Nu2 = 4 (3-81)

Of the numerous combinations of the (t) and ® boundary conditions, the three

Nuy =
Qw j^h 

k(Tj-Tm)
(3.82)

where j denotes wall 1 or 2 and Tj is the temperature of the j th wall.

Uniform Temperature at Each Wall. When Th1 = Tw2, we have Nu, = Nu2 = NuT; 
the value of NuT is given by

Nut = 7.54070087 (3.83)

When =# Tw2, we have Nuj = Nu2 = 4 as in Eq. (3.78).

Figure 3.10. Thermal boundary conditions for three flat duct problems.
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Cheng and Wu [34] considered the effect of viscous dissipation and developed the 
following formulas for the case Tm1 > Tw2.

4(1-6 Br) 4(1 +6 Br)
NU1 = 1 - fBr ’ NU2 = 1 + #Br (3-84)

Pahor and Strand [35] and Grosjean et al. [36] considered the effect of fluid axial 
conduction for the case Twl = Tw2 and presented the following asymptotic formulas:

Nu
7.540(1 + 3.79/Pe2 + • • • ) for Pe » 1
8.11742(1 - 0.030859 Pe + 0.0069436 Pe2-••• ) for Pe « 1 ’

When the effects of viscous dissipation and flow work are considered together for 
the case of Twl = Tw2, Ou and Cheng [37] showed that for the fully developed flow 
Nut = 0 and

2 2T - TIV

T - T
T - T 27 w m---------— = —Br
T - T 35

(3.86)

Uniform Heat Flux at Each Wall. The fully developed temperature distribution for 
the case q'*\  = q”2, i.e., the @ problem, is given by

K - 7)i 

~~ ^m.H

35
136 \ bi .

Tw Tm H 

q" Dh/k 140
(3.87)

When q'v'y = q”2, we have Nuj = Nu2 = NuH; the value of NuH is given by

140
NuH = — = 8.2352941 (3.88)

When q"t * q'f2,

140 140
NU1 = 1 N“2 = 26-9(^) <3-89>

Tao [38] considered the effect of internal thermal energy generation on the @ 
problem, and Tyagi [5] extended his analysis by incorporating the effect of viscous 
dissipation. Based on Tyagi’s analysis [5], the Nusselt number in terms of S*  and Br' 
is given by

140
Nuh --------- -----------------

17 + + 108 Br'

Uniform Temperature at One Wall and Heat Flux at the Other. For the case of 
Fig. 3.10c,

= 4.8608125, Nu2 = 0 for q" = 0 (3.91)

Nui = Nu2 = 4 for C + 0 (3.92)
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Convective Boundary Condition, (t?). Based on the analysis by Hickman [7], the 
fully developed Nusselt number with the convective boundary condition at both the 
walls can be computed from

4620 + 561 Bi
561 + 74 Bi

(3.93)

Exponential Wall Heat-Flux Boundary Condition, (hs). The fully developed 
Nusselt numbers NuH5 for the exponential heat flux of q” = q/ exp(mx* ) imposed 
on both the duct walls can be computed from the following equation developed by the 
present authors utilizing the (hs) thermal entrance length solution for the flat duct:

NuH5 = 8.2400 + 2.1611 X 10“3w - 4.4397 X 10“5m2 

+ 1.2856 X 10"W - 2.7035 X 10“low4 (3.94)+

Equation (3.94) reproduces the tabulated results in [1] for — 80 < m < 100 with a 
maximum deviation of 6%. Note that with m = —30.16, the Nusselt number NuT of 
Eq. (3.83) is obtained [1], Likewise with m = 0, the Nusselt number NuH of Eq. (3.88) 
is recovered.

3.3.2 Hydrodynamically Developing Flow

The problem of laminar flow development in a flat duct has been solved in considerable 
detail by employing both boundary-layer theory idealizations and a complete set of 
Navier-Stokes equations. In addition, some solutions have also been developed for 
creeping flow. All the solutions up to 1975 are summarized in [1],

Among the boundary-layer type of solutions, the numerical solution by Bodoia and 
Osterle [39] is regarded as the most accurate. The dimensionless axial velocity and 
pressure drop computed by them are presented in Table 3.9. According to these results

L/ = 0.0110, A-(oo) = 0.6760 (3.95)

Bhatti and Savery [40] provided a closed-form analytical solution to the hydrody
namic entrance length problem for the flat duct. The solution is quite accurate for 
engineering calculations. According to this analysis, the flow field is idealized as 
consisting of a viscous boundary layer along the duct wall 1 — 8/b < y/b < 1 and an 
essentially inviscid fluid core around the duct axis 0 < y/b < 1 - 8/b, where 8 is the 
hydrodynamic boundary-layer thickness. The velocity components within the fluid core 
are given by

u
— = V(x) (3.96)

v 280C/2(3 - 2(7) ly
um Re ( U - 1)2( 513 - 297(7) \ &

(3.97)

fNote that NuH5 = 0 for m < -196.06.
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TABLE 3.9 Axial Velocity and Pressure Distribution in the Hydrodynamic Entrance Region of a Flat Duct [39]

103x+

Axial Velocity u/um Pressure
Drop Ap*y/b = 0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0625 1.0615 1.0615 1.0615 1.0615 1.0615 1.0615 1.0615 1.0612 1 0551 0.9587 0 0.12420
0.125 1.0751 1.0751 1.0751 1.0751 1.0751 1.0751 1.0750 1.0725 1.0485 0.8655 0 0.15328
0.250 1.1013 1.1013 1.1013 1 1013 1.1012 1.1010 1.0993 1.0863 1.0132 0.7194 0 0.21006
0.375 1.1244 1.1244 1.1244 1.1244 1.1243 1.1234 1.1176 1.0874 0.9665 0.6204 0 0.26150
0.500 1.1443 1.1443 1.1443 1.1442 1.1438 1.1414 1.1290 1.0788 0.9204 0.5567 0 0.30648

0.625 1.1615 1.1615 1.1615 1.1613 1.1604 1.1555 1.1351 1.0655 0.8798 0.5136 0 0.34612
0.750 1.1767 1.1767 1.1766 1.1763 1.1745 1.1665 1.1373 1.0501 0.8455 0.4832 0 0.38164
1.000 1.2031 1.2030 1.2028 1.2017 1.1972 1.1813 1.1339 1.0185 0.7922 0.4427 0 0.44436
1.250 1.2259 1.2258 1.2252 1.2228 1.2144 1.1893 1.1253 0.9896 0.7535 0.4162 0 0.49984
1.500 1.2463 1.2460 1.2448 1.2406 1.2275 1.1928 1.1144 0.9644 0.7241 0.3971 0 0.55044

1.750 1.2648 1.2643 1.2623 1.2556 1.2373 1.1935 1.1030 0.9429 0.7011 0.3825 0 0.59746
2.000 1.2818 1.2811 1.2778 1.2684 1.2447 1.1923 1.0918 0.9246 0.6825 0.3708 0 0.64170
2.500 1.3121 1.3105 1.3043 1.2887 1.2542 1.1871 1.0715 0.8950 0.6541 0.3534 0 0.72384
3.125 1.3441 1.3412 1 3306 1 3067 1.2601 1.1786 1.0504 0.8677 0.6291 0.3383 0 0.81784
3.750 1.3707 1.3663 1.3511 1 3195 1.2626 1.1703 1.0337 0.8475 0.6112 0.3275 0 0.90498

5.000 1.4111 1.4039 1.3803 1 3357 1.2635 1.1565 1.0095 0.8917 0.5870 0.3132 0 1.06516
6.250 1.4388 1.4292 1.3993 1 3454 1.2628 1.1467 0.9938 0.8022 05720 0.3042 0 1.21262
9.375 1.4758 1.4629 1.4239 1.3573 1.2611 1.1336 0.9733 0.7796 0.5526 0.2926 0 1.55014
12.5 1.4903 1.4762 1.4336 1.3619 1.2604 1.1284 0.9653 0.7708 0.5451 0.2880 0 1.86538
62.5 1.4999 1.4850 1.4400 1.3640 1.2600 1.1249 0.9599 0.7650 0.5400 0.2500 0 6.67604

00 1.5000 1.4850 1.4400 1.3650 1.2600 1.1250 0.9600 0.7650 0.5400 0.2850 0 00
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and those within the boundary layer by

(3.98)

t> _ 280173(3 - 2U)
“m 9Re((7 - 1)4(513 — 2971/)

X
(7(3 - (/)

(3.99)

where U is implicitly expressed as a function of x+ by

594172 + 9017 - 684 - 15U ln(3 - 217) - 13081/ In U
4480(7

(3.100)

The apparent friction factor, local pressure drop, and boundary-layer thickness are 
also expressible in terms of U, which in essence is treated as the independent variable:

Ap*  r .
/appRe=—, Ap*  = p^[22t/2 - 101/— 12 — 151n(3 — 217)] (3.101)

S 3(1/-1) 
b ~ lF~ (3.102)

In the limit when the flow becomes hydrodynamically developed, 1/ attains the 
value of | and all the momentum transfer quantities asymptotically reduce to the 
known exact fully developed values.

The following correlation [1] predicts the apparent friction factors in excellent 
accord with the aforementioned numerical and analytical results:

3.44 24 + 0.674/(4x+) - 3.44/(x+)1/2
^appRe (x+)1/2 + 1 + 0.000029(x+)~2 (3.103)

Chen [12] developed the following equation for K(oo) as a function of Re:

K(oo) = 0.64 +
38
Re

(3.104)

Chen [12] also presented the following equation for the hydrodynamic entrance length:

— = 0.011 Re +
0.315

1 + 0.0175 Re
(3.105)

3.3.3 Thermally Developing Flow
The thermal entrance solutions for a flat duct are presented for four types of thermal 
boundary conditions.
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TABLE 3.10 Eigenvalues and Constants of the Flat Duct 
Thermal Entrance Length Problem with the (t) 
Boundary Condition [17]

n cn

0 1.68159 53222 1.20083 0379 0.85808 6674
1 5.66985 73459 -0.29916 0685 0.56946 2850
2 9.66842 24625 0.16082 6463 0.47606 5463
3 13.66766 14426 -0.10743 6641 0.42397 3730
4 17.66737 35653 0.07964 6080 0.38910 8706

5 21.66720 53243 -0.06277 5656 0.36346 5044
6 25.66709 64863 0.05151 9218 0.34347 5506
7 29.66702 10447 -0.04351 0736 0.32726 5745
8 33.66696 60687 0.03754 1808 0.31373 9318
9 37.66692 44563 -0.03293 3278 0.30220 4200

Specified Wall Temperature Distribution. The solution with equal and uniform 
temperatures at both duct walls is of special importance, as it constitutes the limiting 
case of rectangular and concentric annular ducts with the @ boundary condition. This 
solution was first developed by Nusselt [41] in 1923 and is expressible in terms of the 
following set of equations:

T - T 00 l v\
0 = ~t' ~t = A ) exp(“)

lw Je n = 0

T - T 00 G
=3E^exp(-fXtx*)

oo

X G„exp(- yX;x*)
_ ° n = 0

l , T T 00

E ( G„A2n ) exp( - ¥ X * )
n = 0

(3.106)

(3.107)

(3.108)

(3.109)

Here X„, and C„ are the eigenvalues, eigenfunctions, and constants, respec
tively, and G„ = -(C„/2)Y[1,(1), where Y„'(l) is the derivative oiYn(y/b) evaluated at 
y /b — 1. Xn, C„, and Gn values are listed in Table 3.10, and Yn(y/b) values in Table 
3.11. Table 3.10 lists the first ten eigenvalues and constants. The higher values can be 
computed from the following formulas due to Sellars et al. [42]:

= 4« + 3 (3.110)

C„ = ( — 1)"2.271141411X“7/6 (3.111)

G„ = 1.012787291X71/3 (3.112)



TABLE 3.11 Eigenfunctions Yn(y/ b) of the Flat Duct Thermal Entrance Length Problem with the @ 
Boundary Condition at Both Walls [17,18]a

n y/b = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 0.9859 0.9443 0.8772 0.7876 0.6793 0.5566 0.4238 0.2848 0.1429
1 0.8438 0.4262 -0.1205 -0.6345 -0.9832 -1.1013 -0.9973 -0.7311 -0.3787
2 0.5685 -0.3513 -0.9843 -0.8414 -0.0750 0.7540 1.1669 1.0499 0.5831
3 0.2036 -0.9213 -0.6343 0.6016 1.0350 0.1743 -0.9142 -1.2329 -0.7656
4 -0.1937 -0.9414 0.5015 0.8632 -0.6121 -0.9713 0.3409 1.2703 0.9285

5 -0.5606 -0.3986 1.0161 -0.5737 -0.6272 1.0360 0.3505 -1.1652 -1.0720
6 -0.8396 0.3828 0.2708 -0.8814 1.0315 0.3214 -0.9217 0.9305 1.1956
7 -0.9865 0.9352 -0.8106 0.5467 -0.0632 -0.6347 1.1775 -0.5942 -1.2988
8 -0.9783 0.9279 -0.8863 0.8980 -0.9893 1.1146 -1.0311 0.1934 1.3808
9 -0.8162 0.3651 0.1377 -0.5198 0.7263 -0.7588 0.5331 0.2283 -1.4411

10 -0.5257 -0.4163 0.9909 -0.9136 0.5023 -0.1659 0.1465 -0.6254 1.4792
11 -0.1526 -0.9485 0.6144 0.4927 -1.0632 0.9663 -0.7763 0.9556 -1.4951
12 0.2446 -0.9127 -0.5246 0.9282 0.2110 1.0428 1.1420 -1.1835 1.4888
13 0.6034 -0.3304 -1.0125 0.4653 0.9217 0.3382 -1.1194 1.2849 -1.4607
14 0.8672 0.4497 -0.2437 -0.9419 -0.8295 0.6197 0.7162 -1.2492 1.4113

“For all values of n, F„(0) = 1 and Yn(1) = 0.
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Figure 3.11. Local and mean Nusselt numbers in the thermal entrance region of a flat duct with 
the @ and @ boundary conditions [1].

The local and mean Nusselt numbers computed from the foregoing equations are 
displayed in Fig. 3.11. Tabulated values for Fig. 3.11 are available in [1], From these 
results, the dimensionless thermal entrance length is found to be

L* hT = 0.00797350 (3.113)

Following Leveque’s analysis [21] for a circular duct, the asymptotic solution for a 
flat duct is found to be

f) T 1 rx _ 3 (3.114)

where

i - (y/b) 
2(6x*) 1/3 

2
Nu T = ——-------- — = |Nu,„ T

' T(j)(6a'*) 1/3 ’

(3.115)

(3.116)

Strictly speaking, this solution is applicable for very low values of x*.  However, the 
local and mean Nusselt numbers computed from Eq. (3.116) are found to be fairly 
accurate down to x*  = 10 3, being up to 4% higher than the results in Fig. 3.11.
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The following set of empirical equations is found to yield results within f 3% of 
those obtained from the foregoing theoretical results [1]:

Nu r T =
f 1.233.x*- 1/3 + 0.4
\ 7.541 + 6.874(103x*  )-<'488e-245'c*

for x*  < 0.001
for x*  > 0.001

(3.117)

f 1.849x* -1/3 
Num.T = ( 1.849x* -1/3 + 0.6

V 7.541 + 0.0235/x*

for x*  < 0.0005
for 0.0005 < x*  < 0.006
for x*  > 0.006

(3.118)

The effect of fluid axial conduction on the flat duct solution with uniform and equal 
temperatures at both duct walls has been investigated for two types of initial condi
tions: uniform fluid temperature at the duct inlet x = 0, and uniform fluid temperature 
at x = — oo with the duct walls in the region — oo < x < 0 maintained at the entering 
fluid temperature [1], The results of these analyses show that except in the neighbor
hood of the duct inlet (x*  < 10 2), the effect of fluid axial conduction is negligible for 
Pe > 50.

The effect of viscous dissipation and flow work on the flat duct solution with 
uniform and equal temperatures at both walls has been investigated by Ou and Cheng 
[37], The peculiar behavior of their Nusselt numbers is explained in [1].

The effects of internal heat generation, fluid axial conduction, variation in inlet fluid 
temperature, sinusoidal variation of temperature along the duct axis, and internal 
thermal energy sources on the flat duct solution with equal temperatures at both duct 
walls has been investigated quite extensively, as reviewed in [1],

Specified Wall Heat-Flux Distribution. The thermal entrance length problem for a 
flat duct with uniform and equal heat fluxes at both walls was first investigated by Cess 
and Shaffer [43] and later in more detail by Sparrow et aL [44], Their solution is 
expressed by the following set of equations:

T-Te 

^Dh/k

1 00 / y \+ 4 E C„y^-jexp(-f^2x*)

Nn.,H =
17 1 00

140 + 4 E Cnyn(l)exp(-f^2x*)

Nu„, H =
J7 1 “ l-exp(-?fl,M]-‘
140 4 ^1"" "ft:**

(3.119)

(3.120)

(3.121)

(3.122)

Here /?„, >],( v/b), and C„ are eigenvalues, eigenfunctions, and constants, respectively. 
The tabulated values of Yn(y/b) are not reported either in [43] or in [44], However, /?„, 
Y„ (1), and C„ values are tabulated in [43] for n up to 3 and in [44] for n up to 10. They
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TABLE 3.12 Eigenvalues and Constants of the Flat 
Duct Thermal Entrance Length Problem with the ®
Boundary Condition [43,44]

n & -C„F„(1)

1 4.287224 0.2222280
2 8.30372 0.0725316
3 12.3106 0.0373691
4 16.3145 0.0232829
5 20.3171 0.0161112

6 24.3189 0.0119190
7 28.3203 0.0092342
8 32.3214 0.0074013
9 36.3223 0.0060881

10 40.3231 0.0051116

are reproduced in Table 3.12. For higher values of /?, Cess and Shaffer [43] provided 
the following asymptotic formulas:

ft, = 4n + f

C„Y„(1) = -2.4010060450-5/3

(3.123)

(3.124)

Following Leveque’s analysis for the circular duct, the asymptotic solution for the 
flat duct is found to be

t-tc (6x*) 1/3 T g-* 3 / r(f,x3)\
q''Dh/k 2 [r(i) Y r(f) )

2r(f) 

(6a* )

(3.125)

(3.126)

Here x is defined by Eq. (3.115) and F(f) = 1.3541179394. Strictly speaking, Eq. 
(3.126) is applicable only for very low values of x*.  However, it is found to yield fairly 
accurate results down to x*  = 10-3, being up to 4% higher than the exact results 
shown in Fig. 3.11 [1], The dimensionless thermal entrance length for the problem is 
found to be [1]

L* hiH = 0.0115439 (3.127)

The following computationally expedient empirical equations are found to yield 
accurate results to within ±3% of the analytical results [1]:

(1.490x* -1/3 for x*  < 0.0002

Nu, . H = < 1.490x* -1/3 - 0.4 for 0.0002 < x*  < 0.001 (3.128)
| 8.235 + 8.68(103x*) -o'5O6g-164>:* for x*  > 0.001

I 2.236x* -1/3 for x*  < 0.001
Nu„>,h = \ 2.236x*- 1/3 + 0.9 for 0.001 < x*  < 0.01

\ 8.235 + 0.0364/x*  for x*  > 0.01
(3.129)
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The effect of fluid axial conduction for this problem was investigated by Jones [45] 
for the initial condition of uniform fluid temperature at x = - oo with the duct walls 
in the extended region - oo < x < 0 maintained at the entering fluid temperature. Hsu 
[46] investigated the effect of fluid axial conduction for the initial condition of uniform 
fluid temperature at x = — oo with the duct walls in the extended region — oo < x < 0 
insulated. The results show that except in the neighborhood of the duct inlet 
(x*  < 10' 2), the effect of fluid axial conduction is negligible for Pe > 45.

Specified Convective Boundary Condition, (tj). The problem of heat transfer with 
the convective boundary condition (rj) at both duct walls in the absence of fluid axial 
conduction, flow work, and internal heat sources has been investigated extensively [1], 
In addition, the problem with one wall insulated (Bi = 0) and the other subjected to 
convective heating or cooling has been solved [1],

Expotential Axial Wall Heat Flux, (hs). The local Nusselt numbers with the (hs[ 
boundary condition at both duct walls can be determined from

3 / - r T fll fi2 \ 1
Nuv.H5= g E "TTgT, -{1 - exp[-(f^2 + m)x*]}  (3.130)

0 \ n = 1 3 Pn m /

where the constants and - C„X,(l) are available in Table 3.12 for n up to 10, and 
those for n > 10 can be determined from Eqs. (3.123) and (3.124). The constant m is 
the coefficient in q" = q" exp(wx*).

All the solutions presented in this section so far ignore heat conduction in the solid 
duct walls. When heat conduction in the solid walls is taken into account concurrently 
with heat transfer in the fluid, the problem is referred to as the conjugate problem. For 
flat duct, the conjugate problem has been investigated quite extensively, as reviewed in 
[47],

3.3.4 Simultaneously Developing Flow
For the simultaneously developing flow in a flat duct, the results are available for (1) 
uniform temperature at one or both walls, (2) uniform heat flux at one or both walls, 
and (3) convective boundary conditions at both walls. These results are described in the 
following text.

Prescribed Uniform Wall Temperature. The problem of simultaneously developing 
flow with equal and uniform temperatures at both walls, i.e., the (?) problem, has been 
studied by a number of investigators [1]. The most accurate results are those of Hwang 
and Fan [48], who performed an all-numerical analysis. They presented the mean 
Nusselt numbers Nu,„ T for Pr = 0.1,0.72,10, 50. Their numerical results are well 
represented by the following correlation (due to Stephan [49]) valid for 0.1 < Pr < 1000:

0.024.x* -1 14
Nu„,t = 7.55 + } +OO358Proi7x* 0.64 (3-131)

The maximum deviation of Hwang and Fan’s results from the predictions of Eq. 
(3.131) is 3%. Because of its simplicity and excellent agreement with the numerical 
results, the use of Eq. (3.131) is recommended for engineering calculations. Neither 
Hwang and Fan [48] nor Stephan [49] provided a simple formula for the local Nusselt
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numbers Nu( T. By differentiating Eq. (3.131) with respect to x*,  the present authors 
developed the following formula for the local Nusselt numbers applicable in the 
Prandtl number range of 0.1 < Pr < 1000:

0.024x* -114[0.0179Prol7x* _°'64 - 0.14]
Nuv T = 7.55 + (3.132)

[1 + 0.0358 Pr017x* -0’64]2

For Pr = oo, the results of Eqs. (3.108) and (3.109) for the fully developed velocity 
profile and developing temperature profile are applicable. For Pr = 0, the velocity 
profile never develops, i.e., the flow remains slug flow while the temperature profile 
develops. The exact solution for Pr = 0 was developed by Leveque in 1928 [21], It is 
represented by the following set of equations:

e =
Tw - T = 4 - (-1)"

= ,.=0 + 1th - t,
exp[— 4tt2(2« + l)2x*

H’

g OO 1
= -7 E , 2exp[-4772(2n + l)2x*|

71 n=0 (2n + 1)

(3.133)

(3.134)
T - T

Nux T =

2 IL exp[ -4tt2 
« = 0
“ exp — 4tr:(2n + l)“x

(3.135)

Nil T =x m, T
ln0„, 
4x*

(2n + I)2

(3.136)

The qualitative trends of Nuv T and Nu„, T for a flat duct are similar to those for a 
circular duct displayed in Figs. 3.6 and 3.7. To conserve space they will not be 
displayed. The plotted Nu„, T results for Pr = 0.1, 0.72, 10, 50, and oo are available in 
[1]. The Nuv T and Nu„, T values for Pr = 0 computed from Eqs. (3.135) and (3.136) 
approach an asymptotic limit of ~ 9.8696, whereas for the remaining values of Pr 
an asymptotic limit of 7.5407 is approached.

A lower bound for the thermal entrance L* h T for simultaneously developing flow in 
a flat duct was provided by Bhatti and Savery [50] as 0.0064 for 0.01 < Pr < 10,000. 
This value was confirmed in a separate investigation by Das and Mohanty [51], A more 
accurate value based on Eq. (3.132) is 0.01. From Eq. (3.135), the L* h T value for 
Pr = 0 is found to be 0.0091. This value corresponds to Nux T = 10.3631.

The solution to the problem of simultaneously developing flow with one duct wall 
insulated and the other at a uniform temperature, i.e., the fundamental solution of the 
third kind (see Fig. 3.9), was obtained among others by Mercer et al. [52], who 
correlated their results by the following equation valid for 0.1 < Pr < 10:

Num,T = 4.86 +
0.0606x*- 12

1 + 0.0909 Pr017x* “ 0/7 (3.137)
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The present authors arrived at the following formula for the local Nusselt numbers 
by differentiating Eq. (3.137) with respect to x*\

11 1 ~ 1 - exp( — 16»2772x*)
NUm ’H = ( 12 ~ 32 n4TT4x *

Nuv T = 4.86 +
0.0606x * ~12 [0.0455 Pr017x * “°7 0.2]

[1 + 0.0909 Pr017x*  07]2
(3.138)

When Pr = 0, the exact solution to the fundamental problem of the third kind for 
simultaneously developing flow is given by the following set of equations obtained from 
the solution to the analogous transient heat conduction problem [32]:

T - T
T - T

h’ e
e =

00 ( — 1) n
4Eo(Trnbexp[-(2" + 1)Vx*l

Xcos
(2n + 1)tt

K ~ Tm = g y exp[~(2w + 1)2772X*]  

~ n = 0 (2« + 1)2772

NUx.t =

exp[ -(2n + 1)2772x*]
n = 0

exp

n = 0

— (2n + 1)2tt2x* 

(2n + 1)2tt2

2x*

(3.139)

(3.140)

(3.141)

(3.142)Nu„,_t =

Prescribed Uniform Wall Heat Flux. The problem of simultaneously developing flow 
with equal uniform heat fluxes at both walls, i.e., the @ problem, has been solved by 
several investigators [1]. The most accurate results are those of an all-numerical 
analysis performed by Hwang and Fan [48], The tabular Nuv H results of Hwang and 
Fan for Pr = 0.01, 0.7, 1, and 10 are available in [1], The results for Pr = oo are 
identical to those of Eqs. (3.119) to (3.122). The results for Pr = 0 can be calculated 
from the following set of exact equations derived from the transient temperature 
distribution of the analogous heat conduction problem [32]:

T-Te l/y\2 1
q'flDh/k t\b) 24

1 00 (-1)" l y\
---- y  r—7-exp( — 16n27T2X*)  COS W7T — I (3.143)2 n27r2 V 7 \ b / v ’

I 1 1 ~ exp(-16n27r2x*)  \
Nu.y.n = 7o - 7 ^2 „2_2

I 12 2 n=1 n it J 11

(3.144)

(3.145)

(3.146)
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Figure 3.12. Local Nusselt numbers for simultaneously developing flow in a flat duct with the @ 
boundary condition [32,48],

The foregoing Nux H results are displayed in Fig. 3.12. Note that the curve 
corresponding to Pr = 0 approaches the asymptotic value of 12, whereas the remainder 
of the curves approach the asymptotic value of 8.2353.

The thermal entrance lengths based on the results of Fig. 3.12 are found to be 0.016, 
0.030, 0.017, 0.014, 0.012, and 0.0115, respectively, for Pr = 0, 0.01, 0.7, 1, 10, and oo.

The solution to the problem of simultaneous development of velocity and tempera
ture fields in a flat duct with a constant (nonzero) heat flux at one wall with the other 
wall insulated (zero flux), i.e., the fundamental solution of the second kind (see Fig. 
3.9), was obtained by Heaton et al. [53]. Their local Nusselt numbers for Pr = 0.01, 0.7, 
and 10 evaluated at the heated wall are displayed in Fig. 3.13. The tabular results for 
these three Pr values are available in [1]. Included in Fig. 3.13 are the results for 
Pr = oo, which are taken from Table 3.38 (Sec. 3.8.3), corresponding to r*  = 1. The 
results for Pr = 0 are calculated from the following set of exact equations derived from 
the transient temperature distribution of the analogous heat conduction problem [32]:

T- Te 1 / y\2 1 / y\ 1
q".Dh/k I6\b) 8\b) 48

” (— 1)” rnr / y\
~ / ■ —y-exp( — 4«2tt2x*)  cos— 14---- I (3.147)

n=i m w 2 \ b J

B s ■lx' <3148)

Nuy.H

Nu«,.h

/ 1 “ exp(-4n27r2x*)  \

/1 " 1 - exp(-4«2tt2x

\ 6 n = 1 4n4774x*

(3.149)

(3.150)
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x*

Figure 3.13, Local Nusselt numbers for simultaneously developing flow in a flat duct with 
uniform heat flux at one wall and the other wall insulated [32,52],

Convective Heating or Cooling at Both Walls, (fa). The simultaneously developing 
flow with the (fa) boundary condition, i.e., convective heating or cooling at both walls, 
was analyzed by Javeri [54], For Bi = oo, the Nu* <T3 are identical to the Nux T of Eq. 
(3.132), and for Bi = 0 they are identical to Nux H of Fig. 3.12.

3.4 RECTANGULAR DUCTS

The mathematical complexities inherent in a two-dimensional analysis have prevented 
an in-depth investigation of fluid flow and heat transfer characteristics of rectangular 
ducts. However, sufficient information of direct use to design engineers is available, and 
it is presented next.

3.4.1 Fully Developed Flow
The fully developed velocity profile for rectangular ducts has been determined exactly 
[55] using an analogy with the stress function of the theory of elasticity. Referring to 
the left inset to Fig. 3.14 for the coordinate system, the fully developed velocity profile 
for rectangular ducts is expressed as

16 / dp \ u2 ^2, 
Tr3\dx) p

cosh(rt7ry/2a)
cosh(«7r/?/2a)

/ nirzx
cos —- (3.151)

\ 2a /

where the pressure gradient dp/dx is given in terms of um by

1 / dp \ a2
3 \ dx / p

1 / nirb
tanh -----

n5 2 a
(3.152)
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Equation (3.151) entails considerable computational complexity. To circumvent this 
difficulty, Purday [56] proposed a simple approximation in the following form:

u

^max
(3.153)

m + 1 \ / n + 1
m / \ n

^max (3.154)

where n = 2 and m - 2.37, 3.78, 5.19, 6.60, 13.6, and oo for a*  = 0.5, 0.25, 0.20,
0.1, and 0, respectively. Natarajan and Lakshmanan [57] provided the following 
relations for the values of m and n:

m = 1.7 + 0.5a*" 1-4 (3.155)

2
2 + 0.3(a*  - f)

for
for

(3.156)

The values of m and n from Eqs. (3.155) and (3.156) yield velocity profiles that are 
within 1% of those computed from the exact relations of Eqs. (3.151) and (3.152).

The fully developed incremental pressure drop number A?(oo) for rectangular ducts 
has been determined by a number of investigators [1], The analytical values of Miller 
and Han [58] are found to be in the closest agreement with the experimental values [1], 
They are 1.433, 1.281, 0.931, and 0.658 for a*  = 1, 0.50, 0.20, and 0, respectively. The 
predictions of the hydrodynamic entrance length given by Wiginton and Dalton 
[59], believed to be the most accurate, are 0.090, 0.085, 0.075, and 0.080 for a*  = 1, 
0.50, 0.25, and 0.20, respectively.

The exact expression for the fully developed Fanning friction factor is 

/Re =
24

1
a51

2! 192 22, tanh( rt7ra*/2)
1 5 *

„ = 1 1

(3.157)

n

which is closely approximated (within +0.05%) by the following empirical equation [1]:

/ Re = 24(1 - 1.3553a*  + 1.9467a* 2 - 1.7012a* 3 + 0.9564a* 4 - 0.2537a* 5)

(3.158)

The fully developed Nusselt numbers NuT for the case of prescribed uniform 
temperature at four walls are available in [1]. They are approximated within + 0.1% by 
the formula

Nut = 7.541(1 - 2.610a*  + 4.970a* 2 - 5.119a* 3 + 2.702a* 4 - 0.548a* 5)

(3.159)

Schmidt and Newell [60] considered the case of one or more walls being heated to a 
uniform temperature with the other wall(s) insulated. Their Nusselt numbers, as 
modified by Shah and London [1] by replacing the heated perimeter with the wetted 
perimeter, are displayed in Fig. 3.14.
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Figure 3.14. Fully developed Nusselt numbers for rectangular ducts with uniform temperature at 
one or more walls [1].

The fully developed Nusselt numbers with a prescribed wall heat flux are available 
for three types of thermal boundary conditions: (m), (hz), and (h2). Marco and Han [55] 
invoked the analogy of small deflection of a thin plate simply supported along four 
edges and subjected to a uniform lateral load to arrive at the result

(
oo oo 1 \ 2

_ ___________________n=bL.. m2n2(nr + n2a* 2) ]

(1 + a*) 27r2 y y £
™=1,3,... ,7=1,3,... m2n2(m2 + n2a* 2)3

(3.160)

which can be approximated within ±0.03% by the formula

NuH1 = 8.235(1 - 2.0421a*  + 3.0853a* 2

- 2.4765a* 3 + 1.0578a* 4 - 0.1861a* 5) (3.161)

Savino and Siegel [61] investigated the effect of unequal heat fluxes. They found that 
poor convection due to low velocities in the corners and along the narrow wall causes 
peak temperatures to occur at the comers. Also, lower peak temperatures occur when 
heating takes place at the broad sides only.

Schmidt and Newell [60] determined the Nusselt numbers with one or more walls 
subjected to the (m) boundary condition with the other wall(s) insulated. Their results, 
with appropriate modification by Shah and London [1], are displayed in Fig. 3.15.

The (h?) problem with heating at four walls was solved by several investigators [1], 
Their results show that NuH2 is quite insensitive to change in a*.  For example, for
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NuHi
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Figure 3.15. Fully developed Nusselt numbers for rectangular ducts with uniform heat flux at 
one or more walls [1].

0.1 < a*  < 1, NuH2 varies in the range 2.95 < NuH2 < 3.09. Also, it is noted that as 
«*  —► 0, NuH2 does not approach 8.235, the value for the flat duct. This is because the 
imposed heat flux on the short sides continues to influence NuH2 even as a*  —> 0.

Han [62] treated the problem of a rectangular duct with a pair of narrow thin walls 
subjected to the (hi) boundary condition and the opposite pair of broad thick walls as 
extended surfaces or fins subjected to the (tm) boundary condition. The fully developed 
Nusselt numbers for this set of boundary condition are expressible as

Nu = F(tf,a*)Nu ni (3.162)

where NuH1 is given by Eq. (3.160) and F is the correction factor listed in Table 3.13

TABLE 3.13 Correction Factors F(K, a*) to be Used in Conjunction with 
Eq. (3.162) [62]

K

F(K, «*)

a*  = 0.20 0.25 0.50 1.00

0 0.552 0.828 2.348 3.872
4 2.580 2.840 3.568 3.972
8 3.108 3.292 3.752 3.984

16 3.492 3.592 3.864 3.992
40 3.776 3.828 3.944 3.996
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as a function of the dimensionless fin parameter K = kn8„/ka, where <5h. is the 
thickness of the broad wall. The aspect ratio is «*  = lb/2a.

Siegel and Savino [63] considered the effect of peripheral wall heat conduction in the 
broad walls with nonconducting insulated narrow walls. They also extended their 
analysis to include different boundary conditions at the corners [64], They found that 
the circumferential wall conduction substantially lowers the peak temperatures at the 
comers and the temperature gradients along the broad walls.

Lyczkowski et al. [65] and Iqbal et al. [66] determined the fully developed Nusselt 
numbers NuH4 for the (m) boundary condition on all four walls of the square duct 
(a*  = 1). With Kp = kw8w/kDh as a parameter, they found the NuH4 values to be 
3.08, 3.41, 3.50, 3.52, 3.606, and 3.608 for Kp = 0, 0.5, 1, 2, 100, and oo, respectively. In 
addition, Iqbal et al. [66] determined the NuH4 values for a*  = | and |. For a*  = |, 
they reported NuH4 = 3.04, 3.87, and 4.12 corresponding to Kp = 0, 1, and oo, 
respectively. For the same three values of K , they found NuH4 = 2.95, 4.24, and 4.79, 
respectively, for a*  = f.

3.4.2 Hydrodynamically Developing Flow
There are several analytical and experimental investigations of the problem of laminar 
flow development in rectangular ducts. They are summarized in [1], Based on compari
sons with the experimental measurements, it is determined that the numerical results of 
Curr et al. [67] and the theoretical results of Tachibana and lemoto [68] are in closest 
agreement with the measurements. The apparent Fanning friction factors of [67] are 
presented in Fig. 3.16.
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Figure 3.16. Apparent Fanning friction factors for hydrodynamically developing flow in rectan
gular ducts [67],
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TABLE 3.14 Local and Mean Nusselt Numbers in the Thermal Entrance Region 
of Rectangular Ducts with the © Boundary Condition [69]

1

Nux T Num,T

a*  = 1.0 0.5
1
3

0.25 0.2
1
6

1.0 0.5
1
3

0.25 0.2
1
6

0 2.65 3.39 3.96 4.51 4.92 5.22 2.65 3.39 3.96 4.51 4.92 5.22
10 2.86 3.43 4.02 4.53 4.94 5.24 3.50 3.95 4.54 5.00 5.36 5.66
20 3.08 3.54 4.17 4.65 5.04 5.34 4.03 4.46 5.00 5.44 5.77 6.04
30 3.24 3.70 4.29 4.76 5.31 5.41 4.47 4.86 5.39 5.81 6.13 6.37
40 3.43 3.85 4.42 4.87 5.22 5.48 4.85 5.24 5.74 6.16 6.45 6.70

60 3.78 4.16 4.67 5.08 5.40 5.64 5.50 5.85 6.35 6.73 7.03 7.26
80 4.10 4.46 4.94 5.32 5.62 5.86 6.03 6.37 6.89 7.24 7.53 7.77

100 4.35 4.72 5.17 5.55 5.83 6.07 6.46 6.84 7.33 7.71 7.99 8.17
120 4.62 4.93 5.42 5.77 6.06 6.27 6.86 7.24 7.74 8.13 8.39 8.63
140 4.85 5.15 5.62 5.98 6.26 6.47 7.22 7.62 8.11 8.50 8.77 9.00

160 5.03 5.34 5.80 6.18 6.45 6.66 7.56 7.97 8.45 8.86 9.14 9.35
180 5.24 5.54 5.99 6.37 6.63 6.86 7.87 8.29 8.77 9.17 9.46 9.67
200 5.41 5.72 6.18 6.57 6.80 7.02 8.15 8.58 9.07 9.47 9.79 10.01

3.4.3 Thermally Developing Flow
Wibulswas [69] solved the thermal entrance length problem for rectangular ducts with 
the (?) boundary condition neglecting the effects of viscous dissipation, fluid axial 
conduction, and thermal energy sources in the fluid. His local and mean Nusselt 
numbers are presented in Table 3.14. Chandrupatla and Sastri [70] analyzed the (t), (m), 
and (H2) thermal entrance length problem for a*  = 1. Their results, presented in Table 
3.15, are more accurate than those of [69] and hence are recommended for «*  = 1.

TABLE 3.15 Local and Mean Nusselt Numbers in the Thermal Entrance Region of a 
Square Duct (a* = 1) with the ®, (m), and (h2) Boundary Conditions [70]

1

A'*
NuxT Num,T NUx.Hl NumH1 Nux,H2 NUm.H2

0 2.975 2.975 3.612 3.612 3.095 3.095
10 2.976 3.514 3.686 4.549 3.160 3.915
20 3.074 4.024 3.907 5.301 3.359 4.602
25 3.157 4.253 4.048 5.633 3.481 4.898
40 3.432 4.841 4.465 6.476 3.843 5.656

50 3.611 5.173 4.720 6.949 4.067 6.083
80 4.084 5.989 5.387 8.111 4.654 7.138

100 4.357 6.435 5.769 8.747 4.993 7.719
133.3 4.755 7.068 6.331 9.653 5.492 8.551
160 — — 6.730 10.279 5.848 9.128
200 5.412 8.084 7.269 11.103 6.330 9.891
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TABLE 3.16 Local and Mean Nusselt Numbers in the Thermal Entrance Region 
of Rectangular Ducts with the (m) Boundary Condition [69]

1
X*

Nu.v,hi

a*  = 1.0 0.5
1
3

0.25 1.0 0.5
1
i 0.25

0 3.60 4.11 4.77 5.35 3.60 4.11 4.77 5.35
10 3.71 4.22 4.85 5.45 4.48 4.94 5.45 6.03
20 3.91 4.38 5.00 5.62 5.19 5.60 6.06 6.57
30 4.18 4.61 5.17 5.77 5.76 6.16 6.60 7.07
40 4.45 4.84 5.39 5.87 6.24 6.64 7.09 7.51

60 4.91 5.28 5.82 6.26 7.02 7.45 7.85 8.25
80 5.33 5.70 6.21 6.63 7.66 8.10 8.48 8.87

100 5.69 6.05 6.57 7.00 8.22 8.66 9.02 9.39
120 6.02 6.37 6.92 7.32 8.69 9.13 9.52 9.83
140 6.32 6.68 7.22 7.63 9.09 9.57 9.93 10.24

160 6.60 6.96 7.50 7.92 9.50 9.96 10.31 10.61
180 6.86 7.23 7.76 8.18 9.85 10.31 10.67 10.92
200 7.10 7.46 8.02 8.44 10.18 10.64 10.97 11.23

The thermal entrance lengths L* h T for rectangular ducts with fully developed 
laminar velocity profile are determined to be 0.008, 0.054, 0.049, and 0.041 for a*  — 0, 
0.25, 0.5, and 1, respectively [1],

Wibulswas [69] solved the thermal entrance length problem for the (m) boundary 
condition. His results for negligible fluid axial conduction, viscous dissipation, and 
thermal energy sources are presented in Table 3.16. Perkins et al. [71] experimentally 
determined Nu, H1 for a square duct. Their experimental results are in excellent accord 
with the theoretical results in Table 3.16. The following correlation is provided by 
Perkins et al. [71] for their measurements:

Nuv.hi = [0-277 - 0.152 exp(-38.6x*)]  1 (3.163)

The results of Chandrupatla and Sastri [70] for the square duct (m) thermal 
entrance problem presented in Table 3.15 are also in excellent agreement with the 
results in Table 3.16.

The thermal entrance lengths L* h H1 for rectangular ducts with fully developed 
laminar velocity profile are determined to be 0.0115, 0.042, 0.048, 0.057, and 0.066 for 
(v*  = 0, 0.25, |, 0.5, and 1, respectively [1].

Chandrupatla and Sastri [70] analyzed the (ffi) thermal entrance length problem for 
a square duct. Their results are presented in Table 3.15.

In addition to the thermal entrance length results presented above for the (t), (hi), 
and (H2) boundary conditions, certain thermal entry length results involving a combina
tion of boundary conditions on four walls are available, as are the results pertaining to 
a circumferentially uniform wall temperature which varies axially in a linear fashion 
[1].
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TABLE 3.17 Local and Mean Nusselt Numbers for Simultaneously Developing Flow in 
Rectangular Ducts with the (?) and (m) Boundary Conditions [69]

Nua.hi Nu„, Hl Nu„,.t

1
a*  = 1.0 0.5

1
3

0.25 1.0 0.5
1
3

0.25 1.0 0.5
1
3

0.25
1
6

5 _ — — — 4.60 5.00 5.57 6.06 — — -
10 4.18 4.60 5.18 5.66 5.43 5.77 6.27 6.65 3.75 4.20 4 67 5.11 5.72
20 4.66 5.01 5.50 5.92 6.60 6.94 7.31 7.58 4.39 4.79 5.17 5.56 6.13
30 5.07 5.40 5.82 6.17 7.52 7.83 8.13 8.37 4.88 5.23 5.60 5.93 6.47
40 5.47 5.75 6.13 6.43 8.25 8.54 8.85 9.07 5.27 5.61 5.96 6.27 6.78

50 5.83 6.09 6.44 6.70 8.90 9.17 9.48 9.70 5.63 5.95 6.28 6.61 7.07
60 6.14 6.42 6.74 7.00 9.49 9.77 10.07 10.32 5.95 6.27 6.60 6.90 7.35
80 6.80 7.02 7.32 7.55 10.53 10.83 11.13 11.35 6.57 6.88 7.17 7.47 7.90

100 7.38 7.59 7.86 8.08 11.43 11.70 12.00 12.23 7.10 7.42 7.70 7.98 8.38
120 7.90 8.11 8.37 8.58 12.19 12.48 12.78 13.03 7.61 7.91 8.18 8.48 8.85

140 8.38 8.61 8.84 9.05 12.87 13.15 13.47 13.73 8.06 8.37 8.66 8.93 9.28
160 8.84 9.05 9.38 9.59 13.50 13.79 14.10 14.48 8.50 8.80 9.10 9.36 9.72
180 9.28 9.47 9.70 9.87 14.05 14.35 14.70 14.95 8.91 9.20 9.50 9.77 10.12
200 9.69 9.88 10.06 10.24 14.55 14.88 15.21 15.49 9.30 9.60 9.91 10.18 10.51
220 — — — — 15.03 15.36 15.83 16.02 9.70 10.00 10.30 10.58 10.90

3.4.4 Simultaneously Developing Flow
Wibulswas [69] analyzed the simultaneously developing flow in rectangular ducts, 
neglecting the transverse velocity components. His results for the (r) and (m) boundary 
conditions for air (Pr = 0.72) are presented in Table 3.17. Recently, Chandrupatla and 
Sastri [72] reported a more refined analysis for a square duct with the (m) boundary 
condition without the neglect of the transverse velocity components. A comparison of 
their results for Pr = 0.72 with those of Table 3.17 revealed that neglect of the 
transverse velocity components could cause Nux H1 to be lowered by nearly 13% at 
x*  =0.1 in a square duct (a*  = 1). This behavior is opposite to that of the Nusselt 
numbers in a circular duct. As discussed in [1], neglect of the radial velocity in a 
circular duct overestimates the Nusselt numbers. The reason for this difference is not 
apparent to the authors.

Nuv H1 and Num H1 results of Chandrupatla and Sastri [72] are presented in Table 
3 18. They also serve to illustrate the effect of the Prandtl number on Nuv H1 and 
Num H1 for a*  = 1. It may be noted that Pr = 0 in Table 3.18 corresponds to the case 
of slug flow throughout the duct. Likewise Pr = oo corresponds to the case of 
h' drodynamically developed flow throughout the duct.

Recently, Neti and Eichhorn [73] solved the problem of simultaneously developing 
flow in a square duct with the @ boundary condition. They graphically presented 
extensive heat transfer results for a fluid with Pr = 6.

3.5 TRIANGULAR DUCTS

In view of the mathematical complexities inherent in a two-dimensional analysis, the 
fluid flow and heat transfer characteristics of triangular ducts have not been investi
gated in great detail. Although considerable information is available for fully developed
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TABLE 3.18 Local and Mean Nusselt Numbers for Simultaneously Developing Flow in 
a Square Duct (a* = 1) with the @ Boundary Condition [72]

1
Y *

Nu* Hl Nu„ H1

Pr = 0.0 0.1 1.0 10.0 00 0.0 0.1 1.0 10.0 00

200 14.653 11.659 8.373 7.329 7.269 21.986 17.823 13.390 11.200 11.103
133.3 12.545 9.597 7.122 6.381 6.331 19.095 15.391 11.489 9.737 9.653
100 11.297 8.391 6.379 5.816 5.769 17.290 13.781 10.297 8.823 8.747

80 10.459 7.615 5.877 5.480 5.387 16.003 12.620 9.461 8.181 8.111
50 9.031 6.353 5.011 4.759 4.720 13.622 10.475 7.934 7.010 6.949
40 8.500 5.883 4.683 4.502 4.465 12.647 9.601 7.315 6.533 6.476

25 7 675 5.108 4.152 4.080 4.048 10.913 8.043 6.214 5.682 5.633
20 7.415 4.826 3.973 3.939 3.907 10.237 7.426 5.782 5.347 5.301
10 7.051 4.243 3.687 3.686 3.686 8.701 5.948 4.783 4.580 4.549
0 7.013 3.612 3.612 3.612 3.612 7.013 3.612 3.612 3.612 3.612

flow involving equilateral triangular, isosceles triangular, right triangular, and even 
arbitrary triangular ducts, the information is quite scarce for hydrodynamically, 
thermally, and simultaneously developing flows.

3.5.1 Fully Developed Flow
Equilateral Triangular Duct. The fully developed velocity distribution and friction 
factor for the equilateral triangular duct of Fig 3.17u with the hydraulic diameter 
Dh = 4£>/3 are given by [55]

u 15 [/yC /'■'V /’I2 32
— = — - - 3 - - - 2 - -2- + —u„, 8 Z?/ \b)\bj \b) \b) 27 (3.164)

b~ / dp\
1 5jll \ dx /

/Re = f = 13.333 (3.165)

The Nusselt number NuT with uniform temperature at the three duct walls has been 
obtained by several investigators [1]. The recommended value is 2.49 [76], The Nusselt 
number NuH1 has also been obtained by several investigators. According to Tyagi [5]

28

Num =
1 +

(3.166)

The Nusselt number NuH2 for the equilateral triangular duct, determined by Cheng 
[74], is 1.892.

The effect of duct comer rounding on fluid flow and heat transfer is important 
because the duct corners are rarely sharp, due to manufacturing processes. For the 
equilateral triangular duct of Fig. 3.17/?, this effect was investigated by Shah [75], His 
results are presented in Table 3.19. Note that y and ymax in Table 3.19 refer to the 
distances measured from the duct base to the centroid and to the point of maximum 
fluid velocity, respectively. Also, 7[,* max and 7[,* min included in Table 3.18 are the



Figure 3.17. Triangular ducts: (a) equilateral, (b) equilateral with rounded comers, (<?) isosceles, 
(<7) right, (e) right-angled isosceles, (/) arbitrary.

TABLE 3.19 Fully Developed Fluid Flow and Heat Transfer Characteristics of Equilateral 
Triangular Ducts with Rounded Corners [1]

No Rounded 
Comers

One Rounded 
Comer

Two Rounded 
Comers

Three Rounded 
Comers

P/2a 3.00000 2.77172 2.54343 2.31515
A./(2aV 0.43301 0.41399 0.39497 0.37594
Dh/2a 0.57735 0.59745 0.62115 0.64953
> /2 a 0.28868 0.26778 0.30957 0.28868

0.28868 0.28627 0.29117 0.28868

^max/^m 2.222 2.172 2.115 2.064
K(oo) 1.818 1.698 1.567 1.441
^hy 0.0398 0.0359 0.0319 0.0284
/Re 13.333 14.057 14.899 15.993

Num 3.111 3.401 3.756 4.205
NuH2 1.892 2.196 2.715 3.780
r** h-. max 1.79 2.03 2.42 1.22
r*  . 1 min 0.515 0.512 0.550 0.757
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normalized maximum and minimum temperatures at the duct wall, defined as

T7*
1 max

T - TJ h’ , max ' c

T - T 'w, m *c

T - T* w, min c

T - Tw, m c
(3.167)T* .1 w, min

where T denotes the fluid temperature at the duct centroid.

Isosceles Triangular Ducts. The fully developed flow and heat transfer characteris
tics of the isosceles triangular duct of Fig. 3.17c have been investigated rather 
extensively both theoretically and experimentally [1]. Figures 3.18 and 3.19 display the 
fluid flow and heat transfer results for these ducts. The tabular results are available in 
[1]. Recently, Haji-Sheikh et al. [76] reported more accurate values of NuT than those 
listed in [1] for 7.15° < < 151.93°.

The fully developed velocity distribution and friction factors for the isosceles 
triangular duct of Fig. 3.17c can be expressed by the f oPowing set of equations due to 
Migay [77], who solved the flow problem by invoking the analogy of torsion of a 
prsmatic bar:

1 / dp \ y2 — z2tan24> / z \B-z 
2/i\dx) 1 — tan2<£ \2b)

2b2 / dp ' ( B — 2)tan2</>
3/i \ dx / (B + 2)(1 — tan2<J>)

12(B + 2)(1 - tan2<f>)
(B — 2) [tan <f> + (1 + tan2<J>)1/2]

B ■=■ [4 + |(cot2<J» - 1)]1/2

(3.168)

(3.169)

(3.170)

(3.171)

Figure 3.18. Fully developed fluid flow characteristics of isosceles triangular ducts [1],
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Figure 3.19. Fully developed Nusselt numbers for isosceles triangular ducts [1].

It is apparent from Eq. (3.170) that when 2<£ = 90°, / Re is indeterminate. By the 
application of 1’Hospital’s rule, Migay [77] showed that for 2</> = 90°

12(B + 2)(1 - 3tan24>)
(|tan<]>[4tan2<J> + |(1 — tan2<J>)] 1/2 — 2} [tan<]> + (1 + tan2^)1^]

(3.172)

The f Re values computed from Eq. (3.170) and (3.172) are higher by about 1% than 
the values of Fig. 3.18 except for the limiting case of 2</> = 180°.

Schmidt and Newell [60] reported NuH1 and NuT results for isosceles triangular 
ducts with one or more walls insulated. Their results are displayed in Figs. 3.20 and 
3.21.

Right Triangular Ducts. The fully developed fluid flow and heat transfer characteris
tics of the right triangular duct of Fig. 3.17J have been investigated quite extensively, 
as summarized in [1], The principal quantities of practical interest are displayed in Fig. 
3.22. The NuT values in Fig. 3.22 are taken from Haji-Sheikh et al. [76]; NuH1, f Re, 
and Ai(oo) from Sparrow and Haji-Sheikh [78]; and NuH2 from Iqbal et al. [79],

The fully developed velocity profiles and friction factors of the right-angled isosceles 
triangular duct of Fig. 3.17e are expressible in closed-form formulas which are given 
in [1].



Figure 3.20. Fully developed Nusselt numbers for isosceles triangular ducts with one or more 
walls at uniform temperature [60].

Figure 3.21. Fully developed Nusselt numbers for isosceles triangular ducts with uniform heat 
flux at one or more walls [60],
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Arbitrary Triangular Ducts. Nakamura et al. [80] analyzed arbitrary triangular ducts 
by a finite difference method. Their results for the arbitrary triangular duct of Fig. 3.17/ 
are presented in Figs. 3.23 and 3.24 for 0.9 < «*  < 0.2. For a*  = 1, the more accurate 
results for isosceles triangular ducts presented in [1] are displayed.

Semilet [81] proposed the following correlations for gas flow in arbitrary triangular 
ducts with L/Dh > 50 but with unspecified thermal boundary conditions:

f Re = 12.5 + 0.007 Re for 50 < Re < 1000 (3.173)

Nu = 2.15 + 0.00245 Re for 50 < Re < 2000 (3.174)

Nu = 2.15 + 2.31 X 10“3Re + 1.25 X 10"7Re2 - 9.6 X 10“2Re3

for 50 < Re < 8000 (3.175)

These correlations agree with the experimental and theoretical results from various 
sources within + 15%.

3.5.2 Hydrodynamically Developing Flow

The hydrodynamic entrance length problem for the equilateral triangular duct shown 
in Fig. 3.1 la has been solved by several investigators, as summarized in [1], In addition, 
Fleming and Sparrow [82] solved the problem for the isosceles triangular duct of Fig. 
3 17c with 2<f> = 30°, and Aggarwala and Gangal [83] for the right-angled isosceles 
triangular duct of Fig. 3.17e. The results of these two investigations for 2<> = 30°, 60°, 
and 90° are believed to be the most accurate. They are displayed in Fig. 3.25 along 
with the results of Miller and Han [58].
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Figure 3.23. Fully developed friction factors for arbitrary triangular ducts [1, 80].

Figure 3.24. Fully developed Nusselt numbers for arbitrary triangular ducts [1,80].
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Figure 3.25. Apparent friction factors for hydrodynamically developing flow in isosceles triangu
lar ducts [58,82,83].

3.5.3 Thermally Developing Flow
The thermal entrance length problem has been solved by Wibulswas [69] for equi- 
laterial (Fig. 3.17a) and right-angled isosceles triangular (Fig. 3.17e) ducts. His results 
for Pr = 0, 0.72, and oo are presented in Tables 3.20 and 3.21. These results are for 
simultaneously developing flow. However, the results for Pr = oo apply to all fluids in 
the thermal entrance region as Pr = oo implies that the flow is hydrodynamically 
developed.

3.5.4 Simultaneously Developing Flow

The problem of simultaneously developing flow for equilateral triangular and right
angled isosceles triangular ducts was solved numerically by Wibulswas [69] for a 
single fluid with Pr = 0.72. His results for the (t) and (m) boundary conditions are pre
sented in Tables 3.20 and 3.21.

In an unpublished communication, Wibulswas and Tangsirimonkol [84] compared 
the numerical prediction of [69] with the experimental measurementals for the (t) 
boundary condition. For the equilateral triangular duct, they correlated the results of 
Table 3.20 within +0.2% and —3% by

Nuw.t = 1.594x*-°-331 (3.176)



TABLE 3.20 Local and Mean Nusselt Numbers for Thermally and Simultaneously Developing Flows 
in an Equilateral Triangular Duct [69]

1

NuA. T Num ,T NuXjhi Num Hl

Pr = oo 0.72 0 00 0.72 0 00 0.72 0 00 0.72 0

10 2.57 2.80 3.27 3.10 3.52 4.65 3.27 3.58 4.34 4.02 4.76 6.67
20 2.73 3.11 3.93 3.66 4.27 5.79 3.48 4.01 5.35 4.76 5.87 8.04
30 2.90 3.40 4.46 4.07 4.88 6.64 3.74 4.41 6.14 5.32 6.80 9.08
40 3.08 3.67 4.89 4.43 5.35 7.32 4 00 4.80 6.77 5.82 7.57 9.96
50 3.26 3.93 5.25 4.75 5.73 7.89 4.26 5.13 7.27 6.25 8.20 10.65

60 3.44 4.15 5.56 5.02 6.08 8.36 4.49 5.43 7.66 6.63 8.75 11.27
80 3.73 4.50 6.10 5.49 6.68 9.23 4 85 6.03 8.26 7.27 9.73 12.35

100 4.00 4.76 6.60 5.93 7.21 9.98 5.20 6.56 8.81 7.87 10.60 13.15
120 4.24 4.98 7.03 6.29 7.68 10.59 5.50 7.04 9.30 8.38 11.38 13.82
140 4.47 5.20 7.47 6.61 8.09 11.14 5.77 7.50 9.74 8.84 12.05 14.46

160 4.67 5.40 7.88 6.92 8.50 11.66 6.01 7.93 10.17 9.25 12.68 15.02
180 4.85 5.60 8.20 7.18 8.88 12.10 6.22 8.33 10.53 9.63 13.27 15.50
200 5.03 5.80 8.54 7.42 9.21 12.50 6.45 8.71 10.87 10.02 13.80 16.00
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TABLE 3.21 Local and Mean Nusselt Numbers for Thermally and Simultaneously Developing Flows 
in Right-Angled Isosceles Triangular Ducts [69]

1
x *

NuzT Num,T %hi Nu^.hi

Pr = co 0.72 0 00 0.72 0 00 0.72 0 00 0.72 0

10 2.40 2.52 3.75 2.87 3.12 4.81 3.29 4.00 5.31 4 22 5.36 6.86
20 2.53 2.76 4.41 3.33 3.73 5.85 3.58 4.73 6.27 4.98 6.51 7.97
30 2.70 2.98 4.82 3.70 4.20 6.48 3.84 5.23 6.85 5.50 7.32 8.68
40 2.90 3.18 5.17 4.01 4.58 6.97 4.07 5.63 7.23 5.91 7.95 9.20
50 3.05 3.37 5.48 4.28 4.90 7.38 4.28 5.97 7.55 6.25 8.50 9.67

60 3.20 3.54 5.77 4.52 5.17 7.73 4.47 6.30 7.85 6.57 8.99 10.07
80 3.50 3.85 6.30 4.91 5.69 8.31 4.84 6 92 8.37 7.14 9.80 10.75

100 3.77 4.15 6.75 5.23 6.10 8.80 5.17 7.45 8.85 7.60 10.42 11.32
120 4.01 4.43 7.13 5.52 6.50 9.18 5.46 7.95 9.22 8.03 10.90 11.77
140 4.21 4.70 7.51 5.78 6.82 9.47 5.71 8.39 9.58 8.40 11.31 12.14

160 4.40 4.96 7.84 6.00 7.10 9.70 5.95 8.80 9.90 8.73 11.67 12.47
180 4.57 5.22 8.10 6.17 7.33 9.94 6.16 9.14 10.17 9.04 12.00 12.75
200 4.74 5.49 8.38 6.33 7.57 10.13 6.36 9.50 10.43 9.33 12.29 13.04
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They also correlated within 4 0.8% and -4% the results of Table 3.21 for the 
right-angled isosceles triangular duct by

Num T = 1.470.x *-°- 309 (3.177)

On comparing the predictions of Eqs. (3.176) and (3.177) with the experimental 
measurements, Wibulswas and Tangsirimonkol [84] found that the numerical predic
tions are appreciably lower than the experimental values, especially in the neighbor
hood of the duct inlet. This is apparently due to neglect of the transverse velocity 
components in the numerical analysis. As in a square duct, so in triangular ducts, 
neglect of the transverse velocity components underestimates the Nusselt numbers. 
However, in a circular duct neglect of the radial velocity component overestimates the 
Nusselt numbers. The reason for this difference in circular and noncircular ducts is not 
clear to the authors, although it appears that the comer effect in noncircular ducts may 
be a contributing factor.

Wibulswas and Tangsirimonkol [84] correlated their experimental measurements for 
the equilateral triangular and right-angled isosceles triangular ducts by

NumT = 0.44x*-°- 66 ( 3.178)

and recommended that Eq. (3.178) be used for 1.82 X 10 3 < x*  < 3.33 X 10 2, and 
Eq. (3.176) be used for x*  > 3.33 X 10-2, for both cross sections.

3.6 ELLIPTICAL DUCTS

Elliptical geometry constitutes a useful family of ducts, ranging from a narrow 
lenticular passage to a circular one. A flat duct does not constitute a limiting case of 
elliptical geometry. Fully developed laminar fluid flow and heat transfer characteristics 
of elliptical ducts have been analyzed. Also, the hydrodynamic entrance length and the 
thermal entrance length problems have been solved. However, the problem of simulta
neously developing flow has not received attention in the literature.

3.6.1 Fully Developed Flow
The fully developed velocity profile and friction factors for the elliptical duct shown as 
an inset to Fig. 3.26 are given by [1]

u 
-------2 (3.179)

1 / dp \{ b2
4/i\<7x/^l-l-a* 2

/ Re = 2(1 + a* 2)( —
\ m))

(3.180)

In the above equations, m = I - a* 2 and £(m) is the complete elliptic integral of the 
second kind. The hydraulic diameter of the elliptical duct is Dh = irb/E(ni). and the 
cross-sectional area Ac = nab.

The / Re factors computed from Eq. (3.180) are displayed in Fig. 3.26, which also 
includes a curve for the hydrodynamic entrance length determined from the
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Figure 3.26. Fullv developed friction factors and hydrodynamic entrance lengths for elliptical 
ducts [85].

following formula developed by Bhatti [85]:

0.5132
Lhy = 1 + a*2 (3.181)

The values of Lj] from this equation represent a substantial improvement over very 
approximate values reported in [1].

The fully developed incremental pressure drop number K(oo) for elliptical ducts is 
independent of the duct aspect ratio a*,  as elaborated by Bhatti [85]. Lundgren et al. 
[86] determined K/oo) as | without solving the hydrodynamic entrance length prob
lem, whereas the hydrodynamic entrance length analysis of Bhatti [85] led to a value of I. 
The experimental values of K(<x>) for the circular duct, which are applicable to 
elliptical ducts also, range between 1.12 and 1.35. In view of such a wide variation in 
the measured values, it is recommended that the mean experimental value of 1.26 be 
used for practical computations.

Dunwoody [87] determined the fully developed Nusselt numbers NuT for elliptical 
ducts with a*  = and |. His results are displayed in Fig. 3.27, including the
limiting cases of NuT equal to 3.658 and 3.488 for a*  equal to 1 and 0, respectively.

The fully developed (m) heat transfer problem for elliptical ducts with internal 
thermal energy sources was first investigated by Tao [38], Tyagi [5] extended Tao's 
work by including the effect of viscous dissipation. The closed-form formulas of these 
investigators for various momentum and heat transfer quantities are rather complex. 
Recently, Bhatti [88] developed a simpler closed-form solution for the (hi) problem
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Figure 3.27. Fully developed Nusselt numbers for elliptical ducts [5,38,79,87],

using the integral method. According to this analysis

For the limiting case of the circular duct, Eqs. (3.182) to (3.184) reduce to Eqs. 
(3.21) and (3.22) with y = 0. The NuH1 values computed from Eq. (3.184) agree within 
+ 3% with the values computed from the following more accurate formula due to Tao 
[38] and Tyagi [5]:

/ 77 \2/ 1 + 6a* 2 + a* 4 \ n
NuH1 = 9 —7--- 7 -------------- 5-----------7 (1 + a* 2)

H1 E(m) / \ 17 + 98a* 2 + 17a* 4’ (3.185)

These latter values are displayed in Fig. 3.27. Iqbal et al. [79] analyzed the (h2) problem 
for elliptical ducts. Their NuH2 results are also included in Fig. 3.27.

3.6.2 Hydrodynamically Developing Flow
The hydrodynamic entrance length problem for elliptical ducts has received scant 
attention. The only available theoretical solution is an integral solution developed by 
Bhatti [85]. Recently, Abdel-Wahed et al. [89] reported an experimental investigation of 
the problem for an elliptical duct with a*  = 0.5.
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According to [85], the velocity distribution in the hydrodynamic region of elliptical 
ducts is given by

u 1

1 + V

u _ 2[1 - Q/q)2 - (y/b)2]

um~ 1 -

i z \ 2 I V \ 
for 0<l —I + T — V (3.186)

\ a) \ b)

! z\2 [y\2 . .
for 7J< - + t <1 (3-187)

\ a / \ b /

where rj is a boundary-layer parameter representing the fraction of the duct cross 
section carrying inviscid flow. It is implicitly given as a function of x+ by

16(1 + a*2 = tj2 — 1 — In 7]2 (3.188)

The apparent friction factors and incremental pressure drop numbers are expressed 
in terms of rj, which in essence is treated as an independent variable:

An*  2(1 - 7j)(l + 3rj) - (1 + 7j)2ln7j3
/Re = , Ap * =  -------—---------------------y----------------------  (3.189)lapp^ 4x+ > ” 3(1 + ^2 V 7

K(x) =
(3tj3 + 9tj2 + 21i] + 7)(1 — tj)

6(1 + T»)2
(3.190)

In the limit when the flow becomes hydrodynamically developed, attains the value of 
zero and all the momentum transfer quantities asymptotically reduce to the known 
exact fully developed values. The apparent friction factors, incremental pressure drop 
numbers, and axial pressure drop computed from Eqs. (3.188) to (3.190) are displayed 
in Fig. 3.28. Note that the geometric factor (1 + a* 2)[7r/£(m)]2 appears in the 
abscissa as well as in the left-hand ordinate corresponding to the /appRe curve of Fig. 
3.28.

The axial pressure drop measurements of Abdel-Wahed et al. [89] for an elliptical 
duct of aspect ratio a*  = 0.5 are in excellent accord with the predictions of Eq. 
(3.189). However, their axial velocity measurements along the semimajor and semi
minor axes exhibit peculiar wiggles in the neighborhood of the duct inlet (x < 0.02) 
which are not predicted by the theoretical analysis. Farther downstream (x" > 0.02), 
the agreement between the experimental measurements and the analytical predictions is 
within ±2%.

3.6.3 Thermally Developing Flow

The problem of thermally developing flow with the @ boundary condition has been 
solved by several investigators [1]. The most accurate results are those of Dunwoody 
[87]. His local Nusselt numbers Nuv T are expressed in terms of a double infinite series. 
However, his mean Nusselt numbers Num J are expressible in terms of the following
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Figure 3.28. Fluid flow parameters in the hydrodynamic entrance region of elliptical ducts [85],

simple formula:

X
Nu-,t= (3.191)

The X and C values for Eq. (3.191) are presented in Table 3.22 as functions of a*.
Richardson [90] among others solved the (t) problem in the thermal entrance region 

by invoking the simplifications offered by Leveque’s theory [21] and presented the 
following formula:

3
NUm-T r(f)(9A-*) 1/3

/ (1 — a*) 2 + (1 — a*) 3

( 36
(3.192)

TABLE 3.22 The Constants of Eq. (3.191) Representing Mean 
Nusselt Numbers in the Thermal Entrance 
Region of Elliptical Ducts with the (t) Boundary 
Condition [87]

a* X C

4/5 14.67 0.0138
1/2 14.97 0.0158
1/4 15.17 0.0239
1/8 14.90 0.0388

J /16 14.59 0.0578
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When fl*  = 1, Eq. (3.192) reduces to Leveque’s solution for a circular duct given by 
Eq. (3.47). The predictions of Eq. (3.192) agree with those of Eq. (3.191) within -7% 
down to x*  = 0.05. Strictly speaking, Eq. (3.192) is more accurate for low values of x*  
such as x*  < 0.005, and Eq. (3.191) for high values such as x*  > 0.005.

Someswara Rao et al. [91] developed a Leveque-type thermal entrance length 
solution for elliptical ducts with the (m) boundary condition. Their mean Nusselt 
numbers can be represented by the following equation:

2.61F z x
Num,Hl = x*l/3  (3.193)

where the factor F is a function of a*.  The numerical values of F furnished in tabular 
form in [91] can be represented with a maximum error of ±3% by

F= 1.2089 - 0.7951a*  - 4.3011a* 2

+ 23.8465a* 3 - 44.7053a* 4 + 37.0874a* 5 - 11.4809a* 6 (3.194)

It may be noted that for a*  = 1, Eq. (3.193) does not reduce to Eq. (3.62) derived 
from Leveque’s analysis for a circular duct.

3.7 ADDITIONAL SINGLY CONNECTED DUCTS

In addition to the singly connected ducts covered in the preceding sections, a number 
of other singly connected ducts have been analyzed. However, their fluid flow and heat 
transfer characteristics have not been studied in detail. The available information on 
the remaining singly connected ducts is presented in this section.

3.7.1 Sine Ducts
The fully developed fluid flow and heat transfer characteristics of a sine duct shown in 
Fig. 3.29u are presented in Tables 3.23 and 3.24 together with some geometrical 
characteristics. These results are based on the analyses by Shah [75] and Sherony and 
Solbrig [92], y and pmax in Table 3.23 denote the distances measured from the duct 
base to the centroid and to the point of the maximum velocity respectively. 7* max and 
TM*min in Table 3.24 are defined by Eq. (3.167).

3.7.2 Trapezoidal Ducts
Shah [75] analyzed the fully developed fluid flow and heat transfer characteristics of the 
trapezoidal duct shown in Fig. 3.29b. His results are presented in Figs. 3.30 and 3.31. 
Tabulated results are available in [1], When a -> 0 (or equivalently b/a -> oo), the 
trapezoidal duct reduces to an isosceles triangular duct; when <j> = 90°, it reduces to a 
rectangular duct.

Lawai and Mujumdar [93] numerically analyzed the problem of laminar flow 
development in a trapezoidal duct with <> = 72° and 2 b/2 a = 1.1902. Their fluid flow 
results are presented in Table 3.25.

Lawai and Mujumdar [93] also analyzed simultaneously developing flow in a 
trapezoidal duct with <]> = 72° and 2b/2a = 1.1902. Their local Nusselt numbers . 
Nu v T for a fluid with Pr = 0.1 are presented in Table 3.25.



Figure 3.29. Some singly connected ducts: (a) sine, (b} trapezoidal, (c) rhombic, (r/) quadri
lateral, (e) circular sector, (/) circular segment, (g) annular sector, (h) stadium-shaped, (i) 
modified stadium-shaped.

TABLE 3.23 Geometrical and Fully Developed Flow Characteristics of Sine Ducts [75]

lb P Dh y }'max
la la la la la un,

00 — ... - — 3.825
2 5.1898 0.77074 0.75000 0.46494 2.288
3 4.2315 0.70897 0.56250 0.40964 2.239
1 3 3049 0.60516 0.37500 0.33390 2.197

A/2 3.0667 0.56479 0.32476 0.30773 2.191

3
4 2.8663 0.52332 0.28125 0.28205 2.190
1
2 2.4637 0.40589 0.18750 0.21347 2.211
1 2.1398 0.23366 0.09375 0.11926 2.291

2.0375 0.12270 0.04688 0.06173 2.357
0 2.0000 0.00000 0.00000 0.00000 2.400
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Figure 3.30. Fully developed fluid flow characteristics of trapezoidal ducts [75],

Figure 3.31. Fully developed Nusselt numbers for trapezoidal ducts [75],

3-70
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TABLE 3.24 Fully Developed Fluid Flow and Heat Transfer Characteristics of Sine Ducts [75,92]

2b
2 j

k’(oc) ^-hy /Re Nut Nl'ni NuH2 T*w. max
rr *
1 w, min

00 3.218 0.1701 15.303 0.739 2.521 0 — —
2 1.884 0.0403 14.553 — 3.311 0.95 2.92 0.002
3
2 1.806 0.0394 14.022 2.60 3.267 1.38 2.93 0.257
1 1.744 0.0400 13.023 2.45 3.102 1.55 2.17 0.398

1/3/2 1.739 0.0408 12.630 — 3.014 1.47 2.58 0.396
3 1.744 0.0419 12.234 2.33 2.916 1.34 2.93 0.379
1
2 1.810 0.0464 11.207 2.12 2.617 0.90 3.65 0.266
1 2.013 0.0553 10.123 1.80 2.213 0.33 4.16 0.099
I 
8 2.173 0.0612 9.743 — 2.017 0.095 4.31 0.030
0 2.271 0.0648 9.600 1.178 1920 0 — —

TABLE 3.25 Hydrodynamic Entrance Region Fluid Flow Characteristics and 
Local Nusselt Numbers for Simultaneously Developing Flow for 
Pr = 0.1 in a Trapezoidal Duct (<> = 72°, 2b/2a = 1.1902) [93]

x+ /aPP Re X* Nux T

0.00075 140.6000 1.2006 0.00175 16.7062
0.00150 96.9333 1.2656 0.00250 13.7624
0.00750 46.5800 1.5573 0.00750 7.6264
0.03000 26.1900 1.9466 0.01500 5.1608
0.04875 22.1733 2.0556 0.07500 2.9888

0.08625 18.9333 2.1197 0.15000 2.5573
0.1 18.3125 2.1263

3.7.3 Rhombic Ducts
The fully developed fluid flow and heat transfer characteristics of rhombic ducts shown 
in Fig. 3.29c were analyzed by Shah [75]. His results are presented in Figs. 3.32 and 
3.33. Tabulated results are available in [1],

3.7.4 Quadrilateral Ducts
Nakamura et al. [94] analyzed the fully developed fluid flow and heat transfer char
acteristics of arbitrary polygonal ducts. Their numerical results for some quadrilateral 
ducts, shown in Fig. 3.29J, are presented in Table 3.26.

3.7.5 Regular Polygonal Ducts
The fully developed fluid flow and heat transfer characteristics of a regular polygonal 
duct with n equal sides each subtending an angle of 360°/n at the duct center have 
been analyzed by several investigators, as summarized in [1], The fully developed 
friction factors and Nusselt numbers for these ducts are presented in Fig. 3.34.

Schenkel [95] presented the following formula for the fully developed friction 
factors for regular polygonal ducts:



Figure 3.32. Fully developed fluid flow characteristics of rhombic ducts [75].

</>, deg

Figure 3.33. Fully developed Nusselt numbers for rhombic ducts [75].

3.72
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TABLE 3.26 Fully Developed Friction Factors, Incremental Pressure Drop Numbers, 
and Nusselt Numbers for Some Quadrilateral Ducts [94]

(deg)
<f)2 

(deg)
$3 

(deg)
<1*4  

(deg) 7 Re A(rc) NuHi NuH2

60 70 45 32.23 14.16 1.654 3.45 2.80
50 60 30 21.67 14.36 1.612 3.55 2.90
60 30 45 71.57 14.69 1.522 3.72 3.05
60 30 60 79.11 14.01 1.707 3.35 2.68

1/n

Figure 3.34. Fully developed friction factors and Nusselt numbers for regular polygonal 
ducts [1].

f Re = 16| 0.44 + n2 J (3.195)

The predictions of Eq. (3.195) are within + 1% of the tabulated values in [1], which are 
shown in Fig. 3.34.

Lawai and Mujumdar [93] numerically analyzed the problem of laminar flow 
development in a pentagonal duct (n = 5). Their fluid flow results are presented in 
Table 3.27.

Lawai and Mujumdar [93] also analyzed simultaneously developing flow in a 
pentagonal duct for a Newtonian fluid with Pr = 0.1. Their local Nusselt numbers for 
the (t) boundary condition are presented in Table 3.27.

3.7.6 Circular Sector Ducts
Eckert and Irvine [96] analyzed the fully developed laminar flow through the circular 
sector duct (also referred to as a wedge-shaped duct) shown in Fig. 3.29e by invoking
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TABLE 3.27 Hydrodynamic Entrance Region Fluid Flow Characteristics and 
Local Nusselt Numbers for Simultaneously Developing Flow for 
Pr = 0.1 in a Pentagonal Duct [93]

/app Re Umax/Um X* Nux T

0.00075 145.8667 1 2069 0.00175 17.0033
0.00150 101.200 1 2755 0.00250 13.5163
O.OO75O 46.3267 1.5541 0.00750 7.4950
0.03000 26.1517 1.9283 0.01500 5.4270
0.04875 22.2749 2.0210 0.07500 3.7295

0.08625
0.1

19.2023
18.6230

2.0672
2.0710

0.30000 3.3404

the analogy of the torsion of a bar. Their formulas for the velocity profile, mean 
velocity, and friction factors are presented in [1],

Sparrow and Haji-Sheikh [78] extended the results of [96] to cover a wider range of 
2</>. Their f Re and A?(oo) results are presented in Fig. 3.35. Tabulated results are 
available in [1],

Schenkel [95] presented the following formula for the fully developed friction 
factors for circular sector ducts:

f Re = 14.4 for 2</> < 70° (3.196)

Figure 3.35. Fully developed fluid flow and heat transfer characteristics of circular sector ducts 
[78. 98],
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TABLE 3.28 Flow Parameters for Hydrodynamically Developing Flow in Circular Sector Ducts [99]

^hy

II II p £
 0 2<f> = 22.5° 2</> = 45° 2<> = 90 °

Lhy 0.144 ^hy = 0.108 i-hy 0.0786

/Re K(x) /Re *(x) /Re K(x) /Re K(x)

0.001 109.3 0.207 147.9 0.177 180.4 0.171 226.0 0154
0.003 66.09 0.335 81.62 0.281 98.27 0.266 115.7 0.241
0.006 48.27 0.456 60.18 0.377 63.69 0.352 78.29 0.314
0.010 38.52 0.568 48.30 0.469 53.91 0.432 60.26 0.380
0.020 28.93 0.758 35.64 0.628 39.59 0.567 43.93 0.492

0.030 25.09 0.887 30.20 0.739 33.47 0.662 37.37 0.571
0.040 22.70 0.991 27.02 0.830 29.89 0.738 33.50 0.635
0.050 21.18 1.076 24.92 0.901 27.51 0.801 30.88 0.689
0.070 19.90 1.211 22.20 1.019 24.41 0.903 27.44 0.778
0.100 17.34 1.364 19.91 1.153 21.78 1.021 24.40 0.881

0.150 15.82 1.540 17.81 1.313 19.40 1.165 21.58 1.007
0.200 14.95 1.664 16.65 1.429 18.05 1.269 19.95 1.100
0.250 14.47 1.756 15.89 1.517 17.09 1.350 18.87 1.171
0.300 14.07 1.828 15.35 1.588 16.54 1.412 18.07 1.229
0.350 13.83 1.885 14.95 1.646 16.06 1.464 17.51 1.275

0.400 13.59 1.930 14.65 1.695 15.66 1.510 17.05 1.315
0.450 13.51 1.970 14.41 1.735 15.34 1.546 16.70 1.347
0.500 13.35 1.997 14.22 1.770 15.11 1.577 16.41 1.375
0.600 13.19 2.051 13.95 1.825 14.79 1.625 15.96 1.418
0.700 13.03 2.091 13.76 1.868 14.55 1.661 15.67 1.451

0.800 12.95 2.118 13.63 1.902 14.39 1.689 15.46 1.475
0.900 12.90 2.139 13.52 1.930 14.23 1.710 15.31 1.494
1.000 12.87 2.156 13.47 1.951 14.15 1.728 15.19 1.509
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where the angle 2<J> is in degrees. The / Re values from Eq. (3.196) agree with the 
tabulated values of [1] presented in Fig. 3.35 within ±1% for 0 < 2<J> < 70°.

Based on the analogy with the deflection of a uniformly loaded thin plate, simply 
supported around the rim, Eckert et al. [97] analyzed the @ fully developed tempera
ture problem. Their temperature distribution is presented in [1],

Sparrow and Haji-Sheikh [78] extended the results of Eckert et al. [97] to cover a 
wider range of 2</>. Their NuH1 results are presented in Fig. 3.35.

Hu and Chang [98] analyzed the fully developed laminar problem for internally 
finned circular ducts with the (h?) boundary condition. A circular duct with n 
longitudinal full fins each of length a comprises n circular sector passages, each with 
an apex angle 2<> = 360°/n. The NuH2 results of Hu and Chang [98] are presented in 
Fig. 3.35.

A comparison of the results in Figs. 3.18, 3.19, and 3.35 shows that for 2</> < 20° 
the results for the isosceles triangular duct agree rather closely with those for the 
circular sector duct,

Soliman et al. [99] numerically analyzed the problem of laminar flow development 
in circular sector ducts Their /appRe, A’(x), and £j]v results for 2</> = 11.25, 22.5, 45, 
and 90° are presented in Table 3.28.

3.7.7 Circular Segment Ducts
Sparrow and Haji-Sheikh [100] analyzed the fully developed laminar flow through the 
circular segment duct shown in Fig. 3.29/. Their / Re, A'(oo), NuH1, and NuH2 results 
are presented in Fig. 3.36.

Hong and Bergles [101] obtained the thermal entrance length solution for a circular 
segment duct with 2<f> = 180°, i.e., the semicircular duct. They presented the results for 
two thermal boundary conditions: (1) a constant wall heat flux along the axial flow 
direction and a constant wall temperature along the duct circumference, i.e., the @ 
boundary condition, (2) a constant wall heat flux along the axial flow direction and a 
constant wall temperature along the semicircular arc, with zero heat flux along the 
diameter. The local Nusselt numbers for these two boundary conditions are presented 
in Table 3.29.

3.7.8 Annular Sector Ducts

Sparrow et al. [102] analyzed the fully developed laminar flow through the annular 
sector duct (also referred to as a truncated sectorial duct) pictured in Fig. 3.29g. Their 
formulas for the velocity profile, mean velocity, and friction factors are presented in [1],

Recently, Niida [103] also obtained an analytical solution for the velocity distribu
tion in an annular sector duct and expressed his solution in terms of an equivalent 
diameter. In addition, he provided an experimental verification of his pressure drop 
predictions.

Shah and London [1] computed / Re values to a high degree of accuracy using the 
analytical solution of Sparrow et al. [102], The computed results are displayed in Fig. 
3.37. Tabulated values are available in [1],

Based on the analogy of the torsion of a prismatic bar, Schenkel [95] derived the 
following approximate equation for / Re in an annular sector duct:

/Re =
0.63 / 1 - r*

1---------------------
<f> \ 1 + r*

Ip - r*
<J>\ 1 + r*

(3.197)
24

1 +



Figure 3.36. Fullv developed fluid flow and heat transfer characteristics of circular segment ducts 
[100],

TABLE 3.29 Local Nusselt Numbers in the Thermal Entrance Region of Semicircular Duct [101]

0.000458 17.71 17.43 0.0279 4.767 4.339
0.000954 13.72 13.41 0.0351 4.562 4.037
0.00149 11.80 11.37 0.0442 4.429 3.830
0.00208 10.55 10.08 0.0552 4.276 3.686
0.00271 9.605 9.141 0.0686 4.217 3.543

0.00375 8.475 8.127 0.0849 4.156 3.425
0.00493 7.723 7.375 0.105 4.124 3.330
0.00627 7.137 6 788 0.130 4.118 3.265
0.00777 6.556 6.312 0.159 4.108 3.208

0.00946 6.300 5912 0.196 — 3.171
0.0128 5.821 5.368 0.241 — 3.161
0.0168 5.396 4.935 0.261 — 3.160
0.0217 5.077 4.579 00 4.089 3.160
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Figure 3.37. Fully developed friction factors for annular sector ducts [1],

This equation is applicable for <#> > <J>min(r*).  The values of <>min for r*  = 0, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 are determined to be 60, 50, 42, 35, 28.5, 22.5, 17.5. 
13, 8.5, and 4°, respectively. For the predictions of Eq. (3.197) are in
excellent accord with the results tabulated in [1] and presented in Fig. 3.37.

Soliman [104] investigated the fully developed (m) and (hi) problems for annular 
sector ducts. His Num and NuH2 results are presented in Table 3.30.

Renzoni and Prakash [105] analyzed the simultaneously developing flow in annular 
sector ducts for air (Pr = 0.707). They treated the outer curved wall as adiabatic while 
imposing the (m) boundary condition on the inner curved wall as well as on the two 
straight walls of the sector. Their fully developed friction factors, incremental pressure 
drop numbers, and hydrodynamic entrance lengths are presented in Table 3.31. It may 
be noted that values reported in Table 3.31 do not correspond to the definition 
given in Section 3.1.2. They are defined as the dimensionless axial distance correspond
ing to APPRe = 105/ Re. This definition is similar to the definition of L* h given in 
Section 3.1.3. The fully developed Nusselt numbers (denoted simply as Nufd, since the 
thermal boundary condition employed in [105] does not correspond to any defined in 
Table 3.1) and the thermal entrance lengths determined by Renzoni and Prakash [105] 
are also presented in Table 3.31. The local Nusselt numbers and friction factors in the 
combined entrance region are available in [105],



TABLE 3.30 Fully Developed Nusselt Numbers for Annular Sector Ducts [104]

p *

2<j> = 10° 15° 20° 30 o 40° 60° 120°
Nuk1 NuH2 NuHi NuH2 Nuhi NUH2 NuH1 NuH2 Num NuH2 NuHi NtiH2 Num NuH2

0.05 2.668 0.0941 2.825 0.2288 2.961 0.4295 3.181 1.013 3.349 1.671 3.581 2.629 3.887 3.032
0.10 2.896 0.1097 3.041 0.2678 3.163 0.5059 3.354 1.187 3.490 1.939 3.660 2.818 3.863 3.020
0.15 3.137 0.1293 3.264 0.3203 3.367 0.6062 3.516 1.460 3.611 2.277 3.704 2.946 3.861 3.007
0.20 3.387 0.1552 3.488 0.3889 3.564 0.7516 3.656 1.839 3.697 2.583 3.715 3.022 3.893 2.996
0.25 3.643 0.1900 3.706 0.4877 3.742 0.9824 3.761 2253 3.742 2.803 3.702 3 059 3.964 2.986

0.30 3.893 0.2393 3.903 0.6414 3.888 1.379 3.821 2.587 3.746 2.941 3.685 3.073 4.072 2.977
0.35 4.126 0.3152 4.065 0.9186 3.988 1.937 3.832 2.809 3.721 3.021 3.679 3.073 4.215 2.967
0.40 4.326 0.4414 4.177 1.436 4.031 2.427 3.802 2.945 3.683 3.061 3.697 3.066 4.392 2.956
0.45 4.474 0.6839 4.226 2.111 4.016 2.721 3.747 3.022 3.650 3.078 3.750 3.054 4.600 2.944
0.50 4.554 1.187 4.207 2.580 3.951 2.893 3.686 3.062 3.640 3.080 3.844 3.039 4.836 2.915

0.55 4.555 1.999 4126 2.820 3.854 2.993 3.639 3.079 3.666 3.074 3.986 3.020 5.098 2.794
0.60 4.471 2.602 3.997 2.950 3.747 3.047 3.627 3.081 3.743 3.060 4.183 2.997 5.383 2.670
0.65 4.312 2.851 3.848 3.024 3.658 3.074 3.668 3.073 3.884 3.038 4.440 2.970 5.687 2.581
0.70 4.098 2.967 3.709 3.063 3.616 3.082 3.785 3.052 4.106 3.008 4.763 2.956 6.010 —
0.75 3.867 3.032 3.621 3.079 3.658 3.072 4.006 3.018 4.429 2.968 5.158 — 6.348 —

0.80 3.675 3.066 3 641 3.069 3.834 3.036 4 371 2.967 4.875 — 5.624 — 6.700 —
0.85 3.616 3.065 3.861 3.023 4.230 2.963 4928 — 5.463 — 6.163 — 7.065 —
0.90 3.889 2.979 4.462 2.870 4.979 — 5.726 — 6.208 — 6.775 — 7.443 —
0.95 5.028 4.852 5.773 — 6.250 — 6.809 — 7.123 — 7.464 — 7.832 —

“Additional NuH1 results for 20 = 150, 180, 210, 240, 270, 300, 330, and 350° are available in [104],
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TABLE 3.31 Fully Developed Fluid Flow and Heat Transfer Characteristics of Annular Sector Ducts [105]

2<> y * /Re K(<x>) Lhy Nufd T *

15° 0.2 15.65 1.77 0.0775 3.433 0.1530
0.5 16.01 1.32 0.0500 4.372 0.0924
0.8 14.21 1.42 0.0529 3.340 0.0898

22.5° 0.2 15.35 164 0.0703 3.493 0.1320
0.5 14.90 1.37 0.0516 3.933 0.0838
0.8 15.03 1.33 0.0476 3.113 0.1090

45° 0.2 14.73 1.46 0.0574 3.461 0.1070
0.5 14.29 1.42 0.0529 3.235 0.0972
0.8 17.58 1.07 0.0303 3.327 0.1230
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Figure 3.38. Fully developed friction factors and Nusselt numbers for stadium-shaped, modified 
stadium-shaped, and rectangular ducts [1].

3.7.9 Stadium-Shaped and Modified Stadium-Shaped Ducts
The stadium-shaped duct, shown in Fig. 3.29/z, comprises two semicircular short sides 
of radius b connected by two long straight sides each of length 2(a - b). Zarling [106] 
determined the fully developed f Re and NuH1 values for these ducts. They are 
displayed in Fig. 3.38. Schenkel [95] also determined the fully developed f Re values 
for the stadium-shaped ducts. His graphical results are represented by the following 
expression valid for 0 < a*  < 1:

f Re = 24(1 - 0.8765a*  + 1.2753a* 2 - 1.3086a* 3 + 0.5765a* 4) (3.198)

where a*  = 2b/2a. The predictions of Eq. (3.198) agree with the tabular values of [1] 
presented in Fig. 3.38 within ±3%.

The modified stadium-shaped duct, shown in Fig. 3.29z, comprises two circular arcs 
subtended by an angle 2<£ < 180° and two straight connecting sides. Cheng and Jamil 
[107] determined the fully developed f Re and NuH1 values for modified stadium-shaped 
ducts. Their results are presented in Fig. 3.38 which also includes the results for 
stadium-shaped and rectangular ducts for comparison.

3.7.10 Circumferentially Corrugated Circular Ducts
Hu and Chang [98] analyzed the fully developed fluid flow and heat transfer character
istics of circumferentially corrugated circular ducts with n sinusoidal corrugations over
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(d) (e)

Figure 3.39. Some corrugated singly connected ducts: (a) circular with sinusoidal corrugations, 
(b) circular with semicircular corrugations (c) circular with triangular corrugations, (J) flat with 
spanwise-periodic triangular corrugations, (e) flat with spanwise-periodic rectangular corruga
tions.

the circumference as shown in Fig. 3.39a. The perimeter and hydraulic diameter of 
these ducts need to be evaluated numerically. However, their free flow area Ac (in the 
nomenclature of Fig. 3.39a) is given by Ac — 7ra2(l + 0.5c2).

The / Re, NuH1, and NuH2 values determined by Hu and Chang [98] are presented 
in Table 3.32 as functions of n and e*  defined in Fig. 3.39a. Their f Re values for 
e*  = 0.06 are included in Fig. 3.40 for comparison with the other two ducts. Note that 
the angle 2<#> of Fig. 3.39a is related to n simply as 2$ = 360°//z.

Schenkel [95] determined the fully developed friction factors, displayed in Fig. 3.40, 
for the circular duct with semicircular corrugations as shown in Fig. 3.39b. For this 
duct

? sin <f>
A,. = ncr------

<t>

77
— sin b + cos <J>

, sin <f)
P = 772a-------

<J>
(3.199)

Note that the radius of the semicircular corrugation is a sin <f>.
The f Re values determined by Schenkel [95] for the duct with semicircular 

corrugations can be represented by the following expression with a maximum deviation 
of + 2%:

/ Re = 6.4537 + 0.8350<#> - 3.6909 X 10~V + 8.6674 X 10"4<#>3

-1.0588 X 10“ V + 6.2094 X 10“8</>5 - 1.3261 X 10~10</>6 (3.200)

where b is in degrees. Equation (3.200) is valid for 0 < 2<f> < 180°. When 2<f> = 180°,
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TABLE 3.32 Fully Developed Friction Factors and Nusselt Numbers for Circumferentially 
Corrugated Circular Ducts with Sinusoidal Corrugations [98]

n e* /Re Num NuH2 Dh/2a

8 0.02 15.990 4.356 4.357 0.9986
0.04 15.962 4.334 4.335 0.9944
0.06 15.915 4.297 4.299 0.9874
0.08 15.850 4.244 4.246 0.9776
0.10 15.765 4.176 4.177 0.9650
0.12 15.678 4090 4.089 0.9501

12 0.02 15.952 4.340 4.340 0.9966
0.04 15.806 4.267 4.267 0.9863
0.06 15.559 4.142 4.140 0.9689
0.08 15.200 3.962 3.956 0.9439
0.10 14.711 3.723 3.709 0.9107

16 0.02 15.887 4.316 4.316 0.9938
0.04 15.542 4.168 4.167 0.9747
0.06 14.943 3.912 3.906 0.9418
0.08 14.051 3.540 3.527 0.8934

24 0.02 15.679 4.245 4.245 0.9856
0.04 14.671 3.875 3.870 0.9402
0.06 12.872 3.231 3.219 0.8583

this geometry reduces to a circular duct for which Eq. (3.200) correctly predicts 
f Re = 16.

Schenkel [95] also determined the fully developed friction factors, displayed in Fig. 
3.40, for the circular duct having triangular corrugations with included angle 60° as 
shown in Fig. 3.39c. For this duct,

cos </> + ^3 sin
A„ — ira2---------------------

0

sin <]>
P = Aira------

<J>
(3.201)

The f Re values determined by Schenkel [95] for the duct with triangular corruga
tion can be represented by the following expression with a maximum error of ±1%:

f Re = 3.8952 + O.3692</> - 3.2483 X 10"V

-3.3187 X 10"5</>3 + 4.5962 X 10" V4 (3.202)

where <f> is in degrees. Equation (3.202) is valid for 0 < 2<f> < 120°.

3.7.11 Flat Duct With Spanwise-Periodic Triangular Corrugations at 
One Wall

Sparrow and Charmchi [108] analyzed the fully developed fluid flow and heat transfer 
characteristics of a flat duct with a spanwise-periodic corrugated wall as pictured in 
Fig. 3.39d. The flow in the duct is in the direction perpendicular to the plane of the 
paper. The duct has an infinite extent in the spanwise direction, so that the end effects 
due to the short bounding walls are ignored as in a flat duct. The (m) boundary
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Figure 3.40. Fully developed friction factors for circumferentially corrugated circular ducts.

condition was imposed on the corrugated wall, while the flat wall was treated as 
adiabatic, i.e., insulated. This duct geometry together with the just-described thermal 
boundary conditions is encountered in present-day air-operated flat plate solar collec
tors. In the nomenclature of Fig. 3.39c/, the cross-sectional area and perimeter of the 
duct are given by

„ , 1 + sin<i>
Ae = n(b2 — n‘)tan<>, P = 2n(b-a)^—^------- (3.203)

where n is the number of triangular corrugations, each with included angle 2<J>.
The f Re and NuH1 values determined by Sparrow and Charmchi [108] are shown 

in Fig. 3.41. These values are replotted using the original graphs of [108], which had 
a/(b — a) as the abscissa. This was done to provide a common basis of comparison for 
the results in Figs. 3.41 and 3.42 for the flat duct with triangular and rectangular 
corrugations at one wall.

When a/b = 0, the geometry of Fig. 3.39d reduces to an array of isosceles triangles. 
For this limiting case, f Re values of Fig. 3.41 are 12.750, 13.250, 13.478, and 13.125 
for 2<j> = 20, 40, 60, and 90°, respectively. These values agree with those in Fig. 3.18 
within + 1%. Likewise, the NuH1 values of Fig. 3.41 are within 1% of the NuH1 values 
of Case 2 of Fig. 3.21. When a/b = 1, the geometry of Fig. 3.39c/ reduces to a flat 
duct. In this limiting case, f Re -» 24 and NuH1 -» 5.385 [see Eqs. (3.77) and (3.89)].

3.7.12 Flat Duct with Spanwise-Periodic Rectangular Corrugations at 
One Wall

Sparrow and Chukaev [109] analyzed the fully developed fluid flow and heat transfer
characteristics of a flat duct with spanwise-periodic rectangular corrugations at one



Figure 3.41. Fully developed friction factors and Nusselt numbers for flat ducts with spanwise- 
periodic triangular corrugations at one wall [108].

Figure 3.42. Fully developed friction factors for flat ducts with spanwise-periodic rectangular 
corrugations at one wall [109].
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TABLE 3.33 Geometrical Characteristics and Fully Developed Friction Factors for Some Unusual Singly Connected Ducts
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Geometry

Cross-sectional area, 
perimeter, and fully 
developed friction factor Geometry

Cross-sectional area, 
perimeter, and fully 
developed friction factor

/Re = 15.3261

Cycloidal duct1

Ac = 6'rra2
P = 1677a 

/ Re = 16.9881

Elliptic-cum-circular duct

Ac = (7t/2)(u + b) a

P = 0(77 -r 2£(w)].
where E(m) is the complete elliptic 
integral of the second kind
with m = 1 - a*~,  a*  = b/a 
f Re = 16.0196 for «*  = * and |

P = [2 4- /65 -I- |ln(8 + i/65)]a

1----------2a ---------G

Semistadium-shaped or 
horseshoe-shaped duct

-•---- 3a------

-*------- 2a -------- •"

Football-shaped duct

/ a \
Ac = 2

P = 4

sin — — 
\b)

( a\b sin —
\bj

16.2541 for
/Re = 17.0714 for

18.6527 for

b/a = 1.0417 
b/a = 1.250 
b/a = 2.125

Ac = 2b(2a - b)
P = (2a — b) + Trh, a*  = 2b/2a

/Re = 24(1 - 0.4967a*  - 0.8910a* 2 + 0.8655a* 3 1- 0.3818a* 4
- 0.5693a* 5 + 0.1471a* 6) for 0 < a*  < 2

3a2
.4,.= —(200 + 33,7) 

lyo
P= -^-(63 + 4/153) 

14
/ Re = 15.7847

Semielliptical duct

77
A. - —ab 

1 2
P = 2a[l + £(m)], 

where E(m) is the complete elliptic 
integral of the second kind 
with m = 1 - a* 2, a*  = b/a 

3t72(1.75 + 0.4875a* 2)
^RC 2[1 + £(w)]2

Radiator-shaped duct*

Ac = 4(77 + 12)a2

P = 4(77 + 2) a 
/Re = 16.8356

fThe two branches of the cycloidal duct, symmetric about the horizontal axis, are the loci of a point on a circle of radius a as it rolls on the horizontal axis.
*The radiator-shaped duct comprises two central trapezoidal sections together with the semielliptic ends.



P = 10.9212a 
/Re = 19.2522

Rectangular duct with 
unilateral elliptical ends

P = (8 4- 77)a

/ Re = 20.0728Rectangular duct with 
unilateral circular ends

Duct with two 
straight sides and 
a quarter circular arc

/ Re = 7.06

P = (2 -i- 77}a

/ Re = 6.50

3-87

Duct with a straight side 
and two quarter circular 
arcs



= 7^ ''4
P = (tt 4 2)a 

/Re = 16.5152

Waspwaist-shaped duct

Ac = 2u2[7t — <j> + sin <[> (2 — cos<#>)]

4 (sin <t> - cos <i>) 
/ Re = - - ------ z--------- --

77 P4sin/
where for 45 ° < <b < 90 °

F = 0.7217/3 - 3.1197<£2
+ 4.9152</> - 2.2731 

where / is in radians.

Ac = (2a2 — b2)<!> + a2sin2/

P = 2(2a + a* = b/a
96[(2 — a*2)</> + sin2<(>]3

f Re = ------ ------------ ----- 5---------
[(2 + a* )<H2F

where
F — sin4<i> — 4(3a*2 — 2)sin2<£

+ 32a*3sin<J> — 6(a*4 + 4a*2 — 2)<f>

P = 4a(tr - <|> ■+ 1 - cos/)
32 [ 77 — / -I- sin <j> (2 — cos </>) ]3

/ Re =----- - ------------------------------- z—
77 P4(tt — / +1 — cos /) 

where for 0 < 2/ < 180°
F = 0.5091 -I- 0.1851/ + 0.0980/2

- O.O169</>3 - 0.1814</>4 + 0.0723<>5
+ 0.0092/6 

where </> is in radians.

Star-shaped duct

Ac = 4a2(l — cot /)
8a

P = ------
sin /

Moon-shaped or
Sickle-shaped duct
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3»88 Geometry

Cross-sectional area, 
perimeter, and fully 
developed friction factor Geometry

Cross-sectional area, 
perimeter, and fully 
developed friction factor

Lens-shaped duct®

Ac = [2//2 - a2(2<f> — sin2^>)]

P = 2(H + 2a<f>), H = a sin<f>

16 (2sin2</> -i- sin2<f> - 2<j>) 
Re =------------ r--------------- -------

7r F4 (2<j> + sin 6)

where forO < 2</> < 106.26° 
F = sin <j> (0.7399 - 0.4639<> 
+ 0.6568<j>2 - 2.0720<#>3 
+ 2.5873<#>4 - 1.1896<£>5) 
where <t> is in radians

11-shaped duct

Ac = la1

P = 16a 

f Re = 15.6060

I-shaped duct

At = 120«2
P = 52a 

/Re = 15.7728

Ac = 3a1 
P =%a

/ Re = 14.3965

Stairstep-shaped or
L-shaped duct

§The angle 2<t> = 106.26° corresponds to the case when two arcs of the lens-shaped duct just contact each other.



Dumbbell-shaped duct

A, = 16a2
P = 28a 

f Re = 9.6494

< =

P = |(40 -t 2/10 )

/Re = 16.0824

Milkcan-shaped duct

A,. = *a 2
P = |(9 + /17) 

/ Re = 14.4324

Atomic-bunker-shaped duct

w
co CO

Ac = + 12)a2

P = lOvra

/ Re = 14.3474



T
2a

1
P = 12a 

f Re = 15.7080

Stairstep-shaped or
L-shaped duct

Square duct with one 
indented comer

Rectangular duct with 
two indented corners

Ac = sw — (7r/2)a2
P = 2(5 t- H’ — 2a)

f Re = 14.2122 + 12.5769a/s
- 159.6443(a/s)2 + 681.3330(a/s)3
- 946.9324) a/s )4

for w/s — 1 — a/s,0 < a/s < 0.5
/Re = 15.5351 + 11.8844a/s

- 211.1367(a/r)2 + 902.9363(a/s)3
- 1199.708(a/s)4

for w/s = 2 — 3(a/s),0 < a/s < 0.5 
/Re = 15.5315 + 8.5289(a/s)

- 185.2351 (a/sy + 807.7854(a/s)3
- 1086.055(a/s)4

for w/s = |[2 — 3(a/j)],0 < a/s < 0.5
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Geometry

Cross-sectional area, 
perimeter, and fully 
developed friction factor Geometry

Cross-sectional area, 
perimeter, and fully 
developed friction factor

A( = 22a2

P = 20\/2a 

f Re = 13.9422

t ( 13.7760
Re “ 1 13.6480

4
2

P = 3s - (6 - Tr)a
for s/a = 6
for s/a = 3

Cusped ducts

77 77
sin- cos— 

n n
' 2 \

P = n 77a| 1-----
\ n /

where n is the number of 
concave circular arcs each 
of radius a forming the duct

Ac = na2| + cot- cos- -t
n n n 2

/Re = 5.5667 + O.5253n

- 0.0841n2 + 0.0044/!3

for 3 < n < 8.

Equilateral triangular 
duct with indented comers

Square duct with 
four indented comers

Ac = s2 — tto2

P = 4s — (8 — 77)72 
f Re = 14.2445 - 43.2622a/s 

+ 277.0151(a/s)2 
- 439.7446(a/s)3

for 0 < - < 0.5 
s

Pascal’s limagon ducts11

77 ■> i
Ac = ~/(a~ +

P = 4(a + b)E(m) 
where E( m) is the 
complete elliptic integral 
of the second kind with 

2a* 3/2 c

4[t7/E(w)]2(2 + a* 2)3

(1 + a*) 2(8 + 8a* 2 + a* 4)

11 Pascal’s limagon is described by a point on the periphery of a circle of diameter b as it rolls on the periphery of a fixed circle of diameter a. When b = a, Pascal’s 
limagon is called a cardioid, and when b < a it is called a trisectrix. For a cardioid duct, the Nusselt numbers NuH1 and NuH2 have the values 4.2079 and 4.0966, 
respectively [1].
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wall as shown in Fig. 3.39e. This duct geometry could simulate the channel-like cooling 
passages of electronic devices where the corrugations could be viewed as representing 
heat-generating components of the printed circuit boards.

The duct of Fig. 3.39e has an infinite extent in the spanwise direction so that the 
end effects due to the short bounding walls are ignored as in a flat duct. Two thermal 
problems were solved numerically by successively applying the (m) boundary condition 
at each wall while keeping the other wall adiabatic. The heat transfer results were then 
obtained by superposition technique for arbitrary heating at both walls. Extensive heat 
transfer results are available in [109] for the three geometric parameters b/d = |, 1, 5; 
c/d = |. 2,3 J and a/b = 0.1, 0.2,..., 0.9. The f Re results are displayed in Fig. 3.42 
for the indicated values of the three parameters. As a/b —* 1 (vanishing corrugations), 
all of the / Re curves in Fig. 3.42 tend toward the value 24, which corresponds to that 
for the flat duct. Note that the plotted values in [109] are for 0.1 < a/b < 0.9. The 
values shown in Fig. 3.42 beyond this range were obtained by the present authors using 
a polynomial regression.

3.7.13 Miscellaneous Singly Connected Ducts
The fully developed friction factors for some unusual singly connected ducts are 
presented in Table 3.33. The results for the moon-shaped or sickle-shaped ducts, 
cusped ducts, ducts with two straight sides and a quarter circular arc, and ducts with 
one straight side and two quarter circular arcs are based on the analytical solutions 
presented in [1]. The results for Pascal’s limagon ducts are due to Tao [110], and those 
for the remaining ducts were obtained by the present authors using a graphical method 
developed by Schenkel [95]. The method is called the 3R method because it entails the 
determination of three radii: hydraulic, equal area, and effective for the duct in 
question. The method also relies for interpolation on a knowledge of the friction 
factors for at least two ducts similar in shape to the duct in question.

3.8 CONCENTRIC ANNULAR DUCTS

The concentric annular duct pictured in the inset to Fig. 3.43 is of great technical 
importance, as it is used in numerous fluid flow and heat transfer devices involving two 
fluids. One fluid flows through the inside tube while the other flows through the annular 
passage between the two tubes forming the annular duct. One limiting case of the 
annular duct (r*  = 1) is the flat duct, while the other (r*  = 0) is a circular duct with 
an infinitesimal core at the center. Despite the presence of the infinitesimal core at the 
center, most of the fluid flow and heat transfer results for r*  = 0 turn out to be 
identical to those for a true circular duct without the infinitesimal core.

3.8.1 Fully Developed Flow
The fully developed velocity profile and friction factors for concentric annular ducts 
are given by [1]

(3.204)
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«max = 2(! ~ C2 + 2rm*2lnrm*)  

1 + r* 2 - 2rm*2

1 (dp\Dh lr2- r2 
H\dx) um\ ri Dh = 2(r. - r, )

/Re= -

/Re =
16(1 - r*) 2

1 + r* 2 - 2r„* 2

(3.205)

(3.206)

(3.207)

(3.208)

(3.209)

M ' um

Here r„, designates the radius where the maximum velocity occurs (du/dr = 0). It is 
given by

1 - r* 2 
21n(l/r*)

1/2
(3.210)

In Eqs. (3.207) and (3.208), ft and fo respectively designate the fully developed 
friction factor at the inner and the outer walls. In Eq. (3.209), / stands for the 
circumferentially averaged fully developed friction factor, which is related to / and fo 
by

fr + f r
(3.211) 

r, + rn
The fully developed friction factors / Re computed from Eq. (3.209) are displayed 

in Fig. 3.43, which also includes circumferentially averaged fully developed Nusselt 
numbers NuT and NuH to be presented shortly.

The hydrodynamic entrance lengths L/ for concentric annular ducts with r*  = 0, 
0.05, 0.10, 0.50, 0.75, and 1.00 are 0.0541, 0.0206, 0.0175, 0.0116, 0.0109, and 0.0108, 
respectively [1]. The fully developed incremental pressure drop numbers K(oo) for the 
aforementioned values of r*  are 1.25, 0.830, 0.784, 0.688, 0.678, and 0.674, respectively 
[1].

Natarajan and Lakshmanan [111] presented the following simple formula for f Re, 
which agrees with the values in Fig. 3.43 within ±2% for r*  > 0.005:

/ Re = 24r* 0035 ( 3.21 2)

Since one or both annulus surfaces can be heated independently, numerous thermal 
boundary conditions are possible for heat transfer to a flowing fluid in the annulus. 
Depending on the temperature or heat flux specified at the inner or the outer surface, 
four fundamental solutions have been developed for concentric annular ducts [112], By 
using superposition techniques, it is possible to combine the four fundamental solu
tions to obtain a solution for any desired boundary condition.
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Figure 3.43. Fully developed friction factors and Nusselt numbers for concentric annular ducts 
[!]•

The boundary conditions for the four fundamental problems alluded to above have 
already been described in Sec. 3.3.1 in the context of the flat duct. The nomenclature 
used in describing the corresponding solutions can be best explained with reference to 
the specific heat transfer parameters 0^ and 0^, which are the dimensionless duct 
wall and fluid bulk mean temperatures, respectively. The superscript k denotes the type 
of the fundamental solution according to the four types of the boundary conditions 
described in Sec. 3.3.1. Thus, k = 1, 2, 3, or 4. The first subscript / in 0^} refers to the 
particular wall at which the temperature is evaluated. Thus, depending on whether the 
temperature is evaluated at the inner or the outer wall, I = i or o. The second subscript 
/ in 0/**  refers to the wall at which T ¥= Te or q” ¥= 0, i.e., the active wall with a 
nonzero boundary condition. The significance of k and j in 0^ is the same as in 0/A), 
while m denotes the mean, which in this instance refers to the fluid bulk mean 
temperature,

The fundamental solutions of the first, second, and third kinds for fully developed 
flow in concentric annular ducts are presented in Table 3.34 [1]. The additional heat 
transfer results pertaining to the four fundamental solutions can be obtained from the

TABLE 3.34 Fundamental Solutions of the First, Second, and Third Kinds for 
Fully Developed Flow in Concentric Annular Ducts [1]

J. * <I>0> it NufJ’ Nu^ 0(2) _ 0.(2) mo io Nu<?> Nu(02J Nu<?> Nu<3>

0 00 00 2.66667 0.145833 00 4.36364 00 3.6568
0.02 25.05098 30.17942 2.94836 0.127945 32.70512 4.73424 32.337 3.9934
0.05 12.68471 16.05843 3.01887 0.122568 17.81128 4.79198 17.460 4.0565
0.10 7.81730 10.45870 3.09528 0.116214 11.90578 4.83421 11.560 4.1135
0.25 4.32809 6.47139 3.26700 0.102207 7.75347 4.90475 7.3708 4.2321

0.50 2.88539 4.88896 3.52035 0.085513 6.18102 5.03653 5.7382 44293
1.00 2.00000 4.00000 4.00000 0.064286 5.38462 5.38462 4.8608 4.8608
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following set of equations in conjunction with Table 3.34:

= = r*̂ l} = (3.213)

0d.) = 1 - 0(D "mi mo (3.214)

0(1) 0(1)
NU(D = Nu(1) = ---------- = ——1NUZ/ _ (1) (1)

x vmi vmo
(3.215)

0(1) r*0d)
Nu(t) = Nu(i) = ----- 21— = ------‘2-i>uoz- _ (1)

x o m i
(3.216)

(3.217)

Nu" ■ (3.218)

i
Nu^) =-------------n(2) _ n(2) 

voo vnu>
(3.219)

Nu$ = Nu£> = 0 (3.220)

= o (3.221)

e - e - e=e -1 (3.222)

i
d)(4) - -----  = — r*0(4) (3.223)

1 r*0(4) = f*0(4)  _--------- j. -------
°° NuW Nu<V

(3.224)

NU/7 -Nll/a - (4) _ ^(4) - *0(4)  - Nuii 
vii ''mi ' vmo

(3.225)

1 r*
Nu(4) = Nu(4> =-------------  =----  = Nu(1)uoo n(4) _ 0(4) 0(4)

voo vmo vmi
(3.226)

The direct practical applications of the four fundamental solutions presented above 
are rather limited. Their real utility lies in developing solutions to problems of practical 
interest. Three such problems are of great interest, and their solutions are presented 
next.

Constant Temperatures at Both Walls. For this problem,

IT, at r = r,, x > 0
T = < To at r = r0, x > 0

\ Te at x < 0, r,< r < ro
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When Tt =# To, the problem is designated as la and the fully developed Nusselt 
numbers at the two walls are designated as Nu* la) and Nu(„la). They are presented in 
Fig. 3.44. Tabulated values for this and the subsequent solutions are available in [1],

When T, = To, the problem is designated as lb and the fully developed Nusselt 
numbers at the two walls are designated as Nu’lb) and Nu(olb). They are presented in 
Fig. 3.44. In this case, it is useful to obtain a circumferentially averaged Nusselt 
number, designated as NuT, It can be obtained from Nu^lb) and Nu(oiw via the 
following relation:

Nut =
Nu(olb) + r*Nu< lb)

1 + r*
(3.221)

The Nut values from Eq. (3.227) are presented in Fig. 3.43.

Constant Heat Fluxes at Both Walls. For this problem,

( q" at r = rt, x > 0
Iff = /

\qo at r = ro, x > 0

T = Te at x < 0, < r < r0
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Figure 3.45. Fullv developed Nusselt numbers for constant axial heat fluxes at both walls in 
concentric annular ducts [1].

When q'' = q", the problem is designated as 2a and the fully developed Nusselt 
numbers at the two walls are designated as Nu(,2a) and Nu(02a). They are presented in 
Fig. 3.45.

When q" ¥= q”, the problem is designated as 2b and the fully developed Nusselt 
numbers at the two walls are denoted as Nu* 2b) and Nu(„2b). They are presented in Fig. 
3.45. A circumferentially averaged Nusselt number NuH can be obtained from NuJ2b) 
and Nu(,2b) via a relation similar to Eq. (3.227). NuH thus calculated are shown in Fig. 
3.43.

It may be noted that the heat flux is considered as positive if the heat transfer is 
from the wall to the fluid. Consequently, a negative Nusselt number as in Fig. 3.45 
means that heat transfer takes place from the fluid to the wall. In aforementioned both 
cases, Th — Tm is positive. An infinite Nusselt number in Figs. 3.44 and 3.45 implies 
that Tw = Tm and not an infinite heat flux.

Constant Temperature at One Wall with Constant Heat Flux at the Other. For 
this problem,

T = 7) at r = rj, x > 0

<7,7 = <77 at r = r2, x > 0

T = Te at x < 0, rt < r < r(,
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Here the subscripts 1 and 2 can refer to either the inside or the outside wall. When 
7j * T?, the problem is referred to as 4a, and when Tx = T2, it is referred to as 4b. It 
can be shown that

Nu[4a) = Nu[4b) = Nu<la) (3.228)

Nu(4a1 = Nu(4b) = Nu(ola) (3.229)

3.8.2 Hydrodynamically Developing Flow
There are several analytical investigations of the problem of laminar flow development 
in concentric annuli. They are summarized in [1], Presented in Table 3.35 are the axial 
velocity and pressure distribution in the hydrodynamic entrance region for r*  = 0.1, 
0.25, and 0.5 as determined by Kaka$ and Y'ucel [113]. The results of Table 3.35 are in 
excellent accord with those of other analyses cited in [1]. The results for r*  = 0 are 
available in Table 3.3, and those for r*  = 1 in Table 3.9. It may be noted that for 
r*  = 1 the transverse coordinates of Tables 3.9 and 3.35 are related as y/b = 
2(r — ri)/(ro — rz) — 1 with 2Z> = ro — rz.

The apparent Fanning friction factor in the hydrodynamic entrance region of 
concentric annuli can be determined from the following correlation developed by Shah 
[114]:

d *(~)/(4* ‘) +/Re-3.44(x+)
Re = 3.44( x ) 3-----------------------------------------------------

1 + C(x+)’
(3.230)

The values of K(ao), f Re, and C entering Eq. (3.230) are given in Table 3.36. The 
results computed from Eq. (3.230) agree with various analytical predictions within 
±3%.

3.8.3 Thermally Developing Flow
The thermal entrance length solutions for concentric annular ducts are divided into five 
categories, which are discussed next.

Fundamental Solution of the First Kind. As indicated in Sec. 3.3.1, this solution 
applies to concentric annular ducts with one wall at a uniform temperature and the 
other at a uniform temperature different from the entering fluid temperature. The 
solution is presented in Table 3.37 as a function of x*  and r*.  The additional 
quantities of practical interest can be determined from the following relations in 
conjunction with Table 3.37:

<e = i> (3.231)

«^’0 = ^oo = l, Co = 0 (3-232)

Fundamental Solution of the Second Kind. As indicated in Sec. 3.3.1, this solution 
applies to concentric annular ducts with one wall insulated and the other subject to 
uniform heat flux. The solution is presented in Table 3.38 as a function of x*  and r*.  
The additional quantities of practical interest can be determined from the following
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TABLE 3.35 Axial Velocity and Pressure Distribution in the Hydrodynamic 
Entrance Region of Concentric Annular Ducts [113]

Axial Velocity, u/um 

 (r ~ r,)/(ro - r,)  
0.05 0.25________0.50 0.75 0.95

Pressure 
Drop 
Ap*

r* = 0.10

0.00005 0.959 1.0540 1.0540 1.0540 0.9130 0.04041
0.0001 0.895 1.0710 1.0710 1.0710 0.8130 0.07753
0.0005 0.652 1.1530 1.1540 1.1480 0.4980 0.2608
0.001 0.580 1.2020 1.2090 1.1770 0.4060 0.3921
0.005 0.499 1.3090 1.4150 1.0940 0.2780 1.0099
0.01 0.498 1.3620 1.4870 1.0370 0.2500 1.5560
0.04 0.509 1.4149 1.5187 1.0004 0.2355 4.3013

00 0.5128 1.4176 1.5187 0.9942 0.2351 00

r*  = 0.25

0.00005 0.9470 1.0540 1.0540 1.0540 0.9100 0.04042
0.0001 0.8720 1.0710 1.0710 1.0710 0.8100 0.07748
0.0005 0.5800 1.1520 1.1530 1 1480 0.5015 0.26032
0.001 0.4980 1.1960 1.2090 1.1780 0.4100 0.39142
0.005 0.3970 1.2490 1.4140 1.1060 0.2840 1.00816
0.01 0.3840 1.2700 1.4840 1.0580 0.2580 1.55613
0.04 0.3846 1.2916 1.5095 1.0329 0.2473 4.38902

00 0.3850 1.2922 1.5096 1.0327 0.2472 00

r*  = 0.50

0.00005 0.9420 1.0540 1.0540 1.0540 0.9060 0.04050
0.0001 0.8610 1.0710 1.0710 1.0710 0.8040 0.07765
0.0005 0.5440 1.1510 1.1530 1.1490 0.5070 0.26037
0.001 0.4570 1.1900 1.2085 1.1800 0.4170 0.39128
0.005 0.3440 1.1990 1.4130 1.1250 0.2940 1.00697
0.01 0.3270 1.1950 1.4820 1.0860 0.2700 1.55491
0.03 0.3234 1.2002 1.5027 1.0705 0.2618 3.48400

oo 0.3235 1.2004 1.5028 1.0703 0.2617 oo

relations:

0^ . = x, mi
4r*

= 1, = 0

$(2) = 1 $(2) = 0
X, OO ’ X,IO

(3.233)

(3.234)

*
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TABLE 3.36 Flow Parameters and Constants to be Used in Conjunction with Eq. (3.230) 
for Concentric Annular Ducts [114]

r* A’(oo) /Re C

0 1.250 16.000 0.000212
0.05 0.830 21.567 0.000050
0.10 0.784 22.343 0.000043
0.50 0.688 23.813 0.000032
0.75 0.678 23.967 0.000030
1.00 0.674 24.000 0.000029

Fundamental Solution of the Third Kind. As indicated in Sec. 3.3.1, this solution 
applies to concentric annular ducts with one wall insulated and the other at a uniform 
temperature different from the entering fluid temperature. The solution is presented in 
Table 3.39 as a function of x*  and r*.  The additional quantities of practical interest 
can be determined from the following relations:

= 0, 0^ = 1, Nu(x3)0,. = 0 (3.235)

= 0, 0<3> o = 1, Nu«,.o = 0 (3.236)

Fundamental Solution of the Fourth Kind. As indicated in Sec. 3.3.1, this solution 
applies to concentric annular ducts with one wall at a uniform temperature equal to the 
entering fluid temperature and the other wall subjected to uniform heat flux. The 
solution is presented in Table 3.40 as a function of x*  and r*.  The additional 
quantities of practical interest can be determined from the following relations in 
conjunction with Table 3.40:

^4)o, = -0,<4LNu<v4)o,., Oj4>, = 1, 0^oi = 0 (3.237)

^4L = -^(4)moNU;c,,.o, O'4’oo = 1, 0^IO = 0 (3.238)

The thermal entrance lengths for the four fundamental solutions are presented in 
Table 3.41. The thermal entrance length for the A th fundamental solution and 

y th heated wall is the value of x*  at which Nu^), = 1.05 Nu^’.

Prescribed Wall Temperature and Heat-Flux Distributions. The utility of the four 
fundamental solutions presented above lies in synthesizing solutions to the problems of 
practical interest. The results pertaining to three such problems are presented below. 
They are obtained by superposing the fundamental solutions of the first, second, and 
fourth kinds. In these solutions, the Nusselt numbers for the inner and the outer walls 
are defined as

/lTT q''
Nu; = —— where A; = (3.239)

A *m

hnDh q"
Nuo = —— where h0 = (3.240)

K 1 <> * tn



TABLE 3.37 Fundamental Solutions of the First Kind for Thermally Developing
Flow in Concentric Annular Ducts [1]

~ n<„„ n<>,o

r* = 0.02

0.00001 
0.0001
0.001
0.01
0.1

oc

78 5
50.87
35.475
26.124
25.051

0 0011
0.00519
0.03328
0.15146
0.16993

78 5
51.14
36.697
30.787
30.179

0.043
2.748
2.948

51.081
23.033

9.993
3.881 
0.835 
0.501

O.OO3O3
0.01380
0.06134
0.25664
0.75734
0.83006

51.236
23.355
10.646

5.220
3.440
2.948

0.567
27.500
30.179

0.00001

r*  = 0.05

51.627 0.00297 51.781
0.0001 52.0 0.0014 52.1 — 23.296 0.01355 23.616 —
0.001 30.43 0.00759 30.67 — 10.125 0.06031 10.774 —
0.01 19.397 0.04606 20.334 0.054 3.951 0.25247 5.286 0.166
0.1 13.269 0.19140 16.409 2.841 0.915 0.73191 3.413 14.856

00 12685 0.21009 16 058 3.019 0.634 0.78991 3.019 16.058

0.00001 80.290 0 00043 80.324

r*  = 0.10

52.186 0.00287 52.336
0.0001 40.682 0.00210 40.767 — 23.576 0.01308 23.888
0.001 21.949 0.01094 22.192 — 10.276 0.05832 10.912 —
0.01 12.918 0.06131 13.762 0.064 4.044 0.24530 5.359 0.155
0.1 8.199 0.23388 10.702 2.933 1.022 0.70058 3.413 9.792

00 7.817 0.25256 10.459 3.095 0.782 0.74744 3.095 10.459

0.00001 66.502 0.00079 66.555

r*  = 0.25

53.276 0.00257 53.414
0.0001 31.947 0.00375 32.067 — 24 150 0.01176 24.438 —
0.001 15.843 0.01826 16.138 — 10.613 0.05273 11.204 —
0.01 8.236 0.09229 9.073 0.083 4.277 0.22473 5.517 0.130
0.1 4.567 0.31231 6.641 3.120 1.276 0.63474 3.494 6.141

00 4.328 0.33120 6.471 3.267 1.082 0.66880 3.267 6.471

0.00001 60.470 0.00121 60.543

r*  = 0.50

54.613 0.00220 54.733
0.0001 28.295 0.00563 28.455 — 24.889 0.01007 25.142 —
0.001 13.339 0.02642 13.701 — 11.077 0.04549 11.605
0.01 6.341 0.12488 7.246 0.092 4.622 0.19773 5.761 0.116
0.1 3.073 0.38995 5.037 3.374 1.615 0.56325 3.698 4.671

00 2.885 0.40982 4.889 3.520 1.443 0.59018 3.520 4.889

0.00001 56 804 0.00171 56 901

r*  = 1.0

56.804 0 00171 56.901
0.0001 26.141 0.00788 26.349 — 26.141 0.00788 26.349
0.001 11.895 0.03613 12.341 — 11.895 0.03613 12.341 —
0.01 5.235 0.16249 6.251 0.064 5.235 0.16249 6.251 0.064
0.1 2.168 0.47770 4.151 3.835 2.168 0.47770 4.151 3.835

00 2.000 0.50000 4.000 4.000 2.000 0.50000 4.000 4.000
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TABLE 3.38 Fundamental Solution of the Second Kind for Thermally Developing
Flow in Concentric Annular Ducts [1]

X* 0'2>X. Ol Nu£>„. 0<2>
X, oo

r*  = 0.02

0.0001 0.0115 — 86.9 0.035376 _ 28.584
0.001 0.01859 — 54.01 0.079885 — 13.164
0.01 0.027036 0.000002 38.093 0.193018 0.000097 6.502
0.1 0.38397 0.005296 32.729 0.603071 0.264808 4.741
1.0 0.109008 0.075872 32.705 4.132796 3.793624 4.734

00 00 00 32.705 00 00 4.734

r*  = 0.05

0.0001 0.01725 — 58.0 0.034990 — 28.894
0.001 003034 — 33.17 0.078920 — 13.314
0.01 0.048370 0.000005 21.521 0.190125 0.000108 6.578
0.1 0.075142 0.012947 17.827 0.589334 0.258931 4.799
1.0 0.246620 0.184348 17.811 4.018208 3.686958 4.792

00 00 00 17.811 00 OO 4.792

r*  = 0.10

0.0001 0.021194 — 47.265 0.034596 — 29.212
0.001 0.04043 — 24.96 0.077880 — 13.469
0.01 0.070738 0.000012 14.903 0.186700 0.000116 6.652
0.1 0.120267 0.024794 11.918 0.570190 0.247944 4.841
1.0 0.447629 0.352015 11.906 3.843224 3.520150 4.834

00 00 00 11.906 OO OO 4.834

r*  = 0.25

0.0001 0.026327 — 38.099 0.033832 — 29.840
0.001 0.053885 — 18.838 0.075739 — 13.786
0.01 0.105856 0.000030 10.219 0.179005 0.000118 6.803
0.1 0.208792 0.054572 7.764 0.523546 0.218290 4.913
1.0 0.928974 0.774448 7.753 3.403883 3.097793 4.905

00 00 oo 7.753 00 OO 4.905

r*  = 0.50

0.0001 0.029345 — 34.233 0.032919 — 30.626
0.001 0.062474 — 16.356 0.073054 — 14.207
0.01 0.131911 0.000052 8.433 0.168984 0.000105 7.027
0.1 0.294840 0.090599 6.192 0.464851 0.181605 5.046
1 0 1.495118 1.290576 6.181 2.865214 2.581152 5.037

00 00 oo 6.181 00 oc 5.037

r*  = 1.0

0.0001 0.031498 — 31.950 0.031498 — 31.950
0.001 0.068821 — 14.965 0.068821 — 14.965
0.01 0.153517 0.000080 7.490 0.153517 0.000080 7.490
0.1 0.385362 0.136066 5.395 0.385362 0.136066 5.395
0.5 1.185714 0.935714 5.385 1.185714 0.935714 5.385

00 00 00 5.385 00 OO 5.385
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TABLE 3.39 Fundamental Solution of the Third Kind for Thermally Developing Flow
in Concentric Annular Ducts [1]

A* 0<3>. r, oi x. mi Nu<x3),,. *(3)
X, OO Wo 0<3>x, mo Nu<A3)oo

0.01 35.394 0.00012 0.0331

r*  = 0.02

36.775 3.8810 0.00118 0.25616 5.217
0.05 28.207 0.05729 0.13407 32.574 1.5241 0.34276 0.62191 4.031
0.1 24.666 0.16699 0.23740 32.345 0.68894 0.69722 0.82751 3.994
0.5 8.9413 0.69793 0.72350 32.337 0.00131 0.99942 0.99967 3.993

CO 0 1 1 32.337 0 1 1 3.993

0.01 19.405 0.00020 0.04562

r*  = 0.05

20.332 3.9517 0.00140 0.25254 5.287
0.05 14.605 0.07801 0.16980 17.592 1.5705 0.34310 0.61631 4.093
0.1 12.273 0.21677 0.29722 17.464 0.71766 0.69444 0.82311 4.057
0.5 3.2443 0.79290 0.81419 17.460 0.00148 0.99937 0.99963 4.057

CO 0 1 1 17.460 0 1 1 4.057

0.01 12.920 0.00032 0.061221

r*  = 0.10

13.762 4.0442 0.00153 0.24535 5.359
0.05 9.1601 0.10117 0.21362 11.648 1.6427 0.33688 0.60416 4.150
0.1 7.3655 0.26918 0.36295 11.562 0.76967 0.68400 0.81292 4.114
0.5 1.3705 0.86398 0.88144 11.560 0.00194 0.99920 0.99953 4.114

CO 0 1 1 11.560 0 1 1 4.114

0.01 8.2382 0.00058 0.09229

r*  = 0.25

9.076 4.2773 0.00159 0.22480 5.518
0.05 5.2488 0.14493 0.29346 7.429 1.8451 0.31296 0.56785 4.269
0.1 3.8763 0.36106 0.47417 7.372 0.92804 0.64888 0.78074 4.233
0.5 0.3664 0.93959 0.95028 7.371 0.00412 0.99844 0.99903 4.232

CO 0 1 1 7.371 0 1 1 4.232

0.01 6.3404 O.OOO87 0.1250

r*  = 0.50

7.246 4.6214 0.00147 0.19789 5.762
0.05 3.6492 0.18808 0.3692 5.785 2.1535 0.27967 0.51803 4.468
0.1 2.4675 0.44405 0.5700 5.739 1.1814 0.59887 0.73330 4.430
0.5 0.1156 0.97394 0.9798 5.738 0.01048 0.99644 0.99763 4.429

CO 0 1 1 5.738 0 1 1 4.429

0.01 5.2421 0 00119 0.16254

r*  = 1.0

6.260 5.2421 0.00119 0.16254 6.260
0.05 2.7028 0.23561 0.44867 4.902 2.7028 0.23561 0.44867 4.902
0.1 1.6468 0.52780 0.66124 4.861 1 6468 0.52780 0.66124 4.861
0.5 0.0337 0.99033 0.99306 4.861 0.0337 0.99033 0.99306 4.861

CO 0 1 1 4.861 0 1 1 4.861
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TABLE 3.40 Fundamental Solution of the Fourth Kind for Thermally Developing Flow
in Concentric Annular Ducts [1]

X* .,x. mi Nu<4),,. Nu??O). 0<4>x, mo Nu(4)„„ Nu<4),„

r*  = 0.02

0.01 0.0007837 38.093 0.030 0.039215 6.809 —
0.05 0.0034689 32.689 1.976 0.196078 4.938 15.128
0.1 0.0052665 31.260 2.648 0.37264 4.529 22.761
0.5 0.0067801 30.181 2.948 1.1911 3.375 29.338

00 0.0067834 30.179 2.948 1.6568 2.948 30.179

r*  = 0.05

001 0.0019050 21.522 0.037 0.037508 6.552 —
0.05 0.0084154 17.776 2.038 0.18544 4.807 8.355
0 1 0.012796 16.798 2.713 0.34771 4.379 12.442
0.5 0.016555 16.060 3.018 1.0081 3.289 15.728

00 0.016563 16.058 3.019 1.2455 3.019 16.058

r*  = 0.10

0.01 00036361 14.902 0.042 0.036254 6.646 0.034
0.05 0.016093 11.864 2.093 0.17599 4.836 5.739
0.1 0.024625 11.072 2.778 0.32377 4.350 8.309
0.5 0.032288 10.460 3.095 0.83845 3.271 10.304

00 0.032307 10.459 3.095 0.95614 3.095 10.459

r*  = 0.25

0.01 0.0079989 10.225 0.050 0.031985 6.802 0.066
0.05 (>.035729 7.710 2.190 0.15253 4.880 3.800
0.1 0.055780 7.040 2.908 0.27133 4.321 5.322
0.5 0.076431 6.474 3.266 0.58532 3.344 6.421

00 0.076523 6.471 3.267 0.61810 3.267 6.471

r*  = 0.50

0.01 0.013332 8.433 0.055 0.026664 7.026 0.064
0.05 0.060343 6.137 2.317 0.12508 4.998 3.007
0.1 0.096747 5.503 3.095 0.21530 4.400 4.125
0.5 0.14163 4.894 3.518 0.40000 3.554 4.870

00 0.14203 4.889 3.520 0.40908 3.520 4.889

r*  = 1.0

0.01 0.02009 7.495 0.254 0.02009 7.495 0.254
0.05 0 09211 5.341 2.559 0.09211 5.341 2.559
0.1 0.15285 4.723 3.453 0.15285 4.723 3.453
0.5 0.24801 4.013 3.993 0.24801 4.013 3.993

00 0.25000 4.000 4.000 0.25000 4.000 4.000
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TABLE 3.41 Thermal Entrance Lengths for Thermally Developing Flows 
in Concentric Annular Ducts [1]

r* Lt(1) 
^th, i r*(D

^th, o r *(2)  
^th, i T *(2)  

^th, o

0.02 0.05840 0.1650 0.02699 0.03901
0.05 0.06488 0.1458 0.03043 0.03886
0.10 0.06953 0.1311 0.03334 0.03911
0.25 0.07621 0.1126 0.03726 0.04006
0.50 0.08237 0.1003 0.03975 0.04090
1.00 0.09023 0.09023 0.04101 0.04101

r * T *(3)  ^th. i
L*(3)  
^th, o J *(4)

-^th, i j *(4)  
^th, o

0.02 0.02252 0.03001 0.07962 0.04241
0.05 0.02429 0.02970 0.09493 0.6638
0.10 0.02558 0.02960 0.1101 0.5284
0.25 0.02720 0.02964 0.1309 0.3770
0.50 0.02829 0.02956 0.1721 0.2875
1.00 0.02913 0.02913 0.2201 0.2201

(i) Constant Temperatures at Both Walls. For this problem,

I Tt at r = rj, x > xe
T = To at r = r0, x>xe

\Te at x < xe, rt< r < ro

When Tt To, the problem is designated as la and its solution is expressible in 
terms of the following set of equations:

Tx^ = Te + (T, - Te)0™mi + (To - Te)6^mo 

k r
C?a) = 75-1(7] - 7])^, + (To -

k r
- ^[(r - 7;)4>«>„, + (T„ -

a, -r,)(i -(r-m™,

(3.241)

(3.242)

(3.243)

(3.244)

(3.245)

When 7] — To, the problem is designated as lb. The circumferentially averaged 
Nusselt number for this problem can be determined from

Nu,T =
Nu(Ylbj + r*Nu (Alb)

1 + r* (3.246)
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(ii) Constant Heat Fluxes at Both Walls. For this problem,

I q" at r = rt, x > xe 
\ q” at r = , x > xe

T = Te at x = xe, rt<r< r0

When q” ± q'', the problem is designated as 2a and its solution is expressible in 
terms of the following set of equations:

T'"* ’ - r, + Y1(3.247)

Tiv -T. + ^[.] (3.248)

7“ - T. + [ <?,"<&, + (3.249)

Nu“' ” »«>..-<&] (3 250)

Nu?‘,; ’ (3251)

(iii) Constant Temperature at One Wall With Constant Heat Flux at the Other. 
For this problem,

T = T; at r = rx, x > xe

q” = Qi at r = r,, x > xe

T = Te at x < xe, rt < r < ru

Here the subscripts 1 and 2 can refer to either the inside or the outside wall. The
thermal entrance length solution for this problem is given by

Dh
T:,-, -T, + (7, - ?,)».»;, + — (3.252)

T. - T, + (7, - T,)»«U + , (3-253)

£
, - 7r(r, - r,)*3,  + ??««>, (3.254)

x, _ <r- - + ,,
‘ 1 ‘ (r, - 7,)(1 - 9,® J - (9<'D,A)«,« ? ' ' ’

1
NUa'2 = (^2 - fc) + [(^i - Te)k/q^Dh]^2i - ^)ml) (3’256)
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In addition to the practical solutions presented above, several other solutions for 
circumferentially and axially varying temperatures and heat fluxes as well as for the 
convective boundary condition (rii) are available. They are summarized in [1].

3.8.4 Simultaneously Developing Flow
Kaka^ and Yiicel [113] solved the problem of simultaneously developing velocity and 
temperature fields in concentric annuli with r*  = 0.1,0.25,0.5,1 and Pr = 0.01,0.7,10, 
covering all four fundamental boundary conditions described in Sec. 3.3.1. Their results 
for Pr = 0.7 are presented in Tables 3.42 to 3.44. Tabulated results for Pr = 0.01,10 
and r*  = 0.25,5,1 are available in [113], A graphical representation of the results of 
Tables 3.42 to 3.44 is available in [115]. The results of Tables 3.42 to 3.44 compare 
extremely well with the results cited in [1] for the restricted ranges of r*  and Pr.

It may be noted that the four fundamental solutions for the simultaneously 
developing flow cannot be superposed in the same fashion as the thermally developing 
flow solutions to synthesize solutions for any prescribed variation of axial wall 
temperature or heat flux. The dependence of the hydrodynamically developing velocity 
profile on the axial coordinate makes it impractical to exploit the superposition 
techniques for simultaneously developing flow. However, by the use of certain influence 
coefficients in conjunction with the four fundamental solutions, the local Nusselt 
numbers for several problems of practical interest can be easily evaluated. The 
influence coefficients 0*  through 0* 2 determined by Kakag and Yiicel [113] are 
presented in Tables 3.45 and 3.46. The use of these influence coefficients in determining 
the Nusselt numbers for four problems of practical interest is explained below.

The fundamental solution of the first kind (Table 3.42) is valid when one of the duct 
walls is at the entering fluid temperature. When this restriction is removed and the duct 
walls are allowed to attain uniform and equal or unequal temperatures 7] and To, then 
the local Nusselt numbers Nuv , and Nuv „ at the two walls can be determined from

Nux,z = i - [(t; - t;)/(7] -
Nu<;>„ 1 - [(T„ -Te)/( T, -Te)]02* >

Nux,0 = i-[(7]-t;)/(7;-7;)]^
Nu^ i-[(7]-t;)/(to-7;)]04* }

where Nu(xl,„ and Nu”7 are available from Table 3.42 and 0* , 02*,  0}*, 0f are listed 
in Table 3.45.

The fundamental solution of the second kind (Table 3.43) is valid when one of the 
duct walls is adiabatic, i.e., either q” = 0 or q," = 0. When this restriction is removed 
and the duct walls are subject to uniform and equal or unequal wall fluxes q'' and q", 
then the local Nusselt numbers Nu, , and Nuv „ at the two walls can be determined 
from

Nux,

Nux.o 
Nu<2’oo

(3'259)

= i - (3-260)
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TABLE 3.42 Fundamental Solution of the First Kind for Simultaneously Developing Flow 
in Concentric Annular Ducts for Pr = 0.7 [113]

X* Nu’/h Nu<?_>o/ nu<;?po Nu^,,

0.10 0.00005 68.030 — 57.450 —
0.0001 46.990 — 36.860 —
0.0005 26.960 — 17.480 —
0.001 22.020 — 12.910 _
0.005 15.030 — 6.690 —
0.01 13.330 0.0649 5.310 0.2473
0.05 11.162 2.3436 3.856 7.6064
0.1 10.567 2.9307 3.353 9.7125

00 10.450 3.0970 3.095 10.4603

025 0 00005 63.500 — 56.990 —
0.0001 41.700 — 36.690 —
0.0005 21 310 — 17.620 —
0.0010 16.660 — 13.000 —
0.0025 12.460 — 8.930 —
0.01 8.870 0.0843 5.400 0.1772
0.05 7.099 2.5334 3.859 4.9398
0.1 6.626 3.1222 3.394 6.1506

00 6.471 3.2669 3.267 6.4713

0.50 0.00005 61.930 — 56.310 —
0.0001 39.820 — 36.560 —
0.0005 19.170 — 17.700 —
0.0010 14.600 — 13.110 —
0.0025 10.510 — 9.060 —
0.01 7.085 0.1066 5.640 0.1485
0.05 5.465 2.7629 4.108 3.8121
0.1 5.030 3.3749 3.658 4.6824

CO 4.892 3.5228 3.518 4.8881

1.00 0.00005 58.850 — 58.850 —
0.0001 37.615 — 37.615 —
0.0005 18.140 — 18.140 —
0.001 13.440 — 13.440 —
0.005 7.484 — 7.484 —
0.01 6.126 0.1152 6.126 0.1152
0.5 4.576 3.1321 4.576 3.1321
0.1 4.140 3.8392 4.140 3.8392

00 4.000 4.0000 4.000 4.0000

where Nu';1,, and Nu(“’„„ are available from Table 3.43 and f)5* and 0*  are listed in 
Table 3.45. "

The fundamental solution of the third kind (Table 3.43) is valid when one of the 
walls is at a uniform temperature (different from the entering fluid temperature) and 
the other wall is adiabatic (i.e., zero heat flux). The fundamental solution of the fourth 
kind (Table 3.44) is valid when one of the walls is at a uniform temperature (different 
from the entering fluid temperature) and the other is at the entering fluid temperature. 
Suppose that the restrictions of the adiabatic wall and the wall being at the entering
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TABLE 3.43 Fundamental Solutions of the Second and Third Kinds for Simultaneously Developing 
Flow in Concentric Annular Ducts for Pr = 0.7 [113]

listed in Table 3.46.

r* X* Nu<‘L Nu(2)oo Nu<3,’,. Nux,’oo

0.10 0.00005 91.410 82.510 68.030 57.450
0.0001 64.670 55.520 46.990 36.860
0.0005 33.240 24.300 26.960 17.480
0.001 26.350 17.660 22.020 12.910
0.005 16.890 9.014 15.030 6.690
0.01 14.630 7.044 13.330 5.313
0.05 12.043 4.969 11.500 4.099
0.1 11.840 4.841 11.416 4.045

00 11.900 4.834 11.560 4.113

0.25 0.00005 87.590 82.050 63.500 56.990
0.0001 60.170 55.240 41.700 36.690
0.0005 27.870 24.370 21.310 17.620
0.0010 21.160 17.720 16.660 13.000
0.0025 15.220 11.940 12.460 8.930
0.01 10.190 7.100 8.870 5.397
0.05 7.931 5.046 7.412 4.142
0.1 7.759 4.915 7.357 4.084

00 7.735 4.904 7.370 4.232

0.50 0 00005 83.340 81.370 61.930 56.310
0.0001 58.640 54.870 39.820 36.560
0 0005 25.900 24.490 19.170 17.700
0.0010 19.240 17.860 14.600 13.110
0.0025 13.395 12.090 10.510 9.060
0.10 8.500 7.250 7.085 5.639
0.05 6.351 5.188 5.777 4.405
01 6.190 5.044 5.734 4.378

00 6.181 5.036 5.738 4.429

1.00 0.00005 83.620 83.620 58.850 58.850
0.0001 56.220 56.220 37.615 37.615
0.0005 24.880 24.880 18.140 18.140
0.001 18.270 18.270 13.440 13.440
0.005 9.601 9.601 7.484 7 484
0.01 7.631 7.631 6.126 6.126
0.05 5.542 5.542 4.890 4.890
01 5.387 5.387 4.847 4.847

00 5.384 5.384 4.860 4.860

fluid temperature are removed. Let q” = <1” at r = ro and Tw = T. at r = r. In this
case, the local Nusselt numbers Nur , and Nu^ o at the two walls are given by

Nux., _ 1 - [(<lo 'Dh/k)/(Tt -
(3.261)NlC„ 1 - [U'Dh/k)/(T, -- Te)]e^

Nua-,O 1
(3.262)Nu<4)00 - Te)/(q''Dh/k)]0^

where Nu(;'\, and Nu<4)„„ are available from Tables 3.43 and 3.44, and 07* , 0R*,  0* 2 are
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TABLE 3.44 Fundamental Solution of the Fourth Kind for Simultaneously Developing Flow 
in Concentric Annular Ducts for Pr = 0.7 [113]

r* X* Nu(a4),z Nu<4>0/ Nu<4>oo Nu<4).X, to

0.10 0.00005 91.410 — 82.510 —
0.0001 64.670 — 55.520 —
0.0005 33.240 — 24.300 —
0.001 26.350 — 17.660 —
0.005 16.890 — 9.014 —
0.01 14.626 — 7.044 —
0.05 11.780 -2.0910 4.854 5.6765
0.1 10.997 — 2.7783 4.352 8.2064

OO 10.450 - 3.0960 3.111 10.4592

0.25 0 00005 87.590 — 87.590 —
0.0001 60.170 — 60.170 —
0.0005 27.870 — 24.370 —
0.0010 21.160 — 17.720 —
0.0025 15.220 — 11.940 —
0.01 10.190 — 7.100 0.0939
0.05 7.703 2.1797 4.884 3.7974
0.1 7.034 2.9006 4.321 5.3139

oc 6.471 3.2671 3.267 6.4714

0.50 0.00005 86.340 — 81.370 —
0 0001 58.640 — 54.870 —
0.0005 25.900 — 24.490 —
0.0010 19.240 — 17.860 —
0.0025 13.395 — 12.090 —
0.01 8.497 0.0752 7.249 0.0752
0.05 6.136 2.3150 5.000 3.0098
0.1 5.502 3.0995 4.399 4.1245

OO 4.890 3.5211 3.518 4.8912

1.00 0.00005 83.620 — 83.620 —
0.0001 56.220 — 56.220 —
0.0005 24.880 — 24.880 —
0.001 18.270 — 18.270 —
0.005 9.601 — 9.601 —
0.01 7.631 0.0503 7.631 0.0503
0 05 5.339 2.5453 5.339 2.5453
0.1 4.719 3.4571 4.719 3.4571

OO 4.000 4.0000 4.000 4.0000

If = To at r = ru and q” = q" at r = r,, the local Nusselt numbers Nux ( and 
Nuv n at the two walls are given by

Nux>/ 
Nu(v4),7 \-[(T0-Te)/(q''Dh/k)]9^

(3.263)

Nua.,0
Nu<3)

l-[{q;!Dh/k)/(To-Te}]e^ 
l-[{q''Dh/k)/(To-Te')]9^

(3.264)
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TABLE 3.45 Influence Coefficients from Fundamental Solution of the First and Second Kinds for 
Simultaneously Developing Flow in Concentric Annular Ducts for Pr = 0.7 [113]

r* X* *2* 04* e5* «6*

0.10 0.00005 — 0.0191 — 0.0022 0.0160 0.0015
0.0001 — 0.0273 — 0.0033 0.0228 0.0020
0.0005 — 0.0595 — 0.0086 0.0587 0.0044
0.001 _ 0.0891 — 0.0136 0.0944 0.0064
0.005 — 0.1996 — 0.0460 0.3060 0.0165
0.01 0.0054 0.2930 0.0011 0.0849 0.5289 0.0256
0.05 0.4885 0.7167 0.2698 0.4434 1.2855 0.0538
0.1 0.8442 0.9184 0.6908 0.7892 1.3705 0.0565

00 1.0000 1.0000 1.0000 1.0000 1.3835 0.0562

0.25 0.00005 — 0.0169 — 0.0044 0.0136 0.0031
0.0001 — 0.0241 — 0.0066 0.0187 0.0043
0.0005 — 0.0530 — 0.0159 0.0433 0.0096
0.0010 — 0.0762 — 0.0242 0.0667 0.0140
0.0025 — 0.1246 — 0.0440 0.1209 0.0238
0.01 0.0056 0.2744 0.0020 0.1263 0.3242 0.0565
0.05 0.4996 0.7182 0.3588 0.5474 0.7443 0.1189
0.1 0.8596 0.9262 0.7909 0.8604 0.7897 0.1249

00 1.0000 1.0000 1.0000 1.0000 0.7932 0.1250

0 50 0.00005 — 0.0142 — 0.0072 0.0113 0.0051
0.U001 — 0.0202 — 0.0106 0.0153 0.0070
0.0005 — 0.0449 — 0.0245 0.0336 0.0160
0.0010 — 0.0652 — 0.0365 0.0506 0.0235
0.0025 — 0.1081 — 0.0637 0.0887 0.0400
0.01 0.0051 0.2481 0.0030 0.1674 0.2252 0.0960
0.05 0.4922 0.7058 0.4922 0.7058 0.4979 0.2037
0.1 0.8624 0.9265 0.8280 0.8971 0.5270 0.2147

00 1.0000 1.0000 1.0000 1.0000 0.5288 0.2160

1.00 0.00005 — 0.0087 — 0.0087 0.0064 0.0064
0.0001 — 0.0138 — 0.0138 0.0095 0.0095
0.0005 — 0.0339 —. 0.0339 0.0234 0.0234
0.(101 — 0.0503 — 0.0503 0.0354 0.0354
0.005 — 0.1321 — 0.1321 0.0951 0.0951
0.01 0.0041 0.2101 0.0041 0.2101 0.1512 0.1512
0.05 0.4635 0.4745 0.4635 0.4745 0.3257 0.3257
0.1 0.8512 0.9165 0.8512 0.9165 0.3427 0.3427

00 1.0000 1.0000 1.0000 1.0000 0.3460 0.3460

where Nu,4)„ and Nu(x3)„0 are available from Tables 3.43 and 3.44, and 0*,  0* }, 0^ are 
listed in Table 3.46.

3.9 ECCENTRIC ANNULAR DUCTS

Eccentric annular ducts are encountered in practice quite frequently, as the manufac
turing tolerances and the imposed service conditions tend to introduce eccentricities in 
nominally concentric annuli. Even moderate values of the eccentricity exert a dramatic 
influence on the flow rate through an annular duct with a large value of r*  = r,./ro 
(r*  -» 1). This fact has long been recognized in a number of engineering applications 
such as journal bearings. This underscores the importance of the results pertaining to 
eccentric annular ducts. Although not investigated as extensively as the concentric 
annuli, a fair amount of information of practical interest is available for these ducts. 
Several useful fluid flow and heat transfer results are presented next. Note that 
Dt. = 2(ro - r;) for eccentric annular ducts.
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TABLE 3.46 Influence Coefficients from Fundamental Solutions of the Third and Fourth Kinds 
for Simultaneously Developing Flow in Concentric Annular Ducts for Pr = 0.7 [113]
y. * X* *7* n*̂

8 09* 0**10
n*
*11

0 *
*12

0.10 0.00005 — 0.0002 — — 1.7416 0.1754
0.0001 — 0.0004 — 0.0001 1.7578 0.1782
0.0005 — 0.0018 — 0.0002 1.9608 0.1956
0.001 — 0.0037 — 0.0004 2.2146 0.2198
0.005 — 0.0188 — 0.0023 3.2452 0.3348
0.01 0.0003 0.0387 0.0001 0.0051 3.9806 0.4318
0.05 0.1102 0.2233 0.0217 0.0425 3.0630 0.5460
0 1 0.3652 0.5080 0.0944 0.1374 1.3722 0.4086

OO OO OO OO OO 0.0000 0.0000

0.25 000005 — 0.0002 — 0.0001 1.4746 0.3572
0.0001 — 0.0003 — 0.0001 1.4424 0.3562
0.0005 — 0.0016 — 0.0004 1.4536 0.3668
0.0010 — 0.0033 — 0.0009 1.5770 0.3966
0.0025 — 0.0083 — 0.0023 1.8228 0.4630
0.01 0.0003 0.0353 0.0001 0.0106 2.5066 0.6700
0.05 0.1105 0.2159 0.0448 0.0849 1.9258 0.7256
0.1 0.3732 0.5168 0.1860 0.2612 0.9058 0.4882

OO OO OO OO OO 0.0000 0.0000

0.50 0.00005 — 0.0002 — 0.0001 1.2192 0.5752
0.0001 — 0.0003 — 0.0002 1.1744 0.5700
0.0005 — 0.0014 — 0.0014 1.1354 0.5746
0.0010 — 0.0027 — 0.0027 1.2106 0.6104
0.0025 — 0.0070 — 0.0070 1.3650 0.6920
0.01 0.0003 0.0307 0.0002 0.0170 1.8152 0.9452
0.05 0.1036 0.1991 0.0813 0.1456 1.4446 0.9036
0.1 0.3620 0.5034 0.2612 0.4486 0.7276 0.5518

OO OO OO OO OO 0.0000 0.0000

1.00 0.00005 — 0.0001 — 0.0001 0.7224 0.7224
0.0001 — 0.0002 — 0.0002 0.7670 0.7670
0.0005 — 0.0010 — 0.0010 0.8152 0.8152
0.001 — 0.0021 — 0.0021 0.8750 0.8750
0.005 — 0.0112 — 0.0112 1.1202 1.1202
0.01 0.0003 0.0241 0.0003 0.0241 1.3146 1.3146
0.05 0.0881 0.1683 0.0881 0.1683 1.1274 1.1274
0.1 0.3243 0.4548 0.3243 0.4548 0.6208 0.6208

OO OO OO OO OO 0.0000 0.0000

3.9.1 Fully Developed Flow
Based on the analysis by Piercy et al. [116], the fully developed velocity distribution in 
the eccentric annulus (Fig. 3.46) can be expressed by the following set of equations:

I dp \ I cosh rj — cos £ \
— ko2S2 C + All + B - F---- i-------TV

\dx) \ 4( cosh 17 + cos£)
(3.265)
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where

y

Figure 3.46. An eccentric annular duct.

°° ( —l)"cosn£ „
C = £ . , ------Yf { e ”^coth & sinh[ n(rj - a)]

„=1 sinh[n(/? - «)] 1

— e "“cothasinh[— /?)]} (3.266)

coth a — coth /?
4 2(a-/3)

j3(l - 2cotha) — a(l - 2 coth/?) 
4(a - 0)

(3.267)

5 = ♦ C1 “ e* 2)1/2
2e v 7

2 11/2
— p* 2 (3.268)

a = sinh XS, /? = sinh 1(5'/r*)  (3.269)

The bipolar coordinates £ and rj are related to the Cartesian coordinates x and y 
of Fig. 3.46 by

2cx „ x2 + (y - c)2
tan£= —-------------y, e~ 2r> = —---- ---------c = r0S (3.270)

y^+y2-c2 x2 + (_v + f)2’

Based on Eq (3.265), the friction factor for the eccentric annular ducts is de
termined to be [1]

f Re = 16(1 - r* 2)(l - r*) 2

(
00

1 - r* 4 + Z - 8e* 2(l - r*) 2S2 12
n exp[ — n(a + /?)] 

sinh[ — a)]
(3.271)
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where S, a, and (3 arc given by Eqs. (3.268) and (3.269), and

(3.272)

The foregoing formulas are applicable for 0 < e*  < 1 and 0 < r*  < 1. The two 
limiting cases excluded in the above formulation are: (1) e*  = 1, 0 < r*  < 1, and (2) 
0 < e*  < 1, r*  = 1. The applicable formulas for these cases are presented next. The 
third limiting case of e*  = 0, 0 < r*  < 1, corresponds to the concentric annular duct 
for which f Re is given by Eq. (3.209).

Based on the exact solution for torsion in a hollow shaft of unit eccentricity by 
Stevenson [117], the factor f Re for e*  = 1, 0 < r*  < 1 is given by Tiedt [118] as

16(1 — r* 2)(l — r*) 2

1 — r* 4 — 4r* 2»p'[l/(l — r*)]
(3.273)

where is the so-called trigamma function with the argument 1/(1 - r* ). It is given

Figure 3 47. Fully developed friction factors for eccentric annular ducts [1],
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by

Figure 3.48. Fully developed Nusselt numbers for eccentric annular ducts [120].

00

= E 1 V

n + [1/(1 - r*)]  /
(3.274)

Becker [119] derived the expression for the volumetric flow rate through an eccentric 
annulus for 0 < e*  < 1, r*  -> 1. Based on these results, Tiedt [118] showed that

/Re =
24

1 + 1.5e* 2
(3.275)

The / Re factors computed from Eqs. (3.271), (3.273), and (3.275) are presented in 
Fig. 3.47. Tabulated results are available in [1],

Cheng and Hwang [120] analyzed the (m) problem for eccentric annuli. Their results 
are presented in Fig. 3.48.

Trombetta [121] conducted a detailed study of the fundamental problems of the 
first, second, and fourth kinds for eccentric annuli. His tabular heat transfer results are 
available in [1],

The concentric annular duct relationships for the fundamental solutions of the first 
and second kinds [Eqs. (3.213) to (3.220)] are also applicable to eccentric annular ducts.

The concentric annular duct relationships (3.224) to (3.226), pertaining to the 
fundamental solutions of the fourth kind, are not valid for eccentric annular ducts. The 
applicable relationships are

Nu<"') 0(4) _ 0(4) ’ Nu<oo 0(4) _ 0(4) (3.276)
ii mi oo mo

Nu??-/;;, Nu<? - -T_ (3.277)

^m i ' ym o
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The relationship (3.223) for the concentric annular duct also applies to the eccentric 
annular duct.

Similar to concentric annuli, the superposition technique can be used for eccentric 
annuli to synthesize solutions of practical interest utilizing the fundamental solutions of 
the first, second, and fourth kinds. However, for the case when equal and constant 
temperatures are prescribed at the two walls, the superposition technique does not yield 
the desired results. In this case, the solution may be derived from the asymptotic 
thermal entrance length solution.

To obtain NuH2 for eccentric annuli, first the ratio q-'/q" is obtained from Eqs. 
(3.247) and (3.248) with x = oo as

e-e ,„78,
e-e (»,?’-«>)-(e-e) ’ ’

The Nusselt numbers at the two walls are then determined from the following 
relations:

/ a" \"1Nu</M - I ( e - e ) + ^ ( «!? - ® ) (3.279)
\ 7/ /

Nu?b>-((e-e) + ^(«,-e)] ' p-ao) 

\ Qo /

Finally, NuH2 is computed from

Nu(2b) + r*Nu< 2b) 
NuH2 = ” «-------- (3.281)

1 + r

The Nuh, values computed from the foregoing relations are presented in Fig. 3.49.

Figure 3.49. Fully developed Nusselt numbers for eccentric annular ducts [1],
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TABLE 3.47 Flow Parameters in the Hydrodynamic Entrance Region of Eccentric Annuli [122]

x+ * * II II e*  = 0.5 
r*  = 0.1

e*
J.*

= 0.7
= 0.3 -t Ci * 

*
II 

II

p p e*  = 0.9 
r*  = 0.5

/apPRe

0.001 113.65 109.58 114.75 116.10 120.16
0.002 82.03 79.10 83.05 81.72 83.47
0.010 42.35 41.05 42.39 38.51 37.46
0.020 — — 32.18 29.23 27.70
0.050 26.32 25.52 23.45 21.54 19.66

0.100 — 22.16 19.57 — 16.09
0.150 — 20.91 — — 14.68
0.200 — — 17.29 — 13.92
0.304 19.42 — — 15.63 —
0.424 18.93 — — 15.26 —

00 17.67 18.35

K(oo)

14.86 14.33 11.42

2.143 1.535

^hy

1.959 1.571 2.060

0.254 0.0897 0.156 0.106 0.313

Tl

2 373 2.149 2 277 2.163 2.324

3.9.2 Hydrodynamically Developing Flow
Feldman et al. [122] analyzed the hydrodynamically developing flow through eccentric 
annuli employing an idealized transverse flow model. Their /appRe, K(oo), L^v, and 
“max/u», results are presented in Table 3.47. For the limiting cases of concentric annuli 
and circular ducts, the predictions of Feldman et al. [122] are in excellent agreement 
with the well-established results reported earlier.

3.9.3 Thermally Developing Flow

Feldman et al. [123] obtained the four fundamental solutions for an eccentric annular 
duct with e*  =0.5 and r*  = 0.5. A partial set of their tabular results is available in 
[!]•

3.9.4 Simultaneously Developing Flow

Feldman et al. [123] obtained a combined entrance length solution for the fundamental 
problem of the first kind, with the inner wall heated, for an eccentric annular duct with 
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e*  — 0.5 and r*  — 0.5. They reported the heat transfer results for fluids with Pr = 0.01, 
1 0 and oo. Their results are tabulated in [1],

3.10 ADDITIONAL DOUBLY CONNECTED DUCTS

Limited available information on fully developed flow in some additional doubly 
connected ducts is presented in this section.

(d)

(e) (f)

Figure 3.50. Some doubly connected ducts: (a) confocal elliptical, (h) regular polygonal with 
centered circular core, (c) circular with centered regular polygonal core, (d) isosceles triangular 
with inscribed centered circular core, (e) elliptical with centered circular core, (/) stadium-shaped 
with twin circular cores.
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3.10.1 Confocal Elliptical Ducts
A confocal elliptical duct shown in Fig. 3.50a comprises two concentric elliptical walls.
The major and the minor axes of the walls are related as a2 - b2 = a2 - b2.

Based on the analysis by Topakoglu and Arnas [124], the fully developed friction 
factor for confocal elliptical ducts is given by

256/13.
Z — ______________ —----- -

^nnP2(a« + bo)4
(3.282)

where

2m4
1 — u2
1 + w2

(1 + m2)E1 +

a, + b, a*r*  + [1 - a* 2(l - r*) 2]1/2

+ bo 1 + a*

(3.283)

(3.284)

(3.285)

(3.286)

(3.287)

E. and E^ are the complete elliptical integrals of the second kind which are evaluated 
for the arguments 1 — b2/a2 and 1 — b2/a2, respectively. It may be noted that bi/a, 
is expressible in terms of w and m by the relation

bi 1 — (zn2/w2) 
a, 1 + (m2/w2)

(3.288)

The f Re factors calculated from the foregoing equations are displayed in Fig. 3.51. 
The fully developed Nusselt numbers NuH1 determined from the analysis of Topakoglu 
and Arnas [124] are also displayed in Fig. 3.51.

3.10.2 Regular Polygonal Ducts with Centered Circular Cores
The fully developed friction factors for regular polygonal ducts with centered circular 
cores (Fig. 3.50b) are presented in Fig. 3.52. The results are based on the analysis by 
Ratkowsky and Epstein [125]. As n -> oo, f Re -> 6.222 for a*  = 1, but / Re -> 16 
for a*  = 0. The fully developed Nusselt numbers NuH1 for these ducts were de
termined by Cheng and Jamil [126] and are presented in Fig. 3.53.



Figure 3.51. Fully developed frietion factors and Nusselt numbers for confocal elliptical ducts 
[124],

Figure 3.52. Fully developed friction factors for regular polygonal ducts with centered circular 
cores and circular ducts with centered regular polygonal cores [125,127],

3-119
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Figure 3.53. Full', developed Nusselt numbers for regular polygonal ducts with centered circular 
cores and circular ducts with centered regular polygonal cores [107,126],

3.10.3 Circular Ducts with Centered Regular Polygonal Cores
The fully developed friction factors for circular ducts with centered regular polygonal 
cores (Fig. 3.50c) are presented in Fig. 3.52. They are based on the analysis by Hagen 
and Ratkowsky [127], The fully developed Nusselt numbers NuH1 for these ducts were 
determined by Cheng and Jamil [107]. They are presented in Fig. 3.53.

3.10.4 Isosceles Triangular Ducts with Inscribed Circular Cores
The fully developed friction factors for isosceles triangular ducts with inscribed circular 
cores (Fig. 3.5O<7) were determined by Bowen [128], They can be represented by the 
following expression:

f Re = 12.0000 - 0.1605<£ + 4.2883 X 10“ 302

-1.0566 X 10“V + 1.6251 X 10“V - 1.04821 X 10“ V (3.289)

where <f> is in degrees. / Re from this equation agrees with the tabular values in [1] 
within +2%
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TABLE 3.48 Fully Developed Friction Factors for
Elliptical Ducts with Centered Circular Cores [129]

a* y * /Re

0.9 0.5 23.519
0.6 23.435
0.7 23.159
0.95 16.816

0.7 0.5 21.694
0.7 19.402

os 0.5 19.321

3.10.5 Elliptical Ducts with Centered Circular Cores
The fully developed friction factors for elliptical ducts with centered circular cores (Fig. 
3.50e) are presented in Table 3.48. They are based on the analysis by Shivakumar 
[129],

3.10.6 Stadium-Shaped Ducts with Twin Circular Cores
Schenkel [95] determined the fully developed friction factor f Re as 17.68 for the 
stadium-shaped duct with twin circular cores (Fig. 3.50/) using the 3R graphical 
method mentioned in Sec. 3.7.13.

3.11 CLOSURE

A wide variety of ducts can be fabricated for a specific technical application requiring a 
preferred flow-passage configuration peculiar to the application. In this regard, Table 
3.33 is particularly instructive, as it illustrates a great variety of duct shapes. In the 
preceding sections of the chapter, we have presented the most useful laminar fluid flow 
and heat transfer information for 62 singly connected and 8 doubly connected ducts 
covering a variety of thermal boundary conditions described in Tables 3.1 and 3.2.

Of the various thermal boundary conditions in Tables 3.1 and 3.2, the constant wall 
temperature (t) and the constant heat flux (m) and (hj) boundary conditions are of 
particular importance, as they constitute the usual extremes met in heat exchanger 
design. It is therefore deemed useful to bring together the key fluid flow and heat 
transfer characteristics of the most important ducts with the (t), (hi), and (hz) 
boundary conditions. They are summarized in Table 3.49, where several of the results 
are presented as computationally expedient correlations which reproduce the tabular 
results of [1] to a high degree of accuracy, indicated in parentheses at the end of the 
appropriate equations. The equations in Table 3.49 with no indicated accuracy level 
represent exact results.

The detailed information pertaining to each duct geometry can be easily located by 
referring to the Table of Contents of this chapter. A review of this information brings 
out the fact that there are several gaps in our knowledge of fluid flow and heat transfer 
characteristics of even the most commonly encountered duct geometries. As regards the 
less common ducts covered in Sections 3.7 and 3.10, the information is particularly
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TABLE 3.49 Fully Developed Friction Factors and Nusselt Numbers for Technically Important Duct Geometries

Duct Geometry f Re,NuT,NuH1,NuH2

f Re = 16 
Nut = 3.6568
Nuh = = 4.3636 f 

f Re = 24
Nut = 7.5407
Nuh = 140/17 = 8.2353

For 0 < a*  < 1,
n 4a6

26 D‘ ■ ~b
------------  JL 4b
■*  2a—*]  1 + a*

Rectangular

f Re = 24(1 - 1 3553a*  + 1.9467a* 2

- 1.7012a* 3 + 0.9564a* 4 - 0.2537a* 5) (0.05%)

Nut = 7.541(1 - 2.610a* + 4.970a*2

- 5.119a* 3 + 2.702a* 4 - 0.548a* 5) (0.1%)
NuH] = 8.235(1 - 2.0421a*  + 3.0853a* 2

- 2.4765a* 3 + 1.0578a* 4 - 0.1861a* 5) (0.03%)
NuH2 = 8.235(1 - 10.6044a*  + 61.1755a* 2 - 155.1803a* 3

+ 176.9203a* 4 - 72.9236a* 5) (7.0%)

/Re = y = 13.3333

Nu7 = 2.49

NuH1 = v = 3.1111

NuH2 = 1.892

+As explained in Section 3.1.4. NuH1 and NuH2 arc denoted simply as NuH for circular, flat, and concentric annular ducts.
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For 0 < a*  < 1.

/ Re = 12(1 - 0.0115a*  + 1.7099ft* 2 - 4.3394a* 3

+ 4.2732a*4 - 1 5817ft*5 + 0.0599a*6) (0.1%)

Nut = 0.943(1 + 4.8340ft*  - 2.1738a* 2 - 4.0797a* 3

(0.4%)- 2.1220a* 4 4- 11.3589a *5 - 6.2052a* 6)
Nuh1 = 2.059(1 + 0.7139a*  + 2.9540a’1,2 - 7.8785a* 3

+ 5.6450a* 4 + 0.2144 a* 5 - 1.1387a* 6) (0.3%)
( 1.088a* for a*  < 0.125 (0.0%)

Num = ' -0.2113(1 - 10.9962a*

\ -15.1301a* 2 + 16.5921a* 3 for 0.124 < a*  < 1 (5.0%)

For 1 < a* < oc,
/Re = 12(a* 3 + 0.2595ft* 2 - 0.2046a*  + 0.0552)/a* 3 (0.04%)
Nut = 0.943(a* 5 + 5.3586a* 4 - 9.2517a* 3

+ 11.9314a* 2 - 9.8035a*  + 3.3754)/a* 5 (0 4%)
Num = 2.059(a* 5 + 1.2489ft* 4 - 1.0559ft* 3

+ 0.2515ft* 2 + 0.1520a*  - 0.0901)/a* 5

( 0.912(a* 3 - 13.3739a* 2

(0.04%)

NuH2 = \ + 78.921 la*  - 46.6239)/a* 3 fori < a*  <8
\ 0.312/a*  for 8 < a*  < oo

(5.7%)

(0.0%)

For 0 < a* < 1,

/Re = 12(1 + 0.27956ft*  - 0.2756«* 2

+ 0.0591a* 3 + 0.0622ft* 4 - 0.0290ft* 5) (0.04%)

Nut = 1.1731(1 + 3.1312ft*  - 3.5919ft* 2

+ 1.7893ft* 3 - 0.3189ft* 4) (0.2%)
NuH1 = 2.0581(1 + 1.2981a*  - 2.1837«* 2 + 4.3496a* 3

- 6.2381a* 4 + 4.3140ft* 5 - 1.0911a* 6) (0.1%)
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TABLE 3.49 Continued

Duct Geometry Dh,a*,r*  f Re,NuT,NuH1,NuH2

* Hydraulic diameter of the sine duct is determined numerically and can be represented within ± 1% of the numerical values reported in [1] bv 
Dh/2a = (1.0542 - 0.4670a* - 0.1180a*2 + 0.1794a*3 - 0.0436a*4)a*.

/0.2299a*  for 0 < a*  < 0.125 (0.0%)
I -0.4402a* (1 - 6.8176a*

Nuh2 = 1 + 53.2849a*  - 77.9848a* 3

( + 33.5641a* 4) for 0.125 < a*  < 1 (3.8%)

mb
E{m) 
2b

~ 2a
= 1 - a*2

For 0 < a*  < 1,

/Re = 2(1 + a* 2) —-- 
\ E ( m ) J

Nut = 0.3536(1 + 0.9864a*  - 0.7189a* 2
+ 3.3364a* 3 - 3.0307a* 4 + 1.0130a* 5)[,r/E(m)]2

a* 4 + 6a* 2 + 1 / m I2
NU- = 9(1 + ^2)17a* 4 + 98a* 2~+ut^))
NuH2 = 0.3258a*  (1 + 15.6397a*

- 29.5117a* 2 + 16.2250a* 3)| •• ■ |
\E(m)'

(0.2%)

(4.3%)

Dh is a function 
of a*  *
2b

2a

For 0 < a*  < 2,

/Re = 9.5687(1 + 0.0772 a*  

- 0.8314a* 3

+ 0.8619a* 2

+ 0.2907a* 4 - 0.0338a* 5) (0.3%)
Nut = 1.1791(1 + 2.7701a*  

- 1.9975a* 3
- 3.1901a* 2
- 0.4966a* 4) (0.5%)

Nuh1 = 1.9030(1 + 0.4556a*  
- 1.6805a* 3

+ 1.2111a* 2
+ 0.7724a* 4 - 0.1228a* 5) (1.2%)



(0.0%)
/ 0.76a*  forO < a*  < 0.125

NuH2 = -0.0202(1 - 32.0594a*  - 216.1635a* 2
+ 244.3812a* 3 - 82.4951a* 4 4- 7.6733a* 5) for 0.125

Rhombic

*
Dh = a tan % For 0 < < tt/2,

f Re = 12(1 - 0.0231<J> + 0.4994 <J>2
- 0.5002<J>3 + 0.2054<£4 - 0.3356<>5)§

Nuh1 = 2.0564(1 4- O.31O5</> + 1.0330<#>2
- 1.0572</>3 4- 0.3867<f>4 - 0.0563<#>5)

NuH2 = 0.0447a*(l  + 40.1477a*  4- 34.0984a* 2
- 35.8881a* 3 + 5.7293a* 4)

where a is the
radius of the

For 3 < n < 20,

f Re = 8.3880(1 + 0.3015m - 0.0404m2
+ 0.0024n3 - O.OOOO5m4)

Regular polygonal 
(n = 6)

Circular sector

circumscribed
circle

2a</> 
D‘- —

Nuh1 = 0.1908(1 + 7.9489m - 1.1383m2
4 0.0712h3 - 0.0016m4)

NuH2 = - 2.2578(1 - 0.8051m 4- 0.0586m2
-0.0007m3 - 0.0002 m4 + O.OOOOO3m5)

For 0 < 2<f> < tt,

f Re = 12(1 + 0.5059</> - O.394802
+ 0.1875<j>3 - 0.0385<#>4) 

Nuh1 = 2.0705(1 4- 2.2916<#> - 2.5682<f>2 
4-1.4815<)>3 - 0.3338<J>4)

[ 0.1144<f> (28.7972<J> - 1) 
NuH2 = { 0.22691(1.7021<£4 - 9.9127<f>3 

+ 14.3914<f>2 4- 4.2653<J> - 1)

for 0 < </> < 77 '9

for 77/9 < <J> < 77

: a*  < 2 
(4.2%)

(0.2%)

(0.2%)

(0.6%)

(0.3%)

(0 9%)

(6.9%)

(0.1%)

(0.6%)
(1.2%)

(5 2%)

§In this and in the subsequent expressions in this table, the numerical values of are to be used in radians.
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TABLE 3.49 Continued

Duct Geometry

Circular segment

u(2^> — sirr</>)
<#> + sin<f>

Concentric annular



f Re, NuT,NuH1, NuH2

For 0 < 2<J> < 2 77.

j Re = 15.556(1 - 0.0015<?> + 0.0185<>2
- 0.0123<J>3 + 0.0035* 4 - 0.0004 </>') 

NuH1 = 3.5878(1 + 0.0408<#> - 0.0157<#>2 + 0.1483<>3
— O.131204 + O.O43405 - 0.0050<#>6)

{0.00085<£(499.2830<> +1) for 0 < <J> < w/9
0.0056(0.2321<J>5 - 2<f.4

— 8.0357<#>3 + 93.7679<J>2
- 10.4107<J> + 1) for tt/9 < <> < 2w

(0.01%)

(0.2%)

(0.0%)

(1.9%)

For 0 < r*  < 1, 
16(1 —r*) 2 ( I-/-* 2 \'/2

1 \ + r* 2 - Ir* 1' m ( 21n(l/r*)  )

ForO < r*  < 0.02, 
Nut = 3.657 + 98.95r*
Nuh = 4.364 + 100.95r*
For 0.02 < r*  < 1,
Nut = 5.3302(1 + 3.2904r*  - 12.0075/* 2

+ 18.8298r* 3 - 9.6980r* 4)
Nuh = 6.2066(1 + 2.3108r*  - 7.7553r* 2

+ 13.2851r* 3 - 10.5987r* 4
+ 2.6178r* 5 + 0.4680r* 6)

(0.01%)
(0.01%)

(0.6%)

(1.4%)
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lacking for flows other than fully developed flow We hope that the present review of 
the subject will engender some interest among researchers to generate additional 
solutions to fill the gaps in our knowledge. We also hope that the fluid flow and heat 
transfer characteristics of the less common ducts described in Secs. 3.7 and 3.10 will be 
explored in greater detail to meet the demands of the emerging technical applications 
requiring newer and more complex flow passages.

NOMENCLATURE

A flow cross-sectional area, m2, ft2
a radius of a circular duct; also half width of a noncircular duct, m, ft
Bi Biot number = heDh/k
Br Brinkman number for the boundary condition of constant axial wall

temperature, = fiu2m/[Jgck(Twm - TJ]
Br' Brinkman number for the boundary condition of constant axial wall heat

Aux, = iLul/(Jgcq"Dh)
h half spacing or half height of a duct, m, ft
c half spacing or width of a duct; also a parameter for the eccentric annular

duct defined by Eq. (3.270), m, ft
cp specific heat of the fluid at constant pressure, J/(kg • K), Btu/(lbm -° F)
D hydraulic diameter of the duct = 4/1C/P, m, ft
E( m) complete elliptic integral of the second kind with the argument m defined 

at appropriate places in the text
e*  eccentricity e/(r0 — r,) of the eccentric annular duct or amplitude c/a of

the circular duct with sinusoidal corrugation
F a multiplicative factor entering various expressions
f circumferentially averaged fully developed Fanning friction factor =

fn apparent Fanning Friction factor = ^p*/(x/r h)
g. proportionality constant in Newton’s second law of motion, = 1 (dimen

sionless) in SI units; 32.174 lbm ■ ft/(lbz • s2)
h convective heat transfer coefficient for fully developed flow, W/(m2 • K),

Btu/(hr • ft2 • °F)
h . convective heat transfer coefficient for the duct exterior, W/(m2 • K),

Btu/(hr • ft2 • °F)
J mechanical-to-thermal energy conversion factor, = 1 (dimensionless) in SI

units; = 778.163 lby • ft/Btu
J. ( ) Bessel functions of the first kind and orders 0 or 1 corresponding to i = 0 

or 1
K(x) incremental pressure drop number, defined by Eq. (3.4)
k thermal conductivity of the fluid if either no subscript or the subscript f is

used; thermal conductivity of the duct wall material if the subscript w is 
used, W/(m • K), Btu/(hr • ft • °F)

L length of the duct, m, ft
I..... hydrodynamic entrance length, m, ft
Z..r dimensionless hydrodynamic entrance length = Lhy/Z>/7Re
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L[h thermal entrance length, m, ft
L*  dimensionless thermal entrance length = Ltb/DhPe
m argument of complete integral of the second kind; also an exponent or a

constant
Nubc circumferentially averaged Nusselt number for fully developed flow for the 

thermal boundary condition of Table 3.1 or 3.2
Nu , hc circumferentially averaged but axially local Nusselt number for the ther

mal entrance region for the specified thermal boundary condition de
fined by Eq. (3.10)

Nur. bc mean Nusselt number for the thermal entrance region for the specified 
thermal boundary condition, defined by Eq. (3.11)

Nu(,‘); local Nusselt number for a doubly connected duct =
Nu(/’ local Nusselt number at inner wall of a doubly connected duct for specific

thermal boundary condition la; Nusselt numbers for the other specific 
thermal boundary conditions are defined similarly

Nu„ overall Nusselt number associated with the (ti) boundary condition, de
fined by Eq. (3.27) 

n number of sides of a duct; also a dimensionless constant
P wetted perimeter of the duct, m, ft
Pe Peclet number = um Dh/a = RePr
Pr Prandtl number = v/a.
p fluid static pressure, Pa, lby/ft2
Ap fluid static pressure drop in the flow direction between two cross sections

of interest, Pa, Ihy/ft2
A/?*  dimensionless fluid static pressure drop = Ap/(pw^/2gc)
q” wall heat flux, heat transfer rate per unit heat transfer area of the duct

(average value with respect to perimeter), W/m2, Btu/(hr • ft2)
Re Reynolds number = um Dh/v
r radial coordinate in the cylindrical coordinate system, m, ft
rh hydraulic radius of the duct = Ac/P, m, ft
r*  aspect ratio for doubly connected ducts, explicitly defined for specific

geometry in the text
s duct dimension, m, ft
S dimensionless parameter for eccentric annular duct defined by Eq. (3.268);

also thermal energy source function, rate of thermal energy generated 
per unit volume of the fluid, W/m3, Btu/(hr • ft3)

A*  thermal energy source number, = SD%/k(Tw - Te) for constant wall
temperature boundary condition, = SDh/q^ for axially constant wall 
heat flux

Sk Stark number = f.wuT^Dh/k
T fluid temperature, °C, K, °F, °R

ambient fluid temperature °C, K, °F, °R
Tm fluid bulk mean temperature, defined by Eq. (3.7), °C, K, °F. °R
K wall temperature at the inside duct periphery. °C, K. °F, °R
T„. circumferentially averaged wall temperature, °C. K, °F, °R
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^L*max  dimensionless maximum wall temperature, defined by Eq. (3.167)
7]*  min dimensionless minimum wall temperature, defined by Eq. (3.167)
» fluid axial velocity, fluid velocity component in x direction, m/s, ft/s
u,„ fluid mean axial velocity, m/s, ft/s
wmax fluid maximum axial velocity across the duct cross section for fully 

developed flow, m/s, ft/s
i’ fluid velocity component in y or r direction, m/s, ft/s
W fluid mass flow rate through the duct, = pu„,Ac, kg/s, lbm/hr
vv fluid velocity component in z or 0 direction, m/s, ft/s
a axial (streamwise) coordinate in Cartesian or cylindrical coordinate sys

tem, m, ft
a + dimensionless axial coordinate for the hydrodynamic entrance region,

= x/DhRe
x * dimensionless axial coordinate for the thermal entrance region, = x/Z)APe
y, z Cartesian coordinates across the flow cross section, m, ft
y distance of centroid of the duct cross section measured from the base,

m, ft
yrnax normal distance from the base to a point where wmax occurs in the duct 

cross section, m, ft

Greek symbols
a fluid thermal diffusivity = k/pcp, m2/s, ft2/s
a * duct aspect ratio, explicitly defined for specific geometry in the text
T ( ) gamma function
y dimensionless parameter defined by Eq. (3.23)
8 hydrodynamic boundary-layer thickness, m, ft
8r thermal boundary-layer thickness, m, ft
<51( duct wall thickness, m, ft
£ eccentricity of an eccentric annular duct (see Fig. 3.46) or amplitude of a

circular duct with sinusoidal corrugations (see Fig. 3.39u), m, ft
£m. emissivity of the duct wall material
7) dimensionless hydrodynamic boundary-layer parameter for elliptical duct

[see Eq. (3.188)]; also a bipolar coordinate [see Eq. (3.270)], m, ft
0 dimensionless fluid temperature for boundary condition of axially constant

wall heat flux, = (T - Te)/(q”Dh/k)
0 angular coordinate in the cylindrical coordinate system, rad, deg; also

dimensionless fluid temperature for boundary condition of axially con
stant wall temperature, = (T - Tw)/(Te - 7/)

0m dimensionless fluid bulk mean temperature = (Tm - Tw)/(Te- Tw)
0{k > dimensionless fluid temperature for a doubly connected duct, defined in [1]
0<k> dimensionless circumferentially averaged temperature of wall (/ = i for

inner wall, I = o for outer wall) for the fundamental boundary condi
tion of kind k when inner or outer wall (j = i or o) is heated or 
cooled; dimensionless fluid bulk mean temperature if I = m

0*  influence coefficients derived from the fundamental solutions
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fluid dynamic viscosity coefficient, Pa • s, lb„,/(hr ■ ft)
v fluid kinematic viscosity coefficient = p/p, m2/s, ft2/s
£ a duct dimension (see Fig. 3.50); also a bipolar coordinate [see Eq.

(3.270)], m, ft
p fluid density, kg/m’. lb,„/ft3
a Stefan-Boltzmann constant = 5.6697 X 10~8 W/(m2 • K4) = 0.1713 X

1(T8 Btu/(hr • ft2 • °R4)
tm. wall shear stress due to skin friction, Pa, lEy/ft2
<!>,'A > dimensionless heat flux at a point in the flow field for the jth wall of a 

doubly connected duct, defined in [1]
dimensionless wall heat flux defined in a manner similar to = 

qi'D./k^ - TJ for A = 1,3; = for k = 2,4
T dimensionless mean wall heat flux for boundary condition of axially 

constant wall temperature, = q'^Dh/k{Tw - Te)
T dimensionless local wall heal flux for boundary condition of axially 

constant wall temperature, = q"Dh/k(Tw — Te)
a apex angle or half-apex angle of a duct, rad, deg
X similarity variable defined by Eqs. (3.46) and (3.115)

Subscripts
be thermal boundary condition (refer to Tables 3.1 and 3.2 for the al

phanumeric designation and meaning of various thermal boundary 
conditions)

c center or centroid; also combined entrance length
e initial value at the entrance of the duct or where the heat transfer starts
f fluid
fd fully developed flow
H (h) boundary condition (see Tables 3.1 and 3.2 for a description of @,

(m), (m), (hi), (h4), and (us) boundary conditions)

hy hydrodynamic
i inner surface of a doubly connected duct
./ heated wall of a doubly connected duct, = i or o
m mean
max maximum
min minimum
o outer surface of a doubly connected duct
T (t) boundary condition (see Tables 3.1 and 3.2 for a description of

(t) , (tb) , and (t4) boundary conditions)
th thermal
v denoting arbitrary section along the duct length, a local value as opposed

to a mean value
m wall or fluid at the wall
oo fully developed value at x = oo



REFERENCES 3-131

REFERENCES

1 R. K Shah and A L London. Laminar Flow Forced Convection in Ducts, Supplement 1 to 
Advances in Heat Transfer, Academic, New York, 1978.

2. M. S. Bhatti, Fully Developed Temperature Distribution in a (. ircular Tube With Uniform 
Wall Temperature, unpublished paper, Owens-Coming Fiberglas Corporalion, Granville, 
Ohio, 1985.

3. M L. Michelsen and J. Villadsen, The Graetz Problem with Axial Heat Conduction, I nt. J. 
Heat Mass Transfer, Vol. 17, pp. .1391-1402, 1974.

4. J W. Ou and K. C. Cheng, Viscous Dissipation Effects on Thermal Entrance Hea  Transfer 
in Laminar and Turbulent Pipe Flows With Uniform Wall Temperatuie, AIAA Paper No. 
74-743 or ASME Paper No. 74-HT-50, 1974.

*

5 V P. Tyagi, Laminar Forced Convection of a Dissipative Fluid in a Channel, J. Heat 
Transfer, Vol. 88, pp. 161-169, 1966.

6. W C. Reynolds, Heat Transfer to Fully Developed Laminar Flow in a Circular Tube with 
Arbitrary Circumferential Heat Flux, J. Heat Transfer, Vol. 82, pp. 108-112, 1960.

7 IT J. Hickman, An Asymptotic Study of the Nusselt-Graetz Problem, Part 1: Large x 
Behavior, J. Heat Transfer, Vol. 96, pp. 354-358, 1974.

8 E M. Sparrow, S. V. Patankar, and H. Shahrestani, Laminar Heat Transfer in a Pipe 
Subjected to Circumferentially Varying External Heat Transfer Coefficients, Numer. Heat 
1ransfer, Vol. 1, pp. 117-127, 1978.

9. Y S. Kadancr. Y. P. Rassadkin, and E. L. Spektor, Heat Transfer in Laminar Liquid Flow 
through a Pipe Cooled by Radiation, Heat Transfer—Sov. Res., Vol. 3, No. 5, pp. 182-188, 
1971.

10. E M. Sparrow and S. V. Patankar, Relationships among Boundary Conditions and Nusselt 
Numbers for Thermally Developed Duct Flows, J. Heat Transfer, Vol. 99, pp. 483-485, 
1977.

11. R W. Hornbeck, Laminar Flow in the Entrance Region of a Pipe, Appl. Sci. Res., Vol. A13, 
pp. 224-232, 1964.

12. R Y. Chen, Flow in the Entrance Region at Low Reynolds Numbers, J. Fluids Eng., Vol. 
95, pp. 153-158, 1973.

13. H. L. Weissberg, End Correction for Slow Viscous Flow through Long Tubes, Phys. Fluids, 
Vol. 5, pp. 1033-1036, 1962.

14 J. H. Linehan and S. R. Hirsch, Entrance Correction for Creeping Flow in Short Tubes, J. 
Fluids Eng., Vol. 99, pp. 778-779, 1977.

15. L. Graetz, Uber die Warmeleitungs fahigkeit von Fliissigkeiten (On the Thermal Conductiv
ity of Liquids). Part 1, Ann. Phys. Chem.. Vol. 18, pp. 79-94, 1883; Part 2, Ann. Phys. 
Them., Vol. 25, pp. 337-357, 1885.

16. W Nusselt, Die Abhangigkeit der Warmeiibergangszahl von der Rohrlange (The Depen
dence of the Heat-Transfer Coefficient on the Tube Length), VDI Z., Vol. 54, pp. 1154-1158, 
1910.

17. G. M. Brown, Heat or Mass Transfer in a Fluid in Laminar Flow in a Circular or Flat 
Conduit, AIChEJ., Vol. 6. pp. 179-183, 1960.

18. B. K. Larkin, High-Order Eigenfunctions of the Graetz Problem, AIChE J., Vol. 7, p. 530, 
1961.

19. J. Newman, The Graetz Problem, The Fundamental Principles of Current Distribution and 
Mass Transport in Electrochemical Cells, cd. A. J. Bard, Vol. 6, pp. 187-352, Dekker, New 
York, 1973.

20. U. Grigull and H. Tratz, Thermischer einlauf in ausgebildeter laminarer Rohrstromung, Int. 
J. Heat Mass Transfer, Vol. 8, pp. 669-678, 1965.



3 • 1 32 LAMINAR CONVECTIVE HEAT TRANSFER IN DUCTS

21. M. A. Leveque, Les lois de la transmission de chaleur par convection, Ann Mines, Mem., 
Ser. 12, Vol. 13, pp. 201-299, 305-362, 381-415, 1928.

22. M. Abramowitz. Table of the Integral ffie' “3 du, J. Math. Phys., Vol. 30, p. 162, 1951.

23. H. Hausen, Darstellung des Warmeiiberganges in Rohren durch verallgemeinerte Potenzbe- 
ziehungen, VDI Z., Suppl. “ Verfahrenstechnik,” No. 4, pp. 91-98, 1943.

24. D K. Hennecke, Heat Transfer by Hagen-Poiseuille Flow in the Thermal Development 
Region with Axial Conduction. Warme-Stoffiibertrag., Vol. 1, pp. 177-184, 1968.

25. H C. Brinkman, Heat Effects in Capillary Flow, Appl. Sci. Res., Vol. A2, pp. 120-124, 
1951.

26. C J. Hsu, Exact Solution to Entry-Region Laminar Heat Transfer with Axial Conduction 
and the Boundary Conditions of the Third Kind, Chem. Eng. Sci., Vol. 23, pp. 457-468, 
1968.

27. R Siegel, E. M. Sparrow, and T. M. Hallman, Steady Laminar Heat Transfer in a Circular 
Tube with Prescribed Wall Heat Flux, Appl. Sci. Res.,Vol. A7, pp. 386-392, 1958.

28. C J. Hsu, Heat Transfer in a Round Tube with Sinusoidal Wall Heat Flux Distribution, 
AIChEJ., Vol. 11, pp. 690-695, 1965.

29. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 
1960.

30 J W. Ou and K. C Cheng, Viscous Dissipation Effects on Thermal Entrance Region Heat 
Transfer in Pipes with Uniform Wall Heat Flux, Appl. Sci. Res., Vol. 28, pp. 289-301,1973.

31. G S. Barozzi and G. Pagliarini, A Method to Solve Conjugate Heat Transfer Problems: The 
Case of Fully Developed Laminar Flow in a Pipe, J. Heat Transfer, Vol. 107, pp. 77-83, 
1985.

32. M. S. Bhatti, Limiting Laminar Heat Transfer in Circular and Flat Ducts by Analogy with 
Transient Heat Conduction Problems, unpublished paper, Owens-Coming Fiberglas Corpo
ration, Granville, Ohio, 1985.

33. V Javeri, Simultaneous Development of the Laminar Velocity and Temperature Fields in a 
Circular Duct for the Temperature Boundary Condition of the Third Kind, Int. J. Heat 
Mass Transfer, Vol. 19, pp. 943-949, 1976.

34. K C Cheng and R. S. Wu, Viscous Dissipation Effects on Convective Instability and Heat 
Transfer in Plane Poiseuille Flow Heated from Below, Appl. Sci. Res., Vol. 32, pp. 327-346, 
1976.

35. S Pahor and J. Strand. A Note on Heat Transfer in Laminar Flow through a Gap, Appl. 
Sci. Res., Vol. A10, pp. 81-84, 1961.

36 C C. Grosjean, S. Pahor, and J. Strand, Heat Transfer in Laminar Flow through a Gap, 
Appl. Sci. Res., Vol. All, pp. 292-294, 1963.

37. J. W. Ou and K. C. Cheng, Effects of Pressure Work and Viscous Dissipation on Graetz 
Problem for Gas Flow in Parallel-Plate Channels, Warme-Stoffiibertrag., Vol. 6, pp. 191-198, 
1973.

38. I N Tao, On Some Laminar Forced-Convection Problems, J. Heat Transfer, Vol. 83, pp. 
466-472, 1961.

39 J. R. Bodoia and J. F. Osterle, Finite Difference Analysis of Plane Poiseuille and Couette 
Flow Developments, Appl. Sci. Res., Vol. A10, pp. 265-276, 1961

40 M S. Bhatti and C. W. Saverv, Heat Transfer in the Entrance Region of a Straight Channel: 
Laminar Flow With Uniform Wall Heat Flux, J. Heat Transfer, Vol. 99, pp. 142-144,1977.

41 W Nusselt, Der Warmeaustausch am Berieselungskiihler, VDI Z., Vol. 67, pp. 206-210, 
1923.

42. J. R. Sellars, M. Tribus, and J. S. Klein, Heat Transfer to Laminar Flow in a Round Tube or 
Flat Conduit—the Graetz Problem Extended, Trans. A SME, Vol. 78, pp. 441-448, 1956.

43. R D. Cess and E. C. Shaffer, Heat Transfer to Laminar Flow Between Parallel Plates with a 
Prescribed Wall Heat Flux, Appl. Sci. Res., Vol. A8, pp. 339-344, 1959.



REFERENCES 3*133

44. E. M Sparrow, J. L Novotny, and S. H L in, L aminar Flow of a Heat-Generating Fluid in a 
Parallel-Plate Channel, AIChEJ., Vol. 9, pp. 797-804, 1963.

45. A S. Jones, Two-Dimensional Adiabatic Forced Convection at Low Peclet Number, Appl. 
Sci. Res., Vol. 25, pp. 337-348, 1972.

46. C J. Hsu, An Exact Analysis of Low Peclet Number Thermal Entry Region Heat Transfer in 
Transversely Nonuniform Velocity Fields, AlChE J., Vol. 17, pp. 732-740, 1971.

47 S Mori, T. Shinke, M. Sakakibara, and A. Tanimoto, Steady Heat Transfer to Laminar Flow 
Between Parallel Plates with Conduction in Wall, Heat Transfer—Jpn. Res., Vol. 5, No. 4, 
pp. 17-25, 1976.

48. C. L. Hwang and L. T. Fan, Finite Difference Analysis of Forced Convection Heat Transfer 
in Entrance Region of a Flat Rectangular Duct, Appl. Sci. Res., Vol. A13, pp. 401-422, 
1964.

49. K Stephan, Warmeubergang und druckabfall bei nicht ausgebildetet Laminarstromung in 
Rohren und in ebenen Spalten, Chem.-Ing.-Tech., Vol. 31, pp. 773-778, 1959.

50. M. S. Bhatti and C W. Savery, Heat Transfer in the Entrance Region of a Straight Channel: 
I aminar Flow With Uniform Wall Temperature. J. Heat Transfer, Vol. 100, pp. 539-542, 
1978.

51 F Das and A. K. Mohanty, Forced Convection Heat Transfer in the Entrance Region of a 
Parallel Plate Channel, Int. J. Heat Mass Transfer, Vol. 26, pp. 1403-1405, 1983.

52 W E. Mercer. W. W. Pearce, and J. E. Hitchcock, Laminar Forced Convection in the 
Entrance Region between Parallel Flat Plates, J. Heat Transfer, Vol. 89, pp. 251-257, 1967.

53. IL S. Heaton, W. C. Reynolds, and W. M. Kays, Heat Transfer in Annular Passages: 
Simultaneous Development of Velocity and Temperature Fields in Laminar Flow, Int. J. 
Heat Mass Transfer, Vol. 7, pp. 763-781, 1964.

54 V Javeri, Heat Transfer in Laminar Entrance Region of a Flat Channel for the Temperature 
Boundary Condition of the Third Kind, Warme-Stoffiibertrag., Vol. 10, pp. 137-144, 1977.

55. S M. Marco and L. S. Han, A Note on Limiting Laminar Nusselt Number in Ducts with 
Constant Temperature Gradient by Analogy to Thin-Plate Theory, Trans. ASME, Vol. 77, 
pp. 625-630, 1955.

56. II F. P. Purday, Streamline Flow, Constable, London, 1949; same as An Introduction to the 
Mechanics of Viscous Flow, Dover, New York, 1949.

57. N M Natarajan and S. M. Lakshmanan, Laminar Flow in Rectangular Ducts: Prediction of 
Velocity Profiles and Friction Factor, Indian J. Technol., Vol. 10, pp. 435-438, 1972.

58. R W. Miller and L. S Han, Pressure Losses for Laminar Flow in the Entrance Region of 
Ducts of Rectangular and Equilateral Triangular Cross Sections. J. Appl. Meeh., Vol. 38, 
pp. 1083-1087, 1971.

59. C L. Wiginton and C. Dalton, Incompressible Laminar Flow in the Entrance Region of a 
Rectangular Duct, J. Appl. Meeh., Vol. 37, pp. 854-856, 1970.

60. F W. Schmidt and M. E. Newell, Heat Transfer in Fully Developed Laminar Flow through 
Rectangular and Isosceles Triangular Ducts, Int. J. Heat Mass Transfer, Vol. 10, pp. 
1121-1123, 1967.

61. J. M. Savino and R. Siegel, Laminar Forced Convection in Rectangular Channels with 
Unequal Heat Addition on Adjacent Sides, Int. J. Heat Mass Transfer, Vol. 7, pp. 733-741, 
1964.

62. L S. Han, Laminar Heat Transfer in Rectangular Channels, J. Heat Transfer, Vol. 81, pp. 
121-128, 1959.

63. R. Siegel and J. M. Savino, An Analytical Solution of the Effect of Peripheral Wall 
Conduction on Laminar Forced Convection in Rectangular Channels, J. Heat Transfer, Vol. 
87, pp. 59-66, 1965.

64. J. M. Savino and R. Siegel, Extension of an Analysis of Peripheral Wall Conduction Effects 
for Laminar Forced Convection in Thin-Walled Rectangular Channels, NASA Tech. Note 
TN D-2860, 1965.



3 • 1 34 L AMIN A.R CONVECTIVE HEAT TRANSFER IN DUCTS

65. R. W. Lyczkowski, C. W. Solbrig, and D. Gidaspov, Forced Convective Heat Transfer in 
Rectangular Ducts—General Case of Wall Resistance and Peripheral Conduction, Nucl. 
Eng. Design, Vol. 67, pp. 357-378 1981.

66. M. Iqbal, B. D. Aggarwala, and A. K. Khatry, On the Conjugate Problem of Laminar 
Combined Free and Forced Convection Through Vertical Non-Circular Ducts, J. Heat 
Transfer, Vol. 94, pp. 52-56, 1972.

67 R. M. Curr, D. Sharma, and D. G. Tatchell, Numerical Predictions of Some Three-Dimen
sional Boundary Layers in Ducts, Comput. Methods. Appl. Meeh. Eng., Vol. 1, pp. 143-158, 
1972.

68. M Tachibana and Y. lemoto, Steady Laminar Flow in the Inlet Region of Rectangular 
Ducts, Bull. JSME, Vol. 24, No. 193, pp. 1151-1158, 1981.

69. P. Wibulswas, Laminar Flow Heat Transfer in Non-Circular Ducts, Ph.D. Thesis. London 
Univ., London, 1966.

70. A. R. Chandrupatla and V. M. K. Sastri, Laminar Forced Convection Heat Transfer of a 
Non-Newtonian Fluid in a Square Duct, Int. J. Heat Mass Transfer, Vol. 20, pp. 1315-1324, 
1977.

71. K R. Perkins, K. W. Shade, and D. M. McEligot. Heated Laminarizing Gas Flow in a 
Square Duct, Int. J. Heat Mass Transfer, Vol. 16, pp. 897-916, 1973.

72. A. R. Chandrupatla and V. M. K. Sastri, Laminar Flow and Heat Transfer to a Non
Newtonian Fluid in an Entrance Region of a Square Duct With Prescribed Constant Axial 
Wall Heat Flux, Numer. Heat Transfer, Vol. 1, pp. 243-254, 1978.

73. S. Neti and R. Eichhorn, Combined Hydrodynamic and Thermal Development in a Square 
Duct, Numer. Heat Transfer, Vol. 6, pp. 497-510, 1983.

74. K C. Cheng, Laminar Forced Convection in Regular Polygonal Ducts with Uniform 
Peripheral Heat Flux, J. Heat Transfer, Vol. 91, pp. 156-157, 1969.

75. P. K. Shah, Laminar Flow Friction and Forced Convection Heat Transfer in Ducts of 
Arbitrary Geometry, Int. J. Heat Mass Transfer, Vol. 18, pp. 849-862, 1975.

76 A Haji-Sheikh, M. Mashena, and M. J. Haji-Sheikh, Heat Transfer Coefficient in Ducts with 
Constant Wall Temperature, J. Heat Transfer, Vol. 105, pp. 878-883, 1983.

77. V K Migay, Hydraulic Resistance of Triangular Channels in Laminar Flow (in Russian), 
Izv. I'yssh. Uchebn. Zaved. Energ., Vol. 6, No. 5, pp. 122-124, 1963.

78. E M. Sparrow and A. Haji-Sheikh, Laminar Heat Transfer and Pressure Drop in Isosceles 
Triangular, Right Triangular, and Circular Sector Ducts, J. Heat Transfer, Vol. 87, pp. 
426-427, 1965.

79. M. Iqbal, A. K. Khatry, and B. D. Aggarwala, On the Second Fundamental Problem of 
Combined Free and Forced Convection through Vertical Non-Circular Ducts, Appl. Sci. 
Res., Vol. 26, pp. 183-208, 1972.

80. H Nakamura, S. Hiraoka, and I. Yamada, Laminar Forced Convection Flow and Heat 
Transfer in Arbitrary Triangular Ducts, Heat Transfer—Jpn. Res., Vol. 2, No. 14, pp. 
56-63, 1972.

81. Z V. Semilet, Laminar Heat Transfer and Pressure Drop for Gas Flow in Triangular Ducts. 
Heat Transfer—Sou. Res., Vol. 2, No. 1, pp. 100-105, 1970.

82. D. P. Fleming and E. M. Sparrow, Flow in the Hydrodynamic Entrance Region of Ducts of 
Arbitrary Cross Section, J. Heat Transfer, Vol. 91, pp. 345-354, 1969.

83. B. D. Aggarwala and M. K. Gangal, Laminar Flow Development in Triangular Ducts, Trans. 
Cun. Soc. Meeh. Eng., Vol. 3, pp. 231-233, 1975.

84 P Wibulswas and P. Tangsiriinonkol, Laminar and Transition Forced Convection in 
Triangular Ducts With Constant Wall Temperature, Unpublished Paper, London Univ., 
London,1978.

85. M. S. Bhatti, Laminar Flow in the Entrance Region of Elliptical Ducts, J. Fluids Eng., Vol. 
105. pp. 290-296, 1983.



REFERENCES 3*135

S6 T. S Lundgren, F M. Sparrow and J. B. Starr, Pressure Drop Due to the Entrance Region 
in Ducts of Arbitrary Cross Section, J. Basic Eng., Vol. 86, pp. 620-626, 1964.

87 N T. Dunwoody, Thermal Results for Forced Convection through Elliptical Ducts, J. Appt. 
Meeh., Vol. 29, pp. 165-170, 1962.

88. M. S. Bhatti, Heat Transfer in the Fully Developed Region of Elliptical Ducts with Uniform 
Wall Heat Flux, J. Heat Transfer, Vol. 106, pp. 895-898, 1984.

89 R M. Abdel-Wahed, A. E. Attia, and M. A. Hifni, Experiments on Laminar Flow and Heat 
Transfer in an Elliptical Duct, Int. J. Heat Mass Transfer, Vol. 27, pp. 2397-2413, 1984.

90. S M. Richardson, Leveque Solution for Flow in an Elliptical Duct, Lett. Heat Mass 
Transfer, Vol. 7, pp. 353-362, 1980.

91 S. Someswara Rao, N. C. Pattabhi Ramacharyulu, and V. V. G. Krishnamurty, l aminar 
Forced Convection in Elliptical Ducts, Appl. Sci. Res., Vol. 21, pp. 185-193, 1969.

92. D. F. Sherony and C W. Solbrig, Analytical Investigation of Heat or Mass Transfer and 
Friction Factors in a Corrugated Duct Heat or Mass Exchanger, Int. J. Heat Mass Transfer, 
Vol. 13, pp. 145-159, 1970.

93. A Lawai and A. S. Mujumdar, Forced Convection Heat Transfer to a Power Law Fluid in 
Arbitrary Cross-Section Ducts, Can. J. Chem. Eng., Vol. 62, pp. 326-333, 1984.

94. H Nakamura. S. Hiraoka, and I. Yamada, Flow and Heat Transfer of Laminar Forced 
Convection in Arbitrary Polygonal Ducts, Heat Transfer—Jpn. Res., Vol. 2, No. 4, pp. 
56-63, 1974.

95. G Schenkel, Laminar Durchstromte Profilkanale: Ersatzradien und Widerstandsbeiwerte, 
Fortschritt-Berichte der VDI Zeitschriften, Reihe: Stromungstechnik, Vol. 7(62), 1981. 
(English translation available from the authors of this chapter.)

96. E. R. G. Eckert and T. F. Irvine, Jr., Flow in Comers of Passages with Noncircular Cross 
Sections, Trans. ASME, Vol. 78, pp. 709-718, 1956.

97 E R. G. Eckert, T. F. Irvine, Jr., and J. T. Yen, Local Laminar Heat Transfer in 
Wedge-Shaped Passages, Trans. ASME, Vol. 80, pp. 1433-1438, 1958.

98. M. H. Hu and Y. P. Chang, Optimization of Finned Tubes for Heat Transfer in Laminar 
Flow, J. Heat Transfer, Vol. 95, pp. 332-338, 1973; for numerical results, see M. H. Hu, 
Flow and Thermal Analysis for Mechanically Enhanced Heat Transfer Tubes, Ph.D. Thesis, 
Dept. Meeh. Eng., State Univ, of New York at Buffalo, 1973.

99. H. M. Soliman, A. A. Munis, and A. C. Trupp, Laminar Flow in the Entrance Region of 
Circular Sector Ducts, J. Appl. Meeh., Vol. 49, pp. 640-642, 1982.

100. F. M. Sparrow and A. Haji-Sheikh, Flow and Heat Transfer in Ducts of Arbitrary Shape 
with Arbitrary Thermal Boundary Conditions, J. Heat Transfer, Vol. 88, pp. 351-358, 1966; 
Discussion by C. F. Neville, J. Heat Transfer, Vol. 91, pp. 588-589, 1969.

101. S W. Hong and A. E. Bergles, Augmentation of Laminar Flow Heat Transfer in Tubes by 
Means of Twisted-Tape Inserts, Tech. Rep. HTL-5, ISU-ERI-Ames-75011, Eng. Res. Inst., 
Iowa State Univ., Ames, 1974.

102. E M. Sparrow, T. S. Chen, and V. K. Jonsson, Laminar Flow and Pressure Drop in 
Internally Finned Annular Ducts, Int. J. Heat Mass Transfer, Vol. 7, pp. 583-585, 1964.

103. T. Niida, Analytical Solution for the Velocity Distribution in Laminar Flow in an Annular
Sector Duct, Int. Chem. Eng., Vol. 20, No. 2, pp. 258-265, 1980.

104. H. M. Soliman, Laminar Heat Transfer in Annular Sector Ducts, J. Heat Transfer, Vol. 109, 
pp. 247-249, 1987.

105 P Renzoni and C. Prakash, Analysis of Laminar Flow and Heat Transfer in the Entrance 
Region of an Internally Finned Concentric Circular Annular Duct, J. Heat Transfer, Vol. 
109, pp. 532-538, 1987.

106. J. P. Zarling, Application of Schwarz-Neumann Technique to Fully Developed Laminar 
Heat Transfer in Noncircular Ducts, J. Heat Transfer, Vol. 99, pp. 332-335, 1977.



3 • 1 36 I AMIN AR CONVECTIVE HEAT TRANSFER IN DI JCTS

107. K. C. Cheng and M. Jamil, Laminar Flow and Heat Transfer in Circular Ducts With 
Diametrically Opposite Flat Sides and Ducts of Multiply Connected Cross Sections, Can. J. 
Chem. Eng., Vol. 48, pp. 333-334, 1970.

108 F M. Sparrow and M. Charmchi, Heat Transfer and Fluid Flow Characteristics of 
Spanwise-Periodic Corrugated Ducts, Int. J. Heat Mass Transfer, Vol. 23, pp. 471-481, 
1980.

109. E M. Sparrow and A. Chukaev, Forced-Convection Heat Transfer in a Duct Having 
Spanwise-Periodic Rectangular Protuberances, Numer. Heat Transfer, Vol. 3, pp. 149-167, 
1980.

110. L. N. Tao, Heat Transfer of Laminar Forced Convection in Indented Pipes, Development in 
Mechanics, ed. J. E. Lay and L. E. Malvern, Vol. 1. pp. 511-525, Plenum, New York, 1961.

111. N. M. Natarajan and S. M. Lakshmanan, Laminar Flow through Annuli: Analytical Method 
for Calculation of Pressure Drop, Indian Chem. Eng., Vol. 5, No. 3, pp. 50-53, 1973.

112. R. E. Lundberg, W. C. Reynolds, and W. M. Kays, Heat Transfer with Laminar Flow in 
Concentric Annuli with Constant and Variable Wall Temperature and Heat Flux, NASA 
Technical Note TN D-1972, 1963.

113. S. Kakag and O. Yucel, Laminar Flow Heat Transfer in an Annulus with Simultaneous 
Development of Velocity and Temperature Fields, Technical and Scientific Council of 
Turkey, TUBITAK, ISITEK No. 19, Ankara, Turkey, 1974.

114. R. K Shah, A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular 
and Noncircular Ducts. J. Fluids Eng., Vol. 100, pp. 177-179, 1978.

115. S. Kaka<; and Y. Yener, Convective Heat Transfer, Publication No. 65, Middle East Technical 
Univ.. Ankara. Turkey, distributed by Hemisphere Publishing Corp., New York, 1980.

116. N A. V. Piercy, M. S. Hooper, and H. F. Winny, Viscous Flow through Pipes With Cores, 
London Edinburgh Dublin Philos. Mag. J. Sei., Vol. 15, pp. 647-676, 1933.

117. A. C. Stevenson, The Centre of Flexure of a Hollow Shaft, Proc. London Math. Soc., Ser. 2, 
Vol. 50, p. 536, 1949.

118. W. Tiedt, Bereehnung des laminaren und turbulenten Reibungswiderstandes konzentrischer 
und exzentrischer Ringspalte. Part I, Chem.-Ztg. Chem. Appar., Vol. 90, pp. 813-821,1966; 
Part II, Chem.-Ztg. Chem. Appar., Vol. 91, pp. 17-25, 1967; also as Tech. Ber. 4. Inst. 
Hydraul. Hydrol., Technische Hochschule, Darmstadt, 1968; English translation, Transl. 
Bur. No. 0151, 248 pp., Trans. Dev. Agency Libr., Montreal, 1971.

119. E Becker, Stromungsvorgange in ringfbrmigen Spalten und ihre Beziehung zum Poiseuil- 
leschen Gesetz, Forsch. Geb. Ingenieurwes., VDI, Vol. 48, 1907.

120. K C. Cheng and G. J. Hwang, Laminar Forced Convection in Eccentric Annuli, AIChE J., 
Vol. 14, pp. 510-512, 1968.

121 M L. Trombetta, Laminar Forced Convection in Eccentric Annuli, Int. J. Heat Mass 
Transfer, Vol. 14, pp. 1161-1173, 1971.

122 F E. Feldman, R. W. Hornbeck, and J. F. Osterle, A Numerical Solution of Laminar 
Developing Flow in Eccentric Annular Ducts, Int. J. Heat Mass Transfer, Vol. 25, pp. 
231-241, 1982.

123. E E Feldman, R. W. Hornbeck, and J. F. Osterle, A Numerical Solution of Developing 
Temperature for Laminar Developing Flow in Eccentric Annular Ducts, Int. J. Heat Mass 
Transfer, Vol. 25, pp. 243-253, 1982.

124. II C. Topakoglu and O. A. Amas, Convective Heat Transfer for Steady Laminar Flow 
between Two Confocal Elliptical Pipes with Longitudinal Uniform Wall Temperature 
Gradient, Int. J. Heat Mass Transfer, Vol. 17, pp. 1487-1498, 1974.

125 D. A. Ratkowsky and N. Epstein, Laminar Flow in Regular Polygonal Ducts with Circular 
Centered Cores. Can. J. Chem. Eng., Vol. 46, pp. 22-26, 1968.

126. K C Cheng and M. Jamil, Laminar Flow and Heat Transfer in Ducts of Multiply 
Connected Cross Sections, ASME Paper No. 67-HT-6, 1967.



REFERENCES 3-137

127. S. I Hagen and D A. Ratkowsky. Laminar Flow in Cylindrical Duct-; Having Regular 
Polygonal Shaped Cores, Can. J. Chem. Eng., Vol. 46, pp. 387-388, 1968.

128 B. D. Bowen, Laminar Flow in Unusual-Shaped Ducts, B. A. Sc. Thesis, Univ, of British 
Columbia, Vancouver, 1967.

129. P. N. Shivakumar, Viscous Flow in Pipes Whose Cross-Sections are Doubly Connected 
Regions, Appl. Sci. Res., Vol. 27, pp. 355-365, 1973.





4
TURBULENT AND TRANSITION 
FLOW CONVECTIVE HEAT 
TRANSFER IN DUCTS
M. S. Bhatti
Harrison Radiator Division, GM 
Lockport, New York

R. K. Shah
Harrison Radiator Division, GM 
Lockport, New York

4.1 Introduction
4 1.1 Fluid Flow and Heat Transfer Parameters
4.1.2 Characterization of Turbulent Duct Flows
4.1.3 Laminar-to-Turbulent Transition in Duct Flows
4.1.4 Turbulent-to-Laminar Transition in Duct Flows
4 1.5 Types of Turbulent Duct Flows
4 1.6 Hydraulic and Equivalent Diameter Concepts
4 1.7 Influence of Duct Surface Roughness
4.1.8 Thermal Boundary Conditions

4.2 Circular Duct
4.2.1 Transition Flow
4.2.2 Fully Developed Flow
4.2.3 Hydrodynamically Developing Flow
4.2.4 Thermally Developing Flow
4.2.5 Simultaneously Developing Flow

4 3 Flat Duct
4.3.1 Transition Flow
4.3.2 Fully Developed Flow
4.3.3 Hydrodynamically Developing Flow
4.3.4 Thermally Developing Flow
4.3.5 Simultaneously Developing Flow

4 4 Rectangular Ducts
4.4.1 Transition Flow
4.4.2 Fully Developed Flow
4.4.3 Hydrodynamically Developing Flow
4.4.4 Thermally Developing Flow
4.4.5 Simultaneously Developing Flow

4-1



4*2 TURBULENT AND TRANSITION FLOW CONVECTIVE HEAT TRANSFER

4.5 Triangular Ducts
4.5.1 Transition Flow
4.5.2 Fully Developed Flow
4.5.3 Hydrodynamically Developing Flow
4.5.4 Thermally Developing Flow
4 5.4 Simultaneously Developing Flow

4.6 Additional Singly Connected Ducts
4.6.1 Elliptical Ducts
4.6.2 Trapezoidal Ducts
4.6.3 Circular Ducts with Rectangular Indentations
4 6.4 Ducts Formed by Intersection of Circular Rods with Flat Plates
4.6.5 Some Unusual Ducts

4.7 Concentric Annular Ducts
4.7.1 Transition Flow
4.7.2 Fully Developed Flow
4.7.3 Hydrodynamically Developing Flow
4.7.4 Thermally Developing Flow
4.7.5 Simultaneously Developing Flow

4.8 Eccentric Annular Ducts
4.8.1 Transition Flow
4.8.2 Fully Developed Flow
4.8.3 Hydrodynamically Developing Flow
4.8.4 Thermally Developing Flow
4 8.5 Simultaneously Developing Flow

4.9 Closure 
Nomenclature 
References

4.1 INTRODUCTION

Turbulent duct flows are of immense technological importance, as they occur fre
quently under normal operating conditions for a variety of heating and cooling devices 
in such diverse fields as aerospace, naval, nuclear, materials, mechanical, and chemical 
engineering. The main advantage of turbulent over laminar flows is that they are 
capable of providing vastly enhanced heat and mass transfer rates. However, this is at 
the expense of the increased friction losses accompanying the turbulent flows.

In this chapter, we shall present turbulent fluid flow and heat transfer results of 
practical interest for a variety of ducts, including circular, flat, rectangular, triangular, 
elliptical, trapezoidal, concentric annular, and eccentric annular. No results will be 
presented for turbulent flow over rod bundles, since these results are available in Chap. 
7 of this Handbook.

A word of caution is in order in applying the results of this chapter to extremely 
small tubes with hydraulic diameters smaller than about 2 mm (0.1 in.). In such tubes, 
the turbulent eddy mechanism for fluid flow and heat transfer is suppressed by the 
physical size of the tube cross section resulting in lower friction factors and heat 
transfer coefficients. Unfortunately, definitive information on turbulent flow friction 
factors and heat transfer coefficients in small diameter tubes is not available for 
inclusion in the chapter.



INTRODUCTION 4*3

The duct walls treated in the chapter are considered to be uniformly thin, straight in 
the flow direction with axially unchanging cross sections, nonporous, rigid, and 
stationary. The effect of duct wall roughness is considered wherever possible, since, in 
contrast with laminar flows, the wall roughness exerts a strong influence in enhancing 
both friction and heat transfer coefficients for turbulent flows. The scope of the chapter 
is restricted to steady, incompressible, and constant-property Newtonian fluids only. 
All forms of body forces are neglected, as are the effects of natural convection, phase 
change, mass transfer, chemical reactions, thermal energy sources, viscous dissipation, 
and fluid axial conduction.

4.1.1 Fluid Flow and Heat Transfer Parameters
The fluid flow and heat transfer characteristics of all ducts are described in terms of 
certain hydrodynamic and thermal parameters. Some of them have already been 
introduced in Secs. 3.1.2 and 3.1.3 in the context of the laminar flows in Chap. 3 of this 
Handbook. They include the Fanning friction factor f for fully developed flow [Eq. 
(3.2)], the apparent Fanning friction factor for hydrodynamically developing flow [Eq. 
(3.3)], the bulk mean, mixing-cup, or flow-average temperature Tm [Eq. (3.7)], the local 
heat transfer coefficient hx [Eq. (3.8)], the flow-length average heat transfer coefficient 
hm [Eq. (3.9)], the local Nusselt number NuY [Eq. (3.10)], and the mean Nusselt 
number Nu„, [Eq. (3.11)]. At this stage, additional parameters that are peculiar to 
turbulent duct flows will be defined.

Flow is considered turbulent when the fluid particles do not travel in a well-ordered 
pattern. In turbulent flow, fluid particles possess velocities with macroscopic fluctua
tions at any point in the flow field. Even in steady turbulent flow, the local velocity 
components transverse to the main flow direction change in magnitude with respect to 
time. In describing turbulent flow, it is convenient to separate it into a mean motion 
and a fluctuating or eddying motion. Denoting the time-average velocity of the axial 
flow by u and its axial fluctuating component by u', the instantaneous velocity ut is 
presented as

M, = M + U' (4-1)

with similar expressions for the instantaneous transverse velocity components v, and w, 
as well as the pressure p(.

When the turbulent stream involves heat transfer, its instantaneous temperature 7] 
can be expressed in terms of time-average and fluctuating components T and T' as

T. = T + T' (4.2)

The time-average temperature component T must not be confused with the bulk 
mean (mixing-cup) temperature Tm defined by Eq. (3.7). The former is a local quantity 
at a point, whereas the latter is a flow-average quantity at a cross section.

In order to simplify writing of the time-average equations, the conventional bar over 
the symbols for time-average turbulent quantities such as u and T will be omitted in 
the remainder of this chapter.

In analogy with Newton’s law of friction for the laminar shear stress tz, a law of 
friction for the apparent turbulent stress t, was introduced by Boussinesq [1], Thus

du du
t, = Tt =dy dy
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where p,, is an apparent viscosity also referred to as virtual or eddy viscosity. Note that 
pr is not a property of the fluid like the dynamic viscosity p, but depends on the 
time-average flow velocity.

In analogy with the molecular momentum diffusivity v, eddy diffusivity for 
momentum cll: is often required to characterize turbulent flow, v and c,„ are defined as

Mr
P

P 
v = — , 

P
(4-4)

In analogy with Fourier’s law of heat conduction for laminar flow, a law of heat 
conduction for turbulent flow is introduced. These laws are

dT dT
(4.5)

where k, is an apparent (virtual or eddy) conductivity which is not a property of the 
fluid like the molecular thermal conductivity k, but depends on the time-average flow 
velocity as well as on the time-average bulk mean temperature.

In analogy with the thermal diffusivity a, an eddy diffusivity for heat transfer, cz,, is 
defined:

k k,
a =----- . =------
P<p pcz,

(4-6)

Furthermore, in analogy with the molecular Prandtl number Pr, a turbulent Prandtl 
number Pr, is introduced:

v
Pr =

a
Pr, = — (4.7)

Since neither f.m nor ch is a fluid property, Pr, is also not a fluid property. Like £„, and 
£/,, it depends on the time-average flow velocity and the time-average bulk mean 
temperature.

Next, we introduce the turbulent friction or shear velocity u,. From the definition of 
the friction coefficient / = rw/(pu2,/2gc) [Eq. (3.2)], it is noted that rwgc/p = {fu2m 
has the dimensions of velocity squared. Accordingly, a turbulent friction or shear 
velocity u, is defined by the first inequality of the equation

(4.8)

Next, the dimensionless velocity u' and wall distance y+ are defined in terms of u, 
as

u u
u+ = — =

Ut ^WSc/P

+ y»< yy/^ge/p 
y = — = —----------V V

(4.9)

(4-10)

The set of dimensionless group u+ and y+ is frequently referred to as the wall 
coordinates as the wall shear stress rw enters their defining relations.
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Finally, we note that in duct flows, the use of the Stanton number St is sometimes 
preferred to the use of the Nusselt number Nu, since in the fully developed laminar 
flow the expressions for the Stanton number turn out to be similar in form to those for 
the fully developed Fanning friction factor. Moreover, no characteristic duct dimension 
enters the definition of St [see Eq. (4.11)] below. The Stanton number is related to the 
Nusselt number via the Reynolds and Prandtl numbers simply as

h
St = --------

PCpUm

Nu
RePr

(4.H)

Throughout Chap. 4, however, the heat transfer coefficients for various ducts will be 
presented in terms of Nu rather than St to facilitate comparisons with the laminar flow 
heat transfer coefficients, which are presented in Chap. 3 in terms of Nu.

4.1.2 Characterization of Turbulent Duct Flows
A turbulent boundary layer in a duct may be visualized as comprising three distinct 
regions as depicted in Fig. 4.1. They are a laminar sublayer in the immediate vicinity of 
the duct wall, a buffer layer, and a prominent turbulent core. In the laminar sublayer, 
the fluid particles move in an orderly streamline pattern parallel to the duct wall. In the 
turbulent core, on the other hand, chunks of fluid move in a totally chaotic pattern, 
causing an intense mixing of the fluid. The fluid motion in the turbulent core is termed 
eddying motion. The fluid motion in the intervening buffer layer exhibits behavior that 
is intermediate between that of the fluid in the laminar sublayer and in the turbulent 
core.

The laminar sublayer plays a decisive role in controlling the rates of heat, mass, and 
momentum transfer as the major temperature, concentration, and velocity changes 
occur across it. It is important to know its thickness 8Z, which is given by

t (4-12)

where u. denotes the friction velocity given by Eq. (4.8). This expression for 8, was 
deduced analytically by Goldstein [2] from the criterion that at a Reynolds number 
u,8//v = 5, a von Karman vortex street just forms a single protrusion signaling the 
onset of eddying motion. Equation (4.12) is experimentally verified by several investiga
tors. It is applicable to internal as well as external flow.

Laminar sublayer 
Buffer layer

Turbulent core

Eddy

(a)

Figure 4.1. Fully developed turbulent flow in a smooth duct: (a) three sublayers of a turbulent 
boundary layer, (b) velocity profile.
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The turbulent-core and buffer-layer portions of the duct flow are very difficult to 
characterize by purely analytical means. A significant step in this direction was taken 
by Reynolds [3], who recognized that a knowledge of the fluctuations occurring during 
turbulent flow would add materially to an understanding of turbulence. Accordingly, 
he modified the Navier-Stokes equations to include fluctuations of the velocity compo
nents. This led to the introduction of additional apparent turbulent stresses, now called 
Reynolds stresses, in the modified Navier-Stokes equations. Unfortunately, determina
tion of the Reynolds stresses by purely analytical means is an impossible task, and this 
has created what is called the turbulence closure problem (see Chap. 2, Sec. 2.3).

Several attempts have been made to solve the turbulence closure problem by the 
introduction of a succession of turbulence models. The simplest one of them is Prandtl’s 
celebrated mixing-length model, inspired by the kinetic theory of gases [4], This model 
and its variations at the hands of Taylor [5], von Karman [6], and Van Driest [7] have 
proven reasonably adequate for plain two-dimensional flows. For the general case of 
three-dimensional flows, higher-order turbulence models are required. They utilize one 
or more partial differential equations derived from the modified Navier-Stokes equa
tions for quantities like the kinetic energy k, the kinetic-energy dissipation e, and 
components of the turbulent stress tensor t The turbulence model employing the 
single partial differential equation for the turbulent kinetic energy in conjunction with 
the algebraic expression for the turbulence length scale (e.g., Prandtl’s mixing length /) 
is referred to as the one-equation (k-1) model. Another model, employing the partial 
differential equations for the turbulent kinetic energy and its dissipation, is called the 
two-equation (k-e) model. The more complicated multiequation models involve solu
tion of the partial differential equations for all components of the turbulent stress 
tensor and are referred to as stress-equation models. A brief description of the 
turbulence models together with pertinent references is available in Refs. 8,9 as well as 
in Sec. 2.3 of Chap. 2 in this Handbook. Suffice it to say here that as of this writing 
there is no consensus as to the ultimate turbulence model to solve the turbulence 
closure problem. The various models have been quite successful in providing useful 
solutions to many duct flows of practical interest. Several of the results obtained from 
them will be presented in the ensuing sections of this chapter.

As regards the turbulent heat transfer problem, the energy equation has been 
modified in a manner analogous to the modification of Navier-Stokes velocity equa
tions. This has led to the introduction of Reynolds heat fluxes, which one seeks to 
determine via semiempirical algebraic, one-equation, and two-equation models. For a 
review of these models, Ref. 10 may be consulted. Many useful turbulent heat transfer 
results have been obtained by assuming an analogy between the processes of heat and 
momentum transfer. The original analogy is due to Reynolds [11], and improvements in 
it have been made by Prandtl [12], Taylor [13], von Karman [14], Martinelli [15], and 
others.1'

In addition to the semiempirical theory of turbulence mentioned above, a statistical 
theory of turbulence is being developed. The notable contributors to this effort have 
been Taylor, von Karman, Kolmogoroff, Burgers, Townsend, Dryden, Lin, and 
Chandrasekhar. The accounts of the development of the statistical theory may be 
found in Refs. 16,17,18. For design purposes, it may be stated that notwithstanding 
some impressive advances made possible by the advent of high-speed digital computers 
in recent years, the statistical theory is far from predicting friction and heat transfer 
coefficients for turbulent duct flows.

’ The mathematical expressions of these and other analogies are presented in Sec. 4.2.2.
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4.1.3 Laminar-to-Turbulent Transition in Duct Flows
In laminar flow through a straight duct of uniform cross section, every fluid particle 
moves with a uniform velocity along a straight path with particles near the wall moving 
at a lower velocity than those near the duct axis. The observations show that this 
orderly laminar pattern transforms to a chaotic turbulent pattern when the Reynolds 
number Re = umDh/v exceeds a certain critical value called the critical Reynolds 
number Recnt. This phenomenon was first studied by Reynolds [19] in 1883. Careful 
observations by Reynolds [19], Lindgren [20], and several other investigators reveal that 
laminar-to-turbulent transition is not a sudden phenomenon but occurs over a range of 
Re. Furthermore, it is observed that the transition starts in the duct core region rather 
than at the duct wall.

The numerical value of Recnt depends strongly on the duct inlet conditions as well 
as on conditions at the duct interior such as surface roughness and flow pulsation. 
Disturbances such as noise and vibration on the exterior of the duct wall also influence 
Recnt. The upper limit to which Reent can be driven with extreme precautions to 
eliminate various sources of disturbances is not known at present. However, there 
appears to be a certain lower limit below which the flow remains laminar even in the 
presence of strong disturbances. In the case of fully developed flow in circular duct, the 
lower limit for Recnt is accepted to be 2300, whereas the highest value of the upper 
limit attained by Pfenninger [21] is 1.001 X 105.

The aforementioned lower value of Re = 2300 for a circular duct reduces to 153 
when the hydraulic diameter in Recrit is replaced by the momentum thickness 82 
defined as

ra U I U \
82 = / ------ 1--------- dr (4.13)

0 ^max \ ^max /

The velocity distribution entering this definition for a circular duct is given by Eq. 
(3.13) with umax = 2u„,, yielding 82/Dh = Remarkably enough, the lower value of 
Recnt for a flat plate at zero incidence based on the momentum thickness evaluated 
from Blasius’s solution is found to be 162, nearly the same as the value for a circular 
duct [22], This suggests that Recrit = 162 based on the momentum thickness may be 
taken as a general criterion for the onset of transition in duct flows with negative 
pressure gradients as well as for flow along a flat plate with zero pressure gradient.

Careful investigation of the process of laminar-to-turbulent transition shows that in 
a certain range of Re around the lower value of Recrit, the flow exhibits intermittent 
behavior, i.e., it alternates in time between laminar and turbulent behavior. The 
physical nature of the intermittent flow can best be described in terms of an intermit
tency factor y, which is defined as a fraction of time during which the flow exhibits 
turbulent characteristics. Thus y = 1 signifies continuously turbulent flow while y = 0 
denotes continuously laminar flow. Figure 4.2 shows a plot of the intermittency factor 
y for a circular duct as measured by Rotta [23] at various axial locations with 
Re = um Dh/v as a parameter.

The pertinent experimental information relating to Recnt as well as friction and heat 
transfer coefficients in the transition region for various ducts will be provided in the 
sections below. Some analytical results based on the hydrodynamic stability theory 
developed by Tollmien [24] and Schlichting [25] will also be presented. This theory is 
restricted to disturbances so small as to be irrelevant to turbulent duct flows. However, 
it is useful in separating the stable and unstable flow regimes, thereby providing some 
information pertaining to transition duct flows.



x/Dh

Figure 4.2. Intermittency factor y for a circular duct with symbols denoting the experimental 
points [23].

4.1.4 Turbulent-to-Laminar Transition in Duct Flows
Under certain conditions, a turbulent duct flow may revert to laminar flow. This 
process is known as reverse transition or laminarization. It is not fully explained yet, 
although the conditions under which it is likely to occur have been established. 
According to Patel and Head [26], the onset of turbulent-to-laminar transition can be 
expressed in terms of the following parameter, called the shear stress gradient parame
ter: 

where m is the shear stress gradient, representing the variation of the local shear stress 
t near the wall in the expression t = tm. + my, y being the distance from the wall. The 
shear velocity w, in Eq. (4.14) is defined in Eq. (4.8). The critical value of A for 
turbulent-to-laminar transition is -0.009. For A < —0.009, the turbulent flow in a 
duct as well as over a flat plate reverts to laminar flow.

Bankstone [27] has shown that for a heated turbulent gas flow in a duct, there is an 
additional mechanism responsible for turbulent-to-laminar transition. It has to do with 
the gas viscosity, which in general increases with an increase in the temperature. The 
increase in viscosity may lower Re to the upper Recrit, triggering onset of the reverse 
transition.

4.1.5 Types of Turbulent Duct Flows
The turbulent duct flows can be divided into four categories: fully developed, hydrody
namically developing, thermally developing, and simultaneously developing. This divi
sion is identical to the one adopted for laminar duct flows in Chap. 3 of this 
Handbook. It may be useful at this point to review the four types of duct flows 
described in Sec. 3.1.1. In particular note that thermally developing flow is flow that is 
already hydrodynamically developed, whereas simultaneously developing flow is flow
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for which the hydrodynamic development occurs simultaneously with the thermal 
development. It is also useful to note at this point that for turbulent duct flow, the 
hydrodynamic entrance length and the thermal entrance length are characteristically 
much shorter than the corresponding lengths in laminar duct flow. Consequently, 
results on fully developed turbulent fluid flow and heat transfer are frequently used in 
design calculations without reference to the hydrodynamic and thermal entrance 
regions. However, caution must be exercised in using the fully developed results for the 
low Prandtl number liquid metals, since the entrance region effects are quite pro
nounced for such fluids even in turbulent duct flows.

In the ensuing sections of this chapter, the most useful and available fluid flow and 
heat transfer results will be presented for the aforementioned four types of flows in 
various ducts. In addition, the results will be provided for the transition flow described 
in Secs 4.1.3 and 4.1.4 for each duct geometry.

4.1.6 Hydraulic and Equivalent Diameter Concepts
The hydraulic radius rh of a duct cross section is defined as rh = Ac/P, where Ac is the 
flow cross-sectional area and P is the wetted perimeter of the duct. The hydraulic 
diameter Dh of the duct is then defined as Dh = 4rA. According to these definitions, the 
hydraulic and physical diameters of a circular duct are identical; however, the hy
draulic radius is half the physical radius.

The hydraulic diameter is a convenient substitute for the characteristic physical 
dimension of a noncircular duct, and it leads to fairly good correlations between 
turbulent fluid flow and heat transfer characteristics of circular and noncircular ducts. 
The hydraulic diameter is also used for ducts involving laminar flow to provide a 
consistent basis of comparison with the turbulent flow results. However, for laminar 
flow itself this quantity does not lead to satisfactory correlations between circular and 
noncircular ducts.

The use of hydraulic diameter for ducts with very sharp comers (e.g., triangular and 
cusped ducts) leads to unacceptably large errors, of the order of 35%, in turbulent flow 
friction and heat transfer coefficients determined from the circular duct correlations; 
the errors may not be that large for other noncircular ducts. With the objective of 
improving turbulent flow predictions, several other linear dimensions have been pro
posed as substitutes for the hydraulic diameter. We present below expressions for 
several such characteristic dimensions. These substitute dimensions provide improved 
friction and heat transfer coefficients for specific ducts only.

Jones [28] introduced the laminar equivalent diameter D, for rectangular ducts with 
sides 2 a and 2 b (2 a > 2 b), given by

— = j(l + a*) 2[l - 

Dh \

192a*  “ 1 (2n + l)7ra
-----r- E ------------rtanh----------------

"5 (2n + I)5 2 
(4-15)

where the hydraulic diameter Dh = 46/(1 + a* ) and the duct aspect ratio a*  = 
26/2a. An approximate expression for Dt is

77 = f + m«*( 2 - «*)
uh

which yields D, values within ±2% of those given by Eq. (4.15).

(4.16)
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Figure 4.3. The characteristic lengths for (a) an equilateral triangular and (b) a square duct.

Extensive comparisons presented in Ref. 28 show that substitution of Dt from Eq. 
(4.15) for Dh in the circular duct correlation reduces the scatter of rectangular duct 
turbulent flow experimental friction-factor data points about the predicted values from 
about +20% to +5%.

Ahmed and Brundrett [29] introduced a characteristic length Dt suitable for 
equilateral triangular and square ducts. This length is merely the sum of two lengths l} 
and l2 indicated in Fig. 4.3. Physically, is the distance between the duct wall and the 
axis measured at the point of highest curvature of an isovel (curve of constant axial 
velocity). Likewise, l2 is the distance between the duct wall and the axis measured at 
the point of lowest curvature of an isovel. A schematic representation of the isovels for 
equilateral triangular and square ducts is given in Fig. 4.3. It is seen from the figure 
that the two sets of isovels possess the highest curvature in the comer regions along the 
comer bisectors and the lowest curvature parallel to the duct sides along the side 
bisectors. With the aid of Fig. 4.3, it can be shown that for an equilateral triangular 
duct

D, = /i + Z2 = ?3a (4.17)

and for a square duct

D, = Zi + Z2 = (1 + l/2)a (4 18)

The fully developed turbulent flow friction factors and Nusselt numbers computed 
from the circular duct correlations with the use of the D, values from Eqs. (4.17) and 
(4.18) are compared in Ref. 29 with the available experimental measurements. The 
agreement is found to be excellent within about +3% for both equilateral triangular 
and square ducts.

Hodge [30] introduced the concept of a hydraulically effective zone for computing 
the fully developed Fanning friction factors for isosceles triangular ducts. According to 
his analysis, the perimeter P, and the cross-sectional area A. of the hydraulically 
effective zone are related to the corresponding quantities P and A of the actual duct by

P2 (1 - ^) + (1 + /?)sin4>
P l + sin</> (4’19)

y =1 - P2 (4.20)



INTROD1 'CTION 4»11

where 2</> is the apex angle and [i is a scaling factor given by

5 1 — sin</>
24 1 + sin <f> (421)

The fully developed turbulent flow Fanning friction factor f for an isosceles triangular 
duct is given in terms of the perimeter and area ratios of Eqs. (4.19) and (4.20) by

/ P:\l 25 ( /L\3
\ ~P ) \^4 ) (4.22)

where / is the Fanning friction factor for the same duct calculated from the circular 
duct relation via the hydraulic diameter.

The f values calculated from Eqs. (4.19) to (4.22) for 4000 < Re < 104 and 
2<#> = 4.01°, 7.96°, 12.0°, 22.3°, 38.8°, and 60° are 7% to 29% lower than the 
experimental values reported by Carlson and Irvine [31], The use of Dh in the circular 
duct correlation, on the other hand, yields f values that are 7% to 25% higher than the 
experimental values.

Bandopadhayay and Ambrose [32] introduced a generalized length dimension which 
may be viewed as an average distance of the duct boundary from the point of the 
maximum axial velocity in the duct. For an isosceles triangular duct with an apex angle 
of 2<f>, they presented the following expression for the generalized length Dg:

d 1 r e <> e
— = — 3 In cot----- 2 In tan-------In tan—
Dh 2tt 2 2 2 (4-23)

where 6 = (90° — </»)/2.
Substitution of D,, from Eq. (4.23) for Dh in the circular duct correlation yields the 

fully developed Fanning friction factor values for 4000 < Re < 104 and 2<f> = 4.01°, 
7.96°, 12.0°, 22.3°, and 38.8° that are 0% to 6% higher than the experimental values 
reported by Carlson and Irvine [31]. The use of Dh in the circular duct correlation, on 
the other hand, yields f values that are 7% to 25% higher than the experimental values.

Jones and Leung [33] applied the concept of laminar equivalent diameter to 
concentric annular ducts and presented the following expression for D,-.

D, 1 + r* 2 + (1 - r* 2)/lnr*
Dh (1-r*) 2

(4-24)

where the duct aspect ratio a*  = r,/ro and the hydraulic diameter Dh = 2(r0 - ,-,), rs 
and r„ being the radii of the inner and outer tubes, respectively, forming the duct. 
Substitution of D, from Eq. (4.24) for Dh in the circular duct correlation reduces the 
scatter of the experimental fully developed friction factors from various sources to 
within about + 5% of the predicted values, compared to +20% scatter with the use 
of Dh.

No general characteristic dimension has been identified that provides satisfactory 
correlation for all noncircular ducts. Various characteristic dimensions presented above 
give improved friction and heat transfer coefficients for the specfic noncircular ducts 
only.
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4.1.7 Influence of Duct Surface Roughness
The duct wall roughness has little effect on laminar flow. However, it exerts a strong 
influence on turbulent flow. If the surface-roughness height is of the same order of 
magnitude as the laminar-sublayer thickness 8,, it tends to break up the laminar 
sublayer, thus increasing the wall shear stress. In fact, if the surface is sufficiently 
rough, no laminar sublayer can exist. In that case, the apparent turbulent shear stresses 
are transmitted directly to the wall in the form of a profile drag. From a physical point 
of view, it is apparent that the ratio of the surface-roughness element height f to the 
laminar-sublayer thickness 8, must be a determining factor for the effect of roughness. 
It is seen from Eq. (4.12) that 8t is proportional to v/ut, where ut is the friction 
velocity. It follows from this relation that the ratio e/8z must be proportional to eu,/v, 
which has the significance of a Reynolds number and is designated as a roughness 
Reynolds number ReE:

Ref = — (4.25)
v

Rc, is found to be the most convenient parameter to identify various flow regimes 
from the standpoint of the roughness influence.

Nikuradse [34] performed systematic experiments with sand grains glued onto the 
interior of circular ducts. Based on the results of these experiments, three flow regimes 
were identified, depending on the manner in which the friction factor f varied with the 
relative roughness r/a and the Reynolds number Re = 2uma/v, where a is the radius 
of the circular duct and the height e of the roughness element is in essence the size of 
the sieve used by Nikuradse to sift the sand. With the roughness Reynolds number Ref 
[Eq. (4.25)] as the parameter, Nikuradse identified the following three flow regimes 
depending on the variation of f with ReE and e/cr.

1. Hydraulically smooth regime, 0 < ReE < 5: f = f (Re)
2. Transition regime, 5 < ReE < 70: f = /(s/a,Re)
3 Completely rough regime, ReE >70: f = f(e/a)

In the hydraulically smooth regime, e is so small that the sand grains are contained 
within the laminar sublayer Hence f is not affected by e; in other words, f = /(Re). In 
the transition regime, the sand grains extend partly outside the laminar sublayer, 
exerting an additional resistance to flow, in the nature of a profile drag. This causes the 
friction coefficient to depend on e/a as well as on Re, i.e., for the transition regime 
f = /(e/a,Re). Finally, in the completely rough regime, all sand grains reach outside 
the laminar sublayer, disrupting it completely. For this situation, the friction coefficient 
must depend on the size of the sand grains alone, i.e., f = /(e/a).

The roughness used by Nikuradse in his experiments does not represent the type of 
roughness encountered on the commercial duct surfaces. To circumvent this difficulty, 
Schlichting [35] introduced the concept of equivalent sand-grain roughness for rough
ness elements such as spheres, spherical segments, cones, and short triangles. Moody 
[36] determined the equivalent sand-grain roughness for eight types of commercially 
available duct surfaces. His results, presented in Fig. 4.4, are very useful in practical 
applications. Recently, Musker [37] proposed a relatively crude model for predicting 
roughness functions for naturally occurring surfaces from a knowledge of the surface 
geometry. His results are tentative.

We now turn to the effect of roughness on the heat transfer rate. Two distinct 
influences of the roughness elements are recognized. First, they increase the duct
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Dh, mm

Figure 4.4. Equivalent relative sand roughness for commercial pipe surfaces: (a) riveted steel, 
(b) reinforced concrete, (c) wood, (d) cast iron, (e) galvanized steel, (/) bitumen-coated steel, 
(g) structural and forged steel, and (A) drawn pipe [36],

surface area, and second, they increase the heat transfer coefficient. This latter effect is 
brought about by the change in turbulence pattern close to the wall. Unfortunately, the 
increase in the heat transfer coefficient is accompanied by a proportionately larger 
increase in the friction coefficient. As a consequence, the heat transfer per unit of 
power consumption is usually lower for a hydrodynamically rough than for a smooth 
duct. The following simple empirical correlation, suggested by Norris [38], expresses 
the effect of roughness in turbulent duct flows: 

Nu 
Nu? (4.26)

where n = 0.68 Pr0215 for 1 < Pr < 6. For ///. > 4, Norris observed that the Nusselt 
number Nu = hDh/k no longer increases. For Pr > 6, the value of n = 1 provides a 
conservative estimate of the effect of roughness on turbulent flow.
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Equation (4.26) shows that the effect of roughness is more pronounced for high-Pr 
fluids than for low-Pr fluids since the exponent n has a lower value for the latter fluids. 
The physical explanation of this behavior is that for high-Pr fluids, the thermal 
resistance is concentrated very close to the wall because the thermal boundary layer is 
thin compared to the hydrodynamic boundary layer. For low-Pr fluids, on the other 
hand, the thermal resistance is distributed over a larger portion of the duct cross 
section because the thermal boundary layer is thicker than the hydrodynamic boundary 
layer. Since the roughness elements markedly affect the wall region by destabilizing the 
laminar sublayer, they are more effective in increasing Nu for high-Pr fluids, which 
have thinner laminar sublayers.

Another effect shown by Eq. (4.26) is that the heat transfer coefficient is not affected 
as strongly as the friction coefficient. The physical explanation of this behavior is as 
follows. The friction coefficient / = rM./(pu2,/2gf) is a measure of the apparent wall 
shear stress , which is augmented markedly by the profile drag developed by the 
roughness element. The profile drag is the pressure or dynamic force generated by the 
faces of the roughness elements normal to the mean flow direction. As regards the heat 
transfer coefficient h = q”/(Tw — Tm), there is no mechanism comparable to the 
profile drag to generate additional heat flux Consequently, the heat transfer 
coefficient is affected less markedly than the friction coefficient.

Finally, when the roughness effect on friction coefficient becomes very large (///,. > 
4), no further increase in the heat transfer coefficient is possible. This is because the 
thermal resistance becomes essentially a conduction resistance at the surface.

4.1.8 Thermal Boundary Conditions
Thermal boundary conditions for laminar duct flows, described in Tables 3.1 and 3.2 of 
Chap. 3, are also applicable to turbulent duct flows treated in this chapter. However, 
there is generally no need of analyzing these boundary conditions for turbulent flows 
for fluids with Pr > 0.5. The reason is as follows: At high Pr (e.g., air, water, and oil), 
the thermal resistance is primarily very close to the wall, yielding a temperature profile 
that is essentially flat over most of the cross section, regardless of the thermal boundary 
condition. For low-Pr fluids (e.g., liquid metals), the thermal resistance is distributed 
over the entire flow cross section, resulting in rounded temperature profiles similar to 
those for laminar flow of high- and low-Pr fluids. Such rounded temperature profiles 
are markedly influenced by thermal boundary conditions. Hence, the influence of the 
thermal boundary condition in turbulent flows is important for low-Pr fluids only.

4.2 CIRCULAR DUCT

Turbulent fluid flow and heat transfer characteristics of a circular duct have been 
explored in great detail, as this geometry finds widespread use in practical applications. 
An additional reason is that various flow friction and heat transfer correlations for a 
circular duct are found to apply to noncircular ducts with reasonable accuracy 
provided that the circular duct diameter in these correlations is replaced by the 
hydraulic diameter of the noncircular duct. Several results of practical interest for a 
circular duct, pertaining to transition, fully developed, hydrodynamically developing, 
thermally developing, and simultaneously developing flows, are now outlined.
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4.2.1 Transition Flow

The first systematic experiments on the laminar-to-turbulent transition in a circular 
duct were performed by Reynolds [19] in 1883. By dimensional reasoning, Reynolds 
concluded that the dimensionless parameter umDh/v best characterizes the laminar 
and turbulent flow regimes in a circular duct. We now recognize this parameter as the 
Reynolds number Re.

Reynolds obtained two different values of Recnl, viz., 3800 and 1.2 X 104, where the 
laminar flow changed to turbulent. Several investigators tried to verify Reynolds’s 
results, particularly with regard to the values of Recnt. However, the effort only led to 
confusion as the values of Recnl came to cover a range of 200 to 5.1 x 104. This latter 
value is due to Ekman [39], who—experimenting with Reynolds’s original 
apparatus—concluded that there is no upper Recnt value if all sources of disturbances 
on the flow are carefully eliminated. The correctness of Ekman’s finding was confirmed 
by Pfenninger [21], who, with extreme precautions to eliminate sources of disturbances, 
obtained a Recnt value of 1.001 X 105. This is recognized as the highest Recrit value as 
yet attained.

In 1921, Schiller [40] performed systematic experiments and provided a plausible 
explanation of the discrepancies in earlier work. He accepted Ekman’s idea of no upper 
limit for Recnt. However, he introduced a lower limit for Recnt, defined as the value of 
Re at which a laminar flow remains laminar no matter how large a magnitude the 
disturbances may attain at the duct inlet. Schiller’s careful experiments led to the 
sharply defined value of 2320 for the lower limit of Retn(. This value, rounded to 2300, 
is now widely accepted as the lower limit of Recrit for a smooth circular duct. Recently, 
Simonek [41] theoretically obtained a value of 2295 as the lower limit for Recnt, in 
substantial agreement with the measurements of Schiller [40] and several other investi
gators.

Prengle and Rothfus [42] conducted careful experiments in the Re range of 1225 to 
2.5 X 104 covering the transition flow, and presented the following expression for the 
fluid axial velocity u, at the edge of the laminar sublayer (see Fig. 4.1):

2450 v

The corresponding radial distance rz from the center of the duct to the edge of the 
laminar sublayer is given by

r, I 1225\1/2 
- = 1 - a \ Re /

where a is the duct radius. Note that the laminar sublayer thickness 8t shown in Fig. 
4.1 is related to r, simply as 8, = a - r,. Also note that according to Eq. (4.28), the 
laminar sublayer vanishes as Re -> oo.

Although the upper limit of Recrit is undefined, for most practical purposes the flow 
in the range 2300 < Re < 104 may be regarded as transition flow. There have been 
some attempts to develop a single equation to calculate the friction factors for 
2300 < Re < oo spanning the laminar, transition, and turbulent flow regimes. Wilson 
and Azad [43] presented a numerical method utilizing a single set of equations to 
predict mean flow characteristics in the range 100 < Re < 5 X 10 s. Barr [44] devel
oped a numerical method for predicting friction factors for the transition flow using Re
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as a linking, parameter to combine laminar and turbulent flow friction-factor expres
sions. Neither of these analyses resulted in simple analytical expressions suitable for 
engineering computations. Churchill [45] constructed the following correlation for 
engineering calculations covering laminar, transition, and turbulent flow regimes:

2

7
1

[(8/Re)10 + (Re/36,5OO)20]

I exp[(2200 - Re)/365] 1 I '
Nu“-Nu1«+ " 1 + —U (4.33)

( Nuj Nu,) 7

/Re)!10 
+ 2.21 Ini —

1/5

(4-29)

For laminar flow (Re < 2100) as well as for transition cum turbulent flow (Re > 
4000), the predictions of Eq. (4.29) are in exact agreement with the well-established 
results namely Eq. (3.14) for laminar flow and the Colebrook equation for turbulent 
flow (see Table 4.2). For 2100 < Re < 4000, Eq. (4.29) is in fair to excellent agreement 
with the available experimental data; there is considerable uncertaintly about the 
exactitude of the available data from various sources.

Hrycak and Andrushkiw [47] presented the following interpolation formula for the 
transition flow covering 2100 < Re < 4500:

/= -3.10 X 10“3 + 7.125 X 10"6Re - 9.70 X 10“10Re2 (4.30)

In its range of applicability, the predictions of Eq. (4.30) are within + 3% and — 9% 
of those of Eq. (4.29).

The present authors developed the following formula applicable to laminar, transi
tion, and turbulent flow regimes:

B
f=A + —— (4.31)J Rel/n> V >

For laminar flow (Re < 2100), A = 0, B = 16, m = 1; for transition flow (2100 < 
Re < 4000). A = 0.0054, B = 2.3 X 10-8, m = — |, and for transition cum turbulent 
flow (Re > 4000) A = 1.28 X 10“3, B — 0.1143, m = 3.2154. The accuracy of Eq. 
(4.31) is on par with that of Eq. (4.29). The main appeal of Eq. (4.31) is that it is 
computationally more expedient than Eq. (4.29); its drawback is that the constants 
A, B, m possess different values for the three flow regimes.

The following classical formula presented by Blasius [48] in 1913 is applicable for 
4000 < Re < 105 covering a portion of the transition flow regime:

0.079
<4-32)

Its predictions agree with those of the most accurate implicit formula (see Table 4.2) 
within +2.6% and —1.3%.

The heat transfer results for transition flow are rather uncertain in view of a large 
number of parameters required to characterize the heat-affected transition flow. The 
following correlation developed by Churchill [45] for 0 < Pr < oo and 2100 < Re < 
106, spanning laminar, transition, and turbulent flow regimes, is recommended for 
calculating transition flow Nusselt numbers:
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where

f 3.657 for (T) boundary condition 
Nu = \

' ( 4.364 for @ boundary condition

Nu, = Nu0 +
0.079(//2)1/2RePr 

(1 + pr4/5)5/6

Nun =
I 4.8 
y 6.3

for @ boundary condition 
for @ boundary condition

(4-34)

(4.35)

(4.36)

For Re < 2100, Eq. (4.33) in conjunction with Eqs. (4.34) to (4.36) yields laminar 
flow Nu values of 3.657 and 4.364 corresponding to the (t) and (h) boundary 
conditions, respectively. For 2100 < Re < 104, it gives Nu values in agreement with 
the limited experimental results for transition flow cited in [45]. For Re > 104, its 
predictions are in good agreement with the most accurate turbulent flow results. For 
detailed comparison of the turbulent flow results, refer to Table 4.4 in Sec. 4.2.2 below.

Patel and Head [26] showed that the shear stress gradient parameter A [Eq. (4.14)] 
for turbulent-to-laminar transition in a circular duct can be expressed as

2/2
r^7 (4-37)

Equation (4.37) in conjunction with the critical value of A = -0.009 [see discussion 
after Eq. (4.14)] shows that turbulent-to-laminar transition in a circular duct can be 
expected when

ReV? > 314 (4.38)

For the nonisothermal flow, Bankstone [27] showed that turbulent-to-laminar transi
tion is likely when

——----  > 1.05 X 10“ 6Re0 8 Pr" 06
pcp“n,Tm

(4-39)

where q'f is the uniform wall heat flux. Furthermore, this reverse transition is 
essentially complete at

x Re
— = 8 X 10"5-----------------v
D (iw/\PcPumTe)

(4.40)

A ?.2 Fully Developed Flow
Fluid Flow. Using Blasius’s formula for friction factor [Eq. (4.32)], Prandtl [49] 
derived the following power law of velocity distribution for fully developed turbulent 
flow in a smooth circular duct:

u
“max (n + l)(2n + l)

(4-41)
^max
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Figure 4.5. Fully developed turbulent velocity distribution in a smooth circular duct (power-law 
representation).

where y = a — r is the radial distance measured from the duct wall. The exponent n in 
Eq. (4.41) varies slightly with Re. According to Nikuradse’s measurements [50] at 
Re = 4000, 2.3 X 104, 1.1 X 105, 1.1 X 106, 2 X 106, 3.2 X 106, the values of the 
exponent n are 6, 6.6, 7, 8.8, 10, and 10, respectively. The main appeal of Eq. (4.41) is 
its simplicity; its major drawback is that the exponent n varies with Re.

The velocity profiles computed from Eq. (4.41) for the aforementioned values of Re 
are plotted in Fig. 4.5 together with Nikuradse’s data points. Included in Fig. 4.5 for 
comparison is the Hagen-Poiseuille parabolic velocity profile [Eq. (3.13)] applicable to 
laminar flow (Re < 2300). It is seen that as Re increases, the velocity profile becomes 
flatter over most of the duct cross section. Also, near the duct wall all the turbulent 
velocity profiles are significantly steeper then the laminar velocity profile.

The fact that the exponent 1/n of the power law of the velocity distribution [Eq. 
(4.41)] decreases with increasing Re suggests that the power-law expression must 
asymptotically approach some expression (valid for very high Re) which contains the 
logarithm of the independent variable y. This is because a logarithmic expression is the 
limit of a polynomial expression for very small values of the exponent. This considera
tion led Prandtl [51] to develop the following form of the velocity distribution:

u max U a
----- 2.5 In— (4.42)
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where u, is the friction velocity defined by Eq. (4.8). This form is known as the 
velocity-defect law, because the left-hand side represents a dimensionless velocity 
difference. Equation (4.42) is applicable only in the turbulent core away from the wall. 
For this reason, it is often referred to as the outer law of velocity distribution. Its great 
advantage over Eq. (4.41) is that it can be extrapolated to arbitrarily large values of Re 
beyond the range covered by the experiments. For this reason, it is also referred to as 
the universal velocity-defect law.

von Karman [6] obtained the following different form of the universal velocity
defect law:

A third form was developed by Wang [52] as

^max

u,

-0.572 In
2.53 - y/a + 1.75^1 -y/a
2.53 — y/a — 1.75^/1 — y/a

+ 1.143 tan '1
1.75^1 -y/a 

0.53 + y/a
(4.44)

In 1855, Darcy [53] performed very careful measurements of velocity distribution in 
a smooth circular duct. The empirical formula based on his measurements can be 
written as

(4-45)

Darcy’s formula is in excellent accord with all the measurements in the range 0.25 < 
y/a < 1.

The velocity distributions computed from Eqs. (4.42) to (4.45) are plotted in Fig. 4.6 
and compared with the experimental data of Nikuradse [50], It is seen that Eq. (4.44) is 
in overall best accord with the data. However, in view of its complexity, it is less useful 
than either Eq. (4.42) or Eq. (4.43). Darcy’s formula, Eq. (4.45), is seen to be in 
excellent agreement with all points except those near the wall (y/a < 0.25).

It is now customary to represent the fully developed velocity in terms of the wall 
coordinates u" and y*  defined by Eqs. (4.9) and (4.10). A number of analytical 
expressions have been developed for this purpose. They are summarized in Table 4.1

The formulas attributed to Prandtl [54] and Taylor [55] in Table 4.1 were not 
actually derived by these investigators in 1910 and 1916, respectively. However, they 
did introduce the idea of a sharo division between a laminar sublayer and a fully 
turbulent core (see Fig. 4.1). This idea, when applied to the experimental data, directly 
leads to the formulas attributed to Prandtl [54] and Taylor [55], These formulas are 
frequently referred to as the universal velocity distribution law. von Karman [14] was
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Figure 4.6. Fully developed turbulent velocity distribution in a smooth circular duct (velocity
defect representation).

the first investigator to divide the fully developed flow field into three layers by 
introducing the idea of an intervening buffer layer in addition to the laminar sublayer 
and the fully turbulent core introduced by Prandtl [54] and Taylor [55]. As seen from 
Table 4.1, all authors except Reichardt [56], Van Driest [7], and Spalding [59] found it 
necessary to employ at least two expressions, valid for different ranges of y', to 
describe the velocity profile adequately.

Figure 4.7 provides a comparison among the different expressions for u' listed in 
Table 4.1. The discrepancies among various expressions are of the same order of 
magnitude as the scatter in the available experimental measurements. Consequently, it 
is impossible to discriminate among various expressions. If the final choice is to be 
made on the basis of convenience, then the preferred expressions are those of Reichardt 
[56] and Spalding [59].

The fully developed velocity distribution in a rough circular duct can be described 
by the power-law formula [Eq. (4.41)] with the exponent n ranging between 4 and 5 
[60]. Such a velocity distribution is displayed in Fig. 4.8, which also shows experimental 
points of Nikuradse [34] for various values of the relative roughness e/Dh at Re = 106.

The velocity-defect law for a smooth circular duct [Eq. (4.42)] applies unchanged to 
a rough circular duct, underscoring the fact that the turbulence mechanism in the 
turbulent core is independent of the conditions at the duct wall.
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TABLE 4.1. Formulas for the Fully Developed Turbulent Velocity Profile in a Smooth Circular 
Duct

Investigators Formulas for u+(y+) Range of Validity

Prandtl [54],
Taylor [55]

u+=y+ 0<y+<11.5
u+ = 2.5 In y+ + 5.5 > 11.5

von K arman [14] w+=T+ 0<y+<5
m+ = 5 In _y+ - 3.05 5 < y+ < 30
u+ = 2.5 In y+ -1- 5.5 y + > 30

R eichardt [56] u+ = 2.51n(l + 0.4y+) All y+
+ 7.8 [1 - exp(—y+/ll) - (T+/H)exp(-0.33y+)]

Deissler [57] + fv+ dv~ 4.
u / ? + +r / 7 4. , n — 0.124 0 <y <26

•'0 1 -1- n u y [1 — exp( — n u y )]
u+ = 2.78 In y+ + 3.8 y+ > 26

Van Driest [7]
. f>+ 2d-v+

u+ = -------------------------------------------------------— All y+
0 1 + {1 + 0.64y+2[l - exp(-y+/26)]2} ‘

Rannie [58] u+ = 14.53 tanh(j’+/i4.53) 0 < y+ < 27.5
u+ = 2.5 In y+ -1- 5.5 y+ > 27.5

Spalding [59] y+ = m+ + 0.1108 [exp(0.4«+) - 1 - 0.4u+ -(0.4m+)2/2! All y+
-(0.4m + )3/3! - (0.4w+)4/41]

In terms of the wall coordinates tT and the fully developed velocity distribu
tion in a completely rough circular duct can be expressed as [60]

m+ = 2.5 In— + 8.5 
Ref (4.46)

where the roughness Reynolds number Ref is defined by Eq. (4.25).
The velocity distribution given by Eq. (4.46) is plotted in Fig. 4.9, which consists of 

a family of parallel straight lines with Ref playing the role of a parameter. As discussed

Figure 4.7. Fully developed turbulent velocity distribution in a smooth circular duct (wall-coor
dinate representation).
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Figure 4.8. Fully developed turbulent velocity distribution in a rough circular duct at Re = 106 
(power-law representation).

in Sec. 4.1.7, the value Ref < 5 corresponds to the hydraulically smooth regime, 
5 < Ref < 70 corresponds to the transition from the hydraulically smooth to the 
completely rough regime, and Re( > 70 corresponds to the completely rough regime. 
Included in Fig. 4.9 are the curves determined from Prandtl’s [54] and Taylor’s [55] 
formulas (see Table 4.1) for the smooth circular duct.

Referring to the abscissa of Fig. 4.9, it may be noted that y+ < 5 is the laminar 
sublayer region, whereas y" > IQ is the fully turbulent region. The intervening region 
(5 < yf < 70) is the transition region. The broken vertical lines in Fig. 4.9 demarcate 
the three regions.

It can be shown that the power-law velocity distribution [Eq. (4.41)] leads to the 
following expression for the friction factor:

C
Re1/m

(4-47)

where C is an experimentally determined constant and the exponent m is related to 
the exponent n of Eq. (4.41) by

n + 1
m =

2
(4.48)
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Figure 4.9. Fully developed turbulent velocity distribution in a rough circular duct (wall-coordi
nate representation).

According to Nikuradse’s measurements [50], for Re = 4000, 2.3 X 104, 1.1 X 105, 
1.1 X 106, 2 X 106, 3.2 X 106 the exponent n = 6, 6.6, 7, 8.8, 10, 10. Equation (4.48) 
then yields m = 3.5, 3.8, 4, 4.9, 5.5, 5.5 for the aforementioned values of Re. The 
corresponding values of C determined by the present authors from Nikuradse’s 
measurements [50] are 0.1064, 0.0880, 0.0804, 0.0490, 0.0363, 0.0366. Recalling Eq. 
(4.32), it is seen that Blasius’s celebrated formula corresponds to n = 7, m = 4, and 
C = 0.079; this constant C is within 2% of 0.0804 determined by the present authors.

Several friction factor correlations for fully developed turbulent flow in a smooth 
circular duct are presented in Table 4.2. All of them are based on the highly accurate 
experimental results reported by various investigators. The various experimental results 
agree quite well among themselves, and consequently the various correlations are also 
in excellent accord among themselves for the restricted Re ranges. The Prandtl- 
Karman-Nikuradse (PKN) correlation is regarded as the most accurate. It is based on 
the universal velocity distribution law with the coefficients slightly modified to best fit 
the highly accurate experimental data of Nikuradse [50], Frequently, it is referred to as 
the universal law of friction. The major drawback of the PKN formula is that it does 
not give f values explicitly, since f occurs on both sides of the formula. This being the 
case, use of the explicit formulas by Colebrook [65], Filonenko [66], or Techo et al. [67] 
is preferred. As noted in Table 4.2, these formulas are extremely close approximations 
to the PKN formula.

For the case of a rough circular duct, von Karman [6] derived the following 
theoretical formula for the friction factor for fully rough regime:

1 a
= 1.763 In- + 3.36 (4.49)

y/f £
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TABLE 4.2 Fully Developed Turbulent Flow Friction Factor Correlations for a Smooth Circular Duct

Investigators Correlation
Recommended 

Re Range Remarks

Blasius [48] f = 0.0791 Re"025

McAdams [64] f = 0.046 Re 0 2

Present authors / = 0.0366 Re-01818

Nikuradse [50] f = 0.0008 + 0.0553 Re'0237

Drew et al. [61] f = 0.0014 + 0.125 Re * 0 32

Present authors 0.00128 + 0.1143 Re-0311

Prandtl [62],
1

"77 = 1.7372 lnlRey/7) - 0 3946
Karman [63], V/
Nikuradse [50]

1 / Re 1
Colebrook [65] 77 = 1.5635 In y

1
Filonenko [66] —— = 1.58 In Re - 3.28

i Re
Techo et al. [67] — = 1.7372 In------------------ —----

1.964 In Re - 3.8215

4 X 103 to 105 Within +2.6% and - 1.3% of PKN (see below)

3 X 104 to 106 Within +2.6% and -0.4% of PKN

4 X 104 to 107 Within +2.4% and -3% of PKN

105 to 107 Within -2% of PKN

4 X 103 to 5 X 106 Within +3% of PKN

4 X 103 to 107 Within +1.2% and -2% of PKN

4 X 103 to 107 Classical correlation, here called
PKN, has a theoretical basis 
and is valid for arbitrarily large Re. Its 
predictions agree with the extensive 
experimental measurements within +2%.

4 X 103 to 107 Mathematical approximation to PKN, 
yielding numerical values within +1% of PKN

104 to 107 Within +1.8% of PKN

104 to 107 Explicit form of PKN; 
agrees within +0.1%
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(4.50)

70) was

(4.51)

A nearly identical formula which Nikuradse [34] obtained experimentally is

1 a
= 1.737 In- + 3.48

An empirical formula correlating the entire transition regime (5 < Ret 
established by Colebrook and White and is reported in [65]. It is given by

1 / e 9.35 \
-7- = 3.48 - 1.7372 In - + -----=
yff \« Re/7 /

For e —> 0, this formula transforms to the PKN correlation (see Table 4.2) valid for a 
hydraulically smooth duct. For Re -> oo, it transforms to Eq. (4.50) for the completely 
rough flow regime.

As a matter of historical interest, it may be noted that White’s name does not 
appear as a coauthor of the paper [65] in which Eq. (4.51) was first reported. However, 
Colebrook made a special point of acknowledging White’s contribution to the develop
ment of Eq. (4.51). Accordingly, in the literature Eq. (4.51) is referred to as the 
Colebrook-White correlation.

A drawback of Eq. (4.51) is that it is not an explicit equation for the computation of 
/, as f appears on both sides of the equation. A number of explicit equations for 
calculating f in a rough circular duct have been developed. They are presented in 
Table 4.3. Gregory and Fogarasi [77] made detailed comparisons of the predictions of 
the explicit equations in Table 4.3 with the predictions of the Colebrook-White implicit 
equation [Eq. (4.51)] in the ranges 4000 < Re < 10s and 2 X 10 8 < e/a < 0.1. Based 
on simplicity and close agreement with the predictions of Eq. (4.51), they concluded 
that the explicit equation due to Chen [72] is the best available correlation for practical 
friction factor computations in a rough circular duct.

Moody’s friction factor plot is shown in Fig. 4.10 in terms of the Fanning friction 
factor for laminar and turbulent flows in smooth and rough circular ducts. The relative 
roughness e/Dh appears as a parameter for the turbulent flow curves. The dashed line 
demarcating the fully turbulent flow and the transition flow is given by Jf = 
100/[Re(e/A,)] [36].

The horizontal portions of the curves to the right of the dashed line are represented 
by Eq. (4.50). The downward-sloping portions of the curves to the left of the dashed 
line are represented by Eq. (4.51). The lowermost curve for the smooth turbulent flow is 
represented by the PKN correlation of Table 4.2. The downward-sloping line for the 
laminar flow is represented by Eq. (3.14). The relative roughness e/Dh which appears 
as a parameter in Moody’s friction-factor plot can be determined from Fig. 4.4 for a 
variety of commercially available pipes.

Heat Transfer. The fully developed temperature distribution in a smooth circular duct 
with uniform wall temperature, i.e., the @ boundary condition (see Table 3.1) can be 
represented by the following power law, analogous to the one for the velocity distribu
tion [Eq. (4.41)]:

= 2” + 1 (4 52)
Tw- Tc L/ ’ Tc- Tw 2(n + 2) 1 }

where T(. is the temperature at the duct axis. The expression for (7]„ - 7], )/(7[ - 7],)



TABLE 4.3. Fully Developed Turbulent Flow Friction Factor Correlations for a Rough Circular Duct

Investigators Correlation Remarks

von Karman [6]
1 e

= 3.36 - 1.763 In—
V7 0

This explicit theoretical formula is applicable for Re£ > 70.

Nikuradse [34] 1 r
r = 3.48 - 1.737 In- 
/f

This experimentaly derived formula gives very nearly the same 
results as the foregoing formula, also for Ret > 70.

Colebrook and 
White [65[

1 / e 9.35 \
= 3.48 - 1.7372 In - + ----- =■ff [a Reft/

This implicit formula is applicable for 5 < Ref < 70 spanning 
the transition, hydraulically smooth, and completely rough flow 
regimes.

Moody [36]
/= 1.375 x 10

Shows a maximum deviation of —15.78% from the Colebrook- 
White equation for 4000 < Re < 108 and 2 X 10“8 < e/a 
< 0.1.

Wood [68] Applicable only fore/a>2xl0 5; shows a maximum de
viation of 6.16% from the Colebrook-White equation for 4000 
< Re < 108 and 2 X 10“8 < e/a < 0.1.

Swamee and 
Jain [69]

1 I- r 42.48 1
—t~ = 3.4769 - 1.7372 In - + —n-QV? L* Re0 9 J

Shows a maximum deviation of 3.19% from the Colebrook- 
White equation for 4000 < Re < 108 and 2 X 10~8 < e/a 
< 0.1.



Jain [70] T
~i= = 3.4841
>Tf

Churchill [71] r

where .4, = /

-17372

[ r 42.683
2.2088 -t 2 457 In

[u Re

Bi =.

Chen [72] 1
Jf =

where .4

[ 37.530 p
I Re /

F f 16.2426 ]
3.48 - 1.7372In----------------- In A,

La Re 2 J

_ (r/a)11(1,8 7 7.149

Round [73] 1 = _
ff

Zigrang and 1
Sylvester [74] -y = 3.4769 -

where A3 = -

no

r e 96.2963 ]
1.5635 In - +----------

[a Re J

[ r 16.1332
- 1.7372 In----------------- In A.

[a Re 3

/a 13
7 4 + Re



Gives results comparable with those obtained from the 
preceding equation.

Unlike other equations in the table, this equation applies to all 
three flow regimes, laminar, transition, and turbulent. Its pre
dictions for laminar flow are in agreement with f = 16/R.e. The 
predictions for transition flow are subject to some uncertainty. 
However, the predictions for turbulent flow are comparable 
with those of the preceding two equations.

This explicit equation is consistently in good agreement with the 
Colebrook-White equation for 4000 < Re < 108 and 2 X 10 8 
< e/a < 0.1, the maximum deviation being — 0.39%.

Comparable with Moody’s equation.

Shows a maximum deviation of +0.96% from the Colebrook- 
White equation for 4000 < Re < 108 and 2 X 10“8 < e/a 
< 0.1



Investigators Correlation

Zigrang and
Sylvester [74]

1 [ r
= 3.4769 - 1.73721n-----  16.13321n A.

y[f M

f ;a F e/a 13 1
where ,14 =■ -— - 2.1X02 In ----  - —4 7 4 [7.4 Re J

Haaland [75] 1 F/n1 11 63.6350
= 3.4735 - 1.5635 In - + ----------V? LU/ Re

Serghides [76] i = 4 Ms ~ B2y 

/f 5 <s - 2b, - c,

I e/a 12
where = - 0.8686 In------- f------[ 7.4 Re

/ e/a 2.51/L '
B, = - 0.8686 In ----- + ---------

\ 7 4 Re ,
I e/a 2.51B, i

C, = - 0.8686 In ----- + ---------[ 7.4 Re i

Serghides [76] 1 (As - 4.781)2
= 4781 ~ "(4.781 - 2A, + B2)

where /15 and B2 are as defined with 
the preceding equation.



Remarks

Predictions not distinguishably different from those of the 
preceding equation.

Shows a maximum deviation of + 1.21% from the Colebrook- 
White equation for 4000 < Re < 108 and 2 X 10-8 < e/a 
< 0.1.

Shows a maximum deviation of +0.14% from the Colebrook ■ 
White equation for 4000 < Re < 108 and 2 X 10-8 < e/a 
< 0.1.

Shows a maximum deviation of -0.45% from the Colebrook- 
White equation for 4000 < Re < 108 and 2 X 10 8 < e/a 
< 0.1.
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Figure 4.10. Moody’s friction factor diagram for fully developed flow in a rough circular duct.

in Eq. (4.52) is obtained by substituting the values of u and T from Eqs. (4.41) and 
(4.52), respectively, in Eq. (3.7) and evaluating the resulting integral.

The value of the exponent n can vary from 6 to 10, depending on Re, as noted in 
the discussion pertaining to Eq. (4.41). Another point to be noted about Eq. (4.52) is 
that it is valid only for fluids with Pr not too far removed from unity.

Following von Karman’s proposal [14], Martinelli [15] analyzed the fully developed 
temperature distribution in a smooth circular duct and obtained the following expres
sions for Pr > 0.1:

For the laminar sublayer (0 < y+ < 5):

(4.53)

For the buffer layer (5 < yr < 30):

T - TIV

T - T* M- C

(4.54)
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For the turbulent core (y+ > 30):

K ~ T 
K -T,.

+ 0.5 ln|
Re/7 
60/2

Pr

Pb
+ 0.5 In

(4.55)

In addition to the fully developed Fanning friction factor f, Eqs. (4.53) to (4.55) 
contain as a parameter the turbulent Prandtl number Pr, defined by Eq. (4.7). Malhotra 
and Kang [78] developed the following relation for the variation of the turbulent 
Prandtl number Pr, with the molecular Prandtl number Pr in a circular duct covering 
the range 104 < Re < 106:

Pr,=
1.01 - 0.09 Pr0 36
1.01 - 0 11 InPr
0.99 - 0.29 (lnPr)1/2

for 1 < Pr < 145
for 145 < Pr < 1800
for 1800 < Pr < 12500

(4.56)

The technique employed in establishing the above relationship consisted in introducing 
an established value of the Nusselt number as a function of Re and Pr in the 
conservation equations of momentum and energy. The resulting equations were then 
solved iteratively to find the value of Pr,. The correlations of Eq. (4.56) agree within 
+ 4% with the numerical values reported in [78],

The radial temperature distribution calculated from Eqs. (4.53) to (4.55) is displayed 
in Fig. 4.11 for Pr, = 1 and Re = 104. It may be noted that these equations are not 
applicable to the liquid metals with Pr < 0.03.

Figure 4.11, Fully developed turbulent temperature distribution in a smooth circular duct with 
th (?) and @ boundary conditions at Re = 104 and Pr, = 1.
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Kays [79] developed the following expressions with Pr, = 1 for the fully developed 
temperature distribution in a circular duct with uniform wall heat flux, i.e., the (h) 
boundary condition:

For the laminar sublayer (0 < y+ < 5):

Tw)u,

q''/pcr
= Pry+ (4.57)

For the buffer layer (5 < y+ < 30):

(T- Tw)ut

Qw/pCp
Pr + In

Pr y+
—- ------Pr + 1 (4.58)

For the turbulent core (y+ > 30):

(T-Tju, y+= 2.5 ln^ + 5 Pr + ln(l + 5Pr)l 
q':/pcp 30 1 v n (4.59)

The radial temperature distribution for Re = 104 was calculated from Eqs. (4.57) to 
(4.59) and is also plotted in Fig. 4.11. It was found to be indistinguishable from the 
temperature distribution for the (?) problem. It may be noted that Eqs. (4.57) to (4.59) 
are not applicable to low-Pr fluids such as the liquid metals (Pr < 0.03).

Kays and Crawford [22] developed the following single expression for the tempera
ture distribution in a smooth circular duct with the (h) boundary condition:

(T-T)u. ( 1.5(1 + r/a) \
—-------— = 2.25 Pr,In y+ —----------- + 13.2Pr - 5.8 (4.60)q”/PcP l + 2(r/a)2 J V ’

This equation is applicable in the Pr range of 0.5 to 5 and yields results in agreement 
with those obtained from Eqs. (4.57) to (4.59).

For very high- as well as very low-Pr fluids, no closed-form formulas are available 
for the temperature distribution for either the (?) or (h) boundary condition.

A large number of correlations, both theoretical and empirical, have been developed 
for the fully developed Nusselt number in a smooth circular duct. Shah and Johnson 
[80] brought these correlations together in tabular form. Tables 4.4 and 4.5 based partly 
on their tabulation, contain a summary of the correlations for Pr > 0.5 (gases and 
liquids) and Pr < 0.1 (liquid metals), respectively. The correlations in Table 4.4 are 
valid for both the (?) and @ boundary conditions. However, as indicated in Table 4.5 
and in Sec. 4.1.8, separate correlations for the (?) and ® boundary conditions are 
required for Pr < 0.1. The recommended correlations are the Gnielinski correlation 
[94] for Pr > 0.5 and the Notter-Sleicher correlations [104] for Pr < 0.1.

The Gnielinski correlation is based on comparisons with extensive experimental 
measurements by various investigators. Of nearly 800 measurements compared, 720 fall 
within ± 20% of the predictions of the correlation. Given the uncertainties of various 
investigations stemming from fluid property variation and unaccounted effects like 
natural convection, this level of agreement is considered very satisfactory. In the 
judgment of the present authors, the level of agreement will improve to ± 10% if the 
comparison is restricted to the most reliable experimental data.

The fully developed Nusselt numbers NuH computed from the aforementioned 
Gnielinski and Notter-Sleicher correlations over a wide range of Re and Pr are 
presented in Table 4.6 as well as in Fig. 4.12. For laminar flow (Re < 2300), NuH is 
independent of Pr and has a value of f*  given by Eq. (3.22) with y = 0.



4-32

TABLE 4.4. Fully Developed Turbulent Flow Nusselt Numbers NuT and NuH’ in a Smooth Circular Duct for Gases and 
Liquids (Pr > 0.5) *

Investigators Correlations Remarks

Reynolds [11] Nu = (//2)RePr This equation, based on a single-layer model, is 
inferred from [11], It is sometimes referred to as 
the “ Reynolds analogy” and is theoretically 
valid for Pr = 1.

Nusselt [81] Nu = 0.024 Re0 786 Pr° 45 This correlation, originated by Nusselt, has been 
modified by a number of investigators. For 
Pr < 1 and 103 < Re < 106, its predictions are 
within + 4.4% and 6.3% of the Gnielinski 
correlation (see below).

Prandtl [54], (//2)RePr
Nu =--------------------------------

Taylor [55] 1 + 5(//2)1/2(Pr - 1)

This equation is based on a two-layer model 
(laminar sublayer and turbulent core). It was 
derived independently by Prandtl in 1910 and by 
Taylor in 1916. For Pr < 10 and 5 X 103 < 
Re < 5 X 106, its predictions are within +14.9% 
and -11.1% of the Gnielinski correlation.

Dittus and
Boelter [82]

0.024 Re0'8Pr0,4
0.026 Rc"*Pr 01

for heating
for cooling

These classical correlations were developed for 
0.7<Pr<120 and 2500 < Re < 1.24 X 105. 
The objective of providing different correlations 
for heating and cooling was to account for 
variation of the fluid properties with tempera
ture. Compared to the Gnielinski correlation, 
predictions of the heating correlation for 104 < 
Re < 1.24 X 105 are: (1) 13.5% to 17% higher 
for air (Pi = 0.7), (2) 15% lower to 7% higher for 
water (3 < Pr < 10), and (3) 10% lower to 21% 
higher for oil (Pr = 120). Predictions of the 
cooling correlation for 104 < Re < 1.24 X 105 
are: (1) 29% to 33% higher for air (Pr = 0.7), (2) 
26% lower to 3% higher for water (3 < Pr < 10), 
and (3) 39% to 18% lower for oil (Pr = 120). For 
Re = 2500 and 0.7 < Pr < 120, predictions of 
the two correlations are unacceptable being up 
to 94% higher than those of the Gnielinski 
correlation.

Kraussold [83] Nu = 0.024 Re0 8 Pr1 /3 For 0.7 < Pr < 5 and 104 < Re < 105, the pre-
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Colburn [84]

von Karman [14]

Hausen [85]

Prandtl [62]

Drexel and
McAdams [86]

Bemado and
Eian [87]

Deissler [57]

Friend and
Metzner [88]

Nu = (//2)RePr1/3 
Nu = 0.023 Re°"Pr1/3

Nu =
(f/2)RePr

1 + 5(//2)‘/2 Pr - 1 + In
5 Pr + 1 \ 1

Nu = O.116(Re2/3 - 125)Pr1/3[l + (x/D) 2/3]

Nu =
(//2)RePr_____

1 4 8.7(//2)1/2(Pr - 1)

Nu = 0.021 Re"'Pr"4

Nu = 0.048 Re° 73Pr04

Graphical results for 0.73 < Pr < 3000 and 5 X 103 
< Re < 3 X 105: for Pr > 200, the asymptotic for
mula: Nu = 0.0789 Re//Pr1/4

Nu =
__________ (//2)RePr ______
1.2 + 11.8(//2)1/2(Pr - l)Pr"1 3

For 0.5 < Pr < 3 and 104 < Re < 10s, both 
correlations predict Nu within +27.6% and 
-19.8% of the Gnielinski correlation.

This equation is based on a three-layer model 
(laminar sublayer, buffer layer, and turbulent 
core as shown in Fig 4.1). For 0.5 < Pr < 10 
and 104 < Re < 5 X 106, its predictions are 
within +16.2% and —11% of the Gnielinski 
correlation

This correlation takes into account the thermal 
entrance length effect embodied in the last, 
bracketed factor With this factor ignored, i.e . 
set equal to 1, its predictions for 0.7 < Pr < 3 
and 104 < Re < 105 are within +22.1% and 
- 16.2% of the Gnielinski correlation.

This equation is based on the three-layer model 
(laminar sublayer, buffer layer, and turbulent 
core as shown tn Fig.4.1). For 0.5 < Pr < 5 and 
104 < Re < 5 X 106, its predictions are within 
-rl()5% and -17 7% of the Gnielinski correla
tion

For Pr < 0.7 and 104 < Re < 5 X 106, the pre
dictions are within +13.7% and -3.6% of the 
Gnielinski correlation.

For 0.5 < Pr < 2000 and 104 < Re < 105, the 
predictions are within +23.4% and —22.8% of 
the Gnielinski correlation.

For 5 < Pr < 2000 and 104 < Re < 105, the 
graphical results are within + 20% of Gnielinski. 
For Pr = 0.73 and 104 < Re < 10s, the results 
are 54% higher than those of Gnielinski.

This equation is based on the experimental data 
for 50 < Pr < 600. For 50 < Pr < 600 and 5 X 
104 < Re < 5 X 106, its predictions are within 
+ 7.8% and 1.7% of the Gnielinski correlation.
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Investigators Correlations
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Petukhov, 
Kirillov, 
and Popov [89]

Hausen [90]

(//2)RePr
Nu = -------------------- —----------------

C + 12.7(//2) A(Pr2/3 - 1)

where C = 1.07 + 900/Re - [0.63/(1 + 10Pr)]
(//2)RePr

Nu = -------------------------7----------------
1.07 4 12.7(//2) /_(Pr2/’ - 1)

Nu = 0.037(Re"75 - 180)Pr',42[l + (x/D) 2/3]

Mills [91] Nu = 0.0397 Re” 73 Pr1/3

Webb [92]

Slcicher and
Rouse [93]

Gnielinski [94]

(//2)RePr
Nu = --------------------775-------------------

1.07 + 9(//2) z (Pr - l)Pr1/4

Nu = 5 + 0.015 RemPr"
m = 0.88 - 0.24/(4 + Pr)

n = [ + 0.5 exp( - 0.6 Pr)

Nu = 5 + 0.012 Re0 83 (Pr + 0.29)

(//2)(Re - 1000)Pr
Nu = --------------------5—5----------------

1 + 12.7(//2) ' (Pr2/3 - 1)

Nu = O.O214(Re08 - 100)Pr°4

Nu = O.O12(Re0 87 - 28O)Pr04



Remarks

The first Petukhov et al. correlation agrees with 
the most reliable experimental data on heat and 
mass transfer to an accuracy of + 5%. It is valid 
for 0.5 < Pr < 106 and 4000 < Re < 5 X 106. 
The second is a simplified version of the first and 
is modified by Gnielinski (see below) to arrive at 
his correlation.

This correlation takes into account the thermal 
entrance effect embodied in the last, bracketed 
factor. With this factor ignored, i.e., set equal to 
1 its predictions for 0.7 < Pr < 3 and 104 < Re 
< 105 are within +3.8% and —21.1% of the 
Gnielinski correlation.

For Pr = 0.7 and 104 < Re < 105, the predic
tions are within +5% and —13.5% of the
Gnielinski correlation.

For 0.5 < Pr < 100 and 104 < Re < 5 X 106, 
the predictions are within +10.4% and —7.3% of 
the Gnielinski correlation.

The predictions of the first correlation for 0.5 < 
Pr < 2000 and 5 X 104 < Re < 5 X 106 are 
within +43% and —10.3% of the Gnielinski 
correlation. The second correlation is applicable 
to gases only. For Pr = 0.7 and 104 < Re < 5 X 
106 its predictions are within +4% and -12.5% 
of the Gnielinski correlation.

The first Gnielinski correlation is a modified 
version of the second Petukhov et al. [89] 
correlation (see above) extending it to the 2300 
< Re < 5 X 104 range. For 0.5 < Pr < 2000 
and 2300 < Re < 5 X 106, it is in overall best 
accord with the experimental data; it agrees with 
the Petukhov et al. correlation within -2% and 
+ 7.8%. Hence it is selected as the common basis 
of comparison for all the correlations in this



table. The second correlation is for 0 5 < Pr < 
1.5 and 104 < Re < 5 X 106, where it agrees 
with the first within +4% and -6%. The third 
correlation is for 1.5 < Pr < 500 and 3 X 103 < 
Re < 106, where it agrees with the first within

10%

Churchill [45]
( „<22OO Re).'365 ,

/XT \10 Z»T \10 e 1
(Nu) = (Nu,) + ------------- -----  + -------- -

I (Nu,) (Nu,)2

where
KT .. 0.079(//2)1/2Re Pr
Nu, = Nun + ------------------- —

(1 + Pr4'5)
Nu0 = 4.8 for (Tj and 6.3 for @

Nu, = 3.657 for @ and 4.364 for (h) 

This general correlation was constructed for 0 
< Pr < IO6 and 10 < Re < 106, spanning the 
laminar, transition, and turbulent flow regimes. 
For Re < 2100, it yields the laminar flow Nu 
values of 3.657 and 4.364 corresponding to the (T) 
and @ boundary conditions, respectively. For 
2100 < Re < 104, it gives Nu values in agree
ment with the experimental results for the transi
tion flow. For 0.5 < Pr < 2000 and 104 < Re < 
106, its predictions with the @ boundary condi
tions are within +17.1% and -11.9% of the 
Gnielmski correlation; with the (h) boundary 
conditions, within +13.7% and -10.5%.

Polley [95]

Kays and
Crawford [22]

Nu = exp[-3.796 - 0.205 In Re - 0.505 In Pr 
- 0.0225(ln Pr)2] Re Pr

Jf/2 Re Pr 
O.833[2.251n(O.75Rev///2) + 13.2Pr - 5.8]

Nu = 0.022 Re0 8Pr0-5

For Pr ~ 0.7 and 104 < Re < 5 X 105, the pre
dictions are within +5.5% and —8% of the 
Gnielinski correlation

The first equation is valid for 0.5 < Pr < 5, and 
the second for 0 5 < Pr < 1. For 104 < Re < 5 
X 106, the predictions of the first equation are 
within + 8.2% and — 30.2% of the Gnielinski 
correlation; of the second, within +11.1% and 
-2.5%.

Sandall 
et al. [96]

///2Re Pr
U " 12.48 Pr2/3 - 7.853 Pr1/3 + 3.613 In Pr + 5.8 + C 

where C = 2.78 ln(^///8 Re/45)

For 0.5 < Pr < 2000 and 104 < Re < 5 X 106. 
the predictions are within +6.6% and -4% of 
the Gnielinski correlation.

4-35 All the formulas in this table apply to the (T) or (h) boundary condition; hence there is no need to distinguish NuT and NuH in the table. 
*The friction factor f needed in some of the formulas may be calculated from the PKN, Colebrook, Filonenko. or Techo et al correlation 
given in Table 4.2.

For the comparisons presented in Table 4.4, the Techo et al. correlation was employed in the computations.
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TABLE 4.5. Fully Developed Turbulent Flow Nusselt Numbers NuT

Investigators Correlations

Lyon [97] Nuh = 70 + 0.025 Pe08

Seban and
Shimazaki [98]

Nut = 5.0 + 0.025 Pe0'8

Lubarsky and
Kaufman [99]

Nuh = 0.625 Pe° 4

Hartnett and
Irvine [216]

Nu = |Nuslug + 0.015 Pe0'8* 
where Nuslug = 5.78 for @

NusIug = 8.00 for @

Sleicher and
Tribus [100]

NuT = 4.8 + 0.015 Re 0,91 Pr1'21

Nuh = 6.3 + 0.016 Re0 91 Pr1 21

Azer and Chao Nut = 5 + 0.05 Re 0 77 Pr1 02
[101]



and Nuh+ in a Smooth Circular Duct for Liquid Metals (Pr < 0.1)

Remarks

For 0 < Pr < 0.1 and 104 < Re < 5 X 106, the 
predictions are within +32.8% and - 6.5% of the 
Notter-Sleicher correlation (see below).

For 0 < Pr < 0.1 and 104 < Re < 5 X 106, the 
predictions are within +39.9% of the Notter- 
Sleicher correlation (see below).

For 0 < Pr < 0.1 and 104 < Re < 105, the pre
dictions are within -42.7% of the Notter-Sleicher 
correlation.

For 0 < Pr < 0.1 and 104 < Re < 5 X 106, the 
predictions of the NuT correlation are within 
-39.9% of the Notter-Sleicher correlation; the 
predictions of the NuH correlation are within 
-43.5% of the Notter-Sleicher correlation.

For 0 < Pr < 0.1 and 104 < Re < 5 X 106, the 
predictions of the NuT correlation are within 
+ 19.5% and -33.4% of the Notter-Sleicher 
correlation; the predictions of the NuH correla
tion are within +26.3% and —32.5% of the 
Notter-Sleicher correlation.

For 0 < Pr < 0.1 and 104 < Re < 5 X 105, the 
predictions are within +14.2% and —18.6% of 
the Notter-Sleicher correlation.



Dwyer [102]
NuH = 7 + 0.025 RePr -

0.8
1 82 Re

. .0 14
( m/v )max

where )max = 0.037 Re^5

For 0 < Pr < 0.1 and 104 < Re < 5 X 106, the 
predictions are within i- 31.4% and -6.5% of the 
Notter-Sleicher correlation.
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Skupinski 
et al. [103]

Nuh = 4.82 + 0.0185 Pe0827 For 0 < Pr < 0.1 and 104 < Re < 5 X 106, the 
predictions are within +22.3% and —17.8% of 
the Notter-Sleicher correlation.

Notter and
Sleicher [104]

NuT = 4.8

NuH = 6.3

+

+

0.0156 Re0 85Pr0 93

0.0167 Re0 85 Pr0 93

Chen and Nut = 4.5 + 0.0156 Re0 85Pr0-86
Chiou [106]

Nuh = 5.6 + 0.0165 Re0 85Pr0-86

These correlations are valid for 0.004 < Pr < 0.1 
and 104 < Re < 106. They are based on numeri
cal analysis [104] coupled with experimental 
verification [105],

For 0 < Pr < 0.1 and 104 < Re < 5 X 106, the 
predictions of the NuT correlation are within 
+ 36.1% and —1.8% of the Notter-Sleicher corre
lation; the predictions of the NuH correlation 
are within +33.9% and -7.1% of the Notter- 
Sleicher correlation.

Lee [107] Nuh = 3.01 Re00833 This correlation is valid for 0.001 < Pr < 0.02 
and 5 X 103 < Re < 105, where its predictions 
are within +24.7% and —44.3% of the Notter- 
Sleicher correlation.

fFor Pr < 0.1, different formulas are required corresponding to the @ and @ boundary conditions; hence NuT and NuH are distinguished in this table. 
*This equation is of general applicability, requiring the knowledge of the slug Nusselt number NuUug corresponding to Pr = 0 for the specific duct geometry 
and the pertinent boundary condition.
§This relation was derived by the present authors. Its predictions are in excellent accord with the values of (£„,/>')max reported graphically in [102], The 
value of f in this relation may be computed from the Techo et al. correlation presented in Table 4.2.
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TABLE 4.6. Fully Developed Turbulent Flow Nusselt Numbers Nu H 
in a Smooth Circular Duct with Uniform Wall Heat Flux

Pr

Nuh

Re = 104 5 X 104 105 5 X 105 106

0.0 6.30 6.30 6.30 6.30 6.30
0.001 6.37 6.57 6.78 8.19 9.71
0.003 6.49 7.04 7.64 11.56 15.77
0.01 6.88 8.57 10.4 22.4 35.3
0.03 7.91 12.6 17.7 51.0 86.9

0.06 9.4 18.3 28.0 91.5 159.9
0.09 10.8 23.9 37.9 130.6 230.3
05 24.7 84.8 144.2 510.3 891.4
0.7 29.4 104.5 179.8 648.8 1141
1.0 34.9 128.7 224.0 825.5 1462

3.0 56.5 226.8 406.6 1590 2877
10 90.0 381.9 700.0 2865 5280
30 133.5 582.1 1079 4526 8427

100 202.4 895.5 1670 7108 13,313
1000 440.1 1967 3683 15,829 29,774

The fully developed NuT for fluids with Pr > 0.7 are practically identical with the 
corresponding NuH shown in Fig. 4.12. This can be seen more clearly from the results 
in Table 4.7, based on the theoretical calculations by Siegel and Sparrow [108]. The 
fully developed Nu r for low-Pr liquid metals, on the other hand, are significantly lower 
than the corresponding NuH shown in Fig. 4.12. This can be seen more clearly from 
the results in Table 4.8, based on the Notter-Sleicher correlations given in Table 4.5.

All the preceding heat transfer results pertain to uniform heat flux or uniform wall 
temperature around the duct circumference. The technically important problem of 
circumferentially varying but axially constant wall heat flux has been solved by 
Reynolds [109], Sparrow and Lin [110], and Gartner et al. [111]. In addition, the 
problem of circumferentially varying but axially constant wall temperature has been 
solved in Refs. 109 and 110. The only available experimental measurements for the 
aforementioned two circumferentially varying thermal boundary conditions are those 
of Black and Sparrow [112],

Based on the analysis by Gartner et al. [Ill], for the cosine heat flux variation

= <7™(1 + 6cos0) (4.61)

at a given cross section of the duct, the local Nusselt number around the circumference 
can be determined from

1 + b cos 0
NUe-H “ l/NuH + (<7^/2)008 0 (4-62)

where NuH is the value for a uniform wall heat flux and b is the specified constant.
The circumferential heat flux function Gj appearing in Eq. (4.62) is presented in 

Table 4.9 for wide ranges of Re and Pr. For laminar flow (Re < 2300), the value of G1 
is unity for all values of Pr. With G, = 1, Eq. (4.62) becomes identical with Eq. (3.24) 
for the laminar flow case.

The effect of surface roughness on the fully developed Nusselt number can be taken 
into account by the simple empirical correlation given by Eq. (4.26). Several other 
correlations have been proposed for determining the fully developed Nusselt numbers 
in the completely rough flow regime in a circular duct. They are summarized in Table 
4.10. The friction factor f in this table is for fully rough flow and is given by the
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Nikuradse correlation presented in Table 4.3. The recommended equations for practical 
calculations are the two correlations by the present authors given in Table 4.10.

4.2.3 Hydrodynamically Developing Flow
Several attempts have been made to solve the problem of turbulent flow development 
in a smooth circular duct starting with a uniform velocity at the duct inlet. This latter 
velocity can be obtained by providing a boundary-layer tripping device (e.g., a tripping 
ring, strip, or sandpaper) just upstream of the duct inlet. All the attempted solutions 
fall into the category of the integral method. Latzko [118], Ross [119], and Zhi-qing 
[120] solved the problem analytically by assuming a power-law velocity profile within



TABLE 4.7. Comparison of Fully Developed Turbulent Flow Nusselt 
Numbers NuH and NuT for a Smooth Circular Duct and 
High Prandtl Number (Pr > 0.7) Fluids [108]

Pr Nuh Nut Nu h/Nut

0.7 101.8

Re = 5 X 104

98.95 1.029
10 381.0 379.70 1.003

100 836.6 834.90 1.002

0.7 171.4

Re = 105

167.7 1.022
10 683.9 683.9 1.000

100 1529.0 1532.0 0.998

0.7 599.7

Re = 5 X 105

592.9 1.011
10 2722.0 2730.0 0.997

100 6352.0 6386.0 0.995

TABLE 4.8. Comparison of Fully Developed Turbulent Flow Nusselt 
Numbers Nu H and NuT for a Smooth Circular Duct 
and Low Prandtl Number (Pr < 0.1) Fluids

Pr Nu„ Nut Nuh/Nut

Re = 104

0.1 11.23 9.40 1.194
0.01 6.88 5.34 1.288
0.001 6.37 4.86 1.309
0.000 6.30 4.80 1.313

Re = 105

0.1 41.19 37.39 1.102
0.01 10.40 8.63 1.205
0.001 6.78 5.25 1.292
0.000 6.30 4.80 1 313

Re = 106

0.1 253.31 235.54 1.075
0.01 35.32 31.91 1.107
0.001 9.71 7.99 1.216
0.000 6.30 4.80 1 313

4-40
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TABLE 4.9. Circumferential Heat Flux Function G, for Use in Conjunction
with Eq. (4.62) [111]

Pr
G,

Re = 104 3 X 104 105 3 X 105 106

0 1.000 1.000 1.000 1.000 1.000
0.001 0.9989 0.9937 0.9561 0.8059 0.4853
0.003 0.9929 0.9613 0.8005 0.5042 0.2300
0.01 0.9499 0.7915 0.4567 0.2185 0.0867
0.03 0.7794 0.4705 0.2055 0.0888 0.0336

0.7 0.1116 0.0442 0.0161 0.00644 0.00232
3 0.0440 0.0168 0.00594 0.00234 0.000824

10 0.0233 0.00879 0.00305 0.00120 0.000415
30 0.0145 0.00544 0.00184 0.000744 0.000250

100 0.00941 0.00354 0.00110 0.000484 0.000149

the boundary layer. Bowlus and Brighton [121] and Na and Lu [122] solved it 
numerically, by assuming a power-law velocity profile within the boundary layer. 
Holdhusen [123], Deissler [124], and Filippov [125] employed a logarithmic velocity 
profile within the boundary layer.

The closed-form analytical solution of Zhi-qing [120] is particularly suitable for 
engineering calculations and so is presented below. According to this analysis, the 
velocity distribution in the hydrodynamic entrance region is given by

u _ / (y/^)17 for 0 < y < 5
“max 11 for <S < y < a

um 1 1 px , 1 / 5\2
“max 4 \ a ) 15 \ a |

(4-63)

(4.64)

where S is the hydrodynamic boundary-layer thickness, which varies with the axial
coordinate x in accordance with the relation

x/Dh / 8\5/4 (8\ (8V
——= 1.4039 - 1 + 0.1577 - - 0.1793 -
Re1/4 \ a I \aj \a)

/8\3 (8\4
— 0.0168 — + 0.0064 —

\ aI \a/
(4.65)

The axial pressure drop Ap*,  the incremental pressure drop number K'(.\ ), and the 
apparent Fanning friction factor /app are given as

bp*
“max (4.66)

7C(x) = A/?*  - 0.316
Re1/4

(4.67)

An*  
f Dpi/*  = ______-_____/app 4x/( Z)/7 Re0 25) (4.68)



TABLE 4.10. Nusselt Numbers for Fully Developed Turbulent Flow in the Fully Rough Flow Regime of a Circular Duct1
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Investigators Corrrelations Remarks

Martinelli [15]

Nunner [113]

Dipprey and
Sabersky [114]

Owen and
Thomson [60]

Gowen and
Smith [115]

Kawase and
Ulbrecht [116]

Kawase and
De [117]

_________ Re Pr///2______________
5[Pr + ln(l + 5 Pr) + O.51n(Re^//2 /60)]

RePr(//2)
Nn = ------------------------------------------------------------

1 + 1.5Re“1/8Pr’1,/6[Pr(f/fs) - 1]

RePr(//2)
Nu = ---------=----------------------------------------

1 + T//2 [5.19 Ree02Pr044 - 8.48]

This equation differs from that derived by 
Martinelli [15] for a smooth duct by the omission 
of the temperature ratio (T„ 7].)/(TH. T„,).

This correlation is valid for Pr ~ 0.7; it does not 
give satisfactory results for Pr > 1.

This correlation is valid for 0.0024 < e/Dh < 
0.049, 1.2 < Pr < 5.94, and 1.4 X 104 < Re < 5 
X 105.

RePr(//2)
1 + 0 52ReF0 45Pr0'8 y[f/2

RePryT/2
4.5 + [o,155(Re///2)°54 + y[i/f\ \/P?

Nu = 0.0523 Re/Pt7//

Nu = 0.0471 Re/Pr //(l.ll + 0.44 Pr’ 1/3 - 0.7Pr“1/6)

This equation correlates experimental results 
from various sources including those from Refs. 
[113] and [114],

This correlation is valid for 0.021 < t/Dh < 
0.095, 0.7 < Pr < 14.3, and 104 < Re < 5 X 
104.

The predictions of this correlation are somewhat 
lower than those of the following correlation.

The predictions of this correlation are in rea
sonable agreement with the experimental data 
for 0.0024 < e/Dh < 0.165, 5.1 < Pr < 390, and 
5000 < Re < 5 X 105.

Present authors

Present authors

(RePr(//2))NJ = ------------------------------
1 + v7/2(4 5Ref0-2Pr0-5 - 8.48)

(Re - 1000) Pr(//2)
NU “ 1 + y/7/2 [(17.42 - 13.77Prt08) Ree05 - 8.48]

where Prt is given by Eq. (4.56).

This correlation is valid for 0.5 < Pr < 10, 0.002 
< e/Dh < 0.05, and Re > 104. Its predictions 
are within ±5% of the available measurements.

This correlation is valid for 0.5 < Pr < 5000, 
0.001 < e/dh < 0.05, and Re > 2300. Its predic
tions are within +15% of the available measure
ments.

The friction factor f needed to evaluate Nu may be calculated from Nikuradse’s correlation in Table 4.3 for fully rough flow regime.



CIRCULAR DUCT 4«43

TABLE 4.11. Turbulent Momentum Transfer Results in the Hydrodynamic 
Entrance Region of a Smooth Circular Duct

Re1/4
wmax

Um
Ap* A'(x) App Re1/4

8 
a

0.0000 1.0000 0.0000 0.0000 00 0.0
0.0800 1.0249 0.0505 0.0252 0.1578 0.1
0.1923 1.0497 0.1018 0.0410 0.1325 0.2
0.3213 1.0741 0.1537 0.0522 0.1196 0.3
0.4615 1.0981 0.2058 0.0600 0.1115 0.4

0.6093 1.1215 0.2577 0.0652 0.1057 0.5
0.7616 1.1442 0.3091 0.0684 0.1015 0.6
0.9153 1.1659 0.3594 0.0702 0.0982 0.7
1.0679 1.1867 0.4082 0.0700 0.0956 0.8
1.2167 1.2063 0.4551 0.0700 0.0935 0.9

1.3590 1.2245 0.4994 0.0700 0.0919 1.0

Figure 4.13. Turbulent flow apparent friction factors in the hydrodynamic entrance region of a 
smooth circular and a fiat duct with uniform inlet velocity.
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TABLE 4.12. Turbulent Flow Hydrodynamic Entrance Length 
Predictions for a Smooth Circular Duct

Investigators
Formula for 

Lhv/Dh
at

Re = 3.88 X 105

I atzko [118] 0.625 Re1/4 15.6
Zhi-qing [120] 1.3590 Re1/4 33.9
Bowlus and Brighton [121] 6.1887 In Re - 46 33.6
Na and Lu [122] — 28.5
Holdhusen [123] 2.0846 In Re - 5.6 21.2
Filippov [125] 2.44/^ 41.6+
Barbin and Jones [126] — 28.0*

1 Calculated using Techo et al. [67] formula for f from Table 4.2. 
f Experimental value.

for 
are

The various momentum-transfer quantities calculated from Eqs. (4.64) to (4.68) by the 
present authors are presented in Table 4.11. A comparison of um.M/um values in Table 
4.11 with the accurate experimental measurements of Barbin and Jones [126] 
Re = 3.88 X 105 shows agreement within ±5%. The f values from Table 4.11 
also plotted in Fig. 4.13 for Re = 104, 3 X 104, and 10 .

For the present purpose, the hydrodynamic entrance length Lhv is defined as
axial distance at which the hydrodynamic boundary layer growing from the duct wall 

the

reaches the duct axis. The Lhv predictions of various investigators in conformity with 
this definition are presented in Table 4.12. It is seen that the Lhy/Dh value at 
Re = 3.88 X 105 due to Na and Lu [122] is in almost exact agreement with the
experimental value of Barbin and Jones [126]. However, since Na and Lu [122] provide 
no general formula for Lhs/Dh, the use of Zhi-qing’s [120] or Bowlus and Brighton’s 
[121] formula is recommended for practical calculations; these formulas provide fairly 
good agreement with the experimental value.

Wang and Tullis [127] mathematically analyzed the turbulent flow in the hydrody
namic entrance region of a rough circular duct, employing a logarithmic velocity profile 
within the boundary layer. In addition, they reported experimental measurements of 
the pressure drop and velocity distribution for O.OOO38 < e/Dh < 0.0002 and 7 X 105 
< Re < 3.7 x 106. The predictions of the boundary-layer growth, axial velocity, and 
pressure drop agree reasonably well with the measurements up to x/Dh = 12 but not 
for x/Dh > 12. Based on their measurements, Wang and Tullis [127] concluded that 
/app// f°r a rough circular duct is essentially independent of e/Dh in the ranges 
1.2 X 106 < Re < 3.7 X 106 and O.OOO38 < e/Dh < 0.0002.

4.2.4 Thermally Developing Flow

The problem of the fully developed turbulent velocity profile and developing tempera
ture profile with uniform wall temperature in a smooth circular duct has been studied 
analytically quite extensively. This (t) problem is often referred to as the turbulent 
Graetz problem.

Latzko [118] appears to be the first investigator to attack the turbulent Graetz 
problem, in 1921. Sleicher and Tribus [128] developed a solution primarily for Pr < 1. 
Becker [129] developed a solution for 0.1 < Pr < 100. Notter and Sleicher [104] 
provided solutions for numerous Pr values in the range 0 < Pr < 104. All these 
solutions are of infinite-series type, similar to the Graetz-problem solution for laminar
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TABLE 4.13. Eigenvalues and Constants of the Turbulent Graetz Problem for 0 < Pr <. 0.06 [104]

Re X20 X2! X2 X2 Co - q C2 - C3 Go Gx G2 G3

Pr = 0

10,000 9.87 54.27 135.1 252.4 1.559 0.973 0.750 0.623 0.910 0.824 0.769 0.726
20,000 10.03 54.95 136.4 254.5 1.564 0.986 0.769 0.647 0.918 0.849 0.812 0.786
50,000 10.16 55.48 137.5 256.4 1.568 0.996 0.782 0.661 0.926 0.867 0.839 0.822

100,000 10.25 55.86 138.4 257.8 1.571 1.001 0.787 0.668 0.931 0.876 0.852 0.837
200,000 10.35 56.27 139.3 259.4 1.573 1.006 0.793 0.673 0.935 0.886 0.865 0.853
500,000 10.48 56.82 140.5 261.7 1.575

Pr

1.011

= 0.002

0.798 0.678 0.940 0.895 0.876 0.865

50,000 10.61 58.19 144.6 269.7 1.564 0.986 0.770 0.650 0.975 0.897 0.862 0.841
100,000 11.23 61.74 153.6 286.7 1.561 0.980 0.763 0.644 1.036 0.943 0.903 0.880
200,000 12.44 68.90 172.0 321.4 1.554 0.963 0.745 0.627 1.159 1.027 0.972 0.942
500,000 15.91 90.19 227.4 426.8 1.531

Pr

0.913

= 0.004

0.691 0.576 1.527 1.246 1.137 1.080

50,000 11.23 61.94 154.3 288.1 1.558 0.972 0.755 0.636 1.041 0.939 0.894 0.867
100,000 12.52 69.57 173.9 325.3 1.550 0.955 0.735 0.618 1.175 1.028 0.967 0.932
200,000 15.03 84.91 213.8 400.9 1.534 0.920 0.698 0.582 1.441 1.191 1.092 1.040
500,000 21.96 129.6 331.9 626.8 1.497 0.840 0.616 0.506 2.203 1.589 1.376 1.277

1,000,000 32.57 202.6 527.7 1003.0 1.457 0.760 0.540 0.439 3.410 2.130 1.750 1.594
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Pr = 0.01

TABLE 4.13 Continued

~4 ~q ^q q ^q q q q q

10,000 10.41 57.61 143.8 269.2 1.554 0.957 0.732 0.606 0.970 0.857 0.788 0.738
20,000 11.24 62.33 155.6 290.9 1.552 0.958 0.738 0.616 1.050 0.928 0.868 0.829
50,000 13.39 75.23 188.9 353.9 1.540 0.932 0.710 0.593 1.277 1.079 0.996 0.949

100,000 16.75 96.15 243.8 458 5 1.520 0.888 0.665 0.550 1.642 1.290 1.154 1.085
200,000 23.00 137.2 352.4 666 3 1.490 0.824 0.600 0.491 2.34 1.644 1.406 1.296
500,000 39.31 252 9 665.6 1271.0 1.436 0.717 0.500 0.405 4.20 2.42 1.93 1.752

1.000,000 63.20 438.6 1176 2260 1.390 0.633 0.428 0.345 7.01 3.40 2.59 2.34

Pr = 0.015

50,000 15.33 87.37 220.9 415.0 1.526 0.901 0.677 0.561 1.491 1.198 1.079 1.03 5
100,000 20.37 1199 306.7 579.0 1.499 0.844 0.620 0.509 2.050 1.495 1 295 1.198
200,000 29.56 182 5 474.3 901.3 1.463 0.771 0.548 0.446 3.09 1.972 1.625 1.478
500,000 53.03 357.8 953.5 1829.0 1.406 0.660 0.451 — 5.81 2.98 2.30 —

1,000,000 86.99 638.0 1731 3339 1.362 0.581 0.386 0.310 9.84 4.26 3.16 2.85

Pr = 0.02

10,000 11.18 62.33 156.4 293 4 1.544 0 937 0.709 0.583 1.055 0.901 0.814 0.754
20,000 12.86 72.30 181.9 341.0 1.537 0.925 0.701 0.580 1 228 1.029 0.937 0.879
50.000 17.31 100.1 254.6 479.3 1.513 0.873 0.648 0.534 1.713 1.314 1.158 1.077

100,000 23.97 144.2 371.9 704.3 1.483 0.809 0.584 0.477 2.46 1.685 1.422 1.302
200,000 35.92 228.5 599.5 1143.0 1.443 0.730 0.511 0.414 3.83 2.27 1.819 1.643
500,000 66.17 463.8 1247.0 2399.0 1.384 0.622 0.419 0.337 7.36 3.49 2.64 2.37

1,000,000 109.8 838.7 2293 4437 1.342 0.546 0.359 0.288 12.6 5.03 3.66 3.30



Pr = 0.03

10,000 12.03 67.76 170.8 321.1 1.534 0.915 0.685 0.560 1.152 0.949 0.840 0.769
20,000 14.60 83.37 211.0 396.8 1.523 0.894 0.666 0.547 1.423 1.132 1.002 0.924
50,000 21.28 126.7 325.2 614.8 1.491 0.826 0.600 0.489 2.17 1.532 1.320 1.189

100,000 31.06 194.2 506.9 964.8 1.454 0.753 0.531 0.430 3.28 2.03 1.649 1.488
200,000 48.32 322.3 856.3 1641.0 1.412 0.673 0.461 0.371 5.29 2.79 2.16 1.938
500,000 91.50 678.1 1844 3562 1 356 0.571 0.377 0 303 10.38 4.39 3.22 2.90

1.000,000 154.0 1244 3435 6667 1.318 0.503 0.325 0.260 17.9 6.42 4.57 4.12

Pr = 0.04

10,000 12.94 73.62 186.5 351.3 1.524 0.893 0.660 0.537 1.255 0.996 0.863 0.782
20,000 16.38 95.06 242.1 456.4 1.510 0.864 0.635 0.517 1.627 1.230 1.062 0.964
50,000 25.27 154.0 398.7 756.7 1.472 0.787 0.562 0.454 2.63 1.731 1.428 1.287

100,000 38.01 245.2 646.2 1234 1.434 0.712 0.494 0.397 4.10 2.34 1.847 1.651
200,000 60.29 417.5 1120 2153 1.391 0.633 0.427 0.342 6.71 3.26 2.46 2.20
500,000 115.8 894.5 2452 4750 1.337 0.536 0.350 0.281 13.30 5.19 3.74 3.37

1,000,000 196.5 1652 4593 8928 1 301 0.475 0.304 0.242 23.0 7.67 5.38 4.81

Pr = 0.06

10,000 14.80 86.22 220.5 417.3 1.505 0.850 0.615 0.496 1.473 1.086 0.905 0.806
20.000 20.00 119.6 308.0 583.9 1.485 0.812 0.581 0.466 2.05 1.411 1.162 1.028
50,000 33.02 210.2 552.3 1054.0 1.442 0.726 0.504 0.404 3.54 2.08 1.642 1.451

100.000 51.57 349.7 933.7 1793 1.402 0.652 0.441 0.352 5.71 2.88 2.18 1.932
200,000 83.45 611.3 1660 3205 1.361 0.579 0.382 0.305 9.48 4.09 2.99 2.65
500,000 163.4 1334 3695 7173 1.313 0.493 0.318 0.253 19.0 6.66 4.70 4.18

1,000,000 279.3 2475 6947 13540 1.281 0.438 0.278 0.221 33.0 9.93 6.88 6.12



TABLE 4.14. Eigenvalues and Constants of the Turbulent Graetz Problem for 0.1 < Pr < 1 
[104]

Re A2o Q -G c2 Go Gi g2

10,000 18.66 113.6 296.0

Pr = 0.1

1.468 0.774 0.540 1.928 1.235 0.965
20.000 27.12 171.6 450.7 1.444 0.728 0.499 2.89 1.701 1.304
50,000 48.05 327.5 876.1 1.398 0.644 0.431 5.34 2.65 1.959

100,000 77.13 564.7 1.534 1.361 0.577 0.378 8.79 3.77 2.71
200,000 127.4 1,007 2.777 1.325 0.515 0.332 14.79 5.46 3.84
500,000 253.6 2,226 6,239 1.284 0.444 0.280 29.9 9.16 6.27

1,000,000 437.3 4,150 11,750 1.257 0.400 0.249 52.3 14.05 9.45

10,000 27.92 190.4 514.3

Pr = 0.2

1.395 0.634 0.417 3.06 1.472 1.049
20,000 43.78 312.5 849.1 1.371 0.591 0.381 4.93 217 1.493
50,000 82.45 636.8 1.754 1.334 0.527 0.334 9.54 3.62 2.45

100,000 136.3 1,126 3,134 1.306 0.478 0.301 16.02 5.35 3.60
200,000 229.3 2,033 5,715 1.279 0.435 0.270 27.3 8.09 5.38
500,000 462.6 4,515 12,840 1.249 0.385 0.236 55.5 14.21 9.32

1,000,000 804.6 8,416 24,090 1.229 0.353 0.214 97.2 22.5 14.58

10,000 42.69 346.9 972.2

Pr = 0.4

1.316 0.488 0.308 4.907 1.669 1.127
20,000 70.25 594.2 1,672 1.295 0.458 0.280 8.215 2.58 1.641
50,000 138.0 1,249 3,537 1.273 0.416 0.252 16.48 4.58 2.90

100,000 232.9 2,234 6,363 1.252 0.387 0.233 28.0 7.17 4.52
200,000 398.1 4,057 11,620 1.235 0.360 0.216 48.2 11.32 7.13
500,000 817.9 9,031 26,040 1.213 0.327 0.195 99.2 20.9 13.07

10,000 64.38 646.8 1,870

Pr = 0.72

1.239 0.369 0.227 7.596 1.829 1.217
20,000 109.0 1,119 3,240 1.231 0.352 0.208 13.06 2.95 1.784
50,000 219.0 2,350 6,808 1.220 0.333 0.193 26.6 5.63 3.32

100,000 375.9 4,183 12,130 1.210 0.319 0.185 45.8 9.25 5.48
200,000 651.2 7,539 21,940 1.200 0.302 0.177 79.6 15.05 9.10
500,000 1.357 16,630 48,540 1.190 0.282 0.165 166.0 28.9 17.5

10,000 81.45 940.4 2,758

Pr = 1.0

1.200 0.311 0.191 9.69 1.915 1.28
20,000 139.9 1,624 4,768 1.199 0.301 0.175 16.89 3.16 1.87
50,000 285.2 3,385 9,923 1.194 0.291 0.166 34.8 6.24 3.57

100,000 493.1 5,987 17,540 1.189 0.283 0.161 60.4 10.54 6.04
200,000 859.4 10,730 31,430 1.183 — 0.155 105.5 — 10.03
500,000 1,802 23.480 68,980 1.174 0.258 0.148 221.0 34.3 30.2
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TABLE 4.15. Eigenvalues and Constants of the Turbulent
Graetz Problem for 8 < Pr < 10,000 [104]

Re ^0 Q Co

Pr = 8

10,000 176.6 1.056 21.6
20,000 313.5 1.056 38.7
50,000 685.6 1.054 85.4

100,000 1,232 1.054 154.0
200,000 2,271 1.054 284.0
500,000 5 020 1.052 625.0

1,000,000 9.369 1.052 1,170

Pr = 20

10,000 247.9 1.033 30.3
20,000 448.2 1.033 55.4
50.'XX) 990.6 1.032 124.0

100,000 1,799 1.032 225.0
200,000 3.346 1.032 418.0
500,000 7,509 1.031 936.0

1.000,000 14,090 1.031 1,760

Pr = 50

10,000 348.0 1.019 42.6
20,000 631.1 1.019 78.1
50,000 1,393 1.018 174.0
100,000 2,570 1.018 321.0

200,000 4,778 1.018 598.0
500,000 10,800 1 018 1,350

1 00O.000 20,420 1.018 2,550

Pr = 100

10,000 444.6 1.012 54.5
20,000 811.1 1.012 100.0
50,000 1,788 1.012 223.0

100,000 3,317 1.012 415.0
200,000 6,129 1.012 766.0
500,000 14,040 1.012 1,750

1,000,000 26,220 1.012 3,270

Pr = 1000

10,000 988.4 1.003 121.0
20,000 1,794 1.003 222.0
50,000 4,012 1.003 501.0

100,000 7,383 1.003 923.0
200,000 13,820 1.003 1,730
500,(XX) 31,380 1.003 3,910

Pr = 10,000

10,000 2,132 1.001 261.0
20,000 3,907 1.001 484.0
50,000 8.695 1.001 1,090

100,000 16,140 1.001 2,020
200,> XX) 29,840 1.001 3,732
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flow reported in Sec. 3.2.3. In fact, Eqs. (3.35) to (3.38) apply unchanged to the solution 
of the turbulent Graetz problem.

The eigenvalues X„ and constants G„ to be used in conjunction with Eqs. (3.36) to 
(3.38) for the turbulent Graetz problem are reported in Tables 4.13 to 4.15, based on 
the analysis of Notter and Sleicher [104], Note that in contrast to the laminar flow 
solution, both and G„ are functions of Re and Pr. Also, the series for the turbulent 
flow solution converge much more rapidly, and so the few terms given in Tables 4.13 to 
4.15 are quite adequate for most practical computations.

The thermal entrance lengths Lth T for the complete range of Pr for the turbulent 
Graetz problem are shown in Fig. 4.14. Here Lth T is defined as the axial distance x at 
which Nuv T = 1.05 NuT, where Nux T and NuT are respectively the local and the 
fully developed Nusseh numbers with the @ boundary condition.

The thermal entrance @ problem is similar to the thermal entrance (t) (i.e., the 
turbulent Graetz) problem discussed above except for the uniform wall heat flux 
boundary condition. An integral solution to the @ problem was developed by Deissler 
[124] for Pr = 0.01 and 0.73. Sparrow et al. [130] developed an accurate solution for 
Pr = 0.7, 10, and 100. This solution was later extended to Pr = 1, 3, 8, 25, 50, 75, 100, 
125, 150 by Malina and Sparrow [131], Notter and Sleicher [104] also provided a 
solution for 0 < Pr < 8. These latter solutions are similar to the corresponding (h) 
problem solution reported in Sec. 3.2.3. Equations (3.55) and (3.56) of that solution 
apply unchanged to the present turbulent flow solution.

The eigenvalues and constants C„ R„ (1) to be employed in Eqs. (3.55) and (3.56) 
for the turbulent @ problem are given in Tables 4.16 and 4.17, based on the analysis 
by Notter and Sleicher [104], Note that An in Tables 4.16 and 4.17 stands for C„R„(1) 
in Eqs. (3.55) and (3.56).

Re

Figure 4 14 Thermal entrance lengths for the turbulent Graetz problem for a smooth circular 
duct [104],



TABLE 4.16. Eigenvalues and Constants of the Turbulent Thermal 
Entrance Length Solution for a Smooth Circular Duct 
with the ©Boundary Condition for 0 < Pr < 0.04 [104]

Re 3? ft2 ft2 Pi -A A A A

10,000 28.31 94.26 197.5

Pr = 0

337.9 0.156 0.0409 0.0243 0.0147
50,000 28.04 93.34 195.8 335.3 0.153 0.0474 0.0229 0.0136

100,000 28.09 93.45 196.1 335.7 0.152 0.0469 0.0227 0.0134
500,000 28.40 94.43 198.3 339.3 0.150 0.0459 0.0221 0.0130

50,000 29.66 98.51 206.5

Pr = 0.002

353.4 0.147 0.0457 0.0223 0.0132
100,000 31.61 104.7 219.2 374.9 0.138 0.0437 0.0213 0.0127
500,000 48.83 159.0 331.0 564.8 0.096 0.0329 0.0167 0.0102

50,000 31.93 105.7 221.4

Pr = 0.004

378.7 0.138 0.0438 0.0214 0.0128
100,000 36.37 119.7 250.3 427.5 0.123 0.0400 0.0198 0.0119
500,000 74.41 239.1 494.5 839.8 0.067 0.0249 0.0133 0.0084

10,000 30.45 101.1 211.6

Pr = 0.010

361.6 0.147 0.0471 0.0235 0.0143
50,000 40.12 131.8 275.0 469.3 0.144 0.0379 0.0190 00115

100,000 53.11 172.7 358.8 — 0.090 0.0314 0.0162 —
500,000 159.8 504.6 1032 1737 0.034 0.0144 0.0084 0.0056

50,000 47.84 156.2 325.1

Pr = 0.015

554.0 0.0982 0.0337 0.0173 0.0106
100.000 68.58 221.3 458.1 778.6 0.0718 0.0264 0.0140 0.0088
500,000 235.9 740.5 1506 2528 0.0237 0.0106 0.0065 0.0044

10,000 33.55 111.0 231.8

Pr = 0.02

395.8 0.136 0.0445 0.0225 0.0139
50,000 56.08 182.3 378.4 643.8 0.0857 0.0303 0.0158 0.0098

100,000 84.92 272.5 562.3 953.6 0.0595 0.0227 0.0124 0.0079
500,000 314.7 984.5 1997 3342 0.0181 0.0084 0.0053 0.0037

10,000 37.13 122.4 255.2

Pr = 0.03

435.1 0.125 0.0419 0.0215 0.0134
50,000 73.68 237.8 491.7 835.3 0.0676 0.0251 0.0135 0.0086

100,000 119.4 380.5 781.4 1320 0.0439 0.0177 0.0101 0.0066
500,000 477.7 1490 3011 5027 0.0121 0.0059 0.0038 0.0027

10,000 41.06 134.9 280.8

Pr = 0.04

478.0 0.115 0.0394 0.0206 0.0130
50,000 92.42 296.7 611.7 1037 0.0553 0.0213 0.0118 0.0077

100,000 155.8 494.1 1011 1704 0.0345 0.0145 0.0085 0.0057
500,000 646.0 2011 4059 6765 0.0091 0.0045 0.0030 0.0021
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TABLE 4.17. Eigenvalues and Constants of the Turbulent Thermal Entrance Solution 
for a Smooth Circular Duct with the @ Boundary Condition for 0.06 

< Pr < 0.72 [104]

Rc Pi Pi Pi A A

10,000 49.74 162.4

Pr = 0.06

336.8 0.0979 0.0351 0.0190
50,000 132.4 422.3 866.7 0.0400 0.0163 0.00940

100,000 232.4 733.3 1494 0.0238 0.0105 0.00642
500,000 993.6 3090 6225 0.00594 0.00300 0.00204

10,000 69.52 224.9

Pr = 0.10

463.0 0.0737 0.0286 0.0165
50,000 219.6 695.9 1421 0.0250 0.0109 0.00667

100,000 396.9 1247 2531 0.0143 0.00663 0.00427
500,000 1718 5341 10750 0.00344 0.00176 0.00122

10,000 128.7 410.4

Pr = 0.20

833.1 0.0433 0.0194 0.0128
50,000 465.1 1467 2980 0.0122 0.00570 0.00377

100,000 849.7 2664 5392 0.00679 0.00329 0.00222
500,000 3633 11310 22780 0.00162 0.00830 0.00058

10,000 258.1 812.8

Pr = 0.40

1623 0.0234 0 0123 0.00946
50,000 982 3 3093 6268 0.00589 0.00288 0.00202

100,000 1793 5621 11370 0.00323 0.00160 0.00111
500,000 7551 23530 47450 0.00078 0.00039 0.00027

10,000 519.5 1624

Pr = 0.72

3202 0.0123 0.00738 0.00653
50,000 1952 6154 12480 0.00296 0.00147 0.00106

100,000 3510 11030 22340 0.00164 0.00081 O.OOO56
500,000 14310 44690 89830 0.000405 0.00020 —

The local Nusselt numbers NuA. T and Nux H computed from Eqs. (3.37) and (3.55) 
respectively for the turbulent thermally developing flow are nearly identical for 
Pr > 0.7. In view of this fact, there is no need to provide the eigenvalues and constants 
for Pr > 0.7 in Table 4.17. For Pr > 0.7, use Tables 4.14 and 4.15 in conjunction with 
Eqs. (3.36) to (3.38). The equality of Nux T and Nuv H for Pr > 0 7 can be clearly seen 
from Table 4 18 based on the computations by Siegel and Sparrow [108],

The thermal entrance lengths Lth H for a complete Pr range for the turbulent @ 
problem are plotted in Fig. 4.15. The Lth H values in Fig. 4.15 correspond to
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TABLE 4.18. Comparison of Turbulent Flow Nusselt Numbers Nux H and Nux T at Re = 10s 
in the Thermal Entrance Region of a Smooth Circular Duct [108]

X

~Dh

Pr = 0.7 Pr = 10 Pr = 100

Nux.H Nu v T
Nu.v.h

NUx.h Nux T
Nuv.H

NUx.H Nu v T
Nux,h

Nux T Nux T NuxT

2 220.2 211.6 1.041 733.6 732.0 1.002 1554 1556 0.999
5 196.4 190.2 1.033 711.3 710.4 1.001 1543 1545 0.999

10 183.6 178.4 1.029 697.7 697.2 1.001 1536 1539 0.998
20 175.2 170.8 1.026 688.5 688.3 1.000 1531 1534 0.998
30 172.8 168.8 1.024 685.5 685.4 1.000 1530 1532 0.999
00 171.4 167.7 1.022 683.9 683.9 1.000 1529 1532 0.998

NuvH = 1.05 Nuh, where Nux H and NuH are respectively the local and fully 
developed Nusselt numbers with the (h) boundary condition. Comparison of the results 
in Figs. 4.14 and 4.15 shows that Lth H values are higher than Lth T values for 
0.01 < Pr < 0.72.

Certain correlations for the Nusselt numbers in the thermal entrance region of a 
smooth circular duct have been developed by various investigators. They are applicable 
for restricted ranges of Re, Pr, or Pe = RePr. Reynolds et al. [132] performed an

Figure 4.15. Thermal entrance lengths for thermally developing and hydrodynamically developed 
turbulent flow ((h) boundary condition) in a smooth circular duct [104].
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analysis similar to that of Sparrow et al. [130] for Pr = 0.71. Based on their analysis, 
Reynolds et al. [132] proposed the following correlation:

Nux-H 0.8(1 + 70,000 Re-3/2)
Nuh x/Dh

valid for 3000 < Re < 5 X 104 and Pr = 0.71. The predictions of this correlation 
agree with those of their analysis within + 5% for x/Dh > 2. The predictions of their 
analysis in turn agree with those of Sparrow et al. [130] within + 1.1%. For the fully 
developed Nusselt number NuH in Eq. (4.69), Reynolds et al. [132] found that their 
Nuh predictions agree with those of the Dittus-Boelter correlation in Table 4.3 within 
+ 4%.

Al-Arabi [133] developed the following correlation for the mean Nusselt number 
Nu„, for the thermally developing flow with the @ or (h) boundary condition:

^-l + ^ 
Num x/Dh

where NuK stands for the fully developed Nusselt number NuT or NuH and

r (x/Ph)°A
C prl/6 0.68 +

3000 \
Re°^”/ (4-71)

This correlation is valid for x/Dn > 3, 500 < Re < 105, and 0.7 < Pr < 75. Its predic
tions agree within +12% with the experimental measurements for Pr = 0.7.

Chen and Chiou [106] performed an analysis in the thermal entrance region for 
liquid metals (Pr < 0.03) and proposed the following correlations for the local and 
mean Nusselt numbers valid for x/Dh> 2 and Pe > 500:

Nut = 4.5 + 0.0156 Re°-85Pr0-86 (4.74)

Nur T 
Nut

2.4 
= 1 +

x/Dh

1
(4-72)

(*//>„  )2

Num,T 7 2.8 / X/Dh \ / x
— 1 + + In ——(4.73)Nut */Dh \ 10 V J

For the @ problem. Eqs. (4.72) and (4.73) are applicable with Nux H, Num H, and 
Nuh respectively replacing Nuv T, Nu„, T and NuT. The recommended expression for 
Nuh is

Nuh = 5.6 + 0.0165 Re0-85 Pr°86 (4-75)

Based on their experimental study, Genin et al. [134] presented the following 
correlation for liquid metals (Pr < 0.03) valid for 190 < Pe < 1800:

^ui,h = NuH + 0.0061 (4-76)

reproducing their experimental results within + 9%. For improved agreement to within
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±6%. they proposed

Nuv ,H = Nuh + 0.006(x/Aj '"Pe1-2, n = (x/P,)012 (4.77)

For the fully developed Nusselt number NuH in Eqs. (4.76) and (4.77), Lyon’s formula 
given in Table 4.5 was recommended, as it was found to be in satisfactory agreement 
with the measurements of [134],

The thermal entrance length Lth H corresponding to Nuv H = 1.05 NuH was found 
to be given by [134]

^th.H 0.04 Pe 
Dh ~ 1 + 0.002 Pe

The predictions of Eq. (4.78) for 190 < Pe < 1800 are in good agreement with Fig. 
4.15.

Siegel and Sparrow [135] took into account the effect of internal heat generation in 
the solution for the thermal entrance @ problem. Knowles and Sparrow [136] studied 
the effect of nonuniform heating at the duct wall on the same problem. Kays and 
Nicoll [137] measured the effect on the local Nusselt numbers of linearly varying wall 
heat flux along the duct length. Hall and Price [138] investigated the effect on the local 
Nusselt numbers of exponentially and sinusoidally varying wall heat fluxes along the 
duct length. Lee [107] explored the effect of axial fluid conduction on the solution of 
the ® problem for Equid metals.

4.2.5 Simultaneously Developing Flow
Deissler [124] theoretically solved the problem of simultaneously developing velocity 
and temperature fields in a smooth circular duct for Pr = 0.73, starting with uniform 
velocity and temperature profiles at the duct inlet. In order to realize the uniform 
velocity profile at the duct inlet, a boundary-layer tripping device such as a ring or strip 
has to be placed just upstream of the duct inlet to induce turbulence. The local Nusselt 
numbers computed by Deissler [124] for the (?) and ® boundary conditions are 
displayed in Fig. 4.16. The two sets of results corresponding to the (?) and ® 
boundary conditions are practically indistinguishable for x/Dh > 8.

The simultaneously developing turbulent flow in a smooth duct is affected apprecia
bly by the type of duct entrance configuration. Boelter et al. [139] and Mills [91] carried 
out extensive experimental investigations to study this effect in a smooth circular duct 
using air as the working fluid. Boelter et al. [139] employed the (?) boundary condition, 
whereas Mills [91] employed the ® boundary condition. A summary of the local 
Nusselt numbers determined by Boelter et al. [139] for Re close to 5 X 104 is presented 
in Fig. 4.17 for five different entrance configurations. The lowest curve in Fig. 4.17 is 
for the case of the thermally developing flow for which the velocity profile is fully 
developed, as indicated by the long calming section preceding the heated duct section. 
All other curves lie substantially above this curve, underscoring the decisive role played 
by the duct entrance configuration in determining the Nusselt number. The peculiar 
behavior of the square-inlet curve for x/Dh < 2 is apparently caused by the flow 
contraction followed by reexpansion in the vicinity of the duct inlet.

In practical applications, the mean Nusselt number Num is more useful than the 
local Nusselt number Nux. Accordingly, the present authors have expressed Nu,„ for



Figure 4.16. Local Nusselt numbers Nux T and Nux H for simultaneously developing turbulent 
flow in a smooth circular duct for Pr = 0.73 [124],

Figure 4 17 Normalized local Nusselt numbers for turbulent flow in the entrance region of a 
smooth circular duct with various entrance configurations for Pr = 0.7 and Re = 5 X 104 [139].
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the five entrance configurations shown in Fig. 4.17 by formulas of the type

Nu„, 
Num

C
(W

(4.79)= 1 +

where Nux stands for the fully developed Nusselt number NuH or NuT. The 
magnitudes of the coefficient C and the exponent n for various entrance configurations 
were determined from the Nu„, H measurements of Mills [91] for air (Pr = 0.7). Table 
4.19 contains a fisting of the resulting formulas. In general, these formulas are valid for 
x/Dh > 3, and their predictions agree with the experimental values of Mills [91] within 
+ 3%. Although the values of C and n were determined for the @ boundary 
condition, the formulas in Table 4.19 may be applied to both the @ and (t) boundary 
conditions, especially for high Re values. Hall and Khan [140] experimentally studied 
the effect of the @ and @ boundary conditions on the local Nusselt numbers for 
simultaneously developing flow in a circular duct for airflow (Pr = 0. 7). Their results 
show that significant differences between NuA T and NuA H are observed for Re < 3 
X104; for higher Re values the differences diminish rapidly.

Molki and Sparrow [141] expressed the mean Nusselt numbers for simultaneously 
developing flow in a circular duct with a square entrance and the (t) boundary 
condition for Pr = 2.5 by the empirical formula given by Eq. (4.79). The values of C 
and n for the range 9000 < Re < 8.8 X 104 determined by them are

C = 23.99Re-0-230, n = 0.815 - 2.08 X 10“6Re (4.80)

The predictions of Eq. (4.79) with the C and n values of Eq. (4.80) agree within ±5% 
with the measurements of Sparrow and Molki [142] for Pr = 2.5 and x/Dh > 2.

In a series of investigations, Sparrow and coworkers [143-147] studied turbulent 
fluid flow and heat transfer in circular ducts with inlet disturbances induced by a 
variety of blockages. In another series of studies, Sparrow and coworkers [148-150] 
investigated the influence of plenum-related losses on turbulent fluid flow and heat 
transfer in circular ducts. The aforementioned investigations employed the oil-lamp
black technique for flow visualization and the naphathalene-sublimation technique to 
determine the heat transfer coefficients.

Chen and Chiou [106] presented the correlations for the simultaneously developing 
flow of liquid metals (Pr < 0.03) in a smooth circular duct with uniform velocity profile 
at the inlet. These correlations, valid for 2 < x/Dh < 35 and Pe > 500, are given by

NuA 
------ = 0.88 +

2.4
Nu oo

1.25

(*A)

Nua 5 1.86 / x/Dh\
------  = 1 +-------  + ------- In ------ - - B
Num x/Dh x/Dh \ 10 /

(4-81)

(4-82)

where for the (f) boundary condition

40 — x/Dh
A =---------—, B = 0.09

190
(4-83)

and for the @ boundary condition,

A = B = 0 (4.84)



TABLE 4.19. Ratio of Mean to Fully Developed Turbulent Flow Nusselt Number 
in the Entrance Region of a Smooth Circular Duct with Various 
Entrance Configurations for Pr = 0.7

Entrance Configuration Formula for Num/Nu00

Adiabatic surface

Nu„, 0.9756
K 1 + (x/Da)°-760

Long calming section

Num _ 2.4254
= 1+ (a/z>„)0676

Square entrance

180^ Round bend

Num 0.9759
Nuoo 1+ (x/Z)A)°-700

90° Round bend

90c Eibow
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Here Nu, stands for the local Nusselt number Nux T or Nu. H, and correspondingly 
Nu^ stands for the fully developed Nusselt number NuT or NuH.

4.3 FLAT DUCT

Turbulent and transition fluid flow and heat transfer characteristics of a flat duct (i.e., 
parallel-plate channel) have been studied quite extensively, as this duct constitutes the 
limiting geometry for the family of rectangular and concentric annular ducts. Several 
results of practical interest pertaining to transition, fully developed, hydrodynamically 
developing, thermally developing, and simultaneously developing flows are presented 
next.

4.3.1 Transition Flow
The lower limit of the critical Reynolds number Recnt for a flat duct has not been 
determined as precisely as that for a circular duct. The reported experimental values of 
Recnt = umDh/v, where the hydraulic diameter Dh = 46, b being the half spacing 
between the flat duct walls, range between 2200 and 3400. Beavers et al. [153], 
experimenting with a variety of entrance configurations, determined Recnt = 3400 for 
almost a flat duct (a*  = 0.0145) with a symmetric rounded entrance as shown in 
Table 4.20, which also includes the values for three other entrance configurations. The 
results in Table 4.20 underscore the importance of the entrance configuration in deter
mining Reurit.

Beavers et al. [153] experimentally studied the effect of the sources of disturbance on 
the lower limit of Recnt and concluded that the stationary sources of disturbance such 
as an undulating wire, a notched rod, or an ensemble of rods situated in the upstream 
plenum chamber connected to the flat duct yield a value of 3400, identical to the one 
for the symmetric rounded entrance. However, a nonstationary source such as a 
flat-bladed stirrer located in the upstream plenum lowered Recrit to 2600. Furthermore, 
Beavers et al. [153] noted that when the flat duct with the symmetric square entrance is 
provided with a source of disturbance (such as a metal strip) situated within the duct 
downstream of the entrance, then Recnt attains its lowest value, 2200. For a completely 
disturbed flow at the inlet, Hanks [154] arrived at a theoretical Recnt value of 2288, in 
agreement with the experimental value of 2285 determined by Davies and White [155] 
for a rectangular duct with a*  = 2 6/2a = 0.006.

Chen and Sparrow [156] theoretically studied the laminar-to-turbulent transition 
phenomenon in the entrance region of a flat duct using the hydrodynamic stability 
theory mentioned in Sec. 4.1.3. They found that Recnt decreases monotonically with 
increasing distance from the duct inlet, approaching a fully developed value of 
1.5384 X 104. This is significantly higher than the experimentally observed value of 
3400, underscoring the limitations of the linear hydrodynamic stability theory. Gupta 
and Garg [157] refined the analysis by Chen and Sparrow [156] and predicted lower 
Recnt values near the duct inlet. However, their prediction of the fully developed Recnl 
value is identical with that of Chen and Sparrow [156],

The following friction factor interpolation formula developed by Hrycak and 
Andrushkiw [47] for the transition flow is recommended in the range 2200 < Re < 4000:

/= -2.56 X 10’3 + 4.085 X 10 6Re - 5.5 X 10'10Re2 (4.85)
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TABLE 4.20. Critical Reynolds Numbers for a Smooth Flat Duct1 
with Various Entrance Configurations [153]

Entrance Configuration Recrit

3100

2700

Asymmetric curved entrance

/////////////////////////////  /

2600

Asymmetric square entrance

tThc duct in question is a rectangular duct with a*  = 2b/2a = 0.0145, 2a 
and 2 b being the sides of the duct with 2u > 2b.

The mean Nusselt number in the thermal entrance region of a flat duct with uniform 
wall temperature at both walls in the range 2300 < Re < 6000 is given by [85]:

Nu„, T = 0.116(Re2/3 - 160)Pr1/3 (4.86)1 +

Patel and Head [26] showed that the shear stress gradient parameter A [Eq. (4.14)] 
for turbulent-to-laminar transition in a flat duct can be expressed as

4/2
(4-87)



FLAT DUCT 4’61

Equation (4.87) in conjunction with the critical value of A = - 0.0094 [26] shows 
that turbulent-to-laminar transition in a flat duct is possible when

Rey/f = 602 (4.88)

f in Eqs (4.87) and (4.88) is for fully developed turbulent flow (see Table 4.2).

4.3.2 Fully Developed Flow

Fluid Flow. Pai [158] developed the following polynomial form of the velocity profile 
for a smooth-walled flat duct with spacing lb between the plates:

(4.89)

um n — s 5 — 1
umax 1 3(n — 1) (n — l)(2n + 1) (4.90)

where y is the transverse distance measured from the duct axis, and 5 and n are 
functions of Re for turbulent flow. With 5 = 1, Eqs. (4.89) and (4.90) reduce to Eq. 
(3.76) which represents the fully developed laminar flow in a flat duct.

From the experimental measurements of Laufer [159] at Re = 4.28 X 104, Pai [158] 
estimated the values of s and n as s = 11.06 and n = 16. The present authors 
developed the following general relationships for 5 and n applicable in the range 
4000 < Re < 105:

5 = 0.004 Re3/4, n = 0.00625 Re3/4 - 2.0625 (4.91)

These expressions are based on the circular duct experimental data of Nikuradse 
[50] For Re = 4.28 X 104, Eq. (4.91) predicts 5 = 11.9 and n = 16.5 which are in 
satisfactory agreement with the values estimated by Pai [158].

Figures 4.18 provides a comparison between the predictions of Eq. (4.89) with 
5 = 11.06 and n = 16 and the measurements of Laufer [159], The agreement is seen to 
be excellent. Also included in Fig. 4.18 for comparison is the laminar flow velocity 
profile determined from Eq. (3.76) or Eq. (4.89) with 5 = 1.

Goldstein [160] developed the following velocity-defect form of the velocity distribu
tion in a smooth-walled flat duct:

——- = -3.39 lnfl - J~^\ + - 0.172
ut L\ V b ) V b

(4-92)

where y is the normal distance measured from the duct axis. The hypotheses of the 
theory upon which Eq. (4.92) is based break down in the middle of the duct. Therefore, 
Eq. (4.92) does not apply at the duct axis.

The predictions of Eq. (4.92) are compared in [160] with the experimental measure
ments of Dbnch [161] and Nikuradse [162], The agreement is found to be quite good 
especially with the former measurements.

Rothfus et al. [163] and Dwyer [164] showed that the fully developed velocity 
distribution in a smooth flat duct can be represented in terms of the wall coordinates 
(u+, y +) by the smooth-duct formulas for a circular duct given in Table 4.1, provided



Figure 4.18. Fully developed turbulent velocity distribution in a smooth flat duct at Re = 
4.28 X 104.

that the wall coordinates are modified as follows

(4.93)

(4.94)

where («„,/wmax)c is the ratio of the mean to the maximum velocity and u, is the 
friction velocity defined by Eq. (4.8). The agreement of the velocity distribution in 
terms of u and y' of Eqs. (4.93) and (4.94) with the experimental measurements 
presented in [163] is excellent.

Based on very accurate experimental measurements, Beavers et al. [165] presented 
the following Fanning friction-factor formula for 5000 < Re < 3 X 104:

0.1268
(4 95)

The f factors of Eq. (4.95) are a maximum of 5% higher than those of the Blasius 
formula [Eq. (4.32)], and this maximum difference occurs at the lower end of the range 
(Re = 5000); the difference is less than 1% atRe = 3 X 104.
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TABLE 4.21. Comparison of Fully Developed Turbulent Flow Friction Factors for a 
Smooth Flat Duct

Rec,
4, 

Eqs. (4.31), 
(4.32)*

f

Eq. (4.32)
Eqs. (4.95), 

(4.96)§ Eq. (4.97)

Sage 
et al.

[167]Rc Eq. (4.97)T

6,960 3,267 0.0098 0.0087 0.0089 0.0087 0.0077
9,110 4,276 0.0096 0.0081 0.0082 0.0085 0.0078

] 7,500 8,215 0.0083 0.0069 0.0068 0.0073 0.0072
36,400 17,086 0.0069 0.0057 0.0063 0.0061 0.0063
53,200 24,972 0.0063 0.0052 0.0057 0.0055 0.0056

in Eq. (4.97) was calculated from Eq. (4.41) as 0.8167, corresponding to n = 7. Also, 
(un,/umax) in Eq. (4.97) was calculated from Eq. (4.90) as 0.8699.
* The first value in the column was calculated from Eq. (4.31), and the rest from Eq. (4.32) using the 
Re values in column 2 of this table.
§ The first three values in this column were calculated from Eq. (4.95), and the rest from Eq. (4.96).

Based on a comprehensive survey of the available data, Dean [166] developed the 
following formula for 1.2 X 104 < Re < 1.2 X 106:

0.0868
Re1/4

(4.96)

The predictions of Eq. (4.96) at Re = 5000 and 3 X 104 are respectively 9.5% and 
14.6% higher than those of Eq. (4.95). In the range 5000 < Re < 3 X 104, use of Eq. 
(4.95) is recommended.

Rothfus and Monrad [167] expressed f for a flat duct in terms of f for a circular 
duct via the relation

(um/umax)c 2Rec 
Re

(4-97)

where the subscript c refers to the circular duct.
The predictions of Eqs. (4.95), (4.96), and (4.97) for the applicable Re ranges are 

compared in Table 4.21 with the experimental measurements of Sage et al. for 
6960 < Re < 5.32 X 104. These latter measurements are reported in [167]. Also in
cluded in Table 4.21 are the predictions of the Blasius formula [Eq. (4.32)]. It is seen 
that for Re > 9110, the predictions of Eqs. (4.95), (4.96), and (4.97) are only in slightly 
better accord with the measurements than the predictions of Eq. (4.32). It may 
therefore be concluded that use of the hydraulic diameter [employed in Eq. (4.32)] is 
reasonably effective in predicting the friction factors for a flat duct from the circular 
duct correlations.

Heat Transer. Kays and Leung [168] presented comprehensive turbulent heat transfer 
results for arbitrarily prescribed heat fluxes at the two duct walls. Based on their 
analysis, the fully developed Nusselt number NuH can be determined from 

Nuh =
Nu

1 - ye*
(4.98)
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where y is the ratio of the prescribed heat fluxes at the two duct walls. The Nusselt 
number Nu and the influence coefficient 0*  entering Eq. (4.98) are presented in Table 
4.22 as functions of Re and Pr. To illustrate use of the information in Table 4.22 in 
conjunction with Eq. (4.98), consider the case of turbulent airflow (Pr = 0.7) at 
Re = 104 in a flat duct with uniform heat fluxes of arbitrary magnitude (-1 < y < 1) 
prescribed at the two walls. From Table 4.22, corresponding to Pr = 0.7 and Re = 104, 
we have Nu = 27.8 and 0*  = 0.22. First, suppose that the ratio of the heat fluxes 
y = 0. Then from Eq. (4.98), NuH = 27.8, which is the Nusselt number for only one 
wall heated and the other insulated. Next, suppose that y = 1. Then Eq. (4.98) yields 
Nuh = 35.6, which is the Nusselt number for uniform heat fluxes of equal magnitudes 
at both walls. Finally, suppose that y = -1. Then according to Eq. (4.98), NuH = 22.9, 
which is the Nusselt number for heat transfer into one wall and out of the other.

In order to verify whether NuH values for y — 1 can be determined from the 
circular duct correlations, the predictions of Eq. (4.98) were compared with those of the 
Gnielinski correlation (Table 4.4) for 0.5 < Pr < 2000 and the Notter-Sleicher correla
tion (Table 4.5) for Pr < 0.1. The comparisons are shown in the following tabulation.

Pr Range

0.5 < Pr < 100
0.5 < Pr < 100

Pr = 1000
0 < Pr < 0.003

Re Range

104 < Re < 3 X 104
3 X 104 < Re < 106

104 < Re < 106
104 < Re < 106

Nuflat duct/NUcir

up to +1.23 
-1.075 to -1.089

up to —1.23 
+ 1.57 to -1.055

From these comparisons, it is concluded that the flat duct NuH can be determined 
within ±9% using the circular duct correlations for 0.5 < Pr < 100 and 3 X 104 < Re 
< 106.

Sparrow and Lin [169] performed a theoretical analysis for the case y = 1 analogous 
to the analysis reported in Ref. 130 for a circular duct. They found that for 0.7 < Pr < 
100 and 104 < Re < 5 X 105, Nuh for a flat duct can be determined quite accurately 
from the circular duct correlation using the hydraulic diameter. This finding is 
consistent with the aforementioned conclusion reached from comparison with the 
Gnielinski correlation.

Similar to the results for a circular duct, it is found that the fully developed 
turbulent Nusselt numbers with the (t) and @ boundary conditions in a flat duct are 
nearly identical for Pr > 0.7 and Re > 105. Kaka<j and Paykog [170] numerically 
analyzed the fully developed and thermally developing problems in a flat duct with the 
(t) and ® boundary conditions. Their results for Pr = 0.73 are available in Ref. 171. 
They show that for both fully developed and thermally developing flows the Nusselt 
numbers with the two boundary conditions are very close.

Certain empirical correlations are developed to calculate NuH for liquid metals 
(Pr < 0.03) flowing turbulently in a smooth flat duct. For y = 0, three such correla- 
tions-presented by Buleev [172], Dwyer [173], and Duchatelle and Vautrey [174], 
respectively—are

Nuh = 5.1 + 0.02 Pe°8 (4.99)

Nuh = 5.6 + 0.01905 Pe08 (4.100)

Nuh = 5.14 + 0.0127 Pe08 (4.101)



TABLE 4.22. Nusselt Numbers and Influence Coefficients for Fully Developed Turbulent Flow in a Smooth Flat Duct with 
Uniform Heat Flux at One Wall and the Other Wall Insulated [168]1

Pr

Re = 104 Re = 3 X 104 Re = 105 Re = 3 X 105 Re = 106

Nu 9* Nu 0* Nu 9* Nu 9* Nu 9*

0.0 5.70 0.428 5.78 0.445 5.80 0.456 5.80 0.460 5.80 0.468
0.001 5.70 0.428 5.78 0.445 5.80 0.456 5.88 0.460 6.23 0.460
0.003 5.70 0.428 5.80 0.445 5.90 0.450 6.32 0 450 8.62 0.422
0.01 5.80 0.428 5.92 0.445 6.70 0.440 9.80 0.407 21.5 0.333
0.03 6.10 0.428 6.90 0.428 11.0 0.390 23.0 0.330 61.2 0.255
0.5 22.5 0.256 47.8 0.222 120 0.193 290 0.174 780 0.157
0.7 27.8 0.220 61.2 0.192 155 0.170 378 0.156 1,030 0.142
1.0 35.0 0.182 76.8 0.162 197 0.148 486 0.138 1,340 0.128
3.0 60.8 0.095 142 0.092 380 0.089 966 0.087 2,700 0.0X4

10.0 101 0.045 214 0.045 680 0.045 1,760 0.045 5,080 0 046
30.0 147 0.021 367 0.022 1,030 0.022 2,720 0.023 8,000 0.024
100.0 210 0.009 514 0.009 1,520 0.010 4,030 0.010 12,000 0.011
1,000.0 390 0.002 997 0.002 2,880 0.002 7,650 0.002 23,000 0.002

+ For laminar flow (Re < 2300), Nu = 5.385 and 0* = 0.346 for all values of Pr.
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For 0 < Pr < 0.04 and 104 < Re < 105, the predictions of Eq. (4.99) are within 
+ 56.3% and -12% of the results in Table 4.22. The predictions of Eq. (4.100) for the 
same Pr and Re ranges are within + 55.7% and — 3.4% of the results in Table 4.22. 
Finally, for the same Pr and Re ranges, the predictions of Eq. (4.101) are within 
+ 24.3% and -11.4% of the results in Table 4.22. Based on this comparison, use of Eq. 
(4.101) is recommended for low-Pr fluids (Pr < 0.03).

Dwyer [173] also presented the following empirical correlation for y = 1:

Nuh = 9.49 + 0.00596 Pe0688 (4.102)

For 0 < Pr < 0.03 and 104 < Re < 105, the predictions of Eq. (4.102) are within 
+ 37% and -11% of the results computed from Eq. (4.98) in conjunction with Table 
4.22.

For 0.01 < Pr < 1 and 10 < Pe < 105, Seban [176] presented the following correla
tion for a flat duct with uniform temperature at one wall and the other wall insulated:

NuT = 5.8 + 0.02 Pe08 (4.103)

Kakay and Price [177] theoretically investigated the fully developed turbulent flow 
in a flat duct with exponentially varying wall heat flux along the duct walls.

The information on the effect of duct wall roughness is quite sparse for a flat duct. 
For the time being, the fully developed fluid flow and heat transfer results for a rough 
circular duct given in Sec. 4.2.2 are recommended for a flat duct, with the use of the 
hydraulic diameter.

4.3.3 Hydrodynamically Developing Flow
The apparent friction factors /app in the hydrodynamic entrance region of a smooth 
flat duct with uniform velocity at the duct inlet have been determined by Deissler [124] 
by an integral method. They are presented in Fig. 4.13 along with the results for a 
circular duct.

Na and Lu [122] also performed an integral analysis of the hydrodynamic entrance 
problem for a smooth flat duct and concluded that the hydrodynamic entrance length 
Lhv, judged by the merging of the hydrodynamic boundary layers growing from the 
two walls commencing at the duct inlet, is equal to 13.75£>^ at Re = 2.21 X 105. The 
experimental measurements by Byrne et al. [178] of the hydrodynamic parameters of 
the momentum and displacement thickness are in excellent accord with the predictions 
of Na and Lu [122],

Shcherbinin and Shklyar [179] have discussed the application of various turbulence 
models to the analysis of the hydrodynamic entrance region for a smooth flat duct. 
Kobata et al. [180] have explored the effect of various types of inlet disturbances on the 
turbulent flow development in a smooth flat duct.

4.3.4 Thermally Developing Flow

The thermally developing turbulent flow in a flat duct with uniform and equal 
temperatures at the two walls (i.e., the © boundary condition) has been solved by 
Sakakibara and Endo [181] and by Shibani and Ozi§ik [175], The solution by 
Sakakibara and Endo [181] is readily expressible in terms of Eqs. (3.106) to (3.109) 
presented for laminar flow.
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TABLE 4.23. Eigenvalues and Constants for the Turbulent Thermal Entrance Length Solution for a Smooth Flat Duct with the 
@ Boundary Condition (Symmetric Heating) [181]+

n

Pr = 0.01 Pr = 0.1 Pr = 0.7 Pr = 10

Gn K Gn Gn

Re = 104

0 1.827497 0.960790 2.346001 1.669267 3.537461 4.056980 5.702075 10.802955
1 5.692406 0.835600 7.608357 1.080093 14.362314 1.125396 46.184547 0.784344
2 9.554691 0.756055 13.120667 0.792200 26.311537 0.772568 85.737071 1.355758
3 13.436811 0.684588 18.696392 0.701383 37.673305 0.977139 114.119186 2.646274
4 17.334806 0.625434 24.201008 0.695717 48.045119 1.224250 145.165458 1.808341
5 21.242563 0.577446 29.630975 0.695640 58.347764 1.108809 178.899218 2.025040
6 25.156713 0.539413 35.043809 0.675657 69.106903 0.931110 209.443743 2.162400
7 29.075272 0.508446 40.460120 0.644934 80.037567 0.868743 241.765985 1.782791
8 32.996097 0.483637 45.879494 0.603474 90.895604 0.903912 274.816338 1.850689
9 36.742346 0.463312 51.328292 0.555912 101.489525 0.939343 306.211937 1.903596

Re = 5 X 104

0 1.912004 1.035521 3.527715 3.827682 6.460615 13.601305 11.409717 43 202670
1 5.932245 0.926977 8.623147 2.204825 26.780945 3.328302 90.445510 2.289603
2 9.947142 0.873805 20.351132 1.564034 49.187683 1.887531 172.661348 1.332138
3 13.971657 0.837950 29.014831 1.418690 70.804246 1.660553 249.391491 1.396456
4 17.995642 0.816434 37.473274 1.367410 91.863581 1.466552 324.535346 1.607540
5 22.013858 0.799183 45.903775 1.236662 113.357272 1.300462 399.658134 2.399156
6 26.030544 0.779091 54.454974 1.116344 134.946554 1.343659 469.116784 4.169534
7 30.051246 0.757480 63.022707 1.073363 156.049031 1.495806 534.173088 5.131340
8 34.075648 0.738703 71.513251 1.049389 176.976859 1.621927 601.154079 4.599756
9 38.099639 0.723218 80.001866 0.996582 197.923670 1.818685 670.834714 3.686269
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TABLE 4.23. Continued

n

Pr = 0.01 Pr = 0.1 Pr = 0.7 Pr = 10

Gn G„

0 1.990190 1.123400 4.375285

Re = 105

5.942880 8.470391 23.372875 15.430524 78.803350
1 6.175360 0.992972 14.788268 3.094337 35.828748 5.381725 122.364719 4.049093
2 10.370246 0.922960 25.973789 2.139305 65.941489 3.061719 233.424860 2.165841
3 14.580808 0.885030 37.073823 1.990705 94.764022 2.683785 337.044890 1.909180
4 18.785272 0.872191 47.840923 1.939199 122.844238 2.261690 439.802209 1.662779
5 22.975895 0.863827 58.610288 1.742381 151.640439 1.880653 545.076992 1.710149
6 27.163225 0.847313 69.550567 1.594006 180.548215 1.790845 647.917288 2.191135
7 31.358092 0.827645 80.450000 1.560083 208.933514 1.767783 748.047835 2.913008
8 35.558171 0.814226 91.233572 1.507466 237.429286 1.689111 847.402202 4.157575
9 39.754790 0.806821 102.073116 1.402132 266.194134 1.718213 942.247363 6.060920

0 2.536235 1.881412 7.714196

Re = 5 X 105

18.589975 16.119222 85.688550 31.116542 323.270700
1 7.998224 1.429666 27.952842 7.240240 72.067816 16.797820 250.662777 15.761505
2 13.631325 1.187660 50.111539 4.781244 133.439628 9.613410 477.682956 8.166020
3 19.299358 1.141790 71.590134 4.655515 191.457385 8.522315 688.203127 6.585335
4 24.879737 1.182594 92.278310 4.424427 248.137230 7.001135 898.347608 4.903591
5 30.393820 1.183590 113.313549 3.886888 306.443721 5.786745 1114.31912 4.081324
6 35.937719 1.133990 134.575334 3.741947 364.439371 5.434265 1326.17457 3.843262
7 41.524240 1.108558 155.454295 3.744517 421.432873 4.988365 1536.58206 3.454989
8 47.093094 1.122997 176.294676 3.509672 479.186024 4.410366 1750.71768 3.223083
9 52.625266 1.128003 197.417361 3.331574 537.246585 4.187492 1963.19010 3.289714

+ The eigenvalues X„ and constants G„ in the table are related to the quantities Xm, C,„, T,^(0) of (181] by X„ = y3/32X,„ and Gn = C„,Y^(0)/2.



TABLE 4.24. Eigenvalues and Constants for Turbulent Thermal Entrance Length Solution for a Smooth Flat Duct with 
Uniform Temperature at One Wall and the Other Wall Insulated [181]+

Pr = 0.01 Pr = 0.1 Pr = 0.7 Pr = 10

n Gn Gn X„ G„ \ Gn

Re = 104

0 0.968458 0.531344 1.308335 1.011678 2.205480 3.107447 3.920320 10.211430
1 2.923466 0.457068 4.010807 0.747596 7.621578 1.171898 24.206960 0.788558
2 4.875412 0.432468 6.747202 0.591440 13.484355 0.606671 45.245995 0.391225
3 6.829239 0.411184 9.512223 0.479151 19.397228 0.419345 65.235148 0.368511
4 8.785355 0.390378 12.283628 0.407800 25.116321 0.362503 81.249605 0.446745
5 10.743336 0.370221 15.043211 0.366680 30.513698 0.365989 94.550641 0.835026
6 12.703336 0.351551 17.783345 0.347442 35.676726 0.428095 108.795040 1.471252
7 14.664262 0.334557 20.506406 0.341876 40.818818 0.529056 124.089740 1.300522
8 16.625948 0.319415 23.219705 0.343990 46.016512 0.620729 140.779890 0.923790
9 18.588112 0.305945 25.930335 0.347894 51.276761 0.636564 157.260790 0.811979

Re = 5 X 10 4

0 1.002373 0.563600 2.002667 2.400574 4.066854 10.605850 7.849310 40.846480
1 3.020234 0.493450 6.192429 1.653793 14.269258 3.713388 47.494718 3.031625
2 5.034749 0.473168 10.476835 1.216118 25.399310 1.808061 89.265897 1.168320
3 7.049987 0.457370 14.817110 0.945009 36.692407 1.180802 131.116409 0.765203
4 9.065908 0.443580 19.152291 0.796458 47.796434 0.944262 171.253626 0.655889
5 11.082104 0.431858 23.445561 0.726463 58.583068 0.860229 209.875710 0.664361
6 13.098193 0.422772 27.692657 0.701659 69.100167 0.820202 247.000912 0.669594
7 15.113976 0.415992 31.911983 0.699416 79.516928 0.795569 283.744238 0.737863
8 17.129453 0.410987 36.127402 0.692082 91.222213 0.735588 320.263129 0.738082

cn 9 19.144783 0.406955 40.357242 0.672078 100.595277 0.689600 356.141418 0.873307
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TABLE 4.24. Continued

n

Pr = 0.01 Pr = 0.1 Pr = 0.7 Pr = 10

G„ G„ Gn Gn

Re = 105

0 1.044401 0.612353 2.519408 3.834979 5.362251 18.448815 10.617552 74.527050
1 3.147239 0.535528 7.858294 2.474531 19.065763 6.117300 64.246380 5.484345
2 5.247462 0.509005 13.369376 1.711920 34.081925 2.912350 120.838350 2.067949
3 7.348892 0.486864 18.961708 1.288604 49.286918 1.900553 177.500805 1.311530
4 9.451019 0.468166 24.528884 1.079291 64.191634 1.530374 231.820199 1.072304
5 11.552982 0.453706 30.015398 0.994397 78.628376 1.403342 284.205477 1.015756
6 13.654203 0.444265 35.423694 0.976925 92.688998 1.334024 334.910466 0.930933
7 15.754567 0.439037 40.792179 0.989007 106.640404 1.274243 385.723599 0.918377
8 17.854306 0.436785 46.162410 0.983390 120.731063 1.144552 437.185848 0.794651
9 19.953801 0.435823 51 561790 0.951585 135.036083 1.043057 489418461 0.844775

Re = 5 X 105

0 1.367311 1.073120 4.615004 12.989110 10.426118 67.935950 21.866644 303.459700
1 4.143042 0.880886 14.891367 6.762215 38.278605 19.884170 131.579975 22.480190
2 6.932025 0.760654 25.804529 3.988501 69.085225 9.024950 247.839127 8.328860
3 9.732016 0.663989 36.882212 2.825447 100.141050 5.895590 363.958658 5.240980
4 12.529569 0.599636 47.787524 2.364957 130.400914 4.808732 474.839098 4.152434
5 15.315741 0.566130 58.392651 2.245881 159.546290 4.500556 581.485289 3.843706
6 18.090866 0.558606 68.763546 2.271366 187.868760 4.274631 684.839671 3.249870
7 20.860663 0.568553 79.064262 3.327053 216.041811 4.073542 788.969623 3.034212
8 23.630019 0.585438 89.431146 2.259735 244.615966 3.572037 894.985377 2.301723
9 26.401115 0.598425 99.917932 2.126929 273.670956 3.262675 1002.99624 2.309664

The eigenvalues X„ and constants G„ are related to the quantities X„,, Cm, 1^(0) of [181] by X„ = -J— and G„ = CmY^(0)/2.



TABLE 4.25. Nusselt Numbers and Influence Coefficients for Thermally Developing 
Turbulent Flow in a Smooth Flat Duct with Uniform Heat Flux at 
One Wall and the Other Wall Insulated [22]

Pr = 0.01
Re = 7104 73,712 495,164

Nu 0* Nu 0* Nu 0*

1 8.33 0.233 23.5 0.076 60.2 0.058
3 6.52 0.378 16.1 0.133 45.1 0.063

10 6.11 0.417 11.3 0.284 32.0 0.131
30 6.10 0.417 9.36 0.399 24.8 0.265

100 6.10 0.417 9.13 0.414 21.9 0.349
300 6.10 0.417 9.13 0.414 21.8 0.353

Pr = 0.1

Re = 7096 73,612 494,576
x/Z), Nu Nu 0* Nu 0*

1 19.7 0.056 75.2 0.018 241 0.005
3 14.3 0.122 56.2 0.016 194 0.023

10 10.7 0.267 42.4 0.115 155 0.062
30 9.44 0.352 34.8 0.233 132 0.147

100 9.34 0.359 32.1 0.290 120 0.219
300 9.34 0.359 32.1 0.291 120 0.219

Pr = 1.0

Re = 7096 73,612 494,576

x/Dn Nu 0* Nu 0* Nu 0*

1 47.3 0.013 234 0.005 940 0.000
3 37.9 0.033 203 0.018 851 0.009

10 31.5 0.089 177 0.049 761 0.030
30 28.0 0.173 160 0.114 697 0.077

100 27.1 0.200 152 0.155 661 0.123

Pr = 10.0
Re = 7096 73,612 494,576

x/Dh Nu 0* Nu 0* Nu 0*

1 102 0.004 602 0.004 2925 0.000
3 88.6 0.012 575 0.008 2829 0.003

10 81.9 0.027 550 0.018 2724 0.010
30 78.6 0.057 532 0.041 2640 0.027

100 77.5 0.070 522 0.057 2590 0.045

4«71
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The eigenfunctions Yn(y/b) for turbulent flow required in Eq. (3.106) are not 
presented in Ref. 181. However, the eigenvalues X„ and the constants G„ for turbulent 
flow required in Eqs. (3.107) to (3.109) are available in Ref. 181. These quantities 
recomputed in the notation of Eqs. (3.107) and (3.109) by the present authors are 
presented in Table 4.23. With the help of this tabular information, Nu v T and Nu„, T 
can be computed from Eqs. (3.107) to (3.109) as functions of Re and Pr. Some 
computed NuY T results are presented in [181] in a graphical form.

Hatton and Quarmby [182] as well as Sakakibara and Endo [181] solved the 
thermally developing turbulent flow problem in a flat duct with one wall at uniform 
temperature and the other insulated. As described in Sec. 3.3.1, this solution is referred 
to as the fundamental solution of the third kind. The local and mean Nusselt numbers 
for this problem can be expressed by the following set of equations:

16 L”=0G,„exp(-fX^,x*)
3 S“=o(GnX1)exP(_fX»-lc*)

(4.104)

Nu„,i7. =
ln0„,

(4.105)

where

* = */ Dh

Re Pr
(4.106)

The eigenvalues X„ and the constants G„ to be used in conjunction with Eqs. (4.104) 
to (4.106) are presented in Table 4.24. Based on the results of Sakakibara and Endo 
[181], the values in Table 4.24 were recomputed by the present authors in the notation 
of Eq. (4.104).

Hatton and Quarmby [182], Hatton et al. [183], and Sakakibara [184] solved the 
problem of thermally developing turbulent flow in a flat duct with uniform heat flux at 
one wall and the other wall insulated. As mentioned in Sec. 3.3.1, this solution is 
referred to as the fundamental solution of the second kind. It can be employed to solve 
for any combination of heat fluxes at the two walls via Eq. (4.98). The Nusselt numbers 
Nu and the influence coefficients 0*  needed for this purpose are presented in Table 
4.25. They were computed by Kays and Crawford [22], based on the analysis of Hatton 
and Quarmby [182].

Faggiani and Gori [185] studied the effect of axial fluid conduction on thermally 
developing flow in a flat duct. For 7060 < Re < 7.362 X 104 and 0.001 < Pr < 0.1, 
they concluded that the influence of the axial fluid conduction is to significantly 
decrease the Nusselt numbers in the thermal entrance region.

4.3.5 Simultaneously Developing Flow
The information on simultaneously developing flow in a flat duct is extremely sparse. 
Duchatelle and Vautrey [174] experimentally determined the local Nusselt numbers 
Nux H for simultaneously developing flow in a flat duct with uniform heat flux at one 
wall and the other wall insulated. Their results for NaK with Pr = 0.02 are shown in 
Fig. 4.19. Included in the figure is a reference line about which the data points are 
evenly scattered. It is seen that the ratio Nu, H/NuH, where NuH is the fully 
developed Nusselt number [given by Eq. (4.101)], attains the value of unity at
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Pe/(x/Dft) = 1/x*

Figure 4.19. Normalized local Nusselt numbers for simultaneously developing turbulent flow in a 
smooth flat duct for Pr = 0.02 with one wall heated and the other wall insulated [174].

Pc/fx/D,,) = 25. Thus, for low-Pr fluids such as NaK, the entrance length Lth for the 
simultaneously developing flow is estimated to be Lth/Dh = Pe/25. For the thermally 
developing but hydrodynamically developed flows with the same fluids, Duchatelle and 
Van trey [174] estimate the entrance length as L,h/Dh = Pe/80.

4.4 RECTANGULAR DUCTS

Turbulent fluid flow and heat transfer characteristics of rectangular ducts are not 
explored as extensively as those of circular ducts. The available information indicates 
that the circular duct results can be applied fairly accurately to rectangular ducts by the 
use of the hydraulic diameter Dh given by

4ab 4b
a + b 1 + a*

(4.107)

where 2a and lb are the lengths of the two sides of a rectangular duct with 2 a > lb, 
and the duct aspect ratio «*  = lb/2a.

Several useful results pertaining to rectangular ducts with arbitrary values of a*  in 
the range 0 < a*  < 1 are presented next. The results corresponding to a*  =0 have 
already been presented in the preceding Sec. 4.3.

4.4.1 Transition Flow
The lower limit of the critical Reynolds number Recnl for rectangular ducts has been 
established by several experimental investigations. The entrance configuration exerts a 
rather marked influence on Recnl. This is brought out in Table 4.26, which contains the 
experimental measurements of various investigations for the two types of entrance 
configurations shown in the table. Included in this table are the results for a*  = 0, i.e., 
a flat duct taken from Table 4.20. The results for a*  = 0.1, 0.2, 0.3333, and 1 are due
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TABLE 4.26. Lower Limits of Critical Reynolds Numbers for Smooth Rectangular Ducts

Smooth entrance Abrupt entrance

a* «*

0 3400 0 3100
0.1 4400 0.01 2920
0.2 7000 0.2 2500
0.3333 6000 0.2555 2400
1.0 4300 0.3425 2360

1.0 2200

to Hartnett et al. [186], The rest of the results for a*  = 0.01, 0.2555, and 0.3425 are 
due to Davies and White [155], Allen and Grunberg [187], and Cornish [188], respec
tively.

It was pointed out by Allen and Grunberg [187] that for a rectangular duct with an 
abrupt entrance, Rent is inversely proportional to the ratio (umax/u»J/ f°r laminar 
flow in a rectangular duct. This ratio can be determined from Eqs. (3.154) to (3.156) if 
one knows the duct aspect ratio a*.  Evaluating the proportionality constant from the 
condition that for laminar flow in a flat duct (a*  = 0) one has umax/um = 1 an(i 
Recrit = 3100 (Table 4.26), the present authors arrived at the formula

4650
^•ecrit = 7 ", 7 (4 108)

for rectangular ducts with 0 < a*  < 1. The values of Recnt calculated from Eq. (4.108) 
for various values of a*  are at the most 8% higher than the experimental measure
ments for an abrupt entrance presented in Table 4.26.

To the knowledge of the authors, there are no reliable formulas for the friction and 
heat transfer coefficients developed specifically for transition flow in rectangular ducts 
of various aspect ratios. However, it has been observed by a number of investigators 
that the circular duct formulas for fully developed turbulent flows apply quite well to 
the rectangular ducts with the use of the hydraulic diameter. Accordingly, the formulas 
in Sec. 4 2.1 may be applied to rectangular ducts with the hydraulic diameter Dh = 
4ab/(a -r b) replacing the circular duct diameter 2a. A better choice for substitution 
in the circular duct formulas appears to be the laminar equivalent diameter Dz given by 
Eq. (4.15) or (4.16). D, provides ±5% agreement with the experimentally determined 
fully developed friction coefficients determined by various investigators for rectangular 
ducts, compared to ± 20% agreement provided by Dh [28],
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4.4.2 Fully Developed Flow

Fluid Flow. The fully developed laminar flow through a straight circular or noncir
cular duct is unidirectional, and its axial velocity depends only on the cross-sectional 
coordinates. The fully developed turbulent flow through a straight circular duct is 
similar to its laminar counterpart. However, the fully developed turbulent flow through 
straight noncircular ducts with sharp corners (e.g., rectangular, triangular, and 
trapezoidal) possesses a nonzero flow normal to the duct axis. In turbulent duct flows, 
it is common practice to refer to the axial flow as the primary flow and the normal flow 
as the secondary flow, as originally suggested by Prandtl [189], The fully developed 
secondary flow, like the fully developed primary flow, depends only on the cross
sectional coordinates of the duct. It is quite small (approximately 1% of the magnitude 
of the axial mean velocity). However, it exerts a measurable effect in distorting the axial 
velocity profile and in increasing the friction coefficients in the ducts by approximately 
10%.

In 1926, Nikuradse [190] was the first investigator to experimentally detect distor
tion of the axial velocity profiles in fully developed turbulent flows in rectangular and 
triangular ducts. Prandtl [189] explained this distortion in terms of the secondary flow. 
During a subsequent experimental investigation in 1930, Nikuradse [191] obtained 
photographic evidence of the existence of secondary flow in noncircular ducts by 
squirting a milky fluid into the flow field and tracing the lines of constant brightness. 
More than 30 years elapsed after Nikuradse’s initial observation of the secondary flow 
before detailed measurements of the turbulence structure were made by Hoagland 
[192], Leutheusser [193], and Brundrett and Baines [194]. Subsequently, Gessner and 
Jones [195] made more extensive measurements of turbulent flow in a rectangular duct 
and from a simplified analysis provided a clear explanation of the existence of the 
secondary flow. They showed that the secondary flow is the result of small differences 
in magnitude of the opposing forces exerted by the Reynolds stresses and static 
pressure gradients in a plane normal to the duct axis.

In recent years, a significant effort has been directed toward the computation of 
turbulent secondary flows in rectangular and triangular ducts. The earlier works in this 
direction were heavily empirical [196-197]. However, the more recent work [198-203] 
has minimized dependence on empiricism by utilizing the Reynolds stress transport 
equations. In two recent papers, Speziale [204-205] has examined the usefulness of 
various turbulence models in predicting the secondary flows in noncircular ducts.

Figure 4.20a shows the curves of constant axial velocity (isovels) exprerimentally 
determined by Nikuradse [190] in a rectangular duct with a*  = ,. It is clear from the 
figure that the velocities at the comers are comparatively large, resulting in bulging of 
the isovels in the comers. As mentioned above, this distortion of the isovels is due to 
the secondary flow, which moves the fluid toward the comer along the bisector of the 
angle and then outward in both directions. A schematic diagram of the secondary flow 
pattern in a rectangular duct is presented in Fig. 4.206.

The fully developed turbulent friction factors for rectangular ducts of various aspect 
ratios can be determined from the circular duct formulas given in Sec. 4.2.2 by 
substituting the hydraulic diameter Dh = 4ab/(a + b) for the circular duct diameter 
D = la. The applicability of the hydraulic diameter to the turbulent flow in a 
rectangular duct («*  = 7) is illustrated in Fig. 4.21. The figure also contains plots of f 
against Re based on Dh for a square and a trapezoidal duct. For turbulent flow 
(Re > 2000), the curves are calculated from the Blasius formula [Eq. (4.32)] derived for 
a circular duct. They agree very well with the experimental measurements of Nikuradse 
[191] and Schiller [206]. For laminar flow (Re < 2000), the experimental data points for
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(a)

(b)

Figure 4.20. Fully developed turbulent velocity distribution at Re = 6 X 105 in a rectangular 
duct with a* = \: (a) primary-flow isovels, (b) secondary-flow pattern [190].

various noncircular ducts do not fall on the laminar flow curve for a circular duct given 
by Eq. (3.14), i.e., f Re = 16. The continuous curves for laminar flow in various ducts 
are represented by / Re = C. The theoretical values of C for square (a*  = 1), 
rectangular (a*  = |) and trapezoidal ducts are 14.25, 17.75, and 14.15, respectively. 
The values of C for the square and rectangular ducts were computed from Eq. (3.157), 
whereas the value for the trapezoidal duct was obtained from Fig. 3.30.

Jones [28] introduced the laminar equivalent diameter Dt for rectangular ducts given 
by Eq. (4.15) or (4.16). Use of D, in place of Dh in the circular duct correlations such 
as the Blasius formula (see Table 4.2) reduces the scatter of the experimental measure
ments from +20% to +5%. Hence, substitution of D, for Dh is recommended for 
calculating f values for rectangular ducts from the circular duct correlations of 
Table 4.2.

The present authors performed calculations for f values using the Techo et al. 
correlation of Table 4.2. On comparing these results with the experimental measure
ments for rectangular ducts (0 < a*  < 1) in the range 5000 < Re < 107, they arrived 
at the following correlation for rectangular ducts:

/= (1.0875 - 0.1125a*)  fc (4.108a)
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Figure 4.21. Friction factors for fully developed laminar, transition, and turbulent flows in 
smooth square, rectangular, and trapezoidal ducts [190].
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where f. is the friction factor for circular duct given by the Techo et al. correlation 
(Table 4.2).

The predictions of Eq. (4.108a) are on par with those determined by substituting Dt 
of Eq. (4.16) in the Techo et al. correlation.

The effect of rib-roughened walls on the fully developed turbulent friction factors in 
rectangular ducts has been explored by Wilkie et al. [207] and Han [208].

Heat Transfer. For most practical computations of the fully developed Nusselt 
numbers in rectangular ducts, the circular duct correlations are sufficiently accurate if 
the hydraulic diameter or the laminar equivalent diameter [Eq. (4.15) or (4.16)] replaces 
the circular duct diameter in the Reynolds and Nusselt numbers.

Recently, there have been several numerical studies to predict the fully developed 
Nusselt numbers in rectangular ducts using a variety of turbulence closure models. 
Patankar and Acharya [209] developed a simple mixing-length turbulence model which 
neglects the secondary flow. The Nusselt number predictions of [209] for a*  = 0.1, 0.2, 
1 are in excellent accord with the measurements of Brundrett and Burroughs [210], The 
predictions of Launder and Ying [211] for a*  = 1 are in slightly better accord with the 
measurements of Ref. 210, as the turbulence model employed by them takes into 
account the secondary flow.

Novotny et al. [212] experimentally determined the Nusselt numbers for turbulent 
flow of air (Pr = 0.7) in rectangular ducts (a*  = 0.1, 0.2, 1) with the two shorter walls 
insulated and the two longer walls subject to uniform heat fluxes of equal magnitude.
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Re
Figure 4.22. Nusselt numbers for fully developed turbulent flow in symmetrically heated 
rectangular ducts with shorter walls insulated for Pr = 0.7 [212].

The boundary condition on the longer walls corresponds to the (m) boundary condi
tion. Their experimental NuH1 results in the range 104 < Re < 105 are bracketed by 
the Nuh analytical predictions of Siegel and Sparrow [108] for a circular duct and 
those of Sparrow and Lin [169] for a flat duct. These two sets of predictions are in close 
agreement among themselves, the flat duct predictions being 5% to 10% higher than the 
circular duct predictions in the range 104 < Re < 105. Figure 4.22 shows the experi
mentally determined NuH1 and their comparison with the predictions of Refs. 108,169. 
An inspection of the experimental data points in Fig. 4.22 for a*  = 0.1, 0.2, 1 and their 
close agreement with the flat duct (a*  =0) predictions shows that in a symmetrically 
heated rectangular duct, (i.e., with the same heat flux at the opposing walls), the NuH1 
are quite insensitive to a*.

Sparrow et al. [213] experimentally investigated the effect of asymmetrical heating 
on Nuh1 for turbulent flow of air (Pr = 0.7) in a rectangular duct (a*  = 0.2), 
employing the same test setup and apparatus as used by Novotny et al. [212], They 
studied two cases of asymmetrical heating: (1) uniform heat flux at one long wall with 
the remaining three walls insulated; (2) uniform heat fluxes of unequal magnitude at 
the two long walls, the flux at one wall being twice that at the other, and the short walls 
insulated. Their experimental data are presented in Fig. 4.23, which also includes the 
data points from Fig. 4.22 for comparison with the case of symmetrical heating.
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Re

Figure 4.23. Nusselt numbers for fully developed turbulent flow in a symmetrically and an 
asymmetrically heated smooth rectangular duct (a* = 0.2) for Pr = 0.7 [213],

Included in Fig. 4.23 is a reference line representing the Gnielinski correlation for 
0.5 < Pr < 2000. This correlation is valid for uniform heating at four walls, i.e., the (m) 
boundary condition.

The notation associated with the data points in Fig. 4.23 needs an explanation. The 
more strongly heated long wall is denoted as wall 1 (heat flux q'H\), and the less 
strongly heated wall is denoted as wall 2 (heat flux q"2). The Nusselt numbers NuH1 at 
the two walls are denoted simply as Nuj and Nu2. For the case of symmetrical heating 
(<?''i = q''2), Nuj = Nu2 = Nu0. The open circles represent the data for symmetrical 
heating, and the triangles represent the data for the heating only at one long wall. For 
the case with q't'-, = q'„\/2, the squares represent the Nusselt number at the more 
strongly heated wall 1, and the crosses represent the Nusselt number at the less-heated 
wall 2. It is noted that all the data points for the asymmetrical heating lie within + 20% 
of those for the symmetrical heating.

On the basis of analytical considerations, Madsen [214] proposed a generalized heat 
transfer coefficient to describe the overall heat transfer characteristics of an asymmetri
cally heated flat duct. The purpose of introducing this coefficient was to render the fully 
developed Nusselt numbers independent of the asymmetry of the heating. For a 
rectangular duct, the redefinition of Madsen’s overall coefficient h given by Sparrow
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ct al. [213] is

— *7^1  F Qwl
= (Twl-Tm\ + {Tw2-Tm^

The overall Nusselt numbers computed via Eq. (4.109) with the use of the hydraulic 
diameter Dh = 4ab/(a -t- b) bring all of the data points of Fig. 4.23 for asymmetrical 
heating into virtual coincidence with the results for symmetrical heating, shown 
separately in Fig. 4.22.

Sparrow and Cur [215] reported extremely accurate experimental values of the fully 
developed Nusselt numbers for a fluid with Pr = 2.5 flowing turbulently in a rectangu
lar duct with a*  = For the case of symmetric heating (i.e., equal and uniform 
temperatures at the long walls with the short walls insulated), their results are 
represented by

NuT = 0.0500 Re076 (4.110)

For the case of asymmetric heating (i.e., one long wall at a uniform temperature and 
the remaining three insulated), their results are represented by

NuT = 0.0464 Re076 (4.111)

It should be emphasized that both Eqs. (4.110) and (4.111) are valid for Pr = 2.5 and 
104 < Re < 4.5 x 104. Also Eqs. (4.110) and (4.111) show that for the same Re, the 
asymmetric heating reduces the Nusselt numbers by about 8% for the specific case.

Figure 4.24. Slug flow Nusselt numbers for rectangular ducts [216],



Re Re

Figure 4.25. Nusselt numbers for fully developed turbulent flow in a smooth square duct with 
the (h4) boundary condition [217].

4-81
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A simple correlation is available for estimating fully developed Nusselt numbers for 
turbulent flow of liquid metals in rectangular ducts with the (?) and (hi) boundary 
conditions. This was derived by Hartnett and Irvine [216] for a uniform velocity 
distribution (slug flow) and a pure molecular-conduction heat transfer mechanism. This 
is a good approximation for Equid metals with Pr -» 0. This correlation is given by

Nu = |Nuslug + 0.015 Pe08 (4.112)

Here Nus)ug is the Nusselt number corresponding to slug flow (Pr = 0) through 
rectangular ducts. It is given in Fig. 4.24 as a function of a*  for rectangular ducts for 
the (?) and (m) boundary conditions.

Deissler and Taylor [217] developed an analytical solution for a square duct 
(a*  = 1) with the (mi) boundary condition, i.e., axially constant wall heat flux and 
finite heat conduction along the wall circumference (see Table 3.1). Their predictions 
are presented in Fig. 4.25 for four values of the wall conduction parameter K = 
ks/k„8„, where k is the fluid conductivity, kK is the thermal conductivity of the wall 
material, s is the distance between the comer and midpoint of the wall, and 5„. is the 
wall thickness. The value K = 0 corresponds to uniform wall temperature along the 
circumference, i.e., the (m) boundary condition (see Table 3.1). Figure 4.25 provides a 
comparison between the prediction of Ref. 217 and the measurements of Lowdermilk 
et al. [218] for the case of Pr = 0.73 and K = 0.025.

Based on the foregoing results for Pr > 0.5, we can draw several useful conclusions 
pertaining to the relative magnitudes of the Nusselt numbers with heating at one, two, 
and four walls vis-a-vis circular duct correlation. First, on comparing the square duct 
(a*  = 1) results of Fig. 4.25, for K = 0, with the predictions of the Gnielinski 
correlation (Table 4.4) for circular duct, it is noted that for 0.73 < Pr < 300 and 
104 < Re < 106, the square duct results are approximately 6% lower than those 
predicted by the Gnielinski correlation. It is already pointed out in Sec. 4.3.2 on flat 
duct (a*  = 0) that for 0.5 < Pr < 100 and 3 X 104 < Re < 106, the Nusselt numbers 
are within + 8% and - 9% of those predicted by the Gnielinski correlation. Thus, it is 
reasonable to conclude that for rectangular ducts (0 < a*  < 1), with heating at four 
walls, the Nusselt numbers can be determined within + 9% by the Gnielinski correla
tion for circular duct in the ranges 0.5 < Pr < 100 and 104 < Re < 106.

Referring to Fig. 4.23, it is seen that with equal heating at two long walls (data 
points with circles), the Nusselt numbers for Pr = 0.7 and 104 < Re < 105 are about 
10% higher than those with equal heating at four walls represented by the Gnielinski 
correlation. As pointed out in Fig. 4.22 and the associated discussion, these results are 
quite insensitive to the variation in a*.  Next, referring to Eq. (4.110), it is found that 
with heating at two long walls for Pr = 2.5 and 104 < Re < 4.5 X 104, the Nusselt 
numbers are 10% lower than those predicted by the Gnielinski correlation. Thus, it is 
concluded that for 0.7 < Pr < 2.5 and 104 < Re < 105, the Nusselt numbers with 
equal heating at two long walls for 0 < a*  < 1 can be determined within ± 10% from 
the circular duct correlation.

For heating at one long wall (data points with triangles in Fig. 4.23), it is seen that 
for Pr = 0.7 and 104 < Re < 10\ the Nusselt numbers are about 20% lower than those 
with equal heating at four walls represented by the Gnielinski correlation. Also, Eq. 
(4.111) shows that with heating at one long wall for Pr = 2.5 and 104 < Re < 4.5 X 104, 
the Nusselt numbers are 19% lower than those predicted by the Gnielinski correlation. 
Thus, it is concluded that for 0.7 < Pr < 2.5 and 104 < Re < 105, the Nusselt num
bers for heating at one long wall can be estimated within + 20% from the circular duct
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correlation. This is true in all probability for 0 < a*  < 1 although the results from 
which this inference is drawn are for a*  = 0.06 and 0.2.

4.4.3 Hydrodynamically Developing Flow
Hartnett et al. [186] studied hydrodynamically developing flow in rectangular ducts 
with a*  = 0.1, 0.2, 1. For a smooth entrance configuration, shown in Table 4.26, they 
found that the flow in the entrance region can remain laminar for Re considerably 
greater than 2200, thereby causing the hydrodynamic entrance length to be consider
ably longer than that for an abrupt entrance configuration, also shown in Table 4.26. 
For Re = 3000, they estimated the hydrodynamic entrance length to be Lhy/Dh = 40 
with an abrupt entrance for a*  = 0.1, 0.2, 1. For Re > 4000, the estimated hydrody
namic entrance length was Lhy/Dh < 20 with an abrupt entrance for a*  = 0.1, 0.2, 1.

The analysis by Hartnett et al. [186] did not take into account the effect of the 
secondary flow on the hydrodynamically developing flow. A number of turbulence 
models of various degrees of sophistication are being developed to take account of the 
secondary flow in rectangular ducts. A succinct review of these models is given in Refs. 
219-220.

The axial variation of the duct centerline velocity and the apparent Fanning friction 
factor in the hydrodynamic entrance region of a square duct are presented in Fig. 4.26. 
These results are predicted by Emery et al. [219]. The fully developed velocity 
distribution for a square duct predicted by them at x/Dh = 96 and Re = 7.5 X 104 is 
in excellent accord with the measurements of Alexopoulos [221] at x/Dh = 94 and 
Rc = 7.7 X 104.

The local peaking of the axial centerline velocity distribution in Fig. 4.26 occurs at 
x/Dh, where the turbulent hydrodynamic boundary layers growing along the four walls 
merge; it is apparently due to some shear-layer interaction. The local peaking and 
leftward shift of the peaks with decrease in Re is observed in other numerical and 
experimental studies mentioned in Ref. 219. The initial decrease in /app in Fig. 4.26 is 
probably also attributable to the shear-layer interaction. This effect is observed 
experimentally in low-a*  rectangular ducts, also mentioned in Ref. 219.

4.4.4 Thermally Developing Flow
No analytical or experimental results for thermally developing turbulent flow in 
rectangular ducts are available. However, the results for a circular duct, given in Sec. 
4.2.4, may be used with the hydraulic diameter Dh or the laminar equivalent diameter 
D, [Eq. (4.15) or (4.16)] replacing the circular duct diameter. While using the circular 
duct results, it should be borne in mind that the secondary flow in rectangular ducts 
leads to the formation of temperature hot spots in the comer region. The circular duct 
results omit the effect of the hot spots and therefore they must be viewed only as an 
approximation. The results presented in Sec. 4.3.4 for thermally developing flow in a 
flat duct (a*  = 0) may also provide a reasonably good estimate for a rectangular duct 
with a*  not too large.

4.4.5 Simultaneously Developing Flow
Sparrow and Cur [215] conducted a careful investigation of the problem of simulta
neously developing flow in a rectangular duct, invoking the analogy of heat and mass 
transfer processes. They reported experimental Nusselt numbers for a fluid with
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Figure 4.26. Turbulent flow centerline velocity and apparent friction factors in the hydrody
namic entrance region of a smooth square duct [219].

Pr = 2.5 flowing turbulently in the entrance region of a rectangular duct with a*  = .
The reported results are for symmetric heating as well as asymmetric heating. For the 
symmetric heating the two long walls were isothermal (i.e., had the @ boundary 
condition) while the two short walls were adiabatic (i.e., insulated). For the asymmetric 
heating, one of the long walls was isothermal while the remaining three walls were 
adiabatic. The inlet configuration employed was the square inlet, i.e., the sharp-edged

x/Dh X/Dh

Figure 4.27. Local Nusselt numbers Nux T for simultaneously developing turbulent flow in a 
smooth rectangular duct with a* = 2b/2a = ~ for Pr = 2.5 [215],
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abrupt entrance shown in Table 4.26. For this entrance configuration, it was found that 
flow separation and reattachment occurred near the duct inlet, and this flow character
istic played a decisive role in shaping the axial distribution of the local heat transfer 
coefficient in the entrance region.

Figure 4.27 shows the variation of the local Nusselt numbers Nux T along the length 
of the duct for four values of Re. The novel features of the Nuz T vs. x/Dh 
distribution shown in Fig. 4.27 are the initial rapid rise of Nux T and attainment of the 
peak. These features had not been reported in the literature before. The information 
available in the literature shows a steady decrease of Nu( T with increasing x/Dh. The 
initial moderate values of the Nux T, the rapid rise, the sharp peak, and the subsequent 
rapid decline correspond to the successive processes of flow separation, reattachment, 
and redevelopment. It is seen from Fig. 4.27 that the differences between the Nux T for 
the cases of symmetric and asymmetric heating are modest (about 7% in the fully 
developed region). The fully developed Nusselt numbers NuT for the two cases are 
given by Eqs. (4.110) and (4.111).

If the thermal entrance Lth is defined as corresponding to Nuv T = 1.05 NuT, then 
for Pr = 2.5 the entrance length for symmetric heating was found to lie in the range 
5 < Llh/Dh < 7, while for asymmetric heating it was found to he in the range 
10 < Lxh/Dh < 13 [215],

Sukomel et al. [222] also reported local Nusselt numbers for simultaneously develop
ing flow in a rectangular duct with a smooth rounded entrance configuration of the 
inlet, shown in Table 4.26.

4.5 TRIANGULAR DUCTS

The triangular duct geometry has been analyzed in considerable detail for fully 
developed turbulent flow in sharp-cornered equilateral, isosceles, and right triangular 
ducts. A limited amount of information is also available for fully developed turbulent 
flow in a scalene triangular duct with two rounded comers. The other types of 
turbulent flows in triangular ducts have not been studied in any appreciable detail. A 
narrow-angle isosceles triangular duct involving hydrodynamically developing, ther
mally developing, and simultaneously developing turbulent flows has been investigated 
to a limited extent. In addition, hydrodynamically developing turbulent flow in a 
scalene triangular duct with two rounded comers and thermally developing flow in a 
sharp-cornered and a rounded-comer equilateral triangular duct has been investigated 
in limited detail.

4.5.1 Transition Flow
The experience with wide-angle triangular ducts with apex angles of the order of 30° is 
similar to that discussed in Sec. 4.4.1. With a square inlet configuration, a lower limit of 
Recrit is consistently observed at about 2000 in triangular ducts. As regards narrow
apex-angle isosceles triangular ducts with apex angles of the order of 10°, there is 
considerable uncertainty about the lower Emit of Recrit. This is attributed to the 
coexistence of laminar and turbulent flows in the comer region even for moderately 
high Re values.

4.5.2 Fully Developed Flow
Fully developed fluid flow and heat transfer results for various triangular ducts are 
presented below under separate captions.
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Figure 4.28. Fully developed turbulent velocity distribution at Re = 2.28 X 105 in an equilateral 
triangular duct: (a) primary-flow isovels, (/>) secondary-flow pattern [191],

lb)

Equilateral Triangular Duct. Nikuradse [191] was the first investigator to deal with 
fully developed turbulent flow in an equilateral triangular duct. The classical velocity 
measurements of Nikuradse [191] are shown in Fig. 4.28u. Nikuradse [191] was also the 
first investigator to confirm the existence of the secondary flow in noncircular ducts 
(see Sec. 4.4.2) through a flow visualization study. The secondary-flow pattern in an 
equilateral triangular duct is portrayed in Fig. 4.28/>. It consists of six counterrotating 
cells bounded by the comer bisectors. For each cell, the circulation is from the 
high-momentum central core region to the comer region via the comer bisector, with 
return along the wall and midwall bisector. Aly et al. [223] measured the maximum 
secondary-flow velocity in an equilateral triangular duct as about 1.5% of the primary
flow mean velocity um in the range 5.3 X 104 < Re < 1.07 X 105. Aly et al. [223] also 
presented the fully developed velocity distribution in an equilateral triangular duct by 
the following wall coordinate (w+, y+) representation:

u+ = 2.47 In y+ + 5.08 (4.113)

This equation is a least-square fit to 44 experimental measurements in the range 
5.3 X 104 < Re < 1.07 X 105. It is quite similar to von Karman’s equation in Table 
4.1 for yr > 30. In the range 30 < y' < 3000, Eq. (4.113) yields results that are within 
±3% of those predicted by von Karman’s equation.

The fully developed friction factors for an equilateral triangular duct were measured 
by Altemani and Sparrow [224] under isothermal as well as nonisothermal conditions 
over the range 4000 < Re < 8 X 104. Their data are well represented by the following 
correlation due to Malak et al. [225]:

0.0425
"r^ (4.114)

In the range 4000 < Re < 8 X 104, the predictions of Eq. (4.114) are 5.4% to 22.8% 
lower than those of the Blasius formula given by Eq. (4.32). The earlier experimental 
measurements by Nikuradse [191] and Schiller [206] for an equilateral triangular duct 
are presented in Fig. 4.29, where they are also compared with the predictions of the
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Figure 4.29. Friction factors for fully developed turbulent flow in smooth right-angled isosceles, 
equilateral, and right-angled scalene triangular ducts [190].

Blasius formula. The experimental measurements by Nikuradse [191] appear to be quite 
closely represented by the Blasius formula, whereas the measurements by Schiller [206] 
appear to be overestimated. In view of these comparisons, Eq. (4.114) is recommended 
for an equilateral triangular duct.

Aly et al. [223] developed a computational model for fully developed turbulent flow 
in an equilateral triangular duct. The / predictions of this model are in almost exact 
agreement with their measurements [223], which in turn are in excellent agreement with 
the predictions of Eq. (4.114).

It is apparent from the foregoing comparisons that the turbulent flow friction 
factors for equilateral triangular duct cannot be accurately determined from the 
circular duct correlation such as the Blasius formula. However, it is found that in the 
circular duct correlation if the hydraulic diameter Dh = 2^3 a, 2a being the length of 
the equilateral duct side, is replaced by the equivalent diameter Dt = i/ja, then the 
friction factors can be determined quite accurately. The equivalent diameter was 
proposed by Ahmed and Brundrett [29]; refer to Sec. 4.1.6 for the physical significance 
of Dt. The calculations performed by the present authors show that for 4000 < Re < 
8 X 104, the substitution of Dt in the Blasius formula yields f values that are within 
+ 3% and —11% of the measurements represented by Eq. (4.114); without the use of 
D,. the Blasius formula yields f values that are up to +22.8% of the experimental 
measurements.

The fully developed Nusselt numbers for air (Pr = 0.7) in an equilateral triangular 
duct with the (m) boundary condition on two walls and the third insulated are 
given by

Nuh1 = 0.019 Re0 781 (4.115)

This correlation is due to Altemani and Sparrow [224], and it represents their experi
mental measurements over the range 4000 < Re < 6 X 104 within ±4%.

For Pr = 0.7 and 4000 < Re < 6 X 104, the predictions of the Gnielinski correla
tion (Table 4.4) using the Blasius formula [Eq. (4.32)] for f are within +18% of those 
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of Eq. (4.115). When Dh in the Blasius formula is replaced by Dt given by Eq. (4.17), 
the Gnielinski correlation predicts NuH1 up to 9% higher than the experimental results.

Deissler and Taylor [217] developed an analytical solution for an equilateral 
triangular duct with the (Tm) boundary condition, i.e., axially constant wall heat flux 
and finite heat conduction along the wall circumference. Their predictions are pre
sented in Fig. 4.30 for four values of the wall conduction parameter K = ks/kw 3„,

Figure 4.30. Nusselt numbers for fully developed turbulent flow in a smooth equilateral 
triangular duct with the (m) boundary condition [217],
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where k is the fluid thermal conductivity, kH is the thermal conductivity of the wall 
material, 5 is the distance between the corner and midpoint of the wall (see inset in 
Fig. 4.30), and is the wall thickness. The value K = 0 corresponds to the (m) 
boundary condition. Figure 4.30 also provides a comparison between the predictions of 
Ref. 217 and the measurements of Lowdermilk et al. [218] for Pr = 0.73 and K = 0.025.

On comparing the equilateral triangular duct Nusselt numbers given in Fig. 4.30 
with the predictions of the Gnielinski correlation (Table 4.4), it is found that for 
0.73 < Pr < 300 and 104 < Re < 106, the results of Fig. 4.30 for K = 0 are approxi
mately 6% lower than those predicted by the Gnielinski correlation using the Techo 
et al. correlation (Table 4.2) for /. When Dh in the Techo et al. correlation is replaced 
by D, given by Eq. (4.17), the agreement improves to 2%.

Isosceles Triangular Ducts. Among the family of triangular ducts, a narrow-angle 
isosceles triangular duct has received the most attention in the literature on turbulent 
fluid flow and heat transfer. A peculiarity of turbulent flow in this duct is that the 
viscous layer in the comer region can become large relative to the distance between 
the adjoining wall surfaces. This leads to the coexistence of laminar and turbulent flows 
in the comer region. As a result, the friction factors and heat transfer coefficients in a 
narrow-angle isosceles triangular duct tend to be low. As Re increases, the apparent 
laminar region decreases, and it is only at very high values of Re that fully turbulent 
behavior is observed.

The possible coexistence of laminar and turbulent flows in a narrow-angle triangular 
duct had been a point of controversy among various investigators. Eckert and Irvine 
[226] were the first to demonstrate such coexistence in the comer region, based on their 
flow measurements and flow visualization experiments in isosceles triangular ducts with 
apex angles 2<j> = 11.5° and 24.8°. Figure 4.31 represents results of the measurements 
performed by Eckert and Irvine [226] in the isosceles triangular duct with 2<j> = 11.5°. 
These results represent the laminar region thickness 8t as a function of the duct height 
c measured from the apex for airflow. 8t was determined visually by the use of smoke 
injection. The figure shows that at Re = 2000 the flow is laminar over 40% of the duct 
height, whereas at Re = 104 it is laminar over 10% of the duct height.

Figure 4.31. Laminar-region thickness in coexisting laminar and turbulent flows in a smooth 
isosceles triangular duct with apex angle 2<f> = 11.5° [226].
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Figure 4.32. Fully developed turbulent velocity distribution in a smooth isosceles triangular duct 
with apex angle 2<J> = 11.5°.

Hanks and coworkers [227-229] criticized the flow visualization techniques em
ployed by Eckert and Irvine [226] and other investigators, casting doubt on the 
coexistence of laminar and turbulent flows in narrow-angle triangular ducts. More 
recent experimental investigations reported by Bandopadhayay and Hinwood [230] and 
Tung and Irvine [231] have confirmed the results of Eckert and Irvine [226] and 
conclusively established the coexistence of laminar and turbulent flows in such ducts. 
Tung and Irvine [231] provide the following empirical relation for the laminar-region 
thickness 8/ for 2<f> = 11.5° (see Fig. 4.31):

(4.116)
8, 41.071
7 = Re7/8 * * * 12

where c is defined in the inset of Fig. 4.31. Equation (4.116) is applicable to waterflow
and shows that 8, -» 0 as Re -» oo.

Tung and Irvine [231] measured the fully developed point velocities for waterflow in 
an isosceles triangular duct with the apex angle 2<J> = 11.5°. Their velocity measure
ments along the midplane through the apex are presented in Fig. 4.32, which also 
includes the measurements made earlier by Eckert and Irvine [226] for airflow in an 
isosceles triangular duct with the same apex angle. Rapley and Gosman [232] numeri-
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cally predicted the fully developed turbulent velocity distribution in an isosceles 
triangular duct with 2</> = 11.5°, in good agreement with the measurements of Eckert 
and Irvine [226],

Usui et al. [233] numerically predicted the secondary-flow pattern in isosceles 
triangular ducts with apex angles 5.7° < 2<f> < 60°. The maximum second ary-flow 
velocity in the range 5000 < Re < 5 X 104 was predicted to be approximately 2% of 
die mean axial velocity um for the primary flow.

Carlson and Irvine [234] measured fully developed friction factors in isosceles 
triangular ducts with 2<p = 4.01°, 7.96°, 12.0°, 22.3°, and 38.8°, covering the laminar, 
transition, and turbulent flow regimes. Their fully developed friction factors in the 
range 5000 < Re < 104 can be represented by

f~ ^5s O il?)

where C is a function of the apex angle 2<£> given by

C = 0.060759 + 0.078631<f> - 0.078093<>2 - 0.202421<£3 + 0.282280<#>4 (4.118)

where <> is in radians. Equation (4.118) was developed by the present authors to fit the 
experimental data of Carlson and Irvine [234] for 4.01° < 6 < 38.8°. Equations (4.117) 
and (4.118) reproduce the aforementioned experimental measurements within + 0.1%. 
In the range 5000 < Re < 104, the predictions of Eqs. (4.117) and (4.118) for 2<f> = 4° 
are 16.7% lower than those of the Blasius formula [Eq. (4.32)] using the hydraulic 
diameter. For 2<> = 38° and the same Re range, the predictions of Eqs. (4.117) and 
(4.118) are 5.2% lower than those of the Blasius formula. This shows that for 
narrow-angle triangular ducts the influence of the coexisting laminar flow is reflected in 
the reduced friction factors calculated from the Blasius formula. Rapley and Gosman 
[232] numerically predicted fully developed friction factors for an isosceles triangular 
duct with 2<f) = 11.5° in good agreement with the measurements of Carlson and Irvine 
[234]. Tung and Irvine [231] reported measurements of the fully developed friction 
factor for waterflow in an isosceles triangular duct with 2<2> = 11.5°. These measure
ments are in good agreement with the airflow measurements reported by Carlson and 
Irvine [234].

It is apparent from the foregoing comparisons that the turbulent flow friction 
factors for narrow apex angle isosceles triangular ducts cannot be accurately de
termined from the circular duct correlation such as the Blasius formula. However, it is 
found that if the hydraulic diameter Dh = 4ab/(a + 'J a2 + b~), 2a and 2b being the 
lengths of the base and height respectively of isosceles triangular ducts, is replaced by 
the so-called generalized length Dg given by Eq. (4.23), then the friction factors can be 
predicted quite accurately. Dg was proposed by Bandopadhayay and Ambrose [32]; 
refer to Sec. 4.1.6 for the physical significance of Dg. The calculations performed by the 
present authors show that for 5000 < Re < 104, the substitution of Dg in the Blasius 
formula yields / values for isosceles triangular ducts with the apex angle 4° < 2<f> < 39° 
that are 0 to 6% higher than the experimental measurements represented by Eq. (4.117). 
Without the use of Z>? in the Blasius formula, the f values are 5 to 17% higher. For 
2</> = 60°, i.e., the equilateral triangular duct, the / values with the use of D„ are 10% 
to 15% higher than the experimental measurements represented by Eq. (4.114). Without 
the use of Dg, the Blasius formula predicts / values that are 10 to 22% higher than the 
measurements represented by Eq. (4.114). For 2<f> = 60°, it was found that the use Dt 
[given by Eq. (4.17)] in the Blasius formula gives f values that are within 2% to 4% of 
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the measurements represented by Eq. (4.114). Finally, for 2<f> = 90°, it was found that 
the direct use of the Blasius formula with Dh yields the f values that are in excellent 
agreement with the experimental data of Nikuradse [191] as shown in Fig. 4.29.

In the view of the foregoing comparisons, the following recommendations are made 
to determine f factors for isosceles triangular ducts. (1) for 0 < 2<J> < 60°, use the 
circular duct correlations from Table 4.2 with Dh replaced by Dg of Eq. (4.23). (2) For 
2<f> = 60°, use the circular duct correlations with Dh replaced by Dt of Eq. (4.17). 
(3) For 2</> = 90°, use the circular duct correlations with the characteristic dimension 
as Dh. (4) For 60° < 2<J> < 90°, the use of circular duct correlations with Dh is 
probably accurate enough. (5) For 2<J> > 90°, no definite recommendation could be 
made at this time due to lack of the experimental data.

Eckert and Irvine [235] measured fully developed Nusselt numbers for air (Pr = 0.7) 
in an isosceles triangular duct (2<f> = 11.5°) with the (m) boundary condition cov
ering the range 4300 < Re < 2.4 X 104. For the heat conduction parameter K = 
kDh/kw 8W = 0.0417, their experimental measurements are correlated by

NuH4 = 0.0325 Re066 (4.119)

Figure 4.33. Nusselt numbers NuH1 for fully developed turbulent flow in a smooth isosceles 
triangular duct with apex angle 2<£ = 11 5° for airflow (Pr = 0.7).
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The wall temperature entering the determination of NuH4 in Eq. (4.119) is the 
circumferentially averaged value.

Kokorev et al. [236] developed an integral solution to the problem of fully devel
oped turbulent flow in an isosceles triangular duct with the (m) boundary condition. 
Their Nusselt number predictions for air (Pr = 0.7) are presented as curve 1 in Fig. 
4.33, which also contains the predictions of Eq. (4.119) as curve 2. The experimental

z/c

Figure 4.34. Variation of the Nusselt number NuH4 for fully developed turbulent waterflow 
along the side of an isosceles triangular duct with apex angle 2<f> = 156.84° and wall conduction 
parameter K = 1.0526 [237]. See the text for Re values for curves 1 through 10.
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measurements of Eckert and Irvine [235] are shown by the solid circles in Fig. 4.33, 
which also contains an additional single point, shown by a solid triangle, that was 
calculated by Eckert and Irvine [235] by the method of Deissler and Taylor [217], 
Finally, the topmost curve, labeled 3, in Fig. 4.33 represents the Gnielinski correlation 
for a circular duct (see Table 4.4). It is apparent that the measured NuH1 values are 
approximately 40% lower than the values calculated from the circular duct correlation 
with the use of the hydraulic diameter. Hence the hydraulic diameter is not suitable for 
calculating the Nusselt numbers in narrow-angle triangular ducts. The method of 
Deissler and Taylor [217], which does not take into account secondary flows and the 
presence of exaggerated laminar sublayers in comer regions, is also not suited for this 
purpose. The predictions of Kokorev et al. [236] are in satisfactory agreement with the 
measurements, being about 8% lower.

Tokarev [237] performed experimental measurements in an isosceles triangular duct 
with apex angle 2<> = 156.84° for waterflow (2.71 < Pr < 2.98), covering the range 
104 < Re < 105. For the (H4) boundary condition with the heat conduction parameter 
X' = ks/kw8w = 2.7815 where 5 = c/1 (see Fig. 4.34), their circumferentially averaged 
Nusselt numbers NuH4 are given by

NuH4 = 0.047 Re064 (4.120)

Tokarev [237] also reported the local Nusselt numbers NuH4(z) expressed as a 
function of the distance z from the vertex of the apex angle 2<f> = 156.84°. Note that z 
is a cross-sectional spanwise coordinate as shown in the inset of Fig. 4.34, which shows 
the local Nusselt numbers NuH4(z) measured by Tokarev [237], The local Nusselt 
numbers are normalized by the circumferentially averaged Nusselt numbers NuH4 
given by Eq. (4.120). The curves labeled 1 through 10 in Fig. 4.34 correspond to 
Re = 1.19 X 104, 1.47 X 104, 2.55 X 104, 3.35 X 104, 4.46 X 104, 5.06 X 104, 6.62 X 
104, 7.01 X 104, 8.10 X 104, and 9.03 X 104, respectively.

The local Nusselt numbers of Fig. 4.34 are correlated by [237]

NuH4( z) = A Re"

where

0.0428 
n = ------------------- r-7 + 0.57

[(z/O+0.3]15

The values of A in Eq. (4.121) are dependent on z/c. A = 0, 0.0136, 0.0228, 0.0332, 
0.0400, 0.0490, 0.0613, 0.0692, 0.0772, and 0.0830, respectively for z/c = 0, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.

The fully developed turbulent flow Nusselt numbers NuH1 for an isosceles triangu
lar duct with liquid metal flow (Pr < 0.03) can be determined from Eq. (4.112). The 
slug flow Nusselt number Nus!ug in this equation is given in Fig. 4.35. For narrow
apex-angle isosceles triangular ducts (2<#> < 30°), Nuslug may be taken from the curve 
for a circular-sector duct given in Fig. 4.35.

Usui et al. [238] employed an electrochemical technique to measure the fully 
developed Nusselt numbers NuT for Pr = 1630 in an isosceles triangular duct with 
apex angle 2<J> = 11.4°, covering the range 104 < Re < 3 X 104. Their Nusselt num
bers NuT, based on the mean wall temperature around the circumference, are pre
sented in Fig. 4.36. These Nusselt numbers are nearly 50% lower than those computed 
from the circular duct correlation due to Gnielinski [94] (given in Table 4.4) with the

(4.121)

(4.122)
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Figure 4.35. Slug flow Nusselt numbers for isosceles triangular and circular-sector ducts [216],

Re

Figure 4.36. Circumferentially averaged experimental Nusselt numbers NuT for fully developed 
turbulent flow in a smooth isosceles triangular duct with apex angle 20 = 11.4° for Pr = 1630 
[238],

use of the hydraulic diameter. Thus once again it is noted that the hydraulic-diameter 
concept breaks down in the case of narrow-apex-angle triangular ducts.

Right-Triangular Ducts. Nikuradse [191] measured fully developed velocity profiles 
in a right-angled isosceles triangular duct. The velocity profiles for this duct are 
presented in Fig. 4.37, which includes the primary-flow isovels and the secondary-flow 
pattern.

The fully developed turbulent friction factors for two right-angled isosceles triangu
lar ducts including right-angled isosceles triangular duct are presented in Fig. 4.29.
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(a)

(b)

Figure 4.37. Fully developed turbulent velocity distribution at Re = 8.1 X 104 in a right-angled 
isosceles triangular duct: (a) primary-flow isovels, (b) secondary-flow pattern [191].

These results are in excellent agreement with the predictions of the Blasius formula [Eq. 
(4.32)], affirming the applicability of the hydraulic-diameter concept to these ducts.

Scalene Triangular Duct with Two Rounded Corners. Obot and Adu-Wusu [239] 
reported measured fully developed Fanning friction factors in a smooth scalene 
triangular duct with two rounded corners, as shown in the inset to Fig. 4.38. The 
measured values are displayed in Fig. 4.38 together with the values for an isosceles 
triangular duct with the apex angle 2</> = 38.8° for comparison purposes. These latter 
values were measured by Carlson and Irvine [234], Figure 4.38 shows that for 
Re < 1700 the scalene triangular duct data are adequately represented by the circular 
duct line f Re = 16 whereas the isosceles triangular duct is not represented by this line. 
This difference appears to be due to the rounded corners of the scalene triangular duct. 
Figure 4.38 shows that for this latter duct transition to turbulent flow occurs over the 
range 1700 < Re < 1900. Beyond Re = 2000, the scalene triangular duct data are 
about 17% lower than the Blasius relation / = 0.079 Re 025 [Eq. (4.32)] predictions.
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Figure 4.38. Friction factors for fully developed turbulent flow in a smooth scalene triangular 
duct with two rounded comers shown in the inset and an isosceles triangular duct with 38.8° apex 
angle [239].

The former data are representable by the relation / = 0.081 Re 0 27. For laminar flow, 
the isosceles triangular duct data are represented by f Re = 13.4, which yields about 
14% lower values than the scalene triangular duct values. For turbulent flow, the 
isosceles triangular duct (2<f> = 38.8°) data are represented by the Blasius formula.

Obot [240] measured fully developed Nusselt numbers for turbulent airflow (Pr = 
0.7) in the scalene triangular duct with two rounded comers shown in the inset of Fig. 
4.38. The experiments employed a square inlet and the (m) boundary condition. The 
measured NuH1 values are presented in Fig. 4.39 for axial locations x/Dh = 55 and 
100, where fully developed conditions prevailed. The correlating relations for peripher
ally local NuH1 at the three duct walls are included. The circumferentially averaged 
NuH1 values for the scalene triangular duct are representable by the second Colburn 
correlation given in Table 4.4.

Obot et al. [241] conducted an experimental investigation of friction in a scalene 
triangular duct having two or three rib-roughened sides and two rounded comers. The 
shape of the duct is the same as shown in the inset of Fig. 4.38. The parametric study 
covered the ranges 0.13 < e/a < 0.298 and 2000 < Re < 3 X 104. The study con
cluded that with three roughened sides, good estimates of friction factors can be 
obtained using the generalized friction relations for a circular duct discussed in Chap. 
17.

4.5.3 Hydrodynamically Developing Flow
Obot and Adu-Wusu [239] measured the turbulent pressure drop and point velocities in 
the hydrodynamic entrance region of a scalene triangular duct with a square inlet for 
airflow. The duct cross section is shown as an inset to Fig. 4.38. The hydrodynamic



Figure 4.39. Peripheral!'’ local Nusselt numbers NuH1 for fully developed turbulent airflow 
(Pr = 0.7) in a smooth scalene triangular duct with two rounded comers [240].
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entrance length for this scalene triangular duct for 5400 < Re < 3.17 X 104 is esti
mated to be Lhy/Dh > 25.

4.5.4 Thermally Developing Flow
Altemani and Sparrow [224] performed experimental measurements in the thermal 
entrance region of an equilateral triangular duct for airflow (Pr = 0.7) with the (m) 
boundary condition on the two walls and the third wall insulated. Their local Nussclt 
numbers Nux H1 and the thermal entrance lengths are presented in Figs. 4.40 and 4.41, 
respectively. The Llh/Dh values in Fig. 4.41 are based on 5% approach to the fully 
developed NuH1.

The flow in the corners of an equilateral triangular duct with rounded comers is not 
as stagnant as that in a sharp-cornered equilateral triangular duct. Consequently, the 
hydraulic-diameter concept works well with the former duct. This means that the

Figure 4.40. Local Nusselt numbers Nu, Hl for thermally developing and hydrodynamically 
developed turbulent airflow (Pr = 0.7) in a smooth equilateral triangular duct [224],
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Figure 4.41. Thermal entrance lengths for thermally developing and hydrodynamically developed 
turbulent airflow (Pr = 0.7) in a smooth equilateral triangular duct [224].

circular duct correlations can be applied with good assurance to an equilateral 
triangular duct with rounded comers.

Campbell and Perkins [242] reported experimental data over the range 6000 < Re 
< 4 X 104 for local friction and heat transfer coefficients with the (m) boundary 
condition on all three walls of an equilateral triangular duct having rounded corners 
with a ratio of the comer radius of curvature to the hydraulic diameter of 0.15. The 
reported results are for hydrodynamically developed flow in the thermal entrance 
region with local wall (7]() to fluid bulk mean (Tm) temperature ratio in the range 
1.1 < Tw/Tm < 2.11. The measured friction factors are correlated by

ISO

-0.40+(x/DA)"067

(4.123)

where /iso is the isothermal friction factor, which can be obtained either from the 
Blasius formula [Eq. (4.32)] or the PKN formula (Table 4.3). The kinematic viscosity v 
entering Re = umDh/v in these calculation needs to be taken at the duct wall 
temperature Tw. Equation (4.123) is valid for 14.5 < x/Dh < 72 and 1.10 < Tw/Tm < 
2.11.

The measured Nusselt numbers of Campbell and Perkins [242] are correlated by

/ T \0'7 
Nuv H1 = 0.021 Re0 8Pr° 4 — $

\ /
(4.124)
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Figure 4.42. Circumferentially averaged local Nusselt numbers Nu( H4 for thermally developing 
and hydrodynamically developed airflow (Pr = 0.7) in a smooth triangular duct with apex angle 
1<$> = 11.5° and wall conduction parameter K = 0.0417 [235].

For 6 < x/Dh < 50, the correction factor C> is given by

(4.125)

and for x/Dh > 50, 0 = 1. Equation (4.124) is valid for 6 < x/Dh < 123 and 1.10 < 
Tw/Tm < 2.11. The fluid properties v, a, and k entering Eq. (4.124) need to be 
evaluated at the fluid bulk mean temperature Tm.

Eckert and Irvine [235] reported circumferentially averaged local Nusselt numbers 
Nux H4 in the thermal entrance region of an isosceles triangular duct with the apex 
angle 2<f) = 11.5° for airflow (Pr = 0.7). These results are presented in Fig. 4.42 for the 
heat conduction parameter K = kDh/kH8H = 0.0417. It is seen that the thermal en
trance length Llh/Dh > 100. This value is at least an order of magnitude higher than 
that obtained for a circular duct. This suggests that the flow development in a 
narrow-angle triangular duct is significantly slower than that in a circular duct.

4.5.5 Simultaneously Developing Flow
Eckert and Irvine [235] reported circumferentially averaged local Nusselt numbers 
Nux H4 for simultaneously developing airflow (Pr = 0.7) in an isosceles triangular duct 
with an apex angle 2<£ = 11.5° and with the heat conduction parameter K = kDh/kJ>w
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= 0.0417 covering the range 4800 < Re < 2.3 X 104. These results are found to be 
nearly identical to those for thermally developing flow shown in Fig. 4.42. It should be 
noted that these values were obtained with a square inlet.

4.6 ADDITIONAL SINGLY CONNECTED DUCTS

The remaining singly connected duct geometries analyzed in the literature are covered 
in this section. The available information for these ducts pertains mainly to the fully 
developed flows.

4.6.1 Elliptical Ducts
Cain and Duffy [243] measured fully developed velocity distributions in two elliptical 
ducts with a*  = 0.5 and 0.6667 covering the range 2 X 104 < Re < 1.3 X 105. The 
measured point velocities for a*  = 0.5 along the major and minor axes are presented in 
Fig. 4.43. The wall coordinates u+ and y+ appearing in this figure are defined in Eqs. 
(4.9) and (4.10), respectively.

The solid fines in Fig. 4.43 represent the u+—y+ correlation of von Karman for a 
circular duct (see Table 4.1). The predictions of the von Karman correlation are within 
+ 4.6% and - 2.2% of the measurements along the major axis, and are within 3% of the 
measurements along the minor axis.

Cain et al. [244] presented velocity-distribution measurements in an elliptical duct 
(a*  = 0.5) at Re = 1.2 X 105. Their measurements, shown in Fig. 4.44, point to the 
existence of the secondary flow in elliptical ducts, as evidenced by distortion of the 
isovels. Based on the shape of the isovels in Fig. 4.44a, the present authors have 
hypothesized the secondary flow pattern in an elliptical duct. This flow pattern, shown

Figure 4.43. Fully developed turbulent velocity distribution along the major and minor axes of a 
smooth elliptical duct with a* = 0.5 (wall-coordinate representation) [244],
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(a)

(b)

Figure 4.44. Fully developed turbulent velocity distribution at Re = 1.2 X 1CF in an elliptical 
duct with a* — 0.5: (a) primary-flow isovels, (h) secondary-flow pattern.

in Fig. 4.446, consists of eight counterrotating cells bounded by the major and minor 
axes. Despite the continuous change of curvature in elliptical geometry, the secondary 
flow appears to be as pronounced as that in sharp-cornered ducts such as rectangular 
(Fig. 4.20) and triangular (Figs. 4.28, 4.37) ones.

Measurements of the fully developed Fanning friction factor in elliptical ducts with 
a*  = 0.316 and 0.415 were reported by Barrow and Roberts [245] for waterflow in the 
range 103 < Re < 3 X 105. Cain and Duffy [243] reported additional measurements 
for elliptical ducts with a*  = 0.5 and 0.6667 in the range 2 X 104 < Re < 1.3 X 10\ 
Based on these two sets of measurements, the present authors developed the following



Figure 4 45. Nusselt numbers Num for fully developed turbulent airflow (Pr = 0.7) in a smooth 
elliptical duct with a* = 0.5 [246].

Figure 4.46. Nusselt numbers NuH1 for fully developed turbulent waterflow (Pr = 6.5) in a 
smooth elliptical duct with a* = 0.3415 [246].
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Fanning friction factor correlation valid for 0.316 < a*  < 1:

= 0.4443 + 2.2168a*  - 2.0431a* 2 + 0.3821a* 3 (4.126)

where / is the friction factor for a circular duct (a*  = 1), given as a function of Re by 
the Blasius formula [Eq. (4.32)].

Equation (4.126) show's that for a*  = 0.6667, 0.5, and 0.415, the f values are 
respectively 13%, 8%, and 5% higher than the fc values. For a*  = 0.316, the f value is 
5% lower than the fc value. These departures from /( are as reported in Refs. 243,245.

Cain et al. [246] measured fully developed Nusselt numbers in elliptical ducts with 
a*  = 0.5 and 0.666 for turbulent airflow (Pr = 0.7) with the (hi) boundary condition, 
covering the range 104 < Re < 2 X 105. Their results for a*  = 0.5 are presented in 
Fig. 4.45. Close agreement is found between these results and the predictions of the two 
circular duct correlations Dittus-Boelter and Gnielinski given in Table 4.4. Similar 
agreement is found for a*  = 0.666. This indicates that in the range 0.5 < a*  < 1 the 
Nusselt numbers can be determined quite accurately from the circular duct correla
tions.

Cain et al. [246] also reported fully developed Nusselt numbers in elliptical ducts 
with a*  = 0.3415 and 0.3750 for turbulent waterflow (Pr = 6.5) with the (m) boundary 
condition in the range 2.5 X 103 < Re < 8 X 104. Their results for a*  = 0.3415 are 
presented in Fig. 4.46. These measurements, as well as those for a*  = 0.3750 for 
Re < 2.5 X 104, are not in accord with the Dittus-Boelter correlation. However, the 
Gnielinski correlation accurately represents the data for the entire Re range. In the 

Figure 4.47. Slug flow Nusselt numbers for elliptical ducts with the (m) boundary condition 
[216].
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range 4000 < Re < 2 X 104, the data of Cain et al. [246] are correlated by

Num = 0.00165 Re1 06 Pr° 4 (4.127)

which was presented earlier by Barrow and Roberts [245] to correlate their data on 
waterflow in an elliptical duct with a*  = 0.284 and 4000 < Re < 2 X 104. Thus Eq. 
(4.127) is the best fit to experimental data for the low aspect ratio (0.28 < a*  < 0.38) 
elliptical ducts for 4000 < Re < 2 X 104 and it aggrees with the Gnielinski correlation 
within — 5%.

Ryadno and Kochubei [247] developed an approximate analytical solution to the 
unsteady convective heat transfer problem for elliptical ducts. Their steady-state results 
for airflow in a circular duct in the range 104 < Re < 5 X 104 are in good agreement 
with the predictions of the Petukhov-Kirillov-Popov and Gnielinski correlations given 
in Table 4.4 with the f value obtained from the Filonenko correlation given in Table 
4.3.

Based on the foregoing comparisons, it is concluded that the Gnielinski correlation 
for circular duct can be confidently employed to determine the fully developed Nusselt 
numbers for elliptical ducts for Pr > 0.5.

The fully developed Nusselt numbers for liquid metals can be computed from Eq. 
(4.112), which requires a knowledge of the slug Nusselt number Nuslug corresponding 
to Pr = 0. For elliptical ducts with the (m) boundary condition, values of Nuslug are 
given in Fig. 4.47, based on the computations by Hartnett and Irvine [216],

4.6.2 Trapezoidal Ducts
The classical fully developed velocity profiles measured by Nikuradse [191] in a 
trapezoidal duct are presented in Fig. 4.48, which also includes the schematic sec
ondary-flow pattern for a trapezoidal duct.

The fully developed Fanning friction factors for the trapezoidal duct of Fig. 4.48a 
are presented in Fig. 4.21. The results in this figure show that the turbulent flow f 
values for the duct in question can be calculated from the Blasius formula [Eq. (4.32)], 
affirming the applicability of the hydraulic-diameter concept to the trapezoidal duct.

Rodet [248] conducted an experimental study to measure the fully developed 
turbulent velocity distribution in a trapezoidal duct with the comer angle = 75°. 
Nakayama et al. [203] developed a numerical solution for the fully developed turbulent 
flow in the trapezoidal duct with the comer angle = 75°. The agreement between the 
predictions of Ref. 203 and the measurements of Ref. 248 is satisfactory. The predicted 
friction factors of Ref. 203 agree with those of the Blasius formula [Eq. (4.32)].

4.6.3 Circular Ducts With Rectangular Indentations
The classical paper of Nikuradse [191] included information on two rather unusual 
ducts: a circular duct with a single rectangular indentation and a circular duct with 
twin rectangular indentations. The velocity distributions in these two ducts are shown 
in Figs. 4.49 and 4.50, respectively. These figures also include the schematic secondary
flow patterns.

The fully developed friction factors for the two ducts are presented in Fig. 4.51, 
which also includes the friction factors for a rectangular duct with a*  = | for 
comparison. The turbulent friction factors for all three ducts can be calculated from the 
Blasius formula [Eq. (4.32)], attesting to the applicability of the hydraulic-diameter 
concept to the ducts in question.
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(b)

Figure 4.48. Fully developed turbulent velocity distribution at Re = 1.19 X ItF in a trapezoidal 
duct: (a) primary-flow isovels, (b) secondary-flow pattern [191].

4.6.4 Ducts Formed by Intersection of Circular Rods with Flat Plates
Gun and Darling [249] measured fully developed Fanning friction factors for waterflow 
in three types of ducts formed by intersection of circular rods with flat plates, shown as 
insets to Fig. 4.52. The experiments, spanning the range 200 < Re < 105, covered 
laminar, transition, and turbulent flows. The lower limits of Recnt for the three types of 
ducts (labeled center, side, and corner sections in Fig. 4.52) are 900, 1000, and 1100, 
respectively.

Figure 4.52 shows that for laminar flow, there is good agreement between the 
measurements and predictions of the theoretical formula f Re = C, where the values 
of C for the three types of ducts are 6.50. 6.50, and 7.06, respectively [249]. For the 
turbulent flow, comparisons are made with the predictions of the Blasius formula [Eq. 
(4.32)]. The measured values are found to be lower than the predictions of the Blasius



14.1 mm

10.7 mm

23 mm
(a)

Figure 4 49. Fully developed turbulent velocity distribution at Re = 1.09 X 105 in a smooth
circular duct with a single rectangular indentation: (a) primary-flow isovels, (b) secondary-flow
pattern [191],
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(a)

(b)

Figure 4.50. Fully developed turbulent velocity distribution at Re = 7.7 X 104 in a smooth
circular duct with twin rectangular indentations: (a) primary-flow isovels, (b) secondary-flow
pattern [191],
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Figure 4.51. Friction factors for fully developed turbulent flow in smooth circular ducts with 
rectangular indentations and in a rectangular duct [191].

formula for all three types of the ducts by about 26%. This indicates that the 
hydraulic-diameter concept does not apply to turbulent flow in these three 
sharp-cornered ducts.

Gun and Darling [249] successfully correlated the fully developed turbulent flow 
friction factors of Fig. 4.52 within +5% of the measurements by the formula

f IC\0AS / Re- 3000 \ 
z = expl.— (4.128)

where f is the turbulent flow friction factor for the circular duct, which can be 
determined from the PKN formula of Table 4.2 or from the Blasius formula [Eq. 
(4.32)]. The values of C (the constant in the laminar flow relation f Re = C) for the 
three types of ducts (labeled center, side, and comer in Fig. 4.52) are 6.50, 6.50, and 
7.06, respectively. The value of Cc is 16 for fully developed laminar flow in a circular 
duct.

Barrow et al. [250] also reported data on the fully developed turbulent friction factor 
for the comer section in Fig. 4.52 over the range 104 < Re < 3 X 104. These measure
ments are in excellent accord with the measurements due to Gun and Darling [249] 
shown in Fig. 4.52.

Mohandes and Knudsen [251] presented fully developed Fanning friction factors f 
for the duct formed from two flat plates and two circular rods as shown in Table 4.27. 
This duct geometry is characterized by the rod diameter d and the spacing 5 between 
the two rod centers. The duct geometry shown as side section in the inset to Fig. 4.52 is 
a special case of the geometry studied by Mohandes and Knudsen [251]; it corresponds 
to s/d = 1.

Using the values of C in the laminar flow relation f Re = C, the fully developed 
turbulent flow Fanning friction factors / for the duct of Table 4.27 can be calculated 
from Eq. (4.128). Here experimentally measured values of C, covering the range
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Figure 4.52. Friction factors for fully developed turbulent flow in a smooth duct formed by 
intersection of flat plates and circular rods.

1 < s/d < 1.64, are provided by Mohandes and Knudsen [251] as presented in Table 
4.27.

For s/d = 1. Table 4.27 shows three values for C, viz., 5.482, 5.186, and 6.526, 
corresponding to d = 12.70, 25.40, and 38.10 mm, respectively. The first two values 
appear low when compared with the value 6.50 measured by Gun and Darling [249] for 
s/d = 1 and d = 48.26 mm. For s/d = 1, the duct shapes for all values of d are 
geometrically similar, and it is expected that the C values will not vary with d. 
Consequently, for this case it is recommended that in Table 4.27 the C values of 5.482 
and 5.186 be ignored in preference to 6.526, which is in close agreement with the value 
provided by Gun and Darling [249],

Barrow et al. [250] measured fully developed Nusselt numbers in the corner section 
shown in Fig. 4.53 for the (m) boundary condition on the curved wall with the two 
straight walls insulated. The experiments were for airflow (Pr = 0.7), covering the range 
2 x 104 < Re < 5 X 104. In addition to the experimental data, the predictions of the 
Dittus-Boel ter (curve 1) and Petukhov-Kirillov-Popov (curves 2, 3) correlations of



4-112 TURBULENT AND TRANSITION FLOW CONVECTIVE HEAT TRANSFER

TABLE 4.27. Experimentally Determined Values of f Re = C for Fully Developed Laminar 
Flow in Smooth Ducts Formed from Circular Rods and Flat Plates [251]

z/zZ/z/zz/z/zz/z/ZZ/ZZ

piiiizzzin v/zlcz

X f 

zj d
1 L

77777777777777777777

Rod Rod Hydraulic
Diameter d. Pitch 5, Diameter Dh,

mm mm s/d mm C

12.70 12.70 1.000 21.20 5.482
12.95 1.020 23.00 5.482
13.21 1.040 24.77 7.515
13.72 1.080 28.23 7.111
14.73 1.160 34.84 7.140
16.76 1.320 46.97 6.636
20.83 1.640 67.61 6.941

25.40 25.40 1.000 42.41 5.186
25.65 1.010 44.21 6.019
25.91 1.020 46.00 7.369
26.42 1.040 49.54 6.857
27.43 1.080 56.46 7.225
29.46 1.160 69.69 6.257

38.10 38.10 1.000 63.61 6.526
38.35 1.0067 65.42 6.746
38.61 1.0133 67.21 7.574
39.12 1.0267 70.78 7.780
40.13 1.0533 77.80 7.870
42.16 1.1067 91.43 6.941
42.77 1.1227 95.42 7.960

Table 4.4 are presented in Fig. 4.53. For curve 2, the friction factor entering the 
Petukhov-Kirillov-Popov correlation was computed from the Filonenko correlation of 
Table 4.2. Following the proposal by Altemani and Sparrow [224], the friction factors 
experimentally determined by Barrow et al. [250] were also employed in predicting the 
Nusselt numbers (curve 3) from the Petukhov-Kirillov-Popov correlation. None of the 
curves shows satisfactory agreement with the measured values. The differences between 
the measured and predicted values are attributable to the possible coexistence of the 
laminar and turbulent flows in the corner regions, as with the narrow-apex-angle 
isosceles triangular duct discussed in Sec. 4.5.2.

4.6.5 Some Unusual Ducts
Table 3.33 in Chap. 3 provides formulas for fully developed laminar friction factors for 
numerous singly connected ducts. All formulas are in the form f Re = C. Knowing the 
value of C for a specific duct from Table 3.33, the friction factor for fully developed



ADDITIONAL SINGLY CONNECTED DUCTS 4« 11 3

Figure 4.53. Nusselt numbers for fully developed turbulent airflow (Pr = 0.7) in a smooth corner 
duct with two flat sides insulated [250]; see the test for curves 1, 2 and 3.

turbulent flow in the duct can be determined from Eq. (4.128). In the absence of 
turbulent friction factor measurements for all duct geometries listed in Table 3.33, it is 
not possible to assert how accurate the calculated friction factors will be for a specific 
duct. However, since Eq. (4.128) correlates within ±5% the measured turbulent flow 
friction factors for the ducts shown in Fig. 4.52 as well as rectangular and concentric 
annular ducts [249], it appears that Eq. (4.128) in conjunction with Table 3.33 may be 
applied with reasonable assurance to calculate fully developed turbulent flow friction 
factors for various noncircular ducts.

In addition to Eq. (4.128), a few more formulas have been proposed in the literature 
to calculate turbulent flow friction factors using laminar flow solutions. Rehme [252] 
derived the following relation for turbulent flow friction factor f for a noncircular 
duct: 

(4.129)

where A and G*  are purely geometrical factors derived from analytical considerations. 
These factors are presented in Ref. 252 as functions of 4C where C = f Re is the 
constant for fully developed laminar flow through the duct in question. Rehme [252] 
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compared the prediction of Eq. (4.129) with the available turbulent friction factors for 
isosceles triangular ducts, eccentric annular ducts, longitudinal flow over rod bundles 
arranged in triangular and square arrays, and three- and four-sided cusped ducts, i.e., 
ducts formed by tangent circular rods. Good agreement, within about +5%, was found 
between the predictions and measurements.

Malak et al. [225] presented an alternative formula for determining the fully 
developed turbulent friction factors for noncircular ducts from a knowledge of fully 
developed laminar friction factors for noncircular ducts. According to [225], the 
turbulent flow friction factor f can be determined from

/*  Rev?
1/ — = 1.7372 InV f K /2

where

3C + 16
64

0.4041 (4.130)

(4.131)

Here C = f Re is the constant for fully developed laminar flow through the duct in 
question.

Malak et al. [225] compared the predictions of Eq. (4.130) with the available 
turbulent flow measurements for longitudinal flow over rod bundles arranged in 
triangular and square arrays and for ducts formed from flat plates and circular rods. 
The turbulent flow friction factors computed by Malak et al. [225] as well as by Rehme 
[252] are within about ± 5% of the measurements.

Knowing the fully developed turbulent friction factor f for a noncircular duct from 
any of the formulas presented above, the fully developed turbulent Nusselt number for 
the same duct may be calculated from the Gnielinski correlation for a circular duct 
given in Table 4.4. This recommendation is based on the results obtained by Altemani 
and Sparrow [224] using experimentally determined turbulent friction factors for an 
unsymmetrically heated triangular duct.

Altemani and Sparrow [224] found that when the experimentally determined friction 
factors for the equilateral triangular duct are substituted in the circular duct Nusselt 
number correlation by Petukhov-Kirillov-Popov, the resulting Nusselt numbers agreed 
quite closely with the experimental values. Use of the friction factors calculated from 
the circular duct correlations (e.g., the P-K-N correlation of Table 4.2), did not give 
satisfactory Nusselt numbers for the equilateral triangular duct. Thus it appears that 
once the duct-specific friction factors for the noncircular ducts are available, circular 
duct correlations for the Nusselt numbers may be successfully employed to determine 
the Nusselt numbers for the noncircular ducts. We recommend the Gnielinski correla
tion, instead of Petukhov-Kirillov-Popov correlation, for the circular duct since it is 
applicable to Re as low as 2300.

4.7 CONCENTRIC ANNULAR DUCTS

Concentric annular ducts are of great technological importance, as they are frequently 
used in a variety of fluid flow and heat transfer devices. These ducts are geometrically 
characterized by the radius ratio r*  = r,/r„, where r, and r„ are the inside and outside 
radii of the two walls forming the concentric annular duct. From an analytical point of 
view, the two limiting cases of a concentric annular duct are a circular duct (r*  = 0) 
and a flat duct (r*  = 1). These two geometries are important in their own right and
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Figure 4.54, Lower limits of critical Reynolds numbers for concentric annular ducts with 
uniform velocity at the inlet [154],

have already been treated at some length in Secs. 4.2 and 4.3. In the present section are 
presented several results of practical interest for concentric annular ducts, mainly with 
intermediate values of the radius ratio (0 < r*  < 1).

4.7.1 Transition Flow
Hanks [154] determined the lower limit of Recrit for concentric annular ducts from a 
theoretical consideration for the case of a uniform flow at the duct inlet. His results, 
presented in Fig. 4.54, are within + 3% of the selected measurements by various 
investigators with air and water as test fluids [154], A striking feature of the curve in 
Fig. 4.54 is that it exhibits a maximum Recnt value of 2462 at r*  = 0.15. The Recnt 
values at r*  = 0 and 1 are 2100 and 2285, respectively. These two values are in 
reasonably good agreement with the widely accepted values of 2300 and 2200 for 
r*  = 0 and 1, respectively.

Walker and Rothfus [253] reported axial velocity measurements for the transition 
flow of water in a smooth concentric annular duct with r*  = 0.331. Walker et al. [254] 
reported extensive measurements of the Fanning friction factor fv at the outer duct 
wall, covering laminar, transition, and turbulent flows in eight smooth concentric 
annuli with r*  = 0, 0.0260, 0.0667, 0.1251, 0.1653, 0.3312, 0.4987, and 1. The f, values 
are reported as a function of the Reynolds number based on 2(rf; - as the 
characteristic dimension, where r„, is the radius of maximum velocity, which is 
assumed to be coincident with the radius of zero shear stress.
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4.7.2 Fully Developed Flow
Fluid Flow. Knudsen and Katz [255] presented the following power-law velocity 
distribution valid for Re > 104 for fully developed turbulent flow in smooth concentric 
annular ducts for 0 < r*  < 1:

u / r — r \®14-
— =  ------  for rm<r<ro (4.132)
u \ r — r14 max \ ’o 'mt

u lr-r-\0M2
  = ------- -  for rz < r < rm (4.133) 
u------- \ r - r-

— = 0.876 (4.134)
"max

The radius of maximum velocity (zero stress), rm, entering Eqs. (4.132) and (4.133) 
can be determined from the following relation presented by Kays and Leung [168]:

= — = r*O-343(i  + ,.*0.657  _ f*)  (4.135)

A noteworthy point about Eq. (4.135) is that the rm values predicted by it are 
independent of Re. This finding is in accord with the rm measurements by Brighton 
and Jones [256], Ivey [257], and Jonsson and Sparrow [258].

The comparisons between the u/umax predictions of Eqs. (4.132) and (4.133) over 
the range 104 < Re < 7 X 104 and the experimental measurements for the isothermal 
as well as nonisothermal flow presented in [255] are quite good.

Bailey [259] developed the following form of the velocity-defect law for fully 
developed turbulent flow in smooth concentric annular ducts:

for rm < r < r0

for 0 < r < rm

(4.136)

(4.137)

The friction velocities w, o and u, , entering Eqs. (4.136) and (4.137) are given by

(4.138)

where t„ and r, are the wall shear stresses due to skin friction at the outer and inner 
walls, respectively. The radius of maximum velocity rm can again be determined from 
Eq. (4.135).

The predictions of Eq. (4.136) and (4.137) have been compared with the experimen
tal measurements for isothermal as well as nonisothermal flow over the range 104 < Re 
< 7 X 104 and are found to be quite good [255],

Knudsen and Katz [255] developed the following velocity distributions in terms of 
the wall coordinates u+ and y+:

< = 3.0 + 2.6492In y+ for rm < r < ro

< = 6.2 + 1.9109 In for r, < r < rm

(4.139)

(4.140)
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where

(4.141)

(4.142)

The friction velocities u, „ and w, , entering Eqs. (4.141) and (4.142) are defined in 
Eq. (4.138).

Comparisons between the predictions of Eq. (4.139) and (4.140) and the experimen
tal measurements for the isothermal as well as nonisothermal flow over the range 
4000 < Re < 7 X 104 show that Eqs. (4.139) and (4.140) are in satisfactory agreement 
with the measurements for y*  > 30 and yf > 40, respectively [255].

Extensive friction-factor data exist for fully developed turbulent flow in smooth 
concentric annular ducts. A critical review of these data is presented by Jones and 
Leung [33]. Based on this review, it is recommended that the fully developed friction 
factor formulas for a smooth circular duct given in Table 4.2 be used for calculating the 
friction factors for concentric annular ducts. In using these formulas, the circular duct 
diameter 2a needs to be replaced by the laminar equivalent diameter for concentric 
annular ducts. This latter diameter is given by Eq. (4.24). Jones and Leung [33] have 
shown that with the use of D, in the circular duct correlations, the calculated results for 
concentric annular ducts agree with the experimental measurements from various 
sources within +5% compared to + 20% agreement with the use of Dh.

The present authors performed calculations for f values using the Techo et al. 
correlation of Table 4.2. On comparing these results with the experimental measure
ments for concentric annular ducts (0 < r*  < 1) in the range 5000 < Re < 107, they 
arrived at the following correlation for concentric annular ducts:

/ = (1 + 0.0925/-*)/  (4.142a)

where / is the friction factor for circular duct given by the Techo et al. correlation 
(Table 4.2).

The predictions of Eq. (4.142a) are on par with those determined by substituting D, 
of Eq. (4.24) in the Techo et al. correlation.

Olson and Sparrow [260] measured fully developed incremental pressure drop 
numbers A'(oo), defined by Eq. (3.4) in Chap. 3, in concentric annuli with r*  = 0, 
0.3125, and 0.5 and three types of inlet configurations shown in Table 4.28. The tests 
covered the range 1.6 X 104 < Re < 7 X 104.

The values of A(oo) in Table 4.28 for the square entrance are seen to be substan
tially larger than those for the rounded entrance without a trip. This suggests that the 
losses due to flow separation that occur with the square entrance are dominant. Also, 
the values of A(oo) for the rounded entrance with a trip are higher than those without 
a trip, suggesting once again that the flow separation induced by the trip enhances the 
entrance-related losses reflected in A(oo). The negative value of A(oo) for r*  = 0.5 
with the rounded entrance indicates that the actual pressure drop in the hydrodynamic 
entrance region is less than the fully developed pressure drop. The reason appears to be 
the absence of a boundary-layer tripping device such as sharp corners or a tripping 
strip.

The laminar flow A(oo) values for r*  = 0 and 0.5, presented on p. 3.93, are 1.25 
and 0.688, respectively. These values with the rounded entrance are substantially higher 
than the corresponding turbulent flow values in Table 4.28 for rounded entrances with
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TABLE 4.28. Turbulent Flow Fully Developed Incremental Pressure Drop Numbers K(x) 
for Concentric Annular Ducts [260]

Rounded entranceSquare entrance Rounded entrance with trip

r* K(°°) K(«>) K(°°)

0 
0.3125
0.5

0.55 0.14 0.08
0.54 — 0.02
0.52 0.23 -0.02

and without trip. Since Ai(oo) is a measure of all the entrance-region-related effects 
sustained by the fluid, it follows that in laminar flow the entrance-region-related effects 
are substantially more dominant than in turbulent flow. The primary reason for this 
dominance is the significantly longer hydrodynamic entrance lengths for laminar flow 
than for turbulent flow.

Heat Transfer. The fully developed Nusselt numbers Nu„ and Nu, at the outer and 
inner surfaces of a smooth concentric annular duct can be determined from the 
following relations for arbitrarily prescribed values of uniform heat fluxes q” and q” 
at the outer and inner surfaces:

where

XT hoDh Nu(J0
U° k l~(q:'/q'')0*

XT hiDh Nu,,
Nu, = ------  = ------ -----------;----

k 1 - (q'o'/q'')0*

q'' = h0(T0-Tm), q'' = hi(Ti-Tm)

(4.143)

(4.144)

(4.145)

T and Tt in Eq. (4.145) denote the duct wall temperatures at the outer and inner 
surfaces. The temperature difference To — 7} is given by

T, - Tt = —
" ' k

J 1 |
q' \ Nu,,- Nu„J (4.146)

The Nusselt numbers Nu„„ and Nu,, as well as the influence coefficients 0*  and 0*  
entering Eqs. (4.143), (4.144), and (4.146) have been determined by Kays and Leung 
[168], They are given in Tables 4.29 to 4.32 for wide ranges of Re and Pr and for 
'■*  = 0.1, 0.2, 0.5, and 0.8. For r*  = 1, the applicable results are given in Table 4.22.



TABLE 4.29. Nusselt Numbers and Influence Coefficients for Fully Developed Turbulent Flow in a Concentric Annular Duct
(r* = 0.10) with Uniform Heat Flux at One Wall and the Other Wall Insulated [168]

119

HEATING FROM OUTER TUBE WITH INNER TUBE INSULATED

Pl-

Re = 104 3 X 104 105 3 X 105 104

Nu„„ e* Nu„„ 9* Nu„„ Nu„0 e* Nuoo

0 6.00 0.077 6.12 0.079 6.32 0.081 6.50 0.084 6.68 0.085
0.001 6.00 0.077 6.12 0.079 6.40 0.082 6.60 0.082 7.20 0.082
0.003 6.00 0.077 6.24 0.081 6.55 0.083 7.34 0.082 10.8 0.071
0.01 6.13 0.076 6.50 0.081 7.80 0.077 12.1 0.067 26.4 0.052
0.03 6.45 0.076 7.95 0.075 13.7 0.065 28.2 0.051 71.8 0.036
0.5 24.8 0.039 53.4 0.032 134 0.028 320 0.025 860 0.022
0.7 29.8 0.032 66.0 0.028 167 0.024 409 0.022 1,100 0.020
1.0 36.5 0.026 81.8 0.023 212 0.021 520 0.019 1.430 0.017
3 61.5 0.013 147 0.013 395 0.012 1,000 0.012 2,830 0.011
10 99.2 0.006 246 0.006 685 0.006 1,780 0.006 5.200 0.006
30 143 0.003 360 0.003 1,030 0.003 2,720 0.003 8,030 0.003
100 205 0.002 525 0.002 1,500 0.002 4,030 0.002 12.100 0.002
1000 378 980 2,850 7,600 23,000

HEATING FROM INNER TUBE WITH OUTER TUBE INSULATED
Re = 104 3 X 10 4 105 3 X 105 106

Pr Nu„ 0,* Nu„ e* Nu„ 0* Nu„ 8* Nu„ 0*

0 11.5 1.475 11.5 1.502 11.5 1.500 11.5 1.460 11.6 1.477
0.001 11.5 1.475 11.5 1.502 11.5 1.480 11.7 1.462 12.3 1.410
0.003 11.5 1.475 11.5 1.475 11.7 1.473 12.6 1.391 17.0 1.124
0.01 11.8 1.482 11.8 1.442 13.5 1.323 19.4 1.090 39.0 0.760
0.03 12.5 1.472 14.1 1.330 21.8 1.027 42.0 0.760 103 0.526
0.5 40.8 0.632 81.0 0.486 191 0.394 443 0.339 1,160 0.294
0.7 48.5 0.512 98.0 0.407 235 0.338 550 0.292 1,510 0.269
1.0 58.5 0.412 120 0.338 292 0.286 700 0.256 1,910 0.232
3 93.5 0.202 206 0.175 535 0.162 1,300 0.152 3,720 0.148
10 140 0.089 328 0.081 890 0.078 2,300 0.078 6,700 0.077
30 195 0.041 478 0.039 1,320 0.038 3,470 0.038 10,300 0.040
100 272 0.017 673 0.015 1,910 0.015 5,030 0.016 15,200 0.018
1000 486 0.004 1,240 0.003 3,600 0.003 9,600 0.004 28,700 0.004



TABLE 4.30. Nusselt Numbers and Influence Coefficients for Fully Developed Turbulent Flow in a Concentric Annular
Duct (r* = 0.20) with Uniform Heat Flux at One Wall and the Other Wall Insulated [168]4-120

HEATING FROM OUTER TUBE WITH INNER TUBE INSULATED

Pr

Re = 104 3 X 104 105 3 X 105 106

Nu„„ Nu„ 9* Nu„o e; Nuoo 9* Nu„o 9*

0 5.83 0.140 5.92 0.145 6.10 0.151 6.16 0.152 6.35 0.157
0.001 5.83 0.140 5.92 0.144 6.10 0.151 6.30 0.154 6.92 0.153
0.003 5.83 0.140 6.00 0.146 6.22 0.150 6.90 0.150 10.2 0.136
0.01 5.95 0.140 6.20 0.146 7.40 0.144 11.4 0.131 24.6 0.102
0.03 6.22 0.140 7.55 0.140 12.7 0.125 26.3 0.098 80.0 0.074
0.5 22.5 0.071 51.5 0.064 130 0.055 310 0.049 823 0.044
0.7 29.4 0.063 64.3 0.055 165 0.049 397 0.044 1,070 0.040
1.0 35.5 0.051 80.0 0.046 206 0.042 504 0.039 1,390 0.035
3 60.0 0.026 145 0.026 390 0.024 980 0.024 2,760 0.023
10 98.0 0.013 243 0.013 680 0.012 1,750 0.012 4,980 0.012
30 142 0.004 360 0.006 1,030 0.006 2,700 0.006 7,850 0.006
100 205 0.003 520 0.003 1.500 0.003 4,000 0.003 12,000 0.003
1,000 380 0.001 980 0.001 2,830 0.001 7,500 0.001 22,500 0.001

HEATING FROM INNER TUBE WITH OUTER TUBE INSULATED

Re = 104 3 X 10 4 105 3 X 10! 106

Pr Nu„ Nu„ 9* Nu„ 9* Nu,7 *,* Nil,,- 9*

0 8.40 1.009 8.30 1.028 8.30 1.020 8.30 1.038 8.30 1.020
0.001 8.40 1.009 8.40 1.040 8.30 1.020 8.40 1.014 8.90 0.976
0.003 8.40 1.009 8 40 1.027 8.50 1.025 9.05 0.980 125 0.834
0.01 8.50 1.000 8.60 1.018 9.70 0.944 14.0 0.796 33.6 0.748
0.03 9.00 1.012 10.1 0.943 15.8 0.771 31.7 0.600 81.0 0.374
0.5 31 2 0.520 64.0 0.398 157 0.333 370 0.295 980 0.262
0.7 38.6 0.412 79.8 0.338 196 0.286 473 0.260 1,270 0.235
1.0 46.8 0.339 99.0 0.284 247 0.248 600 0.229 1,640 0.209
3 77.4 0.172 175 0.151 465 0143 1,150 0.137 3,250 0135
10 120 0.120 290 0.074 800 0.072 2,050 0.073 o,000 0.077
30 172 0.036 428 0.034 1,210 0.035 3,150 0.036 9,300 0.038
100 243 0.014 617 0.014 1,760 0.015 4,630 0.016 13,800 0.016
1.000 448 0.004 1,400 0.002 3,280 0.002 8,800 0.004 26,000 0.003



TABLE 4,31. Nusselt Numbers and Influence Coefficients for Fully Developed Turbulent Flow in a Concentric Annular Duct (r* = 0.50) 
with Uniform Heat Flux at One Wall and the Other Wall Insulated [168]

HEATING FROM OUTER TUBE WITH INNER TUBE INSULATED

Pr

Re = 104 3 X 104 105 3 x 105 106
Nuo„ e Nu0„ V Nuoo 0* o* Nuoo

0 5.66 0.281 5.78 0.294 5.80 0.296 5.83 0.302 5.95 0.310
0.001 5.66 0.281 5.78 0.294 5.80 0.296 5.92 0.302 6.40 0.304
0.003 5.66 0.281 5.78 0.294 5.85 0.294 6.45 0.301 9.00 0.278
0.01 5.73 0.281 5.88 0.289 6.80 0.289 10 3 0.264 22.6 0.217
0.03 6.03 0.279 7.05 0.284 11.6 0258 24 4 0.214 64.0 0.163
0.5 22.6 0.162 49.8 0.142 125 0.123 298 0.111 795 0.098
0.7 28.3 0.137 62.0 0.119 158 0.107 380 0.097 1,040 0.090
1.0 34.8 0.111 78.0 0.101 200 0.092 490 0.085 1,340 0.078
3 60.5 0.059 144 0.058 384 0.055 960 0.054 2,730 0.052

10 100 0.028 246 0.028 680 0.028 1,750 0.028 5,030 0.028
30 143 0.013 365 0.013 1,030 0.014 2,700 0.014 8,000 0.015

100 207 0.006 530 0.006 1,500 0.006 4,000 0.006 12.000 0.006
1,000 387 0.001 990 0.001 2,830 0.001 7,600 0.001 23,000 0.001

HEATING FROM INNER TUBE WITH OUTER TUBE INSULATED
Re = 104 3 X 104 105 3 X 105 106

Pr Nu/(. e* Nu,-,- 0* NU;, Of Nu,.; e* Nu,.,. e*
0 6.28 0.620 6.30 0.632 6.30 0.651 6.30 0.659 6.30 0.654
0.001 6.28 0.620 6.30 0.632 6.30 0.651 6.40 0.659 6.75 0.644
0.003 6.28 0.620 6.30 0.632 6.40 0.656 6.85 0.637 9.40 0.585
0.01 6.37 0.622 6.45 0.636 7.30 0.623 10.8 0.540 23.2 0.427
0.03 6.75 0.627 7.53 0.598 12.0 0.533 24.8 0.430 65.5 0.333
0.5 24.6 0.343 52.0 0.292 130 0.253 310 0.229 835 0.208
0.7 30.9 0.300 66.0 0.258 166 0.225 400 0.206 1,080 0.185
1.0 38.2 0.247 83.5 0.218 212 0.208 520 0.183 1,420 0.170
3 66.8 0.129 152 0.121 402 0.115 1,010 0.114 2,870 0.111

10 106 0.059 260 0.059 715 0.059 1,850 0.059 5,400 0.061
ro 30 153 0.028 386 0.027 1,080 0.028 2,850 0.031 8,400 0.032
—X 100 220 0.006 558 0.006 1,600 0.006 4,250 0.007 12,600 0.007

1,000 408 0.002 1,040 0.002 3,000 0.002 8,000 0.002 24.000 0.002



TABLE 4.32 Nusselt Numbers and Influence Coefficients for Fully Developed Turbulent Flow in a Concentric Annular
Duct (r* = 0.80) with Uniform Heat Flux at One Wall and the Other Wall Insulated [168]4’122

HEATING FROM OUTER TUBE WITH INNER TUBE INSULATED

Pr

Re = 104 3 X 104 105 3 X 105 106

Nuoo *,* Nuoo e Nuoo Nuoo 6* Nuoo e:
0 5.65 0.379 5.70 0.386 5.75 0.398 5.80 0.407 5.85 0.409
0.001 5.65 0.379 5.70 0.386 5.75 0.398 5.88 0.406 6.25 0.407
0.003 5.65 0.379 5.70 0.386 5.84 0.397 6.35 0.407 8.80 0.374
0.01 5.75 0.381 5.85 0.386 6.72 0.390 9.95 0.361 21.0 0.286
0.03 6.10 0.388 6.90 0.380 11.1 0.339 23.2 0.290 62.0 0.216
0.5 22.4 0.225 48.0 0.191 121 0169 292 0.153 790 0.136
0.7 28.0 0.192 61.0 0.166 156 0.150 378 0.136 1,020 0.122
1.0 34.8 0.159 76.5 0.141 197 0.129 483 0.120 1,330 0.111
3 61.3 0.083 142 0.079 382 0.078 960 0.076 2,730 0.073
10 100 0.039 243 0.039 670 0.039 1,740 0.040 5,050 0.040
30 146 0.019 365 0.019 1,040 0.020 2,720 0.021 8,000 0.022
100 209 0.008 533 0.008 1,500 0.009 4,000 0.009 12,000 0.010
1.000 385 0.002 1,000 0.002 2,870 0.002 7,720 0.002 23,000 0.002

HEATING FROM INNER TUBE WITH OUTER TUBE INSULATED

Re = 104 3 x 104 105 3 X 105 106

Pr Nu,, f* Nu, «,* Nu,, e* Nu,,- 8g* Nu,, 8*

0 5.87 0.489 5.90 0.505 5.92 0.515 5.95 0.525 5.97 0.528
0.001 5.87 0.489 5.90 0.505 5.92 0.515 6.00 0.518 6.33 0.516
0.003 5.87 0.489 5.90 0.505 6.03 0.485 6.40 0.504 8.80 0.468
0.01 5.95 0.485 6.07 0.506 6.80 0.493 10.0 0.452 21.7 0.382
0.03 6.20 0.478 7.05 0.485 11.4 0.445 23.0 0.357 61.0 0.276
0.5 22.9 0.268 49.5 0.250 123 0.214 296 0.193 800 0.174
0.7 28.5 0.244 62.3 0.212 157 0.186 384 0.172 1,050 0.160
1.0 35.5 0.200 78.3 0.181 202 0.166 492 0.154 1,350 0.140
3 63.0 0.108 145 0.102 386 0.097 973 0.096 2,750 0.093
10 102 0.051 248 0.051 693 0.052 1,790 0.051 5,150 0.051
30 147 0.027 370 0.027 1,050 0.028 2,750 0.029 8,100 0.030
100 215 0.010 540 0.010 1,540 0.010 4,050 0.011 12,100 0.012
1,000 393 0.002 1,000 0.002 2,890 0.002 7,700 0.002 23,000 0.002
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Re

for fully developed turbulent flow in a smoothFigure 4.55. Theoretical Nusselt numbers Nuoo 
concentric annular duct with r* =0.5 [168],

In using Eqs. (4.143), (4.144), and (4.146) for any combination of the heat fluxes q” 
and 7,", the following sign convention should be used: the heat flux is positive 
whenever there is heat transfer to the fluid and negative whenever there is heat transfer 
from the fluid. Thus, for example, when the heat is supplied to the fluid at the inner 
wall and removed at the outer wall, q” is positive and q" is negative. When the heat is 
supplied to the fluid at the inner as well as the outer wall, both q” and q" are positive.

It is apparent from Eq. (4.143) that Nuo = Nuoo when q-' = 0. That means Nuoo 
represents the Nusselt number at the outer wall when the outer wall alone is heated 
with the inner wall insulated. A similar interpretation applies to Nu„ of Eq. (4.144). 
The theoretical Nusselt numbers Nu„„ and Nu„ determined by Kays and Leung [168] 
are presented in Figs. 4.55 and 4.56 as functions of Re for a single value of r*  = 0.5 
and a wide range of Pr. In Fig. 4.57, on the other hand, NuO0 and Nu;, are presented 
as functions of r*  and Re for a single value of Pr = 0.7. The interplay among Re, Pr, 
and r*  in shaping the Nuoo and Nu„- values is easy to discern from Figs. 4.55 to 4.57.
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Figure 4.56. Theoretical Nusselt numbers Nu„ for fully developed turbulent flow in a smooth 
concentric annular duct with r* = 0.5 [168].

As described in Sec. 3.3.1. of Chap. 3, the solutions presented in Tables 4.29 to 4.32 
are the fundamental solutions of the second kind. In accordance with the notation 
adopted in Sec. 3.8.1, Nuoo, Nu„, 0*,  and 0*  should be denoted as Nu',2], Nu(,2), 
0* (2>, and 0* {-} to emphasize the fact that these values pertain to the fundamental 
solution of the second kind. However, the superscript (2) is dropped throughout Sec. 
4.7, as no information is presented relating to the remaining three fundamental 
solutions. The fundamental solutions of the first, third, and fourth kinds for turbulent 
flow are not reported in the literature. Two additional fundamental solutions of the 
second kind have been presented by Barrow [261] and Wilson and Medwell [262]. 
However, the solution by Kays and Leung [168] presented here is by far the most 
comprehensive.

Nusselt Numbers for Gases and Liquids, Pr > 0.5. Because of the possibilities of 
applying different heat fluxes at the two walls of concentric annuli with r*  > 0, the
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Figure 4.57. Theoretical Nusselt numbers Nu„„ and Nu,, for fully developed turbulent flow in 
smooth concentric annular ducts for Pr = 0.7 [168].

Nusselt numbers Nu„ and Nu, for these ducts cannot be determined from the circular 
duct correlations with a high level of accuracy. In order to ascertain how closely Nu„ 
and Nu, compare with the circular duct Nusselt number Nu(. calculated from the 
Gnielinski correlation, the present authors performed detailed calculations and ob
tained the ratios Nu„/Nu, and Nu,/Nu, with the aid of Tables 4.22 and 4.29 to 4.32 
in conjunction with Eqs. (4.143) and (4.144). The calculations covered 0.5 < Pr < 100, 
104 < Re < 106, 0 < r*  < 1, and — 1 < q''/q'o' < 1. In all calculations, the hydraulic 
diameter Dh based on the wetted perimeter rather than the heated perimeter was 
employed in the definitions of the Nusselt and Reynolds numbers. Some useful results 
of the calculations are summarized below.

Heating at Outer Wall with Inner Wall Adiabatic

Nuo = Nuoo, Nu, = 0 

0.87 < Nu^/Nu,. < 1.13
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Heating at Inner Wall with Outer Wall Adiabatic

Nu„ = 0, Nu, = Nu,-,-

0.90 < Nu,-/Nuc < 1.66

Equal Heating at Two Walls (q" / q'o’ = 1)

0.90 < Nuo/Nuc < 1.23

0.91 < Nu,-/Nu(. < 4.52

Heating at One Wall and Equal Cooling at Other Wall (q" / q” = - 1)

0.68 < Nu„/Nut. < 1.10

0.68 < Nu,-/Nuc < 1.43

Unequal Heating at Two Walls

0.90 < Nu0/Nuc. < 1.14 for q''/q'o' = 0.25

0.90 < Nuo/Nuc < 1.15 for q"/q" = 0.50

0.90 < Nuo/Nu(. < 1.17 for q'^/q” = 0.75

Nu,/Nu(. values for q"/q" = 0.25, 0.5, and 0.75 were found to span much wider 
range including negative values which occur when (<?''/q”)0*  > 1 [see Eq. (4.144)].

Heating at One Wall and Unequal Cooling at Other Wall

0.79 < Nuo/Nu,. < 1.11 for q''/q'o' = -0.25

0.75 < Nu0/Nu,. < 1.10 for q''/q" = -0.50

0.73 < Nu„/Nu, < 1.10 for q','/q" = -0.75

0.41 < Nu,/Nu(. < 1.26 for q”/q" = -0.25

0.58 < Nu,/Nuc < 1.35 for q"/q" = -0.50

0.64 < Nu,/Nuc < 1.40 for q"/q” = -0.75

It is apparent from the foregoing results that Nuo and Nu, for r*  > 0 cannot be 
determined accurately for different q''/q’’ using the circular duct correlation. This 
being the case, recourse has to be taken to Eq. (4.143) and (4.144) to calculate Nu„ and 
Nu, for q-'/q” of interest.

Nusselt Numbers for Liquid Metals, Pr < 0.1. Rensen [263] measured fully devel
oped Nusselt numbers in a concentric annulus (r*  = 0.5409) with the inner wall
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Figure 4.58. Slug flow Nusselt numbers for smooth concentric annular ducts with the © and (h?) 
boundary conditions [216],

subjected to a uniform heat flux and the outer wall insulated. The experiments with 
liquid sodium as the test fluid covered the ranges 0.0047 < Pr < 0.0059 and 6000 < Re 
< 6 X 104. Under these conditions, Rensen [263] correlated his fully developed Nus
selt numbers at the inner wall within ±5% by

Nu,-, = 5.75 + 0.022 Pe08 (4.147)

Hartnett and Irvine [216] presented an analytic solution for liquid metals with 
Pr -> 0 as given by Eq. (4.112). It requires a knowledge of the slug Nusselt numbers, 
which for the (t) and (ffi) boundary conditions are given in Fig. 4.58. For the 
fundamental solution of the second kind, i.e., with one wall subject to uniform heat flux 
and the other wall insulated, the slug Nusselt numbers are given in Fig. 4.59.

The prediction of Eq. (4.112) for r*  = 0.5409 in conjunction with Fig. 4.59 for the 
case of the inner wall heated and the outer wall insulated are 32% lower than those of 
Eq. (4.147). This latter equation is valid in the range 28 < Pe < 354.
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Figure 4.59. Slug flow Nusselt numbers for smooth concentric annular ducts for the fundamental 
solution of the second kind [216],

A comparison between the predictions of Eq. (4.112) for r*  = 1 in conjunction with 
Fig. 4.59 and Eq. (4.101), which is valid for r*  = 1, shows that in the range 
0 < Pe < 105, the predictions of Eq. (4.112) are within + 17% of those of Eq. (4.101). 
Additional comparisons of the predictions of Eq. (4.112) for r*  = 0 with the (t) and (h) 
boundary conditions are presented in Table 4.5 on p. 4.36.

Dwyer [102] developed semiempirical equations for liquid metal flow (Pr < 0.03) in 
concentric annuli (0 < r*  < 1) with one wall subjected to uniform heat flux and the 
other wall insulated. For the case of the outer wall heated, the semiempirical equations 
are

Nuoo =/40 + Bo(^Pe)"° (4.148)

where

0.05
A„ = 5.26 + — (4.149)

0.003154 O.OOO1333
Br = 0.01848 + ——--------------(4.150)

0.01333 O.OOO833
—~ + -T7T- (4-151)

/? = ] -
1.82

Pf( em/’')ml\ wz /mai
(4.152)
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in which (e,„/»: )niax can be calculated from the relation

(4.153)

An expression for (e,„/T),nax , applicable to a circular duct (r*  =0) was developed by 
the present authors and is given by

= 0.037 Re// 
max. c

(4.154)

in which the Fanning friction factor / can be calculated from the explicit formula due 
to Techo et al. [67] given in Table 4.2. The predictions of Eqs. (4.153) and (4.154) for 
0 < r*  < 1 are in excellent agreement with the results for (cm/»')IT,ax given graphically 
in [102],

For the case of the inner wall heated, the semiempirical equations of Dwyer [102] 
arc

Nu,7 = A, + Bl (p Pe) (4.155)

where 

0.686
A< = 4.63 + -------' J.* (4.156)

0.000043
B, = 0.02154 ------------- -

' r* (4157)

0.01657 0.000883
n = 0.752 +---------------------- =—1 (4.158)

The values of for this case can also be calculated from Eqs. (4.152) to (4.154). Both 
Eqs. (4.148) and (4.155) are valid for Pe values above the critical values. For Pe < Pecrit, 
the sole mode of heat transfer is molecular conduction for liquid metals. For Pr = 0.005, 
0.01, 0.02, and 0.03, the critical Pe values are 270, 300, 330, and 345, respectively [102],

The foregoing values of Nuoo and Nu„ are in best agreement with the most recent 
experimental data for liquid metals obtained under conditions of continuous purifica
tion. For 300 < Pe < 105, the predictions of Eq. (4.148) for r*  = 1 are within + 20.2% 
and -13.3% of the predictions of Eq. (4.101), representing the experimental data of 
Duchatelle and Vautrey [174] obtained under conditions of continuous purification for 
flow of NaK (0.001 < Pr < 0.021) in the range 200 < Pe < 1200. In the restricted 
range of 300 < Pe < 1000, the predictions of Eq. (4.148) with r*  = 1 are within 
+ 6.9% and -13.3% of the predictions of Eq. (4.101). A comparison between the 
predictions of Eq. (4.155) with r*  = 0.5409 and Eq. (4.147), representing the measure
ments of Rensen [263] for flow of liquid sodium (0.0047 < Pr < 0.0059), showed that 
in the range 300 < Pe < 105, the predictions of Eq. (4.155) are within +26% of the 
predictions of Eq. (4.147).

Nusselt Numbers for Circumferentially Varying Heat Fluxes. Sutherland and Kays 
[264] solved the problem of fully developed turbulent flow in concentric annular ducts 
with circumferentially varying heat fluxes on the two walls. Let the heat fluxes at the



TABLE 4.33. Circumferential Heat Flux Functions for Fully Developed Turbulent Flow 
in Smooth Concentric Annular Ducts for Use with Eqs. (4.161) and (4.162) 
[266]

r*  = r,/ro Pr Re «,7 Ron Roi

0.20 Laminar 0.135 0.260 0.677 0.0521
0 104 0.135 0.260 0.677 0.0521

105 0.135 0.260 0.677 0.0521
106 0.135 0.260 0.677 0.0521

0.01 104 0.133 0.256 0.688 0.0513
105 0.119 0.220 0.553 0.0440
106 0.0404 0.0544 0.134 0.0109

1.00 104 0.0244 0.0207 0.0616 0.00413
105 0.00436 0.00267 0.00928 0.000535
106 0.000662 0.0003398 0.00127 0.000675

10.00 104 0.00839 0.00172 0.0129 0.000341
105 0.00127 O.OOO235 0.00185 0.0000471
106 0.000173 O.OOOO32O 0.000244 0.0000064

0.50 Laminar 0.833 1.33 1.67 0.667
0 104 0.833 1.33 1.67 0.667

105 0.833 1.33 1.67 0.667
106 0.833 1.33 1.67 0.667

0.01 104 0.821 1.32 1.64 0.657
105 0.710 1.13 1.41 0.565
106 0.183 0.272 0.344 0.136

1.00 104 0.0764 0.0995 0.137 0.0484
105 0.0114 0.0131 0.0193 0.00655
106 0.00162 0.00166 0.00252 0.00119

10.00 104 0.00135 0.00774 0.0186 0.00425
IO5 0.00197 0.00115 0.00272 0.000575
106 0.000270 O.OOO158 0.000360 0.0000794

0.80 Laminar 9.11 11.1 11.4 8.89
0 104 9.11 11.1 11.4 8.89

105 9.11 11.1 11.4 8.89
106 9.11 11.1 11.4 8.89

0.01 104 8.99 11.0 11.2 8.78
105 7.75 10.0 10.3 7.56
106 1.89 2.29 2.36 1.84

1.00 104 0.681 0.830 0.865 0.648
105 0.0934 0.110 0.116 0.0880
106 0.0120 0.0140 0.0148 0.0112

10.00 104 0.0656 0.0643 0.0749 0.0559
105 0.00917 0.00965 0.0111 0.00770
106 0.00127 0.00132 0.00152 0.00105

0.90 Laminar 42.9 47.4 47.6 42.6
0 IO4 42.9 47.4 47.6 42.6

IO5 42.9 47.4 47.6 42.6
106 42.9 47.4 47.6 42.6

0.01 IO4 42.3 46.8 47.0 42.1
IO5 36.5 40.3 40.5 36.3
106 8.90 9.82 9.89 8.84

1.00 104 3.16 3.54 3.57 3.12
105 0.429 0.471 0.477 0.424
106 0.0546 0.0597 0.0606 0.0538

10.00 104 0.281 0.280 0.290 0.271
105 0.0386 0.0413 0.0428 0.0371
106 0.00531 0.00564 0.00584 0.00509

4-130
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outer and inner walls be expressed as

<7"(0) = + A,cos0) (4.159)

<7,"(0) = Q”m (1 + A cos fl) (4.160)

where 0 is the angular coordinate, q'' ltl and are the mean values of q"(0) and 
q"(0) around the circumferences, and Ao and At are constants.

The local Nusselt numbers Nu„(fl) and Nu,(0) on the outer and inner surfaces, 
respectively, for any angular position 0 can then be evaluated from

XT z/n Nuoo(l + >locosfl)Nu (7) = ------------  =................. ....... ................................................................................
k U + Nuoo>lo7?oocos0) - (?,"/?'')(0O* - Nuoo>l,./?o,.cos 0)

(4.161)

XT h\0)Dh Nu,,(l+^cosfl)
Nu 10} = ■- - - = —------ - -------------------------------------------------------------------

k (1 + Nu„t4,J?„cos 0) - (q'o'/q'')(0*  - Nu,.,AoRjocos 0)

(4.162)

where

h (0) = s' 7 , h,(0) = —(4.163)
7 A7 7](A)-7]„ 1 7

The Nusselt numbers Nu„„ and Nu,, and the influence coefficients 0*  and 0*  are 
available from Tables 4.29 to 4.32. The values of 7?,,, Roo, Rllt, and RIH are furnished 
in Table 4.33 as functions of Re, Pr, and r*.

4.7.3 Hydrodynamically Developing Flow
The only studies of the hydrodynamically developing turbulent flow in concentric 
annular ducts have been those of Rothfus et al. [265], Olson and Sparrow [260], and 
Okiishi and Serovy [266]. Rothfus et al. [265] measured the apparent Fanning friction 
factors f._ _ at the inner surfaces of two concentric annuli (r*  = 0.3367 and 0.5618)
with a square entrance. The experiments covered the range 970 < Re < 4.85 X 10 . 
The resulting apparent friction factors for r*  = 0.5618 are presented in Fig. 4.60 as the 
ratio /a l/fl, where /, is the fully developed friction factor at the inner surface. For 
r*  = 0.5618, the measured values of /, are 0.01, 0.008, and 0.0066 for Re = 6000, 
1.5 X 104, and 3 X 104, respectively [265],

Knowing /app , from Fig. 4.60, the apparent friction factor /app „ at the outer wall 
can be determined from

/app.o _ ^(l ~ *̂ 2)

f r*2  _  2
Japp,? 'm '

(4.164)

where r„*  is given by Eq. (4.135). Knowing both /app „ and /.,pp ,, the perimeter-aver
age friction factor /app can be determined from

. -/app, 0'0 ./app, 1 1
'7app = r., + r, (4.165)
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Figure 4.60. Normalized apparent friction factors for turbulent flow in the hydrodynamic 
entrance region of a smooth concentric annular duct (r* = 0.5618) [265].

Olson and Sparrow [260] performed static pressure gradient measurements in 
concentric annuli (r*  = 0, 0.3125, and 0.5) with a square as well as a rounded entrance 
as shown in Table 4.28. The tests covered the range 1.6 X 104 < Re < 7 X 104. Based 
on the criterion of 5% approach to the fully developed pressure gradient, Olson and 
Sparrow [260] estimated the hydrodynamic entrance length as 20 < Lh /Dh < 25 for 
ducts with the square as well as the rounded entrance without a trip. For the rounded 
entrance with a trip, Lhy/Dh was estimated to be 15.

Okiishi and Serovy [266] performed static pressure drop and axial velocity measure
ments in concentric annuli (r*  = 0.344 and 0.531) with a square as well as a rounded 
entrance without a trip. The experiments covered the range 7 X 104 < Re < 1.6 X 105.

4.7.4 Thermally Developing Flow
Kays and Leung [168] presented an experimentally obtained solution to the problem of 
thermally developing flow in four concentric annular ducts (r*  = 0.192, 0.255, 0.376, 
and 0.500). The results are for the case of one wall at uniform heat flux and the other 
insulated, i.e., the fundamental solution of the second kind. According to this solution, 
the local Nusselt numbers Nux „ and Nux , at the outer and inner surfaces are given 
by

NUv. o
Nux.oo

i - ^..q'.'/q" ’
Nux,(.

Nuxji

i - ^..q'J/q',’
(4.166)



CONCENTRIC ANNULAR DECTS 4-133

Figure 4.61. Experimental results for the fundamental solution of the second kind for thermally 
developing and hydrodynamically developed turbulent flow in a smooth concentric annular duct 
with r* = 0.192 for Pr = 0.7 [168],

where q" and q” are the uniform heat fluxes at the outer and inner walls. Both q" 
and q'' are taken as positive whenever there is heat transfer to the fluid, and negative 
whenever there is heat transfer out of the fluid. The Nusselt numbers Nux oo and 
Nux ,, and the influence coefficients 0* o and 0X*,  are given by

Nur o0

0*

1

0x.nn-0x.mn’

(4.167)

(4.168)

The nondimensional temperatures 0( 00, 0xli, 0x ol, and 0X i0 for r*  = 0.192 and 
0.5 are presented in Figs. 4.61 and 4.62. Additional graphical results for r*  = 0.255 
and 0.376 are available in [168], The nondimensional temperatures 0X mil and 0X ,,,, 
required in Eqs. (4.167) and (4.168) can be computed from

4(x/DJ
x-mo RePr(l + r*) ’

4r*(x/D h)
RePr(l + r*) (4.169)0X

The foregoing solution is limited to a fluid with Pr = 0.7, 104 < Re < 1.61 X 10\ 
and 0.192 < r*  < 0.5. However, cross-plotting and interpolation could be employed to 
increase the generality of the results in terms of Re and r*.

Quarmby and Anand [267] provided an eigenvalue solution to the fundamental 
problem of the second kind for four concentric annuli (r*  = 0.02, 0.1067, 0.1778, and
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Figure 4.62. Experimental results for the fundamental solution of the second kind for thermally 
developing and hydrodynamically developed turbulent flow in a smooth concentric annular duct 
with r* =0.5 for Pr = 0.7 [168],

0.3472) for three fluids with Pr = 0.01, 0.7, and 1000 covering the range 2 X 104 < 
Re < 2.4 X 105. The solution shows good agreement with the experimental results for 
the four annuli for Pr = 0.7. Some results for r*  = 0.02 compare well with the results 
for a circular duct for all three Pr.

Rensen [263] measured the local Nusselt numbers Nux in the thermal entrance 
region of a concentric annular duct (r*  = 0.5409) with the inner wall subjected to the 
uniform heat flux and the outer wall insulated. The experiments, performed with liquid 
sodium as the test fluid, covered the ranges 6000 < Re < 6 X 104 and 0.0047 < Pr < 
0.0059. Figure 4.63 shows the variation of the local Nusselt number Nux „• with the 
axial distance x/Dh for various Re and Pr = 0.0054.

Rensen [263] also reported the thermal entrance lengths Llh/Dh based on 5% and 
1% approach of the local Nusselt number NuA.„ to the fully developed value Nu,;. 
These thermal entrance lengths for Pr = 0.0054 and various Re values are presented in 
Table 4.34.

4.7.5 Simultaneously Developing Flow
There appears to be little information available on simultaneously developing flow in 
concentric annuli. An integral analysis was presented by Roberts and Barrow [268], 
w'ho also made heat transfer measurements on simultaneously developing flow in 
concentric annuli. They obtained good agreement between the predictions and mea
surements. Their conclusion was that the Nusselt numbers for simultaneously develop-
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Figure 4.63. Local Nusselt numbers Nux for thermally developing and hydrodynamically 
developed turbulent flow in a smooth concentric annular duct (r* = 0.5409) for Pr = 0.0054 with 
the inner wall subjected to uniform heat flux and the outer wall insulated [263],

TABLE 4.34. Thermal Entrance Lengths for Thermally Developing 
Liquid Metal Flow (Pr = 0.0054) in a Smooth Concentric 
Annular Duct (r* = 0.5409) with Inner Wall Subjected to 
Uniform Heat Flux and Outer Wall Insulated [263]

Re

Lth/Dh
Nux, ,.,./Nu,.; = 1.05 Nux.,-,./Nu,,. = 1.01

6,000 2t 3
8,000 2.7 4

10,000 3.2 5
20,000 6 12
50,000 13 25
60,000 13.5 25

’’ For comparison, it may be noted that for laminar flow, Lth/Dh corresponding to 
Nux ,-,/Nu,, = 1.05 in a concentric annular duct (r* = 0.5) has a value of about 80 
at Re = 2000 (see Table 3.41 of Chap. 3).
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ing flow were not significantly different from those for the thermally developing flow 
with a hydrodynamically developed velocity profile.

4.8 ECCENTRIC ANNULAR DUCTS

Turbulent fluid flow and heat transfer characteristics of eccentric annular ducts have 
received only sparse attention in the literature. The available information pertains only 
to the fully developed and hydrodynamically developing flows.

4.8.1 Transition Flow
To the authors’ knowledge, the transition flow in eccentric annular ducts has not been 
studied either experimentally or analytically. Intuitively, it is expected that the duct 
dimensionless eccentricity e*  = t/(r„ — r,), where e is the distance between the centers 
of the two circular walls, must play a decisive role in shaping the Recrit value for an 
eccentric annulus. For e*  —> 0, the Recrit values for an eccentric annulus can be taken 
from Fig. 4.54, since e*  = 0 corresponds to the concentric annular duct. For e*  -> 1, 
the inner duct wall tends to contact the outer wall. This could lead to coexistence of 
laminar and turbulent flows in the vicinity of the contact point between the inner and 
outer walls. In a duct with coexisting laminar and turbulent flows, transition does not 
occur simultaneously over the entire cross section. Such a state of affairs in an eccentric 
annulus with e*  -» 1 may push the upper limit of Recrit to higher values than for 
e* 0.

4.8.2 Fully Developed Flow
Fluid Flow. Jonsson and Sparrow [269] conducted a careful experimental investigation 
of fully developed turbulent flow in smooth eccentric annular ducts with r*  = 
0.281,0.561,0.750, 0 < e*  < 1, and 1.8 X 104 < Re < 1.8 X 105.

In terms of the wall coordinates u+ and v+, the velocity distribution under the 
aforementioned conditions is representable as [269]

< = 2.56 In j0+ + 4.9 (4.170)

u,+ = 2.441ny,+ + 4.9 (4.171)

where

u4=w/wro, «+=«/«,,. (4.172)

K =ynut.0/v, T,+ = J/(4.173)

with the subscripts o and i referring to the outer and inner walls of the annulus. The 
friction velocity u, in Eqs. (4.172) and (4.173) is defined by Eq. (4.8), and y is the 
radial distance measured from the wall. Equations (4.170) and (4.171) are valid for 
y+ > 30 and y,! > 30.

Jonsson and Sparrow [269] provided the velocity measurements graphically in terms 
of the wall coordinates (u+, j/+) as well as the velocity-defect representation. In 
addition, they presented isovels for all three eccentric annuli with r*  = 0.281, 0.561, 
and 0.750. These isovel maps are quite instructive in understanding the roles played by 
r*,  e*.  and Re in shaping the velocity field in eccentric annuli. Accordingly, the isovel



(d)

Figure 4.64. Isovel maps for fully developed turbulent flow in a smooth annular duct 
with r* = 0.281: (a) e* = 0, Re = 91,500, umax/wm = 1.13; (/>) e* = 0.6, Re = 103,000, 

= 1 217; (c) e* = 0.9, Re = 98,400, wmax/w„, = 1.209; (J) e* = 1, Re = 98,000, 
= 1-206 [269],

137



4 • 1 38 TURBULENT AND TRANSITION FLOW CONVECTIVE HEAT TR ANSFER

Figure 4.65. Empirical constant C of Eq. (4.174) as a function of e* and r* of eccentric annuli 
[269],

maps for r*  = 0.281 are presented in Fig. 4.64. Additional isovel maps for r*  = 0.561, 
and 0.750 are available in [269], The dashed lines in Fig. 4.64 are the so-called gradient 
lines, which for fully developed flow coincide with the lines of zero shear. Also, it may 
be noted that the gradient lines are normal to the isovels, shown by the continuous 
lines.

Jonsson and Sparrow [269] correlated their circumferentially averaged fully devel
oped Fanning friction factors for smooth eccentric annuli by a power-law relationship 
of the type

Re” (4‘

where C is a strong function of e*  and a relatively weak function of r*;  it is 
independent of Re. Figure 4.65 shows the variation of C with e*  and r*.  As regards 
the exponent n, Jonsson and Sparrow [269] found a single value n = 0.18 to provide 
the most satisfactory correlation for all r*,  e*,  and Re.

Eccentricity in an annular duct causes the local shear stresses and hence the local 
friction factors /, and to vary around the circumference of each of the two surfaces. 
This circumferential variation of f: and fv for four eccentric annuli with r*  = 0.90, 
0.75, 0.50, 0.25 and e*  = 0.01, 0.2, 0.4, 0.6, 0.8, 0.99 is presented in Fig. 4.66, based on 
the analysis by Jonsson and Sparrow [270]. The continuous curves represent the results 
of an analysis for fully developed laminar flow in eccentric annuli developed by 
Jonsson and Sparrow [270]. The data points shown along the laminar flow curves are 
for the aforementioned fully developed turbulent flow in eccentric annuli with r*  =



Figure 4.66. Circumferential variation of the fully developed friction factors in smooth eccentric 
annular ducts [270],
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Figure 4.67. Nusselt numbers Nu„ for fully developed turbulent waterflow (Pr = 6.5) in smooth 
eccentric annular ducts with the inner wall subjected to a uniform heat flux and the outer wall 
insulated [275],

Figure 4.68 Nusselt numbers Nuoo for fully developed turbulent airflow (Pr = 0.7) in smooth 
eccentric annular- ducts with the outer wall subjected to a uniform heat flux and the inner wall 
insulated [276].
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0.750, 0.561, and 0.281 [269], At the higher r*  values of 0.75 and 0.50, the agreement 
between the laminar theory and the turbulent data is remarkably good. For the lowest 
r*  value of 0.25, the agreement is not quite so good. The local friction coefficients /, 
and /„ in Fig. 4.66 are normalized by the overall friction coefficient /, which can be 
obtained from Fig. 3.47 in Chap. 3 on p. 3.113.

Lee and Barrow [271] also conducted an experimental study of the fully developed 
turbulent flow in three eccentric annuli with r*  = 0.2581,0.3872,0.6128, 0 < e*  < 1, 
and 104 < Re < 5 X 104. They presented the velocity distribution and friction-factor 
data in a graphical form.

Some analytical predictions of the fully developed velocity distribution in eccentric 
annuli have been made by Deissler and Taylor [272], Yu and Dwyer [273], and Ricker 
et al. [274],

Heat Transfer. Judd and Wade [275] experimentally determined fully developed 
Nusselt numbers Nu„ for waterflow (Pr = 6.5) in four eccentric annuli (r*  = 0.3333, 
0.40, 0.50, and 0.6667) for varying eccentricity (0 < e*  < 1). The thermal boundary 
condition employed was uniform heat flux at the inner wall (i.e., the (hi) boundary 
condition) with the outer wall insulated. The measurements were made at the two 
extremes of the wall spacing: at the points of the maximum and minimum separation 
between the walls. These points are labeled A and B in the inset of Fig. 4.67, which 
presents the results obtained by Judd and Wade [275], The Nusselt numbers Nu„ for

Figure 4.69. Nusselt numbers Nu„ for fully developed turbulent airflow (Pr = 0.7) in smooth 
eccentric annular ducts with the inner wall subjected to a uniform heat flux and the outer wall 
insulated [276].
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Nu„

cone

1 0

*

Figure 4.70. Nusselt numbers Nu„ for fully developed turbulent airflow (Pr = 0.7) in smooth 
eccentric annular ducts with the inner wall subjected to the (ru) boundary condition and the outer 
wall insulated [271].

the eccentric annuli in Fig. 4.67 have been normalized by the Nusselt numbers Nu„ conc 
of the concentric annuli for the same r*  values as the eccentric annuli.

Leung et al. [276] measured the fully developed Nusselt numbers Nu„ and Nu„„ for 
airflow (Pr = 0.7) in two eccentric annuli (r*  = 0.255 and 0.500) for varying eccentric
ity (0 < e*  < 1). The thermal boundary conditions employed were (tn) at the inner 
wall with the outer wall insulated and (hi) at the outer wall with the inner wall

Figure 4.71. Nusselt numbers Nu„ for fully developed turbulent liquid metal flow (0.005 < Pr < 
0.03) in smooth eccentric annular ducts with uniform heat flux at the inner wall and the outer wall 
insulated [273],
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insulated. The results of Leung et al. [276] are presented in Figs. 4.68 and 4.69. These 
results are in the same form as those of Judd and Wade [275] in Fig. 4.67.

Lee and Barrow [271] studied the fully developed heat transfer characteristics of 
eccentric annuli for airflow (Pr = 0.7) with the outer wall insulated and the inner 
subjected to the (ru) boundary condition. The experiments covered the range 104 < 
Re < 5 X 104. Their experimentally measured Nusselt numbers Nu„, normalized by 
the corresponding Nusselt numbers Nu„ conv for the concentric annuli (e*  = 0), are 
presented in Fig. 4.70, which also includes some results presented by Leung et al. [276], 
Of particular interest is the effect of the wall conduction parameter K = k^/kj)*  in 
shaping the Nusselt number Nu„- in Fig. 4.70.

Yu and Dwyer [273] presented an analytical solution for fully developed turbulent 
flow of liquid metals (0.005 < Pr < 0.03) in eccentric annuli. Their calculated Nusselt 
numbers Nu,, for eccentric annuli (r*  = 0.25, 0.40, and 0.6667) covering the ranges 
0 < e*  < 1 and 368 < Pe < 8000 are presented in Fig. 4.71. The thermal boundary 
condition employed in these calculations is uniform heat flux at the inner wall (i.e., the 
® boundary condition) with the outer wall insulated.

4.8.3 Hydrodynamically Developing Flow
The information on hydrodynamically developing flows is extremely sparse. Jonsson 
[277] obtained experimental information on the pressure gradient for the hydrodynami
cally developing flow in three eccentric annuli (r*  = 0.281, 0.561, and 0.750) covering 
the range 1.8 X 104 < Re < 1.8 X 105 for four e*  values of 0, 0.5, 0.9, and 1.0. He 
presented his results in a graphical form by normalizing the local pressure gradients by 
the fully developed pressure gradients and plotting them against x/Dh.

The hydrodynamic entrance lengths Lhy/Dh for the eccentric annuli (r*  = 0.281, 
0.561, and 0.750) are presented in Table 4.35. These results are deduced by Jonsson 
[277] from his pressure gradient measurements. The entrance lengths in Table 4.35 
correspond to the approach of the pressure gradient to within 2% of the fully developed 
value.

4.8.4 Thermally Developing Flow
No results are available for thermally developing turbulent flow with hydrodynamically 
developed velocity profiles in eccentric annuli. Judging from the fully developed 
turbulent flow results in Figs. 4.67 to 4.71, it is inferred that for e*  < 0.5, the local 
Nusselt numbers for the thermally developing flow in eccentric annuli may be esti
mated to within +15% from the corresponding results for concentric annuli (e*  = 0) 
presented in Sec. 4.7.4.

TABLE 4.35. Turbulent Flow Hydrodynamic Entrance Lengths for 
Smooth Eccentric Annular Ducts [277]

f.*
________________l^/D,_______________

e*  = 0 0.5 0.9 1.0

0.281
0.561
0.750

29 32 38 38
26 38 59 78
28 50 69 91
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4.8.5 Simultaneously Developing Flow
No results are available for simultaneously developing turbulent flow in eccentric 
annuli. To a crude approximation, for e*  < 0.5, the local Nusselt numbers for the 
simultaneously developing turbulent flow in eccentric annuli may be estimated from 
the corresponding results for concentric annuli (e*  = 0) presented in Sec. 4.7.5. As 
mentioned there, the results for the simultaneously developing flow are expected to be 
close to those for the thermally developing flow.

4.9 CLOSURE

In this chapter, we have presented the most important turbulent fluid flow and heat 
transfer results pertaining to a variety of ducts, paralleling the treatment in Chap. 3 on 
laminar flow. The turbulent duct flows have not been investigated as exhaustively as 
their laminar counterparts. The main reason is that the transport equations for 
turbulent flow are more complex, requiring a turbulence model for the Reynolds 
stresses to solve the fluid flow problem and an additional model for the Reynolds fluxes 
to solve the heat transfer problem. No universal turbulence models are available that 
can be applied to all duct geometries. Within the scope of the chapter, it has not been 
possible to provide a systematic exposition of the available turbulence models with a 
view to appraising the merits of each model. The main emphasis of the chapter has 
been to present the most important fluid flow and heat transfer results of direct interest 
to design engineers. This includes analytical, numerical, and experimental results, and 
empirical correlations.

A limitation of the results in this chapter is that they may not give accurate friction 
factors and heat transfer coefficients when applied to extremely small tubes with 
hydraulic diameters smaller than about 2 mm (0.1 in.). In such tubes, lower friction 
factors and heat transfer coefficients generally prevail than those predicted by the 
formulas in the chapter. The reason is that the turbulent eddy mechanism for fluid flow 
and heat transfer is suppressed by the physical size of the tube cross section. 
Unfortunately, definitive information on turbulent flow friction factors and heat 
transfer coefficients is not available in the literature.

Unlike the laminar flow results, the turbulent flow results for Pr > 0.5 which covers 
the common fluids like air, water, and various oils (but not liquid metals) are rather 
insensitive to the effects of the thermal boundary conditions as well as to the entrance 
effects associated with the hydrodynamically, thermally, and simultaneously developing 
flows. Consequently, these flows with different thermal boundary conditions have not 
been analyzed in great detail in the literature. The results for fully developed turbulent 
flow with uniform wall temperature or uniform wall heat flux provide fairly accurate 
estimates for the aforementioned turbulent flows. Table 4.36 serves as a ready reference 
for the recommended fully developed turbulent flow correlations for the most useful 
smooth-walled duct geometries for Pr > 0.5.

Another notable difference between laminar and turbulent flows is that the duct 
wall roughness has little effect on the results for the former flow, whereas it exerts a 
strong influence on the results for the latter flow. Therefore, results on the influence of 
the duct wall roughness are provided wherever possible.

As evidenced by the amount of space allocated to it, circular duct geometry has 
been investigated most exhaustively. Several of the circular duct results can be utilized 
to make fairly good estimates of the friction and heat transfer coefficients for noncir
cular ducts through the use of the hydraulic diameter. This concept yields results for



TABLE 4.36. Fully Developed Turbulent Flow Friction Factors and Nusselt number (Pr > 0.5) for Technically Important Smooth-Walled Ducts

Duct Geometry Characteristic Dimension Recommended Correlations'

Or
= 2a Friction factor correlation by the present authors

for 2300 < Re < 107: *

Circular

(a)

B 
f — A

Re1/m

where A = 0.0054, B = 2 3 X 10“8, m = — | 
for 2300 < Re < 4000 and A = 1.28 X 10“3, 
B =0.1143, m = 3.2154 for 4000 < Re < 107.

Nusselt number correlation by Gnielinski for 
23OO< Re < 5 X 106: §

(//2)(Re - 1000)Pr
1 + 12.7(//2)1/2(Pr2/3 - 1)

_£ Dh = 4b

2b

Use circular duct f and Nu correlations Pre
dicted f are up to 12.5% lower and predicted Nu 
are within + 9% of the most reliable experimen
tal results.

Flat

(b)
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Duct Geometry Characteristic Dimension

2h
2b

-«— 2a —

Rectangular

(c)

2h

|-* — 2a —

Equilateral triangular

Dh = ------- , a*  = —
a + b 2a

D, 2 11
— = - + — a*(2  - a*)Dn 3 24 V 7

_ 46
Dh = 2^a^ —

r~ ^b
Dt = y3 a = —-j=- 

3/3

(a)



Recommended Correlations1

f Factors: (1) Substitute for Dh in the 
circular duct correlation, and calculate f from 
the resulting equation. (2) Alternatively, calcu
late f from f= (1.0875 - 0.1125a*)/ f where /, 
is the friction factor for the circular duct using 
Dh. In both cases, predicted f factors are within 
±5% of the experimental results.

Nusselt Numbers: (1) With uniform heating at 
four walls, use circular duct Nu correlation for 
an accuracy of ±9% for 0.5 < Pr < 100 and 
104 <Re < 106. (2) With equal heating at two 
long walls, use circular duct correlation for an 
accuracy of +10% for 0.5 < Pr < 10 and 104 < 
Re < 105. (3) With heating at one long wall 
only, use circular duct correlation to get ap
proximate Nu values for 0.5 < Pr < 10 and 
104 <Re < 106. These calculated values may be 
up to 20% higher than the actual experimental 
values.

Use circular duct f and Nu correlations with Dh 
replaced by D,. Predicted f are within +3% and 
— 11% and predicted Nu within +9% of the 
experimental values.



4ab
Dh = I i i 

a + ya2 + b2
D 1 6 <f>
— = — 3 In cot—I- 2 In tan-----
Dh 2rr 2 2
where 0 = (90° — <f>)/2.

4ab

a + b + 'Ja2 + b2

rrb
E(m) 

2b
2a

m = 1 - a* 2, E(w) is the 
complete elliptic integral 
of the second kind.
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In tan — 

2

For 0 < 2<J> < 60°, use circular duct f and Nu 
correlations with Dh replaced by Dg; for 2<j> = 
60°, replace Dh by D, (see above) and for 
60° < 2<f> < 90° use circular duct correlations 
directly with Dh. Predicted f and Nu are within 
+ 9% and —11% of the experimental values. No 
recommendations can be made for 2d > 90° due 
to lack of the experimental data.

For 30° < 2d < 45°, use circular duct / and Nu 
correlations. Predicted f and Nu are within 
±5% of the experimental measurements (Fig. 
4.29). No recommendations can be made for 2d 
values outside the range 30° < 2d < 45° due to 
lack of the experimental results.

Use circular duct f and Nu correlations. Pre
dicted f are within +13% and —5% and predic
ted Nu within +10% of the experimental results.
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Duct Geometry Characteristic Dimension Recommended Correlations^

Z>A = 2(ro-<), r*  = ^ f Factors: (1) Substitute 7/ for Dh in the 
circular duct correlation, and calculate f from

( Y///V/ ) 1 + r* 2 + (1 - r* 2)/lnr*
k D" (1-O2

the resulting equation (2) Alternatively, calcu
late f from f = (1 + 0.0925r*)/ (. where fc is the 
friction factor for the circular duct using Dh. In 
both cases, predicted f factors are within +5%

Concentric annular of the experimental results.

Nusselt Numbers: In all the following recom
mendations, use Dh with wetted perimenter in 
Nu and Re: (1) Nu at the outer wall can be 
determined from the circular duct correlation 
within the accuracy of about +10% regardless of 
the heating/cooling condition at the inner wall. 
(2) Nu at the inner wall cannot be determined 
accurately regardless of the heating/cooling con
dition at the outer wall. (3) As summarized in 
Sec. 4.7.2, use Eqs. (4.143) and (4.144) in con
junction with Tables 4.22 and 4.29 to 4.32 to 
calculate Nu0 and Nu, for the (h) boundary 
condition on each wall for arbitrary q''/q". (4) 
In the absence of experimental results for the (r) 
boundary condition, compute Nuo and Nu, 
from Eqs. (4.143) and (4.144) as an approxima
tion.

+ The friction factor and Nusselt number correlations for the circular duct are the most reliable and agree with a large amount of the experimental data within -t 2% 
and ± 10%, respectively. The correlations for all other duct geometries are not as good as those for the circular duct on an absolute basis.
*This correlation is presented as Eq. (4.31) in the text. In contrast with other correlations of Table 4.2, it spans the transition flow regime (2300 < Re < 4000). If 
desired, the other well-known correlations of Table 4.2 may be used for Re > 4000.
§Predictions of the Gnielinski correlation are compared in Table 4.4 with those of other correlations reported in the literature.
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non-sharp-comered noncircular ducts that are generally within +15% of the experi
mental values. Several other characteristic dimensions have been proposed as sub
stitutes for the hydraulic diameter for specific duct geometries, yielding results within 
±5%. Refer to Table 4.36 for the most useful of these dimensions. Unfortunately, none 
of these characteristic dimensions appears to be as broadly and simply applicable as 
the hydraulic diameter. There is a need to discover a universal characteristic dimension 
applicable to all duct geometries. The usefulness of the hydraulic diameter appears to 
break down for noncircular ducts with acute-angled comers (around 20°). The calcu
lated friction factors and Nusselt numbers with the hydraulic diameter are about 35% 
lower than the experimental results for such ducts. The coexistence of laminar and 
turbulent flows in the comer regions of such ducts seems to contribute to this 
breakdown, since the laminar flow results for noncircular ducts do not correlate well 
via the hydraulic diameter. One consequence of the coexistence of laminar and 
turbulent flows is the reduction of the friction and heat transfer coefficients, as these 
coefficients possess lower values for laminar flows.

A unique feature of the fully developed turbulent flow in noncircular ducts is the 
presence of secondary flow. Though small in magnitude (approximately 1 to 2% of the 
axial mean velocity), the secondary flow is found to exert a significant effect on the 
turbulent fluid flow and heat transfer characteristics of noncircular ducts. Both friction 
and heat transfer coefficients tend to be approximately 10% higher in the region of the 
duct cross section dominated by the secondary flow than in the region uninfluenced by 
it.

The secondary-flow patterns in noncircular ducts can also provide valuable clues to 
the existence of hot or cold spots in turbulent duct flows. With this objective in mind, 
secondary-flow patterns have been provided for several noncircular ducts. These 
patterns can be inferred from the isovel maps of the primary flow through the ducts in 
question.

The transition flow regime in ducts represents a rather gray area between the 
laminar and turbulent flow regimes. It is quite desirable to learn about the transition 
flow in noncircular ducts, as certain compact heat exchangers employing noncircular 
ducts operate in this regime. Unfortunately, this subject has not been explored 
systematically. Moreover, determination of the transition flow friction and heat transfer 
coefficients is not a matter of straightforward interpolation between the laminar and 
turbulent flow results.

We would like to close this chapter with the hope that the information contained in 
it will prove useful to designers and researchers. Furthermore, we hope that the state of 
the art presented will engender some interest among researchers in finding new 
solutions that will fill the gaps in our understanding of transition and turbulent duct 
flows.

NOMENCLATURE

A'
a

flow cross-sectional area, m2, ft2
radius of a circular duct; also half width of a noncircular duct, 

m, ft
b
C

half spacing or half height of a duct, m, ft
proportionality constant for the variation of f with Re or
Re"

c half spacing or width of a duct, m, ft
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cp specific heat of fluid at constant pressure, J/(kg • K), Btu/ 
(lb„, • °F)

Dh
D,

hydraulic diameter of duct, = 4AC/P, m, ft
laminar equivalent diameter [see Eqs. (4.15), (4.16), and (4.24)], 

m, ft
e*  
f

eccentricity of an eccentric annular duct, = e/(ro — r;) 
circumferentially averaged fully developed Farming friction 

factor = rw/(pu2m/2ge)
/app

g,

apparent Fanning friction factor in the hydrodynamic en
trance region, = A/?*  /(x/rh)

proportionality constant in Newton’s second law of motion, 
= 1 and dimensionless in SI units; = 32.174 lbm • ft/(lbf • 
S21a )

constant wall heat flux boundary conditions (refer to Table 3.1 
in Chap. 3)

h convective heat transfer coefficient for fully developed flow, 
W/(m2 • K), Btu/(hr • ft2 ■ °F)

J mechanical-to-thermal energy conversion factor, = 1 and di
mensionless in SI units; = 778.163 tty • ft/Btu

A/a) incremental pressure drop number, defined by Eq. (3.4) in 
Chap. 3

K wall conductivity parameter = ks/kw8w, where s is a duct
specific dimension appropriately defined in the text

k. k, 
k.

thermal conductivity of fluid, W/(m • K), Btu/(hr • ft ■ °F) 
apparent, virtual, or eddy conductivity for turbulent flow [see

Eq (4.5)], W/(m • K), Btu/(hr • ft • °F)
A, thermal conductivity of duct wall material, W/(m • K), Btu/ 

(hr • ft • °F)

Nubi

hydrodynamic entrance length, m, ft
thermal entrance length, m, ft
circumferentially averaged Nusselt number for fully developed 

flow for the thermal boundary condition of Table 3.1 or 3.2 
in Chap. 3

NUx.he circumferentially averaged but axially local Nusselt number 
for the thermal entrance region for the specified thermal 
boundary condition, defined by Eq. (3.10) in Chap. 3

Nu,„.lx mean Nusselt number for the thermal entrance region for the 
specified thermal boundary condition, defined by Eq (3.11) 
in Chap. 3

nu'3, local Nusselt number for a concentric or eccentric annular 
duct, = o<;>/[0<;) - ^>]

Nu(/],Nu// local Nusselt number at inner and outer walls of a concentric 
or eccentric annular duct

P
Pe
Pr

wetted perimeter of duct, m, ft 
Peclet number = um Dh/a = Re Pr 
Prandtl number = v/a.
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Pr, 

P 
Lp

turbulent Prandtl number = e,n/ch
fluid mean static pressure. Pa, lby/ft2
fluid static pressure drop in the flow direction between two 

cross sections of interest, Pa, Hy/ft2
kp*  
q"

fluid static pressure drop = Ap/(pw2/2g(.)
wall heat flux, i.e., heat transfer rate per unit heat transfer area 

of the duct (average value with respect to perimeter), W/m2, 
Btu/(hr • ft2)

Re
Ref 
Reent 
r

Reynolds number = um Dh/v
roughness Reynolds number = tut/v
critical Reynolds number (see Sec. 4.2.1)
radial coordinate in the cylindrical coordinate system, m, ft

r, ■ r„ inner and outer tube radii of a concentric or eccentric annular 
duct, m, ft

rh 
r*

hydraulic radius of the duct, = Ac/P, m, ft
aspect ratio r,/ro of a concentric or eccentric annular duct

s 
1\T 
T, 
T' 
Tm

duct dimension, m, ft
fluid time-average temperature [see Eq. (4.2)], °C, °F
fluid instantaneous temperature [see Eq. (4.2)], °C, °F
fluid fluctuating temperature [see Eq. (4.2)], °C, °F
fluid bulk mean temperature, defined by Eq. (3.7) in Chap. 3, 

°C, °F
K
K,ni
®

wall temperature at the inside duct periphery, °C, °F 
circumferentially averaged wall temperature, °C, °F 
constant wall temperature boundary conditions (refer to Table

3.1 in Chap. 3)
u, u fluid time-average axial velocity, fluid time-average velocity 

component in x direction [see Eq. (4.1)], m/s, ft/s

M, fluid instantaneous axial velocity component in x direction 
[see Eq. (4.1)], m/s, ft/s

u' fluid fluctuating axial velocity component in x direction [see 
Eq. (4.1)], m/s, ft/s

bulk mean axial velocity averaged over the duct cross section, 
m/s, ft/s

^ma\ maximum value of the fluid time-average axial velocity across 
the duct cross section for fully developed turbulent flow, 
m/s, ft/s

u, 
U *■
V, V

turbulent friction or shear velocity = yjrwgc/p , m/s, ft/s
wall coordinate = u/ut, dimensionless
fluid time-average velocity component in y or r direction, 
m/s, ft/s

w, vv fluid time-average velocity component in z or 0 direction, 
m/s, ft/s

axial (streamwise) coordinate in the Cartesian or cylindrical 
coordinate system, m, ft
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a- axial coordinate for the hydrodynamic entrance region,
= x/Z^Re

,x*  axial coordinate for the thermal entrance region, = x/Z^Pe
r Cartesian coordinate across the flow cross section; distance

measured from the duct wall, m, ft
r wall coordinate = j’U,/v

z Cartesian coordinate across the flow cross section; also dis
tance from the apex of a triangle, m, ft

Greek Symbols
a 
a*

Y 

Y

A
8

8/

8, 

< 

F 

£/, 

@ 

0 

0 

0a' 
0}^

m i

0*

fluid thermal diffusivity = k/pcp, m2/s, ft2/s
duct aspect ratio, explicitly defined for specific geometry in 

the text
ratio of heat fluxes at two walls of a flat duct
intermittency factor characterizing turbulent flow (see Sec. 

4.1.3)
shear stress gradient parameter [see Eq. (4.14)], dimensionless 
hydrodynamic boundary layer thickness (see Fig. 3.1), m, ft 
laminar-sublayer thickness (see Fig. 4.1), in, ft
thermal boundary layer thickness (see Fig. 3.1), m, ft
duct wall thickness, m, ft
distance between centers of two circles of an eccentric annular 

duct (see Fig. 4.64), m, ft
height of surface roughness element, m,
apparent, virtual, or eddy thermal diffusivity for turbulent 

flow [see Eq. (4.6)], = k,/pcp, m2/s, ft2/s
apparent, virtual, or eddy kinematic viscosity coefficient for 

turbulent flow, = p.t/p [see Eq. (4.4)], m2/s, ft2/s
dimensionless temperature for axially constant wall heat flux 
boundary condition, = (T - Te)/{q”Dh/k}

angular coordinate in the cylindrical coordinate system, rad, 
deg

dimensionless fluid temperature for axially constant wall tem
perature boundary condition, = (T — Tw)/(Te — Tw)

fluid bulk mean temperature = (Tm — Tw)/(Te — Tw) 
fluid temperature for a doubly connected duct 
circumferentially averaged temperature of wall (I — i for inner 

wall, l = o for outer wall) for the fundamental boundary 
condition of kind k when inner wall (j = z) or outer wall 
(j = o) is heated or cooled

fluid bulk mean temperature for fundamental boundary condi
tion of kind k when inner wall (j = z) or outer wall (J = o) 
is heated or cooled.

influence coefficients derived from fundamental solutions of 
the second kind, = (0™ - 0$)/(0V} - 0,<2))
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0* influence coefficients derived from fundamental solutions of 
the second kind, = (fl,* 2’ - - 0^)

M,
fluid dynamic viscosity coefficient, Pa • s, lb„,/(hr • ft) 
apparent, virtual, or eddy viscosity coefficient for turbulent

flow [see Eq. (4.3)], Pa • s, lbm/(hr • ft)
V kinematic fluid viscosity coefficient = p/p, m2/s, ft2/s
P fluid density, kg/m3, lbm/ft3
T shear stress, Pa, lby/ft2
Tl shear stress due to laminar flow. Pa, lby/ft2
T, apparent shear stress due to turbulent flow, Pa, lbz/ft2
T«

O,(,A)
wall shear stress due to skin friction, Pa, lby/ft2 
dimensionless heat flux at a point in the flow field for the 
inner or outer wall of a concentric or eccentric annular duct

0(A) dimensionless wall heat flux defined in a manner similar to 
= q"/k(Tj - Te) for k = 1,3, and as q't'/q'^ for k = 2,4

apex angle of a duct, rad, deg

Subscripts
be thermal boundary condition (refer to Tables 3.1 and 3.2 in 

Chap. 3 for the alphanumeric designation and meaning of 
various thermal boundary conditions)

c center or centroid; also circular duct
e initial value at the entrance of the duct or where the heat 

transfer starts

f 
fd
H 
hy 
i

fluid
fully developed
@ boundary condition
hydrodynamic
inner surface of a doubly connected duct

j 
I

heated wall of a doubly connected duct, j = i or o 
laminar

m mean, bulk mean
r-''ix
min

Maximum 
minimum

0 outer surface of a doubly connected duct
s
T

smooth
(t) boundary condition

t
th
A'

turbulent
thermal
arbitrary section along the duct length, a local value as op
posed to a mean value

w wall or fluid at the wall
00 fully developed value at x = oo
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5-2 CONVECTIVE HEAT TRANSFER IN CURVED DUCTS

5.1 INTRODUCTION

Curved tubes may be classified as helical coils, spirals, and bends. The design 
information and discussion in this chapter is restricted to helical coils and spirals 
shown in Fig. 5.1. Results for bends and fittings are presented in Chapter 10. Curved 
tubes are used in chemical reactors, agitated vessels, storage tanks, and heat recovery 
systems. Industries such as dairy and food processing, refrigeration, and hydrocarbon 
processing extensively use curved tube heat exchangers. An extensive use is also found 
in medical equipment such as kidney dialysis machines. In oil fields, the use of curved 
tubes as an inline viscometer is quite common.

Nomenclature for helical and spiral coils is illustrated in Fig. 5.1. A helical coil of 
circular cross section is characterized by tube radius a, coiled tube curvature radius R, 
and coil pitch b, as shown in Fig. 5.1a. The figure also shows the vertical and 
horizontal reference planes along which velocity and temperature profiles are normally 
measured. The helical coil in Fig. 5.1a will be referred to as a “horizontal” coil 
throughout this chapter, since the tube in each turn is approximately horizontal. If this 
coil had been turned 90°, it would be referred to as a “vertical” coil. The radius of 
curvature R of the coiled tube is constant for a helical coil, while it continuously 
increases for a spiral coil. A “simple” or Archimedean spiral coil of circular cross 

(a'

Figure 5.1. (a) A schematic of a helical coil, (b) a schematic of a spiral.

Outer 
wall

Section AA 
HH— Horizontal plane 
W—Vertical plane

(b)
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section is characterized by the tube radius u, the constant pitch h, and the minimum 
and maximum radii of curvature (R min and 7?n,ax) of the beginning and the end of the 
spiral. Unless specified otherwise, results for only simple spirals are covered in this 
chapter.

As compared to straight tubes, curved tubes are compact and yield higher heat
transfer coefficients and friction factors; however, mechanical cleaning of curved tubes 
is difficult. As fluid flows within a curved tube, it experiences a centrifugal force along 
with the axial pressure gradient. The centrifugal force causes secondary flow velocities, 
resulting in an increased main flow (axial) velocity near the tube outer wall, and 
decreased axial velocity near the tube inner wall. At the tube outer wall, the higher 
velocity decreases the thermal resistance considerably, resulting in high heat transfer 
coefficients. However, this is also accompanied by a higher friction factor and possibly 
higher pressure drop than that in an equivalent straight tube.

In a curved tube, the heat transfer rate and pressure drop are dependent upon 
the following parameters: Reynolds number, Prandtl number, Newtonian or non
Newtonian fluid, wall thermal boundary condition, coil-to-tube radius ratio, tube cross 
section, length-to-diameter ratio, and coil pitch. The influence of these parameters on 
heat transfer and flow friction of curved tubes have been described in many papers 
[1-85], including some review articles [1-4], The purpose of this chapter is to sum
marize experimental and theoretical results for laminar, transitional, and turbulent 
flow, and recommend correlations for curved-tube heat transfer and flow friction. The 
scope of this chapter is restricted to a steady-state single-phase flow in stationary ducts. 
Most of the recommended correlations are for helical coils, but wherever available, 
spiral-coil results are also presented. Because of time and space limitations, the subject 
of centrifugal instability in curved channels is not treated here, but the reader may refer 
to Akiyama et al. [86,87] and Komiyama et al. [88],

5.2 . PROBLEM FORMULATION

In order to determine the heat transfer and pressure drop characteristics of curved coils 
theoretically, the continuity, momentum, and energy equations need to be solved. At 
any cross section in a curved tube, a curvature-induced centrifugal force generates a 
secondary flow over the normal axial flow. This results in the presence of all three 
velocity components, even in the case of fully developed flow.

Generally, the theoretical or numerical solutions are obtained by solving the 
appropriate differential equations and boundary conditions. The momentum equations 
for laminar flow are presented by Sankariah and Rao [5] in the toroidal coordinate 
system, and by Patankar et al. [6] in the curvilinear cylindrical coordinate system. The 
momentum equations for turbulent flow are presented by Patankar et al. [7] in the 
curvilinear cylindrical coordinate system. The energy equation for laminar flow is 
presented by Tyagi and Sharma [8] in the toroidal coordinate system, and the 
time-average energy equation is presented for turbulent flow by Kreith [9] in the 
curvilinear cylindrical coordinate system. Because of space limitation, these equations 
will not be duplicated here.

While the boundary condition for the velocity problem is clear—no slip (zero 
velocity components) at the wall—a large variety of thermal boundary conditions can 
be specified for the temperature problem; many such boundary conditions are sum
marized in Table 3.1 of Chapter 3. The most important and also limiting boundary 
conditions are the (t), (hi), and (ffi) boundary conditions, (r) refers to axially and 
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peripherally constant wall temperature, (m) refers to axially constant heat flux at the 
wall with peripherally constant wall temperature, (hj) refers to axially and peripherally 
constant heat flux at the wall. For more details, refer to Chapter 3. It is important to 
note that in experimental coil heat transfer studies with the constant wall heat flux 
boundary condition, it is difficult to achieve exact (w) or (H2) boundary conditions. The 
difficulty arises because tube bending operations distort the tube wall thickness, and 
secondary flow alters the fluid temperature profile.

Most of the dimensionless groups associated with the flow in a straight duct are 
presented in [10]. Two additional dimensionless groups for curved tubes are the Dean 
number and helical coil number. Dean [11,12] pointed out the existence of a secondary 
flow in a curved tube and introduced a parameter to take account of it. This parameter 
is now called the Dean number and is defined as

l a \1/2
De = Re — 

\R)
(5-1)

In a helical coil, the effective radius of curvature of each turn is influenced by the 
coil pitch b, and is given by [82]

Rc = R (5-2)

Use of R instead of R in the Dean number definition results in a new number, 
referred to as the helical coil number He, defined as

He = Re
1/2 '

= De 1 + (5-3)

The definitions of the peripherally and axially local and mean heat transfer 
coefficients and Nusselt numbers are the same as those by Shah and London [10], They 
are restated here for completeness. The peripherally local heat transfer coefficient h is 
defined by

q'p'= hp{Tw-Tm) (5-4)

where zM is the local temperature on the duct periphery, tm is the fluid bulk mean 
temperature at the cross section, and qp is the heat flux at the point of concern on the 
duct periphery. The peripherally average, but axially local, heat transfer coefficient h x 
is defined by

q" = hx(Tw m - Tm) (5.5)

where zM is the peripheral mean wall temperature (peripheral integrated average of 
z„ ). Note that hx may or may not be the peripheral integrated average of h because 
of !».m- The flow-length average heat transfer coefficient hm is the integrated average 
of hx from x = 0 to x:

1 ,A
= ~jQh*dx (5-6)

Correspondingly, the Nusselt numbers Nu^., Nux hc, Nu,„ hc, and Nuhc are defined
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below, where be denotes a specific thermal boundary condition such as (T), (m) and (ffi) 
A local peripheral Nusselt number is defined as

hpDh 
k

VpDh 
k(Tn. Tn,j (5.1)

The peripheral average but axially local Nusselt number is defined as

xDh
(5.8)

The mean (flow-length average) Nusselt number in the thermal entrance region is 
defined as

hmDh 1 fxNum.be = -— = -/ Nu b Jx 
k x Jo (5-9)

The peripheral average Nusselt number in the hydrodynamically and thermally fully 
developed region is simply defined without the first subscript /?, x, or m as follows:

Nube

hDh
(5.10)

In the fully developed region, Nu,„ bc approaches Nuv bc and both approach Nubc.

5.3 LAMINAR FLOW THROUGH COILS OF CIRCULAR CROSS 
SECTION

The laminar flow results are described in four subsections: fully developed flow, 
hydrodynamically developing flow, thermally developing and hydrodynamically devel
oped flow, and simultaneously developing flow. For convenience, wherever feasible, 
each subsection is further divided into two sub-subsections: fluid flow and heat 
transfer.

5.3.1 Fully Developed Flow

Fluid Flow. In fluid flow, the quantities of design interest are velocity profiles and 
friction factors, and are summarized below.

Velocity Profiles. In a flow through a coil, the centrifugal force strongly influences the 
velocity profile. In the case of the helical coil flow, the constant radius of curvature 
generates a constant centrifugal force resulting in the establishment of “fully developed 
flow.” However, for a flow through a spiral, the radius of curvature is continuously 
varying, resulting in a continuous varying centrifugal force; the Dean number is 
continuously varying as well. Therefore, “fully developed flow” is established in a 
spiral coil only as a limiting condition when R/a or De becomes large. In the case of a 
helical coil, starting with Dean [11,12], several theoretical and experimental results are 
available [13,14], However, velocity profile results are not available for a spiral coil.
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Dean’s [11,12] velocity profiles based on perturbation analysis are applicable only 
for De < 20. Mori and Nakayama [14] have obtained the following fully developed 
velocity profile using boundary-layer idealizations (De > 100) for a coil with R » a:

In the core region,

vD
Ur = ----cos 0,

a

vD 
ue =-------sin#, ux

a

/ Bv
— +

\ a

Crv
---- 7 cos 
Da2

(5-11)0

In the boundary layer,

ur = 0 (5-12)

Dv sin 0 7 12a — 68 \ (98 — 24a \ (12a —48 \
-----------   8*  +   8* 2 + ------ r  8* 3 a \ 8------ / \ 8------ / \ 8------ / (5.13)

and

v 
ux = —

C ( a — 8)cos 0
B + — 

D
a* 2)

vC8 cos 0 _
n, (8*  — 8* 2) (5.14)
Da~a a

where

and

0.5Re
28 82 ’
3a 6a2

2a Re
8

28
3a 6a2

(5.15a)

D = 0.9656 De1/? + 1.65
4.63a

3 = ----fTT
De1/2

0.766a
De

(5.15b)

B = C =

The above velocity profiles show good agreement with experimental data [14,15] and 
numerical predictions [6] for De > 100. For De < 20, the velocity profile is not 
significantly different from that in a straight tube flow. The velocity profiles for 
intermediate values (20 < De < 100) are not available. Figure 5.2 shows a typical 
variation in the velocity profile with the Dean number, based on the analysis of 
Patankar et al. [6]. The velocity peak moves toward the outer wall as the Dean number 
increases.

Friction Factors— Helical Coils. The results of several theoretical and experimental 
friction factor studies demonstrate that coiled-tube friction factors are higher than 
those in a straight tube for a given Reynolds number. As shown in Fig. 5.3, friction 
factors at the outer wall in a helical coil are substantially higher than those obtained in 
a straight tube. Conversely, friction factors at the inner wall are almost the same as 
those obtained in a straight tube [16], The overall effect is an increase in friction 
factors.

The major difference between various experimental and theoretical correlations is 
the way they account for an increase in the friction factor due to the coil curvature. 
Many investigators, such as Srinivasan et al. [17], use only the Dean number in their 
correlation, claiming that it alone is sufficient to account for an increase in the friction
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(a) (b)

Figure 5.2. The influence of the Dean number 
tube: (a) horizontal plane, (b) vertical plane.

on axial velocity profiles in a horizontal curved

factor due to the coil curvature. They proposed the following correlation for their 
experimental data with several coils (7 < R/a < 104):

1
0.419 De0275
0.1125 De05

for De < 30
for 30 < De < 300
for De > 300

De

(5.16)

Figure 5.3. Fully developed (/ Re)p/(/ Re)v as a function of the Dean number [16].
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On the other hand, some correlations include a separate R/a term in addition to a De 
term to account for the coil-curvature effect. For example, Manlapaz and Churchill [18] 
reviewed available experimental data and theoretical predictions and recommended the 
following correlation using a regression analysis:

1.0 -
°-18 K (, n a/R\2i De \ 

[1 + (35/De)2]05 J
0.5

(5-17)

where m = 2 for De < 20, m = 1 for 20 < De < 40, and m = 0 for De > 40. The 
friction factor ratios calculated using the above two correlations show excellent 
agreement with each other (deviation of less than 9%), as long as R/a > 7. Even at 
R/a = 3, the /(//v value is almost the same as that for R/a = 7. This demonstrates 
that De alone is sufficient to account for the increase in the friction factor for coils with 
R/a > 3. Hence, for coils with R/a > 3, we recommend the use of either Eq. (5.16) or 
Eq. (5.17). For coils with R/a < 3, we recommend Eq. (5.17).

Manlapaz and Churchill [18] suggested using the helical coil number He instead of 
the Dean number De in Eq. (5.17) to account for changes in the friction factor due to 
the coil pitch. However, their own theoretical predictions, other predictions [19], and 
experimental data [20] demonstrate that the influence of the coil pitch on the friction 
factors is very small.

Kubair and Kuloor [21] measured nonisothermal friction factors and proposed the 
following correlation, which accounts for the temperature-dependent viscosity:

nonisothermal 0.91/f , isothermal (5.18)

Friction Factors— Spiral Coils. Kubair and Kuloor [22-24] have measured friction 
factors in three spirals, and Srinivasan et al. [17] have measured friction factors in five 
spirals. We recommend the following correlation for design purposes, since it includes 
the influence of spiral length and pitch [17]:

0.62(n°2-7-n°-7)2

ReO6(6/a)°'3 (5-19)

where n1 and r,2 are the numbers of turns from the origin to the start and the end of a 
spiral. This equation is valid for 500 < Re(/>/a)°'5 < 20,000 and 7.3 < b/a < 15.5.

Critical Reynolds Number. A transition from laminar to turbulent flow is identified 
by a critical Reynolds number, Revrit. In a curved duct flow, it is difficult to identify 
Recnt by a change in the slope of the curve for the friction factor vs. Reynolds number 
because of the gradual change. In contrast, in a straight-duct flow, the curve of friction 
factor vs. Reynolds number shows a distinct discontinuity, facilitating the identification 
of Recnt. After reviewing a large amount of data reported in the literature, the following 
correlation is recommended for design purposes [17],

-0.5'

Recrit = 2100 1 + 12| (5.20)
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This correlation is correct in the limiting case of straight-tube flow; i.e., as R/a —» oo, 
the equation reduces to the straight-tube Retrit = 2100. In addition, it correlates most 
of the published data within + 15% deviation.

In spiral flow, the radius of curvature varies along the spiral, and therefore, the flow 
does not have a single critical Reynolds number. Kubair and Kuloor [22] have 
suggested the use of the arithmetic-average radius of curvature of the spiral in their 
helical-coil correlation. On the other hand, Srinivasan et al. [17] have proposed 
correlations for minimum and maximum Recnt that would occur at the Rmiix and Amin 
locations in the spiral. Their equations, an extension of the above helical-coil correla
tion, correlate their data for spirals very well:

(Recrit)max = 2100

(
D

_^ax
-0.5’

(5-21)

(5.22)

Heat Transfer. The quantities of design interest are temperature profiles and Nusselt 
numbers. For the fully developed heat transfer, the quantities of design interest are 
described on the basis of boundary conditions: uniform wall temperature @, and 
uniform wall heat flux (hi) and (S).

Fully Developed Temperature Profiles. In coils, as with the velocity profiles, the 
secondary flow distorts the temperature profiles, pushing the temperature peak toward 
the tube outer wall; this results in a higher heat transfer rate at the coil outer wall than 
at the inner wall. Figure 5.4 shows that either increasing De or increasing Pr causes a 
higher distortion of the temperature profile. Increasing De augments secondary flow, 
while increasing Pr augments thermal convection.

The temperature-profile equation given in the next two subsections are for helical-coil 
flow. These profiles could be also used for spiral-coil flow by using Rave instead of R 
in the calculation of the Dean number. This would give a profile at the average radius 
of curvature. Similarly, a profile at the spiral coil exit could be calculated by the use of 
Rmax. However, the following equations should not be used to calculate a developing 
profile at the coil entrance.

(t) Temperature Profiles. Several investigators have reported theoretical temperature 
profiles [25-27]. They show good agreement with each other. However, no experimental 
data are available to confirm them. Mori and Nakayama [25] presented the following 
temperature profile using a boundary-layer type solution (De > 100) for Pr < 1 and 
R/a > 1:

In the core region,

E /+ ----?(C + EB2}2D2^ 7
r \2

— cos 0
a /

EB EC E2B2 \ / r
---- 7 -I------- 7- — cos 6
2D2 6D2 j\a

(5.23)
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r/a

(a) (b)

Figure 5.4. The dimensionless horizontal temperature profile for the @ boundary condition as a 
function of (a) Dean number and (Z>) Prandtl number for a curved tube [26],

where

/ 3 EC 1 E2B2
N = 1 + — —y + —----I 8 D2 8 D2

8a 
«,R.ePr

0.28 [2 + (10/Pr2 - 1)1/2] 

0.1898 [1 + (1 + 19.5/Pr2)1/2]

for Pr < 1

for Pr > 1

(5-24)

(5.25)

where B, C. D, and 8 are given by Eqs. (5.15a) and (5.15b). 
In the boundary layer,

TW~T = F2(u-r) _ (g-M2
Tw~Tm 1 8, I 8( ) (5.26)

Here FY represents the core-region dimensionless temperature profile at the edge of a 
thermal boundary layer. F{ is the modified F, calculated by substituting r = a - 8, in 
Eq. (5.23).

The above equations are valid for Pr < 1, De > 100, and R/a > 4. At present, no 
solutions are available for De < 100, but a straight-tube temperature profile may be 
used at low Dean numbers.

To obtain a simple 8, expression for fluids with Pr > 1, Mori and Nakayama [25] 
evaluated energy integrals of the thermal boundary layer over the hydrodynamic 
boundary layer rather than over the thermal boundary layer. The authors explain that 
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boundary-layer profiles are approximate, and therefore changing the integration range 
should not cause a significant error in the computed temperature profile [89], Thus, 
Eqs. (5.23) through (5.26) could also be used to calculate temperatures profiles for 
fluids with Pr > 1.

® Temperature Profiles. In 1932, Hawes made the first attempt to measure the 
temperature profile [28], Since then, several theoretical and a few experimental studies 
have reported temperature-profile data [14,16,30], Mori and Nakayama [14] used a 
boundary-layer type solution (De > 100) for Pr < 1 and R/a> 1, and reported the 
following temperature profile:

In the core region,

where

Tw — T C^r/a)2 B(r/a)cosO
a(dT/dx) ~ 8 ~ B + 2D2 + D

8t Re Pr a Re
B ~ 8a ~ D28

(5-27)

(5.27a)

In the boundary layer.

TU~T = 
a(dT/dx) 8s‘

where gSr represents the core-region dimensionless temperature profile at the edge of a 
thermal boundary layer, which is calculated by substituting r = a - 8, into Eq. (5.27).

The parameters B, C, D, and 8 are calculated using Eqs. (5.15a) and (5.15b), and 8, 
from Eq. (5.25).

The temperature profiles calculated using the above equations show excellent 
agreement with air data [14], Their experimental data for the vertical temperature 
profile show an excellent agreement with the predictions of Patankar et al. [6], 
However, for a horizontal temperature profile, a small discrepancy is observed between 
Mori and Nakayama’s experimental data [14] and Patankar et al.’s theoretical predict
ions. The discrepancy is seen only for the results from the inner coil wall to the coil 
center. As discussed earlier in connection with (t) profiles, Mori and Nakayama [14, 89] 
calculated an approximate temperature profile for fluids with Pr > 1. Therefore, Eqs. 
(5.27) and (5.28) could also be used to calculate the (m) temperature profile for fluids 
with Pr > 1.

(t) Nusselt Numbers— Helical Coils. Several theoretical and experimental studies 
have reported Nusselt numbers for flow through a helical coil subjected to the (t) 
boundary condition [25-27,31,32], In Fig. 5.5, experimental and theoretical results are
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Figure 5.5. A comparison of the recommended design correlation [Eq. (5.29), drawn as solid lines] with 
theoretical and experimental Nusselt numbers for the @ boundary condition [19].
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compared with the following Manlapaz-Churchill correlation [19] based on a regression 
analysis of the available data:

Nur = 3.657 +
4.343 \3 /De\3/2

- + 1.158—
1 / \ X2 I

(5-29)

where

1.0 +
957 )2

De2Pr/ ’ x2 = 1.0 +
0.477

Pr
(5.30)

Although Nusselt numbers calculated using Eq. (5.29) are somewhat higher for Pr = 0.1 
and somewhat lower for Pr = 0.01 at intermediate De values, the agreement between 
the data and the correlation is fairly good, as shown in Fig. 5.5.

(t) Nusselt Numbers — Spiral Coils. Kubair and Kuloor [24,33] obtained the 
Nusselt numbers for two spirals that were enclosed in a steam chamber, using glycerol 
solutions. They suggested the following relation, which uses fluid properties calculated 
at an arithmetic-mean temperature:

Nur = 1.98 + 1.8—— j
D I

ave /
Gz0-7 (5.31)

The correlation application range is 9 < Gz < 1000, 80 < Re < 6000, and 20 < Pr < 
100. Although the correlation appears to be for the thermal entrance length, the fully 
developed Nusselt number may be calculated by substituting Gz = 20. The correlation 
does not include the influence of geometric parameters such as coil pitch, number of 
turns, etc. This indicates a need for more work in this area to obtain a more general 
correlation.

@ Nusselt Numbers—Helical Coils. Manlapaz and Churchill [19] derived Eq.
(5.32) by performing a regression analysis on the available Nusselt number results:

NuHi 4.364 +
4.636

x3
(5.32)

where

1.0 +
1342

De?Pr I
1.15

= 10+ -----
Pr

(5-33)

Figure 5.6 compares Eq. (5.32) with some of the available theoretical predictions 
[30,34] and the experimental Nusselt number data [14,27], The figure shows a fairly 
good agreement between the correlation and most of the available data.

(H2) Nusselt Numbers — Helical Coils. Tyagi and Sharma [8] and Manlapaz and 
Churchill [19] calculated Nusselt numbers for the (h?) boundary condition. Tyagi and 
Sharma’s perturbation-analysis results demonstrate the negligible influence of viscous 
dissipation on Nusselt numbers for flows with De < 30. However, their results are 
limited, since the data are restricted to flows with De < 30. Numerical results of
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Figure 5.6. A comparison of the recommended design correlation [Eq. (5.32), drawn as solid lines] with 
theoretical and experimental Nusselt numbers for the (m) boundary condition [19],
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TABLE 5.1 Numerically Calculated NuH2 for Helical Coils of Circular Cross Section [19]

R/a b/R Re De He Pr = 0.1 0.3162 1.0 10.0

5.0 0.0 9.196 4.113 4.113 4.642 4.639 4.633 4.620
0.5 9.197 4.113 4.100 4.462 4.639 4.633 4.620
1.0 9.194 4.112 4.061 4.462 4.640 4.634 4.621

5.0 0.0 46.70 20.88 20.88 4.769 4.759 4.936 8.447
0.5 47.72 20.89 20.83 4.768 4.758 4.934 8.438
1.0 46.79 20.93 20.67 4.765 4.755 4.929 8.414

10.0 0.0 392.6 124.14 124.14 5.604 7.541
0.5 393.0 124.29 123.90 5.602 7.535
1.0 394.4 124.72 123.17 5.596 7.518

5.0 0.0 402.5 180.01 180.01 6.058 9.312
0.5 403.1 180.28 179.71 6.078 9.307
1.0 404.9 181.07 178.82 6.071 9.292

10.0 0.0 1008 318.8 318.8 7.120 14.30
0.5 1009 319.1 318.1 7.114 14.27
1.0 1013 320.5 316.5 7.103 14.23

5.0 0.0 1043 466.6 466.6 9.680
05 1045 467.4 465.9 9.600
1.0 1051 469.8 464.0 9.588

Manlapaz and Churchill are presented in Table 5.1 which indicate almost no influence 
of the coil pitch on the Nusselt number. The (hz) results show qualitative agreement 
with the (m) correlation, Eq. (5.32). Certainly, more results are required for the (hz) 
boundary condition.

Peripheral Variation in Nusselt Numbers. Several investigators have noted substan
tial peripheral variation in the fully developed Nusselt numbers for the @ and (m) 
boundary conditions. As shown in Fig. 5.7 for De = 898, Nu^ H1 at the outer wall is 
about 11 times more than that for the straight-tube asymptotic NuH1 = 4.36. At the 
inner wall, Nup H1 is only about 2, half the straight-tube asymptotic value. The region 
of about ±50° from the inner wall shows Nu H1 values less than 4.36, while the rest 
of the 260° shows Nup H1 values substantially higher than 4.36. This clearly shows 
why curved coils provide higher heat transfer rates than those for straight tubes.

Influence of Coil Pitch and Curvature Radius on Nusselt Numbers. To account 
for the coil-pitch effect on Nusselt numbers, Manlapaz and Churchill [19] recommend 
using the helical coil number He instead of the Dean number De in the correlations of 
Eqs. (5.29) and (5.32). However, their own predictions for the (hz) boundary condition 
indicate that the influence of the coil pitch (b/R = 0 to 1) on heat transfer is very 
small. Until more results are available to prove otherwise, the effect of the coil pitch on 
Nusselt numbers may be neglected.

For the (t) boundary condition, the nondependence of Nur on R/a has been 
shown for coils with R/a > 10 [32], We compared Tarbell and Samuels’s [26] Nur 
predictions for R/a = 3, 10, and 30 with the correlation of Eq. (5.29), which includes a
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0, deg
Figure 5.7. Peripheral variation of fully developed Nusselt number for the (m) boundary 
condition for a curved circular tube [30].

De term, but not a separate R/a term. In spite of the absence of a separate R/a term, 
Eq. (5.29) correlated data of Tarbell and Samuels [26] within +12%, indicating that the 
De term alone is sufficient to account for the curvature effect as long as R/a > 3. 
Presently, results are not available to assess the influence of R/a < 3 on Nusselt 
numbers.

Similarly, for the (m) boundary condition, the influence of R/a on NuH1 was found 
to be very small for coils with R/a > 10 [30], Based on the influence for the (t) 
boundary condition, the influence of R/a on the (m) Nusselt numbers is probably 
negligible for coils with R/a > 3. Therefore, the design correlation (5.32) may be used 
to predict NuH1 for coils with R/a > 3.

Influence of Boundary Conditions on Nusselt Numbers. Some theoretical calcula
tions and experimental data show almost the same Nusselt numbers for the (m) and (t) 
boundary conditions [25,35]. As noted earlier, in a curved-tube flow, an increase in De 
enhances secondary flow, increases fluid mixing, and augments heat transfer. Similarly, 
an increase in Pr enhances thermal convection, increases fluid mixing, and augments 
heat transfer. This results in Nusselt numbers almost independent of the wall thermal 
boundary condition.

Mori and Nakayama’s [14,25] first theoretical approximation showed identical 
Nusselt numbers for (m) and (t) boundary conditions. Janssen and Hoogendoorn [35] 
measured the same Nusselt numbers for (hi) and @ boundary conditions using a 
glycerol-water mixture (Pr > 1). In fact, they recommend the same Nusselt number
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De

Figure 5.8. The ratio of the Nusselt number for a horizontal curved circular tube to that for a 
straight tube as a function of the Grashof and Dean numbers [39,40].

correlations for either the (t) or (hi) boundary condition. Similarly, Kalb and Seader’s 
[30,32] Nusselt numbers for (hi) and (r) boundary conditions show less than 15% 
deviation from each other. In addition, the (m) and @ Nusselt numbers calculated 
using the recommended design correlations, Eqs. (5.29) and (5.32), show less than 
±15% deviation from each other for fluids with Pr = 0.01 to 100 and De = 100 to 
1500. This demonstrates a very small influence of the wall thermal boundary condition 
on the curved-tube Nusselt numbers. However, no experimental data exist for liquid
metal flow in curved tubes.

The Influence of Variable Viscosity and Density. The results discussed so far have 
assumed constant fluid properties. The variation in temperature-dependent properties, 
especially viscosity and density, affects the heat transfer rates. The conventional 
Sieder-Tate [90] viscosity ratio, )(i l4, is used to take account of the change in 
heat transfer due to the viscosity variation [36,37], Since no specific data are available, 
for design purpose it is recommended to use Eqs. (5.29) and (5.32) with their right-hand 
sides multiplied by (fim/nw)Q14.

The density variation results in a free convection superimposed on a forced 
convection, normally resulting in an augmented heat transfer rate. Theoretical studies 
have shown that the superimposed free convection influences coil heat transfer only if 
De < 150 [38-41]. The free convection in a horizontal coil shifts the point of maximum 
Nusselt number away from the coil outer wall toward the bottom. Similarly, in a 
vertical coil, the point of maximum Nusselt number shifts to the coil bottom [41], 
Figure 5.8 shows the calculated increase in Nusselt numbers due to buoyancy at 
various Dean numbers [39,40],

A more general experimental correlation is given by Abul-Hamayel and Bell [37] 
that accounts for the density and viscosity variations in coil-tube heat transfer. Water, 
ethylene glycol, and n-butyl alcohol in a coiled tube with the (m) boundary condition
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were used to obtain the following correlation:

NuH1 =
/ Gr' \3-94' 

4.36 + 2.84 —-y
\ Re2/

/ Gr' \2 78
1 + 0.9348 —-= x5

\ De2/

/ u \014'
1 + 0.0276 De0 75 Pr0197 —

where

1.33 Gr'\
De2 '

(5.34)

(5.35)

This correlation is valid for 92 < Re < 5500, 2.2 < Pr < 101, and 760 < Gr' < 106. It 
is correct insofar as it reduces to the constant-property coil-tube correlation on 
neglecting viscosity and density variations. In addition, it reduces to the straight-tube 
forced convection Nusselt number value of 4.36 on neglecting the coil effect (De —> 0). 
Equation (5.34) is recommended for design purposes when fluid properties are highly 
temperature-dependent.

5.3.2 Hydrodynamically Developing Flow
Austin and Seader [42] and others [43,44] experimentally studied flow development in a 
curved channel. Only Austin and Seader [42] correlated their entry lengths in terms of 
the angle of tube curvature to attain “fully developed” velocity profiles for four coils 
(R/a = 6.9, 9.1, 14.4, and 24.1):

/ a \0-33
49 De—

\ RJ
for 190 < De < 950. (5.36)

The velocity profile was considered parabolic at the coil entry. In most cases, they 
found to be between 90 and 200 °, indicating a very short entrance length.

Yao and Berger [45] calculated the curved-duct entrance length using the boundary
layer theory. The results from their proposed equation differ significantly from the 
experimental data [42,43]. Experimental data of Agrawal et al. [43] show good 
agreement with Eq. (5.36), even though they employed an uniform coil inlet velocity 
profile. This indicates that the hydrodynamic entry length is probably unaffected by the 
coil inlet velocity profile.

5.3.3 Thermally Developing and Hydrodynamically Developed Flow
(t) Nusselt Numbers— Helical Coils. The numerical calculations [26,27,35,46] as 
well as experimental data [35] indicate the coil thermal entrance length to be 20% to 
50% shorter than that observed in a straight tube. In addition, all investigators 
observed significant Nusselt number oscillations in the entrance region. As seen in Fig. 
5.9, for fluids with Pr = 0.1, the entrance region shows a typical Graetz solution similar 
to the one obtained in a straight tube [26], However, at higher Pr, large oscillations in 
the Nusselt numbers are observed in the entrance region. In addition, as Pr increases, 
oscillations start at higher Gz values (i.e., lower values of x*).  The secondary flow 
causes these oscillations by exposing the tube wall alternately to the hot and cold fluids, 
resulting in the oscillatory entrance region Nusselt numbers [27],
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Figure 5.9. The influence of Prandtl number on the Nusselt numbers in the entrance region of a 
curved circular tube for the @ boundary condition [26],
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Janssen and Hoogendoorn [35], using their numerical solution, proposed the follow
ing formula to calculate peripherally average thermal entrance region Nusselt numbers 
for 20 < Pr < 450 and Re < Rerit:

Nuv r =
/ / W- ( M'"4

( 0.86 - 0.8(u/R) J \ x / \ nw /
(5.37)

where a6 = 0.14 -r 0.8(a/R). The results of the above equation show fairly good 
agreement with experimental data [35], It is important to note that Eq. (5.37) yields 
average values and does not account for the observed oscillations.

(T) Nusselt Numbers — Spiral Coils. Kubair and Kuloor [24] conducted experi
ments with glycerol-water solutions and proposed Eq. (5.31) to calculate entrance 
region data by using Rmc instead of R in the Dean number. Their own data fit their 
correlation very well, but it may be coil-specific. More data are needed in this area.

(hi) Nusselt Numbers— Helical Coils. Several investigators have reported experi
mental data and theoretical predictions [27,35,47], Similarly to the (t) boundary 
condition, the entrance region shows oscillatory Nusselt numbers, and the oscillation 
intensity increases with Pr values. Janssen and Hoogendoorn [35] also proposed the 
following equation to calculate peripherally average thermal entrance region Nusselt 
numbers:

NuXiHi
a \ /2c

0.32 + 3— I Re0 5Pr0 33 —
R ' \ x

(5.38)

where x6 was defined just after Eq. (5.37). The above equation does not account for 
oscillations, but gives an average value. Janssen and Hoogendoorn [35] provided the 
following equation for the thermal entry length:

Lth 15.7Pr~08
Dh Re Pr — De

(5-39)

The above equation indicates that the thermal entry length is mainly determined by the 
secondary flow, rather than by the thermal diffusivity as in the straight tubes.

(m) Nusselt Numbers — Helical Coils. Dravid et al. [27] calculated the thermal 
entrance length with the (ffi) boundary condition. They also proposed an equation to 
determine the oscillation wavelength for the (h?) case. However, no specific Nuv H2 
results are given.

5.3.4 Thermally and Hydrodynamically Developing Flow
Only a very limited number of results (De < 30) are available for this case [48], The 
lack of results is probably because of the very short entry lengths observed at high De 
and Pr values.
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De
Figure 5.10. Effectiveness of curved circular tubes as compared to straight tubes [30],

5.3.5 Assessment for the Use of Coiled Tubes in Laminar Flow
The entrance region of a helical coil is about 20 to 50% shorter than that of a straight 
tube. Therefore, for most engineering applications, especially with De > 200, the 
design can be based on fully developed values without significant errors.

The relative performance of a curved tube to a straight tube is shown in Fig. 5.10 in 
which the ratio (NuH1 ,/NuH1 ,.)/(/,.//,) is plotted against the Dean number. A value 
of this ratio greater than 1 indicates better performance of coiled tubes than straight 
tubes. The figure shows that coiled tubes perform better than straight tubes for fluids 
with Pr > 0.7; the performance of coiled tubes improves with increasing Pr. Thus, to 
augment tube-side heat transfer and to save space, a coiled tube is preferable. If 
tube-side fouling is significant, it may be necessary to devise a chemical cleaning 
method, since mechanical cleaning of a coilded tube is difficult.

5.4 TURBULENT FLOW THROUGH COILS OF CIRCULAR 
CROSS SECTION

Most of the turbulent fluid flow and heat transfer analyses are limited to fully 
developed flow. Limited data on turbulent developing flow indicate flow becoming fully 
developed within the first half turn of the coil [49], and probably even sooner, since the 
entrance length for developing turbulent flow is usually shorter than that for the 
laminar flow.

5.4.1 Fluid Flow
Velocity Profiles. The shape of the fully developed turbulent velocity profile is similar 
to that of a fully developed laminar flow, with the point of maximum velocity shifted 
toward the outer wall. Mori and Nakayama [50] calculated the velocity profile by 
employing a mixing-length concept and using the |-power-law velocity distribution
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corrected for the peripheral angle. Their calculated velocity profiles using the 
boundary-layer theory for coils with R/a > 1 are given as follows:

In the core region,

Gv Gv _
ur = — cos 6, ue =-------sin 0

a a

Hv ( 0.4rcos#
m = -----11 -I-------------------
a \ a

In the boundary-layer region,

ur = 0

Gv . [1/ 8 Wl-(r/a)\

8 a 8/a /

4/ 2 \ / 1 — (r/a)\1/7
“ 3 | 8~/a ~ 1) \ 8/a /

, _ 1 ~ (r/a) V/7
' a y 8/a /

where

(
r \ - o.i g / R\ o 4
- , - = 0.5545Re-°2 -
a ) a \ a )

us = 77(1 + 0.7 cos 0 + 0.1 cos2# + • • • )4/7

(5.40)

(5-41)

(5-42)

(5-43)

(5-44)

(5-45)

(5-46)

Re
2.0 - 0.5(S/a) + 0.133(8/a)2

(5-47)

The axial velocity profiles calculated from the above equations are in good agreement 
with Mori and Nakayama’s own experimental measurements and other numerical 
results [7].

Friction Factors — Helical Coils. Several experimental and limited theoretical stud
ies have proposed correlations to calculate friction factors for turbulent flow in a 
helical coil. Ito [29] proposed the following correlation:

/7?\05
f — = 0.00725 + 0.076

\ a /

0.25 / R\~2 
for 0.034 < Re — <300

\ a )

(5.48)

Srinivasan et al. [17] obtained extensive friction factor data and proposed the following
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correlation:

/ /M°.5 / RX-21-0.2
/I — = 0.084 Re —

\ a / \ a j
I R\~2 R

for Re < 700 and 7 < - < 104
\ a I a

(5-49)

These correlations show fairly good agreement with each other. Hence, either could be 
used for design purposes. They also show good agreement (within + 10%) with 
experimental data for air [51] and water [52], and with numerical predictions by 
Patankar et al. [7],

In contrast with laminar flow, the peripheral variation in the friction factor is not 
significant for turbulent flow. For Re = 25,000 to 135,000, the local friction factor is 
about 1.5 times more and 0.5 times less than that in a straight tube at the coil outer and 
inner wall, respectively [49]. Similarly to the laminar flow case, the coil pitch (b/a = 0 
to 25.4) does not affect turbulent friction factors [20],

The correlations discussed so far are for a turbulent flow through a smooth tube. In 
practice, tube roughness may cause higher friction factors than those predicted using 
the smooth-tube correlations [53]. Presently, no explicit correlations are available to 
account for tube-roughness effects.

Rogers and Mayhew [52] measured nonisothermal friction factors for flow of water 
through the three helical coils, and recommended a nonisothermal friction factor 
correlation as

(5.50)

where /lsothermai is calculated using Ito’s correlation, Eq. (5.48).

Friction Factors — Spiral Coils. Kubair and Kuloor [22] measured friction factors in 
three spiral coils using water. Srinivasan et al. [17] also measured friction factors in five 
sprials for water and fuel-oil flow. Their experimental correlation is

0.0074(n^9 - n?9) 

[Re (5]° 2

1.5

(5.51)

The above correlation is valid for 40,000 < Re(&/a)05 < 150,000 and 7.3 < b/a 
15.5.

5.4.2 Heat Transfer
Aspects of heat transfer are further discussed in two parts: (1) temperature profiles, 
and (2) Nusselt numbers. It is important to recall here that in turbulent flow heat 
transfer, temperature profiles and Nusselt numbers are independent of the thermal 
boundary condition for Pr > 0.7.

Temperature Profiles. Mori and Nakayama [50] and Hogg [49] reported theoretically 
calculated and experimentally measured temperature profiles. Mori and Nakayama 
employed boundary-layer idealizations for the calculations. Their calculated profiles. 
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given below, were confirmed by their own experimental data for air flow through a 
curved tube subjected to the (m) boundary condition:

In the core region,

K-Tm (IT + 02
a(dT/dx) \H G

In the boundary layer,

a(dT/dx) ^1S

where

H' 0.2/ 3\2 cos 6 / 8
— + — 11 — — I + ------11 — —
H G\ a) G \ a

(Pr067 - O.16724)(lO.64Re°2)(7?/a)01

1 + O.1875(8/a)

(5.52)

(5.53)

(5.54)

(5.55)

11 ~ r/7
\ $/a /

and G, H, and 8/a are obtained from Eqs. (5.45) and (5.47). The above equations are 
applicable for gases with Pr < 1. The validity of these equations for Pr > 1 is not 
known.

Nusselt Numbers— Helical Coils. The measured local Nusselt numbers along the 
coil outer wall are about 1.5 times higher than those obtained in straight-tube flow. 
Conversely, at the coil inner wall, the local Nusselt numbers are about half those 
obtained in straight-tube flow [49]. Thus, in a helical-coil turbulent flow the mean 
Nusselt number is probably only 20 to 30% higher than in a straight tube.

About fifteen experimental and two theoretical correlations are available to calcu
late mean Nusselt numbers. We have compared Nusselt numbers calculated from these 
correlations for three values of Re (Re = 104, 5.5 X 104, and 105) and four values of 
R/a (R/a = 10, 20, 50, and 100). The calculations were restricted to the range of 
application of each correlation. The calculated values show the curved-tube Nusselt 
numbers to be 10 to 30% higher than those observed in a straight tube. The results 
indicate some discrepancy in calculated Nusselt numbers for Re = 104. However, for 
Re > 104, the calculated values from various correlations exhibit only + 10 percent 
deviation from each other. Thus, any correlation could be used for Re > 104. Schmidt’s 
correlation [54] has the largest application range and is as follows:

Nu.
—— = 1.0 + 3.6 1 — 
Nu. . (5.56)

It is valid for 2 X 104 < Re < 1.5 X 105 and 5 < R/a < 84. This correlation was 
developed using air and water in coils subjected to the (m) boundary condition.

For low Reynolds numbers, Pratt’s correlation [55] is recommended:

Nu(. 
Nu^

a
= 1 + 3.4—

R
for 1.5 X 103 < Re < 2 X 104 (5.57)
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This correlation is based on water and isopropyl alcohol. To include the influence of 
temperature-dependent properties, especially viscosity for liquids, Orlov and Tselishchev 
[56] recommend the following correlation due to Mikheev:

for (5.58)

Note that the discrepancy introduced by the different constants (3.4 vs. 3.54) of Eqs. 
(5 57) and (5.58) is negligible and within the uncertainty of the correlations.

Nusselt Numbers — Spiral Coils. The only experimental data for spiral coils are 
reported by Orlov and Tselishchev [56]. They report that Mikheev’s correlation. Eq. 
(5.58), represents their data within + 15% deviation when an average radius of 
curvature of a spiral was used in the correlation. This indicates that most helical coil 
correlations can be used for spiral coils if the average radius of curvature of the spiral, 
R ave, is used in the correlations.

5.4.3 Assessment for the Use of Coiled Tubes in Turbulent Flow
A large number of experimental and theoretical correlations are available to predict 
friction factors and Nusselt numbers for a turbulent flow through a helical coil. The 
turbulent flow friction factors in coiled tubes are about 30 to 40% higher than those in 
straight tubes. For example, at Re(7?/a)“2 = 10 and 200, the turbulent flow friction 
factors in coiled tubes are about 15% and 28% higher than those in straight tubes, 
respectively. Calculated resutls also indicate that the increase in heat transfer over the 
straight-tube value due to the coil curvature is less than 30%; moreover, for R/a > 20, 
the heat transfer increase is less than 10%. Thus, other than space saving, a coiled tube 
does not offer any significant advantages over a straight tube for turbulent flow.

5.5 NON-NEWTONIAN FLUID FLOW THROUGH COILS OF CIRCULAR 
CROSS SECTION

Non-Newtonian fluids may be broadly classified as purely viscous fluids (inelastic) and 
viscoelastic fluids. Purely viscous fluids may be further categorized as time-dependent 
and time-independent. The time-independent purely viscous non-Newtonian fluids are 
further classified as those with and without a yield stress.

The power-law fluids are the most common non-Newtonian fluids without a yield 
stress. They exhibit the following power-law relationship between shear stress and 
shear rate:

(5-59)

If n < 1, the fluid is called pseudoplastic; if n > 1, it is called dilatant; and if n = 1, it 
is the well-known Newtonian fluid. For further details on non-Newtonian fluids, refer 
to Chapter 20.

For a fully developed flow through a straight tube, the following relationships for 
the wall shear stress (rH. = 2 a &P/4L), wall shear rate, and shear-dependent viscosity
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pn, are well known [57]:

(5.60)

(561)

(5.62)

Using the following generalized definition of the Reynolds number, it can be shown 
that the power-law fluids follow the well-known Fanning friction factor equation for 
the fully developed laminar flow of a Newtonian fluid in a circular tube:

= 2paum = 2npul,-nan 
egen p„ '

16
/=

(5.63)

(5.64)

The above results are for flow through a straight circular tube. In a curved circular 
tube, due to the secondary flow, the wall shear stress is expected to be higher. Similarly, 
at a given wall shear stress, the average fluid velocity in a curved tube is lower than that 
in a straight tube. Hence, the following equations are used to calculate an effective 
viscosity based on the curved-tube shear stress and corresponding generalized Reynolds 
number, for non-Newtonian fluid through a curved tube [58]:

„ 2PaUm,c
Ke — -----------------■lxv'gen, c

r'n, c

(5.65)

(5.66)

5.5.1 Fluid Flow
Velocity Profiles. The fully developed power-law velocity profile calculated using 
cither a boundary-layer solution [59] or a numerical method [60] shows that decreasing 
n tends to flatten the velocity profile and dampen the secondary flow. This is consistent 
with the observation for the flow of a power-law fluid through a straight tube. For 
n = 1.25 to n = 0.5, the influence of n on the velocity profile is not significant, and the 
velocity profile can be represented by the Newtonian profile (n = 1) given in Eqs. 
(5.11) to (5.14).

Friction Factors — Laminar Flow. The friction factor for the flow of power-law 
fluids through a curved tube has been investigated for purely viscous (inelastic) and 
viscoelastic fluids. Some viscoelastic fluids reduce the drag, and consequentlv reduce 
the friction factor and pressure drop.

Helical Coils, Inelastic Power-Law Fluid — Friction Factors. Mashelkar and 
Devarajan [59] used a boundary-layer method to derive the following theoretical
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correlation:

/ R \ “°-5
fc = (9.069 - 9.438n 4 4.374»2)| - I (DeECn)0122"“0768 

\ a B
(5.67)

This equation is valid for 70 < Degcn < 400, 10 < R/a < 100, and 0.5 < n < 1. Here 
Degen = Regen (R/a) 1/2. This correlation shows good agreement with Mashelkar and 
Devarajan's own experimental data [85] and other theoretical predictions [60,61], The 
only drawback of the correlation is that it does not reduce to the correlation for 
Newtonian fluid flow in a curved tube when n is set equal to unity.

Helical Coils, Viscoelastic Power-Law Fluid— Friction Factors. As noted earlier, 
for power-law fluids Eq. (5.59) describes a general relationship between shear stress and 
shear rate. Viscoelastic fluids exhibit an additional normal stress component described 
as

(5.68)

where [/ and x7 are constants dependent upon the Equid, and rn and r22 are normal 
stress components. Various polymer solutions such as polyacrylamide (PAA—Dow 
Chemical), and polyethelene oxide (PEO-WSR—Union Carbide) exhibit viscoelastic 
behavior.

Mashelkar and Devarajan [85] observed a limited drag reduction (about 5 to 10%) in 
the laminar region in their extensive experiments using eight different viscoelastic 
Equids in four different coils with R/a = 7.4, 22, 83, and 103. They arrived at the 
following correlation for viscoelastic fluids:

/.viscoelastic = fe inelastic(l ~ 0.03923Wi° 2488) (5.69)

where / inelastic is obtained from Eq. (5.67), and the Wissenberg number Wi, defined as 
the ratio of elastic stress to viscous stress evaluated at the edge of the velocity boundary 
layer, is given by

Wi =

Xq — n

(5.70)

Wi= — A
(Degen) — (x7 — n)/(„ +1)

(5-71)
a

Spiral Coils, Inelastic Power-Law Fluid — Friction Factors. Rajasekharan et al. 
[62,63] reported limited data on three spiral coils using carboxymethylcellulose (CMC), 
CPM, and sodium silicate solutions with n varying from 0.47 to 2.13. They [63] 
correlated their data on 0.3% CMC solution (n = 0.9) as

a

fc = 0.02936exp -123.1 —
\ ave

-0.008431(Rave/a)1419
(5-72)

This correlation does not include the influence of the power-law index, coil length, coil 
pitch, and number of turns. Therefore, it should be used with caution.
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Critical Reynolds Number — Helical coil. Using data of Mujawar and Raja Rao 
[64], the critical Reynolds number for power-law fluids can be correlated as

-*8]1/(1-X9)
Re ~gen,ent

[ R\ 
2100 rd -

\ a )
for 0.7 < n < 1 (5-73)

where D2 = 47.969 - 153.8n + 166.22n2 - 60.132/?3, and x8 = x9/2 = 0.4375« - 
0.2575.

Fully Developed Turbulent Flow. Turbulent flow data for power-law fluid flow 
through a helical coil are reported by Mishra and Gupta [58] and by Rajasekharan 
et al. [62,65]. The correlations proposed by these authors are:

M shra and Gupta [58]:

0.079
(Regcn.J°-25

/ R\-°-5
+ 0.0075 —

\ a /
(5-74)

valid for 0.02 < [0.079/(Regen c.)°-25](R/a)05 < 0.04 and 9 < R/a < 25. 
Rajasekharan et al. [65]:

0.079
s/Do \ 2.63/(10.5)'■( Regen )

(5.75)

valid for 6000 < Regen < 30,000 and 10 < R/a < 27.

If n = 1, Eqs. (5.74) and (5.75) are almost identical, reducing to a turbulent friction 
factor for a coil [see Eqs. (5.48) and (5.49)]. The difference between the two correlations 
is mainly due to different definitions for the viscosity used in the calculation of Regcn 
and Regen c. Therefore, either equation could be used for design purposes.

5.5.2 Heat Transfer

Only three heat transfer studies, one numerical [60] and two experimental [62,66], are 
reported for laminar flow of a non-Newtonian, power-law fluid through curved ducts.

Fully Developed Flow. Hsu and Patankar [60,61] have numerically computed fully 
developed Nusselt numbers for the (m) boundary condition for a power-law fluid. 
Their results are presented in Table 5.2 for various power-law indices and Prandtl 
numbers. In general, the power-law fluids with n > 1 exhibit higher Nusselt numbers 
than the Newtonian fluids. Conversely, power-law fluids with n < 1 exhibit lower 
Nusselt numbers than the Newtonian fluids. Presently, no fully developed results are 
available for the (t) boundary condition. However, as pointed out in Sec. 5.3.1, the wall 
thermal boundary condition does not significantly affect Nusselt numbers. Therefore, 
@ results may be used for the (r) boundary condition without introducing significant 
errors.

Thermally Developing and Hydrodynamically Developed Flow. Oliver and Asghar 
[66] have correlated their @ boundary-condition experimental data with various
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TABLE 5.2 Ratio of (hi) Nusselt Numbers for a Helical Coil to That for a Straight Tube 

for a Non-Newtonian Power-Law Fluid [6]"

n Pr Degcn = 50 100 200 400 700 1000

0.5 1 1.127 1.378 1.741 2.250 2.803 3.203
5 1.604 2.150 2.970 4.341 5.984 7.459

10 1.886 2.529 3.561 5.268 7.459 9.546
20 2.170 3.013 4.320 6.490 9.377 12.24
50 2.760 3.962 5.795 8.913 13.32 17.09

100 3.414 4.994 7.417 11.74 17.38 21.28
200 4.287 6.385 9.672 15.64 21.49 24.44
500 5.900 8.955 14.20 21.07 25.29 27.18

1000 7.544 11.84 18.56 24.44 27.18 28.24

0.75 1 1.279 1.650 2.204 3.040 3.980 4.731
5 1.864 2.466 3.488 5.043 6.821 8.420

Hi 2.139 2.910 4.177 6.098 8.398 10.50
20 2.533 3.555 5.132 7.576 10.62 13.53
50 3.333 4.755 6.976 10.53 15.22 19.17

100 4.021 6.043 8.954 13.93 19.75 23.32
200 5.162 7.732 11.73 18.37 24.00 26.66
500 7.310 10.93 17.17 23.99 27.55 29.10

1000 9.100 14.62 21.77 27.11 29.33 29.99

1 1 1.453 1.920 2.635 3.712 4.835 5.752
5 2.062 2.773 3.964 5.660 7.562 9.166

10 2.429 3.346 4.812 6.943 9.418 11.60
20 2.956 4.148 6.004 8.753 12.10 15.17
50 3.941 5.637 8.226 12.31 17.48 21.33

100 4.995 7.172 10.61 16.36 22.23 25.44
200 6.257 9.189 14.02 21.15 26.12 28.41
500 8.753 13.18 20.21 26.35 29.33 30.48

1000 11.34 17.64 24.75 28.87 30.71 31.16

1.25 1 1.658 2.154 2.971 4.187 5.403 6.362
5 2 295 3.134 4.468 6.362 8.467 10.20

10 2.760 3.859 5.544 7.953 10.69 13.12
20 3.438 4.842 6.970 10.10 13.96 17.33
50 4.655 6.596 9.614 14.43 20.09 23.62

100 5.894 8.421 12.51 19.13 24.79 27.37
200 7.387 10.88 16.72 23.86 28.07 29.94
500 10.41 15.86 23.23 28.54 30.64 31.58

1000 13.71 20.89 27.13 30.41 31.81 32.05

“Nuh1 , = 4.746, 4.501, 4.364, and 4.275 for n = 0.5, 0.75, 1, and 1.25, respectively; n = power-law 
index.

power-law, viscoelastic polyacrylamide solutions (0.4 < n < 1) in different coils (R/a 
= 12.7, 16.8, 26.7, 32, and 43) as

/3n + l\0-33 , n„\ K'>Nu T = 1.75 —— Gz°-33(1 + 0.36 De°f) ~
X-T \ 4n v 6 '\Kt

for 4 < Degen < 60 (5.76)
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and

for 60 < Degen < 2000 (5.77)

Equations (5.76) and (5.77) take account of the change in the consistency index K' due 
to the temperature variation. In addition, they have correct form in that as Degen -> 0, 
they reduce to the classical constant-property, non-Newtonian Pigford solution for the 
thermal entrance region in a straight tube [91]. Moreover, they further reduce to the 
classical Leveque-type constant-property Newtonian thermal entrance length solution 
if n = 1.

Equations (5.76) and (5.77) are for power-law viscoelastic fluids. As noted earlier, 
the friction factors for a viscoelastic fluid in laminar flow are not significantly different 
from those for inelastic fluids. Similarly, it is conjectured that laminar flow Nusselt 
numbers for power-law inelastic or viscoelastic fluids may be the same. Therefore, the 
correlation of Eqs. (5.76) and (5.77) may be used as design equations for laminar flow 
of power-law fluids until specific experimental data/correlations are available.

5.6 FLOW THROUGH COILS OF NONCIRCULAR CROSS SECTION

Analyses and experiments are reported in the literature for curved coils having square, 
rectangular, elliptical [82], and concentric annular [83,84,92] cross sections. However, 
most of the usable data for a practicing engineer are restricted to curved helical coils 
with square cross section. Results are summarized here for square, rectangular, and 
parallel-plate cross sections. All ducts are curved coils unless noted otherwise.

5.6.1 Fully Developed Laminar Flow

Velocity Profiles — Helical Coils. Available results for elliptical curved coils and 
annuli are limited to De < 30, and hence are not reproduced here. In the case of square 
cross-section coils, various investigators note that up to De = 100, the secondary flow 
velocity profile shows two vortices similar to those observed in a circular cross-section 
helical coil. However, for De > 100, four vortices appear in a square cross-section coil, 
and these additional vortices reduce the sharpness of the velocity profile and also 
reduce the peak velocities. These extra vortices vanish at about De = 500. The exact 
value of De for their appearances and disappearances depends on the channel aspect 
ratio [67], j

Mori et al. [68] have obtained a boundary-layer solution (De > 100) for j flow 
through a curved square channel. Their calculated velocity profiles show a good 
agreement with their own experimental data for air. The general pattern of their 
velocity profile is very much similar to that observed in a circular cro^s-section coil. 
The effect of additional vortices between De = 100 and 500 is not significantly 
noticeable in the velocity profile of Mori et al. To calculate the velocity profile, they 
divided the channel boundary layer into three regions along three walls as shown in 
Fig. 5.11. Their velocity profile is given next. The second subscript (i, ii, or iii) for the 
velocity components indicates the boundary-layer regions shown in Fig. 5.11:
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y

Boundary layer

Figure 5.11. Boundary-layer regions in a curved square duct [68].
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where

1.541 05 2.668
P " TT(1-41De) A - -^(l-UDO

8 - 5.99o(1.41De) 0 5

l/l I yI
7i = 0.5 - 0.5 — 7j*  = 0.5 - 0.5— (5.88)

a a

Equations (5.78) to (5.88) are recommended for the calculation of velocity profiles in a 
curved square channel for fully developed laminar Newtonian fluid flow with De > 100. 
At present, no simple correlations are available to calculate the influence of the duct 
aspect ratio on velocity profiles.

Friction Factors — Square Cross-Section Helical Coils. Based on the comparison 
of various theoretical [67-69] and experimental [70] results, the following correlations. 
Eqs. (5.89)—(5.91), seem to give the best fit of the available experimental data and 
theoretical predictions. These equations were obtained from Refs. 67, 69, and 68, 
respectively; however, their application range has been modified to obtain the best fit 
of the available data:

-----Ji = 0.1520De° 5(1.0 - 0.216De05 + O^De”1(/Re). 1

+ 111.6De-15 - 256.IDe-2) for De <: 100 (5-89)

(/Re),
= 0.2576De°39 for 100 < De <: 1500 (5.90)

(/ Re),

(/Re)c.
(/Re).

= O.1115De0-5 for De > 1500 (5-91)

The influence of the coil pitch on the friction factor has been found to be negligible 
[71,72], As expected, at high pitch values (b/a = 200 to 600), the coil pitch shows a 
little influence on friction factors [72].

Friction Factors — Rectangular Cross - Section Helical Coils. Cheng et al [67] 
have correlated their numerical results for the aspect ratio a*  = 0.5, 1, 2, and 5 as

/ nJ Ci C3 Q- = C0De* 05 1.0 + ----- + —— + -----------V? + —
fs 0 \ De* 05 De*  De* 1-5 De* 2

for De*  < 700 or De < 435 (5.92)

where C(), CT, C2, C3, and C4 are constants listed in Table 5.3. Here De*  = 
Re( )1/2. The results of this equation are in fairly good agreement with the other 
numerical results [69],

Temperature Profiles — Helical Coils. Mori et al. [68] have obtained temperature 
profiles in a square cross-sectional channel using boundary-layer approximations. Their
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TABLE 5.3 Laminar Flow in a Helical Coil of Rectangular Cross Section:
Constants for Eq. (5.92) [67]

a* Q Q c c3 Q
0.5 0.0974 4.366 -13.56 131.8 -182.6
1.0 0.1278 -0.257 0.699 187.7 -512.2
20 0.2736 -24.79 325.2 -1591.0 2728.0
5 0 0.0805 -5.218 104.4 -202.8 0.0

solution for the (m) boundary condition and Pr < 1 is given below. The subscripts i, ii, 
and iii in the solutions correspond to the regions depicted in Fig. 5.11.

In a core region,

D4 = 0 225 Re (1,414 De) 05 and 8, = 0.851 — for Pr < 1 (5.97a)

D4 = [(0.375 Pr 8t/8) - 0.0937]Re( 1.414 De) 0 5 for Pr > 1 (5.97b) 

and D3, X, 8, rj. and rj*  are defined in Eq. (5.88).
The above equations are in fairly good agreement with the experimental data for air 

[68], Therefore, Eqs. (5.93) through (5.97a) are recommended for the (m) boundary 
condition when De > 100, Pr < 1, and R/a > 1. As discussed earlier, it is important 
to note that Eqs. (5.93)-(5.96) and Eq. (5.97b) give an approximate temperature profile 
for fluids with Pr > 1 [89], In Eq. (5.97b) 8,/8 values are 1.0, 0.739, 0.441, 0.262, 0.253, 
and 0.250 for Pr = 0.851, 1, 3,10, 30, and oo.
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Nusselt Numbers — Square Cross-Section Helical Coils. Several theoretical cor
relations are available to calculate Nusselt numbers in square cross-section coils. The 
following correlation by Cheng et al. [73] is particularly recommended:

NuH2 = NuT = 0.152 + 0.627(1.414 De)°'5Pr° 25 ( 5.98)

which is valid for 0.7 < Pr < 5 and 20 < De < 705. This correlation shows a good 
agreement with the experimental data for air for the (m) boundary condition [68]. In 
addition, it also represents the (t) boundary condition predictions very well [74],

As noted earlier, the influence of the wall thermal boundary condition on the coil 
Nusselt number is not significant for Pr > 0.7. Therefore, the above equations could be 
used for (m), (m), and (t) boundary conditions. Beyond the range of the parameters for 
the above correlation, the use of the appropriate correlation for circular cross-section 
coiled tubes is recommended with the substitution of the appropriate hydraulic 
diameter for 2a.

The influence of free convection on heat transfer and friction factor in a square 
channel with the (h?) boundary condition is reported by Akiyama et al. [75], They 
recommend the following correlation to take account of natural convection combined 
with forced convection:

Num = (1.0 + 0.275 De*  Gr-°-5)Nu5 (5-99)

where Nu, is for natural convection in a straight horizontal duct with a square cross 
section [75]:

Nuy = 0.525(16 Gr)0175 (5.100)

Nusselt Numbers — RectangularCross - Section Helical Coils. Butuzov et al. [76] 
determined experimentally the Nusselt numbers for laminar flow of water through 
three curved rectangular coils (a*  = 0.45, 0.67, and 1)+ subjected to the (m) boundary 
condition. Their Nusselt numbers for De = 100 to 1000 exhibit a very little influence of 
the duct aspect ratio. They found that their experimental Nusselt numbers for rectan
gular cross-section coils were 17% lower than those for circular cross-section coils of 
the same hydraulic diameter. This contradicts the Nusselt number values obtained in 
straight ducts of circular and rectangular cross sections. Thus, it appears that the 
correlations for circular tubes with the appropriate hydraulic diameter may be used in 
laminar flow for rectangular ducts without introducing significant errors until more 
definite results are available.

5.6.2 Hydrodynamically Developing Laminar Flow
The only solution available is for the parallel-plate curved channel. So [77] formulated 
correlations for R/a > 2.5 for the entry lengths and friction factors based on his

+ Butuzov et al. [76] did not clearly define the duct aspect ratio in relation to the coil curvature.
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numerical results; here 2 a is the distance between parallel plates:

= 0.026(1 + 1.153 — 1 Re
\ RJ

(5.101)

I a \
= 0.026 1 + 3.153— Re

\ R)
(5.102)

I a 0.626a Re/ 1.51a \
— = 1.0 + — + ------------- 1.0-----------

\ / inner wall \ R /
(5.103)

outer wall

0.626 a Re 2.785a
1.0------------

R
(5.104)

a
-10+R

5.6.3 Thermally Developing and Hydrodynamically Developed 
Laminar Flow

Numerical solutions for thermally developing flow in a curved square duct and 
rectangular ducts are given by several authors [73-75]. The results of Cheng et al. [73] 
for the (t) boundary condition are plotted in Fig. 5.12. The figure demonstrates the 
oscillatory Nusselt number behavior in the entrance region, very similar that found in a 
circular curved tube. Similar oscillatory trends are also observed for the (m) boundary 
condition. The results indicate that the thermal entrance length L* h = 0.02 which is 
about 2 to 3 times shorter than that for a straight duct.

5.6.4 Thermally and Hydrodynamically Developing Laminar Flow
Helical Coils. The experimental data for thermally and hydrodynamically developing 
flow are reported by Shchukin and Filin [78] for a short square duct with the (m) 
boundary condition and with water as the test fluid. Their correlations of data seem to 
assume free convection alone controlling coiled-tube heat transfer up to De = 800. 
This is contrary to most of the other results. Thus no reliable test data are available for 
simultaneously developing laminar flow in a curved square coil or a curved coil of any 
other noncircular cross section.

Spiral Plate Heat Exchangers. Normally, a spiral plate heat exchanger consists of 
two spiral channels with rectangular cross section. Two different fluids flow through the 
two channels. In laminar flow, Coons et al. [79] found the measured heat transfer 
coefficients to be only 35% greater than those in a straight duct. They found such 
limited improvement because they used a wrong equation to calculate straight-duct 
Nusselt numbers. Using a correct straight-tube equation, the calculated enhancements 
over straight-tube Nusselt numbers turn out to be of the order of 60 to 70%. Coon et al. 
proposed the following equation for Nusselt numbers, based on the arithmetic mean 
temperature difference, to correlate their viscous-oil heating data:

Nuam = 8.4Gz0-2 (5.105)
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(b)

Figure 5.12. The influence of Dean number on the local Nusselt numbers for the (?) boundary 
condition for a curved square tube [73].

5.6.5 Turbulent Flow
Friction Factors. Kadambi’s [80] air friction factor data for Re > 8000 for two 
curved rectangular ducts are well predicted by a circular-tube correlation [such as Eq. 
(5.48)] when the hydraulic diameter of the rectangular tube is used. However, for 
Re < 8000 the friction factors for a curved rectangular duct were higher than those for 
the curved circular tube. Higher friction factors were also observed bv Butuzov et al.
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[76]. Their experiments included two rectangular ducts and a square duct with water 
and Freon as working fluids. They have correlated their extensive test results as [80]

0.22
4 = 0.435 X 10' 3Re* n96 (5.106)

where d * represents the short channel side and is used as a characteristic dimension in 
Re*.  In the above equation, / represents the friction factor in a straight duct with the 
same aspect ratio as that of a curved coil. The application range for the correlation is 
given as 450 < Re*(</*//?) 05 < 7500 and 25 < R/d*  < 164. Thus, Eq. (5.106) may 
be used for curved rectangular ducts for Re*  < 8000, and Eq. (5.48) or (5.49) for 
Re*  > 8000, with a replaced by 0.5Z);,, where Dh is the hydraulic diameter of the 
rectangular duct.

Helical Coils, Rectangular Cross Section. Experimental Nusselt numbers for 
turbulent flow through a curved rectangular duct are reported by Butuzov et al. [76] 
and Kadambi [80], Butuzov et al. [76] have correlated their experimental data on water 
and Freon in three helical coils (two rectangular and one square cross section) as

Nuc R \
---- - = 0.117 X 10"2Re* 093 —
Nuf \ d * /

(5.107)

which is valid for 450 < Re*  (R/d*) 05 < 7500 and 25 < R/d*  < 164. Nuv is an 
asymptotic Nusselt number for a straight duct of the same aspect ratio as that of a 
curved duct under consideration, and d * is a shorter channel side.

Helical Coils, Parallel-Plate Cross Section. Kreith [9] has obtained integronumeri- 
cal solution for the Nusselt number for flow through a curved parallel-plate channel 
subjected to the (hi) boundary condition. Figure 5.13 shows a plot of Kreith’s 
numerical results. As noted in all other cases, an increase in Pr is similar to an increase 
in De in augmenting Nusselt numbers. He also noted that the Nusselt numbers at the 
outer wall were higher than those at the inner wall.

Spiral Plate Heat Exchanger. For a spiral plate heat exchanger, the flow passage 
cross section is rectangular with a small aspect ratio. Tagri and Jayaraman [81] have 
reported experimental water-to-water heat transfer data for such an exchanger. The 
authors [81] have correlated their results for Re > 6000 as

Nuc

n4 1.0 + 1.77—— 
R™

(5.108)

where Nu is evaluated using the straight-tube Dittus-Boelter correlation.
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Figure 5.13. Turbulent flow Nusselt numbers in curved ducts of parallel-plate cross section [9],

5.7 CONCLUDING REMARKS

About 200 papers on curved ducts were reviewed and the results (correlations) were 
compared. Based on this extensive information, the present condensed article has been 
prepared. The results are summarized for laminar and turbulent flow of Newtonian and 
non-Newtonian fluids in coils of circular and noncircular cross section, and correlating 
equations for pertinent results are identified in Table 5.4 for coils of circular cross 
section. The results of each section and subsection indicate the present state of the art 
and should provide guidelines for future research.
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NOMENCLATURE

a tube inside radius or half duct width for a noncircular cross-section
channel, m, ft

A flow cross-sectional area, m2 ft2
b coil pitch (see Fig. 5.1) m,ft
c half channel height of a rectangular duct in the direction perpendicular

to the radius of curvature, m, ft



TABLE 5.4 Summary of Major Correlations for Curved Ducts of Circular Cross Section

Type of 
Fluid Specific Quantities Pertinent Solutions

Newtonian

HILICAL COILS

Fully developed flow
fluid— Velocity profiles Eqs. (5.11)—(5.14)
laminar Friction factors—constant properties Eqs. (5.16), (5.17)
flow Friction factors—variable properties Eq. (5.18)

@ temperature profiles Eqs. (5.23), (5.26)
(m) tempet ature profiles Eqs. (5.27), (5.28)
© Nusselt numbers Eq. (5.29)
@ Nusselt numbers Eq. (5.32)
(h?) Nusselt numbers Table 5.1

Hydrodynamically developing flow: 
Entrance length Eq. (5.36)

Thermally developing and 
hydrodynamically developed flow: 
® Nusselt numbers Eq. (5.37)
(m) Nusselt numbers Eq. (5.38)

Newtonian Velocity profiles Eqs. (5.40)-(5.44)
fluid— Friction factors—constant properties Eqs. (5.48), (5.49)
turbulent Friction factors—variable properties Eq. (5.50)
flow Temperature profiles Eqs. (5.52), (5.53)

Nusselt numbers—constant properties Eqs. (5.56), (5.57)
Nusselt numbers—variable properties Eq. (5.58)

Non-Newtonian Fully developed laminar flow:
fluids Friction factors,

power-law inelastic fluids Eq. (5.67)
Friction factors, 

power-law viscoelastic fluids Eq. (5.69)
® Nusselt numbers Table 5.2

Thermally developing and 
hydrodynamically developed laminar flow:
0 Nusselt numbers Eqs. (5.76), (5.77)

Fully developed turbulent flow: 
Friction factors, 

power-law inelastic fluids Eqs. (5.74), (5.75)

SPIRAL COILS

Newtonian 
fluids

Non-Ncwtonian 
fluids

Laminar flow friction factors
Laminar flow @ Nusselt numbers 
Turbulent flow friction factors 
Turbulent flow Nusselt numbers 
Laminar friction factors, 

power-law, inelastic fluid

Eq. (5.19)
Eq. (5.31)
Eq. (5.51)
Eq. (5.58) with Rave

Eq. (5.72)

5-39
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Cp specific heat of fluid at constant pressure, J/(kg • K), Btu/(lbm - °F)
Dh hydraulic diameter of the duct = 4 A/p = inside diameter for a circular

tube, m, ft
De Dean number = Re^u/jR = Re^OJ Dh/R
De * modified Dean number = Re^Dh/R
Degen generalized Dean number = Regen^u/R
fc curved-tube Fanning friction factor = rw/(pu^,/2)
fs straight-tube Fanning friction factor for fully developed laminar flow
Gr modified Grashof number = ftga^q"/kv2
Gr' Grashof number = Sftga3 LT/v2
Gz Graetz number = mcp/kL = p/(ADhx*)
h heat transfer coefficient, W/(m2 ■ K), Btu/(hr • ft2 • °F)
(m) thermal boundary condition referring to constant axial wall heat flux

with constant peripheral wall temperature
(m) thermal boundary condition referring to axially and circumferentially

uniform and constant wall heat flux
He helical coil number [see Eq. (5.2)]
k fluid thermal conductivity, W/(m • K), Btu/(hr • ft • °F)
K' consistency index for non-Newtonian fluids, Pa-s", Iby • s"/ft2
K" modified consistency index for non-Newtonian fluids, Pa • s", Iby • s"/ft2
L tube length, m, ft
L hv hydrodynamic entrance length, m, ft
Lth thermal entrance length, m, ft
Lt*h = Lth/(P,RePr)
m mass flow rate, kg/hr, lbm/hr
n non-Newtonian fluid power-law index [see Eq. (5.59)]
nx number of coil turns at the beginning of the spiral = L/(2<nbN) - N/I
n2 number of coil turns at the end of the spiral = L/(2irbN) + N/2
N number of spiral coil turns = n2 — n1
Nu Nusselt number = h Dh/k
Nubc peripherally averaged mean Nusselt number in the fully developed

region for a given boundary condition be
Nu bc mean Nusselt number in the thermal entrance length for a given boundary 

condition bc
Nu^ bc peripherally local Nusselt number in the fully developed region for a 

given boundary condition bc
Nux bc peripherally averaged axially local Nusselt number in the thermal en

trance region for a given boundary condition bc
p duct wetted perimeter, m, ft
P fluid static pressure, Pa, lby/ft2
Pr Prandtl number = pcp/k
q heat transfer rate, W, Btu/hr
q' heat transfer rate per unit length, W/m, Btu/(hr • ft)



NOMENCLATURE 5‘41

q" heat flux, W/m2, Btu/(hr • ft2)
r radial distance, m, ft
R radius of curvature (see Fig. 5.1), m, ft
Re Reynolds number = pumDh/p
Reoen generalized Reynolds number [see Eq. (5 63)1 Peg,n ( defined by Eq.

(5.66)
R .ve mean radius of curvature for a spiral, m, ft
T temperature, K, °C, °R, °F
® thermal boundary condition referring to axially and peripherally con

stant wall temperature
um mean axial velocity, m/s, ft/s
u, axial velocity along the curvilinear axial coordinate, m/s, ft/s
ur radial velocity, m/s, ft/s
ufl angular velocity, m/s, ft/s
a axial distance along the axis of the curved tube, m, ft
a * dimensionless length = x/Dh Re Pr
r, : Cartesian coordinates across the flow cross section, m, ft

Greek Symbols
a fluid thermal diffusivity, m2/s, ft2/s
«*  aspect ratio of a rectangular channel, = 2 c/2 a
ft coefficient of thermal expansion, 1/K, 1/°R
8 momentum boundary-layer thickness, m, ft
8*  dimensionless radial location within the boundary layer, = (a — r)/8
8, thermal boundary-layer thickness [see Eq. (5.25)], m, ft
A prefix denoting a difference or change

eddy diffusivity for heat transfer, m2/s, ft2/s
eA/ eddy diffusivity for momentum, m2/s, ft2/s
0 angular coordinate in the cylindrical coordinate system (see Fig. 5.1),

rad, deg
g dynamic viscosity, Pa • s, lb,,,/(hr • ft)
p.cl1 effective dynamic viscosity, Pa • s, lb„,/(hr ■ ft)
pn effective dynamic viscosity of non-Newtonian fluid, Pa ■ s, lb,„/(hr • ft)

turbulent viscosity, Pa • s, lb„,/(hr • ft)
p fluid density, kg/m3, lbm/ft3
t wall shear stress, Pa, Ify/ft2
/ angle of tube curvature, rad, deg

Subscripts
be
c
Hl

boundary condition 
curved coil or duct 
(hi) boundary condition
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H2 (h|) boundary condition

in inlet
m bulk mean value

P 
s 
T

peripheral value 
straight duct
(t) boundary condition

w wall
X
8
0

axial
at the edge of velocity boundary layer 
tube center
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6.1 SPECIFIC FEATURES OF CROSS FLOW FLUID DYNAMICS AND 
HEAT TRANSFER

The fundamentals of heat transfer by forced convection are presented in Chaps. 1 and 
2. We deal here with heat transfer from tubes of different cross sections and bodies of 
other geometries, which are applied in modem heat exchangers. Heat transfer is closely 
related to fluid dynamics. That is why heat transfer is considered simultaneously with 
fluid dynamics.

Fluid dynamics and heat transfer around curvilinear bodies are complex processes, 
mainly dependent on the fluid type and the Reynolds number

ud
Re = — (6-1)

where u and d are the reference (or characteristic) velocity and diameters, respectively, 
and v the kinematic viscosity.

In real fluids, due to their viscosity, a laminar boundary layer is formed on the front 
part of a body, its thickness increasing downstream. It also involves a longitudinal 
pressure gradient caused by the curved surface. From a two-dimensional equation of 
momentum (see Chap. 1)

du du 1 dP 1 dr
u— + v— =------- — + - — (6.2)

dx dy p dx p dy

with the boundary condition u = v = 0 when y = 0. A relation between shear stress 
derivative at y = 0 and the pressure gradient is

( dr\ dP

The shear stress at the wall for a laminar boundary layer is determined by the 
near-wall velocity gradient

(6-4)

A decrease or a zero value of the shear stress tk. is reflected by a corresponding change 
in the velocity gradient du/dy. In the classical theory of flow separation, the 
boundary-layer separation point is assumed to be at (du/dy)v = (j = 0. From Eq. (6.4), 
we see that this is the point where the shear stress acquires a zero value, rH. = 0, so that 
the boundary layer can separate from the surface (see Fig. 6.1). The separation point is 
followed by an inverse flow, where the velocity vectors of near-wall fluid masses are in 
opposite directions. The inverse layer contacts the boundary layer and curls up in a 
vortex, which begins to rotate.

Each of the above phenomena of fluid dynamics is reflected in the local heat 
transfer. For a heat flux to appear, there must be a temperature gradient in the flow. 
The local heat transfer coefficient is defined by

k
h =-------------

T - TW xQt

dr 
dy (6-5)
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Figure 6.1. Velocity distribution on a curvilinear surface near the separation point.

With a laminar boundary layer developing on the front part of a curvilinear body in 
cross flow, the heat transfer coefficient decreases with increasing thickness, and is lower 
in fluids of lower heat conduction. Heat transfer increases in the rear recirculation 
region, downstream from the boundary-layer separation.

Heat transfer from tubes and other bodies in cross flow is determined by the stream 
velocity, turbulence level, physical properties of the fluid, thermal load, heat flux 
direction, geometry of the body, and some other factors. The most general dimension
less description is

M k cpNu = / Re, Pr, Tu, —, —, -L-
\ Cp, w

p
pw

(6-6)

To predict heat transfer by Eq. (6.6), it is usually written in the following way:

Nu = cRe"'Prn (6.7)

where the Nussclt number Nu = hdlt/k, the Prandtl number Pr = ^cp/k, and the 
Reynolds number Re = uQd0/v.

Fluid physical properties in the heat transfer equation are described by the Prandtl 
number, which is about 0.7 for most gases. Therefore, from experimental data on heat 
transfer in air or in other gases, we have

Nu = cRem (6.8)

The process of heat transfer involves a change of temperature, and consequently, 
variable fluid physical properties. Thus to account for the effect of fluid physical 
properties in heat transfer implies the prediction of the effect of their change on a 
temperature variation across the boundary layer. We encounter a problem of choosing 
the so-called characteristic temperature, or reference temperature, for the physical 
properties.

Different approaches to evaluating temperature dependence of fluid physical proper
ties are currently in use. We suggest the bulk mean temperature of the fluid as the 
reference temperature for moderate temperature gradients. This approach is simple and 
sufficiently accurate for practical purposes.
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A marked influence of fluid physical properties on the heat transfer in viscous fluids 
is related to their dependence on the heat flux direction and on the temperature 
gradient. Experimental data, with reference to the bulk mean temperature, show that 
heat transfer coefficients are higher for wall-to-fluid heat transfer (fluid heating) than 
for fluid-to-wall heat transfer (fluid cooling). The difference increases with the tempera
ture gradient.

To account for the heat flux direction, when fluid physical properties refer to the 
fluid bulk mean temperature, we introduce ratio Pr/PrM with a proper power index p, 
where Pr„ stands for Pr evaluated at the wall temperature. Thus we arrive at the 
following relation for the heat transfer from bodies in cross flow of viscous fluids:

I Pr \
Nu = cRemPr" —

\ PfH /
(6-9)

where fluid properties refer to the bulk mean temperature. For gases, Pr is constant and 
Pr/PrM, » 1.

Both the fluid dynamics and heat transfer are also influenced by free-stream 
turbulence, geometry, surface roughness, etc.

A large number of heat exchangers employ tube bundles or other arrays. Both the 
fluid dynamics and heat transfer over bundles are again different from those over single 
tubes, because of the additional influence of the neighboring tubes. Still other types of 
flow are induced by the application of smooth or rough-surface or finned tubes.

6.2 HEAT TRANSFER FOR SINGLE TUBES AND BODIES

6.2.1 Fluid Dynamics over a Single Tube and a Sphere
The velocity distribution over a circular cylinder in cross flow of an ideal fluid (no 
boundary layer) is described by

(6.10)

Here ro and rY are outside radius of the cylinder and the radial distance from its axis, 
respectively. The velocity is larger at smaller distances, and on the surface itself it is

w = 2w0Osin<^> (6.11)

We now relate Eq. (6.11) to the Bernoulli equation

P + = constant (6.12)

and find a functional relation between the velocity of the flow and the pressure 
coefficient

2(P-Pm)
CP =-------- ------  = 1 - 4 sin2 (6.13)

Thus from Fig. 6.2, the pressure coefficient for potential flow has two maxima at 
<£> = 0° = 360° and <?> = 180°, and two minima in the medial cross section. The 
pressure coefficient is distributed symmetricallv in tfleal fluids.
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Figure 6.2. Circumferential distribution of the pressure coefficient over a cylinder in cross flow.

The distribution of the pressure coefficient is a reflection of the flow phenomena. On 
a cylinder in a real fluid, their interaction with the viscous force gives rise to a laminar 
boundary layer, which is formed on the front part and whose thickness increases 
downstream. The main determining parameters of this layer are the Reynolds number 
Re and the turbulence level Tu. In Fig. 6.2, the curve for the subcritical flow represents 
the circumferential distribution of the pressure coefficient on a cylinder in the medium 
range of Re (Re < 2 X 105). The kink in the curve at a point <f> = 80° corresponds to 
the boundary-layer separation and to the formation of a complex vortical flow in the 
rear.

With an increase of Re (Re > 2 X 105), the flow enters the critical regime, and the 
corresponding distribution of CP is shown in Fig. 6.2. The laminar boundary layer 
separates on the front part point S', forms a separation bubble, and later reattaches at 
point B. Reattachment is followed by a turbulent boundary layer, which withstands the 
increased pressure gradient and finally separates at </> = 140°.

In the supercritical regime, at Re > 0.6 X 106, the laminar-turbulent transition 
occurs in a nonseparated boundary layer, and the transition point is shifted upstream 
as shown in Fig. 6.2. The separation of the turbulent boundary layer occurs at 
between 120° and 140°.

The location of a laminar-turbulent transition in the boundary layer depends both 
on the Reynolds number and on the turbulence level.

Figure 6.3 shows the dynamic behavior of the laminar-turbulent transition as a 
function of Re and Tu, according to measurements of fluid dynamic and thermal 
parameters [1,2]. For example, the transition from the laminar boundary layer initiates 
at 4> = 80° for Re = 4.3 X 105 and Tu = 7%.

On a sphere, the distribution of pressure and velocity is analogous to that on a 
circular cylinder [3],

6.2.2 Drag on a Cylinder and a Sphere
The total drag is generated by the friction force Ff and pressure force FH acting on a 
body in cross flow. At very low Re, a cylinder and a sphere are streamlined, and their 
drag consists mainly of friction. Figure 6.4 presents the local skin friction coefficient c, 
on a circular cylinder for various Re [2,4]. We see that cy increases from zero at 

= 0° to a maximum value at <f> = 60°, and again diminishes. The point which 
indicate zero friction coefficient represents the boundary-layer separation. With a 
further increase of Re, the contribution of inertial forces begins to grow, so that in a 
highly vortical flow, skin friction drag constitutes just a few percent of the total drag.



Re
Figure 6.3. Locations of the separation point of the laminar boundary layer for Re < 2 X 105, 
and of the laminar-turbulent boundary-layer transition point for Re > 2 X IO5, as functions of 
Re and Tu.

Figure 6.4. Friction coefficient of a cylinder for variable Re.

6«6
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Figure 6.5. Total drag coefficient of a cylinder and a sphere for variable Re [1], Regions of Re: 
(1) laminar, (2) subcritical, (3) critical and (4) supercritical.

A dimensionless expression for the total drag coefficient is

C = _2_____
1 2 j tipuxd0L

(6-14)

The drag coefficient for a circular cylinder and a sphere is shown in Fig. 6.5 as a 
function of Re. The drag coefficient decreases significantly with increasing Reynolds 
number in the low range of Re (region 1), due mostly to the contribution of the skin 
friction. In the subcritical flow regime (region 2), CD changes insignificantly with Re. In 
the critical flow regime (region 3), the total drag coefficient sharply decreases with Re. 
This is due to a much narrower wake caused by the turbulent boundary layer and a 
downstream shift of its separation. In the supercritical flow regime (region 4), the total 
drag increases again because the streamlines are displaced by the thicker turbulent 
boundary layer.

Figure 6.5 includes a curve of the drag coefficient of a sphere, which is similar to 
that of a circular cylinder.

2X11 increase in the turbulence level leads to an earlier onset of the critical flow 
regime with corresponding changes of the total drag coefficient as shown in Fig. 6.6.

Figure 6.7 shows the effect of surface roughness on the drag coefficient of a circular 
cylinder in the critical flow regime [2,4], Here the surface roughness causes a higher 
drag coefficient and an earlier onset of the critical flow regime.

6.2.3 Local Heat Transfer for a Cylinder and a Sphere
The variable fluid flow over a cylinder in cross flow gives rise to similar variations of 
the local heat transfer. On the front part, up to the separation of a laminar boundary 
layer, the heat transfer can be determined by either approximate or exact analytical
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Figure 6.6. Total drag coefficient of a cylinder for variable Tu and Re [1].

Figure 6.7. The effect of surface roughness of a cylinder on its pressure drag coefficient.

techniques [5,6], In the lower range of Re (Fig. 6.8, Re = 500), the heat transfer on the 
front part of a cylinder is at its maximum. It gradually decreases with the development 
of a laminar boundary layer. At higher values of Re (Fig. 6.8, Re = 104), heat transfer 
gradually increases downstream of the laminar boundary-layer separation and is 
mainly determined experimentally [1].

Two heat transfer minima (Fig. 6.8, Re = 2 X 105) are observed in the critical flow 
regime. The first is at the separation of a laminar boundary layer (<J> about 84°), where 
a separation bubble appears. The second minimum is at the separation of a turbulent 
boundary layer.

In the supercritical flow regime, the first heat transfer minimum (Fig. 6.8. Re = 2 X 
106) corresponds to the laminar-turbulent transition in the boundary layer (<f> «= 30°).
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The second minimum is at the separation of a turbulent boundary layer. Although the 
results of Fig. 6.8 are for Tu = 1%, we note again that the location of the laminar- 
turbulent transition depends on Re and Tu.

In the supercritical flow regime, an increase of turbulence level causes an upstream 
shift of the first heat transfer minimum, so that the region of the laminar boundary 
layer is narrowed. As a result, total heat transfer from the front part is considerably 
augmented. Effects of higher turbulence levels are in general insignificant in the rear 
part in the subcritical and critical (not shown in Fig. 6.9), or supercritical flow regime 
(shown in Fig. 6.9). A higher turbulence level causes heat transfer augmentation on the 
front part of a cylinder [2],

Heat transfer can be augmented by different influences on the laminar boundary 
layer, where the thermal resistance is the highest. A higher level of turbulence augments 
the heat transfer through an external influence on the boundary layer. Internal 
influences are equally effective. Thus surface elements on a rough heat transfer surface 
turbulize the laminar boundary layer or even destroy it. Special studies suggest that a 
60 to 80% augmentation of the heat transfer can be achieved with an optimal surface 
roughness [2,7], With an increase of Pr, the thermal resistance concentrates in the 
viscous sublayer, so that heat transfer augmentation can be achieved by lower surface 
elements. The additional turbulization of the boundary layer by surface elements is 
similar to the effects of higher turbulence levels. With higher surface elements, heat 
transfer augmentation is accompanied by an earlier onset of the critical flow regime.

Local heat transfer on a sphere is similar to that on a circular cylinder [8],
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Figure 6.9. Local heat transfer from a cylinder to air in the supercritical flow regime for variable 
Tu[l],

6.2.4 Average Heat Transfer for a Cylinder and a Sphere
The average Nusselt number for cross flow around a cylinder depends upon the 
Reynolds and Prandtl numbers. It is shown in Fig. 6.10 for air and water heating with 
constant fluid properties. From Eq. (6.9V

Nu
Pr"(Pr/Pr./)p

= cRem« Re"’ (6.15)

At low values of Re, the slope of the curve, which corresponds to the exponent m of 
Re, varies from 0.4 to 0.5. In the higher subcritical range of Re, it increases to 0.6. In 
the critical flow regime (Re = 2 X 105), the behavior of the heat transfer is difficult to 
define, but in the supercritical flow regime the exponent of Re increases to 0.8. Thus 
the exponent m of Re varies from 0.4 to 0.8 [1],

The exponent n of Pr is equal to 0.37 in the subcritical flow regime, and 0.4 in the 
supercritical flow regime (0.37 is shown in Fig. 6.10, but 0.4 is more accurate).

With physical properties evaluated at the bulk mean temperature, their effect on the 
heat transfer for heating and cooling is satisfactorily approximated by (Pr/Prb )p. For

fFor constant fluid properties, (Pr/Prw)p = 1 and n = 0.37 for the ordinate of Fig. 6.10.
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wall-to-fluid heat transfer, the value of p is about 0.25; for fluid-to-wall heat transfer, it 
is 0.20. A mean value of p ~ 0.25 can be assumed for both heat flux directions at 
moderate temperature differences. The data in Fig. 6.10 are satisfactorily described by 
Eq. (6.9). For the heat transfer from a cylinder in cross flow [1,2], we recommend 
several formulas for different ranges of Re as shown in Table 6.1. Here Re = z/()c/„/r, 
and the fluid properties are evaluated at the bulk mean temperature.

The heat transfer to and from a sphere is similar to that for a cylinder and is 
determined mainly by Re. Heat transfer for a sphere is described by the following 
equations for Re < 7 X 104:

I Pr \°'25
Nu = 2 + (0.4 Re05 + 0.06 Re07)Pr04 ----

F'r 4 X 10 ' < Re < 5 X 106 and Pr = 0.71,

Nu = (495.9 + a Re + Z?Re2 + cRe3)Pr0 4

where a = 5.767 X 10“4, b = 0.288 X 10“ 9, and c = -3.58 X 10“17.

(6.16a)

(6.16b)

TABLE 6.1. Heat Transfer Correlations for a Cylinder in Cross Flow

F .'commended Correlation" Range of Re

Nu = 0.76 Re04Pr0 37(Pr/PrH.K
Nu = 0.52Re°-5Pr°'37(Pr/PrM,)/’
Nu = 0.26 Re06 Pr°-37(Pr/PrM,)/’
Nu = 0.023 Re° 8Pr04(Pr/PrM,/

10°-4 X 101 
4 x ioMo3

103-2 X 105 
2 X 105-107

p = 0.25 for fluid heating, and p = 0.20 for fluid cooling.
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6.2.5 Factors Influencing Heat Transfer
Correlations for the heat transfer from cylinders and spheres, presented in the previous 
section, have been determined at moderate levels of turbulence Tu < 1%, and hence 
should be applied preferably in the same conditions. A number of studies [1,2,9,10] 
suggest augmentation of both average and local heat transfer from cylinders and 
spheres in cross flow by higher levels of turbulence. In the predictions of the heat 
transfer, several variables should be considered, but the turbulence level is the most 
important of them.

An increase of Tu from 1.2 to 15% yields a 50% augmentation of the average heat 
transfer. An analysis of experimental data [1] also suggests that with Tu > 1%, the 
critical flow regime is reached at ReTu > 150,000 where Tu is the turbulence level in 
percent. Thus to predict the average heat transfer by equations from Table 6.1 at 
Tu > 1%, an additional factor of Tu015 should be introduced, and the general formula 
becomes

Nu = cRemPr" Tu015 (6-17)

At low values of Re, heat transfer from a cylinder in cross flow is influenced by free 
convection, and the influence must be duly evaluated. Free convective motion in the 
medium is caused by a buoyancy force, which is described by the Grashof number 
Gr = gfibTff/v2.

In the case of mixed convection, the relation becomes

Nu = /(Re,Gr,Pr, $) (6.18)

where is the angle between forced convection motion and buoyancy force.
There exist several techniques for evaluating free convection in the case of mixed 

convection [1,11,12]. The concept of an effective Reynolds number is suggested by 
Hatton et al. [11]; its value depends on the angle O. The technique of vector 
summation was applied by Van der Hegge Zijnen [12], so that heat transfer in mixed 
convection could be determined as a sum of free-convection heat transfer and forced- 
convection heat transfer:

(Nu - 0.35)2 = (0.24Gr1/8 + 0.41 Gr1/4)2 + (0.5 Re05)2 (6.19)

With an increase of Re, heat transfer approaches asymptotically the forced convec
tion value, and Eq. (6.19) for air flow reduces to [12]

Nu = 0.35 + 0.5 Re05 (6.20)

Heat transfer from rough-surface cylinders has been studied by Achenbach [4.7] in air, 
and by Zukauskas et al. [2] in water (Fig. 6.11). In air, the average heat transfer from 
cylinders could be augmented with an increase of relative roughness e/d„, where e is 
the roughness height. Similar to the effect of turbulence level, a higher surface 
roughness causes the onset of the critical flow regime at lower Re. In viscous liquids, 
thermal resistance is concentrated in the viscous sublayer. For efficient heat transfer in 
such flows, lower surface elements are preferable.
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Re

Figure 6.11. Average heat transfer from a rough surface cylinder for different Tu. The data from
Ref. 7 are for air; those from Ref. 2 are for water.

6.2.6 Heat Transfer from Tubes of Different Shapes
Cross flow heat exchangers employ tubes of circular, elliptical, and other cross-section 
geometries. Different geometries introduce additional complications in the heat transfer 
prediction techniques. Zukauskas and Ziugzda [2] proposed the following relation for 
average heat transfer from elliptical and circular tubes:

Nurfi O.27Re£6Pr0-37
Pr M5

PM
(6-21)

with dx, the flow-parallel elliptic axis, used as the characteristic dimension in Nu and 
Re

Knowledge of the heat transfer behavior in different parts over bodies wetted by 
either laminar or turbulent boundary layers, enables one to predict heat transfer by the 
following equation [13,14,37]:

NuLq = c + /Nu£ lam + Nulturb (6.22)

where L(. is the stream length, or length along the surface, e.g. = ird^/4 for U = 0 
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to 90° along the circular-cylinder surface. According to Gnielinski [14], c = 0.3. The 
value of Nul lam has to be calculated from equations for a laminar boundary layer, and 
NuA turb from turbulent boundary-layer correlations on smooth flat plates.

6.2.7 Heat Transfer From Tubes in Narrow Channels
Heat transfer from a tube bounded by two flat walls depends on the ratio of the tube 
diameter (Jo) to the channel height or spacing between the two plates (et).

Heat transfer studies [1,2] at Re from 103 to 106 showed that at constant Re and 
Pr, heat transfer increases with = d0/el and depends on the blockage factor. The 
experimental results are satisfactorily approximated by the relations in Table 6.1, but 
the reference mean velocity u0 in the minimum space in Re must be replaced by a 
reduced velocity value u*  = (1 - 4'2)uo- Then for the subcritical flow regime, the Nu 
correlation from Table 6.1 is modified as

/ Pr \0'25
Nu = 0.26[(l - i//2)Re]° 6Pr037 — (6.23)

and for the supercritical flow regime,

Nu = 0.023[(1 - ip2)Re]°'8Pr04 (6-24)

If the free-stream velocity ux is known, the reference velocity u**  in Re, according 
to Perkins and Leppert [13], can be found from the following equation:

I tt d0 \ "1
»**  = «oo p-T— (6-25)

\ 4 e.

6.2.8 The Effect of Yaw Angle on the Heat Transfer from a Cylinder
The average heat transfer from a single tube decreases with a decrease in the yaw angle, 
and is particularly low at small yaw angles. The effect is similar to tube bundles as 
shown in Fig. 6.22 (Sec. 6.3.3). A vast body of results on the heat transfer from yawed 
cylinders has been generalized by Morgan [5],

6.3 HEAT TRANSFER AND PRESSURE DROP 
FOR SMOOTH-TUBE BUNDLES

6.3.1 Fluid Dynamics in Smooth-Tube Bundles
A circular tube bundle is one of the most common heat transfer surfaces, particularly 
in shell-and-tube exchangers. Fluid flow is ideally normal to the tubes (3 = 90°), but 
some tubes operate at different yaw angles ft to the flows.

The most common tube arrays are staggered and inline (Fig. 6.12), although other 
arrangements are possible. Bundles are described by the ratio of the transverse 
(X*  = X,/do), longitudinal (A)*  = Ayj,,), or diagonal (JQ*  = Xj/d,,) pitch to the 
tube diameter.

Inside a bundle, the flow converges in the intertube spaces and forms a highly 
turbulent flow over the inner tubes. The recirculation region in the rear of an inner tube
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(a) (b)

Figure 6.12. Most common types of tube bundle arrangements: (a) inline, (/>) (c) staggered.
Minimum intertube spacing at section 1-1 between two tubes.

(c)

is smaller than in a single tube. The situation is governed by the relative pitches and the 
bundle geometry. The more compact a bundle is, the larger is the difference from the 
single-tube situation. Some differences depend on the number of longitudinal rows 
because of the inlet-outlet effects.

Fluid flow inside a staggered bundle may be compared to a periodically narrowing 
and widening channel.

Flow inside inline bundles approaches that in straight channels, and the mean 
velocity distribution in the minimum intertube space of a transverse row is highly 
influenced by the relative pitches.

The leading tubes induce a vortical flow and a variable velocity distribution around 
the inner tubes. At low Re, the inside flow is predominantly laminar with large vortices 
in the recirculation regions. Their effect on the front parts of inner tubes is eliminated 
by viscous forces and by negative pressure gradients. Laminar boundary layers are still 
formed on the inner tubes which separate and form recirculation region in the rear. 
This pattern may be called a predominantly laminar flow. It is observed at Re < 1000.

Significant changes are introduced at higher values of Re. The intertube flow 
becomes vortical and highly turbulent. On inner tubes, in spite of high turbulence, 
laminar boundary layers are still observed.

A negative pressure gradient on the front part of an inner tube causes an accelera
tion of the flow. The boundary layer is thin and changes but Little with the distance 
from the front stagnation point.

Both the intensity of turbulence and its generation in the intertube spaces are 
governed by the bundle geometry and Re. With shorter transverse pitches, the velocity 
fluctuations become more intensive.

The turbulence level of the main flow can influence fluid dynamics only over the 
first and second rows. A tube bundle acts as a turbulizing grid, and establishes a 
specific level of turbulence. Highly turbulent transient flows are observed on inner 
tubes in the intertube spaces.

In most bundles, steady-state flow begins on the third row. On an inner tube, the 
distribution of pressure and velocity is very different from that on a single tube. In Fig. 
6.13, we see circumferential distribution of the pressure coefficient over the leading 
rows and over the fourth row of an inline and a staggered bundle with X*  = 2.0 and 
X*  = 2.0 at Re = 10,800.
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Figure 6.13. Pressure coefficient on a tube in the first and fourth tube rows of an inline bundle 
and a staggered bundle; air as the test fluid [1],

The pressure coefficient of a tube in a bundle is given by

(«■»)
2PU0

where w() is the mean velocity in the minimum intertube space. It is obvious from Fig. 
6.13 that in the subcritical flow regime,' fluid flow phenomenon over tubes of the 
leading row is very similar to that over a single tube. But on an inner tube of a 
staggered bundle, higher pressure coefficients than on a single tube precede the 
separation. On an inner tube of an inline bundle, a maximum pressure coefficient is 
observed at <j> = 40°, at the point of attack. This means that there are two points of 
attack and two pressure maxima on a tube inside an inline bundle.

On a tube inside a staggered bundle, in a way similar to a single tube, the stream is 
split at the front stagnation point, and a laminar boundary layer begins to develop. A 
certain influence of Re is also evident. But unlike a single tube, based on heat transfer 
results, the boundary layer on a tube inside a staggered bundle separates at <f> = 150°. 
The separation is preceded by a laminar-turbulent transition, where the transition point 
is dependent on Re. At high values of Re, the boundary-layer separation fluctuates in 
the range of <f> = (150 ± 5)° [1],

In symmetric staggered bundles of increased compactness (such as X*  = A)*  = 1.25 
in Fig. 6.14), CP becomes a function of Re as early as ~ 20° for a tube inside the

1 The subcritical, critical, and supercritical regimes for a tube bundle are defined the same way 
as for a single tube, as shown in Fig 6.5.
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Figure 6.14. Pressure coefficient on a tube in the inner rows of a staggered bundle in air [1],

tube bundle. For <f> from 30° to 55°, the curves have a slight kink due to the flow 
separated from the preceding tubes. The distribution of CP on the rest part of a tube is 
the same as in an asymmetric staggered bundle. In symmetric inline bundles (such as 
A'*  X A)*  = 1.25 X 1.25) in the subcritical range of Re, a maximum value of CP is 
observed at = 40° as shown in Fig. 6.15. Its minimum value lies at <f> from 93 to 97°. 
In the rear part of a tube, CP increases, but is nearly constant after the separation. The 
curves of CP for inner rows of inline bundles become similar to those for staggered 
bundles, when the supercritical flow regime is established.

In studies of the velocity distribution in tube bundles, the effect of transverse pitch 
should never be ignored. The rate of velocity growth in intertube spaces is mainly 
determined by the transverse pitch, and it increases drastically at narrower pitches.

The mean velocity in the minimum intertube space of a transverse tube row for a 
variable transverse pitch and a constant flow rate is given by

(6 27)

and the mean velocity in a free flow area at an angle </> from the front stagnation point 
(see Fig. 6.12) is given by

A)*
X*  — sin<f> (6.28)

The velocity distributions in the intertube spaces are notably different in staggered 
and inline bundles.

Over inner tubes of staggered bundles, the point of attack is located at the 
stagnation point, and the maximum velocity occurs in the minimum intertube spaces.
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Figure 6.15. Pressure coefficient on a tube in inner rows of an inline bundle in air [1].

The fluid dynamics is mainly determined by the location of the minimum free flow area 
at either </> = 90 or 90°. In the rear part of an inner tube, the velocity sharply 
decreases, and even acquires a negative value in the recirculation region as shown in 
Fig. 6.16.

Over inner tubes of inline bundles, the point of attack lies at ~ 40°; the velocity 
is at its minimum there and increases downstream. Further circumferential variations 
of local velocities are similar to those in staggered bundles.

6.3.2 Drag on Smooth-Tube Bundles
In tube bundles in cross flow, the total drag also consists of friction and pressure (or 
profile or form) drag. The drag on a tube in a bundle is described bv its skin friction 
coefficient cf and pressure drag coefficient cw. The skin friction coefficient is defined as

(6-29)

where tv is the shear stress at the wall of a tube.
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Figure 6.16. Variation of local velocity over a tube in (a) the leading row and (ft) the fifth row of 
a staggered bundle at the distance y/do = 0.019 [1].

The local shear stress tm is determined as a product of fluid viscosity and velocity 
gradient at the wall. Thus for known velocity distributions in the boundary layer, the 
values of t„ (<f>) may be determined for a region from the front stagnation point to 
either the rear stagnation point or the separation point. The total friction drag is 
evaluated by integrating tw(^>) over the circumference.

The pressure drag coefficient is defined as 

where
n

Fw = SA P,cos <!>, (6.31)
1=1

SA = -- (6.32)
j

FH. is the longitudinal component of the pressure force, A is the tube cross section 
perpendicular to the flow, L is the tube length, A A is the tube surface element between 
two generating lines on the tube, drawn through the centers of two measured areas, j is 
the number of measured areas, P, is the pressure on the i th measured area over the 
circumference, and <£>, is the angle measured from the stagnation point to the center of 
the area A A around the circumference.

The local skin friction coefficients of three staggered bundles in the lower, medium, 
and higher ranges of Re are presented in Fig. 6.17. As already mentioned, cf = 0 at the 
points of attack and of separation. With an increase of </>, the value of cf increases and 
reaches a maximum at <£> from 50 to 80°, depending upon Re and the bundle geometry. 
After the separation, the value of cy becomes negative, though it never reaches large 
absolute values.
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Figure 6.17. Friction coefficient over a tube in a staggered bundle for variable Xt* X X* and 
Re: aviation oil as the test fluid [1].

Over inner tubes of inline and staggered 2.0 X 2.0 bundles, the pressure drag 
coefficient begins to decrease sharply from Re = 102 (Fig. 6.18) and becomes stable at 
Re from 3 X 103 to 104 as well as at Re from 105 to 106.

At low Re, the values of <y and cw are of the same order. At higher Re, the value of 
cM, exceeds significantly that of cy. For example, at Re = 3 X 105, the ratio cf/cw = 0.01 
for staggered bundles, and becomes even less at higher Re.

The combined friction and pressure drag over tube bundles in cross flow constitute 
their hydraulic drag. Consequently, the hydraulic drag depends on the configuration of 
a bundle. The hydraulic drag is also proportional to the number of longitudinal rows n;

Figure 6.18. Pressure drag coefficient in inner rows of staggered and inline bundles [1],
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and for small numbers of tube rows the contribution of the input-output losses of 
kinetic energy is significant. They may be significant in a short bundle (a small number 
of tube rows). The total drag in a heat exchanger also depends on the physical 
properties of the fluid.

On the basis of the above considerations, the pressure drop over a bundle is 
implicitly given by

^■P = f(u^,Xt,Xi,do, n, fi, p~), (6.33)

or in a dimensionless form by

Eu =f Re,— ,- 
d„ d,

(6.34)

where the Euler number Eu = 2 AP/(pu^n) and is defined per tube row. Here m0 is 
the mean velocity in the minimum intertube spacing.

The results are usually correlated in the following form for engineering use:

Eu = c Rer (6.35)

The design data for the hydrauhc drag over banks of tubes are useful for engineer
ing. Such experimental results are presented in Figs. 6.19 and 6.20 from Zukauskas 
et al. [16] and from recent experiments with different fluids carried out at the Institute 
of Physical and Technical Problems of Energetics, Academy of Sciences of the 
Lithuanian SSR. Closed-form equations for the results of Figs. 6.19 and 6.20 are 
presented in [36]. At high values of Re, the data coincide with the results of numerous 
measurements by Hammeke et al. [17] and Niggeschmidt [18], and at lower values of 
Re with the results of Bergelin [19].

The charts of average Eu per tube row for multirow inline bundles are presented in 
Fig. 6.19 as a function of Re and Xj*  (= X*).  For other tube pitches (A/*  += X*),  a 
correction factor x is first determined from the inset of Fig. 6.19, and then Eu/x from 
the main figure to find Eu for a specified inline tube bundle.

The charts of average Eu per tube row for multirow staggered tube bundles with 30° 
tube layout [Xt = Xd and A) = (/3 /2) Xr] are presented in Fig. 6.20 as functions of Re 
and X*.  For other tube pitches [A) =# (/3/2)AJ, the correction factor x is first 
obtained from the inset of the figure, and used in Eu/x obtained from the main figure 
for a given to find Eu for a specified staggered tube bundle. Eu values determined 
from Figs. 6.19 and 6.20 have an uncertainty within +10%.

The pressure drop of a multirow bundle is then given by

/ Eu \ p Uq

AP = — x • 2P«o ’ n =
\ X I 2

(6.36)

Here £ is the hydrauhc drag coefficient.
The value of Eu for the whole bundle increases (at a decreasing rate) with the 

number of tube rows. An average value of Eu for one row is found by dividing the total
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Figure 6.19. A chart for the hydraulic drag coefficient of inline bundles for n > 9 [16]. The main chart 
has the longitudinal pitch as a parameter. The test fluids are air, water, and various oils.
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Figure 6.20. A chart for the hydraulic drag coefficient of staggered bundles for n > 9 [16], The main 
chart has the transverse pitch as a parameter. The test fluids are air, water, and various oils.
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Figure 6.21. Correction factor cn for the hydraulic drag of short staggered and inline bundles [1].

Eu value by the number of rows. Experimental results indicate that the actual drag on 
the leading rows is significantly higher than this average value. Therefore, to determine 
hydraulic drag of short bundles or of leading rows, use Fig. 6.21 for c„, defined as

Eu
(6.37)

Here Eu„ is the average Euler number per tube row for the n-row bundle with n < 9, 
and Eu is the average Euler number per tube row for the n-row bundle with n > 9 and 
is obtained from Fig. 6.19 or 6.20.

The charts in Figs. 6.19 and 6.20 refer to isothermal conditions. They also apply to 
nonisothermal flows if the fluid physical properties are evaluated at the bulk mean 
temperature and a correction is applied to account for variable fluid properties for 
liquids as follows:

(6.38)

Here Eu/, is the Euler number for both heating and cooling, Eu the Euler number for 
isothermal conditions, and and /a are the liquid dynamic viscosities at the wall 
temperature and at the bulk mean temperature, respectively. For Re > 103, p ~ 0. For 
Re < 103,

p = —0.0018 Re + 0.28 for liquid heating (6-39)

p = —0.0026 Re + 0.43 for liquid cooling (6.40)
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Figure 6.22. Correction factor for the hydraulic drag of staggered and inline, bundles [1].

Many other investigations have been reported worldwide, presenting Eu or its 
variants for various tube bundles. The most notable is by Gaddis and Gnielinski [20], 
who suggested curves and formulas for the pressure drop for inline and staggered tube 
bundles.

6.3.3 Drag on Yawed-Tube Bundles
The drag on a yawed-tube bundle depends, as in crossflow cases, on the bundle 
geometry and pitches, as well as on the Reynolds number, the yaw angle, and some 
other factors. Figures 6.19 and 6.20 apply to obtain their drag, but with a correction 
factor for the effect of the yaw angle fi.

Based on the experimental results, the drag decreases with decreasing fi at constant 
flow rates. The decrease of drag for /J < 90° is related to an altered flow in the bundle. 
The hydraulic drag on a tube consists of the friction drag and pressure drag, and any 
change of fi involves a change of the ratio between the two components, as well as of 
the flow phenomena.

To determine the hydraulic drag on a yawed-tube bundle (j3 < 90°), a correction 
factor

Eug

must be introduced for the yaw-angle effect. It is a ratio of Euler numbers defined in 
Eq. (6.41) for a constant flow rate and is presented in Fig. 6.22.

6.3.4 Local Heat Transfer from a Tube in a Bundle
The general laws governing the distribution of local heat transfer from a tube in a 
bundle are the same as those for a single tube. The circumferential distribution of the 
heat transfer is governed by flow phenomena, which in turn depend on the bundle 
geometry; e. g., two points of attack, and consequently two heat transfer maxima, exist
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Figure 6.23. Local heat transfer from a single tube, a tube in an inner row of a staggered bundle, 
and a tube in an inner row of an inline bundle for Xt* X Xt* =2X2 and Re = 1.4 X 104 [16]. 
Air is the test fluid.

on a tube inside an inline bundle. The flow over a tube inside a staggered bundle is 
somewhat similar to that in a single tube, but with higher turbulence in the surrounding 
fluid. A laminar boundary layer on the front part, formed by a split stream for an 
inline bundle, exists only at the lower values of Re.

Local heat transfer from a tube inside an inline bundle and a staggered bundle is 
compared with that from a single tube in Fig. 6.23. Inside a staggered bundle, heat 
transfer from the front part is higher than that on a single tube, because of the 
impingement of the two upstream fluid streams on the front part and because of higher 
turbulence. On the remaining part, heat transfer is higher because of higher turbulence. 
Inside an inline bundle, maximum heat transfer is observed at <> ~ 50°, which is the 
point of attack of a stream coming from the preceding intertube space. Because of the 
lateral point of attack, which is reflected in a sharp heat transfer maximum, a laminar 
boundary layer begins its development not at <f> = 0°, but at <f> from 30 to 50°. At 
higher angular distances, the heat transfer decreases with growth of the laminar 
boundary layer thickness.

Figure 6.24 shows peripheral local heat transfer coefficients for tubes in an inline 
bundle. Tubes of the second row and onwards are under the influence of the leading 
row; therefore their heat transfer is different. A steady state in the inline bundles is 
established from the fourth row onwards. Local heat transfer is similar for inline 
bundles of different relative pitches (1.25 < X*  < 2.0), with the boundary-layer sep
aration at <£> == 120°.

Now we consider peripheral local heat transfer coefficients for tubes in a staggered 
bundle. As shown in Fig. 6.25, the trend is similar to the single-tube case for the 
leading row. A tube in the second row is under a stream which comes from the leading 
row. so that the heat transfer from its front part is strongly increased.

The flow is turbulized in the two leading rows, and this is immediately reflected in 
the heat transfer. The circumferential heat transfer from a tube in the third row is
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Figure 6.24. Local heat transfer coefficients from a tube in the leading row, the second row, and 
an inner row of an inline X* X A}* = 2.0 X 2.0 bundle at Re = 1.4 X 104 [1,16]. Air is the test 
fluid.

higher than that from a tube in the second row. Over the subsequent rows, the 
steady-state behavior is the same as over the third row. Heat transfer from the rear 
parts of inner tubes is always higher than that from the first-row tubes, because of 
higher turbulence.

In the critical flow regime, heat transfer increases at ~ 120°, the point of the 
laminar-turbulent transition. At <f> ~ 150°, boundary-layer separation is observed in

Figure 6.25. Local heat transfer coefficients from a tube in the leading row, the second row, and 
ah inner row (h > 4) of a staggered X* X X* = 2.0 X 2.0 bundle at Re = 1.4 X 104 [1,16]. Air 
is the test fluid.
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most configurations. In the supercritical flow regime (for Re > 2 X 105) in staggered 
bundles, the first heat transfer minimum corresponds to the laminar-turbulent transi
tion, which begins to shift upstream and reaches <p ~ 25° at Re = 106. The second heat 
transfer minimum, which corresponds to the separation of a turbulent boundary layer, 
is practically stable in staggered bundles, and remains at 4> ~ 150° even at higher Re.

6.3.5 Average Heat Transfer from a Tube in a Bundle
The average heat transfer from bundles of smooth tubes is generally determined by Eq. 
(6.9). Studies [1,16,21] in the ranges of Pr from 1 to 10,000 and Re from 1 to 2 X 106 
suggest a constant exponent of Pr, which is n = 0.36 for the subcritical flow regime and 
n = 0.40 for the supercritical flow regime at low Prandtl numbers (0.2 < Pr < 1). The 
exponent of the ratio Pr/Pr„, can safely be approximated with a constant value of 
p = 0.25.

The effect of the bundle arrangement on the average heat transfer varies with Re. In 
the low range of Re (< 50), the heat transfer from a tube in the leading row actually 
coincides with the single-tube and inner-tube values. In the higher range of Re (> 50), 
heat transfer rates from inner tubes are higher than those from the leading row because 
of increased intertube turbulence due to the leading rows acting as turbulizers. In most 
bundles, steady-state heat transfer is established from the third or the fourth row on. A 
comparison with heat transfer coefficients from the leading rows and from the inner 
rows illustrates heat transfer augmentation in bundles due to higher turbulence.

As a rule, heat transfer from inner tubes increases with decreasing Xt. This is in 
agreement with observations on single tubes mounted at different distances from a 
turbulizer grid. An exception is presented by inline bundles of short Xt, where heat 
transfer may be reduced even more with further reduction in Xt. This phenomenon is 
related to a less intensive recirculation in the rear, especially for low or medium values 
of Xt.

Because of the higher turbulence, under the influence of a variable tube longitudinal 
pitch, heat transfer from the inner tube may be from 30 to 100% higher than from the 
leading row. In most cases, heat transfer from the second row is lower than from the 
further rows, except for inline bundles at low Re.

Figure 6.26 shows the heat transfer from a staggered and an inline 2.0 X 2.0 bundle. 
At Re < 103, the heat transfer from a tube in the leading row of the inline bundle is 
about 25% higher than that from the inner tubes. Any inner tube is in the wake of a 
preceding one, and its heat transfer is decreased accordingly by a lower velocity in the 
wake—the so-called “shadow” effect.

In contrast to the inline bundle, heat transfer in the staggered case is lower in the 
leading row than in the inner rows. For a 2.0 X 2.0 bundle at Re « 30, the difference 
reaches 7%, but increases to 35% at higher Re. This is due to different flow phenomena 
in the two configurations.

In the range of predominantly laminar fluid flow, the exponent of the Reynolds 
number varies widely with Re. At Re < 102, we have m = 0.33 to 0.4, but m = 0.5 at 
higher Re (< 103), and reaches 0.6 or even 0.63 with the increase of Re for the 
predominantly turbulent fluid flow in the subcritical zone (Re < 2 X 105).

For inline bundles at higher Re, the heat transfer from inner rows exceeds that of 
the first row', as for staggered bundles.

Figure 6.27 presents the average heat transfer from the first and inner rows of a 
1 5 X 1.25 inline bundle, and from the inner rows of 2.0 X 1.25 inline bundle. At 
Re < 2 X 105, the exponent m of Re is between 0.6 and 0.65, but at higher Re it
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Re

Figure 6.26. Average heat transfer in different rows of a staggered and an inline bundle of 
A'* X Aj* = 2.0 X 2.0 at low Re for an inner row and the leading row [1,16]. Aviation oil is the 
test fluid.

increases to a value between 0.76 and 0.8. This growth of m is related to the upstream 
movement of the laminar-turbulent transition in the boundary layers, as explained in 
the analysis of the local heat transfer. As a result, with an increase of Re, a larger 
circumferential part of any inner tube is covered by a turbulent boundary layer. 
Experiments suggest that the transition to an augmented heat transfer occurs in a
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Re
Figure 6.28. Average heat transfer for inner rows of smooth-tube inline bundles at ft = 90° [1].
The Pr range covered is from 0.7 to 5000.

different way on the first row and on an inner row. For the first row, the heat transfer 
function K clearly deviates from the exponent law at Re from 2.5 X 105 to 7 X 105, 
which is similar to a single tube in low turbulence. We already know that this deviation 
is due to the separation bubble and an altered flow in the rear, and we have already 
noted the absence of such deviation over a single cylinder in a highly turbulent flow. A 
similar situation occurs in inner rows of both staggered and inline bundles. For 
staggered bundles, the value of m is somewhat higher at Re > 2 X 105, and equal 
to 0.8.

The studies [1,16] of numerous bundles of different geometries in the subcritical 
flow regime suggest that in staggered arrangements, heat transfer increases with a 
decreasing longitudinal pitch, and to a lesser extent, with a decreasing transverse pitch. 
The variation of c in Eq. (6.9) may be represented by a geometrical parameter X*/X*  
with an exponent of 0.2 for X*/X t* < 2. For X*/X?  > 2, a constant value c = 0.40 
may be assumed. For inline bundles, the effect of change in either longitudinal or 
transverse pitch is not so evident, and c = 0.27 may be assumed, with certain 
reservations, for the whole subcritical regime (103 < Re < 2 X 105).

The average heat transfer from inline bundles in cross flow (fi = 90°) is shown in 
Fig. 6.28, and correlating equations are presented in Table 6.2. The uncertainty of these 
results is within + 15%.

TABLE 6.2. Heat Transfer Correlations for Inline Tube Bundles for n > 16 [1]

Recommended Correlations I- ange of R.e

Nu = 0.9Re°4Pru36(Pr/Pr„ )"25 
Nu = 0.52 Re°'5Pr°'36(Pr/PrH,)0'25
Nu = 0.27 Re0-63Pr°-36(Pr/PrM,)0'25 
Nu = 0.033 Re08Pr04(Pr/Pr„ )025

10" 102
102-103
103-2 X 105

2 X 105-2 X 106
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Figure 6.29. Average heat transfer for inner rows of smooth-tube staggered bundles at /? = 90° 
[1]. For low Re, 0.7 < Pr < 5000. For high Re, 0.7 < Pr < 5.

TABLE 6.3. Heat Transfer Correlations for Staggered Tube Bundles for n > 16 [1]

Recommended Correlations

Nu = 1.04Re04Pr°'36(Pr/PrJ°25
Nu = 0.71 Re°'5Pr°-36(Pr/PrM,')0-25
Nu = 0.35(y*/A r/*) 0-2Re06Pr0-36(Pr/PrM,)0-25
Nu = 0.031(Ar*/X /* )0'2Re0'8Pr0'36(Pr/PrH )025

Range of Re

10°-5 X 102 
5 X 102-103

103-2 X 105 
2 X 105-2 X 106

The average heat transfer from staggered bundles in cross flow (/? = 90°) is 
presented in Fig. 6.29, and correlating equations are presented in Table 6.3. The 
uncertainty of these results is within ±15%.

For a general correlation, a correction c„ for the number of tube rows should be 
introduced because the shorter the bundle, the lower its average heat transfer. The 
influence of the number of tube rows becomes negligible only for n > 16, as found 
from Fig. 6.30.

6.3.6 The Effect of Yaw Angle on the Heat Transfer
Heat transfer surfaces can be mounted for crossflow operation at /? = 90°, or at other 
yaw angles < 90°. To avoid overheating, the circumferential distribution of heat 
transfer and heat flux densities should be known for arbitrary yaw angles.

Based on experiments, Zukauskas [1] and Kazakevich [22] have determined the 
effect of yaw angle on the local and mean Nusselt numbers with different fluids. Their 
results are summarized in terms of a correction factor cp as shown in Fig. 6.31 and 
defined as

_ _ NU/;
Nu/i=9(r
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Figure 6.30. Correction factor for the number of rows for the average heat transfer from tube 
bundles [1,16],

Figure 6.31. Correction factor for the yaw angle for heat transfer from bundles.

Here both Nu/9 and Nu^=90» are evaluated at the same Re. The data for staggered and 
inline configurations are approximated by a single curve, and decreases with 
decreasing fi.

The plot also includes data on the effect of yaw angle on the heat transfer from a 
single tube, from Mikheyev [23]. A similar dependence is evident.

6.4 HEAT TRANSFER AND PRESSURE DROP FOR 
ROUGH-TUBE BUNDLES

6.4.1 Fluid Dynamics in Rough-Tube Bundles
We consider rough surfaces with two-dimensional and three-dimensional protrusions. 
Of course, they display different flow phenomena over different surface elements and in 
their wakes. Such isolated surface roughness elements act as local turbulizers.

The flow over surface roughness elements also depends on their intervening spaces. 
For sparsely distributed surface roughness elements, in-between recirculation regions 
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are possible. If the spaces are large enough, reattachment and boundary-layer forma
tion can be observed. According to the available data, boundary-layer reattachment 
occurs at a distance of 5 to 8 times the roughness height

To describe a rough surface, we introduce the notion of relative roughness e/8 or 
e/d„, where e is the roughness height, 8 is the velocity boundary-layer thickness, and 
d,, is the outside diameter of a tube. For turbulent boundary layers, we prefer a 
dimensionless value of the surface roughness height e' = u*e/v,  where w*  = (rM/p)1/2 
is the friction velocity. Let us distinguish three different types of flow over rough 
surfaces:

Nonseparated flow, when surface roughness elements are submerged in the viscous 
sublayer (e+ < 5), and the drag coefficient is close to that of a smooth tube. In 
this type of flow, the drag coefficient is solely a function of the Reynolds number.

Partial effect of roughness (5 < ef < 70), when surface roughness elements are 
higher than the viscous sublayer thickness. Their tips protrude from the viscous 
sublayer, so that local separations and vorticities are formed. The drag coefficient 
is influenced both by the Reynolds number and by the height of surface 
roughness elements.

Complete effect of surface roughness (e" > 70), when surface roughness elements 
significantly protrude from the viscous sublayer, each of them forming a sep
arated flow. The drag coefficient is significantly increased.

According to experiments in staggered and inline bundles [24,25], surface roughness 
changes the pressure coefficient from that with smooth tubes. With an increase of the 
surface roughness and the Reynolds number, the separation point of the turbulent 
boundary layer moves from = 150 to 120°.

Results are summarized next for the drag and heat transfer for staggered bundles of 
X*  y A'*  = 1.25 X 0.935,1.25 X 1.25,2.0 X 2.0,2.06 X 1.37; Re from 103 to 2 X 106; 
and Pr from 0.7 to 220 [26-28].

6.4.2 Drag on Rough-Tube Bundles
In the subcritical and critical flow regimes, under the influence of surface roughness, cy 
increases over a large part of the circumference (<f> from 0 to 120°) up to the separation 
point. In the supercritical flow regime for the same surface roughness, shows a small 
decrease. With higher e/do in the supercritical flow, the value of cf increases sharply 
on that part of the circumference where the velocity u has large gradients. All this 
illustrates a large effect of surface roughness on the flow in the vicinity of the wall. The 
hydraulic drag of rough-surface bundles is larger than that of smooth bundles for 
e *■ > 5, because of the additional energy losses in the wake of each surface roughness 
element. Eu increases with increasing e/do.

Figure 6.32 presents the measured hydraulic drag on smooth and rough staggered 
bundles at Re up to 2 X 106. In the higher range of Re, the hydraulic drag coefficient 
reaches an asymptotic value, dependent upon e/do.

The effect of the height of surface elements on the hydraulic drag over a 2 X 2 
staggered bundle is shown in Fig. 6.33,+ which gives a curve cEu = /(Re), where

Euf
Ceu = IT (6.43)

fThe results of Fig. 6.33 are presented in closed-form Correlations in Ref. 36.
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Figure 6.32. Hydraulic drag of a rough-tube staggered bundle of X* X X* — 1.25 X 1.25 for 
variable e/do [1].

Eu,. is the Euler number for rough tubes and Eu is the value for smooth tubes, both on 
a per-tube-row basis. It is quite evident that for lower surface roughness elements 
(e/dn = 0.001), the value of cEu begins to increase at Re = 2 X 105. With larger e/dn, 
the increase in cEu commences at a significantly lower Re [1],

6.4.3 Heat Transfer for Rough-Tube Bundles
Rough surfaces are introduced as a means of augmenting heat transfer by specific fluid 
dynamic changes in the boundary layer. For similar conditions, the laminar-turbulent 
transition in the boundary layer occurs at lower Reynolds numbers on a rough surface 
than on a smooth one. Surface roughness generates local vorticities and enhances heat 
transport from the wall. The intensity of such heat transport is governed by the surface 
roughness height e and the velocity boundary layer thickness 3. For e significantly 
lower than 8, vorticities generated by surface roughness elements do not exert any 
noticeable influence on the heat transfer. Heat transfer augmentation in gases is 
observed when the values of e and 8 are about the same.

The effect of surface roughness on heat transfer depends also on the Prandtl number 
of the fluid. For higher Pr, the effect is more pronounced because of a larger 
concentration of thermal resistance in the vicinity of the wall. In viscous liquids, lower 
surface roughness elements are necessary in order to turbulize the viscous layer.

Figure 6.34 presents average heat transfer of rough staggered tube bundles in the 
range of Re from 4 X 102 to 2 X 106, X*  from 1.25 to 2.0, and Xt* from 0.935 to 2.0 
[26-28]. At Re < 2000, the effect of surface roughness on heat transfer is observed only

Figure 6.33. Correction factor for the effect of surface roughness in the prediction of hydraulic 
drag [1], The results are for a staggered bundle {X* = A)* = 2.0) using water as the test fluid.
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Figure 6.34. Comparison of the average heat transfer from staggered bundles for various 
A'*  X V and e/do.

in viscous liquids, but in air it is observed at Re from 104 to 7 X 104. Thus in air, 
inside a compact 1.25 X 1.25 bundle, the heat transfer augmentation is 14% at 
Re = 105, but reaches 75% at Re = 106.

The effect of surface roughness height on the average heat transfer in air and in a 
liquid with Pr = 84 is shown in Fig. 6.35f, in terms of cNu vs. Re for staggered 
bundles, where

Nur
Cn" ’ 147 (6'

Figure 6.35. Correction factor for the effect of surface roughness in the prediction of average 
heat transfer for a 1.25 X 0.935 staggered tube bundle at various Pr and e/do [1].

''The results are accurate within ±15%.
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Nur is the Nusselt number for rough tubes, and Nu is the Nusselt number for smooth 
tubes. cNu represents the heat transfer augmentation due to surface roughness on 
staggered bundles [27].

Figure 6.35 reveals that on rough surfaces, heat transfer augmentation commences 
at lower Re in viscous liquids than in air, and the rate of augmentation cNu is higher.

Heat transfer augmentation by surface roughness is accompanied by an increase of 
the hydraulic drag coefficient because the flow energy is consumed in the generation of 
local vorticities. Thus to augment heat transfer in compact bundles, surface elements of 
e from 0.4 to 0.8 mm are recommended for liquids, and of 0.8 to 2.0 mm for air.

6.5 HEAT TRANSFER AND PRESSURE DROP FOR 
FINNED-TUBE BUNDLES

6.5.1 Finned-Tube Bundles
Fins and other extended surfaces are more and more commonly used in heat ex
changers today. Higher heat transport from finned tubes is achieved both through the 
higher heat transfer coefficients and through the extended surfaces.

Many different fin geometries are currently in use, though the most common are 
annular and continuous fins. Design data are available in the open literature for 
fabrication, and experiments have been performed on many finned surfaces, such as 
individually finned tubes and flat, wavy, or louvered continuous fins. Finned surfaces 
are common in recuperative heat exchangers with gas flows in order to improve their 
performance. Because of high heat transfer coefficients associated with liquid flows, 
only fins of low heights (having reasonably high fin efficiency) are used.

No universal equivalent diameter has been found to correlate the design data on 
finned tubes. Many different expressions are available in the literature for the equivalent 
diameter. We choose the outside tube diameter of the base tube in correlating the 
experimental data and in all of the correlations presented in this section.

High fins introduce changes in the interfin flow phenomena, and smaller interfin 
spaces give large increase in flow resistance of the bundles. Hence, an important 
geometrical variable for finned tubes is the fin factor F, which is defined as the 
finned-tube outside total area (primary plus secondary) divided by the bare base-tube 
surface area [29]. For tubes with annular fins, it is given by

(6.45)

where I = (S - ) is the interfin spacing (Fig. 6.36), 8f is the fin thickness, and d„ is
the tube diameter at the fin base.

Designers of finned tubes in different industrial applications operate with ef/l as an 
important design variable.

6.5.2 Fluid Dynamics in Finned-Tube Bundles
An inner tube contains a flow of increased turbulence; therefore its separation point is 
farther downstream, and the recirculation region in its rear is narrower, than for a tube 
in the first row.
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Figure 6.36. Nomenclature for flow over a bank of annular finned tubes. Fluid flow direction is 
perpendicular to the plane of the paper.

Deviations in flow phenomena from the smooth-tube case are negligible for low fins 
and large interfin spacing. With an increase in the fin height and a decrease in the 
interfin spacing, the flow approaches slot-flow behavior. The pressure drop in slot flow 
may be predicted by the general correlations for laminar and turbulent flows with a 
properly evaluated longitudinal pressure gradient.

Staggered bundles of finned tubes have higher heat transfer coefficients than inline 
bundles, but with higher hydraulic drag.

The velocity distribution in the outer boundary layer is derived from the distribu
tion of surface pressure. Measurements of the pressure coefficient distribution revealed 
highly complicated behavior on fin tips, as compared to fin roots. At fin roots, the value 
of CP has a minimum at between 75 and 90°, followed by an increase and 
steady-state behavior at <> = 100°. With an increase of Re, the extreme points are 
shifted upstream [29],

6.5.3 Drag on Finned-Tube Bundles
The transition to a flat /-vs.-Re curve is more complex in bundles of finned tubes than 
in smooth ones because of the large number of variables. There is a general tendency to 
earlier transition and a long transition region with Re from 6 X 104 to 1.9 X 105. An 
analysis of experimental results suggests earlier transitions to the flat behavior in more 
compact bundle arrangements because of generally higher turbulence [29].

Shorter interfin spaces cause splitting of the flow into separate streams. As a result, 
vorticities are extinguished and the transition to a predominantly turbulent flow is 
delayed.

Figure 6.37 presents generalized results by Stasiulevicius and Skrinska [29] measured 
on multirow staggered bundles of tubes with helical fins in terms of Eu' vs. Re. Here

Eu' = Eu X* 0 55 X'/*°- 5F~0,5 (6-46)

where A"*  = Xt/do, X/*  = X,/dn, d0 is the tube diameter at the fin base, and F is 
defined in Eq. (6.45).

Numerous studies of tube bundles with helical fins were performed at the Institute 
of Physical and Technical Problems of Energetics, Academy of Sciences of the 
Lithuanian SSR. They covered a wide range of the Reynolds number and geometrical 
parameters of helical and annular fins. The studies resulted in the following correla-



Figure 6.37. Hydraulic drag of different staggered bundles, m is the slope of the curves: see Eqs. 
(6.47)—(6.49).

tions for hydraulic drag on staggered bundles of finned tubes:

Eu = 67.6 Re_0-7Ar*_0'55A/*_0-5F0-5

Eu = 3.2 Re ~ 025 A,*  ’ O-55%*-o.5 Fo.5

Eu = O.18A,*~ 055 y*-° 5F°-5

for IO2 < Re < 103 (6.47)

for 103 < Re < 105 (6.48)

for 105 < Re < 1.4 X 106 (6.49)

Equation (6.47) is valid for 1.5 < F < 16.0, 1.13 < X*  < 2.0, and 1.06 < X? < 
2.00. Equations (6.48) and (6.49) are valid for 1.9 < F < 16, 1.6 < X*  < 4.13, and 
1.2 < A)*  < 2.35. Eu predicted from Eqs. (6.47) to (6.49) are accurate within +15%.

For inline bundles with helical and annular fins, Lokshin and Fomina [30] suggested 
a relation

Eu = O.O68Fo'5T)-n-4 (6.50)

where r, = (X*  — 1)/(A)*  — 1), for Re from 103 to 105, F from 1.8 to 16.3, X*  from 
2.38 to 3.13, and Xf from 1.2 to 2.35.

Because of simple fabrication techniques, low fouling rates, and high heat transfer 
coefficients, cylindrical, conical, or parabolic pins and hemispherical protrusions are 
also used on the tubes. For the hydraulic drag of staggered tube bundles with 
cylindrical pins, Lyshevskii et al. [31] suggested the following equation for Re from 
2 X 103 to 104, F from 2.88 to 4.95, X*  from 1.65 to 4.35, and A)*  from 1.27 to 1.79:

Eu = 5.62ip-21F0'6 (6.51)

where V = [(Xt/d„ — l)/(Xd/d0 — 1)]. For inline bundles having X*  = 2.2 and X*  
from 1.47 to 2.05, the following correlation is applicable [31]:

Eu = 0.69Fo15A;* (6.52)

More details on the hydraulic drag of finned-tube bundles are presented by 
Zukauskas [1], Schmidt [32], and Yudin [33],
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Figure 6.38. Correction factor for the drag of short staggered and inline bundles as a function of 
the number of tube rows, valid only for Re > 104 [1],

It has been determined experimentally that the Euler number for short (n < 5) 
finned bundles may be significantly higher than the experimental values of Eu for deep 
bundles. For a short bundle, a correction factor cn is presented in Fig. 6.38 [33], It is 
known to be valid only for Re > 104, since no data are available for Re < 104. 
However, it is believed that the results of Fig. 6.38 should also be applicable for 
Re < 104.

Thus the pressure drop across a finned-tube bundle is given by

AP = Eu (|pi^)nc„ (6.53)

where Eu is the drag coefficient of an inner row in a long bundle, and cn is the 
correction factor for a short bundle from Fig. 6.38. Use cn = 1 for n > 6.

6.5.4 Heat Transfer for Finned-Tube Bundles
Higher heat transfer rates are found on the fin tips, based on the local heat transfer 
coefficients over the tubes and on the fins as measured by Stasiulevicius and Skrinska 
[29], and Neal and Hitchock [34]. The increasing thickness of the boundary layers leads 
to lower heat transfer coefficients on both the base tube and the fins. They increase 
again in the rear regions. Heat transfer is usually higher on fin tips, because the 
hydrodynamic boundary layers are thinner. Local heat transfer coefficients are higher 
on fin tips than on fin roots, but their circumferential distribution is not uniform. A 
general correlation is possible only on the basis of the average heat transfer coefficient 
h based on the average temperature of the whole extended surface (primary plus 
secondary surface).

Figure 6.39 presents a curve for the heat transfer behavior of staggered tube bundles 
with helical fins [29, 33]. Correlations for mean Nusselt numbers for staggered finned- 
tube bundles are presented in Table 6.4, based on the results of [29,33], The bulk mean 
temperature, average extended surface temperature, mean velocity in the minimum 
intertube space, and base-tube diameter are used in evaluating dimensionless groups of 
these correlations.
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Figure 6.39. Correlation of the heat transfer from staggered bundles of finned tubes [1]; specific 
values of the exponent n to Pr are shown in the figure for three ranges of Re.

The average Nusselt numbers for inline bundles are correlated by Schmidt [32] as

Nu = 0.303 Re0 625F °-375 Pr0 36
Pr 0.25

(6 54)

for Re from 5 X 103 to 105, X*  from 1 72 to 3.0, Xf from 1.8 to 4.0, and F from 5 to 
12.

Heat transfer from bundles of tubes with low fins (ef= 1.4, S' = 1.25 mm) was 
determined by Groehn [35]. His results were approximated by

Nu = 0.072 Re0 74 Pr036

Nu = 0.137 Re068 Pr036

Nu = 0.051 Re076 Pr°36

for 5 X 103 < Re < 3.5 X 104 (6.55)

for 3.5 X 104 < Re < 2.3 X 105 (6.56)

for 2.3 X 105 < Re < 106 (6.57)

We also present prediction equations for the heat transfer from other extended 
surfaces. Average Nusselt numbers for staggered tube bundles with cylindrical pins are 
presented by Lyshevskii et al. [31] as

Nu = O.1O8F°-5V 1Re07Pr036 (6.58)

for Re from 2 X 103 to 104, F from 2.88 to 4.95, X*  from 1.65 to 4.35, and X? from 
1.27 to 1.79.
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TABLE 6.4. Heat Transfer Correlations for Staggered Tube Bundles with 
Helical Fins [29,33]

Recommended Correlations Range of Re

Nu = 0.192(.V*/A' /*) o?(S/^„)"1K(e//<,) 014
XRe<’-65Prn-36(Pr/Prhi)0'25

1()2 —2 X 104

Nu = 0.0507(X,*/.Y*  )° 2(S/rfo)018( ez/rf0)-°14 
yRe^PrO-^Pr/PrJ0-75,
1.1 < X*  < 4.0,1.03 < V < 2.5, 
0.06 < S/do < 0.36, 0.07 < ef/do < 0 715

Nu = 0.0081(.Y*/-V) 0-2(^o)018(^Ao)’014 
xRe095Pr'’-4(Pr/PrK)025,
2.2 < X*  < 4.2,1.27 < Xz* < 2.2, 
0 125 < S/dn < 0.28,0.125 < ef/do < 0.6

2 X 104-2 X 105

2 X 105-2 X 106

Average Nusselt numbers for inline tube bundles with cylindrical pins for X,*  from 
1.47 to 2.05 and X*  = 2.2 are given by [31]

/ Pr \0'25
Nu = O.428F0 33Xz*044Re0 54 Pr0-36 ---- (6.59)

\ J
In the lower range of Re, bundles of pinned tubes are more efficient than bundles of 
helical finned tubes. The correlations of Eqs. (6.54)—(6.59) are based on the test data 
for air and water.

The average heat transfer from leading rows of finned tubes in bundles of different 
arrangements may be either higher or lower than from the inner tubes, depending on 
the arrangement. Nu„ for short bundles (for n < 6) is determined by

Nu„ = c„Nu (6.60)
where Nu is the average Nusselt number for a large number of tube rows (n > 6), and 
c„ is the correction factor from Fig. 6.40 depending on the number of tube rows. A

1.2

09

0.8

v 1.0

1.1
Inline jundle

Staggered bundle

42 3 5 61

Figure 6.40. Correction factor for the heat transfer from short staggered and inline bundles of 
X*  — X/*  = 2 with helical fins [1],
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certain effect of Re is also observed. The correction factor for short bundles is c„ = 1 
from the fourth row on.

The different behavior of curves for c„ for inline and staggered bundles may be 
explained as follows. Because of the turbulizing action of the leading rows in staggered 
arrangements, the heat transfer from inner rows is higher than that from the leading 
rows. In contrast, due to the “shadow” effect in inline arrangements, the heat transfer 
from inner rows is lower than that from the leading rows.

NOMENCLATURE

A minimum intertube space, m2, ft2
CD drag coefficient for flow normal to a single tube or a sphere, defined by Eq. 

(6.14)
CP pressure coefficient for flow normal to a single tube, defined by Eq. (6.13)
Cp pressure coefficient for cross flow to a tube in a bundle, defined by Eq. (6.26)
c constant
(, skin friction coefficient = 2rw/pul
Cf skin friction coefficient for a single cylinder, = (rw/pM^)/Re 
c. specific heat at constant pressure, J/(kg • K), Btu/(lb„, • °F) 
cw pressure drag coefficient = Yw/(^pulodoL) 
cft correction factor for drag in a yawed-tube bundle, defined by Eq. (6.41)
cl, outside diameter of a circular tube, m, ft
Eu n-row average Euler number = 2 bp/pu^n
Eu„ n-row average Euler number for n < 9
e roughness height, m, ft

channel height, m, ft 
ef fin height, m, ft
e dimensionless height of surface elements, = eu*/v
F ratio of extended surface area (primary plus secondary) to the bare base-tube 

area of a finned-tube bundle
f function of
Gr Grashof number = gjB AT L3/v2
g gravitational acceleration, m/s2, ft/s2
h average heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 • °F)

local heat transfer coefficient, W/(m2 • K), Btu/(hr ■ ft2 • °F)
k thermal conductivity, W/(m • K), Btu/(hr • ft • °F)
k, thermal conductivity of the wall material, W/(m • K), Btu/(hr • ft • °F) 
K complex similarity number = NuPr_"(Pr/Prw)~025
I length, m, ft
/ width, m, ft
m power index of Re
Nu average Nusselt number = hd0/k
Nu^ local Nusselt number = h^d0/k
n number of tube rows in the flow direction 
n exponent of Pr
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P pressure, Pa, lby/ft2
Pr Prandtl number = pcp/k
A P total pressure drop for n tube rows in a tube bundle, Pa, Ib^/ft2
p exponent of Pr/Prw
Re Reynolds number = uodn/v
r exponent; see Eq. (6.35)
T temperature, °C, K, °F, °R
Tu turbulence intensity
AT temperature difference, °C, °F 
u velocity component in the x direction, m/s, ft/s 
u{} mean velocity in the minimum free-flow area or intertube spacing, m/s, ft/s 
u* friction velocity = (rM./p)1/2

reference velocity for restricted channels, Eq. (6.25)
Xt/ tube diagonal pitch (see Fig. 6.12), m, ft
A/* ratio of diagonal pitch to tube diameter for cross flow to a tube bundle, 

= Xd/do
X, tube longitudinal pitch (see Fig. 6.12), m, ft
X, tube transverse pitch (see Fig. 6.12), m, ft
A)* ratio of longitudinal pitch to tube diameter for cross flow to a tube bundle, 

= *i/d o
X* ratio of transverse pitch to tube diameter for cross flow to a tube bundle, 

= X,/d0
x distance, m, ft
v distance normal to surface measured from the tube surface, m, ft

Greek Symbols
jB yaw angle, defined in a sketch in Fig. 6.22, rad, deg
/< coefficient of thermal expansion, K-1, °R-1
8 hydrodynamic boundary-layer thickness, m, ft
8, fin thickness, m, ft
p dynamic viscosity, Pa • s, lbm/(hr • ft)
v kinematic viscosity, m2/s, ft2/s
g hydraulic drag coefficient = Eu
p density, kg/m3, lb,„/ft3
t shear stress between fluid layers, Pa, lby/ft2
th. shear stress at wall, Pa, lby/ft2
$ angle between forced convection motion and buoyancy force, rad, deg
<+> angle measured along the tube perimeter from the front stagnation point,

rad, deg
* (X*  - 1)/W - i)

dn/ex

Subscripts
lam laminar
r rough surface
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turb turbulent
vr wall condition
X local value at distance x

local value at angle </>

Superscripts
+ dimensionless
oc free-stream conditions
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7.1 INTRODUCTION

Longitudinal flow over tube or rod bundles is common in most fuel elements of nuclear 
power reactors. The principal heat-exchanging equipment, the core, is composed of a 
large number of parallel fuel rods. Generally, the core is subdivided into subassemblies, 
the fuel elements, which consist of a certain number of fuel rods arranged in a regular 
array. To allow adequate and regularly distributed space for the coolant flowing 
parallel to the axes of the fuel rods, suitable spacing devices are used, which also 
provide rigidity to the fuel element [1].

Applications of this geometry are also encountered in shell-and-tube heat ex
changers, boilers, condensers, etc.

7.1.1 Geometrical Considerations
The possible geometrical arrangements of rods inside rod bundles are infinite. Three 
principal types of arrangements will be distinguished under the assumption of equal 
rod diameters in the following: (1) a regular triangular array of rods contained in a 
hexagonal channel (Fig. 7.1a), (2) a regular square array of rods contained in a square 
channel (Fig. 7.1/?), and (3) a circular array of rods contained in a circular channel 
(Fig. 7.1c). All these rod-bundle arrangements can be subdivided into three types of 
subchannels: central, wall, and comer subchannels.

The main geometrical parameters of rod bundles are the rod outside diameter Z>; 
the distance between the rod centers (pitch) P; the distance W from the wall, defined as 
rod diameter plus the shortest distance between a rod and the channel wall; and the 
number nR of rods in a rod bundle. Table 7.1 lists the number of subchannels, their 
flow areas, and their wetted perimeters for regular triangular and square arrays. The 
number of rods, nR, can be calculated by the equation of Table 7.1 from the number N 
of rings around the central rod for the regular triangular and the number N of rods in 
one row for the regular square array (see Fig. 7.1). Similar concise formulas are not 
possible for circular arrays, since the radii of the different rings (r1; r2 in Fig. 7.1c) are 
not the same. The hydraulic diameter for each subchannel of Table 7.1 can be 
determined by Dh t = 4At/Pw

7.1.2 Fundamentals
Single-phase fluid flow and heat transfer in rod bundles with constant flow cross 
sections in the axial direction is a three-dimensional problem. Therefore, the three
dimensional conservation equations for momentum, energy, and mass have to be 
solved, taking into account the relevant boundary conditions to obtain the velocity and 
temperature distributions.

For laminar flow and heat transfer, analytical and numerical solutions of the 
conservation equations are possible without additional idealizations. The situation is 
different for turbulent flow and heat transfer. Basically, two different approaches exist 
to obtain solutions for velocity and temperature distributions in turbulent flow.

The standard approach is subchannel analysis, by which mean velocities and fluid 
temperatures averaged over the subchannels are computed. Surface temperatures, 
peripherally averaged in the subchannels, are then obtained through Nusselt number 
correlations. A detailed survey of subchannel methods has been published by Sha [2], 
Subchannel analysis requires Nusselt numbers and friction factors, which will be 
discussed in the following.



Wall subchannel

Triangular corner subchannel

Triangular central subchannel
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Figure 7.1. Typical geometrical arrangements of rod bundles: (a) regular triangular array, 
-hexagonal channel (N = 2); (b) regular square array, -square channel (N = 4); (c) circular 
array, -circular channel.
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TABLE 7.1 Geometrical Parameters of Triangular and Square Array Rod Bundles

Subchannel Wetted
Type Number Flow Area Perimeter

A- P .
Wl

REGULAR TRIANGULAR ARRAY

Total number of rods, nR = 1 + 3N(N + 1)

Central 61V2
A , w 
----P2------D2
4 8

77
— D 
2

Wall 6X
/ ir

W------P —D2
\ 2 / 8

77
— D + P
2

Comer 6
1 / D\2 ■nw----------------- £>2
A \ 2 ' 24

77 2 / D\
-D + -j= W- — 
6 yy \ 2 /

REGULAR SQUARE ARRAY

Total number of rods. nR = N2

Central (A+l)2 .P2----- D2
4

( D\

77 D

77 7 77
Wall 4(N - 1) | ff' - — P - 2 /

— D2 
8

— D + P 
2

Comer 4 1

x"
---

--
o z-

1 
to

 | I — D2
16

77 / D\-n + 2^--^

To obtain detailed velocity and temperature distributions in the flow cross section of 
rod bundles, so-called local analyses are performed. Finite difference or finite element 
methods are used to discretize the conservation equations and to compute solutions 
under simplifying idealizations for the transport of momentum and heat by turbulence. 
Examples of local analyses in turbulent flow are reported by Slagter [3], Chen et al. [4], 
Ramachandra [5], Shimizu [6], and others. Local-analysis codes do not require Nusselt 
numbers and friction factors, but require empirical correlations of turbulent transport 
properties.

It is beyond the scope of this chapter to discuss subchannel and local analyses in 
more detail. However, the basic theoretical and experimental results from the literature 
that are necessary to apply subchannel analysis will be presented. These are the friction 
factors and Nusselt numbers for laminar and turbulent flow through subchannels of 
rod bundles. First, the solutions for laminar flow will be discussed. These solutions are 
valid for ordinary fluids, e.g. water and gases, as well as for liquid metals as working 
fluids. However, free convection becomes important at low Reynolds numbers in liquid 
metals and usually influences heat transfer? For turbulent flow, the Nusselt numbers

1 Chapter 8 of this handbook should be consulted for criteria regarding free convection effects. 
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are presented for ordinary fluids and liquid metals in different sections of this chapter. 
Finally, the effects of spacers on pressure drop and heat transfer are presented.

7.2 LAMINAR FLOW

L ongitudinal laminar flow through rod bundles has been analyzed by many investiga
tors. One important result was obtained by Schmid [7], who investigated the influence 
of the channel wall in a semi-infinite rod bundle arranged in a square array and 
bounded by a fixed wall on one side. Schmid found that only the flow rates through the 
first and second rows of subchannels are affected by the wall. This influence exceeds 1% 
for P/D > 2.5 and £ > 1.3 or for P/D > 2.5 and £ < 0.6. Here £ is the ratio of the 
hydraulic diameter of a wall subchannel to that of a central subchannel. Schmid’s 
results thus indicated that the treatment of flow through rod bundles by individual 
subchannels is quite accurate for the indicated range of P/D and £. By this treatment, 
it is implicitly assumed that no momentum transport occurs across the boundary 
between neighboring subchannels. This idealization of isolated subchannels is definitely 
valid for laminar flow through rod bundles, at least in the range of parameters given by 
Schmid. In regular and infinite arrays of rods (central subchannels only) with axisym- 
metric and equal heat generation, this assumption is also valid for laminar flow heat 
transfer. However, when the rod array is bounded by a fixed duct wall, heat generation 
by rods varies across the rod bundle, large rod spacings exist, and entrance effects are 
present, then subchannel analysis can only be considered an approximation which will 
result in conservative solutions in most cases for the subchannel of maximum geometric 
irregularity or maximum heat generation [8]. In such cases, a multiregion, multicell 
analysis has to be performed. Theoretical tools for such an analysis are available 
[2, 3,4] but have not been applied to the problem of laminar flow heat transfer.

Therefore, only subchannel solutions will be discussed in the following. All subchan
nel solutions are obtained by solving the conservation equations. The methods used to 
obtain solutions have been discussed in detail by Johannsen [1,8] and by Shah and 
London [9],

For laminar flow through rod bundles, almost all knowledge of friction factors and 
Nusselt numbers stems from theoretical analysis. Only very limited experimental data 
are found in the literature. This is mainly because pressure drops in laminar flow are 
small and therefore difficult to measure. On the other hand, heat transfer in laminar 
flow is often augmented by natural convection.

7.2.1 Central Subchannel — Regular Triangular Array
Fully Developed Flow: f Re. Many solutions have been obtained for fully developed 
laminar flow through a central subchannel in regular triangular array. Solutions for 
/ Re are reported by Rosenberg [10], Sparrow and Loeffler [11], Axford [12,13], Shih 
[14], Rehme [15,16], Obeijohn as reported by Johannsen [1], Malak et al. [17], Meyder 
[18], Ramachandra [5], Mikhailov [19], and Subbotin et al. [20], The tabulated results of 
the different authors agree within 2%, and are represented by a smooth curve in Fig. 
7.2.

The results by Sparrow and Loeffler [11] and Ramachandra [5], presented graphi
cally, agree with the results of the other authors. Dwyer and Berry [21] tabulated the 
dimensionless “pressure-drop-flow parameter”, from which / Re can easily be com
puted by multiplying it by 0.5 X (flow area) X (hydraulic diameter)2. Sholokov et al.
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P/D for Nuh1, NuH2, Nut

Figure 7.2. / Re and Nu of central subchannel in regular triangular array vs. pitch-to-diameter 
ratio for fully developed laminar flow.

[22] presented f Re factors for P/D = 1.0 to 1.5. Their results of an electric simulation 
agree satisfactorily with the data of Fig. 7.2; however, their numerical values do not.

The f Re data can be approximated by the following equations:

' 51.p/d - I)0 404 for 1.02 < P/D < 1.12 (7.1)
36.713(P/7) - I)024 for 1.12 < P/D < 1.6 (7-2)

/Re = 38.947(P/Z> - I)0372 for 1.6 < P/D < 2.0 (7-3)
16(r* 2 - I)3

for P/D > 2.1
4r/ln r*  - 3r* 4 + 4r* 2 - 1 (7-4)

w'here

= 1.05 — 
D

(7.5)

These equations agree within 1.5% with the data of Axford [12,13] and Dwyer and 
Berry [21],

The equation for P/D > 2.1 is a theoretical solution for f Re in the inner zone of a 
concentric annulus (zone between the surface of the inner rod of an annulus and the 



LAMINAR FLOW 7*7

radius of zero shear stress), denoted by (/ Re)caz [23], Martelli [24] has provided an 
alternative expression for f Re for 1.2 < P/D < 1.5 which is accurate to ±1.5% of 
[15]. Morosova and Nomofilov [25] have reported a formula for f Re for P/D = 1.05 
to 1.8 which is up to 13% higher than Eqs. (7.1) to (7.3). Cheng and Todreas [26] 
developed formulas for f Re for 1.0 < P/D < 1.5 which agree with Eqs. (7.1) and (7.2) 
within 1.5%.

Sparrow and Loeffler [11] and Ramachandra [5] also presented graphs of the 
variation in wall shear stresses along the periphery of the rods.

Fully Developed Heat Transfer: NuH1. The (m) problem^ for fully developed 
laminar-flow heat transfer through a central subchannel in regular triangular array was 
analyzed by Sparrow et al. [27], Dwyer and Berry [21], Hsu [28], and Ramachandra [5], 
The results for NuH1 of these investigators agree with each other within 1%, and are 
represented by smoothed curves in Fig. 7.2.

The correlation by Subbotin et al. [29] [limiting case for eA oc of Eq. (7.10)] 
agrees with the results of Dwyer and Berry [21] within 2.8% in the range 1.0 < P/D < 
2.0:

xt t.-.-P 6.3
NUH1 = 7-55 p ~ (p/Z))17(P/Z>)(P/D-0.81) (7-6)

Subbotin [30] provided an alternative expression for NuH1 for 1.3 < P/D < 2.0 which 
agrees with the results of [21] within 1%. Based on the results by Axford [31], Martelli 
[24] developed a NuH1 correlation for 1.1 < P/D < 1.7 which is accurate to 1.8% of 
[21]-

Sparrow et al. [27], Dwyer and Berry [21], and Ramachandra [5] also graphically 
presented heat-flux variations along the periphery of the rod for a range of P/D ratios.

Fully Developed Heat Transfer: NuH2. The (h2) problem for fully developed laminar 
heat transfer through a central subchannel in regular triangular array has been 
analyzed by Dwyer and Berry [21], Hsu [28], and Ramachandra [5]. The results of these 
authors are in excellent agreement (within ±0.5%) and are shown in Fig. 7.2. NuH2 is 
less than NuH1 for P/D < 1.4. For P/D > 1.4, the distribution of the peripheral 
surface temperature is uniform with good approximation; therefore, NuH2 is equal to 
NuHi-

For P/D > 1.4, NuH2 can be calculated by the formula of Subbotin [30] [Eq. (7.6) 
above].

The correlation by Subbotin et al. [29] [limiting case = 0.01 of Eq. (7.10)] agrees 
with the results of Dwyer et al. [21] within 5% for P/D > 1.02:

>,T., _ n
’ P 6.3
7 SS^UH2 ” D ^p^Dyy(P/D)(P/D-OM)

'i.bP/D
1.048(P/D)20 ±3.2

(7-7)

valid in the range 1.0 < P/D < 2.0.

' The (ra), (hs), and @ boundary conditions are defined in Chapter 3.
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Dwyer and Berry [21] and Ramachandra [5] also presented graphs of the tempera
ture variation around the rod periphery.

Fully Developed Heat Transfer: NuT. The only available analysis of the @ problem 
has been performed by Ramachandra [5], The NuT values computed for the P/D 
range between 1.05 and 1.8 are shown in Fig. 7.2. For the whole range of P/D ratios 
investigated, NuT is less than NuH1. For P/D = 1.8, NuT approaches the NuH1 
values. Nut is higher than NuH2 for P/D < 1.125, which is due to the strong 
peripheral variation in the surface temperature for the (S) problem.

Developing Flow. Ramachandra [5] analyzed the development of the pressure drop 
for three P/D ratios: 1.05, 1.1, and 1.5. It should be noted that for fully developed 
flow and P/D = 1.5, the pressure gradient determined by Ramachandra [5] is about 
7% lower than the pressure gradient calculated from the f Re data of Fig. 7.2 and Eq. 
(7.2).

Martelli [24] developed an approximate correlation for the incremental pressure 
drop in the hydrodynamic entrance region based on the data for concentric annuli by 
Sparrow and Lin [32],

Developing Heat Transfer. The problem of developing heat transfer has been 
analyzed by Ramachandra [5] for the (h2) boundary condition only. At the beginning of 
the temperature development, a fully developed velocity profile at constant fluid 
temperature and a uniform wall temperature were prescribed. The values of NuH2 
computed for three P/D ratios (1.05, 1.1, and 1.2) show that the thermal entrance 
length decreases with increasing P/D.

Based on the data by Lundberg et al. [33] for concentric annuli, Martelli [24] 
developed approximate correlations for multipliers to the fully developed Nusselt 
number, which he applied to central subchannels of rod bundles arranged in a 
triangular array.

7.2.2 Central Subchannel — Regular Square Array
Fully Developed Flow: f Re. Solutions for f Re for fully developed laminar flow 
through central subchannels in a regular square array have been obtained by Sparrow 
and Loeffler [11], Shih [14], Rehme [15,16], Obeijohn as reported by Johannsen [1], 
Malak et al. [17], Meyder [18], Kim [34], Ramachandra [5], and Ohnemus [35], The 
f Re of these authors (except for Ohnemus) agree within 1% and are shown in Fig. 7.3. 
The graphical results presented by Sparrow and Loeffler [11] and Ramachandra [5] are 
also in excellent agreement with those of Fig. 7.3. Gunn and Darling [36] calculated 
f Re = 6.5 for P/D = 1.0, which agrees well with the value of 6.60 of Rehme [15,16], 
/Re for the central subchannel in a regular square array can be approximated by the 
equation

/ p \ 0.435

Re = 40.70 ------1
\ D / (7-8)

in the range 1.05 < P/D < 2.0 with a maximum error of ±2% [35].
For P/D > 2.8, / Re can be calculated from Eq. (7.4), the solution for the annular 

zone [11], For the square array, the equivalent annular zone parameter r*  [to be used in
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PZDfor Nuh1, NuH2

Figure 7.3. f Re and Nu of central subchannels in a regular square array vs. pitch-to-diameter 
ratio for fully developed laminar flow.

Eq. (7.4)] is

P
~ 1.128—.

D (7-9)

For the central subchannel, it is interesting to note that f Re for a triangular array 
is higher than that for a square array if P/D < 1.8, but lower if P/D > 1.8. This can 
be seen also from the annular zone solution, valid for P/D > 2.8, because the 
annular-zone parameter, r*  = rT=0/r,-, with rT=0 as the radius of the zero-shear 
position and r, as the radius of the inner tube of an annulus, is higher for a square 
array than for a triangular array at the same P/D [compare Eqs. (7.9) and (7.5)].

The analysis of Ohnemus [35] with gases as coolants shows that / Re, either for 
fully developed conditions or for simultaneously developing flow and heat transfer, 
increases with increasing heat flux if temperature-dependent properties are taken into 
account.

Sparrow and Loeffler [11] and Ramachandra [5] also presented graphs of the wall 
shear-stress variation around the rod periphery.

Fully Developed Heat Transfer: NuH1. The (m) problem for central subchannels in a 
regular square array has been analyzed by Kim [34] in the range of P/D = 1.1 to 4.0. 
His data are shown in Fig. 7.3. A comparison of Figs. 7.2 and 7.3 reveals that the NuH1 
values for a square array are lower than those for a triangular array in the range of 
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1.15 < P/D < 1.95. NuH1 of a square array is higher than NuH1 of a triangular array 
for P/D > 1.95. This trend is in agreement with the f Re data, because the annular-zone 
parameter r*  is higher for a square array than for a triangular array at the same P/D. 
Kim [34] also graphically presented the variation in heat flux along the rod periphery.

Fully Developed Heat Transfer: NuH2. The (H2) problem of central subchannels in a 
regular square array has been analyzed by Obeijohn as reported in [1], Ramachandra 
[5], Ohnemus [35], Chen et al. [37], and Kim et al. [38], The NuH2 data obtained for a 
range of P/D = 1.05 to 4.0 are displayed in Fig. 7.3 for P/D ratios between 1.0 and 
2.0. As expected, NuH2 is lower than NuH1; the Nusselt numbers for the (m) and (h2) 
problems are coincident for P/D >1.8 because the temperature distribution along the 
rod periphery then becomes uniform. All data computed by different methods agree 
satisfactorily for P/D < 1.2. For P/D > 1.2, however, the data by Ohnemus [35] and 
Chen et al. [37], both computed by the bodyfit code [39], are lower than the data 
obtained by Obeijohn as reported in [1] and Kim et al. [38]. This is due to the mesh size 
used for the calculations. The values of NuH2 computed by Zachmann [40] using the 
bodyfit code clearly show that a reduced mesh size results in higher NuH2, especially 
for P/D > 1.2.

The results by Ramachandra [5], presented graphically, are higher than those of 
Obeijohn as reported in [1] and Kim et al. [38] for P/D > 1.2. For P/D > 1.5, the 
NuH2 data by Ramachandra [5] exceed the NuH1 data of Kim [34], Therefore, it is 
concluded that Ramachandra’s NuH2 data are too high for P/D > 1.5.

The effect of temperature-dependent properties on NuH2 has been investigated by 
Ohnemus [35], His results for CO2, He, and N2 and for different heat fluxes show that 
the fully developed NuH2 are not affected by temperature-dependent properties.

TABLE 7.2 fxRe of Developing Flow in Central Subchannels Arranged 
in Square Arrays for Isothermal Flow

103x+

A Re
P/D = 1.05

[35]
1.1
[35]

1.2
[40]

1.5
[40]

2.0
[35]

1.0 — — — — 84.05
1.5 — — — — 69.16
2 — — — — 60.03
3 — — — — 51.42
4 — — — — 48.09

5 — — — 45.78 46.38
8 — — 38.91 38.06 43.96

10 — 36.21 35.79 36.56 43.15
15 — 27.71 31.3 34.09 42.12
20 — 24.44 28.37 32.86 41.75

30 19.88 20.04 24.87 31.30 —
40 16.29 18.25 23.05 30.64 —
50 14.31 16.98 21.98 30.38 —
75 12.30 15.63 20.84 30.15 —

100 11.57 15.05 20.46 30.20 —

150 10.98 14.65 20.29 — _
200 10.76 14.56 20.27 — —
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Figure 7.4. / Re of central subchannels in regular square array vs. the nondimensional axial 
coordinate for hydrodynamically developing laminar flow [35,40],

Developing Flow. Developing flow through a central subchannel in a regular square 
array has been analyzed by Ohnemus [35] and Zachmann [40]. The results of their 
calculations for isothermal flow are presented in Table 7.2 and in Fig. 7.4 as /xRe 
versus the nondimensional hydrodynamic entrance length xf = x/(Z)/;Re). Here, fx is 
the local friction factor at the axial distance x from the entrance. It is obvious from 
Fig. 7.4 that the entrance length to arrive at the fully developed / Re increases with 
decreasing P/D ratio.

Based on the analysis and results of Ohnemus [35], it is concluded that /xRe 
increases with increasing heat flux for simultaneous development of flow and heat 
transfer when the coolant is a gas (CO2, He, N,), and when the influence of tempera
ture-dependent fluid properties is included. The nondimensional entrance length to 
reach fully developed flow conditions also increases with increasing applied heat flux.

Developing Heat Transfer. The (m) Nusselt numbers in the thermal entrance region 
have been computed by Ohnemus [35], Zachmann [40], and Chen et al. [37] for the case 
of simultaneous development of flow and heat transfer, and are shown in Fig. 7.5. The 
entrance length increases with decreasing P/D. The Nusselt numbers strongly increase 
near the entrance (as x*  decreases) as expected. The increase in NuH2 in the entrance 
region is stronger (Table 7.3) for lower P/D ratios. Ohnemus [35] and Zachmann [40] 
obtained Nuv H2 for three different gases as coolant (CO2, He, and N2) and consider
ing temperature-dependent properties. Chen et al. [37] obtained Nuv H2 for water as a 
coolant. In the entrance region, NuY H2 according to Zachmann and Ohnemus (Pr =



Figure 7.5 Nusselt numbers for thermally developing laminar flow in central subchannels of a 
regular square array for the (m) boundary condition.

TABLE 7.3 Nusselt Numbers for Simultaneous Development of Flow 
and Heat Transfer in Central Subchannels Arranged in a Square Array3

103x*

Nil x

P/D = 1.05
[35]

1.1
[35]

1.2
[40]

1.5
[40]

2.0
[35]

1 — — — — 25.21
1.5 — — — — 22.05
2 — — — — 20.33
3 15.74 14.43 — — 18.51
4 12.88 12.31 — 18.52 —

5 10.29 11.02 13.91 16.96 —
8 6 77 8.52 11.03 13.46 —

10 5 29 7.44 9.93 12.46 —
15 3.33 5.56 8.20 11.22 —
20 2.44 4.42 7.12 10.54 —

30 1.71 3.20 5.75 9.75 —
40 1.41 2.61 4.95 9.33 —
50 1.25 2.27 4.45 9.09 —
75 1.05 1.87 3.81 8.85 —

100 0.97 1.70 3.55 8.79 —

150 0.90 — 3.37 8.77 —

“According to Ohnemus [35] and Zachmann [40] for q” = 103 W/m2 and helium as 
coolant (Pr = 0.66).

7-12
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0.66) are higher than those according to Chen et al. (Pr = 6.96). This is to be expected, 
because Nu( H2 increases with decreasing Prandtl number for a given x*  [9], Ohncmus 
[35] reports that Nuv H2 is unaffected by the temperature-dependent properties for 
gases and by minor variations in Pr for three gases he considered. At higher values 
of x*  = x/(DhPe), when fully developed conditions are approached, the data by 
Zachmann [40], Ohnemus [35], and Chen ct al. [37] are in excellent agreement, as seen 
in Fig. 7.5.

7.2.3 Central Subchannel: Additional Thermal Boundary Conditions
Graber [41] analyzed the (h?) heat transfer problem for a central subchannel in a 
regular triangular array by applying the model of an equivalent annular zone. He 
presented NuH5/NuH1 graphically as a function of P/D and the following parameter: 
the ratio of the temperature gradient along the wall transferring heat to the tempera
ture gradient in the fluid at a point where the temperature gradient normal to the wall 
vanishes.

Dwyer and Berry [42] studied a more general boundary condition of constant heat 
flux in the axial direction, prescribed at the inner surface of a tube, and took into 
account axial and peripheral heat conduction within the tube wall (multiregion analy
sis). This condition is more relevant to nuclear fuel elements, where the heat is 
generated inside the tube (in the fuel) and conducted through the cladding (tube) to the 
coolant. As expected, the Nusselt numbers calculated are between the hmiting cases of 
the (m) and (h2) boundary conditions, since the circumferential variations of the 
cladding surface temperature are diminished by peripheral conduction within the 
cladding. For a central subchannel in a regular triangular array, Dwyer and Berry [42] 
tabulated Nusselt numbers and circumferential temperature and heat-flux variations as 
a function of the P/D ratio, the ratio k2/k2 of the thermal conductivities of the 
cladding (A.?) and the fluid (A3), and the ratio rr/r2 of the inner and outer radii of the 
cladding.

The conductivity effect in the cladding (k2) and the fuel (Ay) was taken into 
account by Trombetta [43] for distinct sets of kx/k2, k2/k2, and rY/r2 for a triangular 
array and P/D ratios between 1.0 and 2.0. Subbotin [30] considered these effects in a 
more general way and presented the following correlation for Nu for a central 
subchannel in a regular triangular array with a volumetric uniform heat source in the 
fuel:

6.3
(p/£))i7(p/o)(P/r>-o.8i)

3.6P/D 
(P/Z>)2°(1 + 2.5486) + 3.2

(7-10)

where the thermal modeling parameter eK takes into account the effects of heat 
conduction in the fuel, cladding and fluid. This parameter of thermal similarity is 
defined as

kz 1 A0(r1/72)
ki 1 + A0(r1/r2)12

(7.U)
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with

^■2

k2|+ Aq
(7.12)Ao _

The limiting cases of ck are

0.01
ooex- =

for peripherally constant heat flux, NuH2
for peripherally constant temperature, NuH1

The limiting case = 0.01 is approached for a thermal conductivity of the cladding 
(k ) approaching zero. For infinite conductivity of the cladding material, the limiting 
case of (K -> oo is obtained. The results of Eq. (7.10) are presented graphically by 
Subbotin et al. [44], The dimensionless peripheral variation of surface temperatures, 
defined by

^max _  ^min

ATmax = 2^
q"D 3 (7-13)

is correlated by Subbotin et al. [45] for laminar flow as

a T*max  __
a7lam “

0.022
(p/jD)3(P/n-1)0-4

l.Ze-26-4^-1) + lneK

P/D - 1.06 \2
0.06

(7-14)

Hsu [28] analyzed the same problem and tabulated Nu for the case of a volumetric 
uniform heat source and A2/A3 = 0-3, &i/fc2 = 0-1, ri/r2 = 0.875, typical values for a 
sodium-cooled nuclear reactor with oxide fuel and stainless-steel cladding, for a P/D 
range of 1.05 to 2.0.

The same problem, including conduction effects in the fuel and cladding, was 
analyzed by Cieszko and Kolodziej [46] for a central subchannel in both regular 
triangular and square arrays. They presented the results graphically for a wide range of 
P/D, kx/k2, k2/k->,, and t\/r2. While their calculated Nusselt numbers for a square 
array are in between NuH1 and NuH2 of Fig. 7.3 as expected, the results for the 
triangular array are higher than NuH1 of Fig. 7.2, which is clearly not correct.

Hsu [47] also considered the effect of lateral rod displacement on heat transfer in 
rod bundles of a triangular array by a multiregion analysis. Hsu tabulated rod-averaged 
Nusselt numbers in the range of P/D = 1.1 to 1.2 for uniform heat generation in the 
fuel and for various sets of kx/k2, k2/k3, and rx/r2. Hsu [47] analyzed heat transfer in 
longitudinal laminar flow with one displaced rod in a triangular array for the (m) and 
(H2) problems. Hsu [48] graphically presented NuH1 and NuH2 for P/D = 1.0 to 2.0 
and displacements of up to 80% of the maximum possible displacement. His results for 
the symmetric case (i.e., without a displaced rod) are in excellent agreement with those 
of Dwyer and Berry [21], Hsu’s results show that the rod-average Nusselt numbers of 
the displaced rod decrease from the symmetric case with increasing displacement. The 
drop below the NuH1 and NuH2 of the symmetric case increases with increasing P/D 
ratio.



LAMINAR FLOW 7*15

7.2.4 Wall Subchannel

The wall subchannel shape and size (flow area and wetted perimeter) are identical for 
regular triangular and square arrays for the same W, P, and D. Hence, no distinction 
has been made between the wall subchannels of different arrays in the following.

Fully Developed Flow: f Re. The pressure drop in wall subchannels of rod bundles 
has been analyzed by Rehme [15,16,49] for a wide range of P/D and W/D ratios. 
The f Re factors are presented in Table 7.4. Robinson [50] studied the pressure drop in 
wall subchannels for P/D = 1.225 and W/D in the range between 1.0206 and 1.1738. 
His / Re factors are in excellent agreement with those of Table 7.4. Herzog [52] 
investigated f Re for P/D = W/D = 1.2,1.4,1.6 and for P/D = 1.4, W/D = 1.2,1.6. 
The f Re factors from this study are also in good agreement with Table 7.4: within 
0.6% for a fine mesh grid used for the calculations, and within 4% for a coarse mesh 
grid. Gunn and Darling [36] calculated f Re = 6.50 for P/D = W/D = 1.0, which 
agrees within 1% with that of Table 7.4.

Mohanty and Sahoo [254] computed / Re of twelve wall subchannels for P/D in 
the range between 1.2 and 2.5 and W/D in the range between 1.15 and 2.0. Their 
results are in close agreement with those of Table 7.4.

Figure 7.6 shows f Re versus P/D for three characteristic W/D: (1) W/D = P/D 
(gap between rods equal to gap between rod and channel) (2) W/D = 0.5( P/D - 1) + 
1 (gap between rod and channel = 0.5 X gap between rods), and (3) W/D = 
2(P/D — 1) + 1 (gap between rod and channel = 2 X gap between rods).

For the special case of P/D = W/D, Cheng and Todreas [26] developed the 
following correlations:

6.545 + 138.63( P/D - 1) - 370(P/£> - I)2 for 1.0 < P/D < 1.1 

11.1 + 64.175(P/P - 1) - 66.9(P/Z> - I)2 for 1.1 < P/D < 1.5

(7-15)

which agree with the results of Table 7.4 within 1.0%.

/Re =

TABLE 7.4 f Re of Wall Subchannels for Fully Developed Laminar Flow [15,16]

P/D

/Re

W/D = 1.0 1.02 1.05 1.1 1.2 1.25 1.35 1.5 1.75 2.0 3.0

1.0 6.56 8.46 10.98 13.99 16.68 — — 17.27 — 16.46 15.46
1.02 7.22 9.15 11.70 14.75 — 17.93 — 17.91 — 17.20 14.42
1.05 7.98 9.93 12.52 15.70 — 19.18 — 19.16 — 18.00 16.98
1.1 8.74 10.68 13.31 16.69 — 20.69 — — 19.94 19.26 17.98
1.2 8.88 10.67 13.24 16.89 21.39 — 23.56 23.63 22.98 22.18 20.24
1.35 — — — — 20.54 — 24.72 — — — —
1.5 7.35 8.54 10.35 13.35 18.63 — — 26.56 27.72 27.68 26.21
1.75 — — 9.17 1149 15.94 — — 25.10 28.35 29.55 31.94
2.0 6.99 7.70 8.84 10.72 — 16.11 19.35 23.24 27.43 29.94 33.11
3 8.66 9.14 9.85 — 13.15 — — 18.88 22.80 25.96 —
4 — — — 12.38 — 14.73 — 18.01 — 23.45 28.76
5 12.12 — 12.93 — 14.98 — — — — —
7 — — — — — — — 18.90 — 21.70 —
10 16.67 16.88 17.16 17.60 — 18.66 — 19.94 — 21.79 24.77



Figure 7.6. f Re of wall subchannels versus pitch-to-diameter ratio for fully developed laminar 
flow.

When the rod is heated, the fully developed f Re increases with increasing heat flux, 
when the calculations are made with helium as the working fluid and with 
temperature-dependent fluid properties [52],

Fully Developed Heat Transfer: NuH2. Herzog [52] analyzed the (hi) problem for 
five geometries and for two different heat fluxes at the rod wall, taking into account 
temperature-dependent fluid properties with helium as a working fluid. The NuH2 for 
the higher heat flux were slightly lower (up to 6%) than those for the lower heat flux. 
The difference may be due to the coarse mesh grid used.

Mohanty and Sahoo [254] computed NuH2 of twelve wall subchannels for P/D in 
the range between 1.2 and 2.5 and W/D in the range between 1.5 and 2.0, for constant 
fluid properties.

TABLE 7.5 NuH2 for Fully Developed Laminar Flow in Wall Subchannels

P/D
NuH2

W/D = 1.15 1.2 1.4 1.5 1.6

1.2
1.4
1.5
16
1.75

3.07 3.45 3.85 3.87 —
4.49“ 5.53“ — 5.00“

— — 6.86 — —
— _ _ _ 7.14“
— — — 7.77 8.13

From Herzog [52]; other data from Mohanty and Sahoo [254],



LAMINAR H OW 7*17

x+= x 
Dhte

Figure 7.7. f Re for hydrodynamically developing laminar flow in wall subchannels with
P/D — W/D, vs. the nondimensional axial coordinate [52].

Table 7.5 shows some of the results of both investigations. The NuH9 data of Herzog 
[52] are for the lower heat flux. The tabulated NuH2 for P/D = W/D = 1.2 by 
Mohanty and Sahoo agrees within 5% with NuH2 = 3.30 due to Herzog.

Developing Flow: f Re. The only data for fx Re in the hydrodynamic entrance region 
were computed by Herzog [52] and are shown in Fig. 7.7 for P/D = W/D. As 
expected, the /Re factors are higher in the entrance region than those for fully 
developed flow. The entrance length increases with decreasing P/D = W/D. From the 
tabulated /x.Re by Herzog [52], it is obvious that /xRe for heated rods and simulta
neously developing flow and heat transfer, calculated for helium and taking tempera
ture-dependent properties into account, is higher than for isothermal flow.

Developing Heat Transfer: NuH2. Herzog [52] also analyzed the thermal entrance 
region in wall subchannels for the case of simultaneous development of flow and heat 
transfer with helium (Pr = 0.66) as coolant for the geometries of Table 7.5. His results 
of Nux H2 show that the thermal entrance length decreases with increasing P/D = 
W/D. The results computed for q" = 102 and 103 W/m2 are almost identical.

7.2.5 Corner Subchannel — Triangular Array
Fully Developed Flow: f Re. Laminar flow through comer subchannels of a regular 
triangular array has been analyzed by Ratkowsky as reported in [9], Cheng and Jamil 
[53], and Rehme [15,16], Their / Re factors are presented in Fig. 7.8. Agreement 
among the three data sets is better than 1%, except for the range of 1.03 < W/D < 1.15, 
where Rehme’s data seem to be too high. The / Re factors increase strongly between



7*18 CONVECTIVE HEAT TRANSFER OVER ROD BUNDLES

25 —i—i—i—i—i—I—i—i—i—i—i i । r

---------- Robinson (square) [51]

() + Rehme [15, 16]

O Ratkowsky [9]
A Cheng and Jamil [53J

ol___I___ I___ I___ I---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1---- 1-----L
10 1.2 1.4 1.6 1.8 2.0 2.2 2.4

W/D
Figure 7.8. f Re vs. wall-to-diameter ratio for fully developed laminar flow in comer subchan
nels.

W/D = 1.0 and 1.1; for higher W/D ratios, / Re reaches a maximum at values close 
to the f Re of annuli with high radius ratios (/ Re = 23 to 24) before decreasing 
slightly. The recent results by Mohanty and Sahoo [254] are in close agreement with 
Rehme’s [15,16] data.

Cheng and Todreas [26] developed the following correlation for f Re in comer 
subchannels of a regular triangular array:

6.745 + 409( W/D - 1) - 2513( W/D - I)2, 1.0 < W/D < 1.1

21.815 + 9.6475(17/7) - 1) - 13.78(17/7) - l)2, 1.1 < W/D <1.5

(7-16)

This equation fits the data within + 1.1%.

Fully Developed Heat Transfer: NuH1. The @ heat transfer problem for a corner 
subchannel in a regular triangular array was analyzed by Cheng and Jamil [53], They 
reported NuH1 for the range of W/D = 1.5 to oo, which is outside the range of most 
practical applications.

Fully Developed Heat Transfer: NuH2. Mohanty and Sahoo [254] investigated the (hi) 
heat transfer problem for a comer subchannel in a regular triangular array in the range 
of W/D = 1.05 to 2.0. Their results are shown in Fig. 7.9.
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2.0

W/D
Figure 7.9. NuH2 vs. pitch-to-diameter ratio for fully developed laminar flow in comer subchan
nels: (a) regular triangular array, (b) regular square array.

7.2.6 Corner Subchannel — Square Array
Fully Developed Flow: f Re. Fully developed laminar flow through comer subchan
nels in a regular square array has been analyzed by Rehme [15,16], Ratkowsky as 
reported in [9], Cheng and Jamil [53], and Robinson [50]. The f Re factors of Rehme 
[15], Cheng and Jamil [53], and Ratkowsky (reported in [9]) are presented in Fig. 7.8. 
These results are also in excellent agreement with the graphical f Re of Robinson [51] 
as shown in Fig. 7.8. It should be noted that the statement “excellent agreement of 
Robinson’s data with Rehme’s result is not confirmed” made by Johannsen [1] is 
incorrect, because of a misinterpretation of the W/D ratio. In the present nomencla
ture, W/D of Robinson [50] is 0.5(P/Z) + 1). Gunn and Darling [36] calculated 
f Re = 7.06 for W/D = 1.0, which is in good agreement with that of Fig. 7.8. The 
recent results by Mohanty and Sahoo [254] for the range of W/D = 1.05 to 2.0 agree 
closely with the results of Fig. 7.8.

The f Re factors for a regular square array are lower than those of a regular 
triangular array for the same W/D.

Fully Developed Heat Transfer: NuH1. As for the triangular array, the (hi) heat 
transfer problem for a comer subchannel in a regular square array was analyzed by 
Cheng and Jamil [53], They reported hluH1 for the range of W/D = 1.5 to oo, which is 
outside the range of most practical applications. In the range considered, NuH1 for a 
triangular array are higher than those for a square array.

Fully Developed Heat Transfer: NuH2. Mohanty and Sahoo [254] published NuH2 
computed for a comer subchannel in a regular square array in the range W/D = 1.05 
to 2.0. Their results are shown in Fig. 7.9. The values of NuH2 for a comer subchannel 
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in a triangular array are higher than those in a square array, which is in agreement with 
the trends observed for f Re in comer subchannels.

7.2.7 Finite Rod Bundles in Regular Triangular and Square Arrays
Fully Developed Laminar Flow: f Re. The / Re factors for fully developed laminar 
flow through rod bundles of any size can be computed from the known f Re factors of 
the individual subchannels by a method proposed by Rehme [15], Under the idealiza
tions of (1) a constant pressure drop in all subchannels and (2) a total flow rate through 
the rod bundle under consideration which is equal to the sum of the flow rates through 
the n individual subchannels, the f Re factor of a rod bundle can be obtained by the 
following equation [15]:

1 
/Re

y 1 fMP'T 
~(/Re),^J U/ (7.17)

With the indices c for central, w for wall, and co for comer subchannels and the 
respective nt, At and Pw from Table 7.1, Eq. (7.17) can be rewritten as

where the total flow cross section A and the total wetted perimeter Pw of the rod 
bundle are

= ncAc + nwzlw + ncoAco (7.19)

Pjy = ncPw c + n^Pwv + ncoPw co. (7.20)

example. Consider a rod bundle of 19 rods in a regular triangular array (N = 2) with 
P/D = 1.266 and W/D = 1.04.

From Table 7.1 we have nc = 24, nw = 12, nco = 6. From Fig. 7.2, (/ Re)c = 26.85; 
from Table 7.4 (by interpolation) or from [49], (/ Re)w = 11.95; and from Fig. 7.8, 
(/ Re)co = 18.95. With At and Pw t from Table 7.1 and A and Pw from Eqs. (7.19) 
and (7.20),

/Re = 16.33

is calculated from Eq. (7.18). It agrees with the numerical value / Re = 16.21 calcu
lated by Ullrich [54], within 0.8%.

The validity of Eq. (7.18) to calculate / Re of rod bundles using the subchannel / Re 
factors has been proven for 1.1 < P/D < 2.3 and 1.04 < W/D < 2.5. A comparison 
with numerically computed / Re factors for 20 rod bundles [15] and 11 rod bundles 
[54], and experimental / Re factors for 8 rod bundles [55] and 4 rod bundles [36] 
indicates that the subchannel analysis predicts the / Re factors accurately to within 5%, 
and the agreement is within 3% in most cases. In these comparisons, the maximum
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Figure 7.10. f Re for fully developed laminar flow in rod bundles in a regular triangular array at 
P/D = 1.2: effect of W/D ratio and the bundle size [1].

number of rods employed in a bundle was 37. As the number of rods increases, the 
accuracy of the subchannel analysis increases due to a somewhat reduced “wall effect”. 
Since the subchannel analysis is an accurate tool, the f Re factors for an important 
family of rod bundles have been computed by Johannsen [1] using this tool and are 
presented in Figs. 7.10 to 7.12.

Figure 7.10 shows the dependence of / Re on variables W/D and bundle size N for 
P/D = 1.2. f Re initially increases with W/D, reaches a maximum in the neighbor
hood of P/D = W/D, and then decreases continuously for the ranges of W/D and N 
shown. The maximum f Re value increases and is shifted toward a smaller W/D with 
increasing bundle size; the change from N = 2 to N = 7 corresponds to an increase in 
the number of rods from 19 to 169. This behavior of f Re, which is similar when P/D 
is varied and W/D kept constant, may be explained by the fact that f Re reaches a 
maximum for a uniform velocity distribution among the different subchannels. This 
occurs in rod bundles with nearly uniform hydraulic diameters of the subchannels, 
which condition is met most closely in the neighborhood of P/D = W/D.

It is often assumed that the influence of the channel wall may be neglected for rod 
bundles with a large enough number of rods (N > 5), and f Re of the central 
subchannel may be apphed to the total rod bundle. This is not quite true. In Fig. 7.11 
the deviation of f Re between rod bundles and central subchannels is plotted against 
the number of rings, N, for a constant P/D = 1.1 and different W/D ratios. It clearly 
shows that, even when P/D = PF/T), the f Re factor of rod bundles is considerably 
smaller than / Re of the central subchannel. With increasing W/D ratio, the conver
gence of f Re toward the central subchannel value becomes extremely slow [1],

Even for bundle sizes of practical application and P/D = W/D, the ratio of the 
f Re of the bundle to that of the central subchannel does not approach unity, as shown
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N
Figure 7.11. Ratio of f Re for fully developed laminar flow in rod bundles in a regular triangular 
array to f Re for a central subchannel with P/D = 1.1: effect of W/D ratio and bundle size [1],
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P/D= W/D
Figure 7.12. Ratio of f Re for fully developed laminar flow in rod bundles in a regular triangular 
array to f Re for a central subchannel with P/D = W/D: effect of bundle size [1], 
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in Fig. 7.12. Some f Re factors, calculated numerically by Ullrich [54] for bundles of 19 
rods, are included in Fig. 7.12, demonstrating the excellent accuracy obtained by the 
subchannel method of Rehme [15],

Fully Developed Heat Transfer. In contrast to f Re, there is no simple rule to 
calculate the temperature distribution for fully developed heat transfer in laminar flow 
through rod bundles. Subchannel solutions for Nusselt numbers may be adequate to 
study the average laminar heat transfer in finite rod bundles, but the analysis based on 
subchannel solutions is inappropriate when investigating local effects, such as thermal 
stresses, local hot spots, and maximum or minimum surface temperatures along the 
periphery of the rods. The peripheral variations of surface temperatures and heat fluxes 
in rod bundles are due to internal heat generation and asymmetric heat dissipation as a 
result of nonidentical flow passage geometries.

At high P/D ratios, e.g. P/D > 1.5, peripheral wall temperature variations in all 
types of subchannels are small enough to be neglected, provided P/D W/D. Hence, 
the designer of such heat transfer equipment may be satisfied with knowing the 
subchannel Nusselt numbers to estimate wall surface temperatures and heat transfer 
rates [8], At low P/D ratios, such as those in nuclear-reactor fuel assemblies, periph
eral variations of the surface temperature may be much larger than the average 
temperature drop between the wall and fluid bulk temperatures. In this case, single-re
gion solutions will give wrong answers to the problem of the maximum temperature in 
a rod bundle. Application of multiregion solutions with specified heat flux at the inner 
surface of the cladding and with heat conduction in the cladding taken into account 
will result in smaller errors, but not in correct answers [8],

The peripheral variations of temperatures and heat fluxes depend on (1) the 
geometrical parameters of the rod bundle (P/D, W/D, number of rods, triangular or 
square arrays), (2) the thermal properties of the fluid as well as of the structures, and 
(3) the thermal boundary conditions. Thus the number of independent and dependent 
variables is very large, which makes it completely impracticable to both compute and 
compile results for all possible relevant combinations of independent parameters [8], 
Computer programs are necessary to enable the designer to evaluate all necessary data 
for any set of parameters of interest.

The problem of laminar flow heat transfer through rod bundles is discussed in depth 
by Johannsen [8].

7.2.8 Cell Solutions
To overcome the difficulty of the heat transfer problem for laminar flow in rod bundles 
to a certain extent, Hsu [28] calculated average Nusselt numbers for wall and comer 
rods in a regular triangular array, i.e., for the regions with the highest asymmetries in 
the flow cross section. These cell solutions include an analysis of a wall cell (the wall 
subchannel together with the neighboring central subchannel) and a corner cell (the 
corner subchannel together with the neighboring central subchannel) as shown in Fig. 
7.13.

Hsu [28] tabulated NuH1 and NuH2 for wall and comer cells in the range of 
P/D = W/D = 1.05 to 1.8. He used an equivalent diameter (Z),) for the Nusselt 
number, which did not include the channel perimeter. Therefore, Hsu’s Nusselt 
numbers have been recalculated using the hydraulic diameter, including the channel



Wall cell
Figure 7 13. Definition of flow domain of comer and wall cells of rod bundles arranged in a 
regular triangular array.

Corner cell

Figure 7.14. Nusselt numbers for fully developed laminar flow in wall and corner cells for 
P/D = W/D, vs. pitch-to-diameter ratio [28],
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perimeter. It can easily be shown that, for the geometries investigated (P/D = W/D),

[ 77V^

= I tt/3 - 1 + (P/D)(2 +• /3 )

Dp ] 77

77 + P/D

for a comer cell

for a wall cell

(7-21)

(7.22)

The NuH1 and NuH2 data for the wall cell and comer cell are shown in Fig. 7.14. As 
expected, Num is higher than NuH2, and both Nusselt numbers increase with 
increasing P/D = W/D. NuH1 of a comer cell is slightly lower than NuH1 of a wall 
cell. However, NuH, of a comer cell is higher than NuH-> of a wall cell at the same 
P/D = W/D.

Hsu [28] also calculated Nusselt numbers for wall and corner cells applying a 
constant volumetric heat source within the rods and taking into account heat conduc
tion in the fuel and the cladding (multiregion analysis). He analyzed the problem of a 
typical sodium-cooled nuclear reactor with fuel rods consisting of oxide fuel core and 
stainless-steel cladding (k1/k2 = 0.1 and r\/r2 = 0.875). His computed Nusselt num
bers, for the range P/D = W/D = 1.05 to 2.0 for wall and comer cells, are very close 
to the NuH2 results of Fig. 7.14. Hsu [28] also presented graphs of the peripheral 
variations of inner and outer cladding wall temperatures and wall heat fluxes for 
typical geometrical cases.

Multicell solutions for wall and central subchannels have been obtained by Milbauer 
[57], who computed variations of wall shear stresses and of surface temperatures for 
rod displacements under the assumption of a constant heat flux at the inner surface of 
the tube. He presented the results graphically.

7.2.9 Concentric Rod Bundles
A concise presentation of results for concentric rod bundles, similar to those for 
bundles arranged in a regular triangular or square array, is impossible because of the 
larger number of geometric parameters needed to characterize the geometry.

The f Re of concentric rod bundles can be computed by Eq. (7.18), provided the 
f Re of the wall subchannels with curved boundary are known. Mohanty and Sahoo 
[254] computed / Re for fifteen different geometries of wall subchannels with curved 
boundary in the range of P/D = 1.083 to 1.822 and W/D = 1.125 to 1.82, and for 
three different included angles of 120, 105, and 100°, which correspond to clusters of 7, 
19, and 37 rods, respectively. Mohanty and Sahoo showed that the superposition [Eq. 
(7.18)] of the subchannel f Re agrees within 2.6% with the f Re from the literature for 
five rod clusters. The literature f Re were obtained by analysis of a sector of the rod 
cluster.

Mohanty and Sahoo [254] also presented NuH2 for fifteen different wall subchan
nels with a curved boundary. However, superposition of the subchannel NuH2 to obtain 
NuH2 of the cluster was not successful (see Sec. 7.2.7).

Concentric rod bundles have been used as fuel elements in some nuclear reactors. 
Therefore, the problem of laminar flow and heat transfer for concentric rod bundles 
has been studied in some detail. Axford [58] analyzed the velocity distribution for 
n = 3, 4, 5, 6, and 7 tubes in two arrangements, but reported no f Re factors. Courtaud 
et al. [59] experimentally investigated a rod bundle of six rods surrounding the central 
rod for different radii of the ring of six rods between two limits: (1) the six rods
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touching the central rod, and (2) the six rods touching the outer circular tube. Courtaud 
et al. [59] also calculated f Re factors numerically.

Min et al. [60,61] analyzed rod bundles with one ring of different numbers of rods 
around the central rod and reported / Re factors. Mottaghian and Wolf [62-64] 
considered tube bundles with more than one ring around the central tube. They 
developed an analytical method able to handle an arbitrary number of rods with 
different radii, placed on concentric rings around the central rod. Flow through rod 
bundles with one ring of six rods around the central rod was analyzed by Chen [65,66]. 
Chen also investigated the effect of displacing one rod of the outer ring. Chen’s results 
for the symmetric case are in very good agreement with those by Axford [58] and Min 
et al. [61]. For a cluster with a displaced rod, Chen [66] found that the dimensionless 
pressure gradient, which is proportional to f Re, decreases as the displacement in
creases. This means that, for a fixed pressure drop, the flow rate increases with 
displacement. Zarling [67,68] analyzed laminar flow and heat transfer in concentric rod 
bundles with 5, 7, 9 and 11 rods. His f Re factors are tabulated in [9], He considered 
two boundary conditions for the heat transfer problem [67]: (1) the rods were 
maintained at one constant temperature while the shell was maintained at another 
constant temperature, and (2) the rods were held at a uniform heat flux while the shell 
was held at a constant temperature. Zarling and Min [67,69,70] also analyzed the @ 
and (m) thermal entrance length problems for symmetrical one-ring rod bundles.

b/R
Figure 7.15. f Re for fully developed laminar flow in bundles of seven rods arranged in a circular 
array, vs. the radius ratio.
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Benodekar and Date [71] analyzed laminar flow and the (hj) problem in circular rod 
bundles with one ring of 4, 6, 8, and 10 rods around the central rod, with two rings of 
different rod numbers, and with 18 rods placed in two rings around the central rod. 
They tabulated / Re and NuH1 for 47 different rod bundles [71]. Benodekar and Date 
[72] also investigated the thermal entrance length problem for both the (in) boundary 
condition and sinusoidal heat flux in the axial direction with peripherally constant heat 
flux, for the case of fully developed velocity profile. Nusselt numbers and dimensionless 
temperatures and temperature differences are presented for clusters of 7 and 19 rods.

Mohanty and Ray [73] investigated laminar flow through circular tube bundles with 
one ring of different numbers of rods around the central rod. However, their f Re 
factors do not agree with those independently obtained by various researchers. The 
special case of symmetrical and displaced clusters of three rods inside a circular tube, 
which occurs in underground, pipe-type electrical cable systems, was analyzed by 
Chem and Chato [74], The authors treat thermally developing heat transfer for 
hydrodynamically developed flow under the condition of constant heat flux in the axial

0.1 0.2 0.3 0.4 0.5

W/R
Figure 7.16. f Re and Nusselt numbers for fully developed laminar flow in bundles of 19 rods in 
a circular array, vs. the nondimensional distance of the outer row of rods from the shroud.



7*28 CONVECTIVE HEAT TRANSFER OVER ROD BUNDLES

direction for a high Prandtl number fluid. They graphically present f Re factors and 
Nusselt numbers for three different geometrical configurations.

To illustrate some features of circular rod bundles, Fig. 7.15 displays f Re of 
clusters of seven rods (six rods symmetrically placed on one ring around the central 
rod) vs. the ratio b/R and for two ratios of rod diameter to shell radius. As expected, 
the same trends are exhibited as are found for rod bundles in a regular triangular array. 
f Re reaches a maximum for a b/R ratio at which the velocity distribution among the 
different subchannels is uniform. The data of all authors agree closely. Figure 7.16 
shows / Re for clusters of 19 rods placed on two concentric rings around the central 
rod vs. the dimensionless wall spacing W/R for the case of the distance between the 
outer and inner rings of rods (r2 ~' ri) kept constant. Again, the / Re factors increase 
with increasing wall spacing to a maximum value, and then decrease with further 
increase in the wall spacing. The results of Benodekar and Date [71] and of Mottaghian 
and Wolf [63] are found to be in good agreement. NuH2, also plotted in Fig. 7.16, 
varies in the same fashion, but its behavior is more peaked than that of f Re and its 
maximum occurs at a W/R ratio lower than that for the maximum f Re.

7.3 TURBULENT FLOW

In contrast to laminar flow through rod bundles, the pressure drop and heat transfer of 
turbulent flow through rod bundles has mainly been investigated experimentally. Many 
more experiments have been performed on pressure drop in rod bundles than on heat 
transfer, because heat transfer test sections are very expensive.

Quite a number of attempts have been reported in the literature to treat the flow 
and heat transfer problem in rod bundles theoretically. However, the validity of the 
theoretical work, especially the needed idealizations and modeling of turbulence, can 
only be assessed by comparison with the experimental data.

Subchannel analysis is a common practice in computing temperature distributions 
(subchannel averaged) for turbulent flow in rod bundles used as nuclear fuel elements. 
Measuring subchannel friction factors and heat transfer coefficients is difficult, since 
real rod bundles are enclosed in channel walls (shroud or wrapper tube). These walls 
affect the pressure drop and, above all, the mass flow distribution among the subchan
nels. Therefore, subchannel friction factors can be established only by detailed mea
surements of the distributions of wall shear stresses and velocities, which are very 
cumbersome to perform. Many attempts have been made to simulate infinite arrays of 
rod bundles (central subchannels); but, except for P/D = 1 (touching rods), walls 
always have to be used to close the channels.

7.3.1 Fully Developed Flow: Friction Factors — Triangular Array
The experimental results reported in the literature will be considered first. Rod bundles 
with 3 to 217 rods were used for the experiments with P/D ratios from 1.0 to 2.37 and 
W/D ratios from 1.0 to 2.44 [49,50,55,56,59,75-117]. The Reynolds numbers ranged 
up to 7 X 105. Many different shapes were used for the channels surrounding the rod 
bundles in the triangular arrays: (1) circular, (2) hexagonal, (3) rectangular, (4) 
rhombic, (5) triangular, (6) scalloped ducts, and (7) quasi-infinite (formed by a wall in 
the gap between the rods).

Most of the investigations were performed on a single geometry. Systematic experi
ments were performed by Galloway and Epstein [55, 56] for 19-rod bundles in hexago
nal ducts, by Eifler and Nijsing [86] for quasi-infinite arrays, by Courtaud et al. [59] 
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with seven rods in the same circular channel but for different geometrical arrange
ments. Ibragimov et al. [90] examined three rods in different arrangements in a 
triangular channel. Presser [92] measured the pressure drop of rod bundles in circular 
tubes and in quasi-infinite arrays for a wide range of P/D ratios. Subbotin et al. [100] 
performed experiments with 19-rod bundles of the same geometry but with different 
channels, and Rehme [103] measured the pressure drop of 25 different rod bundles 
surrounded by hexagonal ducts.

The experimental data up to 1970 have been reviewed by Rehme [103], The ratio of 
the friction factor measured in rod bundles to that in a smooth circular tube is shown 
in Fig. 7.17 for two Reynolds numbers: (a) Re = 104 and (Z?) Re = 105. This figure is 
an update of [103] including all data published since 1970. The results by Salikov et al. 
[75] have been reevaluated with the channel dimensions not given in [75], but reported 
by Inayatov [118]. The friction factor was calculated as f = 2Eu Dh/Dh and the 
Reynolds number as Re = Re5 £),,/£>, using values of Eu and Rev tabulated by Salikov 
[75]. Here Dh x is the hydraulic diameter of an infinite array. Some early data, which 
are obviously in error [77,81], have been omitted. The friction factors for the circular 
tube used are f = 0.0079 for Re = 104 and f = 0.00455 for Re = 105, from the 
equation by Maubach [119],

There is considerable scatter in experimental data. This is mainly due to the 
channels and the distances between channel and outer row of rods used. As has been 
discussed for laminar flow, the distance between rods and channel wall, or the W/D 
ratio, affects the overall friction factor. A maximum friction factor is obtained for cases 
in which the average velocity in the different subchannels is the same. To a first 
approximation, this condition is met for equal hydraulic diameters in the different 
subchannels. If the average velocities in the different subchannels are different, the 
friction factor will always be lower. For turbulent flow, this effect is not as pronounced 
as for laminar flow. Systematic experiments by Courtaud et al. [59], Ibragimov et al. 
[90], and Presser [92] clearly show these trends.

Figure 7.17 includes the friction factor of turbulent flow in the inner zone of an 
annulus [119,120], which should be the upper limit for the friction factor in rod 
bundles, as is the case for laminar flow.

Before conclusions are drawn, theoretical work on friction factors and the correla
tions developed from experimental evidence will be discussed.

The fundamental theoretical work on velocity distribution and pressure drop in rod 
bundles was presented by Deissler and Taylor [121], It was followed by theoretical 
work of Russian authors: Osmachkin [122], Buleev et al. [123], Kokorev et al. [124], and 
Ibragimov et al. [125,126]. Results on friction factors were also presented by Nijsing et 
al. [127], Graber [41], Vonka [128], Aranovich [129], Eifler and Nijsing [130,131], 
Subbotin et al. [29,132], Ramm and Johannsen [133], Ushakov [134,135], Meyder 
[136,137], Gosse and Schiestel [138], and Ramachandra [5], All theoretical investiga
tions considered the central subchannel of rod bundles in a regular triangular array 
(infinite array). The results differ widely.

Most theoretical results fall in one of two categories according as the velocity 
profiles were obtained from (1) the law of the wall for circular tubes applied to rod 
bundles, or (2) measurements in concentric annuli by Brighton and Jones [139], 
especially for the radius ratio 0.0625. These latter results were misinterpreted in that 
the coincidence of the positions of zero shear stress and maximum velocity profile was 
assumed, which is not true for strongly asymmetric velocity profiles, as the experimen
tal data by Rehme [140] for radius ratios as small as 0.02 definitely show. For very low 
radius ratios, there is in fact a slight deviation from the law of the wall in the 
nondimensional velocity profiles of the inner zone of an annulus [140], However, this is
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Re - 105

1.2

flow: friction factors of rod 
the friction factor of circular

Figure 7.17. Experimental results on fully developed turbulent 
bundles arranged in a triangular array normalized with respect to 
tubes, vs. pitch-to-diameter ratio: (a) Re = 104, (b) Re = 105.

(1) Equivalent annular zone solution
(2) Laminar method [23] fora central 

subchannel
Type of Channel: 
• Hexagonal 

A Quasi-infinite 
□ Other

caused by the strong asymmetry of the velocity profile, which is not present in rod 
bundles. Moreover, all measurements of velocity profiles in rod bundles show that the 
Jaw of the wall for circular tubes is valid also in rod bundles [86,91,99,107,112,114,141] 
to a good approximation.

Therefore, it is concluded that the upper limit for the friction factor in rod bundles 
of the triangular array is the friction factor of the inner annular zone based on the law 
of the wall for the velocity profile. This solution is shown in Fig. 7.17. Theoretical work 
in agreement with this solution has been done by Deissler and Taylor [121], Buleev 
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et al. [123] for P/D < 1.2, Kokorev et al. [124], Nijsing et al. [127] for P/D < 1.15, 
Vonka [128], Aranovich [129], Ramm and Johannsen [133], Meyder [136], and 
Ramachandra [5] (maximum P/D = 1.35). The prediction of Rapley [142,143] for 
P/D = 1 agrees closely with the experimental friction factors.

Most of the experimental results shown in Fig. 7.17 agree within 5% with the upper 
limit of the friction factor predicted from the annular-zone solution. Some experimen
tal data, mostly from early investigations, are higher than the annular-zone solution. 
Txperimental error is probable, due to the influence of surface roughness (especially for 
Re = 105), inaccurate knowledge of the flow cross section and wetted perimeter, 
possible effects of spacers on the pressure drop, and the fact that some of the pressure 
drop results were obtained as by-products of heat transfer measurements.

The empirical correlations for the friction factor in triangular array rod bundles by 
Mikhaylov et al. [85], Bogdanov [144], and Inayatov [118] are too simple and based on 
bmited data. The correlations by Ushakov [134,135], Subbotin and Ushakov [132], and 
Morosova and Nomofilov [25] result in friction factors which are too high for 
P/D > 1.2. The empirical correlations by Presser [92],

— Re“ 025
4

for 104 < Re < 5 X 104

f= — Re-02J 4 for 5 X 104 < Re < 2 X 105

(7.23)

(7-24)

with

P
= 0 171 + 0.012— - 0.07e-5O(P/D-1) (7-25)

are recommended for an infinite triangular array and 1 < P/D < 2. Equation (7.25), 
due to Presser [92], agrees within 2% with the annular-zone solution for P/D > 1.2.
The annular-zone solution, shown in Figure 7.17, can be correlated by 

f i P \
- = 1.045 + 0.071 ------1
f, \D )
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for Re = 104

for Re = 105

(7.26)

(7.27)

recommended by Rehme [103] for P/D > 1.2. For P/D < 1.2, Presser’s correlation 
agrees within 2% with the solution obtained by the laminar method (see Sec. 7.3.3), 
which is also presented in Fig. 7.17.

7.3.2 Fully Developed Flow: Friction Factors — Square Array
For square arrays, fewer experimental investigations exist than that for triangular 
arrays. Rod bundles with 4 to 100 rods have been used in the range of P/D ratios 
between 1.0 and 1.67 and W/D ratios between 1.041 and 1.67, respectively 
[36, 55, 56,76,78,79,92,114,141,145-152], No systematic experiments, varying all rele
vant geometrical parameters have been performed.

The experimental data up to 1972 have been reviewed by Marek et al. [149], The 
ratio of the friction factors measured in rod bundles to the friction factor of a smooth
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Figure 7.18. Experimental results of friction factors of fully developed turbulent flow rod 
bundles arranged in a square array, normalized with respect to the friction factor of circular tubes, 
vs. pitch-to-diameter ratio.

circular tube is shown in Fig. 7.18 for Re = 105. Figure 7.18 includes the friction factor 
for turbulent flow in the inner zone of an annulus [119,120], which should be the upper 
limit for the friction factor.

Theoretical solutions for the friction factor in rod bundles arranged in square arrays 
were obtained by most of the authors who reported solutions for triangular arrays: 
Deissler and Taylor [121], Osmachkin [122], Buleev et al. [123], Kokorev et al. [124], 
Ibragimov et al. [125,126], Graber [41], Eifler and Nijsing [130], Subbotin et al. 
[29,132], Ramm and Johannsen [133], Meyder [136,137], and Gosse and Schiestel 
[138]. As already discussed for rod bundles in triangular arrays, the theoretical work 
based on, or fitted to, velocity profiles measured in annuli by Brighton and Jones [139] 
does not agree with the experimental observations.

The empirical correlations by Presser [92]

/= ^Re~0-25

/= yRe~02

for 104 < Re < 5 X 104

for 5 X 104 < Re < 2 X 105

with

P
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D

(7.28)

(7.29)

(7.30)

are recommended for an infinite square array and 1 < P/D < 2. Friction factors from 
Eq. (7.30) arc in close agreement with the annular-zone friction factor for P/D > 1.5.
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7.3.3 Fully Developed Flow: Subchannel Friction Factors via 
Laminar Solutions

As mentioned before, subchannel friction factors for turbulent flow can only be 
determined experimentally by detailed measurements of the distributions of wall shear 
stress and velocity, because the mass flow rate or average velocity in a subchannel can 
be determined precisely only by integrating the measured velocity distribution. Only 
few experimental results are reported, except for the limiting case of touching rods 
and/or channel walls (P/D = 1, W/D = 1), of friction factors determined by pressure 
drop measurement.

Subbotin et al. [99] presented friction factors for central subchannels in triangular 
arrays for P/D = 1.05, 1.1, 1.2; Kjellstrbm [107] for P/D = 1.22; and Hejna et al. 
[112, 153] for P/D = 1.17. The experimental results for P/D = 1 are presented in Fig. 
7.17 for triangular arrays and Fig. 7.18 for square arrays. Mohandes and Knudsen [101, 
102] reported friction factors for wall subchannels with W/D = 1 and 14 different 
P/D ratios between 1.0 and 1.64. Rehme determined friction factors of wall subchan
nels in the ranges of P/D between 1.036 and 1.4 and W/D between 1.026 and 1.4 in 
15 different geometries; some of his results are presented in [49], and the references for 
the other test sections may be found in [154], Friction factors for a comer subchannel 
of a square array and W/D = 1 are reported by Gunn and Darling [36] and Barrow 
et al. [155],

There have been several attempts to apply the knowledge of f Re in laminar flow to 
predict friction factors in turbulent flow. The empirical correlation by Gunn and 
Darling [36] was based on limited data and overpredicts the turbulent friction factor 
[50, 59]. The procedure by Malak et al. [17] results in friction factors higher than 
experimental data [26, 102, 151]. The relationship between laminar and turbulent flow 
friction factors developed by Rehme [23] seems to work well. This method is based on 
the law of the wall for the velocity profile. The equation for the turbulent friction factor 
can be written as

= A2 2.5 In Re + 5.5 - G* (7-31)

with two geometry parameters, T2 and G*,  which depend on f Re for laminar flow:

11

2 = \ 1 + 0.554 log10

for f Re > 16

for f Re < 16
(7.32)

and G*  = /(/Re) can be determined from correlations 
Todreas [26]:

(2.553 + 3.8721og10(/Re) - 1.042(log10(/Re))2

= ( 6.615 - 3.3761og10(/Re) + 2.159(log10(/Re))2 
1 1.663 + 3.151 log10(/ Re)

developed by Cheng and

for 6 < / Re < 16

for 16 </Re <31.25
for 31.25 </Re < 250

(7.33)

The equations for G*  from Cheng and Todreas [26] have been modified, because the 
authors used the Darcy friction factor (4/).
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The value of A2 from Eq. (7.32) for / Re < 16 is slightly higher than in the original 
work [23], due to better agreement with experimental data. The friction law [Eq. (7.31)] 
was checked against experimental data from many noncircular channels, including rod 
bundles [23]. The experimental subchannel friction factors mentioned above are pre
dicted to within 6%. The prediction for most of the channels is much closer.

example. Consider the central subchannel of a triangular array with P/D = 1.0. 
From Fig. 7.2, f Re = 6.5. From Eq. (7.32), /12 = 1.217. From Eq. (7.33), 6*  = 5.012. 
Then 

Dh^ 2y[3 IP\
D IT [ D /

Some original data based on other definitions have been recalculated. The experimental 
Nusselt numbers Nu, shown in Fig. 7.19 as Nu/Nu,, were calculated from correlations 
presented by the authors or taken from graphs presented, for one Reynolds number 
within the range of the experiments: 104, 5 X 104, or 105 was chosen. The Nusselt 
numbers are related to the Nusselt number Nu, of a circular tube at the Reynolds 
number chosen and to the Prandtl number of the experiment. Nu, is calculated from 
the correlation by Petukhov and Roizen [167]:

/?=1'217 2.5 In Re + 5.5 5.012

For Re = 5 X 104 this equation yields f = 0.003244. With ft = 0.005297 we have 
f/f = 0.61. This compares with the experimental f/ft = 0.57 of Eifler and Nijsing [86], 
f/f = 0.6 of Levchenko et al. [91], and ///, = 0.547 of Krett et al. [114], Thus the 
predicted value is in satisfactory agreement with the experimental results for this 
extreme case of a noncircular channel.

7.3.4 Fully Developed Heat Transfer: Ordinary Fluids — Triangular 
Array

Comparing the experimental data by different authors [75-78, 81, 82, 84, 87, 89, 92, 93, 
117, 156-166] measured in different test sections is difficult. Most of the data were 
obtained for constant heat flux in the axial direction with finite peripheral wall heat 
conduction ((h4) boundary condition). For P/D > 1.2, the peripheral variations of heat 
flux and surface temperature can be neglected for an infinite triangular array; for this 
case, the equivalent-annulus solution for Nu is approached.

Therefore, all experimental data are compared with the equivalent-annulus solution. 
The most reliable correlation for the equivalent annulus was developed by Petukhov 
and Roizen [167] and is based on numerous experimental data. All experimental data 
are based on the hydraulic diameter of an infinite array,

2
(7.34)— 1

where

(//2)RePr 
h1 + 12.7///2(Pr2/3 - 1)

900
A, = 1.07 +--------

Re
0.63

1 + lOPr

(7.35)

(7.36)
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Figure 7.19. Experimental results for Nusselt numbers of fully developed turbulent flow in rod 
bundles arranged in a triangular array, normalized with respect to the Nusselt number of circular 
tubes, as a function of the pitch-to-diameter ratio.

and

/= (3.64log10Re- 3.28)’2 (7.37)

is the friction factor of a circular tube. Equation (7.35) is valid in the ranges 
4 X 103 < Re < 6 X 105 and 0.7 < Pr < 5 X 105.

The equivalent-annulus solution, included in Fig. 7.19 for Pr = 0.7 and Pr = 10, is 
calculated from the correlation by Petukhov and Roizen [167]:

Nu JI \"(Pr)
----- = [1 - <>(Pr)] —Nu, L V 2j\r*/ (7.38)

where

</>(Pr) =
0.45

2.4 + Pr
(7.39)

n(Pr) = 0.16 Pr-015 (7-40)

valid for 0.2 < r*  < 1, 104 < Re < 106, and 0.7 < Pr < 100.
The radius ratio r*  of an annulus with the same flow cross section as a triangular 

array is given by

1
r *

2/3 P

77 D (7-41)

The hydraulic diameters of an annulus and an infinite triangular array are different. 
To take this into account, both in the Nusselt number and in the Reynolds number,
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Nu, of Eq. (7.35) has been approximated by

Nu, = 0.02087 Re07878 for Pr = 0.7
0.0393 Re0848 for Pr = 10

(7-42)
(7-43)

which is within + 1% of Eq. (7.35) for 5 X 103 < Re < 105.
The hydraulic diameter of an equivalent annulus can be expressed by

2/3 P

77 D
(7-44)

In terms of the hydraulic diameter [Eq. (7.34)] of a triangular array, the ratio of the 
hydraulic diameters of a triangular array and of an equivalent annulus can be written 
as

Dh (2/3T/7t)(P/Z))2 -1

Dh,e ^2/3 /77 P/Z) - 1
— +1
D

(7-45)

Introducing Eq. (7.45) in Eq. (7.38) yields

Nu I [Zfi P\°A68S( FlJT P 
----- = 0.855 I/----------- h/--------------  —
Nu, I V 77 D I V 77

\ 0.2122

1 for Pr = 0.7 (7.46)

Nu.
-----  = 0.9637
Nu,

2/3 P

7T D

0.1133

for Pr = 10. (7.47)

= D

These correlations are valid for P/D >1.2 and represent an upper limit for P/D 
ratios from 1.0 to 4.0.

The systematic measurements by Presser [92] showed that maximum Nusselt num
bers are obtained for geometrical arrangements in which the flow distribution is 
uniform, similar to the friction factor. For nonuniform flow distribution in the different 
subchannels, the Nusselt numbers are always less than the maximum values, which, for 
P/D > 1.2, should agree with the annulus correlations. Experimental data much higher 
than the equivalent-annulus solution are suspected to be erroneous and hence are not 
included in Fig. 7.19. The maximum values in Fig. 7.19 agree satisfactorily with the 
equivalent-annulus correlations for P/D > 1.2, considering the experimental inaccu
racies. For P/D < 1.2, the experimental Nusselt numbers are lower than the annulus 
solution.

The limiting case of P/D = 1 was investigated by Bobkov et al. [165]. The results 
show that Nu strongly depends on the thermal boundary condition. For a case 
approaching the (m) boundary condition, Nu is only 25% of Nu,. With increasing 
peripheral heat conduction, Nu increases.

Theoretical solutions for Nusselt numbers in rod bundles depend on the turbulent 
transport properties assumed for momentum and heat. These properties are not well 
known. Therefore, most of the Nusselt numbers obtained theoretically do not agree 
with the equivalent-annulus solution based on experimental data.

The Nusselt numbers due to Nijsing et al. [127] for the range of P/D = 1.05 to 1.15 
seem to be reasonable. The equivalent-annulus solution by Graber [41] results in 
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Nusselt numbers considerably higher than those of Petukhov and Roizen [167], Meyder 
[136, 137] and Taylor et al. [168] do not present Nusselt numbers. Gosse and Schiestel 
[138] computed Nusselt numbers considerably higher than the correlation by Petukhov 
and Roizen for P/D >1.3 and Pr = 0.7 and 10. Their correlation of Nu/Nu, does not 
agree with the results presented graphically. Ramachandra [5] presented Nusselt 
numbers for two P/D ratios which are in good agreement with those of Petukhov and 
Roizen.

The correlation of Nu as a function of P/D by Inayatov [169, 170] does not agree 
with the equivalent-annulus solution; those by Subbotin [30] and Markoczy [164] may 
be used for P/D < 1.2. Rieger’s correlation [161] for P/D > 1.25 and Pr > 1 and the 
correlation by Borishanskiy et al. [163] for P/D > 1.2 agree with the equivalent
annulus data. The correlation established by Presser [92] is in agreement with the 
equivalent-annulus results, but may be used for P/D > 1.2 only.

7.3.5 Fully Developed Heat Transfer: Ordinary Fluids — Square Array
The situation for rod bundles arranged in square arrays is similar to that encountered 
in triangular arrays; however, fewer experimental investigations exist [76, 78, 92, 149, 
152, 155, 171]. The experimental data on Nu, divided by Nu, of circular tubes, are 
shown in Fig. 7.20 and compared with the equivalent-annulus solution, as developed 
from the correlations by Petukhov and Roizen [167];

for Pr = 0.7 (7.48)

for Pr = 10 (7.49)

Except for one result by Dingee and Chastain [78] for P/D = \.Z1 (omitted), the

P/D
Figure 7.20. Experimental results for Nusselt numbers of fully developed turbulent flow in rod 
bundles arranged in a square array, normalized with respect to the Nusselt number of circular 
tubes, as a function of the pitch-to-diameter ratio.
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experimental data are in reasonable agreement with the equivalent-annulus solution as 
the upper limit for Nu.

Most theoretical and empirical correlations result in Nusselt numbers higher than 
those due to Petukhov and Roizen [167] for P/D > 1.3. The exception is the theoreti
cal result by Kokorev et al. [172], which is considerably lower in the range of 
P/D = 1.1 to 1.5. For P/D < 1.3, the correlation by Gosse and Schiestel [138] may be 
used; however, Nu, of circular tubes given by Eq. (7.35) should be used in the 
correlation.

Kokorev et al. [172] calculated Nusselt numbers for the (m) and (m) boundary 
conditions and found that NuH1 = NuH2 for P/D > 1.25. For P/D < 1.25, NuH1 > 
NuH2, as expected.

The experimental investigation by Barrow et al. [155] for a two-cusp duct (corner 
subchannel at W/D = 1.0) resulted in Nu/Nu, = 0.38.

7.3.6 Developing Flow and Heat Transfer: Ordinary Fluids
Measurements by Presser [92] show that the additional pressure drop in the hydraulic 
entrance length is small, about 2 to 3% of the average velocity head for 14 test sections 
of 7 to 61 rods arranged both in triangular and square array and having L/Dh from 36 
to 135 and air as the working fluid. However, in rod bundles, an additional pressure 
drop occurs due to redistribution of mass flow rates among the subchannels. For 
uniform average velocity distribution in the subchannels of the rod bundle, this 
redistribution pressure drop can be neglected, as a first approximation, when the 
hydraulic diameters in the different subchannels are equal [92], For very nonuniform 
velocity distributions in rod bundles, Presser [92] estimated the redistribution pressure 
drop to be of the order of 0.1 to 0.3 times the average velocity head.

The hydraulic entrance lengths in rod bundles also depend on the average flow 
distribution among the subchannels. Presser [92] found x/Dh = 20 for a uniform flow 
distribution, and x/Dh = 40 for very nonuniform velocity distributions, using air as 
the fluid.

As far as the Nusselt numbers in the thermal entrance length are concerned, Presser 
[92] correlated as follows his experimental data from six^est sections of 7 to 61 rods 
arranged in a triangular array and from one test section in a square array with air 
(Pr = 0.7):

Nu*  0.7 
NUoo + x/Dh

for 1.2 < P/D < 2.2, Re > 105, and x/Dh > 3. For Re < 105, the Nusselt numbers in 
the thermal entrance are higher than given by Eq. (7.50). From Eq. (7.50), the thermal 
entrance length, defined as the duct length required to achieve Nuv/Nuw = 1.05 [9], is 
x/Dh = 14. Hoffman et al. [157] reported the thermal entrance length x/Dh = 20 for 
P/D = 1.71. The experiments by Lel’chuk et al. [166] with a bundle of seven rods 
arranged in a triangular array and P/D = 1.17 were correlated by

Nu*  = 0.015(1 + 0.9413e"0 0424A/pA)Re0-8Pr0'4 (7.51)

for x/Dh > 5. Equation (7.51) yields a thermal entrance length of x/Dh = 69 for air 
(Pr = 0.7), considerably higher than given by Eq. (7.50).

From the calculations by Vonka and Boonstra [173] for two connected central 
subchannels of a triangular array with P/D = 1.3 and Pr = 0.7 at Re = 105, it can be 
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concluded that the Nusselt numbers reach fully developed turbulent flow conditions 
within x/Dh = 30 to 40, but the heat transport among central subchannels is not fully 
developed at x/Dh = 290.

7.3.7 Fully Developed Heat Transfer: Liquid Metals
Since 1960, the practice of cooling the fuel elements of fast breeder reactors by liquid 
metals has greatly stimulated research on liquid metal heat transfer. As far as heat 
transfer is concerned, the most important property of liquid metals is their excellent 
thermal conductivity compared to ordinary fluids. Prandtl numbers of liquid metals are 
of the order of magnitude 10“3 to IO”2.

Many experimental investigations have been performed to study heat transfer to 
liquid metals in turbulent flow through rod bundles [174-196], These investigations will 
not be discussed in detail, because empirical correlations have been developed which 
are valid in a wide range of geometrical, thermal, and flow boundary conditions. An 
overview of the experimental research and the heat transfer correlations developed up 
to 1973 was presented by Weinberg [197],

Experiments on heat transfer to liquid metals are difficult because of possible 
depositions of impurities on the heat transfer surfaces (contact thermal resistance) 
because of nonwetting of the surfaces. Most important, however, are the small 
temperature differences between surface and fluid due to the high thermal conductivity 
of liquid metals. These small temperature differences are difficult to measure precisely. 
On the other hand, it is not required that heat transfer correlations be very precise, for 
surface temperatures calculated by means of correlations are not strongly affected by 
uncertainties in the correlations, due to the small temperature differences between 
surface and fluid.

The experimental investigations [174-196] have been performed on rod bundles 
arranged in a triangular array, the geometry used in fuel elements of fast reactors, in 
the ranges of P/D = 1.0 to 1.95 and Pe = RePr = 2 to 4500 with 7 to 37 rods. Only 
one experiment was performed with a rod cluster arranged in a square array, with 9 
heated rods in a cluster of 25, for the limiting case of P/D = 1.0, by Ushakov et al. 
[146],

Many theoretical attempts have been made to analyze the heat transfer problem in 
liquid metals. The main difficulty in theoretical treatment is that the turbulent trans
port properties, especially the turbulent Prandtl number, are not known with sufficient 
precision. Different correlations for the turbulent Prandtl number have been applied by 
Friedland and Bonilla [198], Osmachkin [122], Buleev et al. [123, 199], and Ramm and 
Johannsen [200], In some investigations turbulent transport of heat was neglected, e.g., 
by Nijsing and Eifler [201], Pfann [202], and Wolf and Johannsen [203]. The problem of 
the turbulent Prandtl number is also discussed by Rust [204], The correlation by 
Bobkov et al. [205-207] for the turbulent Prandtl number was used by Nijsing and 
Eifler [208, 209], Bobkov et al. [210, 211] and Pfann [212, 213],

Based on the analysis of heat transfer to Equid metals for the limiting case of 
vanishing Prandtl number by Zhukov et al. [214] and Ushakov et al. [215, 216], a 
general correlation of heat transfer to hquid metal in turbulent flow through rod 
bundles was developed at the Institute of Physics and Energy (FEI), Obninsk. This 
correlation was first published by Subbotin [30] and slightly modified by Subbotin 
et al. [29], The final equations were reported by Ushakov et al. [135, 217, 218], This 
general correlation was checked against numerous results, both experimental data and 
theoretical correlations, and can be recommended for rod bundles arranged in the
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Figure 7.21. Nusselt numbers for heat transfer to liquid metals in fully developed turbulent flow 
in rod bundles arranged in a triangular array, vs. the Peclet number of the two limiting cases: (m) 
boundary condition (full lines) and (hz) boundary condition (dashed lines) [135],

triangular array:

Nu « Nulam +
3.67

90( P/D)2
1

’[(P/D)3" - 1] + /T24^+ 115 Pe"’1 (7.52)

P IP\~w
m, = 0.56 + 0.19------0.1 —

D \ d; (7-53)

with Nulam the Nusselt number for laminar flow given by Eq. (7.10), and eA- defined by 
Eq. (7.11). Equation (7.52) is valid in the ranges 1.0 < P/D < 2.0, 1 < Pe < 4000, and 
0.01 < i.K < oo.

Figure 7.21 shows NuH1 and NuH2 versus the Peclet number with P/D as a 
parameter. For P/D > 1.3, the effect of cA diminishes and Eq. (7.52) reduces to

P i P\
Nu = 7.55------ 20 —

Z> \D)
' pe019< p/D'1+0 56

90( P/D)2 (7.54)

valid in the ranges 1.3 < P/D < 2.0 and 1 < Pe < 4000.
Thermal-hydraulic design of rod bundles is usually performed by subchannel codes 

which compute fluid and surface temperatures averaged over the subchannel. There
fore. it is important to know the peripheral variations of rod surface temperatures 
superimposed on the average temperatures.
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The dimensionless peripheral variation of surface temperatures, defined by Eq. 
(7.13), is correlated by Subbotin et al. [29, 30] and Ushakov [135, 218] as

A-rmax
Ay1 max __ ______

1 + y Pe^

Y = 0.008(1 + 0.03 eA)

S-06S+ p — 0.03 H------------------—----
(p/z>)20

(7.55)

(7.56)

(7.57)

valid in the ranges 1 < P/D < 1.15, 1 < Pe < 2000, and t.K > 0.2. Here A is the 
maximum temperature variation for laminar flow, given by Eq. (7.14).

The agreement between Eq. (7.55) and most of the experimental data presented in 
[29] is better than 10%.

Correlations of Nusselt numbers for heat transfer to liquid metals for design 
purposes, e.g. by Kazimi and Carelli [219] and Tang et al. [220], are only approximate 
and in some ranges very pessimistic, and therefore should not be used.

7.3.8 Developing Heat Transfer: Liquid Metals
Knowledge of the thermal entrance length in liquid metal cooled rod bundles is poor. 
Subbotin et al. [29] found that fully developed thermal conditions are not reached 
within L/Dh < 200 for Pe > 100 in the peripheral subchannels of rod bundles (wall 
and comer subchannels). Their experimental data were obtained in a rod bundle with 
P/D = 1.15 and W/D = 1.075. For lower P/D ratios, the thermal entrance length is 
even longer because the heat transfer between subchannels is reduced. Subbotin et al. 
also found that increasing the W/D ratio for a fixed P/D ratio increases the thermal 
entrance length. This is in agreement with the results by Moller and Tschbke [195, 221] 
obtained in a 19-rod bundle with P/D = 1.31 and W/D = 1.19. They observed even 
higher thermal entrance lengths for Pe > 350. For a comer subchannel and Pe = 150, 
the thermal entrance length was measured to be L/Dh « 70.

The results of both investigations show an almost linear increase in the peripheral 
temperature variations around rods in comer and wall subchannels for the full axial 
heated length, which is x/Dh = 100 in [195] and x/Dh = 200 in [29]. These long 
thermal entrance lengths in rod bundles are caused by the heat transport between 
subchannels, as clearly demonstrated by calculations of Vonka and Boonstra [173], 
Subbotin et al. [29] mention that the use of helical fins as spacers reduces the thermal 
entrance length.

7.4 TRANSITION FLOW

There is no critical Reynolds number at which transition from laminar to turbulent 
flow occurs in rod bundles. Figure 7.22 shows all experimental data on the pressure 
drop for the onset and completion of the transition. The onset of the transition is 
defined by the first deviation from the laminar f Re, and its completion is defined by 
the curve of the friction factor vs. Re becoming parallel to that in fully developed 
turbulent flow.

The data scatter widely, especially for the onset of the transition. This may be due 
not only to the experimental conditions, to a certain extent, but also to the fact that the
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P/D
Figure 7.22. Experimental data of Reynolds numbers of the onset (open symbols) and comple
tion (full symbols) of the transition from laminar to turbulent flow.

data shown have been obtained on test sections over a wide range of geometrical 
parameters such as the number of rods, triangular or square arrays, and W/D ratios. 
There is some indication that the onset of the transition in rod bundles arranged in 
square arrays starts at lower Reynolds numbers than in triangular arrays. For low P/D 
ratios, the transition to turbulent flow begins at Reynolds numbers below 103. To some 
extent this is affected by the hydraulic diameter. The Reynolds number for the onset of 
the transition to turbulent flow seems to increase with increasing P/D ratio up to 
P/D 1.5; for higher P/D ratios, the Reynolds number for the onset decreases.

The scatter of the data for the Reynolds number at which the transition to turbulent 
flow is completed is much smaller, and there is a clear trend, showing that the 
completion Reynolds number increases from 3000 for P/D = 1 to 104 for P/D > 1.8. 
The wide range of Reynolds numbers for transition from laminar to turbulent flow at 
high P/D ratios may be affected by test sections being too short to produce fully 
developed conditions.

Friction factors for the transition regime are reported by Morosova and Nomofilov 
[25]. However, as stated before, the correlation presented by the authors results in 
friction factors for turbulent flow which are higher than the annular-zone solutions. 
The procedure of Morosova and Nomofilov might be useful for constants fitted against 
reliable data.

As far as heat transfer is concerned, no correlations or experimental data exist for 
ordinary fluids. For Equid metals, however, the correlations by Subbotin [30] and 
Ushakov [135, 218] are valid in the full range from laminar to turbulent flow.
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7.5 EFFECTS OF SPACERS

Spacers are used to fix the rods in the rod bundle. Two basically different types of 
spacers are used in rod bundles:

Spacer grids defining the distance between the rods and relative to the wrapper tube. 
These are arranged at fixed planes along the rod bundles.

Spacers connected with the rods and extending over the entire length of the rods, 
such as wire wraps (helical wires) or helical fins.

Wire wraps or helical fins are of special interest for small P/D ratios, whereas spacer 
grids are commonly used for greater clearances between the rods, say for P/D > 1.15.

7.5.1 Pressure Drop — Spacer Grids
The pressure drop caused by spacer grids has been investigated experimentally for 
numerous designs. Experimental results have been reported by Le Tourneau et al. [79], 
Rehme [97, 222], Grillo et al. [147, 148], Marek et al. [149], Voj and Scholven [105], 
Rehme and Trippe [111, 49], Korotaev et al. [223], and Ito and Mawatari [224], The 
pressure drop strongly depends not only on the blockage of the flow cross section by 
the spacer grid, but also on the axial length of the spacer. The pressure drop of spacer 
grids can be drastically reduced by smoothing the leading edge of the grids [49]. The 
pressure drop, of course, depends on the design of the grid; therefore, precise data on 
the pressure drop of spacer grids can be determined only by the measurement of the 
pressure drop itself for the spacer grid under consideration. As the pressure drop 
depends on many parameters, attempts to develop correlations of general validity have 
been unsuccessful.

7.5.2 Heat Transfer — Spacer Grids
Spacer grids also affect heat transfer. Due to the blockage of the flow cross section 
downstream of a spacer grid, the velocity and temperature distributions redevelop, and 
for ordinary fluids heat transfer is enhanced in the region of heat transfer development. 
Results on heat transfer improvement downstream of spacer grids have been presented 
by Hoffmann et al. [88], Vlcek and Weber [225], Hudina and Nbthiger [226], Krett and 
Majer [227], and Marek and Rehme [228, 229], Detailed experimental investigations by 
Hassan and Rehme [230, 231] show that the results can be expressed in terms of a ratio 
of the Nusselt number affected by the spacer grid, Nuv, to the undisturbed Nusselt 
number in the rod bundle, Nu0:

Nil
Nu*  =---- -

Nu0
(7.58)

There is a typical shape of Nu*  in the flow direction which can be approximated as 
follows: upstream of the spacer, the Nusselt number rises linearly up to a maximum; 
there is a constant maximum below the spacer and a gradual drop to the undisturbed 
value downstream of the spacer grid. This drop in Nusselt numbers shows some 
similarity to an entrance effect.
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The following correlations are recommended in the light of the experimental results:

Upstream of the spacer grid,

Nu*  = 1 +
Nu*  - 1 max

1 + A3
for

X
-i < — <

Dh
(7-59)

for Re < 3000 (7.60)

^3
— hi 
~~Dh for Re :> 3000 (7-61)

L( is the axial length of the spacer grid, x the length in the axial direction 
measured downstream of the leading edge of the spacer grid, and Dh the 
hydraulic diameter outside the spacer grid in the rod bundle. The maximum 
relative Nusselt number is given as

Nu*ax  = minCNu^^Nu*̂)

where

Nu* aXil = 1 + 0.174 Re05c2 for Re < 3000 (7.62)

Nu* ax2 = 1 + e24(6.38 + 4550Re08) for Re > 3000 (7.63)

Here e is the blockage ratio, defined as the cross section of the spacer grid projected in 
the axial direction divided by the flow cross section undisturbed by the spacer grid.

Nu*  = X”(x*) (7-64)

Here x*  = x/(Z)APe) is the dimensionless axial coordinate in the thermal 
entrance length, and the expressions for K and m are given below:

K= 4.42 - 1.05log10Re - 2.25e for Re < 3000 (7.65)

K = 0.426 + 0.113 log10Re - 2.25e for Re > 3000 (7.66)

provided K > 0.895 — 2.251, which is 
The exponent m is given as

the minimum value for all other cases.

m = 1.855 X 10 3e2Re for 600 < Re < 3000 (7.67)

m = 30.34e2Re 0253 for Re > 3000 (7.68)

provided m < 4e2, which is the maximum value for all other cases.
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Equations (7.59) to (7.68) are valid in the ranges 600 < Re < 2 X 105, 0.25 < e < 0.35, 
and —10 < x/Dh < 33.

The data reported in the literature for t < 0.25 are described satisfactorily by the 
correlation due to Hassan [230],

According to the experimental data of Engel and Bishop [232], heat transfer is 
improved by spacer grids also for liquid metal flow. Moller and Tschbke [221], 
however, found slightly elevated temperatures directly below the spacer grid.

7.5.3 Pressure Drop — Wire Wraps and Helical Fins
Pressure Drop. The experimental pressure drops in rod bundles with wire wraps 
obtained before 1967 have been reviewed by Rehme [233, 234], Based on a systematic 
investigation of 75 different geometries, Rehme [233, 234, 222] developed a general 
correlation of the friction factor in wire-wrapped rod bundles. This correlation, which 
is presented below, was confirmed by the experimental investigations of Hamid and 
Quaijum [235], Wakasugi and Kakehi [236], Hoffmann [237], Cornet and Lamotte 
[238], Sarno et al. [239], and Tirelli [240], and by the results from seven of twelve test 
sections studied by Reihman [116] in the range of validity. Reihman’s other data are 12 
to 23% higher than Rehme’s correlation, probably because of the rather large tolerances 
of the test sections [26]. The data of Reihman, therefore, show some inconsistencies. 
The validity of Rehme’s correlation is also confirmed by McAreavy and Betts [241] and 
by Cheng and Todreas [26],

The correlation by Rehme [222],

16 0.0204 PB
Re/F + (Re/F)0133 _ (7-69)

is based on an effective velocity in the wire-wrapped rod bundle with the ratio of the 
effective to average velocity ueff/um = y[F, where

H
(7.70)

The hydraulic diameter in the Reynolds number of Eq. (7.69) and for pressure drop 
evaluation (A/> = 2fLp u2m/Dh) includes the cross section and the wetted perimeter of 
the wires, taking into account that the cross section of the wire normal to the rod 
bundle axis is an ellipse. dm is the mean diameter of the wire wraps, which is dm = P 
for contact between rods and wires and dm = D + h for contact among fins, with h 
the height of the fins. The correlation has been found to be adequate for rods with 
three or six helical fins with fin-to-fin contact by Tschbke [242] and Hoffmann [237]. H 
is the pitch of the wire wraps, and the ratio PB/Ptot takes into account the size of the 
rod bundle. PB is the wetted perimeter of rods and wires, and Ptot = PB + PCh is the 
total wetted perimeter of the rod bundle, including the wetted perimeter PCh of 
the channel walls.

The ranges of validity of Eq. (7.69), which have been extended by Cheng and 
Todreas [26] beyond the original ranges [233], are 2 X 103 < Re < 3 X 105, 8 < H/dm 
< 50, 1.1 < P/D < 1.42, and 7 < nR < 217. The experimental data by Sheynina [94] 
and Subbotin et al. [100] cannot be compared with Eq. (7.69), as some geometrical 
parameters are missing or the geometrical data given are inconsistent.
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TABLE 7.6 Coefficients Q/; of Equation (7.71) [247]

j

Qu
i = 1 2 3 4 5

1 - 7.204995 24.93619 -21.43300 3.218632 1.762412
2 -20113.61 68163.57 -86357.49 48474.87 -10172.29
2 195675.5 -676074.3 871670.6 -497416.4 106161.8

For P/D < 1.1, experimental data are reported by Sheynina [94], Chiu et al. [243], 
Engel et al. [244], Cheng and Todreas [245], and from a systematic study by Marten 
et al. [246]. On the basis of the new data, Marten et al. [247] developed a correlation 
for the factor F of Eq. (7.70), which is valid in the ranges 1.04 < P/D < 1.42 and 
8.3 < H/d,„ < 16.7:

3 5 / p \ i-lf
f-EEeJp

7-11=1 x"/ \
(7.71)

where the coefficients Qj ,, obtained by a regression analysis, are presented in Table 
7.6.

Novendstem [248] developed a semiempirical model to predict pressure losses in 
wire-wrapped rod bundles, which is based on an empirical friction-factor multiplier for 
the friction factor of circular tubes. The multiplier was correlated on the basis of 
selected data due to Reihman [249], Baumann et al. [95], and Rehme [233, 250], The 
preliminary data of Rehme [250] were in error; the corrected data from [233] super
sede them. Novendstem’s correlation is widely used and has been recommended by 
Ushakov [135]. Carajilescov and Fernandez [251] presented a semiempirical model for 
friction factors in wire-wrapped rod bundles on a limited data base [26], which is not 
able to predict overall friction factors with sufficient accuracy.

Very few results have been published on the pressure drop at laminar flow 
conditions. The results by Subbotin et al. [100], Chiu et al. [243], Engel et al. [244], 
Spencer and Markley [252], Marten et al. [247], and Efthimiadis [253] are not conclu
sive. Therefore, no general correlation is available for the pressure drop of laminar flow 
through wire-wrapped rod bundles. A correlation is presented by Engel et al. [244] on a 
limited data base with dimensional parameters.

Subchannel friction factors for laminar, transition, and turbulent flow through 
wire-wrapped rod bundles, i.e., “flow split parameters,” can be calculated from the 
model developed by Cheng and Todreas [26]. For reasons of space, the model and 
correlations for a wide range of parameters are not outlined here; the reader is referred 
to the fundamental and excellent work by Cheng and Todreas, developed on the most 
complete data base currently existing.

Transition from laminar to turbulent flow occurs over a wide range of Reynolds 
numbers. Cheng and Todreas [26] presented simple correlations for the onset and 
completion of transition flow over wire-wrapped rod bundles in triangular arrays as

Recrit = 300 X 101-7(/’/I>_1) for onset of transition (7.72)

Recrit = 1000 x 100 7(P/D 0 for completion of transition (7.73)
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7.5.4 Heat Transfer — Wire Wraps and Helical Fins
Experimental data on Nusselt numbers in wire-wrapped rod bundles have not been 
published. Subbotin et al. [29] and Ushakov [135] mention that liquid metal heat 
transfer in rod bundles is only slightly affected by helical fins for P/D > 1.1, when the 
hydraulic diameter in Nu and Pe is evaluated considering the cross sections and wetted 
perimeters of the fins; however, mixing between subchannels is enhanced by wire wraps 
or helical fins. For P/D < 1.1, Ushakov [135] presents correlations for the maximum 
peripheral temperature variation in wall subchannels, both for bare rod bundles and 
for clusters of rods with helical fins. Moreover, correlations are presented for all 
subchannels, with and without fillers in the wall subchannels, which are used to obtain 
a more uniform temperature distribution across a rod bundle.

NOMENCLATURE

A free flow area, m2, ft2
A, dimensionless constant [see Eq. (7.25)]
A geometry coefficient [see Eq. (7.32)]
A - ratio of lengths [see Eq. (7.60)]
b difference of radii in circular arrangements, m, ft
c, specific heat at constant pressure, J(kg • K), Btu/(lbm • °F)
D rod outside diameter, m, ft
Dh hydraulic diameter, m, ft
Dh x hydraulic diameter of infinite array of rod bundles, m, ft 
dm mean diameter of wire wraps, m, ft
Eu Euler number = A p/pu2
e base of natural logarithms
F dimensionless factor [see Eq. (7.70)]
f Fanning friction factor = rM,/(pw2/2) = [Ap/(pw2/2)] (Dh/4L)
G*  geometry coefficient [see Eq. (7.33)]
H pitch of wire wraps, m, ft
(m) boundary condition of constant axial wall heat flux with constant periph

eral wall temperature
(m) boundary condition of constant axial wall heat flux with constant periph

eral wall heat flux
(ru) boundary condition of constant axial wall heat flux with finite normal wall

thermal resistance
(h5) boundary condition of exponential wall heat flux with constant peripheral

wall temperature
h heat transfer coefficient, W/(m2 • K), Btu/(hr ■ ft2 • °F)
hY dimensionless constant [see Eq. (7.36)]
K dimensionless coefficient [see Eq. (7.65)]
k thermal conductivity, W/(m • K), Btu/(hr • ft ■ °F)
L 4 length of spacer grid in axial direction, m, ft
logw logarithm with base 10
In natural logarithm
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in exponent [see Eq. (7.67)]

p’i 
N 
Nu 
Nu*

exponent [see Eq. (7.53)]
positive integer
Nusselt number = hDh/k
Nusselt number ratio [see Eq. (7.58)]

n positive integer

ni

>’ (Pr)
P
Pc 
Pr 
?w

Q 
q"
R 
Re

number of individual subchannels 
number of rods
constant [see Eq. (7.40)] 
pitch or distance between rod centers, m, ft 
Peclet number = Re Pr
Prandtl number = ficp/k 
wetted perimeter, m, ft 
pressure drop, Pa, lby/ft2 
dimensionless coefficient [see Eq. (7.71)] 
heat flux, W/m2, Btu/(hr -ft2) 
radius of shroud for circular arrays, m, ft 
Reynolds number = p um Dh/p,

r radial coordinate, m, ft
f\
f.t 
ri

inner radius of cladding, m, ft 
outer radius of cladding, m, ft 
inner radius of annulus, m, ft

rn
r*
y *

outer radius of annulus, m, ft 
dimensionless radial coordinate = rT=0/rl 
dimensionless radial coordinate = r,/r0

'i-o 
T 
® 
at 
A7”max 
tanh

radius of zero shear stress in annulus, m, ft
temperature, °C, K, °F, °R
constant wall temperature boundary condition
temperature difference, °C, K, °F, °R
dimensionless peripheral variation of surface temperature [see Eq. (7.13)] 
hyperbolic tangent function

IV
mean axial velocity, m/s, ft/s 
wall distance (see Fig. 7.1), m, ft

X
. *

x+

axial coordinate or distance, m, ft
dimensionless axial coordinate for the thermal entrance region, = x/DhPe 
dimensionless axial coordinate for the hydrodynamic entrance region, 

= x/DhRe

Greek symbols

P 
y 
€

exponent [see Eq. (7.57)]
coefficient [see Eq. (7.56)]
relative blockage due to spacer grid [see Eq. (7.62)]

<K thermal modeling parameter [see Eq. (7.11)]
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p dynamic viscosity, Pa • s, lbm/(hr - ft)
Ao ratio of conductivities [see Eq. (7.12)]
I ratio of hydraulic diameter of wall to that of the central subchannel
p density, kg/m3, lbm/ft3
t shear stress, Pa, lby/ft2
it transcendental number = 3.14159...
<J>(Pr) constant [see Eq. (7.39)]

Subscripts
B 
b 
c 
Ch 
co 
c 
eaz 
Hl 
H2 

H5 
i 
lam 
m 
max 
min
T 
t 
tot 
w 
X 
1 
2 
3 
00

bundle
bulk fluid condition
central subchannel
channel
comer subchannel
equivalent
equivalent annular zone 
@ boundary condition 
(h|) boundary' condition 
(ri?) boundary condition 

individual
laminar
average value 
maximum
minimum
(t) boundary condition 
circular tube
total
wall or wall subchannel
local
fuel
cladding
fluid
fully developed conditions

Superscripts
max maximum
min minimum
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8.1 INTRODUCTION

Liquid metals have significantly higher thermal conductivity and lower specific heat 
than ordinary liquids and gases. In convective heat transfer, this is reflected by the low 
Prandtl number (Pr) of liquid metals, compared to ordinary fluids. Typically, for liquid 
metals 0.003 < Pr < 0.06, while for other liquids and gases Pr > 0.2. Figure 8.1 shows 
relative magnitudes of Prandtl number for several fluids. In forced convection systems 
under laminar flow conditions, molecular conduction of heat controls the heat transfer 
process, irrespective of whether the coolant is a liquid metal or an ordinary fluid. 
Hence, there is no fundamental difference between the thermal behavior of the two 
types of fluids under these conditions, and accordingly nondimensional correlations 
developed to describe the heat transfer performance of ordinary fluids can be applied 
equally well to liquid metals in spite of their low Prandtl numbers.

Under turbulent flow conditions, however, eddy conduction of heat becomes im
portant and the process of heat transfer is determined by both molecular and eddy
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Figure 8.2. Effect of Prandtl number on the temperature profile for turbulent flow in a long pipe 
[41].

conduction over the various flow regions in the fluid stream. Whereas in ordinary fluids 
molecular conduction is only significant near the wall (in the laminar sublayer), in a 
liquid metal the magnitude of the molecular conductivity is of the same order as that of 
the eddy conductivity, and accordingly, the effects of molecular conduction are not felt 
only in the boundary layers, but extend well into the turbulent core of the fluid. (This 
Prandtl number effect on the fluid temperature profiles is shown in Fig. 8.2. In this 
context, the Prandtl number can be thought of as expressing the ratio of the viscous 
boundary-layer thickness to the thermal boundary-layer thickness.) Therefore the 
fundamental details of the heat transfer mechanism in liquid metals differ significantly 
from those observed in ordinary fluids, and as a result, relationships developed to 
calculate heat transfer coefficients for turbulent flows of ordinary fluids cannot be used.

A further consequence of the greater importance of molecular conduction of heat in 
turbulent liquid metal flow is that the concept of hydraulic diameter cannot be used so 
freely to correlate heat transfer data from systems which differ in configuration but 
retain a similar basic flow pattern. For example, in ordinary fluids, basic heat transfer 
data for flow through circular pipes can be used to predict Nusselt numbers (Nu) for 
flow parallel to a rod bundle by evaluating the hydraulic diameter for the latter and 
using this in the nondimensional correlations for the circular tube. Such methods are 
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found to be invalid for liquid metal systems, and accordingly theoretical or experimen
tal heat transfer relationships must be developed to deal with each specific configura
tion [1],

Available liquid metal heat transfer data show quite a bit of scatter, even more than 
ordinary convective heat transfer data. The earlier heavy-metal data (Hg and Pb-Bi) 
show the most variation. Several phenomena have been proposed to explain the scatter 
and lack of correlation with theoretical predictions. They include: nonwetting or partial 
wetting, gas entrainment, the possibility of oxides or other surface contaminants, and 
mixed convection effects. Following an extensive amount of experimental investigation 
on the effects of wetting on liquid metal heat transfer, a general consensus has been 
reached on the subject. This is that wetting or lack of wetting, in and of itself, does not 
significantly affect liquid metal heat transfer. However, nonwetting combinations of 
liquid metals and solid surfaces can suffer more readily from gas-entrainment problems 
at the solid-liquid interface; impurities and particles can more easily become trapped at 
a nonwetting solid-liquid interface, thus reducing heat transfer. Hence, care should be 
taken to avoid these problems in system designs. Also, recent, more detailed experi
ments show that mixed convection effects are an additional source of the differences in 
Nusselt number measurements. This topic is covered more thoroughly in Sec. 8.3.1.

Finally, in liquid metal systems, uniform wall temperature boundary conditions 
yield lower Nusselt numbers than do uniform wall heat flux boundary conditions for 
the same Peclet number (Pe). This is in contrast to ordinary fluid systems, having 
relatively high Pr, in which the two boundary conditions make little difference on Nu.

8.2 LIQUID METAL HEAT TRANSFER IN FULLY DEVELOPED 
LAMINAR FLOWS

As mentioned in Sec. 8.1, Equid metals behave as ordinary fluids in laminar heat 
transfer. Hence, the reader is referred to other chapters of this handbook which cover 
laminar heat transfer for the appropriate geometry. However, free convection becomes 
important at low Reynolds numbers (Re) in hquid metals and usually influences the 
heat transfer. Section 8.3.1 should be consulted for criteria regarding free-convection 
effects.

8.3 LIQUID METAL HEAT TRANSFER IN FULLY DEVELOPED 
TURBULENT FLOWS

8.3.1 Free Convection Distortion in Liquid Metal Heat Transfer
Buoyancy forces can become important in forced convection liquid metal heat transfer, 
especially for heavy metals such as mercury. Free convection distortion of temperature 
profiles in NaK have been observed by Schrock [2] at Re of 12,000 to 16,000, and in 
mercury at Re as high as 315,000 by Gardner [3], both in horizontal pipe flow. Figure 
8.3 shows, as an example, some temperature profiles in horizontal mercury flow in 
which free convection distortion is present. Free convection effects were also observed 
by Kowalski [4] in vertical pipe flows of mercury at Re as high as 90,000. Figure 8.4 
shows velocity profiles in vertical upward flow of mercury distorted by free convection 
effects at Re = 60,000. Experimental results show that the velocity profile distorts 
rapidly as the heat flux is increased; at high heat flux (i.e., high Z since Z a <?), a
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Figure 8.3. Temperature profiles in horizontal pipe flow of mercury, showing free convection 
distortion effects [3],
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Figure 8.4. Velocity profiles in vertical pipe flow of mercury, showing free convection distortion 
effects [43].

limiting profile shape is approached, with the centerline velocity well below the mean. 
Hence, Nu in pipe flow depends on several variables, such as whether the pipe is 
vertical or horizontal, whether the flow is upward or downward, whether the fluid is 
heated or cooled, and the value of the Grashof number or Rayleigh number. Figure 8.5 
shows variations in the local Nusselt number around the perimeter of a horizontal pipe 
having free-convection distortion.



LIQUID METAL HEAT TRANSFER IN FULLY DEVELOPED TURBULENT FLOWS 8- 7

20

Nuh 10

5

100

50

2

1
10 102 103 104 105

Pe 1
Figure 8.5. Local Nusselt number around the perimeter of a horizontal pipe flow of mercury.
showing free convection distortion effects on Nu [3],

The following criterion, due to Buhr [5], can be used to estimate whether free 
convection will influence the Nusselt number in pipe flow:

Z < 20 X 10 4: insignificant free convection.
Z > 20 X 10“4: free convection affects forced convection Nu.

where

Ra'm Dh
Z = and Ra'm = Gr;Prm

Re,„ L

The prime is used to distinguish the Grashof number using the axial temperature 
difference from the usual one using the radial temperature difference:

dT
=------ 2---- where ^T=J~Dh-v dx

This criterion is roughly valid for both vertical and horizontal flows. The fluid 
properties should be evaluated at the bulk mean temperature Tm = (Tin + Tout)/2.

When the flow is dominated by forced convection, the following qualitative picture 
of the effects of free convection on the forced convection heat transfer is observed. 
Buoyancy forces enhance turbulent heat transfer to liquid metals for downward flow 
and retard heat transfer for upward flow. Buoyancy forces influence the convective heat 
transfer indirectly through their effect on the shear stress distribution in the liquid 
metal. In vertically downward flow, the buoyancy forces work against the mean-flow 
direction and increase the isothermal shear stress near the heated surface. For vertically 
upward flow, the shear stress is reduced by the buoyancy forces. The increase in shear 
stress in the downward-flowing case leads to an increase in turbulence production,
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Z

Figure 8.6. Dependence of Nusselt number on 
Nu in vertically upward pipe flow [4,42,43].

parameter Z, showing free convection effects on

which will enhance the heat transfer. The opposite is true for upward flow. For 
conditions of strong influence of buoyancy, enhancement of heat transfer occurs for 
both upward and downward flow, the mechanism being buoyancy-induced production 
of turbulence [6], These effects of buoyancy on heat transfer to liquid metals are less 
marked than for ordinary fluids because of the reduced importance of turbulent eddy 
conduction at low Pe.

This qualitative picture is supported by the data in Fig. 8.6, which show that the 
Nusselt number is a strong function of the parameter Z—initially decreasing, then 
increasing as Z is increased. The parameter Z is proportional to the heat flux. As the 
buoyancy forces begin to become comparable to the inertia forces of the flow, Nu 
reaches a minimum, begins to increase, and finally appears to reach a hmiting value.

It can be seen that the effects of free convection distortion can affect the measured 
value of Nu and could, therefore, explain some of the well-known scatter in the Nu 
data for liquid-metal heat transfer. Needless to say, the effects of free convection 
distortion should be considered when dealing with hquid metal heat transfer systems.

8.3.2 Pipe Flow
For flows in which free convection effects are not important (see Sec. 8.3.1), and which 
are free from surface contamination and gas entrainment, the following relation is 
recommended for uniform-heat-flux conditions:

Nu„ = 5.0 + 0.025 Pe°-8 (8.1)
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This equation is based on the well-known Lyon-Martinelli [7] equation with the leading 
coefficient adjusted to best fit the very large body of experimental data. Equation (8.1) 
was first proposed by Subbotin et al. [8], It is valid for Pe„, > 100 and L/Dh > 60; the 
subscript m indicates that the fluid properties are evaluated at the mean bulk 
temperature Tm = (Tin + Tout)/2.

There is little experimental information for the case of uniform wall temperature; 
only Sleicher et al. [9] and Gilliland et al. [10] (taken from Azer and Chao [11]) are 
judged reliable. However, there is ample analytical evidence that Nusselt numbers for 
uniform wall temperature are lower than for uniform heat flux (including the theoreti
cal laminar asymptotes: Nu = 4.36 for uniform heat flux and Nu = 3.66 for uniform 
wall temperature). Hence, the following equation for the uniform-wall-temperature 
boundary condition is recommended under the same other conditions as for Eq. (8.1):

Nur = 3.3 + 0.02 Pe”8 (8-2)

This equation was developed by the author to be recommended here because it 
represents a good fit to the data of Sleicher et al. [9] and Gilliland et al. [10] (see Fig. 
8.7) and it retains the simple, classical dependence on Pe° 8. There is an analytical basis 
for an explicit Pr dependence in Nu correlations for liquid metals; however, there is 
little quantitative experimental support to justify including Pr in correlations presented 
here. The reader is referred to Azer and Chao [11], Leslie [12], Sleicher et al. [9], and El 
Hadidy et al. [13] for examples of analytical treatments producing explicit Nu depen
dences on Pr, velocity-profile, and temperature-profile assumptions. Equation (8.2) is 
recommended for Pe,„ >100 and L/Dh > 60.

Figure 8.7. Nusselt number data and correlation for uniform wall temperature boundary 
condition in horizontal [9] and vertical [10] pipe flow.
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8.3.3 Flow in Annuli
According to Kottowski [14], for r2/rL < 1.4 the following modified Lyon equation fits 
experimental data on heat flow across either the inner wall (rj or the outer wall (r2) in 
annular flow:

(8.3)

where the hydraulic diameter of the annulus must be used (Dh = D2 - DJ. For 
1.4 < r->/r} < 10, this equation is expected to be vahd as well, though for heat transfer 
across the outer wall only, the inner wall being adiabatic.

More complex expressions for liquid metal heat transfer in annuli are given by 
Dwyer [1] and compared extensively with the data there.

8.3.4 Flow between Parallel Plates
Duchatelle and Vautrey [15] present the only experimental results for liquid metal heat 
transfer between parallel plates. The experimental conditions represented unilateral 
heat transfer (heat flux through one wall, adiabatic at the other wall) under conditions 
of uniform heat flux. Those results are well represented by the empirical expression

Nu„ = 5.85 + 0.000341 Pe^29 (8-4)

For bilateral heat transfer (heat flux through both walls) under uniform and equal 
heat-flux conditions, the following equation, proposed by Dwyer [16], is recommended:

Nu„ = 9.49 + 0.0596 Pe°688 (8.5)

More extensive relationships for cases where the heat fluxes are unequal can be found 
in Dwyer [1],

8.3.5 Single Cylinder in 90° Cross Flow
For a cylinder with constant heat flux, the local heat transfer conditions vary around 
the cylinder from the forward to the rear stagnation point, and consequently the local 
Nusselt number also varies. The Nusselt number is highest at the forward stagnation 
point and reaches a minimum at or near the rear stagnation point, as shown in Fig. 8.8. 
This is because the thermal boundary layer increases in thickness from the forward to 
the rear stagnation point. Figure 8.8 also shows the local Nusselt number for air flow. 
The fundamental influence of the high thermal conductivity of the liquid metal is 
reflected in the difference in shape between the Nu^ profile for the liquid metal and the 
one for air. It can be seen that the fluid mechanics of the flow around the cylinder has a 
much greater influence on the Nu^ for the air than for the liquid metal. An average 
Nusselt number is defined, based on the heat flux, the average wall temperature TM. of 
the cyhnder, the bulk mean temperature Tm of the fluid, and the outside diameter of the 
cylinder. The fluid properties should be evaluated at the film temperature, defined as 
7} = (TM. + Tm)/2. Use of the film temperature in this way minimizes the effect of 
variable fluid properties. Variables so evaluated have a subscript /, e.g., Pef. The data 
of Andreevskii [17] for this case are well correlated by the following equation:

NU/ = 0.65 Pe°5 (8.6)
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Figure 8.8. Change of relative Nusselt number around the perimeter of a single cylinder in cross 
flow with uniform heat flux. Curve 1: sodium (O: Pe = 0.25, Re = 4000; a: Pe = 125, Re = 
20,000). Curve 2: air (Re = 16,000) [17],

The empirical coefficient 0.65 in the above equation is below the theoretical 
values—1.015 for uniform wall temperature and 1.145 for uniform wall heat flux—given 
by Hsu [18], In both experimental work and commercial practice, however, the thermal 
boundary condition is neither, but something in between. The coefficient 0.65 should 
represent all practical situations; hence, the above equation is recommended for 
engineering applications.

8.3.6 Flow in Tube Bundles
Flow across a Staggered Tube Bank. Results for mercury and for sodium can be 
correlated to within + 12% over the Peclet number range 50 to 4000 by the following 
empirical equation given by Kottowski [14]:

NU/ = Pe/5 (8.7)

which is recommended for use in such conditions. Nuz is based on a mean heat 
transfer coefficient obtained by dividing the mean heat flux from the tube by the 
circumferential average of the temperature differences between tube and bulk fluid at 
points equispaced around the periphery of the tube. For each tube, the bulk tempera
ture of the flowing stream is evaluated at the location in the tube bank corresponding 
to the axis of the tube in question. The cross-flow velocity in Pez is based on the 
minimum flow area.

Flow Parallel to Tube Bundles (In-Line Flow). Theoretical expressions for calculat
ing the rate of heat transfer to a liquid metal in parallel flow through a bundle of rods 
have been developed. These analyses follow the general method of Lyon [7], assuming 
an annular model in which the boundary of zero shear (hexagonal for rods on 
triangular pitch, square for square pitch) surrounding a typical rod is replaced by a 
circular boundary enclosing the same area. This circular boundary is then treated as the 
circle of zero shear within a larger annulus, thus enabling the flow distribution within
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TABLE 8.1 Slug Flow Nusselt Numbers for Flow through Tubes 
of Simple Geometrical Shape9

Geometry Boundary Condition6 Nus,m

Circle (a) 5.8Oc
(b) 8.00c

Square (a) 4.93
(b) 7.03

Equilateral triangle (b) 6.67
Infinite slot (a) 9.87

(b) 12.00^
Infinite slot with (a) 4.93

one wall insulated (b) 6.00^
90° isosceles (b) 6.55

triangle

“From Hartnett and Irvine [19],
hBoundary condition (a): constant wall temperature Boundary condition 
(b): Heat input per unit length constant and wall temperature constant 
around the periphery of the duct at a given axial position.
cThese values are included for completeness of the table as taken from [19]. 
When substituted into Eq. (8.8), the resulting expressions do not agree with 
Eqs. (8.1) and (8.2). Equations (8.1) and (8.2) are recommended because 
they are based on a tit to the experimental data.
d These values are included for completeness of the table as taken from [19]. 
Equations (8.4) and (8.5) are recommended because they are based on a fit 
to the experimental data.

the circle to be determined from annulus data. The other principal assumptions are 
constant heat flux and fully developed turbulent flow.

Chapter 7 deals extensively with heat transfer over tube bundles, and Sec. 7.3.7 
covers fully developed heat transfer to liquid metals in turbulent flow through tube 
bundles specifically. The reader is referred to that section for the detailed correlations 
to be used for flow parallel to tube bundles. Section 7.3.8 should be consulted regarding 
the thermal entrance length in liquid metal-cooled tube bundles.

8.3.7 Other Channel Shapes
Average Nusselt numbers for flow in channels of noncircular shape can be estimated 
using an equation initially proposed by Hartnett and Irvine [19] but later modified by 
Kottowski [14]:

Nu = |Nujm + 0.025 Pe°8 (8.8)

where Nuy m is the Nusselt number for slug flow. Values of Nus. m are given in Table 
8.1. This equation is valid when free convection effects are negligible (see Sec. 8.3.1) 
and when heat transfer surfaces are clean and there is no gas entrainment. The fluid 
properties are evaluated at the bulk mean temperature, as described in Sec. 8.3.2.

8.4 THERMAL ENTRANCE LENGTHS

Chen and Chiou [20] have presented a rather extensive set of analytical results for 
thermal entrance effects in both laminar and turbulent pipe flow of liquid metals. Both
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-----------  Thermal boundary layer 

— — — Velocity boundary layer

Developing thermal and 
velocity region (DVT)

Fully developed (FD)

Figure 8.9. Regions for thermal entrance length analysis in pipe flow [20].

cases of constant heat flux and constant wall temperature were analyzed. A modified 
van Driest-Cebeci mixing-length model was employed for the analysis of turbulent 
flow. Three flow regions, shown in Fig. 8.9, were considered: fully developed, develop
ing thermal, and developing thermal and velocity. In the fully developed region (FD), 
both velocity and temperature profiles are developed. In the developing thermal region 
(DT), the velocity profile is fully developed but the temperature profile is developing. 
In the developing thermal and velocity region (DTV), both the velocity and tempera
ture profiles are developing.

8.4.1 Laminar Entrance Lengths
Uniform Wall Temperature. Figure 8.10 shows the predictions of Chen and Chiou 
[20] for the DT region in the form of Nux.r vs. (x/Z>A)/Pe„, (the inverse Graetz 
number) for both air and NaK. These predictions agree well with previous predictions 
of Kays [21] for air; however, there are no data available for liquid metals with which 
to compare the predictions.

Uniform Wall Heat Flux. Figure 8.11 is a plot from Chen and Chiou [20] for the DTV 
region. These predictions are for Pr„, = 0.02 and agree well with previous predictions 
of McMordie and Emery [22]; however, no data are available. In the DTV region, 
Nu. /y is a function of both the Graetz number [Pem/(x/Dh)] and Prm.

8.4.2 Turbulent Entrance Lengths
Uniform Wall Temperature. Figure 8.12 presents predictions from Chen and Chiou 
[20] of Nuv r/Nur vs. x/Dh for the DT region for two values of Re. Data from Awad 
[23] compare well with the predictions. It can be seen in this case that the entrance



PrmPem 
x/Z)h

Figure 8.10. Laminar pipe flow heat transfer in the developing thermal (DT) region with 
isothermal wall boundary condition [20].

Figure
region with constant wall heat flux [20].

p% Rem 
x/D,

8.11. Laminar pipe flow heat transfer in the developing thermal and velocity (DTV)
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Figure 8.12. Turbulent pipe flow Nusselt number in the developing thermal (DT) region with 
constant wall temperature [20],

effects last for only 30 to 40 diameters. In the DT region, Chen and Chiou [20] give the 
following expressions for the local and average Nusselt numbers, respectively:

Nu.. T 2.4 1
---- — = 1 + —------------------ ? for x/Dh > 2 and Pem > 500 (8.9)Nur x/Dh (X/Dh)2 ' h m V }

and

Num T 7 2.8 / L/Dh \
---- = 1 + -------------- +------- InNur L/Dh L/Dh ( 10

L
for— > 2 and Pe,„ > 500. (8.10)

In the DTV region, the local Nusselt number is given by the following expression:

Nil T 2.4 1.25 40 - (x/Dh)
——— = 0 88 +____  —_______  —_____
Nur ‘ x/Dh (x/Dh)2 190

for 2 < — < 35, 
A

(8.H)

and the average Nusselt number is given by

Nu„ T 5 1.86 / L/Dh\---- = 0.91 +-------------- + ———In 4-^
Nur L/Dh L/Dh \ 10 /

L 
for 2 < — <35

Dh
(8.12)

Uniform Wall Heat Flux. In the DT region, Chen and Chiou [20] recommend using 
Eqs. (8.9) and (8.10) for the local and average Nusselt numbers, respectively, after 
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substituting the uniform wall heat flux subscript for the uniform wall temperature 
subscripts.

In the DTV region, Chen and Chiou [20] give the following expressions:

and

Nuy h 2.4 1.25 x
---- — = 0.88 + —-------------------y for 2 - < 35 (8-13)Nu„ x/Dh (x/Dh) Dh

Nu,„ H 5 1.86 I L/Dh\ L
----^ = 1 + -------  + ------- In —— for2<— <35 (8.14)

Nu„ L/Dh L/Dh \ 10 / Dh

The analysis of Chen and Chiou [20] leading to Eqs. (8.9) through (8.14) was carried 
out for 0.004 < Prm < 0.1.

8.4.3 Influence of Axial Conduction in the Thermal Entrance Region
Recent numerical work by Lee [24,25] found that below Pem = 100, axial heat 
conduction becomes important for both uniform wall heat flux and uniform wall 
temperature in the thermal entrance region. Above Pem = 100 it is negligible in the 
thermal entrance region, and by definition it is negligible for all Pe,„ in the thermally 
fully developed region.

8.5 EFFECT OF VARIABLE PROPERTIES

When large temperature differences and high heat fluxes are encountered, the effect of 
physical property variation on the Nusselt number can become important. Chen and 
Chiou [20] considered this issue analytically for the case of fully developed pipe flow. 
Their results for the Nusselt number were presented in the following way: 

Nu = Nu0
Tb
Tin

(8.15)

where the subscript zero refers to a Nusselt number calculated assuming constant 
physical properties evaluated at Th. The exponent n is a function of the working fluid, 
the temperature range, and whether heating or cooling is being considered. Table 8.2 
summarizes the resulting expressions for n obtained by Chen and Chiou [20] for two 
specific liquid metals: Na and NaK eutectic. These results should be used with 
considerable caution, since no data are available for comparison.

8.6 NATURAL CONVECTION HEAT TRANSFER IN LIQUID METALS

The very high thermal conductivity of liquid metals has a major effect on natural 
convection heat transfer as well. Thermal boundary-layer thicknesses in liquid metals 
are many times greater than in ordinary fluids, as can be seen from Fig. 8.13, where the 
dimensionless thermal boundary-layer thickness r, is roughly 11 times greater for 
Pr = 0.01 than for Pr = 10. The influence of the Prandtl number on velocity profiles in



NATURAL CONVECTION HEAT TRANSFER IN I IQUID METALS 8’17

TABLE 8.2 Predicted Values of n for Use in Eq. (8.15)a

n Th Range, K For

SODIUM

CONSTANT WALL HEAT FLUX

exp(5 9 10“3 Tft - 6 9) 600 to 1000 Heating
0 370 to 600 Heating
0.25 370 to 1000 Cooling

CONSTANT WALL TEMPERATURE

0.08 + 2.2 X 10“4 600 to 1000 Heating
0.08 370 to 600 Heating
0.16 370 to 1000 Cooling

NaK EUTECTIC

CONSTANT WALL HEAT FLUX

- 0.24 400 to 1000 Heating
— 0.15 400 to 1000 Cooling

CONSTANT WALL TEMPERATURE

— 0.2 400 to 1000 Heating
and cooling

“Chen and Chiou [20].

natural convection is also marked, as shown in Fig. 8.14. It can be seen by looking at 
the velocity profiles in Fig. 8.14 that the larger thermal boundary-layer thickness for 
liquid metals results in a much thicker velocity profile as well. This is because, of 
course, the buoyancy forces are the driving body forces on the fluid motion. And in 
liquid metals, the buoyancy forces extend much farther away from the heated surface 
than they do in ordinary fluids, thus creating a wider velocity profile.

Whereas in ordinary fluids the Nusselt number in natural convection flows is a 
function of Gr^Prz ( = Ra^, the Rayleigh number), in liquid metal flows (where 
Prf 1) the Nusselt number becomes a function of Gr; Pr2 (often referred to as the 
Roussinesq number).

The reader is cautioned in this Sec. 8.6 to ascertain carefully whether it is the 
average Nusselt number or the local Nusselt number that is being considered and to 
use the recommended correlations accordingly. Also, in this section, all fluid properties 
should be evaluated at the film temperature (the average of the surface temperature and 
the bulk mean fluid temperature). Use of the film temperature in this way minimizes 
the effect of variable fluid properties according to Sparrow and Gregg [26]. Variables so 
evaluated will bear a subscript /, e.g., Nux H f.
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0 123456 789 10 11 12

Figure 8.13. Dimensionless temperature distributions for various Prandtl numbers in natural 
convection from a heated vertical surface with constant heat flux [28].

8.6.1 Vertical Plates in Laminar Flow
Uniform Heat Flux. Numerical work by Sparrow and Gregg [27] and Chang et al. [28] 
can be cast into the following equation for the local Nusselt number:

/ Gr*z\ 1/5 1 
h)U„ 1, f = I I . T" x’Hf \ 5 / 0(0) (8.16)

where Gr* ; is a modified Grashof number defined as

Gr* ;/ =
gpqx4 
kv2

(8-17)

(which is more convenient for results obtained at uniform heat flux). 0(0) is a 
dimensionless temperature difference evaluated at the wall. Values of 0(0) as a 
function of Pr^ are listed in Table 8.3. If one fits a relationship of the form

0(0) = A Pr/2/5 (8.18)

to the Table 8.3 values and substitutes the resulting expression into Eq. (8.16), the
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Figure 8.14. Dimensionless velocity distributions for various Prandtl numbers in natural convec
tion from a heated vertical surface with constant heat flux [28].
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TABLE 8.3 Predicted Values of 0(0) for Use in Eq. (8.16)

Pr< 0(0) Ref

0.01 6.304 [28]
0.03 4.198 [28]
0.10 2.751 [27,28]

result is as follows: 

Nux>Hi/ =
/ Gr* zPr2 \1/5 1

\ 5 / A
(8-19)

which follows the classical dependence on the Boussinesq number mentioned earher. 
The value of A is found to be unity within a few percent. Sheriff and Davies [29] used 
this method to arrive at the following relation, which fits most of the available data 
within ±1% and is therefore recommended:

NuXiHj/= 0.732(Gr* zPrz2)1/5 (8.20)

Sparrow and Gregg [27] showed that the average Nusselt number for a plate of length 
L is related to the local Nusselt number at x = L by

(8-21)

in the case of uniform heat flux. Here the average heat transfer coefficient h used in 
Nu; H t is based on the average temperature difference Tw - TK along the plate 
length L.

Uniform Wall Temperature. Sparrow and Gregg [30], LeFevre [31], and Ostrach [32] 
obtained solutions of the following form for local Nusselt number in this case:

NuXi7.iZ = /(Prz)(Grx,zPrz2)1/4 (8.22)

where the values of /(Pry) are given in Table 8.4. Although there are no available 
experimental data with which to compare this correlation, it should be as reliable as 
Eq. (8.21). Ostrach [32] showed that the average Nusselt number for a plate of length L

TABLE 8.4 Predicted Values of f(Pr>) for Use in Eq. (8.22)

Pl7 /(Prz) Ref.

0 0.6004 [31]
0.003 0.5827 [30]
0.008 0.5729 [30]
0.01 0.5715 [31,32]
0.02 0.5582 [30]
0.03 0.5497 [30]
0.1 0.5160 [31]
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is

Num,T,/- 3^ul,r,f (8.23)

in the case of uniform wall temperature. Here the average heat transfer coefficient h in 
Nul T f is based on the average heat flux q along the plate length L.

8.6.2 Heated Downward-Facing (Cooled Upward-Facing) Plates in 
Laminar Flow

Uniform Heat Flux. The experimental results of Sheriff and Davies [29] for the 
average Nusselt number at Gr*  j- ~ IO10 were observed to be roughly 15% higher than 
the approximate integral predictions of Fujii et al. [33], given as follows:

NumiHi/ = 0.522(Gr* /Pr/2)1/6 (8.24)

where Gr*y  is the modified Grashof number of Eq. (8.17) based on the half width a of 
an infinite strip. Analytical results are given for other geometries by Fujii et al. [33],

Uniform Wall Temperature. Clifton and Chapman [34] obtained the following aver
age Nusselt number correlation for low Prandtl number fluids:

Num.r>/ = 0.5212(Gra./Pr/2)1/5 (8.25)

There are no known experimental data with which to compare this result.

8.6.3 Heated Upward-Facing (Cooled Downward-Facing) Plates
Laminar Flow, Uniform Wall Temperature. The following theoretical expression for 
the local Nusselt number under isothermal conditions was extrapolated from the work 
of Pera and Gebhart [35] by Sheriff and Davies [29]:

NuJt.r>/ = 0.48(GrJt(/Pr2)1/5 (8.26)

where x is the distance from the leading edge of the plate. Experimental data of 
Kudryavtsev et al. [36] in the range of Grv y from 106 to 108 are 0 to 25% above this 
prediction and are questionable because of possible edge effects due to the small size of 
the apparatus. Based on these considerations, Eq. (8.26) is cautiously recommended.

Turbulent Flow, Uniform Wall Temperature. The experimental results of McDonald 
and Connolly [37] for the average Nusselt number are correlated by the following 
equation in the Grashof number range 6 X 108 < Gr DT < 5 X 109:

Num,r,/ — 0.262(Gro rPr2) (8.27)

The exponent near | is indicative of the turbulent heat transfer regime. The Grashof 
number is based on the diameter D of the horizontal disk used in the experiment.
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8.6.4 Inclined Plates in Laminar Flow, Uniform Heat Flux
A first-order estimate of the local Nusselt number for heated downward-facing surfaces 
inclined at an angle y from the vertical can be determined by replacing g with g cos y 
in the Grashof number in Eq. (8.20). Experimental data cited by Sheriff and Davies [29] 
for y ~ 75° were roughly 10% lower than the following relation (which they suggested 
on the basis of the above argument):

Nux> HJ(y) = 0.732(Gr* /Cos y Piy2)1/5 (8.28)

The data were in the range 105 < Gr*y  < 1011. Better agreement is expected at lower 
values of y, in part because at such large y, parts of the thermal boundary layer may 
actually be below the leading edge of the plate.

8.6.5 Heated Horizontal Cylinders in Laminar Flow
The average Nusselt number data of Hyman et al. [38] for natural convection from 
horizontal cylinders is well correlated by the following equation:

Nuy = 0.53(Grrf/Pr/2)1/4 (8.29)

where the Grashof number is based on the diameter of the horizontal cylinder, and the 
fluid properties are evaluated at the average of the surface and bulk mean tempera
tures. Although no detailed comparison has been made, the data of Michiyoshi et al. 
[39] and the theory of Levy [40] on circumferentially local Nu^ f in mercury both fall 
below Eq. (8.29) by roughly 10%. It should be mentioned that Levy’s theory was 
developed for both laminar and turbulent flow, assuming uniform wall temperature, 
while the data of Hyman et al. [38] and Michiyoshi et al. [39] were collected at 
approximately uniform wall heat flux.

8.6.6 Transition from Laminar to Turbulent Natural Convection
The transition from laminar to turbulent boundary-layer flow occurs in the range 
108 < Grx f < IO10. However, on log-log plots of Nu, f vs. Grx the breakpoint is 
less sharp than for ordinary fluids. This is due mainly to the great influence of 
molecular thermal conductivity in the case of liquid metals and also to the generally 
larger scatter found in Equid metal heat transfer data.

8.7 SUMMARY

Table 8.5 summarizes all the correlations presented in this chapter on convective heat 
transfer in Equid metals.
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TABLE 8.5 Correlations for Liquid-Metal Convective Heat Transfer

Reference Eq. Correlation

Buhr [5]

Subbottin [8] (8.1)

z = Ra'm Dh
Rem L

= 5.0 + 0.025 Pe°8

Reed (present work) (8-2) NuT = 3.3 + 0.02 Pe®8

Kottowski [14] (8-3)
ZM0'3

Nu = 0 75 —

Duchatrelle and (8.4)

\ 'i /
X(7.0 + 0.025 Pem)0-8

Nuh = 5.85 + 0.000341 Pe^29
Vautrey [15]

Dwyer [16] (8.5) Nu = 9.49 + 0.0596 Pe°688

Andreevskii [17] (8.6) Nuz = 0 65 Pe/5

Kottowski [14] (8.7) Nuz = Pez°5

Hartnett and (8.8) Nu = |Nus m + 0.025 Pe° 8
Irvine [19]



L imitations Limitations—Flow Comments

Z > 20 X 10“4 Free convection 
important

= Gr^,Pr„,

Pem > 100
L/Dh > 60

Turbulent pipe flow Uniform heat flux

Pem > 100
L/Dh > 60

Turbulent pipe flow Uniform wall 
temperature

'z/'i < 1-4 or Annular flow

1.4 < r2/ri < 10

Flow between 
parallel plates

Unilateral heat 
transfer

Flow between 
parallel plates

Bilateral heat 
transfer

Single cylinder in 
90° cross flow

50 < Pez < 4000 Flow across a 
staggered tube bank

Hg and Na 
data

Various channel 
shapes

See Table 8.1
for Nus.m
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TABLE 8.5 Continued

Reference Eq- Correlation

Chen and
Chiou [20]

(8.9)
N“x.hc

Nuhc

2.4
— 1 + -------
x/Z)A

1

(V^)
2

Chen and
Chiou [20]

(8.10)
Num,hc

Nuhc

7
— 14 -------
L/Dh

2.8
H--------- ln|

L/Ph
fL/Ph}

10 )

Chen and
Chiou [20]

(8.11)
N”x,H 2.4

= 0.88 + -------

1.25
(V^)2
40- (x/Dh)

190

Chen and
Chiou [20]

(8.12)
H 5

= 0.91 + ----
L/i

1.86
-t ------- InL/Dh ’

Nuh 0/, 
f L/Ph \

I 10 /



Limitations Limitations—Flow Comments

2 < x/Dh
500 < Pem

0.004 < Prm < 0.1

Thermal entrance flow Uniform wall
in a round pipe temperature,

Uniform heat flux

2 < L/Dh
500 < Pem

0.004 < Prm < 0.1

Thermal entrance flow Uniform wall
in a round pipe temperature,

Uniform heat flux

2 < x/Dh < 35 
0.004 < Pr„, < 0.1

Thermal entrance flow Uniform heat flux
in a round pipe

0.004 < Pr„, < 0.1

2 < L/Dh < 35 Thermal entrance flow Uniform heat flux
in a round pipe



Chen and (8.13)
Chiou [20]

Chen and (8.14)
Chiou [20]

(*/W

= 5
L/Dh

1.86 (L/Dh\
-+ ------- In --------

L/Dh \ 10 /

Chen and (8.15)
Chiou [20]

Chang (8.16)
et al. [28]

Sheriff and (8.20)
Davies [29]

Sparrow and (8.21)
Gregg [27]

Sparrow and (8.22)
Gregg [30],
LeFevre [31], 
Ostrach [32]

Nu = Nuol

Nu =(£<ci/5_2_
NUx.H,/ ( 5 ) @(0)

Nu^. H.f = 0.732(Gr*/Pr/) 1/5

Num Hj-= |Nu£ h f

Nu.,r/ = /(Pr/)(GG,/Pr/2)1/4
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2 < x/Dh < 35
0.004 < Pr„, < 0.1

Thermal entrance flow 
in a round pipe

Uniform heat flux

2 < L/Dh < 35
0.004 < Prm < 0 1

Thermal entrance flow 
in a round pipe

Uniform heat flux

0.004 < Prm < 0.1 Fullv developed 
pipe flow

Variable fluid 
properties

See Table 8.2

Vertical plates in 
laminar flow

Vertical plates in 
laminar flow

Uniform heat flux 
Gr* ; = g/3 qx'/kv1 
For 0(0) see

Table 8.3

Uniform heat flux 
Eq. (8.16) modified

Uniform heat flux

Vertical plates in 
laminar flow

Uniform wall temperature
Values of /(Pr,)

In Table 8.4 
No experimental data
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Reference Eq. Correlation

Ostrach [32] (8.23) Num,r,/-= ,Nu£ tj

Fujii [33] (8.24) Num H z = 0.522(Gr *zPrz )1/6

Clifton and
Chapman [34]

(8.25) Nu„17/= 0.5212(Gr,zPr2)l/5

Pera and
Gebhart [35]

(8.26) NuXiT>/= 0.48(Grx/Prz2)1/5

McDonald and
Connolly [37]

(8.27) Nu„1>7V=O.262(GrD<TPr2)035
6 X 108

Sheriff and
Davies [29]

(8.28) Nur H z(y) = 0.732(Gr* zcos y Pr/)1/5
1 X IO5

Hyman et al [38] (8.29) Nuz = 0.53(Gr^zPrz2)1/4



Limitations Limitations—Flow Comments

Grn T < 5 X 109

< Gr* z < 1 X 1011

Heated downward
facing plates in 
laminar flow in

Heated downward
facing plates in 
laminar flow

Heated upward- 
facing plates 
(cooled downward), 
laminar flow

Heated upward- 
facing plates 
(cooled downward), 
turbulent flow

Uniform wall temperature

Uniform heat flux
Gr * y = modified

Grashof no. Data 
are 15% higher

Uniform wall
temperature

No experimental 
data

Uniform wall
temperature

Expression is 0-25% 
below data

Uniform wall
temperature

Inclined plates in 
laminar flow

Natural convection 
from horizontal 
cylinders in 
laminar flow

Eq. (8.20) modified

Data collected at 
uniform heat flux
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NOMENCLATURE

A constant in Eq. (8 19)
cp specific heat at constant pressure J/(kg • K), Btu/(lbm - °F)
Dh hydraulic diameter = 4 (minimum free flow area)/(wetted perimeter), m, ft
Pj inner diameter of annulus, m, ft
D, outer diameter of annulus, m, ft
d/d T partial derivative with respect to T 
d/dx total derivative with respect to x 
f function of
Gr Grashof number = g/3^TU/v1
Gr*  modified Grashof number = gft qxA/kv7
Gr' Grashof number based on axial temperature difference = (Dlfig^T)/v~ 

where AT = (dT/dx)/Dh 
g gravitational acceleration, m/s2, ft/s2
/■ heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 • °F)
A thermal conductivity, W/(m • K), Btu/(hr • ft • °F)
L length, m, ft
In natural logarithm
Nu Nusselt number = h Dh/k
Nubc circumferentially averaged Nusselt number for fully developed flow, ther

mal boundary condition
Nu, bc circumferentially averaged but axially local Nusselt number for the thermal 

entrance region for the specified thermal boundary condition
Nu,;i bv mean Nusselt number for the thermal entrance region for the specified 

thermal boundary condition
n exponent in Eq. (8.15)
Pe Peclet number = Re Pr
Pr Prandtl number = ficp/k
q heat flux, W/m2, Btu/(hr • ft2)
Ra Rayleigh number = GrPr
Re Reynolds number = uDh/v
r radial coordinate, m, ft
r0 inside radius of a pipe, m, ft
rY inner radius of annulus, m, ft
r2 outer radius of annulus, m, ft
T temperature, °C, K, °F, °R
u velocity, m/s, ft/s
x axial coordinate, m, ft
j- transverse coordinate, m, ft
Z free convection distortion parameter = (Ra//Rem )//,/£
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Greek Symbols
coefficient of thermal expansion = — (l/p)(dp/dT)p, K~x, °R-1

A finite difference
y angle of inclination from vertical, rad, deg
t] dimensionless distance = (y/x)(Grx*/5) 1/5
0(0) dimensionless temperature function
p dynamic viscosity, Pa • s, lbm/(hr • ft)
v kinematic viscosity, m2/s, ft2/s
p density, kg/m3, lbm/ft3

Subscripts
a based on half-width dimension a
D based on disk diameter D
d based on cylinder diameter d
f fluid properties evaluated at the film temperature
H constant wall heat flux boundary condition
h hydraulic parameter (see Dh)
in inlet bulk fluid condition
L based on length L
m fluid properties evaluated at bulk mean temperature
out outlet bulk fluid condition
p evaluated at constant pressure
s slug flow
T constant wall temperature boundary condition
H- evaluated at the wall
x based on length x
</> evaluated at angle <f> from forward stagnation point
oo evaluated at oo (fully developed)
1 inner diameter of annulus
2 outer diameter of annulus

Superscripts and accents 

average value 
modified number
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9.1 INTRODUCTION

Electrohydrodynamics (EHD) refers to the coupling of an electric field and a velocity 
field in a dielectric fluid continuum, whereas magnetohydrodynamics (MHD) encom
passes the phenomena arising when an electromagnetic field is applied to an electrically 
conducting fluid. Applications of EHD and MHD in convective heat transfer are many 
and varied. This chapter is restricted to EHD of polar gases and MHD of electrically 
conductive fluids.

Electric field effects on heat transfer in polar gases generally take place via a 
modification of the gas velocity and temperature boundary layers. The use of a 
nonuniform electric field and the electric or corona wind has been most frequently 
studied and used in thermal systems applications. Only MHD as applied to heat 
transfer in liquid metals is addressed in this chapter. For areas not covered here, the 
reader is referred to review articles by Romig [105,106] (which include MHD effects in 
conducting gases), the annual symposium proceedings on Engineering Aspects of 
Magnetohydrodynamics, and two recent status reports [21,93]. Liquid metal heat 
transfer in the presence of magnetic fields in fusion-reactor coolant blankets is 
discussed in Ref. 23.

For the user of the information presented in this chapter, it is important to know 
that no generalized correlations of heat transfer, such as those for forced and free 
convection without electric and magnetic fields, are available. Much of information 
available for electric fields today is restricted to specialized studies, and detailed 
knowledge of experimental apparatus or numerical schemes is needed to correctly 
interpret results. Also, no complete analytical or numerical solution of the coupled 
electrohydrodynamic and fluid-dynamic equations has been obtained. Thus, it is 
extremely important to consider both experimental and mathematical limitations of the 
existing literature in new applications.

9.2 BASIC CONCEPTS IN ELECTROHYDRODYNAMICS (EHD)

9.2.1 Governing Equations
The governing equations of EHD are derived from Maxwell’s macroscopic equations of 
electrodynamics, Ohm’s law, and the classical fluid-dynamic conservation equations of 
mass, momentum, and energy. The most general form of the equations of fluid 
dynamics and electrodynamics are well established, and the reader is referred to Refs. 
2, 39, 38, 54. Electrohydrodynamics is restricted to those problems for which there is no 
externally applied magnetic field and any induced magnetic field is negligible. The 
equations are based on the concept of a single-species fluid continuum and only apply 
to the region outside an active corona discharge. The discharge zone is, however, 
extremely small relative to the interelectrode space, and the theory applies in a 
practical sense to the entire region between electrodes. In this case, for an isotropic 
fluid which is free of surface forces, the reduced Maxwell equations are

E= -A<f> (9.1)

V(eE)=pc (9.2)

dpc
VJ--? (9.3)
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These equations can be further reduced for the steady state, where

V • J = 0 (9.4)

This simplification is reasonable when the electric field is either completely steady, as in 
the case of a direct current (DC) field, or at most has low-frequency components.

The current density is given by Ohm’s law as

J = X’lpJE + pcu (9.5)

Thus the total current is composed of that due to the local body force, A'|p< |E, and that 
due to the convective transport of charge, p(u. When the magnitude of the bulk fluid 
velocity U is much less than the ion drift velocity V, = KE, the convection term may be 
dropped from Ohm’s law. Typically, as shown in Table 9.1, ionic mobilities for gases 
commonly used in engineering applications are greater than 10 4 m2/(V • s). The 
maximum spark breakdown potential in gases is approximately 15 X 105 V/m for a 
variety of electrode configurations. Considering a self-sustained corona discharge 
operating well below sparkover with a field strength of 50 X 104 V/m, values of V, on 
the order of 50 m/s are possible. Thus the neglect of the convective current for this 
situation is reasonable when the mean velocity is on the order of 5 m/s.

The basic equations for an incompressible fluid under the influence of an electric 
field are conservation of mass,

V*u  = 0 (9.6)

TABLE 9.1 Ionic Mobilities at 0°C and 760 Torr [15]

K , 
HF4 m2/(V • s)

A'+, 
10“4 m2/(V • s)

Air (dry) 2.1 1.36
Air (very pure) 2.5 1.8
Ar 1.70 1 37
Ar (very pure) 206 1 31
ci2 0.74 0.74
CC14 0.31 0.30
c2h2 0.83 0.78
c2h5ci 0.38 0.36
c2h5oh 0.37 0.36
cd 1.14 1.10
CO2 (dry) 0.98 0.84
h2 8.15 5.9
H- (very pure) 7900
HC1 0.62 0.53
ICO (at 100° C) 0.95 1.1
U.S 0.56 0.62
He 6.3 5.09
He (very pure) 500 5.09
n2 1.84 1.27
N (very pure) 145 1.28
NH3 0.66 0.56
NO 0.90 0.82
Ne 9.9
o? 1.8 1.31
so2 0.41 0.41
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and the incompressible Navier-Stokes equations with an electric body force term Fe,

du
17 = -yP + pV2u + pg + Fe (9-7)

This body force, which results from collisions of ions and neutral molecules, is given by

F( = pfE - |E2 Ve + f V (9-8)

The first term results from the presence of free charge and is the Coulombic force. The 
second term results from the force of a nonuniform electric field on the dielectric 
permittivity. This force is normally much weaker than the Coulombic force except at 
the interface between two fluids where the permittivity changes abruptly [71]. The final 
contribution to the body force is the electrostrictive force. When considering gases, this 
term can be simplified by using the linear relationship [54]

de
Py = e “ £o 

dp
(9-9)

Kronig and Schwartz [47] and Lykoudis and Yu [67] investigated the role of 
electrostrictive forces in natural convection. In both liquids and gases, the electrostric
tion term can be lumped into a modified pressure in the momentum equation given by

E2 I de \
P=P~Pvl y

2. \ P / T
(9-10)

Thus in the absence of a free surface, the electrostrictive contribution to the body force 
has no effect on the velocity field, but merely affects the pressure distribution in the 
fluid. Only the Coulombic force and the force resulting from permittivity gradients in 
the fluid contribute to modifications in the fluid velocity field that exists in the absence 
of the electric field. Generally, for gases in which a corona discharge (and thus space 
charge) exists, nonuniform permittivity effects and electrostriction are negligible com
pared to charge-density effects. In this case, the electric body force term reduces to

Fe = pcE (9.H)

Using Ohm’s law, Eq. (9.5), this body force may be represented as J/Ai for a positive 
corona discharge and as — J/K for a negative discharge.

The energy equation for an incompressible fluid subject to the EHD idealizations is

dT z x " k\Pc\e2— + u • VT= V *(aVT)  + — O +---------
dt Cp PCp

(9-12)

where the existence of a space charge in the fluid contributes the Joule heating term 
A'|p, |E2. Joule heating need only be considered when extraordinarily high current 
densities are present.
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(Corona discharge)

Electric field

Figure 9.1. Interactions among the electric, fluid, and temperature fields [138].

The couplings between the electrodynamic, momentum, and energy equations are 
dependent on the electrical and thermophysical properties of the fluid. An electric field 
may affect convective heat transfer through four major mechanisms: the Coulombic 
force, electrostriction, dielectric gradients, and Joule heating. The Coulombic and 
permittivity gradient terms in the electric body force expression of Eq. (9.8) couple the 
fluid-dynamic equations to Maxwell’s equations. The electrodynamic equations are in 
turn coupled to the momentum equation through the convective current term p(.u in 
Ohm’s law. Joule heating directly couples the electrical equations to the energy 
equation. If bouyancy is effected, the fluid and electrical equations are coupled. A fifth 
mechanism involves the temperature dependence of ionic mobility. This mechanism has 
recently begun to receive attention [34,121,122]; however, the voltages at which it is 
important are much less than those associated with space-charge effects. The interac
tion among the electric, fluid, and temperature fields is illustrated in Fig. 9.1.

In the formulation of a specific heat transfer problem, one or more of the available 
coupling mechanisms may be insignificant compared to the others, so that the problem 
can be greatly simplified [24,57,81]. In the case of a corona discharge in a gas, the 
major interactions are those indicated in Fig. 9.1 by broad arrows. In most practical 
situations, Joule heating is negligible and thus the temperature field is influenced only 
indirectly through modification of the flow field by the electric body force F(,. When the 
convective current in Ohm’s law is negligible, the electrical equations may be solved 
independently of the hydrodynamic equations.

9.2.2 Dimensionless Groups
Nondimensionalization of the EHD equations yields the standard groups for correlat
ing convective heat transfer data. These include the Reynolds, Prandtl, Grashoff, and 
Nusselt numbers. In addition to these familiar parameters, the electric field effect 
introduces new dimensionless parameters represented by the ratio of the electric body 
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force and the fluid inertial or viscous forces. The formulation chosen for these ratios 
varies in the literature.

Using a geometric length scale L. a velocity scale Uo, and a current scale 7(), the 
dimensionless momentum equation is

+ (u • v)u = -Vp + ^-V2u + ^0 + Ne2J (9.13) 
dt Re Re2

where the electric body force Fe is represented as J/K, p is the static pressure 
nondimensionalized by pltf, and 0 is given by (T - TJ/fTj - T>). The dimensionless 
electric number Ne given by,

Ne = ' pUQ2 I (9.14)

is the ratio of the electric body force to the inertial force. There is unfortunately no 
standard nondimensionalization in the literature. Numerous authors present this ratio 
in terms of a reference space-charge density p(0 rather than a current density 7O/L2. A 
general representation of the space-charge dimensionless parameter is

X = (9-15)

where <j>() is a reference electric potential, usually chosen to be the operating voltage at 
the corona discharge electrode. Using this scheme, a characteristic electric wind 
velocity may be defined as

(9-16)

from which an electric Reynolds number is defined as

R-eEHD ~ (9.17)

This common approach to nondimensionalization is awkward, because the space-charge 
scale is not physically measurable. The total current Io is measurable in all cases.

The dimensionless incompressible energy equation is given by

00
~0t

1 Ec Ec / K &<j> \ J2
----V • q" + — O + — Ne2 -------  — 

Re Re \ v ) pc (9-18)

where the ratio K represents the ratio of the electric body force to viscous forces. 
The space-charge density is nondimensionalized by the quantity K^L/ln. Since 
Joule heating is normally assumed negligible in corona discharges, correlations for the

+ u • V# =

\ P /
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Nusselt number generally include the Reynolds number, Prandtl number, and either 
form of the force ratio given in Eqs. (9.14) and (9.15).

9.2.3 Basic Physics of the Corona Discharge
The term “corona discharge” refers to a self-sustaining electrical discharge produced in 
a gas. A stable discharge requires the presence of two electrodes, one with a much 
smaller radius of curvature than the other. Additionally, the gap between the two 
electrodes must be large compared to the radius of the smaller electrode. As the 
electrical potential is raised between the two electrodes, the gas in the immediate 
vicinity of the electrode surface which has the highest degree of curvature is ionized. 
These discharges are termed positive or negative according to the polarity of the 
electrically stressed electrode.

The idealized situation of a small-diameter wire on the axis of a long cylinder is 
used to illustrate the corona discharge process. In the case of a positive discharge wire, 
free electrons are drawn from the interelectrode space in toward the wire. There, in the 
intense electrical field, they collide with neutral molecules and produce numerous 
electron-positive-ion pairs. The newly created electrons are in turn accelerated and 
produce further ionization. This cumulative process, referred to as the Townsend 
electron avalanche, is responsible for the sustained corona discharge. The electron 
avalanches move toward the wire discharge electrode. Positive ions formed by the 
electron avalanches are accelerated away from the ionization region near the wire and 
collide with neutral molecules as they move in the direction of decreasing field strength 
toward the outer cylinder. These ions do not have sufficient energy to cause emission of 
electrons by positive ion bombardment at the cylinder cathode or to significantly ionize 
the gas in the region between the two electrodes. Positive ions fill most of the gas 
volume and are responsible for all of the current outside the active ionization region 
near the wire. The effect of positive space charge is to stabilize the discharge process. 
The discharge appears in air as a bluish glowing region of gas, ideally extending 
uniformly over the entire surface of the wire.

Negative corona discharges are quite different in their charge-generation process. In 
this case, the electrons formed by chance ionizing events gain energy from the electric 
field and produce positive ions and other electrons by collision. The positive ions 
formed in this avalanche process are accelerated toward the wire. Additional electrons 
are generated by subsequent electron ejection from the wire surface, which results from 
bombardment of the wire by the positive ions. As the electrons move into the weaker 
electrical field away from the wire, they collide with neutral gas molecules and form 
negative ions. All the current in the interelectrode space outside the discharge region is 
carried by these negative ions. Because the discharge is dependent on the electrode 
surface for electrons, the discharge is characterized not by a uniform sheath of glowing 
gas surrounding the wire, but rather by discrete, intensely bright, glowing tufts of 
ionized gas distributed nonuniformly along the wire. If the discharge electrode surface 
is oxidized or marred by other surface irregularities, positive discharges also display 
inhomogenities in the discharge structure.

The electrode potential at which current begins to flow is termed the “breakdown” 
or “threshold” potential <f>0. The exact value of <#>0 depends on the geometry of the 
electrodes and the gas composition. The gas composition also determines the type of 
ions that are formed in the corona discharge process. The species with the lowest 
ionization potential will normally appear in the greatest concentration. Table 9.2 
contains the ionization potentials in several polyatomic molecules. Once the breakdown
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TABLE 9.2 First Ionization Potentials of Polyatomic Molecules [15]

Gas
Ionization

Potential, eV
Probable 

Ion

H 15.37 h/
n2 15.57 n2+
o2 12.5 o2+
co 14.1 co+
co2 14.0 co2+
NO 9.5 NO+
no2 11.0 NO/
N-O 12.9 N2O +
H2O 12.59 h7o+

potential is exceeded, the current increases almost parabolically with voltage until the 
sparkover potential is reached. This is illustrated in Fig. 9.2, where data for a 
wire-cylinder system are shown.

Determination of the spatial values of the electric field intensity and current for 
various geometries in the presence of a corona discharge is complicated by the presence 
of space charge in the gas. The simplest geometry for the purposes of analysis is the 
coaxial wire-cylinder electrode system just described. Prior to the initiation of a corona, 
the electric field is given by

- <HRi) 
r^R./R.)

(9.19)

Above the corona threshold potential, the introduction of a nonzero space-charge

1

0

7

6

Voltage, kV

Figure 9.2. Current-voltage relation [15] for a wire-cylinder discharge. (Wire diameter = 0.41 
mm, cylinder length = 25 cm, cylinder diameter = 4.45 cm, T = 25 ° C, relative humidity = 29 2%, 
P = 746.8 Torr.)
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density results in an electric field given as

E(r) =
IL

(9.20)

The threshold electric field E() at the wire surface is given for air by the semiempirical 
formula [89]

E() = 31.0 1 +
0.308

(9.21)

where the wire radius is in centimeters and Eo is in kV/cm. Neglecting higher order 
terms, the corona current-voltage relation is given by

<£>( ^1) — 'Pfj I Rl\ 1/7a l°M -(l + OI/2-l-l° ------(9.22)
9o \ / \ J

where <f>0 is related to Eo by

I Ri \
4>0 = E^ln — (9.23)

\ )

The quantity £ is defined as

For small currents near the corona threshold, the total current is given by

/?22ln( R2/Rx)
(9.25)

For a wire-plate geometry, Cooperman [16] and Lagarias [52] pioneered experimen
tal techniques for the measurement of electric fields, and Penny and Matick [92] used a 
Langmuir probe to measure potentials. Cooperman [17] argued that the electric 
potential could be represented as the sum of the electrostatic potential and that due to 
a uniformly distributed space charge. He used a conformal mapping and the method of 
images to obtain an approximate expression for the potential, from which he derived 
an expression for the current-voltage relationship for the wire-plate electrodes as

LK^>(4> - 4>0) ,
1 ~ d^^d/nRy) ('9'26)

for a wire spacing less than 1.2<7. This expression is subject to the assumption of 
uniform space charge and is only valid at low current levels.

White [135] summarized the early work on the electrical properties of corona 
discharges in both the wire-cylinder and the wire-plate geometry. More recent numeri
cal studies [35,55,56,60,139] compare well with experimental measurements. Hay’s
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[33] recent application of a perturbation method to Cooperman’s analytical work 
provides an approximate analytical expression for the current density distribution and 
thus the body force in a wire-plate geometry.

9.2.4 Basic Fluid Mechanics of the Corona Wind
In the study of electrical coronas, the corona wind, discovered by Hauksbee [32] more 
than 275 years ago when he felt a weak blowing sensation from a high voltage tube 
held to his face, emerged as a novelty and remained a curiosity for many years. The 
first quantitative analysis of the phenomena is Chattock’s [9-11] study of ion mobilities 
in the needle-to-plate geometry. He developed the relationship between electric wind 
pressure and corona current for a continuous discharge from a point to a plane. Much 
later, Lob [61] extended Chattock’s pressure vs. current relationship to other geome
tries. Steutzer [116-118] developed a theory describing ion-drag pressure generation in 
gases and liquids. A comprehensive survey of the early theoretical and experimental 
work on the corona wind is given by Robinson [104].

The corona wind is characteristic of asymmetric electric field corona discharges, 
such as are found in the point-to-plane and wire-to-plate electrode arrangements, or 
any geometry in which the discharge exhibits a spatial nonuniformity. Modification of 
the gas flow field by the corona discharge depends on the electrode geometry and the 
structure of the discharge. Situations in which there is no induced gas motion are 
characterized by electrode geometries in which the current-density vector is irrota- 
tional. Flippen [24] has recently shown that in only three geometries (concentric 
spheres, concentric cylinders, and parallel plates) is it possible to have an irrotational 
electric body force in the presence of space charge. For all other geometries, the 
presence of a discharge results in some modification to the flow field. The body force 
may induce a secondary flow or create a flow where none would otherwise exist, and in 
some instances generate turbulence.

The corona wind resulting from the usual spotty discharge, whether located at a 
point or along a wire, may be pictured as a jet of gas originating at the discharge and 
streaming toward the grounded electrode. Depending on the electrode geometry and 
the direction and velocity of any primary gas flow, this jet flow may result in large-scale 
circulating motions in the interelectrode space. Additionally, it is well established that 
in channel flows the corona discharge generates turbulence. Heat transfer augmentation 
is due to both impingement of the electric wind on the grounded electrode surface and 
the interaction of the jet with the free-stream flow. As expected from the nondimen- 
sionalization of the governing equations the effect of the corona discharge on the flow 
field, and as a result on the heat transfer coefficients, diminishes with increasing 
free-stream velocity.

9.3 EHD IN EXTERNAL BOUNDARY LAYERS

9.3.1 Impingement by Single Corona Discharges

Point-plane (Fig. 9.3) and wire-plane electrode systems (Fig. 9.4) can be used to create 
an impingement flow to a heated surface in both free and forced convection. Effective 
limits for heat transfer augmentation in each case are determined by the electrode 
geometry, general flow features, and ranges of Reynolds and Grashof numbers. In free 
convection from external surfaces, there is usually no limit to the increase in Nusselt
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Figure 9.3. Schematic of induced flow field for point-plane electrode system [129].

number with electric-wind impingement (at least, to the point of spark breakdown). 
For forced convection flows, however, there is an upper limit on Reynolds numbers 
beyond which an augmentation due to electric-wind impingement does not exist.

Point-Plane and Wire-Plane Electrodes. Several studies [69,75,137] of electric-wind 
impingement on flat surfaces in free convection have been made for a single wire, or 
point, discharge source and flat plane electrodes. These types of electrode systems form 
the basis for the fundamental relation between increased heat transfer coefficient and 
discharge current.

Assuming zero charge density in the interelectrode region, and a discharge electrode 
diameter much smaller than the spacing (i.e., Rx/d « 1), the vertical component of the

Figure 9.4. Fundamental wire-and-plane electrode system. The wire is treated as a line source of 
charge at a distance d above the plane. The image point is at a distance — d from the plane.
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field at the plate (y = 0 and Ex = 0) is

2(<f>/d) / 1 \
’’ \n(2d/R^ \ 1 + X2) (9.27)

where X = x/d, and the potential is given by

X 1 2d\
<t> = -----In —
y 2tt€ \ /?! 1

(9.28)

The pressure rise above the ambient pressure under the corona discharge is

fE2 v y, max
P - Patm - constant • (9.29)

This relation is an approximate one that neglects space-charge effects but agrees fairly 
well with experimental information.

By combining Eqs. (9.28) and (9.29), one has

P ~ Palm = / 1 V

Po - Patm \ 1 + 1 (9.30)

where the pressure at the origin is

- IP° - constant ■ 2e ) (9.31)

For a single point electrode over a flat plate, the field at y = 0 for constant space 
charge is

X / 1 \3/2
E=- ------  -------- Ty 2md\l + X2 (9.32)

Expressions similar to Eqs. (9.30) to (9.32) can be derived to approximate the pressure 
distribution.

Free Convection Systems. Based on data from corona wind impingement and visual 
observation of the thinning of the thermal boundary layer in the stagnation region, the 
flow from a wire electrode can be modeled approximately as a two-dimensional plane 
jet [69], Its impingement on the surface can be considered to interact with the velocity 
and thermal boundary layers with the free-stream velocity following the pressure-vs.- 
distance relation given by Eq. (9.30).

A von Karman-Pohlhausan boundary-layer analysis was done by Marco and 
Velkoff and compared with experimental data for a flat plate [69], First, the assumption 
was made that the space charge pc is a scalar constant, so that the flow field outside the 
momentum boundary layer could be considered irrotational. This is not strictly true, 
and numerical solutions should be sought when possible. For thin boundary layers, the 
velocity at the edge of the boundary layer is obtained from Bernouli’s equation and the
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pressure-distance relation of Eq. (9.30), and is given by

pU&
— =po (9.33)

For a parabolic velocity and temperature distribution in the velocity and tempera
ture boundary layers, i.e.,

u 2y v2 2y y2
— = ------TT and 0 = T--------- t ,us 8 82 8t 8/

the local heat transfer coefficient near the origin for air is given by

h0 = 0.756/c(pC*/) 1/4(t/p) 1/2 (9-34)

and, generally, for large x/d,

hx
k 

0.43 —
(Pc*z) 1/4 
W1/2

/ a9/2 \1/2
(9-35)

where

g2_R2_ ~4
* \8] PrS^S*  - 5)

F( x) = f A4 dx.

In Eq. (9.35), the constant C*  depends on the electrode and surface geometry and is 
the slope of the curve of stagnation pressure vs. total current divided by the total 
current.

If linear approximations to the velocity and temperature distributions in the 
boundary layers are used, the heat transfer coefficient near the origin is given by

/i0 » 0.67fc(pC*Z) 1/4(Jp) 1/2 (9.36)

and generally, for large x/d, 

k 
hx » 0.34-

(ZpC*Z) 1/4 

(<w/2
A5 1/2

FAX)
(9.37)

where

FjY) = (XA9/2dX 
Jo

While these results are approximate, their comparison with experimental data is 
quite good. Figure 9.5 presents results for a horizontal, downward-facing heated plate
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Figure 9.5 . Convective heat transfer coefficient under a single corona discharge impinging on a 
downward-facing heated flat plate [69], The electrode is a wire running the entire width of the 
plate.

with corona-wind impingement from below. It is seen that the approximate solutions 
bracket the experimental data quite well. Both the linear and parabolic solutions 
predict that local and average heat transfer coefficients will be proportional to 71/4, and 
this is borne out in Fig. 9.6. It may be noted that the Il/4 dependence in the heat 
transfer coefficient can be predicted by an approximate analysis via the Euler equation 
in the interelectrode space [43]. Generally, this current dependence is valid only when 
the ionic mobility is independent of the electrode field strength.

A numerical analysis of the impingement flow and heat transfer problem for a single 
wire electrode underneath a horizontal heated plate has been recently done in conjunc
tion with a fundamental experimental study [137,138], The numerical calculations were 
carried out over a domain bounded by rigid walls at y = 3d and .x = 3d, whereas the 
experimental domain was open in the horizontal plane and above the wire (Fig. 9.7). 
The advantage of the numerical calculations is that one can include charge-density 
variation and its coupling to the electric field and velocity distributions.

The method of solution involves decoupling the electric field problem first and then 
using the resulting charge-induced body force in the momentum equation to obtain the 
velocity field. The heat transfer problem is then solved with the velocity field de
termined. The equations can be written in stream-function-vorticity form for a strictly 
laminar flow. Two dimensionless parameters characterize the solution. These are

r A = °
(9.38)
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Figure 9.6 . Normalized free convective heat transfer coefficients under a single corona-wind 
impingement on a downward-facing heated flat plate [69].

which represents the ratio of the electric field produced by space charge to the average 
field along the axis between the wire and the wall, and

d 
R-eEHD = — 

V

I J d\1/2
‘ PK I (9.39)

which is the electric Reynolds number.

(b)
Figure 9.7 . Computational domain for single corona-wind impingement on a flat plate |137,138],
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Figure 9.8. Velocity field produced by a single corona discharge over a flat plate [138], The 
solution is for laminar flow. Flow distortions due to the presence of the wire are not taken into 
account.

Numerical solutions are available for ReEHD = 1290, T = 0.89, and other condi
tions comparable to experiments conducted by Yabe et al. [137]. The velocity field is 
shown in Fig. 9.8 and does not take into account the distortion of the flow field by the 
corona wire and the inevitable turbulence of the electric wind. The heat transfer results 
are dependent on the electric Peele t number, PeE = ReEHDPr, because of the neglect of 
free-convection effects. Local and stagnation point heat transfer coefficients agree well 
with experimental results (Figs. 9.9 and 9.10). For local heat transfer coefficients, the 
agreement between theory and experiments is best near the stagnation point

A wholly experimental study for a horizontal heated plate underneath a single 
corona discharge has been reported by Mitchell and Williams [75], Their apparatus was 
an electrically heated foil, 22.9 cm square, backed by an epoxy-fiber-glass board. 
Average heat transfer coefficients over the length x have been correlated by the 
following expression: 

____ / x x 0.496
Nux = 3.82Pr1/3 — \ d >

pc(<t> - <>Q)2 

P‘

0.216

(9.40)

where xn is the lateral distance from the wire location over which the average Nusselt 
number is desired.

For a vertical plate in free convection, impingement by a corona discharge from a 
single wire has not been investigated as extensively as for the horizontal plate. Some
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Figure 9.9. Heat transfer coefficients in the vicinity of the stagnation region of a wire-plane 
electrode system for a downward-facing heated plate [137]. Differences between theory and 
experiment are possibly due to secondary flow produced by a restricted computational domain.

data [84] are presented in Fig. 9.11. Note here that the discharge current must be above 
a certain level to fully eliminate secondary flows.

The use of a single point discharge electrode has been considered in a few 
experimental studies [43,75]. No analytical or numerical studies of the heat transfer 
and fluid flow problems have been attempted. Figure 9.12 presents augmented heat 
transfer coefficients for various gases. Mitchell and Williams [75] have obtained 
laboratory data for a point-plane electrode system similar to the wire-plate electrode 
pair described above. The radial average heat transfer coefficients can be represented 
by 

0.393

(9.41)
~ ^o)2

M2

where r is the radial distance from the discharge point over which the heat transfer 
coefficient is desired.

9.3.2 Impingement by Multiple Corona Discharges
Free-Convection Systems. Multiple corona discharges to an external boundary-layer 
flow involve corona-wind interaction in both the discharge region and the boundary 
layers on the surface. Electrode geometry, electrode distance from the plate, distance



Current density, A/cm

Figure 9.10. Stagnation-point heat transfer coefficients for a wire-plane system [137].

between electrodes, and type of gas will determine the increase in the heat transfer 
coefficient above free convection values. A fundamental numerical and experimental 
study to predict flow-field interaction and heat transfer coefficients have been done by 
Yabe et al. [137] for a downward-facing flat plate, and experimental work has been 
done by Franke [25] for a vertical plate.

Yabe et al. [137] solved the problem numerically on a finite difference domain 
similar to that in Fig. 9.7. No generalized correlations for the Nusselt number were 
presented, however. Franke’s experimental study [25] of a multiple-wire electrode 
system was conducted with alternate electrodes at opposite polarity. The electrical 
ground plane was some distance away from the plates, and the discharge electrodes 
were at the plate surface. Heat transfer coefficients were augmented by the secondary 
flow. Figure 9.13 shows average augmented heat transfer coefficients as a function of 
the electric field power.

Forced-Convection Systems. Multiple-electrode coronas in forced convection have 
somewhat a greater practical value than a single discharge. Despite this, only a few 
fundamental studies have appeared from which broadly applicable data can be ob
tained. Sadek et al. [107] presented experimental measurements of augmented mass 
transfer coefficients and used the analogy between heat and mass transfer to generalize 
the results. The boundary layer on the plate was subjected to impingement flow from 
an array of wires or points (common household pins). The wet surface was maintained



FHD IN EXTERNAL BOUNDARY LAYERS 9-19

40

2 10 12 0

Above Distance along plate relative to Below 
electrode, in.

___I_______I______ I______ I_______ I______ I____
40 20 0 20 40 60 mm

Figure 9.11. Heat transfer coefficients for corona-wind impingement from a single wire electrode 
to a heated vertical plate [84] in air. Wire diameter is 0.1 mm, and d = 20 mm.

at ground potential. Drying rates were determined by mass lost over a given time, and 
average mass transfer coefficients were determined from the usual definition using the 
partial pressure at the sponge surface. With corona discharge present, mass transfer 
rates were found to increase directly with corona voltage, or the square root of total 
corona current. Their data are correlated by

Nu = Nu0(l + 1.85X) (9-42)

where x is the ratio of ion drag forces to momentum forces in the free stream and is 
given by

/ e X1/2/ </, - <£0
X = constant • — ---------\PJ \ dU (9-43)
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/°-25,ma025
Figure 9.12. Increase in convective heat transfer coefficients for a downward-facing 10-cm square 
plate at 212° F (100° C) [43]. A point electrode is 5 cm from the plate.

or equivalently,

X = constant • (9.44)

and 0.1 < x < 10. This relation represents the data well with the constant set equal to 
unity for either point or wire electrodes over a range of Reynolds number based on the 
length of the mass transfer surface of 1000 to 10,000. Since the distance of the wet 
surface from the leading edge of the plate was not reported, the range of local Reynolds 
numbers was actually larger than reported.

A study somewhat similar to that of Sadek et al. was reported by VelkofT and 
Godfrey [127] for wire electrodes parallel to the plate in the direction of the flow and 
for a uniformly heated plate. Horizontally averaged temperature distributions were 
obtained using a Mach-Zhender interferometer with d = 6.35 mm and a wire spacing 
of 12.7 mm. Free-stream speeds varied from 9.8 to 1.9 m/s, and local Nusselt numbers
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Electric field power, W

Figure 9.13. Augmented heat transfer coefficients for a heated plane with multiple electrodes 
[26],

were measured at two longitudinal locations from the leading edge (178 and 203 mm). 
The impingement of the corona wind produced marked increases in average Nusselt 
number for low free-stream velocities. For U/Ufm!a > 30, where is the maxi
mum velocity for free convection, no augmention was measured. This result was 
independent of corona current over the range 200 < I < 1000 p.A. Experimental data 
are shown in Fig. 9.14.
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Figure 9.14. Nusselt numbers in forced convection over a flat plate with corona-discharge wire 
running parallel to direction of flow [127],
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9.4 EHD IN CONFINED FLOWS

9.4.1 Free Convection Systems
Free convection augmented by corona discharge in enclosures has received very little 
attention. This is, perhaps, a result of the inherent difficulty in making accurate 
measurements in free convection and the complicated recirculating flow that can result 
from the induced corona wind. The previously discussed study by Yabe et al. [137] of a 
single-wire discharge above a flat plate actually treated recirculating flow in a rectangu
lar enclosure with a partly heated upper wall. A specialized enclosure flow has been 
investigated by Franke and Hutson [26], Wire electrodes were mounted near the inner 
surface of a vertical cylinder and alternately held at opposite polarities. Recirculating 
flows tended to break up the boundary layer on the wall and produce an increase in the 
average heat transfer coefficient. No correlations of results were given.

9.4.2 Tube Flows
In tubes, a corona discharge introduced on a small-diameter wire located at the 
centerline has been found to increase friction factors and heat transfer rates for low 
Reynolds number (usually laminar) flows. The augmentation of convective heat trans
fer in this geometry is attributed both to corona-wind impingement on the flow 
boundary and to the interaction of the wind with the bulk gas flow. The extent to 
which the discharge affects heat transfer is dependent upon both the discharge 
structure and characteristics of the primary bulk gas flow. At large Reynolds numbers, 
bulk convection dominates and the corona discharge process has negligible effect on 
wall transport rates.

For tube flows with a corona wire along the axis, theory indicates that a uniform 
discharge along the central wire does not result in the formation of a corona wind. The 
nonperturbing nature of a uniform corona discharge in this geometry is verified by the 
close agreement found by Weaver [134] between measurements of the pressure differen
tial in a horizontal cylinder and the analytical solution for the radial pressure 
distribution,

^P(r) =
I ( 

--------- ln — 
2-nLK \ r ) (9-45)

Earlier investigations of the effects of ionization on laminar flow and heat transfer 
in this geometry [49,77,109,124-126] indicate that the effects are not restricted to 
modifying the radial pressure distribution, but that the discharge is responsible for a 
jetlike corona wind which creates circulating gas patterns within the tube. These 
apparent discrepancies in data are explained by differences in the structure of the 
discharge along the wire. The discharge is normally characterized by discrete discharge 
spots along the wire. This localized discharge structure provides an explanation for the 
measured increases in pressure drop and heat transfer rates. The interaction of the 
jetlike corona wind originating at each discharge spot with the bulk gas flow, and 
the possible impingement of the jets at the flow boundary, are the key elements in the 
heat transfer augmentation.

Moss and Grey [80] explained the hydrodynamics of EHD heat transfer augmenta
tion in terms of the physical model depicted in Fig. 9.15. At the threshold voltage, a 
few discrete discharges appear along the central wire. These discharges set up the 
corona-wind jet depicted, which produces a region of impingement. As the voltage is
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(a) Threshold voltage 
of corona discharge

(b) Intermediate corona
discharge voltage

(c) Maximum corona
discharge voltage

Figure 9.15. Hydrodynamics of EHD-augmentation in tube flow according to Moss and Grey 
[80].

increased, more discharge spots appear and numerous impingement flows are formed. 
As the discharge spots become more numerous, recirculating regions of flow are 
produced. At some voltage level, the discharge spots are so close together that the 
discharge can be considered nearly uniform. At this point, no corona wind exists and 
heat transfer rates revert back to their original values at a given Reynolds number. It 
should be noted that this sequence of events is only possible at low Reynolds numbers. 
Secondary flows generated by the corona wind are effective only when the bulk 
momentum forces are not so strong that the radially directed corona jets are swept 
downstream.

Velkoff [124-126] investigated the effects of positive ionization on laminar flow and 
heat transfer in a tube of 32-mm (1.25-in.) diameter with a corona wire of 0.1-mm 
(0.004-in.) diameter. Data on the average heat transfer coefficient obtained in this 
geometry for CO2 and a starting length of 13 diameters are shown in Fig. 9.16. Heat
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Figure 9.16. Augmented heat transfer coefficients [124,126] for CO2 flowing in a constant wall 
temperature tube with a positively charged corona wire on the centerline. The tube length-to- 
diameter ratio is 51 :1 [124,126].
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transfer coefficients double from the laminar to the turbulent flow regime; but at a 
Reynolds number of approximately 10,000, the augmentation tends to decrease. A 
subsequent study [109] also established a peaking trend in augmentation of the Nusselt 
number with increasing Reynolds number. Unfortunately the early data are too sparse 
to permit a correlation of heat transfer coefficients.

Moss and Grey [80] conducted a study similar to that of Velkoff in which nitrogen 
was used as the test fluid. Typical data are shown in Fig. 9.17, where the augmented 
heat transfer coefficients are represented in terms of the corona power normalized by 
the total heat transfer rate without the corona discharge. The trend in the data is 
explained by their physical model discussed earlier. A method proposed to calculate the 
magnitude of the corona wind velocity resulting from the discharge at the central wire 
is based on relating the pressure drop as expressed in Eq. (9.45) to the velocity through 
Bernoulli's equation. An estimate of corona-wind velocity obtained in this manner is 
given by

1
--------In
2ttLK

(9.46)

This result neglects viscosity effects and is not accurate at large values of corona 
currents.

0 0.2 0.4 0.6 0.8 1.0

7(0 — 0o^^ref

Figure 9.17. Augmented heat transfer coefficients as a function of corona power. 2ref is the heat 
transfer rate to the gas when no electrical power is applied to the corona wire [80],
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Figure 9.18. Heat transfer and friction-factor results of Mizushina et al. [77] for forced convec
tion in tubes with a negatively charged corona wire along the centerline.

More recently, Mizushina et al. [77] conducted an extensive study of EHD-aug- 
mented forced convection in an annulus with a corona-discharge wire along the 
inside-tube centerline. The annulus was operated as a counterflow heat exchanger with 
hot air flowing in the inside tube and cooling water flowing in the outer jacket. 
Correlations of their data for Nusselt numbers and friction factors are presented in Fig. 
9.18 in terms of the dimensionless group

R2I 
ttKR2PU2

(9-47)

When the Reynolds number is well below the value corresponding to transition to 
turbulent flow, significant levels of augmentation are seen and the heat transfer data 
are correlated by

ANu n
------- = 0.012Ne* 2Re
Nu0

(9.48)

Similarly the friction factor is correlated by

— = 0.0049Ne* 2Re 
/o

(9.49)

At higher Reynolds numbers where the usual turbulent heat transfer correlations hold, 
no correlation including the EHD parameter was found.



9-26 CONVECTIVE HEAT TRANSFER WITH ELECTRIC AND MAGNETIC FIELDS

Re
Figure 9.19. Friction factors for an annulus with R2/Rx = 74. The theoretical relation for the 
friction factor in fully developed laminar flow is also shown [49],

Recent experimental data obtained by Kulacki et al. [49], in a study of EHD effects 
on catalytic combustion of hydrogen in air, show how friction factors for an annulus 
approach the Blasius relation for turbulent flow in a smooth-wall tube at large 
Reynolds numbers. An experimental reactor comprising a tube and positive corona 
central wire with a radius ratio of approximately 74 was used. Friction factors for the 
annulus are shown in Fig. 9.19 along with the theoretical relation for friction factor in 
fully developed laminar flow.

9.4.3 Channel Flows
In flat rectangular channels, corona discharges from longitudinal or transverse wire 
electrodes are spatially nonuniform due to the geometry of the electrode configuration. 
Thus, unlike tube flows, even a uniform discharge along the wire results in an 
electrically induced flow modification. Past experimental and theoretical studies in this 
geometry have centered on the hydrodynamic process which results from the presence 
of the discharge in an otherwise well-understood flow field. The corona-discharge 
interaction with the bulk gas flow can result in circulation zones in the vicinity of the 
discharge wires and substantial increases in free-stream turbulence and diffusivity 
levels. Unfortunately, an extension of these results to EHD augmentation of convective 
heat transfer has not yet appeared in the literature.
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The early study of a uniform wire discharge in a laminar flow by Ramadan and Soo 
[98] and the more recent work by Yamamoto and Velkoff [139] provide an analytical 
basis for the early hypotheses of the existence of circulating secondary How patterns in 
channel flows. Yamamoto and Velkoff show how cross flow affects the corona wind 
from either single or multiple wires at the centerline of a two-dimensional channel. The 
streamline contours indicate that, at a constant discharge current, regions of recirculat
ing laminar flow between the wire and the channel walls are moved downstream as the 
Reynolds number is increased. Above a Reynolds number of 5000, secondary flows are 
inconsequential in comparison with the bulk momentum transport. Recent experimen
tal [19,20,59] studies with a negative discharge indicate that, in the presence of a 
localized spot discharge, the interaction of the jetlike corona wind with low-speed cross 
flows (gas speeds under approximately 3 m/s) causes as much as a threefold increase in 
turbulence levels.

Friction factors measured in a |-in. X 5-in. rectangular duct in which ten equally 
spaced positive corona discharge wires operated at equal current levels are shown in 
Fig. 9.20 [90]. The data are presented in terms of both the total current and the
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Figure 9.20. Friction factors for a ’-in. X 5-in. rectangular duct with ten positive corona-dis
charge wires [90].
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dimensionless parameter

[ 2Ze \1/2 d2 z
Npr = -------- ---- (9Pc A„ dK) pK

As reported for tube flows, friction factors were found to increase at low Reynolds 
numbers with increasing corona current. No appreciable EHD effects were noted at 
Reynolds numbers above 1000.

9.5 BASIC CONCEPTS OF MAGNETOHYDRODYNAMICS (MHD)

9.5.1 Governing Equations
In classical MHD theory, the fluid is considered to be a continuum. The transport 
coefficients, e.g., electrical conductivity, are assumed to be isotropic and the fluid to be 
electrically neutral. It is assumed further that the dielectric constant e and the 
permeability pe are scalars, the net space-charge density p( is neglected, and the 
convection (displacement) and polarization currents are ignored.

When an electromagnetic field is applied to an electrically conducting fluid at rest, 
four forces can arise [85], These are electrostatic (forces applied on particles with free 
electric charges), ponderomotive (the macroscopic summation of the elementary Lorentz 
forces applied on charged particles), electrostrictive (forces resulting from variations in 
the dielectric constant with the mass density of the fluid), and magnetostrictive (forces 
arising from variations in the magnetic permeability with the mass density of the fluid). 
Typically, in MHD the ponderomotive force is the only one of the above forces that is 
comparable to other hydrodynamic forces. (There are exceptions-for example, in 
electrostrictive natural convection, in which c is a function of the mass density of the 
fluid [47, 67].) Maxwell’s equations for the fixed (laboratory) reference frame [14], 
written for the rationalized MKS (m-kg-s) system or SI units [39], subject to the 
aforementioned idealizations, are

V*B  = 0 (9.51)

V • D = 0 (9.52)

V X H = J (9.53)

SB
VXE=-— (9.54)

where

B = and D = eE (9.55)

Ohm’s law for this case is

J = a(E + u X B) (9.56)

in which E is measured in the laboratory reference frame. As shown by this equation, 
the motion of a conducting fluid through an applied magnetic field contributes to the
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current density J. This, by virtue of Eqs. (9.53) and (9.55), implies that the applied 
field, in turn, will be altered. The resultant, or total, field is described by the magnetic 
induction equation,

SB 1
— = ---- V2B + V X (u X B)
dt op,e

(9-57)

This equation is derived from Eqs. (9.56), (9.53), and (9.55) and illustrates the coupling 
of the electromagnetic and hydrodynamic fields. The electrical conductivity and density 
are assumed constant.

The governing hydrodynamic equations are the equations of conservation of mass, 
momentum, and energy. The momentum equation is

du
P ~ + (u • v)u 

dt
= ~Vp + pV2u + pg + J X B (9.58)

Magnetic field interaction with the flow occurs through the ponderomotive force, 
J X B.

The energy equation is

DT J2
p^77--v-q" + i> + ?"' + - (9.59)

The term J2/a represents the dissipative energy resulting from Joule heating of the 
conducting fluid. Thus, the effect of an applied magnetic field enters the energy 
equation explicitly through Joule heating and implicitly through the viscous-dissipation 
and convective terms.

9.5.2 Dimensionless Groups
The dimensionless momentum equation is

Du Gr 1
p  = — V p +  T T  37 UP Dt P Re2 Re

M2 M2
+ —(kE X B) + —(u X B X B) (9.60)

where all vector operators are dimensionless. Also,

Ba£2o ponderomotive force
M2 = —----- a ----- ?------------------- : (9.61)

p viscous force

and

Eo applied electric field
  a--------------------------- 

U0B0---- induced electric field
(9-62)
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The parameter A/2/Re in Eq. (9.60) represents the ratio of ponderomotive to inertia 
forces. This ratio is referrred to as the magnetic interaction parameter N. The direction 
of the applied electric field is specified by the sign of k.

The dimensionless energy equation is

DO 1 Ec Ec A/2 x2 z x
p----  =----------v • q" + —$ + Ec q + —- (E + u X B) (9.63)P Dt PrRe M Re H Re v v

in which the scaling for the energy source is L/pu^. 
The dimensionless magnetic induction equation is

3B 1
  = v2B + V X (u X B) (9.64) 
dt---- Rem

For small values of Rem, the applied field is altered solely by diffusion. For large values 
of Rem, it is altered solely by convection. When Rem = 0, the electromagnetic and 
hydrodynamic equations are decoupled. In most terrestrial applications, Re„, « 1 and 
weak interaction is assumed. Rem, however, can approach a value of unity in large 
sodium electromagnetic flowmeters.

9.5.3 Basic Physics of Magnetic Field Effects in Electrically 
Conducting Liquids

As shown by the governing equations of laminar MHD flow, an applied magnetic field 
can affect the temperature of a liquid metal directly through Joule heating, and 
indirectly through altering the liquid metal velocity distribution and thereby convection 
and viscous dissipation. Joule heat generation is significant primarily in situations in 
which an electric field is applied externally or in which current flows through an 
external circuit or conducting duct walls. Usually viscous heat dissipation is negligible 
except in situations with very high velocity gradients, in which viscous and Joule 
heatings can be of the same order. In most situations concerning heat transfer between 
the Equid metal and a physical boundary, the heat transfer is affected by the 
alternation of the velocity gradient at the wall by the magnetic field. However, because 
liquid metals have low Prandtl numbers, the heat transfer is governed mostly by 
conduction. In turbulent MHD flow, heat transfer is affected primarily by the magnetic 
damping of turbulence.

Noticeable interaction of the magnetic field with the flow field occurs if the 
magnetic interaction parameter, N = M2/Re, is on the order of 1 or greater. The 
resulting ponderomotive force, J X B, has two components that interact with the flow. 
The first component, <r(u X B) X B, always acts to decelerate the flow. The second 
component, aE X B, can act either to accelerate or to decelerate the flow, depending 
upon the direction of E. It will accelerate the flow if E is opposite in direction to u X B. 
When E = -u X B, the current density J, and hence Joule dissipation, become zero. 
In this case, a deceleration of the flow occurs and the heat transfer is decreased. In 
general, it is not straightforward to determine the change in heat transfer as the result 
of an applied magnetic field. In some flow situations, the application of a magnetic field 
can increase the heat transfer rate; in others, it can decrease the rate.
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9.6 MHD IN CONFINED FLOWS

9.6.1 Channel Flow

The most basic channel-flow problem is the Hartmann problem [105], This is a 
one-dimensional incompressible laminar flow problem in which the spacing between 
the wall electrodes is large compared to that between the insulating side walls. The flow 
is fully developed, and no axial currents exist. The magnetic field is applied normal to 
the side walls. An electric field is established externally between the electrodes.

Romig [105] examined specialized cases of the Hartmann problem in which the 
mass flow is held constant as M and k are varied, and in which k is held constant as 
M is varied. As M is increased, convection near the wall increases and the temperature 
becomes more uniform. Internal Joule and viscous-dissipation heating also increase 
with increasing M. Viscous dissipation is maximum at the wall. The magnitude of Joule 
heating also depends on k. When k = — 1 (the electrically insulated case), internal 
heating occurs very close to the walls. When k = 0 (the open-circuit case) most of the 
Joule heating occurs near the center of the channel.

Blum et al. [3,5] theoretically investigated the case of heat transfer for developed 
Hartmann flow through a channel with electrically insulating walls in a transverse 
magnetic field. For cases of either constant wall temperature or constant wall heat flux, 
the application of a magnetic field increases the heat transfer by approximately 30 and 
45%, respectively. Most of this initial rise in heat transfer occurs when M < 100. This 
is indicative of the Hartmann effect, i.e., the flattening of the velocity profile with a 
concomitant increase in the velocity gradient at the wall.

Various aspects of heat transfer in a spatially developing laminar flow between 
parallel conducting walls with various applied magnetic field orientations have been 
considered theoretically by Rajaram and Yu [97], Similar theoretical entrance studies 
with an applied transverse magnetic field have been conducted by Perlmutter and 
Siegal [94], Hsia [37], and others [97]. The entrance length for flow development was 
found to depend upon M, Rem, <£, and the direction of the applied magnetic field. The 
entrance length for velocity decreased with increasing strength of an applied transverse 
field, whereas with a strong field applied parallel to the flow, it was found to increase 
even beyond the length for the ordinary hydrodynamic case. The inclination of the 
magnetic field was determined to have no effect on the heat transfer for low Pr with 
constant wall temperature. For low Pr with constant wall heat flux, the heat transfer 
depended weakly on the field inclination, increasing slightly as the inclination increased 
toward the parallel-field case.

The change in heat transfer for a rectangular channel that occurs in the transition 
region from laminar to turbulent flow has been measured by Kovner et al. [44], The 
data (Fig. 9.21) reveal that the maximum reduction in heat transfer occurs at a 
Reynolds number equal to approximately twice the critical Reynolds number at a given 
M. The critical Reynolds number is that at which the flow becomes fully developed 
turbulent. The values of Recrit are given in [8]. The magnitude of this reduction in heat 
transfer is proportional to M and decreases as A/2/Re decreases.

The case of turbulent flow between two parallel walls with constant heat flux in a 
transverse magnetic field was considered analytically by Krasil’nikov [46]. He obtained 
an expression for the fluid velocity from the semiempirical theory of Kovner [45], Heat 
transfer results were approximated by the semiempirical formula [46]

/ Pe
Nu = 10.0 + 0.025 ------ ;--------,----- ?

1 + (236M2/Re)
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Figure 9.21. Heat Transfer in a transverse magnetic field during laminar-to-turbulent flow 
transition (adapted from Ref. 8).

in which the characteristic length is the channel width, and the heat transfer coefficient 
in Nu is based upon the difference between the wall and bulk mean fluid temperatures.

Branover [8] cited experiments performed by Krasil’nikov to study the effect of a 
longitudinal magnetic field on heat transfer in turbulent rectangular plane-parallel 
channel flow using gallium (Pr = 0.019). The data obtained for both the ordinary 
hydrodynamic (M = 0) and MHD (M = 120) cases are shown in Fig. 9.22. For a 
constant Pe, application of the longitudinal field was found to reduce the heat transfer. 
This reduction was caused by the suppression of turbulence and the average velocity 
gradient near the wall by the magnetic field. Over the range of gathered data

200 300 400 1000 2000

Pe

Figure 9.22. Heat transfer data for turbulent flow in a high-aspect ratio rectangular duct in a 
transverse magnetic field (adapted from Ref. 8).
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(8 < Nu <12, M = 120, and 200 < Pe < 1200), the MHD data were best approxi
mated by

0.006 Pe
Nu = 9.0 +------ 7-------- ------ r-

1 + (14.8M2/Re)
(9.66)

in which the characteristic length is the channel width. The heat transfer coefficient was 
determined from the heat flux through the wall, the difference between the wall inside 
surface temperature and the mean mixed temperature of the liquid. The characteristic 
temperature for the thermal conductivity was the arithmetic mean of the test-section 
inlet and outlet liquid temperatures.

Heat transfer experiments on combined free- and forced-convection flow through a 
vertical channel with conducting walls under the influence of a transverse magnetic 
field were conducted by Yang and Yu [140], Application of the field to turbulent flow 
was found initially to reduce the heat transfer by suppressing free convection and 
turbulence. At higher field strengths, the flow became laminarized and the heat transfer 
increased because of the Hartmann effect. The point of minimum heat transfer was 
found to decrease linearly with increasing Gr/Re2, i.e., from Re/A7 = 217 at Gr/Re2 
= 0 to Re/A/ = 80 at Gr/Re2 = 0.4.

9.6.2. Pipe Flow
As in the case of channel flow, the heat transfer for laminar flow through a pipe with 
electrically insulating walls increases in the presence of an applied transverse magnetic 
field. Mittal [76] examined the intermediate Hartmann number cases of M = 0.8, 2.0, 
2.8, and 4.0, and found that the temperature profile and heat flux at the wall acquire an 
angular dependence because of the symmetry of the applied transverse field. Increases 
in the local Nusselt number as much as 100% occurred when M = 4.0.

The analytical results of Gardner [27] for a constant wall heat flux show that the 
average Nusselt number increases approximately 60% as M increases from 0 to 500. 
(Here the characteristic length for Nu and M is the pipe diameter.) Most of the 
increase occurs from 1 < M < 100. The Hartmann number range over which this 
increase occurs is the same as that predicted by Blum et al. [3,5] for the analogous 
channel-flow case.

Experimental heat transfer studies for transition and moderate turbulent flow in an 
electrically insulated pipe were conducted by Gardner et al. [29] using mercury 
(Pr = 0.023). These results are shown in Fig. 9.23, in which the characteristic length 
chosen was the pipe diameter. The data for Re < 104 show no effect on heat transfer, 
because heat is transferred primarily by conduction. As Re is increased, a decrease in 
heat transfer then occurs because of the damping of turbulence by the magnetic field. 
For higher Re, Nu increases because the inertial force becomes much larger than the 
ponderomotive force and turbulent mixing dominates.

In the turbulent flow regime, experiments were carried out by Gardner and 
Lykoudis [28]. The effect of a transverse magnetic field on local and average heat 
transfer was measured for flow through an electrically insulated pipe with constant wall 
heat flux. For Re < 50,000, the local heat transfer coefficient depends upon angular 
orientation with respect to gravity and the applied field. This free-convection effect 
exists up to Re = 315,000. As the strength of the magnetic field increased, the 
centerline temperature of the fluid was lowered, and the temperature near the wall 
increased. These results demonstrate that the overall influence of the applied field is to 
inhibit convective heat transfer.
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Nu

103 105

Re
Figure 9.23. Heat transfer during laminar-to-turbulent flow transition for pipe flow in a 
transverse magnetic field [29].

The effect of a longitudinal magnetic field on heat transfer for turbulent flow of 
gallium (Pr = 0.019) in an electrically insulated pipe was measured by Kovner et al. 
[44], Their results are shown in Fig. 9.24. The overall effect of the longitudinal field is to 
decrease the heat transfer rate. For low values of Pe (< 200), the magnitude of this 
effect decreases. At Pe ~ 700, suppression of the heat transfer rate is greatest. For high 
values of Pe (> 2000), the applied field has little effect, primarily because the inertial 
force becomes much greater than the ponderomotive force, i.e., A/2/Re becomes low.

24
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6
140 200 300 400 1000 2000

Pe
Figure 9.24. Heat transfer data for turbulent pipe flow in a longitudinal magnetic field (adapted 
from Ref. 8).
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The experimental heat transfer results are best described by the expression

0.005Pe
Nu = 6.5 +----------------------- — (9.67)

1 + 1890( M/Re)

in which the characteristic length is the pipe diameter. (Here the Nusselt number is for 
fully developed turbulent flow based upon the difference between the inside wall 
surface temperature fluid bulk mean temperature.) The heat transfer coefficient is 
determined in the same manner as that for Eq. (9.65) and the thermal conducitivity is 
based upon the bulk mean temperature. The mean temperature ranged from 22 to 33 
K, and the temperature difference from 1.4 to 2.5 K. A theoretical expression similar to 
the above was developed by Lykoudis [65], based upon his theory of turbulence 
damping due to the presence of a magnetic field [143, 144]:

Nun - Nu,
Nu = Nu. 3-------- 7--------5----- — - (9.68)c 1 + (250A/2/Re175) V 7

in which the characteristic length is the pipe diameter, Nu( is the Nusselt number value 
for pure conduction (Nuf ~ 7.0), and Nu0 is that for the ordinary hydrodynamic case. 
Here, Nu is based upon a heat transfer coefficient defined in terms of the difference 
between the inside wall temperature and the bulk mean temperature, and the thermal 
conductivity is based upon the bulk mean temperature. This expression also agrees well 
with the data of Kovner et al. [44].

9.7 MHD IN EXTERNAL FLOWS AND IN NATURAL CONVECTION

The effect of an applied magnetic field on heat transfer in external flows has been 
investigated mainly for the cases of flat-plate boundary-layer and blunt-body stagna
tion-point flows. The works published in these areas are theoretical and appeared in the 
late 1950s and early 1960s with application to space-vehicle surface heating upon 
reentry. Because the air in this situation was ionized and therefore conducting, it was 
envisioned that the application of a transverse magnetic field could be utilized to 
reduce the local velocity and skin friction drag and thereby the heat transfer to the 
vehicle’s surface.

The classical works in these areas have been reviewed thoroughly by Romig [105]. In 
particular, the reader is referred to papers by Rossow [145], Bush [146], and Lykoudis 
[147,148]. These include the theoretical treatments of MHD heat transfer of flow over a 
flat plate for the incompressible case, assuming a constant magnetic flux density and 
either a constant or a variable electrical conductivity [145], and for the compressible 
case, assuming variable electrical conductivity and variable magnetic flux density [146], 
constant electrical conductivity, and either constant or variable magnetic flux density 
[147], or variable electrical conductivity and constant magnetic flux density [148], These 
studies show in general that as the boundary layer develops the heat transfer is 
reduced, and more specifically that the heat transfer is affected by variations of 
electrical conductivity with temperature, of temperature with velocity, and of magnetic 
flux density with distance, as well as by the temperature of the surface.

In MHD free convection, the application of a magnetic field reduces the magnitude 
of heat transfer because ponderomotive forces retard the motion induced by buoyancy. 
The reader is referred to a recent review article by Lykoudis [142], which covers the



9*36 CONVECTIVE HEAT TRANSFER WITH ELECTRIC AND MAGNETIC FIELDS

ft o 
A 
0 
□

x = 124 mm (Ly = 0.48) 
x = 200 mm (Ly = 0.51) 
x = 225 mm (Ly = 0.51) 
x = 251 mm (Ly = 0.46)

to

OJ
?Pa .

I 0^ IcoIa^laI

- d.

1.0

0.8

0.6

0.4

0.2

0 4 8 12 16 20 24 28 32 36

T(t)
Figure 9.25. Temperature profiles for a heated vertical plate in a spatially varying horizontal 
magnetic field [87],

same subject material. Free convection heat transfer from a heated vertical plate to a 
liquid metal has been studied both theoretically and experimentally.

Sparrow and Cess [115] examined the case of laminar free convection from a heated 
vertical plate with a constant magnetic field normal to the plate. Their results were 
recast [105] in terms of a parameter equal to the mean Nusselt number divided by 
Gr1/4. This parameter decreases from its hydrodynamic value in direct proportion to 
the Lykoudis number, which represents the ratio of the ponderomotive force to the 
square root of the product of the buoyancy and inertia forces. Previously in the 
literature (e.g., [105,110,141]), the Lykoudis number_was defined as IM'/ /Gt. 
Recently, however, it has been defined as Ly = Af2/ /Gr [133,142], The more recent 
definition is used herein.

Similarity solutions were obtained [30,64] for conditions like the aforementioned 
case but with the applied magnetic field varying as x 1/4 in the vertical direction, x 
being the distance from the leading edge. Experimental confirmation of these solutions 
was obtained by using mercury as the working fluid [87]. Experimental results for the 
case of Ly ~ 0.5 are compared with the theory in Fig. 9.25. At a given value of the 
similarity coordinate, the dimensionless temperature was found to decrease with 
increasing magnetic flux density (not shown in Fig. 9.25). For values of Ly up to 1.2, 
similarity appeared to be maintained, although no exact theoretical solution was 
available for comparison.

Romig [105] has compared the theoretical predictions of the mean heat transfer 
parameter for the x 14 similarity case with that of a constant applied magnetic field. 
She found that for liquid metals when Ly < 0.5, the mean heat transfer is not reduced 
as effectively as when the field is variable.

Seki et al. [110] conducted both experimental and numerical studies on the heat 
transfer from a vertical plate with uniform heat flux for the case in which the magnetic 
field was applied parallel to gravity. The magnetic field increases the surface tempera-
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ture, and thereby increases Gr and decreases Nu. Data for Af/Gr < 6 X 10 6 (0 < M 
< 400, 2 X 107 < Gr < 5 X 108) were best approximated by

Nu c M I M \2
= 1 - 1.3 X 105— + 7.5 X 10° — (9.69)Nu0 Gr \ Gr / ’

in wliich the characteristic length is the heating-surface half height, and the characteris
tic temperature difference used to determine the heat transfer coefficient is that between 
the surface temperature at half height and the cold wall, which ranged from 0 to 60 K. 
These results may be limited to cases having a similar ratio (= 0.4) of heated section 
height to spacing between the hot and cold walls, because of possible thermal 
interference by the cold wall. Compared to the theoretical predictions of Sparrow and 
Cess [115] for the case of a field applied normal to the wall, the overall reduction in 
heat transfer for the parallel field case is less at a given value of Ly.

Papailiou and Lykoudis [88] conducted experiments on a free-convection turbulent 
boundary layer along a vertical wall with constant heat flux subjected to an applied, 
horizontal magnetic field. The magnetic field reduced convective heat transfer along the 
plate. The thermal boundary-layer temperature and thickness increased with the 
strength of the applied field. Heat transfer coefficients were expressed in terms of total 
Nusselt numbers based upon the length of the heated wall and the average temperature 
difference between the wall and free stream along the boundary layer. These data are 
shown in Fig. 9.26. As Ly increases, a reduction in the overall heat transfer coefficient 
occurs. The change of slope in the curve at Ly = 0.33 corresponds to laminarization of 
the turbulent flow. Based upon measured mean temperature profiles, turbulence inten
sity distributions, and temperature spectra along the wall, the transition from turbulent 
to laminar flow occurs at a constant value of the ratio of GrPr/Af. For six experimen
tal cases, GrPr/A/ = 1.2 X 109. Further analysis [86] showed that below this value a 
rapid drop in turbulence intensity occurs, as well as marked changes in the turbulence 
structure.

A relation between the overall heat transfer and Ly has been found also for the case 
of the natural convection of mercury in a vertical cylindrical container with a heated 
bottom surface. In experiments by Wagner [133], data were obtained at various 
saturated pressures in the presence of an applied horizontal magnetic field (Fig. 9.27).
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Figure 9.26. Overall heat transfer in laminar and turbulent regimes for a heated vertical plate in 
a transverse magnetic field [88].
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Lykoudis number Ly

Figure 9.27. Overall heat transfer for natural convection from a heated horizontal surface inside 
a vertical cylinder in a transverse magnetic field (adapted from Ref. 133).

Reductions of up to 80% in the Nusselt number were measured. The correlation best 
describing the data is [142]

Nu 1
Nu(, (l+O.15Ly)°5

(9.70)

Here, the heat transfer coefficient in Nu is based upon the difference between the 
temperature of heat transfer surface and liquid bulk mean temperature.

Recent experiments on natural convection heat transfer from finite horizontal 
cylinders treat magnetic field orientations in all three directions normal to the axis of 
the cylinder. Measurements in mercury with the magnetic field oriented along the axis 
were reported by Lykoudis and Dunn [66]. Detailed local heat transfer measurements 
in mercury for the other two field orientations have been presented by Michiyoshi et al. 
[72]. Blum and Kronkalns [4] reported data on free-convection heat transfer between a 
horizontal cylinder and a ferroliquid with the magnetic field normal to the axis of the 
cylinder. Similar experiments were reported by Kronkalns and Blum [48] for a high-Pr 
lithium-ammonia solution with the magnetic field normal to the axis and parallel to 
gravity. For all these cases, the application of the magnetic field reduced natural 
convection heat transfer from the cylinder.

In the experiments of Lykoudis and Dunn [66], the magnetic field suppressed free 
convection to the conduction limit. In the experiments of Michiyoshi et al. [72], for a 
fixed Gr, the Nusselt number (determined from temperature measurements around the 
cylinder circumference) decreased with increasing M. This decrease gradually levelled 
off at high M. Dunn [22] derived a semiempirical expression that correlated the data 
from both these experiments:

Nu - Nuc
Nu0 - Nu, (9-71)



MHD IN F.X'TERNAI F’ OWS AND IN NATURAL C ONVECTION 9-39

Figure 9.28. Empirical constant C6 versus cylinder aspect ratio l/d [22].

in which Cb is a function of the cylinder aspect ratio as shown in Fig. 9.28 [22] and the 
characteristic length is the cylinder diameter. This expression is compared with the 
experimental data in Fig. 9.29, in which cases 1 and 2 are from Ref. 72 and case 3 from 
Ref. 66. For cases 1 and 2, Nu represents a local Nusselt number whose heat transfer 
coefficient is based upon the temperature difference between the cylinder surface and 
the ambient mercury. This difference ranged from 0 to 80 K. For case 3, Nu represents 
an average Nusselt number based upon the temperature difference between the probe's 
surface (as determined from the probe’s overheat ratio) and the ambient mercury. This 
difference varied from 12 to 27 K. The semiempirical expression predicts the reduction 
in both local heat transfer and overall heat transfer. Close agreement between theory 
and experiment is obtained in all three cases for (Nu - Nu( )/(Nu0 - Nu(.) > 0.2. For 
lower values, theory and experiment do not compare well because conduction has 
become the dominant mode of heat transfer.

The effect of a magnetic field on forced convection from a horizontal cylinder (a 
hot-film probe) was measured also in the experiments of Lykoudis and Dunn [66], In
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Figure 9.29. Heat transfer for natural convection from heated horizontal cylinders in magnetic 
fields of different orientations (adapted from Ref. 22).

their experiments, the value of the interaction parameter N was of order 1. Heat 
transfer data were gathered over the ranges 0 < Re < 130 and 0 < M < 4.7. Their 
results are shown in Fig. 9.30. For a given value of Re, the heat transfer from the probe 
decreased with increasing M. Decreases of up to 50% in the Nusselt number were 
measured at Re = 100. Similar experiments were conducted at low values (< 0.005) of 
the interaction parameter N by Platnieks [96], and no effect was found.

2 5 10 20 50 100
Re

Figure 9.30. Heat transfer for forced convection from a horizontal cylindrical hot-film probe in 
an axially aligned magnetic field [66].
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NOMENCLATURE

Ait wall area, m2, ft2
B magnetic flux density, T, Wh/tn2, Wb/ft2
C, C*  constants depending on geometry
C6 empirical constant
cp specific heat, J/(kg • K), Btu/(lbm • °F)
D dielectric displacement field, C/m2, C/ft2
d spacing between electrode and corona discharge source, m, ft
E electric field vector (Ex, Ev, Ez), V/m, V/ft
F average electric field, V/m, V/ft
Fo threshold electric field, V/m, V/ft
Ec Eckert number = U2/cp (T2 — 7\)
F load factor
F electric body force, C/(m2 • s), C/ft2 • s)
f Fanning friction factor = ru/(pU2/2)
f( Fanning friction with no electric or magnetic field
g gravitational acceleration, m/s2, ft/s2
Gr Grashof number = p2g/l ATL3/p2
H magnetic field intensity, A/m, A/ft
h heat transfer coefficient, W/(m2 • K), Btu/(h • ft2 -° F)
Ao stagnation heat transfer coefficient, W/(nr • K), Btu/(h ft2 • °F)

local heat transfer coefficient, W/(m2 ■ K), Btu/(h • ft ‘ °F)
I electric current, A
Ic electric current scale, A
i enthalpy per unit mass, J/kg, Btu/lbm
J current density (Jx, Jv, Jz), A/m2, A/ft2
J magnitude of current density, A/m2, A/ft2
K ion mobility, m2/(V • s), ft2/(V • s)
k thermal conductivity, W/(m • K), Btu/(h ■ ft ■ °F)
L characteristic length, m, ft
Ly Lykoudis number = M2/ /Gr
Z,, length scale, m, ft
M Hartmann number = BLy/c/p
V Interaction parameter = M2/Re
Ne dimensionless electric number, Eq. (9.15)
Ne*  dimensionless number, Eq. (9.48)
Nu Nusselt number = hd/k
Nu0 Nusselt number with no electric or magnetic field
Npc dimensionless charge number. Eq. (9.50)
F modified pressure, Eq. (9.10), Pa, fiy/ft2
p pressure, Pa, Uy/ft2
Pc Peclet number = Pr Re
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Prandtl number = v/a.
volumetric heat generation, W/m3, Btu/(h -ft") 
heat flux, W/m2, Btu/(h • ft)
magnitude of wall heat flux, W/m2, Btu/(h • ft3) 
Reynolds number = UL/v 
critical Reynolds number 
electrical Reynolds number, Eq. (9.17) 
magnetic Reynolds number, apeUL 
inner radius, m, ft 
outer radius, m, ft 
radius, m, ft 
temperature, °C, K, °F, °R 
wall temperature, °C, K. °F, °R 
reference temperature, °C, K, °F, °R 
free-stream temperature, °C, K, °F, °R 
time, s 
bulk velocity, m/s, ft/s 
characteristic corona wind velocity, m/s, ft/s 
velocity scale, m/s, ft/s 
velocity vector (u, v, w), m/s, ft/s 
voltage, V 
ion drift velocity, m/s, ft/s

A dimensionless length, Eq. (9.27)
X Cartesian coordinate, m, ft

>’ Cartesian coordinate, m, ft

Greek Symbols

0 
S 
8t 
t

thermal diffusivity, m2/s, ft2/s
coefficient of thermal expansion, K \ °R-1
boundary-layer thickness, m, ft
thermal boundary-layer thickness, m, ft
dielectric constant, gas permittivity, C/(m • V), C/(ft • V)

eo 
e

permittivity of free space, C/(m • V), C/(ft • V) 
dimensionless temperature, Eq. (9.13)

K

X

(applied electric field)/(induced electric field)
linear charge density, C/m, C/ft, ot point charge density, C/m2, C/ft2

M 

V

dynamic viscosity, Pa • s, lb„,/(h • ft) 
magnetic permeability, H/in H/ft 
kinematic viscosity = p/p

P

Pc

density, kg/m3, lbm/ft3 
space-charge density. C/m3, C/ft3

PcO reference space-charge density. C/m3, C/ft3
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a electrical conductivity, S/m, S/ft
rw fluid shear stress at wall, Pa, lby/ft2
X dimensionless space-charge number, Eq. (9.15)
<j> electric potential, V
<J>0 reference or threshold electric potential, V
6 conductance ratio
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10*2 CONVECTIVE HEAT TRANSFER IN BI NDS AND FITTINGS

10.1 INTRODUCTION

Bends and fittings are commonly used in pipelines and flow lines. In tubular heat 
exchangers, bends are used as return lines. In some applications, bends are heated. 
However, in other applications, pipes leading to and from a bend are heated while the 
bend itself is not heated.

As shown in Fig. 10.1, bends are described by a bend angle <£ in degrees and a bend 
curvature ratio R/a. Pipe and tube fittings such as 90° or 180° elbows are a special 
kind of pipe bend with a threaded inlet and outlet. In addition, fittings exhibit 
variations in pipe cross-sectional area.

Available friction factor and Nusselt number data for flow through bends and 
fittings [1—56] are summarized in this chapter. Presently available Nusselt number data 
are limited to bends. The scope of this chapter is restricted to fittings that geometrically 
resemble bends. These fittings include bends with various turning radii and turning 
angles. As an engineering approximation, the heat transfer results for bends may be 
used for geometrically similar smooth fittings. The following discussion is only for 
smooth bends unless noted otherwise.

(d)

Figure 10-1. Schematic diagrams of various bend shapes: (a) a bend with <j> < 90°, (/>) 180° 
bend, (c) rectangular cross-section bend, and (J) two 90° bends in series.
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Geometrically, a bend represents a curved duct of short length. Therefore, fluid flow 
and heat transfer in a bend resembles that observed in an entrance length of a curved 
duct (see Section 5.1). As noted in Chapter 5, the fluid experiences a centrifugal force 
due to the bend curvature. This force, superimposed on the primary force due to the 
axial pressure gradient, generates a secondary motion transverse to primary axial flow. 
This results in a distortion of the fluid velocity and temperature profiles at any cross 
section in the bend. As shown in Figs. 5.2 and 5.4, the distorted profiles display a shift 
in peak velocity and temperature away from the tube center and toward the tube outer 
wall. As depicted in Figs. 5.3 and 5.7, the profile distortion results in higher heat 
transfer rates and friction factors at the tube outer wall than those at the inner wall. In 
flow lines with bends, the profile distortions persist to about 10 to 30 diameters in the 
straight pipe downstream of a bend. The exact length of straight pipe affected depends 
on the bend geometry, Reynolds number, and Dean number. Thus, an upstream bend 
may influence heat transfer in a downstream straight pipe.

Secondary flows, which can be relatively strong in bends, diminish the influence of 
wall thermal boundary conditions on the Nusselt number. Therefore, the Nusselt 
number correlations provided in this chapter could probably be used for any wall 
thermal boundary condition for gases and liquids (excluding liquid metals). In ad
dition, a bending process distorts the wall thickness of a bend. Hence, the temperature 
or heat flux at any given cross section in a bend will not be uniform. Therefore, the 
boundary condition does not correspond to the (m) or (h2) as described in Chapter 3. 
We shall simply refer to it as the boundary condition of axially constant heat flux.

Most of the available data are restricted to 90° and 180° bends of circular and 
rectangular cross sections. Therefore, the following discussion is divided into two major 
parts based upon the flow cross-section shape.

10.2 BENDS WITH A CIRCULAR CROSS SECTION

This section is divided into the following five subsections: fluid flow, heat transfer in 
90° bends, heat transfer in pipes downstream of a 90° bend, heat transfer in 180° 
bends, and heat transfer in pipes downstream of a 180° bend.

10.2.1 Fluid Flow
Quantities of design interest are velocity profiles and fluid friction factors. Due to space 
limitation, details of velocity profiles are not included here. For laminar flow in a 180° 
bend, Humphrey et al. [1] have reported numerical predictions for developing and 
developed velocity profiles. Olson and Snyder [2] experimentally measured laminar 
velocity profiles in a 300° bend. Turbulent velocity profiles in a 180° bend are reported 
by Azzola and Humphrey [3,4], Rowe [5] and Weske [6] have reported theoretical 
solutions for the velocity profiles in pipes with different bend curvatures and bend 
angles. Azzola and Humphrey [3,4] have noted that in turbulent flow, the flow 
distortion in a bend decays significantly over about 5 diameters into the downstream 
straight pipe, but persists considerably further downstream.

In the case of bends, bend loss coefficients are normally given instead of friction 
factors. The total pressure drop in a bend is the sum of the following three compo
nents: frictional head loss due to the length of the bend, head loss due to curvature, 
and head loss due to excess pressure drop in a downstream pipe because of the profile 
distortion. The pressure drops, other than frictional loss, are combined and expressed
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as a loss coefficient K*.  Thus, the total pressure drop is represented as
2

P“m
2

4/£ 
Dh

Ito [7] combined the terms in the first factor and defined a total loss coefficient K as

AP = K—^ 
2

AP = (101)

(10.2a)

and thus
4A£ 4/l 
Dh "= + K*  = 2f\ —-<#>" J' 180

R
(10.2b)

a

where represents a bend friction factor, f is the friction factor for a straight pipe at 
the Reynolds number in the bend, and <f> is the bend angle in degrees. Here f is given 
by

f= I 0.0791 Re”0 25 for 3 X 104 < Re < 105 (10 2c)
\ 0.0008 + 0.005525 Re”0237 for 105 < Re < 107

In most fittings, the ratio L/Dh is very small, and frictional losses due to bend and 
fitting lengths are very small. As a result, in many engineering applications, K * ~ K in 
Eq. (10.2b).

Friction Factors In Smooth Bends. Powle [8] has reported laminar friction factors 
for flow through smooth 90° bends. Her graphical correlation, presented in Fig. 10.2, 
was obtained by correlating and extrapolating the experimental results of Kittredge 
and Rowley [17], Koh and Powle [9] also reported extensive laminar friction factors for 
flow through 30°, 45°, 60°, 75° and 90° bends. However, they inform us these results 
[9] are in error and should not be used for design purpose.

Idelchik [10] reported the following equation to calculate laminar friction factors in 
smooth bends of any angle 4> < 360°: 

fc = 5Re~°-65(R/a)-0175 for 50 < De < 600 (10.3a)

fc = 2.6 Re-055 (R/n) 0225 for 600 <: De < 1400 (10.3b)

f = 1.25Re-°'45(7?/a)“°'275

These correlations were developed using

for 1400

hydrodynamic

< De < 5000 (10.3c)

entrance length data for
smooth coiled tubes. Equation (10.3c) also includes limited turbulent flow data. The 
above equations indicate that in laminar flow, the friction factor depends only upon Re 
and R/a and is independent of the bend angle </ This finding is quite contrary to that 
observed for turbulent flow (as presented in the next paragraph), where the friction 
factor is found to be strongly dependent upon the bend angle <j>. Until more experi
mental data are available, it is difficult to assess the validity of Eqs. (10.3).

For turbulent flow, Ito [7] obtained extensive experimental data for 45°, 90°, and 
180° bends with R/a varying from 2 to 15. He correlated his friction factor data for 
2 X 104 < Re < 4 X 105 as

0.00873 R/a for Re(P/n)-2<91

0.00241 B4>Re-°17(R/a)084 for Re(R/a)~2 > 91

where <> is a bend angle in degrees and / is the curved tube friction factor obtained
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from Eq. (5.48).+ B is a numerical constant whose value is determined using the 
following correlations:

For </> = 45°,*

B = 1 + 14.2(T?/a)'147 (10.5)

For <> = 90°,

B = I 0.95 + 17.2( R/a) ~1 M for R/a < 19.7 /10
\ 1 for R/a > 19.7 ’

For 6 = 180°,

B = 1 + 116(7?/a) (10-7)

Figure 10.3a and b depict typical K values at Re = 2 X 105. It is important to note 
that in the limiting case as R -> oo, the bend friction loss coefficient should reduce to 
the straight-pipe value. Ito has noted that for R/a > 100, K values for bends and 
straight tubes are almost identical.

For turbulent flow, Powle [8] also recommends to use the following correlation for 
K*  in Eq. (10.2b); it is based on an empirical equation that appeared in the Soviet

' fc(R/a)05 = 0.00725 + 0.076[Re(a/R)2]-°-25 for 0.034 < Re(a/R)2 < 300 [Eq. (5.48)]. 
* No R/a range is indicated in [7],
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TABLE 10.1 Values of the Constant CJn Eq. (10.8b)

Bend Turning
Angle <#>,deg G

20 0.29
40 0.56
60 0.77
80 0.93

100 1.06
120 1.16
140 1.25
160 1.32
180 1.38

literature

K*  = B(<f»)[o.O51 + O.38(R/a) X] (10.8)

where

fl
' 0.9 sin
( 0.7 + 0.35(</>°/90°)

for <f> = 90° 
for <J> < 70° 
for </» > 100°

(10.8a)

K values calculated from Eq. (10.2b) using K*  of Eq. (10.8) agree with K values of Ito 
from Eq. (10.4) within +20% for <#> = 45°, 90°, and 180°, 2 X 104 < Re < 2 X 105 
and 3 < R/a < 15, except for the extreme combinations of Re and R/a. Thus, Ito’s 
correlation may be used for </> = 45°, 90°, and 180° while Powle’s correlation may be 
used for other values of <J>.

In turbulent flow, Benedict [11] presented a correlation for the loss coefficient for a 
bend with any turning angle </> < 360° as follows.

K. = C./C90 (10.8b)

where A'9O represents the loss coefficient for a 90° bend. The values for multiplying 
factor C,;j are listed in Table 10.1. The A90 values could be obtained using Eq. (10.4) 
with <]> = 90°. It is important to note that Q of Eq. (10.8b) should be dependent upon 
R/a and Re as indicated through Eqs. (10.4)—(10.8). Single values of Q noted for 
various angles in Table 10.1 are approximate and are applicable only for standard 
elbows with R/a = 2 or 3.

In turbulent flow, the pipe roughness significantly influences bend pressure loss 
coefficients and friction factors. Extensive pressure drop data for various rough bends 
are given in Refs. 10,12. In addition, Refs. 10,12 also include data on bends with 
square, elliptical, and rectangular cross sections.

Friction Factors in Fittings. As shown in Fig. 10.4, several types of fittings are 
available [12-16]. The curvature ratio of standard fittings is R/a = 2, while that of 
long-radius fittings is normally R/a = 3. At a given Reynolds number, the pressure 
drop in a fitting is larger than that obtained in a corresponding smooth bend. Some



(a) (b)

Figure 10.3. Pressure loss coefficient A" as a function of the bend angle 6 and curvature ratio R/a for Re - I * 10 s [7],
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(a)

(d) (f)

Figure 10.4. Various fittings: (a) miter bend, (b) 90° standard elbow, (c) 45° standard elbow, 
(J) 90° flanged or butt-welded elbow, (e) regular screwed 45° elbow, and (/) long-radius flanged 
45° elbow.

fitting shapes add contraction and expansion losses due to changes in fluid flow area 
along the flow length, resulting in an additional pressure drop [12-16].

Hooper [16] compiled available laminar and turbulent flow pressure drop data for 
standard and long radius elbows (45°, 90°, 180°), miter bends, tees, and valves. The 
compiled data were presented as the following single correlation:

K*  = ^Re1 + 7^(1 + 0.5a*) (10-9)

Here, a*  is a fitting radius in inches, Kx is K*  at Re = 1, and Km is K*  as 
Re —> co. The values of Kx and Kx for various fittings are presented in Table 10.2. 
Figure 10.5 shows excellent agreement between the above correlation and experimental 
data for a standard |-in. elbow [17],

10.2.2 Heat Transfer in 90° Bends
Very limited experimental data are available for a 90° bend [18,19]. The experimental 
data indicate that a bend has only a small influence on the heat transfer in a pipe 
upstream of a bend. However, it does exert a significant influence downstream. Only 
limited theoretical results are available to determine Nusselt numbers for air heating in 
a 90° bend [20],

Presently, no data or correlations are available to predict laminar flow Nusselt 
numbers in a 90° bend. Due to the lack of data, as an engineering approximation, we 
suggest using helical coil thermal entrance length Nusselt number correlations, Eqs. 
(5.37) and (5.38). As noted next, these equations may result in overpredicted values of 
Nusselt numbers.
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TABLE 10.2 Constants K, and Kx of Eq. (10.9) for Fittings [16]

Fitting Type

Elbows 90° Standard (R/a = 2), screwed 800 0.40
Standard (R/a = 2), flanged/welded 800 0.25
Long-radius (R/a = 3), all types 800 0.20

1 weld (90° angle) 1000 1.15
Mitered 2 weld (45° angles) 800 0.35

Elbows 3 weld (30° angles) 800 0.30
(R/a = 3) 4 weld (2210 angles) 800 0.27

5 weld (18° angles) 800 0.25
45° Standard (R/a = 2), all types 500 0.20

Long-radius (R/a = 3), all types 500 0.15
Mitered, 1 weld, 45° angle 500 0.25
Mitered, 2 weld, 22|° angle 500 0.15

180° Standard (R/a = 2), screwed 1000 0.60
Standard (R/a — 2), flanged/welded 1000 0.35
Long-radius (R/a = 3), all types 1000 0.30

Tees Standard, screwed 500 0.70
Used as Long-radius, screwed 800 0.40
elbow Standard, flanged or welded 800 0.80

Stub-in-type branch 1000 1.00

Run- Screwed 200 0.10
through Flanged or welded 150 0.50
tee Stub-in-type branch 100 0.00

Valves Gate, Full line size, /?' = 1.0 300 0.10
ball Reduced trim, /?' = 0.9 500 0.15
Plug Reduced trim, /?' = 0.8 1000 0.25

Globe, standard 1500 4.00
Globe, angle or Y-type 1000 2.00
Diaphragm, dam type 1000 2.00
Butterfly 800 0.25

(’heck Lift 2000 10.00
Swing 1500 1.50
Til ting-disk 1000 0.50

Ede’s [18] results for water heating in turbulent flow primarily dealt with heat 
transfer in a pipe downstream of a bend. Tailby and Staddon [19] measured Nusselt 
numbers for turbulent cooling of air in a 90° bend. The bend was immersed in water, 
thus simulating a constant wall temperature boundary condition. The authors have 
reported an increase in Nusselt numbers to be about 20 to 30% above the straight-tube 
values. They also noticed higher Nusselt numbers at the outer wall than those at the 
inner wall.

Tailby and Staddon [19] reported only peak Nusselt numbers at the outer wall, 
which are presented in Table 10.3. Also compared in the table are the values of the 
peak Nusselt numbers with those calculated using fully developed Nusselt numbers for 
a helical coil from Eq. (5.56). The comparison indicates that peak Nusselt numbers for 
air cooling in a 90° bend are smaller than the average increment expected in a fully 
developed flow. In contrast, for air heating lacovides and Launder [20] report the ratio
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Figure 10.5. A comparison of experimental data and Eq. (10.9) for K*  values of ‘-in. standard 
elbow [16].

of outside- and inside-wall Nusselt numbers to be nearly 5 : 1 at a flow length of 75° 
from the bend inlet (Re = 4300, De = 1800, and Pr = 0.7). Tailby and Staddon [19] 
also noted small Nusselt number increments for air cooling in 180° bends. They 
explained that in a bend secondary flow pushes heavier fluid particles toward the outer 
wall and lighter ones toward the inner wall. The bend heating augments the secondary 
flow resulting in significantly higher heat transfer coefficients at the outer wall. 
Although bend cooling reduces the secondary flow, it still gives high heat transfer 
coefficients at the outer wall. However, the increment in heat transfer above the 
straight-tube values is not as great as that observed during fluid heating.

Tailby and Staddon [19] proposed the following correlation for turbulent air cooling 
in a 90° bend:

I R \ -0 06/ x \ -°06
Nu. = 0.0336 Re081 Pr04 - —

\a) \D)
(10 10)

TABLE 10.3 Ratio of Peak Nusselt Numbers at the Bend Outer Wall 
to Nu for a Straight Pipe for Turbulent Flow Air 
Cooling through a 90° Bend [19]

R/a

Distance to 
Peak Nu in 

Pipe Diameters Nupeak/Nu,
Nuc/NUj 
[Eq. (5.56)]

Miter bend — 2.0 —
2.5 2.5 1.42 —
4.0 4.0 1.36 —
60 5.0 1.29 1.59

14.0 7.0 1.22 1.25
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The application range of the above correlation is 2.3 < R/a < 14, 7 < x/D < 30, and 
104 < Re < 5 X 104. The correlation suggests that for the turbulent flow fluid cooling 
in a 90° bend, the average heat transfer increase in a bend is only about 20 to 30% 
above the straight-tube values. It is important to note that the above correlation is valid 
only for fluid cooling. Moreover, the available numerical predictions for heating are 
also limited [20]. Hence, for the fluid-heating case, probably the fully developed 
turbulent flow heat transfer correlation, Eq. (5.56), may be used.

10.2.3 Heat Transfer in a Pipe Downstream of a 90° Bend
In laminar flow, Ede’s [18] water-heating data, plotted in Fig. 10.6, show that the bend 
affects heat transfer in the downstream straight pipe for a distance of about 10 
diameters. In addition, the upstream heated length shows an influence on heat 
transfer in the downstream pipe. The longer the length of heated upstream pipe, the 
higher is the downstream pipe Nusselt number. The plot for an unheated upstream 
length in Fig. 10.6 shows Nusselt numbers of the same order of magnitude as those 
observed in a thermally developing flow in a straight tube. No simple correlation is 
available to predict the incremental heat transfer. The limited laminar results shown in 
Figs. 10.6 and 10.7 could be used to obtain Nusselt numbers in a heated pipe located 
downstream of a 90° bend. The results presented in Fig. 10.7 are for the case of a 
heated bend and heated downstream pipe.

In turbulent flow, heat transfer in the downstream pipe was found to be indepen
dent of upstream heating [18,19]. Here also water data depicted in Fig. 10.7 could be 
used when the fluid is being heated. The following correlation could be used to predict 
downstream pipe heat transfer during fluid cooling [19]:

Nu,. = 0.0366 Re0-8Pr°'4F1 for 0 < x/D < 30 (10.11)

where plotted in Fig. 10.8, depends upon the ratio x/D. In general, fluid heating in 
a bend yields higher heat transfer coefficients than fluid cooling.

300

200

100
80

Nux 60

40

20

10

x/D
Figure 10.6. The influence of a heated straight pipe upstream of a bend on the constant heat flux 
Nusselt numbers in a straight pipe downstream of a 90° bend [18]. L/D values indicate 
upstream-pipe heated length.



Miter bend 7?/a = 4 8 21

Figure 10.7. Constant heat flux Nusselt numbers in a straight pipe located downstream of a 90° 
bend [18]. The bend as well as the downstream pipe is heated. The upstream pipe is unheated.
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Figure 10.8. Values of the function FY used in Eq. (10.11) [19].
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In summary, for turbulent flow through a 90° bend, the overall effect of incremental 
heat transfer in a bend and its downstream pipe is equivalent to increasing the length 
of a heated pipe by about eight diameters for an elbow, and three diameters for bends 
with R/a = 8 and 4 [18,19].

10.2.4 Heat Transfer in 180° Bends
Eight experimental studies [21-28] have reported heat transfer results for flow through 
a 180° bend. For laminar flow, the most extensive results are reported by Moshfeghian 
and Bell [24] for four 180° bends (R/a = 4.84, 7.66, 12.32, and 25.62). Data were 
obtained by placing the 180° bend in a vertical plane as shown in Fig. 10.1 b with the 
bend outlet pipe above the bend inlet pipe. The bend inlet and outlet pipes, along with 
the bend, were heated electrically, thus approximating the boundary condition of 
axially constant heat flux? Water, Dowtherm G®, and ethylene glycol were used as 
working fluids. They observed higher heat transfer coefficients in the bend as well as 
downstream of the bend. Their experimental data on laminar flow showed no con
sistent trends, and they were unable to obtain a satisfactory correlation. As noted 
earlier, as with a 90° bend, the helical-coil entrance region correlations, Eqs. (5.37) and 
(5.38), may be used to estimate laminar flow Nusselt numbers in a 180° bend. 
However, the predicted values may be higher than the experimental values.

For turbulent flow, Baughn et al. [25] measured temperature profiles for air flow 
through a bend with R/a = 6.75. The heated bend wall was maintained at a constant 
wall temperature. The temperature profile exhibited profile distortion with a peak 
temperature shifting toward the tube outer wall. lacovides and Launder [26] have 
reported a numerical solution for a temperature profile which shows excellent agree
ment with the experimental data of Baughn et al. [25],

For turbulent flow, experimental data [24,25,28] and theoretical predictions [26] are 
available to calculate variations in peripheral local Nusselt numbers. The theoretical 
predictions show fairly good agreement with the experimental data near the bend inner 
wall. However, theoretical predictions underestimate the Nusselt numbers by about 50 
to 80% at the bend outer wall. Figure 10.9 shows a typical circumferential and axial 
variation in local Nusselt numbers for air heating in a bend subjected to the @ 
boundary condition [25]. Substantial circumferential variations in Nusselt numbers 
occur even at 15° from the bend inlet. The peak circumferential variation occurs at 90°, 
showing about a 3 :1 ratio of Nusselt numbers at the duct outer and inner walls. The 
variation in peripheral Nusselt numbers is seen even at a distance of 6 diameters in a 
downstream straight pipe.

Moshfeghian and Bell [24] measured turbulent flow Nusselt numbers in a heated 
bend using water, Dowtherm®, and ethylene glycol as working fluids. Along with the 
bend, the upstream and downstream straight pipes were also heated. The authors [24] 
presented the following correlation of their extensive experimental data for the turbu
lent flow Nusselt numbers:

/ x \ 0.046 / R \ -0.133 / \0.14
Nu = 0.0285 Re°'81Pr°’4l — | - — (10.12)

\ D) \ a I \fiw)

The correlation is valid for 4.8 < R/a < 26, 104 < Re < 3 X 104, and 0 < x/D < 
trR/(2a}. It shows less than 8% deviation from the experimental data.

1 This boundary condition does not fit the designation (m) or (2) used in Chapter 3, since the 
temperature or heat flux across a cross section in a bend is not uniform.
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I nner wall 0, deg Outerwall

Figure 10.9. Experimental @ circumferential Nusselt number variation for air heating for different <p along a 180° bend and its 
downstream pipe. Re = 6 X 104, De = 2.31 X 104, R/a = 6.75 [25]. Here Nu^ r is based on the pipe wall temperature minus pipe 
center line temperature difference.
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10.2.5 Heat Transfer in a Pipe Downstream of a 180° Bend
Mehta and Bell [27] measured Nusselt numbers in a heated pipe (D = 15.75 mm) 
downstream of an unheated 180° bend. Their laminar flow experimental results for 
Re = 80 to 600, using the three liquids of [24], show that the unheated bend (R/a = 7.7) 
has no influence on the downstream pipe heat transfer. At low Reynolds numbers, 
natural convection strongly influences heat transfer in a downstream pipe. Combined 
free- and forced-convection Nusselt number correlations for a straight pipe, such as 
those proposed by Marcos and Bergles [57], are useful in predicting laminar flow heat 
transfer. However, when a 180° bend as well as the downstream pipe is heated, laminar 
flow Nusselt numbers in the entry portion of a downstream pipe seems to be influenced 
by the upstream bend. In such cases, a downstream pipe shows an influence of both the 
natural convection and decaying swirl flow. Moshfeghian and Bell [24] have correlated 
their laminar flow results for four 180° bends (R/a = 4.84, 7.66, 12.32, and 25.62) for 
Re < 2100 and irR/la < x/D < 160 as shown below:

Nux. 0.00275 QG [ Re exp( C3) ] Pr 04 (10.13)

where

/ Gr \0-429
G = 1.0 + 8.5 —y\ Re '

/ R\ -0.593 / x \ -1.619

G = 0.733 + 14.33 - —
\ a / \ D )

(10.14)

(10.15)

(10.16)

The correlation exhibits less than +16% deviation with the experimental data.
For turbulent liquid flow, Moshfeghian and Bell [24] have proposed the following 

correlation to calculate the local Nusselt numbers in a downstream pipe when the 
downstream pipe as well as the upstream bend is heated:

Nuy
l ,, \ 0.14, , -0.116/ V \ -0.048

0.031 Re0'825 Pr04 — - -
\ /G / \D) \ a )

(10.17)

The natural convection effects are negligible in turbulent flow and hence are not 
included here. The above correlation is valid for 104 < Re < 3 X 104, vrR/la < x/D 
< 160, and 4.8 < R/a < 26. The correlation predicts Nuv within +6% deviation from 
the experimental data.

At present, turbulent flow Nusselt numbers in a downstream pipe have not been 
reported in the literature when the upstream bend is unheated. However, as noted 
earlier in the case of a 90° bend, the turbulent flow downstream-pipe heat transfer is 
independent of the heating condition of the upstream bend. A similar conclusion may 
also be valid for a 180° bend. Therefore, until experimental data are available, Eq. 
(10.17) may be used to calculate turbulent liquid flow Nusselt numbers in a down
stream pipe regardless of the heating boundary condition of an upstream bend.
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10.3 BENDS WITH RECTANGULAR CROSS SECTIONS

Limited results are available on fluid flow and heat transfer through a bend having a 
rectangular cross section. However, most of the available results are for the special case 
of a square cross section. As shown in Fig. 10.1c, for a rectangular bend, la represents 
the channel depth in the same plane as that for a radius of curvature.

10.3.1 Fluid Flow
The developing laminar velocity profiles for a flow through a 90° bend of square cross 
section are reported by Humphrey et al. [29] and others [30,31], Humphrey et al. [29] 
obtained theoretical solutions and experimental measurements of velocity profiles for 
water flowing through a bend of square cross section with R/a = 4.6. The experimen
tal data show good agreement with the theoretical predictions. Yamashita et al. [32] 
have reported theoretical velocity profiles for laminar flow through a 90° miter bend. 
Similarly, for turbulent flow through a 90° bend of square cross section, Taylor et al. 
[30] and Humphrey et al. [33] have reported velocity profiles. Taylor et al. [30] 
measured velocity profiles for turbulent air flow in 90° bends with R/a = 4.6 and 14. 
Humphrey et al. [33] have reported experimental data and theoretical predictions for 
turbulent flow through a 90° bend with R/a = 4.6. Their experimental data show good 
agreement with the theoretical predictions.

For a 180° bend with a square cross section, Chang et al. [34,35] and others [36,38] 
have reported theoretical as well as experimental turbulent velocity profiles. In ad
dition, Chang et al. [34,35] and Johnson and Launder [36,37] have reported velocity 
profiles in a straight pipe downstream of a 180° bend. In general, the theoretical 
predictions show fairly good agreement with experimental data, although some of the 
detailed variations of the velocity profiles in the bend are not reproduced by the 
calculations.

10.3.2 Friction Factors
Shiragami and Inoue [39] measured friction factors for water flow in four 90° bends 
with square cross section, and having the curvature ratios R/a = 3.4, 6.9, 13.7, and 
27.4. For laminar flow, they proposed the following correlation for De = 100 to 400:

A A
/ R \ -°-5l0-35

= 0.291 Re — 
\ a

for
R

3.4 < — < 27.4 
a

(10.18)

It may be noted that Eqs. (10.18) and (10.3a) are quite close since / = 14.23/Re.
For turbulent flow through a 90° square cross section bend, Shiragami and Inoue 

[39] proposed the following correlation-

0.0040
R 

for - > 13.7 
a

(10.19)

Their measured friction factors in turbulent flow for bends with R/a = 3.4 and 6.9 
were significantly higher than those determined from Eq. (10.19). The authors observed 
flow separation for R/a = 3.4 and 6.9, which may have resulted in higher friction 
factor measurements [39],

Presently, no friction factor correlation is available for 180° bends.
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<t>, rad

Figure 10.10. (T peripherially averaged, axially local Nusselt-number variation along the length 
of 90° bends of rectangular cross section. In curves 1, 2, and 3, the fluid flow is fully developed at 
th heated bend inlet. Curve 4 is for uniform velocity profile at the entrance. De = 368, 
R/Dh = 2.3 [40],

10.3.3 Heat Transfer in 90° Bends
Yamashita et al. [32] have reported temperature profiles in a miter bend of square cross 
section.

Limited data are available for the calculation of temperature profiles and Nusselt 
numbers in a 90° bend with rectangular cross section. Yee et al. [40] theoretically 
calculated thermally developing Nusselt numbers for air heating in bends subjected to 
the (t) boundary condition. The results are reported only for De = 368 for a laminar 
flow through rectangular bends (a*  = f, 1, and 3) having R/a = 4.6. As shown in Fig. 
10.10, the duct inlet velocity profile has a strong influence on Nusselt numbers, while 
the duct aspect ratio has a lesser influence. Metzner and Larsen [41] experimentally 
measured Nusselt numbers for turbulent air flow in 38.1 mm X 12.7 mm rectangular 
cross-sectional duct («*  = 3). The ratios of outer and inner bend wall radii were 2 and 
3. The authors found that the average heat transfer coefficients were about 20 to 30% 
more than those obtained in straight ducts.

In laminar flow at low Reynolds numbers, natural convection can influence the heat 
transfer in a 90° bend. Chilukuri and Humphrey [42] investigated the influence of free 
convection on heat transfer in a bend with a square cross section. The numerical results 
were obtained for air heating in a bend oriented in a vertical plane and subjected to the 
(7) boundary condition. Their limited predictions for a thermally developing flow for 
Re = 797, De = 367, and R/a = 4.6 are shown in Fig. 10.11. As expected, natural 
convection augments the forced convection Nusselt numbers for vertical upflow and 
reduces them for vertical downflow.

10.3.4 Heat Transfer in 180° Bends
Data are available to determine Nusselt numbers and temperature profiles in square 
bends [35-37]. Nusselt numbers are also available for rectangular ducts [43-45], All the 
available data are for turbulent flow.
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<t>, rad

Figure 10.11. (?) peripherally averaged, axially local Nusselt number variation along the length 
of a 90° vertical bend of square cross section. Re = 747, De = 367, R/a = 4.6, Pr = 0.7, 
Gr+ = 3.14 X 105 [42],

Chang et al. [35] have reported theoretical temperature profiles and Nusselt numbers 
for Re = 5.67 X 104 for a square cross-section bend. Their data for a bend with 
R/a = 6.70 show about a 2:1 ratio of outer- to inner-wall Nusselt numbers. In 
general, the peripheral mean Nusselt numbers are about 30% higher than those in a 
straight duct. The 30% Nusselt number increment over the straight-tube values is 
similar to the 20 to 30% increment reported by Metzger and Larson [41] for 90° bends. 
Chang et al. [35] also observed that a strong nonuniformity in Nusselt numbers persists 
for about 10 diameters of pipe length in a downstream straight duct. Johnson and 
Launder [36,37] obtained similar results for a bend with a square cross section 
(R/a = 6.70). They measured Nusselt numbers for axially constant heat flux boundary 
condition for turbulent air flow through the bend (Re = 9.9 X 103 to 9.2 X 104). 
Figure 10.12 depicts typical results, showing higher Nusselt numbers at the bend outer 
wall than those at the bend inner wall. Johnson and Launder [36] found that the 
intensity of the secondary velocity in a turbulent inlet velocity profile has no significant 
influence on Nusselt numbers in 180° bends (not shown in Fig. 10.12).

Yang and Liao [43] reported experimental data for three rectangular cross-section 
bends (R/a = 12.95, 18.4, and 39). All bends had an aspect ratio of 10. As shown in 
F g. 10.13, their experimental data for Re = 7000 to 26,500 with air heating show good 
agreement with their theoretical analysis. The bends were preceded by a long heated 
straight duct, resulting in fully developed flow at the bend entrance. It is important to 
note that in their experiments, only the inner and outer walls of the bend and entrance 
duct were heated electrically, simulating the boundary condition of axially constant 
heat flux. However, the side walls were unheated and insulated. Their data clearly 
indicate that the outer-wall Nusselt numbers are substantially higher than those at the 
inner wall.
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Figure 10.12. Development of the peripheral local Nusselt number in a 180° bend of square 
cross section. Fully developed flow at the bend entrance (entrance length = 72 Dh, heated 
entrance length = 57D;,). Air heating in a bend subjected to the boundary condition of axially 
constant heat flux, Re = 9880, R/a = 6.70 [36].

Metzger and Sahm [44,45] obtained Nusselt numbers for a sharp 180° turn. Such 
turns are usually encountered in cooling passages of high-temperature gas turbines. 
Figure 10.14 shows a schematic diagram of their experimental apparatus. As shown in 
the figure, the heater locations are the top surface (segments 1 to 5), bottom surface 
(segments 13 to 17), inlet side wall (segments 6 to 8), exit side wall (segments 10 to 12), 
and end turn (segment 9). Thus, all walls, except the dividing center wall, are heated 
and are maintained at the same constant wall temperature. Figure 10.15 shows a typical 
variation in the Nusselt numbers, which are highest on the wall directly downstream of 
a 180° bend. The authors have correlated their results with air heating for 104 < Re < 
6 X 104 as

Num-y = (10.20)



104

Figure 10.13. A comparison of experimental and theoretical turbulent flow mean Nusselt 
numbers for air flow through rectangular cross-section 180° bends. All bends have the same aspect 
ratio, 1c/la = 10. Nusselt numbers are averaged over respective outer and inner wall areas [43].

Figure 10.14. Schematic geometry of a sharp 180° turn [44,45].

10-20
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Q Boundary condition

Region 4
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Region 5

500

Region 1

104

W* =0.67
Wf = 0.5
M* = 0 2

10
5

Re

Figure 10.15. Num j vs. Re for air heating in a bend shown in Fig. 10.14 [44,45].

Region 2

where subscript j indicates the region shown in Fig. 10.14, and Re is defined on the 
basis of the hydraulic diameter of the inlet channel (dimensions M X IFj). The 
constants B, and B2, presented in Table 10.4, depend upon the flow region, wall 
spacing, and end clearance.

10.3.5 Heat Transfer in Bends with Bend Angle Less Than 250°
Shchukin and Filin [46] have obtained experimental Nusselt number data for water 
heating in a square cross-section bend subjected to the boundary condition of axially 
constant heat flux. The experimental channel had R/a = 6.12 and had about a 250° 
bend with large inlet- and exit-flow mixing chambers. The authors measured Nusselt 
numbers at 13 locations along the bend. In their experiment, free convection was quite 
significant (Gr = 4.5 X 106), and hence they divided their results into three regions: 
the free convection region (De < 690), mixed convection region (690 < De < 2400), 
and forced convection region (De > 2400). Shchukin and Filin correlated their periph
eral average Nusselt numbers for the free- and forced-convection regions for water 
heating in a square bend {R/a = 6.12) as shown below:

1.025

for De < 690

for De > 2400

(10.21)

(10.22)



TABLE 10.4 Constants for Eq. (10.20) for the Bend Geometry of Fig. 10.14 [44,45]

u* Hi* Region By B2

0.67 0.4 1 0.04360 0.7420
2 0.02495 0.7757
3 0.08364 0.7105
4 0.03619 0.7992
5 0.09037 0.6940

0.5 1 0.04022 0.7493
2 0.02275 0.7839
3 0.09320 0.6926
4 0.04128 0.7845
5 0.08221 0.6943

0 6 1 0.04883 0.7324
2 0.03025 0.7577
3 0.06622 0.7265
4 0.05907 0.7469
5 0.09201 0.6786

1.0 0.4 1 0.04371 0.7450
2 0.02396 0.7847
3 0.12350 0.6717
4 0.07339 0.7546
5 0.12109 0.6784

0.5 1 0.03699 0.7613
2 0.02421 0.7849
3 0.05790 0.7375
4 0.06487 0.7651
5 0.07621 0.7164

0.6 1 0.03571 0.7633
2 0.02603 0.7763
3 0.07289 0.7059
4 0.07246 0.7536
5 0.07939 0.7092

1 5 0 4 1 0.03429 0.7718
2 0.02408 0.7857
3 0.14491 0.6542
4 0.12281 0.7210
5 0.08377 0.7334

05 1 0.04513 0.7449
2 0.02729 0.7731
3 0.12321 0.6610
4 0.10515 0.7350
5 0.06417 0.7465

0.6 1 0.01988 0.8188
2 0.00843 0.8827
3 0.01630 0.8581
4 0.01830 0.9033
5 0.01710 0.8720

10-22
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where

B = 0.51(GrPr)W

/ Pr \0-25
B4 = 0 0575 Re0 33 De0-42 Pr 043 ----' Pr\ w /

(10.23)

(10.24)

In the above correlation, all properties except for Pr„. are based on the fluid bulk mean 
temperature. A correlation is not available for the intermediate Dean numbers (690 < 
De < 2400).

10.3.6 Bends with Either Outer or Inner Wall Heating
Few papers [47-52] report Nusselt number data for 180° rectangular cross-section 
bends having either an inner or outer bend wall heated and the remaining three walls 
unheated. Friction factor data for these cases are not available. An engineering 
approximation of the turbulent flow friction factors for a rectangular duct may be 
made by replacing a in Eq. (10.4) with Dh/1.

Experimental heat transfer correlations are given in Refs. 47-49, and the fundamen
tal heat transfer and fluid mechanics studies are reported in Refs. 50-52. Seki et al. [47] 
measured Nusselt numbers for water heating in three 180° bends. A boundary 
condition of constant wall heat flux was imposed only on the outer wall of the bend. 
The Nusselt numbers were measured in three rectangular cross-section bends. In all 
bends, the channel height was 400 mm and the curvature radius of an inner wall was 
121 mm. The bend channel widths were 9, 34, and 55 mm, giving aspect ratios 44.44, 
11.76, and 7.27 and curvature ratios R/a = 27.88, 8.18, and 5.40, respectively. The 
bends were preceded by an unheated entrance length. The authors have correlated their 
turbulent flow mean Nusselt numbers for the outer wall of a 180° bend as

Nu*  = 0.0255 Re*  0-443 De*  0-443 Pr0-415 (10.25)

The above correlation is valid for 5 X 103 < Re*  < 8 X 104, 4 < Pr < 13, and 5.4 < 
R 'a < 27.9. The fluid properties in the above correlation as well as in other correla
tions in this section [Eqs. (10.26)-(10.33)] were evaluated at the bend-inlet fluid 
temperature. Note that Nu*,  Re*,  and De*  in Eq. (10.25) are based on 4u as the 
characteristic length and not Dh. Also note that Tt (and not Tm) is used in the 
definition of Nu*.

Seki et al. proposed the following relation to calculate local Nusselt numbers in the 
turbulent flow [47]:

Nu*  = 447.745 Re* 1-497 DeA*“1-596 Pr()-412550-960 for 4 < Pr < 13, 0 < x/R < 1

(10.26)

where

11 m 9lt

5 R Jv
(10.27)
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and

mJ— = 5.61og10 
V TW

+ 4.9 (10.28)

The authors do not clearly state the location at which du/dy is to be evaluated, but it 
might be at the tube wall.

Seki et al. [48,49] have also reported only Nusselt numbers for four 180° bends of 
rectangular cross section. Only the inner bend wall was heated; the other three were 
unheated. In all bends, the channel height was 400 mm and curvature radius of an 
inner wall was 121 mm. The bend channel widths were 80, 60, 40, and 15 mm, giving 
aspect ratios a*  = 5.0, 6.67, 10.0, and 26.7 and bend curvature ratios R/a = 4.03, 
5.03, 7.05, and 17.13, respectively. The bends were preceded by an unheated entrance 
length. The Nusselt numbers at the inner wall, subjected to the boundary condition of 
constant wall heat flux, were lower than those observed in a straight tube flow. The 
authors correlated their water-flow mean Nusselt numbers for 8 X 103 < Re*  < 8 X 
104, 6.5 < Pr < 8.5, and 4.0 < R/a < 17.5 as

Nu*  = 0.0208 Re *u"7De* ’ 0116pr0-39 for 0 < <f> < 90° (10.29)

Nu*  = 0.0196 Re* 1161 De* -0-360Pr0-376 for 90 < 4> < 180° (10.30)

The above correlations agree within +10% deviation with the experimental data. The 
authors [48,49] also recommended the following two alternate correlations for the 
mean Nusselt numbers over the entire length of a 180° bend, i.e., for 0 < <]> < 180°.

/ Re*
Nu*  = 0.0129 Re* 0807------

\ De*

0.161
Pj.0.379 1.0 +

Re*  \0-25
De*  /

0.807

(10.31)

Nu*  = 0.0318 Re* 0971 De* -0194 Pr0389 (10.32)

The preceding correlations are valid for 8 X 103 < Re*  < 8 X 104, 6.5 < Pr < 8 5, 
and 4.0 < R/a < 17.5 [48,49]: The correlations (10.29) through (10.32) are based on 
the same data. Therefore, either one of them could be used for design purposes. The 
local Nusselt number is calculated as [49] 

Nu* 763.834 Re* 2546 De*  “2 814 pr0-402 B1072 (10.33)

where B, is defined in Eq. (10.27).

10.4 TWO 90° MITER BENDS IN SERIES

Figure 10.lt/ shows a typical diagram of two 90° miter bends in series and associated 
nomenclature. Izumi et al. [53] have reported experimental Nusselt number data, and

10.lt/
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Figure 10.16. Theoretical predictions for the average friction factor as a function of Reynolds 
number for two 90° bends in series [54],

Amano [54-56] has reported theoretical Nusselt numbers. Results in these references 
are described next.

10.4.1 Fluid Flow
Amano [54-56] has reported theoretical velocity profiles for laminar and turbulent flow 
through a two-dimensional (small aspect ratio rectangular) bend as in Fig. 10.lt/, 
having H/W = 1, 2, and 3. Both in laminar and in turbulent flows, flow separation 
occurs at point B, with subsequent reattachment on either the wall CD if H/W = 1 or 
on the wall BC if H/ W > 1 (see Fig. 10.lt/).

Figure 10.16 shows the average friction factor vs. Reynolds number characteristics 
for two bends in series. The dependence of the friction factor on the Reynolds number 
changes slightly from H/ W = 1 to 2, but almost no change is observed between 
// 'W = 2 and 3. This indicates a change in flow pattern from the case of H/W = 1 to 
2, but almost no such change between H/W = 2 and 3.

10.4.2 Heat Transfer
Figure 10.17 shows a comparison of experimental data on air heating [53] and 
theoretical predictions [54 -56] of laminar and turbulent flow Nusselt numbers for the 
boundary condition of axially constant heat flux. The figure exhibits about 20-30% 
discrepancy between experimental data and theoretical predictions. The average Nus
selt numbers seem to be independent of the ratio H/W. Izumi et al. [53] also reported 
local Nusselt numbers slightly dependent upon H/W. Based on his theoretical predict
ions, Amano [54] proposed the following laminar flow correlation for average Nusselt

10.lt/
10.lt/
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Figure 10.17. A comparison of experimental data and theoretical predictions of average Nusselt 
numbers for air flow (Pr = 0.7) through two 90° bends in series [56],

numbers:

(q"/k)2W niR
Nu+ = T - T = 7.31(Re+) for 300 < Re+ < 2000 and Pr = 0.7

■*  ir

(10.34)

where Re = 2Wpum/p,. For turbulent flow, Izumi et al. [53] proposed the following 
experimental correlation:

Nu+ = 0.177( B6Re+)°5 (10.35)

where

= 12.3 -

The above correlation is valid for 1 < H/W < 4, 8 X 103 < B6Re < 1.5 X 103, and 
Pr = 0.7.
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10.5 CONCLUDING REMARKS

An attempt has been made to present the pressure drop and heat transfer in bends and 
fittings of circular and rectangular cross sections. Many handbooks and a few papers 
(such as Refs. 10,12) present extensively the pressure loss coefficients for bends, 
fittings, valves, tees, etc., and hence no attempt is made here to compile this informa
tion; primary emphasis is on heat transfer results in the bends. Most information 
available is for 90° bends. The experimental and theoretical results presented in the 
text for laminar and turbulent flow friction factors and Nusselt numbers indicate the 
present state of the art; the gaps in the information should provide indications for 
future research. Whenever correlations are not available for a specific bend, the 
appropriate helical-coil correlation, presented in Chapter 5, may be used for en
gineering estimates.

NOMENCLATURE

a tube inside radius or half duct width for a noncircular cross-section
channel (see Fig. 10.1), m, ft

A flow cross-sectional area, nr, ft2
c half channel height of a rectangular duct in the direction perpendicular to

the radius of curvature (see Fig. 10.1c), m, ft
c specific heat of fluid at constant pressure, J/(kg ■ K), Btu/(lb„, • °F)
D pipe inside diameter, m, ft
Dj hydraulic diameter of the duct = 4A/p = inside diameter for a circular

tube, m, ft
De Dean number = Re^/0.5I>A/R
De*  Re*̂2a/R  for rectangular channels
De * V.&xyjla/R for rectangular channels
f Fanning friction factor = rM,/(pu2/2)
ft curved-bend Fanning friction factor
f straight-tube Fanning friction factor for fully developed laminar flow
Gr Grashof number = gPp2D3h(Tw - Tni)/p2
Gr+ modified Grashof number = gf{p2Dl(Tw - 7})/p2 
h heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 • °F)
hm average heat transfer coefficient = (1/L) j(l;hx dx,\\J/(m2 • K), Btu/(hr •

ft2 ■ °F)
h*  average heat transfer coefficient = (1/L) h*  dx. W/(nr • K), Btu/(hr •

ft2 • °F)
h peripheral average axially local heat transfer coefficient =

(0.5/tt) d0,^/(m2 ■ K), Btu/(hr • ft2 • °F)
h*  peripheral average axially local heat transfer coefficient =

(0.5/77) dO,W/(tf ■ K), Btu/(hr • ft2 • °F)
he local heat transfer coefficient = q'e'/(Tw e - T^/W^m2 • K), Btu/(hr ■

ft2 • °F)
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L * ne modified local heat transfer coefficient = q'e'/(Tw 6 — 7}), W/(nr • K), 
Btu/(hr • ft2 • °F)

H 
Hy 
H*  
k 
K 
K*
L 
M
M*  
Nu 
Nu+ 
Nu„, 
NuX 
NU/, 
Nuv 
Nu*

bend pitch (see Fig. 10.Id), m, ft
wall clearance (see Fig. 10.14), m, ft
^/(IFj + IP2) (see Fig. 10.14)
fluid thermal conductivity. W/(m • K), Btu/(hr • ft • °F)
modified pressure loss coefficient = 4fcL/Dh
pressure loss coefficient, defined in Eq. (10.1)
tube length or bend length = R<$>, m, ft
channel depth (see Fig. 10.14), m, ft
M/(W} + 1F2) (see Fig- 10.14)
Nusselt number = hDh/k
average Nusselt number, defined in Eq. (10.34)
average Nusselt number = hmDh/k
average Nusselt number for rectangular channels, = 4ah* t/k
peripheral local Nusselt number = h6Dh/k
peripherally average, axially local Nusselt number = hxDh/k
peripherally average, axially local Nusselt number for rectangular chan

nels, = 4ah*/k

P
P 
Pr

duct wetted perimeter, m, ft 
fluid static pressure, Pa, Iby/ft2 
Prandtl number = pcp/k

7 
q"
r
R

Re
Re*
Re*
Rev 
T
T

®

heat transfer rate, W, Btu/hr
heat flux, W/nr, Btu/hr • ft2
radial distance, m, ft
radius of curvature of the bend centerline (see Fig. 10.1), m, ft
radius of curvature of the bend outer wall, m, ft
Reynolds number = pumDh/p.
modified Reynolds number for rectangular channels, = 4apum/p.
Reynolds number = 2Wpum/p
Reynolds number = pumx/p
temperature, K, °C, °F, °R
average temperature, K, °C, °F, °R
thermal boundary condition referring to axially and peripherally constant 

wall temperature
U.ll, 

lim 
IF
J^I, w2 
IF*

axial velocity, m/s, ft/s 
mean axial velocity, m/s, ft/s 
duct width (see Fig. 10.lt/), m, ft 
duct widths (see Fig. 10.14). m, ft

.V axial distance along the axis of a bend measured from the bend inlet, m, ft
distance measured from a bend wall in a direction perpendicular to the 

bend wall, m, ft

10.lt/
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Y coordinate for rectangular and square channels, = (|y - a\/a) (see Fig.
10.1c)

Z coordinate for rectangular and square channels, = (|z - a\/a) (see Fig.
10.1c)

Greek Symbols

a*  aspect ratio of a rectangular cross-section bend, = 1c/I a
ft coefficient of fluid thermal expansion, K 1
ft' ratio of orifice to pipe inside diameter
A prefix denoting a difference or change
0 ( angular coordinate in the cylindrical coordinate system (see Fig. 10.1Z?),

rad, deg
p. fluid density, kg/m3,lb„,/ft3
t shear stress, Pa, Ity/ft2
C bend angle, rad, deg

Subscripts
c curved coil or duct
i inlet
m bulk mean value
p peripheral value
r straight-duct value
w wall condition
x axial value
0 at angle 0
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11.1 INTRODUCTION

Steady and unsteady duct flows with transient forced convection have recently received 
greater attention in connection with the increasingly greater use of automatic control 
devices for the accurate control of fluid flow in high-performance heat transfer systems. 
The accurate regulation of fluid flow is especially important, for example, when the 
positive control of industrial heat exchangers must be assured, which requires better 
understanding and more precise evaluation of thermal transients.

Thermal transients can be due to startup, shutdown, power surge, pump failure, etc., 
during an operation, or due to such operating conditions as time-varying inlet tempera
tures and/or flow rates. Thermal transients in ducts may also arise because of 
time-dependent wall heat flux, wall temperature, or internal heat generation, as in the 
flow channels of nuclear reactors. Accurate prediction of the transient response of 
thermal systems is highly important, not only to provide for an effective control system, 
but also for the understanding of adverse effects such as reduced thermal performance 
and severe thermal stresses that they can produce, with eventual mechanical failure.

Transient response of thermal systems can be classified as (1) step response, (2) 
frequency response, and (3) impulse response. The frequency response is the long-time 
behavior of a thermal system subjected to a periodically varying operating condition. 
The response then also varies periodically with time. The step response characterizes 
the behavior following a sudden change in the operating conditions. The step response 
asymptotically approaches the steady-state behavior of the new operating conditions. 
An impulse response is the behavior when the disturbance has a large amplitude over 
an infinitesimal time duration.

The literature on transient forced convection in ducts is small but growing. Some of 
the important contributions are listed in the Refs. 1, 2, 4, 6-46.

This chapter is mainly concerned with the study of transient thermal response of 
duct flows. The parallel-plate channel and the circular tube, which are the two 
commonly encountered geometries in practice, are considered with both laminar and 
turbulent flows.

11.2 TRANSIENT LAMINAR FORCED CONVECTION IN DUCTS

In this section, first a short review of the literature on transient laminar forced 
convection in parallel-plate channels and circular tubes is given, and then some 
fundamental problems are discussed.

One of the earliest works on transient laminar forced convection was the calculation 
of transient temperatures in pipes and heat exchangers by Dusinberre [1], who 
presented explicit iteration formulas and numerical computation guides. The case of a 
compressible fluid flowing through an insulated tube with an exponential or step-func
tion fluid inlet temperature was analyzed by Rizika [2], The transient conditions for a 
compressible fluid flowing through a heat exchanger were also partially analyzed in [2], 
Rizika extended this work in [4] to obtain the transient solutions due to thermal lags in 
flowing incompressible fluid systems. Both the case of an incompressible fluid with a 
step-function temperature input flowing through a circular tube, and the case of an 
incompressible fluid flowing in a simple heat exchanger, were examined in detail. An 
example which demonstrates the transient condition at the exit of a simple (con- 
densing-steam-water) heat exchanger was also presented.

Sparrow and Siegel [6] made an analysis of transient laminar forced convection in 
the thermal entrance region of circular tubes. They first determined the thermal
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responses to step changes both in wall temperature and in wall heat flux, using an 
integral formulation of the energy equation in connection with the method of char
acteristics. Then, using the linearity of the energy equation, they generalized the 
step-function results for arbitrary time-dependent boundary conditions, and expressed 
their results in the form of integrals which can easily be evaluated for particular 
applications. Siegel and Sparrow in [10] also made a similar analysis in the thermal 
entrance region of flat ducts.

Siegel in [9] investigated laminar slug flow in a circular tube and a parallel-plate 
channel where the walls were given a step change in heat flux or, alternately, a step 
change in temperature. Siegel [13] also investigated laminar forced convection both in a 
circular tube and in a parallel-plate channel with arbitrary time variations in wall 
temperature. The velocity distributions in both cases were assumed to be steady and 
fully developed. First the analyses were done for a step change in wall temperature, and 
then the results were generalized for arbitrary time variations. The method used was 
not an exact solution, but involved an approximation. The validity of the approxima
tion was tested by comparing the results with the exact ones available for part of the 
solution, and good agreement was obtained. It was also demonstrated that the slug flow 
assumption does, in fact, lead to the essential physical behavior of the systems 
considered, although the numerical results were somewhat in error.

Perlmutter and Siegel [16] studied transient heat transfer with unsteady laminar flow 
between two parallel plates. The transients were caused by simultaneously changing the 
fluid pumping pressure and either the wall temperature or the wall heat flux. During 
the solution, the time-dependent slug flow simplification was made. Within this 
limitation, exact solutions for the fluid temperature distribution were obtained for a 
step change in wall temperature or wall heat flux with a simultaneous step change in 
the pumping pressure. Then, using superposition, solutions for more involved situations 
were developed. Perlmutter and Siegel in [17] analyzed transient heat transfer in a 
two-dimensional unsteady incompressible laminar duct flow between two parallel 
plates with a step change in wall temperature. Some results were also presented for the 
case where the transient heat conduction through the bounding walls was taken into 
consideration. Siegel and Perlmutter [19] also made an analysis of unsteady incom
pressible laminar forced convection between two parallel plates with the wall heat flux 
varying with both time and axial position. The flow velocity was assumed constant over 
the channel cross section (slug flow assumption), but allowed to vary with time. 
General analytical expressions were derived that could be used for computing the 
transient heat transfer in a channel with the wall heat flux varying with time and axial 
position.

Siegel [18] analyzed laminar forced convection between two parallel plates for slug 
flow conditions by including the heat capacity of the walls and with the wall heating 
assumed variable with axial position and time. The walls were assumed to be suffi
ciently thin or highly conducting so that the temperature variations across the wall 
thicknesses could be neglected. The method used involved coupling the heat transfer 
behavior within the fluid to that in the wall and solving the resultant equations together 
with the energy equation. After the introduction of a general method of solution, some 
illustrative examples were considered. These included uniform wall heating varying 
sinusoidally in time, and heating varying sinusoidally with axial distance and exponen
tially in time.

References 7, 8, 11, 15 are a series of papers on the dynamic response of heat 
exchangers having time-varying internal heat sources. In these papers, theoretical 
results are also compared with experiments. In addition, Kardas [20] studied the heat 
transfer from parallel flat plates to fluids flowing between them with an inlet tempera
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ture varying with time. He presented an analytical solution of the unidirectional 
regenerator problem.

Namatame [24] presented a modified quasi-steady solution for the transient temper
ature response of an annular slug flow in which the dependence of the surface 
temperatures upon axial position was taken into consideration.

Campo and Yoshimura [32] made a theoretical study to describe the influence of 
randomly varying ambient temperatures on the heat transfer performance of a fully 
developed flow through a parallel-plate channel. In the analysis, the energy equation 
was simplified by the use of a lumped formulation in the transverse direction of the 
channel, and the time-dependent fluid temperature in the axial direction was obtained.

Lin and Shih [38] studied the unsteady thermal-entrance heat transfer for fully 
developed laminar flow of power-law non-Newtonian fluids in pipes and plate slits with 
step change in surface temperature, by a method called the instant-local similarity 
method which uses the concept of the extended Leveque method by restricting the 
solution to large Graetz numbers and converting the energy equation to a boundary
layer-type equation. The effects of the flow index, viscous dissipation, and Graetz 
number on the heat transfer rate were demonstrated with numerical solutions.

Sucec [39] presented an improved quasi-steady approach, which took into approxi
mate account both the effect of thermal history and of the thermal-energy storage 
capacity of the fluid in problems of transient conjugated laminar forced convection. 
The method was applied to two problems in a parallel-plate channel in which the 
finite-thermal-capacity walls and fluid were both at constant temperature initially, 
when the transient was initiated by either a step change in fluid inlet temperature or a 
sinusoidal variation with time. Exact solutions were given for slug flow and for a linear 
velocity profile.

By the use of finite difference numerical schemes, Lin et al. [42, 43] solved the 
transient two-dimensional energy equation for various flow conditions. The first paper 
studied the thermal-entrance heat transfer in laminar pipe flows subjected to a step 
change in ambient temperature. The transient thermal-entrance laminar flow heat 
transfer resulting from a step change in both the pressure gradient and the inlet 
temperature was studied in the second paper. Lin et al. [44] also studied heat transfer in 
the thermal entrance region of laminar pipe flows resulting from a step change in the 
inlet temperature, when coupled with the unsteady temperature variations in the 
surrounding enclosure, representing a refrigerator cabinet. The Nusselt number, fluid 
bulk mean temperature, and pipe wall temperature were presented over wide ranges of 
the parameters involved.

Recently, Chen et al. [45] gave a direct numerical solution for transient laminar heat 
transfer inside a circular duct subjected to a step change in either wall temperature or 
heat flux.

An extensive review of the work on transient laminar forced convection in ducts has 
been given recently by Kakaij and Yener [41],

11.2.1 Transient Laminar Forced Convection in Circular Tubes with 
Step Change in Wall Temperature

Consider a circular tube as shown in Fig. ILL A steady and fully developed laminar 
flow passes through the tube in the x direction. The tube wall and fluid are initially 
isothermal at temperature 7], Let the temperature of the tube wall for x > 0 be 
instantaneously changed (say at time t = 0) to a new value 7], and be maintained at 
this value for all times thereafter.
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Figure 111. Coordinate system for circular tube geometry.

The transient temperature distribution T(x, r, t) in the tube for x > 0 and times 
t > 0 will satisfy the unsteady energy equation for fully developed laminar flow in a 
circular tube; that is,

— + u~— = a------
dt dx r dr
st ar i a

(11.1)

where the fluid properties have been assumed to be constant, and viscous dissipation 
and axial heat conduction have been neglected. The initial, inlet, and boundary 
conditions are given by

T(x,r,0) = 7], T(Q,r,t) = Ti (11.2a, b)

/ dT
\^7 T(x, r0, t) = Tw (11.2c, d)

In the following subsections, two solutions of the foregoing problem are presented for 
slug flow and parabolic velocity distribution in the tube.

Solution for Slug Flow. If the velocity distribution u in Eq. (11.1) is assumed to be 
uniform over the tube cross section and equal to the mean flow velocity u,„, then the 
formulation of the problem can be rewritten in the following dimensionless form:

de i de
~d^ + 2^

de
dt]

0(^,0) = !, 0(O,i?,r) = l

/ de \

\ 0T? /
= o, 0(0,l,r) = 0

(11-3)

(11.4a,b)

(11.4c,d)

i d
1 dr]

7? = 0

where

T - T
T - T ' 1 I 'b

2x/D at
t=“ (ll-4e,f,g,h

Re Pr r0

with

D v
Re = ———, Pr = —, Z> = 2r0

v a
(11.4i,j.k)
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The method of solution as described in [9] is as follows: The fluid which was at 
,y = 0 when the transient began does not reach a position x until a time x/um has 
elapsed. Thus, in the region where x/un, > t, the heat transfer process will not be 
influenced by the inlet condition. Consequently, in this region the fluid at any cross 
section undergoes the same transient heating process as that at any other cross section, 
with the effect of heat convection being zero. Therefore, when t < x/um (i.e., t < 2£h 
the solution at x is governed by

with

39 Id
dr i) d i]

de

t = 0) = 1

= 0, 0( r] = 1, t) = 0

The solution of this problem can readily be found to be [47]

00
e = 2 £

n = l

_X2T e n —-------- r< 2£

(11-5)

(11.6a)

(11.6b, c)

(11-7)

/ de
\di]

where X„ are the positive zeros of 7()(X) = 0, and Jo and are Bessel functions of the 
first kind and of zero and first orders, respectively.

Now consider the steady-state solution, which is governed by

i de i d j de
2 d^ T] di] \ di] (11-8)

with

e^ = o, rj) = i (11.9a)

= 0, 0G,7J = 1) =0 (11.9b,c)

Since the differential equations (11.5) and (11.8) and the conditions (11.6a, b.c) and 
(11.9a, b, c) are the same in t and 2£, the steady-state solution will have the same form 
as Eq. (11.7); that is,

00

0 = 2£
h = i

-2X2 f ■7o(\,1?) 
g 4 n s-------------------

\/-7i(X„) (11.10)

This result matches the initial transient solution, Eq. (11.7), when £ = |t, and 
therefore it must be the solution for r > 2£. Thus, Eqs. (11.7) and (11.10) together 
represent the complete solution of the problem for all times t > 0. Furthermore, these 
results show that the steady-state temperature distribution at a particular cross section 
is reached over the time period that it takes for the fluid to flow from the entrance to 
that particular section, i.e., x/um.
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Solution for Parabolic Velocity Distribution. For fully developed steady laminar 
flow in a tube of radius r0, the velocity distribution is given by

u
— =2 (UH)

where is the mean flow velocity. With this parabolic profile, the energy equation 
(11.1) can be rewritten in dimensionless form as

de de 1 a ( ee\
T +(i-r)^7 = (1112)
dr 7j di) ' drj)

where the definitions of various dimensionless quantities are the same as in the 
previous case. Furthermore, the same dimensionless initial, inlet, and the boundary 
conditions, i.e., Eq. (11.4), also apply to this case.

To develop the general solution, first consider the steady-state solution.

Steady-State Solution. Under steady-state conditions, the energy equation (11.12) 
reduces to

z aes 1 d 1 de\(!-’l2)^7 = -^~ Hr <n-13)
d£ 7, di] y di] ]

with the following inlet and boundary conditions:

es(Q,i]) = 1 (11.14a)

V2 =0, 05(M) =0 (11.14b,c)
\ / d=o

The problem consisting of the differential equation (11.13) and the conditions (11.14) is 
the classical Graetz problem, and its solution is given by [35]

= f Cne-^Rf,(i]) (11.15)

n = 0

where X„ are the eigenvalues and R„(t]) are the corresponding eigenfunctions of the 
following eigenvalue problem:

d2R„ 1 dRn t x
—T +--T~ + *n 1-r )Rn = 0 (11.16a)
dry T) di]

dR„(0)
—— =0, 7?„(l)=0 (11.16b,c)

d 17

and the constants C„ are given by

2
c"= (U17)
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Transient Solution. Let the turbulent solution be given by a series expansion about 
the steady-state solution as

t) = f CnFna,r)RM

n = 0
(11.18)

For large times the functions Fn should, by comparison with Eq. (11.15), converge to

P - e~ 2̂nt (H 19)

As suggested by Siegel [13], the following approximation is now introduced:
Multiply Eq. (11.12) by 17 and then integrate from 0 to 1 to obtain

ri 90 , -^90 / 90 \ z xf dr] + f )T7 = T" (11.20)
J0 9t jo 9% \ drj/ ^ = 1

Substitution of Eq. (11.18) into Eq. (11.20) yields

dF” p a 
— / r]R,, dr] -
dr Jf)

1 9Fn dRn(l) dR„(l)
X2, dr] n dr]

n = 0,1,2,... (11.21)

where the following relation has also been used [35]:

n ' 1 dR,A\\
f r)(l - r]2) Rn(r]) dr] = --p—----- (11.22)
Jo ar]

The differential equation (11.21) can be solved by the method of characteristics, and the 
result is [13]

T—T 00 |e ^"T, t < a„£\
0(^,7],t) = = YC„Rn(r])l (11.23)

1i *w n = 0 I eK", T > an% I

where a„ = X^/ft,, and

dRn^/dr] 

./o ^Rn dr]
(H-24)

The solution (11.23) satisfies all the required conditions of the problem, converges 
exactly to the steady-state solution for large times, and is approximate to the extent 
that it satisfies an integrated form of the energy equation, i.e., Eq. (11.20).

The wall heat flux can be evaluated from Fourier’s law,

/ 9T\
(11.25)

which yields

£ c dR'^\ e T~a"^ 

n=0 dr] | e~x2^, t > (11.26)

where qf is defined as the rate of heat transfer per unit surface area to the fluid at the 
wall. Figure 11.2 gives, together with the results of Chen et al. [45] by finite differences.
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i---------------T

Chen et al. [45]

— — — — Siegel [13]

0.0 0.2 0.4 0.6 0.8 1.0

Figure 11.2. Transient variation in wall heat flux following a step change in wall temperature for 
fully developed steady laminar flow in a circular tube.

the dimensionless wall heat flux from Eq. (11.26) vs. r for various values of £ as 
computed by Siegel [13],

A quantity of practical importance is the time required to reach the steady-state 
conditions at any location x. The steady-state time, rs = a ts/r^, is given in Fig. 11.3 
as a function of £, where r is defined as the time required for the local heat flux to 
approach within 5% of the value reached for infinite time. Two fines are also drawn in 
Fig. 11.3. The line ts = % represents a lower bound on the steady-state time and is 
determined by the fact that the heat transfer process cannot be stabilized at a location 
.x until a time of at least v/umax has elapsed. The upper line is obtained from the slug 
flow solution, which gives a steady-state time of ts = x/um or ts = 2£. As Fig. 11.3 
shows, the slug flow solution underestimates the steady-state times for small values of 

and overestimates them for large Physically, for small values of £ the establish
ment of a steady state depends on the convection process in the thin thermal boundary 
layers near the wall, where the velocities are smaller than indicated by the slug flow 
approximation, and accordingly the slug flow solution yields lower steady-state times. 
On the other hand, for large values of £, heat has already penetrated all the way across 
the tube and the fluid temperature near the wall is already close to the temperature of
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_ 2x/D 
f Re Pr

Figure 11.3. Time to reach steady state after a step change in wall temperature for fully 
developed steady laminar flow in a circular tube [13].

the tube wall. In this region, the establishment of a steady state is evidently more 
dependent on the velocities in the central portion of the tube cross section, which are, 
in fact higher than the slug flow velocity. The steady-state times are therefore 
overestimated by the slug flow solution.

The transient heat transfer problem considered here has been solved in [6] using an 
integral method. However, in this reference only the thermal entrance region is 
considered and the results do not extend far down the tube. On the other hand, 
although the present series solutions, Eqs. (11.23) and (11.26), are valid for the entire 
length of the tube, many terms are required in the calculations for regions very close to 
the tube entrance. Thus, the results presented here and those of [6] can be used 
simultaneously to obtain information for all positions along the tube length.

11.2.2 Transient Laminar Forced Convection in Circular Tubes with 
Arbitrary Time Variations in Wall Temperature

In the previous section, results describing the transient behavior following a step 
change in wall temperature have been presented. Since the energy equation (11.1) is
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Figure 11.4. Representation of an arbitrary time-dependent wall temperature.

linear, by using a superposition technique these results can be generalized to apply for 
arbitrary time variations in wall temperature.

Let Tw(t) represent the wall temperature as some arbitrary function of time. At any 
instant, Tw is spatially uniform over the walls. As illustrated in Fig. 11.4, this arbitrary 
wall temperature variation can be visualized as a series of differential steps. The effects 
of those steps can then be superposed to determine the response for an arbitrary 
variation in Tw.

First consider a system isothermal at 7}, and let the tube wall be given a step change 
dTw in temperature at t*.  Then, from the result (11.26), the wall heat-flux response to 
this differential step will be given by 

dq"
k - ^,,(1)
ro „=o "

dTw (11.27)

where r*  = t*/r^  and all other parameters are as defined in the previous section. As 
explained in [13], when this result is integrated over an arbitrary wall temperature 
variation, the variation in wall heat flux q" is obtained as

q"(^T)ro v dRn(l) t\ T\
-------j  = - L Cn—,----- e nt{Twh ~ <W ~ T<} 

k--------„=o

-ftf e“^-T*>{T w(r*)  - 7]} dr*

00 dR t+ E Joe-^-^{Tw(r*)  - 7]} dr*  (11.28)

where, for a given t, the value of N is found from the relation

aN-l^ < T — aN^ (11.29)

and for N = 0 the first summation is defined as

E =o
n = 0

(11.30)
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and also a _, = 0. In evaluating the heat flux at a particular location £ = £,, for early 
times t will be less than all of the a„£,, and therefore only the second summation from 
n = 0 to n = oo is needed. For later times, more and more terms are needed from the 
first summation. For very large times, however, only the first summation needs to be 
considered.

If the transient starts from an already established initial steady-state heat transfer 
situation in which the wall is at a uniform temperature Tw different from the inlet fluid 
temperature Tt, then the heat transfer behavior can be determined from the above 
results by first letting the system go through an initial transient process with a step 
change in wall temperature from Tt to Tw, and keeping the wall temperature at Tw until 
the steady state is reached. Then the specified transient is initiated, and the results for 
this part of the computation yield the desired response from the initial steady-state heat 
transfer condition.

11.2.3 Transient Laminar Forced Convection in Circular Tubes with 
Step Change in Wall Heat Flux

Attention is again directed to a hydrodynamically fully developed steady laminar flow 
through a circular tube of radius r0 (see Fig. 11.1) where the tube wall and the fluid are 
initially isothermal at T:, but the tube wall is subjected to a constant heat flux q” for 
x > 0 and for times t > 0. In this case the energy equation in dimensionless form is 
also given by Eq. (11.12); however, the dimensionless temperature 0(£, y, r) is defined 
as

T - T, 

q” ro/k
(11.31)

whereas the definitions of the other dimensionless quantities are as before. The inlet 
and the boundary conditions are then given accordingly by

0(^,0) =0,

/ 86 \Hr = °-
6(0, tj, t) = 0 (11.32a,b)

(11.32c, d)

Chen et al. [45] solved this problem numerically by finite differences, and Fig. 11.5 
shows their results for the transient wall temperature distribution vs. the dimensionless 
time t for various values of the dimensionless axial distance £.

11.2.4 Transient Laminar Forced Convection in a Parallel-Plate 
Channel with Step Change in Wall Temperature

Consideration is now given to a parallel-plate channel as shown in Fig. 11.6. A steady 
and fully-developed laminar flow passes through the channel in the x direction. The 
channel walls and the fluid are initially isothermal at temperature 7], The temperature 
of the channel walls is suddenly changed at t = 0 to a new value 7], and maintained at 
this value for all times thereafter.

The transient temperature distribution T(x,r, t) in the channel for x > 0 and t > 0 
will satisfy

8T 8T 82T
"T7 + u^~ =8t Ox 8y (11.33)



Figure 11.5. Transient variation in the wall temperature following a step change in the wall heat 
flux for fully developed steady laminar flow through a circular tube of radius r0 [45],

T, T1 U)

Flow —— T, ।- . J T(x,y,t) L

Un heated 
entrance region Heated (or cooled) section L

Tt

Figure 11.6. Coordinate

T-1 w

system for parallel-plate channel geometry.
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with the following initial, inlet, and boundary conditions:

T(x,y,0) = 7], T(0,y,/) = 7] (11.34a. b)

/ dT

\ dy
T(x,L,t) = Tw (11.34c, d)

where the fluid properties have been considered constant, and viscous dissipation and 
axial heat conduction have been neglected. In addition, the velocity distribution is 
given by

u 3 [ v \2
— l- 72 \ L / .

(11.35)

where u„. is the mean flow velocity in the channel.
This problem was first solved by Siegel and Sparrow [10], who obtained an 

approximate solution in the thermal entrance region using an integral formulation of 
the energy equation (11.33), together with the method of characteristics. Later, Siegel

2.8

2.0

0.8

2.4

0 0.2 0.4 0.6 0.8 1 0

Figure 11.7. Transient variation in wall heat flux following a step change in wall temperature for 
fully developed steady laminar flow in a parallel-plate channel [13].
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Figure 11.8. Time to reach steady state after a step change in wall temperature for fully 
developed steady laminar flow in a parallel-plate channel [13].

[13] developed a solution by a method similar to the one discussed in Sec. 11.2.1 for 
laminar flow through a circular tube with the parabolic velocity distribution [Eq. 
(11.11)]. However, instead of using the eigenfunctions of the corresponding Graetz 
problem in his expressions of the steady-state and transient temperature distributions, 
he employed the eigenfunctions that would result in the solution of the same problem 
with the slug flow assumption. Figures 11.7 and 11.8 show his results for the local 
transient heat flux and the steady-state times ts = at./L1 as a function of distance 
along the channel length, respectively. In these two figures the Reynolds number Re is 
defined in terms of the hydraulic diameter Dh = 4L, where L is the half distance 
between the plates.

11.2.5 Transient Laminar Forced Convection in a Parallel-Plate 
Channel with Unsteady Flow

Consider again the same parallel-plate channel shown in Fig. 11.6. In this section, the 
transient heat transfer phenomena that occur in this channel when there are simulta
neous changes in fluid pumping pressure and wall heating conditions are discussed. Let 
there be a hydrodynamic entrance region, so that the flow is always fully developed for 
x > 0. Therefore, in the fully developed region, the velocity distribution, although 
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time-dependent, does not vary with the axial position along the channel. Furthermore, 
if the fluid is assumed incompressible, then the velocity distribution for x > 0 will be 
governed by

du 1 dp d2u
  = -— “k V 
dt------- p dx dy~

(11.36)

where dp/dx is a function of time only.

Step Change in Both Wall Temperature and Pressure Gradient from an 
Unheated Initial Condition. Initially, let the flow through the channel be steady with 
a mean velocity tq and isothermal at temperature Tt. At time t = 0, the pressure 
gradient is abruptly changed so that the fluid velocity undergoes a transient to a new 
mean value u2. At t = 0, when the pressure gradient is changed, the temperature of the 
bounding walls is also changed to a new value Tw and maintained at this value for 
t > 0.

If the fluid properties are assumed constant, and viscous dissipation and axial 
conduction are neglected, then the unsteady temperature distribution T( x, y. t) in the 
channel for x > 0 and t > 0 will satisfy Eq. (11.33), together with the conditions of 

Figure 11.9. Transient variation in wall heat flux following a step change in pressure gradient 
and wall temperature. Pr = 0.7; Uj = 0 [17],



TRANSIENT I AMINAR FORCED CONVECTION IN DUCTS 11*17

Eqs. (11.34a, b, c, d). However, the velocity distribution u in Eq. (11.33) will be given 
by the solution of Eq. (11.36).

Perlmutter and Siegel [17] obtained an analytical solution of this problem by 
expanding the transient temperature distribution in a series in the same form as the 
steady-state solution of the problem. They evaluated the expansion coefficients in their 
time and axial-coordinate dependence by restricting the expansion to satisfy an 
integrated form of the energy equation (11.33) and then solving resulting partial 
differential equation by the method of characteristics. Once they obtained the transient 
temperature distribution, they calculated the variation of the heat flux q" to the fluid 
at the channel walls from Fourier’s law. Figure 11.9 gives their calculations for the 
variation of the wall heat flux with time for a fluid with Pr = 0.7 and for the special 
case where zq = 0, i.e., initially there is no flow and both the channel and the fluid are 
isothermal at 7]. In this figure, the Reynolds number Re is defined in terms of the 
hydraulic diameter Dh = 4L and the mean velocity u2- As seen in Fig. 11.9, at each 
axial location the wall heat flux goes through a minimum and then increases toward the 
constant steady-state value. The reason for the initial decrease in q” is that after the 
initiation of the transient, the heat transfer at any location proceeds as if the channel 
were of infinite extent until the fluid particles that were at x = 0 at the beginning of the

Figure 11.10. Transient variation in wall heat llux following a step change in pressure gradient 
with initial steady heating. Pr = 0.7; ux = 0 [17].
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transient reach that location. For this early part of the process, the convective term 
drops out of the energy equation and the transient temperature distribution becomes 
independent of the axial direction.

Step Change in Pressure Gradient Only, with Initial Steady Heating. Now 
consider the situation where the transient is caused by a sudden change in the pumping 
pressure when there is a steady-state heat transfer process in the channel with the inlet 
temperature T, and the temperature of the walls Tw. By following an analysis similar to 
the one in the previous case, Perlmutter and Siegel [17] also developed a solution to this 
problem, and Fig. 11.10 gives their results for the variation of the wall heat flux q'' for 
a fluid with Pr = 0.7 and for the special case where iq = 0. As Fig. 11.10 shows, since 
there is no flow and the axial conduction was neglected, there is no heat transfer during 
the early transient period. After the fluid particles with the mean velocity m2 reach a 
specific location, then heat transfer begins at that location and the wall heat flux rises 
toward its steady-state value.

Step Change in Both Pressure Gradient and Wall Temperature with Initial 
Steady Heating. Consider a more general case where the pressure gradient and the 
wall temperature are suddenly changed to new values when initially there is a 
steady-state heat transfer process in the channel with nonzero flow velocity. The 
resulting transient can be evaluated by a superposition of the solutions to the previous 
two simpler cases. The details of this superposition are explained in [17], and they will 
not be repeated here.

11.3 TRANSIENT TURBULENT FORCED CONVECTION IN DUCTS

The literature on transient turbulent forced convection is sparse. Abbrecht and Churchill 
[12] presented the results of an experimental investigation of heat transfer in the 
thermal entrance region following a step change in wall temperature in fully developed 
turbulent flow in a tube. Radial and longitudinal temperature gradients, radial heat 
fluxes, and eddy diffusivities for heat and momentum were computed from the 
measurements.

Sparrow and Siegel [14] investigated transient turbulent heat transfer in the thermal 
entrance region of a tube whose wall temperature varies arbitrarily with time. As a first 
step, the heat transfer response to a step jump in wall temperature was analyzed, and 
then this was generalized by a superposition technique to apply to arbitrary time 
variations. Use of the generalized results was illustrated by application to the case 
where the wall temperature variation was linear with time. The method used permitted 
the heat transfer coefficient to vary with time and position in accordance with the 
energy conservation principle.

Kaka<j [21] analyzed transient heat transfer in incompressible turbulent flow be
tween two parallel plates for a step jump in wall heat flux or wall temperature. The 
variations of the fluid velocity and effective diffusivity over the channel cross section 
were taken into account. It was assumed that the velocity profile was fully developed 
throughout the length of the channel. The thermal response of the system was obtained 
by solving the energy equation for air on a digital computer. The Nusselt number was 
presented, in the forms of graphs, as a function of time and space. A method was also 
discussed to obtain the velocity distribution from the distribution of the turbulent eddy 
diffusivity of momentum.
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Kakay in [29] presented a general closed-form solution to the transient energy 
equation under boundary conditions of zero wall temperature or zero heat flux for the 
decay of the inlet and initial temperature distributions in an incompressible turbulent 
flow between two parallel plates. However, the eigenfunctions and the corresponding 
eigenvalues were left to be determined to complete the solution.

Gartner [30] analyzed the unsteady convective heat transfer in a hydrodynamically 
stabilized steady turbulent flow of a viscous incompressible fluid in a concentric 
annulus with the wall heat flux varying with time. The formulation permitted the heat 
transfer coefficient to vary with time and position. The energy equation was solved 
using the method of superposition and separating variables by finite integral trans
forms. The use of the generalized results was illustrated by application to the case 
where the wall heat flux varies exponentially with time.

Kawamura in [31] examined the variation of the heat transfer coefficient experimen
tally in a steady and turbulent flow through a circular tube cooled by water and heated 
stepwise with time. In addition, a numerical analysis was made for the same configura
tion, the results of which agreed well with the experimental results. Furthermore, an 
analytical expression for the variation of heat transfer coefficient was obtained. The 
time required for the heat transfer coefficient to reach its steady-state value was also 
studied.

Other important contributions in the field of transient turbulent forced convection 
are given in the references of the papers cited herein.

11.3.1 Transient Turbulent Forced Convection in Circular Tubes
Consider the circular tube shown in Fig. 11.1. Let there be a steady and fully developed 
turbulent flow through this tube, and the tube wall and fluid be initially isothermal at 
7]. Assume that the tube wall is given an instantaneous step in temperature (say at time 
t = 0) to reach a new value 7],., and maintained at TM. for all times thereafter. The 
starting point in the analysis is the unsteady energy equation for fully developed 
turbulent flow in a circular tube:

dT dT
Tt+uTx

i a
r dr

The initial, inlet, and boundary conditions are

dT'
^ + ^Tr

T(x, r,0) = 7], T(0, r, t) =

I dT\ T(x, r0,0 = Tw

(11.37)

(11.38a,b)

(11.38c, d)

Following an approach similar to the one discussed in Sec. 11.2.1, Sparrow and Siegel 
[14] first obtained the steady-state solution of this problem and then expanded the 
transient solution about the steady-state conditions, which was only required to satisfy 
the integrated form of the energy equation. The following is their result for the 
transient temperature distribution:

= £ CnFn(x+,t+)Rn(r+)

n = l
(11.39)
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where

(ra)3 dR„(r/ )/dr' 

Pr/o'o r+Rn dr+ (11.40)

Here, /3lt and R„(r’) are the eigenvalues and eigenfunctions, respectively, of the
following eigenvalue problem:

1ft J
—-----t “IRe r0 /

d { dRn\ 
r+y~rr 

dr \ dr I

dR„(V) =Q 
dr

*n(>b4) =0

(11.41a)

(11.41b, c)

R = 0

and

$ r+u+Rndr^ 

r+u R2n dr'
(U-42)

Various quantities in the above equations are defined as follows:

vt

'o

where r. is the wall shear stress and

Once the temperature distribution (11.39) is available, the wall heat-flux variation 
for the entire transient period can be calculated from Fourier’s law, and the result is

(TK-T/)k

00

-ro+ E CnF„(x+
n = 0

dR„(ro) 
dr+

(11.43)

Sparrow and Siegel [14] evaluated Eq. (11.43) for several combinations of Reynolds 
number and Prandtl number. Figure 11.11 is a representative result from [14], where 
the heat transfer responses at various positions ranging from x/D = 2 to x/D = 100 
are given. At any position along the tube, initially the heat transfer is only by pure 
diffusion and follows the envelope curve, decreasing with increasing time. Then, at a 
certain time, for example at = 0.00078 for x/D = 20, convection begins to act and 
the curve breaks away from the pure-diffusion envelope, with the heat transfer 
continuing to decrease until the horizontal steady state is reached. Sparrow and Siegel
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Figure 1111. Wall heat-flux response to a step jump in wall temperature for fully developed 
turbulent flow through a circular pipe [14],

[14] in their numerical evaluations used the following correlations given in [3]:

= (1 + (0.124)2u>+[1 - e-<0124>2“+1+]) \ 0 < / < 26 (11 44)
dv 1 ’

u' = 7/7 + 12’8493’ •>’" 26 <1145)0.36 \ 26 /

where r = r0+ — r The total diffusivity was evaluated from [5]:

y = — + (0.124)2u V[1 - e-<0124’2w+-> + ], 0 </ < 26 (11.46)

1 1’4 1
y = — + 0.36y 1 — -qr — 1, y > 26 (11.47)

The value of y at y + = 26 was taken as the average of Eqs. (11.46) and (11.47). The 
-1 appearing on the right-hand side of Eq. (11.47) was retained for 26 < y+ < r0+/2 
and deleted for larger values of y+.

The steady-state times rs, defined as the time period required for the heat transfer to 
come to within 5% of the steady-state value, were also calculated as a function of 
position by Sparrow and Siegel [14], and their results are given here in Fig. 11.12. As 
this figure shows, the steady-state time decreases as the Prandtl number increases, but 
by no more than a factor of 3 for this Prandtl number range. The Reynolds number
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Figure 11.12. Steady-state times after a step jump in wall temperature for fully developed 
turbulent flow through a circular pipe [14j.

also has a significant effect on the steady-state times, which are approximately in 
inverse proportion to the Reynolds number. Also appearing in this figure are two 
straight dashed lines corresponding to the time x/um, which approximately represents 
the time at which the heat transfer process at any position x begins to be influenced by 
the convection of fluid from the tube entrance. This simple relation zs = x/um, which 
is t, = 4( x/£))/Re in dimensionless form, gives a fairly good estimate for a Prandtl 
number around unity, but tends to overestimate the steady-state times as the Prandtl 
number increases. However, for the purpose of providing an order-of-magnitude 
estimate, x/um appears to be useful.

11.3.2 Transient Turbulent Forced Convection in a 
Parallel-Plate Channel

Kakag [21] made a numerical analysis by finite differences of transient forced convec
tion for a hydrodynamically fully developed incompressible steady turbulent flow in a 
parallel-plate channel when there is a step change in wall heat flux or wall temperature. 
He used experimentally determined values for the eddy diffusivities of momentum and 
of heat in his calculations, and presented the variation of the Nusselt number as a 
function of time and axial position along the channel. Figures 11.13 and 11.14 show



140

Figure 11.13. Transient Nusselt numbers for a step change in wall temperature for fully 
developed turbulent flow in a parallel-plate channel. Pr = 0.73 [21].

Figure 11.14. Transient Nusselt numbers for a step change in wall heat flux for fully developed 
turbulent flow in a parallel-plate channel. Pr = 0.73 [21].
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two of his calculations for the local Nusselt number for air (Pr = 0.73) at two locations 
along the channel and for two Reynolds numbers, for step changes in wall temperature 
and in wall heat flux, respectively. In these figures q't' is the wall heat flux to the fluid, 
Tm is the fluid bulk mean temperature, and Dh = 4L, with L the half distance between 
the channel walls.

11.4 ANALYSIS OF TRANSIENT FORCED CONVECTION FOR 
TIMEWISE VARIATION OF INLET TEMPERATURE

The periodic thermal response of duct flows to imposed cyclic variations in thermal 
conditions has also been investigated. Sparrow and De Farias [22] made an analysis of 
unsteady laminar heat transfer in a parallel-plate channel with periodically varying 
inlet temperature. The midplane of each wall was considered insulated, and the wall 
temperature was dynamically determined by a balance of heat transfer and energy 
storage. In the analytical formulation, the commonly used quasi-steady assumption was 
lifted in favor of the local application of the energy equation, the solution of which 
involved an eigenvalue problem with complex eigenvalues and eigenfunctions. Numeri
cal evaluation of the analytical results provided the time and space dependence of the 
wall and bulk temperatures and of the Nusselt number. In addition, results for the 
overall performance of the channel as a heat exchanger were presented in terms of 
the energy carried across the exit cross section relative to that carried across the 
entrance section. For comparison purposes, results for the overall performance were 
also derived using the quasi-steady model. It was found that for a range of operating 
conditions the quasi-steady model was able to give accurate performance predictions, 
especially when it was used in conjunction with spatially varying heat transfer coeffi
cients.

Kaka<; and Yener [26] obtained an exact solution to the transient energy equation 
for laminar slug flow of an incompressible fluid in a parallel-plate channel with 
time-varying inlet temperature. The results were confirmed experimentally by the 
frequency response method for a limited range of Reynolds number.

Acker and Fourcher [37] studied the laminar flow in a storage unit in thermal 
periodic regime. The energy equations were solved simultaneously both for the wall and 
for the fluid flow between two parallel plates by Laplace transforms with the slug flow 
assumption and when there is a sinusoidal variation in the inlet fluid temperature.

Sucec and Sawant [46] made a study of the unsteady, conjugated laminar forced 
convection in a parallel-plate channel with periodically varying inlet fluid temperature. 
They obtained the wall and the fluid bulk temperatures as a function of distance along 
the channel and of time for a sinusoidal inlet temperature variation, the channel walls 
being adiabatic on their outside surfaces and communicating thermally with the fluid 
across their inside surfaces.

11.4.1 Heat Transfer in Laminar Slug Flow through a Parallel-Plate 
Channel with Time-Varying Inlet Temperature

The parallel-plate channel under consideration is shown in Fig. 11.15. The fluid 
entering the heated section has a temperature which is spatially uniform across the 
entrance section but varies sinusoidally with time as

T(0, ,y, r) = To + (AT)osin/?t (11.48)
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Figure 11.15. Coordinate system for parallel-plate channel.

where is the cycle mean temperature, (AT),, is the amplitude, and ft is the inlet 
frequency The following idealizations are made in the analysis:

Flow between the plates is steady, fully developed, and laminar.
Viscous dissipation is negligible.
Axial conduction is negligible with respect to bulk transport in the x direction.
This is a reasonable assumption when the Peclet number exceeds 100.
Fluid properties are constant.
Thermal resistance of the channel walls is negligible.

The starting point of the analysis is again the unsteady energy equation for a fully 
developed laminar flow in a parallel-plate channel, which can be written as

de de d2e
(11.49)

where

e(x.y, t) =
T(x,y, Q - To 

(AT)o
(11.50)

with the following inlet and boundary conditions:

0(0, y, t) = sin ftt (11.51a)

(11.51b,c)
/ de

\ dy

dO \
k — + he \ =f(x)

) y-L

where the function f(x') is given in Table 11.1 for various boundary conditions at 
v = L. One obtains the temperature boundary condition at y = L by setting k = 0 
and h = 1, and the heat-flux boundary condition by setting h = 0. When h and k are 
finite, Eq. (11.51c) means that the boundary at r = L is losing heat by convection to 
the environment at temperature Tx(x).

The foregoing problem can be separated into two as follows:

e(x, y, t) = et(x, y) + 0?(x, y, t) (11.52)

where Oftx. y) and 02(x, y, t) are solutions of the following problems:

de{ d2ex
u—— = a n dx dy2

(11.53a)
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TABLE 11. 1. The Function/(x)

Boundary Condition 
at y = L Function f(x)

First kind Tw(x) - To
(k = 0. h = 1) (AT)o

Second kind <7W(*)
(A = 0) (AT)o

Third kind , ^(x)-T0
(/c and h finite) ' (AT)o

with

Mo.j) = o

and

with

(11.53b)

/ de. \
\ dy L = o,

-o \

001 \
k— + A01 = /(*)

0J )y-L
(11.53c,d)

de?
------- f u
dt

de? d2e2
----  = a z- 
dx------ dy2

(11.54a)

02(o, y , t) = sin ftt (11.54b)

/ 002 \
\ dy /

= o, 
y-0

I 002 \k—- + he2\ =0
\ 0E ) y=L

(11.54c,d)

To simplify the method of analysis, the velocity profile u across the entire flow area 
of the channel will be taken constant (i.e., slug flow idealization).

Solution for ^(x,y). The solution of the problem given by Eqs. (11.53) can be written 
as [26]

oc COS X V x
#i(x,y) = E —[ e-(aX"/u)(x"x'^„(x') dx' (1155)

where A„ and An(x) are given in Tables 11.2 and 11.3, and Nn is defined by

L 1
= y + —sin2LX„ (11.56)

Solution for Q2(x,y,t). The solution of the problem given by Eqs (11.54) can be 
written as [26]

6* 2(x, v. r) =

cos X„y sin XnL --------------------- p
X„N„

sin ft
U

(aX2„/u)x h + 0
(11.57)

h = 0
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TABLE 11. 2. Eigenvalues

Boundary Condition
at y = L \n

First kind 2n — lw
U = 0, A = l) n = ~L~ 2’” = 1’

Second kind n - 1
(A = 0) A„ = —7T, « = 1,2,

Third kind Positive roots of
( k and h are finite) X„tan X„L = X/A

TABLE 11. 3. The function A„(x) in Eq. (11.55)

Boundary Condition 
at y = L An(x)

First kind —-/(x)sinX„
u

Second and third kinds
a

—/(x)cosX„

When the boundary’ condition for 0(x, y, t) at y = L is homogeneous, i.e., when 
/(x) = 0, then 0Y(x, y) becomes identically zero, and in that case

0(x, y, z) = 02(x, y, z)

When the temperature or the convection boundary condition is homogeneous, the 
walls lose heat in such a way that each mode of 02(x, y, z) decays exponentially along 
the duct and this decay is inversely proportional to the velocity u. Therefore, as the 
velocity u is increased, the rate of decay decreases. It is also seen that the phase lag 
along the tube is linear with the slope /8/u, and as the velocity u is increased, this slope 
decreases.

When the heat-flux boundary condition is homogeneous, there will be no heat 
conduction in the y direction. Since the axial diffusion of heat has already been 
neglected, the amplitude of 02(x, r, Z) remains constant. The phase lag, however, is the 
same as in the other two cases because of the convention in the x direction.

11.4.2 A General Solution to the Transient Forced Convection Energy 
Equation for Timewise Variation of the Inlet Temperature

In this section, following the work of Kakag [29], formal solutions for the decay of a 
periodically varying inlet temperature in a fully developed turbulent flow between two 
parallel plates with linear and homogeneous boundary conditions are given.

Consider a steady, fully developed turbulent flow through a parallel-plate channel 
whose walls are separated by a distance L as shown in Fig. 11.15. Neglecting axial 
diffusion and viscous dissipation, and assuming constant fluid properties, the energy 
equation governing the conduction (in the y direction) and the convection (in the a 
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direction) can be written as

where u( y) is the fully developed velocity profile and D(y) is the effective diffusivity, 
which is assumed to be a function of y only. Suppose that the system satisfying Eq. 
(11.58) is subject to a periodic inlet condition of the form

T(0,y,0 = ^', i =-/--I (11.59)

and two linear homogeneous boundary conditions of the following general forms:

dT\
axT+bx— =0 (11.60a)

°y) y-0

dT\
\ a->T + b-,— =0 (11.60b)
\ dyI v=i.

where a, and />,. i = 1,2, are given real constants. If a periodic solution of the form

T(x,y,t) = e‘p,X(x)Y(y)

for the decay of the inlet condition of Eq. (11.59) is assumed, then it can be shown that 
the solution for T(x, y, t) is given by [29]

r(x,y,0 = £ c„<?-“"’ [P„(y)cos(0r - 8„x) - Q„(y)sin( pt - 8„x)] 
M=1

+ ' E CA^tt"x[P„(y')sia(P( - V) + Qr,(y)cos(pt - 8„x)] (11.61) 
n = l

where P„(r) and Q„(y) are the eigenfunctions and are the eigenvalues of the 
following coupled eigenvalue problem:

d I dPn \
dy\D^] = + Mn (H-62a)

d I dQ„)
= (1L62b)

w'ith

dP (O') dQ (0)aiP„(0)+ ^-^— =0, ^(0) +b1-^~L =0 (11.63a,b)

z dP,(Q dQAL)
a2Pn(L) + b2—=0, a2Qn(L)+b2---- -- — =0 (11.63c,d)
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and

= 0
+ 2-) dy

(L^p; + e„?) dy
Jo

(11.64)

As an example, let the system satisfying Eq. (11.58) be subjected to a periodic inlet 
condition given by

T(0, y,z) = 7; + (AT)osin)8z (11.65)

and two linear homogeneous boundary conditions of the following forms:

/ an
\ dy/

= 0 and T(.x-,£) = 7;
>• = 0

(11.66a, b)

The solution will then be given by

r - n, 
(Ar)0

= 0\(x, >-) + £ cne a^pi(y) + Ql(y) sin(/fr - 8nx + c„) 
n = l

(11.67)

where

tan 1
Q„(y) 
P„(y)

and 0,( x. t ) satisfies the following problem:

u—— 
ax

d [ 96.
-T- kr 
d v \ ay

#i(0,y) =0

(11.68)

(11.69)

(11.70a)

ex(x. l) = (11.70b,c)
I d&1
\ dy)

PW Pm

In regions away from the inlet, only the first term in the series in Eq. (11.67) needs to 
be considered. Hence, the asymptotic solution, deleting the subscript 1, becomes

L-C' = y) + ce~“yjp\y) + 22(t) - 8x + c) (11.71)
(Jo

It is to be noted that solutions developed so far are also valid for laminar flow.
The form of Eq. (11.71) suggests that the results can best be confirmed experimen

tally by the frequency response method, and the first values of the eigenvalues a„ and 
can be determined for various values of the inlet frequency for a wide range of the 

Reynolds number.
An experimental setup can be designed and used to study the decay of sinusoidal 

inlet conditions for turbulent forced convection in various channel geometries and to 
obtain experimentally the first eigenvalue and other parameters appearing in the 
general solutions by the frequency analysis.
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At a fixed Reynolds number, the changes of amplitudes and phases of temperature 
waves along the channel can be measured. Phase data can be taken with respect to the 
thermocouple nearest to the inlet heater. An experiment can be carried out for the 
different frequency values of the sinusoidal variation of heat input to the inlet heater.

From the series of such measurements, the coefficients a and 8 can be measured as 
a function of the Reynolds number, inlet frequency, and distance along the channel. 
The results of the general solution given in this section were confirmed experimentally 
by the frequency response method for a limited range of Reynolds number [34].

11.5 CONCLUDING REMARKS

A state-of-the-art review of transient forced convection in ducts has been given. Basic 
solution methods, together with some important solutions, have also been introduced 
for two geometries, namely parallel plates and circular tubes. These are the two 
geometries most commonly used in fluid flow and heat transfer devices. For further 
solutions and applications the reader is referred to the references cited at the end of 
this chapter.

NOMENCLATURE

CP
D
Dh 
h

•A) ’ -A 
k
L

specific heat at constant pressure, J/(kg • K), Btu/(lbm • °F)
diameter = 2r0, m, ft
hydraulic diameter = 4£, m, ft
heat transfer coefficient. W/(m2 • K), Btu/(hr • ft2 • °F)
Bessel functions of the first kind and of zero and first orders
thermal conductivity, W/(m • K), Btu/(hr • ft • °F)
half the distance between parallel plates; distance between parallel plates, 

m, ft
P„
Pr

eigenfunction
Prandtl number = pcp/k = v/a

p 
Q„ 
q" 
R, 
Re

pressure, Pa, lbf/ft2 
eigenfunction
heat flux, W/m2, Btu/(hr • ft2) 
eigenfunction
Reynolds number = puDh/p

r radial coordinate, m, ft
rn 
ro 
T 
A. 
t
l * 
1

tube radius, m, ft
dimensionless radius = r^7w/p / v 

temperature, °C, K, °F, °R
cycle mean temperature, °C, K, °F, °R
time, s
dimensionless time = vt/itf 
steady-state time, s
mean flow velocity, m/s, ft/s
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u velocity component in x direction, m /s ft/s
u+ dimensionless velocity = u/y/rw/p

x distance parallel to flow direction along the ducts, m, ft
x ’ dimensionless x coordinate = x/D
>’ transverse distance in parallel-plate channels, m, ft
r+ dimensionless variable = r0+ - r+

Greek Symbols

« thermal diffusivity = k/pcp, m2/s, ft2/s
a„ eigenvalues
ft inlet frequency, 1 /s
ft. eigenvalues
f,, eddy diffusivity of heat, m2/s, ft2/s
c„, eddy diffusivity of momentum, m2/s, ft2/s
Tj dimensionless r coordinate = r/r0
0 dimensionless temperature, defined by Eq. (11.4e) or (11.31)
X eigenvalues
p. dynamic viscosity, Pa • s, lbm/(hr • ft)
v kinematic viscosity, m2/s, ft2/s
| dimensionless x coordinate = (2x/Z>)/(RePr)
p density, kg/m3, lbm/ft3
t dimensionless time = at/r^
t shear stress, Pa2, lbf/ft2
r dimensionless steady-state times = <xts/L~
(AT)0 amplitude of inlet temperature variation, °C, K, °F, °R

Subscripts
i inlet condition
m bulk mean condition
s steady-state conditions
m wall condition
oo environment condition
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12.1 INTRODUCTION

The convective mode of heat transfer is generally divided into two basic processes. If 
the motion of the fluid arises from an external agent—for instance, a fan, a blower, the 
wind, or the motion of the heated object itself—then the process is termed forced 
convection. If, on the other hand, no such externally induced flow is provided and the 
flow arises “naturally” from the effect of a density difference, resulting from a 
temperature or concentration difference, in a body force field such as the gravitational 
field, then the process is termed natural convection. The density difference gives rise to 
buoyancy forces due to which the flow is generated. A heated body cooling in ambient 
air generates such a flow in the region surrounding it. The buoyant flow arising from 
heat rejection to the atmosphere, heating of rooms, fires, and many other such heat 
transfer processes, both natural and artificial, are other examples of natural convection. 
Several recent books and reviews may be consulted for detailed presentations of this 
subject. See, for instance, the books by Turner [1], Jaluria [2], Kakay et al. [3] and 
Gebhart et al. [4],

The main difference between natural and forced convection lies in the nature of the 
fluid flow generation. In forced convection, the externally imposed flow is generally 
known, whereas in natural convection it results from an interaction of the density 
difference with the gravitational (or some other body force) field, and is therefore 
invariably linked with and dependent on the temperature and concentration fields. 
Thus the motion that arises is not known at the onset and has to be determined from a 
consideration of the heat and mass transfer processes coupled with fluid flow mecha
nisms. Also, in practice, velocities in natural convection are usually much smaller than 
those in forced convection.

The above differences between natural and forced convection make the analysis of, 
as well as experimentation on, processes involving natural convection much more 
complicated than those involving forced convection. Special techniques and methods 
have therefore been devised to study the former process with a view to providing 
information on the flow and on the heat and mass transfer rates.

In order to understand the physical nature of natural convection transport, let us 
consider natural convection heat transfer from a heated vertical surface placed in an 
extensive quiescent medium at a uniform temperature, as shown in Fig. 12.1. If the 
plate surface temperature Tj, is greater than the ambient temperature Tx, the fluid 
adjacent to the vertical surface gets heated, becomes fighter (assuming it expands on 
heating), and rises. Fluid from the neighboring areas rushes in to take the place of this 
rising fluid. If the vertical surface is initially at temperature Tx and then, at a given 
instant, heat is turned on, say through an electric current, in order to heat it to a 
temperature , the flow undergoes a transient before the flow shown is achieved. It is 
the analysis and study of this steady flow that yields the desired information on heat 
transfer rates, flow rates, temperature field, etc. The flow for a cooled surface is 
downward, as shown in Fig. 12.1b.

The heat transfer from the vertical surface may be expressed in terms of the usual 
relationship between the heat transfer rate q and the temperature difference between 
the surface and the ambient, given as

Q = hmA(Tw- Tx), (12.1)

where hm is termed the convective heat transfer coefficient and A is the total area of 
the vertical surface. The coefficient hm depends on the flow configuration, fluid 
properties, dimensions of the heated body, and generally also on the temperature
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Figure 12.1. Coordinate system for natural-convection flow over a vertical surface.

(b)

difference, because of which the dependence of q on Tw - Tx is not linear. Since the 
fluid motion becomes zero at the surface due to the no-slip condition, the heat transfer 
from the heated surface to the fluid in its immediate vicinity is by conduction. It is 
therefore given by Fourier’s law as

(12.2)

where the gradient is evaluated at the surface, y = 0, in the fluid, k being the thermal 
conductivity of the fluid. From this equation, it is obvious that the natural convection 
flow largely affects the temperature gradient at the surface, since the remaining 
parameters would remain essentially unaltered. The purpose of an analysis is, therefore, 
largely to determine this gradient, which in turn depends on the flow, temperature field, 
and fluid properties.

The heat transfer coefficient hnt represents an integrated value for the heat transfer 
from the entire surface, since, in general, the local value h t would vary with the vertical 
distance from the leading edge (x = 0) of the vertical surface. The local heat transfer 
coefficient hx is defined by the equation

q'x' = hx(T„ - Tj (123)

Here q" is the heat transfer per unit area per unit time at a location x, where the 
surface temperature difference is T„ - Tx, which may itself be a function of x. The
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Figure 12.2. Sketch of the velocity and temperature distributions in natural-convection flow over 
a vertical surface.

average heat transfer coefficient hm, defined in Eq. (12.1), is obtained from the above 
relationship through integration over the entire area. Both hm and hx are generally 
given in terms of the nondimensional parameter called the Nusselt number Nu. Again, 
an overall (or average) value, Num, and a local value, Nux, may be defined as

h, x hn,L
Nu, = ^-, Num = -f- (12.4)

k k

where L is the height of the vertical surface and thus represents a characteristic 
dimension.

The fluid far from the vertical surface is stagnant, this being an extensive medium. 
The fluid next to the surface is also stationary due to the no-slip condition. The result is 
that flow exists in a layer adjacent to the surface, with zero velocity on either side, as 
shown in Fig. 12.2. The temperature varies from Tw to Tx. Therefore, the maximum 
velocity occurs at some distance away from the vertical surface. Its exact location and 
magnitude has to be determined through analysis or experimentation. The flow near the 
bottom or the leading edge (x = 0) is laminar, being a well-ordered and well-layered 
flow. However, as the flow proceeds vertically upward or downward, the flow gets more 
and more disorderly and disturbed, eventually becoming completely disorderly and 
random, a condition termed turbulent flow. The flow region between the laminar and 
the turbulent flow is termed the transition region; its location and spread depend on 
several variables, such as the temperature of the surface and the fluid, and the nature 
and magnitude of external disturbances in the vicinity of the flow. Most of the 
processes encountered in nature are generally turbulent, though in industry, flows are 
often in the laminar or transition regime. A determination of the regime of flow and its 
consequent effect on the flow parameters and heat transfer rates is therefore important.



BASIC MECHANISMS AND GOVERNING EQUATIONS 12*5

Natural convection flow may also arise in enclosed areas; see Chapter 13. This flow, 
generally termed internal natural convection, is very different in many ways from the 
external convection considered above for a vertical heated surface; the latter surface 
was considered to be immersed in an extensive, quiescent, isothermal medium. In this 
chapter, we shall discuss only external natural convection, internal flows being consid
ered in the next chapter. Let us now proceed to the governing equations in natural 
convection.

(12.5)

(VV) (12.6)

Dp
— + uO, (12.7)

12.2 BASIC MECHANISMS AND GOVERNING EQUATIONS
12.2.1 Governing Equations
The governing equations for a convective heat transfer process are obtained by 
considerations of mass and energy conservation and of the balance between the rate of 
momentum change and applied forces. These may be written, for constant viscosity p 
and zero bulk viscosity, as

Dp dp_ = _+V.Vp=_pV.v

DN / av \ . M
P~ = p — + v • V v = F - Vp + PV2V + - V

Dt \ 0t ) 3

DT /3T \
pcp— + v‘vr =v’(m) + ?"'Dt \ at )

where V is the velocity vector, T the local temperature, F the body force per unit 
volume, p the static pressure, t the time, p the fluid density, cp the specific heat at 
constant pressure, fl the coefficient of thermal expansion of the fluid, <!>,, the viscous 
dissipation (which is the irreversible part of the energy transfer due to viscous forces), 
and q the energy generation per unit volume. The total, or particle, derivative D/Dt 
may be expressed in terms of local derivative as (d/dt + V • V).

In natural convection flows, the basic driving force arises from the temperature field. 
The temperature variation causes a difference in density, which then results in a 
buoyancy force due to the presence of the body force field. For a gravitational field, the 
body force F = pg, where g is the gravitational acceleration. It is the variation of p that 
gives rise to the flow. The temperature field is linked with the flow, and all the above 
equations are coupled through the variation of the density p. Therefore, these equations 
have to be solved simultaneously to give the distributions, in space and time, of the 
velocity, pressure, and temperature fields. Due to this added complexity in the analysis 
of the flow, several simplifying assumptions and approximations are generally made in 
natural convection.

In the momentum equation, the local static pressure p may be broken down into 
two terms: one, pa, due to the hydrostatic pressure, and the other, pd, due to the 
motion of the fluid. The former, coupled with the body force acting on the fluid, 
constitutes the driving mechanism for the flow. Thus, p = pa + pd, and if px is the 
density in the ambient medium, we write

F - Vp = (pg - VpJ - Vpd

= (Pg - Poog) - = (p - PoJg - ^Pd
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If g is downward and the x direction upward (g = ~ig), as is generally the case for 
vertical buoyant flow’s, then

F - Vp = (Poc - p)gi -

where i is the unit vector in the x direction and g is the magnitude of the gravitational 
acceleration. Therefore, the resulting governing equations for natural convection are 
the continuity equation (12.5), the energy equation (12.7), and the momentum equa
tion. which becomes

Z>V u
P— =(Pno -P)g-V^ + PV2V+-V(V ’v) (12.8)

12.2.2 Approximations in Natural Convection
The governing equations for natural convection flow are coupled elliptic partial 
differential equations, and are therefore of considerable complexity. The major prob
lems in obtaining a solution to these equations lie in the inevitable variation of the 
density p with temperature or concentration, and in their partial elliptic nature. Several 
approximations are generally made to considerably simplify these equations. Two of 
the most important among these are the Boussinesq and the boundary-layer approxi
mations.

The Boussinesq approximations involve two aspects. First, the density variation in 
the continuity equation is neglected. Thus, the continuity equation (12.5) becomes 
V • V = 0. Second, the density difference, which causes the flow, is approximated as a 
pure temperature effect, i.e., the effect of pressure on the density is neglected. In fact, 
the density difference is estimated as

Poo -p = pP(T- TJ (12.9)

where is the ambient temperature. These approximations are very extensively 
employed for a very wide range of problems in natural convection. An important 
condition for the validity of these approximations is that ft(T — TK) <s 1 [2], There
fore, the approximations are valid for small temperature differences. However, they are 
not valid near the density extremum of water, where a linear dependence of p on T 
may not be assumed [5],

Another approximation made in the governing equations pertains to the extensively 
employed boundary-layer assumption. The basic concepts involved in employing the 
boundary-layer approximation in natural convection flows are very similar to those in 
forced flow. The main difference lies in the fact that the pressure in the region beyond 
the boundary layer is hydrostatic, instead of being imposed by an external flow', and 
that the velocity outside the layer is zero. However, the basic treatment and analysis 
remain the same. It is assumed that the flow and the energy, or mass, transfer, from 
which it arises, are predominantly restricted to a thin region close to the surface. 
Beyond this region, the fluid is stationary. Several experimental studies have corrobo
rated this assumption. As a consequence, the gradients along the surface are assumed 
much smaller than those normal to it.

The main consequences of the boundary-layer approximations are that the axial 
diffusion terms in the momentum and energy equations are neglected in comparison 
with the transverse diffusion terms. The transverse momentum balance is neglected, 
since it is found to be of negligible importance compared to the axial balance. Also, the 
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velocity and thermal boundary layer thickness, 8 and 8r respectively, are found to be 
of orders of magnitude given by

L
8 ~ 571/4 (12.10)

8t 1
T ~ pF

where Gr is the Grashof number based on a characteristic length L, and Pr is the 
Prandtl number. These are defined as

(12.11)

r pc, v
Gr - ------------ r----------- . Pr------- -

k a
(12.12)

v2

where v is the kinematic viscosity and a the thermal diffusivity of the fluid.
The resulting boundary-layer equations for a two-dimensional variable-fluid-prop

erty flow are obtained as

du dv
—— + ——
dx dy

du du
u~~---- H v—~

dx dy

I dT dT\
PC-\U^+V^]

= 0 (12.13)

1 d ( du\= gP(T-Toa-) + - — \ti—\ (12.14)
p dy \ dy I

d( dT\ dpa I du\2
= t- ]+^"' +PTu^r + » hr (12.15) 

dy \ dy) dx \ dy)

where the last two terms in the energy equation are the dominant terms from pressure 
work and viscous dissipation effects. Here, u and v are the velocity components in the 
x and y directions, respectively. Though these equations are written for a vertical, 
two-dimensional flow, similar approximations can be carried out for several other flow 
circumstances, such as axisymmetric flow over a vertical cylinder and the wake above a 
concentrated heat source.

There are several other approximations that are commonly employed in the analysis 
of natural convection flows. The fluid properties—except the density, for which the 
Boussinesq approximations are generally employed—are often taken as constant. The 
viscous dissipation and pressure work terms are generally small and are neglected. 
However, the importance of various terms can be best considered by nondimensionaliz- 
ing the governing equations and boundary conditions, as outlined next.

12.2.3 Dimensionless Parameters
In an attempt to characterize the natural convection transport processes, a study of the 
basic nondimensional parameters must be carried out. These parameters are of consid
erable importance not only in simplifying the governing equations, but also in guiding 
the experiments that have to be carried out to obtain the relevant data for the process, 
and in the presentation of the data for subsequent design of equipment.

In natural convection, there is no free-stream velocity, and a convection velocity 
is employed for the nondimensionalization of the velocity V, where is given by

Vc = [g^L(TH-Tj]1/2 (12.16)
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The governing equations may be nondimensionalized by employing the following 
dimensionless variables (indicated by primes in this subsection only), together with the 
volumetric heating rate q '":

= = v' = tv, (v')2 = ^2v2 (12-17)

where t, is a characteristic time scale. If the governing equations are nondimensional
ized with the above transformations, one obtains

V' • V' = 0

Sr—— + V' • V'V' = -eO' - \7'p'd + -= v2V' 
dt yGr

90' 1 ,
Sr----- + V' • V '0' = ----i= V ,20' + q

dt' Pr/Gr

+ /3T
gfSL dp' gfiL
-— Sr — + -—V' 

c„ dt' cn

1

cp /Gr u

(12.18)

(12.19)

(12.20)

where e is the unit vector in the direction of the gravitational force.
Here, Sr = L/(Vctc) is the Strouhal number, and q'" is nondimensionalized with 

pc (Tw — TX}VC/L. It is clear from the above equations that /Gr replaces Re, which 
arises in forced convection. Similarly, the Eckert number is replaced by g[SL/cp, which 
now determines the importance of the pressure and viscous-dissipation terms. The 
Grashof number indicates the relative importance of the buoyancy term as compared 
to the viscous term. A large value of Gr, therefore, indicates small viscous effects in the 
momentum equation, similar to the physical significance of Re in forced flow. The 
Prandtl number Pr gives a comparison between momentum and thermal diffusion. 
Thus, the Nusselt number may be expressed as a function of Gr and Pr for steady 
flows, if pressure work and viscous dissipation are neglected.

12.3 LAMINAR NATURAL CONVECTION FLOW OVER 
FLAT SURFACES

12.3.1 Vertical Surfaces

The classical problem of natural-convection heat transfer from an isothermal heated 
vertical surface, shown in Fig. 12.1, with the flow assumed to be steady and laminar 
and the fluid properties (except density) taken as constant, has been of interest to 
investigators for a very long time. Viscous-dissipation effects are neglected, and no heat 
source is considered within the flow. The problem is therefore considerably simplified,
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though the complexities due to the coupled partial differential equations remain. The 
governing differential equations may be obtained from Eqs. (12.13)-(12.15).

An important method for finding the boundary-layer flow over a heated vertical 
plate is the similarity variable method. A stream function >■) is first defined so 
that it satisfies the continuity equation. Thus,

<9ip
u = V =

dx
(12.21)

Then, the similarity variable 77, and dimensionless stream function f, and the tempera
ture 0 are defined as follows so as to convert the governing partial differential 
equations into ordinary differential equations. For flow over a vertical isothermal 
surface, these are

where

/ Gr, V/4
,// = 4^/(1}) — (12.22)

The boundary conditions are

gp(Tw-Tx)x3
Grv = -----------5---------

v~
(12.22a)

at y = 0: u = v = 0, T = Tw; as y -> oo; w -» 0, T —» 7^

These may also be written in terms of the similarity variables.
The governing equations are obtained from the above similarity transformation as

f"' + 3ff" — 2(/')2 + 0 = 0 (12.23)

with boundary conditions

0"
— + 3/0' = 0 (12.24)

at 7) = 0: / = /' = 1 — 0 = 0: as tj -» oo: /' -» 0, 0 -*  0

or

/(0) = /'(0) = 1 - 0(0) = /'(oo) = 0(oo) = 0 (12.25)

where the primes indicate differentiation with respect to the similarity variable y.
These equations have been considered by several investigators. Schuh [6] gave 

solutions for various values of the Prandtl number, employing approximate methods. 
Ostrach [7] numerically obtained the solution for the Pr range of 0.01 to 1000. The 
velocity and temperature profiles thus obtained are shown in Figs. 12.3 and 12.4. An 
increase in Pr is found to cause a decrease in thermal boundary-layer thickness and an 
increase in the absolute value of the temperature gradient at the surface. The dimen
sionless maximum velocity is also found to decrease and the velocity gradient at the 
surface to decrease with increasing Pr, indicating the effect of greater viscous forces. 
The location of this maximum value is found to shift to higher t) as Pr is decreased.

T — T
0 --------- -

Tw - K
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Figure 12.3. Velocity variation across the boundary layer for flow over an isothermal vertical 
surface [7],

The velocity boundary-layer thickness is also found to increase as Pr is decreased to 
low values.

Now, the heat transfer from a heated surface may be obtained as

dT\
-k(Tw-

d0\

^/o

k(r. - T ) / GrJ1/4
0'(O) ——— —x \ 4

Since

Nu, =
/tAx
T~

q" X
Tw - T, I
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Figure 12.4. Temperature variation across the boundary' layer for flow over an isothermal vertical 
surface [7],

we have for an isothermal surface (denoted by subscript T)

/ Grx\1/4Nux.r=[-0'(O)]^ —j

= -^MGry4 = dfPrJGr1/4
V2

where <#>(Pr) = [ - 0'(O)]/y/2 . Therefore, the local surface heat transfer coefficient 
h(x) varies as

1/4 kh T = Bx 1/4, where B = ------ -------- --------- 5-------
X-T V2 \ v2 /
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TABLE 12.1 Computed Values of the Parameter <|>(Pr) for a 
Vertical Heated Surface [9]

Pr
<MPr) 

(Isothermal)

*(Pr,D 
(Uniform Heat Flux) 

n = 1/5

0 0.600 Pr1/2 0.711 Pr1/2
0.01 0.0570 0.0669
0.72 0.357
0.733 0.410
1.0 0.401
2.0 0.507
2.5 0.616
5.0 0.675
6.7 0.829
7.0 0.754

10 0.826 0.931
102 1.55 1.74
103 2.80
104 5.01

00 0.503 Pr1/4 0.563 Pr1/4

The average value of the heat transfer coefficient, hm T, may be obtained by 
averaging over the entire length of the vertical surface:

1 cl B
hm.r= YJ h*-T dx = -

4
- • TV4 = ihl
3 1 L

and

^n,.T
4 -0'(O)
- • —• Gr1/4 = 4</>(Pr)Gr1/4 (12.26)

The values of <£>(Pr) can be obtained from a numerical solution of the governing 
differential equations. Values obtained at various Pr are listed in Table 12.1.

In several problems of practical interest, the surface from which heat transfer occurs 
is nonisothermal. The two families of surface temperature variation which give rise to 
similarity in the governing laminar boundary-layer equations have been shown by 
Sparrow and Gregg [8] to be the power-law and exponential distributions:

Tw - Tx = Nxn and Tw - Tx = Memx (12.27)

where N, M, n and m are constants. The power-law distribution is of particular 
interest, since it represents many practical circumstances. The isothermal surface is 
obtained for n = 0. A uniform heat flux condition, q" = constant, arises for n = ‘. A 
thermal plume due to a line heat source at x = 0 is obtained for n = - j. It can also 
be shown that physically realistic solutions are obtained for 1 > n > — | [2, 8],

The local Nusselt number Nu^ is obtained as

Nux -0'(O)
Gr/4 = /2 = </>(Pr, n) (12.28)
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Figure 12.5. Dependence of the local Nusselt number on the value of n for a power-law surface 
temperature distribution [8],

The function Nuv/Gry4 is plotted against n in Fig. 12.5. For n < — |, the function is 
found to be negative, indicating the physically unrealistic circumstance of heat transfer 
to the surface for Tw > . The surface is adiabatic for n = — f.

For the case of uniform heat flux, n = | and q" = q", a constant. Therefore,

q" = £[-0'(O)]7V
g/?N\1/4 
4r2 /

which gives

N =
q" \4/5 / 4r2 \1/5

(12.29)

For a given heat flux q” at a vertical surface, which may be known, for example from 
the electrical input into the surface, the temperature of the surface varies as x1/5, and 
its value may be determined as a function of the heat flux and fluid properties from the 
above relationship. The parameter — #'(0) is obtained from a numerical solution of the 
governing equations for n = 0.2, at the given value of Pr. Some results obtained from 
Gebhart [9] are shown in Table 12.1.
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12.3.2 Inclined and Horizontal Surfaces
In manv interesting and important cases of natural convection, the flow is generated as 
a consequence of the thermal input from a surface which is itself curved or inclined 
with respect to the direction of the gravity field. Consider, first, a flat surface at a small 
inclination y from the vertical. Boundary-layer approximations, similar to those for a 
vertical surface, may be made for this flow. It can be shown that if x is taken along the 
surface and y normal to it, the continuity and energy equations (12.13) and (12.15) 
remain unchanged and the x-direction momentum equation becomes

du du 1 d I du\
u-~ + v— = gfi(T- Tx)cosy + p—

dx dy p dy \ dy J
(12.30)

The problem is identical to that for flow over a vertical surface except that g is 
replaced by g cos y. Therefore, a replacement of g by g cos y in all the relationships 
derived earlier would give the results for an inclined surface. This implies using 
Grxcos y for Grv. However, this also assumes equal rates of heat transfer on the two 
sides of the surface.

The above procedure for obtaining the heat transfer rate from an inclined surface 
was first suggested theoretically by Rich [10], and his data are in general agreement 
with the anticipated values. The data obtained by Vliet [11] for a uniform-flux, heated 
surface in air and in water indicate the validity of the above procedure up to inclination 
angles as large as 60 °. Therefore, the replacement of g by g cos y in the Grashof 
number is appropriate for inclination angles up to around 45° and, to a close 
approximation, up to a maximum angle of 60°. Detailed experimental results on this 
were obtained by Fuji! and Imura [12], They also discuss the separation of the 
boundary layer for the inclined surface facing upward.

Natural convection over horizontal surfaces is a problem of considerable impor
tance and interest in technology and in nature. Rotem and Claassen [13] found 
solutions for the boundary-layer equations, for flow over a semi-infinite isothermal 
horizontal surface. Various values of Pr, including the extreme cases, were treated. 
Experimental results indicated the existence of a boundary layer near the leading edge 
on the upper side of a heated horizontal surface. Equations were presented for the 
power-law case, Tw - Tx = Nx", and solved for n = 0. Pera and Gebhart [14] have 
considered flow over surfaces slightly inclined from the horizontal.

For a semi-infinite horizontal surface with a single leading edge, as shown in Fig. 
12.6, the governing equations are the continuity and energy equations, as given in Eqs. 
(12.13) and (12.15), and the momentum equations of the form given below:

du du 1 d I du\ 1 dp.
u— + v— =------ u—----------- -

dx dy pdyydy/ p dx

1 dpj
S^T- To0) = ~ —

P dy

(12.31a)

(12.31b)

Therefore, the dynamic or motion pressure ptl drives the flow. Physically, the upper 
side of a heated surface heats up the fluid adjacent to it, which being lighter tends to 
rise. This results in a negative pressure gradient, which causes a boundary-layer flow 
over the surface. Similar considerations apply for the lower side of a cooled surface.
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Figure 12.6. Coordinate system for the natural-convection boundary-layer flow over a semi
infinite horizontal surface.

This problem may be solved by similarity analysis, discussed above for vertical 
surfaces. The similarity variables, given by Pera and Gebhart [14], are

y 7 Grv \1/5 7 Gr \1/5
= = 5r/(rj)l — I (12.32)

Figure 12.7 shows the computed velocity and temperature profiles for flow over a 
heated horizontal surface facing upward.

The local Nusselt number for horizontal surfaces is given by Pera and Gebhart [14] 
for both the uniform-temperature and the uniform-heat-flux surface conditions. The 
Nusselt number was found to be approximately proportional to Pr1/4 over the range

Figure 12.7. Velocity and temperature profiles for natural convection over a horizontal surface, 
with a uniform heat flux [14],

01 23 4567
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0 1 to 100, and the expressions obtained are

h x
Nu T = — = 0.394 Gr/5Pr1/4 (12.33a)

x

for a uni form-temperature surface and

Nu;c H = 0.5013 Gr^Pr1/4 (12.33b)

for a uniform-flux surface. For the isothermal surface, the average Nusselt number 
would be | times the value of the local Nusselt number at x = L.

In conclusion, the problem of natural convection from inclined surfaces can be 
treated in terms of small inclinations from the vertical and horizontal positions, 
detailed results on which are available. For intermediate values of y, an interpolation 
between the above two regimes may be carried out to determine the resulting heat 
transfer. This regime has not received much attention, though some experimental 
results are available such as those of Fuji! and Imura [12],

12.4 LAMINAR NATURAL CONVECTION FLOW IN 
OTHER CONFIGURATIONS

12.4.1 Horizontal Cylinder and Sphere
Much of the information on natural convection over heated surfaces, discussed earlier, 
has been obtained through similarity methods. However, neither the horizontal cylin
drical nor the spherical configuration gives similarity, and for these cases several other 
methods have been employed for obtaining a solution to the governing equations. 
Among the earliest detailed considerations of these flows was that by Merk and Prins 
[15], who employed integral methods, taking the velocity and thermal boundary-layer 
thicknesses to be equal and denoted by 8. The variation of the local Nusselt number 
with <£>, the angular position from the lower stagnation point <t> = 0°, is shown in Fig. 
12.8 for a horizontal cylinder and for a sphere. The peripheral local Nusselt number 
Nu,. decreases downstream due to the increase in the boundary-layer thickness, which 
is theoretically predicted to be infinite at <f> = 180°, resulting in a zero value for Nu^. 
Merk and Prins have indicated the inapplicability of the analysis for <J> > 165° due to 
boundary-layer separation and realignment into a plume flow.

The mean value of the Nusselt number, Nu„, T is given by Merk and Prins [15] for a 
horizontal, isothermal cylinder as

hmD .,.
Num.r = ~ = C(Pr)(GrPr)1/4 (12.34)

where Gr is also based on the diameter Z), and C(Pr) was obtained as 0.436, 0.456, 
0.520, 0.523, and 0.523 for Pr values of 0.7, 1.0, 10.0, 100.0, and oo, respectively. The 
same expression is given for spheres, with C(Pr) given for the above Pr values as 0.474, 
0.497, 0.576, 0.592, and 0.595, respectively.

There are many other analytical and experimental studies of natural convection over 
spheres. Being of interest in chemical processes, this configuration has been studied in 
detail for mass transfer also. Chiang et al. [16] solved the governing equations, using a 
scries method, and presented heat transfer results. Trends similar to those discussed
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Figure 12.8. The variation of the local Nusselt number with downstream angular position for 
(a) a horizontal cylinder and (b) a sphere [15],
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above were obtained. A considerable amount of experimental work has been done on 
the heat transfer from spheres. Amato and Tien [17] have discussed such studies and 
have given the heat transfer correlation as

Nu„, r = 2 + 0.5(GrPr)1/4 (12.35)

12.4.2 Vertical Cylinder
Natural convection over vertical cylinders is also a very important problem, being 
relevant to many applications, such as flow over tubes (as in nuclear reactors), over 
cylindrical heating elements, and over various closed bodies (including the human 
body) that can be approximated as a vertical cylinder. For large values of D/L, where 
D is the diameter of the cylinder and L its length, the flow is close to that over a flat 
plate, since the boundary-layer thickness is small compared to the diameter of the 
cylinder. As a result, the governing equations become the same as those for a flat plate. 
However, since this comparison is really based on the boundary-layer thickness, which 
in turn depends on the Grashof number, the deviation of the results obtained for a 
vertical cylinder from those for a flat plate must be given in terms of D/L and the 
Grashof number. By studying this deviation, Sparrow and Gregg [18] obtained the 
following criterion for Pr values of 0.72 and 1.0 for a difference in heat transfer of less 
than 5% from the flat plate solution:

D 35
L “ Gr1''4

(12.36)

where Gr is the Grashof number based on L.
When D/L is not large enough to ignore the effect of curvature, the relevant 

governing equations must be solved. Sparrow and Gregg [18] employed similarity 
methods for obtaining a solution to these equations. Minkowycz and Sparrow [19] 
obtained the solution using the local nonsimilarity method. LeFevre and Ede [20] 
employed an integral method to solve the governing equations and gave the following 
expression for the Nusselt number Num T based on the height L of the cylinder: 

Nu„,r
hmL 4 7GrPr? j1/4 4(272 + 315 Pr) L

3 [ 5(20 + 21 Pr) J + 35(64 + 63 Pr) D (12.37)

where Gr is also based on L.

12.4.3 Transients
We have so far considered steady natural-convection flows, in which the velocity and 
temperature fields do not vary with time. However, transient effects are important in 
many practical circumstances. The change in the thermal condition causing the 
natural-convection flow could be a sudden or a periodic one, leading to a variation in 
the flow. The startup and shutdown of systems, such as furnaces and nuclear reactors, 
involves considerations of transient natural convection, if an externally induced flow is 
not present.

If the heat input at a surface is suddenly changed from zero to a specific value, the 
steady natural-convection flow is eventually obtained, following a transient flow which 
occurs for a certain period of time. The moment the heat is turned on, the surface gets
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heated, this change being essentially a step variation if the thermal capacity of the body 
is very small. In response to this sudden change, the fluid adjacent to the surface gets 
heated and rises. However, it is initially unaffected by flow at other portions of the 
surface. This implies that the fluid element behaves essentially as an isolated one, and 
the heat transfer mechanisms are therefore largely unaffected by the fluid motion. 
Consequently, the initial transport mechanism is predominantly conduction and can be 
approximated as a one-dimensional conduction problem till the leading-edge effect, 
which propagates downstream along the flow, is felt at a given location v. The heat 
transfer rates due to pure conduction being much smaller than those due to convection, 
it is to be expected that, for a step change in the heat-flux input, there may initially be 
an overshoot in the temperature, above the steady-state value. Similarly, for a step 
change in temperature, a lower heat flux is expected initially, ultimately approaching 
the steady-state value, as the flow itself progresses through a transient regime to the 
steady flow.

At the initial stages of the transient, the solution for a step change in the surface 
temperature, or in the heat flux, is independent of the vertical location and is of the 
form obtained for semi-infinite conduction solutions. Employing Laplace transforms 
for a step change in the heat flux, the solution is obtained as

_ 2.
e v
—/=---- erfc t]
yir

(12.38)

where rj = y/l/at, a being the thermal diffusivitycient of thermal of the fluid: erfc tj 
is the conjugate of the error function; and q” is the constant heat-flux input imposed 
at time t = 0, starting from a no-flow condition. The temperature 0 is simply the 
excess over the initial temperature T^ . The heat transfer coefficient is obtained from 
the above as:

q” k I tt

[<9]0 2 V at (12.39)

Similarly, for a step change in the surface temperature, the solution is

(12.40)

The velocity profile is obtained by substituting the above temperature solution into the 
momentum equation and solving the resulting equation by Laplace transforms to 
obtain u(y).

Numerical solutions of the governing boundary-layer equations have been obtained 
by Heliums and Churchill [21] for a vertical surface subjected to a step change in the 
surface temperature. The results converge to the steady-state solution at large time and 
show a minimum in the local Nusselt number during the transient; see Fig. 12.9. An 
integral method of analysis for transient natural convection has also been developed for 
a time-dependent heat input and for a finite thermal capacity of the surface element. 
This work has been summarized by Gebhart [9] and is based on the analytical and 
experimental work of Gebhart and coworkers, as referenced in the above paper. This 
analysis is particularly suited to practical problems, since it considers the element 
thermal capacity and determines the temperature variation with time over the entire 
transient regime.
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Figure 12.9. Transient variation of the heat transfer rate for a step change in the surface 
temperature of a vertical plate [21],

Churchill [22] has given a correlation for the transient natural convection from a 
heated vertical plate, subjected to a step change in the heat flux. The thermal capacity 
of the plate was taken as negligible, and the local Nusselt number is given as

ttx1 \0/2 ( Rax/10
~4atl + \ [1 + (0.437/Pr)9/16]16/9

where

gP(Tw-Tjx
Rav =--------------------

va
(12.41)

Employing the available experimental information, the chosen value of n is 6, and with 
this value the above correlation was found to give Nusselt number values quite close to 
the measured ones. No temperature overshoot is considered, since the experimental 
studies of Gebhart [9] showed no significant overshoot. For a step change in surface 
temperature, Churchill and Usagi [23] have also obtained an empirical correlation 
approximating the entire time span.

12.5 TURBULENT FLOW

12.5.1 Transition from Laminar to Turbulent Flow
In natural convection, as in forced convection, one of the most important questions is 
whether the flow is laminar or turbulent, since the transport processes depend strongly 
on the flow regime. Near the leading edge, or end, of a body, the flow is well ordered 
and well layered. The fluctuations and disturbances, if any, are small in magnitude 
compared to the mean flow, and the processes can be defined in terms of the laminar 
governing equations and mechanisms, as discussed in the preceding sections. However, 
as the flow proceeds downstream from the leading edge, it undergoes transition to 
turbulent flow, which is characterized by random disturbances of large magnitude. The
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flow is then a combination of a mean and a fluctuating component, due to these large 
disturbances, which being random can be described by statistical methods. In several 
natural-convection flows of interest, the flow lies in the unstable or in the transition 
regime. It is therefore important to study these regimes and the basic processes 
underlying the transition to turbulence.

In a study of the transition of a laminar flow to turbulence, the conditions under 
which a disturbance in the flow amplifies as it proceeds downstream form a very 
important consideration. This refers to the stability of the flow, an unstable one leading 
to a growth in disturbances. These disturbances can enter the flow from various 
sources, such as building vibrations, fluctuations in heat input to the heated surface, 
vibrations in equipment, etc., and depending on the conditions (frequency, location, 
etc.), they may grow in amplitude due to a balance of buoyancy, pressure, and viscous 
forces. This form of instability is termed hydrodynamic stability and is of particular 
relevance to disturbance growth, leading to turbulence.

The disturbances gradually amplify to large enough magnitudes to cause distortion 
in the mean velocity and temperature profiles due to secondary mean flows. This leads 
to the formation of a shear layer, which fosters further amplification of the dis
turbances, and concentrated turbulent bursts results. These bursts then increase in 
magnitude, and the fraction of time they occur increases, eventually crowding out the 
remaining laminar flow and giving rise to a completely turbulent flow. The general 
mechanisms underlying transition are shown in Fig. 12.10 from the work of Jaluria and 
Gebhart [24],

12.5.2 Turbulence
Most natural-convection flows of interest, in nature and in technology, are turbulent. 
The velocity, pressure, and temperature at a given point do not remain constant with 
time, but vary irregularly at high frequency. There is a considerable amount of mixing, 
with fluid packets moving around irregularly, giving rise to the observed fluctuations in 
the velocity and temperature fields, rather than the well-ordered and well-layered 
characteristics of laminar flow. Due to the importance of turbulent natural-convection 
flows, a considerable amount of effort, experimental and analytical, has been directed 
at understanding and determining the transport mechanisms and the rates of energy 
transfer. The work done in forced flows has been even more extensive, and in fact much 
of our understanding of turbulent flows in natural convection is derived from this 
work. Transport mechanisms in turbulent flow are obviously very different from those 
in laminar flow, and some of the basic considerations are given below.

In describing a turbulent flow, the fluctuating or eddying motion is superimposed on 
a mean motion. The flow may therefore be described in terms of the time-averaged 
values of the velocity components (denoted as u, v. and m ) and the disturbance or 
fluctuating quantities (v', and w'). The instantaneous value of each of the velocity 
components is then given as

u = u + u'

v = v + v' (12.42)

w = iv + w'

Similarly, pressure and temperature in the flow may be written as

P = P + P’

T = T + T
(12.43)
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Turbulence

End of transition

Velocity boundary layer

Thermal boundary layer

Beginning of velocity transition

Mean secondary motion

Disturbance amplification

Beginning of turbulent thermal mixing

First neutral-stability location 
----- Y

Figure 12.10. Growth of the boundary layer and the sequence of events during transition in 
water, Pr = 6.7 [24],

The time averages are found by integrating the local instantaneous value of the 
particular quantity at a given point over a sufficiently long time interval—long 
compared to the time period of the fluctuations. For steady turbulence, the time-aver
aged quantities do not vary with time, and by the definition of the averaging process, 
the time averages of the fluctuating quantities are zero. For unsteady turbulence, the 
time-averaged quantities themselves vary with time. Here we shall consider only the 
case of steady turbulence, so that the average quantities are independent of time and 
allow a representation of the flow and the transport processes in terms of time-indepen
dent variables.

If the above instantaneous quantities are inserted into the governing continuity, 
momentum, and energy equations and a time average taken, additional transport terms 
due to the turbulent eddies arise. An important concept employed for treating these 
additional transport components is that of eddy viscosity cM and diffusivity c7/. 
Momentum and heat transfer processes consist of a molecular component and an eddy 
component. This may be expressed as

d u
= (" + €v)^-

dy

q"

p<-'r
= (a +

dy

(12.44)

(12.45)

T

P
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where r is the total shear stress and q” the heat flux For isotropic turbulence, rA/ and 
are -independent of direction and are of the form - u'v'/(du/dy) and 

v'T'/(dT/dy), respectively.
If the above relationships for r and q" are introduced into the governing equations 

for mean flow, obtained by time-averaging the equations written for the total instanta
neous flow in the boundary-layer form, one obtains

du dv ~— + — 
dx dy (12.46)

du du d f du
"a* gli(T-+ + (12.47)

_ dl dT d ’ dT'
U~dhc 4 r-----=

dy dy (« + (12.48)

where the viscous dissipation and energy source terms have not been included. 
Therefore, a replacement of v and a by v + tM and a + eH, respectively, gives the 
governing equations for turbulent flow. However, cM and eH are functions of the flow, 
so experimental results or various turbulence models are used for approximating them.

Several turbulence models have been developed in recent years and employed for 
solving various turbulent flows of practical interest. Some of these are summarized in 
Chap. 2. Among these, the k-e model, where k is the turbulence kinetic energy and e 
the rate of dissipation of turbulence energy, has been employed most extensively. Both 
these quantities are calculated from their governing differential equations for the mean 
flow. Launder and Spalding [25] discuss this and other turbulence models in detail and 
also give various relevant constants and functions of the k-e model.

Various researchers have employed different turbulence models to simulate complex 
turbulent flows of interest in industry and in nature. The algebraic eddy-viscosity 
model has been a popular choice because of its simplicity and because the empirical 
constants in higher-order models may not be available for a given flow circumstance. A 
considerable amount of work has been done on recirculating turbulent flows in 
enclosures, such as those due to fire in a room. See, for instance, the review paper on 
such flows by Yang and Lloyd [26],

Experimental work on turbulent natural convection has been done to somewhat 
larger extent than the analytical work. Still, the data available for the various flow 
configurations and conditions encountered are few. Cheesewright [27] measured veloc
ity and temperature profiles and provided heat transfer data in air. In turbulent flow, 
the generalized temperature profiles were found not to change significantly down
stream, a fact which was employed by Cheesewright to determine the end of the 
transition regime. The efforts of Vliet and Liu [28] and of Vliet [29] were directed at 
vertical and inclined uniform flux surfaces. The turbulent heat transfer data for a 
vertical surface were correlated by the expression

Nua. h = 0.568(Gr*  Pr)0’22 (12.49a)

where 

(12.49b)
kv2
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over a Gr*  Pr range of 2 x IO13 to 1016. Here, Gr*  is a Grashof number based on the 
heat flux. Turbulence levels u'/u as high as 30% were observed, and the spreading out 
of the velocity profile with a decrease in the nondimensional velocity, as observed by 
Jaluria and Gebhart [24], was obtained. For inclined surfaces, Vliet [29] found the 
exponent to vary from 0.22 for vertical surfaces to 0.25 for horizontal. Both water and 
air were employed. Vliet and Ross [30] considered an inclined surface with constant 
heat flux and found their data to correlate well with the expression

NuA. h = 0.17(Gr*  Pr)0'25 (12.50)

and therefore a weak dependence of h : on ,v is obtained. In the Grashof number Gr*  
above, g was replaced by g cos2y, where y is the angle at which the surface is inclined
with the vertical. Several other correlations are given in the following section.

12.6 EMPIRICAL CORRELATIONS

In several problems of practical interest, the heat transfer and flow processes are so 
complicated that the analytical methods discussed earlier cannot be employed easily 
and one has to depend on experimental data. Over the years, a considerable amount of 
heat transfer information for various flow configurations and conditions has been 
gathered. Some of this information has already been presented in Secs. 12.3.1, 12.3.2, 
12.4.1, and 12.4.2 The present section gives some of the typical results for several 
important cases. The results included here are only a small fraction of what is available 
in the literature, and the attempt is only to present useful results in a few frequently 
encountered problems and to indicate the general features of the empirical relation
ships. Unless mentioned otherwise, all fluid properties are to be evaluated at the film 
temperature Tf = (Tw + 7^)/2.

12.6.1 Vertical Flat Surfaces
To cover the range of Rayleigh number, Ra = Gr Pr, from laminar to turbulent flow, 
the following correlations have been given and employed over the years for isothermal 
surfaces, i.e., with constant wall temperature boundary condition (McAdams [31], 
Warner and Arpaci [32]):

nu„,.7- =
0.59 Ra1/4
0.10 Ra1/3

for 104 < Ra < 109
for 109 < Ra < 1013

(laminar)
(turbulent)

(12.51)

The above equations are applicable to Pr values not too different from 1.0. Churchill 
and Chu [33] have recommended the following correlation, which may be applied over 
a wide range of Ra:

0.387 Ra1/6
[1 + (0.492/Pr)9/16]8/27 for 10 1 < Ra < 1013 (12.52)

For laminar flow, slightly greater accuracy is obtained with the correlation (Churchill
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and Chu [33])

0.67 Ra1/4
Nur r = 0.68 4 ----------- - ( 7/ll for 0 < Ra < 109 (12.53)

1 + (0.492/Pr)9/16j4/9

Here, Nu,„ r and Ra are based on the plate height /.. The above eorrelations, Eqs. 
(12.52) and (12.53), are to be preferred over the others, since they have the best 
agreement with experimental data. The local Nusselt numbers Nux r can be obtained 
from the results of [31,32,33],

For the uniform heat flux case, the heat transfer results given by Vliet and Liu [28] 
in water indicate the following relationships.
For laminar flow,

Nu v w = 0.60(Gr*  Pr)1/5

Num,// = 1-25Nul.„

For turbulent flow,

Nuv H = 0.568(Gr*  Pr)0'22

Nu„,„ = 1.136 NuLH

for 105 < Gr*  Pr < 1013 (12.54a)

for 105 < Gr*  Pr < 1011 (12.54b)

for 1013 < Gr*  Pr < 1016 (12.55a)

for 2 X 1013 < Gr*  Pr < 1016 (12.55b)

where Nu, H represents the Nusselt number at x = L and Gr*  = gflq”if /kv2. In a 
later study, Vliet and Ross [30] obtained a closer corroboration for data in air with the 
following relationships:

and

Nuv „ = O.55(Gr*  Pr)0 2 for laminar flow (12.56a)

Nuv.„ = 0.17(Gr*  Pr)025 for turbulent flow (12.56b)

Nu,„ u can be obtained by computing the mean temperature difference and using the 
overall heat transfer rate provided in [30],

12.6.2 Inclined and Horizontal Flat Surfaces
As discussed earlier, the results obtained for vertical surfaces may be employed for 
surfaces inclined at an angle y up to about 45° with the vertical, by replacing g with 
geos y in the Grashof number. For inclined surfaces with constant heat flux, Vliet and 
Ross [30] have suggested the use of Eq. (12.54a) for laminar flow, with the replacement 
of Gr * by Gr * cos y for both upward- and downward-facing heated inclined surfaces. 
In the turbulent region also. Eq. (12.55a) is suggested, with Gr*  the same as that for a 
vertical surface for an upward-facing heated surface, and with Gr*  replaced by 
Gr * cos2 y for a downward-facing surface.

Several correlations for inclined surfaces, under various conditions, were given by 
Fujii and Imura [12], For an inclined plate with heated surface facing upward with
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approximately constant heat flux, the correlation obtained is of the form

Nu„,h = 0.14[(GrPr)1/3 - (Grcr Pr)1/3] + 0.56(Gr„ Prcos y)1/4

for 105 < GrPrcosy < 1011 and 15° < y < 75° (12.57)

where Grcr is the critical Grashof number at which the Nusselt number starts deviating 
from the laminar relationship, which is the second expression on the right-hand side of 
the above equation. The above correlation applies for Gr > Grcr. For various inclina
tion angles, the value of Grcr is also given by the authors. For y = 15, 30, 60, and 70°, 
Gr,.r is given as 5 X 109, 2 X 109, 108, and 106, respectively. For inclined heated 
surfaces facing downward, the expression given is

Num r = 0.56(GrPrcos y)1/4

for 105 < GrPrcos y < 1011, y < 88° (12.58)

The fluid properties are evaluated at Tw — 0.25 (Tw — Tx), and ft at Tx + 0.25 
(Tw - O

For horizontal surfaces, several classical expressions exist. For heated isothermal 
surfaces facing downward, or cooled ones facing upward, the correlation given by 
McAdams [31] is

Nu,„ r = 0.27 Ra1/4 for 3 X 105 < Ra < 3 X 1010 (12.59)

Fujii and Imura [12] give the corresponding correlation as

NufflJ = 0.58 Ra1/5 for 106 < Ra < 10u (12.60)

Over the overlapping range of the two studies [12,13], the agreement between the two 
Nu„, T’s is very good.

For the heated isothermal horizontal surface facing upward, and cold surface facing 
downward, the correlations for heat transfer are given by McAdams [31] as

Nu„, T = 0.54 Ra1/4 for 105 < Ra < 107 (12.61a)

and

Nu„,T = 0.15 Ra1/3 for 107 < Ra < 1010 (12.61b)

The corresponding correlation given by Fujii and Imura [12] for an approximately 
uniform heat flux condition is

Num //= 0.14 Ra1/3 for Ra > 2 X 108 (12.62)

12.6.3 Cylinders and Spheres

A considerable amount of information exists on natural-convection heat transfer from 
a cylinder. For vertical cylinders of large diameter, ascertained from Eq. (12.36), the 
relationships for vertical flat plates may be employed. For cylinders of small diameter
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correlations for Nu are suggested in terms of the Rayleigh number Ra, where Ra and 
Nu are based on the diameter D of the cylinder.

The horizontal cylinder has been of interest to several investigators. McAdams [31] 
gives the correlation for isothermal cylinders as

and

Nu„, r = 0.53 Ra1/4 for 104 < Ra < 109 (12.63a)

Num.r = 0.13 Ral/3 for 109 < Ra < 1012 (12.63b)

The Rayleigh number Ra is based on the cylinder diameter D. For smaller values of 
Ra, graphs are presented by McAdams [31], A general expression of the form 
Nu,„ T = CRa", with a tabulation of C and n, is given by Morgan [34], Recently, 
Churchill and Chu [35] have given a correlation covering a very wide range of Ra for 
isothermal cylinders:

Nu„>.r = 0.60 + 0.387
Ra I

[1 + (0.559/Pr)9/16]16/ J

for 10' 5 < Ra < 1012 (12.64)

Again, Nu,„ T and Ra are based on the cylinder diameter D. This correlation is 
convenient to use and agrees closely with experimental results. Thus, it is recommended 
for horizontal cylinders.

For natural convection from spheres too, several experimental studies have provided 
heat transfer correlations. Amato and Tien [17] have listed the correlations for Nu„, r 
obtained from various investigations of heat and mass transfer. In a review paper, Yuge 
[36] suggested the following correlation for heat transfer from isothermal spheres in air

TABLE 12.2 Summary of Natural Convection Correlations for External Flows over Isothermal 
Surfaces

Geometry Recommended Correlation" Range Ref.

( 0.387 Ra1/6 )
Num.r = 0.825 + y------------------- IO’1 < Ra < 1012

( [1 + (0.492/Pr) 7 ] /
1. Vertical flat surfaces

2 Inclined flat surfaces Above equation with g 
replaced with g cos y

y < 60°

3. Horizontal flat surfaces
(a) Heated, facing upward

Num T = 0.54 Ra1/4
Num T = 0.15 Ra1/3

10s < Ra < 107 1
107 < Ra < 1010/ 31

(b) Heated, facing downward Num>r = 0.27 Ra1/4 3 X 105 < Ra < 3 X 1010 31

4. Horizontal cylinders Num

5. Spheres Num

2
( 0.387 Ra1/6 )

T ( [1 + (0.559/Pr)9/16]8/27 /

T = 2 + 0.43 Ra1/4

10~5 < Ra < 1012 35

Pr = 1
1 < Ra < 105 36

“Nu„, T and Ra are based on height L for the vertical plate, length L for inclined and horizontal surfaces, and diameter D 
for horizontal cylinders and spheres. All fluid properties are evaluated at the film temperature Tf = (Tw + 7^)/2.



12 *28 BASICS OF N XTURAL CONVECTION

and gases over a Grashof number range 1 < Gr < 105, where Gr and NuJL arc based 
on the diameter D:

Nu„, T = 2 + 0.43 Ra1/4 for Pr - 1 and 1 < Ra < 105 (12.65)

For heat transfer in water, Amato and Tien [17] obtained the correlation for isothermal 
spheres as

Nu„, r = 2 + C Ra?/4 for 3 X 105 < Ra < 8 X 108 (12.66)

where C = 0.500 ± 0.009, which gave a mean deviation of less than 11%. Several of the 
important correlations presented earlier are summarized in Table 12.2.

12.7 SUMMARY

This chapter discusses the basic considerations relevant to natural convection flows. 
External buoyancy-induced flows are considered, and the governing equations are 
obtained. The approximations generally employed in the analysis of these flows are 
outlined. The important dimensionless parameters are derived in order to discuss the 
importance of the basic processes that govern these flows. Laminar flows over various 
kinds of surfaces are discussed, and the solutions obtained are presented, particularly 
those derived from similarity analysis. The heat transfer results and the characteristics 
of the resulting velocity and temperature fields are discussed. Also considered are 
transient and turbulent flows. The governing equations for turbulent flow are given, 
and experimental results for various flow configurations are presented. The frequently 
employed empirical correlations for heat transfer by natural convection from various 
kinds of surfaces and bodies are also included. Thus, this chapter presents the basic 
aspects that underlie natural convection and also the heat transfer correlations that 
may be employed for practical applications.

NOMENCLATURE

cp specific heat at constant pressure, J/(kg • K), Btu/(lbm -° F)
D diameter of cylinder or sphere, m, ft
f dimensionless stream function, defined in Eq. (12.22)
I body force per unit volume, N/m3, lby/ft3
g gravitational acceleration, m/s2, ft/s2
Grv local Grashof number = g/?ATx3/r2
Gr Grashof number = gft ATL3/v2
Gr*  heat-flux Grashof number = gfSL^q''/kv2
A v local heat transfer coefficient at a cross section, W/(m2 • K),

Btu/(hr • ft2 ° F)
hm average heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 °F)
h^, local Nusselt number at an angular position <f>, W/(m2 ■ K), Btu/(hr ■

ft2 -° F)
k thermal conductivity, W/m • K, Btu/(hr ■ ft -° F)
L characteristic length, height of vertical plate, m, ft
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m, n exponents in exponenti.il and power-law distributions
M, N eonstants employed for exponential and power-law

distributions of surface temperature
Nu local Nusselt number = hxx/k
Nu„, average Nusselt number = hmL/k
Nu^ peripheral local Nusselt number = h^D/k
p pressure, Pa, lbr/ft2
Pr Prandtl number = cpp./k
q total heat transfer, W, Btu/hr
q" local heat flux, W/m2, Btu/(hr • ft2)
q' constant surface heat flux, W/m2, Btu/(hr -ft2)
q volumetric heat source, W/m3, Btu/(hr • ft3)
R.i Rayleigh number = GrPr
R.i, local Rayleigh number = GrvPr
Sr Strouhal number = L/Vctc
i time, s
t. characteristic time, s
AT temperature difference = Tw - Tx, ° C, K, °F, ° R
T local temperature, °C, K, °F, °R
T wall temperature, °C, K, °F, °R
T ambient temperature, ° C, K, ° F, ° R
u. v. u velocity components in x, y, z directions, respectively, m/s, ft/s
V velocity vector, m/s, ft/s
I convection velocity = (g/?L AT)1/2. m/s, ft/s
x, j , z coordinate distances, m, ft

Greek Symbols
a
P
Y 
S 
8r 
f W’ e// 
v 
p- 
v

0

thermal diffusivity, m2/s, ft2/s
coefficient of thermal expansion = — (l/p)(<9p/3T)p, K-1, °R-1 
inclination with the vertical
boundary-layer thickness, m, ft
thermal boundary-layer thickness, m, ft
eddy viscosity and eddy diffusivity, respectively, m2/s, ft2/s
similarity variable = (y/x)(Grx/4)1/4
dynamic viscosity, Pa • s, lb,„/(s • ft)
kinematic viscosity, m2/s, ft2/s
viscous dissipation, s~2
stream function, m2/s, ft2/s
dimensionless temperature = (T- TCO)/(TW - T^)

Subscripts
H constant wall heat flux boundary condition
T constant wall temperature boundary condition

exponenti.il
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13.1 INTRODUCTION

This chapter deals with single-phase natural-convection phenomena in enclosures. By 
definition, enclosures are finite spaces bounded by walls and filled with fluid media. 
Also included in this definition are cases where internal partitions or obstacles may be 
present. Natural convection in such enclosures is induced by buoyancy caused by a 
body force field such as gravity together with density variations within the fluid. Such 
density variations may be due to external heating or cooling through the bounding 
walls, to the presence of internal heat sources or sinks, to concentration changes in the 
fluid as a result of mass transfer, or to any combination of these processes.

The significance of the enclosure natural-convection phenomena can best be appre
ciated by noting several important application areas. The proper design of furnaces 
must necessarily take into account the contribution of turbulent buoyant flows of the 
flue gases arising from the fuel bed. In the operation of solar collectors, natural-convec
tion effects, which contribute to energy losses to the environment, must be minimized 
to increase the collector efficiency. Similarly, heat losses though double windows are 
also aff ected by natural convection between the window panes. Natural convection also 
plays a dominant role in energy transfer in other energy storage systems, ranging from 
hot- or chilled-water storage tanks to large solar ponds where stratification conditions 
must be properly maintained to facilitate energy storage and removal. Also, in thermal 
storage systems utilizing phase-change materials, natural convection significantly affects 
the energy transfer process at the liquid-solid interface. In the cooling of electronic 
equipment and devices such as circuit boards and chips, natural convection may be the 
only permissible mode of cooling and determines the operational limits. In growing 
high-purity crystals, understanding of natural convection in the enclosure enables the 
designer to minimize contamination due to convection effects in the melt. In such 
important appliances as kitchen ovens and household water heaters, the dominant 
mode of energy transfer is again natural convection, which must be properly analyzed 
in the design of such appliances. Another practically important class of natural-convec
tion phenomena in enclosures concerns the spread of fire and smoke in rooms, 
corridors, and other confined spaces. A proper understanding of the associated turbu
lent buoyant flows is essential in the development of countermeasures against the 
hazards of unwanted fires.

Such applications have contributed much to the recent interest among heat transfer 
specialists in the study of enclosure natural-convection phenomena. Perhaps a lesser 
but equally significant reason for this recent interest is that significant advances have 
been made recently in our understanding of other related physical processes such as 
turbulence, combustion, and radiative transfer, as well as in the development of 
mathematical tools such as numerical solution of nonlinear elliptical partial differential 
equations. As a result, many of the important enclosure natural-convection problems 
can now be properly formulated and successfully analyzed.

Natural convection flows in enclosures are also known as buoyancy-driven enclosure 
flows. The importance of buoyancy is quite obvious here. One quantitative characteris
tic of such flows is that the velocity components are all of essentially the same order of 
magnitude, except in some subregions of the flow where one component may be more 
important than the others. This basic characteristic of the enclosure flows becomes 
clear in looking at several specific examples of enclosures in accordance with the 
general definition given at the beginning of this chapter. These are illustrated in Fig. 
13.1.
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(g)

Figure 13.1. E? ’triples of two-dimensional and three-dimensional enclosures.

Figure 13.1 a is a two-dimensional rectangular enclosure heated differentially at the 
two ends (7), > T( ) and thermally insulated on the two sides. This enclosure has two 
characteristic dimensions: the height H and the width W. Usually W is taken to be the 
dimension separating the surfaces where temperatures are specified. It is clear that the 
buoyancv-driven flow throughout this enclosure is in general of the recirculating type, 
even though boundary layers may exist close to the walls. When the aspect ratio a*  
defined by H/W is less than unity, the enclosure is known as a shallow enclosure, or 
shallow cavity.

Figure 13.16 shows a vertical enclosure with a*  > 1, and here again boundary 
layers may exist close to the hot and cold walls, but the recirculating flow in the core 
region definitely cannot be described as that of boundary or shear layers.
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A more general rectangular enclosure is shown in Fig. 13.1c. where the enclosure is 
tilted relative to the gravity field. For zero tilt angle y, we have an enclosure heated at 
the top. Figure 13.1a and b are special cases of Fig. 13.1c with y = 90°. When 
y = 180°, we have the heated-from-below situation.

A more complex situation is shown in Fig. 13.lt/, where the rectangular enclosure 
also contains a pair of vertical partitions, and the buoyancy-driven flow tends to be 
slower than without the partitions. This shows a simple way of suppressing natural
convection flow.

Natural-convection flows are not limited to rectangular configurations. Figure 13.1e 
illustrates an annular enclosure bounded by two concentric cylinders which are 
differentially heated. The overall flow pattern is in the form of two symmetrical 
kidney-shaped streamlines. Here again it is expected that the predominant flow will be 
recirculating flow. A more general class of two-dimensional annular enclosures is 
similar to that, in Fig. 13.le except that the two cylinders are eccentric to each other.

All real enclosures are three-dimensional, and three realistic examples are shown in 
Fig. 13.1/, g, and h. Figure 13.1/ represents an enclosure in the form of a parallele
piped. sometimes known as a box enclosure. The enclosure can be tilted relative to 
gravity in two different planes, and a great variety of thermal boundary conditions can 
be imposed. Figure 13.1g shows a truncated annular enclosure, which can also be 
tilted, and Fig. 13.1/; shows a three-dimensional enclosure formed by two eccentric 
spheres. The flow patterns in such three-dimensional enclosures are also characterized 
by complex recirculating flows.

While the determination of the overall heat transfer rates across such enclosures 
does not necessarily depend on a prior knowledge of the flows, it is essential that the 
details of the flow field also be obtained. Only then can we gain physical insight into 
the interactions of the various mechanisms involved in natural convection, such as is 
important in many applications where the flow must be controlled. Consequently, it is 
not surprising that much of the emphasis in enclosure natural-convection studies in the 
recent literature is placed not only on the overall heat transfer rates, but also on the 
flow field and its related phenomena such as stability and transition.

The primary objective of this chapter is to provide some basic information on the 
physics of the enclosure natural-convection phenomena, the mathematical formulation 
of the natural-convection problem, solution techniques that are available, some signifi
cant results in the field including both theoretical and experimental data, and a brief 
description of recent studies of interaction of the basic enclosure natural-convection 
phenomena with other heat transfer processes. The contents of this chapter comple
ment several well known and excellent reviews that have appeared in the recent 
literature [1-7], In order to focus on natural convection in enclosures, horizontal fluid 
layers will not be covered in this chapter; they now constitute an extensive field, 
especially in view of recent advances. Readers interested in this field are referred to the 
classical texts of Chandrasekhar [8] and Turner [9], and a recent review by Catton [10],

In this chapter, the mathematical formulation of the enclosure natural-convection 
problem and the associated dimensionless parameters are given in Sec. 13.2, and 
solution techniques for the governing differential equations arc described in Sec. 13.3. 
Section 13.4 presents some theoretical and experimental results for laminar natural 
convection in two-dimensional and three-dimensional enclosures, and the correspond
ing results for turbulent flow are described in Sec. 13.5. In Sec. 13.6, recent advances in 
the study complex phenomena dealing with the interaction of natural convection with 
other physical processes in enclosures are briefly reviewed. Finally, in Sec. 13.7, several 
useful heat transfer correlation equations for buoyant enclosure flows are given.

13.lt/
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13.2 MATHEMATICAL FORMULATION AND 
DIMENSIONLESS PARAMETERS

13.2.1 Mathematical Formulation for Three-Dimensional 
Enclosure Flows

The governing differential equations for natural-convection enclosure Hows arc the 
conservation equations of mass, momentum, and energy. For a compressible variable
property fluid, these equations may be written in vector form [11] as follows:

dp
+ v «(pV) = 0 (13.1)

at

DN
p— = v -T - Vp + pB (13.2)

DT
pcp— =Vq( + S (13.3)

where p is the fluid density, t is the time variable, V is the velocity vector, t is the 
stress tensor, p is the static pressure, B is the body force vector, cp is the fluid specific 
heat at constant pressure, T is the temperature, q( is the conduction flux, and S' is the 
source term. Also, V denotes the gradient operator, V • the divergence operator, and 
D/Dt the substantial derivative (d/dt + V • V). To complete these equations for the 
unknowns V. p, and T, we also need to add constitutive relations for t and qf, an 
equation of state, and specific information on transport property variations and the 
nature of B and S. It should be noted that the energy equation (13.3) does not contain 
the dissipation and pressure work terms, since both are small and can thus be neglected 
for most natural-convection phenomena [12], For laminar flows of a Newtonian 
F ourier fluid, the constitutive relations for t and qf are given by

t = pVV + p(vV)r, qf = A:vT (13.4)

where p is the dynamic viscosity, k is the thermal conductivity, and ( )T represents the 
transpose.

For enclosure natural-convection phenomena, the driving force is provided by the 
body force vector B in the momentum equation (13.2), which arises from an imposed 
field such as gravity, a centrifugal force, an electrostatic field, or the like. The 
predominant body force field in enclosure natural-convection studies is gravity, in 
which case the body-force vector B becomes the gravitational acceleration vector g. 
Similarly, the volumetric heat source term .S’ in the energy equation (13.3) can arise 
from various sources: a heat-generating or a reacting fluid, or one that absorbs or emits 
radiation.

Even for complex physical situations, it is seldom necessary to deal with the 
complete equations given in (13.1), (13.2), and (13.3); some simplifications are usually 
possible. One common simplification is to treat the flow as being incompressible except 
for the slight variation in the density that gives rise to the buoyancy force. This refers 
to the now well-known Boussinesq approximation:

p
- = 1-0(T-TO) (13.5)
Po
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where /? = -(l/p)(dp/dT) , and the subscript 0 refers to a reference condition. The 
Boussinesq approximation can be shown to be valid in many applications as long as the 
temperature variations are not large [13,14]. If in addition the properties can be taken 
as constant under this condition, the governing equations for the laminar flow case can 
be simplified to

V • V = 0 (13.6)

DV „
= pV V - v(p -Po) - pfi(T~ To)s

DT 7 
pcp~=k?2T+S

(13-7)

(13.8)

where p{, and Tit both now refer to the hydrostatic conditions. These equations form 
the basis for many enclosure natural-convection analyses in recent years. However, 
where temperature variations in the enclosure are substantial, use must be made of the 
more complete equations (13.1), (13.2), and (13.3). Examples are the spread of fire in 
compartments [15] and interactions between natural convection and gas radiation in 
enclosures [16,17],

For illustration purposes only, we present here the governing equations in a 
Cartesian coordinate system for a three-dimensional tilted-box enclosure as shown in 
Fig. 13.1/ filled with a Newtonian fluid in laminar motion with variable properties 
corresponding to equations given in (13.1), (13.2), and (13.3), respectively:

dp d(pu) d(pv) d(pw)
— + \ -  = 0
dt dx dy dz

I du du du du\
\ dt dx dy dz j

d ( p — pn ) d du I dv dw
= ----------------- 4- — 4 P — — 4 It I------ 4--------dx dx [ dx y dy dz

(13.9)

d I du dv 
dy \ dy dx

d F I dw du\
~— it I ----  I
dy \ dx dz /

+ pgxJ8(T- To) (13.10)

I dv dv dv
P -T7 + + v —\ dt dx dy

= d(p ~Po)

dy

du dv
~---dy dx

_ dv
4- — 4ii— dy [ oy

I du dw\ 
- yti —---- 1------
\ dx dz )

dz
[ dw dv 

ul ~— 4- —
\ dy dz

+ pgyfi(T-T0) (13.11)

d

d
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Idw dw dw
p T----- !■ ----- 1" V----\ dt dx dy

d(P ~Po) 
dz

dw
W~— 

dz

(13.12)

/dT dT dT dT\
Pcn —I- —I- v——I- w— dt dx dy dz j

(13.13)

where (x, y,z) are the coordinates, (u,v,w) are the velocity components of the 
velocity vector V, and (gx, g,, g.) are the components of the gravitational acceleration 
vector g. Furthermore, cp = cp(p, T), p = p(p, T), and k = k(p, T) need to be 
specified. If the enclosure medium is a perfect gas, then (i is the reciprocal of the 
absolute temperature T\}. All these equations must be solved simultaneously for the five 
unknowns u, v. w, p and T.

For other enclosure configurations, it may be desirable to write the governing 
equations in other coordinate systems. For cylindrical and spherical geometries, the 
corresponding equations are also very well known and can be found in the recent text 
by Arpaci and Larsen [18], In another interesting case dealing with laminar natural 
convection between two eccentric horizontal cylinders, governing equations in a cylin
drical bipolar coordinate system can be used [19].

To complete the mathematical formulation of the enclosure natural-convection 
problem, boundary and initial conditions for the governing differential equations need 
to be specified. For the momentum field, the no-slip conditions for the velocity 
components at the bounding walls and a specified hydrostatic pressure field are all that 
is necessary. For the temperature field, the situation is slightly more complex, due to 
the great variety of thermal conditions that can be specified. The simplest are the usual 
imposed wall temperatures or wall heat fluxes, which also include the insulated wall as 
a special case. Other possibilities are walls with heat capacities and walls where 
convective conditions may be specified. Also, it is possible to have a combination of 
above conditions even on a single wall.

There is also a class of enclosure natural-convection problems where there are 
physical openings in the bounding walls. In the extreme case where a whole wall is 
missing, the enclosure is known as an open enclosure or open cavity. When the 
openings are small they are referred to as vents. Open cavities are found in devices for 
the cooling of electronic components [20]; vents include windows and doorways for 
rooms and compartments [15],

Obviously, boundary conditions also need to be specified at these openings before 
solutions to the governing equations can be attempted. A difficulty arises in that some 
of the flow conditions are not known physically at the openings. On the other hand, the 
elliptic nature of the momentum and energy equations dictates that solutions are to be 
sought for the regions both inside and outside the enclosure so that they can be joined 
at the opening to yield the physical conditions there [20,21], One common practice is to 
use what is now known as the natural conditions [15], as follows: Figure 13.2 shows a
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typical opening which physically connects the enclosure interior to the outside. The 
natural conditions can then be written as follows:

dN dT
iorAc, p=pn, TT = °’ T- = 0 on on

(13-14)
5V

for A p=p,, — = 0, T=T0 
on

where n is coordinate normal to the plane of the opening, To is the ambient 
temperature, and p0 is the ambient pressure. The physical implication of these 
conditions is that the flow field persists as it approaches the opening from both sides 
and that the fluid there leaves the enclosure at the same interior temperatures, but 
carries with it the ambient temperature when it enters the enclosure at the opening. It is 
clear that these conditions are artificial, and at best only represent approximations to 
the real conditions. However, in studies dealing with shallow cavities [20] and en
closures with doorways [21], it has been found that these natural conditions do 
represent reasonable approximations.

For a transient or unsteady problem, the proper initial conditions are prescribed 
initial velocity and temperature fields, which also include the special cases where the 
initial field may either be that corresponding to a steady-state solution or one that has 
no motion and is maintained at a uniform temperature.

13.2.2 Formulations for Turbulent Flow and Turbulence Modeling
The field of turbulent natural convection in enclosures is now also in active develop
ment because of several important areas of application. Examples are heat transfer and 
fluid flow in furnaces [22] and fire and smoke spread in vented enclosures [15], In these 
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applications, the very high Grashof numbers reached are caused either by large 
temperature differences resulting from intense heating, by the large size of the en
closures, or by both. The conservation equations (13.1), (13.2), and (13.3) can also be 
applied to turbulent enclosure natural-convection problems, except that the dependent 
variables are all interpreted as mean quantities. In addition, the stress tensor r must 
now also include the Reynolds stress tensor r,, and similarly turbulent heat fluxes must 
also be added to the mean energy equation. In order to gain closure, these second-order 
correlations must be modeled before the turbulent flow problem can be solved. The 
development of these closure models represent one of the most active areas of research 
in fluid mechanics and heat transfer in recent years [24,25],

13.2.3 Nondimensionalization and Scaling
It is a common practice in enclosure natural-convection analysis to first nondimen- 
sionalize the governing equations and the boundary and initial conditions before a 
solution is attempted. In the nondimensionalization process, a series of normalizing 
factors or scales must be introduced. For an enclosure natural-convection problem, 
such scales include a characteristic length L(, a characteristic velocity Ul, a characteris
tic temperature 7], and a characteristic temperature difference AT.. While the choice of 
these characteristic quantities is arbitrary, the physical implication of a given choice 
and its effect on the resulting nondimensional equations are not well appreciated and 
understood, as pointed out recently by Ostrach [4]. The major difficulty lies in the fact 
that enclosure natural-convection phenomena are multiple-scale phenomena with dif
ferent scales operating in different regimes of the flow, and also possibly at different 
times. If exact solutions were obtainable, then any nondimensionalization would be 
suitable. Unfortunately, no such exact solutions exist, even for the simpler two-dimen
sional enclosure problems, and only approximate solutions can be attempted. If such 
attempts do not take into account of the different scales involved, significant physics 
may be lost. Unfortunately, since in the usual practice only a single set of scales is 
utilized, this may indeed happen in many of the enclosure natural-convection solutions 
obtained so far.

The difficulty can best be illustrated by considering the following great variety of 
characteristic velocities that can be used for the two-dimensional enclosure problem [4]:

a/Lc

u = (^)1/2/4
g/3AT(.L>

(g/? A T(. Lc)1/2

(viscous vs. inertia) 
(convection vs. conduction) 

( combination)

(buoyancy vs. viscous)

(buoyancy vs. inertia) 

(13.15)

and so on. where v is the kinetic viscosity, a is the thermal diffusivity, and Lc can be 
taken as H (or H7). It is thus seen that each choice represents a specific balance 
between a pair of mechanisms, and it is clear that there is no reason to expect that any 
of these balances will be operative throughout the flow in the enclosure.

The resolution of this scaling difficulty in a given enclosure natural-convection 
problem is not simple [26,27]. For the time being, it is important to realize that 
nondimensionalization of the governing equations by using a single set of characteristic 
or normalizing quantities must be carried out with caution until rational procedures for 
the enclosure problem are developed for general use.
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13.2.4 Dimensionless Parameters
Dimensionless parameters which govern the enclosure natural-convection phenomena 
can normally be obtained by a standard dimensional analysis. It is generally known 
that for any enclosure flow problem, the Nusselt number can be written functionally as

Nuz/ = NuH(Ra/;,Pr, a*)  (13.16)

where Nuz/ is the average Nusselt number hH/k (with h the average coefficient of 
heat transfer), Ra/Z is the Rayleigh number g[i(TH - Tc)Hy/av, and a*  is representa
tive of one or more dimensionless geometrical ratios.

There are additional parameters that may be equally important, depending on the 
specific problems under consideration. Most important of these is the temperature
difference ratio 0Q = (TH — Tc)/Tc, which determines whether the fluid in the en
closure is a Boussinesq fluid, and becomes a separate parameter, affecting both the flow 
and temperature fields, whenever it exceeds about 0.1 [14], It has a special significance 
when thermal radiation effects become important [28].

Another dimensionless parameter which appears often in turbulent enclosure natu
ral-convection problems is the gradient Richardson number Ri, defined by 
g/i( dT/dy)/( du/dy)y which is seen to be a local parameter denoting the ratio of 
buoyancy to inertia forces. Its physical significance lies in the effect of buoyancy on the 
turbulence field.

Another commonly encountered parameter for turbulent enclosure flow is the 
turbulent Prandtl number Pr, = where eA/ and fz/ are the turbulent momen
tum diffusivity and turbulent thermal diffusivity, respectively. As is now generally 
known, a quantitative knowledge of the turbulent Prandtl number eliminates the need 
for a seperate turbulent model for the turbulent heat fluxes [29].

Finally, it may be mentioned that other parameters may appear in an enclosure 
natural-convection problem in which additional modes of heat transfer occur.

13.3 MATHEMATICAL AND NUMERICAL ANALYSES

13.3.1 Classification of Methods of Analysis
Obtaining a solution to the nonlinear Navier-Stokes equations of motion has always 
been a challenge to fluid mechanicians and applied mathematicians alike. Even though 
exact solutions do exist [30], they are restricted to very specialized cases and hence are 
not very useful. Much of the effort has therefore been devoted to developing approxi
mate solution techniques which can be applied to a variety of problems; this represents 
one of most fruitful areas of research in viscous flow theory in recent years.

For enclosure natural-convection phenomena as described by Eqs. (13.1), (13.2), and 
(13.3), the momentum and energy equations are coupled through the body force term, 
which depends on the temperature field. As a result, these equations must be solved 
simultaneously and hence represent an additional level of complexity in obtaining the 
solutions. As a matter of fact, simple enclosure natural-convection problems have often 
beeen used as a vehicle for the development of new analyses and new numerical 
algorithms [2,4,31],

There appears to be no exact solution available for enclosure natural-convection 
problems, with the exception of limiting cases as the Rayleigh number vanishes. All 
existing methods of analysis are approximate in nature, but are applicable to a variety 
of enclosure-flow problems. They can be broadly classified into three categories as
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follows:

1. Asymptotic analysis (analytical) [1,4,26,32,33]
2. Discretization methods (numerical) [31,34,35]

Finite difference methods
Finite element methods

3 Hybrid and other numerical methods

Detailed descriptions of these methods are beyond the scope of this Chapter, and 
readers are directed to the references above. In the following sections emphasis will be 
placed on the advantages and disadvantages of each of the methods as well as on the 
recent developments in each area.

For purposes of illustration only, attention in the following sections is directed to 
the simple enclosure natural-convection problem associated with the two-dimensional 
enclosures given in Fig. 13.1(a) and (b). Under the usual conditions of an incom
pressible Boussinesq fluid with constant properties, the governing differential equa
tions, in accordance with Eqs. (13.9) to (13.13), can be written as

du dv
— + — = 0
dx dy

(13.17)

du du 1 d(p - p0)
u „ + V „ = „ + W u

dx dy p dx
(13.18)

dv dv 1 d( p — p0)
U + v = + g0(T To) + PVT

dx dy p dy
(13.19)

u— + v— = «V2T (13.20)
dx dy

where the origin of the coordinates (x, y) is placed at the lower left comer of the 
enclosure and gravity is in the -y direction. Also, To can simply be taken as the cold 
wall temperature Tc, and p{} is the hydrostatic pressure in the enclosure. The corre
sponding boundary conditions are simply

x = 0, Q < y < H, u = u = 0;

x = W, 0 < y < H', u = v = 0;

y = 0,H, 0 < x < W, u = v = Q;

(13.21)

13.3.2 Asymptotic Analysis
In an asymptotic analysis, no attempt is made to obtain uniformly valid solutions 
throughout the flow and temperature fields, even though this is the ultimate goal [32], 
Rather, limiting solutions for subregions of the fields are first obtained by letting one of 
the dimensionless parameters become either very large or vanishingly small. Attempt is 
then made to obtain asymptotic expansions around these limiting solutions, which are 
then matched asymptotically for the intermediate regions.
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Unfortunately, the procedure for obtaining the terms in the asymptotic expansions 
becomes increasingly complex when higher order terms are included, and there is 
always the question of the radii of convergence of these expansions. For the enclosure 
natural-convection problem under consideration here, the solutions from the asymp
totic analysis depend on which limiting solutions are utilized. Furthermore, sometimes 
there are nonuniformities in the expansions and the solutions can only be constructed 
by introducing additional ad hoc conditions or idealizations.

For the problem formulated in Eqs. (13.17) to (13.21), it can easily be shown that 
the three dimensionless parameters governing the phenomenon are the same ones given 
in Eq. (13.16). Even for a given Prandtl number, there are several possible limiting 
cases [1,5] as follows:

Ra// a* Limit

0 Arbitrary Conduction
—> 00 Arbitrary Boundary layer
Fixed 00 Tall enclosure
Fixed -> 0 Shallow enclosure

Other limiting cases can also be identified based on Pr -> 0 and Pr —* oo [4,26], While 
each of these Emits has its own unique characteristics and is valid only in its own 
region, asymptotic expansions around these limits can be constructed and asymptoti
cally matched to yield uniformly valid solutions in the overlapped regions. Unfor
tunately, not all such expansions are known at the present time.

The case associated with the conduction limit is the easiest to understand physically. 
For vanishing Ra/Z, the circulating convective motion is very slow, and heat transfer 
across the enclosure is dominated by conduction [36]. Asymptotic solutions can be 
constructed for both the temperature and stream function which characterize the flow 
field in terms of ascending powers of Ra„. The leading term for the temperature 
expansion is simply the linear temperature variation, and that for the stream function is 
of the order of Ra/Z.

For the case of the boundary-layer limit with Razz approaching infinity, it is 
expected that thin boundary layers will form along both the hot and cold walls. The 
core region is relatively stagnant and stably stratified. How the wall boundary layers 
can be properly linked to the flow in the core has become a central, but yet unsettled 
issue in constructing the asymptotic solutions for this problem [4], Batchelor [36] was 
the first to set the stage for the development of such a solution. While the boundary 
layers along the isothermal walls could be scaled in the usual manner in accordance 
with the boundary-layer theory, Batchelor chose for the core region dominant behav
iors given by an isothermal core with a constant vorticity. These were subsequently 
found to be incorrect.

A more realistic asymptotic analysis was made by Gill [37] and recently clarified by 
Blythe, Daniels, and Simpkins [38], Since this analysis is representative of all asymp
totic analyses for the enclosure problem, it is instructive here to describe several key 
steps in the analysis.

Since the boundary-layer thickness along the hot wall is of the order of Raz/’ 4, the 
boundary-layer region there can be scaled according to

"=^Ra//1'4’ J'= 7; (13.22)
n 11
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and the corresponding asymptotic expansions can be constructed [39] as

00

^(x*,  y*)  = RaH1/4 L ipr(x, y) Ra,//4
r = 0

0(v*,T*)  = ^0r(x,y)R^
r = 0

(13.23)

where is a dimensionless stream function obtained by normalizing the usual stream 
function with the thermal»diffusivity a, and 0 is a dimensionless temperature variable 
defined as (T - TC}/(TI: - Tc). It is noted that coefficient functions ipr and 0r are also 
dependent on Pr. The coordinates a* and y*  are x and y normalized by means of the 
height //. In the core region, no scaling is needed, and the corresponding expansions 
can therefore be written as

00

ip(x*,y*)  — Raw1/4 V. ipcr(x*,  y*)  RaHr/4
r = 0

0(x*,y*)  = y 6cr(x*,  T*)  Ra/Z/4 
r = 0

(13.24)

Here the coefficient functions are also functions of Pr. The governing differential 
equations (13.17) to (13.20) can now be recast into those based on the new dependent 
variables and 0 by eliminating the continuity equation and also eliminating the 
pressure terms in the momentum equations by cross differentiations, resulting in

dip
~dx*  dy*

dip d2 Sip
77*  dx = Pr

4 90

v4^- Ra„ —

dip 30 dip d0
dx*  dy*  dy*  dx*

(13.25)

(13.26)

When the core expansions of Eq. (13.24) are substituted into Eqs. (13.25) and 
(13.26) and we let Raw -» oo, the following is obtained:

^■0 =

^o = ^o(T*) (13.27)

indicating that the core region is vertically stratified. These functions, however, are not 
known and can only be determined by matching asymptotically with the solutions for 
the wall boundary-layer regions, including those along the adiabatic surfaces. For 
instance, as the boundary layer along the hot wall extends into the core, the matching 
requires

0to(>’*)  = _Um = 0o,oc(t)
X~*  00

’Peo(>'*)  = J™ ^o(X>T) =,Po.oo(t) x—> 00
(13.28)
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The asymptotic solution given by Gill [37] deals with the specific case of large Pr 
(Pr -» oc). It is also to be noted that the present case is for Ran -> oo with a fixed 
aspect ratio a*.  When Eqs. (13.25) and (13.26) are recast in terms of the boundary-layer 
variables x and r and these limits applied, the boundary-layer equations become

<13M> 
dx

_d^dOo = (13 30)
dx dy dy dx dx2

The boundary conditions at the wall x = 0 are simply

- o, - 1 (13.31)
dx

and as x —> oo

4*o  4o.oo(~* »o.oo(t) (13.32)

Additional conditions must be imposed on ip0>oo and x before solution of Eqs. 
(13.29) and (13.30) can be attempted. These are known as the centrosymmetry 
conditions and are based on symmetries from both the hot and cold walls:

KJJ) = ^0.00(1 - A <V(y) = 1 - *0.00(1  - v) (13.33)

In Gill’s treatment [37], the coupled equations (13.29) and (13.30) are solved by the 
standard Oseen linearization technique. The final equations for ^(y) and 0^ x(y) 
include two arbitrary constants which are determined by the ad hoc mass-flux hypothe
sis that

’Po.ooCO) =4'o.oo(l) =0 (13.34)

The physical interpretation of this hypothesis is that the top and bottom comers of the 
enclosure are impermeable, so that the mass from the boundary layer empties com
pletely into the core. The mathematical implication here is that the boundary layers 
along the insulated walls are sufficiently thin to be completely neglected. Therefore, the 
asymptotic matching between the boundary layer and the core need only be carried out 
in the x direction. It is also to be noted that in the Emit as Ra„ -» 00, the vertical 
boundary-layer thickness also becomes vanishingly small, and then Gill’s solution is 
uniformly valid for Pr -> 00.

Attempts have been made to improve Gill’s solution so that the results can be 
extended to cases of large but finite Ra/Z. One such attempt has been given by Bejan 
[40], in which the mass-flux hypothesis is replaced by a more general energy-flux 
hypothesis which allows for both impermeable and adiabatic horizontal surfaces. A 
similar analysis for Pr < 1 has more recently been given by Graebel [41],

A proper treatment must necessarily include the boundary layers on the horizontal 
surfaces. Unfortunately, such a treatment is not known to have been attempted for 
arbitrary Pr, nor for Pr -» 00.

This example of asymptotic analysis illustrates one of the common shortcomings of 
this approach. It is in general very difficult to construct properly matched asymptotic 
expansions that are uniformly valid. Any compromise in this regard often requires the 
introduction of ad hoc conditions and consequently is not very satisfying as a formal 
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analysis. On the other hand, despite these shortcomings, the asymptotic analysis does 
provide considerable physical insight into the flow and temperature fields in the 
neighborhood of the limiting conditions considered.

In addition to the conduction limit and boundary-layer limit just described, there 
are also cases in which the aspect ratio is allowed to approach its limits for fixed 
Rayleigh number. In this class, there are the tail-enclosure limit as a*  -> oo and the 
shallow-enclosure limit as a*  -> 0. In the asymptotic sense, the tail-enclosure limit is 
essentially that of one-dimensional conduction. For high Rayleigh numbers, where 
convection becomes important, the flow patterns and heat transfer characteristics are 
well predicted by the boundary-layer limit solutions described previously. For the 
shallow-enclosure limit, a great deal has been learned from asymptotic analyses over 
the years. The special case of Ra ~ 1 and «*  « 1, known as the Hadley limit, has 
received special attention due to its possible application to shallow solar ponds, 
reactors, crystal growth, and geophysical phenomena, as well as to the fact that the 
thermal diffusion is significantly different from that of the boundary-layer limit 
situations. Asymptotic analyses for the Hadley limit have been carried out by Hart 
[42-44] and Cormack et al [45], and have recently been reiterated and clarified by 
Simpkins and Chen [33],

Another limiting condition represents a cross between the boundary-layer limit and 
the shallow-enclosure limit with small a*  and fixed and variable Raw. Bejan and Tien 
[46] analyzed the heat transfer by means of asymptotic analyses for the region of 
vanishing Rayleigh number (Raw 0), the intermediate region (Ra/Z ~ 1), and the 
boundary-layer region (Ra/Z oo). Even though the condition that the core flow is 
parallel to the insulated horizontal surfaces is only correct for the Hadley and 
boundry-layer limits, this condition has also been applied to other cases with aspect 
ratios less than unity. This is somewhat unfortunate, since it is now known that the 
condition of parallel core flow is essentially valid only for aspect ratios less than 0.1 
[47]. This instance illustrates yet another shortcoming of the asymptotic analysis: that it 
is in general very difficult to determine the region of validity of the asymptotic 
solutions by obtaining the solutions themselves.

13.3.3 Numerical Methods
Numerical methods represent a useful alternative to asymptotic analyses in treating 
enclosure natural-convection problems. In view of the general accessibility of mainframe 
computers, such methods have proven to be increasingly popular. The entire tempera
ture and flow fields can be calculated for a given set of Ra/Z, Pr, and a*,  and numerical 
solutions have often been used to ascertain the validity of the asymptotic solutions. On 
the other hand, there are also shortcomings in the numerical methods which cast some 
degree of uncertainty on the calculated results, as will be discussed later in this section.

In the following subsections on the various numerical methods, the specific purpose 
is not to describe in detail the procedure in each of the methods, but rather to address 
the critical issues involved. An understanding of these issues is important in carrying 
out the numerical solution to any enclosure natural-convection problem. For readers 
interested in learning the details of the methods, pertinent references are cited in the 
following.

13.3.4 Finite Difference Methods
Among the many numerical methods, finite difference methods have been the most 
popular for the analysis of buoyant enclosure flow problems [48,31,34,35], There are 
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also more or less standard computer codes available for recirculating flows with or 
without buoyancy. Good examples are teach [49], simple [34,50], comix [51], and 
undsafe [52], While these finite difference methods are indeed versatile and produce 
good results in many instances, they are not without pitfalls. The primary purpose of 
this section is therefore to identify and discuss several critical issues in the use of finite 
difference methods for buoyant enclosure flow problems. These issues must be borne in 
mind for reasonable assurance that the results in a given numerical study are correct.

One critical issue relative to the finite difference methods is that of false or artificial 
diffusion. It is now well known [34] that upwind differencing for the convection terms 
produces numerical false diffusion which may overwhelm the physical diffusion when 
convection effects are dominant. As a result, calculations based on upwind differencing 
may lead to gross errors [53], particularly in buoyancy-driven enclosure flows at high 
Rayleigh numbers. For instance, in the experimental study of Bajorek and Lloyd [54], 
oscillations have been observed in the comer regions of a square enclosure at Rayleigh 
numbers as low as 10'\ while the numerical solutions based on upwind differences [55] 
arc completely stable and steady for the flow field.

Attempts have been made to remedy the false-diffusion problem by using higher- 
order differencing schemes for the convective terms [53,56,57], For the two-dimen
sional flow problem, these higher order schemes all utilize more cells surrounding the 
base cell which is being calculated. The most promising is the quick (quadratic 
upstream interpolation for convective kinematics) scheme developed by Leonard [53], 
which has been shown to reduce false diffusion significantly. Its extension to three
dimensional natural-convection flows in box enclosures has also met with some success 
recently [58], Also, in a recent study of the basic square-enclosure problem for 
turbulent flows at very large Rayleigh numbers (up to Ra = 1016) by Markatos and 
Pericleous [50], the upwind-differencing scheme is used, but the grid is successively 
refined until the solution becomes grid-independent. The rationale here is that since 
false diffusion depends on the cell size, it is expected that different false-diffusion levels 
would lead to different solutions. If the solution becomes grid-independent, then false 
diffusion must not be an important factor. Whether this rationale is true in general 
remains to be seen.

The choice of cell sizes in finite difference calculations is evidently an important 
issue. To obtain high resolution in the computed results and ensure good accuracy 
without the contamination of false diffusion, cell sizes should be as small as possible, 
though not so small as to overtax the available computing facilities. Numerical stability 
requirements must also be adhered to [48], Extrapolation formulas are available to 
extrapolate finite difference calculations to zero cell size [59], but their generality is not 
certain, especially where nonlinear effects are large. At the present time, the goals of 
numerical computations with finite differences should be to obtain results that are 
grid-independent.

A more critical issue, however, is the controversy between uniform and nonuniform 
grid systems. It can be argued that for the same number of calculation cells, a 
nonuniform grid allows for better resolution in regions where large changes in the 
physical behavior occur. On the other hand, a case can be made for the uniform grid 
system where the physics is not sufficiently clear to allow for a predetermined 
nonuniform grid. Further controversy arises because of the lack of very accurate 
bench-mark cases with which calculation results based on uniform and nonuniform 
grid systems can be compared [60,61]. At the present time, the use of nonuniform grid 
systems also suffers the lack of rigorous criteria as to what degree of nonuniformity of 
cell sizes should be used in a given problem. Research is critically needed here to 
develop rational criteria, which somehow should be tied to the physical phenomena.
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A related issue for finite difference calculations is the use of body-fitted coordinate 
systems. One major deficiency of the finite difference method is the difficulty in fitting a 
finite difference grid to the bounding surfaces of the enclosure, which can be quite 
complex. The use of body-fitted coordinates eliminates the problem by transforming 
the physical enclosure domain to a simple domain, in which the finite difference 
calculations are carried out. The difficulty, however, is that the body-fitted coordinates 
must be numerically generated in accordance with the numerical solution to a separate 
elliptic differential equation. This represents a major area of research in recent years 
[62],

Also, for buoyant flow in a closed enclosure, any transient or unsteady heating or 
cooling from the boundaries affects the average pressure in the enclosure. Conse
quently, in the numerical calculations the average pressure must be allowed to vary in 
accordance with the thermodynamic conditions [63]. If the numerical solution is based 
on primitive variables, then a second global pressure correction must be applied to 
account for this constant-volume process [64],

13.3.5 Finite Element Methods
The development of finite element methods for fluid flow and heat transfer problems 
has been more recent [31,35,65-67] than that of the finite difference methods, even 
though both methods had their origins in pure conduction analyses. The intent of this 
section is to address several aspects of the general methods and also to briefly delineate 
the relative merits and defects of the two numerical methods.

As in their applications to conduction problems, the inherent advantage of the finite 
element methods is that complex boundaries can be accommodated rather readily and 
therefore they are particularly suited for realistic enclosures where complex shapes are 
encountered. On the other hand, the finite element methods do contain two approxima
tions to the governing equations, rather than one as in the finite difference methods. In 
the finite element methods, (1) the governing equations are only satisfied by an average 
relative to certain weighting functions, and (2) the calculation domain must be 
discretized and corresponding interpolation formulas evaluated for each resulting 
element. Only the latter approximation is utilized in the finite difference methods.

Another inherent difference between the two methods is that it is convenient in the 
finite difference methods to carry out the calculations by marching in time, while the 
finite element methods involve inherently time-independent calculations. In the latter 
case, final solutions for time-dependent cases may be obtained by solving simultaneous 
ordinary differential equations in time or by replacing the time derivatives with 
backward differences. Also it maybe pointed out that calculations of the finite element 
methods in general require the simultaneous solutions of very large set of algebraic 
equations, which may overtax the computing facilities. On the other hand, because of 
the use of nonlinear interpolation formulas or basis functions, less nodes are required 
to yield the same degree of accuracy.

There are also several critical issues that need to be addressed. At the present time, 
the weighted-residual integral formulation is the dominant finite element formulation 
used in problems of fluid flow and heat transfer; of the methods based on it, the 
Galerkin method is the most popular. There are several other integral formulations 
which can be used in finite element calculations, notably the simple central integration 
method, the method of least squares, the penalty-functional method, and the colloca
tion method [31]. There is a critical need to examine closely which of these methods 
produce the most satisfactory results in terms of computational efficiency and accuracy 
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for buoyant enclosure flow problems. At the present time, very little is known about 
this question.

As in the finite difference methods, the choice of elements in the finite element 
methods and their size distribution also represent an important issue. For fluid flow 
problems, the most popular elements in two-dimensional situations are triangles and 
rectangles. The nonuniform element-size distributon does not create any difficulty and 
can be generated to place more elements in regions with large flow and temperature 
variations. Body-fitted coordinates and various schemes of grid generation can also be 
used in finite element methods [62], The critical problem here is still the lack of rational 
criteria for setting up optimal finite element grid in a given problem for most efficient 
solution.

Numerical stability and convergence criteria for finite element calculations are very 
difficult to determine for viscous enclosure flow problems. The usual practice is to 
obtain them by numerical experimentation with various time steps and element sizes. 
Improvement of numerical stability by means of upwind schemes in the interpolation 
formulas has been achieved recently, but the solution of the associated false-diffusion 
problem is still not completely at hand [68], There is every indication that in the 
foreseeable future the finite element methods will become a strong competitor to finite 
difference methods, particularly in view of their capability of dealing with problems 
involving complex boundaries.

Finally, there is the important issue for both finite difference and finite element 
calculations concerning the computer on which the calculations are carried out. The 
existing mainframe computers are rather inadequate for three-dimensional calculations. 
Supercomputers that are based on vector and parallel processing have been increasingly 
accessible to the scientific research community, and represent a powerful tool to deal 
with many unresolved issues of natural convection in enclosures. Unfortunately, to use 
supercomputers efficiently requires a very different coding strategy and may even 
indicate a change in the basic algorithms in the numerical methods, and more research 
is critically needed in this regard [69].

13.3.6 Hybrid and Other Numerical Methods
While the finite difference and finite element methods are by far the dominant 
numerical methods for studies in buoyant enclosure flow problems, other methods are 
available which are semianalytical or hybrid and based on rather different approaches 
[31, 70], Good examples are the spectral methods [71,72], the vortex methods [73], and 
the more recently developed finite analytic method [74,75], These methods have just 
begun to be applied to buoyant enclosure problems, and their potential here remains to 
be demonstrated.

13.4 LAMINAR NATURAL CONVECTION IN ENCLOSURES

13.4.1 Two-Dimensional Buoyant Enclosure Flow: Analyses
Laminar buoyant flows in two-dimensional enclosures are the best studied of all 
buoyant enclosure flows. The two-dimensionality greatly simplifies the analyses, and 
yet most of the physics involved in general buoyant enclosure flows is still retained. 
Experimental measurements are simpler to carry out than three-dimensional experi
ments, and the results can be used directly for comparison with those from analyses.. 
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The purpose of this section is to summarize the more important recent results from 
two-dimensional analyses relative to the steady flow and temperature fields.

For rectangular enclosures with a*  > 1 and differentially heated vertical side walls, 
asymptotic solutions for the boundary-layer regime at high Rayleigh numbers have 
been given by Gill [37], Bejan [40], and Graebel [41], as already discussed. Many more 
solutions, dealing with both insulated and perfectly conducting end walls for the 
vertical slot problem, have been obtained by numerical methods. Earlier studies have 
been reviewed by Catton [2], and more recent studies are given by Korpela et al. [76] 
and by Schinkel et al. [77]. The general flow behavior and heat transfer characteristics 
are now fairly well established; they depend on the Rayleigh and Prandtl numbers and 
the aspect ratio. In accordance with the classification proposed by Eckert and Carlson 
[78], the flow behavior at a given Rayleigh number undergoes a change from a 
boundary-layer type, through a transition regime, and finally to one dominated by 
conduction, as the aspect ratio increases from slightly greater than unity to large values.

More recent findings suggest even more complex flow behavior. In the boundary-layer 
flow regime, a unicell flow structure exists and the core region is stratified. In the 
transition regime, the core stratification persists, while flows start to appear in the core 
region. Typical examples of the isotherms and streamlines in this regime are shown in 
Fig. 13.3 for various Ra/Z and a*  and end boundary conditions, in accordance with the 
numerical results of Schinkel et al. [77]. When a*  becomes very large, the isotherms all 
become essentially vertical and the flow reverts to a unicell structure. The heat transfer 
is dominated by conduction, and increases as a*  increases.

However, as pointed out by Bergholz [79] and Korpela et al. [76], for Rayleigh 
numbers Ra/Z greater than about 2.5 X 107 there is another distinct flow regime, lying 
between the transition regime and the conduction regime for a given aspect ratio, and 
characterized by regularly spaced multicellular flow in the core region. These cells do 
not affect the overall heat transfer much, since most of the energy is transferred in the 
end regions away from the cells. From the results of the stability analysis of Bergholz 
[79], the heat transfer across the slot decreases as the aspect ratio is reduced in the 
conduction regimes, and achieves a minimum when multicellular flow first appears. A 
correlation can be determined to relate the aspect ratio to the Grashof number when 
such a minimum occurs, and is given by

a* 3 + 5a* 2 = 1.25 X 10“4 Gr„ (13.35)

where Gr/y = Raz//Pr. This equation is useful for determining the optimum spacing 
for minimum heat transfer through a double-pane window [76],

For laminar flow and heat transfer in two-dimensional rectangular shallow en
closures with a*  < 1, many of the characteristics have been clarified by asymptotic 
analyses in the different limiting flow regimes as already discussed in Sec. 13.3.2. These 
characteristics have since been verified by numerical solutions to the governing equa
tions [80-82], and typical examples are shown in Fig. 13.4 for isotherms and stream
lines for two Rayleigh numbers and Pr = 1.0 and a*  = 0.1, based on the 
primitive-variable calculations of Tichy and Gadgil [82], Since the calculations are 
based on upwind differencing for large cell Peclet numbers, there is a question of their 
accuracy because of false-diffusion effects, as noted previously. However these results 
are certainly expected to depict the global behavior of the flow and temperature fields 
adequately. In view of the high Rayleigh numbers, this behavior corresponds to the 
limits as Ra/Z —» oo for fixed small aspect ratios. As noted earlier, these limits are 
different from that for fixed Raw as a*  -> 0 [45]. It is seen in Fig. 13.4 that the flow is 
characterized by thin layers fining all four walls and the high velocities in these layers
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Isotherms

Streamlines

(a) (b)

Figure 13.3. Isotherms and streamlines: (a) RaH = 1.32 X 106, a*  = 2, perfectly conducting 
walls; (h) Ra;/ = 1.56 X 106, a*  = 4, perfectly conducting walls; (c) Raz/ = 1.6 X 106, a*  = 8, 
adiabatic walls [77],

drive the core flow. Almost all the temperature drops occur in the vertical end-wall 
regions, leaving the core region essentially stratified. The streamlines in the core are 
nearly parallel, and as the Rayleigh number increases, the core region extends almost 
the entire length of the enclosure.

Calculations for small Prandtl numbers down to Pr = 0.01 have also been made by 
Shiralkar and Tien [81], and it has been found that for Pr < 1 there exists a transition
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Figure 13.4. Isotherms and streamlines, Pr = 1.0, «* = 0.1: (a) Ra = 106, (b) Ra = 108 [82],

regime outside the end-wall boundary-layer region in which inertia effects dominate, 
resulting in a very large Prandtl number effect as Pr -> 0.

While asymptotic analyses have provided much physical insight into buoyant 
rectangular enclosure flow for both a*  > 1 and a*  < 1, they are not quantitatively 
applicable to the corresponding square-enclosure problem with a*  = 1, even though 
some of the basic physics is still retained. As a result, the analysis of the square
enclosure problem falls into the domain of numerical solutions; and in view of its 
geometrical simplicity and well-defined boundary conditions, is often used as a stan
dard problem for developing or testing different numerical methods. Because no exact 
solutions exist for the natural-convection-dominated range of Rayleigh numbers, it s 
difficult to assess the relative accuracies of the results based on these numerical 
methods. A concerted effort, however, has been made to compare the various numerical 
results for this square enclosure flow problem with a Boussinesq fluid for Pr = 0.71 and 
Rayleigh numbers of 103, 104, 105, and 106 in an international “competition” [83] 
which has attracted 36 entries from nine different countries. The results are compared 
in terms of the maximum velocities and their positions at mid section, and in terms of 
the average Nu(; on the hot wall and the positions of its maxima and minima. Details 
of this comparison exercise are given in [60, 84], The main conclusions are that there is 
a good consensus on the average Nuz/ for the various Rayleigh numbers, but that other 
local characteristics from different methods show considerable scatter.

As later discussed by Quon [61], such comparisons of local characteristics are not 
very meaningful in view of the very different grid systems used in the entries. Quon [61] 
and Markatos and Pericleous [50] have subsequently made further calculations on this 
problem, emphasizing the effects of grid distribution and high Rayleigh numbers. One 
set of results for Ra/Z = 107 and Pr = 0.71 in terms of streamlines and isotherms is 
given in Fig. 13.5, in which the hot wall is on the right. The boundary-layer regimes can 
be clearly seen, the core region is again highly stratified, and there is also a clear



13’22 NATURAL CONVECTION IN ENCLOSURES

Streamlines

Figure 13.5. Streamlines and isotherms, Ra = 107, a* = 1.0, Pr = 0.71 [61].

indication of the considerable penetration of the wall layers near the horizontal wall 
into the core flow at this Rayleigh number. The vertical velocity profiles near the hot 
wall for Raz/ = 106 and Pr = 0.71 calculated by Quon [61], Winters [85], and Gartling 
[60] are shown in Fig 13.6. This is one of the cases covered by the “competition” [83], 
and the data from Winters [85] and Gartling [60] were calculated by finite element 
methods. While the overall agreement appears to be good, considerable scatter does 
occur, especially near the velocity maxima.

Heat transfer results for vertical enclosures based on analytical analyses and 
numerical computations have been correlated in the recent literature. Typical examples 
will be given in Sec. 13.7.

While problems in vertical rectangular enclosures have received a great deal of 
attraction in recent years, special attention has also been directed to the corresponding 
problems in which the same enclosures are tilted relative to the direction of gravity. 
The design of tilted solar collectors represents an important application. The mecha
nisms of the flow behavior and its stability encountered in the vertical enclosures still 
play a role in the tilted enclosures. However, the unstable stratification and thermal 
instability effects usually associated with the heated-from-below phenomena are ex
pected to provide additional physical mechanisms affecting the flow and heat transfer. 
The physical phenomena are much more complicated, and the tilt angle y (Fig. 13.1c) 
is an additional parameter that must be accommodated in any analysis of the tilted- 
cnclosure problem.

Earlier analyses were occupied with the interaction of hydrodynamic and thermal 
instabilities for y close to 180°, as reviewed by Catton [2]. In addition, heat transfer 
results have also been obtained for a range of Rayleigh numbers and aspect ratios at 
various tilt angles. For fixed values of Raz/ and a*,  heat transfer is by conduction only 
for sufficiently small y. As y increases, convection becomes more important due to 
increased buoyancy along the isothermal walls and the effect of unstable stratification. 
At y = 90°, the buoyancy effect reaches a maximum, while the increasing effect of 
unstable stratification persists, thus giving rise to a maximum heat transfer at y > 90°. 
The heat transfer then decreases until a critical tilt angle y( is reached, after which the 
heat transfer rises until y = 180°. Prior to y = yc, the flow inside the enclosure has a 
two-dimensional unicell structure, as long as the combination of Rayleigh number and 
aspect ratio is such that the flow is hydrodynamically stable. At y = y( and beyond.
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Figure 13.6. Vertical velocities near the hot wall, Ra = 106, a* = 1.0 [61].

both stability analysis and experiments have shown that the unicell structure becomes 
unstable and the flow undergoes a transition to a three-dimensional roll [2], In this 
region, the flow behavior can no longer be predicted by two-dimensional calculations. 
The critical tilt angle y( has been experimentally determined by Arnold et al. [86] as a 
function of the aspect ratio, and does not appear to depend strongly on the Rayleigh 
number. Values of y( are given in Table 13.1. Attempts have been made recently to 
carry out three-dimensional numerical computations to predict this functional relation
ship [58,87, 88],

Typical isotherms and streamlines for a tilted enclosure are shown in Fig. 13.7 for 
an air-filled enclosure for Ra/; = 105, a*  = 1.0, and 0o = 0.5 [89]. It is seen that even 
at y = 45°, conduction still dominates. However, at y = 135° the flow becomes much

TABLE 13.1 Critical Tilt Angle y(

a* Yt. (deg)

1
3
6

12
> 12

165
127
120
113
110
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(c) y = 135°

Isotherms Streamlines

Figure 13.7. Isotherms and streamlines for tilted square enclosures, Ra = 105.

more vigorous and the isotherms already show some similarity to those for thermally 
unstable conditions.

From the results of two-dimensional numerical calculations, it is possible to 
correlate the heat transfer results as a function of RaH, a*,  and y, as follows [2]:

Nu„(y) 
a*

i JNu„(90°) .
1 + ------- ----------1 sin y

\ a* )

Nu„(90").. ,1/4
——<sln v)

for 0 < y < 90°

for 90° < y < yf
(13.36)
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Tilt angle 7, deg
Figure 13.8. Ky variations at different tilt angles y [89],

It is particularly interesting to note that the Nusselt number can be directly scaled in 
terms of its corresponding value at y = 90°.

In a more recent numerical study dealing with air-filled tilted enclosures with large 
temperature differences, Zhong et al. [89] have proposed a more general correlation for 
a*  = 1.0 in the region 0 < y < 90° as follows:

Nu„(r) - Nu„(0°) 2 .
’ Nu„(90») - Nu„(0«) "T7 7 (13-37)

where Nu/z(0°) is that for pure conduction. The correlation parameter K is shown in 
Fig. 13.8 together with data from the literature. It is also shown [89] that this 
correlation is valid for RaH up to 106 and 0n up to 2.0.

So far the discussion has been concentrated on empty rectangular enclosures. Other 
two-dimensonal enclosures such as those shown in Fig. 13.Id and e have also attracted 
much attention. However, because of their geometrical complexities, analyses for these 
enclosures are essentially limited to numerical solutions. Partitioned rectangular en
closures are important in ventilation studies in single and connecting rooms and also in 
solar collectors, where baffles are utilized to reduce convection effects. Though several 
experimental studies have been carried out (see [54]), there are very few numerical 
investigations on the same problem. Chang et al. [55] have treated natural convection in 
the standard square enclosure, fitted with symmetric adiabatic vertical partitions 
connected to the adiabatic horizontal walls. The height of each partition is less than half 
the height of the enclosure, so that there is an opening at mid height. The results show 
that the partitions essentially act as flow barriers to reduce the convective flows inside 
the enclosure, thus achieving lower heat transfer rates. Another pertinent study in this 
regard is the one carried out by Kaviany [92], and treats a square enclosure with a
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Figure 13.9. Isotherms and streamlines for annmuli of the same eccentricity, but in different 
angular positions; RaL = 104, e = 0.623, RjRo = 0.3846 [19].

half-cylindrical protuberance located at center of the floor. The general conclusion is 
similar to that of [55]; in addition, it is found that the protuberance loses its effect as 
Ra —> oo.

Two-dimensional cylindrical annuli represent another geometry for which several 
numerical solutions have been obtained. For the concentric annulus, streamlines, 
isotherms, and average heat transfer data have been given recently by Cho et al. [19] 
and Farouk and Guceri [93]. The corresponding solutions for eccentric cylindrical 
annuli have been obtained by Cho et al. [19] and Prusa and Yao [94]. Since all these 
solutions compare well with the experimental data of Kuehn and Goldstein [95]. the 
numerical approaches can be considered valid. It is of interest to note that a bipolar 
coordinate system of coordinates is used in [19], while a radial transformation tech
nique is used in [94], For illustration, isotherms and streamlines for eccentric cylin
drical annuli with the same eccentricity e, but at different angular positions, are shown 
in Fig. 13.9 for Ra, = 104 and Ri/Ro = 0.3846, where ? is defined as the ratio of the 
distance of the centers to Ro — Rj, and RaL is the Rayleigh number based on a -
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Figure 13.9. Continued.

characteristic length /?,, - R,. Here the inner cylinder is maintained at T/f. Numerical 
studies dealing with some variations of this problem may be found in [96,97],

Two additional geometries of two-dimensional enclosures have been numerically 
treated. One deals with a square prism located concentrically in a horizontal circular 
cylinder [98], and the other with a right triangular enclosure depicting an attic space 
[99],

13.4.2 Two-Dimensonal Buoyant Enclosure Flow: Experimental Studies
Ever since the pioneering work of Elder [100,101] on the details of the flow field in 
vertical rectangular enclosures, experimental studies on a variety of essentially two-di- 
mesnional enclosures have received much attention. These studies serve two important 
functions. One is to provide heat transfer data for practically important enclosures and 
their correlations as functions of Rayleigh and Prandtl numbers and other geometrical 
parameters. The other is to serve as a complementary part of asymptotic, numerical, 
and stability analyses, either to provide a means to validate them or to furnish proper
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Ra
Figure 13.10. Experimental average Nusselt numbers for square enclosures [57], Sources: ■. air 
[57]; a, CO2 [54]; O, [86]; •, [109]; <>, [110], X [111]; [112],

physical insight to guide them. It is clear that for the latter purpose, detailed velocity 
and temperature measurements are also needed.

Many experimental techniques are available for the study of buoyant enclosure flow. 
A recent review of these techniques has been given by Hoogendoom [102]. Average and 
iocal Nusselt numbers can readily be measured by the standard caloric technique or the 
use of heat-flow meters. On the other hand, measurements of local temperatures and 
velocities are much more difficult. For the temperature field, the most popular tech
nique is Mach-Zehnder interferometry [103], while holographic interferometry [102,104] 
and differential interferometry [105] have also seen increased use in enclosure flow 
studies. For velocity-field measurements, flow visualization techniques, which give 
mostly qualitative information on the flow field, have been very popular, with the use 
of smoke, dye, or electrochemical tracers. For detailed quantitative velocity measure
ments, the laser Doppler velocimeter (LDV) is the most popular and perhaps the most 
accurate device at the present time [102,106-108],

Known heat transfer data and their correlations for various two-dimensional 
enclosures, among others, have recently been compiled by Raithby and Hollands [6], 
The extensiveness of this compilation attests to the recent interest in buoyant enclosure 
flow. There is, however, a critical issue relative to correlating the heat transfer data for 
enclosure flows and to comparing them with those from the analyses, analytical or 
numerical. Consider, as an example, the case of a differentially heated square enclosure 
with adiabatic horizontal walls. Several sets of data from Refs. 54,86,109-112 are 
shown in Fig. 13.10. It is seen that there exists considerable scatter among the data, and 
similar observations have also been made by Bejan [5]. This degree of scatter poses a 
problem in that any correlation is subject to uncertainties difficult to tolerate in design 
practice, and also in that these data cannot appropriately be used for validating the 
corresponding analytical and numerical solutions.

Most of this problem can be traced to the difficulty of controlling the thermal 
boundary conditions at the enclosure walls [89,113], In analyses, differentially heated 
rectangular enclosures are treated with either adiabatic or perfectly conducting hori
zontal walls. Unfortunately, these conditions are both very difficult to achieve in the 
laboratory, and the actual horizontal-wall conditions lie somewhere between adiabatic 
and perfectly conducting [54,89]. To illustrate this difficulty, Zhong [114] has utilized
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Figure 13.11. Radial temperature distributions for eccentric annulus [19], Curves: calculations 
[19]; plotted points: experimental data [95],

the experimentally determined wall temperature variations along all four walls of a 
square enclosure [54] to obtain a numerical solution, and has shown that the results 
agree with the experimental data much more closely than do the numerical solutions 
for either adiabatic or perfectly conducting horizontal walls. It is thus quite possible 
that the scatter shown in Fig. 13.10 is primarily due to the different actual wall 
conditions in the various experiments.

Despite the aforementioned difficulty, experimental studies have continued in many 
cases to provide validation of theoretical analyses. A good example is shown in Fig. 
13.11 for the radial temperature distributon in an eccentric annulus, where the 
numerical results [19] compare very well with the experimental data of Kuehn and 
Goldstein [95]. Other recent measurements on vertical, inclined, and parallelogram- 
matic enclosures in the range of a*  < 1 can be found in Refs. 115 to 118, where the 
transition between unicell and multicell structures in the flow field as a function of the 
tilt angle is again clarified. A particular study worthy of note is that of Simpkins and 
Dudderar [119], who have made velocity measurements in shallow enclosures with 
a*  < 0.1 and delineated the conditions under which the configuration of thin layers on 
the horizontal walls changes to one where those layers fill the entire depth of the 
enclosure.

13.4.3 Three-Dimensional Buoyant Enclosure Flow
Many physically realistic situations of buoyant enclosure flows are inherently three
dimensional. Both analyses and experiments for such three-dimensional phenomena are 
difficult to do. Theoretical studies are limited to perturbation analysis, which usually 
has a limited range of validity, and to numerical solutions, which may not be accurate 
in view of the necessity of using coarse grids. Experimentally, while caloric methods 
can still be utilized for overall heat transfer measurements, basic two-dimensional 
nonintrusive methods such as Mach-Zehnder interferometry cannot be used for three
dimensional studies, and even flow visualization techniques are much more difficult to 
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carry out. However, in view of the increasing accessibility of large and fast computing 
facilities, numerical solutions with the desired field resolutions are now possible. 
Furthermore, the development of experimental techniques has also advanced to the 
state where three-dimensoinal experimental investigations are becoming more routine. 
A good example in this regard is the use of the laser Doppler velocimeter for 
three-dimensional flow measurements. Consequently, there are indications that three
dimensional buoyant enclosure flow will soon become an active field of research.

For the box geometry as shown in Fig. 13.1/, two aspect ratios are needed to define 
the geometry: a*  = H/W and a*  = L/W, where the width W is the distance 
separating the isothermal surfaces, H is the height, and L is the depth. When a*  -» oo, 
a*  reduces to a*  for the two-dimensional case. If the box is arbitrarily tilted, then 
another angle is needed to specify the box orientation in addition to the tilt angle y.

In early numerical studies, emphasis was placed on conditions under which three- 
dimensionality in the flow becomes important. Mallinson and de Vahl Davis [120] 
obtained numerical solutions to the vertical box problem with adiabatic horizontal and 
end vertical walls, and found that small depth, low Rayleigh number, and low Prandtl 
number all increase the three-dimensionality in the flow and that there is a spiraling 
motion from the side walls toward the center from both ends. This latter result agrees 
at least qualitatively with the velocity field measured by Morrison and Tran for a box 
with a*  = a*  = 5 and Raff = 6.25 X 104 by means of a laser Doppler velocimeter 
[121], This experimental study also shows that when heat loss is permitted at the two 
vertical ends, the resulting three-dimensional flows destroy the centrosymmetry for 
two-dimensional rectangular enclosures, as has also been found in a recent LDV study 
by Bilski [122],

Buoyant flow in inclined box enclosures is also the subject of a series of numerical 
studies with complementary experimental observations by Ozoe et al. 
[87,88,106,110,123]. The emphasis in these studies is on determining the critical tilt 
angles at which the Nusselt number achieves a minimum. As already discussed, this 
minimum corresponds to the transition from unicell structure to that of longitudinal 
rolls. These numerical studies do produce such a transition, and from the resulting 
velocity fields it is possible to determine the transition process. One interesting aspect 
of the calculations done by Ozoe et al. [88] is that for rectangular enclosures of 
arbitrary aspect ratio, it is only necessary to carry out calculations for a single roll cell 
with either free-free boundaries (for cells away from the rigid walls) or rigid-free 
boundaries (for cells next to a wall). From the experimental observations, these cells all 
have aspect ratios close to unity at Ra/Z = 4 X 103 and Pr = 10, the conditions for the 
calculations. Results of these single-roll-cell calculations are shown in Fig. 13.12, which 
clearly illustrates the occurrence of the maximum Nusselt numbers. It has also been 
found that a slight increase (about 10%) in the cell width does not affect these results. 
In a recent study of the same problem, Yang et al. [58] have utilized an improved 
numerical procedure to compare the results based on air directly with the experimental 
data, and good agreement has been found. In addition, the transition process char
acterized by a change of the direction of the cell axis by 90° is further clarified.

Another three-dimensional geometry which has received much attention is a long 
horizontal circular cylinder with differentially heated end walls. This geometry is of 
some practical interest in dealing with stress concentrations in dead-leg pipes con
nected to hot main pipes and with crystal growth by physical or chemical vapor 
transport in a cylindrical ampul. Theoretical analyses have been carried out by Bejan 
and Tien [124], Kimura and Bejan [125], and Schiroky and Rosenberger [126]. Their 
results show that the warm fluid from the hot end wall runs toward the cold wall in the 
upper half of the pipe, while there is a counterflow of cold fluid in the lower half of the 
pipe. In addition, spiral secondary flows are superimposed on the longitudinal flows.
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Figure 13.12. Effect of tilt angle on average Nusselt number of cell [88],

Recently, Schiroky and Rosenberger [126] have applied a boundary-layer analysis 
similar to that of two-dimensional rectangular enclosures and provided results very 
close to the experimental data of Kimura and Bejan [125] in the Rayleigh number 
range (based on the radius) between 107 and 109. Also recently, Schiroky and 
Rosenberger [108] have measured detailed three-dimensional velocity fields in a gas-filled 
horizontal pipe with a radius-to-length ratio of 0.1 and a wide range of Rayleigh 
numbers from 74 to 1.3 X 106, by means of a laser Doppler velocimeter. It has been 
found that there are pronounced three-dimensoinal effects in the end-wall regions and 
that part of the flow changes its direction before reaching the end-wall regions.

When a circular cylinder differentially heated at the end walls is tilted, the flow 
pattern is expected to be very complex. For a tilted cylindrical annulus, it is found that 
the flow structure is that of a coaxial double helix; and despite the complex flow 
patterns, the average Nusselt number only increases slightly when the tilt angle varies 
from 0° (horizontal) to 90° (vertical) [128,129].

The recent literature is also rich in heat transfer data and their correlations for 
three-dimensional enclosures with enclosed heated bodies. Nusselt number correlations 
for concentric and eccentric spheres have been given by Raithby and Hollands [6], A 
generalization to very general enclosures and inner bodies has been given recently by 
Warrington and Powe [130], and correlations are also available for enclosures bounded 
by concentric and eccentric vertical cylinders [131], enclosures with off-center inner 
bodies [132], and cylindrical tube bundles in a cubic enclosure [133],

13.5 TURBULENT NATURAL CONVECTION IN ENCLOSURES

13.5.1 Two-Dimensional Turbulent Buoyant Flow in Enclosures
When the Rayleigh number becomes sufficiently high, enclosure flow undergoes transi
tion to turbulent flow. The transition process has been documented by the pioneering
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experimental study of Elder [100,101] for natural convection in vertical enclosures with 
10 < a*  < 30, 1 < a? < 5, and high Pr fluids (Pr = 1000). In his observations of the 
flow patterns in a vertical slot, at Ra/Z > 8 X 10s Pr12, traveling waves, similar to those 
found on isolated vertical plates, grow independently on both hot and cold walls. For 
Ra/Z ~ 101”, the traveling waves become highly irregular and there is intense interac
tion between the wall region and the core. When Razz > 1010, the horizontal temper
ature gradient in the enclosure disappears and the mean velocity vanishes in the core.

The calculations of turbulent buoyant flow in an enclosure, as pointed out previ
ously, require phenomenological turbulent models for closure. Various turbulence 
models1 and their applications have been reviewed in Refs. 24,25, and it is noted that 
such models are subject to less uncertainty for forced flows then for buoyant flows. 
These models range from simple zero-equation or algebraic models to high order 
turbulent stress models which include partial differential equations for all components 
of the turbulent stresses. In between lie the popular two-equation k-c models. The 
algebraic models, though easy to use, do suffer the shortcoming that no details of the 
turbulence field can be determined. On the other hand, the high-order stress models are 
difficult to use and are also subject to high degrees of uncertainty in view of the many 
constants and functionals that need to be introduced. Consequently, the k-c models 
represent a good compromise between ease of use and the physics involved.

For steady two-dimensoinal turbulent buoyant flows in enclosures, the governing 
differential equations for the turbulent kinetic energy k and the kinematic rate of 
dissipation c can be written respectively as [134]

d d d / dit\ d I die \
— (pw«) + —(pt’«) = — T— + — T— + Gk - pc (13.38)
d.\ dy dx\ dx ] dy \ dy ]

d d d ( de \ d ( de\ c e2
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where TK and Te are the exchange coefficients for the diffusive transport of k and e, 
respectively, and
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Here p. is the turbulent viscosity, and oK and oe play a similar role of the turbulent 
Prandtl number. In addition.

^ = 1.44, C2 = 1.92, = 0.09, oK = 1.0, o£ = 1.314 (13.41)

It is seen here that the generation term includes a buoyancy term which accounts for

'A brief review of turbulence models is also given in Chap. 2.
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the effects of stratification. This turbulence model involves constants and wall functions 
which are determined from experimental data for simple shear flows, and consequently 
there is a degree of uncertainty as to whether these experimentally determined 
quantities are still valid for buoyant flow in enclosures.

This model has been used in a numerical study of buoyancy-induced smoke flow in 
two-dimensional rectangular enclosures by Markatos et al. [135], and also in a numeri
cal study for a square enclosed enclosure for Razz in the range between 10s to 10lb 
[50], In the latter study, the enclosure is differentially heated with adiabatic horizontal 
walls, and the calculated streamlines and isotherms are shown in Fig. 13.13. At 
Razz = 10x, the secondary vortices that existed in the lower Rayleigh number range are 
now connected toward the vertical walls. At Razz = IO10, the center vortex reappears, 
while the secondary vortices start to interact strongly with the wall layers. These flow 
patterns persist at Razz = 1012, even though the secondary vortices now completely 
disappear. At Razz = 1016, the flow is essentially in stratified layers. For Razz at 101() 
and 1012, temperatures are stratified in the core, but close to the vertical walls the effect 
of the secondary vortices can still be seen. At Razz = 10lb, the temperature gradients in 
the .x direction completely disappear away from the vertical walls. Almost all the flows 
are now confined in very thin layers next to all four walls. Experimental results are 
needed to compare with these numerical findings.

One important application for turbulent buoyant enclosure flows is the spread of 
fire and smoke in rooms with and without partitions due to fire sources located on the 
floors of the rooms. This type of enclosure also has openings on either the vertical walls 
(doorways or windows) or the horizontal walls (ceiling and floor vents). Based on an 
algebraic turbulence model, a series of numerical studies have been made for two- 
dimensoinal rectangular enclosures with vents and complex interior partitions, using 
natural boundary conditions as shown in Fig. 13.2. These studies have recently been 
summarized by Yang and Lloyd [15]. It suffices to mention here that the collective 
results show that the vents and internal partitions play very important roles in affecting 
the flow in such vented enclosures.

13.5.2 Three-Dimensional Turbulent Buoyant Flow in Enclosures
'Ihree-dimensoinal enclosures are always more realistic than two-dimensional ones, but 
very few studies have been devoted to turbulent buoyant flow in three-dimensional 
enclosures. From the point of view of numerical solutions, the lack of an appropriate 
turbulence model for three-dimensional flows is always troublesome, even though some 
progress has been made in this regard recently [136]. For experimental studies, the 
same difficulties as those encountered in three-dimensional laminar flows are still 
present. Flow visualization is even more difficult because of the turbulent diffusion 
effects in the flow, and more development is needed to apply the LDV technique for 
turbulent flow measurements in such three-dimensoinal enclosures. Nansteel and Greif 
[137] has experimentally studied buoyant flows in water-filled enclosures with two and 
three-dimensonal partitions. The aspect ratios are a*  = 0.5 and a*  = 2.688, and the 
range of Rayleigh numbers Ra/y is 1.25 X 109 to 1.25 X 101(). The three-dimensional 
vertical partition is placed midway along W and is fitted with a center opening of 
constant width and variable height in the form of a doorway. It has been found from 
flow visualization that the doorway induces much three-dimensionality in the flow and 
causes localized turbulence and flow instability.

Calculations for three-dimensonal turbulent buoyant flows in rectangular enclosures 
with vents have been attempted. Of particular interest is that in the numerical and 
experimental study of Satoh et al. [138] for a three-dimensional rectangular enclosure
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Heat source strength, kW

Figure 13.14. Variation of frequency of oscillations with heat source strength for a vertically 
vented enclosure [138],

with horizontal vents and a heat source located midway on the floor exit, the flow at the 
ceiling vent is oscillatory and the frequency of oscillation depends on the heat source 
strength, as shown in Fig. 13.14. Even though the two-dimensional calculations give the 
same slope, they overpredict the frequencies, while the three-dimensional calculation 
gives quite adequate results.

13.6 OTHER PHYSICAL EFFECTS IN BUOYANT ENCLOSURE FLOWS

In many physical processes involving buoyancy-driven flows in enclosures, the flows are 
subjected to additional physical effects which may greatly alter the flow and heat 
transfer in the enclosures. The purpose of this section is simply to give an overview, 
with an emphasis on the physical aspects of these combined phenomena.

13.6.1 Transient and Unsteady Phenomena
As is now clear, the internal dynamics of the flow field in an enclosure is sensitive to 
changes in the Rayleigh number. In a transient or unsteady mode—as represented, for 
instance, by the buoyant flow in a rectangular enclosure when the hot wall undergoes a 
step increase in temperature—the effective Rayleigh number during the transient 
changes from zero at first to the steady-state value in the long run. The added 
complexity in the development of the flow pattern may even lead to oscillatory 
behavior when the steady state is reached. Patterson and Imberger [139] and Patterson 
[140] have performed an ordering analysis for shallow enclosures to delineate the 
conditions under which the approach to steady state is oscillatory, and the results are 
substantiated by the experiments of Yewell et al. [141], In a recent numerical and 
experimental study, Nicolette et al. [64] have treated transient laminar buoyant flow' in 



13-36 NATURAL CONVECTION IN ENCLOSURES

a square enclosure filled with air or water, when one vertical wall undergoes a step 
decrease in temperature while the other three walls are maintained adiabatic. The 
numerical solution also incorporates a separate global pressure correction to satisfy the 
thermodynamic conditions. The enclosure both starts and ends with zero motion. 
During the transient, however, the Nusselt number at the cold wall approaches the final 
state through a series of abrupt changes due to the dynamics of primary and secondary 
vortices. Several numerical studies on the transient responses of two-dimensional 
rectangular and horizontal cylindrical annulus enclosures are also known, and have 
recently been reviewed by Nicolette [142],

13.6.2 Effects of Complex Boundary Conditions
The boundary conditions so far discussed include only isothermal, adiabatic, and 
perfectly conducting walls. Since it is known that buoyant enclosure flows are sensitive 
to the boundary conditions [4], numerical and experimental studies have also been 
carried out with other boundary conditions which are more complex. The case of 
uniform heat flux along the heated vertical wall of a rectangular enclosure has been 
treated numerically by Kimura and Bejan [143], and as expected, the resulting hot-wall 
temperature increases upward, and the interaction between the boundary layers and the 
core is similar to that for the case of a vertical isothermal hot wall. Another numerical 
study by Chao et al. [144] deals with laminar natural convection in a three-dimensional 
inclined rectangular box with the lower surface half heated and half insulated. Very 
different flow patterns can be expected in this case. Conjugate problems involving the 
interaction between the buoyant enclosure flow and conduction in the wall or convec
tion outside the wall have also received some interest [145,146], and the results show 
significant wall-temperature nonuniformity.

13.6.3 Interaction between Radiation and Natural Convection 
in Enclosures

When an enclosure is filled with a gas (with or without scattering particles), radiation 
effects may become important even for moderate temperature differences. This is 
indeed the case for such applications as window enclosures, cooling of electronic 
equipment, solar collectors, smoke and fire spread in rooms, and furnace flows. The 
radiation effects can be either passive for a nonparticipating medium or active for a 
participating medium.

The calculation of radiative transfer in multidimensional enclosures is not a simple 
task and is often complicated further by the use of realistic spectral models. A recent 
comprehensive review of the interaction between natural convection and a participating 
gas medium in enclosure flow has been given by Yang and Lloyd [28], Even though 
several methods for the calculation of multidimensional radiative transfer in enclosures 
do accommodate particle scattering, there is hardly any work showing how particle 
scattering contributes to the heat transfer in the enclosures.

13.6.4 Other Interaction Effects

The problem of combined natural convection and forced convection is technically very 
important, and is covered in detail in Chap. 15 for internal flow.

Effects of the interaction of natural convection with other physical processes in 
enclosures are not limited to those already described above. Here we mention several 
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such effects, just to illustrate the breadth of recent research activities which are either 
important in special applications or significant in the phenomena that they address.

One such interaction effect is melting and solidification in an enclosure, as recently 
reviewed by Viskanta [147], When the Rayleigh number associated with the liquid 
phase is large, natural convection plays a significant role in the movement of the 
solid-liquid interface, and analysis based on pure conduction often leads to gross errors 
in determining the melting and solidification rates.

Another phenomenon which has received much attention in recent years concerns 
natural convection in enclosures filled with porous media [148], These have important 
applications in geothermal systems and also in insulation. The more important current 
activities in this area address more realistic conditions [149] than the simple Darcy 
formulation. Furthermore, experimental investigations are difficult to perform and 
represent a critical area of research.

Another interesting phenomenon associated with buoyant enclosure flows is the 
effect of a density extremum—when the enclosure is filled, for instance, with water 
having temperature variations crossing the maximum density at 4°C. In such instances 
the buoyancy-force variations in the enclosure become very complex and significantly 
affect the heat transfer across the enclosure [150-152],

Finally, mention is here made of the studies dealing with heat transfer augmentation 
in buoyant enclosure flows bv means of corona discharge [153] and by using roughness 
[154], '

13.7 HEAT TRANSFER CORRELATION EQUATIONS FOR NATURAL 
CONVECTION IN ENCLOSURES

Heat transfer correlation equations for buoyant enclosure flows in terms of appropriate 
Nusselt numbers can be obtained both from the overall heat transfer measurements or 
from numerical simulations by integration of local heat transfer rates. In view of the 
scarcity of experimental data covering the full range of buoyant enclosure flow cases, a 
strong reliance on numerically generated results can be observed in published correla
tion in this area [6,155], To complement what has already been presented in this 
chapter, several useful correlations for buoyant enclosure flows are now presented in 
this final section. However, the emphasis again will be placed on vertical enclosures. 
More specifically, correlations will not be given for the heated-from-below phenomena. 
For such phenomena, the reader is referred to correlations given in Refs. 6,155.

Many of the heat transfer results deal with limiting conditions such as for high and 
low Grashof numbers and high and low aspect ratios. These results can be made to 
collapse on single correlation curves by using the joining technique of Churchill and 
Usagi [156], as given by Churchill [155], and several correlations indicated below have 
been obtained by this means.

13.7.1 Two-Dimensional Vertical Rectangular Enclosures
In this section, correlation equations are given for the standard vertical rectangular 
enclosure with differentially heated vertical walls and insulated horizontal walls (y = 
90°), and the Nusselt number is expressed as a function of the parameters Ra;/, Pr, 
and a*.  All properties are evaluated at the average temperature of the hot and cold 
walls. Table 13.2 shows those correlations for the three distinct regions of the aspect 
ratio a* —namely, large «*,  a*  near unity, and small a* —which are based on both 
experimental and numerical results.
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Aspect Ratio 
a* Laminar Turbulent

Large
0.364[Ra„/1(Pr)]1/4

Nu/7 =------- 775------- -------- [36,40,155]G(Ra„, a*)
Nu„ = 0.05[Ra//A(Pr)]1/3 [155]
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0.231
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Ra„a*  4 < 106

Ra^-V^Pr)
57(7

, -1/3
Ra„a*  3A(Pr)^ 

8000 1
[36,40,155]

Ra„ < 109, Pr ® 0.7, a*  = 1

Nuw = aRa^ [81]
Pr a b

0.01 0.1344 0.259
0.03 0.1521 0.266
0.06 0.1613 0.271
0.10 0.1605 0.277

RaH < 106, a*  = 1

( 0.082 RaJ/z329 
Nu,z = H

\ 1.325 Ra%245
for 106 < Ra„ < 1012

[50]
for 1012 < Ra„ < 1016

Small [46,155]
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13.7.2 Two-Dimensional Horizontal Annuli
A correlation equation for differentially heated horizontal annuli formed by concentric 
and eccentric circular cylinders has been given by Kuehn and Goldstein 1157], based on 
extensive experimental and numerical heat transfer results, for the conduction, laminar 
boundary-layer flow, and turbulent boundary-layer flow regimes with Rayleigh num
bers (based on L( = - R, and the overall temperature difference) up to IO10, a
wide range of Prandtl numbers, and arbitrary R„/Rl ratios greater than unity. One 
limitation is that the location of the inner cylinder must be such that the boundary 
layers at the two cylindrical surfaces do not overlap.

The correlation equation for the convection part may be written as follows:

hD, 2
NuD/Conv = — = , T + 2/Nu., (13.42)

In ---------------^1-2/NuJ

where

Nu = {[0.518RaD,1/72(Pr)]15 + (o.l RaD1/3)15J1/15 (13.43)

\ 1/15

+ (o.l RaOo1/3)15 (13.44)

with

/ 0.559\3/5
\ Pr J

-5/12

/2(Pr) =

In Eq. (13.42), Rao and RaD are the Rayleigh numbers based on D, and £>,, as 
characteristic lengths, respectively, and h is an average coefficient of heat transfer 
based on the difference between the inner cylinder temperature and the fluid bulk mean 
temperature determined by equating the heat transfer at the two cylindrical surfaces 
[157]. For the conduction part, which prevails as the Rayleigh number approaches zero, 
the heat transfer by conduction between two circular cylinders is given by

Nu Cond
2

cosh^ffz)2 + D; - (Do - Z),.)2e"2]/2Z),.Z)O} (13.45)

where i is the eccentricity, normalized with respect to Ro - R,. Equations (13.42) and 
(13.45) can then be combined, resulting in a correlation equation for the overall Nusselt 
number valid for any Rayleigh number:

[/ T \15 /_T \ 1511/15
Nup. [(NuDconv) T \Nup.concj) j (13.46)
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It can also be shown that by taking the limit as Z>, -» 0, Eq. (13.42) reduces to

NUf^conv
2

-ln(l - 2/Nuo)
(13.47)

with Nu() given by Eq. (13.44), valid for quasi-steady natural convection in a horizontal 
cylinder. The corresponding overall Nusselt number can again be obtained by adding a 
conduction part similar to that in Eq. (13.46).

13.7.3 Concentric and Eccentric Spheres
A heat transfer correlation equation for concentric and eccentric spheres has been 
given by Raithby and Hollands [6] as follows:

q(D„ - D,}
Nu = o nn t ‘ t \ L- = tNu-d’Nu-nvLax (13.48)

2^ AC7] - T0)k

where [ ]max indicates the higher value of the two Nusselt numbers, and

Nucond = Xz (13-49)

I Do-D.\x/4 Ra1/4
Nuconv = 1.16/4(Pr) y-----------—------------- (13.50) 

where

for 0 < 7, < 1.2

for 7] > 1.2

■»], = cosh 1
Z)oI 2 -d,2-(d0- d,)2£2 

2D,(D„-D,)<

I 0.659t}° 42,
) = / 2 cosh t] — 1

\ 2 cosh t)

(Do-D,)^ 

Do

D2 - D2 - (Do - D,)2?2 

2D, (.DO - 2>,.)e

4 0.503
3 [1 + (0.492/Pr)9/16]4/9

In Eq. (13.50), the Rayleigh number is based on the gap size (- R.). As in the case 
of horizontal annuli, Eq. (13.48) is, strictly speaking, only valid for sufficiently high 
Rayleigh numbers so that the boundary layers do not overlap. When compared to 
available experimental data, however, it has been shown that this equation can be 
considered valid for Ra < 6 X 108, 5 < Pr < 400, 1.25 < Do/Di < 2.5, and 0 < t < 
0.75 for downward displacement. For upward displacement with 0.25 < e < 0.75, 
Eq. (13.48) underpredicts the Nusselt number by about 10%.
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13.7.4 Three-Dimensional Bodies and Their Enclosures
All experimental heat transfer data for natural convection between three-dimensional 
inner bodies and their enclosures have recently been compiled by Warrington and 
Powe [130], and a generalized correlation has been attempted. These data specifically 
cover concentrically located isothermal spherical, cylindrical, and cubical inner bodies 
and their isothermal cubical and spherical enclosures. The generalized correlation is 
given by

Nu*  = 0.585 Ra* 0236 (13.51)

with an average deviation of less than 15% from the respective experimental data. In 
the above equation, all properties are evaluated at the mean of the inner-body and 
enclosure-surface temperatures, and

hb 
Nuft = -, K

Ro - R, 
M = RaA—

pgPb\T,-Ta)
Ra,-------------- ----------Ilk

where h is the average natural-convection coefficient of heat transfer, which specifically 
excludes conduction and radiation effects; b is a boundary-layer length, occupied by 
the boundary layer on the inner body; R, is the radius of a hypothetical inner sphere 
of volume equal to that of the inner body; and Rtl is the corresponding hypothetical 
radius of an equivalent outer body. The range of validity of Eq. (13.51) is given by 
0.7 < Pr < 1.4 X 104, 4.6 X 105 < Rafe < 4.0 X IO10, and (Ro - R^/R, > 0.45.

For (Rlt — R^/Rj < 0.45, a different correlation equation is used:

— = 0.2Ra°239( R°-~ R‘ 
7cond

(13.52)

with an average deviation of about 14% from the experimental data. The range of 
validity in Pr and Ra is the same as above.

Equations (13.51) and (13.52) can be used to predict natural-convection heat 
transfer between a three-dimensional inner body and its enclosure whenever correla
tions for specific geometries and fluid media are not available.

13.8 CONCLUDING REMARKS

It is clear that natural convection phenomena in enclosures represent one of the basic 
heat transfer disciplines that have seen many advances in recent years. However, much 
clarification and resolution are still needed in addressing several issues in the phenom
ena which notably include three-dimensional flow, stability and transition, turbulence, 
unsteady effects, and others. In addition, there is also a great need for careful 
experimental studies which really hold the key to significant further advances in this 
area.

NOMENCLATURE

.4, inflow area, m2, ft2 (Fig. 13.2)
A outflow area, m2, ft2 (Fig. 13.2)
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A, total opening area, m2, ft2 (Fig. 13.2) 
a, h correlation constants
b boundary-layer length, m, ft
B body force vector, m/s2, ft/s2
Cj constant in turbulence model, Q = 1.44
C2 constant in turbulence model, C2 = 1.92
C constant in turbulence model, C„ = 0.09
c specific heat at constant pressure, J/(kg • K), Btu/(lbm • °F)
Z), inner cylinder diameter, m, ft
D„ outer cylinder diameter, m, ft
]\ -f4 functions of Prandtl number 
G function defined in Table 13.2
Gr Grashof number based on Lc = g^B ATL3/v2
G( turbulence generation for the e field, kg/(m ■ s3), lbm/(ft • s3)
Gk turbulence generation for the k field, kg/(m • s3), lbm/(ft • s3)
g gravitational acceleration, m/s2, ft/s2
g mean squared temperature fluctuations, °C, K, °F, R
g gravity vector, m/s2, ft/s2
// height of enclosure, m, ft
h heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 ■ °F)
K correlation function for tilted enclosures
A thermal conductivity, W/(m • K), Btu/(hr ■ ft • °F)
L enclosure depth, m, ft
L characteristic length, m, ft
Nu Nusselt number = hLc/k', Nuft = hb/k, NuD = hDt/k, NuD = hDo/k, 

Nu„ = hH/k 
ii normal coordinate, m, ft
n oscillation frequency, s
Pr Prandtl number = cpfi/k
Pr, turbulent Prandtl number =
p pressure, Pa, lby/ft2
/?„ hydrostatic pressure, Pa (N/m2), lby/ft2
q heat transfer rate, W, Btu/hr
y, conduction flux, W/m2, Btu/(hr • ft2)
r expansion index
Ra Rayleigh number = Gr Pr
Ri gradient Richardson number = g/?( dT/dy)/(d u/dy)2 
R inner radius, m, ft
R, outer radius, m, ft
S heat source, W/m3, Btu/(hr • ft3)
T temperature, °C, K, °F, °R
T characteristic temperature, °C, K, °F, °R 
t time, s
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u 
ll, v, w
V
IF

characteristic velocity defined in Eq. (13.15), m/s, ft/s
velocity components in x, y, z directions, respectively, m/s, ft/s
velocity vector, m/s, ft/s
enclosure width, m, ft (Fig. 13.1)

x, y, z 
x,y 
x*,  y*

rectangular coordinates, m, ft 
coordinates defined in Eq. (13.22) 
coordinates x/H, y/H, respectively

Greek Symbols
a thermal diffusivity, m2/s, ft2/s
a* two-dimensional aspect ratio (Fig. 13.1); a*  = H/W, a*  = H/W, a*  = 

L/W
p coefficient of volumetric expansion, K-1, R-1
T exchange coefficient for the e field, kg/(m • s), lbm/(ft • s)
T exchange coefficient for the k field, kg/(m • s), lbm/(ft • s)
y tilt angle, deg (Fig. 13.1)
y(. critical tilt angle, deg
A 7t characteristic temperature difference, °C, K, °F, °R
e kinematic rate of dissipation, m2/s3, ft2/s3
( eccentricity
clf turbulent (eddy) diffusivity for heat transfer, m2/s, ft2/s 
c M turbulent (eddy) diffusivity for momentum, m2/s, ft2/s
7, dimensionless geometric parameter
0 temperature variable = (T — Tc)/(Tff — Tc)
0. (T„ - Tc)/T(
k turbulent kinetic energy, m2/s2, ft2/s2
ft dynamic viscosity, Pa • s, lbm/(ft • s)
p,r turbulent (eddy) viscosity, Pa • s, lbm/(ft • s) 
v kinematic viscosity, m2/s, ft2/s
p density, kg/m3, lb,„/ft3
a, Prandtl number for the e field
ctk Prandtl number for the k field
t stress tensor, Pa, lby/ft2
r Reynolds stresses, Pa, Ib^/ft2
<|» dimensionless function of ?]
4' dimensionless stream function
u vorticity, s-1

Subscripts
C cold wall
cond conduction part
conv convection part
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H hot wall
// dimensionless numbers based on H
L dimensionless numbers based on L
0 reference quantities
t turbulent quantities
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14.1 INTRODUCTION

Mixed convection flows, or combined forced and free convection flows, arise in many 
transport processes in engineering devices and in nature. Such a process occurs when 
the effect of the buoyancy force in forced convection or the effect of forced flow in free 
convection becomes significant. The effect is especially pronounced in situations where 
the forced-flow velocity is low and the temperature difference is large. In mixed 
convection flows, the forced-convection effects and the free-convection effects are of 
comparable magnitude. Mixed convection processes may be divided into external flow 
over immersed bodies (such as flat plates, cylinders and wires, spheres, and moving 
surfaces), free-boundary flow (such as plumes, jets, and wakes), and internal flow in 
ducts (such as pipes, channels, and enclosures).

The domain of mixed convection regime is generally defined as the region a < 
Gr/Re" < b, where a and b are, respectively, the lower and upper bounds of the 
domain. The buoyancy parameter, Gr/Re", provides a measure of the influence of free 
convection in comparison with that of forced convection on the flow. The power n 
depends on the flow configuration and the surface heating condition. Outside the mixed 
convection region, a < Gr/Re" < b, either the pure forced-convection or the pure 
free-convection analysis can be used to describe accurately the flow or the temperature 
field. When the free convection is dominant over the forced convection, the relevant 
mixed-convection parameter is given by Re"/Gr, the reciprocal of the buoyancy 
parameter. Buoyancy forces can enhance the surface heat transfer rate when they aid 
the forced flow, and vice versa. Buoyancy forces also play a significant role in the 
incipience of flow instabilities, and they can be responsible for either delaying or 
speeding the transition from laminar to turbulent flow. Forced convection is the 
dominant mode of transport when Gr/Re" -*  0, whereas free convection is the 
dominant mode when Gr/Re" -> oo or Re"/Gr -> 0.

Available correlation equations for local and average Nusselt numbers in mixed 
convection will be presented in this chapter for external flow over immersed bodies of 
various configurations. Critical Reynolds and Grashof numbers for the incipience of 
the instability of laminar flow will also be presented for selected flow geometries. A 
brief description of the basic governing equations for laminar mixed convection 
boundary-layer flows is given below in order to identify the important mixed-convec
tion parameters.

14.2 FUNDAMENTALS OF MIXED CONVECTION

Consider a forced flow aligned parallel to a semi-infinite flat plate that forms an acute 
angle y with the vertical. The forced flow is above the plate when y is measured in the 
clockwise direction and below the plate when it is measured in the counterclockwise 
direction. In the absence of heat generation and viscous dissipation, the boundary-layer 
equations under the Boussinesq approximation and for constant-property, steady-state, 
and steady flow conditions can be written as [1] 

du dv
+ -V- = 0 (14.1)dx dy '

d u d u d f<x d2 u
“ + "77 “ ±^sinYfc( (r~ dy ± rfcosi'(T“ T.) +

dT dT d2T
u------ F t>—— = a—v

dx dy dv2 (14-3)
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The first term on the right-hand side of Eq. (14.2) represents the buoyancy-induced 
streamwise pressure gradient, with the plus and minus signs pertaining, respectively, to 
flow above and flow below the plate. The second term represents the streamwise 
component of the buoyancy force, and its plus and minus signs refer, respectively, to 
upward and downward forced flows. The last term is the viscous force term.

In dimensionless form, Eqs. (14.1) to (14.3) become

dU dV 
— + — 
dx 5r)

dU du 1 d2U Gr 5 ,oo
f — + r— = — —V + —- cos y 0 + sin y —- 0 dr)

dr] Re dry Re' dxJv

(14.4)

(14.5)

30 30 1 d20
U — + V— =---------- r

3% dr; RePr

where

x y u v T — T
X=-. ?/ = 7, U=—, V= —, 0 = ------ (14.7)

and

Re =-----
v

gP(Tw-Tx)P v
Pr = - 

a
(14-8)

In Eqs. (14.7) and (14.8), I is a characteristic length, ux is a characteristic velocity (e.g. 
the free-stream velocity), TK - Tx is the temperature difference between the wall and 
the free stream, Re is the Reynolds number, Gr is the Grashof number, and Pr is the 
Prandtl number. From an energy balance at the wall, qw = — k(3T/3y)v=0 = h(Tw — 
T,), the Nusselt number Nu = hl/k can be expressed by

Nu = -
7J = 0

(14-9)

Since 30/dr] depends on Re, Gr, and Pr, Eq. (14.9) provides a functional relationship 
between Nu and Re, Gr, and Pr:

Nu = Nu(Re, Gr, Pr) (14.10)

The precise expression for the Nusselt number as a function of Re, Gr, and Pr depends 
on the flow configuration and the surface heating condition.

14.3 CORRELATION EQUATIONS FOR NUSSELT NUMBERS

Mixed convection in laminar boundary-layer flow adjacent to vertical, inclined, and 
horizontal flat plates, as governed by Eqs. (14.1) to (14.3), has been extensively 
analyzed for the cases of uniform wall temperature (UWT) and uniform surface heat 
flux (UHF) as boundary conditions. Extensive analyses have also been conducted for 
other flow geometries, such as horizontal cylinders in cross flow, vertical cylinders. 
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spheres, and moving sheets. Experimental studies on mixed convection have been 
reported for flows along vertical, inclined, and horizontal plates, vertical plates in cross 
flow, and flows across horizontal cylinders and spheres. Pertinent references for 
analytical and experimental studies will be mentioned in appropriate sections in this 
chapter.

Based on a critical comparison between numerical and experimental results, the 
local Nusselt number Nu for the mixed convection regime in laminar boundary-layer 
flow can be correlated very well by an equation of the form [2]

Nu" = Nu^ ± Nu^ (14.11)

in which Nuf and Nuw are, respectively, the Nusselt numbers for pure forced 
convection and pure free convection, and n is a constant exponent. The plus sign in 
Eq. (14.11) is for the buoyancy-assisting case, and the minus sign is for the buoyancy
opposing case. Equation (14.11) can be expressed in other forms as

(14-12)

or simply as

Yn = 1 ± Xn (14.13)

where ) = Nu/NuF and X = NuA-/NuF. For laminar boundary-layer flows, the 
Nusselt number expressions for the pure forced convection and the pure free convec
tion assume the respective forms

Nuf = T(Pr)Re1/2, NU/V = 5(Pr)Grw (14.14)

where A(Pr) and B(Pr) are functions that depend on the Prandtl number and m is a 
constant exponent that depends on the flow configuration and the surface heating 
condition in pure free convection flow. Substituting Eq. (14.14) into Eq. (14.13) and 
solving for Nu/NuA results in a correlation equation for the mixed-convection Nusselt 
number as 

NuRe“1/2 
^(Pr)

B(Pr)£ 
APO

(14.15)

where £ = (Gr/Re1/2"‘) represents the buoyancy parameter. For a flat plate making an 
angle y with the vertical, Eqs. (14.14) and (14.15) remain valid in the range of angles 
0° < y < 85° if Gr is replaced with Grcos y. In addition, it is emphasized here that the 
correlation equations in the forms of Eqs. (14.14) and (14.15) are applicable to both 
local and average Nusselt numbers when appropriate characteristic lengths are used in 
Re, Gr, and £, and the Pr-dependent functions A(Pr) and #(Pr) are properly defined. 
This can be seen by examining Table 14.1, where correlation results are presented.

The correlation equations for the various flow configurations under different surface 
heating conditions (UWT and UHF) will be presented in the following sections. The
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2
Grx/Rex

Figure 14.1. Calculated local Nusselt numbers for flow along a vertical flat plate with uniform 
wall temperature (UWT) [3],

validity of these correlations has been verified by comparisons with available numerical 
and experimental mixed-convection results.

14.4 CORRELATIONS FOR FLAT PLATES

The proposed form for correlating mixed-convection heat transfer results, Eq. (14.12) 
or (14.15), has been applied to laminar boundary-layer flow adjacent to horizontal, 
vertical, and inclined flat plates. Available mixed-convection results for these geome
tries can be found, for example, in Refs. 3 to 7, and some of the results on the local 
Nusselt number Nuv are summarized in Figs. 14.1 through 14.10. The results which are 
presented in these figures cover a wide range of Prandtl numbers, 0.1 < Pr < 100, for 
both the buoyancy-assisting and the buoyancy-opposing flow cases under the surface 
heating conditions of UWT and UHF. Experimental measurements, which compare 
very well with predictions, are also presented for the vertical plate (Fig. 14.5) and the 
45° inclined flat plate (Fig. 14.6). Figures 14.1 through 14.6 illustrate the region where 
mixed-convection results deviate from the pure free-convection or the pure forced-con
vection values. It should be stated that in the buoyancy-opposing flow cases a flow 
reversal occurs at small values of buoyancy parameters as shown in the figures, thus
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5/2Gr*/Re*

Figure 14.2. Calculated local Nusselt numbers for flow along a vertical flat plate with uniform 
surface heat flux (UHF) [5],

terminating the laminar boundary-layer flow regime. These predicted mixed-convection 
results from analysis as well as the experimental data are used to establish the range of 
applicability and the accuracy of the proposed simple mixed-convection correlations. 
For these flow geometries, the general form of the proposed mixed-convection correla
tion is expressed by Eq. (14.15).

The appropriate constants m and n, characteristic lengths x and L, and functions 
A (Pr) and B(Pr), as well as various forms of the buoyancy parameter £, for the different 
geometries and boundary conditions, are defined in Table 14.1. The expressions for the 
various functions and dimensionless parameters are summarized in Table 14.2. The 
various forms of Reynolds and Grashof numbers that appear in Table 14.1 are defined 
in its footnote. The fluid properties are evaluated at the film temperature 7) = (T(l + 
T, )/2.

Comparisons between the correlated results and the numerical values for the UWT 
case are presented in Figs. 14.7 through 14.10 in terms of Y-vs.-X plots, where 
Y = NuRe 1/2/>l(Pr) and X = B(Pr)£m//l(Pr). Excellent agreement between corre
lated and numerical results, with deviations of less than 5%, exists for buoyancy-assist
ing flow. The correlations for buoyancy-opposing flow start to fail near the flow 
separation region because boundary-layer assumptions are no longer valid in and near 
that region. They do, however, provide satisfactory agreement, with deviations smaller
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Grx/Re^/2

Figure 14.3. Calculated local Nusselt numbers for flow over a horizontal flat plate with uniform 
wall temperature (UWT) [3].

than 10%. in the region of nonseparating buoyancy-opposing flow. The results that are 
presented for comparisons in Figs. 14.7 through 14.9 are for the UWT case. However, 
similarly good correlations have been obtained for the UHF case [5]. A representative 
correlation that covers all inclination angles, 0° < y < 90°, for both UWT and UHF 
conditions for Pr = 0.7 is illustrated in Fig. 14.10.

It can be concluded that good agreement exists between correlated and predicted 
results for the vertical, inclined, and horizontal flat plates, as indicated by Figs. 14.1 
through 14.10.

14.5 CORRELATIONS FOR CONTINUOUS MOVING SHEETS

The effects of buoyancy force on the laminar heat transfer from a moving continuous 
sheet in a quiescent fluid (equivalent to an extrusion process) have been analyzed for 
the cases when the sheet is moving in either the vertical, an inclined, or the horizontal 
direction [12-15]. Results are reported for the UWT and the UHF boundary condi-
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Figure 14.4. Calculated local Nusselt numbers for flow over a horizontal flat plate with uniform 
surface heat flux (UHF) [5],

tions in buoyancy-assisting and buoyancy-opposing situations. These results are used to 
develop and validate simple correlations for the Nusselt number in this flow regime. 
These correlations could be expressed in terms of the pure forced-convection and the 
pure free-convection results as described in Eq. (14.12) or in the Y(X) form, Eq. 
(14.15), where T = NuRe“ 1/2/T(Pr) and X = B(Pr)^"'/A(Pr), with the appropriate 
functions /l(Pr) and B(Pr) and constants m and n as given in Tables 14.1 and 14.2. 
The Reynolds number appearing in these correlations is based on the velocity of the 
moving sheet, u(). Comparisons between the predicted and the correlated local Nusselt 
numbers are presented in Fig. 14.11 for the vertical and inclined cases and in Fig. 14.12 
for the horizontal case The results shown are for Pr = 0.7 and Pr = 7, for both the 
UWT and the UHF boundary conditions. The correlated local Nusselt numbers appear 
to agree very well with the predicted values, with a maximum deviation of 5%.



Grx/Rex

Figure 14.5. Measured and calculated local Nusselt numbers for air flow along an isothermal 
vertical flat plate [4].

Grx/Re|

Figure 14.6. Measured and calculated local Nusselt numbers for air flow on an isothermal 
inclined flat plate [7],
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TABLE 14.1 Recommended Constants, Functions, and Characteristic Length3 for Mixed Convection, Eq. (14.15)

Geometry and
Boundary Conditions

Charact. 
Length 2f(Pr)A R(Pr)A £ m n Applicable Range

Vertical and 
inclined plate

Boundary-layer flow 
0.1 < Pr < 100 
0 < y < 85°

Local
UWT [3] X Fi(Pr) F2(Pr) (Grxcos y)/ReY2 1

4 3 103 < Rex < 10s, Grx < 109
UHF [5] X G1(Pr) C2(Pr) (Gr*cos  y)/Rex/2 1

5 3 103 < Rex < 105, Gr*  < 1011

Average
UWT [3] L 2Fj(Pr) 4F2(Pr)/3 (Grecos y)/Re2 1

4 3 103 < ReL < 105, GrL < 109
UHF [5]

Horizontal plate

L 2C1(Pr) 5G2(Pr)/4 (Grecos y)/Re£/2 1
5 3 103 < ReL < 105, Gr*  < 1011

Boundary-layer flow
0.1 < Pr < 100
Y = 90°

Local

UWT [3] X ^(Pr) F3(Pr) Grx/Ref/2 1
5 3 103 < Rex < 105, Grv < 10"

UHF [5] X ^(Pr) G3(Pr) Gr*/ReJ 1
6 3 103 < Rex < 105, Gr*  < 108

Average
UWT [3] L 2Fi(Pr) 5F3(Pr)/3 Gr,/ReV2 1

5 3 103 < ReL < 105, Grz < 107

UHF [5]

Continuous moving 
sheets

L 2G3(Pr) 3G3(Pr)/2 Gr*/Rel 1
6 3 103 < Rez < 105, Grz* < 108

Boundary-layer flow
0.1 < Pr < 100

Vertical and
Inclined 0 < y < 85°

Local

UWT [12,14] X F4(Pr) F2(Pr) ( Gr fcos y)/Re2 1 
4 3 Rex < 105, Grx < 109

UHF [12,14] X G4(Pr) G2(Pr) (Gr*cos  y)/Rex/2 1
5 3 Rex < 105, Gr*  < 1010
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Average
UWT [12,14]
UHF [12,14]

L
L

2F4(Pr)
2G4(Pr)

Horizontal

Local

UWT [13,15] V £t(pr)
UHF [13,15] V G4(Pr)

Average
UWT [13,15] L 2F4(Pr)
UHF [13,15] L 2G4(Pr)

Vertical cylinders in 
longitudinal flow

Local
UWT [16] X #1(^1)

UHF [17] X

Horizontal cylinders 
in cross flow

Local
UWT [18] d, <t> 0.992
UHF [19] d, <(> 0.992

Spheres in cross flow

Local
UWT [28] d, <!> 1.153A-f3(<]>)
UHF [29] d, 6 L153/V3(<J>)

“ Rc/ = Gr/ = “ T^P/v1. and Grz* = gftqJA/k
evaluated at the film temperature Tf = (Tw + Tx)/2.

h The functions in these formulas are defined in Table 14.2.



v2 are based on a characteristic length I (/ = \ . L. or d as needed). Fluid properties are

4F2(Pr)/3 (Gqcos y)/Re| 4 3 Re£ < 105, Grz < 109
5G,(Pr)/4 (Gr*cos  y)/Re£/2 1

5 3 Rez < 105, Gr£* < IO10 

y = 90°

F3(Pr) Grv/Re;/2 1
5 3 Re*  < 105, Gr*  < 107

G-i(Pr) Gr*/Re x3 1
6 3 Re*  < 105, Gr*  < 108

5F3(Pr)/3 Grz/Rez/2 1
5 3 Re£ < 105, Grz < 107

3G3(Pr)/2 Gr*/Re 3 1
6 3 Re£ < 105, Gr*  < 10x

Boundary-layer flow 
0 < < 4, Pr = 0.7

H2(7C2) Grv/Re2 1
4 5 Rev < 105, Grv < W9

/2(F2*) Gr */Re3/2 1 
5 5 Res < 105. Gr*  < IO10

Boundary-layer flow 
Pr = 0.7'

0.440A/2(</>) GG/Re2 1 3.5 Re^ < 105, Gg < 109
O.5197V2(</>) Gr*/ReJ /2 1

5 4 Re^ < 105, Gg* < IO10

Boundary-layer flow 
Pr = 0.7

0.544A/4(<f>) GG/Rej 1 3.5 Re^ < 105, Gg < 109
0.6157V4(<^) GG*/Re7 2 1

5 4 Re^ < 105, Gg* < IO10



14-12 MIXED CONVECTION IN EXTERNAL FLOW

TABLE 14.2 Functions Used in Table 14.1

Function" Ref.

^(Pr) = 0.339 Pr1/3[1 + (0.0468/Pr)2/3]-1/4 [8]

F2(Pr) = 0.75 Pr1/2 [2.5(1 + 2Pr1/2 + 2Pr)]“1/4 [9]

Ft(Pr) = (Pr/5)1/5Pr1/2[0.25 + 1.6 Pr1/2]~ 1 [3]

F4(Pr) = 1.886 Pr13/32 - 1.445 Pr1/3 [15]

G^Pr) = 0.464Pr1/3[l + (0.0207/Pr)2/3]'1/4 [10]

G2(Pr) = Pr2/5[4 + 9 Pr1/2 + 10Pr]“1/5 [11]

G’3(Pr) = (Pr/6)l/6Pr1/2[0.12 + 1.2 Pr1/2]'1 [5]

G4(Pr) = 2.845 Pr13/32 - 2.095 Pr1/3 [15]

(Kl ) = 0.311 + 0.1277^! - 0.0046K~ [16]
where K1 = 4( x/r0)Re71/2

H2(K2) = 0.353 + 0.155/C, - 0.0105 K22 [16]
where K2 = 2(x/r0)(Grv/4)~1/4 

= (4Grx/Re2)-1/4K1

^(KJ = 0.420 + 0.123X7! - 0.0041^ [17]
where = 4(x/r0)Re71/2

f2(A7>*) = 0.483 + 0.120A?* - 0.0044A2*2 [17]
where 77*  = 2(x/r0)(Gr*/5) -1/5

= (32Gr*/5Re 3/2)-1/5A'1

= 1 - 0.018<2> - 0.105<#>2 - 0.029<f>3 [18]

M2(<» = 1 - 0.0003<J> - 0.0424<j>2 - 0.0010<>3 [18]

A/3(<[>) = 1 - 0.012<f> - 0.153<[>2 - 0.016<>3 [28]

= 1 - 0.0020 <> - 0.0685<f>2 - 0.0053<f>3 [28]

ZVj (<[>) = 1 — 0.013 <> — 0.054 <f>2 — 0.023 <f>3 [19]

V2(<» = 1 - 0.0004 <> - 0.0201<jE>2 - 0.0011 <>3 [19]

N3(<t>) = 1 - 0.009</> - 0.107<#>2 - O.O12^>3 [29]

,V4(<[>) = 1 - 0.0007<J> - 0.0415</>2 - O.OOW [29]

“ 6 is in radians.

14.6 CORRELATIONS FOR VERTICAL CYLINDERS 
IN LONGITUDINAL FLOW

Available results on laminar mixed convection for vertical cylinders in longitudinal 
flow are limited to fluids having a Prandtl number of 0.7 and to cylinders with fairly 
small values of the radius of curvature and buoyancy parameter. The results of Chen 
and Mucoglu [16,17] for the UWT and UHF cases under buoyancy-assisting condition 
are used to develop and validate the proposed simple mixed-convection correlations for 
this geometry. These correlations can be expressed in the form of Eq. (14.15) with 
appropriate functions /f(Pr) and B(Pr) and constants m and n as given in Tables 
14.1 and 14.2. Comparisons between the predicted results and the correlations are 
shown in Fig. 14.13 as Y vs. X for both the UWT and the UHF cases, where



Figure 14.7. Comparison between predicted and correlated local Nusselt numbers: vertical flat 
plate. UWT [3],

Figure 14.8. Comparison between predicted and correlated local Nusselt numbers: horizontal 
flat plate, UWT [3].
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Y3= 1 +X3

Assisting flow

3|

y3 = 1 - X3; Opposing flow

3

X= [F^PryF^Pr^G^ cos7)/Re‘)

y (deg)

0
15
30
45
60
75
85
87

Analysis 

Rex = 104 

Pr = 0.7

Figure 14.9. Comparison between predicted and correlated local Nusselt numbers: inclined flat 
plate, UWT [3],

y = NuRe 1/2//l(Pr) and X = R(Pr)£"'/,4(Pr). For the limited range of available 
numerical results, Pr = 0.7 and 1 < Kx < 4, where Kx is the radius of curvature of the 
cylinder, the proposed mixed-convection correlation for this geometry has an exponent 
of n = 5 for both UWT and UHF instead of the 3 that is used for flat plates. The 
maximum deviation between the predicted and correlated results is 4% for the UWT 
case and 8% for the UHF case. Additional mixed-convection results are needed to 
extend the range of applicability of such a correlation to fluids having Prandtl numbers 
other than 0.7 and to cylinders having a larger radius of curvature and under a stronger 
buoyancy-force effect.

14.7 CORRELATIONS FOR HORIZONTAL CYLINDERS

The direction of the forced flow, relative to that of the resulting buoyancy force, in 
mixed convection flow across cylinders must be considered when calculating the heat 
transfer. Assisting, opposing, and cross flows are accepted terms for three forced-flow 
directions in this geometry. In assisting flow, the forced flow is in the same direction as 
the buoyancy force (vertically upward for a heated cylinder); in opposing flow it is 
exactly in the opposite direction (vertically downward for a heated cylinder). In cross 
flow, the forced flow is perpendicular to the buoyancy force.

The flow field across a cylinder will normally develop a complex separation region 
downstream from the stagnation point, and this feature has limited the boundary-layer 
type of calculations to the unseparated portion of the flow domain. Mucoglu and Chen 
[18,19] reported on such a calculation for air flow, Pr = 0.7, for UWT and UHF 
boundary conditions. Their results can be used to develop and validate mixed-convec
tion correlations for the local Nusselt number in the unseparated flow region around



Figure 14,10. Comparison between predicted and correlated local Nusselt numbers: vertical, 
inclined, and horizontal flat plates, UWT and UHF, Pr = 0.7 [3, 5],
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UWT: X = [F2(Pr)/F4(Pr)] [(Grx cos y)/Re2]1/4 

UHF: X = [G2(Pr)/G4(Pr)][(Gr*  cos -y)/Re|/2 ]1/5

Figure 14.11. Comparison between predicted and correlated local Nusselt numbers: vertical and 
inclined moving sheets, UWT and UHF [12,14],

14*15



UWT: X = [F3(Pr)/F4(Pr)](Gr.c/Re|/2 )1/5 

UHF: X = [G3(Pr)/G4(Pr)](Gr*/Re- ’)1/6

Figure 14.12. Comparison between predicted and correlated local Nusselt numbers: horizontal 
moving sheets, UWT and UHF [13,15],

UWT: X= [^(^/^(^(Gr/Re2)174

UHF: X= [/jC^^/liC^lKGr^/Re^2)1^

Figure 14 13. Comparison between predicted and correlated local Nusselt numbers: vertical 
cyl inders in longitudinal flow, UWT and UHF, Pr = 0.7 [16,17],
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Figure 14.14. Comparison between predicted and correlated local Nusselt numbers: horizontal 
cylinders in cross flow, UWT and UHF, Pr = 0.7 [18,19],
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the circumference of the cyhnders, i.e. from 0° (the stagnation point) to approximately 
90°. The resulting correlations for this geometry can be expressed in a form equivalent 
to Eq. (14.15), and the appropriate functions and constants for these correlations are 
included in Tables 14.1 and 14.2. These correlations express the local mixed-convection 
Nusselt number, Nu^(<#>), as a function of the angle <£, measured in radians, from the 
stagnation point. Comparisons between the predicted mixed convection results and the 
proposed simple correlation, Eq. (14.15), are presented in Fig. 14.14. The figure 
illustrates an excellent agreement between the correlated and the predicted results for 
all angles from the stagnation point to about 90° degrees for both assisting and 
opposing flows with UWT and UHF boundary conditions.

Measurements and predictions of the average mixed-convection Nusselt number for 
cylinders in air flow, Pr = 0.7, have been reported by Oosthuizen and Madan [20,21], 
Badr [22,23], Hatton et al. [24], and Nakai and Okazaki [25] for assisting, opposing, 
and cross flows, covering a wide range of Reynolds and Grashof numbers. The 
measurements by Oosthuizen and Madan [20,21], which cover the flow regime of 
102 < Re^ < 3 X 103 and 2.5 X 104 < Gr^ < 3 X 105, can be correlated by the fol
lowing relations [26]:

1 For assisting flow (</> = 0°),

3.5

= 1 + 1.396 Q3-5 (14.16) 
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where NuJF is the average Nusselt number for the pure forced convection limit 
and is given by

Nu^ = 0.464 Re®'5 + 0.0004 Rerf (14.17)

and
/Gr</V/4 7 X

a = h-4 (14.18)
\ Rev /

2 For cross flow (<?> = 90°),

I Nu< \7
= 14 6.275 127 (14.19)

\ Nujf J

3. For opposing flow (<J> = 180°) in the region of 12 < 0.7,

/ \ 2.5Nil, „,=^~ = 1 - 122'5 (14.20)
\ NuJf /

and in the region of 12 > 0.7

/ Nuj \
=- = 1.2 12 - 0.2 (14.21)

\ Nu^/r )

Comparisons between measured and correlated results are shown in Fig. 14.15. All 
fluid properties are evaluated at the film temperature 7).

Figure 14.15. Comparison between measured and correlated average Nusselt numbers: air flow 
across isothermal horizontal cylinders, UWT, 102 < Red < 3 X 103, 2.5 X 104 < Grd < 3 X 105 
[26],



CORRELATIONS FOR HORIZONTAL CYLINDERS 14-19

Analytical calculations of the average Nusselt number for mixed convection How 
across horizontal cylinders have been reported by Badr [22,23] for the flow domain of 
1 < Rej < 60 and 0 < Gr^ < 7200. His reported results can be correlated by the 
following relations [26]:

1. For assisting flow (<f> = 0°)

NU<y
=^- = 1 
Nu^

gg
0.16—7

ReJ
0.015 (14.22)

2. For cross flow (<f> = 90°)

NU<y Gg / Gq2
— - 1 + UUD . H- U.Ulo
Nu^ Rej 1 Re;/

(14.23)

3. For opposing flow (<J> = 180°)

Nuj gg 
= 1 - 0.37—7 

Nu,,f Re?
+ 0.1501

ReJ/
(14.24)

where Nu/f is the averaged Nusselt number for the pure forced-convection limit, 
which can be correlated from predicted values in this flow regime by [26]

Nujf = 1.01 + 9.1 X 10 2 Red - 7.3 X 10“4 ReJ (14.25)

Comparisons between the above correlations and the predicted results are shown in 
Fig. 14.16.

id - GG/Rerf

Figure 14.16. Comparison between predicted and correlated average Nusselt numbers: air flow 
across isothermal horizontal cylinders, 1 < Re^ < 60, 0 < Gq < 7200 [26].
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Measurements of the average Nusselt number for this geometry by Hatton et al. [24] 
cover the flow domain of 102 < Ref/ < 40 and 10-3 < Gr^ < 10. The results have 
been well correlated by the following relations:

Nu^
0.154

= 0.384 + O.581R0439 (14.26)

where

/ Ra0418cos</> Ra°-836 V/2
R. = Re J 1 + 2.06----- - -------- + 1.06 ————1 \ Re2 (14.27)

with Ra denoting the Rayleigh number (Ra = Gr(/Pr) and Tf the film temperature 
\Tf = (7[, + 7^)/2], The angle <> is measured from the vertically upward direction of 
the forced flow (assisting <f> = 0°, opposing <> = 180°, and cross <f> = 90°). The fluid 
properties are evaluated at the average film temperature 7). Equation (14.26) correlates 
the measured mixed-convection data [24] very well for all forced-flow directions except 
for opposing flow in the region of 0.25 < Ra°'418/Re(7 < 2.5, where the deviations 
between the measured and the correlated results exceed 10%.

Analysis and measurements of the average Nusselt number for mixed convection air 
flow across horizontal cylinders of length-to-diameter ratio 2 X 104 < L/d < 2.5 X 104 
have been reported by Nakai and Okazaki [25] for the flow domain of very low 
Reynolds and Grashof numbers, with 10-3 < Re^ < 10-1 and 10-6 < Gr^ < 6.5 X 
10 5 (i.e., creeping flow). Their measured results can be correlated by the following 
relations [26]:

1. For assisting flow (</> = 0°)

Nu</
NurfF Re2

Grd 0.0472

(14.28)

2. For cross flow (<j> = 90°)

NU</ (Grd\0 0613
=- = 1.257 —y 
NurfF \ Rej /

(14.29)

3 For opposing flow (<]> = 180°)

Nuj

Nu^f
1.281

Gr^'i0 0795
R?) (14 30)

The Nusselt number for pure forced convection for this flow regime is given by 
analysis as [27]

_ 2
NU(/f ~ ln[5.435/(PrReJ] (14.31)

The above correlations provide a simple and accurate method for evaluating the 
average mixed-convection Nusselt number in this flow regime of very low Reynolds
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Figure 14.17. Comparison between measured and correlated average Nusselt numbers: air flow 
across isothermal horizontal cylinders, IO-3 < Re^ < HP1,10-6 < Grd < 6.5 X 10-5 [26],

and Grashof numbers, as shown in Fig. 14.17, in which the correlated results and the 
measured data are in excellent agreement. It should be noted that in the correlations 
fluid properties are evaluated at the film temperature 7) except those in Gr^, which are 
based on the free-stream temperature T^.

14.8 CORRELATIONS FOR SPHERES

Mixed convection flow across spheres exhibits similar features to those discussed for 
cylinders in Sec. 14.7. Boundary-layer calculations for the unseparated region of the 
flow domain have been reported by Chen and Mucoglu [28,29] for air flow, Pr = 0.7, 
with UWT and UHF boundary conditions. These results are used in a fashion similar 
to that used for cylinders to develop and validate mixed-convection correlations for the 
local mixed-convection Nusselt number in the unseparated region of the flow. The 
correlations can be expressed in terms of Eq. (14.15) with constants and functions as 
defined in Tables 14.1 and 14.2. The good agreement between the correlated and 
numerical results is shown in Fig. 14.18.

Measurements of the average Nusselt number for spheres in mixed convection air 
flow, Pr = 0.7, have been reported by Yuge [30] for assisting, opposing, and cross flows 
in the region where 3.5 < Re(/ < 5.9 X 103 and 1 < Gr;/ < 105. The measured mixed- 
convection results can be correlated well by the following relations [26]:

1. For assisting and cross flows (<J> = 0° and = 90°)

Nu,-2
(14.32)

where

Nr = NurfF - 2 = 0.493 Re/2 (14.33)



0 12 3

UWT: X = [0.544M4(</>)/1.153M3(</>)](Grd/Re^)1/4

UHF: X = [O.615A^(<£)/1 A53A^(0)](GrJ /Re5/2)1/5

Figure 14.18. Comparison between predicted and correlated local Nusselt numbers: spheres in 
cross flow, UWT and UHF, Pr = 0.7 [28,29].

Figure 14.19. Comparison between measured and correlated average Nusselt numbers: air flow 
across isothermal spheres, 3.5 < Re^ < 5.9 X 103, 1 < Gr^ < 105 [26].
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and

yc = Nu^- 2 = 0.392Gr/4 (14.34)

such that NG/NR = 0.795(Grt//ReJ)1/4, and Nurf and Nuw are, respectively, 
the average mixed-convection Nusselt numbers for the pure forced-convection 
and the pure free-convection limits.

2 For opposing flow (<f> = 180°), in the region where NG/NR < 1,

Nu^-2 NC
Nr

311/3

(14.35)

and in the region where (NC/NR) > 1,

Nu(/ - 2
(14.36)

Comparisons of these mixed-convection correlations with measured results reveal 
reasonably good agreement, as shown in Fig. 14.19. In the correlation equations, 
all fluid properties are evaluated at the film temperature Tf.

14.9 CORRELATIONS FOR VERTICAL FLAT PLATES IN CROSS FLOW

Mixed convection adjacent to a vertical flat plate in horizontal cross flow parallel to the 
plate has been studied both analytically for UWT [31,32] and experimentally for UHF 
[33]. For this flow configuration the buoyancy force is responsible for making the flow 
and thermal fields three-dimensional. The reported results on the average Nusselt 
number for laminar cross flow adjacent to a square plate (L = H) with UWT condition 
and Pr = 0.7 (air) are correlated by the equation [31]

NU/Re£1/2 = 0.584
Gr„ 

1 + 0.433—4 
Re?

(14.37)

in the range of buoyancy parameter 0 < Grz/Re? < 5. Equation (14.37) corresponds 
to the correlation equation (14.15) with n = 4, Y = NuRe£1/2/0.584, and X = 
(0.433 Gr„/Re2)1/4.

For the case of laminar flow with the UHF condition, the experimental local 
Nusselt numbers in air flow (Pr = 0.7) have been correlated [33] as

1/513.2\ 1/32

NuvRe,71/2 = 0.402 1 + (14.38)

for Rex < 105 and Gr*.  < 109, where x is measured in the horizontal direction along 
the plate (in the forced-flow direction) and z is measured in the vertical direction along 
the plate (in the buoyancy-force direction). Again, Eq. (14.38) has the form of Eq. 
(14.15), with n = 3.2,’ F = Nux.ReA71/2/0.402 and X = 1.202 (x/z)(Gr* z/Rex5/2)1/5.



14*24 MIXED CONVECTION IN EXTERNAL FLOW

The corresponding correlation for the average Nusselt number can be expressed by

NurRe£1/2 = 0.804 1 + °'752^ (14.39)' M/2 ’
It should be emphasized here that the above correlations for vertical plates in cross 

flow are limited to fluids having Pr = 0.7 and that fluid properties are evaluated at the 
free-stream temperature Tx. Correlation equations for fluids with Prandtl numbers 
other than 0.7 can be developed only when the results from analyses and experiments 
become available.

14.10 TURBULENT HEAT TRANSFER CORRELATIONS 
FOR FLAT PLATES

Reported studies on turbulent heat transfer in mixed convection are lacking in the 
literature. Turbulent mixed convection on vertical and horizontal flat plates under the 
UWT condition has been analyzed by Chen et al. [34,35] by employing a modified 
mixing-length model that accounts for the buoyancy-force effect. Their calculations for 
Pr = 0.7 yield local Nusselt numbers that converge to the Emit of pure forced 
convection, but underpredict by 20% the available results in the Emit of pure free 
convection. The local Nusselt number for turbulent flow over a flat plate under UWT 
for 0.5 < Pr < 1.0 and 5 X 105 < Re*  < 5 X 106 is given by [36]

I be local Nusselt number for turbulent free convection along an isothermal vertical flat 
plate for all Prandtl numbers and for Grv to 1012 is correlated by Churchill and Chu 
[37] as

Nujle^4/5 = 0.0287 Pr06 (14.40)

NuvGr;1/3 = 0.15 Pr1/3
0.49219/16

Pr

-16/27

(14.41)1 +

For turbulent free convection over a heated horizontal flat plate facing upward, the 
iocal Nusselt number for GrvPr > 5 X 108 is given by Fujn and Imura [38] as

NuvGrA71/3 = 0.13 Pr1/3 (14.42)

Equation (14.42), obtained under neither the UWT nor the UHF condition, was also 
verified later by Imura et al. for an isothermal horizontal flat plate [39],

If Eq. (14.12) is employed to propose a correlation for the local Nusselt number in 
mixed convection, the resulting form is 

NuxRe74/5
F(Pr)

G(PrW Grx
F(Pr) Re).2/5] (14.43)

where F(P r) = 0.0287 Pr06 and G(Pr) = 0.15 Pr1/3[1 + (0.492/Pr)9/16]“16/27 for a 
vertical plate and 0.13 Pr1 ' for a horizontal flat plate. The analytical local Nusselt 
numbers of Chen et al. [34,35] for Pr = 0.7 agree fairly well with the proposed
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X = [G (Pr)/F(Pr)] (Gty/Re*275)1/3

Figure 14.20. Comparison between predicted and correlated local Nusselt numbers: turbulent 
flow, vertical and horizontal flat plates, UWT, Pr = 0.7 [34,35].

correlation equation (14.43) with n = 3 and with c = 0.006 and 0.36 for horizontal and 
vertical plates, respectively. This comparison is illustrated in Fig. 14.20. The corre
sponding average Nusselt number can be correlated by

NuRe^4/5
1.25F(Pr)

G(Pr) / GrL \1/3p 

1.25F(Pr) Re}2/5 /
(14.44)

with the same c and n values as in Eq. (14.43).
Turbulent mixed convection from an isothermal, heated, vertical flat plate in cross 

flow' was analyzed by Plumb and Evans [32], Their results for the average Nusselt 
number for a square plate (H = L = 1 m) in the ranges of 2 X 105 < Rez < 1.3 X 106 
and 0 < Gr/Z/Re2 < 3 for Pr = 0.7 can be correlated by the equation

NuRe£4/5 
0.029

I Vrff \1/3
(14.45)

Equation (14.45) is similar in form to Eq. (14.43), but has an exponent of n = 4
Measurements of turbulent mixed convection from a vertical flat plate (L = 2.954 

m long and H = 3.030 m high) in air in cross flow under the UHF condition by Siebers 
ct al. [33] have provided the local and average Nusselt numbers. Their proposed 
correlation equation for local Nusselt numbers for Pr = 0.7 can be written in the 
form as

NuvReY-4/5 
0.025



X = 7.067(x/z)(Gr*/Re* 6/5)1/4 (T^/TJ0295

Figure 14.21. Comparison between measured and correlated local Nusselt numbers: turbulent 
air flow across a vertical flat plate, UHF [33],

X = 5.653 (L/H) (Gr^/Re}6/5) 1/4(7'UJ/7,.J,)0'295

Figure 14.22. Comparison between measured and predicted average Nusselt numbers: turbulent 
air flow across a vertical flat plate, UHF [33], 
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in the range 0 < Gr„/ReJ < 30, with Rck < 2 X 10\ Gr*,  < 2 X 1012, and 40 < 
< 600°C.

The corresponding expression for the average Nusselt number can be derived and 
expressed for Pr = 0.7 as

NuRe/4/5 ( L ( Gr*  \1/4Z T \0'295]4'
0.031 | [ H^Rei6/5/ \ 7^ / (14.47)

with n = 4 providing a better fit than n = 3.2.
Figure 14.21 illustrates a comparison between the measured local Nusselt number 

for a vertical flat plate (L = 2.954 m and H = 3.030 m) in cross flow of air [33] at three 
(a,-) locations, as indicated in the figure, and the proposed correlation equation 
(14.46). A comparison between the measured average Nusselt number over the entire 
plate and the correlation equation (14.47) is shown in Fig. 14.22. As can be seen from 
the two figures, the proposed correlations for both the local and average Nusselt 
numbers agree well with the experimental results. In Eqs. (14.46) and (14.47) all fluid 
properties are evaluated at the free-stream temperature Tx.

14.11 INSTABILITY AND TRANSITION

Buoyancy forces play a significant role in affecting the laminar flow regime in mixed 
convection. Their presence may enhance or diminish the stability of laminar flow and 
hence alter the transport characteristics of the mixed convection regime. The instability 
of laminar mixed convection flow and its subsequent transition to turbulent flow can be 
induced by the wave mode of instability, by the vortex mode of instability, or by both 
modes. One of the major criteria for use in determining the incipience of the instability 
in laminar mixed convection flows is the relationship between the critical Reynolds 
number Re, ( and the critical Grashof number Gr, c, that is, the relationship between 
the minimum Reynolds and Grashof numbers that will cause the laminar flow to 
become unstable.

From the analyses of wave instability by the linear theory, it has been found that for 
a strong forced flow with weak buoyancy force, an aiding buoyancy force has a 
stabilizing effect on flow along a vertical plate [40], but a destabilizing effect on flow 
over a horizontal flat plate [41], These trends are both reversed when the buoyancy 
force opposes the forced flow. For the laminar mixed convection flow adjacent to an 
inclined flat plate, an increase in the inclination angle from the vertical has a 
destabilizing effect for an aiding buoyancy force, but a stabilizing effect for an 
opposing buoyancy force [42], For a strong free convection flow with very weak forced 
flow along a vertical flat plate, an aiding free stream has a stabilizing effect, whereas an 
opposing free stream tends to destabilize the flow [43],

The analysis of vortex instability by the linear theory for mixed convection flow 
over a heated, isothermal, horizontal flat plate has provided the relationships between 
the critical Reynolds number and the critical Grashof number as Gr, ,./Re3/2 = 0.447 
for Pr = 0.7 and Gr, (/Re3/(2 = 0.434 for Pr = 7 in the Reynolds number range of 
103 < Re, ( < 107 [44]. On the other hand, experiments on isothermal, heated, hori
zontal flat plates provide relationships for the onset of vortex instability as 
Gr,. (,/Re,3/(2 = 192 for air [45] and Grx C/Re3/2 = 46 to 100, with an average value of 
78, for water [46]. Thus, for a given Reynolds number, the linear theory predicts a 
much lower critical Grashof number than that observed in experiments. In another



Gr

Figure 14.23. Instability and stability domains of mixed convection flow over an isothermal 
horizontal flat plate: wave and vortex modes, Pr = 0.7 [44],

Grt.c

Figure 14.24. Instability and stability domains of mixed convection flow over an isothermal 
horizontrl flat plate: wave and vortex modes, Pr = 7 [44],
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experiment with water flow over an isothermal, heated, horizontal flat plate [39], it has 
been found that the transition from laminar forced convection to turbulent free 
convection in water is due to the incipience, growth, and subsequent breakdown of the 
longitudinal vortex rolls, and is characterized by the parameter Grx/Re2/2 in the range 
of 100 < Grv/ReAV2 < 300.

Figures 14.23 and 14.24 illustrate the relationship between the critical Reynolds 
number and the critical Grashof number, for Pr = 0.7 and 7 respectively, for both wave 
and vortex modes of instability in mixed convection flow over an isothermal, heated, 
horizontal flat plate [44], The regions of stable and unstable flow are as marked in each 
figure. The region enclosed by the dashed line represents flow that is stable with respect 
to the wave mode of instability, while the region outside the line represents unstable 
flow. For the vortex mode of instability, the region below the solid line represents an 
unstable situation; the region above, a stable situation.

Figure 14.25 illustrates the wave instability characteristics of mixed convection flow 
adjacent to isothermal, heated, inclined flat plates [42] for y = 0° (vertical orientation) 
to 90° (horizontal orientation) for the forced-flow-dominated case. The results are for 
Pr = 0.7. Each curve in the plane of Grx (./Rex /2 vs. Rex.f2 separates the stable region 
to the left of the curve from the unstable region to the right for that particular 
inclination angle.

The wave and vortex instability characteristics of mixed convection flows on 
isothermal, heated, inclined flat plates for Pr = 0.7 are compared in Fig. 14.26, which is
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Grx.c

Figure 14.26. Comparison of the instability and stability domains of mixed convection flow on 
isothermal inclined flat plates between wave and vortex modes, Pr = 0.7 [47].

taken from [47]. For the wave mode of instability, at an inclination angle y, any 
(Rex,Grx) combination that lies above the dashed line represents an unstable flow 
situation, while any combination that lies below the line represents a stable flow 
situation. With regard to the vortex mode of instability, each solid line at a given angle 
separates the stable region above the line from the unstable region below the line. From 
a comparison between the wave and vortex instability results for Pr = 0.7 in mixed 
convection flows on isothermal, heated, inclined plates, it can be generally concluded 
that the flow is more susceptible to the vortex mode of instability than the wave mode 
for all angles of inclination when Grx. < 107 and Rex < 8.4 X 104. On the other hand, 
the flow is more susceptible to the wave mode of instability than the vortex mode when 
Grx < 107 and Rex > 8.4 X 104. When Grx > 107, and at a given inchnation angle, the 
first incipience of flow instability could be due to either the wave mode, the vortex 
mode, or a combined mode, depending on the values of Rex and Grx. It should be 
noted, however, that the results shown in Fig. 14.26 are based on the linear theory, and 
the stated conclusions need to be further verified by experimental results, which are 
lacking for mixed convection flows adjacent to inclined flat plates.

14.12 CONCLUSIONS

In this chapter correlation equations for Nusselt numbers in external mixed convection 
flows over various flow configurations are summarized. The correlation equations 
presented are mostly for laminar flow. This is because studies on turbulent mixed 
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convection flows are currently lacking. It has been demonstrated that the local and 
average Nusselt numbers for mixed convection in external flows can be correlated in a 
form given by Eq. (14.11) or (14.15) in terms of the respective Nusselt numbers for the 
limiting cases of pure forced convection and pure free convection. The constant 
exponent n in the equation can be determined if some analytical or experimental 
Nusselt number results for the mixed convection flow are available for a certain Prandtl 
number. The exponent n lies generally between 3 and 4 for laminar boundary-layer 
flows. Thus, an estimate of mixed convection Nusselt numbers in laminar boundary
layer flow may be made rather accurately for a certain geometry from Eq. (14.11) or 
(14.15) provided the correlation equations for the respective Nusselt numbers in pure 
forced convection and pure free convection are known. However, care must be 
exercised in such a practice.
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NOMENCLATURE

>l(Pr) 
B(Pr) 
d
F(Pr) 
F1(Pr),--,F4(Pr) 
g
G(Pr) 
^(PrV-^Pr) 
Gr
Gr, 
Gr, 
Grz/ 
Gr,. 
Gr(/ 
Gr*  
Gr*  
Gr*  
Gr,*  
Gr*
Gr, (. 
h 
h

H
H/K/),H2(K2)

function of Prandtl number [Eq. (14.14), Table 14.1] 
function of Prandtl number [Eq. (14.14), Table 14.1] 
diameter of cylinders or spheres, m, ft 
function of Prandtl number [Eq. (14.43)] 
functions of Prandtl number (Table 14.2) 
gravitational acceleration, m/s2, ft/s2 
function of Prandtl number [Eq. (14.43)] 
functions of Prandtl number (Table 14.2)
Grashof number = gfi(Tw - Tx)P/v2 
local Grashof number = g/3(Tw - Tx)x3/v2 
local Grashof number = gP(Tw - Tx)z3/v2 
Grashof number = gfi(Tw — TX)H3/v2 
Grashof number = gft(Tw - Tx)L3/v2 
Grashof number = gft(Tw - Tx)d3/v2 
modified local Grashof number = gfiqwx\/kv2 
modified local Grashof number = g^qwz‘i/kv2 
modified Grashof number = g^qwH‘i/kv2 
modified Grashof number = gfiqwL//kv2 
modified Grashof number = g^qwd^/kv2 
local critical Grashof numbers = gft(Tv — 7^)x2/i?2 
local heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 • °F) 
average heat transfer coefficient, W/(m2 • K),

Btu/(hr • ft2 • °F) 
height of plate, m, ft 
functions of curvature of cylinder (Table 14.2)
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/1(7Cl),4(/C2*)  
k
a;, k2, k/
/
L

functions of curvature of cylinder (Table 14.2) 
thermal conductivity, W/m • K, Btu/(hr • ft • °F) 
curvature parameters of cylinder (Table 14.2) 
characteristic length, m, ft 
length of plate, m, ft

m

n

Nu
Nuv

Nu^ 
N’uf 
Pr

constant exponent (Table 14.1) 
functions of angle </> (Table 14.2) 
constant exponent (Table 14.1) 
functions of angle <£> (Table 14.2) 
Nusselt number = hl/k 
local Nusselt number = hx/k 
local Nusselt number = hd/k 
average Nusselt number = hd/k 
average Nusselt number = liL/k 
Prandtl number = v/a

rt;
Ra 
Rc 
Rev 
Rez

Rc,,c
T
Tf 
u

local surface heat flux, W/m2, Btu/(hr • ft2) 
radius of cylinder, m, ft 
Rayleigh number = Gr^Pr 
Reynolds number = u^l/k 
local Reynolds number = u^x/v 
Reynolds number = uxL/v 
Reynolds number = uxd/v 
local critical Reynolds number = uxxc/v 
fluid temperature, °C, K, °F, °R
film temperature = (TM + Tx)/2, °C, K, °F, °R 
axial velocity component, m/s, ft/s

V
U 
r

normal velocity component, m/s, ft/s 
dimensionless axial velocity component = u/ux 
dimensionless normal velocity component = v/ux

A" axial coordinate, m, ft

Z
X
Y

normal coordinate, m, ft 
spanwise coordinate, m, ft 
ratio of Nusselt numbers = Nuw/NuF [Eq. (14.13)] 
ratio of Nusselt numbers = Nu/NuF [Eq. (14.13)]

Greek Symbols
a 
3 

Y 

V 
e

thermal diffusivity, nr/s, ft2/s
volumetric coefficient of thermal expansion, K-1, °R-1 
angle of inclination from the vertical, deg 
dimensionless normal coordinate = y/I
dimensionless temperature = (T - TX)/(TW — T^)

V kinematic viscosity, m2/s, ft2/s
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£ buoyancy parameter (Table 14 1)
£j buoyancy parameter = Gr^/Rej
</> angle from stagnation point = x/r0, radians
X dimensionless axial coordinate = x/l
S2 buoyancy parameter = (Grrf/ReJ )1/4

Subscripts
c critical condition
F pure forced convection
N pure free convection
w condition at wall
oc condition at free stream

REFERENCES

1. T S. Chen, B. F. Armaly and W. Aung, Mixed Convection in Laminar Boundary-Layer Flow, 
Natural Convection: Fundamentals and Applications, ed. S. Kakac, W. Aung, and R. Viskanta, 
pp. 699-725, Hemisphere, New York, 1985.

2 S. W. Churchill, A Comprehensive Correlating Equation for Laminar, Assisting, Forced and 
Free Convection, AIChE J., Vol. 23, pp. 10-16,1977.

3. T S. Chen, B. F. Armaly, and N. Ramachandran, Correlations for Laminar Mixed Convec
tion Flows on Vertical, Inclined, and Horizontal Flat Plates. ASME J. Heat Transfer, Vol. 
108, pp. 835-840, 1986.

4 N Ramachandran, B. F. Armaly, and T. S. Chen, Measurements and Predictions of Laminar 
Mixed Convection Flow Adjacent to a Vertical Surface. ASME J. Heat Transfer, Vol. 107, 
pp. 636-641, 1985.

5. B F. Armaly, T. S. Chen, and N. Ramachandran, Correlations for Laminar Mixed Convec
tion on Vertical, Inclined, and Horizontal Flat Plates with Uniform Surface Heat Flux. hit. J. 
Heat Mass Transfer, Vol. 30, pp. 405-408, 1987.

6. A Mucoglu and T. S. Chen, Mixed Convection on Inclined Surfaces, ASME J. Heat 
Transfer, Vol. 101, pp. 422-426, 1979.

7. N Ramachandran, B. F. Armaly, and T. S. Chen, Measurements of Laminar Mixed 
Convection from an Inclined Surface. ASME J. Heat Transfer, Vol. 109, pp. 146-150, 1987.

8. S W Churchill and H. Ozoe, Correlations for Laminar Forced Convection in Flow Over an 
Isothermal Flat Plate and in Developing and Fully Developed Flow in an Isothermal Tube, 
ASME J. Heat Transfer, Vol. 95, pp. 416-419, 1973.

9. A J. Ede, Advances in Free Convection, Advances in Heat Transfer, Vol. 4, pp. 1-64, 
Academic Press, New York, 1967.

10. S. W. Churchill and H. Ozoe, Correlations for Laminar Forced Convection with Uniform 
Surface Heating in Flow over a Plate and in Developing and Fully Developed Flow in a Tube, 
ASME J. Heat Transfer, Vol. 95, pp. 78-84, 1973.

11 T. Fujii and M. Fujii, The Dependence of Local Nusselt Number on Prandtl Number in the 
Case of Free Convection along a Vertical Surface with Uniform Heat Flux, I nt. J. Heat 
Mass. Transfer, Vol. 19, pp. 121-122, 1976.

12. A. Moutsoglou and T. S. Chen, Buoyancy Effects in Boundary Layers on Inclined, Continu
ous Moving Sheets, ASME J. Heat Transfer, Vol. 102, pp. 371-373, 1980.

13. T S. Chen and F. A. Strobel, Buoyancy Effects in Boundary Layer Adjacent to a Continuous, 
Moving Horizontal Flat Plate, ASME J. Heat Transfer, Vol. 102, pp. 170-172, 1980.



14-34 MIXED CONVECTION IN EXTERNAL FLOW

14. N. Ramachandran, B. F. Armaly, and T. S. Chen, Correlations for Laminar Mixed Convec
tion in Boundary Layers Adjacent to Inclined, Continuous Moving Sheets. To be published in 
Int. J. Heat Mass Transfer, 1987.

15. N. Ramachandran, B. F Armaly, and T. S. Chen, Correlations for Laminar Mixed Convec
tion in Boundary Layers Adjacent to Horizontal, Continuous Moving Sheets. To be published 
in A SME J. Heat Transfer, 1987.

16. T S. Chen and A. Mucoglu, Buoyancy Effects on Forced Convection along a Vertical 
Cylinder, ASMEJ. Heat Transfer, Vol. 97, pp. 198-203, 1975.

17. A Mucoglu and T. S. Chen, Buoyancy Effects on Forced Convection along a Vertical 
Cylinder with Uniform Surface Heat Flux, AS ME J. Heat Transfer, Vol. 98, pp. 523-525, 
1976.

18. A Mucoglu and T. S. Chen, Analysis of Combined Forced and Free Convection across a 
Horizontal Cylinder, Can. J. Chem. Eng., Vol. 55, pp. 265-271, 1977.

19. A Mucoglu and T. S. Chen, Mixed Convection across a Horizontal Cylinder with Uniform 
Surface Heat Flux, ASMEJ. Heat Transfer, Vol. 99, pp. 679-682, 1977.

20. P H. Oosthuizen and S. Madan, Combined Convective Heat Transfer from Horizontal 
Cylinders in Air, ASME J. Heat Transfer, Vol. 92, pp. 194-196, 1970.

21. P. H. Oosthuizen and S. Madan, The Effect of Flow Direction on Combined Convective Heat 
Transfer from Cylinders to Air, ASME J. Heat Transfer, Vol. 93, pp. 240-242, 1971.

22. II. M. Badr, Laminar Combined Convection from a Horizontal Cylinder—Parallel and 
Contra Flow Regimes, Int. J. Heat Mass Transfer, Vol. 27, pp. 15-27, 1984.

23. IT M. Badr, A Theoretical Study of Laminar Mixed Convection from a Horizontal Cylinder 
in a Cross Stream, Int. J. Heat Mass Transfer, Vol. 26, pp. 639-653, 1983.

24. A. P. Hatton, D. D. James, and H. W. Swire, Combined Forced and Natural Convection with 
Low-Speed Air Flow over Horizontal Cylinders, J. Fluid Meeh., Vol. 42, pp. 17-31, 1970.

25 S Nakai and T. Okazaki, Heat Transfer from a Horizontal Circular Wire at Small Reynolds 
and Grashof Numbers—II. Mixed Convection, Int. J. Heat Mass Transfer, Vol. 18, pp. 
397-413, 1975.

26. P, F Armaly, T. S. Chen, and N. Ramachandran, Correlations for Mixed Convection Flows 
across Horizontal Cylinders and Spheres, submitted to ASME J. Heat Transfer.

27 S. Nakai and T. Okazaki, Heat Transfer from a Horizontal Circular Wire at Small Reynolds 
and Grashof Numbers—I. Pure Convection. Int. J. Heat Mass Transfer, Vol. 18, pp. 
387-396, 1975.

28 T. S. Chen and A. Mucoglu, Analysis of Mixed Forced and Free Convection about a Sphere, 
Int. J. Heat Mass Transfer, Vol. 20, pp. 867-875, 1977.

29. A Mucoglu and T. S. Chen, Mixed Convection about a Sphere with Uniform Surface Heat 
Flux, ASME J. Heat Transfer, Vol. 100, pp. 542-544, 1978.

30. Y Yuge, Experiments on Heat Transfer from Spheres Including Combined Natural and 
Forced Convection, ASME J. Heat Transfer, Vol. 82, pp. 214-220, 1960.

31 Ci H. Evans and O. A. Plumb, Laminar Mixed Convection from a Vertical Heated Surface in 
a Cross Flow, ASMEJ. Heat Transfer, Vol. 104, pp. 554-558, 1982.

32. O. A. Plumb and G. H. Evans, Turbulent Mixed Convection from a Vertical Heated Surface 
in a C ross Flow, Proceedings of the ASME-JSME Thermal Engineering Joint Conference, Vol. 
3. pp. 47-53, 1983.

33. D L. Siebers, R. G. Schwind, and R. J. Moffat, Experimental Mixed Convection Heat 
Transfer from a Large, Vertical Surface in a Horizontal Flow, Rep. No. HMT-36. Thermosci
ences Div., Dept, of Meeh. Eng., Stanford Univ., February 1983.

34. T S. Chen, B. F. Armaly, and M. M. Ali, Turbulent Mixed Convection along a Vertical Plate, 
ASMEJ. Heat Transfer, Vol. 109, pp. 251-253, 1987.

35. M. M. Ah. T. S. Chen, and B. F. Armaly, Mixed Convection in Turbulent Boundary Layer 
Flow over a Horizontal Plate, ASME Paper No. 83-WA/HT-5, 1983.



REFERENCES 14-35

36. W. M Kays and M E Crawford, Convective Heat and Mass Transfer, 2nd ed., Chapter 12, 
McGraw-Hill, New York, 1980.

37. S W. Churchill and H. H. S. Chu, Correlating Equations for Laminar and Turbulent Free 
Convection from a Vertical Plate, Int. J. Heat Mass Transfer, Vol. 18, pp. 1323-1329, 1975.

38, T Fujii and H. Imura, Natural Convection Heat Transfer from a Plate with Arbitrary 
Inclination, Int. J. Heat Mass Transfer, Vol. 15, pp. 755-767, 1972.

39. H Imura, R. R. Gilpin, and K C Cheng, An Experimental Investigation of Heat Transfer 
and Buoyancy Induced Transition from Laminar Forced Convection to Turbulent Free 
Convection over a Horizontal Isothermally Heated Plate, ASME J. Heat Transfer, Vol. 100, 
pp. 429-434, 1978.

40. A. Mucoglu and T. S. Chen, Wave Instability of Mixed Convection Flow along a Vertical Flat 
Plate, Numer. Heat Transfer, Vol. 1, pp. 267-283, 1978.

41. T S. Chen and A. Mucoglu, Wave Instability of Mixed Convection Flow over a Horizontal 
Flat Plate, Int. J. Heat Mass Transfer, Vol. 22. pp. 185-196, 1978.

42. T. S. Chen and A. Moutsoglou, Wave Instability of Mixed Convection Flow on Inclined 
Surfaces, Numer. Heat Transfer, Vol. 2, pp. 497-509, 1979.

43. V P. Carey and B. Gebhart, The Stability and Disturbance-Amplification Characteristics of 
Vertical Mixed Convection Flow, J, Fluid Meeh., Vol. 127, pp. 185-201, 1983.

44. A Moutsoglou, T. S. Chen, and K. C. Cheng, Vortex Instability of Mixed Convection Flow 
over a Horizontal Flat Plate, ASME J. Heat Transfer, Vol. 103, pp. 257-261, 1981.

45. Y Hayashi, A. Takimoto, and K. Hori, Heat Transfer in Laminar Mixed Convection Flow 
over a Horizontal Flat Plate (in Japanese), Proceedings of the 14th Japan Heat Transfer 
Symposium, pp. 4-6, 1977.

46. R. R. Gilpin, H. Imura, and K. C. Cheng, Experiments on the Onset of Longitudinal Vortices 
in Horizontal Blasius Flow Heated from Below, ASME J. Heat Transfer, Vol. 100, pp. 71-77, 
1978.

47. T. S. Chen, A. Moutsoglou, and B. F. Armaly, Thermal Instability of Mixed Convection Flow 
over Inclined Surfaces, Numer. Heat Transfer, Vol. 5, pp. 343-352, 1982.





15
MIXED CONVECTION IN 
INTERNAL FLOW
Win Aung
National Science Foundation
Washington, D.C.

15.1 Introduction
15.2 Governing Equations and Parameters
15.3 Laminar Mixed Convection in Vertical Ducts

15.3.1 Hydrodynamically and Thermally Fully Developed Flow in Vertical Circular 
Tubes

15.3.2 Thermally Developing Flow in Vertical Circular Tubes
15.3.3 Hydrodynamically and Thermally Developing Flow in Vertical Circular Tubes
15.3.4 Hydrodynamically and Thermally Fully Developed Flow in Vertical Annuli
15.3.5 Thermally Developing Flow in Vertical Annuli
15.3.6 Hydrodynamically and Thermally Fully Developed Flow between Vertical 

Parallel Plates
15.3 7 Hydrodynamically and Thermally Developing Flow between Vertical Parallel 

Plates
15.4 Laminar Mixed Convection in Horizontal Ducts

15.4.1 Thermally and Hydrodynamically Fully Developed Flow in Horizontal Cir
cular Tubes

15.4.2 Thermally Developing Flow in Horizontal Circular Tubes
15.4.3 Flow in Circular, Concentric Horizontal Annuli
15 4.4 Thermally Fully Developed Flow between Horizontal Parallel Plates
15.4.5 Thermally Developing Flow between Horizontal Parallel Plates
15.4.6 Flow in Rectangular Horizontal Channels

15.5 Transition from Laminar to Turbulent Flow
15.5.1 Transitional Upward Flow in Vertical Circular Tubes
15.5.2 Transitional Flow in Horizontal Circular Tubes

15.6 Turbulent Mixed Convection in Ducts
15.6.1 Vertical Ducts
15.6.2 Horizontal Tubes

Nomenclature
References

15-1



15*2 MIXED CONVECTION IN INTERNAL FLOW

15.1 INTRODUCTION

In previous chapters, pure forced convection and pure free (natural) convection have 
been discussed; combined free and forced convection (or mixed convection) has been 
treated in Chap. 14 for external flow. The present chapter concerns combined convec
tion in internal flow situations.

Design information for mixed convection should reflect the interacting effects of 
free and forced convection. It is important to realize that heat transfer in mixed 
convection can be significantly different from its values in both pure free and pure 
forced convection. For example, in a vertical circular tube the laminar mixed convec
tion heat transfer coefficient in buoyancy-assisted flow (usually upflow when the fluid is 
heated) can be as much as 5 times its value in pure forced convection [1], On the other 
hand, in buoyancy-opposed flow (usually downflow when the fluid is heated), the 
laminar mixed convection heat transfer can be lower than that for pure forced flow. In 
turbulent flow, the heat transfer is often reduced in assisted flow and increased in 
opposed flow, compared with pure forced convection. Some of these effects are 
qualitatively displayed in Fig. 15.1 for a vertical circular tube. The curves are based on 
the analytical predictions for laminar flow by Martinelli and Boelter [2], and the 
turbulent flow data by Herbert and Stems [3], Byrne and Ejiogu [4] and Eckert and 
Diaguila [5], For a horizontal duct, temperature variations in the fluid lead to the 
possibility of counterrotating transverse vortices that are superimposed on the stream
wise main flow. This so-called “secondary flow” can also increase the heat transfer 
significantly. Thus, buoyancy influences internal forced-convection heat transfer in 
ways that depend on whether the flow is laminar or turbulent, upflow or downflow, and 
on duct geometry as well as orientation. This makes it difficult and sometimes even 
dangerous to make a priori assumptions concerning buoyancy effects in internal flow.

With laminar, buoyancy-aided flow in a vertical parallel-plate channel (see Fig. 
15.12 below), free convection causes the thermal development length to be shortened 
but the flow development length to be elongated considerably, and the streamwise 
velocity profile can be profoundly distorted also, leading even to the possibility of 
reversed flow [6, 7], Experimental evidence of the profile deviations from the parabolic 
shape for constant-property fully developed laminar flow was reported by Watzinger 
and Johnson [8], among others. In general, increased free-convection effects near a heat 
transfer wall cause more cold fluid to be drawn to the wall, thereby increasing the heat 
transfer.

Inasmuch as the flow development length is a function of the buoyancy effects, the 
ratio of the length of a duct to its significant transverse dimension is important in 
mixed convection. For a duct at a uniform wall temperature (UWT), the fluid 
temperature tends toward the wall value, and the secondary flow introduced by 
buoyancy diminishes and becomes negligible at distances far (in comparison to its 
transverse dimension) from the entrance. For a duct heated at a uniform heat flux 
(UHF), the wall and fluid temperatures increase continuously along the duct, and the 
increase becomes Unear with distance for a “long” duct. In both heating conditions, 
when the fluid properties are constant, a thermally “fully developed” situation is 
achieved at a large (in relation to the transverse dimension) distance from the duct 
entrance. An additional parameter that can have an effect on the heat transfer is the 
presence of an unheated section of the duct so that the flow is hydrodynamically fully 
developed prior to entering the heated section. In low Reynolds number laminar flows, 
the influence of the initial velocity profile can be quite significant; this effect, however, 
is not important for moderate to large Prandtl number fluids.

Relatively reliable correlations now exist for both upflow and downflow in vertical 
circular tubes involving various fluids. Augmenting the results of earlier investigators
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Figure 15.1. Nusselt numbers in laminar and turbulent mixed convection: (a) laminar flow, 
(b) buoyancy-assisted turbulent flow, and (c) buoyancy-opposed turbulent flow.
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Figure 15.2. Free, forced, and mixed convection regimes for flow in vertical circular tubes for 
16 2 < Pr D/L < 1 [9], The results are valid for both upflow and downflow, and for UWT and 
UHF boundary conditions.

with their own, Metais and Eckert [9] have recommended the use of the flow regime 
maps of Figs. 15.2 and 15.3. In these figures, flow regime boundaries have been 
determined to be the locations where the mixed convection heat transfer does not 
deviate by more than 10% from pure forced convection or pure free convection. For 
forced flow represented by a given Reynolds number, the value of the parameter 
GrPr D/L indicates whether it is necessary to consider buoyancy effects. Note that 
Fig. 15.2 applies for both upflow and downflow, and for both UWT and UHF 
conditions. Figure 15.3 applies for UWT, and indicates only the boundary between 
forced convection and mixed convection. In these figures, Gr4 is based on the tube 
diameter and the difference between the wall and fluid bulk mean temperatures, and 
Re = umDh/v. All fluid properties should be determined at the film temperature.

The present chapter deals only with ducts in the vertical and horizontal orientations. 
Also of importance are inclined tubes, which are used in solar energy collection 
applications.

As in applying any heat transfer result, it is important to distinguish between UWT 
and UHF boundary conditions when using the correlations recommended in this 
chapter. The UWT condition approximates applications in condensers, evaporators, 
and any heat exchanger in which one fluid has a much larger heat capacity than the 
other; for these, the correlations for Nusselt numbers permit the evaluation of the heat 
transfer coefficients and hence the heat loads. In situations involving UHF? such as in
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Figure 15.3. Free, forced and mixed convection regimes for flow in horizontal circular tubes for 
10“ 2 < Pr D/L < 1 [9], The results are valid for the UWT boundary condition. Refer to Chaps. 3 
and 4 for more accurate correlations for laminar and turbulent forced convection duct flow.

certain solar collectors and electronic cooling applications, the heat fluxes are known 
and the Nusselt number can be used to obtain the wall temperatures.

Another effect to be considered in applying mixed convection correlations is 
peripheral heat-flux variation. The latter can be caused by nonuniform heating of the 
tube, which is inherent in heat transfer tubes having nonaxisymmetric outside flow 
streams. For tubes with thick enough walls and high enough thermal conductivities, 
peripheral variation of the heat flux is diminished by heat conduction; for tubes with 
thin walls, the problem can be severe.

Peripheral variations of heat transfer can also result from secondary flow. As will be 
noted, secondary flows are frequently present in mixed convection in horizontal tubes. 
For a horizontal circular tube at UWT, the circumferential Nusselt number can differ 
by as much as a factor of 4, with the maximum occurring at the lowest point and the 
minimum at the highest point on the circumference of the tube. This problem has been 
considered in some detail by Yousef and Tarasuk [10] for UWT and by Bergles and 
Simonds [11] for UHF.

For the sake of including the best available information, this chapter contains a 
number of graphs which are derived from theoretical investigations. Some of the results 
contained in these graphs have not been verified experimentally but they are useful as 
rough design guides. A clear distinction is made between tube orientations (vertical or 
horizontal), between boundary conditions (UHF or UWT), and between results for 
fully developed flow and those for developing flow. Thus, subsections dealing with 
simultaneous hydrodynamic and thermal development refer to cases where an unheated 
entrance length is absent, or to theoretical studies in which a flat velocity profile is 
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assumed at the entrance to the heat transfer section. Thermally and hydrodynamically 
fully developed flow implies invariance of the results with streamwise distance, and 
hence Nufd = Nu,„. Note that thermally developing flow includes the hypothetical case 
where the flow is hydrodynamically fully developed throughout a duct, as is assumed in 
a number of theoretical investigations. Experiments, e.g. [12], have shown that this case 
is closely approached in practice in situations where the heat transfer section is 
preceded by a sufficiently long hydrodynamic development section, the impheation 
here being that the distortion of the velocity profile in the heat transfer section does not 
cause the heat transfer results to deviate materially from those computed using the 
assumption of hydrodynamically fully developed flow.

Unless otherwise specified, thermophysical properties appearing in graphs and 
correlations contained in this chapter should be evaluated at the film temperature, 
obtained by the arithmetic average of the wall and bulk mean temperatures. The 
characteristic dimension in Re, and in various definitions of Gr and Ra, is consistently 
used as the hydraulic diameter for all duct geometries throughout this chapter.

15.2 GOVERNING EQUATIONS AND PARAMETERS

The general equations of continuity, momentum, and energy in various coordinate 
systems are given in Chap. 1. Consider now the special case of mixed convection in a 
vertical tube. Assume steady flow and heat transfer, no internal heat generation, 
negligible viscous dissipation, pressure change only in the streamwise direction, no 
axial diffusion of heat and momentum, and axially symmetric flow and heat transfer. 
The equations in cylindrical coordinates expressing the conservation of mass, momen
tum, and energy are, respectively,

1 d 3
~^~(prv) + — (p«) = 0 
r dr dx

dP 1 d / du\
“ -T- PS + - T- rii—dx r dr \ dr ]

1 d [ dT\
~ ~g~ rk— r dr\ dr j

(15 1)

(15.2)

(15.3)

The left-hand side of Eq. (15.2) represents the inertia forces; the terms on the 
right-hand side denote the pressure gradient, buoyancy, and friction forces, respec
tively. With the axial coordinate x oriented vertically up, the negative sign in the 
buoyancy term (pg) is used when the basic forced convection is directed upwards 
(upflow), while the positive sign is used for downflow. The terms on the left side of Eq. 
(15.3) represent the convective heat transport, and the right side is the heat conduction 
term.

In the absence of heat transfer, the temperature in the duct assumes a uniform value 
that is equal to that at the duct entrance. In addition, if there is no forced flow, the 
pressure gradient is that due to the hydrostatic pressure. Thus, Eq. (15.2) may be 
written for this special case as

dP, _
(15.4)
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In the above, Pt is the hydrostatic pressure corresponding to p, and T{. Subtracting 
Eq. (15.4) from Eq. (15.2), we have

/ du du\
p v—---- 1 u~—

\ dr dx /
d 1 d

(P-P1)T(p-p1)g+- — 
dx r dr

(15-5)

The so-called Boussinesq approximation of the momentum equation, Eq. (15.5), is now 
introduced. First, for small temperature variations, the density may be expressed as

p = p1[l-j8(T-T1)] (15.6)

where subscript 1 indicates conditions at the tube entrance, and the thermal expansion 
coefficient is assumed constant and is defined as

1 I dp \ 
P\57L (15-7)

Hence,

p - Pi = -p^fT- Tj

Equation (15.5) becomes

[du du
P V—---- 1- M —

\ dr dx
d 1 d ( du\

(15.8)

For constant properties [except for density in the buoyancy force term in Eq. (15.8)], 
the governing equations (15.1), (15.8), and (15.3) become, in nondimensional form,

dv
~dR +

V dU
— + — = 0
R dX

(15-9)

1 / du dU\ dP*  1 du d2U Gq
— V----  + U---- =--------+--------- +------r + -----G (15.10)

where

Pr \ dR

de 
vTr

dxj dX R dR dRz Re

de i de d2e
4- U — 4*  7

dx R dR dR-

u Re Pr v
U = —, V = --------- -

r 2x/D
r _____ X =

D/2’ Re Pr

Prpu2m Tw-Ti

(15.11)

(15.11a)

(15.11b)

(15.11c)

In the above, Re = pu,„D/p. The plus and minus signs in Eqs. (15.8) and (15.10) apply 
respectively to upward and downward flows, when x is oriented vertically up.
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Tn Eqs. (15.9)—(15.11), the dependent variables are G, E. P, and 0. Since there are 
only three equations for determining these variables, an additional relation must be 
obtained to complete the problem definition. This is furnished by the constraint 
relation, which requires that the mass flow at any axial location must remain constant. 
Thus,

fD/2 j w n iI lirurdr = —D u
A) 4

(15.12a)

or

/•i 1
URdR = -

J® 2
(15.12b)

While this is simply an alternative statement of Eq. (15.9), it is adequate, since one of 
the variables, P*,  is not a complete field variable as are U, V, and 0 (i.e., P*  is a 
function only of X).

Solution of Eqs. (15.9)—(15.12) yields U, V, and 0 as functions of R, X, Pr, and 
G^/Re, and P as a function of X, Pr, and Grj/Re. In addition, results for the heat 
transfer parameters may be derived. At the tube wall, an energy balance gives

/ dT\
=hx(K~Th) 

\ dr ) w

where the bulk mean temperature is given by

fP/2puTrdr
Th= tf^purdr

The local heat transfer coefficient at any cross section x is

k / dT\
h =------------- 1 —

Tw~ Th \ dr ) w

(15.13)

(15.14)

For horizontal ducts, the heat transfer coefficient around the duct circumference varies 
in mixed convection. In that case, hx represents the circumferential average value, with 
(dT/dr)u and Tw replaced by the respective circumferential average values at the 
location x. The Nusselt number defined using Eq. (15.14) and the tube hydraulic 
diameter as the characteristic length is

hxDh 2 / 00 \
k Th \ ~dRj »■ k(Tw ~ ?b)

Gfi
Nu X, Pr, —1 

\ Re (15.15)

The heat transfer coefficient can also be defied through the use of the arithmetic-mean 
temperature difference or the log-mean temperature difference,

(X - r,) + (K - rp _ 1 + 0L
= (15.16a)
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where Th = (Tx + Th)/2. In dimensionless form, A7?m can be represented as

._ (T-.-TJ-tr.-T,) _0„-l
, T r. - ln# <15'16b)
In----------

Tw ~ T\

where Th and T{ are the bulk mean temperatures at section x and inlet, respectively. 
Thus,

k / dT\

k A0am \ 37? L

Similar relations may be derived for Nulm. Note that

XT 2(^-1)
Nu = -------------------

am (l+flftM

Finally, an axial-mean Nusselt number may be defined as 

where
_ If*
h = — / hdx 

x A)

(15.17)

(15.18)

(15.19)

(15.20)

(15.20a)

The parameter G^/Re appearing in Eq. (15.10) expresses the importance of 
buoyancy-induced flow relative to forced flow in internal mixed convection. This 
parameter is related to the Graetz number by

Gr
Re ‘

GrPrZVZ GrPr Dh
- = x*  (15.21a)

Gz L

Ra Dh/L Ra Dh
= (15.21b)

There are a number of different definitions used for Gr and hence Ra as follows; as a 
result, a distinction is made with different subscripts throughout this chapter. The 
Grashof numbers based on the temperature difference are defined as

Gr>------ ~

Gr>------------?----------

Gr, -

Or2- -------- -2----------

Gr,------------?----------

Gr‘‘------7------

(15.22a)
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The Grashof numbers based on the heat flux are defined as

Gr*  =
v2k

g^um(dTw/dx)L5
Gr*  = ------------- -----------

CLV
(15.22b)

The Rayleigh numbers based on the temperature difference are defined as

D D S^Tn - T\)D2 gf^-T^D2
Ra, = Gr,Pr = —----------------- , Ra2 = Gr2Pr = ----------------------

av av
(15.23a)

„ r. „ sKK-T„)D’h
Ra, = Gr,Pr = ---------------------

av

The Rayleigh numbers based on the heat flux are defined as

g/3(dTw/dxYD< g^dTw/dx)D4hp\Pr
Ra*  =--------------------- , Raj = -------------- y--------------

av p
(15.23b)

g/iq^Pr gPq'^Pr
Ra? = ------ 5-------- , Ra? = ------- y-------2 v2k 3 v2k

Here

TM, = circumferential average wall temperature
T, = fluid inlet temperature
7) = fluid bulk mean temperature at x
Th = fluid bulk mean temperature from x = 0 to x
T_} = fluid temperature at tube centerline

See the Nomenclature section for the other symbols. If the subscript b or w is used 
with any Gr or Ra, it means all fluid properties in that dimensionless group are 
evaluated at the fluid bulk mean temperature or the wall temperature respectively.

Equations (15.9)—(15.12) constitute a set of differential equations of the parabolic 
type. Since the equations are nonlinear, solutions of the full system are obtainable only 
by numerical analysis; see for example, the book by Hornbeck [13]. These equations or 
similar versions thereof have been most frequently used for mixed convection problems 
in internal flow. The system of governing equations for mass, momentum, and energy 
becomes of the elliptic type when the axial diffusion of heat and momentum is 
included. For this type of problem, a proper formulation requires that boundary 
conditions be specified outside the tube exit and entrance. In principle this creates no 
difficulty, but in implementation it becomes quite cumbersome. For this reason, 
theoretical results that are based on the full Navier-Stokes and energy equations are 
very scarce. For most practical situations, information is derived from either equations 
of the parabolic type or experimental measurements.

15.3 LAMINAR MIXED CONVECTION IN VERTICAL DUCTS

The available information for combined free and forced laminar convection in verti
cally oriented channels is presented in this section. The material is organized according 
to the duct geometry, and to whether the flow is fully developed or developing.
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Figure 15.4. Effect of buoyancy on the fully developed Nusselt number for laminar assisted flow 
in uniformly heated (UHF) vertical circular tubes.

15.3.1 Hydrodynamically and Thermally Fully Developed Flow in 
Vertical Circular Tubes

For vertical circular tubes, solutions of simplified forms of Eqs. (15.2) and (15.3), under 
conditions of thermally and hydrodynamically fully developed flow and constant fluid 
properties [except for the density in Eq. (15.2)], may be obtained by analytical means 
[12, 14]. The results are applicable for uniformly heated (UHF) tubes with buoyancy- 
aided flow and buoyancy-opposed flow. The predicted variations of Nusselt number 
with Rayleigh number for both aided and opposed flows are indicated in Fig. 15.4. The 
Nusselt number is defined using h from Eq. (15.14) for fully developed flow. As the 
Rayleigh number increases, the Nusselt number increases above the pure forced-con
vection value of 4.36 when buoyancy force is oriented in the direction of forced flow; 
however, in buoyancy-opposed flow the heat transfer decreases with an increase in 
buoyancy. The quantitative predictions shown in Fig. 15.4 are in close agreement with 
the experimental measurements as shown in the figure. To use this figure, fluid 
properties should be evaluated at the film temperature. Note that in opposed flow, the 
absolute value of the Rayleigh number is to be used in Fig. 15.4.

15.3.2 Thermally Developing Flow in Vertical Circular Tubes
The heat transfer in the thermal entrance regions of vertical tubes is described by the 
coupled system of Eqs. (15.9) to (15.12). Assuming that the velocity profile is fully 
developed upstream of the heat transfer section, a numerical integration technique may 
be employed with the appropriate thermal boundary condition. As described previ
ously, a marching scheme may be used for either the UWT or the UHF case. At the 
entrance to the heat transfer section, the axial velocity distribution is given by

U = 2(1 - 7?2) (15.24)
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TABLE 15.1. Thermal Entrance Length for Vertical Circular Tube 
with Buoyancy-Assisted Laminar Flow at UHF and 
Fully Developed Velocity Profile at Entrance

Ra* T * 
^th

0 0.043
800 0.040

1600 0.034
3200 0.025
4800 0.022
6400 0.023
9600 0.032

12800 0.040
16000 0.048

The effects of buoyancy cause this profile to suffer a dramatic distortion as the fluid 
moves through the tube. Specifically, in buoyancy-assisted flow, the centerline velocity 
decreases, while the velocity near the wall, where the buoyancy force is dominant, 
increases [15], After a minimum is reached, the centerline velocity starts increasing 
until, for constant fluid properties, at a large distance from the tube entrance, the 
profile resumes the fully developed shape given by Eq. (15.24). Experiments have 
shown that the thermal entrance length first decreases as the Rayleigh number 
increases, then increases at large Rayleigh numbers. Table 15.1 indicates the dimension
less thermal entrance length as a function of Rayleigh number for a buoyancy-assisted 
laminar flow in a UHF vertical tube where the flow is hydrodynamically fully 
developed at the entrance. The data are based on measurements taken by Hallman [12], 
and thermally fully developed flow is defined as the condition in which the Nusselt 
number reaches within 5% of the fully developed flow value. To use the table, physical 
properties should be evaluated at the film temperature. For buoyancy-opposed flow, 
the limited data obtained by Hallman indicate that the thermal entrance length may be 
estimated roughly by the equation

Dh Re Pr fd
= 0.05. (15.25)

provided that |Ra*|  < 1920.
At high heating rates, property variations are significant, and one must add terms 

dealing with viscous dissipation and pressure work to the energy equation (15.11). A 
number of approaches may be used to represent the property variations with tempera
ture; for further details, see Chap. 18. For density changes, the relations used include, 
in addition to Eq. (15.6),

P = Po(ci + c2T- c3T2) (15.26)

P
(15.27)
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Correspondingly, variations of the dynamic viscosity may be expressed by

‘ -yll + HT-T,)] 
M Mi

(15.28)

M = Mi + (Mb “ Mi)exp[ -c(T - Tj] (15.29)

M
Mi

(15.30)

Equations (15.6) and (15.28) were used by Pigford [16] in an approximate solution 
in which the inertia terms were neglected in the momentum equation. The problem 
considered was the vertical tube at UHF. In Eq. (15.28), b is positive for liquids and 
negative for gases. Graphical values of 1/ju. at different temperatures for water and 
machine oil are given by Pigford [16], Worsoe-Schmidt and Leppert [17] applied an 
implicit finite difference scheme for the case of hydrodynamic fully developed flow, and 
employed Eqs. (15.27) and (15.30). The variations of the specific heat and thermal 
conductivity were represented by

(15.31)

(15.32)

The exponents in Eqs. (15.30) to (15.32) were taken to be a = 0.67, c' = 0.12, and 
d = 0.71. The arithmetic-mean Nusselt number Nuam [see Eq. (15.19)] obtained by 
Worsoe-Schmidt and Leppert for UHF and by Marner and McMillan [15] for UWT, 
and the axial-mean Nusselt number [see Eq. (15.20)] obtained by Martinelli and Boelter 
[2], are compared in [15], The results of [2] are in close agreement with those of [15] at 
high Prandtl numbers; but at low values of Pr, the approximate theory of [2] predicts 
higher values of the heat transfer than the more complete theory of [15],

15.3.3 Hydrodynamically and Thermally Developing Flow in Vertical 
Circular Tubes

Temperature-dependent property variations of the forms indicated by Eqs. (15.26) and 
(15.29) may be utilized in a numerical solution for simultaneously developing velocity 
(i e. the velocity profile is assumed to be flat at the entrance to the heat transfer 
section) and temperature profiles, for laminar upflow at UWT or UHF. For this type of 
problem, the pressure drop parameter may be defined as the difference between the 
buoyancy pressure and friction terms; the former is the difference between the static 
pressure prevailing with the fluid heated and the static pressure that would exist if the 
fluid in the tube remains at the temperature at the tube entrance. In dimensionless 
notation, the pressure drop parameter becomes

AP =
fog(pm - Pj) dx- ^Pf 

P"i
(15.33)
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Figure 15.5. Axial distribution of the pressure gradient in the hydrodynamic and thermal
development region of a vertical tube at UHF [18].

where AT, is the pressure drop caused by friction, pm is the cross-section-averaged 
fluid density at any given axial location, and x is the distance from the entrance. 
Defined in this fashion, AP becomes negative when x is sufficiently large in UHF [18], 
as shown in Fig. 15.5.

The influence of a variable viscosity on the axial distribution of the local Nusselt 
nuber Nuv [see. Eq. (15.15)] for UWT is given in [18] and shows that a larger 
temperature difference, and hence, a greater fluid viscosity variation leads to a higher 
local Nusselt nuber in the entrance region of the tube.

As discussed in Sec. 15.2, the inclusion of axial-diffusion effects changes the system 
of governing equations to an elliptic type. One of the resultant difficulties then is how 
to handle the entrance and exit conditions properly. The difficulty at the inlet stems 
from the migration of the thermal effects upstream of x = 0 at low Peclet numbers, 
which alters the inlet velocity and temperature profiles at x = 0, while at the outlet the 
conditions are dependent on the solutions inside the tube that are being sought. In the 
case of a constant-fluid-property flow in an infinitely long tube at UWT, the exit 
velocity and temperature profiles may be assumed to be those for fully developed flow. 
This problem may then be attacked using parabolic equations by first employing an 
axial coordinate transformation from the semi-infinite domain 0<Az<oo,0</?<1 
to the finite domain 0<£<l,0<.R<lby using the parameter

i =1 - rvA (1534>
where c is a transformation parameter. This approach was used by Zeldin and Schmidt 
[19] in a study of laminar upflow in a vertical UWT tube. The fluid properties are 
considered constant, except for the density in the buoyancy force term. The results
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Figure 15.6. Average heat transfer for hydrodynamically and thermally developing assisted flow 
in vertical tubes at UWT [20].

show that flow reversal occurs for Gr,/Re > 89 for a uniform entrance velocity profile, 
and for Gr,/Re > 97 when the profile is fully developed at the entrance. When 
Gr,/Re is larger than these critical values, no convergent solutions could be obtained.

For a vertical tube with uniform wall temperature and forced upflow having a flat 
velocity profile at the entrance to the heated section, Jackson et al., [20] proposed the 
following more general correlation for the average Nusselt number for the heated 
section considered, which is of length LX'J

Nulm
f Dh 

= 1.128 RefrPr„ — +
/ Dh3.02 GqPr,^ (15.35)

The above correlation is valid in the following range:

40.2 < Gzh =
Re6 PrA Dh

1.05 X 105 <

< 1710

where GzA is based on properties evaluated at the bulk mean temperature of the fluid 
and (Gr] Pr)„ is based on properties evaluated at the wall temperature. Equation 
(15.35) is compared with experimental data for air in Fig. 15.6. Also shown is the 
equation that applies when a uniform velocity profile exists throughout the test section 
[20]; that is,

Nulm = 1.126(Gzfi)1/2 (15.36)

The experimental data in Fig. 15.6 are for L = 1.52 m, and (Gr, Pr Dh/L)w varies from 
1.05 X 105 to 1.30 X 105. The buoyancy parameter Gr, ,,/Re,, can be evaluated by 
employing Eq. (15.22a). This parameter ranges from approximately 580 to 2220. In 
deriving this parameter, it has been assumed that, approximately, gH. = fih, cp „ = cp h, 
and kw = kh.

t The length of the entire heated section was L, and it was divided into three sections.
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15.3.4 Hydrodynamically and Thermally Fully Developed Flow in 
Vertical Annuli

Mixed convection in vertical annuli is important in the design of coolant channels for 
power transformers, nuclear reactors, components for turbomachinery, double-pipe 
heat exchangers, and certain types of catalytic devices. While most equipment is 
designed for operation in the turbulent flow regime, laminar flow has to be considered 
for reduced power operation or during natural-circulation cooling following pump 
failure in a nuclear reactor.

Consider laminar convection in a circular, concentric vertical annulus. Under the 
conditions listed at the beginning of Sec. 15.2, the governing equations for mass, 
momentum, and energy, respectively, are given by Eqs. (15.1), (15.8) and (15.3). For 
fully developed flow, v = 0 and u = u(r); hence, for constant-property flow and heat 
transfer, the terms in Eq. (15.1) are identically zero, and the convective terms on the 
left side of Eq. (15.8) are also zero. In addition, the first term on the left side of Eq. 
(15.3), the radial convection term, is zero. Consequently, the governing equations are 
the following, with the application of Eq. (15.4):

/ 1 du d2u\ I dP \ x
P “V + TT - V ± PiS + (J- T^gP = 0 

\ r dr dr ] \dx )

dT k 11 dT d2T\
« n I "I" 2~ Idx pcp \ r dr dr )

The global constraint condition expressed by Eq. (15.12a) now becomes

f°2‘!rurdr= -Ad2 - D2)um 
J r; 4

Again, as in circular tube flow, the plus sign in Eq. (15.37) applies 
(buoyancy-aided flow) and the minus sign for downflow (buoyancy-opposed flow).

Sherwin [21] solved Eqs. (15.37)—(15.39) by first casting them in nondimensional 
forms. A fourth-order ordinary differential equation for the axial velocity then results, 
which he solved, obtaining a closed-form expression for the nondimensional velocity in 
terms of Bessel functions and modified Bessel functions of zero order. The solution to 
Eqs. (15.37) and (15.38) can be formulated also in terms of Kelvin functions for 
buoyancy-assisted (upward) flow in vertical annuli [22] with the boundary conditions

(15.37)

(15.38)

(15.39)

for upflow

at r = rt\ U = 0, 0 = 1

d0
at r = r : U = 0, -----  = 0

0 dR*

which correspond to uniform inner wall temperature and insulated outer wall. Here

r r
R* = ----------  = —,

Do - Dt Dh
~ K - T

0 = ----
Pt

av
n dT"

T = Dl^
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Figure 15.7. Nusselt number for fully developed, assisted flow in a vertical annulus with the 
inner wall maintained at UWT and the outer wall insulated [22]. [Nu,- and Ra* are defined in 
Fq. (15.40).]

The fully developed Nusselt number and Rayleigh number are defined as

f*fR*UdR*  / \ htDh
f*°R*U0dR*  ' ~dR*  ) ri ~ k

g(j(dTK,/dx) D*
av

(15.40)

Experimental measurements for rll/rl = 2.5 reported in [22] are on the average 45% 
higher than the predictions. Recent experimental data for r„/r, = 1.17 reported by Zaki 
et al. [23] indicate somewhat closer agreement with the theory of [22], In general, the 
latter shows that in assisted, hydrodynamically and thermally fully developed flow, 
buoyancy effects are negligible for Ra*  < 103. A step increase in Nu, is evident 
beyond this value for all radius ratios, and the variation may be represented approxi
mately as Nu, a Ra* 1/4. The trends are indicated in Fig. 15.7. The validity of the 
theoretical predictions is subject to further verification; hence this figure should be used 
only as a guide.

For hydrodynamically and thermally fully developed buoyancy-assisted flow, the 
effects of viscous dissipation have been investigated by Rokerya and Iqbal [24], Their 
theoretical calculations, employing Kelvin functions, show that the effect of viscous 
dissipation on the velocity and temperature field is very small. The Nusselt number, 
however, decreases as viscous dissipation increases.
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15.3.5 Thermally Developing Flow in Vertical Annuli
The equations that describe mixed convection in the developing flow in a vertical, 
concentric annuli are given in Eqs. (15.1), (15.8), and (15.3), subject to the conditions 
stipulated immediately above these equations. For buoyancy-opposed (downward) flow 
with UHF where the velocity profile is assumed to be fully developed and fluid 
properties are constant, bouyancy effects are shown to introduce substantial radial 
velocities in the redeveloping momentum field [25]. We define the Grashof and 
Reynolds numbers as

= /3gp2r^q"rl = r, Gr*  
jTq kp.2(r0 + r,) r0 + r, 16

n P»mDh
Re = ---------

(15.41)

(15.42)

where

Dh = D, - D, (15.43)

Criteria for the onset of flow reversal at fixed values of the nondimensional distance x + 
have been obtained in [26], Results for ro/r, = 3 are shown in Fig. 15.8, indicating

Figure 15.8. Criteria for onset of flow reversal in thermally developing, buoyancy-opposed flow 
in vertical annuli of r„/r, = 3 [26],
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Experiments [27]

Developing flow 
theory [27]

— Fully developed flow 
theory [21]

Re

Figure 15.9. Criteria for onset of flow reversal in thermally developing, buoyancy-assisted flow in 
vertical annuli of ro/r, = 3 [27].

[GrQ and Re defined in 
Eqs. (15.41) and (15.42)1

good agreement with the experimental data. In addition, at large values of the 
numerical results tend towards the value 31.8 which is predicted by the theory for 
thermally and hydrodynamically fully developed flow [21],

The numerical solution for the corresponding problem of upflow in a vertical 
concentric annulus has been obtained by Sherwin and Wallis [27], The predicted values 
of Gr(//Re for the onset of flow reversal is plotted against the dimensionless axial 
distance in Fig. 15.9. In this case, the experimental measurements are underpredicted. 
The trends in both upflow and downflow are similar to that obtained by Lawrence and 
Chato [18] for developing, upflow mixed convection in a heated vertical circular tube.

The effects of temperature-dependent properties (including density) for laminar gas 
flows in vertical annuli have been considered [28] for upflow in an annulus with

= 4; however, the results do not include buoyancy effects. Property variations are 
represented by Eqs. (15.30)-(15.32), with a = 0.67, c’ = 0.095, and d = 0.805. The 
axial velocity profile at the entrance of the annuli is assumed to be either fully 
developed or a flat profile. In either case, the effects of temperature-dependent 
properties on the Nusselt number are found to be slight. The dominant factors affecting 
the heat transfer are the variations of density and thermal conductivity, but these 
effects act in opposite directions, leading to little overall impact on the Nusselt number.

Only limited information is available on the distribution of the local Nusselt 
number for mixed convection in vertical annuli. Malik and Pletcher [29] reported their 
predicted Nusselt number for an annular duct with r,/r, = 2.63 for assisted flow of 
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water. The inner wall was uniformly heated (UHF) and the outer wall insulated. The 
case considered is hydrodynamically fully developed but thermally developing flow, 
with variable fluid properties. By and large, however, no systematic study of this 
problem is available.

Developing mixed convection for laminar boundary-layer flow in a vertical annulus 
with a rotating inner cylinder has been investigated by El-Shaarawi and Sarhan [30]. 
Both aiding and opposed flows are investigated for a fluid with Pr = 0.7. The radius 
ratio considered is 1.11. The possibility of the nonexistence of a laminar solution is 
considered by the authors, and this condition is related to the vanishing of the velocity 
gradient normal to the wall—preceding, presumably, the onset of reversed flow. The 
hydrodynamic development length and the distance from the entrance of the annulus 
to the place where the axial velocity gradient at the wall becomes zero are both 
dependent on the heating condition and whether buoyancy is aiding or opposing the 
forced flow, in addition to the rotational speed of the inner cylinder. Thus, when 
buoyancy forces aid the forced flow, and the inner cylinder wall is isothermal while the 
outer stationary wall is adiabatic, an increase in the inner-cylinder rotational speed 
would move the location of zero wall gradient in the direction to decrease the 
hydrodynamic development length. At a fixed G^/Re, the inner-cylinder rotation 
causes an increase in the local heat transfer coefficient and the bulk temperature if the 
inner-cylinder wall is heated, and vice versa if the outer-cylinder wall is heated.

15.3.6 Hydrodynamically and Thermally Fully Developed Flow between 
Vertical Parallel Plates

Constant-property fully developed mixed convection between vertical parallel plates 
has been of interest in research for many years. Early work includes studies by Ostrach 
[31] and Lietzke [32], Studies have also been conducted by Cebeci et al. [33] and by 
Aung and Worku [6]. The work by these investigators has shown that mixed convection 
between parallel plates exhibits both similarities and contrasts with the flow in a 
vertical tube.

The vertical parallel-plate configuration is applicable in the design of cooling 
systems for electronic equipment and of finned cold plates in general. When the 
spacing between the plates is small relative to the height of the channel, the fully- 
developed-flow approximation can be invoked. In a constant-property, two-dimen
sional hydrodynamically fully developed flow, v = 0 and du/dx = 0. It may be shown 
that the momentum and energy equations reduce, with the aid of Eq. (15.6), to

d d2 u
° = ~~dx^F ~ PlgV(T~ + (15.44)

dr d2r
PC II— = k—-y (15.45)

‘ ax dy 7

where, with the direction of x pointing vertically upward, the plus sign in Eq. (15.44) 
corresponds to buoyancy-assisted flow and the minus sign to opposed flow. For plate 
walls heated to constant but not necessarily equal temperatures, the fluid temperature 
in thermally fully developed flow with constant properties is at most a function of the 
transverse coordinate. Hence, dT/dx = 0, and Eq. (15.45) reduces to

d2T
(15.46)
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Figure 15.10. Velocity distributions at various rT and Gr2/Re for fully developed, buoyancv- 
assisted flow in a parallel-plate vertical channel at UWT [6],

Assuming that the axial pressure gradient is constant in fully developed flow. Eq. 
(15.44) becomes

d~ u
MVT ± Ti) + «' = 0

dy
(15.47)

where a' is a constant to be found. The boundary conditions are

at y = 0: u = 0, T = Tc 

at y = a: m = 0, T = Th

The above problem has been solved [6] using dimensionless parameters. For 
buoyancy-assisted flow, Fig. 15.10 displays the velocity distribution across the duct at 
various wall temperature difference ratios rT = (T - Tx}/(Th - 7j) with Gr2/Re as a 
parameter. Here Gr2 is defined by Eq. (15.22a). The hydraulic diameter for parallel
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plates is
Z)A = 25 (15 48)

From the closed-form solution for U, the criterion for the existence of reversed flow 
may be deduced. The result is

Gr2
(l-'r)v2 >288, rr<l

Ke
(15.49)

Note that there is no reversed flow when the two walls are heated to the same 
temperature, i.e., rT = 1.

The above discussion is based on no axial conduction within the fluid. The inclusion 
of the latter effect adds another term, k d2T/dx\ to the right side of Eq. (15.45). For 
thermally fully developed flow in a channel with specified wall heat fluxes, the 
temperature must have the following general form (fa constant, T a temperature 
function of y):

T = fx + f(y)

which may be substituted into Eq. (15.45). The elimination of the velocity between Eqs. 
(15.44) and (15.45) then leads to a fourth-order ordinary differential equation which 
can be solved in a straightforward manner. Having obtained the temperature field, the 
velocity may be determined. This approach, which is also applied in [6], has been used 
by Rao and Morris [34] for both buoyancy-assisted and -opposed flows. These authors 
considered uniform heating on one wall while the other wall was thermally insulated. 
The relations between the Nusselt number and the Rayleigh number, and between the 
friction factor times the Reynolds number and the Rayleigh number, are shown in Fig. 
15.11. Here the Nusselt number is as defined in Eq. (15.15) with the wall temperature 
gradient evaluated only at the heated wall. The Rayleigh number Ra*  is defined by Eq. 
(15.23b). For assisted flow, the Nusselt number increases with the Rayleigh number, 
while the opposite is true for opposed flow. The behavior of the product of friction

Figure 15.11. Theoretical heat transfer and friction results for fully developed, buoyancy-assisted 
and -opposed flows in a parallel-plate vertical channel with one wall at UHF and the other - 
insulated [34],
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factor and Reynolds number is similar to that of the Nusselt number. In general, these 
behaviors are similar to those for laminar How in a uniformly heated vertical tube.

15.3.7 Hydrodynamically and Thermally Developing Flow between 
Vertical Parallel Plates

There is only meager information available concerning developing mixed convection 
between vertical parallel plates. The quantitative effects of buoyancy in this problem 
cannot be extrapolated from results available for circular tube flow.

One of the features that distinguishes the flow between parallel plates from tube 
flow is the possibility of asymmetric heating on the two walls in the former case. Under 
certain conditions, this gives rise to flow reversal, even in buoyancy-assisted flows. 
Sparrow et al. [35] provided insight into the phenomenon of reversed flow in a parallel 
plate channel for the limiting case of free convection. An analysis of the mixed 
convection in a channel with symmetric uniform temperature and symmetric uniform
flux heating has been presented by Yao [36]. His study provides information on the 
flow structure in the developing region and reveals the different length scales accompa
nying the different convective mechanisms operative in the developing flow region. 
While no quantitative information was presented by Yao, he conjectured that fully 
developed flow might consist of periodic reversed flow.

Quantitative information on the temperature and velocity fields has been provided 
in a numerical study reported by Aung and Worku [7]. These authors note that the 
hydrodynamic development distance is dramatically increased by buoyancy effects. 
With asymmetric heating, the bulk temperature is a function of Gr./Re and rT, and 
decreases as rT is reduced. The axial variation of the bulk mean temperature for rT = 1 
(two walls at the same temperature) is plotted in Fig. 15.12. Buoyancy effects are 
noticeable through a large segment of the channel, but not near the channel entrance or 
far downstream from it. At large values of the dimensionless distance, all curves 
converge to the value of 1.

0 0.1 0.2 0.3 0.4
x/(a Re)

Figure 15.12. Effect of buoyancy on the bulk temperature of air in a parallel plate vertical 
channel with UWT and rT = 1 [7].
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Figure 15.13. Local Nusselt numbers for upflow of ethylene glycol in a parallel plate vertical 
channel with one wall heated at UHF and the other wall insulated [29].

Figure 15.13 shows the distributions of the local Nusselt number along a channel 
with a fully developed flow velocity profile at the entrance, and with one plate heated at 
UHF while the other is insulated. The theoretical results, obtained by Malik and 
Pletcher [29], are for buoyancy-assisted laminar flow of ethylene glycol in a vertical 
concentric annulus having z;,/r, = 1, including variable-fluid-property effects; thus the 
results are applicable for a parallel plate vertical duct, as is verified by the data of Joshi 
and Bergles [37] for a parallel plate duct. In Fig. 15.13, buoyancy effects are expressed 
in term of the parameter Gr*/Re 2 where, Gr*  = gflq{'D*/(v~kY  Here, the subscript 
w refers to the heated wall. It may be noted that with a nearly 400% increase in 
Gr*/Re 2, Nux is increased by approximately 25%. The tail-up behavior of Nux for 
Gr*/Re 2 = 440 corresponds to the onset of flow reversal adjacent to the cool wall, as 
discussed in Sec. 15.3.6.

In summary, it may be noted that there is little quantitative information available 
on mixed convection in parallel plate vertical channels, even for laminar flow. This is 
perhaps one of those areas in heat transfer which would benefit from more research, 
especially experimental studies.

15.4 LAMINAR MIXED CONVECTION IN HORIZONTAL DUCTS

Mixed convection in horizontal ducts gives rise to secondary flows, which can cause 
increases in the friction factor and heat transfer and a decrease in the thermal entrance 
length, and so induce an early transition to turbulence. The flow and heat transfer 
become rotationally asymmetric, and are three-dimensional under conditions of devel
oping flow. For steady flow with constant fluid properties with the conventional
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Boussinesq approximation, the governing equations for flow in a horizontal tube are:

CONTINUITY EQUATION

d dw d(ru)
— (rr) + — + --------
dr d<p dx

(15.50)

r-MOMENTUM EQUATION

3 v vv dv dv w2
---- "b Z— "b ~ dr----r dtp dx r

1 dP
p dr

d / 1 d(rv) \ 1 d2v
+ V dr \ r dr / r2 <9<f>2

~gP(Tw - T)cos<J>

2 dw d2v
r2 dtp dx2

(15.51)

<j>-MOMENTUM EQUATION

dw w dw dw vw
----- b----- Z— b W~Z— "b dr---- r dtp dx r

1 dP 
pr d<f>

d / I d(rw)\ 1 d2w 2 dv d"w 
3r\ r dr / r2 d<l>2 r2 d(j> dx2

+ gP(Tw - T)sin</> (15.52)

X-MOMENTUM EQUATION

du h dll du
V----------- 1-— + U—~

dr r d<p dx

1 dP 
p dx

1 d2u d2u
r2 dtp2 dx2

(15.53)



TABLE 15.2. Correlations for Mixed Convection in Horizontal Ducts

fully developed 
(at entrance)

Geometry Flow Conditions Authors
Boundary

Conditions
Properties

Evaluated at

C ircular Thermally and Mori and UHF Film
tubes hydrodynamically Futagami [41] temperature

fully 
developed

Mori and UHF Film
Futagami [41] temperature

Morcos and UHF Film
Bergles [51] temperature

Thermally Depew and UWT Bulk
developing, but 
hydrodynamically

August [58] mean
temperature

Simultaneously 
developing 
velocity and 
temperature 
profiles

Jackson, 
Spurlock, and 
Purdy [53]

Yousef and 
Tarasuk [54]

UWT

UWT

Wall 
temperature

Bulk mean 
temperature

Yousef and
Tarasuk [54]

UWT Bulk mean 
temperature

Circular 
concentric 
annuli

Hydrodynamically 
fully developed 
(at entrance)

Hattori [63]

Hattori [63]

Outer wall UWT, 
inner wall insulated

Outer wall insulated, 
inner wall UWT

Bulk mean 
temperature

Bulk mean 
temperature

Parallel 
plates

Thermally 
developing

Osborne and 
Incropera 
[74] UHF

Local 
bulk 
temperature

Osborne and 
Incropera 
[74]

UHF

Local 
bulk 
temperature
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Correlations Eq. Range of Applicability

Nu
----- = 0.04085(Re Ra*) 1/2, Pr = 0
NuF (15.55) 1.3 X 106 < ReRa*  < 5.6 X 106

Nu
------ = 0.04823(Re Ra*) 1/2, Pr = 1.0
Nuf

(15.56)

Nuf = (4.36)2 + 0.145
Pw7

3 X 104 < Ra3>/< 106
4 < Pr < 175
2 < Pw < 66

= 1.75[Gz? + 0.12(Gz?Gr‘/i3Pr°-36)°-88]1/3

L/D = 28.4
Fluid Gr4. b

Water 25-338 0.702 X 105-5.82 X 105

(15.61) Ethyl 36-712 2.68 X 105-9.91 X 105
alcohol

Glycerol 53.1-188.3 5.10 X 102-8.99 X 102
water

Nulm = 2.67[(Gz* w)2 + (0.0087)2 Raj'5M.]1/6

= 1.75[Gz£ + 0.245(Gz^-5 Gr3/3)°'882]1/3

N^nJ — j = 0.969(Gz* b)082
\ Ma )

(15.62) 60 < Gz*  < 1300

(15.63)

(15.64)

Nuo = 0.38 Gr° 20 Pr028

Nuv , = 1.490 Gz1/3

NUy./V 
Nux F

1 + 0.00365
Ra*3/4\  i/3 

Gz /

0.0073 < x*  < 0.040
20 < Gz*  < 110

1 X 104 < Gr6 < 8.7 X 104

0.040 < x*  < 0.25
3.2 < Gz£ < 20

0.8 X 104 < Gr6 A < 4 X 104

(15.65) See Fig. 15.17

(15.66) See Fig. 15.17

(15.67) 0 < q" < 6000 W/m2 
0 < < 2

Re < 2800
q"/qbl Re, Ra*  ranges

0 400 < Re < 2600
(15 69) 8.32 X 107 < Ra*  < 4.16 X IO10

1 400 < Re < 2600
4.16 X 107 < Ra*  < 4.16 X IO10

2 1300 < Re < 2600
8.32 X 107 < Ra*  < 6.8 X 109
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ENERGY EQUATION

dT w dT dT k 1 d / dT
“a---- 1--------TT + UTT =   ~ IF rV”dr r d<p dx Pcp\_r °r\ °r

1 d2T d2T 
r2 3</>2 dx2

(15 54)

In the following, the available information for mixed convection in horizontal ducts 
is presented in accordance with duct geometry and whether the flow is fully developed 
or developing. A summary of the important correlations is presented in Table 15.2.

15.4.1 Thermally and Hydrodynamically Fully Developed Flow in 
Horizontal Circular Tubes

A significant amount of information exists for mixed convection in horizontal circular 
tubes. Much of the quantitative understanding today is based on empirical informa
tion. Theoretical studies are limited to small ranges of Rayleigh number; numerical 
solutions are available, but only for large Prandtl number fluids.

When the flow is fully developed thermally and hydrodynamically, the problem 
represented in Eqs. (15.50) to (15.54) may be reduced to a two-dimensional one. 
Solutions can be obtained by perturbation techniques; the results apply only for 
extremely long tubes [38-40]. The velocity and temperature distributions may be 
subdivided into a core region and a boundary-layer region, and theoretical results may 
then be obtained by using an integral approach. For Pr ~ 1 with UHF, the following 
correlations have been derived [41]:

1N U i /7
- = 0.04085(ReRa*)  for Pr = 0.72 (15.55)

Nuf

1N U i /n
= 0.04823 ( Re Ra*)  7 for Pr = 1.0 (15.56)

In the above, Nu and NuF are defined as in Eq. (15.15) except that h is the 
circumferential average value; Nuf = 4.364 is the pure forced-convection result. As a 
result of fully developed flow, both Nu and Nuf are independent of the axial distance. 
Equation (15.55) has been verified against experimental measurements in the range 
1.3 X 106 < ReRa*  < 5.6 X 106 [41], The thermophysical properties should be 
evaluated at the film temperature Tf = (Tw + Tfc)/2.

To obtain results that are valid over a wider range of the operating parameters, 
numerical methods must be used. In fully developed flow, the axial component of 
velocity is independent of axial distance. The pressure terms in the resulting simplified 
momentum equations in the r and <f> directions may be eliminated by cross differentia
tion. A stream function can be defined such that

(15.57)
dip dip

rv = —— , w =-------
d<p dr

thereby satisfying the continuity equation. This reduces the number of equations to be 
solved from five to three, and the dependent variables are u, ip, and T. Newell and 
Bergles [42] followed this method and extended the studies of [38-41] for UHF tubes 
with either infinite or very low tube thermal conductivity. An infinite-conductivity tube 
is shown to exhibit a much higher Nusselt number, and stems from a lesser degree of 
thermal stratification and therefore a larger driving force for secondary flow.

Experimental measurements dealing with hydrodynamically and thermally fully 
developed flow in horizontal tubes heated at UHF are rather abundant, and include the 
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early data for air [43, 44], water [11, 45-47], and ethylene glycol [48, 49]. For ethylene 
glycol, studies in the ranges Re = 6 to 300, Gr3 = 0 to 22400, Pr = 26 to 500, and 
Gz = 3 to 4800 show that the Nusselt number and the pressure gradient are functions 
only of the Graetz number and the wall-to-bulk viscosity ratio for both the hydrody
namically and thermally developing and fully developed flow regions [48], With water 
in fully developed flow, the heat transfer coefficients can be 3 to 4 times the pure 
forced-flow values [11]. Large variations in the peripheral temperatures are present with 
gas flows when the tubes are uniformly heated, and the heat transfer is lower than the 
pure forced-flow value when the Reynolds number is small, and is higher than the pure 
forced-flow value when the Reynolds number is large [50],

For uniform heat flux, Morcos and Bergles [51] obtained empirical correlations for 
the Nusselt number. The flow was hydrodynamically and thermally fully developed in a 
circular tube. Their experimental study was conducted using electrically heated glass 
and stainless-steel tubes, with distilled water and ethylene glycol as working fluids. The 
circumferentally averaged Nusselt number, which is independent of axial distance, 
depends on the thermal boundary condition imposed and hence on the type of tube 
employed. Using the correlation technique recommended by Churchill and Usagi [52], 
Morcos and Bergles [51] gave the following correlation for the circumferentially 
averaged Nusselt number, Nuz, which is axially constant and which incorporates 
variable-fluid-property and tube-wall effects:

Niy = (4.36)2 + 0.145
Gr* prl 35 10.265

In this equation, Nuy is given explicitly, except for the iteration necessary for 
calculating the film temperature. Properties should be evaluated at this temperature 
where noted; otherwise they should be evaluated at the bulk temperature. Here, 
Gr*  = gfiq’i'D4/(kv-Y ^u=hDh/k, and Pw*  = kDh/(knt). An alternate form of 
this correlation is indicated graphically and compared with experimental data in Fig.

50 I—
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G^Pt/35
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Figure 15.14. Nusselt numbers for hydrodynamically and thermally fully developed How in a 
horizontal UHF tube, including the effects of property variations [51].
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15.14. The equation represented by the curve in Fig. 15.14 is

Nuz = (4.36)2 + 0.055
Gr3.z Pr}35 

pw0.25 (15.58)

where Gr, f = g[d(T„ - Th)D},/v2 and Pw = hD[,/(kwt). These correlations are valid 
in the ranges 3 X 104 < Ra3 z < 106, 4 < Pr^ < 175, and 2 < Pw < 66.

15.4.2 Thermally Developing Flow in Horizontal Circular Tubes
Fundamental understanding of the heat transfer behavior of combined free and forced 
convection in the thermal entrance region of horizontal ducts is very limited. As may 
be expected, the early studies were based on experiments, but a number of theoretical 
investigations have been carried out using a variety of approximations. For large 
Prandtl number fluids, for example, the inertia terms in Eqs. (15.51) to (15.53), i.e., 
the left sides of these equations, may be neglected. The implication here is that the 
secondary flow is not significant in the momentum equations but is important in the 
energy equation.

Ou and Cheng [55] solved this problem by using the stream function defined as in 
Eq. (15.57); in addition, they also introduced the vorticity

/a2 i a i a2 \
I  1 "b--------- "b —7 7( ar2 r dr r2 d<f>2 /

(15.59)

The boundary condition used was axially uniform heat flux, but the wall temperature 
was assumed to be uniform circumferentially at any fixed axial location. Computed 
streamline patterns and isotherms from Ou and Cheng [55] for Raj = 8 X 105 indicate 
that, along the axial direction, the secondary flow first grows and then decays? Near 
the tube entrance, the isotherms are nearly concentric circles; but further downstream, 
the isotherms near the bottom of the tube become distorted as the local heat transfer 
deteriorates in the lower region. The variations in the distances between the isotherms 
around the tube indicate the variation of the heat transfer rates around the tube. A 
circumferentially averaged but axially local Nusselt number may be defined by extend
ing the definition of Eq. (15.15). Thus,

Nuj =
VI’

An axially averaged Nusselt number may then be defined as

NU1 =

/ M \
4/o7oAIr/ d<t>dx

*̂(1  + ob)

' This feature distinguishes a tube with uniform wall temperature from one with uniform heat 
flux In the latter, buoyancy effects persist throughout a tube even in thermally fully developed 
flow in which a fixed wall-minus-fluid temperature difference is established as both the wall and 
fluid temperatures increase linearly.
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A ual.A,

Figure 15.15. Effect of Rayleigh number on axial distribution of the local Nusselt number for a 
fluid of large Prandtl number in the thermal entrance region of a UWT horizontal tube [55].

The corresponding definitions using the axial temperature gradient are

1 r’r ri 99 r „ i

^RdRdtdX- 1
■'0 -0 -'o O TTAfi + uh )

The averages of the two definitions are then defined as

Nuavg = HNuj + Nu2) (local Nusselt numbers at x)

Nuavg = |(Nui + Nu2) (mean Nusselt numbers from x = 0 to x)

Note that, in defining Nu, the average of the bulk temperatures at x = 0 and x = x 
has been used; this temperature equals (1 + 9h)/2. Results for Nuavg and Nuavg from 
Ou and Cheng [55] under UWT boundary conditions are shown at various values of 
Ra1 in Fig. 15.15. Also shown for comparison are experimental data from Oliver [56], 
Depew and Zenter [57], and Depew and August [58], The complex behavior of the 
Nusselt number underscores the difficulty in obtaining a general correlation for the 
heat transfer.
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Figure 15.16. Variation of circumferential average local Nusselt number with nondimcnsional 
axial distance for laminar flow of a large Prandtl number fluid in the thermal entrance region of a 
UHF horizontal tube [60].

For uniformly heated tubes, numerical solutions based on the assumption of large 
Prandtl number show that the thermal entrance length is reduced to as low as 10% of 
the value for pure forced flow [59]. The circumferentially averaged local heat transfer 
coefficient is more than 300% the forced-flow prediction. The predicted results [60] are 
compared with available data in Fig. 15.16. For flows with temperature-dependent 
viscosity, the circumferentially averaged local Nusselt number may be correlated in 
terms of the viscosity parameter f [59]:

1 / dp \
(15.60)

where AT is the local average wall temperature minus the bulk mean temperature. The 
recommended correlations in [59] predict the existing experimental data well, but could 
lead to unrealistic results at very low Rayleigh numbers where both secondary flow and 
viscosity effects are negligible.

A number of empirical correlations exist for thermally developing mixed convection 
with hydrodynamically fully developed flow at entrance in horizontal heated tubes. For 
UWT and using water, ethyl alcohol, and a mixture of glycerol and water, Depew and 
August [58] generalized the earlier correlations of Oliver [56] and Brown and Thomas 
[61] to include short tubes. Their proposed correlation [58] for the average Nusselt
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number is

= 1.75[gz£ + O.12(Gz^Gr^Prfco-36)°-88]1/3 (15.61)

This equation generally correlates to within + 40% the experimental data obtained by 
the aforementioned investigators and by Kern and Othmer [62], In Eq. (15.64), all 
properties are evaluated at Th = (7] + 7), , )/2. The equation is based on data in the 
ranges Gz)] = 25 to 700, ReZ) < 1800, and Gr4 h = 500 to 1 X 107.

The influence of free convection on forced laminar flow for simultaneously develop
ing velocity and temperature profiles in UWT tubes has been investigated, and the 
correlations have been verified for air. For turbulent flow (Re > 7000), the effect of free 
convection is negligible and the Nusselt number is given by that for pure forced flow 
[53]. For Re < 3500, where the flow is laminar, mixed convection effects are important, 
and the recommended equation for the average Nusselt number for air is [53]

Nulm = 2 67[(Gz*,) 2 + (0.0087)2Ra115M,]1/6 for 60 < Gz*  < 1300 (15.62)

In the lower Graetz number regimes, Yousef and Tarasuk [10, 54] have examined the 
three-dimensional temperature distribution in the development region using an inter
ferometric approach. They give the following correlations for laminar flow of air:

1. For

0.0073 X x*  < 0.040, 20 < Gz*  < 110, and 1 X 104 < Gr6 h < 8.7 X 104

one has7

/ \ 0.14
= 1.75[Gz£ + 0.245(Gz^-5Gr3/3)°'882]1/3 (15.63)

Equation (15.63) correlates the available experimental data to within +3% and 
-30%.

2 For 0.040 < x*  < 0.25, 3.2 < Gz*  < 20, and 0.8 X 104 < Gr6 b < 4 X 104 one 
has7

/ n \014Nulm — = 0.969(Gz£)°82 (15.64)
\ M/, I

Equation (15.64) gives a representation of the experimental data to within + 7.8% 
and —6.1%.

15.4.3 Flow in Circular, Concentric Horizontal Annuli
Existing results on mixed convection in a horizontal circular, concentric annulus are 
derived mainly from theoretical studies. These include work by Hattori [63] and 
Nguyen et al. [64], The general findings are that the secondary flows can strongly

'Although the viscosity variation correction factor (JuH,//£i)014 normally is used only for 
liquids, Yousef and Tarasuk [10, 54] used it for air. Since this ratio varies only slightly for air, it 
should not make a significant difference in the results.
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(b)

Figure 15.17. Local Nussclt numbers for horizontal circular, concentric annuli: (a) outer wall 
heated at UHF and inner wall insulated; (b) outer wall insulated and inner wall heated at UHF 
[63].

distort the velocity and temperature profiles and significantly increase the heat transfer. 
The circumferentially averaged Nusselt number depends on the heating condition. 
Figure 15.17a and b show numerical results obtained by Hattori [63] for two cases: 
outer cylinder heated at UHF and inner cylinder insulated, and outer cylinder 
insulated and inner cylinder heated at UHF. The flow is hydrodynamically fully 
developed. Good agreement is shown with the experimental data obtained in a 
complementary study by the author. In the figures, the Nusselt and Grashof numbers 
are defined as

1 /"2?r 1 /*2vr
Nu/= Nu„ = — / ^ od<j>

217 J Q 2.17 J 0

-D,)
Nu’-"---------k---------• Nu„-------------—

* I 9T\ k I 9T\

„ * g^n,(dTw/dx) L5 
av

where I = (D*  - D}\q" + <?,")/(D,^ +
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In Fig. 15.17a and />, the experimental and numerical results are shown to agree 
well with the respective heat transfer correlations, which are:

FOR OUTER WALL AT UWT AND INNER WALL INSULATED

Nu„ = 0.38 Gr*°' 2OPr0'28 (15.65)

FOR OUTER WALL INSULATED AND INNER WALL AT UWT

I D \0'35
Nuz = 0.44Gr* 0 20Pr0 28 l ~ I (15.66)

15.4,4 Thermally Fully Developed Flow between Horizontal 
Parallel Plates

In the absence of free convection, the Nusselt number and the pressure drop parameter 
/ Re both reach constant values when the flow is laminar and hydrodynamically and 
thermally fully developed and the heat fluxes on the horizontal plates are held constant. 
In this case, Nuyy = 8.235 and f Re = 24 as presented in Chap. 3. When free 
convection effects are present, as measured by the product Re Ra, secondary flows set 
in as Re Ra reaches a critical value. For fully developed flow, the conditions marking 
the onset of this phenomenon have been studied theoretically by Nakayama et al. [65] 
and confirmed experimentally by Akiyama et al., [66] and by Ostrach and Kamotani 
[67], among others. Photographic evidence of the onset and subsequent formation of 
longitudinal vortices in the postcritical flow regime has been reported by Hwang and 
Cheng [68], The photographs were taken near the exit of a horizontal, rectangular 
channel with a large width-to-height ratio so that a parallel-plate duct was approxi
mated closely. Flow visualization was accomplished by injecting smoke into the main 
flow. The value of ReRa*  was increased from 4.7 X 105 to 1.49 X 106. The dimension
less wave number was shown to remain relatively constant.

The wave number after the onset of longitudinal vortex rolls may be assumed to be 
that given by the linear stability analysis. This approximation is justified, since the 
wave number is rather insensitive to the change of the product ReRa*,  at least in the 
immediate postcritical regime. The flow structure and heat transfer can be thus isolated 
for detailed analysis. For plane Poiseuille flow (with a fully developed temperature 
profile), Hwang and Cheng [68] obtained solutions for Pr Re Ra*  values up to four 
times the critical value, thereby extending the applicability of earlier solutions acquired 
by means of a perturbation theory by Mori and Uchida [69], For a given finite value of 
PrReRa*,  the effect of the Prandtl number on the friction parameter f Re is negligible 
when Pr > 10. Hence for fully developed flow, the effect of secondary flow on the flow 
result is important only when the Prandtl number is small. For Pr > 2, the Nusselt 
number exhibits asymptotic behavior.

15.4.5 Thermally Developing Flow between Horizontal Parallel Plates
Buoyant-force effects on laminar heat transfer in the hydrodynamic and thermal 
development region of a horizontal, parallel plate duct have been studied numerically 
by Naito [70], The Prandtl number studied was 0.71, and the Reynolds number was less



15’36 MIXED CONVECTION IN INTERNAI FLOW

IO-3 2 4 6 10-2 2 4 6 10-1 2 4

x/a

Figure 15.18. Effect of Prandtl number on critical Rayleigh number marking the onset of 
instability for Pe -» oo [71],

than 300. Of concern was the subcritical range with the Rayleigh number less than 
1800. For hydrodynamically fully developed but thermally developing laminar flow in 
a horizontal, parallel plate channel, the conditions giving rise to longitudinal vortex-type 
secondary flow have been determined theoretically by Hwang and Cheng [71], They 
considered the case where the top plate is cooled and maintained at the same 
temperature as the fluid at the entrance (i.e. Tc = T\), and the bottom plate is heated to 
a uniform temperature Th. The problem is similar to the Benard problem with a 
superimposed hydrodynamically fully developed laminar flow, and the vortex rolls with 
axes parallel to the basic flow have their counterparts in the Benard cells, except that 
they are infinitely elongated. Unlike the case of thermally fully developed flow, the 
critical Rayleigh number is a function of the axial distance. For infinitely large Peclet 
numbers, the critical Rayleigh number decreases monotonically with increasing stream
wise distance for large Prandtl number fluids, and increases monotonically with 
distance for small Prandtl number fluids. At the end of the thermal development 
region, the critical Rayleigh number Ra, is independent of the Prandtl number and 
assumes the value 13662.1 ( = 8 X 1707.76). This behavior is depicted in Figure 15.18. 
This problem was later examined experimentally by Kamotani and Ostrach [72], who 
found that for air the critical Rayleigh number was much higher than that predicted in 
[71], Heat transfer in the entrance region for thermally developing flow has been 
measured, in a horizontal, parallel-plate channel at UWT with the upper wall cooled 
and the bottom wall heated, by Kamotani et al. [73] and found to be several times the 
value in the absence of secondary flow, as shown in Fig. 15.19.
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Figure 15.19. Enhanced heat transfer in the entrance region of a horizontal parallel plate channel 
having UWT with the upper wall cooled and the lower wall heated [73],

The effects of buoyancy on the heat transfer in a thermally developing horizontal 
parallel plate channel, where the velocity profile is fully developed at the entrance to 
the heated section, have been investigated experimentally by Osborne and Incropera 
[74] for the situation where both the top and bottom plates are heated at uniform heat 
fluxes that are not necessarily equal. The heating of the top plate causes the adjacent 
thermal boundary layer to be stratified so that there is negligible penetration by the 
buoyancy-induced secondary flow originating from the bottom plate. Forced convec
tion therefore dominates the heat transfer from the top plate, according to the 
correlation

NuA. , = 1.490Gz1/3 (15.67)

In Eq. (15.67), Nu, , is the local Nusselt number on the top plate, defined using the 
difference between the local plate temperature and the local bulk temperature; proper
ties are determined at the local bulk mean temperature given by the energy balance:

(?r + q'bt)x 

umapcp
(15.68)

For the bottom plate, a correlation can be developed based on the scheme suggested by
Churchill [75], namely,

Nu" = Nu'i. F + Nu^ N

The resultant correlation due to Osborne and Incropera [74] is

NuY
Nu.v.F

1 + 0.00365
Ra* 3/4

(15.69)
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Figure 15.20. Nusselt number for the heated bottom plate of a parallel plate horizontal duct.

Here the thermally developing Nusselt number Nux F for pure forced convection is 
given by [87], This equation is compared satisfactorily with data for water in Fig. 15.20 
for q"/q", < 2, where the subscripts t and bt stand for the top and bottom plate, 
respectively. For q''/q^ > 2, the above correlation significantly underpredicts the 
experimental data. For the ranges of validity of Eqs. (15.67) and (15.69), see Table 15.2.

15.4.6 Flow in Rectangular Horizontal Channels
The effectslof buoyancy-induced secondary flow on heat transfer in the thermal 
entrance region of horizontal rectangular ducts may be assessed using the same 
approach described in Sec. 15.4.2. Employing the assumption of large Prandtl number, 
Cheng et al. [76] investigated the influence of Rayleigh number on the Nusselt number 
at various aspect ratios y [width divided by height (in gravity direction) of duct]. The 
duct walls are heated at uniform heat flux, and the flow is assumed hydrodynamically 
fully developed, The results are shown in Fig. 15.21 for y = 2. The local Nusselt 
number is not affected by buoyancy up to a certain entrance length that depends on the 
magnitude of the Rayleigh number. The curve at a given Rayleigh number branches 
out from the pure forced-convection curve (Rayleigh number zero) and, after reaching 
a minimum, levels off to a constant value as the flow becomes thermally fully 
developed. The effect of buoyancy is to decrease the thermal entrance length.

An investigation of the buoyancy effects in the simultaneous hydrodynamic and 
thermal development region has been conducted by Abou-Ellail and Morcos [77], For a 
duct with aspect ratio y = 1, predicted local Nusselt number is given for Prandtl 
numbers ranging from 1 to 20. In the thermal entrance region, an increase in the 
Prandtl number causes a decrease in the Nusselt number. For Pr = 20, the results of 
[77] are higher than those of [76] in the thermal entrance region by a maximum of 
about 20%. An increase in the aspect ratio in general leads to an increase in the local 
Nusselt number and in the thermal entrance length. At a Rayleigh number of 105, the 
local Nusselt number in the thermally fully developed region is approximately 200% 
higher than the pure forced-convection value.
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Figure 15.21. Axial variation of the circumferential-average local Nusselt number for a rectangu
lar duct of aspect ratio 2 [76].

15.5 TRANSITION FROM LAMINAR TO TURBULENT FLOW

There is scant information available concerning mixed convection in the postlaminar 
regimes of transitional and turbulent flow. Much of the available data relates to the 
vertical circular tube. Even for this geometry, the current understanding of heat 
transfer in the laminar-to-turbulent flow transition regime is still limited; however, 
criteria for the onset of transition are available [19,78,79]. For the horizontal tube, 
some limited experimental data are also available [43],

15.5.1 Transitional Upward Flow in Vertical Circular Tubes
For hydrodynamically fully developed flow in a vertical tube, the transition from 
laminar to an unstable flow has been studied for water by Scheele et al. [79], They 
observed the breakup of a thin stream of dye injected into the center of a tube 
upstream of the heat transfer section. For natural convection in the direction of forced 
flow (upflow) with uniform heating (UHF) of the tube, the first instability appears in 
the form of a sinuous motion in the dye filament. The amplitude of the disturbances 
increases, and eventually the dye filament breaks up, as the ratio Gr5/Re is increased. 
The onset of the initial disturbance is preceded by a flatness in the velocity profile that 
appears at Gr5/Re = 88; however, the critical value of Gr5/Re depends on the ratio of 
the tube length to diameter. For downflow with uniform flux heating, the first 
instability consists of a slight asymmetry of the dye filament upon emergence from the 
heated section. An increase of Gr5/Re triggers intermittent bursts of a highly disturbed 
flow. The critical value of Grs/Re is 252 and is independent of Re. For downflow with 
uniform wall temperature (UWT) heating, an asymmetric flow pattern develops that 
involves reversed flow on one side of the tube [79].
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Indications are that for buoyancy-aided flow, the mechanism of transition is similar 
to that in boundary-layer flow over a flat plate. Here, transition consists of the 
appearance of regular oscillations which gradually grow in extent and amplitude until 
the disturbance breaks into fluctuating motion that is characteristic of turbulent flow. 
For buoyancv-opposed flow, transition consists of an asymmetric flow (resulting from 
an originally symmetric fully developed flow) which gives rise to reversed flow on one 
side of the tube. The extent of the reversed flow increases in size as Gr5/Re increases, 
leading to an eddying flow. The transition to an eddying motion occurs suddenly.

The flow oscillations that accompany the transition process lead to fluctuations in 
wall temperatures, and these can in turn be used to indicate transition. Using this 
approach, Hallman [12] found that for buoyancy-assisted, hydrodynamically fully 
developed flow (at tube entrance) in a UHF vertical circular tube, the location of 
transition depends on the heating rate and the flow rate. At a constant flow rate, an 
increase in heating rate causes the point of transition to travel upstream (i.e., down the 
tube). If the heating rate is held fixed, increasing the flow rate moves the transition 
point downstream. Based on Hallman's data, the following correlation may be used to 
predict the location of transition:

Gr3 Pr = 2664Gz183 (15.70a)

15.5.2 Transitional Flow in Horizontal Circular Tubes
In a horizontal circular tube, the transition to turbulent flow is strongly affected by the 
presence of secondary flow. With a high initial turbulence level at the entrance to the 
tube, the onset of secondary flow tends to suppress the turbulence, while at a low initial 
turbulence level, secondary flow tends to increase the turbulence. Consequently, when 
the initial turbulence level is low, the experimental critical Reynolds number Re(, 
defined as the value where an intermittency begins to appear in the flow [43], decreases 
with ReRa*  but can be greater than 6000 at ReRa*  = 1.5 X 104. At a high level of 
initial turbulence such as that associated with a turbulence generator, Re( increases 
with ReRa*  but is only about 2500 at ReRa*  = 1.5 X 104. For ReRa*  < 5 X 105 
with UHF tubes, Mori et al. [43] recommend the following equation when the initial 
turbulence level is low:

________ RtU________
1 + 0.14 X 10"5ReRa*

(15.70b)

In the above. Re, (l is the critical Reynolds number without heating and can be more 
than 6 times larger than the high-initial-intensity critical Reynolds number of ap
proximately 2000 [80]. Mori et al. [43] obtained a value of Re (l = 7700. For high initial 
turbulence levels, Mori et al. [43] recommend, for UHF tubes.

Rec = 128(ReRa*) 1/4 (15.70c)

15.6 TURBULENT MIXED CONVECTION IN DUCTS

For vertical upward flow in turbulent mixed convection in heated tubes, fairly well- 
established criteria for the onset of buoyancy-induced impairment of heat transfer are 
available. No satisfactory correlating equation, however, is available vet for the heat 
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transfer. In downflow, a satisfactory correlation now exists. For horizontal tubes, 
experimental evidence indicates that the efl'ect of buoyancy is negligible in turbulent 
flow.

15.6.1 Vertical Ducts
From the quantitative information presented in Secs. 15.3 and 15.4, it is clear that in 
laminar mixed convection in a vertical duct, the heat transfer is improved (by virtue of 
the increased velocity near the wall) for aided flow but is worsened in opposed flow 
(since near-wall velocities are reduced). The situation is quite different in turbulent 
flow, where the heat transfer is sometimes less than the pure forced-convection value 
when natural convection aids forced convection, and where in opposed flow the heat 
transfer is generally larger than the corresponding forced convection value.

The phenomenon of heat transfer impairment in vertical heated upflow can be 
explained by a two-layer model [81], In this concept, the fluid in the layer close to the 
heated wall experiences a buoyancy force owing to the reduced density. Acting in the 
direction of motion, this force tends to decrease the shear stress in the layer away from 
the wall. Consequently, turbulence production is reduced across the tube, resulting in 
laminarization. A simple approximate analysis [82] leads to the following criterion for 
the onset of buoyancy-induced impairment of heat transfer:

Gr
Re27

IO”5 (15.71)

where Gr= g(pA — p)D^/(pv2). The integrated density p is defined as

P =
1 CT

---------- I wp dT
T - T, J tw * b ‘ h

(15.71a)

In tubes heated at specified fluxes (UHF), the heat transfer impairment leads to 
sharp peaks in the local wall temperatures, which have been observed by Ackerman 
[83], among others. The thermal impairment does not persist at higher buoyancy, 
however, since the shear stress changes sign and energy inputs to the turbulent motion 
start to increase, as does the thermal performance of the tube. As a result, in 
buoyancy-aided flow, the heat transfer from the tube is impaired in the low ranges of 
the Grashof number, but recovers and may even exceed the pure forced-convection 
value at high Grashof numbers. Quantitative evidence of this behavior has been 
reported originally by Fewster [84] for upflow of carbon dioxide and water at 
supercritical pressures. Figure 15.22 shows the situation in which the temperatures of 
the UHF wall are below the pseudocritical temperature, the temperature at which cp 
becomes maximum. It may be noted that the criterion of Eq. (15.71) is supported by 
the data shown in Fig. 15.22. Included in Fig. 15.22 are the UWT upflow data of 
Herbert and Stems [3], of which more will be said later in this section.

For turbulent mixed convection in buoyancy-opposed flow in vertical UHF tubes, 
the heat transfer is generally enhanced over that for pure forced convection. A 
semiempirical equation for this situation has been developed by Jackson and Hall [82]:

Nu
Nuf

1 + 27501
1/3

(15.72)
Gr \

Re27 /
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Re2'7

Figure 15.22. Average Nusselt number for buoyancy-assisted turbulent flow, normalized with 
Nusselt number for pure forced convection turbulent flow, in a vertical tube.

Figure 15.23. Average Nusselt number for buoyancy-opposed turbulent flow, normalized with 
Nusselt number for pure forced convection turbulent flow, in a vertical tube.

This equation is compared with experimental data for supercritical-pressure water in 
Fig. 15.23.

For vertical tubes at UWT, in the high Re range, Herbert and Sterns [3] have found 
that buoyancy effects on the heat transfer are negligible in aided turbulent mixed 
convection when Re exceeds a certain apparent critical value Re.lc. Their data were 
based on experiments with water, with Pr varying from 1.8 to 2.2 and Gr4 from 
2.0 x 107 to 2.6 X 107, approximately. The value of Reac may be calculated from the 
following equation:

Reac = 3000 + 0.00027 Gr4 Pr (15.73)

Thus, when Re is greater than Reac, the Nusselt number is given by the correlation for 
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pure forced convection. When Re < Relc, Herbert and Sterns [3] suggest the following 
correlation for buoyancy-aided turbulent flow:

Nu = 8.5 X 10-2(Gr4 Pr)1/3 (15.74)

This equation should be used in the ranges Re = 4500 to 15,000, D = 0.0127 to 0.0254 
m. L = 0.254 to 3.30 m, Pr = 1.8 to 2.2; and Gr4 = 3 X 106 to 30 X 106. For 
buoyancy-opposed turbulent convection, the data of Herbert and Stems [3] indicate 
that buoyancy effects may be neglected for Re > 15,000. For Re < 15,000, the data are 
correlated by the equation

Nu = 0.56 Re°'47Pr0'4 (15.75)

which gives values higher than those for pure forced convection for UWT tubes. In 
Eqs. (15.73) to (15.75), all properties are evaluated at the film temperature. Using the 
raw experimental data given in [3], comparisons may be made between the Nu/Nuf 
results of [3] with those of Fewster [84] and Jackson and Hall [82], These comparisons 
are shown in Figs. 15.22 and 15.23. The agreement is very good. To effect conversion 
between Gr used in [82] and Gr4 used in [3], the following approximations have been 
made:

P ~ Pi

Pb~Pa -Pbfi(T„ ~ T'f)

o T* -
x Php——

— g(p/>-p)£3
Gr = -------—-------

P»~

g^p2(Tw — Tm) D3
2fi2

Gr
~ T

In the above the overbar designates the arithmetic mean of the values at the inlet and 
outlet of the tube.

For vertical tubes at UWT in the low Re range, the turbulent mixed convection Nu 
is independent of Re in both aided and opposed flow. Testing with air in aided flow in 
the range Re = 385 to 4930, Brown and Gauvin [85] found that Nu may be predicted 
to ± 7% in the range Gr = 5 X 106 to 1 X 107 by the following equation for pure free 
convection [86]:

Nu = O.13(Gr5 Pr)1/3 (15.76)

For opposed flow in the range Re = 378 to 6900, Brown and Gauvin [85] show that Nu
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in the fully developed turbulent flow regime, which is independent of Re as noted 
above, is about 45% higher than the value given by Eq. (15.76). Here, Nu and Gr5 are 
defined with the wall-to-center temperature difference, and properties are evaluated at 
the arithmetic mean between the wall and center temperatures.

15.6.2 Horizontal Tubes
Experimental data obtained by Mori et al. [43] show that for turbulent flow of air in a 
horizontal tube heated at UHF, the influence of buoyancy is completely overwhelmed 
by the turbulent motion. This is contrary to the case of laminar flow, which is discussed 
in Sec. 15.4.1. Thus, the Nusselt number for turbulent mixed convection in horizontal 
tubes may be computed using the standard correlation for pure forced-convection 
turbulent flow.

NOMENCLATURE

A 
^0 
a 
a 
B 
b 
C 
C, ( '

heat transfer surface area, m2, ft2
free flow area, m2, ft2
constant
spacing between parallel plates, m, ft 
coefficient
constant
constant
constants

cp 
D
d
Dh

specific heat at constant pressure, J/(kg • K), Btu/(lbm • °F) 
tube inside diameter, m, ft
constant
hydraulic diameter = 4zf0/S' = 4 (minimum free flow area)/(wetted 

perimeter), m, ft
r> 
r>
Gr

inside diameter of annulus, m, ft
outside diameter of annulus, m, ft
Grashof number = gftLTD^/v2, see Eq. (15.22a) for specific defini

tions
Gr* heat-flux Grashof number = gPq"D^/(16v2k), see Eq. (15.22b) for 

specific definitions

Gr 
Gz 
Gz*  
f 
S 
h

Grashof number; defined in Eq. (15.41)
Grashof number = g(ph - p)Dl/(pv2)
Graetz number = (RePr)(Z>A/L)
(%/4)Gz
Fanning friction factor = -(D/pu2,)[ dP/dx]
gravitational acceleration, m/s2, ft/s2
heat transfer coefficient, W/(m2 ■ K), Btu/(hr • ft2 • °F)
local heat transfer coefficient at a section x in the thermal entrance 

region. W/(m2 • K), Btu/(hr • ft2 • °F)
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h mean heat transfer coefficient from x — 0 to x in the thermal entrance
region, W/(nr • K), Btu/(hr • ft2 • °F)

A thermal conductivity. W/(m • K), Btu/hr • ft • °F)
Llh thermal entrance length, m, ft

= Lth/(DARePr)
Nu Nusselt number for thermally and hydrodynamically fully developed

flow
Nu, circumferential-average axially local Nusselt number = hxDn/k
Nu axial-mean Nusselt number for the thermal entrance region defined by

Eq. (15.18); Nu is based on h defined by Eq. (15.20a)
Nuim arithmetic-average Nusselt number, defined in Eq. (15.18)
P static pressure, Pa, lby/ft2
P*  nondimensional pressure, defined in Eq. (15.11c)
Pe Peclet number = Re Pr
Pr Prandtl number = pc /k
P. hD^/(kHt)
P- kDh/(kwt)
A P pressure drop, Pa, lty/ft2
AP dimensionless pressure drop, defined by Eq. (15.33)
q heat transfer rate, W, Btu/hr
q" heat flux (heat transfer rate per unit area), W/m2, Btu/(hr • ft2)
R r/(£>/2) for a circular tube
R*  r/(Dn — D,) for concentric annuli
R gas constant, kJ/(kg • K), lbz • ft/(lb,„ • °R)
R normalized radial distance in cylindrical coordinates, = 2r/D
r, <f>, x cylindrical coordinates (m, rad, m), (ft, deg, ft)

equivalent radius = r0 — rt
rt, inner and outer radius of a concentric annulus
Ra Rayleigh number = Gr Pr
Re Reynolds number = pumDh/fi
Re( critical Reynolds number indicating transition from laminar to turbu

lent flow
rT wall temperature difference parameter = (Tc — 7])/(Th — T\)
S perimeter of duct cross section, m, ft
St Stanton number = Nu/RePr
T temperature, °C, K, °F, °R
Th fluid bulk temperature at a section x, defined by Eq. (15.13), °C, K,

°F, °R
Tb mean fluid bulk temperature from x = 0 to x, °C, K, °F, °R
T wall temperature, local value at a peripheral point if the distinction is

needed, °C, K, °F, °R
circumferential-average wall temperature, °C, K, °F, °R

AT characteristic temperature difference, °C, K, °F, °R
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Arlm log-mean temperature difference, defined bv Eq (15.16b), °C, K, °F, 
°R

Aram arithmetic-mean temperature difference, defined by Eq. (15.16a), °C, 
K, °F, °R

t 

u 

UHF 
UWT

tube wall thickness, m, ft
normalized velocity component in x direction = u/um 
uniform heat flux boundary condition
uniform wall temperature boundary condition

u
V

velocity component in x direction, m/s, ft/s 
normalized velocity component in R or Y direction

V velocity component in r or y direction, m/s, ft/s
w

X
velocity component in </> direction, m/s, ft/s 
2x/(DhRe Pr)

X*

x~

axial coordinate in Cartesian and radial coordinates, m, ft 
x/(DARePr) = X/2 = 1/Gz 
x/(DARe)
transverse Cartesian coordinates, m, ft

Greek Symbols
a 
a' 
ft 
y 
0

fluid thermal diffusivity, m2/s, ft2/s 
constant
coefficient of thermal expansion defined in Eq. (15.7), K"1, °R-1 
aspect ratio (ratio of width to height) of rectangular duct 
dimensionless temperature = (T„ — T)/(TW — 7])

V
dynamic viscosity, Pa • s, lb„,/(hr • ft) 
kinematic viscosity, m2/s, ft2/s

P
P

density, kg/m3, lbm/ft3
integrated density across the flow cross section, see Eq. (15.71a) 

kg/m3, lbm/ft3
«J>

CO

angular (azimuthal) coordinate, rad, deg 
stream function
vorticity, s-1

Subscripts
am arithmetic-mean value
avg 
b
bt

overall average value 
bulk value 
bottom plate

c pertaining to cold wall
F pure forced convection
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/ 
fd 
A 
i

evaluated at fluid film temperature (T, 4- 7}. )/2 
fully developed flow value 
pertaining to hot wall 
value on inner wall

1.
Im

based on channel length 
logarithmic-mean value

m
N

mean value
pure natural convection

0

t

value on outer wall 
top plate

n value at wall, or properties evaluated at the wall temperature
■
9
1

based on z
local value at an angle <j> 
value at inlet of duct

Diacritical

average value from x = 0 to x.
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16-2 CONVECTIVE HEAT TRANSFER IN POROUS MEDIA

16.1 INTRODUCTION

The subject of heat and mass transfer by convection through fluid saturated porous 
media represents an important development and an area of rapid growth in contem
porary heat transfer research. Although the mechanics of flows in porous media has 
preoccupied engineers and scientists for more than a century, the phenomenon of 
convection heat transfer has achieved the status of a separate field of research only 
during the last two decades. For an introduction to the fluid mechanics of flows 
through porous media, the reader is directed to fluid mechanics monographs such as 
Muskat [1], Bear [2], Scheidegger [3], and Greenkorn [4], Heat transfer reviews and 
monographs have so far been written only in conjunction with certain research aspects 
of convection through porous media, for example, applications to geothermal-reservoir 
engineering (Cheng [5,6], O’Sullivan [7], McKibbin [8] and to thermal-insulation 
engineering (Bejan [9]); a review of the published work on natural convection from 
1977 to 1984 is given by Nield [10], The subject of forced and natural convection 
through porous media appeared for the first time in a heat-transfer textbook in 1984 
(Bejan [11]). The objective of the present chapter is to provide the reader with an 
understanding of the breadth of research on convection in porous media, and with a 
collection of useful engineering results that covers the main developments in this field.

16.2 FUNDAMENTAL PRINCIPLES

The discussion of convection through a porous medium saturated with fluid (liquid or 
gas) is based on a series of special concepts that are not found in the pure-fluid 
convection chapters of this handbook. Examples of such concepts are the porosity and 
the permeability of the porous medium, and the volume-averaged properties of the 
fluid flowing through the porous medium. The object of this section is to define these 
special concepts of convection through porous media and to list the conservation laws 
that govern the convection phenomenon.

The porosity of the porous medium is defined as

void volume contained in porous medium sample
</> - ------------------------------------------------------------- — (16.1)

total volume of porous medium sample

The engineering heat transfer results assembled in this chapter refer primarily to 
fluid-saturated porous media that can be modeled as nondeformable, homogeneous, 
and isotropic. In such media, the volumetric porosity is the same as the area ratio 
(void area contained in sample cross section)/(total area of sample cross section).

The phenomenon of convection through the porous medium is described in terms of 
volume-averaged quantities such as temperature, pressure, concentration, and velocity 
components. Each volume-averaged quantity (^) is defined through the operation

(162»

where is the actual value of the quantity at a point inside the sample volume K 
Alternatively, the volume-average quantity equals the value of that quantity averaged 
over the total volume occupied by the porous medium.
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16.2.1 Mass Conservation

The principle of mass conservation or mass continuity applied locally in a small region 
of the fluid saturated porous medium is

Dp
— + pV • v = 0

wh<_rc D/ Dt is the material derivative operator

D d d d d
— = ——F u—---- F v—---- 1- w—
Dt dt dx dy dz

(16.3)

(16-4)

and where v (u, v, w) is the volume-averaged velocity vector (Fig. 16.1a). For example, 
the volume-averaged velocity component u in the .x direction is equal to , where 
u is the average velocity through the pores. In many single-phase flows through porous 
media, the density variations are small enough so that the Dp/Dt term may be 
neglected in Eq. (16.3). The incompressible flow model has been invoked in the 
development of the majority of the analytical and numerical results reviewed in this 
chapter. (Note: the incompressible flow model should not be confused with the 
incompressible-substance model encountered in thermodynamics [12].)

16.2.2 Momentum Conservation (the Darcy Flow Model and More 
General Models)

The most frequently used model for volume-averaged flow through a porous medium is 
the Darcy flow model [13]. According to this model, the volume-averaged velocity in a 
certain direction is directly proportional to the net pressure gradient in that direction, 
e-g.

K 
u — —

P-
(16.5)

In three dimensions, and in the presence of a body acceleration vector g = (gx, gt., g.) 
(Fig. 16.1a), the Darcy flow model is

v= —(-VP + pg). (16.6)

The proportionality factor K in Darcy's model is the permeability of the porous 
medium. The units of K are nr or ft2. In general, the permeability is an empirical 
constant that can be determined by measuring the pressure drop and the flow rate 
through a column-shaped sample of porous material, as suggested by Eq. (16.5). The 
permeability can also be estimated from simplified models of the labyrinth formed by 
the interconnected pores. Modeling the pores as a bundle of parallel capillary tubes of 
radius r0 yields (Bear [2])

8 A
(16-7)

where TV is the number of tubes counted on a cross section of area A. Modeling the 
pores as a stack of parallel capillary fissures of width b and fissure-to-fissure spacing
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Figure 16.1. Configurations for forced-convection heat transfer: (a) Cartesian coordinate sys
tem, (h) point heat source <7 in a porous medium, (c) horizontal line source in a porous medium, 
(r/) boundary-layer development over a flat surface in a porous medium, (<?) cylindrical or 
spherical porous medium, (/) long duct filled with a porous medium.
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a + b yields the permeability formula (Bear [2])

b3
12( a + b)

(16.8)

Modeling the porous medium as a collection of solid spheres of diameter d. Kozcny 
[14] obtained the formula

d2<t>'

(l-<)>)2 (16.9)

The Darcy flow model, Eq. (16.6), is valid in circumstances where the so-called 
“local pore Reynolds number” based on the local volume-averaged speed (u2 + v2 + 
m’2 )' 2 and Kl 2 is smaller than one (Ward [15]). At pore Reynolds numbers of order 1 
and greater, the measured relationship between pressure gradient and volume-averaged 
velocity is correlated by Forschheimer’s [16] modification of Darcy’s model (16.5):

dP 
dx

P 7= —u + bpu 
K

(16.10)

In three dimensions and in the presence of body acceleration, the Forschheimer 
modification of the Darcy flow model is

bpK K
v -I--------- |c|® = —(-VP + pg) (16.11)

The experimental measurements published by Ward [15] suggest that as the local pore 
Reynolds number exceeds ~ 10, Forschheimer’s constant b approaches asymptotically 
the value

b = 0.55 7C1/2 (16 12)

Extensive measurements involving gas flow through columns of packed spheres, sand, 
and pulverized coal allowed Ergun [17] to propose the following correlations for K and 
b as

d2tf

150(1 - <t>)
(16.13)

1.75(1 -4>)
b = ----------------<i>d

(16.14)

Another modification of the Darcy flow model was introduced by Brinkman [18] in 
order to account for the transition from Darcy flow to highly viscous flow (without 
porous matrix), in the limit of extremely high permeability:

— (-VP + pg) + K V2« (16.15)

The two modifications to the Darcy flow model discussed above, the Forschheimer
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model (16.11) and the Brinkman model (16.15), were used simultaneously by Vafai and 
Tien [19] in a study of forced-convection boundary-layer heat transfer. In the presence 
of gravitational acceleration, Vafai and Tien’s momentum equations would read

&pA K 9 x
c+------|o|c = — (-VP + pg) + K v v (16.16)

It should be emphasized that none of the above models account adequately for the 
transition from porous medium flow to pure fluid flow as the permeability K increases. 
Note that in the high-A limit the terms that survive in Eq. (16.15) or Eq. (16.16) 
account for momentum conservation only in highly viscous flows in which the effect of 
fluid inertia is negligible relative to pressure and friction forces. A model that bridges 
the entire gap between the Darcy-Forschheimer model and the Navier-Stokes equations 
was developed by Vafai and Tien (for details see Ref. [19]):

v Dv 1
— v+b\v\v=~ —-----vP + i'V^ + g' (16.17)

As the permeability K increases, the left-hand side vanishes and gives way to the 
complete vectorial Navier-Stokes equation for Newtonian constant-property flow.

The vast majority of the heat transfer engineering results available in the literature 
and highlighted in this chapter are based on the original Darcy flow model, Eq. (16.6). 
Some of the modifications to Darcy flow outlined above have been used only sporadi
cally; whenever available, the effect of the departure from Darcy flow conditions is 
discussed in conjunction with the engineering results of this chapter.

16.2.3 Energy Conservation
The first law of thermodynamics applied to a point in a homogeneous porous medium 
saturated with single-phase fluid yields (see, for example, Bejan [11, pp. 351-354]):

/ 3T \ u .
(pc^Jo— v7J =kV2T+q"' + -(«)2 (16.18)

where a is the heat-capacity ratio,

(pc),
a = </> + (1 - </>)------ — (16.19)

and where (pc)y and (pcp)/ denote the heat capacity per unit volume of solid matrix 
material and fluid, respectively. In the derivation of Eq. (16.18), it was assumed that 
locally the fluid and the solid components are in thermal equilibrium. The first term on 
the right-hand side represents the effect of thermal diffusion, and k is the effective 
thermal conductivity of the porous medium with the fluid in it. The second term on the 
right-hand side, q (W/m3), represents the effect of internal heat generation per unit 
volume of porous medium (solid plus fluid). The last term in Eq. (16.18) represents the 
internal heating rate per unit volume due to fluid friction or the extrusion of the fluid 
through the pores. This last term is based on the assumption that the Darcy flow model 
(16.6) is applicable.

Most of the engineering results assembled in this chapter refer to saturated porous 
media without internal heat generation and without internal heating due to fluid 
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friction The energy conservation statement for these cases is

dT
a— + v • = aV2T

at
(16.20)

where a is the effective thermal diffusivity of the saturated porous medium. Note that 
a is calculated by dividing the effective thermal conductivity of the porous medium 
(with the fluid in it) by the heat capacity of the fluid phase alone.

16.2.4 Conservation of Chemical Species
In situations where the fluid that saturates the porous structure is a mixture of two or 
more chemical species, the equation that expresses the conservation of species i is 
(Bejan [11, pp. 332, 333])

5C n
4>— + v-yC = Dv2C + m'" (16.21)

dt

In this equation C is the concentration of z, expressed in kilograms of i per unit 
volume of porous medium; D is the mass diffusivity of i through the porous medium 
with the fluid mixture in it, and m”' is the number of kilograms of i produced by a 
chemical reaction per unit time and per unit volume of porous medium. The porosity 
factor <f> appearing in the first term of Eq. (16.21) is sometimes omitted in the literature 
(see, for example, Cheng [5, p. 26]).

16.3 FORCED CONVECTION

Most of the published work on heat transfer through porous media refers to natural or 
free convection. However, in an engineering overview such as the present chapter it is 
important to include, and in some cases derive, a number of pivotal results for forced 
convection. The heat transfer results listed next refer to a uniform unidirectional 
seepage flow u through a homogeneous and isotropic porous medium, as shown in the 
five geometric configurations sketched in Fig. 16.16-f. The results are based on the 
idealization that the solid and fluid phases are locally in thermal equilibrium; this 
idealization breaks down in many chemical engineering applications of forced convec
tion through porous beds, and in the functioning of periodic (regenerative) heat 
exchanges with porous matrices.

16.3.1 Point Source
The temperature field T(x, r) downstream from a point heat source of strength q 
buried in a fluid saturated porous medium is (Bejan [11, pp. 301-303])

V 
4irkx

(16.22)

Tl'.is result (Fig. 16.16) is valid in the limit where convection overwhelms diffusion as a 
longitudinal heat transfer mechanism, i.e., where ux/a » 1.
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16.3.2 Horizontal Line Source
The two-dimensional temperature field T(x, y) (Fig. 16.1c) generated by a line heat 
source of steady strength q' is (Bejan [11, pp. 301-303])

T ~ Tx 7—-----v^exp{pcp)f^uax)

2 
wy

4 ax
(16.23)

Equation (16.23) holds in the convection-dominated regime, ux/a » 1. When this 
criterion fails, the T field is governed by pure diffusion and its analytical form may be 
derived by classical methods (e.g. Grigull and Sandner [20, pp. 125-129]).

16.3.3 Boundary Layers
Consider the uniform flow (w, Tx) parallel to a solid wall heated to a constant 
temperature To (Fig. 16.1 d). The local Nusselt number is (Bejan [11, p. 358])

Nux (16.24)

where it is worth noting that the heat flux q"(x) decreases as x-1/2. In the case where 
the wall downstream from x = 0 is heated with uniform flux q", the local Nusselt 
number is (Cheng [21]; also Bejan [11, p. 358])

Nux
q" x (uxx1/7

. z .--- —-v- = 0.886 —
[Tw(x) - \a)

(16.25)

Equations (16.24) and (16.25) hold if ux/a » 1, i.e., downstream from x = 0 so that 
the longitudinal heat transfer is dominated by convection. Mass transfer counterparts 
to the results of Eqs. (16.24) and (16.25) are obtained through the notation change 
Nuv -» Shv, q" ->j", T -> C, k -» D, a —> D, where Shx and j” are the local 
Sherwood number and local mass flux. From a fluid mechanics standpoint, the results 
of Eqs. (16.24) and (16.25) are consistent with the Darcy-Forschheimer flow model of 
Eq. (16.11) for a homogeneous and isotropic porous medium. The special effect of the 
flow resistance provided by the solid wall is illustrated through numerical examples by 
Vafai and Tien [19],

16.3.4 Sphere and Cylinder

The boundary-layer heat transfer regime for a sphere or a cylinder of radius r() cooled 
or heated by forced convection in Darcy flow was documented by Cheng [22], With 
reference to the angular coordinate 0 drawn in the cross section shown in Fig. 16.le, 
the peripheral local Nusselt numbers for a sphere and a cylinder are, in order.

/ ur 0 \*/ 2
Na# = 0.564) —— j (|0)1/2sin20 (|cos30 - cos 0 + j) 1/2 (16.26)

/ ur()0 \1/2 , „ ,
Nu, = 0.564 — (20)1/-sin 0 (1 - cos0)“1/2 (16.27)
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The peripheral local Nusselt number is defined as Nutf = - Tv\ The
results (16.26) and (16.27) are valid in the boundary-layer regime, i.e., when Nus >> 1 
(this criterion is the same as requiring that the boundary-layer length be much 
greater than the thermal boundary-layer thickness).

16.3.5 Confined Flow
Consider a seepage flow of volume-averaged velocity u through a porous medium that 
fills a long duct whose wall is heated to a constant temperature T[} (Fig. 16.1/). Since 
the velocity profile corresponds to the slug (uniform) flow in a porous medium, the 
fully developed heat transfer regime with slug flow in a tube of diameter D is 
(Rohsenow and Choi [23])

Nu =
q"D

/-T- T., = 5.78
(K ~ Tm)k

(16.28)

The temperature Tm is the bulk mean temperature of the fluid in a cross section 
through the confined porous medium; Tm = A -1/JATdA for slug flow. If the heating 
arrangement along the solid walls that confine the porous medium can be modeled as 
one of uniform heat flux, the fully developed Nusselt number is Nu = 8 in a circular 
duct of diameter D. The corresponding Nusselt numbers for the fully developed regime 
in a porous medium sandwiched between two parallel plates with plate-to-plate spacing 
D are (Hwang and Fan [24])

5.0 for constant wall temperature
6.0 for constant wall heat flux

(16.29)

where the Nusselt number Nu is defined as in Eq. (16.28), i.e., it is based on £>. The 
forced-convection results discussed in this section are valid at longitudinal locations 
situated sufficiently far from the entrance to the duct filled with porous medium. Since 
the thermal boundary-layer thickness in the entrance region scales as (ax/u)1/2 (Bejan 
[11, p. 357]), the criterion for the validity of the fully developed results (16.26) to 
(16.29) is (ax/w)1/2 »

16.4 NATURAL CONVECTION

In addition to the features of the porous-medium model discussed already, most of the 
engineering results available for buoyancy-driven flows are based on the idealization 
that the Boussinesq approximation holds, 

p«p0[l-/?(T-T0)] (16.30a)

where ft is the thermal expansion coefficient

1 / dp \ 
plarL (16 30b)

The main geometrical configurations into which Sec. 16.4 is divided are sketched in 
Figs. 16.2, 16.3, and 16.5. Note that the gravitational acceleration points in the negative 
y direction, in other words, the body acceleration vector g appearing in Eq. (16.6) and 
Tig. 16.1a has (0, -g,0) as components.
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16.4.1 Point Source
The convection generated in a porous medium by a concentrated heat source has been 
studied in two limits: first, the low Rayleigh number regime where the temperature 
distribution is primarily due to thermal diffusion, and second, the high Rayleigh number 
regime where the flow driven by the source is a slender vertical plume (this second 
regime may be called the “boundary-layer regime”). Starting with the low Rayleigh 
number regime, the transient flow and temperature fields around a constant-strength 
heat source q that starts to generate heat at t = 0 is (Bejan [25])

ip = aX1/2Ra„----- sin2<j> 277 erfc tj 4— erf q------7-77 exp( — r/2 ) (16.31)
7 877 ( 7) 77 Z J

q 1 I R \ cos <p
T — 7L =---- 7-77 ------erfc —7-77 + Ra„------ , .

00 ;a1/2L 477R \2t1/2/ 964t72t1/2

( 1. 4 6 16 152 4
X---------- T77 4----- 77V 7?2---------Tf--------------

\ t] 3771 2 5t71//2 45t7 315t71//2

64 5 517 6 992 7

+ 3157771 + 3780771/2 ^ ” 1417577

2039 o 2591 „ \
------------ + • • • (16.32) 69300t71/2 15592977 ' ) v 2

The notation used in Eqs (16.30) and (16.31) is

R r at
71 =2?/2’ jR = ?V2’ T=7k (16.33a)

Raf/ = ---- — = Rayleigh number based on point-source strength (16.33b)

The stream function ip is defined in the axisymmetric spherical coordinates of Fig. 
16.2a via

1 dip 1 dip
Vr = 2 • . TT ’ v<t> =------ r— — (16.33c)r simp d<p v r simp dr

The transient solution in Eqs. (16.31)-(16.33) is valid in the range 0 < tj < 1.
The steady-state flow and temperature fields around a constant point source q in 

the low Rayleigh number regime is (Bejan [25])

ar Ra2
ip = — Ra„sin + —— sin<j> sin 2<j>

877 H 24t7

5R< 
18.432772

(8cos4<> - 3) + (16.34)

q
4 m kr

T — K
Ra
—— cos <f> + 

877

5*̂
768t72

cos 2<p

+ SS OOA 3 cos (47 cos2^ - 30) - • ■ • 
55,29677 ' (16.35)
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Figure 16.2. Configurations for natural-convection heat transfer in external flow: (a) point heat 
source, low Rayleigh number regime, (b) point heat source, high Rayleigh number regime, (c) 
horizontal line source, (d) impermeable sphere or horizontal cylinder imbedded in a porous 
medium, (e) impermeable vertical wall, (/) vertical partition imbedded in a porous medium, (g) 
vertical wall separating a porous medium and a fluid reservoir, (h) hot surface facing upward in a 
porous medium, (t) cold surface facing upward in a porous medium.
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This steady-state Ra(/ series solution is sufficiently accurate if Ra(/ is of the order of 20 
or less. Hickox and Watts [26] obtained numerical solutions for the point-source 
steady-state problem at Rayleigh numbers in the range 10” 1 to 102. The same authors 
reported analytical results for the Emit Ra(/ -> 0 and numerical results in the Rat/ 
range 10“' to 102 for steady-state flow near a point source located at the base of a 
semi-infinite porous medium bounded from below by an impermeable and insulated 
surface. In a subsequent paper, Hickox [27] shows that the transient and steady-state 
solutions for the point source in the strict Ra -> 0 limit can be superimposed in order 
to predict the flow and temperature fields around buried objects of more complicated 
geometries.

In the high Rayleigh number regime, the point source generates a vertical plume 
flow whose thermal boundary-layer thickness scales as )’Ra‘1/2, where y is the 
vertical position along the plume axis (Fig. 16.2b). The analytical solution for the flow 
and temperature field is constructed by Bejan [11, pp. 376-380], after a suggestion by 
Wooding [28], as

T - T v 2Cf
= -------------  = ---------- !------y (16.36)

<7/W) (a/y)Ra? l + (C1r//2)

where q = (r/r)Ra' 2 and Q = 0.141. The solution holds provided the plume region 
is slender, i.e., when Ra1/2 » 1.

16.4.2 Horizontal Line Source
In the two-dimensional frame of Fig. 16.2c, the temperature and flow fields generated 
in a porous medium at high Rayleigh numbers by a horizontal line source of strength 
q' (W/m) are

T - _ v _ Cl/6
(^'A)Ra~,1/3 (a/>)Ra2<3 cosh2 ( C17/6) (16.37)

where ( — 1 651. q = (x/y)Ra^3, and Ra?/ = Kgftyq'/(avk) is the Rayleigh num
ber based on line source strength. The derivation of this solution can be found in 
Wooding [28], in Bejan [29, pp. 206-208], and as a special case of vertical boundary-layer 
convection in Cheng and Minkowycz [30], The boundary-layer solution in Eq. (16.37) is 
valid at sufficiently high Rayleigh numbers, Ra1^3 » 1. The low Rayleigh number 
regime for convection near a horizontal line source (in an infinite medium or near a 
vertical insulated and impermeable surface) is described by Nield and White [31],

16.4.3 Sphere and Horizontal Cylinder

With reference to the coordinate system shown in the circular cross section sketched in 
Fig. 16.2 <7, the local Nusselt numbers for boundary-layer convection around a imper
meable sphere or a horizontal cylinder imbedded in an infinite porous medium are, in 
order,

Nu0 = 0.444Ray2(|0)1/2sin20 (|cos30 - cos 0 + j) 1/2 (16.38)

Nu0 = 0.444 Ra1/2(20)1/2sin 0 (1 - cos0)“1/2 (16.39) 
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where Nufi - q"t\$/k(T. - 7/) and Rae = KgP0ro(Tw - T^/^av). These steady
state results have been reported by Cheng [22]; they are valid provided the boundary
layer region is slender enough, i.e., if Nutf » 1. The transient flow and heat transfer 
near a horizontal cylinder are described by Ingham et al. [32],

16.4.4 Vertical Walls
The heat transfer between a fluid-saturated reservoir and a vertical impermeable wall of 
diflerent temperature is effected by boundary-layer flow if the wall-reservoir tempera
ture difference is large enough. Similarity solutions for the single-wall natural-convec
tion boundary-layer problem have been reported independently by Avduyevskiy et al. 
[33] and by Cheng and Minkowycz [30], The local Nusselt number for a vertical 
isothermal wall (Fig. 16.2e) is

Nu,. = 0.444 Ra1/2 (16.40)

where Nu,. = q”y/(Tw - Tx}k and Ra„ = Kgfty(Jw - T^/iav). Equation (16.40) is 
valid in the boundary-layer regime, Ra1/2 » 1. In cases where the vertical wall can be 
modeled as being heated with uniform heat flux, the local Nusselt number reported by 
Cheng and Minkowycz [30] can be written as (Bejan [11, p. 363])

Nu,. = 0.772 Ra* 1/3 (16.41)

where Ra*  = Kgf$v~q"/(avk). Equation (16.41) holds in the boundary-layer regime, 
Ra* 1 3 » 1. The effect of linear thermal stratification (dTx/dy = constant) in the 
single-wall configuration of Fig. 16e is shown using integral analysis by Bejan [11, pp. 
367-371]. The transient development of the boundary layer near a heated vertical wall 
has been considered by Cheng and Pop [34],

The heat transfer through a vertical impermeable wall that divides a porous medium 
into two semi-infinite reservoirs at different temperatures (Fig. 16.2/) was studied 
numerically by Bejan and Anderson [35]. The overall Nusselt number results for this 
configuration are correlated within 1% by the expression

Nu = 0.382(1 + 0.615w)°'875Ra1^2 (16.42)

where Nu = q”v%H/(T^ zz - Tv z )k, and where q”,g is the heat flux averaged over the 
entire height H. In addition, Ra/Z = KgfiH(Tv H - Tv . r )/(av); the wall thickness 
parameter w is defined as w = (Wk/Hk^Ra1/,2, where is the thermal conductivity 
of wall material.

In thermal insulation and architectural applications, the porous media on both sides 
of the vertical partition of Fig. 16.2/ may be thermally stratified. If the stratification on 
both sides is the same and linear, so that the vertical temperature gradient far enough 
from the wall is dT/dy = bx(Tx H - Tx L)/H, where bv is a constant, and if the 
partition is thin enough so that w =■- 0, then it is found that the overall Nusselt number 
increases substantially with the degree of stratification (Bejan and Anderson [35]): in 
the range 0 < bx < 1.5, these findings can be summarized as

Nu = 0.382(1 + 0.662&J - 0.073f>2)Ra^2 (16.43)

Another configuration of engineering interest is sketched in Fig. 16.2g: a vertical 
impermeable surface separates a porous medium of temperature 7/ zz from a fluid 
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reservoir of temperature Tx L. When both sides of the interface are lined by boundary 
layers, the overall Nusselt number may be estimated as (Bejan and Anderson [36])

Nu = [(0.638) 1 + (O.888B) *]  (16.44)

where Nu = q”^H/(Tx H - Tx L)k and B = k Ra^/C^Ra1/^)- The parameter kf 
is the fluid-side thermal conductivity, and the fluid-side Rayleigh number Raz/ y = 
g(ft/av)t H3(Tx H - Tx [) (see Chap. 20 in this handbook). Equation (16.44) is valid 
in the regime where both boundary layers are distinct, Ra1/2 » 1 and Ra1/4/ » 1; it is 
also assumed that the fluid on the right side of the partition in Fig. 16.2g has a Prandtl 
number of order 1 or greater.

Referring again to the single-wall geometry of Fig. 16.2 e, the corresponding 
problem in a porous medium saturated with water near the temperature of maximum 
density was solved by Ramilison and Gebhart [37]. In place of the Boussinesq model of 
Eq. (16.30), Ramilison and Gebhart used p = pm [1 — am\T — T^]9], where pm and Tm 
are the maximum density and the temperature of the state of maximum density. The 
parameters p,„, Tm, q, and am (not to be confused with the thermal diffusivity a) 
depend on the pressure and salinity, and are reported by Gebhart and Mollendorf [38], 
Data on the local Nusselt number that correspond to Eq. (16.40) are reported by 
Ramilison and Gebhart [37] in graphical form; a closed-form analytical substitute for 
this graphical information is found by the present author for pure water at atmospheric 
pressure as,

Nu,. » 0.42 0.35
Tm~Tx 0A6l2amKgy(Tw-Tx)W2
Tw - Tx \ av I (16.45)

Equation (16.45) is accurate within 1% in the range -16 < (7^ — Tm)/(TW - Tx) < 5.
A geometric configuration that is related to that of Fig. 16.2 e is the flow along the 

outer surface of a vertical cylinder of radius r0 imbedded in a porous medium. The 
heat transfer rate to Darcy boundary-layer flow in this configuration was reported by 
Minkowycz and Cheng [39] for a variety of power-law distributions of wall temperature 
along the vertical. In the case of an isothermal cylinder (T„), the expression for the 
local Nusselt number is

Nu„ = 0.444 Ra1/2 1 + 0.6-Ra;1/2 
\ ro

(16.46)

The breakdown of the Darcy flow model in vertical boundary-layer natural convec
tion is the subject of a number of recent studies (Plumb and Huenefeld [40], Bejan and 
Poulikakos [41], Nield and Joseph [42]). Assuming the Forschheimer modification 
of the Darcy flow model, Eq. (16.9), at local pore Reynolds numbers greater than ~ 10 
the local Nusselt number for the vertical wall configuration of Fig. 16.2 e approaches 
the following limits (Bejan and Poulikakos [41]):

Nu„ = 0.494 Ra1/4,,

Nu,, = 0.804 Ra* 1/5

where Ra,,.,. = g^y2(TM, - Tx)/(ba2)

for isothermal wall (16.47)

for constant heat flux wall (16.48)

and Ra*  v = g[ly3q"/(kba2). Equations
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(16.47) and (16.48) arc valid provided (7 «: 1, where G = (v/K)[bgfi(Tw - Tx)] , /2. 
In the intermediate range between the Darcy limit and the inertia-dominated limit, i.e., 
in the range where G is of order one, the numerical results of Bejan and Poulikakos 
[41] for a vertical isothermal wall are correlated here within 2% by the closed-form 
expression

Nu,. = [(0.494)" + (0.444G-1/2)"] ^"Ra1/4^ (16.49)

where ;< = — 3. The form of Eq. (16.49) is based on the general correlation method 
proposed by Churchill and Usagi [43] (see also Churchill [44]).

The heat transfer results summarized in this section apply also to configurations 
where the vertical wall is inclined (slightly) to the vertical. In such cases, the gravita
tional acceleration that appears in the definition of the Rayleigh-type numbers in this 
section must be replaced by the gravitational acceleration component that acts along 
the nearly vertical wall. However, in the inclined-wall geometry the boundary-layer 
flow may be unstable to certain disturbances. This aspect of natural convection is 
documented by Hsu and Cheng [45-47] and Hsu et al. [48], for both inclined and 
horizontal walls.

16.4.5 Horizontal Walls
With reference to Fig. 16.2h, the boundary-layer flow in the vicinity of a heated 
horizontal surface that faces upward was studied by Cheng and Chang [49]. Measuring 
x horizontally away from the vertical plane of symmetry of the flow, the local Nusselt 
number for an isothermal wall is

Nux = 0.42 Ra1/3 (16.50)

where Nu,. = q"x/k(Tw — Tx) and Rax = Kg(3x(TK - Ttx)/(av). The local Nusselt 
number for a horizontal wall heated with uniform flux is

Nux = 0.859 Ra* 1/4 (16.51)

where Ra*  = Kgftx-q”/(kav). Equations (16.50) and (16.51) are valid in the 
boundary-layer regime, Ra1/3 » 1 and Ra* 1/4 » 1, respectively. They also apply to 
porous media bounded from above by a cold surface; this new configuration is 
obtained by rotating Fig. 16.2/1 by 180°. The transient heat transfer associated with 
suddenly changing the temperature of the horizontal wall is documented by Pop and 
Cheng [50],

The other horizontal wall configuration, the upward-facing cold plate of Fig 16.2z, 
was studied by Kimura et al. [51]. The overall Nusselt number in this configuration is

Nu = 1.47 Ra1/3, (16.52)

where Nu = q'/k(Tx - Tw) and RaL = Kg[lL(Tx - Tw)/(av), and where q' is the 
overall heat transfer rate through the upward-facing cold plate of length L. The result 
of Eq. (16.52) holds if Raz » 1, and applies equally to hot horizontal plates facing 
downward in an isothermal porous medium.
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16.4.6 Confined Layers Heated from the Side
The most basic geometric configuration of a porous layer heated in the horizontal 
direction is sketched in Fig. 16.3a. Provided the Darcy flow model is valid, the 
character of the heat and fluid flow driven by buoyancy depends on two parameters: 
the geometric aspect ratio H/L, and the Rayleigh number based on height, Ra„ = 
Kg(3H(/Th - T.)/av. According to the scale analysis reported by Poulikakos and Bejan 
[52], there exist four heat transfer regimes, i.e., four ways to calculate the overall heat 
transfer rate q' — f/1 q" dy:

Regime I. The pure conduction regime, defined by Ra;/ « 1: in this regime q' is 
approximately equal to the pure conduction estimate kH(Th — T//L.

Regime II. The conduction dominated regime in tall layers, defined by H/L » 1 
and (L/Z/JRa1/2 « 1: in this regime the heat transfer rate scales as q' > kH(Th 
~ T}/L.

Regime III. The convection-dominated regime (or high Rayleigh number regime), 
defined by Ra^1/2 < H/L < Ra1/2: in this regime q' scales as k(Th — 7[.)Ra/2.

Regime IV. The convection-dominated regime in shallow layers, defined by H/L 
1 and (H/L)Ra1/2 1: here the heat transfer rate scales as q < k(Th -

/ )Ra‘/2

Considerable analytical, numerical, and experimental work has been done to esti
mate more accurately the overall heat transfer rate q' or the overall Nusselt number

q'
Nu = ---- 7----- - ---------------  (16.kH(Th -Tc)/L V

Note that unlike the single-wall configurations of Fig. 16.2 e to z, in confined layers of 
thickness L the Nusselt number is defined as the ratio (actual heat transfer rate)/(pure 
conduction heat transfer rate). An analytical solution that covers smoothly the four 
heat transfer regimes was reported in parametric form by Bejan and Tien [53]:

J H\2
Nu = Kr + 720^1I Raw—I (16.54)

where K/H/L. RaH) is obtained by solving the system

, , J H\3 H ( 1 \ifeSeRaW - =1-^ = 1^- --SI (16.55)
\ L J L y Oe J

This result is displayed in chart form in Fig. 16.4 along with numerical results reported 
by Hickox and Gartling [54], Two asymptotic values of this solution are of interest:

L
Nu ~ 0.508—Ra1// as Ra„oc (16.56)

1 / H\2 H
Nu ~ 1 + Rawy as — 0 (16.57)

The heat transfer in the convection-dominated regime III is represented well by Eq.



(g)

Figure 16.3. Configurations for natural-convection heat transfer in confined porous media heated 
from the side: (a) rectangular enclosure, (b) rectangular enclosure with a horizontal partial 
partition, (c) rectangular enclosure with a vertical full partition midway, (d) rectangular enclosure 
made up of N vertical sublayers of different K and a, (<?) rectangular enclosure made up of N 
horizontal sublayers of different K and a, (/) horizontal cylindrical enclosure, (g) horizontal 
cylindrical annulus with axial heat flow, (A) horizontal cylindrical or spherical annulus with radial 
heat flow, (z) vertical cylindrical annulus with radial heat flow.

16-17
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(16.56) or by alternative results reported specifically for the high Rayleigh number 
regime: Weber [55] obtained Nu = 0.577 (L/H) Ra1/"; this formula overestimates by 
roughly 14% experimental and numerical data from three sources (Bejan [11, p. 398]). 
More refined theories for regime III have been proposed by Bejan [56] and Simpkins 
and Blythe [57], where the constant that appears in Nu oc ( is replaced by a
weak function of both H/L and Ra/Z. For expedient engineering calculations involv
ing heat transfer dominated by convection, Fig. 16.4 is recommended for shallow layers 
and Eq. (16.56) for regime III, Ra7/1,/2 < H/L < Ra1#2.

In the field of thermal insulation engineering, a more appropriate model for heat 
transfer in the configuration of Fig. 16.3a is the case where the heat flux q" is 
distributed uniformly along the two vertical sides of the porous layer. In the high 
Rayleigh number regime (regime III), the overall heat transfer rate is given by (Bejan 
[58])

1 I L )4/5
Nu = — — Rat,2/52\Hj H (16.58)

Figure 16.4. Chart for estimating the overall heat transfer rate across a shallow porous layer (see 
Fig. 16.3a with H/L < 1) heated in the end-to-end direction [11],
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where Raj!) = Kg^Il'-q”/{avk). The overall Nusselt number is defined as in Eq. 
(16.53), where Th - 7j is now the height-averaged temperature difference between the 
two sides of the rectangular cross section. The result (16.58) holds in the high Rayleigh 
number regime Raj)-1/3 < H/L < Ra*,/ 3.

The presence of impermeable partitions (flow obstructions) in the confined porous 
medium can have a dramatic effect on the overall heat transfer rate across the enclosure 
(Bejan [59]). With reference to the two-dimensional geometry of Fig. 16.36, in the 
convection-dominated regimes III and IV the overall heat transfer rate decreases 
steadily as the horizontal partition length / approaches L, i.e., as the partition divides 
the porous layer into two shorter layers [59]. The horizontal partition / has practically 
no effect in regimes I and II, where the overall heat transfer rate is dominated by 
conduction. If the partition is oriented vertically (Fig. 16.3c), then in the convection- 
dominated regime the overall heat transfer rate is approximately 40% of what it would 
have been in the same porous medium without the internal partition.

The heat transfer conclusions discussed so far, in connection with porous media 
confined in spaces heated from the side, apply to cases in which the medium can be 
modeled as homogeneous. It has been shown that the nonuniformity of permeability 
and thermal diffusivity can have a dominating effect on the overall heat transfer rate 
(Poulikakos and Bejan [60]). In cases where the properties vary so that the porous layer 
can be modeled as a sandwich of vertical sublayers of different permeability and 
diffusivity (Fig. 16.3<7), an important parameter is the ratio of the peripheral sublayer 
thickness (</) to the thermal boundary-layer thickness (8T j) based on the properties 
of the dx sublayer (note that 8T j scales as HRa/Zf2, where the Rayleigh number 
Ra/Z j = Kxg[3H(Th - Tc)/axv, where the subscript 1 represents the properties of the 
dx sublayer). If dx > 8T t, then the heat transfer through the left side of the porous 
system of Fig. 16.3d is impeded by a thermal resistance of order 8T x/(kxH). If the 
sublayer situated next to the right wall (dN) has exactly the same properties as the dx 
sublayer, and if 8T x < dx, dN, then the overall heat transfer rate in the convection- 
dominated regime can be estimated using Eq. (16.56) in which both Nu and Ra;/ are 
based on the properties of the peripheral layers.

In cases where the porous-medium inhomogeneity is such that the H X L system 
may be modeled as a sandwich of N horizontal sublayers (Fig. 16.3 e), the scale of the 
overall Nusselt number in the convection-dominated regime can be evaluated as 
(Poulikakos and Bejan [60]) .

L ” k, ( \1/2
Nu ~ 2-3/2R^21 - £ - - — (16.59)

17 1 = 1 ^1 \ /

where both Nu and Ra/Z j are based on the properties of the dx sublayer (Fig. 16.3e). 
The correlation in Eq. (16.59) was tested via numerical experiments in two-layer 
systems by Poulikakos and Bejan [60], Although the applicability of Eq. (16.59) is 
suggested by scale analysis, this correlation remains to be verified experimentally in 
future studies of natural convection in horizontally layered porous media with N > 2.

Related to the two-dimensional convection driven by heating from the side in Fig. 
16.3a is the convection heat transfer occurring in a porous medium confined to a 
horizontal cylindrical shape whose disk-shaped ends are at different temperatures (Fig. 
16.3/). A parametric solution for the horizontal cylinder problem is reported in a paper 
by Bejan and Tien [53]. The corresponding phenomenon in a porous medium in the 
shape of a horizontal cylinder with annular cross section (Fig. 16.3g), is discussed by 
Bejan and Tien [61].
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An important geometric configuration in thermal insulation engineering is a hori
zontal annular space filled with fibrous or granular insulation (Fig. 16.3/?). Note that in 
this configuration the heat transfer is radial between the concentric cylindrical surfaces 
of radii r, and ro, unlike in the earlier sketch (Fig. 16.3g), where the cylindrical 
surfaces were insulated and the heat transfer was axial. Experimental measurements 
and numerical solutions for the overall heat transfer in the configuration of Fig. 16.3/? 
have been reported by Caltagirone [62] and Bums and Tien [63], These authors’ results 
are reported either graphically or in tabular form for a discrete sequence of cases 
investigated in the laboratory or on the computer. A much-needed engineering correla
tion for the convection-dominated regime can be developed based on a scale analysis of 
the type described in Bejan [11, p. 194], Using the data of Caltagirone [62] in the range 
1.19 < r„/r, < 4, the following correlation is obtained by the present author:

XT <7a<tual ln(rOA)
Nu =------------ ~ 0.44 Ra1/-----------------------

Conduction 1 1 + 0.916( r,/r0) ‘
(16.60)

where Ra. = Kg/3r,(Th - Tc)/(av) and ^onduction = 2irk(Th - 7[,)/ln(r0/r,). This 
correlation is valid in the convection-dominated limit. Nu » 1.

Porous media confined to the space formed between two concentric spheres are also 
an important component in thermal insulation engineering. Figure 16.3/? can be 
interpreted as a vertical cross section through the concentric-sphere arrangement. 
Numerical heat transfer solutions for discrete values of Rayleigh number and radius 
ratio are reported graphically in Bums and Tien [63]. Using the analytical method 
outlined in Bejan [11, p. 194], the data that correspond to the convection-dominated 
regime (Nu > 1.5) are correlated within 2% by the scaling-correct expression developed 
by the present author

Nu _ _ 0 756 Ra./2----------- 1

^conduction 1 4“ 1.422( ^//* o)
(16.61)

where Ra. = Kg/3ri(Th - T^/(av) and <7conduction = 4^/c(7; - Tc)/(r, 1 - r0 }). In 
terms of the Rayleigh number based on the insulation thickness, Ra,. r = Kgfi(ri) - 
r, )(Th — Tc)/(av), the correlation of Eq. (16.61) transforms to

Nu = 0.756 Ra1/^ 
ro ri 1 + 1.422(r,/?;,)3/2

(16.62)

In this form, the Nusselt number expression has a maximum in z;/^ (at z;/z;, = 0.301); 
this maximum was noted empirically by Burns and Tien [63], and is now explained 
theoretically here by the scale analysis on which Eqs. (16.61) and (16.62) are based.

Heat-transfer by natural convection through an annular porous insulation oriented 
vertically (Fig. 16.3/) was investigated numerically by Havstad and Burns [64] and 
experimentally by Prasad et al. [65], For systems where both vertical cylindrical 
surfaces may be modeled as isothermal (Th and T), Havstad and Burns correlate their 
results with the five-constant empirical formula

Nu = 1 + <2j
a2

Ra"4 
ro (16.63)
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where a, = 0.2196, a2 = 1.334. a • = 3.702. a4 = 0.9296, and a5 = 1.168, and where 
R = Kg^ro(Th ~ Tj/(ap). The Nusselt number is defined as Nu = tfactuaiAconduction- 

where ?CL,nductiOn ~ ^^kH(Th - 7[.)/ln( ro/r(). The correlation of Eq. (16.63) fits the 
numerical data in the range 1 < H/ro < 20, 0 < Rar < 150, 0 < r,/ro < 1. and 1 < 
Nu < 3. In the boundary-layer convection regime (at high Rayleigh and Nusselt 
numbers), the scale analysis of this two-boundary-layer problem suggests the following 
scaling law (Bejan [11, p. 194]):

Nu = q---- - —— — Ra1/)-, (16.64)
q +• ri,/rl H

where Ra/Z = Kg(3H(Th Tt)/(av). Experimental data in the convection-dominated 
regime Nu » 1 are needed in order to determine the constants q and q (note that 
Havstad and Burns’s data are for moderate Nusselt numbers 1 < Nu < 3, i.e., for cases 
where pure conduction plays an important role).

The heat transfer results reviewed in this section for the geometries of Fig. 16.3 are 
all based on the idealization that the surface that surrounds the porous medium is 
impermeable. With reference to the two-dimensional geometry of Fig. 16.3a, the heat 
transfer through a shallow porous layer with one or both end surfaces permeable is 
anticipated theoretically by Bejan and Tien [53], Subsequent laboratory measurements 
and numerical solutions for Ra;/ values up to 120 validate the theory (Haajizadeh and 
Tien [66]).

Natural convection in cold water saturating the porous-medium configuration of 
Fig. 16.3 a was considered by Poulikakos [67]. Instead of the linear approximation in 
Eq (16.30), Poulikakos used the parabolic model

Pm ~ P = YPm(J~ Tm)\ (16.64a)

where y ~ 8.0 X 10“6 K-2 and Tm = 3.98°C for pure water at atmospheric pressure. 
The parabolic density model is valid in the temperature range 0 to 10°C. In the 
convection-dominated regime Nu » 1, the scale analysis illustrated in Bejan [11, p. 
194] leads to a Nusselt number correlation of the following kind:

L/H
Nu = q------775---------------- 777 (16.65)RaJ/2 + qRa”1 2 V ’

where RayA = KgyH(Th - Tm)2/(av), Rayc = KgyH(Tm - Tc)2/(ar), and where the 
Nusselt number is defined in Eq. (16.53). For the convection-dominated regime, 
Poulikakos [67] tabulates numerical results primarily for the case T = 0°C, Th = 
7.96°C: using these data, for cases in which 7[ and Th are symmetrically positioned 
around Tni (<?., when Ray/? = Ray(), the scaling-correct correlation in Eq. (16.65) takes 
the form

L
Nu » 0.26—Ra1/2 (16.66)

H

In other words, the two constants that appear in Eq. (16.65) satisfy the relationship 
c, ~ 0.26 (1 + c4). More experimental data for the high Rayleigh number regime in 
vertical layers with Ray/, ¥= Ray< are needed in order to determine q and q uniquely.
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16.4.7 Confined Layers Heated from Below
Assuming that the fluid that saturates the porous matrix expands upon heating 
(/? > 0), the heat transfer mechanism in a porous layer heated from below (Fig. 16.5a) 
may be dominated by convection if the temperature difference Th - Tc exceeds a 
certain critical value. By analogy with the phenomenon of Benard convection in a pure 
fluid, in the convection regime the flow consists of finite-size cells that multiply 
(become more slender) discretely as the destabilizing temperature difference Th - Tt 
increases. If Th — TL does not exceed the critical value necessary for the onset of

Figure 16.5. Configurations for natural-convection heat transfer in confined porous layers heated 
from below (a) to (d), and due to penetrative flows (e) to (z): (a) rectangular enclosure, (b) 
vertical cylindrical enclosure, (c) inclined rectangular enclosure, (d) wedge-shaped enclosure, (e) 
vertical cylindrical enclosure, (/) horizontal rectangular enclosure, (g) semi-infinite porous 
medium bounded by a horizontal surface with alternate zones of heating and cooling, (/?) shallow 
rectangular enclosure heated and cooled from one vertical wall only, (z) slender rectangular 
enclosure heated and cooled from one vertical wall only.



NATURAL CONVECTION 16*23

convection, the heat transfer mechanism through the layer of thickness H is that of 
pure thermal conduction. If ft > 0 and the porous layer is heated from above, i.e., if Th 
and T change places in Fig. 16.5a, then the fluid remains stably stratified and the heat 
transfer is again due to pure thermal conduction: q' = kL(Th - Tc)/H.

The onset of convection in an infinitely long porous layer heated from below was 
examined on the basis of linearized hydrodynamic stability analysis by Horton and 
Rogers [68] and Lapwood [69]. For fluid layers confined between impermeable and 
isothermal horizontal walls, these authors found that convection is possible if the 
Rayleigh number based on height, Raw = KgftH(Th - Te)/(av), exceeds 39.48. For a 
history of the early theoretical and experimental work on the onset of Benard 
convection in porous media, and for a rigorous generalization of the stability analysis 
to convection driven by combined buoyancy effects (Sec. 16.4.9), the reader is directed 
a seminal paper by Nield [70], where it is shown that the critical Rayleigh number for 
the onset of convection in infinitely shallow layers depends to a certain extent on the 
heat and fluid flow conditions imposed along the two horizontal boundaries.

Of practical interest in heat transfer engineering is the heat transfer rate at Rayleigh 
numbers that are higher than critical. There has been a considerable amount of 
analytical, numerical, and experimental work devoted to this issue. Reviews of these 
advances may be found in Cheng [5,6], Nield [10], Combamous and Bories [71], and 
Combamous [72], Figure 16.6 shows Cheng’s [5] compilation of results from nine 
sources concerning the convection-dominated regime in a porous layer heated from 
below. Convection heat transfer occurs at Rayleigh numbers above approximately 40. 
The scale analysis of the convection regime (Bejan [11, pp. 412-414]) concludes that 
the Nusselt number should increase linearly with the Rayleigh number, whence the

Figure 16.6. Summary of overall heat transfer through porous layers heated from below |5,11],
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formula

Nu ~ ^Raz/ for Raw > 40 (16 67a)

This linear relationship is confirmed by numerical heat transfer calculations at large 
Rayleigh numbers in a porous medium that obeys the Darcy flow model (Kimura [81]). 
However, as shown in Fig. 16.6, the theoretical scaling law (16.67) serves as an upper 
bound for some of the high-Ra/z experimental data available in the literature.

The deviation of some experimental high-Ra,/ measurements from Eq. (16.67a) has 
attracted considerable attention. Using a boundary-layer analysis of Darcy flow, 
Robinson and O’Sullivan [82] have argued that Nu should increase as Ra)/3. Com- 
barnous and Bories [71] link the same deviation to the failure of the homogeneous-por
ous-medium model, i.e., to the breakdown of the idealization of infinite heat transfer 
coefficient between the fluid and the solid matrix. The recent work of Georgiadis and 
Catton [83] shows that the discrepancy between the high-Ra^ measurements of Fig. 
16.6 can be accounted for by discarding the Darcy flow model and using the more 
general Forschheimer-Brinkman model, Eq. (16.16). This direction of research appears 
to be promising: in fact, by redoing the scale analysis that led to Eq. (16.67a) using the 
Forschheimer model instead of the Darcy model, the present author found that Nu 
should increase as ([103]; note added in proof)

/ H v \11/2
Nu-Ra1/2------- . (16.67b)

\ bK a I

It seems that the Nusselt number increases as Ra'/, where the exponent n decreases 
from 1 to 1/2 as inertial effects become important. In addition, the proportionality 
constant in the Nu cc Ra/ relationship decreases as the medium Prandtl number v/a 
decreases. The important group (Hv/bKa) identified in eq. (16.67b) may be regarded 
as the “porous medium Prandtl number.”

The heat transfer characteristics discussed so far in this section refer to layers whose 
length/height ratio is considerably greater than one. Natural-convection studies have 
also been reported for porous layers confined in rectangular parallelepipeds heated 
from below (Beck [84], Holst and Aziz [85]), horizontal circular cylinders (Zebib [86], 
Bories and Deltour [87], Bau and Torrance [88]), and horizontal annular cylinders (Bau 
and Torrance [89]). The general conclusion of these studies is that the lateral walls have 
a convection-suppression effect. For example, in a circular cylinder of diameter D and 
height H (Fig. 16.56), in the limit D H the critical condition for the onset of 
convection is Ra/Z = 13.56 (H/D)2 (Bau and Torrance [88]). Regarding heat transfer 
rates in the convection-dominated regime, the information of Fig. 16.6 applies if the 
lateral dimension (perpendicular to gravity) of the confined system is greater than the 
horizontal length scale of a single convection cell, i.e., greater than HRa,/'2 (Bejan 
[11, p. 413]).

In inclined porous layers that deviate from the horizontal position through an angle 
<f> (Fig. 16.5c), convection sets in at Rayleigh numbers that satisfy the criterion 
(Combamous and Bories [71])

39.48
Ra„>----- (16.68)cos 4>

where it is assumed that the boundaries are isothermal and impermeable. The average
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heat transfer rate at high Rayleigh numbers can be estimated with the formula

Nu = 1
4tt2s?

Rawcos <j>
(16.69)

£ /< .

s = 1

1 -

where A = 0 if Razzcos <5 < 4tt2s2 and ks = 2 if Razzcos > 4%252.
In a porous medium confined in a wedge-shaped (or attic-shaped) space cooled from 

above (Fig. 16.5d), convection consisting of a single counterclockwise cell exists even 
in the limit Razz -» 0 (Bejan and Poulikakos [90]). Numerical solutions of transient 
high Rayleigh number convection in wedge-shaped layers show the presence of a 
Benard-type instability at high enough Rayleigh numbers (Poulikakos and Bejan [91]). 
When H/L = 0.2, the instability occurs above Razz = 620; this critical Rayleigh 
number was found to increase as H/L increases.

The onset of convection in the layer of Fig. 16.5a saturated with water near the 
state of maximum density has been studied using linear stability analysis (Sun et al. 
[92]) and time-dependent numerical solutions of the complete governing equations 
(Blake et al. [93]). In both studies, the condition for the onset of convection is reported 
graphically or numerically for a discrete series of cases. The numerical results of Blake 
et al. [93] for layers with Tc = 0°C and 5°C < Th < 8°C can be used to derive

KgH
av

> 1.25 X 105exp[exp(3.8 - 0.4467;)] for Th in °C (16.70)

as an empirical dimensionless criterion for the onset of convection. Finite-amplitude 
heat and fluid flow results for Rayleigh numbers Kgy(Th — Tt.)2H/(av) of up to 104 
(i.e., about 50 times greater than critical) are also reported in Blake et al. [93],

Nuclear-safety considerations have led to the study of natural convection in 
horizontal saturated porous layers heated volumetrically at a rate q. Boundary 
conditions and observations regarding the onset of convection and overall Nusselt 
numbers vary from one study to another, as indicated in one of the more recent of such 
studies (Kulacki and Freeman [94]). Generally, it is found that convection sets in at 
so-called internal Rayleigh numbers

Raz =
KgH2q

f 2k
(16.71)

in the range 33 to 46, where the subscript f indicates properties of the fluid alone. Top 
and bottom surface temperature measurements in the convection-dominated regime are 
adequately represented by (Buretta and Berman [74]; see also Rhee et al. [95]) 

qH2 
2k(Th - Tc)

« 0.116 Ra0/73 (16.72)

where Th and 7] are the resulting bottom and top temperatures if q is distributed 
throughout the layer of Fig. 16.5a. The empirical correlation in Eq. (16.72) is based on 
experiments that reach into the high Rat range of 103 to 104.

16.4.8 Penetrative Flows
There are situations where the confining geometry is such that the buoyancy-driven 
flow penetrates the porous medium only partially. This class of natural-convection 
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phenomena may be categorized as penetrative flows (Bejan [11, pp. 403-407]). With 
reference to the two vertical cylindrical configurations sketched in Fig. 16.5e, if the 
cylindrical space is slender enough, the flow penetrates vertically to a distance (Bejan 
[96])

Ly = O.OSSr^Ra^ (16.73)

where Ra,. = Kg[$rn(Th - Tfl/(av) and Lv < H. The overall convection heat transfer 
rate through the permeable horizontal end is

9 = 0.255ro/c(7;-7;.)Raro (16.74)

A similar partial penetration mechanism is encountered in the two horizontal 
geometries of Fig. 16.5/. The length of lateral penetration, Lv, and the convection heat 
transfer rate in the two-dimensional geometry, q' (W/m), are (Bejan [97])

Lx = 0.167/ Ra1/2 (16.75)

q' = 0.32/c(Ta - TjRa^2 (16.76)

where Ra;, = Kgp(Th - Tc)H/(av) and Lx < L.
In a semi-infinite porous medium bounded from below or from above by a 

horizontal surface with alternating zones of heating and cooling (Fig. 16.5g), the 
buoyancy-driven flow penetrates vertically to a height or depth approximately equal to 
X Ra1/2, where Rax = KgfiX(Th — Tc)/(av) and X is the distance between a heated 
zone and an adjacent cooled zone (Poulikakos and Bejan [98]). Numerical heat transfer 
results are reported in the same paper for the Rax range 1 to 100.

In a porous medium heated and cooled along the same vertical wall of height H, the 
incomplete penetration can be either horizontal (Fig. 16.5h) or vertical (Fig. 16.5/) 
(Poulikakos and Bejan [99]). In the case of incomplete horizontal penetration, the 
penetration length and convective heat transfer rate scale as

Lx~HKtf (16.77)

q'~k(Th- T/Ra1/2 (16.78)

These order-of-magnitude results are valid if Ra1/2 < L/H and Ra/Z > 1. The corre
sponding scales of incomplete vertical penetration (Fig. 16.5/) are

/ L\2/3
Ly~H[-\ Ra^/3 (16.79)

/ L \1/3
q' ~ k(Th — Tc)^ —RaHj (16.80)

and are valid if Ra1/2 > L/H and Ra1/2 > H/L. The penetrative flows of Fig. 16.5/? 
and z occur when the heated section Th is situated above the cooled section T. When 
the positions of Th and 7] are reversed, the buoyancy-driven flow fills the entire space 
JI X L (Poulikakos and Bejan [99]).
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16.4.9 Combined Heat and Mass Transfer
It is fitting to close this chapter with a look at an emerging subfield in porous-media 
research, namely natural convection due to combined buoyancy effects of temperature 
and concentration gradients. In geophysical fluid mechanics, this topic is referred to 
also as “double-diffusive” or “thermohaline” convection. The subfield has its origins in 
Nield’s [70] pioneering paper on the stability of a horizontal porous layer subjected to 
heat and mass transfer in the vertical direction. With reference to Fig. 16.5a, Nield 
considered the additional effect of the concentration of constituent i maintained along 
the bottom wall (Cb) and the top wall (C,). Instead of the density-temperature relation 
of Eq. (16.30a), he used

p « pjl - P(T- Th) - Pc(C - C6)] (16.81)

where = — (1/p) ( dp/dC)P is the concentration expansion coefficient. For saturated 
porous layers confined between impermeable walls with uniform T and C distribu
tions, Nield found that convection is possible if

RaH -I- Rao H > 39.48 (16.82)

where Ra„ = Kg{SH(Th - Tc)/(av) and Rafl W = KgficH(Ch - Ct)/(vD), with D 
the mass diffusivity of constituent i through the solution-saturated porous medium. 
Therefore, since can be positive or negative, the effect of mass transfer from below 
can be respectively either to decrease or increase the critical Raz/ for the onset of 
convection. Alternatives to Eq. (16.82) for horizontal porous layers subjected to other 
boundary conditions are also presented in Nield’s paper [70],

In the single-wall vertical flow configuration of Fig. 16.2 e, the additional buoyancy 
effect caused by the imposed concentration difference Cw — Cx can either aid or 
oppose the familiar flow due to TK - Tx. Combined heat and mass transfer has only 
recently come under scrutiny (Bejan [11, pp. 335-338], Bejan [29, pp. 187-189], and 
Bejan and Khair [100]). An important role is played by the buoyancy ratio N = 
- Q.)/[/?(?], — Ty.)]. In heat-transfer-driven flows (|jV| 1) the heat transfer rate is
given by Eq. (16.40), and the overall mass transfer rate can be estimated based on the 
scaling laws

J'
D(CW-CX)

Ra^Le1'2 
Ra^2Le

for
for

Le » 1
Le«l

(16.83)

where /' [kg/(s • m)] is the overall mass transfer rate of constituent /, and Le is the 
Lewis number of the solution-saturated porous medium, a/D. On the other hand, in 
mass-transfer-driven situations (|7V| » 1), the overall mass transfer rate is

j’ 
D(CW-CJ

= 0.888(Ra//Le|Ar|)1/2 (16.84)

for all Lewis numbers, whereas the overall Nusselt number obeys the scaling laws

k(Tn - Tx)

(RaH\N\)1/2 for Le « 1

Le 1/2(Ra//|AT|)1/2 for Le » 1
(16.85)
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The order-of-magnitude results of Eqs. (16.83) and (16.85) agree within 15% with 
overall heat and mass transfer calculations based on similarity solutions to the same 
problem (Bejan and Khair [100]). With reference to Fig. 16.3a, where the vertical walls 
are now maintained at different temperatures and concentrations, the heat and mass 
transfer due to convection driven by combined buoyancy effects was documented in 
terms of numerical experiments by Trevisan and Bejan [101, 102].
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NOMENCLATURE

b coefficient in Forschheimer’s modification of Darcy’s law, m-1, ft-1
C constituent concentration, kg/m3, lbm/ft3
d sphere diameter, m, ft
D mass diffusivity, m2/s, ft2/s
D diameter of a circular tube, or distance between parallel plates m, ft
g gravitational acceleration, m/s2, ft/s2
H height, m, ft
/' constituent mass flux, kg/(m • s), lbm/(ft • s)
K permeability, defined by Eq. (16.5) or (16.6), m2, ft2
k effective thermal conductivity of the porous medium with fluid inside,

W/(m ■ K), Btu/(hr ■ ft ■ °F)
L length, m, ft
I penetration length, m, ft
J penetration height, m, ft
L.c Lewis number = a/D
N buoyancy ratio = ^.{Cw - Coc)/[j8(Tw - 7^)]
Nu Nusselt number = hD/k, hL/k, or as indicated in the text
P pressure, Pa, lb,/in2.
q heat transfer rate, W, Btu/hr
q' heat transfer rate per unit length, W/m. Btu/(hr • ft)
q" heat flux (heat transfer rate per unit area), W/m2, Btufhr ft2)
q volumetric heat generation rate, W/m2. Btu/(hr • ft3)
r radial coordinate, m, ft
r inner radius, m, ft
r„ outer radius, m, ft
Raz internal Rayleigh number = {k^/av)fKgH3q /2k
Rar Darcy-modified Rayleigh number = Kgfty(Tw — To)/(ai<)
Ra*  Rayleigh number based on heat flux, = Kgfty2q"/(avk)
Raoo. r Rayleigh number for inertial flow, = g/3y2(Tw - Tx)/(ba2)
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Ra*.  Rayleigh number for inertial flow, based on heat flux, = gfty2q''/(kba2)
Raz/ Rayleigh number, = Kg(iH(Th — Tc)/av for free convection in an en

closure, = KgfSH{T^H — Tv L)/av for free convection over a vertical 
wall: Ra., Ra., Rar and RaA are defined in a manner similar to i 'o *o  ri A
Raw for an enclosure with H replaced by r;, r„, r„ — r,, and X 
respectively.

Ra* z Rayleigh number based on heat flux, = KgfSH2q''/avk
Rayi Rayleigh number for the cold side of a porous medium saturated with fluid

near the density maximum, = KgyH(Tm - Tc)2/av
Ra yh Rayleigh number for the hot side of a porous medium saturated with fluid 

near the density maximum, = KgyH(Th - Tm)2/av
t time, s, hr
T temperature, °C, K, °F, °R
7 cold-side temperature, °C, K, °F, °R
Th hot-side temperature, °C, K, °F, °R
Tm temperature of water at maximum density for pure water at atmospheric

pressure = 3.98 °C = 39.16 °F
u velocity component in the x direction, m/s, ft/s
r velocity component in the y direction, m/s, ft/s
w velocity component in the z direction, m/s, ft/s
a , r, z Cartesian coordinates, m, ft

Greek Symbols
a thermal diffusivity, m2/s, ft2/s

coefficient of thermal expansion, K-1, °R-1
ft, coefficient of concentration expansion, m3/kg, ft3/lbm
y viscosity, Pa ■ s, lbTO/(ft • s)
v kinematic viscosity, m2/s, ft2/s
p density, kg/m?, lbm/ft3
q similarity variable
ct capacity ratio
r dimensionless time, defined in Eq. (16.33a)
ip stream function, m2/s, ft2/s
o porosity
w = (Wk/HkJRa1/2

Subscripts
b bottom wall
c cold side
f fluid (liquid or gas) phase
h hot side
m bulk property
m property of the state of maximum density
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5 solid phase
ir wall condition
x local value, in the x direction
j local value, in the y direction
(• local value, in the 0 direction
0 reference property
oc condition sufficiently far from the wall

REFERENCES

I M Muskat, The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill, New 
York, 1937; 2nd printing, Edwards, Ann Arbor, MI, 1946.

2. J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972.
3. A E. Scheidegger, The Physics of Flow through Porous Media, Macmillan, New York, 1957.
4. R. A Greenkom, Flow Phenomena in Porous Media, Dekker, New York, 1983.
5. P. ( heng, Heat Transfer in Geothermal Systems, Adv. Heat Transfer, Vol. 14, pp. 1-105, 

1978.
6 P. Cheng, Geothermal Heat Transfer, Handbook of Heat Transfer Applications, ed. W. M. 

Rohsenow, J. P. Hartnett, and E. Ganic, 2nd ed., McGraw-Hill, New York, Chap. 11,1985.
7. M J. O’Sullivan, Convection with Boiling in a Porous Layer, Convective Flows in Porous 

Media, ed. R. A. Wooding and Z. White, DSIR Sci. Info. Publishing Centre, P. O. Box 9741, 
Wellington, New Zealand, 1985.

8 R McKibbin, Thermal Convection in Layered and Anisotropic Porous Media: A Review, 
Convective Flows in Porous Media, ed. R. A. Wooding and Z. White, DSIR Sci. Info. 
Publishing Centre, P. O. Box 9741, Wellington, New Zealand, 1985.

9 A. Bejan, A. Synthesis of Analytical Results for Natural Convection Heat Transfer across 
Rectangular Enclosures, Int. J. Heat Mass Transfer, Vol. 23, pp. 723-726, 1980.

10. D A. Nield, Recent Research on Convection in a Saturated Porous Medium, Convective 
Flows in Porous Media, ed. R. A. Wooding and Z. White, DSIR Sci. Info. Publishing Centre, 
P. O. Box 9741, Wellington, New Zealand, 1985.

11. A. Bejan, Convection Heat Transfer, Wiley, New York, 1984.
12. A. Bejan, Engineering Thermodynamics, Mechanical Engineers' Handbook, ed. M. Kutz, 

Wiley, New York, Chap. 54,1986.
13. H Darcy, Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont, Paris, 1856.
14. J. Kozeny, Uber kapillare Leitung des Wassers im Boden, Sitzber. Akad. Wiss. Wien, 

Math-naturw. KI., Vol. 136, Abt. Ila, p. 277, 1927.
15. J C. Ward, Turbulent Flow in Porous Media, J. Hydraul. Div. ASCE, Vol. 90, No. HY5, 

pp. 1-12, 1964.
16. P. H. Forschheimer, Z. Ver. Dtsch. Ing., Vol. 45, pp. 1782-1788, 1901.
17. S. Ergun, Fluid Flow through Packed Columns, Chem. Eng. Progr., Vol. 48, No. 2, pp. 

89-94, 1952.
18 H C Brinkman, A Calculation of the Viscous Force Extended by a Flowing Fluid on a 

Dense Swarm of Particles, Appl. Sci. Res., Vol. Al, pp. 26-34, 1947.
19 K Vafai and C. L. Tien, Boundary and Inertia Effects on Flow and Heat Transfer in Porous 

Media, Int. J. Heat Mass Transfer, Vol. 24, pp. 195-203, 1981.
20 U Grigull and H. Sandner, Heat Conduction, transl. by J. Kestin, Hemisphere, Washington, 

1984.



REFERENCES 16-31

21. P Cheng. Combined Free and Forced Convection Flow about Inclined Surfaces in Porous 
Media, Int. J Heat Mass Transfer, Vol. 20, pp. 807-814, 1977.

22. P Cheng, Mixed Convection about a Horizontal Cylinder and a Sphere in a Fluid-Saturated 
Porous Medium, Int. J. Heat Mass Transfer, Vol. 25, pp. 1245-1246, 1982.

23 W. M. Rohsenow and H. Y. Choi, Heat, Mass and Momentum Transfer, Prentice-Hall, 
Englewood Cliffs, NJ, 1961.

24 C L. Hwang and L. T. Fan, Finite Difference Analysis of Forced Convection Heat Transfer 
in Entrance Region of a Flat Rectangular Duct, Appl. Set. Res., Vol. 13A, pp. 401-422, 
1964.

25. A. Bejan, Natural Convection in an Infinite Porous Medium with a Concentrated Heat 
Source, J. Fluid Meeh , Vol. 89, pp. 97-107, 1978.

26. C E. Hickox and H. A. Watts, Steady Thermal Convection from a Concentrated Source in a 
Porous Medium, J. Heat Transfer, Vol. 102, pp. 248-253, 1980.

27. C E. Hickox, Thermal Convection at Low Rayleigh Number from Concentrated Sources in 
Porous Media, J. Heat Transfer, Vol. 103, pp. 232-236, 1981.

28. R A. Wooding, Convection in a Saturated Porous Medium at Large Rayleigh or Peclet 
Number, J. Fluid Meeh., Vol. 15, pp. 527-544, 1963.

29 A. Bejan, Solutions Manual for Convection Heat Transfer, Wiley, New York, 1984.
30 P. Cheng and W. J. Minkowycz, Free Convection about a Vertical Plate Embedded in a 

Saturated Porous Medium with Application to Heat Transfer from a Dike, J. Geophys. Res., 
Vol. 82, pp. 2040-2044, 1977.

31 D. A. Nield and S. P. White, Natural Convection in an Infinite Porous Medium Produced by 
a Line Heat Source, Mathematical Models in Engineering Science, ed. A. McNabb, R. A. 
Wooding, and M. Rosser, Dept. Sci. and Indust. Res., Wellington, New Zealand, 1982.

32. D. B. Ingham, J. H. Merkin, and I. Pop. The Collision of Free-Convective Boundary Layers 
on a Horizontal Cylinder Embedded in a Porous Medium, Q. J. Meeh. Appl. Math., Vol. 
36, pp. 313-335, 1983.

33. V S. Avduyevskiy, V. N. Kalashnik, and R. M. Kopyatkevich, Investigation of Free-Convec- 
tion Heat Transfer in Gas-Filled Porous Media at High Pressures (English trans, of the 
Russian conference paper given in 1976 at the 5th All-Union Heat and Mass Transfer 
Conference, Minsk), Heat Transfer—Sov. Res., Vol. 10, No. 5, pp. 136 -144, 1978.

34. P Cheng and I. Pop, Transient Free Convection about a Vertical Flat Plate Embedded in a 
Porous Medium, Int. J. Eng. Sci., Vol. 22, pp. 253-264, 1984.

35 A. Bejan and R. Anderson, Heat Transfer across a Vertical Impermeable Partition Imbedded 
in a Porous Medium, Int. J. Heat Mass Transfer, Vol. 24, pp. 1237-1245, 1981.

36. A. Bejan and R. Anderson, Natural Convection at the Interface between a Vertical Porous 
Layer and an Open Space, J. Heat Transfer, Vol. 105, pp. 124-129, 1983.

37. J. M. Ramilison and B. Gebhart, Buoyancy Induced Transport in Porous Media Saturated 
with Pure or Saline Water at Low Temperatures, Int. J. Heat Mass Transfer, Vol. 23, pp. 
1521-1530, 1980.

38. B. Gebhart and J. C. Mollendorf, A. New Density Relation for Pure and Saline Water, Deep 
Sea Res., Vol. 24, pp. 831-841, 1977.

39. W. J. Minkowycz and P. Cheng, Free Convection about a Vertical Cylinder Embedded in a 
Porous Medium, Int. J. Heat Mass Transfer, Vol. 19, pp. 805-813, 1976.

40. O. A. Plumb and J. S. Huenefeld, Non-Darcy Natural Convection from Heated Surfaces in 
Saturated Porous Media, Int. J. Heat Mass Transfer, Vol. 24, pp. 765-768, 1981.

41. A. Bejan and D. Poulikakos, The Non-Darcy Regime for Vertical Boundary Layer Natural 
Convection in a Porous Medium, Int. J. Heat Mass Transfer, Vol. 27, pp. 717-722, 1984.

42. D. A. Nield and D. D. Joseph, Effects of Quadratic Drag on Convection in a Saturated 
Porous Medium, Phys. Fluids, Vol. 28, pp. 995-997, 1985.



1 6«32 CONVECTIVE HE \T TRANSFER IN POROUS MEDIA

43. S. W. Churchill and R. Usagi, A General Expression for the Correlation of Rates of Heat 
Transfer and Other Phenomena, AIChE J., Vol. 18, pp. 1121-1128, 1972.

44. S. W. Churchill, The Development of Theoretically Based Correlations for Heat and Mass 
Transfer, Lat. Am. J. Heat Mass Transfer, Vol. 7, pp. 207-229, 1983.

45. C. T. Hsu and P. Cheng, Vortex Instability in Buoyancy-Induced Flow over Inclined Heated 
Surfaces in Porous Media, J. Heat Transfer, Vol. 101, pp. 660-665, 1979.

46. C. T. Hsu and P. Cheng, Vortex Instability of Mixed Convective Flow in a Semi-infinite 
Porous Medium Bounded by a Horizontal Surface, Int. J. Heat Mass Transfer, Vol. 23, pp. 
789-798, 1980.

47. C. T. Hsu and P. Cheng, The Onset of Longitudinal Vortices in Mixed Convective Flow over 
an Inclined Surface in a Porous Medium, J. Heat Transfer, Vol. 102, pp. 544-549, 1980.

48. C. T. Hsu, P. Cheng, and G. M. Homsy, Instability of Free Convection Flow over a 
Horizontal Impermeable Surface in a Porous Medium, Int. J. Heat Mass Transfer, Vol. 21, 
pp. 1221-1228, 1978.

49. P Cheng and I. D. Chang, Buoyancy Induced Flows in a Saturated Porous Medium 
Adjacent to Impermeable Horizontal Surfaces. Int. J. Heat Mass Transfer, Vol. 19, pp. 
1267-1272, 1976.

50. I. Pop and P. Cheng, The Growth of a Thermal Layer in a Porous Medium Adjacent to a 
Suddenly Heated Semi-infinite Horizontal Surface, Int. J. Heat Mass Transfer, Vol. 26, pp. 
1574-1576, 1983.

51 S Kimura, A. Bejan, and I. Pop, Natural Convection Near a Cold Plate Facing Upward in a 
Porous Medium, J. Heat Transfer, Vol. 107, pp. 819-825, 1985.

52 D Poulikakos and A. Bejan, Unsteady Natural Convection in a Porous Layer, Phys. Fluids, 
Vol. 26, pp. 1183-1191, 1983.

53. A. Bejan and C. L. Tien, Natural Convection in a Horizontal Porous Medium Subjected to 
an End-to-End Temperature Difference, J. Heat Transfer, Vol. 100, pp. 191-198,1978; also 
errata: Vol. 105, pp. 683-684, 1983.

54. C . E. Hickox and D. K. Gartling, A Numerical Study of Natural Convection in a Horizontal 
Porous Layer Subjected to an End-to-End Temperature Difference, J. Heat Transfer, Vol. 
103, pp. 797-802, 1981.

55. J E. Weber, The Boundary Layer Regime for Convection in a Vertical Porous Layer, Int. J. 
Heat Mass Transfer, Vol. 18, pp. 569-573, 1975.

56. A. Bejan, On the Boundary Layer Regime in a Vertical Enclosure Filled with a Porous 
Medium, Lett. Heat Mass Transfer, Vol. 6, pp. 93-102, 1979.

57. P. G. Simpkins and P. A. Blythe, Convection in a Porous Layer, Int. J. Heat Mass Transfer, 
Vol. 23, pp. 881-887, 1980.

58 A. Bejan, The Boundary Layer Regime in a Porous Layer with Uniform Heat Flux from the 
Side, Int. J. Heat Mass Transfer, Vol. 26, pp. 1339-1346, 1983.

59. A. Bejan, Natural Convection Heat Transfer in a Porous Layer with Internal Flow Obstruc
tions, Int. J. Heat Mass Transfer, Vol. 26, pp. 815-822, 1983.

60. D. Poulikakos and A. Bejan, Natural Convection in Vertically and Horizontally Layered 
Porous Media Heated from the Side, Int. J. Heat Mass Transfer. Vol. 26, pp. 1805-1814, 
1983.

61 A Bejan and C. L. Tien, Natural Convection in Horizontal Space Bounded by Two 
Concentric Cylinders with Different End Temperatures, Int. J. Heat Mass Transfer, Vol. 22, 
pp. 919-927, 1979.

62. J. P. Caltagirone, Thermoconvective Instabilities in a Porous Medium Bounded by Two 
Concentric Horizontal Cylinders. J. Fluid Meeh., Vol. 76, pp. 337-362, 1976.

63. P. J. Bums and C L. Tien, Natural Convection in Porous Media Bounded by Concentric 
Spheres and Horizontal Cylinders, Int. J. Heat Mass Transfer, Vol. 22, pp. 929- 939, 1979.



REFERENCES 16-33

64 M. A Havstad and P. J. Bums, Convective Heat Transfer in Vertical Cylindrical Annuli 
Filled with a Porous Medium, hit. J. Heat Mass Transfer, Vol. 25, pp. 1755-1766, 1982.

65. V Prasad, F. A. Kulackl. and M. Keyhani, Natural Convection in Porous Media, J. Fluid 
Meeh., Vol. 150, pp. 89-119, 1985.

66. M. Haajizadeh and C L Tien, Natural Convection in a Rectangular Porous Cavity with One 
Permeable Endwall, J. Heat Transfer, Vol. 105, pp. 803-808, 1983.

67 D Poulikakos, Maximum Density Effects on Natural Convection in a Porous Layer 
Differentially Heated in the Horizontal Direction, Int. J. Heat Mass Transfer, Vol. 27, pp. 
2067-2075, 1984.

68 C W. Horton and F. T. Rogers, Convection Currents in a Porous Medium, J. Appl. Phys., 
Vol. 16, pp. 367-370, 1945.

69 E R. Lapwood, Convection of a Fluid in a Porous Medium, Proc. Camb. Phil. Soc., Vol. 44, 
pp. 508-521, 1948.

70. D. A. Nield, Onset of Thermohaline Convection in a Porous Medium, Water Resources Res., 
Vol. 4, pp. 553-560, 1968.

71 M A. Combamous and S. A. Bories, Hydrothermal Convection in Saturated Porous Media, 
Adv. Hydrosci., Vol. 10, pp. 231-307, 1975.

72. M. A. Combamous, Natural Convection in Porous Media and Geothermal Systems. Heat 
Transfer 1978, Vol. 6, pp. 45-59, 1978.

73. K J. Schneider, Investigation of the Influence of Free Thermal Convection in Heat Transfer 
Through Granular Material, Paper 11-4, Proc. 11th Int. Congr. Refrig., pp. 247-254, 1963.

74. R J. Buretta and A. S. Berman, Convective Heat Transfer in a Liquid Saturated Porous 
Layer, J. Appl. Meeh., Vol. 43, pp. 249-253, 1976.

75. Y C. Yen, Effects of Density Inversion on Free Convective Heat Transfer in Porous Layer 
Heated from Below, Int. J. Heat Mass Transfer, Vol. 17, pp. 1349-1356, 1974.

76 J. W. Elder, Steady Free Convection in a Porous Layer Heated from Below, J. Fluid Meeh., 
Vol. 27, pp. 29-48, 1967.

77, T. Kaneko, M. F. Mohtadi, and K. Aziz, An Experimental Study of Natural Convection in 
Inclined Porous Media, Int. J. Heat Mass Transfer, Vol. 17, pp. 485-496, 1974.

78 V P. Gupta and D. D. Joseph, Bounds for Heat Transport in a Porous Layer, J. Fluid 
Meeh., Vol. 57, pp. 491-514, 1973.

79. J. M. Strauss, Large Amplitude Convection in Porous Media, J. Fluid Meeh., Vol. 64, pp. 
51-63, 1974.

80. M. A. Combamous and P. Bia, Combined Free and Forced Convection in Porous Media, 
Soc. Pet. Eng. J., Vol. 11, pp. 399-405, 1971.

81. S. Kimura, G. Schubert and J. M Straus, Route to Chaos in Porous-Medium Thermal 
Convection, J. Fluid Meeh., Vol. 166, pp. 305-324, 1986.

82. J. L. Robinson and M. J. O’Sullivan, A Boundary Layer Model of Flow in a Porous Medium 
at High Rayleigh Number, J. Fluid Meeh., Vol. 75, pp. 459-467, 1976.

83. J Georgiadis and I. Catton, Prandtl Number Effect on Benard Convection in Porous Media, 
J. Heat Transfer, No\. 108, pp. 284-290, 1986.

84. J. L. Beck, Convection in a Box of Porous Material Saturated with Fluid, Phys. Fluids, Vol. 
15, pp. 1377-1383, 1972.

85. P H. Holst and K Aziz, Transient Three-Dimensional Natural Convection in Confined 
Porous Media, Int. J. Heat Mass Transfer, Vol. 15, pp. 73-90, 1972.

86. A Zebib, Onset of Natural Convection in a Cylinder of Water Saturated Porous Media, 
Phys. Fluids, Vol. 21, pp. 699-700, 1978.

87. S Bories and A. Deltour, Influence des Conditions aux limites sur la Convection Naturelle 
dans un Volume Poreux Cylindrique, Int. J. Heat Mass Transfer, Vol. 23, pp. 765-771, 
1980.



16*34 CONVECTIVE HEAT TRANSFER IN POR OUS MEDIA

88. H. H. Bau and K. E. Torrance, Low Rayleigh Number Thermal Convection in a Vertical 
Cylinder Filled with Porous Materials and Heated from Below, J. Heat Transfer, Vol. 104, 
pp. 166-172, 1982.

89. H. H. Bau and K. E. Torrance, Onset of Convection in a Permeable Medium between 
Vertical Coaxial Cylinders, Phys. Fluids, Vol. 24, pp. 382-385, 1981.

90. A. Bejan and D. Poulikakos, Natural Convection in an Attic-Shaped Space Filled with 
Porous Material, J. Heat Transfer, Vol. 104, pp. 241-247, 1982.

91. D. Poulikakos and A. Bejan, Numerical Study of Transient High Rayleigh Number Convec
tion in an Attic-Shaped Porous Layer, J. Heat Transfer, Vol. 105, pp. 476-484, 1983.

92. Z. S. Sun, C. Tien, and Y. C. Yen, Onset of Convection in a Porous Medium Containing 
Liquid with a Density Maximum, Heat Transfer 1970, Vol. IV, Paper NC 2.11, 1970.

93. K R. Blake, A. Bejan, and D. Poulikakos, Natural Convection Near 4°C in a Water 
Saturated Porous Layer Heated from Below, hit. J. Heat Mass Transfer, Vol. 27, pp. 
2355-2364, 1984.

94. F. A. Kulacki and R. G. Freeman, A Note on Thermal Convection in a Saturated, 
Heat-Generating Porous Layer, J. Heat Transfer, Vol. 101, pp. 169-171, 1979.

95. S. J. Rhee, V. K. Dhir, and I. Catton, Natural Convection Heat Transfer in Beds of 
Inductively Heated Particles, J. Heat Transfer, Vol. 100, pp. 78-85, 1978.

96. A Bejan, Natural Convection in a Vertical Cylindrical Well Filled with Porous Medium, Int. 
J. Heat Mass Transfer, Vol. 23, pp. 726-729, 1980.

97. A. Bejan, Lateral Intrusion of Natural Convection into a Horizontal Porous Structure, J. 
Heat Transfer, Vol. 103, pp. 237-241, 1981.

98. D. Poulikakos and A. Bejan, Penetrative Convection in Porous Medium Bounded by a 
Horizontal Wall with Hot and Cold Spots, Int. J. Heat Mass Transfer, Vol. 27, pp. 
1749-1758, 1984.

99. D. Poulikakos and A. Bejan, Natural Convection in a Porous Layer Heated and Cooled 
along One Vertical Side, Int. J. Heat Mass Transfer, Vol. 27, pp. 1879-1891, 1984.

100. A. Bejan and K. R. Khair, Heat and Mass Transfer by Natural Convection in a Porous 
Medium, Int. J. Heat Mass Transfer, Vol. 28, pp. 909-918, 1985.

101. O. V. Trevisan and A. Bejan, Natural Convection with Combined Heat and Mass Transfer 
Buoyancy Effects in a Porous Medium, Int. J. Heat Mass Transfer, Vol. 28, pp. 1597-1611, 
1985.

102 O. V. Trevisan and A. Bejan, Mass and Heat Transfer by Natural Convection in a Vertical 
Slot Filled with Porous Medium, Int. J. Heat Mass Transfer, Vol. 29, pp. 403-415, 1986.

103. A. Bejan, The Basic Scales of Natural Convection Heat and Mass Transfer in Fluids and 
Fluid-Saturated Porous Media, Int. Comm. Heat Mass Transfer, Vol. 14, pp. 107-123, 1987.



17
ENHANCEMENT OF SINGLE
PHASE HEAT TRANSFER
Ralph L. Webb
Department of Mechanical Engineering 
The Pennsylvania State University
University Park, Pennsylvania 16802

17.1 Introduction
17.2 Performance Evaluation Criteria (PEC)
17.3 Extended Surfaces for Gases

17.3.1 Plate-Fin Heat Exchangers
17.3.2 Finned-Tube Heat Exchangers
17.3.3 Individually Finned Tubes
17.3.4 Oval and Flat Tube Geometries
17.3.5 Row Effects — Staggered and Inline Layout

17.4 Packings for Gas-Gas Regenerators
17.5 Extended Surfaces for Liquids

17.5.1 Externally Finned Tubes
17.5.2 Internally Finned Tubes

17.6 Insert Devices
17.6.1 Displaced Enhancement Devices
17.6.2 Wire-Coil Inserts
17.6.3 Extended Surface Insert

17.7 Swirl-Flow Insert Devices
17.7.1 Laminar Flow
17.7.2 Turbulent Flow

17.8 Roughness
17.8.1 Heat Transfer and Friction Correlations
17.8.2 Prandtl Number Dependence
17.8.3 Heat Transfer Design Methods
17.8.4 Preferred Roughness Type

17 8 Application to Natural Convection
17.9 Closure 
Nomenclature 
References

17-1



1 7*2 ENHANCEMENT OF SINGLE-PHASE HEAT TRANSFER

17.1 INTRODUCTION

The subject of enhanced heat transfer has developed to the stage that it is of serious 
interest for heat-exchanger application. Industry has used enhanced heat transfer 
surfaces for two purposes: (1) to obtain compact and less expensive heat exchangers, 
and (2) to increase the UA value of the heat exchanger. The higher LA may be 
exploited in either of two ways: (1) to obtain an increased heat exchange rate for fixed 
fluid inlet temperatures, or (2) to reduce the mean temperature difference for the heat 
exchange; this provides increased thermodynamic process efficiency and yields a saving 
of operating costs.

Table 17.1 lists 13 techniques to provide enhancement. These techniques are 
segregated into two groupings—passive and active. Passive techniques employ special 
surface geometries or fluid additives for enhancement. Active techniques require 
external power, such as electric or acoustic fields and surface vibration. Recently 
published bibliographies provide citations to the technical literature [1] and U.S. 
Patents [2] on the technology of enhanced heat transfer. Table 17.1 lists the number of 
citations given in Ref. [1] for enhancement of single-phase heat transfer.

The majority of commercially interesting enhancement techniques are passive ones. 
The active techniques have not found commercial interest because of the capital and 
operating cost of the enhancement device and problems associated with vibration or 
acoustic noise. This chapter will limit discussion to the passive techniques.

Special surface geometries provide enhancement by establishing a higher hA per 
unit base surface area. Three basic methods are employed to increase the hA:

1 . Increase h without an appreciable area (A) increase.
2 Increase of A without appreciably changing h.
3 Increase of both h and A.

Examples of the above three methods are:

Method 1. Surface roughness or turbulence promoters
Method 2. Internally finned tubes or externally finned tubes with plain fins
Method 3. The louver fin geometry used in automotive radiators or the segmented 

finned-tube geometry used in finned-tube heat exchangers

This chapter will discuss applications of the passive enhancement techniques for 
laminar and turbulent flow to three basic flow geometries:

1 . Internal flow in circular tubes and axial flow in rod bundles
2 Channel flow in closely spaced parallel plate channels, typical of plate-fin and 

plate-type heat exchangers
3 F x temal flow normal to tubes and tube banks

For application to a two-fluid tubular heat exchanger, enhancement may be desired 
for the inner side, the outer side, or both sides of the tube. If enhancement is applied to 
the inner and outer tube surfaces, a doubly enhanced tube results. Applications for 
such doubly enhanced tubes include condenser and evaporator tubes. Depending on 
the design application, the two-phase heat transfer process may occur on the tube side 
or the shell side.



(b)

Figure 17.1. Five methods of making doubly enhanced tubes: (a) helical rib roughness on inner 
surface and integral fins on outer surface, (b) internal fins on inner surface and porous boiling 
coating on outer surface, (c) twisted tape insert on inner surface and integral fins on outer surface, 
(<7) corrugated roughness on inner and outer surfaces, (<?) corrugated strip rolled in a cylinder 
form and seam-welded.
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Consider, for example, a shell-side condenser with cooling water on the tube side. 
The preferred enhancement geometry for the condensing side may be substantially 
different from that desired for the water side. Hence, one must be aware of possible 
manufacturing limitations or possibilities that affect independent formation of the 
enhancement geometry on the inner and outer surfaces of a tube. Figure 17.1 illustrates 
five basic approaches that may be employed to provide doubly enhanced tubes. Those 
shown in Fig. 17.1a, b, and c allow independent shell-side and tube-side enhancement 
geometries. However, the outside enhancement of the corrugated tube in Fig. 17.lt/ 
results from the forming process of the tube-side ridges. Such a tube may give good 
tube-side enhancement but poorer shell-side performance than would result from a 
different shell-side enhancement geometry. Webb [3] discusses possibilities for manu
facturing doubly enhanced condenser tubes. Users should also be aware that it may not 
be possible to make a given enhancement geometry in all materials of interest. For 
example, the internally finned tube of Fig. 17.1a can easily be made as an aluminum

TABLE 17.1. Classification of Augmentation Techniques

Augmentation
Technique

Single
Phase 

Natural 
Convection

Single
Phase

Forced
Convection

Treated surfaces

PASSIVE TECHNIQUES0

Rough surfaces 7 418
Extended surfaces 23 416
Displaced enhancement devices — 59
Swirl flow devices — 140
Coiled tubes — 142
Surface tension devices — —
Additives for Equids 3 22
Additives for gases — 211

ACTIVE TECHNIQUES'7

Mechanical aids 16 60
Surface vibration 52 30
Fluid vibration 44 127
Electric or magnetic fields 50 53
Injection or suction 6 25
Jet impingement — 17

COMPOUND ENHANCEMENT d

“No external power required. 
^Not applicable.
‘ External power required.
rfTwo or more techniques.

2 50

17.lt/
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extrusion, but it would be extremely difficult to make from a very hard material, such 
as titanium. Webb [4] discusses particular enhancement geometries that have been 
commercially manufactured and their materials of manufacture. Table 17.1 shows that 
a variety of enhancement techniques are possible. For making decisions, the various 
enhancement techniques may be considered to be in competition with one another. The 
favored method will provide the highest performance per unit cost for the material of 
interest.

17.2 PERFORMANCE EVALUATION CRITERIA (PEC)

A quantitative method is required to evaluate the performance improvement provided 
by a given enhancement. The basic performance characteristic of an enhanced surface 
is defined by curves of the j and f vs. Reynolds number. One possibility for 
quantifying the performance improvement is to calculate the ratios j/j and f/f , 
where subscript p is for a plain surface at the same Re. However, this method is not 
recommended, because it does not define the actual performance improvement, subject 
to specific operating constraints.

The preferred evaluation method sets a performance objective (e.g., reduced surface 
area) and calculates the performance improvement relative to a reference design (e.g., 
plain tubes) for a given set of operating conditions and design constraints (e.g., 
constant pumping power). Hence, this method defines the improvement of the objective 
function (e.g., percent surface area decrease) relative to a heat exchanger without 
enhancement. Possible performance objectives of interest include:

1 . Reduced heat transfer surface material for fixed heat duty and pressure drop
2 Increased UA, which may be exploited in two ways:

a. To obtain increased heat duty
b. To secure reduced LMTD for fixed heat duty

3 Reduced pumping power for fixed heat duty

Objective 1 allows a smaller heat-exchanger size and, hopefully, reduced capital 
cost. Objectives 2b and 3 offer reduced operating cost. The reduced LMTD of objective 
2b will effect improved system thermodynamic efficiency, yielding lower system operat
ing cost. Objectives 2b and 3 are particularly important if “life cycle” cost analysis is of 
interest. A more costly augmented surface will be justified if the operating-cost savings 
are sufficiently high.

The major operational variables include the heat transfer rate, pumping power (or 
pressure drop), heat exchanger flow rate, and fluid velocity, which affect the exchanger 
flow frontal area. A PEC is established by selecting one of the operational variables for 
the performance objective, subject to design constraints on the remaining variables.

The design constraints placed on the exchanger flow rate and velocity cause key 
differences among the possible PEC relations. The increased friction factor of aug
mented surfaces may require reduced velocity to satisfy a fixed pumping-power (or 
pressure drop) constraint. If the exchanger flow rate is held constant, it may be 
necessary to increase the flow frontal area to satisfy the pumping-power constraint. 
However, if the mass flow rate is reduced, it is possible to maintain constant flow 
frontal area at reduced velocity. When the exchanger flow rate is reduced, it may 
operate at higher thermal effectiveness to provide the required heat duty. This may 
significantly reduce the performance potential of the augmented surface if the design
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TABLE 17.2. Performance Evaluation Criteria ford, / dip = 1

Case

Fixed

Objective

Consequences

Geom IF p <7 at;
N L 

h

w Re P 
~PP

q F 
t<p

FG-1 a N, L y X U 1 1 1 1* > 1 < i 1
FG-lb V, L X X MF 1 1 1 1* 1 i > i
FG-2a N, L X X T <7 1 1 < 1 < 1 1 > 1 i
FG-2b V, L X X MF 1 1 < 1 < 1 1 i < i
FG-3 N, L X X M 1 1 < 1 < 1 < 1 i i
FN-1 N X X X IL 1 < 1 < 1 < 1 1 i i
FN-2 N X X X J, L 1 < 1 1 P < 1 i 1
FN-3 N X X X IP 1 < 1 1 P < 1 i 1
VG-1 X X X X INL > T < 1 1 < P 1 i i
V( i-2a NL“ X X X t<7 > t < 1 1 < T 1 > i i
VG-2b NLU X X X MF > T < 1 1 < T 1 i < 1
VG-3 NLa X X X IP < i < 1 1 < P < 1 i i

"The product of N and L is constant in cases VG-2 and VG-3.
' For internal roughness. For internal fins, Re/Rep = DhS/djSp.

' Roughness with high-Pr fluids may not result in N/Np < 1 (or Re/Rep < 1).

effectiveness is sufficiently high. In many cases the heat exchanger flow rate is specified 
and thus flow-rate reduction is not permitted.

Table 17.2 defines PECs for 12 cases of interest with flow inside enhanced and 
smooth tubes of the same envelope diameter. The PECs are segregated by three 
different geometry constraints.

FG Criteria. The cross-sectional envelope area and tube length are held constant. 
The FG criteria may be thought of as a retrofit situation in which there is a 
one-for-one replacement of plain surfaces with enhanced surfaces of the same 
basic geometry (e.g., tube envelope diameter, tube length, and number of tubes 
for in-tube flow). The FG-2 criteria have the same objective functions as FG-1 
but require the enhanced surface design to operate at the same pumping power 
as the reference smooth-tube design. In most cases, this will require the enhanced 
exchanger to operate at reduced flow rate. The FG-3 criterion seeks reduced 
pumping power for fixed heat duty.

FV Criteria. These criteria maintain fixed flow frontal area and allow the length of 
the heat exchanger to be a variable. These criteria seek reduced surface area 
(FN-1) or reduced pumping power (FN-2) for constant heat duty.

1 G Criteria. In many cases, a heat exchanger is sized for a required thermal duty 
with a specified flow rate. In these situations, the FG and FN criteria are not 
applicable. Because the tube-side velocity must be reduced to accommodate the 
higher friction characteristics of the augmented surface, it is necessary to increase 
the flow area to maintain constant flow rate. This is accomplished by using a 
greater number of parallel flow circuits. Maintenance of a constant exchanger 
flow rate avoids the penalty encountered in the previous FG and FN cases of 
operating at higher thermal effectiveness.

Calculation of the performance improvement for any of the 12 cases in Table 17.2 
requires algebraic relations which quantify the objective function and constraints. The 



PERFORMANCE EVAL II A.TION CRITERIA (PEC) 17• 7

detailed algebraie equations for the various cases are given in Ref. [5], The concept of 
the PEC analysis will be explained for the case of a prescribed wall temperature or a 
prescribed heat flux. The heat transfer enhancement, hA/h A = K/K„. is given by

K St A G
(17.1)

where subscript p refers to the reference, or smooth surface. The relative friction power 
is

/ 
fP

(17.2)

Il is assumed that the smooth-tube operating conditions (Gp, fp, and Stp) are 
known The key to the use of Eqs. (17.1) and (17.2) is to determine the mass velocity G 
in the enhanced tube that satisfies the objective function and constraints. Consider, for 
example, case VG-1. This case sets K/Kp = P/Pp = 1 By eliminating A/A from 
Eqs. (17.1) and (17.2), one obtains

G pt/st v/2 
' f/fr I (17-3)

It is assumed that equations for St and f as a function of G are known. Hence, one 
iteratively solves Eq. (17.3) for G/Gp. Once G is known, the solution of Eq. (17.1) for 
A /A is easily performed.

The simple example described above does not provide for the most general condi
tions, for which one must take account of thermal resistances on the outer tube surface 
and the wall and fouling resistances. Webb [5] outlines the analysis method for this 
more general and more realistic situation.

The PEC defined in Table 17.2 may also be interpreted for flow normal to tube 
banks (bare or finned) and for plate-fin heat exchangers [6],

The FN and FG cases maintain constant cross-sectional flow area (N/N = 1). 
Cases FG-2 and FN-1 constrain P/Pp = 1, for which a reduced flow rate (W/Wp < 1) 
may be required to satisfy the constraint P/Pp = 1. It is possible that the potential 
benefits of an enhanced surface will be lost if the heat exchanger is required to operate 
with W/W < 1 [5]. When the flow rate is reduced, the LMTD is reduced (for constant 
A7i), and additional surface is required to compensate for the reduced LMTD. The VG 
cases avoid this problem by increasing the flow cross-sectional area sufficiently to 
maintain W/W = 1; this is accomplished by adding tubes in parallel. Hence, when a 
pumping-power constraint is applied, the greatest performance benefit of an enhanced 
surface will be realized by use of the VG criteria. This implies that enhanced surfaces 
will yield smaller benefits in retrofit applications with fixed flow area than in new 
designs, for which the flow frontal area may be increased over that of the correspond
ing plain tube design.

The PEC defined in Table 17.2 may also be interpreted for flow normal to tube 
banks (bare or finned) and for plate-fin heat exchangers, which are discussed in Section 
17.3 and illustrated by Fig. 17.2. Table 17.3 defines how the variables used in Table 
17.2 (flow in tubes) should be interpreted for the Fig. 17.3 geometries.
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TABLE 17.3. Interpretation of Table 17.2 PECs for
Fig. 17.3 Geometries

Variable
Flow in 
Tubes

Fig. 2 
Geometries

Flow area SN Sf
Mass flow rate IF SNG SG = SfGf
Surface area irdNL

fk/n;
N G a S,- G

NpGp Sfp Gp

17.3 EXTENDED SURFACES FOR GASES

In forced-convection heat transfer between a gas and a liquid, the heat transfer 
coefficient of the gas may be 10 to 50 times smaller than that of the liquid. The use of 
extended surfaces will reduce the gas-side thermal resistance. However, the resulting 
gas-side resistance may still exceed that of the liquid. In this case, it will be advanta
geous to consider use of specially configured extended surfaces which provide increased 
heat transfer coefficients. Such special surface geometries may provide heat transfer 
coefficients 50 to 150% higher than those given by plain extended surfaces. For heat 
transfer between gases, such enhanced surfaces will provide a substantial heat
exchanger size reduction. The heat-exchanger (recuperator) geometries of interest are 
shown in Fig. 17.2.

This section contains a description of special extended surface geometries which 
provide increased heat transfer coefficients for gases. The use of these surface geome
tries in plate-fin and finned-tube heat exchangers will be discussed.

17.3.1 Plate-Fin Heat Exchangers
Figure 17.3 shows six enhanced surface geometries. Typical fin spacings are 300 to 800 
fins/m. Due to the small hydraulic diameter and low density of gases, these surfaces 
are usually operated with 500 < Re < 1500 (hydraulic-diameter basis). To be effective, 
the enhancement technique must be applicable to low Reynolds number flows. The use 
of surface roughness will not provide appreciable enhancement for such flows. Two 
basic concepts have been extensively employed to provide enhancement:

1. Special channel shapes, such as the wavy channel, which provide mixing due to 
secondary flows or boundary-layer separation within the channel.

2. Repeated growth and wake destruction of boundary layers. This concept is 
employed in the offset strip fin, the louvered fin, and to some extent the 
perforated fin.

Offset Strip Fin. Figure 17.4 illustrates the enhancement principle of the Fig. 17.3c/ 
offset strip fin (OSF). A laminar boundary layer is developed on the short strip length, 
followed by its dissipation in the wake region between strips. Typical strip lengths are 3 
to 6 mm, and the Reynolds number (based on strip length) is well within the laminar 
region. The enhancement provided by an OSF of l/Dh = 1.88 is shown by Fig. 17.5. 
The OSF and plain fins are taken from Figs. 10-58 and 10-27, respectively, of Kays and 
London [7], The table in Fig. 17.3 compares the dimensions with the OSF scaled to the
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Figure 17.2. Extended surface geometries used for heat transfer with gases: (a) finned-tube 
heat-exchanger with flat fins, (b) individually finned tubes, (c) plate-fin exchanger.
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(d)(a)

Figure 17.3. Plate-fin exchanger surface geometries: (a) plain rectangular fins, (b) plain triangu
lar. (<•) wavy, (d) offset strip, (e) perforated, (/) louvered.

same hydraulic diameter as that of the plain fin. The scaled dimensions (fin height and 
fin thickness) of the OSF are approximately equal to those of the plain fin surface. 
Therefore, the performance difference is due to the enhancement provided by the short 
strip lengths (6.6 mm) of the OSF. At Re = 1000, the j factor of the OSF is 2.5 times 
higher than for the plain fin, and the friction factor is 3.0 times higher. Considering the 
j/f ratio as an “efficiency index” ratio between heat transfer and friction, the OSF 
Yields a 150%-increased heat transfer coefficient with a ratio of heat transfer to friction 
(j/f) 83% as high as that of the plain fin. Greater enhancement will be obtained by 
using shorter strip lengths.

PFC EXAMPLE 1

A more realistic comparison of the OSF and plain-fin performance is obtained using 
case VG-1 of Table 17.2. Assume that the plain fin (subscript /?) operates at Ref = 834. 
Equation (17.3), which applies to case VG-1, defines the value of G/G at which both 
surfaces satisfy 1 = K/Kp = P/Pp = W/Wp. It is necessary to solve Eq. (17.3) itera
tively for G/Gp, reading the j and f values for the OSF surface from Fig. 17.5. The



Figure 17.4. Boundary-layer and wake region of the offset strip fin [9],

Surface Geometry

Plain Offset Strip

in flow dir. (mm)

Surface designation 10-27 10-58'
Fins/m 437 437
Plate spacing (mm) 12.2 11.9
Hydraulic diam (mm) 3.51 3.51
Fin thickness (mm) 0.20 0.24
Offset-strip length — 6.6

"Dimensions geometrically scaled to give same hydraulic 
diameter as plain fin.

Figure 17.5. Comparison of j and / for the offset-strip-fin and the plain-fin surface geometries 
[7].

17-11
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final solution of Eq. (17.3) yields G/Gp = 0.923. So Re = 0.923 X 834 = 765 The / 
and f values of the OSF at Re = 765 are now known.

The surface area ratio A/As is obtained using Eq. (17.1):

K j A G
— = 1 =-----------

KP Jr Ap GP

Substituting the known values of j/jp and G/Gp in the above equation, one calculates 
A /A = 0.446. The OSF geometry requires only 44.6% as much surface area to provide 
the same hA as the plain-fin geometry. One may show that the flow frontal area must 
be increased 10% to maintain P/Pp = 1.

Kays [8] proposed a simple, approximation model to predict the curves of j and f 
vs. Re for the OSF with the following idealizations: (1) laminar boundary layers on the 
fins, (2) that the boundary layers developed on the fin are totally dissipated in the wake 
region between fins. Using the equations for laminar flow on a flat plate in a free 
stream, Kays’s analysis gives

j = 0.664 Ref05

/ = — + 1.328 Re 7 05J 21 1

(17.4)

(17-5)

The first term in Eq. (17.5) represents the form drag on the plate. This form drag 
contribution is proportional to the fin thickness z, and it has a negligible effect on the 
heat transfer coefficient. Kays suggested the use of CD = 0.88, based on potential flow 
normal to a thin plate. Although this model is only approximate, it will allow the 
designer to predict the effect of strip length and thickness.

Joshi and Webb [9] have developed a more sophisticated theoretical model to 
predict the characteristics of j and f vs. Re for the OSF array. This model properly 
includes all geometric factors of the array (s/b, t/l, t/s) and heat transfer to the base 
surface area to which the fins are attached. The model employs the numerical solution 
of Sparrow and Liu [8] to calculate the j and f factors on the fin surface. Sparrow and 
Liu’s analysis is for a zero-thickness fin and assumes laminar flow on the fin and wake 
regions. Joshi and Webb [9] show that the laminar model progressively fails when the 
Reynolds number exceeds a certain critical value. The J and f factors on the fin 
surface are predicted by a different equation when the transition Reynolds number is 
exceeded.

Multiple-regression power-law correlations have been developed by Joshi and Webb 
[9] and Wieting [10] to predict the characteristics of j and f vs. Re for the OSF array. 
The correlations of Refs. [9] and [10] were based on data from 21 and 22 OSF heat 
exchangers, respectively. Both references present separate correlations for the laminar 
and nonlaminar wake regions. The flow-visualization measurements of Joshi and Webb 
show that the Reynolds number (= GDh/p.) at which the wake departs from laminar 
flow is given by

/ M 1.23/ \ 0.58

Re*  = 257.2 - -
\ s ) \ I /

t / / \0'5

— + 1.328 — Re"05
\ Dp /

(17-6)
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The j and f correlations for Re < Re*  are given by

/ l \ -°147 , > -0.137
j, = 0.534 Re’0 560 — -JL \Dh] \b)

(17.7a)

(17.7b)

By examining j and f curves of the 21 test geometries, a Reynolds number of 
ReZ) = Re/ + 1000 was taken as the lower limit for the nonlaminar correlation. The 
following equations were developed for the nonlaminar region [9]:

(17.8a)

(
! \ -0.322 / ? v 0.089 

--- -----  Aj \Dh] (17.8b)

The j factor in the transition region between Re * < Re < Re * + 1000 is a log-linear 
interpolation between jt (at Re*  ) and jT (at Re*  + 1000). A similar equation is used 
for the friction factor.

The correlations predicted 82% of the f data and 91% of the j data within +15%. 
The geometric parameters of the test arrays on which Eqs. (17.7) and (17.8) were based 
are 0.13 < s/b < 1.0, 0.012 < t/l < 0.048, and 0.04 < t/s < 0.20.

The Wieting correlation [10] assumes Re*  = 1000. Equation (17.6) is expected to 
provide a more accurate prediction of the transition Reynolds number.

Louvered Fin. The louvered-fin geometry of Fig. 17.3/ bears a similarity to the OSF. 
Rather than offsetting the slit strips, the entire slit fin is rotated 20 to 60° relative to 
the air flow direction. The louvered surface is the standard geometry for automotive 
radiators. Current radiators use a louver strip width (in the air flow direction) of 1.0 to 
1.25 mm. For the same strip width, the louvered-fin geometry provides heat transfer 
coefficients comparable to the OSF. Shah and Webb [11] provide a description of 
modified louvered-fin geometries and give references to several data sources.

Based on tests of 32 louvered-fin geometries, Davenport [12] developed multiple 
regression correlations for the j and / vs. Re for

j = 0.249 Re/°'4240 33H0 26[ 41
\ H)

5 47Re/0'72/°’37/0’2/70’23|I
\ H /

f = 0.494 Re/

(300 < Re < 4000)

(70 < Re < 1000)

(1000 < Re < 4000)

(17.9a)

(17.9b)

(17.9c)
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Equation (17.9) contains dimensional terms; the required dimensions are millime
ters. Figure 17.6 defines the terms in the equations. The characteristic dimension in the 
Reynolds number limits is Dh, not lL as used in the correlations. Note that the 
corrugation has a flat base rather than being open as shown in Fig. Yl.lf. In 
the author’s opinion, Eqs. (17.9) are nevertheless applicable to Fig. 17.3/ corrugation 
geometry, which is used in automotive radiators. The author has used Eq. (17.9a) to 
predict the heat transfer performance of automotive radiators and has found agreement 
within + 15% with the test data. However, the pressure drop was underpredicted 30 to 
40%.

Wavy Fin. Kays and London [7] provide curves of j and f vs. Re for two wavy-fin 
geometries (Fig. 17.3c). Their performance is competitive with that of the OSF. No 
specific correlations exist for the j and / characteristics of wavy or herringbone fins. 
Two studies [13,14] of wavy channel geometries used in plate-type heat exchangers 
provide additional data for small aspect ratio channels. Goldstein and Sparrow [15] 
used a mass transfer technique to measure the local mass transfer coefficient distribu
tion for a herringbone wave configuration. They propose that the enhancement results 
from Goertier vortices that form as the flow passes over the concave wave surfaces. 
These are counterrotating vortices which have a corkscrew-like flow pattern. Flow 
visualization studies by this author show local zones of flow separation and reattach
ment on the concave surfaces. The redeveloping boundary layer from the reattachment 
point also contributes to heat transfer enhancement.

Perforated Fin. This surface geometry (Fig. 17.3e) is made by punching a pattern of 
spaced holes in the fin material before it is folded to form the U-shaped flow channels. 
If the porosity of the resulting surface is sufficiently high, enhancement can occur due 
to boundary-layer dissipation in the wake region formed by the holes. However, Shah 
[16] has shown that little enhancement occurs for Re < 2000 if the heat transfer 
coefficient is based on the plate area before the holes were punched. Moderate 
enhancement may occur in the transition and turbulent flow regimes, Re > 2000, 
depending on the hole size and the plate porosity. Shah provides a very detailed 
evaluation of the perforated fin based on his study of test data on 68 perforated-fin 
geometries.

Plain Fin. If plain fins are used (Fig. 17.3a and b), the flow channel will have a 
rectangular or triangular cross section. If the flow is turbulent, standard equations for 
turbulent flow in circular tubes may be used to calculate j and /, provided Re is based 
on the hydraulic diameter Dh. If the Re based on hydraulic diameter is less than 2000, 
one may use theoretical laminar flow solutions for j and /. Values of j and / for 
developing and fully developed laminar flow are given in Chapter 3 for a variety of 
duct shapes. Criteria to establish the value of x/Dh at which the flow becomes fully 
developed are also given in Chapter 3.

Entrance Length Effects. Extended surface geometries for gases are typically de
signed for operation at Re < 2000. If the flow length is sufficiently short, it is possible 
that the average j and / over the flow length are higher than the fully developed values. 
Plain-fin geometries are more susceptible to entrance length effects than are the 
enhanced geometries of Fig. 17.3 c, d and f. Because of the periodic flow interruptions, 
it is unlikely that entrance region effects would exist for interrupted-fin heat ex-
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(a)

Louver height lh

(b)

Figure 17.6. Louvered-fin geometry tested by Davenport [12]: (a) illustration of core geometry ; 
(A) definition of parameters in Eqs. (17.9).

changers. However, this may not be a good assumption for plain-fin geometries. If 
developing flow exists over more than, say, 20% of the flow length, it is possible that the 
average Nu and f are moderately higher than the fully developed values. In this case, 
one should determine the average Nu and f over the air flow length.

The entrance region effect on heat transfer for several plain-fin channel geometries 
is illustrated in Fig. 17.7. This figure shows the ratio of the average Nu to the fully 
developed Nu for a constant wall temperature boundary condition with a developed 
velocity profile. Consider, for example, air flow (Pr = 0.7) in an equilateral triangular
shaped channel whose dimensionless flow length is L*  = 0.10. The mean Nu over the 
L * = 0.10 flow length is 42% greater than the fully developed value.
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Figure 17.7. Nu„,/Nu fd for laminar entrance region flow with developed velocity profile in 
different channel shapes for constant wall temperature boundary condition [11],

17.3.2 Finned-Tube Heat Exchangers
Figure 17.2a shows the finned-tube geometry with continuous flat plate fins on 
staggered tubes. An inline tube geometry is seldom used because it provides substan
tially lower performance than the staggered tube geometry [17],

Plain Fins. Correlations to predict the j and f factors vs. Reynolds number for plain 
fins on staggered tubes were developed by McQuiston [18] and by Gray and Webb [19]. 
The heat transfer correlation for four or more tube rows of a staggered tube geometry 
is [19]

/ S \ -0'50/ s \0-31
/4 = 0.14 Re?0328 — —74 ' \sj [dj (17.10)

Equation (17.10) implies that the heat transfer coefficient is stabilized by the fourth 
tube row; hence the j factor for more than four tube rows is the same as that for a 
four-row exchanger. The equation 

74
= 0.991

/ -0.031

2.4 Re?0 092 — 
\ 4 /

0.607(4-A’)

(17.11)

predict- the j factor for one- to three-tube-row exchangers, relative to that of a 
four-row exchanger. Equations (17.10) and (17.11) correlated 89% of the data for 16 
heat exchangers within 10%.
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Gray and Webb [19] also developed a friction-factor correlation for plain flat fins, 
which is independent of the number of tube rows, and given by

G / A e \ / t \
f = +/tb 1 - V 1 “ - (17.12)A \ A ) \ s J

This correlation assumes that the pressure drop is composed of two terms. The first 
term of Eq. (17.12) represents the drag force on the fins, and the second term represents 
the drag force on the tubes. The friction factor associated with the fins (/r) is given by

I S \1318
f{ = 0.508 Re70521 y (17.13)

The friction factor associated with the tubes (/tb) is obtained from a standard 
correlation for flow normal to a bank of bare tubes (see Chap. 6). The /tb is calculated 
at the same mass velocity G that exists in the finned-tube exchanger. Equation (17.12) 
correlated 90% of the data for 19 heat exchangers within ±20%.

The range of dimensionless variables used in the development of Equations (17.10) 
to (17.13) are 500 < Rerf < 24,700, 1.97 < S,/d0 < 2.55, 1.7 < Sz/< < 2.58, and 0.08 
< s/d„ < 0.64.

Enhanced Fin Geometries. The wavy (or herringbone) fin and the offset strip fin 
(also referred to as parallel louver) are the major enhanced surface geometries used for 
flat fins on circular tubes. Figure 17.8 shows the wavy fin geometry applied to circular 
tubes. This figure shows the geometrical dimensions which influence the heat transfer 
and friction characteristics. The combination of tubes plus a special surface geometry 
establishes a very complex flow geometry. No correlations have been published in the 
open literature for prediction of the j and f factors. However, the air-conditioning 
industry uses wavy fins, and its product brochures contain rating data. The heat 
transfer coefficient of the wavy fin is 50 to 70% greater than that of a plain (flat) fin.

The OSF concept has been applied to finned-tube heat exchangers with flat fins for 
dry cooling towers and for refrigerant condensers. Figure 17.9 shows the heat transfer 
coefficients of the OSF and a plain fin used in a two-row staggered-tube coil having 966 
fins/m on 10-mm-diameter tubes [20], At 3 m/s air velocity, the OSF provides 78% 
higher heat transfer coefficient than the plain fin. The OSF of Fig. 17.5 provides 150% 
higher heat transfer coefficient than the plain fin at the same velocity. Further 
examination of Figs. 17.5 and 17.9 shows that the heat transfer coefficient of Fig. 17.9 
is 90% greater than that of the Fig. 17.5 plain fin geometry. Thus, the flow acceleration 
and fluid mixing in the wake of the tube provides a substantial enhancement for plain 
fins on tubes.

Generalized empirical correlations for j and f vs. Re have not been developed for 
OSF finned tubes. However, Nakayama and Xu [20] propose an empirical correlation 
to define the enhancement level (h/hp) of an OSF geometry having 2.0-mm strip width 
(in the flow direction) and 0.2 mm fin thickness.

17.3.3 Individually Finned Tubes
Helically wrapped or extruded fins on circular tubes as shown in Fig. 17.26 are 
frequently used in the process‘industries and in combustion heat-recovery equipment.
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Geometric variables

Wavy-fin geometry

Heat-exchanger geometry
Tubes: d, St, S/
Fins: s, t, L (plain)
Fin shape: p, e, I, shape (wavy)

Figure 17.8. Geometric variables of the wavy flat fin used in finned-tube heat exchangers.

Both plain and enhanced fin geometries are used. A staggered tube layout is used, 
especially for high fins (e/do > 0.2).

Plain Fins. A substantial number of performance data have been published, and 
several heat transfer and pressure drop correlations have been proposed. The correla
tions must take account of the three tube-bank variables (<7„, S,, and St) and the three 
fin geometry variables (/, e, s). Webb [21] provides a survey of the published data and 
correlations.

The recommended correlations for a staggered-tube layout are given by Briggs and 
Young [22] for heat transfer and Robinson and Briggs [23] for pressure drop. Both 
correlations are empirically based and are valid for four or more tube rows. The heat 
transfer correlation is

/ s> \ 0.2 / s' \ 0.11
= 0.134 ReJ0319 — —

v e ' \ t /
(17.14)

Equation (17.14) is based on air flow over 14 equilateral triangular tube banks and 
covers the following ranges: 1100 < Re., < 18,000, 0.13 < s' /e < 0.63, 1.0 < s'/t <
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Dimensions in mm

Figure 17.9. Comparison of the heat-transfer coefficient for the offset strip fin and the plain fin 
geometries for 9.5-mm-diameter tubes, 525 fins/m, and 0.2-mm fin thickness [20],

6 6 0 09 < e/d„ < 0.69, 0.01 < t/do < 0.15,1.5 < St/do < 8.2, 11.1 < d„ < 40.9 mm, 
and fin density 246 to 768 fins per meter. The standard deviation was 5.1%.

The isothermal friction correlation [23] written in terms of the tube-bank friction 
factor /lb is

/tb = 9.47 Re,0 316 (17.15)

Equation (17.15) is based on isothermal air flow data over 17 triangular pitch tube
banks (15 equilateral and two isosceles). The following ranges were covered: 2000 < 
Re, < 50,000, 0.15 < s'/e < 0.19, 3.8 < s'/t < 6.0, 0.35 < e/dn < 0.56, 0.01 < t/d0 
< 0.03, 1.9 < S'/d,, < 4.6. The standard deviation of the correlated data was 7.8%.
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Equation (17.15) is recommended with reservations, because it does not contain any of 
the fin geometry variables (e, s', or t). Because only a small range of s'/e was covered 
in the tests, it is possible that the correlation may fail outside the range of the s'/e 
tested.

Although the data on which Equation (17.14) is based included low-fin data, e.g., 
e/d„ ~ 0.1, Rabas et al. [24] developed more accurate j and / correlations for low fin 
heights and fin spacings. The correlations are given below with the exponents rounded 
off to two significant digits:

(17.16)

where n = —0.415 + 0.0346(^/5');

/ = 3.805 Re (17.17)

The equations are valid for staggered tubes with N > 6, 5000 < Re < 25,000, 1.3 < 
s'/e < 1.5, 0.01 < s/t < 0.06, e/do ~ 0.10, 0.01 < t/do < 0.02, and 1.3 < St/do < 
1.5. The equations predicted 94% of the j data and 90% of the f data within + 15%.

A staggered tube layout gives higher values for j at the same Re, especially for high 
fins {e/d,, > 0.3). Hence, the in fine tube layout is not recommended for e/dn > 0.3. 
Designers interested in in line finned tube banks should refer to Schmidt [25], who 
developed a heat-transfer correlation based on data from 11 sources.

Enhanced Fin Geometries. Figure 17.10 shows some of the enhanced fin geometries 
that have been used on circular tubes. In Webb’s Table 2 [21], references are provided 
to information on performance of the Fig. 17.10 fin geometries. All of the geometries 
provide enhancement by the periodic development of thin boundary layers on small
diameter wires or flat strips, followed by their dissipation in the wake region between 
elements.

Perhaps the most popular enhancement geometry is the segmented fin (Fig. 17.1O<7), 
which is similar in concept to the offset strip fin shown in Fig. 17.9. The segmented fin 
is used in a wide range of applications, from air conditioning to boiler economizers. 
Figure 17.11 shows two versions of the segmented fin used in air-conditioning applica
tions [26,27], In Fig. 17.11ft, a 0.15-mm-thick aluminum fin strip is tension-wound on 
the tube and bonded to the tube with an epoxy resin. The fin segment width is 0.75 
mm. Figure 17.12 shows the j and / performance of the Fig. 17.11a and ft fin 
geometries and compares their performance with that of plain fins [28],

The data of Fig. 17.12 are for eight rows on a triangular pitch with dn = 12.7 mm 
and t = 0.51 mm. Note that the Fig. 17.12 fins have a negative fin tip clearance. Figure 
17.12 shows that the Fig. 17.11a and ft geometries have approximatelv the same j and 
/ for the same fin spacing. At Re^ = 4000, we have j2/j1 ~ 2.1 and f2/j\ « 4.2, where 
subscript 1 refers to the plain fin. The substantial heat transfer enhancement is 
accompanied by a large friction increase. One is interested in increasing the value of 
hA/L by the use of an enhanced fin geometry. The Fig. 17.11a fin has only 43% as 
much surface area as a plain fin [28], Hence, with j2/jx = 2.1, one would obtain
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Figure 17.10. Enhanced circular fin geometries: (a) plain circular fin, (h) slotted fin, 
(c) punched and bent triangular projections, (d) segmented fin, (e) wire-loop extended surface
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Figure 17.11. Segmented fins used in air-conditioning applications described by (n) LaPorte 
et al. [26] and (/>) Abbott et al. [27], and tested by Eckels and Rabas [28].



Curve Geometry

1 Plain fin
2 Fig. 17.11a
3 Fig. 17.life

Figure 17.1 2. Plots of j and f vs. Ret/ of Fig. 17.11: enhanced fin geometries compared with 
plain circular finned-tube geometry [28],

17-23
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Figure 17.1 3. Comparison of segmented fins (staggered and inline) with plain staggered fin-tube 
geometry [29]. S,/do = 2.25, e/do = 0.51, s'/e = 0.12, s'/t = 2.51, ws/e = 0.17.

/'i A^/hzA2 ~ 0.90. Thus, the Fig. 17.11a geometry would yield a 57% saving of fin 
material for the same hA and base tube length.

A steel segmented fin geometry has been used for boiler economizers and waste heat 
recovery boilers. Figure 17.13 shows the curves of j and / vs. Re^ for segmented-fin 
geometries with four staggered and seven inline tube rows [29]. Also shown are the j 
and f curves for a staggered plain fin geometry having the same geometrical parameters 
as the staggered segmented geometry. The plain-fin j and f values were calculated 
using Eqs. (17.14) and (17.15) respectively. For a staggered tube geometry, Fig. 17.13 
shows that the j factor of the segmented fin is 40% greater than that of the plain fin 
geometry. The figure also shows that the heat transfer performance of the seven-row 
inline segmented fin geometry is poorer than that of the staggered plain fin geometry, 
while having approximately the same friction factor. Weierman [30] gives empirical 
design correlations for steel segmented and plain fin geometries. Rabas and Eckels [31] 
present additional data on steel segmented-fin tubes.

17.3.4 Oval and Flat Tube Geometries
Tube shapes of oval and flat cross section are also used for individually finned tubes. 
Figure 17 14 compares the performance of staggered banks of oval and circular finned
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Circular Oval

Tube diam. d0 (mm) 2.9 19.9/35.2
Fin height / (mm) 9.8 10/9.3
Fin thickness t (mm) 0.4 0.4
F ice pitch St/d0 (mm) 1.03 1.05
R> >w pitch Sj/do (mm) 1.15 1.04
Fins/m 312 312

Figure 17.1 4. Heat transfer and flow-friction characteristics of circular and oval finned tubes in a 
staggered arrangement [32],

tubes tested by Brauer [32]. Both banks have 312-fin/m, 10-mm-high fins on approxi
mately the same transverse and longitudinal pitches. The oval tubes gave 15% higher 
heat transfer coefficient and 25% lower pressure drop than the circular tubes. The 
performance advantage of the oval tubes results from lower form drag on the tubes and 
a smaller wake region on the fin behind the tube. The use of oval tubes may not be 
practical unless the tube-side design pressure is sufficiently low.

Higher design pressures are possible using flattened aluminum tubes made by an 
extrusion process [33]. Such tubes can be made with internal membranes which 
strengthen the tube and allow for a high tube-side design pressure. A variety of fin and 
tube shapes may be made by aluminum extrusions of different shapes. Figure 17.15 
show's a patented finned tube concept made from an aluminum extrusion [32]. The fins 
are formed from the thick wall using a modified high-speed punch press without 
creating scrap material. The punch press slits the thick aluminum wall and simulta
neously bends the chip outward to form the fin. The process is applicable to virtually 
any cross-section geometry of the extrusion. Designs have been made with circular and 
flattened tube geometries. Haberski and Raco [34] show photographs of a number of 
geometries which have been fabricated. Cox [35] provides test data on a circular tube 
geometry, and Cox and Jallouk [36] on the Fig. 17.15 geometry.



17 «26 ENHANCEMENT OF SING! T PI IASE HE AT TRANSFER

Figure 17.15. Finned tube made from thick-walled aluminum extrusion [33],

17.3.5 Row Effects — Staggered and Inline Layout
The published correlations are generally for deep tube banks and do not account for 
row effects. The heat transfer coefficient will decrease with rows in an inline bank due 
to the bypass effects, but the coefficient may increase with rows in a staggered bank. 
This is because the turbulent eddies shed from the tubes cause good mixing in the 
downstream fin region. As an approximate rule, one may assume that the heat transfer 
coefficient for a staggered tube bank of the Fig. 17.2a and b finned tubes has attained 
its asymptotic value at the fourth tube row [37],

Inline tube banks generally have a smaller heat transfer coefficient than staggered 
tube banks. At low Ret/ (Re(/ < 1000) with deep tube banks (N > 8), the heat transfer 
coefficient may be as small as 60% of the staggered-tube value [38], The heat transfer 
coefficient of the inline bank increases as Re(/ is increased; at Rez = 50,000 with 
N > 8, the ratio of inline to staggered coefficients may approach 0.80.

There is a basic difference in the flow phenomena in staggered and inline finned-tube 
banks. Figure 17.16 shows the flow patterns through staggered and inline tube 
arrangements [32]. The streamlines are shown by the dashed lines. The low-velocity 
wake regions, or dead spaces, are shaded with fine dots. A much greater fraction of the 
fin surface area is contained in the low-velocity wake region for the inline arrangement 
than for the staggered arrangement. Consequently, the inline arrangement will have a 
lower surface-average heat transfer coefficient. Outside the shaded zone, particularly 
between the fin tips, a strong bypass stream exists. Because of poor mixing between the 
wake stream and bypass stream, the weaker wake stream is quickly heated; its mixed 
temperature is greater than that of the bypass stream. Thus, the actual temperature 
difference between the surface and the wake stream is much less than indicated bv an
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Direction of flow

(a)
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Direction of flow

Figure 17.16. Flow patterns observed by Brauer [32] for: (a) staggered and (b) inline finned-tube 
banks.

overall LMTD based on the mixed outlet temperature. The staggered arrangement 
provides a good mixing of the wake and bypass streams after each tube row.

The superiority of the staggered fin geometry is shown in Fig. 17.13 [29] for 
e/c/„ = 0.51 segmented fins. The staggered bank (st) has four rows on an equilateral 
triangular pitch (St/d0 = 2.25), and the seven-row inline (il) bank has St/do = S//do 
= 2.25. At Re^ = 10,000, jst/jA = 2.17 and /st//n = 1.73. Figure 17.17 shows the row 
effect of the inline segmented fin geometry. It shows that the bypass effect reduces the 
performance of the inline geometry as the number of rows increases. Rabas and Huber 
[38] have performed tests of the performance differences of staggered and inline banks 
of tubes having plain fins. Their work shows that the inline bank attains an asymptotic

0.020

103 104 105

0 010

0.008

j 0.006

0.004

0.002

Reynolds number o!0G/m

Figure 17.17. Row effect of in line tube banks [29] for the Fig. 17.13 in line and segmented fin 
tubes (St/d„ = Si/d„ = 2.25).
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value of j and f. In general, their work shows that plain, inline finned-tube banks yield 
the lowest performance for: (1) low Re^, (2) large St/d0, and (3) small s/du.

17.4 PACKINGS FOR GAS-GAS REGENERATORS

Regenerators, either rotary or valved [7], are commonly used to transfer heat from 
combustion products to inlet combustion air. The valved type has two identical 
packings which alternately serve the hot and cold streams and are switched by 
quick-operating valves. Any of the corrugated-plate fin geometries discussed in Sec. 
17.3.1 may be applied to generators. Because the hot and cold streams are normally at 
different pressures, any packing geometry that allows significant transverse flow leakage 
will reduce the performance of a rotary regenerator. The louvered and offset-strip fin 
geometries are susceptible to this problem. However, one may design around it by

(b)

Figure 17.18. Matrix geometries for rotary regenerator-: (a) illustration of plate stacking, 
(6) cross section of stacked plates. Courtesy of Combustion Engineering Air Preheater Division, 
Wellsville, NY.
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including full-height continuous fins aligned with the flow at discrete spacings. The 
“brick checkers” geometry commonly used in the valved-type glass furnace regenerator 
is essentially an offset strip fin (Fig. 17.3d) having a large fin thickness.

Packings having small hydraulic diameter (small 5) will provide the highest heat 
transfer coefficients; for laminar flow, h oc l/£>/r However, the fouling characteristics 
of the hot gas may limit the size of the flow passage. Considerably smaller passage size 
may be used in ventilation heat-recovery regenerators than in those used for heat 
recovery from coal-fired exhaust gases or glass furnace exhausts. Coal-fired electric 
utility plants frequently use corregated plate packings, such as that illustrated in Fig. 
17.18. Conceivably, corrugated plate geometries similar to those used in plate-type heat 
exchangers may also be used.

17.5 EXTENDED SURFACES FOR LIQUIDS

Extended surfaces used with liquids may be on the inner or outer surface of the tubes, 
as shown in Fig. 17.1a. Because liquids have higher heat transfer coefficients than 
gases, fin efficiency considerations require shorter fins with liquids than with gases. The 
thermal conductance per unit tube length is -r^hA/L. Typical finned surfaces provide 
an A/L in the range of 1.5 to 3 times that of a bare tube. Tube materials other than 
copper and aluminum may have relatively low thermal conductivity, which will also 
restrict the possible fin height if a moderately high fin efficiency is desired.

17.5.1 Externally Finned Tubes
Equations (17.16) and (17.17) are recommended for a staggered layout of low integral 
fins. Corresponding equations have not been developed for inline tube layouts. How
ever, Brauer’s j data [32] for an e/do = 0.07 inline tube bank was within 20% of that 
of a staggered bank having the same e/d„, S,/d„, and S//do. The inline friction factor 
was approximately 35% smaller than that of the staggered bank. It appears that the 
performance decrement of inline banks having low fins (e.g., e/d„ = 0.1) is not nearly 
as severe as for high fins (e.g., e/d0 = 0.4).

17.5.2 Internally Finned Tubes
The flow in internally finned tubes (Fig. 17.19) may be either laminar or turbulent. 
When used to cool viscous fluids, such as oil, it is possible that the flow will be laminar.

Figure 17.19. Cross section of an internally finned tube.
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Figure 17.20. Performance comparison of internally finned tubes (IFT, = 16, e/d: = 0.084, 
a = 27°) and twisted tape insert (IT, a = 30°, Y = 5.4, t/4,- = 0.053) for laminar flow using case 
FG-2a of Table 17.2 [40],

Laminar Flow. Watkinson et al. [39] report Nu and f data (50 < Re < 3000) for 
steam heating of oil (180 < Pr < 350) in 18 different internally finned tubes. Marner 
and Bergles [40] report Nu and f for a tube with 16 axial fins (e/d, = 0.026) for both 
heating and cooling conditions (24 < Pr < 85, 380 < Re < 3470). Figure 17.20 shows 
h/hp of their data for PEC FG-2a (Table 17.2). This figure also contains results for a 
twisted tape insert (a = 30°) illustrated by Fig. 17.24. Figure 17.20 shows that: (1) the 
internal-fin performance is better in heating than in cooling, and (2) the internal-fin 
geometry is superior to the twisted tape.

Soliman et al. have numerically solved the energy equation for fully developed 
laminar flow in internally finned tubes and predicted the Nusselt number for constant 
wall temperature [41] and constant heat flux [42] boundary conditions. They assume 
constant fluid properties and no free-convection effects. The ranges of fin geometries 
analyzed are 0.1 < e/di < 0.4, 4 < < 32, and 1.5 < 0 < 3°, where iij is the number
of fins and 20 is the fin included angle shown in Fig. 17.19. The analysis includes the 
effect of fin thermal conductivity as defined by the parameter 0*  = Okt/k, where k 
and k t are the thermal conductivities of the fluid and fin material respectively. Soliman 
and Feingold [43] have analytically solved the momentum equation for the friction 
factor. Table 17.4 shows the calculated Nu' and /, relative to the plain-tube value 
(subscript p). The friction factor and Nu' refer to the diameter and surface area of a 
plain tube. Hence, the ratio Nu'/Nu^ is the ratio of the conductance (hA/L) of the 
finned tube to that of the plain tube. Similarly, the pressure drop increase at fixed 
velocity is given by f/fp. Table 17.4 also shows the area ratio (A/Ap). The table 
includes Nu'/Nu for Okf/k of 5 and oo. Several important conclusions may be drawn 
from Table 17.4:

1 For e/D < 0.3, the maximum Nu'/Nup occurs with nf = 8. However. f/f 
continues to increase for nf > 8. Hence the use of nf > 8 is of no value in 
providing increased hA/L.
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TABLE 17.4. Enhancement Ratios Provided by Internally Finned Tubes 
for Fully Developed Laminar Flow, as Predicted by Soliman et al. [41 - 43]a

"r
e .1

4

(Nu'/Nu^ (Nu'/Nu,),,,

6*  = 5 8*  = oo 6*  = 5 6 * = OO

4 0.1 1.26 1.24 1.04 1.04 1.05 1.07
0.2 1.51 1.91 1.28 1.30 1.38 1.45
0.3 1.76 3.28 2.25 2.44 2.47 2.84
0.4 2.02 4.80 3.73 4.40 3.61 4.52

8 0 1 1.51 1.57 1.06 1.06 1.08 1.10
0.2 2.02 3.53 1.29 1.31 1.50 1.56
0.3 2.58 8.67 2.41 2.50 3.79 4.84
0.4 3.07 14.5 8.07 9.64 7.81 10.45

16 0.1 2.02 2.02 1.03 1.03 1.06 1.06
0.2 3.04 5.93 1.09 1.10 1.18 1.21
0.3 4.06 22.2 1.45 1.47 2.07 2.18
0.4 5.07 60.8 8.59 8.66 17.4 24.4

24 0.1 2.53 2.26 1.01 1.01 1.02 1.02
0.2 4.06 6.99 1.02 1.03 1.05 1.06
0.3 5.58 31.7 1.13 1.13 1.29 1.32
0.4 7.11 172.0 3.29 3.30 9.31 10.5

32 0.1 3.04 2.36 1.00 1.00 1.00 1.01
0 2 5.08 6.99 1.00 1.00 1.01 1.02
0.3 7.11 36.3 1.03 1.03 1.08 1.09
0.4 9.15 355.0 1.66 1.66 2.81 2.91

“Subscript refers to plain tube, and 0* = 0km/k.

2 Nu'/Nu/; < A/A , except for the highest fins at 4 < nf< 16. However, the 
friction-factor increase is greater than the area increase for all geometncs.

3 . The Nu'/Nup for Okf/k = 5 is within 10% of that for Okf/k = oo. The case 
Okf/k = oo corresponds to 100% fin efficiency.

Table 17.5 shows values of Okm/k for different material-fluid combinations of 
interest. Examination of this table shows that the values listed in Table 17.4 for 
Ok,/k = oo are of primary interest. For Okf/k = oo, one may apply the conventionally 
used formulas for fin efficiency (^ ) to the Nu for Okf/k = oo and obtain acceptable 
accuracy. Soliman et al. [41 -43] have not attempted to compare their predicted Nu and

TABLE 17.5. Values of 0fc,/ k for Different 
Fluid-Material Combinations at 25°C

Material

9kf/k

Air
Pr = 0.7

Water
6

Oil 
1200

Copper 16000 670 2700
Aluminum 8000 330 1300
Steel 2000 80 400
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f values for constant properties and fully developed flow with available data [39,40], It 
is likely that experimental values for heating will exceed the Table 17.4 Nusselt 
numbers. The experimental data are typically for a certain tube length, which may 
include entrance region and free-convection effects. If the fluid is heated, such experi
mental Nu values may be substantially greater than the values predicted by Soliman. 
However, cooling tends to reduce the Nu' and counters the enhancement provided by 
free-convection and entrance region effects; this is seen in Fig. 17.20.

Bergles and Joshi [44] provide additional comparisons of the theoretical and 
experimental performance of internally finned tubes in laminar flow. Watkinson et al. 
[39] also present data on helical internally finned tubes. It appears that the fin helix 
angle adds to the enhancement.

Soliman’s predictions [42] of Nu' for constant heat flux are substantially below the 
experimental values of Marner and Bergles [40]. The data of Marner and Bergles also 
show a strong Prandtl number effect, while Soliman’s results are independent of Pr. A 
partial explanation for the difference is that Marner and Bergles’s data are not in the 
fully developed region.

Turbulent Flow. Camavos [45] developed empirical correlations of Nu and f vs. Re 
for turbulent flow in internally finned tubes. His correlation was based on tests of 21 
surface geometries, including helix angles up to 30°. The data are for heating of fluids 
(6 < Pr < 30) and span 10,000 < Re < 60,000. Camavos attempted to correlate the 
data using the hydraulic diameter in standard St and f equations for turbulent flow in 
plain tubes. He found that this method underpredicted Nu and f for axial fins. He then 
developed geometry-dependent correction factors to correlate the data. Webb and Scott 
[46] restated the correlations in terms of the fundamental dimensional geometry 
parameters. The Camavos correlations for straight and helical fins as stated by Webb 
and Scott [46] are

Nu hDh/k
= hpd,/k

dtDh\ 
djm ) sec3a (17.18)

— = —— sec°'75a 
fP d,

(17.19)

The quantity d m is the tube inside diameter that would exist if the fins were melted 
and the material returned to the tube wall. The friction factor and Nusselt number in 
the above equations are defined in terms of the total surface area and hydraulic 
diameter, and Re = DhG/)i. Camavos used the Dittus-Boelter and the Blasius equa
tions to calculate Nu^ and f respectively . These equations are

hDd,
NU/) = = 0.023 Re^Pr04 (17.20)

f„ = 0.046 Re,/0-2J p p (17.21)

Equations (17 18) and (17.19) correlated Camavos’s data on 21 tube geometries 
within ±8%. The ranges of dimensionless geometric parameters covered by the 
correlated data are 0.03 < e/dt < 0.24, 1.4 < <ndi/nfe < 7.3, 0.1 < t/e < 0.3^ and 
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0 < a < 30°. If one desires to calculate the enhancement ratio in terms of h' (based on 
rd,!/), i.e , Nu'/Nup, one writes

Nu' Nu d: I 2nre\
n^ = n^'+ (17-22)

Similarly, f /f is given by

Webb and Scott [46] have applied cases VG-1, 2, and 3 of the Table 17.2 PEC to 
turbulent flow in internally finned tubes and determined their performance relative to 
plain tubes. A key purpose of this analysis was to determine preferred internal fin 
geometries. This analysis assumes all of the thermal resistance is on the tube side. The 
results for the VG-1 analysis are presented in PEC Example 2 below.

Yampolsky [47] has tested an interesting variant of an internally finned tube (Fig. 
le). This tube is formed by corrugating strip material and then rolling it in a circular 
form such that the corrugations are at a helix angle a = 30°. Turbulent flow data for 
a = 30° show that j/j = 1, where f, j, and Re are based on the hydraulic diameter. 
The tube tested, whose diameter was 31.8 mm (1.25 in.), provided a 60% internal area 
increase.

PEC EXAMPLE 2

Assume that a plain tube heat exchanger has been designed to provide heat duty q with 
specified flow rates and inlet temperatures. The tubes are 19.2 mm O.D. with 0.7 mm 
wall thickness. The design operates at Rc/? with Np tubes per pass and tube length Lp 
per pass. One desires to use internally finned tubes to reduce the total length of tubing 
(NL). The design constraints are those of case VG-1 of Table 17.2. Assuming the total 
thermal resistance is on the tube side, Eqs. (17.1) to (17.3) apply. Using Eqs. (17.22) 
and (17.23), one solves Eq. (17.3) for G/Gp. For constant inside diameter, G/Gp = 
(Re/Rep)(J,/DA).

The geometric parameters of the finned tube are e, t, nf, and a. For a given tube 
geometry, one solves Eq. (17.3) iteratively for G/Gp and calculates Re/Rez,. The 
constraints on Eqs. (17.1) and (17.2) are K/Kp = P/Pp = 1. With the known Re, one 
calculates St and f of the finned tube and then solves for A/A using Eq. (17.1) or 
(17.2). This A/A = NL/NpLp. The ratio of tube material in the finned and plain tube 
exchangers is:

Vm N L M 
vZp=~NpTp~Mp (17.24)

where M is the tube weight per unit length. Figure 17.21u shows the effect of varying 
the geometry parameters e/d, and nf with e/t = 3.5 and a = 0. This figure shows that 
the smallest Vm/Vm p occurs with e = 1 to 1.5 mm and decreases with increasing nf 
when e ~ 1. Figure 17.216 shows the effect of helix angle for e/dt = 0.084 and 
e/t = 3.5. The Vm/Vm p may be reduced nearly 50% with a = 30°. The a = 30° curve 
shows that nf has little effect on Vm/Vm p. However, as nf increases, Gp/G must
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(a) (b)

Figure 17.21. Performance comparison of internally finned tubes and plain tube (d, = 17.78 
mm) for case VG-2 of Table 17.2 [46]: (a) effect of e/d, and nf for e/t = 3.5 and a = 0, 
(h) effect of and a for e/d, = 0.084 and e/t = 3.5. The points on each curve define rtf (from 
the left, nf = 5, 8, 12, 16, 25, 32, and 40 fins).
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increase to meet the constraint P/Pp = 1. Since heat exchanger cost is quite sensitive 
to shell diameter. 12 < nf < 16 appears to be a good choice. Because S/Sp = Gp/G, 
selection of the smaller Gp/G will reduce the shell diameter, and hence the shell cost. 
The preferred tube geometry (e/d, = 0.084, nf ~ 12, and a = 30°) provides a 58% 
reduction of tubing length and a 48% reduction of tubing material (weight) relative to a 
plain tube design.

This example assumed no thermal resistance on the shell side. Webb [5] describes how 
the analysis may be extended to account for shell-side, fouling, and tube-wall resis
tances. The value of V„,/Vm p will decrease when these additional resistances are 
present.

17.6 INSERT DEVICES

This class refers to devices that are inserted inside a smooth tube. Several basic 
techniques have been investigated:

1. Devices that cause the flow to swirl along the flow length
2 An extended surface insert device that provides thermal contact with the tube 

wall (this may also swirl the flow)
3. A wall-attached insert device that mixes the fluid at the tube wall
4. A displaced insert device that is displaced from the tube wall and causes periodic 

mixing of the gross flow

The first three methods have found commercial use, but only specialized geometries of 
the fourth type have been used. The twisted-tape insert device is discussed in Sec. 17.7.

17.6.1 Displaced Enhancement Devices
Figure 17.22 a and b illustrates two types of displaced insert devices tested by Koch 
[48] in laminar and turbulent flow. These devices periodically mix the gross flow 
structure and accelerate the local velocity near the wall. Koch found that these devices 
have substantially higher pressure drop than the type 1. 2, or 3 insert devices listed 
above. Theoretical reasoning suggests that, for turbulent flow, the fluid should be mixed 
in the viscous-dominated region near the wall, where the thermal resistance is large. 
The devices shown in Fig. 17.22 a and b mix the flow in the core region and experience 
quite high profile drag forces, which substantially increase the pressure drop. Other 
displaced insert devices that have been employed include bristle brushes, static mixer 
devices (Fig. 17.22 c), and flow-driven propellers, all of which promote mixing across 
the total flow cross section. Bergles and Joshi [44] compare the performance of such 
displaced insert devices with the swirl and wall-attached insert devices for laminar flow. 
Koch [48] provides a similar comparison for turbulent flow.

The Fig. 17.22d displaced wire-coil insert device is somewhat different from the 
other displaced insert devices. It causes mixing in a narrow region close to the tube 
wall. Thomas [49] tested this device for turbulent flow of water in an annulus. He 
concluded the most favorable St// performance was obtained when a pair of wires 
were spaced approximately nine wire diameters, followed by a second pair separated 
approximately 75 wire diameters from the first pair. The enhancement was provided by
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(a) (b)

(c) (d)

Figure 17.22. Displaced tube insert devices for flow in tubes: (a) streamline shape, (b) disks, 
(c) static mixer, (d) wire coil.

an increased velocity gradient at the surface and by interaction of the cylinder wake 
with the fluid in the boundary layer. Tests of this displaced wire coil in a circular tube 
have not been reported.

17.6.2 Wire-Coil Inserts
This enhancement is made by tightly wrapping a coil-spring wire of diameter e on a 
circular rod. The coil outside diameter, dc, is made slightly larger than the tube inside 
diameter, t/,. When the coil spring is pulled through the tube, the wires form a 
roughness of height e at helix angle arcsin(<7,/d(.) and spacing p = tt^(cos a. This 
device appears similar to Fig. 17.22 d, except the wires are in contact with the tube wall. 
It is necessary that the coil spring force the wire tightly against the tube wall to hold 
the wire in place and prevent tube-wall erosion. This requires a helix angle of 25° or 
more. The dimensionless geometric parameters that influence the heat transfer and 
friction characteristics are a, e/d,, and p/e. For a = 25° and e = 1.0 mm in a 
17.6-mm-diameter tube, the resulting values of e/d, and p/e would be 0.057 and 119 
respectively. This example is given to show that practical considerations limit the 
dimensions that influence the performance of the enhancement. A roughness of 
e/d = 0.057 results in quite high pressure drop compared to preferred roughness 
geometries that are formed integral to the tube wall.

Uttawar and Raja Rao [50] tested seven different wire-coil insert geometries in 
laminar flow (30 < Re < 675) for an oil (300 < Pr < 675) for heating of the oil. The 
ranges of insert geometries tested were 0.08 < e/dt < 0.13 and 32 < a < 61°. Because 
the heated tube length was only 60 diameters, the flow was not fully developed. The 
measured enhancement levels Nu/Nu^ were between 1.5 and 4.0. The friction increases 
were considerably less than the Nusselt number increase. The heat transfer data were 
correlated by

/ u \014
Nu = 1.65(tana)RemPr0351 — (17.25a) 
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where in = 0.25(tan a) 0 The Nu, /, and Re are based on the volumetric' hydraulic 
diameter D, . A friction-factor correlation was not developed. However, when defined in 
terms of Dt , the friction factor was only 5 to 8% higher than the smooth-tube value for 
Re„ < 180.

Kumar and Judd [51] developed an empirical heat transfer correlation for the 
Nusselt number based on their test data for 0.108 < e/di < 0.15 and 8 < p/e < 47. 
The relationship

Nu' = 0.175
-0.35

Re°-7pr1/3 (17.25b)
(P_ \

correlated their data with 7.5% rms deviation. Note that the correlation does not 
contain the parameter e/d,. Apparently their e/d, values were so large that they were 
in the "fully rough” regime. With Nu' known, one calculates the friction factor by the 
K ।’.mar-Judd correlation

f Rerf = 24736(Nu'Pr-0-33)3’5 (17.26)

17.6.3 Extended Surface Insert
Figure 17.23 shows this device. The insert device is formed as an aluminum extrusion. 
After inserting the extrusion in the tube, the tube is drawn to obtain a tight mechanical 
joint between it and the insert. The aluminum extrusion is normally formed with five 
legs, although the number of legs is a design choice. By twisting the extrusion before its 
insertion in the tube, one may also promote a swirling flow.

Hilding and Coogan [52] provide data on j and f vs. Re for a six-legged straight 
extrusion in turbulent flow. One may predict the turbulent flow j and f characteristics 
using an appropriate turbulent flow equation for smooth tubes with the tube diameter 
replaced by the hydraulic diameter Dh.

Trupp and Lau [53] have predicted the Nu and f for laminar flow in a tube having 
full-height fins of infinite thermal conductivity. The included angle between the fin legs 
was varied from 8 to 180°.

Analytical predictions for the Nusselt number of the device must take account of 
the fin efficiency and consider the possibility that a thermal contact resistance may exist 
between the aluminum and tube contact surfaces. The contact resistance may be 
negligible for flow of gases but may be appreciable for liquids. The author is unaware 
of test data for turbulent flow of liquids.

This insert device is not often used for liquids and gases. Its pressure drop and cost 
are believed to be unfavorable compared to other enhancement devices that may 
provide equal performance.

Figure 17.23. Extruded aluminum, star-shaped insert.
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17.7 SWIRL-FLOW INSERT DEVICES

A variety of insert devices that cause a swirl flow in the tube have been investigated. 
The twisted tape insert shown in Fig. 17.24 has been extensively investigated. Variants 
of the twisted tape that have been evaluated include mechanically rotated twisted tapes, 
short sections of twisted tape at the tube inlet or periodically spaced along the tube 
length, and periodically spaced “propeller" inserts that are mechanically rotated by the 
flowing fluid. This discussion will present details only for the stationary twisted tape 
insert. Bergles and Joshi [44] present a survey of the performance of the different types 
of swirl-flow devices for laminar flow.

The insert shown in Fig. 17.24 consists of a thin strip that is twisted through 360° 
per axial distance p,. Bergles and Joshi [44] describe their tapes by the twist ratio 
L = P'/ldj. The helix angle of the tape is given by

nd, n 
tana = — =— (17.27)

P, 2 J’

In order to allow easy insertion of the tape, there is usually a small clearance 
between the tape width and the tube inside diameter. This clearance results in poor 
contact between the tape and the tube wall. If the tape is made of low thermal 
conductivity material, and the fluid thermal conductivity is small, the heat transfer 
from the tape may be quite small. Heat transfer enhancement may occur for three 
reasons:

1. The tape reduces the hydraulic diameter Dh, which effects an increased heat 
transfer coefficient, even for zero tape twist.

2. The twist of the tape causes a tangential velocity component u6. Hence, the 
speed of the flow is increased—particularly near the wall. The heat transfer 
enhancement is a result of the increased shear stress at the wall. Thorsen and 
Landis [54] show that centrifugal forces caused by the tangential velocity compo
nent may contribute to the enhancement by mixing fluid from the core region 
with fluid in the wall region. However, this will occur only when the flowing fluid 
is being heated. The cold high-density core fluid is forced outward to mix with 
the warm low-density fluid near the wall. If the fluid is being cooled, the 
centrifugal force acts to maintain thermal stratification of the fluid.

3. There may be heat transfer from the tape, if good thermal contact with the wall 
exists.

17.7.1 Laminar Flow

Bergles and Joshi [44] provide an excellent summary of performance data on the 
twisted tape for constant wall temperature and constant heat flux boundary conditions. 
Figure 17.25 shows Nusselt number data for the two boundary conditions. The data are 
presented as a function of entrance region parameters because not all of the data are 
for the fully developed condition. The ethylene glycol data of Marner and Bergles [40] 
in Fig. 17.25 a show an enhancement level about 300% over the smooth-tube value. 
Note that the data for heating are above those for cooling at the lower Gz values. 
Figure 17.26a shows the friction-factor data for the data of Fig. 17.25a. The friction 
data of Marner and Bergles [40] are shown by curve 3. Figure 17.20 shows h/h for 
their data. This figure shows that the performance of the twisted tape is better in
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Figure 17.25. Nusselt number for laminar flow in tubes with twisted tape insert [44]: 
(a) constant wall temperature, (b) constant heat flux.
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L Figure 17.26. Friction factor in tubes with twisted tape insert for laminar flow: (a) experimental 
and predicted [44], (6) predicted [55].
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heating than in cooling. It also shows that the performance of the internally finned tube 
is better than that of the twisted tape.

Date [55] has performed numerical predictions for the twisted tape in fully devel
oped laminar flow for constant heat flux with constant properties. His analysis for a 
loosely fitting tape with Pr = 1 is shown by curve 1 in Fig. 17.25/1. Date’s analysis [55] 
also shows that the Nusselt number increases with increasing Prandtl and Reynolds 
numbers, contrary to laminar flow in smooth tubes, which is independent of Re and Pr. 
Note that the values of Nu as reported by Date [55] are 50% low, due to a 
computational error. This is noted by Hong and Bergles [57],

Hong and Bergles [57] have developed an empirical correlation for twisted-tape data 
taken using water and ethylene glycol with constant heat flux. Two twisted tapes were 
used, which had helix angles of a = 17 and 32°. Their heat transfer correlation is given 
by

Nu' = 5.172 1 + 0.005484
1.25

Pr07
0.5

(17.28)

where r = 7r/(2tana).
The author is unaware of correlations for Nu suitable for a constant wall tempera

ture boundary condition. The Nusselt number should be smaller than for the constant 
heat flux boundary condition.

Date [55] has developed empirical correlations to fit his numerical predictions of the 
friction factor, which are shown in Fig. 17.266. The equations, as corrected and 
modified by Shah and London [56, p. 580] for zero tape thickness, are

f Re, = 42.23 for
Re,
—- < 6.7

y
(17.29a)

/ ReA 0 05 
f Re, = 38.4 —

\ y )
for

Re,
6.7 < —— < 100 

y
(17.29b)

/ Ren03 
/ Re,. = C —

\ y /
for

Re, 
----- > 100 
y

(17.29c)

C = 8.82 x - 2.12/ + 0.211v3 - 0.0069/

As indicated in Fig. 17.266, the a = 0 curve is for a tape of zero thickness and no 
twist. Increasing the twist causes f Ret/ to depart from the value 42.23. Shah and 
London [56] recommend that the right-hand sides of Eqs. (17.29) be multiplied by a 
correction factor f to account for the effect of finite tape thickness t. This factor is 
defined in the Nomenclature Section at the end of this chapter.

17.7.2 Turbulent Flow

Thorsen and Landis [54] recognized that buoyancy effects arising from density varia
tions in the centrifugal field should have an effect on heat transfer. They showed that 
the swirl-flow-induced buoyancy effect should depend on the dimensionless group 
Gr/Re2, which may be written as

Gr 2DhftT AT tan a
Re2 “ d, (17.30)
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Thorsen and Landis measured the heat transfer coefficient for heating and cooling 
of water in tubes having tapes with three different helix angles: a = 11.1, 16.9, and 
26.5°. The heating data were correlated by

Nu = 0.021FI Rc0.8pr0.4 K
Th

-0.32

(17.31)

and the cooling data by

Nu = 0 023F Re°.8pr0-3 S
Th

-0 1

(17.32)

where

F = 1 + 0.004872
tan2a

J,(l + tan2a)

and dt is in meters.
Lopina and Bergles [58] attempted to include the increased speed of the flow 

(caused by the spiral flow) and the centrifugal buoyancy effect by using a simple 
superposition model. The model also includes the possibility that the tape may act as 
an extended surface. The model may be expressed as

9 *7sc Qcc (17.33)

The term gsc stands for swirl convection and is predicted using an appropriate 
equation for turbulent flow in plain tubes with the Reynolds number calculated in 
terms of Dh and a modified velocity umod to include the speed of the swirl flow at the 
wall. The heat transfer coefficient for the swirl convection term is given by

where

= 0.023 Re0 8 Pr° 4 (17.34a)
k

Re = mod .... with Mmod = Um}/1 + tan2a (17.34b)
v

The term qc„ in Eq. (17.33) represents the centrifugal convection effect identified by 
Thorsen and Landis. Lopina and Bergles use an equation for turbulent natural 
convection from a horizontal plate and replace the gravity force g by a radial 
acceleration gr:

0 f \ 22(i/modtana)
Sr di di (17.35)

The heat transfer coefficient for the centrifugal convection term is calculated by

= 0.12(GrTr)1/3 (17.35a)
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where

4.940r AT D^Re2
Gr' =----------7^2--------- (17.35b)

The term q{ in Eq. (17.33) takes account of heat transfer from the tape as an 
extended surface. Evaluation of this term requires knowledge of the contact resistance 
between the tube wall and the tape. For poor thermal contact, q{ = 0. See [58] for 
details on calculation of q(.

Based on his evaluation of published data, Date [59] proposed an empirical 
correlation for the friction factor for the range 5000 < Re < 70,000 and 0 < y < 1.5, 
or 0 < a < 46 °. The correlation is

/ 
fP

(17.36a)

where
0.15(70000 - Re)

m = 1.15 +----- --------
65000

and f is the friction factor in a plain tube, given by

fp = 0.046 ReJ 02

(17.36b)

(17.37)

17.8 ROUGHNESS

Considerable data exist for the single-phase forced-convection flow over rough surfaces. 
Data exist for six different flow geometries:

1. Flat plates
2. Circular tubes
3. Longitudinal flow in rod bundles
4. Annuli having roughness on the outer surface of the inner tube
5. Flow normal to circular tubes

Internally roughened channels are finding increasing practical use. The refrigeration 
industry uses roughness on the water side of water-chiller evaporators and condensers. 
Water side roughness also appears to offer economic benefits for use in electric utility 
steam condensers [60]. Many papers have been published on work related to the use of 
roughened fuel rods in gas-cooled nuclear reactors [61], Work is in progress on water 
cooled gas turbine blades having an internal roughness [62],

There are many possible roughness geometries. Figure 17.27 is the author’s attempt 
to catalog the possible geometries. This figure shows three basic roughness families. 
For any basic type, the key dimensionless variables are the relative roughness height 
(e/d), the relative roughness spacing (p/e), and the shape of the roughness element. 
The ridge-and-groove-type roughness may also be applied at a helix angle [63]; this is 
not shown in Fig. 17.27. For a specific roughness type, a family of geometrically similar 
roughness is possible simply by changing e/d, maintaining constant p/e and a. Thus,



Type of roughness or 
internal surface.

Basic geometry

Variations of basic geometry by change of 
p/e (shows probable 
range of p/e of interest):

Possible “element 
shapes" for basic geometry:17-45



Three-dimensional 
roughness ("uniform roughness”)

Ridge-type two- dimensional roughness 
("repeated ribs”)

Groove-type two dimensional roughness

p/e

Figure 17.27. Catalog of roughness geometries [74],
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Figure 17.28. Illustration of commercially available enhanced tubes: (a) corrugated korodense^ tube, (b) helical rib ruRBOCHtL^-7 tube. Courtesy of
Wolverine Tube Div., Decatur, AL.
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Figure 17.29. Catalog of flow patterns over transverse rib roughness as a function of rib 
spacing [64]

the designer is faced with choosing among thousands of possible specific roughness 
geometries and sizes.

Figure 17.28 shows two commercially used roughness geometries [70], Their geomet
ric parameters are e (rib height), p (rib spacing), a (helix angle), and the rib shape. 
The Fig. 17.28u tube has internal helical ribs and is normally made with low integral 
fins on the external surface. The internal ribs are made by cold deformation of the 
metal into a grooved internal mandrel to form the helical ridges. The Fig. 17.28b 
helically corrugated tube is made by rolling a sharp-edged wheel on the outer surface of 
the tube.

Figure 17.29 shows the flow pattern [64] in the vicinity of the ribs (a = 90°) as a 
function of the rib spacing (p/e). The flow separates at the rib and reattaches 6 to 8 
rib heights downstream from the rib. The heat transfer coefficient attains its maximum 
value at the reattachment point [65], Figure 17.29 shows that reattachment does not 
occur for p/e < 8. The highest average coefficient occurs for 10 < p/e < 15.
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17.8.1 Heat Transfer and Friction Correlations
Consider a two-dimensional roughness, such as illustrated by Fig. 17.28a. A geometri
cally similar family of roughness geometries will exist if p/e, a, and the rib shape are 
held constant. Such a family of roughened tubes will differ in their e/d values.

The friction data for the different e/d tubes may be correlated using the friction 
similarity model developed by Nikuradse and described by Schlichting [66]. This model 
is based on the “law of the wall” velocity distribution for flow over rough surfaces [66]. 
In Nikuradse’s model, the friction data for tubes with different e/d, will fall on the 
same curve when plotted in the form B(e+) vs. e+, where

B(e+)=
/T 2e

x - + 2.5 In— + 3.75
V f di

(17.38)

Nikuradse (as reported in [66]) correlated his friction-factor data for six geometrically 
similar sand-grain roughness geometries (0.004 < e/d < 0.0679) using Eq. (17.38). The 
variable e' is called the roughness Reynolds number and may be written in the 
following two equivalent forms:

(17.39)

Dipprey and Sabersky [67] have developed a heat transfer correlation that is 
applicable to any type of geometrically similar surface roughness. Their model applies 
the heat-momentum-transfer analogy to flow over rough surfaces. The model proposes 
that the data for geometrically similar roughness (different e/d,) will fall on the same 
curve when plotted in the form g(e+) Pr" vs. e+, where

g(e+)Pr" =
//(2 St) - 1 

///2
+ B(e+) (17.40)

Equations (17.38) and (17.40) may be used to correlate the data for any family of 
geometrically similar roughnesses. However, the functions B(ef) and g(e+) may be 
different for different roughness families. One uses Eqs. (17.38) and (17.40) to calculate 
the friction factor and Stanton number as follows:

1. Select e' and calculate B(e') and g(ev) from the experimentally derived 
correlations for B(e+) and g(e+).

2 Calculate the friction factor using Eq. (17.38).
3. Calculate the Stanton number with Eq. (17.40). Solving Eq. (17.40) for St yields

//2
St = ------- r—-----------------------------

l + ///2[g(e+)Pr'’-B(e+)] (17.41)

Dipprey and Sabersky [67] found that the Prandtl number exponent was 0.44 for 
sand-grain roughness. However, Webb et al. [64] found n = 0.57 for transverse-rib 
roughness. Further commentary on the Prandtl number dependence will be given later.
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Figure 17.30, Heat transfer correlation for transverse-rib roughness (a = 90°) by Webb 
et al. [64],

The literature contains correlations for B( e' ) and g( e ) applicable to the following 
goemetries.

1. Sand-grain roughness tested by Dipprey and Sabersky [67],
2. Transverse-rib roughness (a = 90°) for p/e = 10, 20, and 40 as measured by 

Webb et al. [64],
3. Helical-rib roughness (30 < a < 70°) with p/e = 15 reported by Gee and 

Webb [63], Nakayama et al. [69] provide additional data for helical ribs, 
including 0 < a < 80 °.

Figure 17.30 shows the function g(e+) determined by Webb et al. for transverse-rib 
roughness [64], Only the data for p/e = 10 are for geometrically similar roughness. 
Figure 17.30 shows that Eq. (17.40) does an excellent job of correlating the three e/d, 
values (0.01, 0.02, and 0.04) for p/e = 10. The figure also shows that the nonsimilar 
p/e = 20 and 40 data also fall on the same correlating line as the p/e = 10 data. There 
is no reason to expect this, so it is regarded fortuitious. The data of Fig. 17.30 spanned 
0.7 < Pr < 37.6. The data are correlated by a Prandtl number exponent of n = 0.57 
[cf. Eq. (17.40)].

How does the helix angle a effect the St and f characteristics? Figure 17.31 shows 
the St and f data of Gee and Webb [63] for p/e =15 and e/d, = 0.01 as a function of 
helix angle. As a increases, the friction factor drops faster than does the Stanton 
number. Gee and Webb found that the Maximum St// occurs at a ~ 45°.

A commercial version of the Fig. 17.28a helical-rib tube is available and is known 
as the TURBOCHn/-7 tube [70]. This tube has low integral fins on the outer tube surface. 
The turbochii/-7 tube has a = 47°, p/e = 11.1, and e/dt = 0.0264. The functions 
g(e') and B(e) for this tube are given by the following equations, which were
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Figure 17.31. Effect of helix angle on f and St for e/dt = 0.01, p/e = 15 [63].
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developed by the present author and are valid for e+ > 25:

g(e+) = 7.68(e+)°136

B(e+) = 1.7 + 2.06 In e+

(17.42)

(17.43)

Equations (17.42) and (17.43) may be used in Equation (17.41) to predict the 
(tm) • •Stanton number of the turbochil^ tube. The friction factor is calculated using Eq. 

(17.43) in Eq. (17.38). Equations (17.42) and (17.43) may also be used to calculate St 
and f for any value of e/d, provided the value of p/e is maintained at 11.1. Withers 
[71] provides additional information on helical-rib roughness for different values of 
p/e and a.

The Fig. 17.282? helically corrugated tube has been tested by Sethumadhavan and 
Raja Rao [72]. They tested five different roughness geometries with water and a 
glycol-water solution (5.2 < Pr < 32) and determined the correlating functions /?(<?’) 
and g( e"). They recommended the following correlations for g( ef) and B( e+) vs. e' 
for 10 < p/e < 40:

g(O = 8.6 (e+)013 for 3 < e+ < 200 (17 44)

B{ e+) = 0.4(e+)°'164i p ——j for 25 < e+ < 180 (17.45)
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TABLE 17.6. Predicted h / hp and f/ fp for Re = 25000, Pr = 10.4

Tube e/d, h/hp f/fp

KORODENSE 0.025 20.3 1.93 2.27
THE RMOEXCEL-CC 0.025 46.7 1.59 1.90
turbochil 0.0264 11.1 1.99 1.83

The rms deviations of Eqs. (17.44) and (17.45) are 7.0% and 6.1%, respectively. The 
data on which the correlations are based span 0.0118 < e/d < 0.0303 and 12.7 < p/e 
< 56.6. The authors also show that the data of Withers [71] are in good agreement with 
Eq. (17.45).

Commercial versions of the Fig. 17.286 helically corrugated tube are available. The 
(tm) 

korodense tube [68] has e/d, = 0.025 and p/e = 20.3. The thermoexcel-cc^-7 tube 
[71], which has an enhanced outer surface, has e/dt = 0.025 and p/e = 47.

The present author has used the above correlation to predict the enhancement ratios 
h/hp and f/fp for the korodense, turbochil, and thermoexcel-cc tubes. Table 
17.6 shows the enhancement ratios for water (Pr = 10.4) at Re = 25,000. The best 
performance is provided by the turbochil tube. It provides a 99% greater heat 
transfer coefficient than the smooth tube with a friction factor only 83% greater than 
the smooth tube.

17.8.2 Prandtl-Number Dependence
The correlations of g( e*  ) and B(e~ ) vs. e' do not allow easy physical interpretation. 
The practitioner prefers to see curves of St and / vs. Re. One may use the functions 
B(ef) and g(e') in Eqs. (17.38) and (17.40) to generate curves of St and f vs. Re for 
different e/dt values. Webb [74] shows such curves for p/e = 10, a = 90° rib 
roughness. Figure 17.32 shows curves of St/St vs. e+ for p/e = 10, a = 90° rib 
roughness. These curves show that St/St increases with Pr. Figure 17.32 also shows 
that a maximum value of St/St is attained at e+ = 20 for Pr > 5.1. However, at large 
ef, the curves tend to approach the same value asymptotically. The interpretation of 
these curves is that:

At high e" (high Re), the rough and smooth tubes have the same Prandtl number 
dependence.

At lower /, the rough surface has a stronger Prandtl number effect than a plain 
surface.

Figure 17.32 suggests that the rough surface will be of greater benefit for high Prandtl 
number fluids than for low Prandtl number fluids.

Additional information in Ref. 73 shows that St/Stp > /// for Pr > 21.7. This 
means that the increase in heat transfer coefficient is actually greater than the friction 
increase. Other experimental studies of helical and transverse rib roughness [72.75] 
have confirmed that the Prandtl number exponent is n = 0.57. However, Dipprey and 
Sabersky [67] found n = 0.44 for sand-grain roughness. Their tests spanned a much 
smaller range of Pr (1.2 < Pr < 5.9) than that of Webb et al. [64], For sand-grain 
roughness, the data [67] show that St/St/? > f/f/t for Pr = 5.9. More work remains to 
be done to determine the degree to which the roughness type affects the Prandtl 
number dependence of rough surfaces.



17 *52 ENHANCEMENT OF SINGLE-PHASE HEAT TRANSFER

Figure 17.32. St/St5 vs. <?+ for p/e = 10 transverse-rib roughness for different Prandtl 
numbers [74].

17.8.3 Heat-Transfer Design Methods
Since there are a large number of different basic roughness types and a range of 
possible e/d, for each type, the designer is faced with a confusing array of choices. In 
order to approach the question, one must first define the design objective and establish 
design constraints. Possible design objectives are listed in Table 17.2. Assume that 
tube-side roughness will be used to reduce the size of a heat exchanger for case VG-1 of 
Table 17.2. Thus, one is interested in calculating A/Ap for constant heat duty, flow 
rate, and pumping power. One may place limits on the roughness choices by defining a 
hierarchy of questions:

1. What is the A /Ap for a given roughness type and e/d /
2. Will another e/d, (for the same basic roughness type) give a smaller A /A />.
3. Will another basic roughness type (and e/d/ provide further reduction of

First, question 1 will be addressed for the VG-1 criterion. Assume, for example, that 
a heat exchanger has been designed that has a plain surface on the tube side. The 
tube-side mass flow rate and pressure drop and the UA value of the plain-tube heat 
exchanger are known. Will a tube-side roughness be of benefit? If the dominant 
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thermal resistance is on the tube side, roughness is of potential benefit. Hence, the 
designer wants to calculate A/Ap for P/Pp = UA/UpAp = 1.

For simplicity, assume that the total thermal resistance is on the tube side. Then the 
constraints are satisfied by Eq. (17.3). The required velocity in the rough tube that will 
satisfy the pumping-power constraint [Eq. (17.2)] is unknown. Hence, one must use an 
iterative calculation procedure to solve Eqs. (17.2) and (17.3) for A/A and G/G (or 
Re(//Re(/ p). The solution procedure is complicated by the fact that the equations for 
the rough-tube St and f are written in terms of the roughness Reynolds number e+ 
rather than the pipe Reynolds number Re<;. Two solution procedures are possible and 
will be described.

Method 1. Assume that empirical curve fits of St and f vs. Re(/ (or G) for the selected 
e/d, have been developed. Using these equations, one solves Eq. (17.3) for G/G . With 
G/Gp known, the Ree/ of the rough tube is calculated, and St and f are then readily 
calculated. Next, one calculates the U value for the heat exchanger, and the area ratio 
A/Ap is given by Up/U. Note that the pumping-power constraint is inherently satisfied 
by Eq. (17.3).

Method 2. The second method avoids the need for the curve fits of St and f vs. Re; 
and uses Eq. (17.41). Using Eq. (17.39) one may write

_ e+ dt Fl 
^d,P Ked'P e]/ f (17.46)

If the rough and smooth tubes are of the same inside diameter, Re(//Rcj p = G/Gp. 
Using Eq. (17.41) with n = 0.57 and Eq. (17.46) in Eq. (17.3) gives

e+ ± /J = (______fP/2Stp 
Rer e V f \1 + ///2[g(e9Pr057 (17.47)

The values of Rep, Stp, and fp for the smooth tube and e/d, are known. Equation 
(17.47) is solved iteratively for e! using Eq. (17.38) to eliminate yjl/f. One uses the 
g(e+) and B(e+) equations for the roughness family of interest. The iterative solution 
gives the value of that satisfies Eq. (17.47). With e' known, one easily computes St, 
/, and Re of the rough tube and proceeds to calculate A/Ap as for method 1.

Using either method 1 or method 2, one obtains the predicted A/Ap and G/Gp. 
One desires G/Gp ~ 1. If the calculated G/Gp < 1, it will be necessary to increase the 
number of tubes in the heat exchanger. For Pr > 20, one may find G/Gp > 1. Is it 
possible that a different e/d, will provide a lower A/Ap or a more desirable G/G/ 
This is question 2. One may repeat the analysis for different e/d, to answer this 
question. Webb and Eckeit [76] address this question for p/e = 10, a = 90° rib 
roughness, using PEC VG-1, -2, and -3 of Table 17.2. For this roughness type, they 
conclude that the criterion e" = 20 will provide the best value for the objective 
function. If one can specify the desired Eq. (17.47) may be solved iteratively for the 
required e/d,. Such evaluations have not been done for different roughness types, e.g„ 
p/e = 15, a = 45° helical rib roughness. Hence, one cannot state the preferred er for 
different helix angles a.
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TABLE 17.7. Comparison of Performance of Different Tube-Side 
Enhancement Geometries for Case VG-1 
of Table 17.2

Geometry a e/dj N/Np L/Lp I - y /yx r m/ nt, p

Helical fins 
(«z= 32)

30 0.0420 1.01 0.37 0.42

Transverse ribs 
(p/e = 10)

90 0.0060 1.16 0.46 0.53

Axial fins 
(«z= 32)

0 0.0420 1.04 0.49 0.54

Corrugated 
(p/e = 19.5)

82 0.0090 1.02 0.56 0.57

Helical ribs
(P/e =15)

45 0.0069 0.96 0.60 0.58

17.8.4 Preferred Roughness Type
What is the best roughness type (question 3)? There is no direct way to answer this 
question without performing a parametric study of candidate roughness types. Webb 
[77] uses a case-study method to compare the performance improvements of different 
roughness types. This analysis was performed for case VG-1 of Table 17.2. The design 
conditions of the reference plain-tube heat exchanger are Rep = 46,200, hn = 27,260 
W/(m • K), ht = 6814 W/(m • K), and Rh = 0.000044 m2 • K/W (fouling resistance). 
Five basic types of tube-side enhancements were evaluated. The enhanced tubes are 
listed in order of decreasing material savings Vm/Vm , where Vm is the tube material 
volume in the heat exchanger. The ratio of the tube lengths in the enhanced and plain 
tube designs is L/L , and the relative number of tubes in the exchangers is N/Np, 
which is equal to Gp/G for the roughness geometries. A summary of the key results of 
the study is shown in Table 17.7. The table provides several conclusions:

The greatest material savings are provided by the helical internal fins. The savings of 
the helical fins is 12% greater than for the axial internal fins. The helical fins can 
be operated at approximately the same velocity as the plain-tube design.

The smallest material saving (42%) is provided by the helical ribs. However, the 
helical ribs can be operated at a velocity only 4% lower than the plain-tube 
design. The material saving of the corrugated tube is approximately the same as 
for the helical ribs. However, the corrugated tube must be operated at a lower 
velocity.

The transverse ribs provide 5% greater material saving than the helical ribs; 
however, the velocity must be reduced to 84% of the plain tube value, which 
requires a larger heat exchanger diameter.

The heat exchanger using the helical internal fins is only 37% as long as in the 
plain-tube design.

Although the helical-intemal-fin geometry appears to be superior to the roughness 
geometries, one must consider whether it can be made in the material of interest and 
define the relative cost of the enhanced tubes. Presently, it appears that the helical rib 
roughness is of significantly lower cost than an internally finned tube. Second, one 
must consider whether the design fouling factor Rfl can be maintained. There is 



CI OSURE 17-55

essentially no published information on comparative fouling characteristics of the 
different enhanced tubes. Leitner [78] reports fouling test of an on-line brush-clean 
system used in the condenser tubes of a large refrigeration system. The brush system 
maintained the U value of the turbochil tube within 8% of the clean-tube value for 
cooling-tower water.

17.9 APPLICATION TO NATURAL CONVECTION

The previously discussed enhancement techniques may also be applied to natural
convection flows. A typical application involves the use of finned surfaces for cooling 
electronic equipment. Axial finned plates may be made by aluminum extrusion. 
Orienting the finned plates in the vertical direction, the flow geometry may be one of 
several forms: (1) a finned plate, (2) a finned plate with a “shroud” near the fin tips to 
channel the air in the inter-fin region, or (3) a parallel-plate channel formed by a pair 
of vertical finned plates.

Welling and Wooldridge [79] and Stamer and McManus [80] provide data on heat 
transfer from a vertical finned plate. Jones and Smith [81] and Bar-Cohen [82] 
investigated the optimum fin spacing and fin thickness for the fin array. Sparrow et al. 
[83] theoretically evaluated the effect of an adiabatic shroud near the fin tips. Sparrow 
and Prakash [84] investigated the benefits of the offset strip fin geometry (Fig. 17.3<7) 
relative to continuous axial fins.

Data on forced convection in finned channels may be applied to the case of natural 
convection in finned channels. The flow rate in the channel depends on the buoyancy 
force and friction factor of the channel. The buoyancy force depends on the heat 
transferred in the channel. Hence, one must iteratively solve the energy and momentum 
equations to determine the heat transfer and flow rate. Kraus and Bar-Cohen [85] 
illustrate this technique for the case of a plain, parallel-plate channel. The f and Nu vs. 
Re developed for forced convection in internally finned channels may be applied to the 
problem of natural convection in finned channels of the same geometry, provided the 
correlations are valid for the Ret/ range of interest. For example, the friction-factor 
correlation developed by Webb and Scott [46] for forced convection in finned parallel 
plate channels may be applied to the natural-convection problem. If the flow is 
dominated by forced convection (Gr/Re2 1), the forced-convection heat transfer 
correlation may be used for the heat transfer prediction. The problem of natural 
convection flow in a channel having wall roughness may be handled in the same way, 
using friction-factor and heat transfer correlations developed for forced convection.

Users are cautioned that the increased friction factor associated with an enhanced 
surface will lead to increased pressure drop for the FG and FN cases of Table 17.2. 
Hence, the flow rate will be reduced to satisfy the available buoyancy force. It is 
possible that no heat transfer improvement will result because of the reduced flow rate.

17.10 CLOSURE

The technology of enhanced heat transfer has been under serious development for 
approximately 20 years. The refrigeration and automotive industries are strong users of 
enhanced heat transfer surfaces. Other industries are rapidly becoming involved with 
the technology. This chapter discusses surface geometries for single-phase forced 
convection. Special surface geometries also exist for boiling and condensation. Tube 
geometries exist that are designed for boiling or condensation on one side and 
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single-phase convection on the other side. References 1 and 2 provide citations on both 
single-phase and two-phase enhancement. Review articles that cover special surface 
geometries for condensation and boiling are Refs. 3 and 86 respectively.

NOMENCLATURE

A total heat transfer surface area (both primary and secondary, if any) on
one side of a direct-transfer exchanger; total heat transfer surface area 
of a regenerator, m2, ft2

A, fin or extended surface area on one side of the exchanger, m2, ft2
A, tube outside surface area, considering it as if there were no fins, m, ft
B( e~) correlating function for rough tubes [Eq. (17.38)]
h distance between two plates (fin height) in a plate-fin exchanger, tn2, ft2
CD drag coefficient
c specific heat of fluid at constant pressure, J/(kg • K), Btu/(lbm • F)
Dh hydraulic diameter of flow passages, = ASL/A, m, ft
£>. volumetric hydraulic diameter = 4 X (void volume)/( total surface area)
de diameter at tip of fins for a finned tube (Fig. 17.26), m, ft
d, tube inside diameter; or diameter to the base of internal fins; roughness;

m, ft
dtm internal diameter if enhancement material is uniformly returned to tube

wall thickness, m, ft
do tube outside diameter; fin root diameter for a finned tube; m, ft
e fin height, roughness height; m, ft
e' roughness Reynolds number = eu*/v
f Fanning friction factor AP pDh/2LG2
/f friction factor of fins in Eq. (17.12), = 2phPf Ac/AfG2
/tb modified Fanning friction factor per tube row, = LPp/lNG2
G mass velocity based on the minimum flow area, kg/(m2 • s), lbm/

(ft2 • s)
Gr Grashof number = gr/3 A TD^/v2
Gz Graetz number = nd, RePr/4L
g acceleration due to gravity, = 9.806 m/s2, = 32.17 ft/s2
gr radial acceleration defined by Eq. (17.35), m/s2, ft/s2
H louver fin height, defined in Fig. 17.6, m, ft
h heat transfer coefficient based on A, W/(m2 • K), Btu/(hr • ft2 -°F)
h' heat transfer coefficient based on primary surface area (secondary surface

excluded), W/(nr • K), Btu/(hr • ft2 -°F)
j Colburn factor = StPr2/3
k thermal conductance = hA, W/K, Btu/(hr - °F)
k thermal conductivity of fluid, W/(m • K), Btu/(hr • ft - °F)
kf thermal conductivity of fin material, W/(m • K), Btu/(hr • ft - °F)
L fluid flow (core) length on one side of the exchanger, m, ft
I.MTD log-mean temperature difference, K, °F
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I strip flow length of OSF or louvre pitch of louvre fin, m, or ft
//, louver height shown on Fig. 17.6, rn, ft

louver length shown on Fig. 17.6, m, ft
M mass of tube material, kg, lbm

number of tube rows in the flow direction; number of tubes in heat 
exchanger

Nu Nusselt number = hDh/k
Nu' Nusselt number = h'd/k for inside tube (d = d(), outside tube (d = d0) 
NTU number of heat transfer units, = UA/( If c/,)niin 
ny number of fins in internally finned tube, dimensionless
P fluid pumping power, W, hp
Pr Prandtl number = pcp/k
p axial spacing between roughness elements, m, ft
pr pitch for 360° revolution of internal tape or fin, m, ft
A p fluid static pressure drop on one side of a heat-exchanger core, Pa, lby/ft2
A p, pressure drop assignable to fin area, Pa, lby/ft2
q heat transfer rate in exchanger, W, Btu/hr
Rf, tube-side fouling resistance, m2 ■ K/W or ft2 • hr -°F/Btu
Re Reynolds number based on the hydraulic diameter, = GDh/p
Re * defined by Eq. (17.6)
Re, Reynolds number based on the tube diameter, = Gd/p, d = d. for flow

inside tube and d = do for flow outside tube
Re, Reynolds number based on the interruption length. = Gl/p, GX,/p
Res Reynolds number based on St
Re, Reynolds number based on Dv
S flow cross-sectional area in minimum flow area, m2, ft2
Sd diagonal pitch = (S,2 + S,2)1/2
Sf flow frontal area of heat exchanger, m2, ft2
S, longitudinal tube pitch, m, ft
S, transverse tube pitch, m, ft
St Stanton number = h/Gcp
s fin pitch, center-to-center spacing, m, ft
s' spacing between two fins, = s - t, m, ft
A T temperature difference between hot and cold fluids, K or °F
t thickness of fin or twisted tape, m, ft
A T. temperature difference between hot and cold inlet fluids, K, °F
(/ overall heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 ■ F)
um fluid mean axial velocity at the minimum free flow area, m/s, ft/s
“mod = + tan2a)1/2
u0 tangential velocity, m/s. ft/s
u*  friction velocity = (rw/p)1/2, m/s, ft/s
V heat exchanger total volume, m3, ft3
y heat exchanger tube material volume, m3, ft3
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W fluid mass flow rate = pumS, kg/s, lbm/s
X
X*

Cartesian coordinate along the flow direction, m, ft 
x/Dh RePr
twist ratio = p,/2J, = tt/(2 tan a)

Greek Letters
a helix angle relative to tube axis, = rad
fiT volume coefficient of thermal expansion, K'1, °R-1
y fin density, fins/m, fins/ft

/ 77 \2/ 77 + 2 — It/dj \2/ 77 \

\ 77 + 2 / \ 77 — ^t/dj / \ 77 - 4t/dt /
Tjy fin efficiency; temperature effectiveness of the fin
tjo surface efficiency of finned surface, = 1 — (1 —
20 included angle of fin cross section normal to flow, rad, deg

0km/k
[i fluid dynamic viscosity coefficient, Pa • s, lb„,/(s ■ ft)
v kinematic viscosity, m/s2 or ft/s2
p fluid density kg/m3, lb„,/ft3
th. wall shear stress, Pa, Iby/ft2

Subscripts
fd fully developed flow
m average value over flow length
p plain tube or surface
>v evaluated at wall temperature
x local value
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18.1 INTRODUCTION

In single-phase convective heat transfer solutions given in previous chapters, it has 
been generally assumed that the fluid properties are constant. When applied to 
practical heat transfer problems with large temperature differences between the surface 
and the fluid, the constant-property assumption could cause significant errors, since the 
transport properties of most fluids vary with temperature, which influences the varia
tion of velocity and temperature through the boundary layer or over the flow cross 
section of a duct. In this chapter, internal flow forced convection and natural convec
tion will be considered with temperature-dependent fluid properties. External flow 
forced convection is treated in Chapter 2.

For most liquids, the specific heat, thermal conductivity, and density are nearly 
independent of temperature, but the viscosity decreases markedly with increasing 
temperature. The Prandtl number of liquids varies with temperature in much the same 
manner as the viscosity.

In case of gases, convective heat transfer always causes considerable property 
variation. Density, thermal conductivity, and viscosity all vary at approximately the 
same rate as the absolute temperature. The variation with absolute temperature is 
approximately the same for both viscosity and thermal conductivity for most of the 
gases and their mixtures. If one represents this variation as a power-law dependence, 
the exponent to the temperature falls in the range from 0.7 to 0.8. The specific heat 
varies only slightly with temperature, and the Prandtl number does not vary signifi
cantly. As regards the density, most mixtures can be represented by the perfect-gas 
idealization.

Therefore, when the difference between the fluid bulk and the wall temperature is 
high, the effect of property variation is to alter the velocity and temperature profiles, 
resulting in different heat transfer and friction coefficients than would be obtained if 
properties were constant. The distorted laminar velocity profiles are shown in Fig. 18.1. 
When a liquid is heated, the fluid near the wall is less viscous than the fluid in the 
center. Consequently, the velocity of the heated liquid is larger than that of the 
unheated liquid at the same average velocity and temperature. The distortion of 
the parabolic velocity profile will be in opposite direction with cooling For gases, the 
conditions are reversed because the viscosity increases with increasing temperature, but 
in addition to the viscosity, variations in density can also alter the profile. In a gas, 
acceleration induced by the change in density creates distortions in the opposite 
direction from those due to the viscosity variation, and the former tend to dominate.

The analytical investigation of the effect of property variations on heat transfer is a 
highly complicated task for various reasons. First of all, the variations of properties 
wffh temperature differ from one fluid to another. Sometimes it is impossible to express 
these variations in analytical form.

For practical applications, a reliable and appropriate correlation based on the 
constant-property assumption can be modified and/or corrected so that it may be used 
when the variable-property effect becomes important.

Two methods of correcting constant-property correlations for the variable-property 
effect have been employed: namely the reference temperature method and the property 
ratio method. In the former, a characteristic temperature is chosen at which the 
properties appearing in nondimensional groups are evaluated so that the constant
property results at that temperature may be used to consider the variable-property 
behavior; in the latter, all properties are taken at the bulk temperature or the 
free-stream temperature, and then all variable-property effects are lumped into a 
function of the ratio of one property evaluated at the surface temperature to that
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Figure 18.1. The effect of the property variations on velocity distribution in laminar flow. Curve 
1: isothermal flow; curve 2: heating of Equid or cooling of gas; curve 3: cooling of liquid or 
heating of gas.

property evaluated at bulk temperature. Some correlations may involve a modification 
or combination of these two methods.

For liquids, the variation of viscosity is responsible for most of the property effects. 
Therefore, the variable-property Nusselt numbers and friction factors in the property 
ratio method for Equids are correlated by

(18.1a)

(18.1b)

where is the viscosity evaluated at the bulk mean temperature (or free-stream 
temperature in the case of external flows), is the viscosity evaluated at the wall 
temperature, and cp refers to the constant-property solution. The friction coefficient 
usually employed is the so-called Fanning friction factor based on the wall shear rather 
than the pressure drop.

For gases, the viscosity, thermal conductivity, and density vary with the absolute 
temperature. Therefore, in the property-ratio method, temperature corrections of the 
following forms are found to be adequate in practical applications for the 
temperature-dependent-property effects in gases:

Nu = / t;\" 
Nucp \ Th I (IX.2a)

2 
fcp

(18.2b)

where Th and Tw are the absolute bulk mean (free-stream in the case of external flows) 
and wall temperatures, respectively.

It must be noted that the constant-property portion of the specific correlation is 
evaluated in terms of parameters and conditions defined by its author(s).

Extensive theoretical and experimental investigations with variable properties have 
been reported in the literature to obtain the values of the exponents n and ni which 
wi 11 be cited in the following sections of this chapter.
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18.2 FORCED CONVECTION IN DUCTS

Convective heat transfer in ducts is encountered in a wide variety of engineering 
situations. Different investigators performed extensive experimental and theoretical 
studies with various fluids. As a result, they formulated relations for the Nusselt 
number vs. the Reynolds and Prandtl numbers for a wide range of these dimensionless 
groups.

In heat transfer systems used in different fields of engineering, the heat exchange 
equipment is designed to operate in laminar and turbulent flow regimes. In the 
following sections, heat transfer and friction coefficients in laminar and turbulent 
forced convection in duct flow with temperature-dependent properties will be consid
ered.

18.2.1 Laminar Flow in Ducts
To investigate theoretically the effect of variable fluid properties on heat transfer and 
friction coefficients in laminar flow, the velocity and temperature profiles should be 
calculated at a particular cross section employing certain idealizations. The steady-state 
two-dimensional momentum and energy equations with negligible heat dissipation in a 
circular duct can be written (see Tables 1.5 and 1.6 of Chapter 1)

/ du du\
p f

\ dr dx I

/ dr dT\

dp 1 d I du\ d / du\
- V” + ~dx r dr \ dr j dx\ dx j

d / dT\ k dT d ( dT\ 
T- k T— I d" ~— d"  I k  I 
dry dr I r dr dx \ dx I

(18.3)

(18.4)

where x represent the distance along the channel.
For fully developed velocity and temperature profiles (fully developed conditions) 

under the constant heat flux boundary condition, Eqs. (18.3) and (18.4) reduce to

dp 1 d I du\
dx r dr\ dr j

dT d2T dT/dk k\
Pcpu~T = kTTT + ~T "T + “ dx dr dr \ dr r J

(18.5)

(18.6)

Since with variable fluid properties, dT/dx can still be assumed to be constant to a 
good approximation for constant heat flux boundary condition, dk/dx and v in Eq. 
(18.4) are small and can be neglected.

For constant fluid properties (p, cp, p, k), Eqs. (18.5) and (18.6) give

(18.7)

CpPUmax 
16k dx (18.8)

For a given problem, the velocity and temperature profiles for constant fluid 
properties can be taken as a first approximation. By the use of an appropriate
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relationship of property variation with temperature. Eq. (18.5) can be integrated 
numerically to obtain the second approximation for the velocity profile. This velocity 
profile can be used to integrate Eq. (18.6) to obtain the second approximation of the 
temperature profile with the fluid properties based on the first approximation of the 
temperature profile. The number of approximations required for convergence will 
depend on the rate of heat input. The mixed mean fluid temperature, Nusselt number, 
and friction coefficient can be calculated as in the constant-property solutions.

The above procedure can also be applied to the flow between parallel plates. For 
constant fluid properties, the following equations can be obtained for fully developed 
velocity and temperature profiles for the flow between two parallel plates under the 
constant heat flux boundary condition:

(18-9)

“maxPCp dT
w 2k dx

(18.10)

where y is measured from the centerline. With the velocity and temperature profiles for 
constant fluid properties as the first approximations, the method of iteration can again 
be applied as in the case of the circular tube. The Nusselt number and the friction 
factor can be found in an analogous manner. By the use of numerical methods, the two 
coupled equations of momentum and energy for the flow between parallel plates can 
also be solved directly to obtain velocity and temperature distributions.

Laminar Flow of Liquids. Deissler [1] carried out a numerical analysis as described 
above for laminar flow through a circular duct at constant heat flux boundary 
condition for liquid viscosity variation with temperature given by

/U
(18.11)

and obtained n = 0.14 to be used with Eq. (18.1a). This has been used widely to 
correlate experimental data for laminar flow for Pr > 0.6.

Deissler [1] also obtained m = —0.58 for heating, and m = —0.50 for cooling of 
liquids to be used with Eq. (18.1b).

Yang [2] obtained the solution for both constant wall heat flux (h) and constant 
wall temperature (?) boundary conditions by assuming a viscosity dependence of a 
liquid on temperature as

(18.12)

where A is a constant. His predictions for both (h) and (T) boundary conditions were 
correlated with n = 0.11 in Eq. (18.1a), and he concluded that the effect of thermal 
boundary conditions is small and the influence on the friction coefficient is very 
substantial. He also found that the correction for variable properties is the same for 
developing and developed regions.

Shannon and Depew [3] and Joshi and Bergles [4] carried out a similar analysis for 
the constant heat flux boundary condition. The g-T relation they used in their
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calculation is

p, = g,exp[—y(T — 7])] (18.13)

where y is a viscosity parameter defined as y = — (dfj./dT)/fi = constant. For fi/nw 
< 5, their fully developed prediction gives n = 0.14, which is essentially the same as 
that of Deissler [1]. Shannon and Depew [3] have done a similar analysis for the 
constant heat flux boundary condition, but their predictions differ from Yang’s, 
particularly in the entrance region, for which they recommended n = 0.3.

A simple empirical correlation has been proposed by Sieder and Tate [5] to predict 
the mean Nusselt number for laminar flow in a circular duct at constant wall 
temperature

(18.14)

which is valid for Tw = constant, smooth tubes, 0.48 < Pr6 < 16,700, and 0.0044 <
Ma/p-h < 9.15. This correlation has been recommended by Whitaker [6] for values of

Re/.Pr/>( ^\11/3/ \°14 
MJ \ M J (18.15)

All physical properties are evaluated at the fluid bulk mean temperature except fiw, 
which is evaluated at the wall temperature.

It is not surprising that alternative correlations have been proposed for specific 
fluids. Oskay and Kakag [7] performed experimental studies with mineral oil in laminar 
flow through a circular duct under constant wall heat flux boundary condition in the 
range of 0.8 X 103 < Re,, < 1.8 X 103 and 1 < Tw/Tb < 3, and suggested that the 
viscosity-ratio exponent for Nu should be increased to 0.152 for mineral oil.

Kuznetsova [8] made experiments with transformer oil and fuel oil in the range of 
400 < Re/; < 1900 and 170 < PrA < 640, and recommended

Nu„ = 1.23 Re.Pr,-
\ L / \ Ph )

(18.16)

Test [9] conducted an analytical and experimental study of heat transfer and fluid 
flow behavior for laminar flow in a circular duct for liquid with viscosity varying with 
temperature. The analytical approach is a numerical solution of continuity, momentum, 
and energy equations. The experimental approach involves the use of a hot-wire 
technique for determination of velocity profiles. He obtained the following correlation 
for the local Nusselt number:

(18.17)

where

0.05 for heating liquids
f for cooling liquids
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He also obtained the friction factor as

16 1_ Zg, V’2 
} Re 0.89 I, g„, I

Equations (18.14) and (18.17) should not be applied to extremely long ducts.

Laminar Flow of Gases. Deissler [1] first studied the effects of variable properties in 
laminar flow of air through a circular duct. He made the following simplifying 
idealizations: (1) constant heat flux boundary condition, (2) negligible heat dissipation, 
(3) negligible entrance effects, and (4) negligible heat conduction in the direction of 
flow compared with the radial direction. He further assumed that the specific heat of 
air is constant, and that the viscosity and conductivity are both proportional to T0K. 
Deissler concluded from his results that the evaluation of the conductivity at Tr = Th - 
0.21(TK - Th) for the Nusselt number, and the viscosity at Tr = Tb + 0.58(7],, - Th) 
for the friction factor, eliminates the effects of variable fluid properties on these 
parameters. The variations of the viscosity and conductivity of air with temperature are 
not identical as has been assumed by Deissler. On the other hand, because of density 
changes with temperature, there is always a radial component of the velocity, and 
under large temperature differences between the wall and the mixed mean temperature 
of fluid, it is not possible to have a fully developed velocity profile. Sze [10] investigated 
the effects of temperature-dependent properties on heat transfer and friction through a 
circular tube and parallel plates for fully developed laminar flow of air with a constant 
heat flux boundary condition. He used experimentally determined physical properties 
of air. Sze’s method of solution is in general similar to Deissler’s. Sze concluded that 
the effect of temperature-dependent fluid properties on the Nusselt number in laminar 
flow can be largely eliminated by evaluating the thermal conductivity at Tr = Th — 
0.18(7],. — Th) for circular tubes and at Tr = Th + 0.13(7]^ — Th) for parallel plates. 
Similarly, the effect of temperature-dependent fluid properties on the friction factor in 
laminar flow can be largely eliminated by evaluating the viscosity at the average of the 
mixed mean fluid temperature and wall temperature for both the circular tube and 
parallel plates.

The first reasonably complete solution for laminar heat transfer to a gas flowing in a 
tube with temperature-dependent property variation was developed by Worsoe-Schmidt 
[11]. He solved the governing equations with a finite difference technique for fully 
developed gas flow through a circular tube. Heating and cooling with a constant 
surface temperature and heating with constant heat rate are considered. In this 
solution, the radial velocity is included. He concluded that near the entrance, and also 
well downstream, the results can be satisfactorily correlated for heating (1 < Tw/Th < 3) 
bv n = 0, m = 1.00 and for cooling (0.5 < Tw/Th < 1) by n = 0.0, m = 0.81.

Calculations by Sze [10] and Kays and Crawford [12] for flow between parallel 
plates, using the fully developed flow idealization and employing a procedure similar to 
that of Deissler [1], give the same results for the friction coefficient as were obtained for 
the circular tube under the same idealizations. But the results for the Nusselt number 
are substantially different.

Laminar forced convection and fluid flow in ducts have been studied extensively, 
and numerous results are available for circular and noncircular ducts under various 
boundary conditions. These results have been compiled by Shah and London [13] and 
in Chapter 3; they may be used for the constant-property portion of the correlations 
(18.1) and (18.2). The exponents of n and m are summarized in Table 18.1. For fully 
developed laminar flow, n = 0.14 is generally recommended for laminar heating of 
liquids.
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TABLE 18.1. Exponents n and m Associated with Eqs. (18.1) and (18.2) for Laminar Forced
Convection through Circular Ducts, Pr > 0.5

No. Reference Fluid Condition n m Limitations

1 Deissler [1] Liquid

Liquid

Laminar heating

Laminar cooling

0.14

0.14

- 0.581

-0.50)

Fully developed flow, g" = constant, 
Pr > 0.6, p/pw = (T/TJ-1'6

2 Yang [2] Liquid Laminar heating 0.11 — Developing and fully developed 
regions of a circular duct, 
Tw = constant, g" ~ constant

3 Shannon and
Depew [3]

Liquid

Liquid

Laminar heating

Laminar heating

0.3

0.14

At entrance of tube,
P = P,exp[-y(T- 7))],
y = — (l/p)dp/dT = constant,
<?" = constant

Fully developed region
4 Joshi and

Bergles [4]
Liquid Laminar heating 0.14 — p(T) as in No. 3, 

P„/pft < 5, <7" = constant
5 Worsoe-Schmidt 

[U]
Gas

Gas

Laminar heating

Laminar cooling

0

0

1.00

0.81

Developing and fully developed 
regions, q'^ = constant, 
Tw = constant, 1 < Tw/Th < 3

Tw = constant, 0.5 < Tw/Tb < 1

18.2.2 Turbulent Flow in Circular Ducts
The analysis of the effect of temperature-dependent fluid properties on heat transfer 
and friction in turbulent flow is much more complicated than that in laminar flow. In 
laminar flow, the shear stress for a certain velocity gradient depends solely on the 
viscosity, which is a property of the fluid and depends only on the temperature of the 
fluid. This is not the case in turbulent flow. The effect of eddy viscosity is more 
important over a major portion of the flow. Eddy viscosity is a function of the flow 
configuration which varies over the flow cross section and is indirectly dependent on 
temperature.

Hence, to obtain the variation of eddy viscosity with temperature, the change in 
flow configuration due to temperature changes has to be known. Similarly, heat transfer 
in turbulent flow depends not only on the thermal conductivity, which is a tempera
ture-dependent physical property of the fluid, but also on eddy diffusivity, which is a 
function of the Reynolds number and Prandtl number.

For a steady, fully developed turbulent flow through a circular duct in the absence 
of axial diffusion, negligible viscous dissipation, low Mach number, and insignificant 
body forces such as gravity, the boundary-layer equations of continuity, momentum, 
and energy are given in Chapter 1 by Eqs. (1.96), (1.97), and (1.98):

d(pu) 1 d
----  + -—(pur) = 0 (18.19)

dx r dr 7

/ du du\
p u—----- H v—\ dx dr )

[ dT dT\
\ dx dr j

(18.20)

1 d dT
~ A + PCXir) ------r dr P p dr (18.21)
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With temperature-dependent properties, the energy equation becomes nonlinear and 
the .v-momentum equation becomes coupled to the thermal energy equation.

By the use of the expressions available in the literature for eddy diffusivity of 
momentum and heat (turbulence models), numerical solution of Eqs. (18.19), (18.20), 
and (18.21) can be carried out with property variations. Accurate predictions of heat 
transfer and friction coefficients depend on the use of accurate relationships for 
distributions of velocity and eddy diffusivities of heat and momentum, which require 
the application of numerical methods. and f.H are largely governed by turbulence 
and therefore can be assumed to be independent of temperature; the effect of 
temperature-dependent fluid properties on and would only be indirect through 
their influence on flow configurations. In most of the analyses, it was assumed that the 
eddy diffusivity of momentum, is equal to the eddy diffusivity of heat, i.e., the 
turbulent Prandtl number Pr, = (u/(u is unity. But the turbulent Prandtl number is 
not constant across the boundary layer; it varies continuously from the wall to the duct 
centerline. Very close to the wall, Pr, is well above unity. In the turbulent core region, 
it is well above unity for liquid metals (Pr < 0.03), it is slightly lower than unity for 
gases and it is 0.8 to 0.9 for high Prandtl number liquids [14],

Extensive efforts have been made to obtain empirical correlations that either 
represent a best fit curve to the experimental data or have the constants in the 
theoretical equations adjusted to best fit the experimental data. An example of the 
latter is the correlation given by Petukhov and Popov [15], Their theoretical calcula
tions for the case of fully developed turbulent flow with constant properties in a 
circular tube with constant heat flux boundary condition yielded the following correla
tion, which is based on the three-layer turbulent boundary-layer model with constants 
adjusted to match the experimental data:

(//2)ReftPr6
NuA = --------------------------------------------- r-------- TTD-------------V ■ (18.22)(1 + 13.6/) + (11.7 + 1.8Pr;1/3)(//2)1/2(Pr2/3 _

where

/= (3.641og10Rez, - 3.28)“2 (18.23)

and is defined as /= ru/ |pw2.
Equation (18.22) is applicable for fully developed turbulent flow in the range 

104 < Re/; < 5 X 105 and 0.5 < Prfc < 2000 with 1% error, and in the range 5 X 105 
< ReA < 5 X 106 and 200 < Prfe < 2000 with 1 to 2% error. Equation (18.22) is also 
applicable to rough tubes. A simpler correlation has also been given by Petukhov and 
Kirillov as reported in [16] as

(//2)RefePrfe
Nua = ----------------------- “v;--------------v (18.24)

1.07 + 12.7(//2) 7 (Pr2/3 - 1)

Equation (18.24) predicts the results in the range 104 < Re,, < 5 X 106 and 0.5 < Pr,, 
< 200 with 5 to 6% error, and in the range 0.5 < Pr,, < 2000 with 10% error.

Webb [17] has examined a range of data for fully developed turbulent flow in 
smooth tubes; he concluded that the relation developed by Petukhov and Popov, given 
above, provides the best agreement with the measurements. Sleicher and Rouse 
[18] correlated analytical and experimental results for the range 0.1 < Pr/? < 104, 
)04 < Re,, < 106, obtaining

Nuft = 5 + 0.015 Re™ Pr£ (18.25)
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with

n = — + 0.5exp(-O.6P1/,)

Gnielinski [19] further modified the Petukhov-Kirillov correlation by comparing it 
with experimental data so that the correlation covers a lower Reynolds number range 
(2300 < Re < 5 X 106). Gnielinski recommended the following correlation:

= (//2)(Refe - 1000) Pr,
1 + 12.7(//2)1/2(Prfe2/3 - 1) 

where

/= (1.581nRe, - 3.28)“2 (18.27)

A large number of heat transfer correlations have been established for fully 
developed flow in circular and noncircular channels because of their widespread 
application in heat transfer equipment. A compilation of such correlations for circular 
and noncircular channels has been summarized by Kays and Perkins [20], by Shah and 
Johnson [31], and in Chapter 4. Experimental data and correlations for laminar, 
transition, and turbulent flow through a circular duct have also been compiled by 
Rogers [22],

Some of the recommended constant-property, fully developed, turbulent flow heat 
transfer and friction-factor correlations are summarized in Table 18.2 and Table 18.3 
respectively, which can be used for the constant-property portion of the correlations 
associated with Eqs. (18.1) and (18.2) (see also Tables 4.2 and 4.3 in Chap. 4). The 
comparison of some of the constant-property correlations for Re = 8 X 104 in the 
range of 0.5 < Pr < 15 are given in Fig. 18.2 [25].

Turbulent Liquid Flow in Ducts. Petukhov [16] reviewed the status of heat transfer 
and wall friction in fully developed turbulent pipe flow with both constant and variable 
physical properties.

Analyzing the experimental data, one can assume that the functional relation of Nu 
with Re and Pr and the relation between f and Re with variable physical properties are 
the same as in the case of constant properties. This is a good approximation and has 
been confirmed by the experimental analysis for liquids with variable viscosity and for 
gases with variable physical properties [16],

To choose the correct value of n in Eq. (18.1a), the heat transfer experimental data 
corresponding to heating and cooling for several liquids over a wide range of values 

were collected by Petukhov [16], He found that the data are well correlated by

Re

Fh
< 1, M = 0.U for heating Equids (18.28)

Fw .

Fb
> 1, n = 0.25 for cooling Equids (18.29)

which are applicable for fully developed turbulent flow in the range of 104
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TABLE 18.2. Correlations for Fully Developed Turbulent Forced Convection through a Circular 
Duct with Constant Properties, Pr > 0.5

No. Reference Correlation Remarks and Limitations

1 Prandtl (//2)Re„Pr/, Based on three-layer turbulent boundary-
(see[12, 14]) 1 + 8.7(//2)1/2(PrA - 1) layer model.

2 McAdams [23] Nua = 0.021 Re°'8Pr°'4 Based on data for common gases; recom-
mended for Prandtl numbers = 0.7.

3 Petukhov and Nu (//2)ReftPr6 Based on three-layer model with con-
Kirillov [16] ‘ Uft 1.07 + 12.7(//2)1/2(Prfc2/3 - 1) stants adjusted to match experimental 

data.
f = (3.641og10Refc - 3.28)’2

4 Webb [17] Nu (//2)Re6PrA Theoretically based. Webb found No. 3
' UA 1.07 + 9(//2)1/2(Pr/1 - l)Pr-1//4 better at high Pr and this one the same 

at other Pr.
/ = (1.581nReft - 3.28)"2

5 Sleicher and Based on numerical results obtained for
Rouse [18] Nua = 5 + 0 015 Re"' PrA" 0.1 < PrA < 104, 104 < Re,, < 106.

Within 10% of No. 6 for Re,, > 104.
m = 0.88 - 0.24/(4 + PrJ

1
n = y + 0.5exp( — 0.6 PrA)

NuA = 5 + 0.012 Re°83(PrA + 0.29) Simplified correlation for gases, 0.6 < Prft
< 0.9.

6 Gnielinski [19] (//2)(Refc — 1000)PrA Modification of No. 3 to fit experimental
JU/> 1 + 12.7(//2)1/2(Pr2/3 - 1) data at low Re (2300 < ReA < 104). 

Valid for 2300 < Reft < 5 X 106 and
0.5 < Prfc < 2000.

/= (1.581nRefc - 3.28)“2
Nuft = 0.0214(Re°'8 - 100)Pr')4 Simplified correlation for 0.5 < Pr < 1.5.

Agrees with No. 4 within —6% and

Nufc = 0.012(Re°'87 - 280)Pr°'4 Simplified correlation for 1.5 < Pr < 500.
Agrees with No. 4 within —10% and
+ 0% for 3 X 103 < Refc < 106.

7 Kays and Nu6 = 0.022 Re°'8Pr°5 Modified Dittus-Boelter correlation for
Crawford [12] gases (Pr = 0.5 to 1.0). Agrees with No.

6 within 0 to 4% for Refc > 5000.

5 X 106, 2 < Prfi < 140, and 0.08 < < 40. The value of Nucp in Eq. (18.1a) is
calculated from Eq. (18.22) or Eq. (18.24).

Petukhov [16] collected data from various investigators for variable viscosity in
fluence on friction in water for both heating and cooling, and suggested the following 
correlations for the friction factor:

— < 1 — = -[1 - —

P'b fcp 6 \ IC
for heating liquids (18.30)

/■*'/>  /cp \ P'b /
for cooling Equids (18.31)
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TABLE 18.3. Turbulent Flow Isothermal Fanning-Friction-Factor Correlations for Smooth Circular 
Ducts
No Reference" Correlation'1 Remarks and Limitations

1 Blasius f=Tw/\pp2m = 0.0791 Re"'1/4 This approximate explicit equation agrees
with No. 3 within +2.5%. 4 > 103 < 
Re < 105.

2 Drew, Koo, and f = 0.00140 + 0.125 Re" 032 This correlation agrees with No. 3 within
McAdams -0.5% and +3%. 4 X 103 < Re < 5 

x 106.
3 von Karman and 1/V?= 1.737 InfRe/f) - 0.4 von Karman’s theoretical equation with

Nikuradse or
l/V7=41ogi0(Rev/7)-°.4, 

approximated as
/= (3.641og10Re - 3.28)"2

the constants adjusted to best fit 
Nikuradse’s experimental data. Also re
ferred to as the Prandtl correlation.
Should be valid for very high values of 
Re. 4 X 103 < Re < 3 x 106.

f = 0.046 Re" 0,2 This approximate explicit equation agrees
with the above within —0.4% and 
+ 2.2%. 3 x 104 < Re < 106.

4 Filonenko / = 1/(1.58 In Re - 3.28)2 Agrees with No. 3 within +0.5% for
3 X 104 < Re < 107 and within +1.8% 
at Re = 104. 10*  < Re < 5 X 105.

5 Techo, Tickner, 1 / Re \2 An explicit form of No. 3; agrees with it
and James — 1.7372 In

f V 1.964 In Re — 3.8215 / within ±0.1%. 104 < Re < 2.5 X 108.

"Cited in Refs. 13, 14, 16, 21, 24.
'’Properties are evaluated at bulk temperatures.

The friction factor for an isothermal flow, / can be calculated by the use of Table 
18 3 or directly from Eq. (18.23) for the range of 0.35 < < 2, 104 < Refo < 23
X 104, and 1.3 < PrA < 10.

Turbulent Gas Flow in Ducts. Heat transfer and friction coefficients for turbulent 
fully developed gas flow in a circular duct were obtained theoretically by Petukhov and 
Popov [15] by assuming physical properties p, cp, k, and p as given functions of 
temperature. This analysis is valid only for small subsonic velocities, since the vari
ations of density with pressure and heat dissipation in the flow were neglected. The 
eddy diffusivity of momentum was extended to the case of variable properties. The 
turbulent Prandtl number was taken to be unity (i.e., = c w). The analyses were
carried out for hydrogen and air for the following range of parameters: 0.37 < T*/T h 
< 3.1 and 104 < Re/; < 5.8 X 106 for air, and 0.37 < Tw/Tb < 3.7 and 104 < Reft < 
5.8 x 106 for hydrogen. The analytical results are correlated by Eq. (18.2), where Nu 
is given by Eq. (18.22) or Eq. (18.24), and the following values for n arc obtained:

T
— < 1, n = -0.36 
Th

for cooling gases (18.32)

+ 0.36 for heating gases (18.33)0-3 log10
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?r = ticp/k

Figure 18.2. C omparison of some of the constant-property correlations for Re = 80 X 104 and 
0.5 < Pr < 15 [25],

With these values for n. Eq. (18.2a) describes the solution for air and hydrogen with 
an accuracy of ±4%. For simplicity, one can take n to be constant for heating as 
n = —0.47; then Eq. (18.2a) describes the solution for air and hydrogen within ±6%. 
These results have also been confirmed experimentally and it can be used for practical 
calculations when 1 < Tv,/Th < 4.

From the comparison of the analytical results with experimental data, for the 
prediction of friction factor for air and hydrogen for fully developed turbulent flow, the 
following values of m for Eq. (18.2b) are recommended [16]:

T
— > 1, m = —0.6 + 5.6 ReM 0 38 for heating gases (18.34) 
Th

T
— < 1, m = — 0.6 + 0.79 Rew 011 for cooling gases (18.35) 
T/,

where Re„ = umdpH./pK. The above results are applicable in the range of 0.37 < TK/Th 
< 3.7 and 14 X 103 < Re*,  < 106 with 2 to 3% error. If m = -0.52 for heating and 
m = - 0.38 for cooling. Eq. (18.2b) describes the data to within 7% accuracy in the first 
case and 4% accuracy in the second. It has been confirmed theoretically and experimen
tally that n decreases with increasing Tw/Th.

The friction coefficient in the circular duct flow of a gas with a large temperature 
difference between the wall and flow has also been studied [26-28]. The data obtained 
in these studies are not in agreement with each other.
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TABLE 18.4. Exponents n and m Associated with Eqs. (18.1) and (18.2) for Turbulent Forced Convection through Circular Ducts

No. Reference Fluid Condition n 1)1 Limitations

1 Petukhov [16] Liquid Turbulent heating 0.11 — 104 < Reft < 1.25 X 10\ 2 ■<PrA< 140
Liquid Turbulent cooling 0.25 — 0.08 < P,./Pn < 1

< P^/Ph < 40
Liquid Turbulent heating Eq. (18.30) 104 < ReA < 23 X 104,1.3 ■<Pr„< io4,
Liquid Turbulent cooling -0.24 0.35 < Pw/Ph < 1

or = 0.25 < P^/Ph < 2
2 Petukhov and Gas Turbulent heating - 0.47 — 104 < ReA < 4.3 X 106, 1 < K/Th < 3.7

Popov [15]
Gas Turbulent cooling -0.36 — 1 < TJTh < 1
Gas Turbulent heating -0.52 14 X 103 < Re„*  < 105, 1 <- Tw/Th < 3.7
Gas Turbulent cooling — -0.38 0.37 < TJTh < 1

3 Worsoe-Schmidt [11] Gas Turbulent heating — -0.264 1 < Tw/Th < 4
4 McElligot et al. [26] Gas Turbulent heating 0.1 1 < TJTh < 2.4
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For fully developed velocity and temperature profiles (L/d> 55), Perkins and 
Worsoe-Schmidt [27] found that when 1 < Tw/Th < 4, m = -0.264.

McEligot et al. [26] recommend a value of -0.1 instead of -0.264 for 1.0 < Tw/Th 
< 2.4.

The exponents n and m of the correlations in Eqs. (18.1) and (18.2) for turbulent 
flow obtained by various investigators under various conditions are summarized in 
Table 18.4. In view of their experimental verification, items 1 and 2 are recommended.

A great number of experimental studies are available in the literature for the heat 
transfer between the tube wall and the gas flow with large temperature differences and 
temperature-dependent physical properties. The majority of the work deals with gas 
heating at constant wall temperature in a circular duct; experimental studies on gas 
cooling are limited.

The results of heat transfer measurements at large temperature differences between 
the w all and the gas flow are usually presented as

NU/, = C Re°8Pr°-4 (18.36)

For fully developed temperature and velocity profiles (i.e., L/d > 60), C becomes 
constant and n becomes independent of L/d.

A number of heat transfer correlations have been developed for variable-property 
fully developed turbulent Equid and gas flow in a circular duct, some of which are also 
summarized in Tables 18.5 and 18.6.

18.2.3 Turbulent Flow in Noncircular Ducts
Heat transfer and friction coefficients for turbulent flow in noncircular ducts are given 
in Chapter 4. For turbulent flow a common practice is to employ the hydraulic 
diameter in the circular duct correlations to predict Nu and f for noncircular ducts. 
For most noncircular smooth ducts, the accurate constant-property experimental 
friction factors (pressure drop) are within ±10% of those predicted using the smooth 
circular duct correlation with hydrauhe diameter as a characteristic dimension. The 
constant-property experimental Nusselt numbers are also within ±10 to 15% except 
for some sharp-cornered and narrow channels. This order of accuracy is adequate for 
most engineering calculations for overall heat transfer and pressure drop calculations.

Many attempts have been reported in the literature to arrive at a universal 
characteristic dimension in turbulent flows that will correlate the constant-property 
friction factors and Nusselt numbers for all noncircular ducts [46-48]. It must be 
emphasized that any improvement made by these attempts is only a few percent, and 
therefore the circular duct correlations may be adequate for many engineering applica
tions.

In addition to the generalized attempts, correlations for specific noncircular ducts 
have been developed in the literature, and they are summarized below for rectangular, 
triangular, elliptical, and concentric annular ducts [21],

Rectangular Channels. Jones [49] obtained a correlation for turbulent friction fac
tors in smooth rectangular ducts by modifying the definition of the Reynolds number
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TABLE 18.5. Turbulent Forced Convection Correlations in Circular Ducts for Liquids with Variable Properties, Pr > 0.5

No. Reference Correlation Comments and Limitations

1 Colburn [29]

2 Sieder and Tate [5]

3 Norris and Sims [30]

4 Yakovlev (see [22])

5 Petukhov and 
Kirillov [16]

6 Malina and Sparrow 
[31]

7 Hufschmidt, Burck 
and Riebold [32]

8 Everett (see [22])

St/,Pry2/3 = 0.023 Re/0 2

/ „ \0.14
Nu/, = 0.023 ReofiPr^ '3 —

\ P'hJ

l u \014 
St/, = 0.006 Pr,; 08 —

\PW)

I PC \° n
Nu6 = 0.0277 Re08Pr° 36l — 

\ /

(//8)RefcPrfc
1.07 + 12.7///8 (Pr2/3 - 1) \ /i J

Nu/, = 0.023 Re^Pr^3

L/d > 60, Pr„ > 0.6, Tf = (Th + TJ/2; 
inadequate, for large Tw — Th.

L/d > 60, Pr,, > 0.6, for moderate Tv 
Th.

Transitional, 3500 < ReA < 11,000, ex
periments on cooling of oils. Undevel
oped velocity profile. 35 < Pr;, < 140.

Use of Prandtl group was first suggested 
by the author in 1960.

L/d > 60, 0.08 < pw/ph < 40, 104 < 
Re/, < 5 X 106, 2 < Pr,, < 140, f = 
(1.82 log Re/, - 1.64)“2, n = 0.11 (heat
ing), n = 0.25 (cooling).

Water, oil, 3 < Pr6 < 75, L/d = 30.

(f/?,)RehPrh i Pr,, \011 Water, 2 X 104 < Re*  < 6.4 X 105, 0.1
NUfc ~ 1.07 + 12.  ̂(Pr^ - 1) \ Prw ) i<64)r/’/2PrW < = ('1'8210g Re* “

/ p, \"
Nu,, = 0.0225 Re?'795PrN — Refc > 4 X 103.

\ I
x = 0.495 - 0.225 In Pr

for Re < 62,500

for Re > 62,500



9 Hackl and Groll
[33]

Nufe
-------= 0.645— + 0.355
Nuc/, p.h

Experimental results with oils, 
4 X 103 < ReA < 11 X 103.

18-17

10 Kuznetsova [8]

11 Oskay and Kakag
[7,34]

12 Hausen [35]

13 Sleicher and 
Rouse [18]

14 Gregorig [36]

Nufi = OO13Re28Pr°4 Transformer oil, fuel oil,
2000 < ReA < 8000, 70 < Pr,, < 200.

/ u \0 262
Nu = 0.023 Re£8Pr604 —

\ G. /
( „ \O487

Nu = 0.023 Re^Pr* ’ 4 —
\ P-»)

Nufe = O.O235(Re°8 - 23O)(1.8 Pr£3 - 0.8)

Water, L/d> 10,
1.2 X 104 < Refc < 4 X 104.
30% glycerine-water mixture
L/d > 10, 0.89 X 104 < Rey, < 2.0 X 104.

Altered form of equation 
presented in 1959 [22],

m = 0.88 - 0.24/(4 + Prw)
n = | + 0.5e~O6Pr»
NUz, = 0.015 Re/88 PrY3
Nufc = 4.8 + 0.015 Re/85 Pr°93
Nufc = 6.3 + 0.0167 Re/85 Pr°93

Nu / Prfr \ P
= \ K /

0.264(| - x)°20 + 0.0757

Pr0.°5ReO.02(L _

with x =
Pi? ~ pG 
pG - pG

1
2

L/d > 60, 0.1 < PrA < 105,

104 < ReA < 106

Pr„ > 50
Prt < 0.1, uniform wall temperature
Prfc <0.1, uniform wall heat flux 
L/d > 70, cooling of liquids 
only, Tf = (Th + Tw)/2. Correlation 
of others’ results.
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TABLE 18.6. Turbulent Forced Convection Correlations in Circular Ducts for Gases with Variable Physical Properties

No. Reference Correlation Gas Limitations

1 Humble, Lowdermilk, 
and Desmon [38]

2 Bialokoz and 
Saunders (see [16])

3 Taylor and 
Kirchgessner [39]

4 McCarthy and Wolf [40]

5 Barnes and 
Jackson [41]

6 Wieland [42]

Nuft = 0.023 Re°'8Pr°’4(T„,/T6)”

K/Th < 1, « = 0 (cooling)
Tw/Th > 1, n = —0.55 (heating) 
Nu„ = 0.022 Re^Pr^a/TJ0'5

Nuz = 0.021 Re/08Pr/0-4

Nuz = 0.045 Re/8 Pr/4 (£/</)“ 015 
(Tw/Th)01

Nu/; = 0.023 Re° 8PrA04(7],./7;)''

( - 0.4 for air 
n = / - 0.185 for He

^—0.27 for CO2

Nuz = 0.021 Re/^Pr'’ 4

Air

Air

He

H2, He

Air, He,
CO2

He

30 < L/d < 120, 7 X 103 < Re,, < 3 X 105,
0.46 < Tw/Th < 3.5, L/d > 60

29 < L/d < 72,
1.24 X 105 < Refc < 4.35 X 105,
1.1 < Tw/Th < 1J3
L/d = 60,92,
3.2 X 103 < Re;, < 60 X 103,
1.6 < Tw/Th < 3.9, L/d > 60
21 < L/d < 67,
5 X 103 < Re,, < 15 X 105,
1.5 < Tw/Th < 9.9
1.2 < Tw/Th < 2.2,
4 X 103 < Re*  < 6 X 104,
L/d > 60

L/d = 250, TJTh < 2.8,
far from entrance.
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7 Taylor [43] Nuy = 0.021 Re;° 8Pr° 4 H2, He
8 McElligot et al. [26] Nufc = 0.021 Re^Prft°'4(7;/7;r 05 Air, He,

N,
Nu„ = 0.021 Re^PrO-4]?;/^)-0-5

X [1 + (L/dy0-1]
9 Perkinsand Nufc = 0.024Re^Pr^4]^/^)-''7 N2

Worsoe-Schmidt [27]
Nuw = 0.023 Re°-8PrM0;4

10 Petukov, Kirillov, 
and Maidanic 
(see [16])

11 Deissler and 
Prester [44]

12 Kutateladze and

Leontiev (see [16])
13 Sleicher and 

Rouse [18]
14 Gnielinski (see [45])

15 Dalle-Donne and 
Bowditch (see [20])

Nufc = 0.024 Re°-8Pr°-4(Tw/T/))-0-7
X [1 4 (L/d) 01(TK/Th)01]

NuA = 0.021 Re" 8Pr"4(TH./Tft)" N2
n = -[0.91og(7;/7;) + 0.205]

Nur = Re3/4/31

Nuft
Nucp

A

Lp
\AvA + 1 '

Air, He,
Ar, H2

gases

L/d = 77, 1.5 < Tw/Th < 5.6
L/d > 30,1 < Tw/Th < 2.5, 
1.5 X 104 < Re, < 2.33 X 105
L/d > 5, local values

L/d > 40, 1.24 < Tw/Th < 7.54, 
18.3 X 103 < Re,h < 2.8 X 105 
Properties evaluated at wall 
temperature, L//d > 24 
1.2 < L/d < 144

80 < L/d < 100,
13 X 103 < ReA < 3 X 105
1 < Tn./Th < 6
Re,, > 104, properties evaluated at 
Tr = Th + 0.4(7; - Tfc), L/d > 60

Fully developed flow

Nufi = 5 + 0.012 Re/83 (Prw + 0.29)

Nufc = 0.0214(Re°-8 - 100)Pr°-4(Tfc/7;)0'45
X [1 + (<//L)2/3]

Nua = 0.022Re"'8Pr"-4(Tw/rfc)" (0'29 + 00019x/</)

Air, He, 
CO2

Air, He,

0.6 < Pr,, < 0.9, fully developed flow

0.5 < Prfc < 1.5,
for heating of gases; from literature.

104 < Re*  < 105,18 < L/d < 316
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so that it employs a laminar equivalent diameter De:

GDe
Re*  = -----

where

16
De = — • Dh = *D h (18.37)

and K (= f Re) is a constant for fully developed laminar flow for the rectangular 
duct in question. Since Kf is dependent upon the aspect ratio a*,  it is approximately 
given by

16
0 = — « | + ^a*(2  - a*  ) 

K,
(18.38)

Once the Reynolds number is modified to Re*,  Jones showed that the turbulent f 
factors for rectangular ducts can be predicted by the Karman-Nikuradse equation with 
Re changed by Re*.  Once the friction factor is determined by this procedure, the 
pressure drop AP is computed by the use of the hydraulic diameter Dh. Based on the 
Jones correlation, it can be shown that the f factors are lower by 3% for a square duct 
and are higher by 11% for infinite parallel plates than for a circular tube at the same 
Re.

Nusselt numbers for rectangular ducts can be computed by the use of Eq. (18.24) or 
Eq. (18.26) with / factors computed by using Re*,  while Re is based on hydraulic 
diameter Dh. The Nusselt numbers for a square duct computed by this procedure are 2 
to 4% lower than those for a circular tube at Pr = 0.7, and 1 to 2% lower at Pr = 10. 
For parallel plates, they are higher by 7 to 11% and by 5 to 7% than those for circular 
tubes at Pr = 0.7 and 10 respectively.

Triangular Ducts. The turbulent flow friction factors for isosceles triangular channels 
due to Carlson and Irvine [50] are correlated as

f= [0.06057 + 7.22 X 10“4(2<f>) - 9.413 X 1(F6(2<>)2] Re' 025 (18.39)

where 2 9 is the apex angle of the triangle in degrees. The correlation is based on 
experimental data for 8° < 2<f> < 60°. Note that the bracketed factor is 0.0791 for the 
circular tube (Table 18.3). Nusselt numbers can be calculated from Eq. (18.24) or Eq. 
(18.26) by the use of f computed from Eq. (18.39).

Elliptical Ducts. Fully developed turbulent flows have been investigated in [51,52]. 
The friction factors for elliptical ducts with aspect ratios of 0.667 and 0.500 were 
consistently 8% and 13%. higher than those by Karman-Nikuradse correlation for the 
complete range of 2 X 104 < Re < 1.3 X 105 [32]. Jones's procedure of employing 
laminar equivalent diameter would correct these friction factors only by 0,5%. and 1.3% 
respectively. Cain and Duffy [51] attributed this departure partially to the existence of 
the secondary flows.

Cain [52] obtained the heat transfer results for the aforementioned two elliptical 
ducts with air flow. His Nusselt numbers agree with the Dittus-Boelter correlation for
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(18.41)

104 < Re < 2 X 10\ He also tested two more elliptical ducts (aspect ratio 0.375 and 
0.341) with water flow over 2.5 X 103 < Re < 8 X 104. For Re > 25,000, the Nusselt 
numbers agreed with those from the Dittus-Boelter correlation; howc/er, for Re < 
25,000 they were lower than the latter and were correlated by

Nufc = 0.00165 Re^06PrA° 4 (18.40)

Cain [52] attributed this reduction in Nu to the presence of laminar or transition flow 
in the channel comers. Cain’s Nusselt number results are in agreement with the test 
results of Barrow and Roberts [53] for the elliptical duct of aspect ratio 0.284 with 
water as a test fluid. The available data are insufficient to provide generalized 
correlations for elliptical ducts.

Concentric Annuli. Based on observed friction factors higher than those for the 
circular tube, Kays and Perkins [20] recommend using f factors for concentric annuli 
that are 1.10 times those for a circular tube. Recently, Jones and Leung [54] carefully 
scrutinized all experimental data and recommended the Karman-Nikuradse correlation 
for concentric annuli with the Reynolds number Re*  = GDe/[i based on the laminar 
equivalent diameter De defined as

16 1 / „ l-r*2
D, = —Dh = <bDh, where $ =------------ 7 1 + r* 2------ --------re Kf h (l-r*) 2\ ln(l/r*)

Here r*  is the ratio of inner radius to outer radius of the concentric annuli. The / 
factors computed by this procedure are higher than the circular tube correlation by 0 to 
11% for r*  varying from 0 to 1 at the same Re based on Dh. Extensive Nusselt number 
tabulations for turbulent flow are available for concentric annuli depending on the 
inner and outer tube boundary conditions [14],

The Nusselt number and the friction coefficient with property variation in turbulent 
flow can be calculated for engineering applications by use of Eqs. (18.1) and (18.2) with 
Table 18.2, and Table 18.4 where Re is based on Dh.

Further correlations for laminar and turbulent forced convection in ducts and for 
flow normal to tube banks for constant and variable properties can be found in 
Zukauskas’s work [55,56] and in Chapter 6.

18.3 TURBULENT FORCED CONVECTION IN DUCTS AT 
SUPERCRITICAL PRESSURE

The special characteristic of fluids near the critical point is that the variation of their 
physical properties with temperature becomes extremely rapid. At the critical points, 
the isotherm has zero slope and saturated-liquid and saturated-vapor states are identi
cal. In this section, the results on the heat transfer and friction coefficient in single-phase 
forced convection at supercritical pressure and at subcritical or pseudocritical tempera
tures (the critical temperature being that at which the specific heat peaks) are briefly 
summarized. Since the pressure variation across most thermal boundary layers 
is negligible, it is the variation of properties along a constant-pressure line that is 
important. The variation of p, cp, fi, k, and i for CO2 at 1.00 X 107 Pa (100 bar) is 
shown in Fig. 18.3. The temperature at which the specific heat reaches a peak is known 
as the pseudocritical temperature, T .. As the pressure is increased, this temperature
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Figure 18.3. Physical properties of carbon dioxide at P = 1.00 X 107 Pa = 100 bar [16],
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increases, the maximum value of the specific heat falls, and the variation of the other 
properties becomes less severe. This behavior is followed by many other fluids. There is 
evidence for some fluids of a sharp peak in conductivity near the critical point. 
Unfortunately, at practical heat fluxes, the peaking of conductivity would occur in a 
very thin layer of fluid. In the case of heating, the density and viscosity increase rapidly 
from the wall to the duct axis.

18.3.1 Special Features of Heat Transfer at Supercritical Pressure
Forced convection measurements at supercritical pressures have been made using a 
wide range of fluids such as water, carbon dioxide, nitrogen, hydrogen, and helium. By 
far the most extensive collections of data are those for water and carbon dioxide, and 
fortunately the accuracy of physical properties for these fluids is good [57].

Review papers on supercritical-pressure heat transfer have been given by Petukhov 
[16,58], Khan [59], Hall et al. [60], Hall [61], Hendricks et al. [62], and Jackson et al. 
[63].

As a result of the strong dependence of physical properties on temperature, 
processes involving heat transfer in supercritical pressure fluids are generally more 
complex than for ordinary fluids. The energy equation becomes nonlinear, with the 
result that the proportionality between the flux and temperature difference no longer 
exists. Density variations cause changes in the velocity, either by virtue of thermal 
expansion or because of buoyancy; these effects combined with locally high specific 
heat can be important influences on convection. The diffusion of heat through boundary 
layers can be strongly influenced by variations of thermal conductivity and specific 
heat.

At low heat fluxes, and therefore with small temperature variations across the flow, 
irrespective of the change of physical properties with temperature, the calculation of 
such a heat transfer process can be carried out as in the case of uniform properties. It 
should be noted that temperature changes do occur in the direction of flow even at low 
heat flux, so that the properties change in this respect. Therefore, for the limiting case 
(T„ - Th is small) of very low heat flux, the established relationship between Nu, Re, 
and Pr for constant properties can be used on a local basis. This relationship is often 
expressed in the form

Nu=CRemPr" (18.42)

The behavior of the heat transfer coefficient in the vicinity of the pseudocritical 
temperature significantly depends on the specific heat variation, and one might expect 
the heat transfer coefficient h to vary in a similar manner. The data of Swenson et al. 
[64] illustrate the enhancement of heat transfer in the pseudocritical region for water at 
2.33 X 107 and 3.10 X 107 Pa (Fig. 18.4). It will be noted that the influence of pressure 
in increasing T . and in reducing the peak value of cp is clearly reflected in the 
variation of the heat transfer coefficient.

The explanation of the enhancement effect in the pseudocritical region becomes 
apparent when one considers the factors which influence the thermal resistance of the 
wall layer, the region through which the diffusion of heat takes place mainly by 
molecular action. This resistance depends both on the thermal conductivity of fluid and 
on the extent of the region. As temperature increases through the pseudocritical range, 
the thermal conductivity falls, but at the same time the extent of the high-resistance 
layer is reduced (turbulence is less damped as a result of the reduction in viscosity, and 
is more effective in diffusing heat as a result of high values of specific heat). The
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Figure 18.4. Enhancement of heat transfer in the pseudocritical region [64],

thinning of the thermal layer due to the latter mechanisms lowers the thermal 
resistance by an amount which far outweighs the opposing effect of the reduced 
thermal conductivity. The result is that the heat transfer coefficient is strongly en
hanced. Beyond the pseudocritical temperature the specific heat falls to a low value, 
with the result that the effectiveness of turbulent diffusion of heat is reduced and the 
heat transfer coefficient is much lower. On the other hand, the minimum value of h in 
the case of cooling (q" < 0) is higher than that in the case of heating (q'' > 0) and 
decreases when q" and 7], increase. For cooling, h decreases with increasing q” at a 
smaller rate than for heating.

An increase in heat flux has the effect of diminishing the enhancement [65.66], 
Whereas at low heat flux the high value of specific heat associated with temperatures 
near T is felt across much of the boundary layer, with increase of heat flux the peak 
values become concentrated in one part of it. Thus the integrated effect of the peaking 
of c is reduced. Coupled with this, the influence of the low conductivity of the fluid 
adjacent to the wall is strengthened by the increased range of temperature covered.

With further increase in heat flux, the trends described above continue to the stage 
where the enhancement effect is inhibited completely. This is illustrated by the data of 
Kondratev [67] for water at 2.53 X 107 Pa (Fig. 18.5). At very high heat flux, severe 
impairment of heat transfer develops, followed further downstream by a recovery
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Figure 18.5. Enhanced and impaired heat transfer [67],

where the bulk temperature passes through Tpt. Such effects are clearly shown in the 
data of Dornin [68] for water at 2.27 X 107 Pa, which are shown in Fig. 18.6, and of 
others [69,70, 71], The “broad” peaks on the wall temperature distributions of Fig. 18.6 
are a characteristic of forced convection heat transfer to supercritical pressure fluids at 
high heat flux. They should not be confused with peaks due to influences of buoyancy 
under conditions of mixed convection with upward flow in heated tubes. The latter 
type are usually much more localized and are not restricted to the range of bulk 
temperature in the vicinity of Tpc.

Figure 18.6. Wall temperature peak for impaired heat transfer [68].
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x/d

Figure 18.7. Wall temperature for upward and downward flow in a vertical tube—effects of 
buoyancy in carbon dioxide, p = 7.59 X 106 Pa, d = 19 mm, Tb in = 14°C, m = 16 kg/s [75],

The changeover from enhanced to impaired forced convection is not just controlled 
by heat flux; mass velocity also turns out to be an important variable [72],

The conditions under which the impairment of heat transfer might become signifi
cant have been studied, and a criterion for the onset of impairment of forced 
convection at high heat flux has been suggested [72-74],

The examples discussed so far have all involved conditions where buoyancy effects 
have been negligible. The presence of significant influences of buoyancy can be 
detected in the case of vertical and inclined tubes because results for upward and 
downward flow are then found to differ. For horizontal and inclined tubes, buoyancy 
causes circumferential variations of heat transfer [65],

Under conditions of suitably low mass velocity, buoyancy effects develop with 
increase in heat flux, often when the flux reaches a level which causes the surface 
temperature to exceed T .; density variations sufficient to give buoyancy-induced flow 
then suddenly occur. This is evident in rather a dramatic form in the examples given in 
Figs. 18.7 and 18.8 for carbon dioxide [75,76],

The localized impairment of heat transfer for upward flow in vertical tubes has been 
explained in terms of partial laminarization of the flow by Hall and Jackson [73], and 
the impaired heat transfer on the upper part of horizontal tubes has been attributed to 
stratification of the flow. It turns out (although it is not obvious from the examples 
cited) that the heat transfer is enhanced by buoyancy for downward flow in vertical 
tubes and also over the lower part of horizontal tubes. By comparing Figs. 18.7 and 
18.8, it can be seen that impairment of heat transfer due to buoyancy occurs more 
readily in the case of the horizontal tube. A considerable amount of information has 
been produced in recent years on the influences of buoyancy on heat transfer to 
supercritical pressure fluids. Much of it has been collected and reviewed by Jackson 
ct al. [63],

It is clearly important to be able to ascertain for a given set of operating conditions 
whether effects of buoyancy are likely to be significant or not. This matter has been
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Figure 18.8. Temperature along the upper and lower surfaces of a horizontal tube, d = 22.2 mm, 
filled with carbon dioxide [76],

given detailed attention for both the vertical and horizontal cases in Ref. 63. Theoreti
cal considerations lead to the following criteria for negligible buoyancy effects:

Gr, 
Re,27

< 10"5 for vertical tubes (18.43a)

Gr,

Re2
< nr3 for horizontal tubes (18.43b)

where Gr;i and Gr, are the Grashof numbers defined in the Nomenclature section.
The criterion for the vertical case is well substantiated by experimental data on 

supercritical pressure fluids by Jackson et al. [63], Brassington and Cairns [77], and 
Fc wster [78], For the horizontal case, the criterion is consistent with the rather limited 
data which are available on the onset of buoyancy effects; most supercritical pressure 
experiments with tubes of bore large enough for circumferential variations of heat 
transfer to be reliably detected have exhibited strong influences of buoyancy whenever 
the wall temperatures have risen above T . These data are in all cases consistent with 
the above criterion.

18.3.2 Empirical Correlations
As was mentioned above, there is a considerable number of experimental studies on 
heat transfer in the supercritical region. Due to inexact analytical methods, there are 
disagreements between the predicted and experimental values. A satisfactory descrip
tion of the significant variations in physical properties, especially the variation of 
turbulent diffusivity with physical properties, and full consideration of these changes 
over the flow cross section, will certainly improve the accuracy of the analytical 
solutions.
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The task of finding correlation equations capable of describing the strong influence 
of property variation over the entire forced convection region is hard to handle. 
However, some success has been achieved by using relatively simple extensions of 
established constant-property relationship.

Various correlations on supercritical pressure fluids are available in the literature. In 
general, the approach adopted in developing such equations fall into two categories. In 
the first type of approach, wall-to-bulk property ratios raised to suitable powers are 
added to the usual type of constant-property correlation equation. In the second type 
of approach, the properties in the Nusselt, Reynolds, and Prandtl numbers in the 
constant-property correlations are evaluated at some chosen reference temperature, the 
arithmetic mean of the wall and bulk temperatures being a value frequently used. This 
approach offers far less scope for correlating data over a wide range of conditions than 
does the property ratio method. In a number of instances, a combination of the two 
approaches is employed. A development of the first type, due to Krasnoshchekov and 
Protopopov [79], involves the use of a specific heat ratio term in which an integrated 
specific heat c is employed. Using their experimental data on CO2 and the experimen
tal data of other investigators for CO2 and H2O, they suggested the following 
equation:

(18.44)

where Nuip is the Nusselt number for constant physical properties given by Eq. 
(18.24), and c is the average specific heat at constant pressure defined as follows:

Noting that cr = (di/dT)p and that pressure does not vary significantly in the 
transverse direction in pipe flow, this can alternatively be rewritten as

(18.45)

where z„ and ih are the enthalpy at 7], and Th, respectively. The exponent m in Eq. 
(18.44) depends on TM./Tpc and Th/Tp<_ as shown in Fig. 18.9.

Equation (18.44) predicts the experimental data with an accuracy of ±15% and is 
valid for the following ranges: 1.01 < P/Pc < 1.33, 0.6 < Tft/Tpc < 1.2, 0 6 < Tw/T c 
< 2.6, 2 X 104 < Rez, < 8 X 105, 0.85 < PrZ) < 55, 0.09 < pjph < 1.0, 0.02 < 

cp/cpb < 4.0, 2.3 X 104 < <?" < 2.6 X 106 W/m7, L/d > 15.
Some of the earlier correlations were based on limited experimental data and 

consequently did not possess much generality. However, one of these early equations, 
the Miropolski-Shitsman correlation [80], proved to be surprisingly successful: 

Nufc = 0.023 Re™ Pr™ (18.46)

where Prmin is the smaller of the two Prandtl numbers calculated from the bulk 
temperature (PrZ) ) and the wall temperature (PrM).

Some later correlations, such as those of Bishop et al. [81] and Swenson et al. [64], 
stemmed from comprehensive experimental studies of heat transfer to water at su-
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Figure 18.9. Exponent m in Eq. (18.44) vs. TK/Tpc and Th/Tpc [16].

percritical pressure but were developed without many data for other fluids. Swenson 
et al. [64] have correlated their data on the heat transfer for water by the equation

(
_ \ 0.231 r.
- ~ (18.47)Pbl kh v ’

where PrM = cpiiw/kw and cp is determined from Eq. (18.45). Equation (18.47) 
describes the experimental data of the authors with a mean squared error of + 10% and 
covers the range of the characteristic parameters shown in Table 18.7.

The most wide-ranging and persistent attempts to correlate supercritical data have 
been those of Krasnoshchekov, Protopopov, Petukhov and their coworkers [79, 82, 83], 
correlations 6, 7, and 13 in Table 18.7. By using correlations of rather elaborate form 
they allowed for sufficient scope to fit a wide range of conditions. The correlation of 
Yamagata et al. [65] is also rather elaborate. These authors utilized three different 
equations, the choice of equation depending on the values of Tw and Th in relation to 
T pc-

A comparison of the performance of some of the earlier correlations was carried out 
by Hall et al. [60]. Agreement between heat transfer coefficients, calculated from 
various equations, was found to be poor, and it was concluded that the equations then 
available were inadequate for predicting heat transfer in the critical region. However, 
since then methods have been established for screening data to eliminate those which 
are influenced by buoyancy. Furthermore, a considerable body of new data has been 
accumulated. A further data evaluation study has been given by Jackson and Fewster 
[84],

The various correlations fisted in Table 18.7 were used to predict heat transfer 
coefficients for approximately 2000 experimental conditions from the observed values 
of mass velocity, bulk temperature, and wall temperature. About 75% of the data points 
were from experiments on water, and the remainder were for carbon dioxide. They 
were carefully screened to exclude influences of buoyancy. The discrepancies between 
predicted and experimental heat transfer coefficients were tabulated for each case, and 
performance statistics for the correlation equations were produced [72]. The results are 
shown for a number of correlations.
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TABLE 18.7 Turbulent Forced Convection Correlations to Fluids in Circular Ducts at Supercritical Pressure

No. Reference Correlation Fluid

1

2
3
4

5

6

7

McAdams et al. [85]

Powell [86]
Humble et al. [87]
Bringer and Smith [88]"

Miropolsky and Shitsman [80]

Krasnoshchekov and Protopopov [79]

Petukhov et al. [82]

Nu, = 0.0214 Re/8 Pr?33 (£/£,)[! + 2.3/(x/d)]
where Tf = (Tw 4- Th)/2, Re^ = 4m/Trfi.fd
Nu, = 0.023 Re/08Pr/°-4(k//kA)(p//pfc)08
Nu, = 0.023 Re/KPr°4( Z; ,//i,)(p../p,)0 R
Nu, = 0.0266 Re°f Pr°^(VMPr/P/,)°-77
where Rer = 4m/(v)ird),

lTh for Th < Tw < Tpc
Tr = Cpc for Th < 7pC < Tw

( for Tpc <Th< Tw

Nu, = 0.023 Re^Pr™
where Prmin = min(Pr, or Prw)

[ HjO] 7 1053
f°r\CO2/When7;/TPC<\L4 /

/Nucp(p„./p,) 011 for T, <

Nu, = / Nucp(p„/p,) ](A-, n/kh)( cp/cpJS'35 for Th <

[Nucp(Mw/M/;)_1(^>vAzI)t,'66(^/^.,)0'35 for Tpc. ■

where cp = tf«cp dT/(Tw - Th) = (iw - ih)/(Tw - Th) 
with*  Nucp = (//2)Re,Pr,/[12.7(//2)1/2(Pr/y3 - 1) + 1.07] 
in which' f = l/(3.64 log10Re, - 3.28)2
Nu, = Nucp(pvv/p,)-011(kw/k,)0-33(ep/Cp,,)035
with Nucp and cp as in No. 6

: 7], <

; Tpe ■
< Th<

' T 'pc

- Tw

H,0

O2
Air
CO2

CO2.H2O

CO;. H,0

co2, h2o



8 Dornin [68]

9 Bishop et al. [81]

10 Swenson et al. [64]

11 Hess and Kunz [89]

12 Touba and McFadden [90]

13 Krasnoshchekov and

Protopopov [83]

14 Yamagata et al. [65]

Nu = I 0.036Re;;xPr"4(p„./p,) for 25O°C < 7], < 35O°C
NU/> “ \ O.lORe/^Pr,1 2 for 35O°C < 7],

with 7}, Ref as in No. 1
J J __0.66

Nu, = 0-0069 Re'19 Pr, ( Pw/P/,)0-43 [1 + 2.4/(L/J)]
where Pr, = p,hcp/kh, with cp as in No. 6
Nuw == 0.00459 Re923ft°-613(Plv/pA)0-231(fcwAft)
where PrM, = p,wcp/kw, with cp as in No. 6
Nu, = 0.0208 Re/8Pr/4(p//p,)0 8(1 + 0.01457^/?,)
with Tf and Rey as in No. 1
Nu, = 0.0068Re98Pr,exp(2.19z,/zpc - 1.75)
with Pr, as in No. 9
Nu, = ^ucp(pw/ph)°Xcp/cp^')n

/ 0.4 for7,<7]v<Tpc.1.2Tpc< 7], <7],

0.4 + 0.2[(Tw/Fpc) - 1] for Th < Tpc < T},
where n = < r ]r r .| 04 + 0.2[(Tw/7;c) - 1] (1 - 5[(T,/Tpc) - 1] }

for 7^. < Th < 1.2Tpc. Th < 7],

with Nucp and cp as in No. 6
/ 0.024 Re°8Pr,08 for Th < Tw < Tpc

Nu, = / 0.0144Re°-8Pr°-8(ep/CpJ°66 for Th < Tpc < Tw
[ 0.024 Re°-8Pr/8(cp/W) for Tpc < Th < Tw

H2O

h2o

h2o

h2

h2o

co2. h2o

H.O

15 Miropolsky and 
Pikus [91]

with cp as in No. 6
Nu, = 0.023 Re°-8Pr°18n(pM/p,)03 
where Prmin = min(Pr, or PrJ

H.O

18-31
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TABLE 18.7. (Continued).

No. Reference Correlation Fluid

16 Lokshin et al. [92] Nufc = 0.021 Re°-8Pr°'4(a/a)) H2O
where a/ax = variable-property correction factor^

17 Sehnurr [93] “ Nu, = 0.0266 Re^Pr^fMM pr/pA)°-77 CO.
/7pC for0.025 <(rpc- Tfe)/(TM,- ?;) <0.30

Tr = / 0.10(7; - Th) - 3.0(rpc - Th) + Th
’ for 0 < ( Tpc - Tb)/(TW -Th)< 0.025

18 Yamagata et al. [65] Nua = 0.0135 Re°'85Pr°'87\. H ,O
/l.O for Th < Tw < Tpc

where Fc = / 0.67 Pr’005 ( cP/cp< h) "*  for Th < Tpc < T„
\(cp/cp^)"2 for Th<Tpc<Tw

where nr = —0.77 (1 -1- 1/Prpc) + 1.49
w2 = 1.44 (1 + 1/Prpc)-0.53

Prpc = Prandtl number at pseudocritical temperature.

“Equation developed from Deissler’s semiempirical theory as reported in [58],
^Semiempirieal equation for forced-convection heat transfer with uniform properties due to Petukhov and Kirillov as reported in [16],
' Petukhov [59] states that, in order to correlate data over a wide range of pressure, the exponent of the density ratio should take the form 0.35 OOpP/P. which is recommended.
dPresented graphically in Ref. 92 as a function of ih and z?" X 10-3/(7.
“"The equation for Nut was developed by Deissler [58] from semiempirical theory. Reference temperatures are the approximation of Schnurr’s graphical results.
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It has been concluded that the 1965 correlation of Krasnoshchekov and Protopopov 
[83] is the most effective. A modified form of this correlation has been tried in which 
the constant properties part Nucp (due to Petukhov and Kirillov; see [16]) is replaced 
by a simpler Dittus-Boelter form. This version gave equally good results and can be 
recommended for design calculations [72]. It has the following form:

/n \0'3/ c \n
Nu6 = 0.0183 Re£-82Prh°5 — —M (18.48)

' Pb / \ Cp< b J

The index u is not constant, and the equations governing its variation are given under 
correlation 13 (footnote d) of Table 18.7. It depends on the values of Tw and Th, 
conditions for which data are available; a mean value for n was employed, and the 
following modified form of Eq. (18.48) is suggested [74,84]:

/ \0'3
Nuh = 0.0183 Re°-82(Prh)°5 — (18.49)

\ Pb /

Jackson and Fewster [84] found that the correlation of Krasnoshchekhov and 
Protopopov [83] performed best, correlating 90% of the water data and 93% of the 
carbon dioxide data to within ±20%. However, Eq. (18.49) correlates 78% of the water 
data and 79% of the carbon dioxide data to within ±20%.

Tarasova and Leontiev (as reported in [16]) studied skin friction for the case of 
water flowing through smooth tubes in the supercritical region. The experiments were 
carried out in downward and upward flows in heated tubes over the pressure range of 
2.26 X 107 to 2.65 X 107 Pa, with heat fluxes from 0.6 X 106 to 2.3 X 106 W/m2 and 
in the range of Reft from 5 X 104 to 63 X 104. The average friction factor fb was 
determined in a section of length / = 50<7 and 75<7, following a heated or unhealed 
section of length 50d. The experimental results are correlated by the equation

7- = (18.50)
/cp \ Pb I

where / is calculated from Eq. (18.23) with ReZ) = Gd/ph\ ph and are average 
values of ph and ph over the tube section under consideration.

Turbulent forced-convection correlations to fluids in circular ducts at supercritical 
pressure are summarized in Table 18.7. The correlations given in this table cannot 
predict the heat transfer process with diminished heat transfer and enhanced heat 
transfer; these empirical equations are known for the calculation of heat transfer in the 
normal regime, for which the relations observed in experiments can be explained and 
analyzed by existing concepts of turbulent flow and heat transfer formulations for 
variable physical properties. In heat exchanger systems at supercritical pressures, 
normal heat transfer regimes usually occur, and therefore predicted results can be used.

18.4 NATURAL CONVECTION

This section summarizes the available solutions and experimental studies to describe 
temperature-dependent property effects as they occur in natural convection.

A characteristic common to most analytical studies of natural convection has been 
the neglect of all fluid-property variations, except for the essential density differences 
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which, in the absence of mass transfer, are a consequence of temperature gradients in 
the fluid. This greatly simplifies analytical and experimental studies, since the number 
of variables which must be considered is vastly reduced.

In practice, however, experimental data usually exhibit considerable deviations from 
the analytical predictions, in large part because of inadequacy of the constant-property 
assumption. If the ratio of the absolute temperature of the wall to the ambient 
temperature, TH/TX, is nearly unity, the constant-property assumption is valid and the 
most common reference temperature under the assumption of constant properties is the 
film temperature, Tf = . + 7^, )/2, which is used in the evaluation of the significant
dimensionless groups, specifically the Nusselt (Nu), Grashof (Gr), Prandtl (Pr), and 
Raxleigh (Ra) numbers.

In theoretical natural convection analyses, the universal adoption of the Boussinesq 
approximation is no longer valid when the ratio of the absolute temperature of the wall 
to the absolute ambient temperature, Tw/Tx, is very much different than unity. 
Therefore, for large temperature differences between the wall and the ambient, the 
adequacy of the results derived from the constant-property analysis has been in doubt.

Due to the importance of natural convection with variable fluid properties in 
industrial applications, there has been much analytical and experimental work directed 
toward determining the effects of variable properties, which are cited in Refs. 94-108. 
A distinction can easily be made in analytical formulation concerning which transport 
properties are considered variable; however, it is clearly difficult to sort out two effects 
in an experiment. At present, the variable-property work has been applied to only a 
fraction of the geometries and boundary conditions for which the constant-property 
solutions are available.

18.4.1 Theoretical Studies
For steady, laminar, two-dimensional (plane), vertical natural convection flow in the 
absence of viscous dissipation, motion pressure and volumetric energy source effects, 
the boundary layer equations appropriate to the variable-property situations are

d 9
Tx(l>u) + -(pC)-0

I du du\ 3 I du\
P “7? + = - p) + T-\ dx dy I dy \ dy )

[ dT dT\
PC, U— + V — 

\ ax dyI

(18.51)

(18.52)

(18.53)
d 

dy

where u and v are the vertical and horizontal velocity components, respectively, and g 
is taken to be in the negative x direction for heated flows. The temperature of the 
ambient fluid, Tx, at large values of y is constant (Fig. 18.10).

In most of the theoretical studies, the absolute viscosity p has been taken to be 
variable in the force-momentum balance, while the fluid volumetric coefficient of 
thermal expansion, /?, the specific heat cf, and the thermal conductivity k have been 
assumed to be constant. Effects of viscous dissipation, motion pressure, and volumetric 
energy source have also been neglected. This reduces Eqs. (18.51), (18.52), and (18.53)
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Figure 18.10. System coordinates for heating and cooling of a vertical plate.

to the following governing equations:

du du
~~— T— = 11dx dy

(18.54)

du du 1 d Z du\
UT~ + VT~ = “T + sKT~

dx dy p dv \ dy)
(18.55)

dT dT k d2T
W + I’ — _

dx dy pcp dy2
(18.56)

In the above equations, the Boussinesq and boundary-layer approximations are em
ployed.

Sparrow and Gregg [94] transformed the partial differential equations (18.52) and 
(18.53) to ordinary differential equations by defining a stream function and a similarity 
variable. They studied both idealized and real gases under the following boundary 
conditions (Fig. 18.10):

u = 0, v = 0, T = Tw at »• = 0

u — 0, T = as r —> oo
(18.57)

where 7], and are constant wall and ambient temperatures, respectively.
Sparrow and Gregg [94] studied both idealized and real gases. The power-law 

variations for k and y are commonly used approximations. Sutherland-type formulas 
are also used to describe the conductivity and viscosity variations; they are closer to 
realitv than the simple power laws. The variations of cp and the Prandtl number are 
also considered for air. Their heat transfer results for p = pRT, k a T3/4, p <x T3/\ 
cp = constant, and Pr = constant are listed in Table 18.8.

From an analytical solution for the constant-property fluid, it is found that the heat 
transfer (for Pr = 0.7) is

Nua

Gr'/4
= 0.353 =

Nul 
Jg^F (18.58)
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TABLE 18.8. Heat Transfer Results for an Isothermal Vertical Plate [94]

kw/Tx
Nu_/Gr/;4 Nu7..w/|Grl/4w
(Pr = 0.7) (Pr = 0.1)

4
3
5
2
2
3

0.371 —
0.368 0.418
0.366
0.363
0.348 —

1 
2 0.339
1
3 0.330 0.375
1 
4 0.323 —

where the Grashof number is given by

Gr = ------------------- , GrL = ----------- ---------  (18.59)
v v

By making some trials, Sparrow and Gregg [94] determined the temperature for 
evaluating k and v in Eq. (18.58) which gives the best agreement between the 
constant-property result and the variable-property findings of Table 18.8. This temper
ature is termed the reference temperature Tr, and is found to be given by

Tr = TW -0.38(7; -Tx) (18.60)

for the entire Prandtl number range of gases. The coefficient of volumetric expansion 
should be taken as 1/7; . though that is strictly correct for perfect gases only.

The error in heat transfer predictions for the constant-property result by using this 
reference temperature is at most 0.6% over the entire range | < Tw/T^ < 4 (Fig. 
18.11). It is found that this method of predicting heat transfer results can be used for 
other gases. Sparrow and Gregg [94] also studied the variable-property problem in 
mercury. To facilitate numerical integrations, polynomials of the following form were 
fitted to the data on k, p, cp, and p (designated generically as x/

3

X = E AnTn (18.61)
n = 0

By the numerical methods, Sparrow and Gregg [94] obtained solutions for two 
special cases where wall temperature, ambient temperature, Pr„, and Pr.y are specified 
(Tw = 1060 K, Tx = 560 K; TM = 910 K, Tv = 610 K). It is found that on evaluating 
k, v, /3, and Pr at

Tr = 7;,-0.3(7],,- Tx) (18.62)

the constant-property heat transfer results coincide with those of variable-property 
ones.

From the findings reported in Ref. 94, it appears that natural-convection heat 
transfer for laminar flow under variable-property conditions can be computed using the 
reference-temperature relations given by Eqs. (18.60) and (18.62). Both equations
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Figure 18.11. Errors made in prediction of heat transfer for a gas (P = pRT, k a T3/4, 
p oc f3'4) by evaluating constant-property results at various temperatures [94],

include the property variation of gases and liquid mercury with temperature (with 
£ = 1/TX for gases).

It should be remembered that variable-property relations are valid only within the 
range of the experimental conditions and the theorical model.

The coefficient of volumetric expansion, ft, has a major bearing on natural-convec
tion heat transfer via the buoyancy term (px — p)g in the momentum equation. From 
its definition, the buoyancy term in the momentum equation is approximated to 
ft^p^kTg. However, ft can vary appreciably with temperature for many fluids. 
Barrow and Sitharamaro [95] examined the effect of variable volumetric expansion 
coefficient ft for water, and compared the result of using a constant value of ft for 
natural convection on a constant-temperature vertical flat plate in an infinite medium. 
Alternately, the fluid density and its variation with temperature may be employed, but 
use of the coefficient ft is more common and illustrates the property variation with 
temperature more convincingly. However, the authors ignored the temperature depen
dence of density due to that of ft. They considered a linear variation of ft with 
temperature as ft = ft^ftl + cAT), where c is a constant.

By the use of integral analysis, they obtained the following expression:

Nu(variable ft)
Nu(constant ft)

3c±T\1/4

5
(18.63)

Table 18.9 shows the results which have been obtained using the above equation with 
the following values:

7^ = 20°C, T„ - Tx = 60°C, ft^ = 2.55 X 10 4 °C 1

c = 2.98 X 10 2 °C’1
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TABLE 18.9. Variation of Nusselt Number with p for Water

Constant Value of
Nu(variable ft) 
Nu(constant ft)

ft. at 20°C 
ft, at 50°C 
ftv at 80°C

1.20
1.02
0.929

As is seen, the variable-coefficient analysis results in a heat transfer coefficient value 
20% greater than that based on a constant value of The results confirm that the 
film value is the best one for a constant-/? analysis, as would be expected.

Brown [96] also studied the effect of the temperature dependence of the coefficient 
of volumetric expansion on laminar free-convection heat transfer. He solved the 
momentum and energy boundary-layer equations by the approximate integral tech
nique for laminar free convection with the temperature-dependent coefficient of volu
metric expansion. Minkowycz and Sparrow [97] found from their computer results for 
steam that the reference-temperature rule of Sparrow and Gregg [94] applied, provided 
that the coefficient 0.38 in Eq. (18.60) is replaced by 0.46 and ft is evaluated at the bulk 
steam temperature.

If ft is evaluated as 1/7^, significant errors can arise under some conditions, 
particularly for temperatures close to the saturation temperature. For low and mod
erate steam pressures, the reference-temperature rule gave good agreement with the 
variable-property heat transfer within 1%. Similar accuracy was obtained at high 
pressures by the use of a multiplier incorporating a linear relationship in the pressure. 
This multiplicative correction factor has been fitted as follows [97]:

/ GrPr\1/4
Nu = ------- (0.4748 + 0.1251 Pr - 0.0328Pr2)

\ 4

(18.64)

in which ft is evaluated at the bulk steam temperature, p is in atmospheres, the T's are 
absolute temperatures, and the other properties are at the reference temperature.

The dependence of the coefficient of volumetric expansion on temperature implies a 
corresponding dependence between the density and temperature, and for a linear 
dependence of ft on T it follows that

P = PooexP -&,at(i + |at (18.65)

where AT = TM - T^.
Using Eq. (18.65), Brown [96] integrated the integral form of the momentum and 

energy equations for natural convection by assuming that the thermal and boundary 
layers are identical and the interrelationship between p and T should have only 
secondary effects on the velocity and temperature profiles. Therefore the conventional 
natural convection profiles are applicable.

If one considers the case of water with AT = 60°C, Tx = 20°C, ftx &.T = 1.532 X 
10", and c AT = 2.13°C, Brown’s results give

Nu(variable ft, p)
Nu(constant ft, p)

Pr + 0.955
1.618(Pr + 0.952)

— 1/4

(18.66)



NATURAL CONVECTION 18-39

whereas Eq. (18.63) gives

Nu( variable /?)
—y------------ —= 1.228 (18.67)Nu(constant /?) 7

For water at 20°C the Prandtl number is 6.85, and therefore, for Pr based on the bulk 
fluid temperature, Eq. (18.66) gives

Nu( variable ft, p)
—----------- —4 = 1.128 (18.68)
Nu( constant ft, p)

Therefore, ignoring the variation of ft and p with temperature introduced an error in 
heat transfer of +12.8%, whereas if the effect of variation of p is omitted, the 
suggested error is an overestimate at +22.8%.

Carey and Mollendorf [98] solved the governing equations (18.54), (18.55), and 
(18.56) for a vertical plate by the use of a boundary-layer similarity analysis applicable 
to liquid by defining the following:

y 4/gT 4fG4 T- T’=4-+’ *-4^4 ’ (18-69)

They considered the variation of viscosity, which is important for many important 
fluids. For a vertical isothermal surface, similarity has been shown to exist for viscosity 
variation expressed as a general function of temperature. For the simpler situation of a 
linear variation of viscosity with temperature, calculated results have been presented 
for a wide range of Prandtl number. The calculations cover the range of -1.6 < <
T 1.6, where yz is the viscosity-variation coefficient defined as yf = (ft /p}( dp/dTy (T. 
- ). An examination of fluid properties for many familiar fluids, such as glycerin,
ethylene glycol, kerosene, silicone fluids, and petroleum oils, reveals that a temperature 
difference of 20 to 100 K, which may occur in many real flow situations, can result in 
values of yf ~ 1 and sometimes as large as yf ~ 2.

The local and average Nusselt numbers can be expressed as

/ GrxV/4Nux = [-<#>'(0)]^ —j (18.70)

and

__  /'GrL\1/4NuL =■[—«/>'(0)]^—^—j (18.71)

The summary of heat transfer results of their numerical analysis is given in Table 18.10.
For most liquids, /? is greater than zero and (l/p^dp/dT) is less than zero; the 

most common case for yf < 0 is Tw > Tx and upward flow with pw < px. The most 
common case for yf > 0 is Tw < Tx and downward flow with pw > px.

The effect of viscosity variation with temperature on the temperature and velocity 
profiles is seen in Fig. 18.12 for a fluid with Pr = 10, which indicates that the effect of 
temperature-dependent viscosity on the velocity profile is more pronounced than its 
effect on the temperature profile.

There are some liquids for which properties other than p vary strongly with 
temperature. In particular, water and methyl alcohol exhibit strong variations of both p 
and ft. The analysis presented in [98] is not applicable to these liquids, since they



TABLE 18.10. Calculated Transport Parameters of Liquids with Viscosity 
Variations: Vertical Isothermal Flat Surface

Pr, T/ pv y/
1.0 -1.6 0.6514 100.0 -1.6 2.7168

-0.8 0.5965 -0.8 2.3600
0.0 0.5671 0.0 2.1914
0.8 0.5469 0.8 2.0843
1.6 0.5315 1.6 2.0177

10.0 - -1.6 1.4076 1000 -1.6 4.9827
-0.8 1.2476 -0.8 4.2887

0.0 1.1693 0.0 3.9654
0.8 1.1190 0.8 3.7602
1.6 1.0843 1.6 3.6178

(b)

Figure 18.12. The effect of viscosity variation on (a) velocity and (b) temperature profiles for a 
vertical surface for Pr = 10 [98].

18-40
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consider only the fi variation. Furthermore, the assumptions made in [98] are not 
justified for gases, since the variation of other gas properties with temperature cannot 
he neglected.

Carey and Meilendorf [99] presented a perturbation analysis to study the variable
viscosity effects in three laminar convection flows with liquids, namely, a freely rising 
plane plume, the flow above a horizontal line source on an adiabatic surface (a 
plane-wall plume) and the flow adjacent to a vertical uniform-flux surface. They used a 
perturbation method to analyze the effect of temperature-dependent viscosity on the 
above three vertical-plane flows. The perturbation parameter is

(18.72)

where y*  is evaluated at the film temperature, and (Tw — Tx)0 is the downstream 
temperature difference (along the x axis) which would result for y*  = 0 (constant 
viscosity evaluated at the film temperature).

For the first-order linear variation of viscosity with temperature, it can be shown 
that

(18.73)

where /( and are the viscosities at Tw and Tx, respectively. The relationship 
between yf and is not explicit, since <f>(0) is implicitly a function of y*.

The effect of y*  on heat transfer for the isothermal and uniform flux surfaces has 
been determined as

/2Nuy -<>'(0,7/)
"'■wr'Nwr

where the actual physical local Grashof number is 

Gr' = Gr^(O)

(18.74)

(18.75)

Figure 18.13 shows the values of the heat transfer parameter, N'. predicted by the 
perturbation analysis for the isothermal and uniform heat flux surfaces.

Good agreement between the perturbation and similarity solution results is seen for 
the range of |y/*  | < 0.8. For both the isothermal and uniform heat flux surfaces, 
y*  < 0 increases the surface heat transfer, while yf* > 0 reduces it. Even for the 
limited range of |yz* | <0.8, it is found that y*  affects the transport properties 
significantly for the isothermal and uniform-heat-flux surfaces. For [y^*  | = 0.8, the 
deviation from the constant viscosity (y,*  = 0) result is as much as 1% for the heat 
transfer parameter N'. Table 18.11 shows the comparison between the heat transfer 
parameters predicted by the perturbation analysis [99] using the similarity solution of 
Carey and Mollendorf [98], and those predicted by the correlations of Fujii et al. [100] 
for isothermal and uniform-heat-flux conditions.

It is interesting to note that for |y/*  | = 0.8 the deviation from the constant-viscosity 
results (y*  = 0) is as much as 25% for the isothermal surface and the uniform-heat-flux
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*

Figure 18.13. The effect of y,* on heat transfer. Results of the perturbation solution are shown 
for the isothermal (dot-dash curves) and uniform-heat (dashed curves) surface conditions for the 
indicated values of the film Prandtl number. Also shown for the isothermal condition are the 
results of the similarity solution (solid curves) [99].

surface, while for N' the deviation is limited to 7%. This difference occurs because in 
perturbation analysis the reference viscosity is evaluated at Tx, while for N' it is 
evaluated at Tf. This demonstrates how the choice of reference temperature influences 
the predicted effect of variable viscosity on heat transfer.

Zhong et al. [101] studied the variable-property effects on laminar natural convec
tion in a square enclosure filled with air by solving the full variable-property equations 
including the use of the perfect-gas law for the density. Calculations have been done 
for a Rayleigh number range up to 106, and temperature differences 0 = (Th - Tt }/Tt 
of 0.2, 0.5, 1, and 2.0, where Th and Te are the hot and cold wall temperatures, 
respectively. They have shown that the Boussinesq approximation is adequate for 
0 < 0.10. A correlation for the determination of a limiting value of 0 under which the 
heat transfer data can be predicted adequately by the Boussinesq approximation has 
also been given. They suggested the following reference temperature for evaluating the 
fluid properties:

Tr = Tc + 0.25(TA - Tc) (18.76)

The correlated Nusselt number for natural convection in a square enclosure with 
variable properties is then given by

Nur = 0.1107 Ra°r324 (18.77)



TABLE 18.11. Comparison of the Local Heat Transfer Parameters Predicted by 
Numerical and Experimental Analyses for the Isothermal and Uniform 
Heat-Flux Conditions

(a) ISOTHERMAL

Pr/ PrK (NuJ^GrX74
[99]

(NuJM/(GrX<4
[100]

Diff. 
(%)

100 -0.8 2.333 140 1.942 2.014 3.5
-0.4 1.500 120 1.748 1.766 1.0

0 1.000 100 1.550 1.550 0.0
0.4 0.667 80 1.345 1.346 0.0
08 0.429 60 1.129 1.141 1.1

100“ -1.6 9.000 180 2.577 2.847 9.5
-0.8 2.333 140 1.975 2.014 1.9

0.8 0.429 60 1.142 1.141 0.0
1.6 0.111 20 0.636 0.653 2.6

1000c -1.6 9.000 1800 4.727 5.063 6.6
-0.8 2.333 1400 3.588 3.581 0.2

0 1.000 1000 2.804 2.755 1.8
0.8 0.429 600 2.060 2.030 1.5
16 0.111 200

(b)

1.144

UNIFORM HEAT FLUX

1.162 1.5

pt y* vx/v» X (NuX/(GrX/5
[99]

(NuJ^AGrjV5
[100]

Diff.
(%)

50 -0.8 2.199 70 1.612 1.658 2.8
-0.4 1.483 60 1.480 1.504 1.6

0 1.000 50 1.344 1.356 0.8
0.4 0.662 40 1.202 1.209 0.5
08 0.418 30 1.048 1.055 0.7

100 -0.8 2.195 140 1.869 1.904 1.8
-0.4 1.482 120 1.715 1.727 07

0 1.000 100 1.556 1.557 0.1
0.4 0.661 80 1.391 1.388 0.2
0.8 0.417 60 1.211 1.212 0.1

500 -0.8 2.189 700 2.611 2.626 0.5
-0.4 1.482 600 2.393 2.383 0.4

0 1.000 500 2.170 2.149 1.0
0.4 0.661 400 1.937 1.915 1.1
0.8 0.417 300 1.686 1.672 0.8

“Similarity-solution results of Carey and Mollendorf [98].

18-43
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in the convection-dominated region, 3 X 103 < Rar < 106. The temperature difference 
in Ra is Th - Tt, and the characteristic length is H, the height of the enclosure. It is 
interesting to note that this reference temperature is closer to the cold wall tempera
ture, and it is different from that for the vertical-plate boundary-layer phenomenon as 
given by Sparrow and Gregg [94], Zhong et al. [101] also correlated the variable-prop
erty results for the convection region in a square enclosure with air, without using the 
reference temperature, as

Ra0322
Nu =------7-------- ririri for Ralim<Ra< 106 (18.78)

8 + (aA/aJ

where Ralini is the limiting Rayleigh number below which conduction dominates, and is 
given by

Ralim = 780(1 + 0)2'7 (18.79)

Further discussion of pure laminar natural convection is given in [99],

18.4.2 Experimental Studies
The number of experimental studies on the effect of the property variation is small but 
growing. Fujii et al. [100] studied the natural convection from the outer surface of a 
vertical cylinder to water, spindle oil, and Mobiltherm oil, all of which have remarkably 
different Prandtl numbers. Three regions—laminar, transition-turbulent, and turbulent
- are distinguished. The local heat transfer coefficients have been correlated nondimen- 

sionally about each flow region for the cases of uniform wall temperature and uniform 
heat flux [100], In each case, two kinds of experimental equations have been proposed, 
respectively, by using the physical properties at a reference temperature and by using 
the supplementary terms referred to the variation of viscosity. Nondimensional equa
tions of average heat transfer coefficients have also been proposed for the case of 
uniform wall temperature.

The variation of viscosity with temperature is most conspicuous for liquids; there
fore, the authors obtained nondimensional equations of local heat transfer coefficients 
for specified values of kinematic viscosity and neglected the variation of other proper
ties.

In the region of transition from the laminar to the transition-turbulent region, or to 
the turbulent region for water, local heat transfer coefficients increase abruptly. This 
narrow region was termed the “transitional” region. The values of1 (GrvPr)r corre
sponding to the transitional region vary with the type of fluid, and even for a specific 
fluid they are not exactly determined. The transition from the transition-turbulent to 
the turbulent region is continuous, and the value of (GrvPr),. corresponding to it is 
almost precisely defined as long as only one fluid is concerned.

The upper limits of the laminar region are (Gr^Pr)^ cri = (1 to 5) X 1010 and 
(Gr*  Pr)x cri = (0.2 to 2.5) X 1013; the lower limits of the transition-turbulent region 
of spindle oil and Mobiltherm oil, or the turbulent region of water, are (Grv Pr)^ = (2.5 
to 6) X 1010 and (GrT'Pr)^ = (1 to 5) X 10p

f The subscript r refers to the reference temperature Tr = Tw - \(TW + Ta) used for evaluat
ing fluid properties in Gr, and Pr.
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Fujii et al. [100] also expressed average Nusselt numbers for vertical cylinders with 
uniform wall temperature:

For water,

(NuJ = 0.130(Gr, Pr)^/3 - (ill to 176)

for (Gr/ Pr)^ > (1.5 to 4) X IO10 (18.80)

For spindle oil,

/ v \021
(Nu,) I — = 1.16(GrzPr)t/4 - (177 to 227)

\ Go /

for (1.5 to 4) X IO10 < (Grz Pr)ro < 2.0 X 1011 (18.81)

For Mobiltherm oil,

i V \
(Nu,. )J-^ = 0.0145(GrLPr)^/5 + (115 to 65)

for (Gr/ Pr)^ > 2.0 X 1011 (18.82)

The average heat transfer coefficients were observed to depend on the heights of 
occurrence of the transitions; therefore, the above equations involve an indefinite 
constant in order to cover all experimental data on each fluid. It is assumed that 
transitions occur discontinuously at the lower limit of (Gr^Pr)^ indicated after the 
above equations.

The correlations of average heat transfer coefficients under the uniform-wall-temper
ature boundary conditions are shown in Fig. 18.14 along with the correlation curves of 

(Grz Pr)„

Figure 18.14. Experimental data and their correlations on average heat transfer coefficients in a 
vertical cylinder at constant wall temperature [100].
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air by Cheesewright [102] and of ethylene glycol by Fujii [103], both derived by 
integration of local heat rates. Fujii et al. [100] also proposed the following correlation 
for water, spindle oil. Mobiltherm oil and air flow over a vertical cylinder with uniform 
wall temperature:

/ v \021(NuX^j = (0.017 ± 0.002)(GrLPr)t/5 for (Gr^Pr)^ > 1010 (18.83)

where the properties in the nondimensional groups are evaluated at Tv. Equation 
(18.83) may be useful to estimate average heat transfer coefficients approximately, but 
it cannot correctly correlate the data on each individual fluid, especially air.

One of the problems associated with studying the influence of variable properties 
experimentally is the difficulty of accurately measuring the convective heat exchange. 
The large characteristic lengths and large values of the ratio 7],./ Tx usually result in 
radiative heat transfer rates which mask the convective heat flow. Because of this, the 
use of a cryogenic environment in the experimental study of natural, forced, and 
combined convective heat transfer is advantageous. Large property variations across 
the thermal boundary layer can be obtained with a relatively small temperature 
difference between the surface and ambient working fluid.

Clausing and Kempka [104] studied the influence of property variations in natural 
convection. Heat transfer from a vertical isothermal, heated cylinder surface to gaseous 
nitrogen upflow was experimentally investigated. For this purpose, a cylinder model of 
0.28 m in height and 0.14 m in diameter was used. The ambient temperature Tx was 
varied in order to cover a large range of the Rayleigh number, including large values. 
The range 1 < TH/TV < 2.6 was investigated. Experimental data are shown in Fig. 
18.15. The temperature differences range from 10 to 90 K.

Figure 18 15. Experimental data on natural convection for a vertical cylinder at constant 
temperature [104],
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Figure 18.16. Variable-property natural-convection experimental data and correlation for an 
isothermal vertical cylinder [104].

In the laminar region of a vertical cylinder, for Ra^ < 3.8 X 10x, all data on the 
parameter Tw/Tv were observed to he within 2% of Schmidt and Beckmann’s correla
tions as reported in [23], Nuz = 0.52 Ra^4. On the other hand, large deviations from 
the Bayley correlations [105], Nuz = 0.10Ra^/3, were observed in the turbulent regime, 
Raz > 1.6 X 109, as shown in Fig. 18.15. Increases in heat transfer coefficient of up to 
50% from the Bayley correlation have been reported. They assumed a correlation in the 
following form:

Nu^^RaJ^/Tj (18.84)

In the turbulent regime Clausing and Kempka [104] used the Bayley correlation for the 
constant-property correlation <>(Ra); then the authors obtained ^(Tw/Tx) by a least
squares fit to all data with 1.3 < Tw/Tx < 2.6. The variable data with correlation 

are shown in Fig. 18.16.
Clausing [106] suggested a new correlation for the constant-property portion instead 

of Bayley correlation by assuming the exponent 1/3, and adopting a second-order 
polynomial in 7],/7/ for the variable-property influence. By the use of a least-squares 
fit of the experimental data, the following correlation was obtained for variable-prop
erty turbulent natural convection over a vertical flat plate at constant temperature:

T
Nuy = 0.082 Ra1/3 y- for Ra > 1.6 X 109 (18.85)

where 

and the characteristic length is L.
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The properties in Eq. (18.85) should be evaluated at the film temperature; it gives 
the average heat transfer coefficient for a vertical cylinder at constant wall temperature.

The transition regime for the vertical cylinder at constant wall temperature was 
determined from the experimental data to be 3.8 X 10s < Raz < 1.6 X 109, and the 
following correlation has been recommended for the average Nusselt number [106]:

Nuz= 1.6Ra°19Vtr for 3.8 X 108 < Ray < 1.6 X 109 (18.87)

where Nuz = 1.6 Ra(z’193 is the constant-property correlation and is the variable
property influence in the transition region. ^lr is given by

/ Ra1/3 - Ra1/3 \
Ra, - Ra-,/3 ] + 1 <18'88>

where Raz = 3.8 X 108, R, = 1.6 X 109, and $ is given by Eq. (18.86).
The author obtained a good agreement in all three regimes between the correlations 

and the experimental data, especially in the range of parameters, 3.25 mm < L < 7320 
mm, 1.03 < Tw/Tx < 2.53, 0.98 X 105 Pa < p < 68.6 X 105 Pa, 9 K < AT < 140 K, 
and 82 K < 7; < 305 K.

In the transition region (3.9 X 108 < Raf < 1.6 X IO9), an average increase of 6% 
in heat transfer has been reported.

A detailed review of natural convection with temperature-dependent fluid properties 
has been given by Kakag et al. [107],

18.5 CONCLUDING REMARKS

The heat transfer mechanisms for constant fluid properties and the influence of the 
variation of physical properties with temperature on heat transfer and friction coeffi
cient in a number of important cases can be described by analytical methods. If the 
properties vary considerably over the flow cross section, there will be disagreements 
between the theoretical and experimental results which may be attributed to inexact 
methods of estimating the variation. This is especially true in turbulent forced convec
tion for estimating the effect of the property variation on turbulent diffusivity.

Theoretical studies of flow and heat transfer for fluids with temperature-dependent 
properties are hindered by different mathematical and physical difficulties. In the case 
of variable physical properties, the momentum and energy equations are coupled and 
nonlinear; they can be solved only by the use of numerical methods. For some fluids, 
the variation of the properties with temperature is not the same over different ranges of 
the state parameters. For such a fluid it is presently impossible to describe the heat 
transfer and friction factor by a single relationship valid for all conditions. Theoretical 
findings must be verified by comparison with experimental data. However, experimen
tal study with variable physical properties is difficult because of the need to perform 
experiments under large temperature differences between the surface and the fluid.

There are two commonly used schemes to account for the effects of the 
temperature-dependent properties on heat transfer—the reference-temperature method 
and the property-ratio method—which need systematic variable-property study over a 
range of temperature ratios and Raleigh numbers for different geometries, fluids and 
flow conditions. The reference temperature is a good concept for the correlation of the 
experimental and theoretical results, but there is no assurance that the same reference 
temperature is valid for all fluids in a given geometry.
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Extensive literature on the influence of variable-property effects on the heat transfer 
and friction coefficient in internal flow and in natural convection has been reviewed in 
this Chapter, and the important results for internal flow are summarized in Tables 18.1, 
18.4, 18.5, 18.6, and 18.7 together with the suggested constant-property heat transfer 
and friction factor correlations (Tables 18.2 and 18.3 and Chapter 3) which may be 
used in conjunction with Eqs. (18.1) and (18.2). One must be cautious when using the 
property ratio method to make sure that the constant-property portion is evaluated in 
terms of parameters specifically defined as the original author intended.

There are empirical and semiempirical theories proposed for supercritical forced 
convection. It is concluded that the correlations do not show sufficient agreement with 
experiment to justify their use except in very limited conditions. The limitations 
imposed on a specific correlation should be carefully studied before its use in practical 
applications.

Turbulent natural convection is strongly affected by property variations. Large-tem
perature-difference laminar experiments yielded data that were within 2% of constant
property correlations, that is within experimental errors. It is difficult if not impossible 
to correlate the data in the transition region. In the turbulent region, the effect of the 
boundary condition on the heat transfer coefficient is negligible, as in turbulent forced 
convection.

It is generally known that the Boussinesq approximation used in theoretical analysis 
is valid for small temperature differences. Therefore, the validity of this approximation 
should be checked if the necessary information is available, or the limits of its validity 
of the Boussinesq approximation should be evaluated for a given geometry and fluid 
flow conditions if possible [108]. This is an important problem which should be solved, 
since the trend in energy-related applications is to higher and higher temperatures. In 
addition to high temperatures, many future applications may involve high Rayleigh or 
Grashof numbers.

NOMENCLATURE

A constant
c,, specific heat at constant pressure, J/(kg • K), Btu/(lbm • °F)
c specific heat at constant volume, J/(kg • K), Btu/(lbm ■ °F)
T> laminar equivalent diameter defined by Eq. (18.37), m, ft
Dh hydraulic diameter = 4(minimum free flow area)/(wetted perimeter), m, ft
d circular duct inside diameter, distance between parallel plates, m, ft
f Fanning friction factor = tw/1u2m
f( r)) defined by Eq. (18.69); u/ux = df/dr) = /'(tj)
G fluid mass velocity, kg/(nr • s), lb,„/(hr • ft2)
Gr Grashof number = gft ATL3/v2
Gr/? Grashof number = (pfr - pw) d-g/pbv2
(.• Grashof number based on p, Grft = (ph - p) d3g/pbv2
Gr, Grashof number based on L, = gf)L'(Tw - Tx}/v2
Gr*  local Grashof number for surface heat flux, = g/3q"x4/kv2
g gravitational acceleration, m/s2, ft/s2
H height of an enclosure, m, ft
h heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 • °F)
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/ enthalpy per unit mass, J/kg, Btu/lbm
7i average heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 • °F)
A.'z constant = f Re
A thermal conductivity of fluid. W/(m • K), Btu/(hr • ft • °F)
L distance along the duct, or the characteristic length, m, ft
ni exponent, Eqs. (18.1b) and (18.2b)
m mass flow rate, kg/s, lb„,/s 
Nu Nusselt number = hd/k, hL/k 
Nul average Nusselt number = hd/k, 
Nuv local Nusselt number = hx/k 
n exponent, Eqs. (18.1a) and (18.2a)
p pressure, Pa, lby/ft2
Pir thermodynamic critical pressure Pa, lby/ft2
Pr Prandtl number = pcp/k
Pr Prandtl number based on c , = pcp/k
Pr turbulent Prandtl number =
q" heat flux, W/m2, Btu/hr ■ ft2
R gas constant, J/(kg ■ K), ft • lby/(lbm • °R) 
Ra Rayleigh number = Gr Pr
Re Reynolds number = pumd/p, pumDh/p
Re*  wall Reynolds number = um dpw/pw 
r radial coordinate, m, ft
r, inner radius of a circular duct, m, ft
St Stanton number = Nu/RePr = h/Gcp 
T temperature, °C, K, °F, °R
Tf film temperature = (Tw + Tx)/2, °C, K, °F, °R 
Tpc pseudocritjoi) temperature, °C, K, °F, °R 
Tr reference temperature, °C, K, °F, °R
AT temperature difference = (Tw — Tx), °C, K, °F, °R 
umax central velocity in the duct, m/s, ft/s 
w velocity component in axial direction, velocity component in x direction,

m/s 
w„, mean axial velocity, m/s, ft/s 
i' velocity in radial direction; velocity component

in y direction, m/s, ft/s
x axial distance, Cartesian coordinate, m, ft
y Cartesian coordinate, distance normal to surface, m, ft
r Cartesian coordinate, m, ft

Greek Symbols
a thermal diffusivity = k/pcp, m2/s, ft2/s
a*  aspect ratio = b/a
P coefficient of thermal expansion = ~(l/p)(dp/dT) , K-1, °R"1
y viscosity parameter = -(l/p)(dp/dT)
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yf viscosity parameter = - (l/p.)(dp/dT)f(TK - 7^)
y*  viscosity parameter = -(l/^dp/dT)^, - Tx )0
€/f thermal eddy diffusivity, m2/s, ft2/s
c w momentum eddy diffusivity, m2/s, ft2/s
7) dimensionless similarity variable defined by Eq. (18.69)
0 dimensionless temperature = (Th — Tc)/Tc
fi dynamic viscosity of fluid, Pa • s, lbm/(hr • ft)
v kinematic viscosity of fluid, m2/s, ft2/s
p density of fluid, kg/m3, lbm/ft3
p integrated density = (TH. - T^ffip dT, kg/m3, lbm/ft3
$ 16/X/
<> dimensionless temperature ratio = (T - T^)/{TW - TK)
'F stream function, m2/s, ft2/s
tm. shear stress at the wall, Pa, fly/ft2

Subscripts
a arithmetic mean
b bulk fluid condition or properties evaluated at bulk mean temperature
c critical condition, cold side
cp constant property
e equivalent
f film fluid condition or properties evaluated at film temperature
It hot side
I laminar
i inlet condition
pc pseudocritical condition
r reference condition
t turbulent
w wall condition
x local value at distance x
oo free-stream condition
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19.2 INTERACTION OF RADIATION WITH CONVECTION

19.1 INTRODUCTION

Heat transfer by simultaneous radiation and convection has applications in numerous 
technological problems, including combustion, furnace design, the design of high-tem
perature gas-cooled nuclear reactors, nuclear-reactor safety, fluidized-bed heat ex
changers, fire spreads, advanced energy conversion devices such as open-cycle coal and 
natural-gas-fired MHD, solar ponds, solar collectors, natural convection in cavities, 
turbid water bodies, photochemical reactors, and many others. When heat transfer by 
radiation is of the same order of magnitude as by convection, a separate calculation of 
radiation and convection and their superposition without considering the interaction 
between them can lead to significant errors in the results, because the presence of 
radiation in the medium alters the temperature distribution within the fluid. Therefore, 
in such situations, heat transfer by convection and radiation should be solved for 
simultaneously.

In the analysis of interaction of radiation with convection, distinction should be 
made between the following two classes of problems: (1) nonparticipating media, and 
(2) participating media. In the former, the fluid is transparent to radiation for all 
practical purposes; hence the coupling between radiation and convection takes place 
through the thermal boundary condition in the convection problem. In the latter case, 
the fluid is semitransparent to radiation; it may absorb, emit, and in some cases scatter 
radiation. Hence the coupling between radiation and convection occurs through the 
presence of the divergence of the radiation flux term in the energy equation for 
convection. In either case, the study of heat transfer by simultaneous convection and 
radiation necessitates some background on the role of radiation in the mathematical 
formulation of the problem. Therefore, in the following sections, before presenting the 
analysis and the results on simultaneous convection and radiation for both participat
ing and nonparticipating media, we present an overview of the formulation and some 
of the recommended solution techniques for the radiation part of the problem.

Reader should consult Refs. [1-3] for comprehensive treatment of the radiation 
transfer in participating and nonparticipating media and the interactions with conduc
tion and convection.

19.2 SIMULTANEOUS CONVECTION AND RADIATION IN 
NONPARTICIPATING MEDIA

There are many engineering applications that involve flow inside ducts or over bodies 
of a transparent fluid, such as air, that does not absorb, emit, or scatter radiation. If the 
temperature is sufficiently high or the convective heat transfer coefficient is low, the 
contribution of radiation to heat transfer may become important. For problems 
involving a prescribed heat-flux boundary condition, the effect of radiation from the 
surface is to alter the surface temperature, which in turn alters the heat transfer by 
convection. Therefore, the problems of convection and radiation are coupled through 
the boundary condition. On the other hand, if the problem involves a prescribed 
temperature boundary condition, there is no coupling through the boundary condition, 
because the presence of radiation does not change the surface temperature.

The complete mathematical formulation of simultaneous convection and radiation 
involves two parts: the convection part and the radiation part. For transparent fluids 
considered here, the presence of thermal radiation does not alter the standard equa
tions of motion and energy; hence the convective part of the problem can be 
formulated by using the standard equations of motion and energy for nonradiating 
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fluids well documented in heat transfer books such as Schlichting [4], Kays and 
Crawford [5], and Ozisik [6]. To determine the effects of radiation on the boundary 
temperature, the problem of radiation exchange between the surfaces should be 
formulated and solved. Therefore, in the following subsection, we discuss the mathe
matical formulation of radiation exchange between surfaces pertinent to the problems 
of simultaneous convection and radiation, and then present the analysis and solutions 
of simultaneous radiation and forced convection over bodied and inside ducts.

19.2.1 Radiation Exchange among Gray Surfaces
Consider a gray enclosure whose surfaces are diffuse emitter, diffuse reflector, and 
divided into N zones such that radiation properties are uniform over the surface of 
each zone. We assume that the temperature T:(r) or the radiation heat flux qr,(r) varies 
with position over the surface A, of each zone i, which in turn implies that the radiosity 
R,(r) varies over the surfaces of the zones. Then one cannot apply the simple analysis 
of radiation exchange among surfaces, leading to a system of algebraic equations for 
the radiosities, described in numerous introductory texts on heat transfer. When the 
radiosity varies with position, the mathematical formulation of the radiation part of the 
problem leads to the following system of coupled integral equations for the radiosity 
functions R,(r) (Ozisik [2, Chap. 5, Eqs. 5-9 and 5-10]):

N
+ p,£ f Rj(rj) dFdArdA) (19.1)

7=1

and

<7,rU) = 7?,.(r) - L / RM dFdArdA (19.2)
7=1 'b

for i = 1,2,..., N. Here, rt is the position vector for the coordinates at zone i, and 
,1-t ’s fhe differential view factor between the elemental surfaces dAt and dAf at 

the zones A, and A , respectively. The functional form of the differential view factor 
depends on the configurations and the geometrical arrangement of the surfaces. The 
methods of determination of view factors are discussed by Sparrow and Cess [1, Chaps. 
3,4] and Ozisik [2, Chaps. 3, 5], An alternative, simpler expression for the net radiation 
flux 7,' (b) is obtained by eliminating the summation term between Eqs. (19.1) and 
(19.2). We find

^'(r) = y[c^4(r)-(i-p,)^,(»•,)], p,*o,  for i = 1,2,...,n.

(19.3a)

The utility of the above set of equations for analyzing the radiation part of the 
problem is as follows: Suppose that temperatures T,(r,) are prescribed over the surfaces 
of each of the N zones. Then Eq. (19.1) provides N simultaneous integral equations for 
the determination of the N unknown radiosity functions Rt(r:) (/' = 1,2----- N). Once
these radiosities are known, the radiation heat flux <7,'( r,) over the surface of any one of 
the zones Ai (i = 1,2,..., N) is evaluated from Eq. (19.2) or (19.3a).

Significant simplification occurs in the formulation of the radiation part of the 
problem if all surfaces are assumed to be black. For black surfaces, we set p, = 0 and 
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e = i for i = 1,2,..., N. Then Eq. (19.1) reduces to 7?,(r,) = oT*(r],  and the corre
sponding expressions for the radiation heat flux qt (r,) are obtained from Eq. (19.2) as

9;(r,)=57j4(r)- £ / a7)4(r7.)^v^ for z = l,2....... N (19.3b)

7 = 1 '

The determination of the radiation flux from Eq. (19.3b) is a relatively 
straightforward matter because the analysis involves only evaluating the integrals over 
the zones for specified temperature distributions. On the other hand, when surfaces 
have reflectivity, the determination of the radiation flux qrj(rt) from Eq. (19.2) or 
(19.3a) is a complicated matter because the radiosities R,(r,) are unknown and to be 
determined from the solution of a set of coupled integral equations (19.1). There are 
several methods for the solution of a system of integral equations. The reader should 
consult references (e.g., Ozisik [2, Chap. 5]) for an overview of the methods of solving 
integral equations arising in radiation problems. More recently, Ozisik and Yener [7] 
advanced a straightforward approach for solving radiation problems involving integral 
equations by the application of the Galerkin method.

19.2.2 Forced Convection with Radiation over a Flat Plate
Heat transfer in boundary-layer flow over surfaces is of interest in numerous engineer
ing applications, and the solution of such problems with no radiation effects is well 
documented in the literature. During the past twenty years such problems have also 
been studied by including in the analysis the effects of radiation as coupled through the 
boundary condition [8-12], Here we focus attention on the laminar boundary-layer 
flow of a transparent fluid over a flat plate subjected to constant applied wall heat flux 
at the wall surface. The mathematical formulation of the convection part of the 
problem can readily be done within the framework of the classical boundary-layer 
theory. The contribution of radiation to heat transfer is then introduced as a part of the 
boundary condition at the wall surface. Here our objective is to present the first order 
effects of radiation as a correction to the convective Nusselt number.

We consider the steady, laminar boundary-layer flow of an incompressible trans
parent fluid along a flat plate subjected to a constant applied wall heat flux qw at the 
wall surface. Figure 19.1 illustrates the geometry and coordinate. The heat supplied to 
the wall is dissipated from the plate surface by convection into the fluid and by 
radiation to an external ambient maintained at a constant temperature Te. The surface 
of the plate is opaque and gray, and has a uniform emissivity e. The thermophysical 
properties of the fluid are constant. The external flow has a constant velocity and 
constant temperature Tx. The viscous energy dissipation is considered negligible.

Figure 19.1. Laminar boundary-layer flow of transparent fluid over a flat plate with radiation 
boundary condition.
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The mathematical formulation of this heat transfer problem consists of the 
boundary-layer continuity and momentum equations

with the boundary conditions

du dv
“— T — = 0 dx dy

(19.4a)

du du d2u
u—---- 1- v—— = v—7

dx dy dy2
(19.4b)

rhe energy equation is given by

u = v = 0 at j’ = 0, (19.4c)

u = ux as y -*  oo (19.4d)

dT dT d2T
u—---- 1- v—— = a----
dx dy dy~

(19.5a)

The boundary condition at the wall surface that allows for radiation effects and the 
boundary condition at far distances from the wall are taken, respectively, as

d T
qn. = -k— + e5(T4 - T4) at y = 0 

dy
(19.5b)

T= Tx at y oo (19.5c)

Note that radiation effects enter the analysis as a fourth-power temperature law for this 
simple problem; hence no radiosity is involved, because there is one surface only which 
is exposed to an infinite medium for radiation exchange.

The velocity part of this problem, defined by Eqs. (19.4), is uncoupled from the 
temperature problem and hence can be solved by the classical similarity solution of the 
boundary-layer equations.

To solve the energy problem defined by Eqs. (19.5), two new independent variables 
are defined:

- / vx \1/2

k \ «oc /
(19.6a)

/ u \ 1/2- / 00 1
V = J’ -----\ vx /

(19.6b)

Then the energy problem, Eqs. (19.5), is transformed under the transformation given by 
Eq. (19.6), and the velocity components obtained from the similarity solution of the 
velocity problem are utilized. The resulting transformed energy equation is solved by 
series expansion in powers of £, utilizing the boundary condition (19.5b) to determine 
the expansion coefficients. The details of the analysis are well documented [2, Chap. 7], 
Finally, the local Nusselt number for laminar forced convection with constant wall heat 
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flux boundary condition is determined as

Nur -
—= 0.4059 - 0.620£ - ■ • • (19.7)
Re/2

where 

and the parameter £ which represents the radiation effects on the Nusselt number is 
defined by Eq. (19.6a).

The first term on the right-hand side of Eq. (19.7) is the local Nusselt number for 
laminar boundary-layer flow over a flat plate subjected to a constant heat flux at 
the wall surface. The second term represents the first order effect of radiation on the 
Nusselt number. Note that the radiation has no effect on the solution for the 
forced-convection problem with radiation having constant wall temperature boundary 
condition.

19.2.3 Forced Convection with Radiation inside Ducts
Heat transfer in forced convection inside ducts without the effects of radiation has been 
studied extensively since the original Graetz solution almost a century ago. When 
temperature is high or the convective heat transfer coefficient is low, radiation effects in 
forced convection heat transfer become important. Typical examples include, among 
others, the heating of a coolant in the passages of a nuclear-reactor core or inside an 
electrically heated tube, the heating of air in the parallel-plate channels of standard flat 
plate collectors. Therefore, the subject has been studied by several investigators [13-21] 
during the past twenty years for ducts subjected to prescribed heat flux at the wall 
surfaces. The effects of radiation on the duct wall temperature and the gas temperature 
as a function of the axial distance along the duct are quantities of practical interest. 
The principal difficulty in the analysis of such problems is that the convective heat 
transfer coefficient is not known a priori and must be determined as a part of the 
solution. To alleviate this difficulty, most investigators assumed a known convective 
heat transfer coefficient taken from the solution of the classical problems without the 
radiation. Using this coefficient in the analysis, the radiation effects on the wall and gas 
temperatures are determined [13-19], Results obtained in this manner are useful to 
indicate the general effects of radiation on the wall surface and bulk fluid temperatures 
along the duct, but not so accurate as that obtained from an analysis in which the heat 
transfer coefficient determined as a part of the solution.

Recently, Liu and Sparrow [20] analyzed simultaneously developing laminar forced 
convection inside a parallel-plate channel. In this study, one wall of the channel was 
externally heated at a constant rate qw and the other externally insulated. Air was 
considered as the heat transfer fluid. To illustrate the effects of radiation on the local 
Nusselt number along the directly heated wall and the wall surface and on the bulk 
temperature distribution, we present here the highlights of this work.

Consider laminar flow of a transparent fluid (i.e., air) inside a parallel-plate channel 
of length / and spacing H, as illustrated in Fig. 19.2. One wall of the channel is heated 
externally at a constant rate qH while the other is externally insulated. The temperature 
of the fluid inlet and the inlet plenum is 7j, and that of the exit plenum is Tn. 
Assuming simultaneously developing laminar flow, the mathematical formulation of
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q = q = Constant

Figure 19.2. Geometry and coordinates for laminar forced convection with radiation through a 
parallel-plate channel.

the problem consists of the continuity, the x-momentum, and the energy equations, 
given in dimensionless form as

du dV
lx + 1y = 0 (19-9)

du 0U 0P 2 02U
u— 4- ---- = l -y (19.10)

0X 0Y 0X Re 0Y2

00 00 2 020
u— + V— = — (19.11)

0X 0Y RePr 0Y2

where the dimensionless variables are defined as

X 
x= Y = —,

u V
u =—, V=—,

H H Um U,n

(19.12)
p T um2H

P = —r, 0 = Re = —----
Tr V

The above problem involves four unknowns: U, V, P, and 0. An additional equation is 
obtained from a gross mass balance through the cross section of the channel.

The velocity boundary conditions include no slip and impermeability at the walls,

U=V=Q (19.13)

a uniform velocity profile at the inlet,

U=l, K=0 . (19.14)

and the inlet fluid temperature, taken as

0,. = 1 (19.15)

So far the mathematical formulation of the problem is identical to the classical one for
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nonradiative convective heat transfer. The coupling with radiation arises through the 
thermal boundary condition at the walls. If ql and q' denote the local convective and 
radiative heat fluxes, we write

?'(■>?) + ?r( ’’?) = at heat waU (19.16a)

<?'(£) + <?r(£) = 0 at the insulated wall (19.16b)

where and £ denote the axial coordinates measured, respectively, along the heated 
and insulated walls. In Eqs. (19.16), the convective heat flux q( is defined by

ar
qc = dy

(19.16c)

and the radiation heat flux qr, assuming black wall surfaces, is obtained from Eq. 
(19.3b). Then the boundary conditions given by Eqs. (19.16a, b) are expressed in 
dimensionless form as follows.

At the heated surface,

de
ar

q»H
T,k

(19.17a)- FvA®4uFv-n

At the insulated surface,

90
>} E7sf-04(t) + /‘,'//He4b) + f^ + 04Frn

T) = 0
(19.17b)

Various differential view factors are identified as discussed by Liu and Sparrow [20]. It 
is assumed that the inlet and exit plenum temperatures are, respectively, the same as 
the fluid inlet and the fluid bulk temperature at the exit.

The convective-radiative heat transfer problem defined above is solved by a finite 
difference procedure. We note that the boundary conditions (19.17a, b) contain two 
parameters

, qwFI qw oT?
------ and   = -—r  

k/H 7\k oT4 k/H (19.18)

The first of these represents the ratio of radiation to convection, and the factor 
qw/(oT4) represents the relative strength of the external heating.

The independent parameters that affect the heat transfer results include Re. Pr, 
l/H, oT\' /(k/H), and q^/(aT4). Figure 19.3 shows the effect of radiation on the wall 
and fluid bulk mean temperature distribution along the channel for the case

a773 q
Pr = 0.7, Re = 2500, —- = 0.5, and = 1

k/H ’ aT4

where all temperatures are absolute, and where the laminar flow is considered to persist 
up to Re = 2500 and even farther if the sources of disturbance are not situated within
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x/H

Figure 19.3. Effects of radiation on the wall and fluid bulk mean temperature for laminar flow of 
a transparent gas inside a parallel-plate channel with one wall at constant heat flux, the other wall 
adiabatic [20],

the channel. Included in this figure are the corresponding results for pure convection 
(i.e.. neglecting radiation). An examination of this figure reveals that there is a 
significant difference between the results with and without radiation. The temperature 
of the unheated wall is significantly elevated by the effect of radiation. On the other 
hand, the bulk temperature fines are coincident within the scale of the figure for the 
with-radiation and without-radiation cases. This implies that, while the radiation 
process is effective in transferring heat from the heated to the insulated wall across the 
channel, it does not transport a significant amount of energy along the channel.

Figure 19.4 shows the effect of radiation on the wall and fluid bulk mean tempera
ture distribution at two different Reynolds numbers. Decreasing the Reynolds number 
increases the wall temperature for both the heated and unheated wall. These results can 
be rationalized by noting that the lower the Reynolds number, the lower the convective 
heat transfer coefficient, and so the greater the relative importance of radiative transfer.

Figure 19.5 shows the effect of radiation on the local Nusselt number. The curve for 
pure convection is also included in this figure. At the region near the inlet where the 
boundary layer is developing, the convective heat transfer coefficient is very high; hence 
the importance of radiation relative to convection is insignificant. Therefore, at the 
inlet region the Nusselt numbers with and without radiation do not differ appreciably. 
At the downstream region where the convective heat transfer coefficient is low, 
substantial differences occur in the Nusselt number for the cases with and without 
radiation. In the downstream region, the Nusselt number with radiation is about 25% 
higher than that without radiation.
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1.2

1.1

100 150 200

x/H

Figure 19 4. Effects of radiation on the wall and fluid bulk mean temperature for laminar flow of 
transparent gas inside a parallel-plate channel at different Reynolds numbers (one wall at constant 
heat flux, the other wall adiabatic) [20],

19.3 SIMULTANEOUS CONVECTION AND RADIATION IN 
PARTICIPATING MEDIA

The analysis of combined convection and radiation in participating media is signifi
cantly different from and more involved than that for a nonparticipating medium. 
Therefore, before introducing the subject of simultaneous convection and radiation in 
an absorbing, emitting, and scattering medium, we present an overview of radiation 
transfer in participating media, including the equation of radiative transfer, the 
radiation boundary conditions, and a discussion of exact and approximate methods of 
solution of the pure radiation problem.

19.3.1 Equation of Radiative Transfer

A fundamental quantity in the study of radiation transfer in an absorbing, emitting, 
and scattering media is the spectral radiation intensity which represents the
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Figure 19.5. Effects of radiation on the local Nusselt number for laminar flow of a transparent 
gas inside a parallel-plate channel; upper plate heated, lower plate insulated [20],

amount of radiation energy streaming through a unit area perpendicular to the 
direction of propagation fl, per unit solid angle about the direction fl, per unit 
frequency about frequency v, and per unit time about time t. In many engineering 
applications, the wavelength X is used to characterize the spectral radiation intensity as 
/A(r, fl). The integration of the spectral intensity over all frequencies (or wavelengths) 
from zero to infinity yields the radiation intensity I(r, &).

The propagation of radiation in a participating medium is governed by the equation 
of radiative transfer, the derivation of which is given in several references [1,2,22-24], 
The absorption and scattering properties of a medium are characterized by the 
absorption coefficient k and the scattering coefficient a, both of which have dimensions 
of (length) The sum of the absorption and scattering coefficients is called the 
extinction coefficient P (i.e., /J = k + a). In general, these coefficients depend on the 
frequency or wavelength of the radiation.

We consider the propagation of radiation beam in any given direction fl, and let 5 
be the coordinate measured along this direction of propagation. Assuming that the 
radiation properties of the medium are independent of frequency, the directional form 
of the equation of radiative transfer governing the distribution of the radiation intensity 
/■(s, fl) is given by

■ dl(s,£l) . nffiT4 co r a „ a a
- v 7 + I(s,&) = (1 - «)-------- + — p(Q', fl)I(s, fl') rffl', (19.19)
f ds it 4tt J
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where

n = refractive index

p(fl', fl) = phase function

o
co = — = single-scattering albedo

= k + a = extinction coefficient 

0 = Stefan-Boltzmann constant

and d/ds denotes the derivative along 5 in the direction of propagation fl. The phase 
function p(Q', fl) represents the probability that incident radiation from the direction 
fl' will be scattered into the direction fl.

To apply Eq. (19.19) in a particular coordinate system, the directional derivative 
d/ds should be expressed in terms of the derivatives of the space coordinates in that 
particular coordinate system. The solution of the equation of radiative transfer [Eq. 
(19.19)] in its general form in a three-dimensional system is an extremely difficult 
matter.

We consider below only the one-dimensional form of Eq. (19.19) for a plane-parallel 
medium. Let Oy be the preferred coordinate axis, and 0 the polar angle between the 
direction of propagation fl and the positive Oy axis as shown in Fig. 19.6. By 
plane-parallel we mean that the medium is stratified in planes perpendicular to the Oy 
axis. In addition, we assume azimuthally symmetric radiation, so that the radiation 
intensity is a function of the variables y and 0. For convenience in the analysis, we 
define

/i ■ cos 0

t = fly = optical variable

(19.20a)

(19.20b)

Figure 19.6. Coordinates for plane-parallel system.
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Then the equation of radiation transfer, Eq. (19.19), reduces to (Ozisik [2, p. 261]).

dl(r.p) »1 2ctT4(t) w

1. Transparent boundaries. Suppose the boundaries at t = 0 and r = t0 of the slab
shown in Fig. 19.7 are both transparent and subjected to externally incident

= (1 - w)-------------  + - / p(p.p')I(r,p') dp' (19.21a)
OT 7T Z

where the maximum range of the p variable is between - 1 and P 1, and the phase 
function /?(p., p.') is generally expressed in terms of the Legendre polynomials P„(p) as

N
p(lhP') = E anP„(p)P„(p') with a0 = l (19.21b)

n = 0

Some special cases of Eq. (19.21a) include:

1. Isotropic scattering medium. We set p(p, p') = 1, and Eq. (19.21a) simplifies to

OI(T.p) n2aT4(T) co ri
P---- ------- +/(r,g) = (1 - w)-------------  + - J I(T,p')dp' (19.22)

UT IT 2 •' — 1

2 Purely scattering medium. We set w = 1, and Eq. (19.21a) takes the form

dl(r,p) 1
M----7-----  + AT> M) = 7 j p') tip' (19.23)dr 2 J-i

which implies that there is no coupling between the equation of radiative transfer 
and no emission of radiation by the medium.

3. Purely absorbing and emitting medium. We set w = 0, and Eq. (18.21a) becomes

dl(r,p} n2aT4(r)M—V2- + I(r,p) =-------- (19.24)
OT 77

We note that for the nonscattering medium, the equation of radiative transfer is 
a first degree ordinary differential equation and its solution is a relatively simple 
matter. For a scattering medium, the equation of radiative transfer is a singular 
integrodifferential equation, and its rigorous solution, even for the one-dimen
sional isotropically scattering case, is rather a complicated matter.

19.3.2 Radiation Boundary Conditions
To solve the equation of radiative transfer, appropriate radiation boundary conditions 
are needed. Such boundary conditions being different from the customary heat transfer 
boundary conditions associated with conduction and convection, we present a brief 
discussion of basic concepts leading to the construction of radiation boundary condi
tions.

We consider a plane-parallel slab of optical thickness r(), with t and p the space and 
angular coordinates, respectively, as illustrated in Fig. 19.7. Several different possibili
ties can be envisioned as boundary conditions at the surfaces t = 0 and r = t0 as 
discussed below.
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Figure 19.7. Radiation boundary conditions for a plane-parallel slab.

diffuse radiations of constant intensities 
boundary conditions are given by

7(0) = A at t = 0

ATo)=A at t = t0

fl and fl, respectively. Then the

for fi > 0 (19.25a)

for p < 0 (19.25b)

2 Opaque, black boundaries. Suppose the boundary surfaces at t = 0 and r = r0 
are opaque and black and maintained at constant temperatures 7] and T2, 
respectively. The medium has a refractive index n. The boundary conditions 
become

n 2 a T?
7(0) =-------- at t = 0 for p > 0

n2aT2
7(t0) =------ ~ at t = t0 for [i < 0

(19.26a)

(19.26b)

3. Diffusely reflecting, diffusely emitting boundaries. Let the boundary surfaces at 
t = 0 and t = t0 be opaque, diffusely emitting, diffusely reflecting surfaces, 
maintained at temperatures 7\ and T2, respectively. Let p‘{ and p^ be the diffuse 
reflectivity and and e2 the diffuse emissivity of the surfaces at r = 0 and 
r = r0 respectively, and n the refractive index of the intervening medium. The 
boundary conditions are given by [2, p. 274]

7(0) = q------ - + 2pj f 7(0, —p')fi' dp' at r = 0
77 Jq

. n2aT2 m
l(rQ) = e2-------- + 2p^ I(t0, p')p.' dp.' at t = t0

77 Jq

for p > 0 (19.27a)

for p < 0 (19.27b)
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Here the first terms on the right-hand side of Eqs. (19.27) represent the radiation 
emitted by the surface because of its temperature, and the second terms represent 
the radiation diffusely reflected from the surface.

4. Specularly reflecting, diffusely emitting boundaries. Let the boundary surfaces at 
t = 0 and t = t0 be opaque, be a diffuse emitter and a specular reflector, have 
emissivities q and e2, have specular reflectivities p\ and p2, and be maintained 
at temperatures 7] and T-, respectively. The boundary conditions become (Ozi^ik 
[2, p. 275])

n
7(0, p.) = q---------- 1- p\I(0, —p) at t = 0

77

n~aT2
7(t0,/i)=€2----------- + pV(T0’~fO atr = T0

77

for fi>Q (19.27c)

for fi < 0 (19.27d)

Clearly, several different combinations of the above boundary conditions are 
possible for a radiation problem in an absorbing, emitting, and scattering slab.

19.3.3 Methods of Solving Radiation Problems in One-Dimensional 
Media

The mathematical techniques used in the solution of radiation problems in participat
ing media being rather different from those commonly applied for the solution of 
convection problems, we present here a brief discussion of this subject in order to 
introduce the pertinent references and give some background information.

The methods of solving radiation transfer in participating media can be separated 
into three distinct categories: (1) approximate, (2) analytical, and (3) purely numerical. 
In each of these groups, many different techniques have been developed.

1. Approximate methods. The approximate methods include, among others, the 
Eddington approximation, exponential kernel approximation, multiflux method, 
low-order moment method, and low-order PN method. Some of these approxi
mate methods are capable of producing sufficiently accurate heat flux results 
under certain conditions; but in general their accuracy cannot be assessed unless 
they are compared with the exact solutions. A discussion of various approximate 
methods of analysis of radiation transfer is given in Ref. 2. However, with the 
recent developments in the analytical methods of calculating radiation transfer in 
plane-parallel media, now one can readily use an efficient analytical method just 
as easily.

2. Analytical methods. In recent years, significant advances have been made in the 
development of efficient analytical methods for calculating radiation transfer in 
absorbing, emitting, scattering plane-parallel media. Starting with Case’s singu
lar-eigenfunction technique, developed in early sixties and discussed in the Refs. 
2, 25, various other approaches that followed included, among others, the 
Fourier-transform technique [26,27], the source-function expansion technique 
[28,29], the FN method [30-33], and the Galerkin method [34-37], Any of these 
methods is capable of producing highly accurate results for the radiation 
intensity and radiation flux; but for their use in the analysis of interaction 
problems, the efficiency and simplicity of the method as well as its compatibility 
with the solution of convection are important. It appears that both the Fv and 
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the Galerkin method are highly efficient and require very little computer time. 
They are also compatible with the solution of the convection problem, because 
radiation enters the energy equation as a source term, which can readily be 
calculated from the solution of the radiation problem for a specified temperature 
distribution in the medium. Of course, iteration is needed for the complete 
solution. For engineering applications, the use of the Galerkin method has the 
additional advantage of simplicity in the analysis.

3. Numerical methods. Purely numerical methods include the Monte Carlo methods 
[3,38,39,40], the use of Gaussian quadratures [41,42], the iterative method 
[43-45], the finite element method [46], and others. Such numerical methods can 
produce sufficiently accurate results for engineering applications, but they re
quire large amounts of computer time and storage. Therefore, they are computa
tionally inefficient for use in the solution of interaction problems in comparison 
with the analytical methods, because the complete solution requires several 
iterations between solutions of the convection and radiation parts of the prob
lem.

Nonplanar Media. The solution of the equations of radiative transfer in cylindrical 
symmetry is of interest in the analysis of the interaction of radiation with convection 
for the flow of a participating fluid inside a circular tube. Some of the literature on 
radiation transfer in cylindrical symmetry for engineering applications has been cited 
in Ref. 47. Most solutions are approximate including the variational method [48], the 
two-flux method [49], and the differential approximation [50,51].

19.3.4 Methods of Solving Radiation Problems in Multidimensional 
Media

A review of radiation transfer in multidimensional participating media by Crosbie and 
Linsenbart [52] reveals that the exact analysis of the subject is very limited because of 
the difficulties associated with the solution of the multidimensional equations of 
radiative transfer. Purely numerical techniques such as the Monte Carlo methods have 
been used to solve such problems; but they require so much computer time and 
memory that they are not well suited for the analysis of interaction problems. 
Therefore, efforts have been directed toward the development of approximate methods 
of analysis. For example, the Pj and P3 approximations have been used by Ratzel and 
Howell [53] to calculate radiation transfer in an isotropically scattering two-dimen
sional rectangular enclosure, and by Mengiic and Viskanta [54] in three-dimensional 
cylindrical enclosures. The discrete-ordinate method has been used by Fiveland [55] to 
treat two-dimensional radiation in an axisymmetric participating medium, and the 
source-function expansion technique has been applied by Sutton and Ozi§ik [56] to 
treat radiation in an isotropically scattering two-dimensional rectangular enclosure.

An examination of these solutions reveals that approximate methods may produce 
acceptable results over limited ranges, but their accuracy can not be assessed unless 
they are compared with the exact solutions. The exact methods are rather elaborate and 
require much computer time.

19.3.5 Equations of Motion and Energy for Radiating Fluids

Here we present an overview of the effects of radiation on the equations of motion and 
energy for a participating fluid. The reader should consult Sparrow and Cess [1] and 
Ozt§tk [2] for a detailed discussion of this subject.
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Continuity Equation. The standard equation of continuity for a nonradiating fluid is 
applicable also for a radiating fluid, since the change of mass due to radiation is 
negligible.

Momentum Equation. When radiation is present, it exerts pressure and hence intro
duces an additional rate of change of momentum in the system. Hence, one envisions a 
radiation stress tensor analogous to the stress tensor in fluid dynamics. However, it can 
be shown that unless the temperature is extremely high and pressure is extremely low, 
the momentum equation for a radiating fluid is the same as that for a nonradiating 
fluid.

Energy Equation. The presence of radiation in the fluid leads to additional terms in 
the energy equation to account for the effects of the radiation energy density, the 
radiation stresses, and the radiation heat flux. However, the contribution of the 
radiation energy density and the radiation stress tensor in the energy equation is 
negligible for most practical situations encountered in engineering applications. Only 
the contribution of the radiation flux is important, and the energy equation for a 
radiating fluid can therefore be given as (Ozisik [2])

DT t x Dp
pcp— = V ’(/tVT) - V • qr + S*  + — + (19.28)

where q' is the radiation flux vector, which should be obtained from the solution of the 
radiation part of the problem. The viscous energy dissipation O depends on the nature 
of the fluid; for a Newtonian fluid, it is the same as that given in the standard texts for 
a nonradiating fluid. Finally, S*  is an external energy input per unit volume and per 
unit time, p is the pressure, ji is the viscosity, and D/Dt is the substantial derivative.

Thus the convection and radiation parts of the problems are coupled, because the 
energy equation involves the divergence of the radiation flux V ' qr, whereas the 
determination of the radiation flux q' requires the solution of the equation of radiative 
transfer, Eq. (19.19), which involves the fourth power of the medium temperature.

Boundary-Layer Simplifications. For a boundary-layer flow of a participating fluid, 
the equations of motion and energy discussed above are simplified by the application of 
the standard order-of-magnitude analysis. Here we focus attention on two-dimensional, 
steady, laminar boundary-layer flow of a compressible radiating fluid over a body. Let 
x and y be the coordinate axes along the surface in the direction of flow and 
perpendicular to the surface, respectively. The boundary-layer equations are given by 

continuity, + T“(py) = 0dx dy
(19.29)

x momentum
I du

P w—I dx
du 
dy

dp d I du 
~7~ + PT- dx dy \ dy

(19.30)

energy, P<^>
dT dT

u------ 1- v——
dx dy

d 

dy

dT\ dqr dp
k— - -7- + u—dy I dy dx
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Here we neglected the conduction and radiation in the axial direction, and included the 
viscous energy dissipation in the energy equation.

Assuming a perfect gas, the equation of state is given by

p = pRT (19.32a)

The viscosity and thermal conductivity are considered as prescribed functions of 
temperature

jl = jl(T) and k = k(T) (19.32b)

and the pressure gradient term dp/dx is related to the external flow velocity «„.(%) by

dp 
dx

~Px(x)uM(x)
dux(x) 

dx
(19.32c)

where w Jx) is determined from the solution of the potential flow problem.
An examination of the above system of equations reveals that the energy equation 

for a radiating fluid contains the divergence of the radiation flux term. The presence of 
this complicates the analysis significantly, because qr or dqr/dy must be obtained 
from the solution of the equation of radiative transfer subject to appropriate radiation 
boundary conditions.

Nondimensional Parameters. When the equations of motion and energy are ex
pressed in dimensionless form by following the standard procedures, the following 
well-known nondimensional parameters result:

uoE = _ = Eckert number
Cp.0^0

(19.33a)

cP,oPoPr = — Prandtl number
«o

(19.33b)

Po Mo
Re = = Reynolds number

Po
(19.33c)

and the presence of the radiation term in the energy equation gives rise to new 
dimensionless group

Bo =
PqU0C/>,0

= Boltzmann number (19.33d)

The Boltzmann number as defined here represents the ratio of the convective to 
radiative heat flux. The smaller the Boltzmann number, the larger the radiation effects.
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19.3.6 Forced Convection with Radiation over a Flat Plate
Here we consider laminar boundary-layer flow of an absorbing, emitting, compressible, 
gray gas over a flat plate as illustrated in Fig. 19.8. It is assumed that the fluid is a 
perfect gas. The viscosity varies linearly with temperature, the specific heat and Prandtl 
number are constant, and the external flow temperature and velocity are 
uniform. The plate surface is opaque, gray, a diffuse emitter and a diffuse reflector, 
impervious to flow and maintained under adiabatic conditions. The flow is at high 
speed and gives rise to a temperature increase in the boundary layer.

The problem considered here (simultaneous convection and radiation) was studied 
by Taitel and Hartnett [57] for an absorbing, emitting fluid, and later on the effects of 
scattering of radiation were included in the analysis by Boles and Ozi§ik [58],

The mathematical formulation of the convection part of this problem is defined by 
Eqs. (19.29) to (19.31); here the pressure gradient term vanishes for flow over a flat 
plate. These equations are transformed by the similarity transformation as discussed by 
Ozi:jik [2, Chap. 13]. Then the continuity equation is identically satisfied, and the 
momentum and energy equations are transformed to

d3f d2f
<1934)

1 d2e
PT Tq2

ae df de dQr— = —-£* ------ 1- £*  ——----- E
dq dq d£*  dr

(19.35)

where

e = e(j*,q)  = —

F =---- — - = Eckert number
<-p , OO ^00

4/!?o72kx .£*  = ____  _
Poo ^00^7?, 00

t = kx = optical variable

k = absorption coefficient

(19.36)

Figure 19.8. Boundary flow of radiating gas over a flat plate.
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Note that the parameter is inversely proportional to the Boltzmann number; hence, 
the larger £*,  the stronger the radiation effects. For the nonscattering medium consid
ered here, the extinction coefficient ft is replaced by the absorption coefficient k in the 
definitions of t and £*.

The boundary conditions for the momentum equation (18.34) are given by

f=— =0 at tj = 0 (19.37a)
dq

df
— = 1 at 7j -» oo (19.37b)
dq

which imply that the velocity components are zero at the wall and u = outside the 
boundary layer.

The boundary conditions for the energy equation (19.35) are taken as:

1. The sum of the conduction and radiation fluxes is zero at the wall surface.
2. The temperature is equal to the external flow temperature TVj outside the thermal 

boundary layer.
3. For £  = 0, the solution of the energy equation is equal to the solution of the 

same problem for the nonradiating flow.
*

These requirements lead respectively to the following expressions for boundary condi
tion:

t1/2 de
1 d q

4 = 0 at TJ = 0 (19.38a)

e = i as 7) —» OO (19.38b)

0 = 0O(*1) at £*  = 0 (19.38c)

where

= conduction-to-radiation parameter (19.39a)

2r =
qr

= dimensionless radiation heat flux (19.39b)

and the radiation flux qr is related to the radiation intensity /(t, £*,  /r) by

qr = 2tt/’1 7(T,C*,/l)jLl4/jLl  
J-i

(19 40)

The radiation intensity is determined from the solution of the radiation part of the 
problem. For an absorbing, emitting, gray medium with diffusely emitting, diffusely 
reflecting boundary at r = 0, the radiation part of the problem is given by

37(r,r,ia) „2oT4(t,(*)
/'•------- 7--------- + /(T, £*,  /l) = -------------------

dr <n for 0 < t < oo, — 1 < /r < 1

(19.41a)
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wi th

fl
/(0,£*)=<„ -------------- + 2(1 - e,.)/Z(0,£*,-g*)  </g' for g > 0 (19.41b)

77 Jq

and Z(t, g) remains finite as t-» oo. Here ew is the emissivity of the wall surface and 
n is the refractive index of the fluid.

Clearly, the above convection and radiation problems are coupled, because the 
solution of the convection problem requires a knowledge of the radiation flux, whereas 
the radiation part of the problem involves the fourth power of the temperature in the 
fluid; therefore an iterative scheme is needed for the solution of the problem.

Figure 19.9 shows the temperature distribution in the boundary layer as a function 
of the dimensionless distance -q from the surface at several values of the dimensionless 
axial location £*  for the values Pr = 1, Ex = 2, Nx = 0.5, and cw = 1 (i.e., a black 
wall). The temperature profile for £*  = 0 corresponds to nonradiating fluid. The 
maximum temperature in the boundary layer is highest with the nonradiating fluid. The 
effect of radiation within the boundary layer is to flatten the temperature profile and 
hence reduce the maximum temperature. Thus with increasing £*,  radiation effects 
become more dominant, which in turn flattens the temperature profile and reduces the 
peak. The optically thin and the optically thick limits are sometimes used to simplify 
the radiation part of the analysis; but the results are applicable only over limited 
ranges. The solutions obtained by using the optically thin and optically thick ap
proximations are also included in this figure. Note that, for values of £*  of the order of 
10 4 or less, the results obtained with the optically thin boundary-layer approximation

Figure 19.9. Effects of radiation on temperature profile in boundary-layer flow of a radiating gas 
over an adiabatic flat plate for an absorbing, emitting fluid. (From Taitel and Hartnett [57].)



19*22 INTERACTION OF RADIATION WITH CONVECTION

seems to agree reasonably well with the exact results. For values of £*  of the order of 
unity or larger, the optically thick approximation is close to the exact results, but the 
slopes of the temperatures at the wall differ significantly.

With increasing radiation, a positive temperature gradient with respect to tj is 
established at the wall, controlled by a balance between the convective heat flux to the 
wall and the radiative heat flux away from it.

The effects of scattering of radiation in addition to the absorption and emission by 
the fluid have been investigated by Boles and Ozi§ik [58] for the problem discussed 
above. The scattering of radiation by the fluid reduces the effects of radiation in 
flattening the temperature profile in the boundary layer.

19.3.7 Forced Convection with Radiation inside Ducts
The analysis of simultaneous radiation and forced convection inside ducts is rather 
involved, because the energy problem for forced convection is coupled to the radiation 
problem. An examination of the literature on this subject reveals that much of the 
available work is concerned with thermally fully developed situations [59-65], or 
restricted to an absorbing and emitting flow [66-69], When scattering effects are to be 
included, an approximate technique is employed to solve the radiation part of the 
problem [70-73]. More recently, heat transfer in thermally developing laminar flow has 
been studied [74-78] by including the scattering effects in the analysis and treating the 
radiation part of the problem exactly.

Of the available investigations, only a few are on the interaction of radiation and 
forced convection in turbulent flow inside parallel-plate channels [62-65,72,73,79], 
The interaction of radiation with convection for hydrodynamically fully developed 
turbulent and laminar flow of an absorbing and emitting gas through a black-wall 
circular duct with a prescribed inlet gas temperature and wall temperature or heat flux 
distribution has been studied by Smith and Shen [80],

We present below some of the heat transfer results under both laminar and 
turbulent flow conditions for the flow of an absorbing, emitting, isotropically scattering 
gray fluid inside a parallel-plate channel, in order to illustrate the effects of radiation 
on the Nusselt number.

Laminar Flow. Consider thermally developing, hydrodynamically developed steady 
flow of an absorbing, emitting, isotropically scattering gray fluid inside a parallel-plate 
channel of spacing 2L as illustrated in Fig. 19.10. We idealize constant thermophysical 
properties, and we neglect viscous dissipation and the axial conduction and radiation in

Figure 19.10. Geometry and coordinates for flow inside a parallel-plate channel.
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the fluid. The mathematical formulation of the convection part of the problem is given 
in the dimensionless form as

90 929 t0 9Qr
/1 y~) — 0 n v i t a /in

7 9% 9Y2 N, d> 111 C, XJ

Y) = 0, at £ = 0 (19.42b)

99^, Y)
----------- - = 0 

9Y
at Y= 0 (19.42c)

0(S,Y) =1 at Y= 1 (19.42d)

where the various dimensionless quantities are

«(£ n- T(i’y) 7] 
ft — Y y , 32 x/Dh

u \ 1 ) rr *
1 w

' T > w L’ 3 RePr’

rn = /3L, ft = k + a,

„ UmDh V qr(%’ y)
21^ — 4L, Re =

V
Pr = - , a Q’ “ 4,^

4n2oTz
(19.43)

The dimensionless radiation flux Qr(£, Y) is related to the dimensionless radiation 
intensity ip(£, Y, p.) by

2 —i
(19.44)

where

^(e^./x) =
n29T4/ir

(19.45)

7(£, Y, p.) is the actual radiation intensity, and /i is the cosine of the angle between the 
radiation beam and the positive Y axis.

Here Y, fi) should be obtained from the solution of the radiation part of the 
problem. For an absorbing, emitting, isotropically scattering gray fluid treated as a 
plane-parallel medium stratified in planes perpendicular to the Y coordinate axis,

Y, /Y) satisfies the equation of radiative transfer given in the form

u dll' , u+ 1/zG, Y,g) = (1 - Y) + -f ^,Y,fi') dp/
t0 9Y 2 J -i

in 0 < t < t0, — 1 < p < 1 (19.46a)

The boundary conditions for this equation are the symmetry condition at Y = 0 and a
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diffusely emitting, diffusely reflecting, gray, opaque boundary at 7 = 1, given by

^(^,0,g) =^(^,0,-g) at 7=0, 0 </t < 1 (19.46b)

^(^,1,-ft) =eH,+ at 7=1, 0 < p < 1 (19.46c)
•'o

where ew and pd are the emissivity and diffuse reflectivity of the wall.
In this problem, the parameters that affect the temperature distribution in the flow, 

and hence the heat transfer, include the conduction-to-radiation parameter M; the 
optical thickness of the fluid, t0; the emissivity of the boundary surfaces, q; and the 
single-scattering albedo u.

Figure 19.11 shows the effects of the conduction-to-radiation parameter on the 
temperature profile at two different axial locations £ = 0.1 and £ = 0.5 along the 
channel. Note that for (V, > 5, the temperature profiles for the cases with and without

Figure 19.11. Effects of the conduction-to-radiation parameter N2 on the temperature distribu
tion 6 for laminar flow of a participating fluid inside a parallel-plate channel, for rQ = 1.0, 
w = 0.1, 9, = 0.0, pJ = 0.0. (From Mengiic et al. [77].)



Figure 19 12 Effect of the conduction-to-radiation parameter ,V2 on the local Nusselt number. 
(From Mengilc et al. [77].)

Figure 19.13. Effect of the single-scattering albedo to on the local Nusselt number. (From 
Mengiic et al. [77].)

19-25
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radiation are not distinguishable. For small values of M, the temperature profile is 
flattened as a result of the radiation effects.

Figure 19.12 shows the effect of the conduction-to-radiation parameter N2 on the 
local Nusselt number as a function of the dimensionless distance (x/Dh )/(Re Pr) along 
the channel. The effects of M on the local Nusselt number are pronounced for smaller 
values of N2, which signifies strong radiation.

Figure 19.13 shows the effect of the single-scattering albedo w on the local Nusselt 
number. Clearly, as w approaches unity, the radiation effects are weakened and the 
Nusselt number approaches that of forced convection without radiation. The reader 
should consult Mengiic et al. [77] for a discussion of the effects of other parameters on 
heat transfer.

Turbulent Flow. We now examine the above heat transfer problem for flow inside a 
parallel-plate channel for the case of turbulent flow. We consider hydrodynamically 
developed, thermally developing turbulent flow, idealize constant thermophysical prop
erties, and neglect the viscous energy dissipation and the axial conduction and 
radiation in the flow. The coordinates and geometry are similar to that shown in Fig. 
19.10 for the case of laminar flow.

The mathematical formulation of the convection part of the problem is given in the 
dimensionless form as

do ar aai t0 dQr 
“ 0<y<1’ x>o(i9.47a)

a(x.T)=a,. at x = 0 (19.47b)

^(X,T)
---- —---- =0 at Y = 0 (19.47c)

0(X,Y)=0 at x = l (19.47d)

where various dimensionless quantities are

P = k + a

T(
*(x,n = —x, v) 7]z g = _

T ’ 1 Tw lw
, Y = - , L X =

16 x/Dh
C RePr’

= 4L,
D umDh

V

V 
Pr = —, 

a
w(y) = «(y)

^max

„ _  ^max r(y) = l + ^, 
a To = ^2 =

11 m ’ 4n25Tw3 ’

(19.48)

The dimensionless radiation heat flux Qr(x. Y) is related to the dimensionless radia-



SIMULTANEOUS CONVECTION AND RADIATION IN PARTICIPATING MFDIA 19-27

Log [x/Dh]/(Re ■ Pr)

Figure 19.14. Effect of the conduction-radiation parameter AL on the local Nusselt number; 
Re = 105, Pr = 1. (From Yener and Ozt§ik [79].)

lion intensity i//(x, Y) by

2r(x,n = (19.49)z •'-i

where i/dx- Y) is defined by Eq. (19.45) and the radiation part of the problem is given 
by Eqs. (19.46).

In this problem, the parameters affecting heat transfer are the same as for laminar 
flow, except that the results have weak dependence on the Reynolds number.

Figure 19.14 shows the effect of conduction-to-radiation parameter N, on the local 
Nusselt number for Re = 105, Pr = 1, black walls, and = 0.5. The curve for large N2 
corresponds to the nonradiating fluid. Decreasing N2 increases radiation effects, which 
in turn increases the local Nusselt number.

Figure 19.15 shows the effects of single-scattering albedo w on the local Nusselt 
number. As w approaches unity, the radiation effects are weakened, because the 
medium becomes highly scattering. The case u = 1 corresponds to purely scattering 
medium in which radiation is uncoupled from convection and the Nusselt number is 
the. same as that for a nonradiating flow.

Figure 19.16 shows the effects of wall reflectivity on the local Nusselt number. The 
radiation effects are largest with black boundaries (i.e., p = 0) and diminish with 
increasing surface reflectivity.



Log [x/DJ/fRe • Pr)

Figure 19 15. Effect of the single-scattering albedo w on the local Nusselt number; Re = 105,
Pr = 1. (From Yener and Osi?ik [79].)

Log [x/Z>A]/(Re • Pr)

Figure 19.16. Effect of the reflectivity, pd, on the local Nusselt number. Re = 105, Pr = 1. 
(From Yener and Ozi§ik [79].)
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Note that the effect of radiation on the Nusselt number is less pronounced with 
turbulent flow than with laminar flow, because radiation becomes less dominant in 
comparison with the high heat transfer rate in turbulent flow.

NOMENCLATURE

A
Bo

area of zone i, m2, ft2
Boltzmann number — p^u^Cp q/h^oT^

c.- cp.o

E
f

H 
h 
h.

I(t, p.) 
A
I 
2L

specific heat, J/(kg • K), Btu/(lbm ■ °F) 
hydraulic diameter = 4 L = 2 H, m, ft 
elemental view factors
Eckert number = Uq/cp qT0
velocity function in Eq. (19.34)
view factor from surface f to surface I 
spacing between parallel plates, m, ft 
heat transfer coefficient, W/(m2 • K), Btu/(hr ■ ft2 ■ °F) 
local heat transfer coefficient W(m2 • K), Btu/(hr ■ ft2 • °F) 
radiation intensity, W/(m2 • sr), Btu/(hr • ft2 • sr) 
fluid thermal conductivity, W/(m • K), Btu/(hr • ft2 • °F) 
channel length, m, ft
spacing between parallel plates, m, ft

n refractive index 
conduction-to-radiation parameter, Eq. (19.39a), = 
kxK^/4n2oT^

iV2 conduction-to-radiation parameter, Eq. (19.43), 
= W4n2aTj

Nuv local Nusselt number, = hxx/k for flow along a flat plate, 
= hxDh/k for flow inside a parallel-plate channel

P
p(Q, Q),p(/i,/i')
P

Pi

pressure, Pa, lbf/ft2 
phase function 
dimensionless pressure, Eq. (19.12), = p/pu^ 
Legendre polynomial
Prandtl number = pcp/k

P
<P

Q' 
R 
«,(r,) 
r
Re, 
Re

heat flux, W/m2, Btu/(hr • ft2)
convection heat flux, W/m2, Btu/(hr ■ ft2) 
radiation heat flux, W/m2, Btu/(hr -ft2) 
wall heat flux, W/m2, Btu/(hr -ft2) 
dimensionless radiation heat flux = qr/4n2oT£ 
gas constant, J/(kg • K), Iby • ft/(lbm • °R) 
radiosity at zone i, W/m2, Btu/(hr -ft2) 
position vector, m, ft 
local Reynolds number = uMx/v
Reynolds number based on hydraulic diameter, = u„, Dh/v

5 distance measured along the direction of propagation, m, ft
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s*
T
T„
TVTU 
Tv
Tt, 
t
U

source term, Eq. (19.28), W/m3, Btu/(hr • ft3) 
temperature, °C, K, °F, °R 
bulk fluid temperature, °C, K; °F, °R
plenum temperatures (see Fig. 19.2), °C, K; °F, °R 
free-stream temperature, °C, K; °F, °R 
wall temperature, °C, K: °F, °R 
time, s 
dimensionless axial velocity = u/um

u axial velocity, m/s, ft/s

R>
11 yi

mean velocity, m/s, ft/s 
reference velocity, m/s, ft/s 
free-stream velocity, m/s, ft/s

V
V

normal velocity component, m/s, ft/s 
dimensionless normal velocity component = v/um

X
X

axial coordinate, m, ft
dimensionless axial coordinate = x/H

r
F

Cartesian coordinate, m, ft 
dimensionless coordinate = y/H or y/L

Greek Symbols
a 
ft 
€ 

V 
V 
£ 
e 
©

V
V
I 
r
I 
p 
pJ 
p' 
a
o

thermal diffusivity = (k/pcp), nf/s, ft2/s 
extinction coefficient = k + a, m-1, ft'1
emissivity
axial coordinate measured along the heated wall, Fig. 19.2 
dimensionless coordinate, Eqs. (19.6a), (19.36), = y^Ju^/vx 
axial coordinate along the insulated wall, Fig. 19.2 
polar angle, rad, deg
dimensionless temperature, Eq. (19.36) or (19.12), T/Tx or T/Tj 

or T/Tw
absorption coefficient, m-1, ft-1
direction cosine = cos 0
fluid dynamic viscosity. Pa • s, lbm/(ft s)
fluid kinematic viscosity, m2/s, ft2/s
frequency of the radiation, Hz
dimensionless axial coordinate, Eq. (19.43), = ^(x/£>Z1)/(RePr)
dimensionless axial coordinate, Eq. (19.36), =

An^T^Kx/p^u^Cp -oc
dimensionless axial coordinate, Eq. (19.6b), = (ydT^/k^vx/u  ̂
fluid density, kg/m3, lbm/ft3
diffuse reflectivity
specular reflectivity
scattering coefficient, m-1, ft-1
Stefan-Boltzmann constant, W/(m2 • K4), Btu/(hr • ft2 • °R4)
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t optical variable — fty or kj
t0 optical thickness

dimensionless radiation intensity, F,q (19.45)
w single-scattering albedo = a/ft

Subscripts
0 reference temperature
w wall
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20’2 NON NEWTONIAN FLUID FLOW AND HEAT TRANSFER

20.1 INTRODUCTION

Many important industrial fluids are non-Newtonian in their flow characteristics and 
are referred to as rheological fluids. These include paints; various suspensions such as 
coal-water or coal-oil slurries, glues, inks, foods, and soap and detergent slurries; 
polymer solutions; and many others. Because such fluids have more complicated 
equations that relate the shear stresses to the velocity field than Newtonian fluids have, 
additional factors must be considered in examining various fluid mechanics and heat 
transfer phenomena.

Another important characteristic of rheological fluids, because of their large “ap
parent viscosities,” is that they have a tendancy toward low Reynolds and Grashof 
numbers. Accordingly, in engineering practice laminar flow situations are encountered 
more often than with Newtonian fluids. Thus both laminar and turbulent flows will be 
considered here with equal emphasis.

It is the purpose of this chapter to discuss the definition and classification of 
non-Newtonian fluids, to examine different methods for measuring their rheological 
properties, and to consider a variety of fluid mechanics and heat transfer situations that 
are likely to be encountered in engineering practice. These will include both forced and 
free convection in internal and external flows.

Knowledge of non-Newtonian fluid mechanics and heat transfer is still in an early 
stage, and many aspects of the field have yet to be investigated and clarified.

20.2 DESCRIPTION AND CLASSIFICATION OF 
NON-NEWTONIAN FLUIDS

20.2.1 General Considerations
The most straightforward way to describe the class of non-Newtonian fluids is to define 
a Newtonian fluid, since all others are non-Newtonian.

Newtonian fluids possess a property called viscosity and obey a relation analogous 
to the Hookian relation between a stress applied to a solid and its strain, i.e., the stress 
is proportional to the strain rate.

Figure 20.la shows a simple laminar flow situation which illustrates this relation. 
Shown in the figure are two parallel plates with very large dimensions relative to the 
distance b which separates them. The bottom plate is stationary while the top plate 
moves at a constant velocity uh due to a force per unit area t,.v applied to the plate. 
The shear stress uses the subscript convention that the first letter (here y) refers to the 
direction normal to the stress and the second letter (here x) refers to the direction of 
the stress. If the velocity distribution were measured between the plates, it would be 
found to vary linearly from a value zero at the bottom plate to a value uh at the top 
plate, as shown in the figure.

Figure 20.16 shows the fluid strain or angular displacement Ay experienced by a 
small fluid element during a short time At. For small angles,

du
dy = yd' (2o i)

and in the limit

dy . uh du 
dt b dy (20.2)
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Fluid element 
at time t0

(b)

Figure 20.1. (a) Velocity profile caused by motion of top plate, (b) Angular displacement 
(strain) of fluid.

For a Newtonian fluid, the stress is proportional to the rate of strain, and a linear 
relation between the applied stress and the strain rate can be written as

du
ryx = fiy = fi— (20.3)

where y is called the strain rate or shear rate and is equal in this simple case to the 
velocity gradient. This reasoning can be easily applied to other one-dimensional flows 
where the velocity gradient is not constant. The constant of proportionality ft is called 
the dynamic viscosity, and for Newtonian fluids it is a transport property. In this 
chapter, the direction normal to the stress and the direction of the stress will usually be 
apparent, and stress subscripts will only be displayed when necessary to avoid 
confusion.

Equation (20.3), which is called a constitutive equation, indicates that if tvx is 
plotted against y, as illustrated in Fig. 20.2, a linear relation exists between the two 
quantities and the slope of the curve is the dynamic viscosity. Such a graph is called a 
flow curve and is a convenient way to examine the viscous properties of different types 
of fluids.

Fluids which do not obey Eq. (20.3) are non-Newtonian. As shown in Fig. 20.3, 
fluids can be divided into Newtonian and non-Newtonian categories. The non-Newto
nian fluids can further be divided into purely viscous and viscoelastic fluids.

Purely viscous, time-independent fluids are defined as those whose shear stress 
depends only upon some function of the shear rate (and sometimes on an initial yield 
stress). For purely viscous, time-dependent fluids, the shear stress can depend upon the 
time history of the applied stress.
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Figure 20.2. Flow curve for a Newtonian fluid.

Figure 20.3. Classification of fluids.

Viscoelastic fluids are those which possess both viscous and elastic properties. They 
are important because of drag and heat transfer reduction in turbulent flows of such 
fluids. Such fluids will not be considered in this chapter, but an excellent recent review 
is given by Cho and Hartnett [1],

Purely viscous, time-independent fluids are illustrated in Fig. 20.4 along with the 
flow of a Newtonian fluid (curve c) for comparison. In the figure, curves h and d are 
for time-independent, purely viscous fluids where the shear stress depends only on the 
shear rate, but in a nonlinear way. A fluid which behaves like h is called pseudoplastic
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Figure 20.4. Flow curves of purely viscous, time-independent fluids: (a) Bingham plastic; (h) 
pseudoplastic; (c) Newtonian; (d) Dilatant.

Figure 20.5. Flow curves for purely viscous, time-dependent fluids: (a) thixotropic, (b) rheo- 
pectic.

(or shear-thinning), and one which behaves like d is called dilatant (or shear-thicken
ing). Curve a represents a fluid that possesses an initial yield stress, upon exceeding 
which the fluid behaves as a Newtonian fluid. Such a fluid is called a Bingham plastic 
fluid. Other fluids exhibit non-Newtonian behavior after the initial yield stress is 
exceeded.

Purely viscous, time dependent fluids are illustrated in Fig. 20.5. Here the flow 
curves can assume a hysteresis loop whose shape depends upon the time-dependent 
rate at which the shear stress is applied. Fluids which have a pseudoplastic flow curve 
(a) are called thixotropic, and those with a dilatant curve (b) are called rheopectic.

Time-dependent fluids are the bane of rheologists. There are so many variables to 
consider for these fluids that it is extremely difficult to produce any general results 
which can be applied to a variety of problems. Such fluids will not be considered 
further in this chapter.

Table 20.1 lists the classes of fluids discussed above, with examples of fluids which 
exhibit these characteristics.
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TABLE 20.1 Examples of Rheological Fluids

Type Examples

Newtonian 
Pseudoplastic 
Dilatant 
Bingham plastic 
Thixotropic 
Rheopectic 
Viscoelastic

Water, air, mercury, engine oil
Paints, glues, blood, suspensions
Wet sand, sugar and Borax solutions 
Certain emulsions and paints, ketchup 
Printing inks, food materials, paints 
Clay suspensions
Polymer solutions (e.g., Polyox and water)

20.2.2 Apparent Viscosity
The apparent viscosity is defined as the ratio of the shear stress at some location in the 
flow field to the local shear rate:

(20.4)

Only for a Newtonian fluid is the apparent viscosity a true property in the sense that 
a property depends on the basic microstructure of the fluid. For non-Newtonian fluids, 
the apparent viscosity is not a fluid property but is a function of the velocity field, as 
will be examined in more detail in the next section. In spite of this complication, which 
sometimes causes confusion, the apparent viscosity is of great conceptual value and 
appears extensively in the rheological literature. It will be used in the present chapter 
along with frequent warnings about its true nature.

20.2.3 Constitutive Equations for Purely Viscous 
Time-Independent Fluids

A constitutive equation is one that relates the shear stress or apparent viscosity in a 
fluid to the shear rate through the rheological properties of the fluid. For example, Eq. 
(20.3) is the constitutive equation for a Newtonian fluid, with the dynamic viscosity as 
the rheological property. A large number of constitutive equations have been developed 
to describe the behavior of non-Newtonian fluids [2], Some have as many as five 
rheological properties, and while they are suitable for describing in detail the relations 
between shear stress and stress rate for complex fluids, they are normally too cumber
some to use in engineering analyses. A selected list of constitutive equations is given in 
Table 20.2. Most popular in engineering work are the three property models which will 
be discussed next.

A convenient way to depict the constitutive equations is to plot a graph of apparent 
viscosity against shear rate. Figure 20.6 shows such a qualitative graph which is 
indicative of the behavior of many purely viscous pseudoplastic fluids. From the figure, 
it is seen that at low shear rates (region a) the fluid is Newtonian in behavior (constant

). The viscosity p.(l at zero shear rate is called the zero-shear-rate viscosity. At higher 
shear rates (region />), the apparent viscosity ftu begins to decrease until it stabilizes 
into a straight line (region c). Following region c there is another transition region (o'), 
after which, at high shear rates, the fluid becomes once again Newtonian in region e 
with a viscosity A similar dependence of the apparent viscosity on the shear rate is 
also seen in purely viscous dilatant fluids. However, in such fluids increases with y 
in the transition and power-law regions (b, c, d).
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TABLE 20.2 Some Constitutive Equations for Time-Independent Purely Viscous Fluids"

Model Constitutive Equation Ref.

Power law
(Ostwald-de Waele)

Ellis

C toss

Modified

power law

Sutterby

______ Po
1 + (n0/K)yl~

sinh

[3]

[4]

[5]

[6]

C irreau (A)

"See also Ref. 2.

Ma = Moo + (Mo-^)[l + (M)2](”’1)/2 [7]

Figure 20.6. Illustrative flow curve for a pseudoplastic fluid: (a) low-shear-rate Newtonian 
region, (h) transition region I, (c) power-law region, (J) transition region II. (e) high-shear-rate 
Newtonian region.

It is evident from Fig. 20.6 that a constitutive equation which completely describes 
the apparent viscosity over the entire shear-rate range must contain a large number of 
constants (properties). Fortunately, however, for many engineering problems, only a 
portion or portions of the entire curve need to be considered, and therefore less 
constants are required.

In the following, three constitutive equations will be considered. These are the ones 
frequently used in engineering applications and also those most often cited in the fluid 
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mechanics and heat transfer literature. Only regions a, b, and c of Fig. 20.6 will be 
( . •nsidered, since many applications fall in these regions.

Power Law (Ostwald- de Waele). The constitutive equation for this model is given 
by [3]

T = Kyn (20.5)

or

lia = Kr~r (20.6)

In Eq. (20.5), which is a two-property model, K is called the fluid consistency and n 
the flow index. By taking the logarithm of both sides of Eq. (20.6), it can be seen that
the equation represents region c in Fig. 20.6, i.e., it appears as a straight line in
logarithmic coordinates with a negative slope of n - 1 (for n < 1). This is why region c 
in Fig. 20.6 is called the power-law region.

The power-law model is the one most frequently used in non-Newtonian fluid 
mechanics and heat transfer. It has proved quite successful in predicting the behavior 
of a large number of pseudoplastic (and dilatant) fluids in spite of the fact that it has 
several built-in flaws and anomalies. For example, if one considers the flow of a 
pseudoplastic fluid (n < 1) through a circular tube, then at the center of the tube, 
because of symmetry, the shear rate (velocity gradient) becomes zero and thus the 
apparent viscosity defined by Eq. (20.6) is infinite. This poses grave conceptual 
difficulties. In addition, if the flow field under consideration has shear rates in regions a 
and b of Fig. 20.6, then the power-law model cannot possibly represent the correct 
constitutive equation. These drawbacks must be kept in mind when power-law models 
are considered further.

Modified Power Law. A generalization of the power-law fluid which extends the 
shear-rate range is given by

Mo
l + (20 7)

At low shear rates, the second term in the denominator will become negligible 
compared to the first and thus the apparent viscosity becomes a constant equal to 
This represents region a in Fig. 20.6.

Conversely, when the shear rate becomes large and the first term in the denominator 
becomes negligible compared to the second, then Eq. (20.7) becomes the same as the 
power-law fluid, or region c in Fig. 20.6. At intermediate shear rates, the equation 
represents the transition region b in Fig. 20.6.

An important advantage of this model is that it retains the rheological properties K 
and n of the power-law model plus the additional property /r(). Thus, as will be shown 
later, in the flow and heat transfer equations, the same dimensionless groups (e.g., the 
generalized Reynolds number) will occur in both models, and one model can serve as 
an asymptotic solution to the other.

Ellis Model. The model proposed by Ellis (as summarized in [4]) has many of the 
characteristics of the modified power-law model. The Ellis equation is

Mo
(20.8)
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where t, /2 is the shear stress when = p.0/2 (i.e., one-half the zero-shear-rate 
viscosity).

Equation (20.X) has the characteristics that at low values of the shear stress t (which 
corresponds to low shear rates) the apparent viscosity becomes constant at /r(). At large 
enough values of y, Eq. (20.8) turns into a power-law fluid where K and n are related 
to g0, r1/2, and «.

The Ellis model is written as a function of shear stress rather than of shear rate as in 
Eqs. (20.6) and (20.7). As a result, it is simpler to obtain analytical solutions of the 
shear field. Its disadvantage, from an engineering point of view, is that although it is 
similar to the modified power-law model, it introduces a different set of properties that 
are related to but different from the properties in the power-law model.

As mentioned previously, there are a large number of constitutive equations which 
have been suggested by rheological investigators. It should be emphasized that these 
equations are not always based on fundamental concepts of the microstructure of 
rheological fluids, but they are equations that represent with differing degrees of 
accuracy the variation of the shear stress with shear rate.

20.3 RHEOLOGICAL PROPERTY MEASUREMENTS

20.3.1 Purely Viscous Fluids
Rheological property measurements of purely viscous fluids consist of the experimental 
determination of the flow curves illustrated in Fig. 20.4. Although it might appear to be 
a formidable task to measure shear stresses and shear rates directly, many instruments 
do just that. Other devices measure t and y indirectly. The choice of which instrument 
to use depends upon a number of factors, such as the shear-rate range, desired 
accuracy, instrument cost, experimental skills, etc. Instruments of both types will be 
considered below, and examples will be presented of property measurements made by 
several of them.

20.3.2 Capillary-Tube Viscometer
This is one of the most fundamental of instruments and when used carefully is capable 
of accuracies of better than 2% over its applicable shear-rate range. It is most 
appropriate for intermediate shear rates of approximately 102 < y < 10’, which corre
sponds to the power-law region for many non-Newtonian fluids (see Fig. 20.6). The 
operation of the instrument will first be illustrated by considering a Newtonian fluid.

Figure 20.7 is a schematic diagram of a capillary tube viscometer. The test fluid 
flows in a laminar steady manner through the capillary tube of diameter D and length 
L with an average velocity u under the influence of the pressure difference A/>. The 
tube is made long enough so that entrance effects can be neglected or a small entrance 
correction can be made. For fully developed laminar Newtonian constant-property flow 
through a circular tube, the following well-known relation applies (see Nomenclature 
section):

/ Re = 16 (20.9)

where f is the Fanning friction factor defined as &p/L = (pu2/2) f/(D/4) and Re is 
the Reynolds number based on the tube diameter.
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Figure 20.7. Schematic of capillary-tube viscometer.

If Eq. (20.9) is rearranged in terms of measurable quantities for a circular tube, it 
can be written as

ApD / 8u\
4L “ / (20.10)

A comparison of Eqs. (20.3) and (20.10) shows that rH = bpD/4L and y,, = 8u/D. 
The subscript w is appended to both the shear stress and the shear rate because the left 
side of Eq. (20.10) can only be related to the wall shear stress through a force balance 
with the pressure drop. Thus both the shear stress and the shear rate are measured at 
wall conditions.

If logarithms are taken of both sides of Eq. (20.10), it can be written as

/ ApZ>\ 
In ——

\ 4L

8m
= In u, + In — 

D
(20.11)

Thus, the experimental measurements that are taken of Lp and u for a particular tube 
can be plotted on a logarithmic graph as illustrated in Fig. 20.8. From Eqs. (20.11) and 
(20.5), it can be seen that the slope of the logarithmic flow curve must be unity and the 
ordinate intercept equal to In p for a Newtonian fluid.

For a power-law fluid, the experimental measurements are the same. Now, however, 
the relation between the friction factor and the Reynolds number is given by

/ Reg = 23n+1
3n + l\n

4n (20.12)

w'here Re., is a generalized Reynolds number to be discussed in Section 20.4.1 (see 
Nomenclature section). If Eq. (20.12) is written in terms of measurable quantities and
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Figure 20.8. Illustrative experimental flow curve of a Newtonian fluid.

in logarithmic form for a circular tube, the result is

In
kpD 
4L

= In (20.13)

When the experimental data are plotted as shown in Fig. 20.9, the flow index n 
can be obtained from the slope of the line and the ordinate intercept is equal to 
ln{ W[(3n + l)/4n]''}, from which the consistency K can be calculated.

Figure 20 10 shows some typical data obtained with a capillary-tube viscometer [8], 
The fluid was tap water with the addition of 1000 wppm (parts per million by weight)

Figure 20.9. Illustrative experimental flow curve of a power-law fluid.
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8u/D, s 1

Figure 20.10. Apparent viscosity vs. wall shear rate measured by a capillary-tube viscometer.

of sodium carboxymethyl cellulose (CMC). The abscissa in Fig. 20.10 is not the 
logarithm of the true shear rate, as can be seen from Eq. (20.13), but is proportional to 
it for a fixed value of n.

The measurements illustrate an important characteristic of power-law fluids which 
has been alluded to in the discussion of Fig. 20.6, i.e., that purely viscous non-Newto- 
nian fluids have power-law characteristics only over a limited shear-rate range. A 
careful examination of Fig. 20.10 reveals that the apparent-viscosity curves are straight 
lines only over the range 102 < 8m/Z> < 104. Above and below this range the fluid 
enters the transition regions shown in Fig. 20.6.

Thus, it is clear that measurements of n and K must be accompanied by informa
tion of the applicable shear-rate range. In addition, when applying these measured 
properties to engineering systems, the shear-rate range of the system must match that 
of the experimental property measurements. This rule is not always followed carefully 
in engineering practice.

Other variations of the classical capillary-tube viscometer have been developed. For 
example, Yamasaki [9] has reported on a comparative method using three capillary 
tubes. By measuring only flow rates, it is possible to determine n and K for a 
power-law fluid by comparing the flow rates of the non-Newtonian test fluid with the 
flow rate of a Newtonian fluid whose viscous properties are well established. No 
pressure measurements need be made with this method, which is a definite advantage. 
Other variations and descriptions of commercially available capillary tubes and other 
viscometers are discussed in the books by Van Wazer et al. [10], Walters [11], and 
Whorlow [12],

Although the capillary-tube viscometer is a straightforward and attractive instru
ment, it has its limitations. The most important of these is that it is only applicable 
over a certain shear-rate range. If the shear rate exceeds a certain value, depending 
upon the fluid, the flow becomes turbulent and the viscometric equations are no longer
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O Thermocouple positions

Figure 20.11. Falling-ball or falling-needle viscometer.

valid. If the shear rate becomes too low, accompanied by low flow rates, surface tension 
effects at the tube exit become significant relative to the pressure drop, introducing 
extraneous and undeterminable forces into the flow system. As a general rule, depend
ing upon the fluid, the capillary-tube viscometer is most effective in the shear-rate range 
102 < y < 10\ For the shear-rate range below 102, the falling-ball and falling-needle 
viscometers discussed in the next section are more appropriate.

20.3.3 Falling-Ball Viscometer
The falling-ball viscometer is shown in schematic form in Fig. 20.11. It consists of a 
transparent tube which is water-jacketed for temperature control. Along the tube in the 
vertical direction are several horizontal lines a known distance apart which serve as 
reference lines for the measurement of the velocity of the falling ball.

To operate the instrument, a sphere of known diameter and weight is carefully 
placed in the starting funnel at the top of the tube and allowed to fall though the test 
liquid under the influence of gravity. After a starting transient, the weight minus the 
buoyancy force of the ball will equal the drag forces on the sphere, and the velocity will 
become a constant called the terminal velocity u^ . This velocity can be determined by 
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measuring the time required for the ball to traverse the known distance between two 
horizontal reference marks.

If the fluid is Newtonian and the Reynolds number based on the sphere radius is 
less than 1.0, the flow is known as Stokes flow. For a ball falling in an infinite fluid 
medium, a remarkably simple expression relates the viscosity of the fluid to the 
terminal velocity, the sphere radius, the gravitational acceleration, and the densities of 
the sphere and the fluid:

2 gR2= n4-(p.-p/) (20-14)
9 Moo

As in all experimental techniques, there are difficulties and limitations. Some of 
these for the falling-ball viscometer are:

1. The difficulty of obtaining spheres of the proper density so that sphere Reynolds 
numbers will be in the range of the Stokes solution, especially when making 
measurements with low-viscosity fluids.

2. The difficulty in obtaining spheres with dimensional integrity. If the sphere is not 
homogeneous and spherical, it may exhibit an erratic downward motion.

3. The fact that the ball is not faffing in an infinite fluid medium because the fluid 
must be in a container. Thus a “wall correction” must be applied to Eq. (20.14) 
[1, p. 73],

4. The fluid must be transparent in order to observe the descent of the ball.
5 There is no unique value of the shear rate y, since it varies around the sphere.

In using the falling-ball viscometer for measuring the rheological properties of 
non-Newtonian fluids, additional difficulties arise. The most serious of these is the 
absence of analytical solutions for purely viscous non-Newtonian fluids similar to the 
Stokes solution. Eq. (20.14), for Newtonian fluids. Cho and Hartnett [1] have obtained 
upper- and lower-bound solutions for a power-law fluid, and Dazhi and Tanner [13] 
have reported a numerical solution for the same fluid. However, the wall correction 
factor for non-Newtonian fluids is as yet an unsolved problem.

In summary, the falling-ball viscometer is a simple device that can be used with 
confidence for measuring the viscosity of transparent Newtonian fluids and for measur
ing the low-shear-rate viscosity fi0 of some classes of non-Newtonian fluids. For 
power-law fluids, at intermediate shear rates, it may also be applied, although some 
questions remain unresolved.

20.3.4 Falling-Needle Viscometer
The chief difficulty in obtaining solutions for the falling-ball viscometer as applied to 
non-Newtonian fluids is the complexity of the flow field around a sphere. Park and 
Irvine [14] have reported the development of a viscometer using a falling needle 
(cylinder), which has several advantages over the falling ball for measuring 
Newtonian-fluid viscosities. Park [15] describes the application of the device for the 
determination of the rheological properties of power-law, Cross, and Ellis fluids.

Essentially the apparatus is the same as the falling-ball viscometer (see Fig. 20.11) 
with the sphere replaced by a long thin cylinder (needle) with hemispherical ends which 
falls through the fluid in the direction of its longitudinal axis. The needle consists of a 
hollow glass or metal tube with wire inserts at its front end to enable the density of the 
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needle to be varied. One advantage of this method of construction is that the falling 
needle is extremely stable. It is analogous to an arrow with the metal insert acting as 
the arrowhead and the shear stress along the sides of the needle acting as the feathers.

As is the case with the falling ball, the terminal velocity is measured from the 
traverse time between two horizontal reference lines. The terminal velocity must be 
such that the flow is Stokian around the needle ends and laminar along the needle 
sides.

By assuming that the needle is infinitely long (thus neglecting end effects, but taking 
into consideration the presence of the walls and the fluid displaced by the falling 
needle), the viscosity of a Newtonian fluid can be calculated from the relation

gd2 . ~
°UOO

(20.15)

where d is the needle diameter, b = D/d (where D is the container diameter), and

_.r, S2[(tab-1] +[(lni) + l]
/(/>) =---------------- ------------------------- = (In ft) - 1 for ft > 30 (20.16)

In Eq, (20.15), u'x is not the measured terminal velocity, but the terminal velocity 
corrected for end effects through the aspect ratio d = l/d, where I is the needle length, 
i.e..

1 + 3/(ft)/2[cw(5 — 1)]
C/ 1 + 2/3(5—1)

2.04 2.09

(20.17)

(20.18)

(20.19)

As mentioned previously, one disadvantage of the falling-ball viscometer is that the 
measured results must be corrected for the presence of the container wall. In a similar 
way, the measured results for the falling needle must be corrected for end effects. For 
practical needle lengths, however, this correction is small and generally less than the 
wall correction for the falling-ball system. To minimize errors, Park [15] recommends 
the following specifications:

D I
— > 30, — > 2.5, 0 < < 10 cm/sd ~ D ’ 00 7

Figure 20.12 shows measurements of the viscosity of glycerol (99.9%) by both the 
falling-ball and falling-needle systems [14] along with several independent measure
ments made in another laboratory with a rotating viscometer (Weissenberg rheo- 
goneometer—WRG). The agreement between the falling-ball and falling-needle 
viscometers is excellent, and either one may be used with confidence to measure the 
viscosities of Newtonian fluids.

For non-Newtonian fluids, solutions have been reported by Park [15] for the falling 
needle in power-law, Ellis, and Cross model fluids. Since these were obtained by 
numerical techniques, no analytical expressions such as Eq. (20.14) or (20.15) are
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Figure 20.12. Comparison of glycerol viscosity measurements made with a falling-ball viscometer 
(FBV), a falling-needle viscometer (FNV), and a rotating viscometer (WRG).

available to relate the rheological properties to the measured terminal velocities. 
However, Park has prepared and presented data reduction tables as well as computer 
programs to simplify this procedure. Examples of rheological property measurements 
made with the falling-needle viscometer will be presented at the end of this section.

20.3.5 Rotating Viscometers
There are two primary types of rotating viscometers that are used for making absolute 
measurements of the constitutive equations for rheological fluids, i.e. direct measure
ments of the shear stress and shear rate. These are the rotating-cylinder and the 
cone-and-plate viscometer.

The rotating-cylinder viscometer is shown schematically in Fig. 20.13. An analysis 
of the system [10] for Newtonian fluids yields the working equations

T,fW „
--------- =— = LtiZ

4 tt/z
(20.20)
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Figure 20.13. Schematic of rotating-cylinder viscometer. Torque f, measured on inner cylinder 
(radius Rt). Outer cylinder rotates with angular velocity Q.

where

and

2 fl 
r2f(R)

(20.21)

Equations (20.20) and (20.21) may be put into a more usable form for plotting a flow 
curve by noting that

7) 2fl
=------~ and y, = ——-

2<nR]h R*f(R)

Therefore Eq. (20.20) can be written as

or

f, I- 20 
2tnR2lh =M[7??/(7?)

T = ^7,

(20.22)

By plotting ln(7)/27rT?;A) vs. ln[2fi/7?“/( R)], a flow curve will be obtained whose 
slope is unity and whose ordinate value at ln[2Sl/./?2y(7?)] = Q wm be In fi.

It should be noted that while the torque or shear stress is measured on the inner 
cylinder, the shear rate is measured at the outer rotating cylinder. Equation (20.22) has 
already transformed the shear-rate measurement to the inner cylinder through Eq. 
(20.21). Some viscometer manufacturers, however, do not carry out this transfer in their 
working equations and relate the shear stress at the inner cylinder to the shear rate at
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the outer cylinder. From Eq. (20.21), the ratio of the two shear rates is

(20.23)

If this ratio is significant, the shear-rate transfer can be accomplished from the above 
equation.

Working equations may also be derived for other rheological fluids. For a power-law 
fluid, the analogous equations are

Tig(R,n)' V = KW 
2nh

(20.24)

where

/ n\nI 1 1 \
?(«,«) - 2) &■/» ~ R~(7 " ]

and

fl
r2/"[g(R, n)]1/"

(20.25)

Noting again that t, = fyiTrR^h and y, = [fl/R2/"g( R, n)17"], the flow curve can be 
plotted by using an equation obtained from Eqs. (20.24) and (20.25), and t, = Ky"

ft K
—=---------- fl
277/1 g( R, n)

(20.26)

In this case, if a shear-rate correction has to be made, the appropriate relation is, from 
Eq. (20.25),

(20.27)

A schematic of the cone-and-plate rotating viscometer is shown in Fig. 20.14. An 
analysis [10] of the system yields the following relation between the torque Tp 
measured on the plate and the angular velocity fl of the cone, for a Newtonian fluid:

Tp = (20.28)

It can be seen from Eq. (20.28) that rp = fp/ |ttR3 and y = fl/0o. Thus the shear 
rate is not a function of the radius and is constant along the plate and the cone 
surfaces. In this case, the shear stress and shear rate are effectively measured at the 
same location and there is no necessity to transfer the shear rate through an equation 
such as Eq. (20.21), as there is for the rotating-cylinder viscometer. The Newtonian 
flow curve can be constructed by plotting ln(7),/ 27rR3) against ln(fl/0o). The slope of 
the curve will be unity and the ordinate intercept at ln(fl/0n) = 0 will be In p..

’ Ri I
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Figure 20.14. Schematic of cone-and-plate viscometer. Torque f measured on plate; angular 
velocity £2 measured on rotating cone.

For a power-law fluid, the working equation of the cone-and-plate viscometer can 
be written as

Tp= ^RK\ T
\ t70 /

(20.29)

and therefore if ln(7j,/ fvrA3) is plotted against ln(£2/0o), the slope of the line will be 
the flow index n and the ordinate intercept at ln[Q/t?0] = 0 will be In K.

20.3.6 Representative Rheological Property Measurements
Figure 20.15 shows the measurements by Park [15] on water solutions of sodium 
carboxymethyl cellulose (CMC 7H4) at two different concentrations. They were made 
with three different viscometers: falling needle (FNV), rotating cylinder (RTN) (using 
four different range springs A, Aa, B, and C), and capillary tube (CTV). Thus, the 
different instruments can be compared in areas of data overlap, and some feeling can 
be acquired for the applicable shear-rate ranges of the different methods. Also included 
in the figure are curves of various constitutive equations which were fitted to the 
experimental data.

First, it is noted that the data in Fig. 20.15 cover three of the shear-rate regions 
illustrated in Fig. 20.6, i.e., the Newtonian, the transition I, and the power-law regions. 
Thus, for example, if a particular problem is analyzed by specifying power-law 
behavior for a CMC 10,000-wppm solution, the results are only applicable if the 
shear-rate range of interest is above y = 102. If the range extends below y = 102, a 
more general constitutive equation should be used.

In the regions of data overlap for the different instruments, it is seen that the 
agreement is quite satisfactory. Thus, any of the viscometers is suitable, depending
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Figure 20.15 . Apparent viscosity vs. shear rate and constitutive curves for CMC 7H4 solutions in 
water. Measurements by Park [15]. FNV falling needle; RTN, rotating-cylinder; CTV, capillary 
tube.

„ I
ty

-s
/ff

upon the shear-rate range under consideration and other factors such as instrument 
cost, availability of skilled technicians, fluid opacity, etc.

It is also of interest to examine the various constitutive equations which are given in 
Fig. 20.15 (see Table 20.2). If the different models are examined for the CMC 
10,000-wppm data, it is seen that they all agree approximately in the power-law region 
but that there is some divergence in the transition region. It is also clear that if the 
power-law model is used at shear rates below its range of applicability, serious errors 
can occur. In this particular case, the Cross model would appear to represent the data 
best.

If the shear-rate ranges of the various instruments are examined in Fig. 20.15 for 
curve 2, it is seen that for the falling needle, 10 “2 < y < 50; for the rotating cylinder, 
3 X 10 1 < y < 2 X 103; and for the capillary tube, 3 X 102 < y < 4 X 103. These 
ranges depend on the fluid under consideration. For polymer solutions such as those 
used to prepare Fig. 20.15, Fig. 20.16 gives a more general representation of the 
operating ranges.

20.4 PRESSURE DROPS IN NON-NEWTONIAN DUCT FLOWS

20.4.1 Introduction

When a flowing fluid enters a duct, as illustrated in Fig. 20.17, boundary layers begin to 
build up along the duct walls while the fluid outside the boundary layers in the core 
region remains inviscid and is accelerated. After the boundary layers meet, the shape of 
the flow (velocity) field remains constant and the fluid “forgets” that it passed through 
the boundary-layer region. This divides the duct into two regions: The boundary-layer 
or entrance region Lhs, where the velocity field is changing, and the fully developed 
region, where the velocity field remains constant. Note that the flow will only become 
fully developed if the duct area and fluid properties are constant and the flow is steady.
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Figure 20.16. Shear-rate range (approximate) of different viscometers: rotating-cylinder viscome
ter (RTN), falling-ball viscometer (FBV), falling-needle viscometer (FNV) and capillary-tube 
viscometer (CTV).

Figure 20.17. Entrance and fully developed flow regions, illustrating developing and fully 
developed velocity profiles.

The engineering problem in such duct flows is to predict the relation between the 
average flow velocity u and the pressure drop Ap over the duct length, since these two 
factors will determine the size of the pump required to force the fluid through the duct. 
This is done by defining a dimensionless pressure drop, the Fanning friction factor, and 
a dimensionless average velocity, the Reynolds number (see Nomenclature section):

puDh (dp/dx')Dh
p ’ 2pTr

(20.30)

It should be noted that the above friction factor is the Fanning friction factor. The 
Darcy friction factor, also used in the literature, is four times the Fanning friction 
factor.
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An analysis of the boundary-layer region will show that Lhy is proportional to the 
Reynolds number. Thus, since many non-Newtonian fluids have high effective viscosi
ties and therefore low Reynolds numbers, the entrance lengths tend to be small and the 
fully developed region dominates the overall pressure drop. For these reasons, the 
following sections will concentrate on pressure drops in fully developed flow.

An examination of the differential equations that describe fully developed laminar 
duct flow will show that the friction factor is a function of the Reynolds number. For 
Newtonian fluids, the Reynolds number is that given in Eq. (20.30). However, for a 
power-law fluid the Reynolds number is defined differently and is given by

Re.
pu2~nD^

K
(20.31)

Reynolds numbers in particular often appear.

Ree8I-n 
[(3n + l)/4nl"

This is called the generalized Reynolds number. When n = 1 (Newtonian fluid), the 
generalized Reynolds number becomes the same as given in Eq. (20.30). Since the 
definition is somewhat arbitrary, a number of generalized Reynolds numbers appear in 
the rheological literature. As is the case with friction factors, care must be exercised 
with regard to the definition. This point is discussed in greater detail by Cho and 
Hartnett [1], Two other generalized 
These are

Re; = Reeff =

and

puDh / 3n + 1 \1-"
Reu = ------- = Re 81-,! —-----  (20.33)

\ 4n / v '

In this work, unless otherwise specifically stated, the generalized Reynolds number Re 
defined by Eq. (20.31) will be used.

20.4.2 Transition to Turbulence
For the flow of a Newtonian fluid through a circular tube, it is accepted practice to 
consider that when the Reynolds number, as defined by Eq. (20.30), becomes greater 
than approximately 2100, transition from laminar to turbulent flow occurs in a circular 
tube. Such a criterion is also needed for the flow of rheological fluids. While investiga
tions to date have not produced any general agreement, there is evidence that transition 
occurs when Rc„ exceeds approximately 2100 for a power-law fluid in a circular tube. 
The cautious designer, when operating between the limits 1500 < Re„ < 3000, will 
consider both cases of laminar and turbulent flow and choose a conservative design. 
Subsequent data which will be presented will lend credence to the above criterion.

20.4.3 Fully Developed Laminar Pressure Drops
Kozicki and his coworkers [16-19] have presented a general approximate method for 
calculating laminar pressure drops for rheological fluids flowing in ducts and open 
channels. They considered a wide variety of cross-sectional shapes and power-law, 
Rmgham. and Ellis fluids.
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For power-law fluids, the fully developed pressure drop can be calculated from

/ a + bn \"
/ Re = 23” 1--------- (20.34)

\ « /

where a and b are geometric parameters depending upon the cross-sectional shape of 
the duct. For circular ducts a = 0.25, b = 0.75, and for parallel-plate ducts a = 0.5, 
b = 1.0. Table 20.3 lists values of additional geometric parameters for a large number 
of different duct cross sections [16,18], Similar information for open-channel flow is 
available [17,19]. For open-channel flow, the friction factor is defined as

Dh g sin 0
(20.

2u

where 3 is the inclination angle of the open channel to the horizontal. The generalized 
Reynolds number for open-channel flow is defined the same as Eq. (20.31).

The method developed by Kozicki and his coworkers is approximate. For all 
geometries except the circular and the parallel plate, the varying wall shear stress 
around the periphery is replaced by an average wall stress. Thus, one would expect the 
approximation to become less realistic for geometries that have widely varying periph
eral wall shear stresses. Chang and Irvine [20] tested the Kozicki method experimen
tally, and Cheng [21] tested it numerically, by looking at / Re,, predictions in a narrow 
(10°) isosceles triangular duct. The results are shown in Fig. 20.18, where it is seen that 
the numerical and experimental results are close and the predictions of Kozicki et al. 
are 7% higher.

Kozicki et al., in their original paper [16], compared their method with a numerical 
solution by Wheeler and Wissler [22] for a rectangular duct. The results for a square 
duct are given in Table 20.4, where it is seen that the deviations are less than 5%.

In a subsequent paper, Kozicki and Tiu [23] presented an improved method which 
increases the number of geometric parameters. However, for many engineering calcula
tions, where an accuracy of the order of 5% is suitable, the first method utilizing Eq. 
(20.34) would appear to be adequate.

It should once again be emphasized that the Kozicki method as applied to 
power-law fluids is only valid if the operating shear-rate range is in the power-law 
region (Region c in Fig. 20.6). If region a or b is included, then the Kozicki method as 
applied to an Ellis model fluid would be appropriate (see Ref. 16).

20.4.4 Fully Developed Turbulent Pressure Drops
In many engineering calculations for turbulent flow, the shear-rate range falls in region 
c of Fig. 20.6. Thus the power-law model is applicable. For power-law fluids flowing 
turbulently in circular tubes, Dodge and Metzner [24] derived the following relation 
between the friction factor and the generalized Reynolds number:

1 1.733 r ।T7T --^rta[R«/) "*] 0.40
(20.36)

Equation (20.36) agreed quite well with their experimental data and also with subse
quent measurements by Yoo [25], Since the Reynolds number is generally an indepen
dent variable, one problem with Eq. (20.36) is that it cannot be solved explicitly for the



TABLE 20.3 Duct Flows: Geometric Constants for Use with Eq. (20.34)

(> •(

t

jmetry a*  a b

0.1 0.4455 0.9510
0.2 0.4693 0.9739

Concentric annuli 0.3 0.4817 0.9847
\ 0.4 0.4890 0.9911
(\ ± 0.5 0.4935 0.9946

' \ k 7 J d° 0.6 0.4965 0.9972
xjlx 0.7 0.4983 0.9987

0.8 0.4992 0.9994
0.9 0.4997 1.0000
1.0*  0.5000 1.0000

Rectangular 0.0 0.5000 1.0000

I 
d

0.25 0.3212 0.o4o2

«*  = y 0.50 0.2440 0.7276
0.75 0.2178 0.6866
1.00 0.2121 0.8766-•-------- c----------•

d

1_

Elliptical 

—------- c--------

Isosceles tria

/zA

Regular pol 
(N sides

0.00 0.3084 0.9253
0.10 0.3018 0.9053
0.20 0.2907 0.8720
0.30 0.2796 0.8389
0.40 0.2702 0.8107

a*  = j- 0.50 0.2629 0.7886
0.60 0.2575 0.7725
0.70 0.2538 0.7614
0.80 0.2515 0.7546
0.90 0.2504 0.7510
1.00‘ 0.2500 0.7500

2<#> (deg)
ngular 10 0.1547 0.6278

20 0.1693 0.6332
\ 40 0.1840 0.6422
A 60 0.1875 0.6462

80 0.1849 0.6438
90 0.1830 0.6395

ygon N
)

4 0.2121 0.6771
\ 5 0.2245 0.6966
/ 6 0.2316 0.7092
' 8 0.2391 0.7241

“Data from Refs. 16-19.
1 Parallel plates.
' Circle.

20-24
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Re^

Figure 20.18. Comparison of the approximate calculation by Kozicki et al. [16] with the 
numerical solution by Cheng [21] and experiments by Chang and Irvine [20] for a 10° isosceles 
triangular duct containing a solution of 1000 wppm CMC, n = 0.89.

TABLE 20.4 Comparison of Numerical Solution for fD Reg by Wheeler and Wissler 
with Method of Kozicki et al. for a Power-Law Fluid in a Square Duct

Flow
Index

/o Re?
Deviation 

(%)
Kozicki et al.

[16]
Wheeler and Wissler

[22]

1.0 56.88 56.91 -0.05
0.9 47.87 47.62 0.50
0.8 40.24 39.66 1.47
0.75 36.89 36.22 1.85
0.7 33.80 33.07 2.21
0 6 28.36 27.53 3.02
0.5 23 74 22.89 . 3.71
0.4 19.81 18.97 4.59
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Re' = Reg 81" n/ [,(3n + l)/4n]n

Figure 20.19. Dodge and Metzner’s [24] relation between Fanning friction factor and Re'.

friction factor. Figure 20.19 from [24], is a graphical representation of Eq. (20.36) 
which makes it simpler to determine the friction factor from the Reynolds number.

A useful engineering relation where the friction factor and a Reynolds number are 
related explicitly has been developed by Irvine [26]:

F( n)
/= —1/n ' (20.37)

J Re1/(3n+1) ' '

where
2(2/77)W-" 

F(n)~ [(3„ +

When n = 1 (Newtonian fluid), Eq. (20.37) reduces to the well-known Blasius equation

0.079
f-^7i t^38)

Figure 20.20 illustrates how the data of Dodge and Metzner [24] and Yoo [25] are 
correlated by the generalized Blasius relation given by Eq. (20.37).

For noncircular ducts with fully developed turbulent flow of power-law fluids, very 
little work has been done up to the present time. Kostic and Hartnett [27] have 
suggested a technique which consists of inserting the Reynolds number defined by 
Kozicki et al. [16] into the Dodge-Metzner equation [Eq. (20.36)] for circular ducts. In 
the present nomenclature, this Reynolds number is given by

3n + 1
Re K = Re' (20.

s g 4(a + bn) v

where a and b are the geometric constants given in Table 20.3.
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/[predicted, eq. (20.37)]

Figure 20.20. Comparison of experimental data with Eq. (20.37).

Using this technique, Kostic and Hartnett [27] found good agreement with their 
measurements on a square duct, and Cheng [28] also found experimental agreement in 
an equilateral triangular duct. Both investigators warned, however, that the technique 
was not valid with extreme geometries having narrow comer regions. The noncircular 
duct problem is also discussed in [26],

20.5 HEAT TRANSFER IN NON-NEWTONIAN DUCT FLOWS

20.5.1 Introduction
In addition to hydrodynamic boundary layers (see Fig. 20.17), thermal boundary layers 
are also present when a fluid entering a duct has a temperature different from the 
channel walls. Thus, a thermal entrance region exists, and the duct can be divided 
thermally into two regions: the thermal entrance region and the region of the thermally 
fully developed flow. Note that for thermally fully developed flow to exist, the velocity 
field must already be fully developed. Because rheological fluids often have high 
effective viscosities, the hydrodynamic entrance region is much shorter than the thermal 
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entrance region. Therefore, in this section only fully developed and developing thermal 
flows will be considered. In both cases, it will be assumed that the velocity profile is 
already fully developed.

The engineering problem related to duct heat transfer is to be able to predict either 
the heat transfer q from the duct walls to the fluid for a given temperature difference, 
or the wall-to-fiuid bulk temperature difference for a given heat flow. In either case, this 
can be conveniently done by defining a heat transfer coefficient h\

q" = h(Tw — Th) (20.40)

As is the case of the pressure drop, where a dimensionless friction factor was used, a 
dimensionless heat transfer coefficient, called the Nusselt number, can be defined as

/i A, 
Nu = -----

k
(20.41)

As discussed previously, an examination of the equation of motion revealed that the 
friction factor in fullv developed duct flow of a power-law fluid was a function of Re.,, 
the generalized Reynolds number of Eq. (20.31). Therefore the Nusselt number, which 
depends upon the flow field, will also usually depend upon Re„ and an additional heat 
transfer parameter called the generalized Prandtl number. An examination of the 
energy equation of the fluid will show that the Prandtl number for a power-law fluid in 
a circular duct has the form

(20.42)

Similar to the generalized Reynolds number, other generalized Prandtl numbers are 
also used in the rheological heat transfer literature. The two most often cited are

(20.43)

Pr
Kcp/3n + 8ii 
k \ 4n / y Dh

(20.44)

Another consideration related to the heat transfer problem in rheological duct flow 
is the variation of rheological properties with temperature. For power-law fluids, which 
have been most often investigated, it has been found that the flow index n is essentially 
temperature-independent, while the fluid consistency K is a significant function of 
temperature. Thus, when there are large temperature differences in the duct cross 
section, the temperature-consistency problem must be considered. This effect will be 
discussed later in the appropriate sections.

An additional complication in heat transfer problems is the influence of the thermal 
boundary conditions on the resulting heat transfer coefficient or Nusselt number. 
Unlike the velocity field, which has only one general boundary condition (i.e., the fluid 
velocity is zero on any solid surface), a variety of thermal boundary conditions can 
prevail. It is now generally recognized [29,30] that the most important and limiting 
thermal boundary conditions can be conveniently organized to include both circular 
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and noncircular cross sections as follows:

Thermal Boundary Condition Symbol

1. Constant wall temperature in both the flow and ® 
circumferential directions

2 Constant heat flux in the flow direction and @ 
constant temperature in the circumferential direc
tion

3 Constant heat flux in the flow direction and @ 
constant heat flux in the circumferential direction

It should be noted that because of symmetry, for circular and parallel-plate ducts, the 
(m) and (ur) conditions are identical, and they will simply be referred to as @. For all 
other shapes, they are distinct.

20.5.2 Fully Developed Laminar Heat Transfer
Solutions are available from Bird et al. [31] for the circular tube for thermal boundary 
conditions (t) and (h) as follows:

For the (?) boundary condition:

Nut — /J2 (20.45)

An approximate method of calculating (il is presented in [31], For n = 1.0, 0.5 and 
0.33 the values of Nur are 3.657, 3.949 and 4.175 respectively.

For the @ boundary condition:

Nuh
g(3n + l)(5n + l)
8 31«2 + 12n + 1 (20.46)

In an alternative form by Grigull [32],

/ 3n + 1W3
Nuh = 4.36 ---------

\ 4/z
(20.47)

For noncircular shapes, only a few solutions are available. For parallel plates, the work

TABLE 20.5 Fully Developed Laminar Flow Nusselt Numbers for a Square Duct [34]

Flow behavior 
index n Nut NuHi NuH2

1.0 2.975 3.612 3.095
09 2.997 3.648 3.106
0.8 3.030 3.689 3.135
0.75 3.050 3.713 3.152
0.7 3.070 3.741 3.171
0.6 3.120 3.804 3.216
0.5 3.184 3.889 3.274
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TABLE 20.6 Fully Developed Laminar Flow Nusselt Numbers for Isosceles 
Triangular Ducts, Calculated Numerically by Cheng [21]

Apex Angle 
(deg) n Num NuH2

10 0.6 2.434 0.0846
1.0 2.391 0.0792
1.2 2.374 0.0756

60 0.6 3.250 1.933
1.0 3.101 1.891
1.2 3.060 1.882

90 0.6 3.098 1.356
1.0 2.974 1.351
1.2 2.946 1.350

of Yau and Tien [33] may be consulted. For a square duct, the values of NuT, NuH1, 
and Nuir have been calculated by Chandrupatla and Sastri [34] and are listed in Table 
20.5. For an isosceles triangular duct, the values of NuH1 and NuH2 as calculated by 
Cheng [21] are given in Table 20.6.

For other cross-sectional shapes, an interesting correlation has been suggested by 
Cheng [21], He proposed that a correction factor, such as is used in Eq. (20.47), be 
applied to the appropriate Newtonian Nusselt numbers to take account of the power-law 
effect. The correction factor he suggests is

correction factor =
(a + bn) 
{a + b)n

(20.48)

where a and b are the Kozicki geometric factors presented in Table 20.3. Thus, the 
correlation equation would be

Nn power-law

Nu New toman

(a + bn) 
(a + b) n

(20.49)

for any thermal boundary condition.
The use of Cheng’s correction factor, for example, agrees with the numerically 

obtained power-law Nusselt numbers in Table 20.5 for a square duct with a maximum 
difference of 1.5% as long as the value of NuNewtonian is correct for the thermal 
boundary condition under consideration. For the Nusselt numbers for isosceles triangu
lar ducts given in Table 20.6, the difference from the numerical solution is at most 
4.35% and generally less than 2.5%. In the absence of numerical solutions for fully 
developed Nusselt numbers for power-law fluids, Eq. (20.49) should serve as a useful 
approximation, since the values of NuNewtonian are available for a large number of 
cross-sectional shapes [30],

20.5.3 Laminar Heat Transfer in Thermally Developing Flow 
in Circular Tubes

As discussed in Sec. 20.5.1, since many rheological fluids have a large apparent 
viscosity, the velocity field becomes fully developed more rapidly than the temperature 
field. It was also mentioned that for many power-law fluids the fluid consistency has a 
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significant variation with temperature, while the flow index is relatively independent of 
temperature. Thus, solutions which account for thermally developing How plus the 
variation of K with temperature are of engineering interest.

Such solutions have been obtained numerically for a circular tube by Joshi and 
Bergles [35, 36] and compared with their experiments for fluids in the flow index range 
0.2 < n < 1.0. In their numerical solution, they considered that n was constant and 
that K had a temperature variation of the type

K = axe (20.50)

The final equations which they recommend are given by the following expressions for 
the two primary boundary conditions:

For the (t) boundary' condition:

Nuv T =
hxDh 

k
3n + 1\1/3

4m /

X 1.0 +

x{1.0 + [0.424 Gz0'34]3}1/3 (20.51)

c, = ^exp(-<.yAT) $AT = a2(T„ - 7],)

m = /jexp(-/2yAT) 

dl = 0.4230 + 0.6428m 

d2 = 0.69 - O.ln

1 dK
r K dT 2

fL = 2.8308 - 4.103m + 1.9327m2

f2 = 0.215 - 0.22 m

Gz = mcp/kx

To = fluid temperature when heating begins

For the @ boundary condition.

Nu, „ = =4-36( *+{1 + [(0.376.x4 ) -°-3O3]8}1/" (20.52)
• A \ 4m ) 1 1

fl + (0.1232 - 0.054m)yAT
-(0.0101 - 0.0068m)(yAT)2 for fully developed region

= } / K \ 0 58—0 44"
— for entrance region

+ n X^Dh - 1 [ dK
RecfrPrcff 7 K[dT\

_ ReeffPreff = ^Dh

kx 4 x/Dh 2k
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Note that all unsubscripted fluid properties in Eqs. (20.51) and (20.52) are 
evaluated at the fluid bulk mean temperature.

20.5.4 Fully Developed Turbulent Heat Transfer
For heat transfer through turbulent fully developed flow in circular tubes, two 
approaches have been reported. Metzner and Friend [37] utilized the analogy between 
heat and momentum transfer to derive an equation of the form

" ReuPro 1.20 + 11.8//72(Pru-l)Pru-1/3

Here f is given by Eq. (20.36). Using Eq. (20.53), they were able to correlate turbulent 
heat transfer data within ±25% for power-law fluids having a flow index range 
0.39 <n < 1.0.

Other investigators presented experimental correlations which are simpler to use in 
engineering calculations. Clapp [38] was able to represent the results of 11 experimental 
runs of power-law fluids within +2% and —4.5% by using a generalized form of the 
well known Dittus-Boelter equation for Newtonian fluids:

Nu = 0.023(9350)O-8[1_(1/',”)1Ree(fof-8/',")Pre°ff4 (20.54)

Yoo [25] performed experiments on power-law fluids (aqueous solutions of Carbopol 
and slurries of Attagel) with n ranging from 0.24 to 0.9. He was able to correlate the 
data with an average deviation of 2.3% with the equation

S±,Pr2/3 = 0.0152 Refl-°155 (20.55)

Yoo recommends his correlation over the n range from 0.2 to 0.9 and an apparent 
Reynolds number range from 3,000 to 90,000.

It should be mentioned that none of the above turbulent heat transfer equations 
specifies the type of thermal boundary conditions which are applicable as was done in 
the section on laminar flow. This is because in turbulent flow in circular tubes, 
the thermal boundary conditions have much less effect—in fact usually less than the 
uncertainty of the data. For turbulent heat transfer in noncircular ducts where the 
velocity and temperature fields are not symmetrical, the thermal boundary effects may 
be significant.

For fully developed turbulent heat transfer in noncircular ducts for non-Newtonian 
fluids, no studies have yet appeared in the literature. This remains an area for future 
investigations.

20.6 FREE AND MIXED CONVECTION WITH NON-NEWTONIAN 
FLUIDS

20.6.1 Introduction

Free-convection problems introduce a new difficulty into fluid mechanics and heat 
transfer. This occurs because the driving forces for fluid motions are the buoyancy 
forces which are caused by density or temperature differences. Thus the velocity and 
temperature fields are coupled, and the momentum and energy equations can no longer 
be solved independently as they often can with forced convection.
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When considering free convection with rheological fluids, these difficulties arc 
compounded by the nonlinearity of the shear forces. For these reasons, most available 
solutions for free convection with non-Newtonian fluids rely on either approximate 
analytical or numerical techniques. Few “exact” or similarity solutions exist for 
laminar flows.

Mixed flows, where both free and forced convection are present, increase the 
complexities of the problem, since new flow parameters must be introduced. In 
addition, when the forced and free forces act in opposite directions, it is possible for 
flow instabilities to arise which invalidate many of the simple physical models which 
are so useful in analysis.

Also, in the case of rheological fluids a unique difficulty arises. Because the velocities 
in free and mixed convection are low, so are the shear rates. Hence, care must be 
exercised to ensure that the constitutive equations used are appropriate for the 
shear-rate range of the particular problem under consideration.

As an example of this concern, consider the following simple and approximate 
calculation. It is known from experience that for a vertical plate with a free-convection 
boundary layer, the range of average velocities can be of the order of 1 to 10 mm/s, 
while the boundary layer thicknesses are in the range of 1 < 8 < 10 mm. If we 
calculate an approximate shear rate equal to y = u/8, then the shear-rate range will be 
of the order of 101 < y < 101.

Reference to Fig. 20.15 shows that for such conditions the shear-rate range falls in 
the transition region between the low-shear-rate Newtonian region and the power-law 
region for that particular polymer solution. Thus, while only a three-parameter con
stitutive equation would be appropriate in this case, most available solutions are for 
power-law fluids. It is again evident that existing solutions must be used with caution, 
and a match must exist between the shear-rate range of any engineering problem and 
that of the applicability of particular solutions.

Another aspect of free convection problems is that the effects of wall shear stresses 
are usually of secondary interest. For flows over external surfaces, the structural 
considerations relating to wall shear are normally not as important as the heat flow 
from the external surface to the fluid. For internal or duct flows, both the wall heat flux 
and the fluid velocity caused by the buoyancy forces are of interest. Consequently, 
these quantities will be emphasized.

In this section, a concise summary will be presented of the analytical and experi
mental investigations which have been reported in the literature. In addition, some 
useful engineering relations will be presented for several of the more common geome
tries which will allow estimates to be made of the heat transfer in free and mixed 
convection systems with rheological fluids.

20.6.2 Summary of Previous Investigations
A recent review article by Shenoy and Mashelkar [39] discusses both free and mixed 
convection in rheological fluids. In addition to the investigations considered in this 
excellent article, an additional number of studies have been reported in the literature. 
Table 20.7 is a summary of most of these previous investigations, both analytical and 
experimental.

Table 20.7 is arranged so that it is entered through the geometry under considera
tion. Also included are the thermal boundary conditions, the constitutive equation used 
in the analysis, and the existence of any experimental measurements.

Several observations can be made concerning Table 20.7. First, it is seen that almost 
without exception, the power-law constitutive equation was used without regard to the
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“Transient solution.
'’T urbulent flow.

TABLE 20.7 Some Previous Investigations of Steady Laminar Free and Mixed Convection 
with Rheological Fluids

Geometry

Thermal 
Boundary 

Conditions

Free 
or 

Mixed
Constitutive 

Equation
Analysis 

(Ref.)
Experiment 

(Ref.)

Vertical = const Free Power law [40-42] [42,49]
plate qH, = const Free Power law [41,43-45] [43]

T„. = const Free Sutterby [46] [47]
qw = const Free Sutterby [46] [47]
<7„. = const Free Ellis [48] [49]
T„. = const Free Bingham plastic" [50] —
7],. = const Free Power law* [51] —

Vertical 7], = const Free Power law [64] —
plates qw = const Free Power law [65] —

Horiz. qw = const Free Power law [66] [66]
cy linder 7], = const Free Power law [40, 52] [66]

Vertical Tv = const
cone <7„. = const 

Tv = 4.x
Free Power law [53] —

Sphere Tw = const Free Power law [40,54] [54]

Vertical
plate Tw — const Mixed Power law [55] —

J loriz.
tube 7, = const Mixed Power law [56,57] [57]

Vertical 7], = const Mixed Power law [58,59,61,62] —
tube qK. = const Mixed Power law [58,60] —

Vertical Mixed Power law [67] —
annulus

shear rate range matching problem. Next, it is obvious that there are many more 
analytical than experimental investigations. This is not unusual, especially since the 
development of computers that allow the numerical solution of nonlinear problems 
which may be difficult or impossible to solve by standard mathematical techniques. 
Nevertheless, the disparity calls attention to the fact that many more experimental 
investigations are needed to validate the ranges of applicability of existing analytical 
models or indeed to confirm the actual physical reality of the models themselves. For 
those wishing additional information on a particular free or mixed convection system, 
the appropriate reference in Table 20.7 may be consulted.

20.6.3 Engineering Relations for Free and Mixed Convection Systems
(liven below are a number of useful relations, accompanied in some cases by tables and 
graphs. These relate to the most common geometries which might be encountered in 
engineering practice. Whenever available, results were chosen from previous studies 
which were accompanied by experimental measurements.
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TABLE 20.8 Values of T(n) in Eq. (20.56) as Reported by Shenoy and Mashelkar [39]

n
___________________________ T(/7)___________________________

[42] [40] [41]

0.5
1 0
1.5

0.5957 0.63 0.6098
0.6775 0.67 0.6838
0.7194 0.71 0.7229

Single Vertical Plate — Tw= Constant, Free Convection. The average Nusselt 
number for a power-law fluid based on the plate height is given by (analyses by Shenoy 
and Ulbrecht [42], experiments by Shenoy and Ulbrecht [42] and Reilly et al. [49])

NuA = T(«)Gr)/(72', + 2)Pr£/'3,^1) (20.56)

where

Grz..r = ^-[g^T*  - TJ]2 n (20.57)
A

pc I K\2A" + l}
Pr/r=—L("-i)/(2" + 2’[gj6(TH, - 7oo)]3<"-i)/(2„+2) (205g-) 

k \ p )

The function T(n) in Eq. (20.56) is given in Table 20.8 as reported by Shenoy and 
Mashelkar [39]. The table shows the results of the analyses of Shenoy and Ulbrecht 
[42], Acrivos [40], and Tien [41] for comparison. It is seen that the agreement is quite 
satisfactory.

Single Vertical Plate — qw= Constant, Free Convection. In external flows, the 
thermal boundary condition qw = constant denotes a constant heat flux in the flow 
direction. For two dimensional flows, e.g., a flat plate or an infinitely long cylinder, the 
surface temperature will be constant in the direction transverse to the flow direction.

For the case of the thermal boundary condition qw = constant, since the heat flux is 
prescribed, the quantity of interest is the wall temperature distribution, which can be 
obtained from the local Nusselt number. For a power-law fluid, this can be expressed 
by (analyses by Dale and Emery [43], Shenoy [45], and Tien [41]; experiments by Dale 
and Emery [43])

Nu = c[Gr[3"+2)/(" + 4)PrY" 0 1A L 7*  A ’ TH’ J

where

P2*4 / gfi^-V "
K~ I, k )

pc / ( gBq \3(n-i)/(« + 4)
PP 2(„-l)/(n + 4)
M p/ \ k I

(20.59)

(20.60)

(20.61)

Values of the coefficients, C and B as reported by Shenoy and Mashelkar [39] are 
given in Table 20.9, which compares the results of the analyses with experiment. It is
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TABLE 20.9 Values of Constants in Eq. (20.59) as Reported by Shenoy 
and Mashelkar [39]

c B Ref.

0.600" 0.2101" [43]
0.590 0.2144 [43]
0.692 0.2144 [41]
0.593 0.2144 [45]

"Experiment,

seen in the table that except for the value of C from the analysis by Tien, which is 
slightly high, the other values are remarkably consistent.

Single Sphere— Tw = Constant, Free Convection. For a power-law fluid, the 
experimental correlation of the average Nusselt number by Amato and Tien [54], which 
shows good agreement with the analysis of Acrivos [40], is given by

Nu^ = QZ5 (20.62)

where

Z = Gq/(q, + 2)Pq/p" + 1) 

and

Q = 0.996 + 0.120, D = 0.682 for Z < 10

C = 0.489 + 0.005, D = 1.0 for 10 < Z < 40

Grw T and Prw T are defined in the same way as in Eqs. (20.57) and (20.58). with the 
sphere radius R being used instead of L.

Horizontal Cylinder— Tw = Constant, Free Convection. Experimental correlations 
have been proposed for this case for both pseudoplastic (n < 1) and dilatant (n > 1) 
power-law fluids. For n < 1, Gentry and Wollersheim [52] recommend

Nun = — = 1.19(GrD rPrD j-)0'20 (20.63)

and for n > 1, Kim and Wollersheim [66] propose 

---- hR n1m Nu« = — = 2.816[GrRrPr^ 7 ]0103 (20.63a)

where the above generalized Grashof and Prandtl numbers are defined as in Eqs. 
(20.57) and (20.58) using D [Eq. (2.63)] and R [Eq. (20.63a)] instead of L.

Horizontal Cylinder — qw = Constant, Free Convection. For this case, measure
ments are only available for dilatant fluids (n > 1). Kim and Wollersheim [66] propose 
the correlation equation

“ - 3-544[Gr«.«.Pr«.«..]°°’1 (20-M)
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Rag = Pr* Gr|/n

Figure 20.21. Average Nusselt numbers and flow velocities for free convection of a power-law 
fluid between vertical parallel plates [64], Open circles are asymptotic solutions for large and small 
values of Pr^Gr*/''.

where the generalized Grashof and Prandtl numbers are defined as in Eqs. (20.60) and 
(20.61) with the cylinder radius R replacing x as the characteristic dimension.

Vertical Parallel Plates — Tw= Constant, Mixed Convection. For vertical parallel 
plates with height H and spacing b. Irvine et al. [64] present the graphical results of a 
numerical solution as shown in Fig. 20.21 for a power-law fluid. Of interest are the 
average Nusselt number NuZ) and the dimensionless average flow velocity between the 
plates. . These are shown in the figure on the right and left ordinates respectively. 
The dimensionless quantities used in Fig. 20.21 are defined as follows:

Nu/>

(20.65)

Gr
g/?(7], - Tx)A(-2) ,2

yy(l - w)/(2-«)

For vertical parallel plates with the thermal boundary condition qw = constant, 
graphical results similar to the above have been reported by Schneider and Irvine [65],
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Single Vertical Plate — Tw = Constant, Mixed Convection. Shenoy [55] has pointed 
out that no rigorously correct solution exists for mixed laminar convection for a 
power-law fluid on a vertical plate. He has proposed the following correlating equation 
which can be used to estimate the mixed convection from a vertical plate and thus to 
determine from other known solutions the relative importance of the free and forced 
convection components:

Nux t
Re'/'/" 11

1 1 / 117 2„ + i
0.893 ) 18 \ 560( n + 1) / \ n + 1

Pr.v.F
3n/(3n + l)

(20.66)

where

pu2~nxn
Re?.v=^/— (20.66a)

K

Prv F = -p I - I x(i- »)/<w»lu3(rt-r)(„+i) (20.66b)

n-x" + 2
<*.r  - “^[80(4 - T.)]2-" (20.66c)

1 5 i 1 1 1
g - 15 ~ 126n + 84n2 “ 486n3 + 5103n4 ~ 124,740n5 (20’66d)

Vertical Tube— Tw = Constant, Mixed Convection. Gori [60] has considered mixed 
convection for a power-law fluid flowing in a long vertical tube. It was specified that 
the inlet velocity distribution was the same as for fully developed forced flow. The 
effects of free convection on the velocity profile and the heat transfer were investigated. 
Both the fluid density p and the consistency K were taken as appropriate functions of 
temperature, and a numerical solution was obtained. The average Nusselt number of 
this numerical solution from the entrance to any axial location x can be correlated 
within ±18% by

hD
Nur = — 

K

£>\l°-75/'A'
7 Gz + 0.72 23,,Gr*  rPr*  r— —

. \ ’ ' L I Kl
(20.67)
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where

— 2 / 1 — ©A \ x/R
NUt = — -------- 7) = ---- -----r 7)\1 + ©J ' RegPr*  r

(T0-Tw)-(Th^x-Tw) 
2

(20.67a)

(20.67b)

(20.67c)

with

p2Pg(TH-T0)R2n^u^ ">
(20.67d)

(20.67e)

mcp 0.56
kx [(3n + l)/»]

To = fluid temperature at x = 0

Th = fluid bulk mean temperature at x

Using Eq. (20.67), the average heat flux from x = 0 to x, q", can be calculated 
using the definitions given above as follows:

a. Known: To, Tw, u, x, all properties (evaluated at Tw).
b. Evaluate Pr£ T, Gr  T, and tj.*
c. Find Nur from Eq. (20.67) (assuming Kh x = Kw).
d. Find 0h and thus x from Eq. (20.67c).
e. Use this Th v to evaluate Kh x and repeat steps a-d until the iteration converges. 

Then find h from Eq. (20.67).
f. Determine AT from Eq. (20.67b).
g. Find q" from Eq. (20.67a).

The above calculation can be made without iteration if a constant consistency is 
assumed, i.e. Kh x = KH.

Gori [62] has also investigated the above problem numerically for the thermal 
boundary condition qw = constant. Local Nusselt numbers as a function of Graetz 
number are presented for selected ranges of generalized Grashof and Prandtl numbers, 
but no correlation equation is available.
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Uoc

origin

Figure 20.22. (a) Velocity profile of a flow around a cylinder with axis normal to ux. NL, N2, 
and V3 are normals to the surface at distances x15 x2> and -x3 from the front stagnation point. 
(/?) Boundary-layer formation on a flat plate oriented at zero incidence to an undisturbed stream 
with constant velocity.

20.7 FLOW DYNAMICS AND HEAT TRANSFER IN NON-NEWTONIAN 
EXTERNAL FLOWS

20.7.1 Introduction
A common physical situation is that involving relative motion between a solid surface 
and a large volume of fluid. In most cases, the relative motion between the fluid and the 
solid is zero at the surface. The region where the fluid velocity changes from its 
free-stream value to zero at the solid surface is known as the boundary layer; see Fig. 
20.22. The boundary-layer thickness 8 is usually defined as the normal distance from 
the surface to the point where the velocity is 0.99 of the external velocitv uc. Note that 
u,.. which is parallel to the surface, is not always equal to the free-stream velocity ux 
(I ig. 20.22a).
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The characteristics of the boundary layer such as its profile and thickness are 
functions of the distance x from the frontal stagnation point (or the leading edge), the 
free-stream velocity, the fluid viscosity, and some surface characteristics. Immediately 
downstream of the leading edge the boundary layer is laminar. As it grows with x, the 
flow within the boundary layer may become instable and a transition region followed 
bv a turbulent boundary layer develop at x larger than some critical value .x,; see Fig. 
20.226.

An external flow, as opposed to an internal (or duct) flow, is a flow along a surface 
whose boundary-layer thickness is small compared to the distance to any other surface. 
The boundary-layer region, where fluid viscosity effects are significant, is bounded on 
one side by a solid surface and on the other side by the free stream, which can be 
assumed to behave as an inviscid (potential) flow. In an internal flow, we are usually 
concerned with viscous effects over the entire region between bounding surfaces, 
although the hydrodynamic entry region of a duct has the characteristics of an external 
flow; see Sec. 20.4 and Fig. 20.17.

20.7.2 Governing Principles
Conservation of Mass. The first of the governing laws of fluid motion is the 
conservation of mass. The mathematical expression of this principle, known as the 
continuity equation, is ([68], or see Chaps. 1 and 2)

dp d d d
— + — (pu) + 7-(pf) + t~(pw) = 0
dt dx dy dz

(20.68)

Conservation of Momentum. The application of Newton’s second law to fluid 
motion is known as the conservation of momentum. The mathematical expression of 
the conservation of momentum in the x direction is ([68], or see Chaps. 1 and 2)

du du du du
p^~ + pu~t~ + pv~t +dt dx dy dz

dp
= ------------F

dx

dy dr dr
+ —— t - + pf dx dy »z Jx (20.69)

where fx is a body force (such as weight) per unit mass acting in the x direction.
Expressions similar to Eq. (20.69) are obtained in the y direction by interchanging x 

and y and also u and v\ or in the z direction, by interchanging x and z and also u 
and vv. These expressions, together with the continuity equation [Eq. (20.68)], govern 
all fluid motions. For Newtonian fluids, the stress-strain relations are relatively simple 
(see Sec. 20.2.1), and when they are introduced into the momentum equations the 
Navier-Stokes equations, are obtained. Derivations of Eq. (20.68), Eq. (20.69), and the 
Navier-Stokes equations are given by Schlichting [68] and Currie [69],

Conservation of Energy. The principle of conservation of energy is an application of 
the first law of thermodynamics to a fluid element in motion. The conservation of 
energy expressed in terms of the fluid temperature can be written as follows ([68], or see
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Chaps. 1 and 2):

dT dT dT dT
Pcp-T; + PcpM-7- + Pcpv^~ + Pcpw~T1 dt p dx r dy y dz

' d / dTX d I dT 
= v- + T kl~ dx \ dx) dy\dy

dP 
~dt

dp dp dp
+ u— + v—— + w—— 

dx dy dz
FTj'Vu + S (20.70)

S' is a heat source term; it stands for thermal energy per unit volume and time which 
is generated within the fluid body.r, is the shear stress tensor which has three vector 
components, one in each spatial direction. The term t • Vu expresses frictional heat 
dissipation and for simplicity is not expanded here. See Schlichting [68] and Currie [69] 
for derivations leading to Eq. (20.70).

Equations (20.68), (20.69) (and its y and z analogs), and (20.70) are the governing 
equations of momentum and energy transport in non-Newtonian and Newtonian 
fluids. A solution of these equations is possible only if all the relevant terms of the 
shear stress tensor are specified, based on the rheological properties of the fluid, in Eqs. 
(20.69) and (20.70).

As emphasized at the beginning of the chapter (Sec. 20.2), the present overview 
covers only purely viscous, time-independent flows. A review of viscoelastic flows is 
given by Cho and Hartnett [1],

20.7.3 Laminar Boundary-Layer Solutions
Solutions for free and mixed convection in external flows are given in Sec. 20.6 and will 
not be discussed here.

Laminar Flow over a Flat Plate. Consider the boundary-layer flow illustrated in the 
laminar portion of Fig. (20.22/?). Assume that the free-stream velocity uv is constant, 
the flow is steady, and all fluid properties are constant. For this simple situation, the 
continuity equation [Eq. (20.68)] is reduced to

du dv
—— + — 
dx dy

(20.71)

The only relevant momentum equation is in the x direction [Eq. (20.69)], and it is 
reduced to

d u du dr^
pu—~ + pv— = —— 

dx dy dy (20.69a)

Acrivos et al. [70] solved Eqs. (20.71) and (20.69a) numerically for a power-law fluid 
[Eq. (20.5)]. Their results are expressed in the following relation:

= c(n)Re"1/("+1) (20.72)

where

Re?.
~K (20.73)
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and

Figure 20.23. Variation of the coefficient c(«) of Eq. (20.72) with the power-law index n [70],

The variation of the coefficient c(n) with the power n is shown in Fig. 20.23; c(n) 
values for selected n’s are given in Table 20.10. For n = 1, Eq. (20.72) becomes

Tlv. 0.332
= rT77 (20.74)

This expression agrees perfectly with the well-known Blasius solution for a Newtonian 
flow over a flat plate [71].

The total frictional drag force over a distance L is obtained (assuming the boundary 
layer is always laminar) by integrating t„ over L and multiplying by the width of the

TABLE 20.10 Selected c(n) Values for Use with Eqs. (20.72), (20.76), (20.79b),
(20.91), and (20.92)"

n c(n) n c(n)

0.05 1.017 1.5 0.2189
0.1 0.969 2.0 0.1612
0.2 0.8725 2.5 0.1226
0.3 0.7325 3.0 0.09706
0.5 0.5755 4.0 0.06777
1.0 0.33206 5.0 0.05111

Data from [70],
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plate:

Fl = dx = pi£Wc(n) /’LRe;1/(" + 1) dx

(20.75)

= pu^L(n + l)c(«)Re-1/" + 1

where Re. , is defined by Eq, (20.73) with x replaced by L.
The results expressed in Eq. (20.72) can easily be expanded to fluids with yield 

stress. In that case

+ pw^c( »)Reg (20.76)

and for a Bingham plastic flow

2 0.332 
Tw ~ Ty + PUx J^el/2 (20.77)

Laminar Heat Transfer over a Flat Plate. The energy equation applicable for a 
laminar, constant-property, steady flow over a flat plate is

dT dT k d2T
» + v a = a 2dx dy pcp dy

(20.78)

The experimental results of Takahashi et al. [72] and the numerical calculations of Kim 
et al. [73] show that the heat transfer from such a plate to a power-law fluid can be 
expressed as follows:

st = ^VPr;.2/3 (20.79a)

or, combining with Eq. (20.72),

St,. = c(n)Re~y(,,+1>Pr-2/3 (20.79b)

where

hx
St, = ---- — (20.80)

is the local Stanton number, Reg x is defined in Eq. (20.73), and

k g'x
(20.81)

is the generalized Prandtl number based on the distance x.
As expected, for n = 1 (Newtonian fluid), Eq. (20.79b) is reduced to

St, = 0.332Re, 1/2Pr 2/3 (20.82)
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General Solutions for Two-Dimensional Laminar Flow and Heat Transfer. 
Momentum and heat transfer in power-law fluid flow over arbitrarily shaped, two
dimensional, or axisymmetrieal bodies were studied by Kim et al. [73] and by Lin and 
Chern [74], Wedge-type flows and flows around the front portion of a circular cylinder 
and a sphere were examined in detail. Other experimental and theoretical studies of a 
power-law flow around a circular cylinder were presented by Mizushina and Usui [75], 
Mizushina et al. [76], and Shah et al. [77]. The interested reader is referred to the above 
studies.

20.7.4 Heat Transfer Correlations for a Cylinder 
in Non-Newtonian Crossflow

When a cylinder (or a sphere) is exposed to a crossflow, the fluid stagnates on the front 
point of the cylinder and then accelerates downstream symmetrically around both sides 
of the cylinder. A boundary layer is formed over the front portion of the cylinder; see 
Fig. 20.22 a. At about 90° downstream of the front stagnation point, the boundary 
layer separates and a wake is created behind the cylinder. Commonly, the cylinder (or 
sphere) heat transfer either is expressed as a function of the angular distance from the 
stagnation point, or is averaged over the entire circumference.

A review of Newtonian flow and heat transfer characteristics of a cylinder is 
provided by Zukauskas [78]. Mizushina et al. [76] and Shah et al. [77] showed that the 
pressure distribution around a cylinder exposed to a pseudoplastic crossflow is similar 
to that obtained with Newtonian fluids.

Mizushina and Usui [75] presented an approximate solution for the heat transfer 
from the front portion of a cylinder in a power-law crossflow. At the front stagnation 
point, the heat transfer coefficient is expressed as

Nurf = 1.04»-°-4Rei^"+1)Pr^ (20.83)

where

hd
Nu, = — (20.84)K

is the Nusselt number based on the cylinder diameter d, and 

pwi "d"
Re^^^- (20.85)

and

PrP.«- (20.86)

are, respectively, the generalized Reynolds and Prandtl numbers based on the cylinder 
diameter.

Mizushina et al. [76] obtained the following correlation for the Nusselt number 
averaged over the cylinder circumference:

Nurf = 0.72n-°-4Re|fy,+1)Pr^ (20.87)

where Nu^, Re,, d, and Prp d are defined in Eqs. (20.84). (20.85), and (20.86), 
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respectively. As shown in Ref. 76, experimental measurements in pseudoplastic flow 
around a circular cylinder at n = 0.72 to 1.0, Reg d = 43 to 19,200, and Pr^ d = 5.6 to 
40,000 agree within +20% with Eq. (20.87).

20.7.5 Transition and Turbulent Boundary-Layer Flow 
and Heat Transfer

Estimates of the velocity and temperature fields in external turbulent flows of non
Newtonian fluids are largely based on modified Newtonian flow solutions. Only a little 
experimental evidence confirming the validity of these approximations is presently 
available.

Boundary-Layer Transition from Laminar to Turbulent. Application of viscous 
stability theory [79] to Newtonian fluids leads to a general criterion for transition. It 
states that the lowest Reynolds number for which the laminar boundary layer may 
become unstable (turbulent) is

Re§2 = 162 (20.88)

w'here

„ PUe82
Re8 = -------

The boundary-layer momentum thickness 82 is defined by

r<X> pu I u\
82 = -----  1------ \dy (20.89)

Jq peue \ ue )

where y is the direction normal to the surface; see Fig. 20.22.
On a flat plate at zero incidence to a Newtonian mainstream with constant velocity 

(woo = ue = constant), Eq. (20.88) corresponds to

Rex = 60,000 (20.90)

Measurements on smooth surfaces show that transition to a turbulent boundary layer 
tends to occur at ReA. = 3 X 105 to 5 X 105. Transitions at substantially lower ReA 
values were observed in flows over rough surfaces, with adverse pressure gradients, or 
when the mainstream was highly unstable. In other cases, the boundary layer does not 
become fully turbulent until Rev reaches about 3 X 106. Based on these observations of 
Newtonian flows, Skelland [2] proposed a tentative criterion for transition from 
laminar to turbulent boundary layer flow of power-law fluid as

c / 0.33206)2
3 X 105 < . . Re2<(,, + ]) < 3 X 106 (20.91)

\ c(n) ] s' 7

c(n) is given in Fig. 20.23 and in Table 20.10 (p. 20 • 43), and Re„ v is defined in Eq. 
(20.73).

When transition of Newtonian flow would have been possible at low'er Rer, the 
lower limit in Eq. (20.91) should be 6 X 104 instead of 3 X 105 [79], For all power-law
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flows over arbitrarily shaped surface, a safe criterion for stability in the boundary layer 
is

0.33206 
c(n)

11 < 162 (20.92)

where Rcg is defined by Eq. (20.73) with x replaced by 82.

Turbulent Boundary-Layer Flow over a Flat Plate. Consider the turbulent portion 
of the boundary-layer flow shown in Fig. 20.22/1. Assume that the average free-stream 
velocity ux does not vary with time and all fluid properties are constant. An 
approximate expression for the wall shear stress in power-law flows is given by 
Skelland [2] as follows:

l/(0n + l)

where

fin + 1
( fin -I- 1) fl 3n + 1

4n
ReJ^ (20.93)

2-fi(2-n) _ 2 — fi(2 - n) 
* 2(1 — fi + fin) 2 - 2fi + 3fin

. _ 5(0.817)2“4<2

11

(20.94)

(20.95)

and a and fi are given graphically in Fig. 20.24, which is based on the results of Dodge 
and Metzner [24],

The x' in Re,, c of Eq. (20.93) is the downstream distance from the virtual origin, 
which is the point where the turbulent boundary layer would have originated were it 
not preceded by a laminar boundary layer; see Fig. 20.22 b. The boundary-layer 
thickness 8 at a given distance x' from the virtual origin is

1 I I w°°’A \ p )
(20.96)

where

(20.97)

The location of the virtual origin can be calculated using Eq. (20.96) if 8 is known at a 
given point on the plate.

Equations (20.93) and (20.96) are obtained assuming that the boundary-layer profile 
can be represented by

/ y.pn/[2-0(2-n)]

\ 3/
(20.98)

This expression is a relatively good approximation for pseudoplastic fluids (n < 1), but

p uy
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Figure 20.24. (a) Relation between the parameter a in Eq. (20.95) and the power-law index n 
[24], (b) Relation between the parameter fi in Eq. (20.93) and the power-law index n [24],

its deviation from the real profile increases with n and thus it may introduce a 
significant error into estimates of dilatant flows, especially for n > 1.3.

An estimate of the drag force over the turbulent boundary-layer region may be 
obtained by integrating Eq. (20.93) from the approximate transition point .v( (mea
sured with respect to the virtual origin) to L, and multiplying this by W. The result is 
the turbulent-region drag force on one side of a plate of length L and width W. It can 
then be added to the laminar-region drag [Eq. (20.75) with ,x( in place of L] to obtain 
the total drag force.
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Turbulent Boundary-Layer Heat Transfer over a Flat Plate. Assuming constant 
fluid properties and constant (time-averaged) mainstream velocity, the heat transfer 
from a smooth flat plate to a turbulent boundary layer of a power-law fluid flowing at 
zero incidence to the plate is approximated as follows:

St, = -^Prp.V 
Pux

(20.99)

where St v and Prp , are defined in Eqs. (20.80) and (20.81), respectively.
Equation (20.99) is obtained by extending the solution of Newtonian flows to 

include power-law fluids. It is assumed that the power index (- 0.4) is independent of 
the rheological properties of the fluid. Thus, it is the same as that in the Newtonian-fluid 
expression [68], When Eq. (20.99) is combined with Eq. (20.93), the expression for the

TABLE 20.11 Summary of Non-Newtonian Flow and Heat Transfer Topics

Section Topic

20.2 2
20.2.3
20.3.1
20.3.2
20.3.3
20.3.4
20.3.5
20.3.6
20.4.2
20.4.3
20.4.4
20.5.2
20.5.3
20.5.4
20.6.2
20.6.3

Apparent viscosity
Constitutive equations for purely viscous time-independent fluids
Characteristics of purely viscous time-independent fluids
Capillary-tube viscometer
Falling-ball viscometer
Falling-needle viscometer
Rotating viscometer
Examples of rheological-property measurements
Transition to turbulent flow in ducts
Fully developed laminar pressure drops in ducts
Fully developed turbulent pressure drops in ducts
Fully developed laminar heat transfer in ducts
Laminar heat transfer in thermally developing duct flows
Fully developed turbulent heat transfer in ducts
Summary of previous investigations in free and mixed convection
Engineering relations for free and mixed convection systems:

Single vertical plate—Tw = const (free)
Single vertical plate—qw = const (free)
Single sphere— Tw = const (free)
Horizontal cylinder—Tw = const (free)
Horizontal cylinder—qw = const (free)
Vertical parallel plates—Tw = const (mixed)
Single vertical plate—T„ = const (mixed)
Vertical tube—Tw = const (mixed)

20.7.2
20.7.3

Governing principles of Non-Newtonian flow and heat transfer
External laminar boundary layer solutions:

Laminar flow over a flat plate
Laminar heat transfer over a flat plate
General solutions for two-dimensional flow and heat transfer

20.7.4
20.7.5

Heat transfer correlations for a cylinder in non-Newtonian crossflow
Transition and turbulent boundary-layer flow and heat transfer:

Boundary-layer transition from laminar to turbulent
Turbulent boundary-layer flow over a flat plate
Turbulent boundary-layer heat transfer over a flat plate



20*50 NON-NEWTONIAN FLUID FLOW ANO HF AT TRANSFER

local Stanton number becomes

( ( fin + 1) S2 
fin + i ( xp

3n + 1

4n

xl/(^ + D

Reg.M Pr/;0v4 (20.100)

Note the similarity between the expressions for laminar and turbulent heat transfer 
over a flat plate [Eqs. (20.79a) and (20.99), respectively]. For n = 1, both Prp x and 
Pr v become equal to Pr, and the well-known expressions for St in a Newtonian flow 
arc obtained.

20.8 SUMMARY OF USEFUL RELATIONS

Table 20.11 on page 20 • 49 lists many of the flow and heat transfer problems discussed 
in this chapter, and the section where information on each problem is provided.

NOMENCLATURE

a geometric parameter in Eq. (20.34) (see Table 20.3)
a l/d = (needle length)/(needle diameter), Eq. (20.18)
a exponent in F.q. (20.67)

constants, Eq (20.50)
b geometric parameter in Eq. (20.34), (see Table 20.3)
b distance between parallel plates, Eqs. (20.2) and (20.65), m, ft
b D/d = (container diameter)/(needle diameter), Eq. (20.15)
B coefficient in Eq. (20.59) (see Table 20.9)
c specific heat at constant pressure, J/(kg • K), Btu/(lbm • °F)
C correction factor, Eq. (20.17)
C coefficient in Eq. (20.62)
C, correction factor, Eq. (20.19)
C coefficient in Eq. (20.59) (see Table 20.9)
c(n) coefficient in Eq. (20.72) (see Table 20.10)
d cylinder outer diameter in Sec. 20.7.4, m, ft
d needle diameter in Sec. 20.3, m, ft
D tube inside or cylinder outside diameter, m, ft
7> exponent in Eq. (20.62)
Dh hydraulic diameter = 4 X (cross-section area)/(wetted perimeter), m, ft
/ Fanning friction factor = rM./(pil2/2) = (dp/dx)Dh/(2pu2)
fD Darcy friction factor = 4/
f. body force per unit mass, acting in the x direction, Eq. (20.69), N/kg,

lbz/lbm
f(R) function of R in Eq. (20.20), 1/m2, 1/ft2
Fi n) function of n in Eq. (20.37)
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g gravitational acceleration, m/s2, ft/s2
Gr, generalized Grashof number, Eq. (20.65)
Grz r Grashof number, Eq. (20.57); GrA T and GrD T defined the same way 

except for L replaced by R and D, respectively
Gr£ r modified Grashof number, Eq. (20.67e)
Grv t/ heat flux Grashof number, Eq. (20.60); Grw q„ defined the same way 

except for x replaced by R
Gz Graetz number = mcp/kx
g( n) function of n in Eq. (20.66)
g( R, n) function of R and n in Eq. (20.24), l/m2/", l/ft2/n
h convective heat transfer coefficient, W/(m2 • °K), Btu/(hr • ft2 • °F)
h height in Eq. (20.20) and Fig. 20.13, m, ft
H height in Eq. (20.65), m, ft
k thermal conductivity, for fluid if no subscript, W/(m ■ K), Btu/

(hr • ft • °F)
K fluid consistency, Eq. (20.5), N • s"/m2, Iby • s"/ft2
L length or height, m, ft
Lhx entrance length of a duct, Fig. 20.17, m, ft
m mass flow rate, kg/s, lbm/s
n flow index, Eq. (20.5)
Nu Nusselt number = hDh/k, for hydrodynamically and thermally fully

developed internal flow if no subscript
Nut/ Nusselt number = hd/k at the stagnation point of a circular cylinder;

Nu^ is the mean Nusselt number for crossflow to a cylinder
Nux axially local Nusselt number = hxDh/k for internal flow and hxx/k for

external flow
Nu axially (or along the surface) mean Nusselt number for external flow =

liDe/k\ De = L for Nu£, De = R for NuR, and De = D for Nuo
p pressure, Pa, lby-/ft2
Pr Prandtl number = pcp/k
Pru defined in Eq. (20.44)
Prefr defined in Eq. (20.43)
Pr generalized Prandtl number, Eq. (20.42)
Prg same as Prefr
Pr * generalized Prandtl number, Eq. (20.65)
Pr,, generalized Prandtl number, Eqs. (20.81), (20.86).
Prz r Prandtl number, Eq. (20.58); PrA T and Pro T defined the same way 

except for L replaced by R and D, respectively
Pr*  r generalized Prandtl number, Eq. (20.67d); similar to Prg but defined with 

R instead of Dh
Prx modified Prandtl number, Eq. (20.61)
q" average heat flux from x = 0 to x, Eq. (20.67a), W/m2, Btu/(hr • ft2)
q" local heat flux at x, W/m2, Btu/(hr • ft2)
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r radial distance from cylinder centerline or sphere center point m, ft
R radius, m, ft
Re Reynolds number (characteristic dimension indicated by subscript)
Reu defined in Eq. (20.33)
Re.jy defined in Eq. (20.32)
Re generalized Reynolds number, defined in Eq. (20.31); Reg x defined in

Eq. (20.73); and Reg d defined in Eq. (20.85)
Re . z generalized Reynolds number for noncircular ducts, defined in Eq. 

(20.39)
Re', same as Reeff
.S heat source in Eq. (20.70), W/m3, Btu/(hr • ft3)
Stv local Stanton number, Eq. (20.80)
t time, s
T temperature, °C, K, °F, °R
7 torque (moment) in Sec 20.3.5, N • m, Iby ■ ft
T( n) function of the flow index n in Eq. (20.56)
u velocity component in x direction, m/s, ft/s
ul} entrance velocity, Eq. (20.65), m/s, ft/s
ux free-stream velocity of external flow, Sec. 20.7, m/s, ft/s

terminal velocity of sphere or needle, Sec. 20.3, m/s, ft/s 
u'x correlated needle velocity, Eq. (20.15), m/s, ft/s
u*  power-law shear velocity, Eq. (20.65), m/s, ft/s
u velocity vector, Eq. (20.70), m/s, ft/s
u average velocity m/s, ft/s

dimensionless entrance velocity, Eq. (20.65) 
v velocity component in y direction, m/s, ft/s
F volume, m3, ft3
ir velocity component in z direction, m/s, ft/s
>1 plate width, m, ft
x axial coordinate or distance measured along surface of body (in general

flow direction), m, ft
x critical value of x at which laminar boundary-layer flow begins to

become unstable, Fig. 20.226, m, ft
x' downstream distance from virtual origin, Eqs. (20.93), (20.96), (20.100),

m, ft
y spatial coordinate or distance measured from surface of body, m, ft
~ spatial coordinate or distance measured across surface of a body, m, ft
Z free-convection function, Eq. (20.62)

Greek Symbols

a rheological property in Ellis fluid. Eq. (20.8).
a coefficient in Eq. (20.95), (see Fig. 20.24a)
a*  aspect ratio; see Table 20.3
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ft thermal expansion coefficient = ~(l/p)(dp/dT)p, K"1, °R' 1
ft coefficient in Eq. (20.93), (see Fig. 20.24fi)
Y angular strain, Eqs. (20.1), (20.2)
y parameter in Eq. (20.96)
Y consistency parameter, Eq. (20.51), (20.52)
Y time derivative of strain (strain rate), Eq. (20.2), s '1
8 velocity boundary-layer thickness, m, ft
82 boundary layer momentum thickness, defined in Eq. (20.89), m, ft
A designates a difference when used as a prefix
t) parameter in Eq. (20.67)
0Z, dimensionless bulk temperature, Eq. (20.67a)
6 inclination angle of open channel with the horizontal, Eq. (20.35)
6,, angular distance, Eqs. (20.28) and (20.29)
p. dynamic viscosity, for Newtonian fluid without subscript, N • s/m2,

lbz ■ s/ft2
apparent viscosity, Eq. (20.4), N • s/m2, lb, • s/ft2

p{} apparent viscosity at zero shear rate, Eq. (20.7), Fig. 20.6, N • s/m2,
Iby • S/ft2

/u..z apparent viscosity at very high shear rates, Fig. 20.6, N ■ s/m2, lb, • s/ft2
v kinematic viscosity = p/p, m2/s, ft2/s
vK K/p = (fluid consistency)/(fluid density), m2/s2-", ft2/s2-"
p fluid density, kg/m3, lbm/ft3
t shear stress, Pa, lby/ft2
Tt yield stress, Pa, lby/ft2
t, shear stress tensor, Eq. (20.70), Pa, lby/ft2
? parameter in Eq. (20.93)
Q, angular velocity, Eq. (20.20), s-1, s”1
£2 parameter in Eq. (20.93)

Subscripts
a apparent
b bulk (mixed mean) flow conditions
b in the case of parallel plates, indicates the velocity of the upper plate, Eq.

(20.2)
e flow conditions just outside boundary layer
eff effective
F forced convection
g generalized
Hl thermal boundary condition of constant heat flux in the flow direction

and constant temperature in the circumferential direction
H2 thermal boundary condition of constant heat flux in the flow direction

and constant heat flux in the circumferential direction
i inner surface of tube
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/ liquid
o outer surface of tube
p plate
s solid
T thermal boundary condition of constant wall temperature in both flow

and circumferential directions
w wall
x local value at section x
oc free-stream conditions (far from any solid boundary)
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21.1 INTRODUCTION

This chapter is concerned with the fouling of heat transfer surfaces. The treatment is 
limited to single-phase convective heat transfer applications; i.e., fouling with boiling 
or condensation and high-temperature applications where radiation heat transfer is 
important are given very little consideration. Fouling is a problem in a broad variety of 
applications involving both gases and liquids in the energy-related industries, and thus 
an attempt has been made to maintain a reasonable balance between gas-side and 
liquid-side fouling in this chapter.

The term fouling is defined, the categories of fouling are described briefly, and the 
deleterious effects of fouling in heat transfer equipment are considered in this section. 
Fouling mechanisms, or the phenomenological aspects of fouling, are discussed in Sec. 
21.2, along with a treatment of the more important fouling parameters, followed by a 
presentation of selected fouling models. Section 21.3 deals with the design of heat 
transfer equipment for fouling service and makes use of fouling factors or fouling 
resistances. The effects of fouling on both heat transfer and pressure drop are 
considered, and examples are given to illustrate these effects quantitatively. Prevention, 
mitigation, and accommodation techniques used to combat liquid-side and gas-side 
fouling are discussed in some detail in Secs. 21.4 and 21.5, reflecting the practical 
importance of these techniques. Finally, this chapter is concluded with a brief discus
sion of fouling measuring devices.

The treatment of fouling here is design-oriented and relies heavily on the use of 
fouling factors. The effect of fouling on pressure drop is considered—an effect which is 
frequently overlooked because attention is focused on the degradation of heat transfer. 
Because of space limitations, the treatment of most topics must be brief; however, an 
ample supply of references is included for readers wishing to pursue topics in greater 
depth. Fouling references of general interest, based on recent conferences, workshops, 
and surveys, which reflect the current state of the art, include Somerscales and 
Knudsen [1], Bryers [2-4], Chenoweth and Impagliazzo [5], Marner and Webb [6], 
Marner and Suitor [7], Suitor and Pritchard [8], and Garrett-Price et al [9],

21.1.1 Definition of Fouling
Fouling may be defined as the deposition of an insulating layer of material onto a heat 
transfer surface. The process is known as liquid-side or gas-side fouling depending on 
whether the fluid in contact with the surface is a liquid or a gas. In either case, the 
thermal-hydraulic performance can be diminished through decreased heat transfer and 
increased pressure drop because of the fouling deposit. A few examples illustrating the 
diversity of fouling include: biofouling in a condenser using seawater as the coolant, 
coking in heat exchangers used in the petrochemical industry, ash deposits in coal-fired 
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boilers, chemical reaction fouling of heat transfer surfaces in the foodstuff industries, 
and smut deposition in low-temperature heat recovery systems.

In some cases fouling may be accompanied by either corrosion (the destruction of a 
metal or alloy by means of an electrochemical reaction with its environment) or erosion 
(the wearing away of a solid surface by the impact of a liquid stream or particulate 
matter in a gas stream). In this chapter, attention is focused on fouling, with erosion 
and corrosion treated briefly as appropriate.

21.1.2 Types of Fouling
Epstein [10,11] has developed the following classification scheme for fouling, which has 
received wide acceptance:

Precipitation fouling. The precipitation of dissolved substances onto a heat transfer 
surface. When the dissolved substances have inverse rather than normal solubil- 
ity-vs.-temperature behavior, the precipitation occurs on superheated rather than 
subcooled surfaces and the process is often referred to as scaling.

Particulate fouling. The accumulation of finely divided solids suspended in the 
fluid onto the heat transfer surface. In a minority of instances settling by gravity 
prevails, and the process is then referred to as sedimentation fouling.

Chemical reaction fouling. Deposits formed at the heat transfer surface by chem
ical reactions in which the surface material itself is not a reactant.

Corrosion fouling. The heat transfer surface itself reacts to produce corrosion 
products (in situ corrosion fouling) which thermally insulate (foul) the surface 
and may promote the attachment of other foulants.

Biological fouling. The attachment of macroorganisms (macrofouhng) and/or mi
croorganisms (microfouling or microbial fouling) to a heat transfer surface, along 
with the adherent slimes often generated by the latter.

Solidification fouling. Freezing of a liquid, or some of its higher-melting con
stituents, or liquid components in a gas stream onto a subcooled heat transfer 
surface.

Although these six categories have been fisted individually, it should be emphasized 
that two or more fouling processes can and often do occur simultaneously and in some 
cases may be synergistic. For example, fouling in a condenser using seawater as the 
cooling medium generally is caused by the combined effects of biological and corrosion 
fouling. Similarly, fouling of a suspension preheater in the cement industry may involve 
the simultaneous action of particulate, chemical reaction, and solidification fouling.

21.1.3 Deleterious Effects of Fouling
The deleterious effects of fouling maybe broken down into the following major 
categories: (1) increased capital costs, (2) increased maintenance costs, (3) loss of 
production, and (4) energy losses.

First, increased capital costs result in part from oversurfacing the heat exchanger to 
compensate for reduced heat transfer due to fouling, oversizing pumps and fans to 
compensate for oversurfacing and the increased pressure drop arising from the reduced 
flow area, employing duplicate heat exchangers, and using specialty materials such as 
stainless steels, superalloys, and coated tubes in fouling environments. In those cases 
where on-line cleaning of the heat transfer surfaces is required, increased capital costs
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are also associated with the provision for cleaning equipment. Second, maintenance 
costs are primarily due to on-line and off-line cleaning and to the costs of additives. 
Chemical additives are used in both gas and liquid service, with gas-side additives 
introduced in either the fuel or the combustion gases. Third, the loss of production, due 
to down time or operation at reduced capacity, in industrial applications can be 
significant. Finally, energy losses due to fouling buildups in heat exchangers can be a 
major contributor to the costs of fouling. There are the obvious energy losses associated 
with the reduction of heat transfer and increase in pumping-power requirements. 
Additional energy losses are incurred when gas streams are exhausted to the environ
ment because they contain potential foulants: the use of heat-recovery equipment is 
strongly discouraged if fouling is anticipated from dirty gas streams. Such occurrences 
are widespread in the glass, cement, and primary metal industries.

Although the basic factors which contribute to the costs of fouling are well 
established, quantification of these costs is extremely difficult because of the many 
uncertainties involved. A 1978 study estimated the annual cost of fouling in the United 
Kingdom to be $0.8 to 1.0 billion (Thackery [12]). More recently, the annual cost of 
fouling and corrosion in U.S. industries, excluding electric utilities, was placed between 
$3 and 10 billion in 1982 dollars [9]. It is clear that the deleterious effects of fouling are 
extremely costly.

21.2 PHENOMENOLOGICAL ASPECTS OF FOULING

Fouling is a combined heat, mass, and momentum transfer problem which occurs 
under transient conditions. Fortunately, fouling buildups usually occur sufficiently 
slowly that quasisteady conditions may be assumed. Even so, the many processes which 
can take place simultaneously during the fouling of a heat transfer surface are 
incredibly complicated. The various fouling mechanisms, as well as a consideration of 
the important fouling parameters, are treated in this section, which is concluded with a 
brief consideration of fouling models.

21.2.1 Basic Considerations

A simple visualization of fouling is given Fig. 21.1, which depicts fouling buildup on a 
plane surface at some instant in time. A fluid at temperature Tf and velocity V is 
flowing over a surface which is at temperature Tw. Under clean or unfouled conditions,

Figure 21.1. Schematic drawing of fouling deposit used to define fouling factor.



PHF.NOMENOLOGICAI ASPECTS OF FOULING 21 «5

l//t

Fig. 21.1, the heat transfer is reduced by the

Tw ~ Tf

the heat transfer between the fluid and surface is given by Newton’s law of cooling, 

„ - T< 
Qw

Under fouled conditions, as shown in 
thermal resistance of the fouling layer:

q” =

In Eq (21.2), the ratio tj/kf is known as the fouling factor,

= r (2i.3)

Since information on r, and kf is usually not known, the fouling factor is generally 
used in design calculations.

In some cases, it is more convenient to deal with the mass of the deposit rather than 
the fouling factor, using the relation

Rf=^~ = —— ■ 

k/ PfkfA

However, in order to relate the three different expressions in Eq. (21.4) it is apparent 
that a knowledge of both the deposit density and thermal conductivity is required.

Unfortunately, the situation is not as simple as described in Fig. 21.1. In general, 
the deposit thickness is not constant but changes with time: a variety of transport 
processes add material to increase the deposit thickness, while at the same time natural 
removal forces remove material from the surface. In addition, the composition and 
strength of the fouling deposit change with time. The phenomena contributing to these 
various fouling processes are identified and discussed in the next section.

21.2.2 Fouling Mechanisms
Fouling mechanisms—referred to as sequential events by Epstein [13] — may be grouped 
into the following five major categories: (1) initiation of fouling, (2) transport to 
surface, (3) attachment to surface, (4) removal from surface, and (5) aging of deposit.

Initiation of Fouling. The initiation of fouling appears to be a strong function of 
surface-related parameters such as surface material, surface finish, surface rough
ness, and surface coatings or films. During the initial delay—induction or 
incubation—period, the surface is being conditioned for the fouling which will take 
place later. This phenomenon, which is usually observed in crystallization or precipita
tion fouling and sometimes in other types of fouling, lasts on the order of hours. For 
example, Ritter [14] observed an induction period of about 20 hr while studying the 
deposition of calcium and lithium sulfate in crystalline fouling. After this delay period 
has been observed, the fouling resistance increases with time in some fashion.

Transport to the Surface. Of the five mechanisms listed above, transport to the 
surface is clearly the most studied and best understood. Transport to the surface results 
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from a variety of processes, including: (1) diffusion, (2) electrophoresis, (3) sedimenta
tion, (4) chemical reactions, (5) thermophoresis, (6) inertial impaction, (7) turbulent 
downsweeps, and (8) diffusiophoresis.

Diffusion plays a very important role in fouling, in the transport of both gaseous 
and particulate species. The phenomenological equation governing the transfer of mass 
is Fick’s law,

A convective mass transfer coefficient hD is defined by the relation

J" = hD(cf- cK} (21.6)

Evaluating Eq. (21.5) at the wall and equating it to Eq. (21.6) yields

The nondimensional convective mass transfer coefficient is the Sherwood number, 
defined as

hDL
Sh = -^- (21.8)

It is a function of the Reynolds number, the Schmidt number, and the geometry:

Sh = Sh(Re, Sc, geometry) (21.9)

with the Schmidt number Sc defined by

Sc=^ (2110)

In practice, h D is determined empirically for fouling applications. For example, for 
turbulent flow in a circular tube, use of the Dittus-Boelter correlation [15] and the 
analogy between heat and mass transfer gives the Sherwood number as

Sh = 0.023 Re0 8 Sc0 4 (21 11)

Electrophoresis may be defined as the transport of particulate matter from a fluid 
stream to a solid surface due to an electric potential difference between the particles 
and the surface. Particle charging may occur due to field charging, diffusion charging, 
or charging by surface contact. The most important surface forces are the London- 
van der Waals forces, which are always attractive. The electrical double-layer interac
tion forces are attractive if the particles and wall have zeta potentials of opposite sign 
and repulsive if these potentials are of the same sign. In general, the smaller a particle 
in a fluid stream, the more significant the effect of the electrical charge it carries. In 
gases, electrical forces become increasingly important on charged surfaces as the 
particle size decreases below about 0.1 p.m. For larger particles, very strong electrical 
fields are required to influence transport. In practice, it appears that electrophoresis is 
much more important in gas-side than in liquid-side fouling service. Additional details 
on electrophoresis may be found in Friedlander [16] and Soo [17],
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Sedimentation is the transport of particulate matter in a fluid stream to a surface 
under the action of gravity. As might be expected, this process is important in 
applications where the particles are dense and the fluid velocities are low. Sedimenta
tion is generally of importance only in liquid systems.

Material can be transported to a heat transfer surface by means of chemical 
reactions taking place in either the fluid stream or on the surface, but not involving the 
surface itself. Examples involving chemical reaction transport include a variety of 
applications in the foodstuffs industry, coking in the petrochemical industry, and 
buildups in suspension preheaters in the cement industry.

Thermophoresis is the movement of small particles in a fluid stream under the 
influence of a temperature gradient. Particles are bombarded by higher-energy mole
cules on their “ hot” side, and thus tend to move toward a cold surface and away from 
a hot surface. Whitmore and Meisen [18] have shown that the thermophoretic velocity 
’ ] is given by

VT
Vt=-av— (21.12)

where the coefficient a for gases is given by

co
kp/k + 2

(21.13)

Thermophoresis is important for particles below 5 fim in diameter and becomes 
dominant at about 0.1 /rm. Depending on the magnitude of the temperature gradient 
and the other parameters in Eq. (21.12), thermophoresis can be important in both 
laminar and turbulent flow situations. Since the thermal conductivity of liquids tends 
to be much larger than that for gases, the coefficient in Eq. (21.13) is much larger for 
gases than for liquids; therefore, thermophoresis is much more important as a transport 
process in gases than in liquids. Nishio et al. [19] have recently carried out an 
important experimental study of thermophoresis in an engineering application of 
gas-side fouling.

For particles larger than about 1 /rm in gases, the inertial effects of particles can 
become very important. For example, when a fluid flows over a circular tube in a heat 
exchanger, inertia can cause a particle to deviate from the fluid streamlines. Particle 
transport to the surface from such a process is known as inertial impaction. This 
transport is governed by the magnitude of the Stokes number St, defined as

St =
PpdPV 

18/r.L
(21.14)

The transport increases with St. In particular, inertial impaction becomes increasingly 
important as the size of the particles increases. Additional information on inertial 
transport can be found in Friedlander [16].

The next transport process considered here is that due to turbulent downsweeps. 
Based on experimental observations, Cleaver and Yates [20,21] found that miniature 
tornadoes in the fluid stream are able to penetrate the laminar sublayer and transport 
solid material to the surface. They also observed that turbulent bursts are an effective 
removal mechanism.

Diffusiophoresis is the final transport process to be considered here. As water or 
some other vapor condenses on a surface that is below the dew-point temperature, the 
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vapor creates a force on nearby particles in the gas stream and sweeps them toward the 
surface. This process is important in certain gas-side fouling situations.

Attachment to Surface. Not all of the material transported to the surface actually 
sticks. There is a probability between zero and one that the particle will bounce off the 
surface. As Pritchard [22] and others have pointed out, the reason why some particles 
stick and others do not is not understood very well. Certainly the forces acting on 
particles as they approach a surface play an important role. /Also, the properties of the 
particles such as density, elasticity, surface condition, and state are important. Finally, 
the nature of the surface, including parameters such as roughness and type of material, 
plays an important role in the sticking probabilities of various particles.

Removal from Surface. Material can be removed from the deposit by several 
mechanisms, including spalling, caused by shear forces and turbulent bursts; re
solution; and erosion. The natural removal mechanism due to fluid shear stress 
depends on the velocity gradient at the surface, the viscosity of the fluid, and the 
roughness of the surface, and is reflected in the pressure drop. Turbulent bursts have 
already been discussed in connection with transport mechanisms to the surface. 
Re-solution can occur, for example, if the pH of a liquid stream is changed by additives 
or some other means. Finally, erosion by particulate matter or by liquid impingement 
can remove material from the fouling layer. In general, several of these mechanisms can 
occur simultaneously.

Aging of the Deposit. Once an initial deposit is placed on a heat transfer surface, it 
does not remain static. Initially, the deposit thickness will usually increase with time as 
has been discussed earlier. In addition, the mechanical strength of the deposit can 
change with time due to changes in the crystal structure or chemical composition of the 
deposit. For example, a chemical reaction taking place at the deposit surface can alter 
the chemical composition of the deposit and thereby change its mechanical strength. Of 
course, the introduction of a chemical additive into a fluid stream can cause a change in 
the deposit characteristics. Clearly, aging may strengthen or weaken fouling deposits.

21.2.3 Important Fouling Parameters
Fouling is a complex, transient process involving the simultaneous transport of heat, 
mass, and momentum and is characterized by a large number of parameters. These 
parameters include: (1) fluid characterization, (2) surface temperature, (3) fluid temper
ature, (4) fluid velocity, (5) fluid shear stress, (6) surface material and finish, (7) surface 
geometry, and (8) fouling-deposit strength.

Fluid characterization includes the thermodynamic and transport properties of the 
fluid such as its specific heat, density, thermal conductivity, viscosity, and diffusion 
coefficients. If the fluid contains particulate matter, the particle concentration, com
position, and size distribution are also important. Condensable components and their 
associated dew-point temperatures are important parameters in gas-side fouling. In 
some cases, the chemical species in the fluid stream can react to produce new 
components, and it is important to know if and when such processes might take place. 
The importance of fluid characterization as a parameter cannot be overemphasized, 
because it is the constituents in the gas or liquid stream which are ultimately deposited 
onto heat transfer surfaces to form the fouling deposits.

The various thermodynamic and transport properties are functions of temperature, 
which itself can affect the transport processes taking place. For example, the diffusion 
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(21.15)

coefficients for gases are very strong functions of the temperature and vary as the 
absolute temperature raised to the 1.8 power (e.g., Eckert and Drake [23]):

D / T \18
■^ref \ ^ref /

The surface temperature is the controlling parameter in those cases where species are 
condensing, crystallizing, or sublimating onto heat transfer surfaces. In such instances, 
the fluid temperature plays a very minor role in the deposition processes which take 
place. This phenomenon is very apparent in a classical study carried out by Brown [24], 
who investigated the deposition of sodium sulfate from combustion gases and found no 
deposition above the dew point, maximum deposition just below the dew point, and 
very Little deposition far below the dew point. Finally, in situations involving thermo
phoresis, it is the temperature difference Ts — Tf which is the controlling parameter. In 
such cases, the magnitude of either temperature is not of particular significance, except 
as the various thermodynamic and transport properties are affected.

The fluid velocity is important in transporting material to the surface as well as 
removing material from the surface. For example, in diffusion-controlled processes, the 
mass transfer coefficient is a reasonably strong function of the velocity. Although the 
fluid velocity is frequently used in removal processes, it is actually the shear stress 
which is the controlling parameter. The distinction between velocity and fluid shear 
stress depends on the geometry of the heat transfer surface. For example, for a given 
velocity, the shear stress at the surface will be much higher for a plate heat exchanger 
than for a shell-and-tube exchanger. Also, in a double-pipe exchanger, the shear stress 
at the outer surface of the annulus is not the same as that at the inner surface even 
though the average velocity of the fluid is identical. Thus, the removal forces generated 
by the shear stresses at the two surfaces will also be different. An additional parameter 
of importance in the removal process is the mechanical strength of the fouling deposit. 
The deposit strength is a strong function of aging and depends on the material 
transported to the surface, chemical reactions within the deposit, and removal of 
material from the deposit surface. Additives may also have a strong effect on the 
deposit strength.

Surface finish is especially important during the initial stages of fouling and plays a 
prominent role in determining the duration of the incubation period. However, once a 
deposit covers a surface, the finish no longer plays an important role. On the other 
hand, the surface material is a critical consideration in those situations where corrosion 
fouling takes place. In such instances, the interaction between the fouling deposit and 
the surface material is very important, with the surface and fluid temperatures also 
playing prominent roles. A variety of surface coatings, e.g., galvanizing and plastics, 
have been used in an attempt to overcome in situ corrosion fouling.

21.2.4 Fouling Models
Making use of the principle of conservation of mass, the time rate of change of the 
fouling resistance must equal the material deposited minus the material removed:

dRf
4>r at

(21.16)

where <j>(/ and <t>r are the so-called deposition and removal functions, respectively. In 
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the case of precipitation or scaling fouling, and certain other situations in which the 
removal function is negligible, Eq. (21.16) may easily be integrated by assuming the 
deposition function to be independent of time to yield

Rf = <^>dt (21.17)

Equation (21.17), first developed in 1924 by McCabe and Robinson [25], represents a 
linear fouling curve. Fouling in such cases will continue to increase indefinitely unless 
some type of cleaning is employed. Kern and Seaton [26] used Eq. (21.16), assumed the 
removal function to be proportional to the fouling resistance and the deposition 
function to be a constant, to obtain the classical relation

Rf = /?;[! - (21.18)

Equation (21.18) is a mathematical expression for the so-called asymptotic fouling 
curve which is shown in Fig. 21.2, along with the linear fouling curve described by Eq. 
(21.17). The quantity Rf is known as the asymptotic fouling factor and is the value 
approached as the time approaches infinity. In practical situations, the time required to 
approach asymptotic conditions can be short, on the order of hours. The time constant 
6 in Eq. 21.18 indicates how quickly asymptotic fouling conditions are approached and 
is related to R*  by

R?
(21'19)

Also shown in Fig. 21.2 is the falling-rate fouling curve, between the linear and 
asymptotic curves, which is sometimes observed in practice.

Through the years, a number of semiempirical models have been formulated to 
predict fouling factors under transient conditions. Epstein [10] has tabulated several

Time t

Figure 21.2. Types of fouling curves for zero incubation period.
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TABLE 21.1. Some Fouling Deposition Models [10]

Investigators (Year) Deposition Flux md Type of Fouling Investigated

McCabe and Robinson (1924) a0U Scaling of evaporators, constant AT
Kern and Seaton (1959) "i1 <7 Particulate and other fouling
Parkins (1961) J"coexp( — E/RT^) Particulate fouling
Hasson (1962) a2U” Sensible heat scaling of CaCO3 solutions, 

AT = constant
Reitzer (1964) A’llq Evaporation and sensible-heat scaling 

of saturated solutions
Bartlett (1968) k D^f Convective mass transfer of depositable 

species
Charlesworth (1970) kdCf Iron oxide deposition in flow boiling
Watkinson and Epstein (1970) a3ho(cf~ c^^expi-E/RT^/u*2 Particulate and chemical reaction fouling
Beal (1970) kdcf=cf/(l/hD + l/Vw) Particle deposition by eddy and Brownian 

diffusion, and inertial coasting
Taborek et al. (1972) adPv^l exp( - E/RTW) Cooling-water service
Galloway (1973) + xf/af) Convective mass transfer of O2 in series 

with diffusion of O2 through deposit
Ruckenstein and Prieve (1973) kdcf = cf/(l/hD + l/kr) Colloidal deposition across zeta potential 

barrier at wall; kr a exp( — E/RTW)

Thomas and Grigull (1974) md.0exP(~a5m'> Fine magnetic deposition from aqueous 
suspension; autoretardation assumed

deposition and removal (reentrainment) models which have been developed, as indi
cated in Tables 21.1 and 21.2, respectively. Several of the transport equations are based 
on mass transfer models, and other approaches have also been used as indicated. The 
function in Tables 21.1 and 21.2 are expressed in terms of mass fluxes, which are 
related to and </>r as follows:

= Pfkf<h

and

= pfkf$r

(21.20)

(21.21)

In order to predict transient fouling factors, expressions for both the deposition and 
removal functions must be formulated. Of the correlations which have been developed

TABLE 21.2. Some Removal Models [10]

Investigators (Year) Removal Flux mr Assumed Removal Mechanism

Kern and Seaton (1959) b^wm Spalling
Bartlett (1968) b2^d Erosion plus bond fracture
Charlesworth (1970) bQm Erosion, spalling
Taborek et al. (1972) Spalling
Beal (1973) ^4 loose Erosion
Burrill (1977) bs(cw - cf) Dissolution
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to date, the greatest emphasis has been placed on cooling-water applications, using the 
Kern-Seaton model of asymptotic fouling as the basis. Two of the most important 
relations which have been proposed to date include the 1968 Watkinson-Epstein [27] 
equation

R? a
cfexp(-E/RTw) 

~ fv2
(21.22)

and the 1972 Taborek et al. [28] equation

Rf a PvQ,e~E/RTw (21.23)

where the asymptotic fouling factors have been given. Both of these models were 
developed for initially clean surfaces and no induction period. As can be inferred from 
these equations, Watkinson and Epstein extended the deposition function to be 
temperature-dependent, and Taborek et al. introduced a water characterization factor 
in the deposition function.

21.3 DESIGNING FOR FOULING SERVICE

The design of heat exchangers for fouling service must take into account the effects of 
fouling on both heat transfer and pressure drop. Fouling deposits reduce the effective
ness of a heat exchanger by reducing the heat transfer and by affecting the pressure 
drop of the exchanger, generally unfavorably but sometimes favorably. The effect of 
fouling on the design of heat exchangers, including both thermal and hydraulic 
considerations, is treated in this section.

21.3.1 Basic Considerations
The designer of a heat exchanger must determine the surface area to satisfy the 
required heat transfer or heat duty. The relationship between surface area and heat 
duty is

U MTD
(21.24)

Process conditions usually set the heat duty and temperature difference at specific 
values. Fouling reduces the overall heat transfer coefficient by adding thermal resis
tance in the heat flow path; thus the surface area becomes an adjustable parameter to 
account for the reduction of the overall coefficient due to fouling. The effect of fouling 
on the surface area as a function of the overall coefficient is shown in Fig. 21.3. It is not 
uncommon for the heat exchanger area to increase 100% due to fouling: in other words, 
fouling allowances often account for more than half of the total heat exchanger surface 
area.

A circular tube fouled on both the inside and the outside is shown in Fig. 21.4 with 
the corresponding thermal-resistance circuit. The overall coefficient is

1 1 ,
U h„ + A,h,

R~A-+r +R<‘A
A. >

(21.25)
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Figure 21.3. Effect of fouling on surface area.
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The addition of the fouling resistance lowers the overall coefficient, therefore requiring 
more area. The amplification of the tubeside fouling resistance by the outside-to-inside 
area ratio is especially important if finned tubes are used, as will be seen later.

21.3.2 Effect of Fouling on Heat Transfer
Even though the fouling factors appear to be small, they can increase the required 
surface area significantly. As an example, consider the industrial heat exchanger in 
liquid-liquid service described thermally in Table 21.3. The clean area required for this 
exchanger is about 59.0 nr (635 ft2). However, if inside and outside fouling resistances 
of O.OOO352 and 0.000176 nr • K/W (0.002 and 0.001 hr • ft2 • °F/Btu) are used, the 
required area increases to 140 nr (1510 ft2), or a 237% increase. These seemingly low 
fouling resistances obviously have a significant effect on the required surface area, the 
extent depending on the relative value of the overall coefficient.

Small fouling resistances, such as those in the previous example, will not affect 
gas-to-gas heat exchangers significantly, since typical gas-side heat transfer coefficients 
are much lower than those for liquids. Unfortunately, gas-side fouling factors are 
usually much larger and do significantly affect the overall heat transfer coefficient of 
gas-to-gas exchangers. For example, consider a heat recovery unit in a hot flue gas 
stream as indicated in Table 21.4. The gas-side coefficient is much lower than the 
liquid-side coefficient, so the overall coefficient is less. But the typical gas-side fouling 
factor is also larger. In this example, the clean area required is 2640 m2 (28,400 ft2), 
while the fouled required area is 4140 m2 (44,600 ft2), a 57% increase.

Cleanliness Factor. A term used primarily in the utility industry is the cleanliness 
factor, CF, which is an alternative expression for the fouling resistance and refers to the 
multiplying factor used with the clean overall coefficient to derate the exchanger 
performance. The cleanliness factor emanated from the Heat Exchange Institute [29]

TABLE 21.3. Industrial Heat Exchanger in 
Liquid-Liquid Service

Quantity Value

Q
MTD

h0 
h

5861 kW
42 K
O.OOOO153 m2 ■ K/W
3974 W/(m2 • K)
7380 W/(m2 • K)

Rf.O 
Rf.i 
u.
uf 
A,/Ac 
A ,/A,

0.000176 m2 • K/W
. 0.000352 m2 • K/W

2365 W/m2 • K
996 W/m2 • K
2.37
1.15

CONVERSION FACTORS

1 W /(m2 • K) = 0.176 Btu/(hr • ft2 • °F)
1 m2 • K/W = 5.678 hr • ft2 • °F/Btu

1 kW = 3412 Btu/hr
Tf = 1.8(TK - 273) + 32
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TABLE 21.4. Industrial Heat Recovery Unit

Quantity Value

V 
MTD

ho 
h

5861 kW
42 K
O.OOOO153 m2 • K/W
57 W/(nr ■ K)
7380 W/(rn2 • K)

Rf. o

u, 
V 
Af/Ac

10
0.0088 m2 • K/W
0.0002 m2 • K/W
52.9 W/(m2 • K)
33.7 W/(m2 ■ K)
1.57

CONVERSION FACTORS

1 W/(nr • K) = 0.176 Btu/(hr • ft2 • °F)
1 m2 ■ K/W = 5.678 hr • ft2 • °F/Btu

1 kW = 3412 Btu/hr
TF = 1.8(Tk - 273) + 32

and is used to design large surface condensers. It is a function of several variables such 
as velocity, tube material, and fluid temperature and is defined as

CF = Uf/Uc (21.26)

The fouling factor and cleanliness factor are related by

CF =
1

1 + UcRf
(21.27)

21.3.3 Effect of Fouling on Pressure Drop
The effect of fouling on hydraulic performance is often neglected in the design of heat 
exchangers, but should be considered when the fouling deposit significantly reduces the 
flow area. In tubular exchangers, the fouling layer roughens the surface, decreases the 
inside diameter, and increases the outside diameter of the tubes. A shellside deposit 
also influences the shellside flow patterns, in some cases actually enhancing the 
exchanger performance by plugging or reducing unwanted shellside fluid bypass 
streams. The effects on shellside performance are not easy to quantify, but the tubeside 
effects are, and the remainder of this discussion will center around the hydraulic effects 
of tubeside fouling.

Inside the tube, the fouling layer decreases the inside diameter and roughens the 
surface resulting in a:

Pressure drop increase due to the roughened surface.
Pressure drop increase due to the reduced flow area.
Velocity increase due to the reduced flow area.

An exaggerated schematic of the fouled surface is shown in Fig. 21.5.
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Tube

Clean 
inside 

diameter

Figure 21.5. Sketch of tube cross section with fouling on inside.

To determine the effects of the fouling layer on the hydraulic performance, a 
computational procedure for tubeside flow is:

Step 1. Determine the clean pressure drop.
Step 2. Determine the fouling-layer thickness.
Step 3. Determine the velocity under fouled conditions assuming constant volumet

ric flow rate.
Step 4. Determine the pressure drop under fouled conditions.

In this discussion, turbulent flow is assumed, with the friction factors given by [30]

/ = 0.0014 + 0.125 Re-0 32 for smooth tubes (21.28)

/= 0.0035 + 0.264 Re-0 42 for rough tubes (21.29)

and the pressure drop calculated by

The fouling-layer thickness is determined by assuming the fouling layer to be a 
cylindrical thermal resistance, much in the same way that the tube-wall resistance is 
determined. The fouling resistance is

Rf \n(dc/df)
Ac 2<nkfL (21.31)

Equation (21.31) is rearranged to express the fouled diameter as a function of the
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TABLE 21.5. Fouling-Deposit Effect on Pressure Drop

Pressure Drop, 
Pa/m

Change, 
%

Clean condition
Fuuled condition

1740 —

with area reduction 
only

2545 46

rouled condition
with area reduction 
and rough surface

2995 72

CONVERSION FACTOR

1 Pa/m = 0.0064 (lbz/ft2 )/ft

fouling resistance:

d, = dcexp\ (21.32)

For most liquid-side deposits, the thermal conductivity has been found to vary between 
0.20 and 10 W/(m • K) [0.116 and 5.78 Btu/(hr • ft • °F)] (see Sec. 21.3.4).

The use of this procedure and the effect on pressure drop are best illustrated by an 
example. Consider a shell-and-tube exchanger with 25.4 mm (1 in.) O.D., 16 BWG 
tubes using cooling-tower water on the tubeside. The water flows at 1.83 m/s (6 ft/s) 
with a tubeside fouling resistance of 0.000528 nr • K/W (0.003 hr • ft2 • °F/Btu). 
Table 21.5 summarizes the pressure drop contributions due to the increase in the 
velocity and the roughness of the deposit as calculated by this procedure. These results 
illustrate that the changes in pressure drop associated with fouling deposits may be 
substantial and must be considered when designing a tubular heat exchanger.

In gas-side service, the effect of fouhng on pressure drop may be more pronounced 
than that on heat transfer. For fully developed flow conditions, Shah [31] has shown 
that

‘“3? (21.33)

Tor a fixed mass flow rate, there will be a slight increase in h as the fouhng deposit 
builds up due to increases in fluid velocity and deposit-surface roughness. However, the 
overall heat transfer coefficient will be reduced because of the additional thermal 
resistance, which depends on the thickness and thermal conductivity of the deposit. 
Since A^ is inversely proportional to the pressure drop for flow inside ducts is 
highly sensitive to reductions in the hydraulic diameter due to fouling. However, for 
external flows in tubular exchangers, the hydraulic diameter depends on the tube and 
layout geometry and can be relatively large for heat-recovery applications. In such 
cases, the effect of fouling on pressure drop may not be as great as that on heat 
transfer.
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21.3.4 Tabulated Fouling Factors
Tabulated values of both liquid-side and gas-side fouling factors are presented in this 
section. In addition, properties of representative fouling deposits are also given in 
tabular form. It should be pointed out that although fouling deposits are generally 
nonuniform, spatial averages are usually implied in such tabulated data.

Typical liquid-side fouling factors are shown in Table 21.6 for three standard fluid 
classifications. The values given are those typically encountered in applications. The 
seawater values are for once-through cooling such as in coastal-based utility plants. 
Note there are no “usual” values for hydrocarbon fluids. The general classification of 
hydrocarbon fluids covers a wide range of liquids, and it is difficult to establish 
commonly used values. Additionally, there is limited information available on hydro
carbon fouling, since the fluids and applications tend to be proprietary. Sources of 
fouling resistances in the open literature are very limited, in part due to the relatively 
recent interest in fouling research, the complexity of the problem, and the proprietary 
nature of many of the processes involved. In general, the designer is left with the 
following sources of fouling information:

Proprietary research data
Plant data
Personal or company experience
TF.MA tables.

The tables found in the Tubular Exchanger Manufacturers Association (TEMA) 
handbook [32] are probably the most often referenced source of fouling factors used in 
the design of exchangers. A summary of the liquid-fouling factors from the TEMA 
tables is given in Table 21.7, and additional fouling factors from recent published 
literature in Table 21.8. It is important to understand the basis of these tables to use 
them properly. The tables were developed ca. 1942 and represent the combined 
wisdom, knowledge, and experience of individuals from industry at the time the first 
edition of TEMA was published. The values are not asymptotic fouling factors; 
instead, they are values that allow the exchanger to perform satisfactorily in the 
designated service for a reasonable time between cleaning. This might mean that an 
exchanger is sufficiently oversurfaced to provide proper performance regardless of the 
fouling present. The TEMA tables have not been significantly updated in later editions 
(up to the sixth edition at this writing). After the sixth edition was released, a 
commission of representatives from TEMA and Heat Transfer Research, Inc. (HTRI) 
was established to provide a substantial update. Release of that update has not been 
announced at this writing.

Fluid
Range of Values, Typical Value,

m2 ■ K/W m2 • K/W

TABLE 21.6. Typical Values of Fouling Resistances

Seawater O.OOOO352-O.OOO881 0.0000881
Cooling water 0.0001760-0.00141 O.OOO352
Hvdrocarbons 0.0000352-0.00881 None

CONVERSION FACTOR

1 m2 • K/W = 5.678 hr • ft2 • °F/Btu



TABLE 21.7. TEMA Recommended Liquid-Side Fouling Factors [32]

WATER

Types of Water

Fouling Factor, m2 • K/W
Heating-Medium Temp. < 389 K 

Water Temp. < 325 K
389-478 K 

> 325 K
velocity < 0.914 :> 0.914 m/s velocity < 0.914 > 0.914 m/s

Seawater 0.0000881 O.OOOO881 0.000176 0.000176
Brackish water 0.000352 0.000176 0.000528 0.000352
Cooling tower and artificial spray pond:

Treated makeup 0.000176 0.000176 0.000352 0.000352
C ntreated 0.000528 0.000528 0.000881 0.000704

City or well water (e.g., Great Lakes) 0.000176 0.000176 0.000352 0.000352
River water:

Minimum 0.000352 0.000176 0.000528 0.000352
Average 0.000528 0.000352 0.000704 0.000528

Muddy or silty 0.000528 0.000352 0.000704 0.000528
H ird (over 15 grains/gal) 0.000528 0.000528 0.000881 0.000881
Fngine jacket 0.000176 0.000176 0.000176 0.000176
Distilled or closed-cycle condensate 0.0000881 0.0000881 0.0000881 0.0000881
Treated boiler feedwater 0.000176 O.OOOO881 0.000176 0.000176
Boiler blowdown 0.000352 0.000352 O.OOO352 0.000352

INDUSTRIAL FLUIDS

Fouling Factor, m2 • K/WFluid
Fuel oil 0.000881
Transformer oil 0.000176
Engine lube oil 0.000176
Quench oil 0.000704
Refrigerant liquids 0.000176
Hydraulic fluid 0.000176
Industrial organic heat 0.000176

transfer media
Molten heat transfer salts 0.000881

CHEMICAL PROCESSING STREAMS

NATURAL GAS—GASOLINE PROCESSING STREAMS

Fluid Fouling Factor, m2 • K/W
MEA and DEA solutions 
DEG and TEG solutions 
Stable side draw and 

bottom product
Caustic solutions 
Vegetable oils

0.000352
0.000352
0.000176

0.000352
0.000528

Fluid
Lean oil
Rich oil
Natural gasoline and liquified 

petroleum gases

Fouling Factor, tn2 • K/W
0.000352
0.000176
0.000176

21*19



TABLE 21.7. (continued)

CRUDE AND VACUUM LIQUIDS

CRUDE OIL

Temp , 
K

Dry Salt

Velocity < 0.610 0.610-1.22 > 1.22 m/s Velocity < 0.610 0.610-1.22 < 1.22 m/s

256-366 0.000528 0000352 0.000352 0.000528 0.000352 0.000352
367-422 0.000528 0.000352 0.000352 O.OOO881 0.000704 0.000704
422-533 0.000704 0 oi)0528 0.000352 0.00106 O.OOO881 0.000704
> 533 O.OOO881 0.000704 0.000528 0.000123 0.000106 O.OOO881

Fluid
Gasoline
Naptha and light distillates
Kerosene
Light gas oil
Heavy gas oil
Heavy fuel oils
Asphalt and residuum

Fouling Factor, m2 • K/W

0.000176
0.000176
0.000176
0.000352
0.000528
0.000881
0.00176

CRACKING AND COKING UNIT STREAMS

Fluid

Light crude oil 
Heavy cycle oil 
Light coker gas oil 
Heavy coker gas oil 
Bottoms slurry oil" 
Light liquid products

Fouling Factor, m2 • K/W

0.000352
0.000528
0.000528
0.000704
0.000528
0.000352

LIGHT ENDS AND LUBE OIL PROCESSING STREAMS

Fluid Fouling Factor, m2 • K/W
Liquid products 0.000176
Absorption oils 0.000352
Alkylation trace acid streams 0.000352
Reboiler streams 0.000528
Feed stock 0.000352
Solvent feed mix 0.000352
Solvent 0.000176
Extract 0.000528
Raffinate 0.000176
Asphalt O.OOO881
Wax slurries 0.000528

CONVERSION FACTORS

1 m2 ■ K/W = 5.678 hr • ft2 • °F/Btu
1 m/s = 3.281 ft/s

Tf = 1.8(Tk - 273) + 32

"Minimum velocity 1.37 m/s.

21*20
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TABLE 21.8. Additional Liquid-Side Fouling Factors

Fluid Deposit
Velocity, 

m/s
Surfat e 

Temperature,
Fouling Factor,

K m2 -K/W Reference

W ater

River
water

Water

Calcium 
carbonate

Corrosion 
products

Aluminum/ br is • 
corrosion 
products

330 0.00005-0.00025

0.0015-0.008

0.009

Watlinson [33]

McAllister et al. [34]

Gutzeit [35]

Coastal Biofilm 2-8 304 O.OOOO5-O.OOO35 Ritter et al. [36]
seawater

Cooling 
tower

Calcium 
phosphate

2 310 0.00025 Parry et al. [37]

Open Biofilm 1.8 298 0.0009-0 0015 Panchai et al. [38]
seawater

Coastal Biofilm 2 308 0.00026 Nosetani et al. [39]
seawater

Open Biofilm 1.8 303 0.00018 Sasscer et al. [41]
seawater

Geothermal Silica Cross flow 343 0.00002 Seki et al. [42]
brine

C rude
<’il

Desalter
emulsion

1.3 0.00881 Lambourn and Durrieu [43]

Cooling
water with

Zinc
silicate

1-2.5 327-350 0.00001-0.0003 Knudsen et al. [44]

inhibitors

CONVERSION FACTORS

1 tn2 • K/W = 5.678 hr • ft2 ■ °F/Btu
1 m/s = 3.281 ft/s

7/ = 1.8(Tk - 273) + 32

Fouling deposits from gaseous streams can be more severe in magnitude than those 
from liquid streams; however, due to the lower overall coefficients, the effect on the 
surface area is not as great as might be expected. The TEMA tables have limited 
fouling factors for gas-side service as seen from Table 21.9 [32], A study sponsored by 
the U.S. Department of Energy has produced additional gas-side fouling factors from 
industrial sources, given in Table 21.10 [7]. Weierman [45] has made recommendations 
regarding fouling factors, gas velocity, cleaning provisions, and fin spacing as sum
marized in Table 21.11.

As discussed in Sec. 21.2, the thermophysical properties of fouling deposits are 
needed to relate fouling resistance to the deposit mass. Properties of selected liquid-side 
and gas-side fouling deposits are presented in Table 21.12. The availability of such 
information in the open literature is very limited.

21.3.5 Heat Exchangers for Liquid-Side Fouling Service
A variety of heat exchangers are used in liquid-side fouling service. The most com
monly used units include:

Shell-and-tube exchangers
Plate heat exchangers
Spiral exchangers
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TABLE 21.9. TEMA Fouling Factors for Gases [32]

Type of Gas Fouling Factor, 
m2 • K/W

INDUSTRIAL

Manufactured gas 0.00176
Engine exhaust gas 0.00176
Steam (non-oil-bearing) 0.0000880
Exhaust steam (oil-bearing) 0.000176
Refrigerant vapors 0.000352
Compressed air 0.000325
Industrial organic heat transfer media 0.000176

CHEMICAL PROCESSING

Acid gas
Solvent vapors
Stable overhead products

0.000176
0.000176
0.000176

PETROLEUM PROCESSING

Atmospheric tower overhead vapors 0.000176
Light naphthas 0.000176
Vacuum overhead vapors O.OOO352
N 'dural gas 0.000176
Overhead products 0.000176
Coke-unit overhead vapors 0.000352

CONVERSION FACTOR

1 m2 ■ K/W = 5.678 hr ■ ft2 • °F/Btu

This section focuses on designing for liquid-side fouling service using shell-and-tube 
exchangers, including low-finned tubes as a design option, and plate heat exchangers.

Shell-and-Tube Exchangers. Shell-and-tube heat exchangers are the most widely 
used ones in the process industry. Tubeside fouling deposits in shell-and-tube ex
changers are reasonably uniform in thickness, with some variation from the tube inlet 
to outlet. The majority of the fouling data specified in sources such as the TEMA tables 
are related specifically to tubeside fouling.

The nonuniformity of shellside flow patterns leads to nonuniform deposits on the 
shellside of shell-and-tube exchangers (Fig. 21.6). Particulate material tends to settle 
out by sedimentation in the baffle-to-shell comers where the velocity is low and often 
recirculatory. Additionally, the temperature variations due to nonuniform heat transfer 
coefficients result in higher reaction rates for chemical-reaction fouling processes. These 
areas suffer from heavier deposits.

Some benefit is derived from the heavier deposition in the baffle-to-shell corners. 
These regions are generally not a major contributor to the total heat transfer process on 
the shellside, so the loss of surface area is not serious. The presence of the deposits 
blocks the so-called leakage or bypass streams that allow the shellside fluid to pass 
between the baffle and shell and through the tube-to-baffle clearances. The plugging of 
these bypass streams redirects the flow into the main crossflow region where most of
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CLEAN GAS

TABLE 21.10. Comparison of Available Gas-Side Fouling Factors [7]

Gas-Side Fouling Factor, m2 • K/W

Weierman Zink TEMA Rogalski Henslee and
[45] [46] [32] [47] Bogue [48]

Natural gas 
Propane 
Butane 
Gas turbine

0.0000881-0.000528
0.000176 -0.000528
0.000176 -0.000528
0.000176

0.000176

— — —

AVERAGE GAS

No. 2 oil 0.000352 -0.000704 0.000528 — — _
Gas turbine 0.000264 — — 0.000528-0.00669
Diesel engine 0.000528 — 0.00176 — 0.0211-0.0247

DIRTY GAS

No. 6 oil 0.000528 -0.00123 O.OOO881 — — —
Crude oil 0.000704 -0.00264 — — — —
Residual oil O.OOO881 -0.00352 0.00176 — — —
Coal O.OOO881 -0.00881 — — — —

MISCELLANEOUS

Sodium-bearing waste — 0.00528 — — —
Metallic oxides — 0.00176 — — —
FCCU catalyst fines — 0.00141 — — —

CONVERSION FACTOR

1 m2 • K/W = 5.678 hr • ft2 • °F/Btu

the heat transfer occurs. The crossflow region has significant turbulence induced on the 
flow by the tube bundle, which tends to scrub the tubes and minimize the amount of 
fouling in this region.

Plate Heat Exchangers. Plate exchangers are widely used in the processing of 
foodstuff's when frequent and complete cleaning is required. The plates of most plate 
heat exchangers are corrugated and yield high heat transfer coefficients as a result of 
the high turbulence caused by the tortuous path of fluids passing through the ex
changer. This turbulence reduces the amount of fouling in the same way as on the 
shellside of a shell-and-tube exchanger. Figure 21.7 shows the data obtained by Cooper 
et al. [59] on a plate exchanger operating in cooling tower water service. The values are 
very low compared to those experienced by a tubeside test unit operated simulta
neously.

Velocity as a Design Parameter. The TEMA tables specify velocity ranges for the 
tabulated fouling factors. However, the magnitude of this velocity for a given geometry 
affects the specific fouling factor selected. The nominal operating velocity is about 1.83
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TABLE 21.11. Design Parameters for Finned Tubes in Fossil-Fuel Exhaust Gases [45]

Type of Flue Gas
Fouling Factor, 

m2 • K/W
Minimum Spacing 
Between Fins, m

Maximum Gas 
Velocity to 

Avoid Erosion, 
m/s

CLEAN GAS (CLEANING

Natural Gas
Propane
Butane
Gas Turbine

DEVICES NOT REQUIRED) 

0.0000881-0.000528 
0.000176 -0.000528 
0.000176 -0.000528 
0.000176

0.00127-0.003
0.00178
0.00178

30.5-36.6

AVERAGE GAS (PROVISIONS FOR FUTURE INSTALLATION OF CLEANING DEVICES)

0.00305-0.00384 25.9-30.50.000352 -0.000704
0.000264
0.000528

No. 2 Oil 
Gas Turbine 
Diesel Engine

DIRTY GAS (CLEANING DEVICES REQUIRED)

No. 6 Oil 0.000528 -0.00123 0.00457-0.00579 18.3-24.4
Crude Oil 0.000704 -0.00264 O.OO5O8
Residual Oil O.OOO881 -0.00352 O.OO5O8
Coal 0.000881 -0.00881 0.00587-0.00864 15.2-21.3

CONVERSION FACTORS

1 m2 ■ K/W = 5.678 hr • ft2 • °F/Btu
1 m = 39.37 in.

1 m/s = 3.281 ft/s

m/s (6 ft/s) for tubeside flow, 0.610 m/s (2 ft/s) for shellside flow, and 0.305 m/s (1 
ft/s) for plate exchangers. The fouling observed in plate exchangers and the shellside 
of shell-and-tube exchangers is much less than that for tubeside flow. The explanation 
of this anomaly lies in the definition of flow area and the amount of induced turbulence 
for a given geometry. The flow area in tubeside flow is simply the cross-sectional area, 
while the flow area for shellside flow is defined as the open space between baffles at the 
shell diameter. The plate-exchanger flow area is based on the cross-sectional area 
between the gaskets, assuming smooth plates. The liquid turbulence in the latter two 
geometries is much higher at nominal operating velocities than for tubeside flow; 
therefore, the fouling factor is lower than the value found in the TEMA tables for this 
velocity. Hence, care must be exercised when comparing the expected performance of 
different geometries or when using data from one geometry and applying it to another 
situation.

Effects of Low-Finned Tubes on Fouling Design. External low-finned tubes are 
used sometimes to improve the performance of a shell-and-tube exchanger. Such tubes 
have finned-to-plain tube area ratios of 2 to 3 with 0.591 to 1.18 fins/mm (15 to 30 
fins/in.). The fin diameter is less than the plain end diameter, which permits the 
retubing of heat exchangers with such tubes to increase the total available exchanger 
surface area. However, tubeside fouling can offset this effect.

Equation (21.25) shows that the inside fouling resistance is magnified by the- 
outside-to-inside surface area ratio. The use of low-finned tubes therefore amplifies an
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Thermal

TABLE 21.12. Properties of Representative Fouling Deposits

Reference Type of Deposit
Temperature, 

K
Thickness, Density, 

mm kg/m3
Conductivity, 
W/(m • K)

Relative
Roughness

Chow ct al. [49] MHD seed slag 700-810 2.6-9.5 — 0.33-0.40 —
W.ight [50] Coal-fired boiler 673-1373 — — 0.1- 10.0 —
Characklis [51] Biofilm — 0.4-5.0 — — 0.003-0.157
Characklis [52] Biofilm .— — — 0.57-0.71 —
Lister [53] Calcium carbonate — 1.65-2.62 — 2.6 0.0001-0.0006
Sherwood et al. [54] Calcium carbonate — — — 2.26-2.93 —

Calcium sulfate — — — 2.31 —
Calcium phosphate — — — 2.60 —
Magnesium phosphate —- — — 2.16 —
Magnetic iron oxide — — — 2.88 —
Analcite — — — 1.27 —
Biofilm — — — 0.63 —

Raask [55] Coal-fired boiler 500-1200 0-50 500 0.03-3.0 —
Pritchard [56] Calcium carbonate — — — 1.6 —
Rogalski [47] Oil-fired

diesel exhaust
— — — 0.0353-0.047 —

W -.goner et al. [57] Coal-fired boiler 889 — — 0.0520 —
Characklis [58] Biofilm 300-301 10-40 0.17-1.08 —
Parry [37] Calcium phosphate 310 0.25 1.0 —

CONVERSION FACTORS

Tf = 1.8(TK - 273) + 32 1 kg/m3 = 0.0624 lbm/ft3
1 mm = 0.00394 in. 1 W/(m • K) = 0.578 Btu/(hr • ft • °F)

existing tubeside fouling factor, offsetting the beneficial effects of the increased surface 
area. The heat duty is proportional to the product UA, and although the area is 
increased when low-finned tubes are used, the overall heat transfer coefficient is 
reduced when tubeside fouling is present. This effect is illustrated in the following 
example.

A shellside condenser, with cooling tower water on the tubeside, is not performing 
satisfactorily due to tubeside fouling. There is negligible shellside fouling. The replace
ment of the plain tubes with low-finned tubes having 1.18 fins/mm (30 fins/in.) will 
increase the available surface area by nearly a factor of 3. Table 21.13 shows the

Shellside 
inlet

Fouling deposits Shellside 
outlet

Figure 21.6. Nonuniformity of shellside fouling deposits.
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Figure 21.7. Fouling in a plate heat exchanger [59].

conditions for this example. For the plain tube, the fouled overall coefficient is 1909 
W /(m2 • K) [336 Btu/(hr • ft2 • °F)]. For the low-finned tube, the overall coefficient 
(with the same tubeside fouling factor) is only 771 W/(nr • K) [136 Btu/(ht • ft2 • °F)], 
due to the area-ratio magnification of the tubeside fouling factor. For the plain tube, 
the product UtA per unit length L is 153 (W/K)/m, while that for the low-finned tube 
is 179 (W/K)/m, an increase of only 17%, even though the surface area is increased

Value

TABLE 21.13. Fouling in a Plain and a Low-Finned Tube

Quantity Plain Tube Low-Finned Tube

<<„ 25.4 mm 25.4 mm
d, 22.9 mm 22.9 mm
* . 0.00018 m2 • K/W 0.00018 m2 • K/W
R O 0 0
hi 8517 W/(m2 • K) 8517 W/(m2 • K)
^0 8517 W/(m2 • K) 8517 W/(m2 • K)

17.3 W/(m • K) 17.3 W/(m ■ K)
Area ratio

outside : inside 1.11
finned: bare end 2.9
finned: inside 3.22

1909 W/(m2 • K) 771 W/(m2 • K)
C 4/L 153 (W/K)/m 179 (W/K)/m

CONVERSION FACTORS

1 mm = 0.0394 in.
1 m2 ■ K W = 5.678 hr ■ ft2 • CF/Btu

1 W (m ■ K) = 0.578 Btu/(hr ■ ft ■ F)
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290%. Assumptions used in the calculations include identical thermal wall resistance 
for both plain and low-finned tubes and 100% fin efficiency for the low-finned tubes.

21.3.6 Heat Exchangers for Gas-Side Fouling Service
The designer must consider the type of heat exchanger, materials of construction, 
geometric constraints, and cleaning provisions for gas-side fouling service. The basis 
for determining the type of exchanger must include the gas-side fouling potential, 
corrosion potential, erosion potential, and process requirements. Possible units that can 
be used include:

Recuperators
Regenerators
Fluidized bed exchangers
Direct-contact exchangers
Heat-pipe exchangers.

The placement of the dirty gas with respect to the process stream is also an important 
consideration.

The temperature operating regime of the exchanger will determine the materials of 
construction requirements. Three temperature regimes have identified [7]:

Low temperature [< 533 K (< 500°F)]. Characterized by water and acid con
densation and smut deposition. In this regime, the designer can maintain the 
surface temperature above the dewpoint by preheating the secondary fluid; use 
coatings such as galvanizing, Teflon, and plastics; and use alternative materials 
with high corrosion resistance such as glass, stainless steel, Corten, Hastelloy, 
and Inconel.

Intermediate temperature [533 to 1090 K (500 to 1500°F)]. This is the operating 
range of most heat exchangers. Material recommendations include the use of 
carbon steels up to 811 K (1000°F); stainless steels; and superalloys such as 
Hastelloy.

High temperature [> 1090 K (> 1500°F)]. Characterized by extremely hostile 
environments including corrosive, erosive, and reactive gases. Material recom
mendations include the use of stainless steels; superalloys; and ceramics [re
quired for surface temperatures greater than 1367 K (2000°F)].

The geometry of the exchanger must also take into account the fouling environment 
in which the exchanger will operate. These considerations include the possible use of:

Inline layouts to provide cleaning lanes for sootblowers
Wide pitches for dirty fuels and gases
Large fin spacing or possibly plain tubes for dirty gases
Thick fins in abrasive external environments
Sleeve inserts in abrasive internal environments
Shield tubes where erosion or corrosion is a potential problem
Enhancement on both sides when there is gas-to-gas exchange of heat.

Cleaning provisions are also dependent on the type of service and may be designed 
using either an on-line or off-line technique. Gas-side cleaning techniques are discussed 
in Sec. 21.5.4.
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21.4 LIQUID-SIDE PREVENTION, MITIGATION, AND 
ACCOMMODATION TECHNIQUES

Although fouling is not completely avoidable, there are prevention, mitigation, and 
accommodation techniques to minimize the effects of fouling. Discussed in this section 
are the three important areas pertaining to liquid-side fouling—operational considera
tions, additive effects, and cleaning options.

21.4.1 Control of Operating Conditions
The amount of fouling that occurs in a heat exchanger is directly related to the 
operating conditions, especially the velocity of the fluid and the exchanger surface 
temperature. An increase in fluid velocity will generally cause a decrease in the amount 
of fouling deposit on the heat transfer surface, and an increase in surface temperature 
will increase chemical-reaction fouling deposition and will decrease the fouling deposi
tion from biological sources (extremely low temperatures will also remove biological 
fouling deposits). Often an exchanger is overdesigned, with extra surface area allowed 
for anticipated fouling. When operation begins in the clean exchanger, the performance 
is better than that for which it was designed, requiring modification of the operating 
conditions. These modifications generally tend toward unfavorable fouling conditions, 
with a lower velocity and higher surface temperature. In effect, the clean exchanger is 
operated so that the unit will foul as predicted in the design calculations. Knudsen [60] 
suggested that the final fouling resistance will be even higher than estimated in the 
design calculations.

21.4.2 Additives
The use of chemical additives to minimize fouling is common, and a number of 
references are available to assist the engineer in the selection and use of such additives. 
Most notable of these are the reference books produced by chemical-treatment compa
nies such as Drew Chemical Company and Betz Laboratories, Incorporated [61,62], 
Treatment of cooling water is well summarized in a recent article by Strauss and 
Puckorious [63].

The most commonly used liquid in heat exchangers is water, generally cooling tower 
water, and the best understanding of additive effects is also in water treatment. 
Generally, the types of fouling found in cooling waters are crystallization, particulate, 
biological, and corrosion. Chemical additives are used to control fouling from these 
sources. The following comments are summarized from Strauss and Puckorious con
cerning the use of additives and treatment control to minimize fouling effects:

Crystallization fouling. Minerals from the water are removed by softening, solubility 
of the fouling compounds is increased by the use of such chemicals as acids and 
polyphosphates, and crystal modification by chemical additives is used to make 
deposits more easily removed.

Particulate fouling. Particles are removed mechanically by filtration, flocculants are 
used to aid filtration, and dispersants are used to maintain particles in suspen
sion.

Biological fouling. Chemical removal is most common, especially the use of chlorine 
and other biocides, although thermal backwash or temperature elevation is also 
used.
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Corrosion fouling. Additives in the form of inhibitors or passivators are used to 
produce protective films on the metal surfaces, requiring the addition of chem
icals to the water.

Corrosion inhibitors are required to minimize the corrosion, but they also produce 
fouling deposits which can reduce the effectiveness of an exchanger. Knudsen et al. [44] 
report that the fouling resistance increases with increasing pH and increasing inhibitor 
concentration.

The use of additives in other Equids is not as well documented as for water. 
However, Van der Wee and Tritsman [64] report effective use of steam condensate in 
controlling desalting-exchanger fouling in crude-oil streams, and Lambourn and 
Dirrieu [43] report a substantial improvement in the performance of a crude hot 
preheat exchanger located upstream of the furnace when a commercial dispersant is 
used.

21.4.3 Surface Cleaning Techniques
A decrease in the performance of a heat exchanger beyond acceptable levels requires 
cleaning. In some applications, the cleaning can be done on line to maintain acceptable 
performance without interruption of operation. At other times, off-line cleaning must 
be used. A summary of cleaning approaches is given by Garrett-Price et al. [9],

On-Line Cleaning. On-line cleaning generally utilizes a mechanical method designed 
for only tubeside and requires no disassembly. In some applications, flow reversal is 
required, but the interruption of the service is minimal. Chemical feeds can also be 
used as an on-line cleaning technique, but may upset the rest of the liquid service loop. 
The two mechanical techniques available for on-line tubeside cleaning are the sponge
ball and brush systems. The sponge-ball system recirculates rubber balls through a 
separate loop feeding into the upstream end of the exchanger. The brush system has 
capture cages at each end of each tube, and flow reversal is required. The main 
advantage of on-line cleaning is the continuity of service of the exchanger and the hope 
that no cleaning-mandated downtime will occur. The principal disadvantage is the 
added cost of a new heat exchanger installation or the large cost of retrofits. Addition
ally, there is no assurance that all tubes are being cleaned sufficiently.

Off-Line Chemical Cleaning. Off-line chemical cleaning is a technique that is used 
very frequently to clean exchangers. Some refineries and chemical plants have their 
own cleaning facilities for dipping bundles or recirculating cleaning solutions. How
ever, an outside organization is often brought in to perform the cleaning during a 
turnaround. In general, this type of cleaning is designed to dissolve the deposit by 
means of a chemical reaction with the cleaning fluid.

The advantages of this approach include the cleaning of difficult-to-reach areas. 
Often in mechanical cleaning, there is incomplete cleaning due to regions that are 
difficult to reach with the cleaning tools. U-tube bundles are especially bad, since the U 
bends are not cleaned by brushes and lances, and there is a possibility of plugging them 
with the removed debris. There is no mechanical damage to the bundle from chemical 
cleaning, although there is a possibility of corrosion damage due to a reaction of the 
tube material with the cleaning fluid. This potential problem may be overcome through 
proper flushing of the unit.

Disadvantages of off-line chemical cleaning include corrosion damage potential, 
handling of hazardous chemicals, use of a complex procedure, and the disassembly 
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required with all off-line techniques. The hazardous chemicals often used in chemical 
cleaning require knowledgeable personnel and probably should be left to the compa
nies that specialize in chemical cleaning.

Off-Line Mechanical Cleaning. Off-line mechanical cleaning is a frequently used 
procedure and can often be done by the plant personnel. The approach is to abrade or 
scrape away the deposit by some mechanical means. Typical mechanical methods of 
cleaning include high-pressure water (20,000 psi), steam, lances, and water guns. 
High-pressure water works well for most deposits, but frequently a thin layer of the 
deposit is not removed, resulting in a greater affinity for fouling when the bundle is 
returned to service. Some damage from fluid impingement is also possible. High- 
temperature, high-pressure steam is useful for hydrocarbon deposits. Lances are 
scraping devices attached to long rods and sometimes include a water or steam jet for 
flushing and removing the deposits. Water guns are used with projectiles to clean each 
tube individually. The projectile is usually a stiff bristled brush, rubber plug, or metal 
scraper.

The advantages of off-line mechanical cleaning include excellent cleaning of each 
tube and good removal potential of very tenacious deposits. Disadvantages include the 
inability to clean U-tube bundles successfully, the usual disassembly problem, and the 
great labor needed.

21.5 GAS-SIDE PREVENTION, MITIGATION, AND ACCOMMODATION 
TECHNIQUES

A number of prevention, mitigation, and accommodation techniques are used to deal 
with gas-side fouling. These techniques may be grouped under the general categories 
of: (1) fuel cleaning techniques, (2) control of combustion conditions, (3) fuel and gas 
additives, (4) surface cleaning techniques, (5) quenching, (6) control of operating 
conditions, and (7) gas cleaning techniques.

21.5.1 Fuel Cleaning Techniques
Ash and other constituents such as sodium, sulfur, and vanadium in fuels are responsi
ble for the deposits which form on heat transfer surfaces through the various gas-side 
fouling transport processes. Therefore, the removal of any of these constituents from 
fuels prior to combustion is highly desirable. Processes are available for both the 
desulfurization and de-ashing of residual fuel oils [65], Mechanical and physical 
cleaning methods, including gravity separation and froth flotation, are available for 
removing mineral matter from coal (Essenhigh [66]). However, chemical methods for 
cleaning coal are still in the conceptual or experimental stage.

21.5.2 Control of Combustion Conditions

An important consideration in the prevention of gas-side fouling and corrosion is the 
control of combustion conditions to minimize the formation of particulate matter in 
exhaust gases. The type of fuel burned, type of combustion equipment, and burner 
design are all important factors in the formation of particulates such as soot in 
combustion gases. Other important combustion parameters include fuel injection 
pattern, fuel injection schedule, and fuel viscosity control. White [67] investigated the 
effects of premixing a fuel (JP-5) and oxidizer (air) on gas-side fouling downstream of a
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gas turbine. He found that fuel-air premixing eliminated the production of nearly all 
soot, and it was virtually impossible to foul the heat exchanger under these conditions.

Preheating combustion air, a technique which is widely used in practice, can 
improve combustion efficiency and reduce fouling, whereas varying the quality of the 
fuel supply can contribute to fouling problems. For example, the quality of coal 
supplied to industrial users tends to be much more variable than that provided for 
electric utilities. A final combustion-related example is the classical problem of gas-side 
fouling and corrosion caused by H2SO4 condensation onto low-temperature heat 
transfer surfaces. One solution to this problem is to control the amount of excess air, 
which in turn limits the conversion of SO2 to SO3, and hence the amount of H2SO4 
produced.

21.5.3 Fuel and Gas Additives
Under some conditions, chemical additives can improve combustion efficiency, reduce 
emissions, and mitigate the effects of gas-side fouling and corrosion. Many proprietary 
additives have been marketed for use with both oil- and coal-fired systems.

In the case of residual oils, there are three chemical elements which cause fouling 
problems which can be alleviated with additives: sulfur, vanadium, and sodium. 
Although some sodium occurs naturally in crude oil, most of that found in residual oils 
results from contamination by seawater during ocean transport. Refineries use a 
desalting procedure which removes all but about 10 to 30 ppm of sodium in the oil. 
During the combustion of residual oils, most of the sulfur bums to become SO2. About 
1% of the SO2 is converted to SO3, which in turn combines with water vapor in the 
combustion gases to form H2SO4. This conversion of SO2 to SO3 can continue through 
the boiler as a result of catalytic action by iron and vanadium compounds. Meanwhile, 
the vanadium in the residual oil is oxidized to V2O5, which may then react with the 
sodium and other trace metals in the fuel to form metal vanadates. The various 
additives which have been used to attack these problems include MgO, Mg(OH)2, Mg 
metal, Mg-Mn, and dolomite.

Battelle Columbus Laboratories, under the sponsorship of the Electric Power 
Research Institute, was recently involved in two activities—a literature review and a 
workshop—which report the state of the art for coal and oil additives [68,69], 
Although this work was directed primarily toward the utility industry, the results are 
generally applicable. The conclusions reached by the workshop participants regarding 
the use of additives in combatting residual oil fouling and corrosion include:

MgO in an oil dispersion is the additive most active in combatting corrosion from 
vanadium and sulfur trioxide.

Many other additives are useful, depending on circumstances.
Additive performance is site-specific; experience in one boiler is not directly 

transferable to another.
There are many unanswered questions regarding additive use, including the most 

effective test-program procedures.

Much less work has been done in the area of additives in coal-fired systems than for 
residual oils where MgO-oil, MgO + Mn-dry, CaCO3, and boron-based additives have 
been used in an attempt to combat high-temperature fouling and ash modification. 
Only in the case of boron-based additives has there been significant experience, and 
even then only in the modification of ash. Regarding coal additives, the workshop



21 «32 rout ING WITH CONVECTIVE HEAT TRANSFER

participants drew the following rather general conclusions:

The use of additives developed for oil firing has been helpful in some cases, but is 
neither optimum nor sufficient for all cases.

Better data are needed on a range of problems and applications, including slag 
behavior, deposit effects, corrosion suppression, plume-visibility reduction, and 
coal handling.

Most additives, for both coal and oil, are magnesium-based. The following brief 
discussion provides some basis for the success of such additives in fuels where sodium 
is an important reactive constituent. The deposition of sodium sulfate, which is formed 
by the reaction:

Na2 + SO3 -> Na2SO4 (21.34)

occurs widely in many industries. The Na2SO4 deposits can also react with the SO3 in 
the gas stream to form sodium iron trisulfate:

3Na2SO4 + Fe2O3 + 3SO3 -> 2Na3Fe(SO4)3 (21.35)

which is a tenacious, corrosive deposit. On the other hand, magnesium oxide can also 
react with SO3 to form magnesium sulfate deposits:

MgO + SO3 -> MgSO4 (21.36)

which are softer and more friable than Na2SO4, and hence may be removed from the 
surface more easily. It should be pointed out that MgO tends to be more reactive with 
SO, than Na; therefore, the reaction in Eq. (21.36) is more likely to occur than that in 
Eq. (21.34). In addition, the magnesium sulfate can react with sodium sulfate:

2MgSO4 + Na2SO4 Na2Mg2(SO4)3 (21.37)

to produce sodium magnesium trisulfate, Na2Mg2(SO4)3, which is softer and more 
friable than the sodium iron trisulfate discussed earlier.

21.5.4 Surface Cleaning Techniques
A number of surface cleaning techniques have been developed to remove gas-side 
fouling deposits, including steam and air sootblowing, sonic sootblowing, and water 
washing. Other approaches which are used to some extent include chemical, mechani
cal. and thermal cleaning. Each of these methods is discussed in this section.

The most widely used on-line technique to remove gas-side fouling deposits is 
sootblowing, with dry steam or air as the blowing medium. The location and spacing of 
the sootblowers within the heat exchanger are very important, and the frequency of 
sootblower operation depends on the type of fuel, amount of excess air, and operating 
conditions. DiCarlo [70] has presented a discussion of the two major types of soot
blowers, the rotary and long retractable types. The rotary sootblower utilizes a 
multinozzled element and is permanently located in the tube bank to be cleaned. 
Rotary blowers are limited to flue gas temperatures below 811 K (1000° F), because 
such units are exposed to the flue gases at all times. However, the long retractable types 
can be used at virtually any temperature.

The frequency of sootblowing is an important consideration because of the costs of 
the blowing medium. In past years, a single blow on each of the three shifts during a
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24-hour day was considered standard practice in many boiler operations. Today, 
however, more sophisticated computer-controlled methods are being employed in some 
installations, using either the bundle pressure drop or the outlet gas temperature as a 
threshold parameter to determine when cleaning is necessary.

In recent years, considerable interest has been shown in the use of both low-frequency 
(20 Hz) and high-frequency (220 Hz) sonic sootblowers to remove gas-side fouling 
deposits. Soot and other particles attached to the surface are dislodged by sound-wave 
vibration energy generated by the horns. The wave pressure fluidizes particles by 
breaking their bonds with other particles and the surface to which they are attached. 
Once fluidized, the particles will flow from the surface under gravitational or gas shear 
forces. Sonic horns work best for light, fluffy deposits and become increasingly less 
effective as the deposits become sticky and tenacious. The cleaning cycle is significantly 
different for steam sootblowers than for sonic horns. Steam sootblowers typically are 
operated periodically, whereas horns are blown on a more or less continuous basis. 
Capital costs for horns are greater than for steam sootblowers, but the operating costs 
are significantly lower.

Water washing is widely used to clean air preheaters as well as other types of heat 
transfer equipment. Water-soluble deposit accumulations formed on heat transfer 
surfaces may be easily removed by washing, provided that a sufficient quantity of water 
is used. The standard water-washing apparatus is a stationary, high-penetration, 
multinozzle device. The high-velocity jets produce a high fluid shear stress along with 
contractions caused by thermal shock to remove the deposits. The frequency of water 
washing depends on a number of factors, including the quality of fuel burned, nature 
and amount of deposit, operating conditions, and dryness of the sootblowing medium. 
The washing operations may be carried out under off-line or on-line conditions.

Other surface cleaning techniques may be grouped into the categories of chemical, 
mechanical, and thermal cleaning. Chemical cleaning is generally used as an off-line 
technique for gas-side fouling deposits. Thermal cleaning, also called self-cleaning or 
baking at elevated temperatures, consists of heating the exchanger and holding it at an 
elevated temperature until the deposits are baked off. Another alternative is to blow hot 
fluid, usually air, through a heat exchanger core or just reverse the hot and cold fluids 
—e.g., freezing fouling in cryogenic reversing heat exchangers. Mechanical cleaning 
includes the use of shot, surface vibration, mechanical brushing, and scouring with 
nutshells. Shaking or vibrating a tube bundle is sometimes used in applications 
involving dusty gases where air or steam sootblowing may not be used because the 
process involved is composition-sensitive—e.g., the production of H2SO4 from the 
burning of sulfur.

21.5.5 Quenching
The purpose of quenching a hot flue gas is to reduce the temperature in order to solidfy 
molten and soft particles in the gas, thereby preventing attachment of the particles at 
the cooler heat transfer surface. Suitable fluids for quenching gases include: (1) cool 
flue gases, (2) steam, (3) air, and ($) water spray. Of these techniques, cool flue-gas 
quench is probably the most desirable, and water-spray quench the least desirable.

21.5.6 Control of Operating Conditions
The importance of properly controlled operating conditions cannot be overemphasized 
as a technique for mitigating the effects of gas-side fouling. Severe gas-side fouling and 
corrosion problems can occur in heat exchangers under upset conditions or when there 
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are frequent shutdowns and startups. Such transients should be minimized if at all 
possible.

One fairly standard startup procedure is to use a clean fuel during such operations. 
For example, if a unit is designed for operation with residual oil, it will probably be 
started up using natural gas. During this initial period, the combustion efficiency of a 
dirty fuel such as residual oil is poor and considerable quantities of unburned material 
might escape and deposit on heat transfer surfaces. Therefore, the low ignition 
temperature of natural gas makes it an ideal fuel for startup to minimize the accumula
tion of deposits of oil or oily soot.

Boiler units must generally be taken out of service at regular intervals for internal 
inspection, cleaning, and repair. If the heat transfer surfaces are to be cleaned 
externally, the operation should be carried out as soon as possible and should be 
finished by means of air lances and scrapers after the unit has cooled off [65]. If the 
deposits are not removed before the boiler shutdown, they will act as a sponge to 
collect acid and water condensate and subject the surface to corrosion.

21.5.7 Gas Cleaning Techniques
Particulate removal from gases may be carried out using electrostatic precipitators, 
mechanical collectors, fabric filters, and wet scrubbers. Gaseous pollutants are more 
difficult to remove than particulates using standard methods such as limestone ad
dition, wet scrubbing without sulfur recovery, MgO systems with sulfur recovery, and 
dry sorbent systems [65]. In most applications, the particulates and gaseous pollutants 
are removed for environmental reasons, and this must generally be done, unfortunately, 
downstream of any heat transfer equipment.

21.6 FOULING MEASURING DEVICES

The practicing engineer must sometimes rely on experimental fouling factors rather 
than on values obtained from predictive equations or tables. Experimental fouling 
factors can be obtained using special fouling probes or, in some instances, existing 
plant heat exchangers. In addition, ancillary measurements may be carried out on test 
fluids and fouling deposits to obtain a better understanding of the fouling processes 
which are taking place. The current state of the art for liquid-side fouling measuring 
devices is far more advanced than that for gas-side service.

21.6.1 Liquid-Side Service
Operating heat exchangers and three important types of liquid-side fouling measuring 
devices are discussed in this section. Also, the use of deposit analysis and fluid 
characterization is given come consideration. Fischer et al. [71] and Knudsen [72] 
carried out comprehensive reviews of liquid-side fouling measuring devices, and these 
references may be consulted for additional details.

Actual Heat Exchangers As Diagnostic Tools. The use of an operating heat 
exchanger as a fouling measuring device is convenient, but can be inaccurate. Fouling 
may occur on both sides of the exchanger, making it difficult, if not impossible, to 
determine the fouling resistance of one of the streams. The instrumentation, particu
larly in older installations, may not be sufficiently accurate or complete to determine 
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the fouling factors. Steady-state operation may not be possible because of the nature of 
the process. Finally, it may not be possible to determine the clean overall coefficient.

In spite of these potential shortcomings, it is possible to make measurements using 
installed exchangers if proper precautions are taken. The relations needed include the 
expression for the overall heat transfer coefficient,

Uo MTD) (21.38)

and the expression for the fouling factor in terms of the clean and fouled overall 
coefficients.

1 1
R, =----------- (21.39)

An important but subtle point is that the clean coefficient Uc must be adjusted for 
varying conditions when the fouled coefficient Uf is determined. These varying condi
tions may be due to variable flow rates or temperatures or both. This adjustment is 
made using a correction factor in the expression for fouling resistance as follows:

1 . Determine 1/ from temperature and flow-rate measurements at clean startup 
conditions.

2 Calculate t/ using an appropriate correlation (such as the Delaware method for 
shellside flow).

3 . Compute the correction factor using

C = measured

calculated
(21.40)

4 Compute the fouling resistance using

1 1

, calculated
(21.41)

The use of the calculated coefficient accounts for changes in flow rates and tempera
tures, and the correction factor accounts for inaccuracies in the predictive methods for 
the particular exchanger in question.

Special Probes. Three basic types of devices have been used as liquid-side fouling 
probes to determine experimentally the fouling resistance of a process stream: (1) 
annular test section, (2) single circular tube, and (3) wire coil. In general, the annular 
test section has received more use than the others, especially in cooling-water studies. 
Single-tube units have been used in a number of applications in process stream fouling 
studies. The wire coil is usually used in laboratory studies with small batches of fouling 
fluid as single samples.

The general configuration of the annular test section is shown in Fig. 21.8. The 
heated surface consists of a cartridge type heating coil encased in a metal sheath. 
Thermocouples are embedded below the surface to measure the wall temperature, and 
local fouling resistances are determined using these thermocouples. The fluid flows
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Figure 21.8. Schematic of annular fouling probe test section.

through the annulus in a direction parallel to the surface. The advantages of this unit 
include the fact that it is small, accurate, and removable for deposit inspection and 
analysis, and that a variety of test-section materials can be used. Among its limitations 
are the need for thermocouple calibration, sensitivity to fluctuations in the deposit layer 
thickness (fouling resistance), electrical-power hazard, and limitation to heating mea
surements.

The single circular tube test section is generally used in a double pipe exchanger. 
The assembly is very easy, and the materials of construction are often found in the 
plant shop. The fluid to be tested flows inside the tube with a utility fluid for heating or 
cooling flowing on the shellside. Heating is achieved with a hot liquid or a condensing 
vapor such as steam, while cooling tests can be conducted using a cold liquid or a 
boiling fluid such as a refrigerant. If a phase-change process is used, the pressure of the 
phase-change fluid as well as the temperature will have to be known. In cases where a 
condensing vapor is used, a subcooling condenser at the exit is used before measure
ments are made. The advantages of this system include the use of existing plant 
hardware, the ability to use heating or cooling, and material flexibility. Disadvantages 
include a large size requirement for a significant temperature difference. The heat 
transfer measurements are based on overall conditions rather that local measurements 
and require large temperature differences to reduce errors, especially when steam is 
used.

The wire test section has generally been employed as a laboratory test unit using 
small batches of material, although industrial slip streams have been used. The unit 
consists of a flow chamber with a straight or coiled wire perpendicular to the flow 
stream. The wire is heated by passing a current through it and monitoring the electrical 
resistance. As a deposit buildup occurs, the heat transfer is reduced, thereby increasing 
the wire temperature and the electrical resistance. Calibration and correlation with 
convective heat transfer data provide a connection between the increase in wire 
electrical resistance and the heat transfer coefficient. The fouling resistance can be 
obtained in the usual way by determining the degradation in the heat transfer 
performance. The advantages of this system include the compactness of the unit, 
quickly obtainable results, and simple construction; a major disadvantage is the 
questionable heat transfer data. There are large uncertainties in the heat transfer 
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coefficient with deposit buildup, since the deposit will substantially increase the 
diameter of an initially small-diameter wire. Heating is the only mode of heat transfer 
possible, and the extrapolation of the data to tubeside or shellside How is very difficult.

Deposit Analysis. Deposit analysis provides important information which comple
ments the data on the fouling resistance. While the fouling resistance indicates the 
magnitude of the performance degradation, the deposit analysis identifies what is 
degrading the performance. The following types of deposit analysis are used in 
water-side fouling:

Atomic absorption or similar analysis determines principal elements in the deposit. 
X-ray diffraction or microprobe analysis identifies possible compounds.
Loss on ignition (LOI) determines the mass percentage that is composed of organic 

material and water of hydration. The test is made by drying the deposit at 378 K 
(220° F) and then combusting it at 773 K (931° F).

Total carbon determines the organic content of the deposit, which includes both 
hydrocarbons and biological material.

Colony count determines the biological activity.

For hydrocarbon studies, a similar differential analysis can be made:

Atomic absorption or similar analysis determines principal elements in the deposit.
A’ ray diffraction or microprobe analysis identifies possible compounds.
Pentane-soluble fraction identifies the resins and free oils.
Toluene-soluble fraction takes the residual from the pentane soluble fraction and 

identifies the asphaltenes.
Coke fraction is a type of LOI at 823 K (1020 ° F) on the toulene-soluble residue 

that identifies the coke content.
Ash fraction is the inorganic material left as residue from the coke-fraction test.

Fluid Characterization Measurements. A knowledge of what is on the surface is 
completed with the knowledge of what is in the fluid. The following points should be 
considered for a complete analysis:

Chemical composition of the fluid, including both cation and anion components.
Makeup chemical composition if applicable.
Treatment compounds and procedures, including schedules of when treatments are 

added to the system: continuous, once per week (when), once per shift (which 
shift), etc.

21.6.2 Gas-Side Service
In applications involving combustion gases, which are of principal interest here, the 
gases are always being cooled, either in direct heating applications or in heat recovery 
systems. Gas-side fouling measuring devices, or probes, have been used in a number of 
applications, including industrial and utility boilers, municipal incinerators, gas turbines, 
and heat recovery systems in a broad range of industries. In addition, a number of 
studies utilizing gas-side fouling probes have been carried out in laboratory settings.
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A variety of devices, ranging from a small cylindrical disk to a full-size beat 
exchanger, have been used to obtain and analyze gas-side fouling deposits. Most of 
these probes are single, circular cylinders which utilize a controlled surface temperature 
maintained by air or water flowing through the inside. Although all of these probes are 
capable of collecting gas-side fouling deposits, very few of them are capable of 
measuring gas-side fouling resistances.

Gas-side fouling measuring devices come in a variety of sizes and shapes, and may 
be grouped in the following categories: (1) heat-flux meters, (2) mass-accumulation 
probes, (3) optical devices, (4) deposition probes, and (5) acid-condensation probes. 
The essential features of each type of probe are considered briefly. For industrial 
applications, current interest is focused on mass-accumulation and deposition probes. 
Additional details on gas-side fouling probes which have been developed and tested to 
date may be found in Marner and Henslee [73,74],

A heat-flux meter measures the local heat transfer per unit area to monitor the 
fouling resistance. The decrease in heat flux as a function of time is thus a measure of 
the fouling buildup on the heat transfer surface. Most of the heat-flux work to date has 
been related to furnace applications, where radiation is the dominant mode of heat 
transfer. However, there is no conceptual reason why this approach could not be used 
in applications such as heat recovery systems where heat is transferred primarily by 
convection.

A mass-accumulation measuring device is a probe designed so that the deposit 
sample mass may be determined quantitatively, generally under controlled conditions 
of the surface temperature, gas temperature, and other parameters of interest. In a 
numer of cases where the interaction of fouling and corrosion occurs simultaneously, 
this type of probe has also been used to measure corrosion rates.

Optical fouling measuring devices are those used to determine deposition rates using 
optical methods. Such devices have seldom been used and to date have been restricted 
to relatively simple laboratory studies under closely controlled conditions.

Deposition measuring devices are probes used to collect deposits, generally under 
controlled conditions, on a qualitative basis. In this type of device, the actual mass of 
the deposit is not determined; however, quantitative analyses of the deposit itself are 
frequently carried out. In many cases simultaneous corrosion rates are measured using 
cylindrical deposition probes consisting of many segments of different materials joined 
together by threads, tension, or some other means.

Finally, acid-condensation probes are used to collect liquid acid which accumulates 
on a surface which is at a temperature below the acid dew point of the gas stream. Such 
probes are frequently used to measure dew point temperatures as well as acid 
deposition rates. A number of probes of this type are available commercially and are 
very important in low-temperature heat-recovery applications.

In order to measure on-line fouling resistances, the following quantities must be 
monitored as a function of time: (1) gas temperature 7^,, (2) wall heat flux q”, (3) wall 
temperature 7^,, and (4) heat transfer coefficient h. The convective heat transfer 
coefficient h may be expressed as

h = aVh (21.42)

where a and b are coefficients which depend on the fluid properties and the geometry. 
As the deposit builds up, it is possible that either a or b or both will change owing to 
the roughness of the fouled surface and a change in the geometry of the surface. 
Although the area for other than a plane surface will change as the fouling layer is 
deposited, it has become customary to base the calculation of the fouling resistance on 
the clean-surface area.
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21.7 CONCLUDING REMARKS

Fouling is the undesirable accumulation of insulating material on heat transfer surfaces. 
Such deposits may result from either liquid or gas streams and can take place in a 
broad variety of energy-related applications. In general, when fouling with convective 
heat transfer occurs, the heat transfer decreases and the pressure drop increases. 
Methods have been presented in this chapter to predict these effects provided that 
appropriate information is available. Tabulated values of the TEMA fouling factors, 
additional fouling factors from the literature, and deposit thermal-conductivity values 
have been presented for this purpose. In cases where fouling is anticipated or cannot be 
avoided, the designer of heat transfer equipment can specify a number of prevention, 
mitigation, and accommodation techniques to deal with the problem of fouling. A 
variety of such techniques are available and have been discussed for both liquid-side 
and gas-side fouling service. As additional experimental data are collected and the 
phenomenological aspects of fouling are better understood, more sophisticated models 
will be formulated to predict the effects of fouling and more effective cleaning cycles 
will be employed. In the meantime, fouling will continue to plague heat exchanger 
operations and will cost the U.S. industrial sector on the order of 3 to 10 billion dollars 
annually.

NOMENCLATURE

A clean surface area, m2, ft2
A inside surface area, m2, ft2
A, fouled surface area, m2, ft2
/I, outside surface area, m2, ft'
a0-a4 deposition constants in Table 21.1
b-b5 removal constants in Table 21.2 
C correction factor defined by Eq. 21.40
CF cleanliness factor
c concentration, kg/m3, lbm/ft3
c0 sticking-probability constant in Table 21.1
cf concentration in fluid, kg/m3, lbm/ft3
cM. concentration at wall, kg/m3, lbm/ft3
D diffusion coefficient, m2/s, ft2/hr
Dh hydraulic diameter, m, ft
d, clean tube diameter, m, ft
df fouled tube diameter, m, ft
d particle diameter, m, ft
£ activation energy, J/kg, Iby • ft/lb„,
{ Fanning friction factor
h convective heat transfer coefficient, W/(nr • K), Btu/(hr • ft2 - °F)
//. inside convective heat transfer coefficient, W/(m2 ■ K), Btu/(hr • ft2 -°F)
h . outside convective heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 -°F)
hD convective mass transfer coefficient, m2/s, ft2/hr
J" fouling-species mass flux. kg/(m2 • s), lb,„/(ft2 • hr)
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Kx coefficient in Table 21.1
k thermal conductivity of fluid, W/(m • K), Btu/(hr • ft - °F)
k i deposition coefficient in Table 21.1
kf thermal conductivity of fouling deposit. W/(m • K), Btu/(hr • ft - °F)
kp thermal conductivity of particle, W/(m ■ K), Btu/(hr • ft -°F)
kr first order reaction rate constant in Table 21 1
L tube length or characteristic length, m, ft
m deposit mass per unit surface area, kg/m2, lb„,/ft2
md deposition flux, kg/(m2 ■ s), lb„,/(ft2 ■ hr)

deposition flux at zero time, kg/(m2 • s), lbm/(ft2 • hr) 
mf mass of fouling deposit, kg, lbm
mioosc loose deposit mass per unit surface area, kg/m2, lb„,/ft2
m, removal flux, kg/(m2 • s), lbm/(ft2 • hr)
MTD mean temperature difference, °C, K, °F. °R 
n exponent in Table 21.1
P, probability function of velocity
q heat transfer rate or heat duty, W, Btu/hr

wall heat flux, W/nr, Btu/(hr ft2)
R gas constant, J/(kg • K), Iby ■ ft/(lbw -°R)
Rt fouling factor or fouling resistance, nf • K/W, hr ■ ft2 °F/Btu
R, inside fouling factor or resistance, m2 • K/W, hr • ft2 -°F/Btu
Rf o outside fouling factor or resistance, m2 • K/W, hr • ft2 -°F/Btu
R* asymptotic fouling factor or resistance, m2 • K/W, hr • ft2 -°F/Btu
R„ wall resistance per unit area, K/W, hr °F/Btu
Re Reynolds number = pVL/fi
S sticking probability
Sc Schmidt number = v/D
Sh Sherwood number = hDL/D
St Stokes number = p^K/lSpA
T temperature, ° C, K, °F, ° R
Tj fluid temperature, ° C, K, °F, ° R
Ts temperature at fluid-deposit surface interface, ° C, K, °F, °R
Tw wall temperature, °C, K, °F, °R 
t time, s, hr
U overall heat transfer coefficient, W/(m2 • K), Btu/(hr • ft2 -°F)
Uc clean overall heat transfer coefficient, W/(m’ • K), Btu/(hr • ft2 -°F)
Uf fouled overall heat transfer coefficient, W/(nr • K), Btu/(hr ■ ft2 - °F)
u* friction velocity, m/s, ft/s
F fluid velocity, m/s, ft/s
Vt thermophoretic velocity, m/s, ft/s
K,. particle velocity normal to wall, m/s, ft/s 
xf fouling-deposit thickness, m, ft
y spatial coordinate normal to surface, m, ft
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Greek symbols
a coefficient in Eq. (21.12)
«z fouling-deposit thermal diffusivity. m2/s. ft /hr
p, density of fouling deposit, kg/m’, lb,„/ft'
Pr density of particle, kg/m‘, lb„,/ft3
p viscosity, kg/(m • s), lb„,/(hr ft)
v kinematic viscosity, m2/s. tt /hr
fl water characterization factor
< fouling deposit strength, Pa, lby/ft2
t„ wall shear stress, Pa, lby/ft2

deposition function, m2 ■ K/J, ft2 -°F/Btu
< />r removal function, m2 ■ K/J, ft2 -°F/Btu
0 time constant, s, hr
A p pressure drop, Pa, lby/ft2

Subscripts
< clean condition
f fouled condition, fouling deposit, or fluid
d deposition
i inside
o outside
p particle
r removal
ref reference conditions
w wall
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22.1 TABLES

TABLE 22.1. Fundamental Units in the SI System

Quantity Unit Symbol

Mass Kilogram(me) kg
Length Meter (metre) m
Time Second s
Temperature
Electric

Kelvin K

current Ampere A
Luminous

intensity Candela cd

DEFINITIONS OF FUNDAMENTAL UNITS

Meter (metre): The meter is the length of a path traveled by light in vacuum during a time 
interval of 1/299,792,458 of a second."'h

K.ilogram(me). The kilogram is the unit of mass; it is represented by the mass of the international 
prototype kilogram."

Second. The second is the duration of 9,192,631,770 periods of the radiation corresponding to the 
transition between the two hyperfine levels of the ground state of an atom of cesium 133.

Ampere. The ampere is the constant current which, maintained in two straight parallel conductors 
of infinite length, of negligible cross-sectional area, and placed 1 meter apart from one another 
in a vacuum, produces between these conductors a force equal to 2 X 10“7 mks units of force 
(newtons) per meter of length.

Kelvin. The thermodynamic scale of temperature is defined by means of the triple point of water 
as being a fixed fundamental point, and attributing to this point the temperature 273.16 
kelvins exactly.

Candela. The value of the candela is such that the brilliance of total radiation, at the temperature 
of solidification of platinum, is 60 candela per square centimeter.

"“Kilogram” and “meter” are the U.S spellings; “kilogramme” and “metre” are the international 
spellings
'' Mt 'rologia, Vol. 19, pp. 163-177 (1984); Eur. J. Phys., Vol. 4, pp. 190-197 (1983); Am. J. Phys., Vol. 
52, pp 607 (1984).



TABLE 22.2. Prefixes for the SI Units

Prefix Symbol" Multiplier

exa E 1018
peta P 1015
tera T 1012
giga G 109
mega M 106
kilo k 103
hecto (h) 102
deca (da) 101
deci (d) 10'1
centi (c) 10~2
milli m 10~3
micro p 10'6
nano n IO'9
pico p IO'12
femto f 10“15
atto a 10-18

a Prefixes with symbols in parentheses are not 
recommended for use.

TABLE 22.3. Conversion Factors3

Density: 1 kg/m3 = 0.06243 lbm/ft3 = 0.01002 lbm/U.K. gallon = 8.3454 X 10'3 lbm/U.S. gal
lon = 1.9403 X 10“3 slug/ft3 = 10“3 g/cm3

Energy. 1 kJ = 737.56 ft • Iby- = 238.85 cal = 0.94783 Btu = 3.7251 X 10'4 hp • hr = 2.7778 X 
IO'4 kW • hr

Specific energy 1 kJ/kg = 334.55 ft • lbz/lbm = 0.4299 Btu/lbm = 0.2388 cal/g
Specific energy per degree: 1 kJ/(kg • K) = 0.23885 Btu/(lb ■ °F) = 0.23885 cal/(g • °C)
Heat transfer coefficient: 1 W/(m2 ■ K) = 0.8598 kcal/(m2 hr °C) = 0.1761 Btu/(ft2 • hr • °F) 

= 10“4 W/(cm2 - K) = 0.2388 X 10 '4 cal/(cnr • s • °C)
Mass: 1 kg = 2.20462 lbm = 0.06852 slug = 1.1023 X 10 3 U.S. ton = IO'3 tonne = 9.8421 X 

10"4 U.K. ton
Pressure: 1 bar = 105 N/m2 = 105 Pa = 750.06 mmHg at 0°C = 401 47 in. H2O at 32°F = 

29.530 in. Hg at 0°C = 14.504 Ib/in.2 = 14.504 psia = 1.01972 kg/cm2 = 0.98692 atm = 0.1 
MPa

Temperature: T(K) = T(°C) + 273.15 = [T(°F) + 459.67]/1.8 = T(°R)/1.8
Temperature difference: ^T(K) = AT(°C) = A7’(°F)/1.8 = AT(°7?)/1.8
Thermal conductivity: 1 W/(m ■ K) = 0.8604 kcal/(m ■ hr • °C) = 0.5782 Btu/(ft • hr • °F) = 

0.01 W/(cm ■ K) = 2.390 X 10'3 cal/(cm • s • °C)
Thermal diffusivity: 1 m2/s = 38750 ft2/hr = 3600 m2/hr = 10.764 ft2/s
Viscosity, dynamic: 1 N • s/m2 = 1 Pa ■ s — 107 jiP = 2419.1 lbm/(ft • hr) = 103 cP = 75.188 

slug/(ft • hr) = 10 P = 0.6720 lbm/(ft ■ s) = 0.02089 lb, • s/ft2
Viscosity, kinematic (sec Thermal diffusivity)

“ E. Lange, L. F. Sokol, and V. Antoine, Information on the Metric System and Related Fields, 6th ed., G. 
C Marshall Space Flight Center, Ala. (exhaustive bibliography); C. H. Page and P. Vigoureux, The 
International System of Units, NBS S.P. 330, Washington, 1974; E. A. Mechtly, The International System 
of Units, Physical Constants and Conversion Factors, NASA S.P. 9012, 1973. Numerous revision periodi
cally appear; see, for example, Pure Appl. Chem., Vol. 51, 1-41 (1979) and later issues. This table is only 
intended to enable rapid conversion to be made with moderate, (i.e., five-significant-figure) accuracy, 
usually acceptable in most engineering calculations. The references fisted should be consulted for more 
exact conversions and definitions.
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TABLE 22.4. Thermophysical Properties of 113 Fluids at 1 bar, 300 Ka

Name Formula M
T , 
K

Tb, 
K bar

p. 
kg/m1

Acetaldehyde C2H4O 44.053 149.7 293.7 2.94
Acetic acid c2h4o2 60.053 391.1 0.0225 1046
Acetone c3h6o 58.080 178.5 329.3 0.0318 782.5
Acetylene c2h2 26.038 179.0 189.2 50.66 1.0508
Air (R 729) mix 28.966 60.0 var — 1.1614

Ammonia (R 717) nh3 17.031 195.4 239.7 10.614
Aniline c6h7n 93.129 266.8 457.5 7.206.- 4
Argon (R 740) Ar 39.948 83.8 87.5 —
Benzene QH6 78114 278.7 353.3 0.1382 871
Bromine Br 159.81 265.4 331.5 0.310 3094

Butadiene, 1,3- c4h6 54.088 164.2 268.7
Butane, iso- c4h10 58.124 113.7 261.5 3.696
Butane, n- c4h10 58.124 134.9 272.6 2.581
Butanol c4h10o 74.124 183.9 390.8 0.01064 804.3
Butylene c4h8 56.108 87.8 266.9

Carbon dioxide co2 44.010 216.6 194.7 67.10 1.7734
Carbon disulfide CS2 76.131 161.1 319.4 1262
Carbon tetrachloride CC14 153.82 250.3 349.8 1580.8
Carbon tetrafluoride cf4 88.005 89.5 145.2 —
Chlorine Cl2 70.906 172.2 238.6 8.

Chlorine trifluoride C1F3 92.449 196.8 284.9 1.8 1.820
Chlorine pentafluoride cif5 130.446 178.2 260.1 4.0 1.788
Chloroform chci3 119.377 209.7 334.5 0.2771 1530
Cresol, o- c7h8o 108.134 303.8 464.1
Cresol, m- c7h8o 108.134

Cresol, p- c7h8o 108.134
Cyclobutane c4h8 56.104 182.4 285.7 1.6
Cyclohexane C6H12 84.156 279.8 353.9 772.1
Cyclopentane C5H1o 70.130 179.3 322.5
Cyclopropane c3h6 42.081 145.5 240.3 6.

Decane Ci0H22 142.276 243.4 447.3 0.0017 724.1
Deuterium d2 4.028 18.7 23.7 —
Diphenyl Q2H10 154.200 342.4 527.6
Ethane (R 170) C2H6 30.070 89.9 184.6 43.541 1.2157
Ethanol c2h6o 46.069 159.0 351.5 1247

Ethvl acetate c4h8o2 88.106 189.4 350.3 0.1361 892.3
Ethyl bromide C2H<Br 108.97 153.5 311.5 1450
Ethyl chloride (R 160) C2H5C1 64.515 134.9 285.4 1.68
Ethyl ether c4h10o 74.123 150.0 307.8 705.6
Ethyl fluoride (R 161) c2h5f 48.060 130.0 236.1 9.1

Ethyl formate c3h6o2 74.080 193.8 327.4
Ethylene C2H4 28.054 104.0 169.5 — 0.9035
Ethylene oxide c2h4o 44.054 160.6 283.6 1.82
Fluorine f2 37.997 53.5 85.1 — 1.5442
Glycerol 1284.3
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CP' 
kJ/(kg - K) kJ/(kg K) Y 10’1 Pa • s

k, 
W/m K Pr

<7, 
N/m m/s

1.49
2.066 11.15 0.1635 14.1 1130
2 13 3.08 0.1595 4.LL 0.0229 1160
1.7032 1.380 1.234 0.1039 0.0220 0.804 — 342
1.005 0.718 1.400 0.184 0.0261 0.711 — 347.3

2.10 1.63 1.33 0.102 0.246 0.870 _ 434
2.079 34.7 0.173 41.7 1615
0.522 0.313 1.667 0.2271 0.0177 0.670 — 322.6
1.73 5.88 0.1444 7.04 0.0279 1275

0.122 0.041

1.475 0.0876 0.0181 0.714
0.0760 0.0164 0.814

1.731 1.569 1.103 0.0757 0.0160 0.811 0.0116 211
2.39 24.9 0.152 39.2 0.0241 1215

0.0780 —

0.845 0.657 1.288 0.150 0.0166 0.763 _ 269.6
1.016 0.161 1143
0.8637 8.81 0.1026 7.42 0.0261 918
0.7071 0.6095 1.150 0.1740 0.01711 0.719 —
0.4728 0.1371 0.00889 0.729 — 216

0.695 0.1421 0.0138 0.716
0.745 0.1431 0.0146 0.730
0.975 5.39 0.117 988

70.2 0.153 96.0
112 0.149 174

126 0.144
1.289 0.0812 0.0148 0.707
1.865 8.69 0.123 13.2 0.0242 1230
1.81 3.97 0.132 5.46
1 331 0.0890 0.0163 0.727 —

2 213
0.126 0.141

1.586
1.769 1.482 1.192 0.094 0.0218 0.765 — 314
2.456 10.46 0.167 15.4 0.0222 11.37

1.947 4.37 0.143 5.95 0.0234 1120
0.880 3.63 0.101 3.16 905
0.973 0.1002 0.0126 0.774 —
221 2.25 0.130 3.83 968
1.243 0.0954 0.0163 0.727

0.159
1.560 1.262 1.237 0.104 0.0203 0.796 — 332
1.096 0.0879 0.0130 0.742
0.827 0.607 1.362 0.227 0.0279 0.673 — 299
2.38 7.922 0.280 6730 0.0587 1875
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TABLE 22.4. (Continued)

Name Formula M
T , 
K

Th, 
K bar

P. 
kg/m3

Helium He 4.003 — 4.3 — 0.1625
Heptane c7h16 100.21 182.5 371.6 0.06719 678.0
Hexane c6h14 86.178 177.8 341.9 0.06674 652.5
Hydrazine n2h4 32.045 274.7 386.7
Hydrogen, n- h2 2.016 14.0 28.4 — 0.0808

Hydrogen, p- h2 2.016
Hydrogen bromide HBr 80.912 186.3 206.4 25.5
Hydrogen chlonde HC1 36.461 160.0 188.1 48.7
Hydrogen fluoride HF 20.006 181.8 272.7 1.3
Hydrogen iodide Hl 127.91 222.4 237.8 8.5

Hydrogen peroxide H2O2 0.0031 1449
Hydrogen sulfide h2s 34.076 187.5 213.0 20.9
Krypton Kr 83.80 116.0 121.4 — 3.3659
Mercury Hg 200.59 234.3 630.1
Methane ch4 16.043 90.7 111.5 — 0.6443

Methanol ch4o 32.042 175.5 337.7 0.1860 784.9
Methyl acetate c7h6o2 74.080 175 330.3
Methyl bromide CH2Br 94.939 179.5 276.7 2.38

(R40B 1)
Methyl chloride (R 40) CH3C1 50.487 175.4 249.4 6.189
Methyl fluoride (R 41) CH3F 34.033 131.3 194.7 39.5

Methyl formate (R 611) C2H4O2 60.052 173.4 304.7
Methylene chloride (R 30) ch2ci2 84.922 176.5 312.9
Neon (R 720) Ne 20.179 24.5 27.3 — 0.8091
Neopentane c5h12 72.151 256.6 282.7
Nitric oxide NO 30.006 121.4 —

Nitrogen (R 728) N2 28.013 63.1 77.3 _
Nitrogen peroxide NO, 46.006 263 294.5
Nitrous oxide (R 744a) N2O 44.013 176 184.7 57.5
Nonane C9H20 128.250 0.0064 712.3
Octane C8H18 114.220 216.4 398.9 0.0207 704.2

Oxygen 31.999 54.4 90.0 —
Pentane, iso- C5H12 72.151 1117 301.1
Pentane, n- c5h12 72.151 143.7 309.2
Propadiene C3H4 40.062 136.9 238.8 8.4
Propane c3h8 44.097 86. 231.1 9.9973

Propanol c3h8o 60.096 147.0 370.4
Propylene c3h6 42.081 87.9 225.5 12.118
Refrigerant 11 cfci3 137.37 162.2 296.9 1.1341
Refrigerant 12 cf2ci2 120.91 115.4 243.4 6.8491 1311
Refrigerant 12 B 1 CF2BrCl 165.37 113.7 269.2 2.8

Refrigerant 12 B 2 CF2Br2 209.82 131.6 295.9 1.4
Refrigerant 13 CF2C1 104.46 92.1 191.7 37.05
Refrigerant 13 B 1 CF3Br 148.91 105.4 215.4 16.914
Refrigerant 21 CHFC1, 102.91 138.2 282.1
Refrigerant 22 CHF2C1 86.469 113.2 232.4 10.96 1194
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CP' 
kJ/(kg-K)

c(), 
kJ/(kg • K) Y 10-1 Pa • s

k, 
W/m • K Pr

0, 
N/m m/s

5.193 3.115 1.667 0.1976 0.165 0.668 1020
2 252 3.85 0.1242 6.96 0.0197 1120
2 270 2.87 0.123 5.30 0.0177 1130

14.27 10.18 1.405 0.0894 0.182 0.701 — 1350

14.84 10.72 1.384 0.0814 0.176 0.686 — 1310
0.360 0.1888 0.0098 0.693 — 210
0.845 0.1461 0.0170 0.728 — 310
1.456 0.1251 0.0260 0.702 —
0.228 0.1872 0.00624 0.684 — 165

1.48 11.3 0.481 3.47
1.00 0.1294 0.01461 0.886 — 300
0.249 0.149 1.667 0.256 0.0094 0.678 —
0 139 15.3 1450
2 235 1.711 1.306 0.112 0.0344 0.733 — 450

2.528 5.35 0.200 6.76 0.0221 1097
3.56 0.1555 4.89 1125

0.449 0.136 0.00832 0.734 — 905

0 808 0.1088 0.012 0.732 —
1.100 0.1161 0.01809 0.706

3.26 0.186
4.08 0.1388 3.57

1 030 0.618 1.667 0.317 0.0493 0.649 — 455
1.77 0.0726 0.0146 0.880
0.996 0.1919 0.0257 0.743 —

1.040 0.743 1.400 0.180 0.0260 0.715 — 352

0.879 0.1490 0.0166 0.790 — ’ 275
2 22 6.53 0.129 11.2 0.022 1205
2 231 5.04 0.128 8.78 0.0210 1163

0.920 0.660 1.394 0.2072 0.0267 0.714 — 332
228 2.125 0.146 3.17 0.0153 976
2 41 2.24 0.152 3.55 1050
1.473 0.0844 0.0170 0.733
1 693 1.492 1.135 0.0826 0.01844 0.762 248

2 446 19.17 0.138 34.0 0.0232 1195
1 536 1.336 1.150 0.081 0.0168 0.797
0.573 0.509 1.126 0.1095 0.0079 0.814 — 139
0.602 0.542 1.111 0.1260 0.0097 • 0.781
0.460 0.395 1.165 0.1381 0.0078 0.811

0.367 0.316 1.160 0.1340
0.644 0.562 1.146 0.1449 0.0122 0.766 —
0.468 0.409 1.143 0.1575 0.0099 0.745 —
0.594 0.504 1.179 0.115 0.0089 0.768 —
0.647 0.544 1.190 0.1299 0.0110 0.767 —
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TABLE 22.4. (Continued)

“ M = molecular weight; Tm = melting temperature; Th = boiling temperature; p = density; cp = specific 
heat at constant pressure; c„ = specific heat at constant volume: y = specific heat ratio cp/cv; p = 
dynamic viscosity; k = thermal conductivity; Pr = Prandtl number; a = surface tension; vs = velocity 
of sound. A blank entry means no information is available; a dash means not applicable at 300 K.

Name Formula M
T , 1
K

Th, 
K bar kg/m3

Refrigerant 23 chf3 70.014 118.0 191.2 —
Refrigerant 32 ch2f2 52.023 221.5
Refrigerant 113 c?f3ci3 187.38 238.2 320.8 0.4817 1557
Refrigerant 114 c2f4ci2 170.92 179.2 276.7 2.2788
Refrigerant 115 c2f5ci 154.47 234.0

Refrigerant 116 C2F6 138.02
Refrigerant 142 h c2f2h3ci 100.50 142.4 263.9 3.5825
Refrigerant 152 a c2f4h4 66.051 156 248 6.3132
Refrigerant 216 C3F6C12 220.93 308
Refrigerant 245 4.888

Refrigerant C318 c4f8 200.031 232.7 267.2 3.325
Refrigerant 500 mix 99.303 114.3 239.7 8.081
Refrigerant 502 mix 111.63 237 12.186
Refrigerant 503 mix 87.267 184
Refrigerant 504 mix 79.240 216 —

Refrigerant 505 mix 103.43 243.6
Refrigerant 506 mix 93.69 260.7
Silane SiH4 32.12 86.8 161.8
Sulfur dioxide SO, 64.059 197.8 268.4 4.168
Sulfur hexafluoride sf6 146.05 222.4 209.4 —

Toluene c7h8 92.141 178.2 383.8 0.0418 859
W ater h2o 18.015 273.2 373.2 0.0353
Xenon Xe 131.36 161.5 165. — 5.291
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CP’ 
kJ/(kg ■ K) kJ/(kg K) 7

th 
10”1 Pa • s

k.
W/m ■ k Pr

<J, 
N/m

vs, 
m/s

0.732 0.611 1.198 0.1488 0.0148 0.736 —

0.958 6.64 0.0747 8.52
0.715 0.660 1.083 0.1157 0.0105 0.775 —
0.686 0.635 1.081 0.1289 0.0119 0.745 —

0.762 0.698 1.092 0.1453 0.0150
0.0117

0.740

1.029 0.1037 0.0148
0.0619

0.721

0 821 0.778 1.056 0.1187 0.0127 0.765

0.0117 0.769 —

1.338 0.1184 0.0221 0.718
—

0.623 0.129 0.0096 6.837 —
0.667 0.1654 0.0141 0.784

1.69 5.54 0.133 7.04 0.0275 1285
4.179 8.9 0.609 5.69 0.0717 1501
0.160 0.097 1.655 0.232 0.0056 0.663 —
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TABLE 22.5. Thermophysical Properties of Liquid and Saturated-Vapor Air

“ t> = specific volume; h = specific enthalpy; .s = specific entropy: cp = specific heat at constant pres
sure; /x = dynamic viscosity; k = thermal conductivity; Pr = Prandtl number; / = saturated liquid; 
g = saturated vapor. Since air is a multicomponent mixture, the dew and bubble points vary with 
composition and there is no unique critical point.

T. 
K bar bar

l7, 
m3/kg m3/kg

hi, 
kJ/kg kJ/kg

5/, 
kJ/ 

(kg • K)
kJ/ 

(kg ■ K)

60 0.066 0.025 0.001018 6.8752 -437.6 -243.8 2.862 6.302
65 0.159 0.076 0.001068 2.4144 -436.7 -239.0 2.872 6.057
70 0.340 0.194 0.001093 1.0205 -434.9 -234.4 2.891 5.862
75 0.658 0.424 0.001121 0.4958 -430.6 -230.1 2.950 5.701
80 1.174 0.827 0.001150 0.2677 -423.8 -226.0 3.036 5.567

85 1.955 1.473 0.001182 0.1570 -415.6 -222.2 3.134 5.455
90 3.080 2.439 0.001218 0.0981 -406.5 -218.9 3.237 5.357
95 4.627 3.808 0.001257 0.0645 -396.7 -216.2 3.341 5.270

100 6.679 5.673 O.OO13O3 0.0440 -386.3 -214.1 3.444 5.189
105 9.317 8.128 0.001355 0.0309 -375.4 -212.9 3.548 5.113

110 12.626 11.280 0.001418 0.0220 -363.8 -212.9 3.651 5.037
115 16.687 15.242 0.001497 0.0159 -351.4 -214.3 3.756 4.959
120 21.584 20.138 0.001602 0.0115 -337.8 -217.7 3.865 4.874
125 27.41 26.10 0.001757 0.0081 -322.2 -224.3 3.985 4.773
130 34.25 33.27 0.002069 0.0054 -301.1 -237.6 4.140 4.631

132 5 38.08 37.36 0.002594 0.0041 -280.4 -250.6 4.291 4.517

T
K

kJ/ 
(kg • K)

cp.g’ 
kJ/ 

(kg ■ K)
A/> 

10-4Pa ■ s 10“4Pa•s
W/ 

(m-K)
W/ 

(m-K) Pr,

60
65
70
75 1.79 1.13

3.25
2.64
2.21
1.89

0.47
0.51

0.180
0.171
0.163
0.154

0.005
0.006
0.006
0.007

2.54
2.35

0.69
0.73

80 1.82 1.17 1.65 0.55 0.145 0.008 2.23 0.77

85 1.85 1.21 1.47 0.60 0.137 0.008 2.17 0.81
90 1.88 1.26 1.32 0.65 0.128 0.009 2.14 0.84
95 2.00 1.31 1.20 0.70 0.119 0.009 2.15 0.87

100 2.12 1.37 1.10 0.75 0.110 0.010 2.21 0.91
105 2.24 1.48 1.02 0.80 0.102 0.011 2.29 0.98

110 2.41 1.64 0.95 0.86 0.093 0.012 2.47 1.06
115 2.65 1.91 0.87 0.93 0.084 0.014 2.66 1.13
120 3.09 2.40 0.75 1.02 0.076 0.015 2.76 1.33
125 4.12 3.53 0.62 1.17 0.067 0.018 2.83 1.65
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TABLE 22.6- Ideal-Gas Thermophysical Properties of Aira

T Vy h. 5, k,
K m3/kg kJ/Kg kJ/(kg • K) kJ/(kg ■ K) Y m/s 10“5 Pa• s W/(m ■ K) Pr

100 0.2783 -204.5 5.755 1.030 1.424 198.0 0.71 0.0092 0.795
no 0.3076 -194.1 5.854 1.024 1.420 208.5 0.77 0.0102 0.786
120 0.3367 -183.9 5.943 1.020 1.417 218.3 0.84 0.0111 0.778
130 0.3657 -173.7 6.024 1.016 1.415 227.6 0.91 0.0120 0.770
140 0.3946 -163.6 6.099 1.014 1.413 236.4 0.97 0.0129 0.762

150 0.4233 -153.4 6.169 1.011 1.410 244.9 1.03 0.0139 0.755
160 0.4519 -143.3 6.234 1.010 1.407 253.1 1.09 0.0147 0.749
170 0.4805 -133.3 6.296 1.009 1.404 261.1 1.15 0.0156 0.743
180 0.5091 -123.3 6.353 1.009 1.402 268.7 1.21 0.0166 0.739
190 0.5376 -113.1 6.408 1.008 1.400 276.2 1.27 0.0174 0.736

200 0.5666 -103.0 6.4591 1.008 1.398 283.3 1.33 0.0183 0.734
210 0.5949 -92.9 6.5082 1.007 1.399 290.4 1.39 0.0191 0.732
220 0.6232 -82.8 6.5550 1.006 1.399 297.3 1.44 0.0199 0.730
230 0.6516 -72.8 6.5998 1.006 1.400 304.0 1.50 0.0207 0.728
240 0.6799 -62.7 6.6425 1.005 1.400 310.5 1.55 0.0215 0.726

250 0.7082 -52.7 6.6836 1.005 1.400 317.0 1.60 0.0222 0.725
260 0.7366 -42.6 6.7230 1.005 1.400 323.3 1.65 0.0230 0.723
270 0.7649 -32.6 6.7609 1.004 1.400 329.4 1.70 0.0237 0.722
280 0.7932 -22.5 6.7974 1.004 1.400 335.5 1.75 0.0245 0.721
290 0.8216 -12.5 6.8326 1.005 1.400 341.4 1.80 0.0252 0.720

300 0.8499 -2.4 6.8667 1.005 1.400 347.2 1.85 0.0259 0.719
310 0.8782 7.6 6.8997 1.005 1.400 352.9 1.90 0.0265 0.719
320 0.9065 17.7 6.9316 1.006 1.399 358.5 1.94 0.0272 0.719
330 0.9348 27.7 6.9625 1.006 1.399 364.0 1.99 0.0279 0.719
340 0.9632 37.8 6.9926 1.007 1.399 369.5 2.04 0.0285 0.719

350 0.9916 47.9 7.0218 1.008 1.398 374.8 2.08 0.0292 0.719
360 1.0199 57.9 7.0502 1.009 1.398 380.0 2.12 0.0298 0.719
370 1.0482 68.0 7.0778 1.010 1.397 385.2 2.17 0.0304 0.719
380 1.0765 78.1 7.1048 1.011 1.397 390.3 2.21 0.0311 0.719
390 1.1049 88.3 7.1311 1.012 1.396 395.3 2.25 0.0317 0.719

400 1.1332 98.4 7.1567 1.013 1.395 400.3 2.29 0.0323 0.719
410 1.1615 108.5 7.1817 1.015 1.395 405.1 2.34 0.0330 0.719
420 1.1898 118.7 7.2062 1.016 1.394 409.9 2.38 0.0336 0.719
430 1.2181 128.8 7.2301 1.018 1.393 414.6 2.42 0.0342 0.718
440 1.2465 139.0 7.2535 1.019 1.392 419.3 2.46 0.0348 0.718

450 1.2748 149.2 7.2765 1.021 1.391 423.9 2.50 0.0355 0.718
460 1.3032 159.4 7.2989 1.022 1.390 428.3 2.53 0.0361 0.718
470 1.3315 169.7 7.3209 1.024 1.389 433.0 2.57 0.0367 0.718
480 1.3598 179.9 7.3425 1.026 1.389 437.4 2.61 0.0373 0.718
490 1.3882 190.2 7.3637 1.028 1.388 441.8 2.65 0.0379 0.718

500 1.4165 200.5 7.3845 1.030 1.387 446.1 2.69 0.0385 0.718
520 1.473 221.1 7.4249 1.034 1.385 454.6 2.76 0.0398 0.718
540 1.530 241.8 7.4640 1.038 1.382 462.9 2.83 0.0410 0.718
560 1.586 262.6 7.5018 1.042 1.380 471.0 2.91 0.0422 0.718
580 1.643 283.5 7.5385 1.047 1.378 479.0 2.98 0.0434 0.718

600 1.700 304.5 7.5740 1.051 1.376 486.8 3.04 0.0446 0.718
620 1.756 325.6 7.6086 1.056 1.374 494.4 3.11 0.0458 0.718
640 1.813 346.7 7.6422 1.060 1.371 501.9 3.18 0.0470 0.718
660 1.870 368.0 7.6749 1.065 1.369 509.3 3.25 0.0482 0.717
680 1.926 389.3 7.7067 1.070 1.367 516.5 3.32 0.0495 0.717
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TABLE 22.6. (Continued)

' ’• = specific volume; h = specific enthalpy; 5 = specific entropy; cp = specific heat at constant pres
sure y = specific-heat ratio cp/c„ (dimensionless); vs = velocity of sound; g = dynamic viscosity; 
‘ = thermal conductivity; Pr = Prandtl number (dimensionless). Condensed from S. Gordon, Thermo
dynamic and Transport Combustion Properties of Hydrocarbons with Air, NASA Technical Paper 1906, 
1982, Vol. 1. These properties are based on constant gaseous composition. The reader is reminded that, 
at the higher temperatures, the pressure can aflec’ ’he composition and the thermodynamic properties.

T. V, h„ s, cp' A- k.
K nr/kg kJ/Kg kJ/(kg ■ K) kJ/(kg ■ K) y m/s 10~5 Pa•s W/(m • K) Pr

700 1.983 410.8 7.7378 1.075 1.364 523.6 3.38 0.0507 0.717
720 2.040 432.3 7.7682 1.080 1.362 530.6 3.45 0.0519 0.716
740 2.096 453.9 7.7978 1 084 1.360 537.5 3.51 0.0531 0.716
760 2153 475.7 7.8268 1.089 1.358 544.3 3.57 0.0544 0.716
780 2.210 497.5 7.8551 1.094 1.356 551.0 3.64 0.0556 0.716

800 2.266 519.4 7.8829 1.099 1.354 557.6 3.70 0.0568 0.716
820 2.323 541.5 7.9101 1.103 1.352 564.1 3.76 0.0580 0.715
840 2.380 563.6 7.9367 1.108 1.350 570.6 3.82 0.0592 0.715
860 2.436 585.8 7.9628 1.112 1.348 576.8 3.88 0.0603 0.715
880 2 493 608.1 7.9885 1.117 1.346 583.1 3.94 0.0615 0.715

900 2.550 630.4 8.0136 1.121 1.344 589.3 4.00 0.0627 0.715
920 2.6(« 652.9 8 0383 1.125 1.342 595.4 4.05 0.0639 0.715
940 2.663 675.5 8.0625 1.129 1.341 601.5 4.11 0.0650 0.714
960 2.720 698.1 8.0864 1.133 1.339 607.5 4.17 0.0662 0.714
980 2.776 720.8 8.1098 1.137 1.338 613.4 4.23 0.0673 0.714

1000 2.833 743.6 8.1328 1.141 1.336 619.3 4.28 0.0684 0.714
1050 2.975 800.8 8.1887 1.150 1.333 633.8 4.42 0.0711 0.714
1100 3.116 858.5 8.2423 1.158 1.330 648.0 4.55 0.0738 0.715
1150 3.258 916.6 8.2939 1.165 1.327 661.8 4.68 0.0764 0.715
1200 3 400 975.0 8.3437 1.173 1.324 675.4 4.81 0.0789 0.715

1250 3.541 1033.8 8.3917 1.180 1.322 688.6 4.94 0.0814 0.716
1300 3.683 1093.0 8.4381 1.186 1.319 701.6 5.06 0.0839 0.716
1350 3.825 1152.3 8.4830 1.193 1.317 714.4 5.19 0.0863 0.717
1400 3.966 1212.2 8.5265 1.199 1.315 726.9 5.31 0.0887 0.717
1450 4.108 1272.3 8.5686 1.204 1.313 739.2 5.42 0.0911 0.717

1500 4.249 1332.7 8.6096 1.210 1.311 751.3 5.54 0.0934 0.718
1550 4.391 1393.3 8.6493 1.215 1.309 763.2 5.66 0.0958 0.718
1600 4.533 1454.2 8.6880 1.220 1.308 775.0 5.77 0.0981 0.717
1650 4.674 1515.3 8.7256 1.225 1.306 786.5 5.88 0.1004 0.717
1700 4.816 1576.7 8.7622 1.229 1.305 797.9 5.99 0.1027 0.717

1750 4.958 1638.2 8.7979 1.233 1.303 809.1 6.10 0.1050 0.717
1800 5.099 1700.0 8.8327 1.237 1.302 820.2 6.21 0.1072 0.717
1850 5.241 1762.0 8.8667 1.241 1.301 831.1 6.32 0.1094 0.717
1900 5.383 1824.1 8.8998 1.245 1.300 841.9 6.43 0.1116 0.717
1950 5.524 1886.4 8.9322 1.248 1.299 852.6 6.53 0.1138 0.717

2000 5.666 1948.9 8.9638 1.252 1 298 863.1 6.64 0.1159 0.717
2050 5.808 2011.6 8.9948 1.255 1.297 873.5 6.74 0.1180 0.717
2100 5.949 2074.4 9.0251 1.258 1.296 883.8 6.84 0.1200 0.717
2150 6.091 2137.3 9.0547 1.260 1.295 894.0 6.95 0.1220 0.717
2200 6.232 2200.4 9.0837 1.263 1.294 904.0 7.05 0.1240 0.718

2250 6 374 2263.6 9.1121 1.265 1.293 914.0 7.15 0.1260 0.718
2300 6 516 2327.0 9.1399 1.268 1.293 923.8 7.25 0.1279 0.718
2350 6.657 2390.5 9.1672 1.270 1.292 933.5 7.35 0.1298 0.719
2400 6.800 2454.0 9.1940 1.273 1.291 943.2 7.44 0.1317 0.719
2450 6.940 2517.7 9.2203 1.275 1.291 952.7 7.54 0.1336 0.720

2500 7.082 2581.5 9.2460 1.277 1.290 962.2 7.64 0.1354 0.720



TABLE 22.7. Thermophysical Properties of the U.S. Standard Atmosphere3

“ Z = geometric attitude; H = geopotential attitude; p = density; g = acceleration of 
gravity; vs = velocity of sound. Condensed and in some cases converted from U.S. 
Standard Atmosphere 1976, National Oceanic and Atmospheric Administration and 
National Aeronautics and Space Administration, Washington. Also available as NOAA- 
S/T 76-1562 and Government Printing Office Stock No. 003-017-00323-0.

Z, 
Hl s ? T, 

K
P, 

bar kg/m3
g- 

m/s2 m/s

0 0 288.15 1.0133 1.2250 9.8067 340.3
1000 1000 281.65 0.8988 1.1117 9.8036 336.4
2000 1999 275.15 0.7950 1.0066 9.8005 332.5
3000 2999 268.66 0.7012 0.9093 9.7974 328.6
4000 3997 262.17 0.6166 0.8194 9.7943 324.6

5000 4996 255.68 0.5405 0.7364 9.7912 320.6
6000 5994 249.19 0.4722 0.6601 9.7882 316.5
7000 6992 242.70 0.4111 0.5900 9.7851 312.3
8000 7990 236.22 0.3565 0.5258 9.7820 308.1
9000 8987 229.73 0.3080 0.4671 9.7789 303.9

10000 9984 223.25 0.2650 0.4135 9.7759 299.5
11000 10981 216.77 0.2270 0.3648 9.7728 295.2
11000 11977 216.65 0.1940 0.3119 9.7697 295.1
13000 12973 216.65 0.1658 0.2667 9.7667 295.1
14000 13969 216.65 0.1417 0.2279 9.7636 295.1

15000 14965 216.65 0.1211 0.1948 9.7605 295.1
16000 15960 216.65 0.1035 0.1665 9.7575 295.1
17000 16954 216.65 0.0885 0.1423 9.7544 295.1
18000 17949 216.65 0.0756 0.1217 9.7513 295.1
19000 18943 216.65 0.0647 0.1040 9.7483 295.1

20000 19937 216.65 0.0553 0.0889 9.7452 295.1
22000 21924 218.57 0.0405 0.0645 9.7391 296.4
24000 23910 220.56 0.0297 0.0469 9.7330 297.4
26000 25894 222.54 0.0219 0.0343 9.7269 299.1
28000 27877 224.53 0.0162 0.0251 9.7208 300.4

30000 29859 226.51 0.0120 0.0184 9.7147 301.7
32000 31840 227.49 0.00889 0.01356 9.7087 303.0
34000 33819 233.74 0.00663 0.00989 9.7026 306.5
36000 35797 239.28 0.00499 0.00726 9.6965 310.1
38000 37774 244.82 0.00377 0.00537 9.6904 313.7

40000 39750 250.35 0.00287 0.00400 9.6844 317.2
42000 41724 255.88 0.00220 0.00299 9.6783 320.7
44000 43698 261.40 0.00169 0.00259 9.6723 324.1
46000 45669 266.93 0.00131 0.00171 9.6662 327.5
48000 47640 270.65 0.00102 0.00132 9.6602 329.8

50000 49610 270.65 0.00080 0.00103 9.6542 329.8
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TABLE 22.8. Thermophysical Properties of Condensed and Saturated-Vapor Carbon Dioxide from 200 K to the Critical Point

22-14

Temp.

T, 
K

Absolute 
Pressure

P, 
bar

Specific Volume, 
m3/kg

Specific Enthalpy, 
kJ/kg

Specific Entropy, 
kJ/(kg ■ K)

Specific Heat cp 
kJ/(kg ■ K)

Thermal 
Conductivity, 
W/(m ■ K)

Viscosity 
10“4 Pa • s Prandtl Number

Con
densed “ Vapor

Con
densed" Vapor

Con- 
sensed" Vapor

Con
densed" Vapor Liquid Vapor Liquid Vapor Liquid Vapor

200 1.544 0.000644 0.2362 164.8 728.3 1.620 4.439
205 2.277 0.000649 0.1622 171.5 730.0 1.652 4.379
210 3.280 0.000654 0.1135 178.2 730.9 1.682 4.319
215 4.658 0.000659 0.0804 185.0 731.3 1.721 4.264
216.6 5.180 0.000661 0.0718 187.2 731.5 1.736 4.250

216.6 5.180 0.000848 0.0718 386.3 731.5 2.656 4.250 1.707 0.958 0.182 0.011 2.10 0.116 1 96 0.96
220 5.996 0.000857 0.0624 392.6 733.1 2.684 4.232 1.761 0.985 0.178 0.012 1.86 0.118 1.93 0.97
225 7.357 0.000871 0.0515 401.8 735.1 2.723 4.204 1.820 1.02 0.171 0.012 1.75 0.120 1.87 0.98
230 8.935 0.000886 0.0428 411.1 736.7 2.763 4.178 1.879 1.06 0.164 0.013 1.64 0.122 1.84 0.99
235 10.75 0.000901 0.0357 420.5 737.9 2.802 4.152 1.906 1.10 0.160 0.013 1.54 0.125 1.82 1.01

240 12.83 0.000918 0.0300 430.2 738.9 2.842 4.128 1.933 1.15 0.156 0.014 1.45 0.128 1.80 1.02
245 15.19 0.000936 0.0253 440.1 739.4 2.882 4.103 1.959 1.20 0.148 0.015 1.36 0.131 1.80 1.04
250 17.86 0.000955 0.0214 450.3 739.6 2.923 4.079 1.992 1.26 0.140 0.016 1.28 0.134 1.82 1.06
255 20.85 0.000977 0.0182 460.8 739.4 2.964 4.056 2.038 1.34 0.134 0.017 1.21 0.137 1.84 1.08
260 24.19 0.001000 0.0155 471.6 738.7 3.005 4.032 2.125 1.43 0.128 0.018 1.14 0.140 1.89 1.12

265 27.89 0.001026 0.0132 482.8 737.4 3.047 4.007 2.237 1.54 0.122 0.019 1.08 0.144 1.98 1.17
270 32.03 0.001056 0.0113 494.4 735.6 3.089 3.981 2.410 1.66 0.116 0.020 1.02 0.150 2.12 1.23
275 36.59 0.001091 0.0097 506.5 732.8 3.132 3.954 2.634 1.81 0.109 0.022 0.96 0.157 2.32 1.32
280 41.60 0.001130 0.0082 519.2 729.1 3.176 3.925 2.887 2.06 0.102 0.024 0.91 0.167 2.57 1.44
285 47.10 0.001176 0.0070 532.7 723.5 3.220 3.891 3.203 2.40 0.095 0.028 0.86 0.178 2.90 1.56

290 53.15 0.001241 0.0058 547.6 716.9 3.271 3.854 3.724 2.90 0.088 0.033 0.79 0.191 3.35 1 68
295 59.83 0.001322 0.0047 562.9 706.3 3.317 3.803 4.68 0.081 0.042 0.71 0.207 4.1 1.8
300 67.10 0.001470 0.0037 585.4 690.2 3.393 3.742 0.074 0.065 0.60 0.226
304.2* 73.83 0.002145 0.0021 636.6 636.6 3.558 3.558

“Above the solid line, the condensed phase is solid; below the line, it is liquid.

h Critical point.



TABLE 22.9. Thermophysical Properties of Gaseous Carbon Dioxide at 1-Bar Pressure3

a v = Specific volume; h = enthalpy; 5 = entropy, cp = specific heat at constant pressure; k = thermal 
conductivity; p. = viscosity; Pr = Prandtl number.

r, 
K

V, 
m3/kg

h, 
kl/kg

•S, 
kJ/(kg • K)

cp' 
kJ/(kg ■ K)

k.
W/(m K)

ju., 
10'4 Pa ■ s Pr

300 0.5639 809.3 4.860 0.852 0.0166 0.151 0.778
350 0.6595 853.1 4.996 0.898 0.0204 0.175 0.770
400 0.7543 899.1 5.118 0.941 0.0243 0.198 0.767
450 0.8494 947.1 5.231 0.980 0.0283 0.220 0.762
500 0.9439 997.0 5.337 1.014 0.0325 0.242 0.755

550 1.039 1049 5.435 1.046 0.0364 0.261 0.750
600 1.133 1102 5.527 1.075 0.0407 0.281 0.742
650 1.228 115b 5.615 1.102 0.0445 0.299 0.742
700 1.332 1212 5.697 1.126 0.0481 0.317 0.742
750 1.417 1269 5.775 1.148 0.0517 0.334 0.742

800 1.512 1327 5.850 1.168 0.0551 0.350 0.742
850 1.606 1386 5.922 1.187 0.0585 0.366 0.742
900 1.701 1445 5.990 1.205 0.0618 0.381 0.742
950 1.795 1506 6.055 1.220 0.0650 0.396 0.743

1000 1.889 1567 6.120 1.234 0.0682 0.410 0.743
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TABLE 22.10. Thermophysical Properties of Saturated Cesium3

'' v = specific volume; h = specific enthalpy; s = specific entropy; cp = specific heat at constant pressure; 
H = dynamic viscosity; k = thermal conductivity; Pr = Prandtl number; / = saturated Equid: g = saturated 
vapor. The notation 2.66.- 9 signifies 2.66 X 10” 9.

T, 
K

P.
bar 10“4 m3/kg nr’/kg

hh 
kJ/kg

Ag> 
kJ/kg

■*/, 
kJ/(kg ■ K)

sg 
kJ/(kg • K)

301.6 2.66.- 9 5.44 74.6 0.696
350 1.59.- 7 5.52 86.4 0.731
400 3.83.- 6 5.62 65400 98.5 651.9 0.765 2.148
450 4.44. - 5 5.71 6330 110.4 659.2 0.793 2.012
500 3.11.- 4 5.80 1001 122.0 666.1 0.817 1.905

600 5.65.- 3 6.00 65.5 144.9 678.4 0.859 1.748
700 4.40. - 2 6.22 9.67 167.0 688.9 0.893 1.638
800 0.2029 6.44 2.35 188.7 698.3 0.922 1.559
900 0.6622 6.69 0.796 210.6 707.3 0.948 1.500

1000 1.693 6.95 0.335 233.2 716.4 0.972 1.455

1100 3.629 7.26 0.169 256.7 725.9 0.994 1.420
1200 6.790 7.63 (■097 281.1 736.1 1.015 1.394
1300 11.41 8.04 0.061 306.2 747.1 1.035 1.374
1400 18.7 8.47 0.040 332.0 759.0 1.053 1.358
1500 27.6 8.91 0.029 358.5 771.9 1.068 1.344

cp.i'
kJ/ 

(kg • K)

Cp.g'
kJ/ 

(kg • K)
Pi 

10~4 Pa•s 10“4 Pa•s
k„

W/(m ■ K)
kg’ 

W/(m ■ K) Pr/, Prg,

301.6 0.245 0.158 6.82 19.7 0.0085
350 0.243 0.164 5.23 20.0 0.0064
400 0.240 0.170 4.25 20.3 0.0050
450 0.236 0.182 3.62 20.4 0.0042
500 0.232 0.198 3.18 20.5 0.0036

600 0.224 0.234 2.54 20.5 0.0028
700 0.219 0.265 2.15 20.1 0.0023
800 0.217 0.282 1.86 19.4 0.0021
900 0.222 0.288 1.71 0.21 19.0 0.0081 0.0020

1000 0.231 0.285 1.51 0.22 17.5 0.0088 0.0020 0.713

1100 0.239 0.278 1.42 0.23 16.3 0.0094 0.0021 0.680
1200 0.248 0.269 1.32 0.24 15.0 0.0100 0.0022 0.646
1300 0.256 0.258 1.24 0.25 13.6 0.0106 0.0023 0.608
1400 0.263 0.245 1.17 0.26 12.2 “0111 0.0025 0.572
1500 0.269 0.230 1.11 0.27 10.8 0.0115 0.0028 0.538
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TABLE 22.11. Thermophysical Properties of Gaseous Cesium at 1-Bar Pressure3

a v = specific volume; h = specific enthalpy; 5 = specific entropy; cp = specific heat at constant pres
sure; ct, = specific heat at constant volume; y = ratio of principal specific heats = cp/c„; Z = 
compressibility factor = Pv/RT\ vs = velocity of sound; k — thermal conductivity; g = viscosity; Pr = 
Prandtl number.

T, K 943 1000 1100 1200 1300 1400 1500

Uy m3/kg 0.547 0.592 0.665 0.734 0.801 0.866 0.931
h, kJ/kg 711 727 749 769 787 804 821
s, kJ/(kg • K) 1.479 1.496 1.517 1.534 1.549 1.562 1.573
CP’ kJ/(kg - K) 0.287 0.249 0.209 0.188 0.176 0.169 0.165
CV’> kJ/(kg • K) 0.184 0.157 0.129 0.113 0.105 0.101 0.099
Y 1.566 1.634 1.653 1.666 1.672 1.674 1.672
Z 1.00 1.0005 1.0006 1.0007 1.0007 1.0008 1.0008

m/s 284.0 311.1 331.6 349.7 365.9 380.9 394.6
k. W/(m • K) 0.00824 0.00828 0.00836

10’4 Pa • s 0.215 0.232 0.258
P 0.749 0.698 0.645

TABLE 22.12. Thermophysical Properties of n-Hydrogen at Atmospheric Pressure3

T, 
K m3/kg

h, s,
kJ/kg kJ/(kg • K)

cp’
kJ/(kg • K) z, m/s

k, 
W/(m • K) 10“4 Pa• s Pr

250 10.183 3517 67.98 14.04 1.000 1209 0.162 0.079 0.685
300 12.218 4227 70.58 14.31 1.000 1319 0187 0.089 0.685
350 14.253 4945 72.79 14.43 1.000 1423 0.210 0.099 0.685
400 16.289 5669 74.72 14.48 1.000 1520 0.230 0.109 0.684
450 18.324 6393 76.43 14.50 1.000 1611 0.250 0.118 0.684

500 20.359 7118 77.96 14.51 1.000 1698 0.269 0.127 0.684
550 22.39 7844 79.34 14.53 1.000 1780 0.287 0.135 0.684
600 24.48 8571 80.60 14.55 1.000 1859 0.305 0.143 0.684
650 26.47 9299 81.76 14.57 1.000 1934 0.323 0.151 0.684
700 28.50 10029 82.85 14.60 1.000 2006 0.340 0.159 0.684

'■f — specific volume; h = specific enthalpy; s = specific entropy; cp = specific heat at constant 
pressure; Z = compressibility factor = Pu/RT; vs = velocity of sound; k = thermal conductivity; 
r = dynamic viscosity; Pr = Prandtl number.
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TABLE 22.13. Thermophysical Properties of Saturated Lithium3

a v = specific volume' h = specific enthalpy; 5 = specific entropy; cp = specific heat at constant pressure; 
(i = dynamic viscosity; k = thermal conductivity; Pr = Prandtl number; / = saturated liquid; g = saturated 
vapor. The notation 1.78.— 13 signifies 1.78 X 10~13.

T. 
K

P, 
bar

17. 
m3/kg m /kg kJ/kg kJ/kg

sb 
kJ/(kg • K)

sg' 
kJ/(kg K)

453.7 1.78.- 13 0.00191 1703 24259 6.78 56.49
500 8.21.- 12 0.00195 1905 24390 7.20 52.17
600 4.18.- 9 0.00199 2334 24674 7.98 45.22
700 3.51.- 7 0.00203 2697 24869 8.63 40.31
800 9.57.- 6 0.00207 994000 3174 25162 9.19 36.68

900 0.000124 0.00211 85540 3590 25341 9.68 33.85
1000 0.000960 0.00216 12175 4006 25477 10.12 31.59
1100 0.00509 0.00221 2494 4421 25578 10.52 29.75
1200 0.0204 0.00226 669 4835 25654 10.88 28.23
1300 0.0658 0.00231 232 5251 25717 11.21 26.95

1400 0.1794 0.00237 86 5668 25778 11.52 25.88
1500 0.4269 0.00243 38 6088 25845 11.81 24.98

T, 
K

cp-t' 
kJ/(kg • K) kJ/(kg K) 1Cr4 Pa - s IO"4 Pa•

A7, 
s W/(m • K)

kS' 
W/(m • K) Pr, Pr,

453.7 4.30 6.00 42.8 0.0603
500 4.34 5.31 44.3 0.0520
600 4.23 4.26 47.6 0.0379
700 4.19 3.58 50.9 0.0295
800 4.16 3.10 54.1 0.0238

900 4.16 6.96 2.75 0.116 57.2 0.0704 0.0200 1.16
1000 4.16 8.17 2.47 0.121 60.0 0.0806 0.0171 1.22
1100 4.15 9.11 2.25 0.124 62.5 0.0894 0.0149 1.26
1200 4.14 9.72 2.07 0.126 64.7 0.0968 0.0132 1.28
1300 4.16 10.02 1.92 0.129 66.5 0.1024 0.0120 1.30

1400 4.19 10.05 1.80 0.139 68.0 0.1065 0.0111 1.33
1500 4.20 9.89 1.69 0.150 69.1 0.1092 0.0103 1.35

TABLE 22.14. Thermophysical Properties of Lithium at 1-Bar Pressure3

T, K 1615 1700 1800 1900 2000

r. m3/kg 16.91 18.77 20.40 21.90 23.32
h. kJ/kg 25934 26682 27379 27946 28425
5. kJ/(kg • K) 24.11 24.57 24.97 25.28 25.52
t „ kJ/(kg • K) 9.561 7.794 6.234 5.173 4.469
c,. kJ/(kg ■ K) 6.627 5.176 4.091 3.342 2.839
Y 1.443 1.506 1.524 1.548 1.574
Z 0.981 1.001 1.001 1.001 1.001
vs, m/s 1514 1681 1763 1841 1916
fi. 10"4 Pa • s 0.161 0.171 10.181 0.192 0.202
k,W/(m • K) 0.193 0.198 0.202 0.207 0.209
Pr 0.798 0.673 0.559 0.480 0.432

“ v = specific volume; h = specific enthalpy; s = specific entropy; cp = specific heat at 
constant pressure; c„ = specific heat at constant volume; y = ratio of principal specific 
heats = cp/ev\ Z = compressibility factor = Pv/RT-, = velocity of sound; p = 
dynamic viscosity; k = thermal conductivity; Pr = Prandtl number.
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TABLE 22.15. Thermophysical Properties of Saturated Mercury3

r, 
K

P, 
bar 10"5 m3/kg nr /kg

h„h 
kJ/kg kJ/kg

•S/?
kJ/(kg ■ K)

sg’ 
kJ/(kg ■ k)

c * 
kJ/(kg ■ K)

cp-g'
kJ/(kg • K)

200 1.9.- 12 21.41 342.50 0.2740 1.8794 0.1360 0.1036
220 7.73.- 11 24.16 344.52 0.2871 1.7433 0.1399 0.1036
234.3 7.330.- 10 3.450. + 7 26.17 345.88 0.2960 1.6607 0.1420 0.1036

234.3 7.330.- 10 7.3038 3.450. + 7 37.58 345.88 0.3447 1.6607 0.1421 0.1036
240 1.668.- 9 7.3114 2.898.+ 7 38.40 346.46 0.3481 1.6322 0.1419 0.1036

260 6.925. - 8 7.3381 1.801.+ 6 41.22 348.53 0.3595 1.5418 0.1410 0.1036
280 5.296.- 7 7.3648 2.440. + 5 44.03 350.60 0.3699 1.4651 0.1401 0.1036
300 3.075.- 6 7.3915 4.383.+ 4 46.83 352.67 0.3795 1.4200 0.1393 0.1036
320 1.428.- 5 7.4183 9.878.+ 3 49.61 354.75 0.3885 1.3603 0.1386 0.1036
340 5.516.- 5 7.4451 2.679.+ 3 52.38 356.82 0.3969 1.2925 0.1380 0.1036

360 1.829.- 4 7.4721 847 55.13 358.89 0.4048 1.2487 0.1375 0.1036
380 5.289.- 4 7.4991 304 57.87 360.96 0.4122 1.2099 0.1370 0.1036
400 1.394.- 3 7.5262 120 60.61 363.04 0.4192 1.1754 0.1366 0.1036
450 1.053.- 2 7.5946 18.0 67.41 368.21 0.4352 1.1037 0.1357 0.1036
500 5.261.- 2 7.6640 3.98 74.19 373.38 0.4495 1.0479 0.1353 0.1037

550 0.1949 7.7347 1.176 80.95 378.53 0.4624 1.0035 0.1352 0.1038
600 0.5776 7.8069 0.4318 87.72 383.64 0.4742 0.9674 0.1355 0.1040
650 1.4425 7.8810 0.1867 94.51 388.68 0.4850 0.9376 0.1360 0.1044
700 3.153 7.9573 0.0917 101.54 393.62 0.4951 0.9127 0.1369 0.1049
750 6 197 8.0362 0.0497 108.24 398.41 0.5046 0.8915 0.1382 0.1057

800 11.18 8.115 0.0292 115.23 403.04 0.5136 0.8734 0.1398 0.1067
850 18.82 8.203 0.0183 122.31 407.44 0.5221 0.8576 0.1417 0.1081
900 29.88 8.292 0.0121 129.53 411.61 0.5302 0.8437 0.1439 0.1099
950 45.23 8.385 0.0083 136.89 415.25 0.5381 0.8313 0.1464 0.1120

1000 65.74 8.482 0.0060 144.41 419.08 0.5456 0.8203 0.1493 0.1145



22-20 TABLE 22.15. (Continued)

T, 
K

A/’ 
Pa • s Pa • s

k/, 
W/(m •

kg’
K) W/(m ■ K) Pr/ Pr8

234.3 20.51 0.217 7.64 0.0034 0.0381 0.668
240 19.85 0.222 7.72 0.0034 0.0365 0.668

260 17.91 0.240 8.00 0.0037 0.0316 0.667
280 16.39 0.259 8.27 0.0040 0.0278 0.667
300 15.21 0.277 8.54 0.0043 0.0248 0.667
320 14.24 0.295 8.80 0.0046 0.0224 0.667
340 13.44 0.314 9.06 0.0049 0.0205 0.667

360 12.77 0.332 9.31 0.0052 0.0189 0.666
380 12.19 0.350 9.56 0.0054 0.0175 0.666
400 11.73 0.370 9.80 0.0058 0.0163 0.666
450 10.74 0.419 10.38 0.0065 0.0140 0.667
500 10.08 0.470 10.93 0.0073 0.0125 0.667

550 9.51 0.523 11.45 0.0081 0.0112 0.667
600 9.10 0.577 11.94 0.0090 0.0100 0.669
650 8.76 0.631 12.39 0.0098 0.0096 0.671
700 8.49 0.687 12.82 0.0107 0.0091 0.675
750 8.26 0.742 13.21 0.0115 0.0086 0.680

800 8.08 0.798 13.57 0.0124 0.0083 0.687
850 7.92 0.854 13.90 0.0133 0.0081 0.696
900 7.78 0.909 14.20 0.0142 0.0079 0.705
950 7.65 0.964 14.46 0.0150 0.0077 0.719

1000 7.54 1.019 14.69 0.0158 0.0076 0.737

“c = specific volume; h = specific enthalpy: 5 = specific entropy; cf 
conductivity; Pr = Prandtl number; / = saturated liquid; g = saturated

, = specific 
vapor. The

heat at constant pressure; p. = dynamic viscosity; k = thermal 
notation 1.9.— 12 signifies 1.9 X 10 12.

h Above the solid line, solid phase; below the line, liquid.



TABLE 22.16. Thermophysical Properties of Mercury at 1-Bar Pressure3

T, 
K m3/kg

h, 
kJ/kg

s, 
kJ/ 

(kg • K)
kJ/ 

(kg • )
kJ/ 

(kg • K)
Y Z m/s Pa • s

k, 
W/ 

(m-K) Pr

630.1 0.26043 386.08 0.94881 0.1042 0.0623 1.672 0.9972 208.7 6.19.- 5 0.0104 0.620
650 0.26874 388.76 0.95285 0.1042 0.0623 1.671 0.9976 211.6 6.39.- 5 0.0108 0.617
700 0.28955 393.96 0.96055 0.1040 0.0623 1.670 0.9980 219.6 6.89.- 5 0.0117 0.612
750 0.31033 399.16 0.96773 0.1040 0.0623 1.670 0.9984 227.3 7.39.- 5 0.0127 0.605
800 0.33112 404.36 0.97444 0.1039 0.0622 1.669 0.9987 234.8 7.89.- 5 0.0136 0.603

850 0.35188 409.55 0.98073 0.1038 0.0622 1.668 0.9988 242.1 8.39.- 5 0.0145 0.601
900 0.37265 414.74 0.98667 0.1038 0.0622 1.668 0.9990 249.2 8.88.- 5 0.0154 0.599
950 0.39341 419.93 0.99228 0.1038 0.0622 1.668 0.9992 256.0 9.39.- 5 0.0164 0.594

1000 0.41416 425.12 0.99769 0.1038 0.0622 1.668 0.9993 263.0 9.87.- 5 0.0173 0.592
1100 0.45566 435.50 1.00742 0.1037 0.0622 1.667 0.9995 275.5 1.08.- 4 0.0189 0.594

1200 0.49715 445.87 1.01646 0.1037 0.0622 1.667 0.9996 287.8
1300 0.53863 456.24 1.02469 0.1037 0.0622 1.667 0.9997 299.6
1400 0.58010 466.61 1.03226 0.1037 0.0622 1.667 0.9998 311.0
1500 0.62157 476.97 1.03956 0.1037 0.0622 1.668 0.9998 321.9
1600 0.66304 487.34 1.04616 0.1037 0.0622 1.668 0.9999 332.5

1800 0.74598 508.07 1.05841 01037 0.0622 1.668 0.9999 352.6
2000 0.82890 528.80 1 06936 0.1037 0.0622 1 668 1.0000 371.7

“ v = specific volume; h = specific enthalpy; s = specific entropy; cp = specific heat at constant pressure; cv = specific heat 
at constant volume; y = ratio of principal specific heats = cp/c„; Z = compressibility factor = Pv/RT-, fi = dynamic 
viscosity; k = thermal conductivity; Pr = Prandtl number. The notation 6.19.— 5 signifies 6.19 X 10-5.
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TABLE 22.17. Thermophysical Properties of Nitrogen at Atmospheric Pressure3

a r = specific volume; h = specific enthalpy; s = specific entropy; cp — specific heat at constant pres
sure; Z = cornpressibilitv factor = Pv/RT', vs = velocity of sound; k = thermal conductivity; p = 
dynamic viscosity; Pr = Prandtl number.

T
K m3/kg

h, 
kJ/kg

S, 
kJ/(kg K)

cp' 
kJ/(kg • K) Z m/s

k, 
W/(m • K) 10"4 Pa ■ s Pr

250 0.7317 259.1 6.650 1.042 0.9992 322 0.0223 0.155 0.724
300 0.8786 311.2 6.840 1.041 0.9998 353 0.0259 0.178 0.715
350 1.025 363.3 7.001 1.042 0.9998 382 0.0292 0.200 0.713
400 1.171 415.4 7.140 1.045 0.9999 407 0.0324 0.220 0.710
450 1.319 467.8 7.263 1.050 1.0000 432 0.0366 0.240 0.708

500 1.465 520.4 7.374 1.056 1.0002 455 0.0386 0.258 0.706
550 1.612 573.4 7.475 1.065 1.0002 476 0.0414 0.275 0.707
600 1.758 626.9 7.568 1.075 1.0003 496 0.0442 0.291 0.708
650 1.905 681.0 7.655 1.086 1.0003 515 0.0470 0.306 0.709
700 2.051 735.6 7.736 1.098 1.0003 534 0.0496 0.321 0.711

TABLE 22.18. Thermophysical Properties of Oxygen at Atmospheric Pressure3

T.
K.

V, 
m3/kg

h, 
kJ/kg

5, 
kJ(kg ■ K)

cp- 
kJ/(kg • K)

Z k, 
W/(m ■ K)

A, 
10-4 Pa■s Pr

250 0.6402 226.9 6.247 0.915 0.9987 0.0226 0.179 0.725
300 0.7688 272.7 6.414 0.920 0.9994 0.0266 0.207 0.716
350 0.9790 318.9 6.557 0.929 0.9996 0.0305 0.234 0.713
400 1.025 365.7 6.682 0.942 0.9998 0.0343 0.258 0.710
450 1.154 413.1 6.973 0.956 1.0000 0.0380 0.281 0.708

500 1.282 461.3 6.895 0.972 1.0000 0.0416 0.303 0.707
550 1.410 510.3 6.988 0.988 1.0001 0.0451 0.324 0.708
600 1.539 560.1 7.075 1.003 1.0002 0.0487 0.344 0.708
650 1.667 610.6 7.156 1.018 1.0002 0.0521 0.363 0.709
700 1.795 661.9 7.232 1.031 1.0002 0.0554 0.381 0.710

" v = specific volume; h = specific enthalpy; 5 = specific entropy; cp = specific heat at constant 
pressure; Z = compressibility factor = Pv/RT\ k = thermal conductivity; p. = dynamic viscos
ity; Pr = Prandtl number.
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TABLE 22.19. Thermophysical Properties of Saturated Potassium9

22-23

a v = specific volume; h = specific enthalpy; 5 = specific entropy;
c = specific heat at constant pressure; /x = dynamic viscosity; k — thermal conductivity; 
Pr = Prandtl number. The notation 1.37.- 9 signifies 1.37 X 10-9.

T, 
K.

P, 
bar m’/kg

'V’ 
m’/kg kJ/kg kJ/kg kJ/(kg K.) kJ/(kg ■ K) kJ/(kgP'K) kJ/(kg ■ K)

336.4 1.37. 9 1.208.- 3 94 1.928 0.822
350 3.82. 8 1.213.- 3 105 2307 1.961 8.251 0.818
400 1.84.- 7 1.229.- 3 4.63.+ 6 146 2342 2.068 7.559 0.805 0.532
450 3.21.- 6 1.247.- 3 2.98.+ 5 186 2366 2.163 7.009 0.794 0.610
500 3.13.- 5 1.266.- 3 33890 225 2390 2.246 6.576 0.785 0.670

600 9.26.- 4 1.304.- 3 1364 303 2433 2.388 5.937 0.771 0.819
700 0.0102 1.346.- 3 142 379 2468 2.506 5.490 0.762 0.965
800 0.0612 1.389.- 3 26.7 456 2498 2.608 5.161 0.761 1.066
900 0.2441 1 437 - 3 7 4112 532 2525 2 697 4.912 0.769 1.116

1000 0.7322 1.488.- 3 2.691 610 2552 2.780 4 722 0.792 1.121

1100 1.864 1.546.- 3 1.143 690 2580 2.856 4 574 0.819 1.100
1200 3.963 1.605.- 3 0.584 774 2610 2.929 4.459 0.846 1.064
1300 7.304 1.672.- 3 0.335 860 2643 2.998 4.370 0.873 1.022
1400 12.44 1.742.- 3 0.207 948 2679 3.063 4.299 0.899 0.980
1500 20.0 1.816.- 3 0.136 1042 2715 3.126 4.240 0.924 0.938

kh A\,.
T. M/. Mr W/ W/
K. 10 4 Pa ■ s IO’4 Pa • s (m ■ K) (m ■ K) Pr, Pr,

336.4 5.57 54.8 0.00836
350 5.18 54.2 0.00782
400 4.13 52.0 0.00639
450 3.46 49.9 0.00551
500 3.01 47.9 0.00493

600 2.38 43 9 0.00418
700 1.98 0.121 40.4 0.0142 0.00373 0.822
800 1.71 0.134 37.1 0.0175 0.00351 0.813
900 1.51 0.148 34.0 0.0205 0.00342 0.806

1000 1.35 0.163 31 3 0.0228 0.00341 0.801

1100 1.23 0.178 28.7 0.0248 0.00351 0.790
1200 1.14 0.196 26.3 0.0266 0.00367 0.784
1300 1.05 0.212 23.9 0.0280 0.00384 0.774
1400 0.98 0.229 21.5 0.0293 0.00410 0.763
1500 0.93 0.242 19.2 0.0303 0.00448 0.750



TABLE 22.20. Thermophysical Properties of Gaseous Potassium at 1-Bar Pressure3

“t- = specific volume; h = specific enthalpy; s = specific entropy; cp = specific heat at constant pres
sure; cv = specific heat at constant volume; y = ratio ot principal specific heats = cp/cv\ Z = 
compressibility factor = Pv/RT; vs = velocity of sound; fi = dynamic viscosity; k = thermal conduc
tivity; Pr = Prandtl number.

T, K 1032 1100 1200 1300 1400 1500

i>, m3/kg 1.9960 2.208 2.462 2.701 2.931 3.155
A,kJ/kg 2561 2630 2714 2785 2849 2909
5. kJ/(kg ■ K) 4.671 4.734 4.807 4.864 4.912 4.953
cp, kJ/(kg • K.) 1.116 0.934 0.763 0.669 0.617 0.587
c„ kJ/(kg ■ K) 0.730 0.583 0.470 0.407 0.372 0.353
7 1.529 1.600 1.625 1.645 1.658 1.665
Z 1.0006 1.0006 1.0006 1.0005 1.0005 1.0005
T\, m/s 538.3 594.4 632.5 666.6 697.0 724.7
g,10 “ 4 Pa • s 0.167 0.184 0.207
A., W/(m • k) 0.0234 0.0218 0.0211
Pr 0.796 0.788 0.749

TABLE 22.21. Thermophysical Properties of Saturated Refrigerant 123

P 
bar

T
K 10“4 mJ/kg m3/kg

A/> 
kJ/kg kJ/kg

i/, 
kJ/(kg K) kJ/(kg • K)

0.10 200.1 6.217 1.365 334.8 518.1 3.724 4.640
0.15 206.3 6.282 0.936 340.1 521.0 3.750 4.627
0.20 211.1 6.332 0.716 344.1 523.2 3.769 4.618
0.25 214.9 6.374 0.582 347.4 525.0 3.785 4.611
0.30 218.2 6.411 0.491 350.2 526.5 3.798 4.606

0.4 223.5 6.437 0.376 354.9 529.1 3.819 4.598
0.5 227.9 6.525 0.306 358.8 531.2 3.836 4.592
0.6 231.7 6.570 0.254 362.1 532.9 3.850 4.588
0.8 237.9 6.648 0.198 367.6 535.8 3.874 4.581
1.0 243.0 6.719 0.160 372.1 538.2 3.893 4.576

1.5 253.0 6.859 0.110 381.2 542.9 3.929 4.568
2.0 260.6 6.970 0.0840 388.2 546.4 3.956 4.563
2.5 266.9 7.067 0.0681 394.0 549.2 3.978 4.560
3.0 272.3 7.183 0.0573 399.1 551.6 3.997 4.557
4.0 281.3 7.307 0.0435 407.6 555.6 4.027 4.553

5.0 288.8 7.444 0.0351 414.8 558.8 4.052 4.551
6.0 295.2 7.571 0.0294 421.1 561.5 4.073 4.549
8.0 306.0 7.804 0.0221 431.8 565.7 4.108 4.546
10 314.9 8.022 0.0176 440.8 569.0 4.137 4.544
15 332.6 8.548 0.0114 459.3 574.5 4.193 4.539

20 346.3 9.096 0.0082 474.8 577.5 4.237 4.534
25 357.5 9.715 0.0062 488.7 578.5 4.275 4.527
30 367.2 10.47 0.0048 502.0 577.6 4.311 4.517
35 375.7 11.49 0.0036 515.9 574.1 4.347 4.502
40 383.3 13.45 0.0025 532.7 564.1 4.389 4 471

41.2* 385.0 17.92 0.0018 548.3 548.3 4.429 4.429
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TABLE 22.21. (Continued)

“ v = specific volume; h = specific enthalpy; 5 = specific entropy; cp = specific heat at constant pres
sure p. = dynamic viscosity; k = thermal conductivity; Pr = Prandtl number; / = saturated liquid; 
g = saturated vapor.
* Critical point.

cp./’ cp-g' ^/> Ag,
bar kJ/(kg ■ K) kJ/(kg • K) 10“4 Pa • s 10“5 Pa■ s W/(m • K) W/(m • K) Pr/ Pr8
0.10 0.855 6.16 0.105 0.0050 5.01
0.15 0.861 5.61 0.103 0.0053 4.69
0.20 0.865 5.28 0.101 0.0055 4.52
0.25 0.868 4.99 0.099 0.0056 4.38
0.30 0.872 4.79 0.098 0.0057 4.26

0.4 0.876 4.48 0.097 0.0060 4.05
0 5 0.880 0.545 4.25 1.00 0.095 0.0062 3.94 0.89
0 6 0.884 0.552 4.08 1.02 0.094 0.0063 3.84 0.88
0.8 0.889 0.564 3.81 1.04 0.091 0.0066 3.72 0.88
1.0 0.894 0.574 3.59 1.06 0.089 0.0069 3.61 0.88

1.5 0.905 0.600 3.23 1.10 0.086 0.0074 3.40 0.89
2.0 0.914 0.613 2.95 1.13 0.083 0.0077 3.25 0.90
2 5 0.922 0.626 2.78 1.15 0.081 0.0081 3.16 0.91
3.0 0.930 0.640 2.62 1.18 0.079 0.0083 3.08 0.91
4.0 0.944 0.663 2.40 1.22 0.075 0.0088 3.02 0.92

5.0 0.957 0.683 2.24 1.25 0.073 0.0092 2.94 0.93
60 0.969 0.702 2.13 1.28 0.070 0.0095 2.95 0.95
8.0 0.995 0.737 1.96 1.33 0.066 0.0101 2.95 0.97

10 1.023 0.769 1.88 1.38 0.063 0.0107 3.05 1.01
15 1.102 0.865 1.67 1.50 0.057 0.0117 3.23 1.11

20 1.234 0.969 1.49 1.69 0.053 0.0126 3.47 1.30
25 1.36 1.19 1.33 0.047 0.0134 3.84
30 1.52 1.60 1.16 0.042 0.014 4.2
35 1.73 2.5 0.037 0.016

TABLE 22.22. Thermophysical Properties of Refrigerant 12 at 1-Bar Pressure3

T.
K

V, 
m3/kg

h, 
kJ/kg

J, 
kJ/(kg • K)

/*.
10-5 Pa•s

cp’ 
kJ/(kg • K)

Zc, 
W/(m • K) Pr

300 0.2024 572.1 4.701 1.26 0.614 0.0097 0.798
320 0.2167 584.5 4.741 1.34 0.631 0.0107 0.788
340 0.2309 597.3 4.780 1.42 0.647 0.0118 0.775
360 0.2450 610.3 4.817 1.49 0.661 0.0129 0.760
380 0.2590 623.7 4.853 1.56 0.674 0.0140 0.745

400 0.2730 637.3 4.890 1.62 0.684 0.0151 0.730
420 0.2870 651.2 4.924 1.67 0.694 0.0162 0.715
440 0.3009 665.3 4.956 1.72 0.705 0.0173 0.703
460 0.3148 697.7 4.987 1.78 0.716 0.0184 0.693
480 0.3288 694.3 5.018 1.84 0.727 0.0196 0.683

500 0.3427 709.0 5.048 1.90 0.739 0.0208 0.674

"t> = specific volume; h = specific enthalpy; s = specific entropy; /i = dynamic viscosity; cp = 
specific heat capacity at constant pressure; k = thermal conductivity; Pr = Prandtl number.
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TABLE 22.23. Thermophysical Properties of Saturated Refrigerant 223

c,, 9. k, a,

T
K

p 
bar

v, m3/kg A,kJ/kg r, kj/(kg ■ K) . kJ/(kg • K) 
(Liquid)

10“4 Pa■s 
(Liquid)

W/(m • K) 
(Liquid)

N/m 
(Liquid)Liquid Vapor Liquid Vapor Liquid Vapor

150 0.0017 6.209.- 4' 83.40 268.2 547.3 3.355 5.215 1.059 0.161
160 0.0054 6.293.- 4 28.20 278.2 552.1 3.430 5.141 1.058 0.156
170 0.0150 6.381.- 4 10.85 288.3 557.0 3.494 5.075 1.057 0.770 0.151
ISO 0.0369 6 474. - 4 4.673 298.7 561.9 3.551 5.013 1.058 0.647 0.146
190 0.0821 6.573.- 4 2.225 308.6 566.8 3.605 4.963 1.060 0.554 0.141

200 0.1662 6.680.- 4 1.145 318.8 571.6 3.657 4.921 1.065 0.481 0.136 0.024
210 0.3116 6 794 - 4 0.6370 329.1 576.5 3.707 4.885 1.071 0.424 0.131 0.022
220 0.5470 6 917. - 4 0.3772 339.7 581.2 3.756 4.854 1.080 0.378 0.126 0.021
230 0.9076 7.050.- 4 0.2352 350.6 585.9 3.804 4.828 1.091 0.340 0.121 0.019
240 1.4346 7.195.- 4 0.1532 361.7 590.5 3.852 4.805 1.105 0.309 0.117 0.0172

250 2.174 7.351.- 4 0.1037 373.0 594.9 3.898 4.785 1.122 0.282 0.112 0.0155
260 3.177 7.523. - 4 0.07237 384.5 599.0 3.942 4.768 1.143 0.260 0.107 0.0138
270 4.497 7.733.- 4 0.05187 396.3 603.0 3.986 4.752 1.169 0.241 0.102 0.0121
280 6.192 7.923.- 4 0.03803 408.2 606.6 4.029 4.738 1.193 0.225 0.097 0.0104
290 8.324 8.158. 4 0.02838 420.4 610.0 4.071 4.725 1.220 0.211 0.092 0.0087

300 10.956 8.426. - 4 0.02148 432.7 612.8 4.113 4.713 1.257 0.198 0.087 0.0071
310 14.17 8.734.- 4 0.01643 445.5 615.1 4.153 4.701 1.305 0.186 0.082 0.0055
320 18.02 9.096. 4 0.01265 458.6 616.7 4.194 4.688 1.372 0.176 0.077 0.0040
330 22.61 9.535.- 4 9.753.- 3 472.4 617.3 4.235 4.674 1.460 0.167 0.072 0.0026
340 28.03 1.010.- 3 7.479.- 3 487.2 616.5 4.278 4.658 1.573 0.151 0.067 0.0014

350 34.41 1.086.- 3 5.613.- 3 503.7 613.3 4.324 4.637 1.718 0.130 0.062 0.0008
360 41.86 1.212. - 3 4.036. - 3 523.7 605.5 4.378 4.605 1.897 0.106
369 3 49.8» 2.015.- 3 2.015.- 3 570.0 570.0 4.501 4.501 00 —- — 0

" T — temperature; P = pressure; o = specific volume; h — specific enthalpy; s = specific entropy; cp = specific heat at constant pressure; g — dynamic 
viscosity; k = thermal conductivity; o = surface tension. Sources: P. v,T,h,s interpolated and extrapolated from I. I. Perelshteyn, Tables and Diagrams 
of the Thermodynamic Properties of Freons 12, 13, 22, Moscow, 1971. ep,fi, k interpolated and converted from Thermophysical Properties of Refrigerants. 
ASHRAE, New York, 1976. a calculated from V. A. Gruzdev et al., Fluid Meeh. Sou. Res., Vol. 3, p. 172, (1974).
h The notation 6.209. - 4 signifies 6.209 X 10-4

TABLE 22.24. Thermophysical Properties of Refrigerant 22 at Atmospheric Pressure3

T, K 250 300 350 400 450 500

v, nr/kg 0.2315 0.2802 0.3289 0.3773 0.4252 0.4723
/i.kJ/kg 597.8 630.0 664.5 702.5 740.8 782.3
5. kT/(kg ■ K) 4.8671 4.9840 5.0905 5.1892 5.2782 5.3562
cp, kJ/(kg • K) 0.587 0.647 0.704 0.757 0.806 0.848
7 0.976 0.984 0.990 0.994 0.995 0.996
/., m/s 166.4 182.2 196.2 209.4 220.0 233.6
k, W/(m • K) 0.0080 0.0110 0.0140 0.0170 0.0200 0.0230
/i, 10-4 Pa • s 0.109 0.130 0.151 0.171 0.190 0.209
Pr 0.800 0.765 0.759 0.761 0.766 0.771

" v = specific volume; h = specific enthalpy; s = specific entropy; cp = specific heat at constant 
pressure; Z = compressibility factor = Pv/RT, vs = velocity of sound; k = thermal conductivity; 
fi = dynamic viscosity; Pr = Prandtl number.
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TABLE 22.25. Thermophysical Properties of Saturated Rubidium3

10-’.

T, 
K

p, 
bar

t>/, 
10" 4 m’/leg m/kg

hi< 
kl/kg kJ/kg kJ/(kg • K) kJ/(kg •

cpJ’
K) kJ/(kg •

cp.g’
K) kJ/(kg • K)

312.7 2.46. - 9 6.752 119 1038 0.998 3.937 0.379 0.231
350 5.97.- 8 6.858 133 1046 1.038 3.647 0.377 0.251
400 1.69.- 6 6 983 230040 152 1057 1.091 3.355 0.375 0.273
450 2 23.- 5 7.102 19570 170 1068 1.135 3.130 0.372 0.301
500 1.73.- 4 7.215 2789 189 1078 1.174 2.953 0.369 0.335

600 3.66.- 3 7.463 156.6 225 1096 1.241 2.692 0.362 0.410
700 0.0317 7.728 20.75 261 1111 1.296 2.510 0.357 0.468
800 0.1584 8.013 4.662 297 1124 1.343 2.378 0.353 0.498
900 0.5746 8.319 1.487 332 1137 1.385 2.279 0.353 0.504

1000 1.467 8.6al 0.605 368 1150 1.422 2.205 0.360 0.494

1100 3.295 9.009 0.291 404 1164 1.457 2.148 0.373 0.476
1200 6466 9.398 0.159 442 1179 1.490 2104 0.385 0.456
1300 11.43 9.823 0.097 481 1196 1.522 2.071 0.397 0.435
1400 14.7 10.29 0.081 521 1215 1.553 2.059 0.408 0.413
1500 28.5 10.80 0.045 562 1236 1.581 2.030 0.418 0.390

T, 
K

M/, 
IO-4 Pa ■ s 10“4 Pa • s

k/, 

W/(m • K) W/(m • K) Pr/ Pr,

312.7 6.43 33.4 0.0073
350 5.33 32.5 0.0062
400 4.37 31.6 0.0052
450 3.69 30.7 0.0045
500 3.23 29.8 0.0040

600 2.58 0.112 27.8 0.0073 0.0034 0.629
700 2.18 0.135 25.9 0.0089 0.0030 0.710
800 1.89 0.158 24.1 0.0103 0.0028 0.764
90<J 1.69 0.183 22.2 0.0115 0.0027 0.802

1000 1.53 0.208 20.3 0.0125 0.0027 0.832

1100 1.40 0.244 18.5 0.0133 0.0028 0.873
1200 1.30 0.268 16.7 0.0141 0.0030 0.867
1300 1.21 0.289 15.0 0.0149 0.0032 0.844
1400 1.14 0.314 13.6 0.0156 0.0034 0.831
1500 1.08 0.336 12.0 0.0160 0.0038 0.819

av — specific volume; h = specific enthalpy; 5 = specific entropy; cp 
k = thermal conductivity; Pr = Prandtl number; / = saturated Liquid;

= specific heat at constant pressure; /a = dynamic viscosity; 
g = saturated vapor. The notation 2.46. — 9 signifies 2.46 X

TABLE 22.26. Thermophysical Properties of Rubidium at 1-Bar Pressure3

T, K 959.2 1000 1100 1200 1300 1400 1500

t>, m3/kg 0.846 0.898 1.014 1.123 1.227 1.328 1.428
h, kJ/kg 1144 1164 1203 1236 1266 1293 1320
5, kJ/(kg • K) 2.233 2.253 2.291 2.319 2.343 2.363 2.382
9,kJ/(kg-K) 0.499 0.445 0.356 0.309 0.283 0.268 0.260
c„ kJ/(kg • K) 0.324 0.277 0.218 0.187 0.170 0.161 0.156
Y 1.540 1.606 1.630 1.650 1.662 1.669 1.671
Z 1.0001 1.0005 1.0006 1.0006 1.0006 1.0006 1.0006

. m/s 
k. W/(m • K) 
g, 10"4 Pa • s 
Pr

348.5
0.0121
0.198
0.817

382.3
0.0118
0.219
0.826

409.3
0.0117
0.262
0.797

433.3 454.6 473.8 491.7

“ V = specific volume; h = specific enthalpy; s = specific entropy; cp = specific heat at constant 
pressure; c„ = specific heat at constant volume’ y = ratio of principal specific heats = c^/%; 
Z = compressibility factor = Pv/RT\ vs = velocity of sound; k = thermal conductivity; fi = 
dynamic viscosity; Pr = Prandtl number.
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TABLE 22.27. Thermophysical Properties of Saturated Sodium3

T. P. A/, cp*v
K bar 10 3 m3/kg m3/kg kJ/kg kJ/kg kJ/(kg K) kl/(kg • K) kJ/(kg • K) kJ/(kg • K)

380 2.55.- 10 1.081 5.277.+ 9 219 4723 2.853 14.705 1.384 0.988
400 1.36.- 9 1.086 2.187.+ 9 247 4740 2.924 14.158 1.374 1.023
420 6.»6. — 9 1.092 2.410. + 8 274 4757 2.991 13.665 1.364 1.066
440 2.43. - 8 1.097 6.398.+ 7 301 4773 3.054 13.219 1.355 1.117
460 8.49. - 8 1.103 1.912.+ 7 328 4790 3.114 12.814 1.346 1.176

480 2.67. - 7 1.109 6.341.+ 6 355 4806 3.171 12.443 1.338 1.243
500 7.64. - 7 1.114 2.304.+ 6 382 4820 3.226 12.104 1.330 1.317
550 7.54.- 6 1.129 2.558.+ 5 448 4856 3.352 11.367 1.313 1.523
600 5.05. - 5 1.145 41511 513 4887 3.465 10.756 1.299 1.745
650 2.51.- 4 1.160 9001 578 4915 3.569 10.241 1.287 1.963

700 9.78.- 4 1.177 2449 642 4939 3.664 9.802 1.278 2.160
750 0.00322 1.194 794 705 4959 3.752 9.424 1.270 2.325
800 0.00904 1.211 301 769 4978 3.834 9.095 1.264 2.452
850 0.02241 1.229 128.1 832 4995 3.910 8.808 1.260 2.542
900 0.05010 1.247 60.17 895 5011 3.982 8.556 1.258 2.597

1000 0.1955 1.289 16.84 1021 5043 4.115 8.137 1.259 2.624
1200 1.482 1.372 2.571 1274 5109 4.346 7.542 1.281 2.515
1400 6.203 1.469 0.688 1535 5175 4.546 7.146 1.330 2.391
1600 17.98 1.581 0.258 1809 5225 4.728 6.863 1.406 2.301
1800 40.87 1.709 0.120 2102 5255 4.898 6.649 1.516 2.261

2000 78.51 1.864 0.0634 2422 5256 5.064 6.480 1.702 2.482
2200 133.5 2.076 0.0362 2794 5207 5.235 6.332 2.101 3.307
2400 207.6 2.480 0.0196 3299 5025 2.447 6.166 3.686 8.476
2500 251.9 3.323 0.0100 3850 4633 5.666 5.980

T, Pi kl ks
K 10 ”4 Pa • s 1Cr4 Pa ■ s W/(m ■ K) W/(in • K) P>7 Prx

380 6.68 85.6 0.0108
400 6.08 84.7 0.0099
420 5.58 83.8 0.0091
440 5.16 82.8 0.0084
460 4.81 81.9 0.0079

480 4.50 80.9 0.0074
500 4.24 80.0 0.0070
550 3.69 77.7 0.0062
600 3.28 75.4 0.0057
650 2.95 73.0 0.0053

700 2.69 70.7 0.0049
750 2.47 0.192 68.3 0.0311 0.0046 1.44
800 2.30 0.196 65.9 0.0343 0.0044 1.40
850 2.14 0.200 63.6 0.0375 0.0042 1.36
900 2.02 0.206 61.4 0.0406 0.0041 1.32

noo 1.81 0.230 56.7 0.0455 0.0040 1.31
1200 1.51 0.275 54.5 0.0522 0.0036 1.32
1400 1.32 0.322 52.2 0.0570 0.0034 1.35
1600 1.18 0.371 49.9 0.0613 0.0033 1.39

1800 1.07
2000 0.98

‘ r = specific volume; h = specific enthalpy; '' = specific entropy- cp = specific heat at constant pressure; / = saturated liquid; 
g = saturated vapor. Converted from the tables of J. K Fink, Argonne Nat. Lab. Rept. ANL-CEN-RSD-82-4, 205 pp. 1982. 
The notation 2.55.— 10 signifies 2.55 X 10" 10.
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" r = specific volume; h = specific enthalpy; 5 = specific entropy; < „ = specific heat at constant pressure; c,. = specific heat at constant volume; y = ratio of principal specific 
heats = <,,/<■, ; 7. = compressibility factor = Pt'/RT: vs = velocity of sound; g = dynamic viscosity; k = thermal conductivity; Pr = Prandtl number.

TABLE 22.28. Thermophysical Properties of Sodium at 1-Bar Pressure3

r. k 1151 1200 1300 1400 1500 1600 1700 1800 1900 2000

r. m3/kg 3.418 3.968 4.450 4.888 5.299 5.695 6.075 6.456 6.826 7.194
/?, kJ/kg 5091 5202 5394 5544 5668 5779 5882 5979 6073 6166
5, kJ/(kg • K.) 7.666 7.693 7.823 7.913 7.980 8.036 8.087 8.135 8.180 8.225
c„. kJ/(kg ■ K) 2.542 2.240 1.703 1.380 1.194 1.087 1.024 0.985 0.961 0.945
c„, kJ/(kg • K) 1.732 1.511 1.120 0.884 0.738 0.664 0.620 0.594 0.578 0.567
Y 1.468 1.536 1.559 1.590 1.618 1.638 1.651 1.659 1.663 1.666
Z 0.918 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000 1.000
t\, m/s
p., 10 3 Pa ■ s 
k. W/(m • K) 
Pr

710
0.264
0.0507
1.324

781
0.275
0.0522
1.180

833 882 926 966 1002 1035 1065 1095
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TABLE 22.29. Thermophysical Properties of Saturated Ice-Water-Steam

22*30

p, 
bar 10 3m3/kg m /kg

ht,h 
kJ/kg kJ/kg 10“4 Pa■s

V
W/(m • K) W/(m ■ K) Pr/ Pr?

0.001 252.84 1.0010 1167 -374.9 2464.1 0.0723 2.40 0.0169
0.002 260.21 1.0010 600 - 360.1 2477.4 0.0751 2.35 0.0174
0.003 265.11 1.0010 408.5 -350.9 2486.0 0.0771 2 31 0.0177
0.004 267.95 1.0010 309.1 - 344.4 2491.9 0.0780 2.29 0.0179
0.005 270.74 1.0010 249.6 -337.9 2497.3 0.0789 2.27 0.0180

0.006 273.06 1.0010 209.7 -333.6 2502 0.0798 2.26 0.0182
0.0061 273.15 1.0010 206.0 -333.5 2502 0.0802 2.26 0.0182
0.0061 273.15 1.0002 206.0 0.0 2502 0.0802 0.566 0.0182 13.04 0.817
0.008 276.73 1.0001 159.4 21.9 2508 0.0816 0.568 0.0184 11.66 0.823
0.010 280.13 1.0001 129.2 29.4 2513.4 0.0829 0.578 0.0186 10.39 0.828

0.02 290.66 1.0013 67.00 73.5 2532.7 0.0872 0.595 0.0193 7.51 0.841
0.03 297.24 1.0028 45.66 101.1 2544.8 0.0898 0.605 0.0195 6.29 0.854
0.04 302.13 1.0041 34.80 121.4 2553.6 0.0918 0.612 0.0198 5.57 0.865
0.05 306.04 1.0053 28.19 137.8 2560.6 0.0933 0.618 0.0201 5.08 0.871
0.06 309.33 1.0065 23.74 151.5 2566.6 0.0946 0.622 0.0203 4.62 0.877

0.08 314.68 1.0085 18.10 173.9 2576.2 0.0968 0.629 0.0207 4.22 0.883
0.10 318.98 1.0103 14.67 191.9 2583.9 0.0985 0.635 0.0209 3.87 0.893
0.20 333.23 1.0172 7.65 251.5 2608.9 0.1042 0.651 0.0219 3.00 0.913
0.30 342.27 1.0222 5.23 289.3 2624.6 0.1078 0.660 0.0224 2.60 0.929
0.40 349.04 1.0264 3.99 317.7 2636.2 0.1105 0.666 0.0229 2.36 0.941

0.5 354.50 1.0299 3.24 340.6 2645.4 0.1127 0.669 0.0233 2.19 0.951
0.6 359.11 1.0331 2.73 359.9 2653.0 0.1147 0.673 0.0236 2.06 0.961
0.8 366.66 1.0385 2.09 391.7 2665.3 0.1176 0.677 0.0242 1.88 0.979

1.0 372.78 1.0434 1.6937 417.5 2675.4 0.1202 0.6805 0.0244 1.735 1.009
1.5 384.52 1.0530 1.1590 467.1 2693.4 0.1247 0.6847 0.0259 1.538 1.000
2.0 393.38 1.0608 0.8854 504.7 2706.3 0.1280 0.6866 0.0268 1.419 1.013
2.5 400.58 1.0676 0.7184 535.3 2716.4 0.1307 0.6876 0.0275 1.335 1.027
3.0 406.69 1.0735 0.6056 561.4 2724.7 0.1329 0.6879 0.0281 1.273 1.040

3.5 412.02 1.0789 0.5240 584.3 2731.6 0.1349 0.6878 0.0287 1.224 1.050
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4.0 416.77 1.0839 0.4622 604.7 2737.6 0.1367 0.6875 0.0293 1.185 1.057
4.5 421.07 1.0885 0.4138 623.2 2742.9 0.1382 0.6869 0.0298 1.152 1.066
5 424.99 1.0928 0.3747 640.1 2747.5 0.1396 0.6863 0.0303 1.124 1.073
6 432.00 1.1009 0.3155 670.4 2755.5 0.1421 0.6847 0.0311 1.079 1.091

7 438.11 1.1082 0.2727 697.1 2762.0 0.1443 0.6828 0.0319 1.044 1.105
8 445.57 1.1150 0.2403 720.9 2767.5 0.1462 0.6809 0.0327 1.016 1.115
9 448.51 1.1214 0.2148 742.6 2772.1 0.1479 0.6788 0.0334 0.992 1.127

10 453.03 1.1274 0.1943 762.6 2776.1 0.1495 0.6767 0.0341 0.973 1.137
12 461 11 1.1386 0.1632 798.4 2782.7 0.1523 0.6723 0.0354 0.943 1.156

14 468.19 1.1489 0.1407 830.1 2787.8 0.1548 0.6680 0.0366 0.920 1.175
16 474.52 1.1586 0.1237 858.6 2791.8 0.1569 0.6636 0.0377 0.902 1.191
18 480.26 1.1678 0.1103 884.6 2794.8 0.1589 0.6593 0.0388 0.889 1.206
20 485.53 1.1766 0.0995 908.6 2797.2 0.1608 0.6550 0.0399 0.877 1.229
25 497.09 1.1972 0.0799 962.0 2800.9 0.1648 0.6447 0.0424 0.859 1.251

30 506.99 1.2163 0.0666 1008.4 2802.3 0.1684 0.6347 0.0449 0.849 1.278
35 515.69 1.2345 0.0570 1049.8 2802.0 0.1716 0.6250 0.0472 0.845 1.306
40 523.48 1.2521 0.0497 1087.4 2800.3 . 0.1746 0.6158 0.0496 0.845 1.331
45 530.56 1.2691 0.0440 1122.1 2797.7 0.1775 0.6068 0.0519 0.849 1.358
50 537.06 1.2858 0.0394 1154.5 2794.2 0.1802 0.5981 0.0542 0.855 1.386

60 548.70 1.3187 0.0324 1213.7 2785.0 0.1854 0.5813 0.0589 0.874 1.442
70 558.94 1.3515 0.0274 1267.4 2773.5 0.1904 0.5653 0.0638 0.901 1.503
80 568.12 1.3843 0.0235 1317.1 2759.9 0.1954 0.5499 0.0688 0.936 1.573
90 576.46 1.4179 0.0205 1363.7 2744.6 0.2005 0.5352 0.0741 0.978 1.651

100 584.11 1.4526 0.0180 1408.0 2727.7 0.2057 0.5209 0.0798 1.029 1.737
110 591.20 1.4887 0.0160 1450.6 2709.3 0.2110 0.5071 0.0859 1.090 1.837
120 597.80 1.5268 0.0143 1491.8 2689.2 0.2166 0.4936 0.0925 1.163 1.963
130 603.98 1.5672 0.0128 1532.0 2667.0 0.2224 0.4806 0.0998 1.252 2.126
140 609.79 1.6106 0.0115 1571.6 2642.4 0.2286 0.4678 0.1080 1.362 2.343
150 615.28 1.6579 0.0103 1611.0 2615.0 0.2373 0.4554 0.1307 1.502 2.571

160 620.48 1.7103 0.0093 1650.5 2584.9 0.2497 0.4433 0.1280 1.688 3.041
170 625.41 1.7696 0.0084 1691.7 2551.6 0.2627 0.4315 0.1404 2.098 3.344
180 630.11 1.8399 0.0075 1734.8 2513.9 0.2766 0.4200 0.1557 2.360 3.807
190 634.58 1.9260 0.0067 1778.7 2470.6 0.2920 0.4087 0.1749 2.951 8.021
200 638.85 2.0370 0.0059 1826.5 2410.4 0.3094 0.3976 0.2007 4.202 12.16



TABLE 22.29. (Continued)
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p, 
bar

„ b
kJ

/(kg ■ K)

SV 
kJ

/(kg ■ K)

b 
CP-l' 

kJ
/(kg • K)

cp<g' 
kJ

/(kg • K) 1C

0.001 -1.378 9.848 1.957
0.002 -1.321 9.585 2.015
0.003 -1.280 9.456 2.053
0.004 -1.260 9.339 2.075
0.005 -1.240 9.250 2.097 1.851

0.006 -1.222 9.160 2.106 1.854
0.0061 -1.221 9.159 2.116 1.854

0.0061 0.0000 9.159 4.217 1.854
0.008 0.0543 9.0379 4.206 1.856
0.010 0.1059 8.9732 4.198 1.858

0.02 0.2605 8.7212 4.183 1.865
0.03 0.3543 8.5756 4.180 1.870
0.04 0.4222 8.4724 4.179 1.874
0.05 0.4761 8.3928 4.178 1.878
0.06 0.5208 8.3283 4.178 1.881

0.08 0.5925 8.2266 4.179 1.887
0.10 0.6493 8.1482 4.180 1.894
0.20 0.8321 7.9065 4.184 1.917
0.30 0.9441 7.7670 4.189 1.935
0.40 1.0261 7.6686 4.194 1.953

0.5 1.0912 7.5928 4.198 1.967
0.6 1.1454 7.5309 4.201 1.978
0.8 1.2330 7.4338 4.209 2.015

1.0 1.3027 7.3598 4.222 2.048
1.5 1.4336 7.2234 4.231 2.077
2.0 1.5301 7.1268 4.245 2.121
2.5 1.6071 7.0520 4.258 2.161
3.0 1.6716 6.9909 4.271 2.198

3.5 1.7273 6.9392 4.282 2.233
4.0 1.7764 6.8943 4.294 2.266
4.5 1.8204 6.8547 4.305 2.298



Mz
I 4 Pa • s Y//

^,Z'- 
m/s m/s N/m

17.50 0.0756
15.75 0.0751
14.30 0.0747
10.67 0.0731
9.09 0.0721
8.15 0.0714
7.51 0.0707
7.03 0.0702
6.35 0.0693
5.88 0.0686
4.66 0.0661
4.09 0.0646
3.74 0.0634
3.49 0.0624
3.30 0.0616
3.03 0.0605
2.801 1.136 1.321 438.74 472.98 0.0589
2.490 1.139 1.318 445.05 478.73 0.0566
2.295 1.141 1.316 449.51 482.78 0.0548
2.156 1.142 1.314 452.92 485.88 0.0534
2.051 1.143 1.313 455.65 488.36 0.0521
1.966 1.143 1.311 457.91 490.43 0.0510
1.897 1.144 1.310 459.82 492.18 0.0500
1.838 1.144 1.309 461.46 493.69 0.0491
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Atomic Energy of Canada Report AECL-5910, 1977.
h Above the solid line, solid phase; below the line, liquid.

5 1.8604 6.8192 4.315 2.329 1.787 1.144 1.308 462.88 495.01 0.0483
6 1.9308 6.7575 4.335 2.387 1.704 1.144 1.306 465.23 497.22 0.0468

7 1.9918 6.7052 4.354 2.442 1.637 1.143 1.304 467.08 498.99 0.0455
8 2.0457 6.6596 4.372 2.495 1.581 1.142 1.303 468.57 500.55 0.0444
9 2.0941 6.6192 4.390 2.546 1.534 1.142 1.302 469.78 501.64 0.0433

10 2.1382 6.5821 4.407 2.594 1.494 1.141 1.300 470.76 502.64 0.0423
12 2.2161 6.5194 4.440 2.688 1.427 1.139 1.298 472.23 504.21 0.0405

14 2.2837 6.4651 4.472 2.777 1.373 1.137 1.296 473.18 505.33 0.0389
16 2.3436 6.4175 4.504 2.862 1.329 1.134 1.294 473.78 506.12 0.0375
18 2.3976 6.3751 4 534 2.944 1.291 1.132 1.293 474.09 506.65 0.0362
20 2.4469 6.3367 4.564 3.025 1.259 1.129 1.291 474.18 506.98 0.0350
25 2.5543 6.2536 4.640 3.219 1.193 1.123 1.288 473.71 507.16 0.0323

30 2.6455 6.1837 4.716 3.407 1.143 1.117 1.284 472.51 506.65 0.0300
35 2.7253 6.1229 4.792 3.593 1.102 1.111 1.281 470.80 505.66 0.0280
40 2.7965 6.0685 4.870 3.781 1.069 1.104 1.278 468.72 504.29 0.0261
45 2.8612 6.0191 4.951 3.972 1.040 1.097 1.275 466.31 502.68 0.0244
50 2.9206 5.9735 5.034 4168 1.016 1.091 1.272 463.67 500.73 0.0229

60 3.0273 5.8908 5.211 4.582 0.975 1.077 1.266 457.77 496.33 0.0201
70 3.1219 5.8162 5.405 5.035 0.942 1.063 1.260 451.21 491.31 0.0177
80 3.2076 5.7471 5.621 5.588 0.915 1.048 1.254 444.12 485.80 0.0156
90 3.2867 5.6820 5.865 6.100 0.892 1.033 1.249 436.50 479.90 0.0136

100 3.3606 5.6198 6.142 6.738 0.872 1.016 1 244 428.24 473.67 0.0119

110 3.4304 5.5595 6.463 7.480 0.855 0.998 1.239 419.20 467.13 0.0103
120 3.4972 5.5002 6.838 8.384 0.840 0.978 1.236 409.38 460.25 0.0089
130 3.5616 5.4408 7.286 9.539 0.826 0.956 1.234 398.90 453.00 0.0076
140 3.6243 5.3803 7.834 11.07 0.813 0.935 1.232 388.00 445.34 0.0064
150 3.6859 5.3178 8.529 13.06 0.802 0.916 1.233 377.00 437.29 0.0053
160 3.7471 5.2531 9.456 15.59 0.792 0.901 1.235 366.24 428.89 0.0043
170 3.8197 5.1855 11.30 17.87 0.782 0.867 1 240 351.19 420.07 0.0034
180 3.8765 5.1128 12.82 21.43 0.773 0.838 1.248 336.35 410.39 0.0026
190 3.9429 5.0332 15.76 27.47 0.765 0 808 1.260 320.20 399.87 0.0018
200 4.0149 4.9412 22.05 39.31 0.758 0.756 1.280 298.10 387.81 0.0011

“ t> = specific volume; h = specific enthalpy; 5 = specific entropy; cp = specific heat at constant pressure; /x = 
conductivitiy; Pr = Prandtl number; y = cp/cv ratio; vs = velocity of sound: a = surface tension; subscripts 
saturated vapor; g = drv saturated vapor. Values at and above 1.0 bar rounded off from those of C. M. Tseng,

dynamic viscosity; k — 
: / = saturated liquid;
T. A. Hamp, and E. O

■ thermal 
/' = wet 
Moeck,



22-34 TABLE 22.30. Thermophysical Properties of Steam at 1-Bar Pressure3

r. p. A, S, CP' A,
K m’/kg kJ/kg kJ/(kg • K) kJ/(kg ■ K) kJ/(kg • K) y z m/s 10 5 Pa • s W/(m • K) Pr

373.15 1.679 2676.2 7.356 2.029 1.510 1.344 0.9750 472.8 1.20 0.0248 0.982
400 1.827 2730.2 7.502 1.996 1.496 1.334 0.9897 490.4 1.32 0.0268 0.980
450 2.063 2829.7 7.741 1.981 1.498 1 322 0.9934 520.6 1.52 0.0311 0.968
500 2.298 2928.7 7.944 1.983 1.510 1 313 0.9959 540.3 1.73 0.0358 0.958
550 2.531 3028 8.134 2.000 1.531 1.306 0.9971 574.2 1.94 0.0410 0.946

600 2.763 3129 8.309 2.024 1.557 1.300 0.9978 598.6 2.15 0.0464 0.938
650 2.995 3231 8.472 2.054 1.589 1.293 0.9988 621.8 2.36 0.0521 0.930
700 3.227 3334 8.625 2.085 1.620 1.287 0.9989 643.9 2.57 0.0581 0.922
750 3.459 3439 8.770 2.118 1.653 1.281 9.9992 665.1 2.77 0.0646 0.913
800 3.690 3546 8.908 2.151 1.687 1.275 0.9995 685.4 2.98 0.0710 0.903

850 3.921 3654 9.039 2.185 1.722 1.269 0.9996 705.1 3.18 0.0776 0.897
900 4.152 3764 9.165 2.219 1.756 1.264 0.9996 723.9 3.39 0.0843 0.892
950 4.383 3876 9.286 2.253 1.791 1.258 0.9997 742.2 3.59 0.0912 0.886
1000 4.614 3990 9.402 2.286 1.823 1.254 0.9998 760.1 3.78 0.0981 0.881
1100 5.076 4223 9.625 2.36 0.9999 794.3 4.13 0.113 0.858

1200 5.538 4463 9.834 2.43 1.0000 826.8 4.48 0.130 0.837
1300 5.999 4711 10.032 2.51 1.0000 857.9 4.77 0.144 0.826
1400 6.461 4965 10.221 2.58 1.0000 887.9 5.06 0.160 0.816
1500 6.924 5227 10.402 2.65 1.0002 916.9 5.35 0.18 0.788
1600 7.386 5497 10.576 2.73 1.0004 945.0 5.65 0.21 0.735

1800 8.316 6068 10.912 3.02 1.0011 999.4 6.19 0.33 0.567
2000 9.263 6706 11.248 3.79 1.0036 1051.0 6.70 0.57 0.445

ific volume; h = specific enthalpy; 5 = specific entropy; c = specific heat at constant pressure ; c,. — specific heat at constant volume; y = ratio of
principal specific heats7- = compressibility factor = Pv/RT\ = velocity of sound; ji = dynamic viscosity; A = thermal conductivity; Pr = Prandtl
number
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TABLE 22.31. Thermophysical Properties of Water-Steam at High Pressures'

T, 
K

p, 
m’/kg

h, 
kJ/kg

s, 
kJ/(kg ■ K)

c, 
kJ/(kg ■ K)

C, 
kJ/(kg • K) Y Z

VS-> 
m/s Pa • s

k, 
W/(m ■ K) Pr

P = lObar

300 1.003.- 3 113.4 0.392 4.18 4.13 1.01 0.0072 1500 8.57.- 4 0.615 5.82
350 1.027.- 3 322.5 1.037 4.19 3.89 1.08 0.0064 1552 3.70.- 4 0.668 2.32
400 1.067.- 3 533.4 1.600 4.25 3.65 1.17 0.0058 1509 2.17.- 4 0.689 1.34
450 1.123. 3 749.0 2.109 4.39 3.44 1.28 0.0054 1399 1.51- 4 0.677 0.981
500 0.221 2891 6.823 2.29 1.68 1.36 0.957 535.7 1.71.- 5 0.038 1.028
600 0.271 3109 7.223 2.13 1.61 1.32 0.987 592.5 2.15.- 5 0.047 0.963
800 0.367 3537 7.837 2.18 1.70 1.28 0.994 686.2 2.99. - 5 0.072 0.908

1000 0.460 3984 8.336 2.30 1.83 1.26 0.997 759.4 3.78.- 5 0.099 0.881
1500 0.692 5224 9.337 2.66 1.000 917.2 5.35.- 5 0.18 0.80
2000 0.925 6649 10.154 3.29

P = 50 bar
1.002 1050 6.70.- 5 0.39 0.57

300 1.001.- 3 117.1 0.391 4.16 4.11 1.01 0.0362 1508 8.55.- 4 0.618 5.76
350 1.025. 3 325.6 1.034 4.18 3.88 1.08 0.0317 1561 3.71.- 4 0.671 2.31
400 1.064.- 3 536.0 1.596 4.24 3.64 1.16 0.0288 1519 2.18.- 4 0.691 1.34
450 1.120.- 3 751.4 2.103 4.37 3.43 1.27 0.0270 1437 1.52.- 4 0.681 0.975
500 1.200.- 3 976.1 2.575 4.64 3.25 1.43 0.0260 1246 1.19.- 4 0.645 0.856
600 0.0490 3013 6.350 2.85 1.94 1.47 0.885 560.5 2.14.- 5 0.054 1.129
800 0.0713 3496 7.049 2.31 1.74 1.32 0.966 674.5 3.03.- 5 0.075 0.929

1000 0.0911 3961 7.575 2.35 1.85 1.27 0.987 756.5 3.81.- 5 0.102 0.880
1500 0.1384 5214 8.589 2.66 1.000 918.8 5.37.- 5 0.18 0.81
2000 0.1850 6626 9.398 3.12

P = 100 bar
1.002 1053 6.70.- 5 0.33 0.64

300 9.99.- 4 121.8 0.390 4.15 4.09 1.01 0.0722 1516 8.52.- 4 0.622 5.69
350 1.022. - 3 329.6 1.031 4.17 3.87 1.08 0.0633 1571 3.73.- 4 0.675 2.31
400 1.061.- 3 539.6 1.590 4.23 3.64 1.16 0.0575 1532 2.20.- 4 0.694 1.34
450 1.116. - 3 754.1 2.097 4.35 3.43 1.27 0.0537 1452 1.53.- 4 0.685 0.975
500 1.193.- 3 977 3 2.567 4.60 3.24 1.42 0.0517 1269 1.21.- 4 0.651 0.853
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" r specific volume; h = specific enthalpy; jr = specific entropy: cp — specific heat at constant pressure; c,. — specific heat at constant volume; 
y = ratio of principal specific heats = cp/c\,; Z = compressibility factor = Pv/RT\ vs = velocity of sound; g = dynamic viscosity; k = thermal 
conductivity; Pr = Prandtl number.

T, 
K

V, 
m3/kg

h, 
kJ/kg

S, 
kJ/(kg ■ K)

c, 
kJ/(kg ■ K) kJ/(kg • K) Y Z m/s

ft.
Pa • s

A, 
W/(m ■ K) Pr

600 0.0201 2820 5.775 5.22 2.64 1.97 0.726 502.3 2.14.- 5 0.073 1.74
800 0.0343 3442 6.685 2.52 1.82 1.38 0.929 662.4 3.08.- 5 0.081 0.960

1000 0.0449 3935 7.233 2.44 1.88 1.30 0.973 753.3 3.85.- 5 0.107 0.876
1500 0.0692 5203 8.262 2.68 1.000 921.1 5.37.- 5 0.18 0.82
2000 0.0926 6616 9.073 3.08

P = 250 bar
1.003 1057 6.70.- 5 0.31 0.67

300 9.93 - 4 135.3 0.385 4.1.2 4.06 1.02 0.1792 1542 8.48.- 4 0.634 5.50
350 1.016.- 3 341.7 1.022 4.14 3.84 1.08 0.1572 1599 3.78.- 4 0.686 2.28
400 1.053.- 3 550.1 1.578 4.20 3.62 1.16 0.1426 1568 2.24.- 4 0.704 1.33
450 1.105.- 3 762.4 2.078 4.30 3.41 1.26 0.1330 1496 1.57.- 4 0.696 0.969
500 1.175.- 3 981.9 2.541 4.50 0.1273 1331 1.24.- 4 0.666 0.838
600 1.454.- 3 1479 3.443 5.88 4.22 1.40 0.1313 896.9 8.63.- 5 0.532 0.952
800 0.0120 3261 6.086 3.41 0.813 627.3 3.29.- 5 0.109 1.03

1000 0.0173 3845 6.741 2.69 1.97 1.36 0.935 745.9 3.98.- 5 0.125 0.856
1500 0.0277 5186 7.827 2.73 1.000 929.1 5.40. - 5 0.18 0.819
2000 0.0372 6608 8.642 3.04

P = 500 bar
1.008 1068

300 9.83.- 4 157.7 0.378 4 06 3.98 1.02 0.3549 1583 8.45.- 4 0.650 5.28
350 1.005 - 3 361.8 1.007 4.10 3.81 1.08 0.3112 1644 3.87.- 4 0.700 2.27
400 1.041.- 3 567.8 1.557 4.14 3.59 1.15 0.2820 1623 2.31.- 4 0.719 1.33
450 1.088.- 3 776.9 2.050 4.23 3.39 1.25 0.2618 1561 1.62.- 4 0.714 0.960
500 1.151.- 3 991.5 2.502 4 37 0.2493 1418 1.29.- 4 0.689 0.822
600 1.362.- 3 1456 3.346 5.08 3.72 1.37 0.2459 1080 9.34.- 5 0.588 0.808
800 4.576.- 3 2895 5.937 5.84 2.79 2.10 0.620 597.8 4.04.- 5 0.178 1.33

1000 8.102.- 3 3697 6.302 3.17 1.81 1.76 0.878 742.1 4.28.- 5 0.150 0.905
1500 0.0139 5157 7.484 2.82 1.004 943.6
2000 0.0188 6595 8.310 3.04 1.018 1086



TABLE 22.32. Thermal Expansion Coefficient u of Water

K
n, 10 4 K 1

0 2 4 6 8

270 ( — 1.298)* (-8.99)* -0.530 -0.185 0.137
280 0.394 0717 0.993 1.217 1.491
290 1.723 1.944 2.157 2.361 2.558
300 2.747 2.930 3.107 3.279 3.445
310 3.607 3.764 3.917 4.067 4.213
320 4.356 4.496 4.633 4.767 4.899
330 5.029 5.157 5.287 5.407 5.530
340 5.651 5.770 5.888 6.004 6.120
350 6.234 6.347 6.459 6.570 6.681
360 6.790 6.899 7.008 7.170 7.278
370 7.385 7.492 7.600 7.707 7.814

“ Column headings (0,2,...) give third digit of T. 

h Subcooled liquid.

TABLE 22.33. Isothermal Compressibility Coefficient of Water

T a

K

flT, 10 5 bar 1

0 2 4 6 8

270 (5.219)* (5.135)* 5.057 4.986 4.922
280 4.863 4.810 4.738 4.696 4.676
290 4.640 4.607 4.577 4.551 4.527
300 4.506 4487 4.471 4.457 4.445
310 4.435 4.428 4.422 4.418 4.415
320 4.415 4.416 4.419 4.423 4.428
330 4.436 4.444 4.454 4.465 4.478
340 4.492 4.507 4.524 4.541 4.560
350 4.580 4.602 4.624 4.648 4.673
360 4.699 4.727 4.755 4.785 4.816
370 4.848 4.882 4.916 4.953 4.992

° Column headings (0,2,...) give third digit of T. 

b Subcooled liquid.
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TABLE 22.34. Thermophysical Properties of Unused Engine Oila

T, 
K m3/kg

cp.i’ 
kJ/(kg • K)

A/»
Pa • s

k/, 
W/(m • K) PO

«o 
m2/s

250 1.093.- 3 1.72 32.20 0.151 367,000 9.60.- 8
260 1.101.- 3 1.76 12.23 0.149 144,500 9.32 - 8
270 1.109.- 3 1.79 4.99 0.148 60,400 9.17.- 8
280 1.116.- 3 1.83 2.17 0.146 27,200 8.90.- 8
290 1.124.- 3 1.87 1.00 0.145 12,900 8.72.- 8

300 1.131.- 3 1.91 0.486 0.144 6,450 8.53.- 8
310 1.139.- 3 1.95 0.253 0.143 3,450 8.35.- 8
320 1.147.- 3 1.99 0.141 0.141 1,990 8.13.- 8
330 1.155.- 3 2.04 0.084 0.140 1,225 7.93.- 8
340 1.163.- 3 2.08 0.053 0.139 795 7.77.- 8

350 1.171.- 3 2.12 0.036 0.138 550 7.62.- 8
360 1.179.- 3 2.16 0.025 0.137 395 7.48.- 8
370 1.188.- 3 2.20 0.019 0.136 305 7.34.- 8
380 1.196.- 3 2.25 0.014 0.136 230 7.23.- 8
390 1 205. - 3 2.29 0.011 0.135 185 7.10.- 8

400 1.214.- 3 2.34 0.009 0.134 155 6.95.- 8

“ v = specific volume: cp = specific heat at constant pressure; p. = dynamic viscosity; 
k = thermal conductivity; Pr = Prandtl number; a = thermal diffusivity, I — 
saturated liquid. The notation 1.093.— 3 signifies 1.093 X 10~3.

TABLE 22.35. Functional Representations of a Thermophysical Property 
as a Function of Absolute Temperature T

No. Form

1 ip = a + bT
2 = a + bT 3- cT2
3 = a + bT + cT2 + dT3
4 r/r = a + bT + cT2 + dT3 + eT4

b
5 In if, = a 3----

T
b

6 In d = a 3----------
T - c
b c

7 In il= a 3------- 1------
T T2

8 In v = a 3- b In T
b

9 In i// = a + - + cT2 3- dT3 
T

10 a + b/T
/f

11
a + b/T+c/T2

/r
12 j = --------------------------------------------

a 3- b/T 3- c/T2 3- d/T"
ff

13 iL =-----------------------
a + (b/T)e'c/T

y[T
14 ’r ta 3- bT f cT2
15 { = aTs
16 In / = c(T - Tc)s
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CORRFl ATION ESTIMATION, AND PREDICTION 22«39

22.2 CORRELATION, ESTIMATION, AND PREDICTION

A few notes are appended which list useful equations to represent property variation 
with temperature, some representative sources of information on property estimation, 
and some representative sources of tabulated data. The information available is quite 
detailed, and an adequate treatment would require many times the space available here.

22.2.1. Functional Representations
Table 22.35 gives sixteen common functional representations of thermophysical proper
ties ip as a function of (absolute) temperature T. A survey of the use of these as applied 
to the specific heat at constant pressure, thermal conductivity, and viscosity of 
saturated liquids, saturated vapors, and dilute gases has been given.1 The broadest 
possible recommendations of this survey are to fit saturated-liquid and saturated-vapor 
thermal conductivities by a linear or quadratic polynomial (form 1 or 2) for tempera
tures up to 0.9/ (where T is the critical temperature), to fit saturated-liquid dynamic 
viscosities bv form 5 or 6; to fit saturated-vapor dynamic viscosities by form 2 or 3, to 
fit dilute-gas dynamic viscosities and thermal conductivities by any of forms 10 to 15, 
and to fit the specific heat at constant pressure by any of forms 1 to 4, particularly 3. 
The source cited discusses critical-region effects, effects of internal degrees of freedom, 
etc. In addition to the forms cited for the property /, one can also experiment with 
using a reduced property \p/ipt. Other types of reduction have been employed, such as 
using intermolecular-force parameters.

The above approach is mainly empirical, even though some of the equations cited 
do have a theoretical basis. Calculations based upon physical models can be made. 
However, except for reasonably dilute gases and/or very simply structured materials, 
the results obtained often differ appreciably from those of experiments. Section 22.2.2 
lists a few good sources of information on the prediction of properties. Finally, Sec. 
22.2.3 lists some sources of tabular data.

22.2.2. Bibliography on Estimation and Prediction

a. R C Reid, J. M. Prausnitz, and T. K. Sherwood. The Properties of Gases and Liquids, 3rd ed., 
McGraw-Hill, New York, 669 pp., 1977. A partial update of this material appears in Perry's 
Chemical Engineers Handbook, 6th ed., McGraw-Hill, New York, pp. 3-264-3-290, 1984.

b S Bretsznajder, Prediction of Transport and Other Physical Properties of Fluids, Pergamon, 
Oxford, 408 pp., 1971.

c S J. Walas, Phase Equilibria in Chemical Engineering, Butterworths, Stoneham, Mass., 671 pp., 
1985.

d. T. E. Daubert, Chemical Engineering Thermodynamics, McGraw-Hill, New York, 469 pp., 1985.
e W. C. Edmister and Y. I. Lee, Applied Hydrocarbon Thermodynamics, Vol. 1, Gulf, Houston, 

Tex., 1984.
f Various journals, including Fluid Phase Equilibria, Int. J. Thermophys., J. Chem. Eng. Data, 

A.S.M.E. Symposia on Thermophysical Properties, etc.

+ P E Liley, in N.B.S. Spec. Publ. 590, Washington, 1980. An earlier version appeared in 
ASHRAE Trans., Vol. 78, (No. II), p. 108, 1972.
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22.2.3 Sources of Tabulated Data

a Perry's Chemical Engineers Handbook, 6th ed., McGraw-Hill, New York, pp. 3-1-3-263, 19X4
b. W. M. Rosenhow, J. P. Hartnett, and E. N. Ganic, Handbook on Heat Transfer Fundamentals, 

2nd ed., McGraw-Hill, New York, Chap. 3, 1985.
c N. B. Vargaftik, Tables of the Thermophysical Properties of Liquids and Gases, 2nd ed., 758 pp., 

Wiley, New York, 1975.
d ASHRAE Handbook of Fundamentals, 1981, ASHRAE, Atlanta, Ga., 1981.
e W. C. Reynolds, Thermodynamic Properties in S.I., Stanford Univ., Stanford, Calif., 173 pp., 

1979.

NOMENCLATURE

a constant in equation
b constant in equation
c constant in equation
cp specific heat at constant pressure, kJ /(kg • K)
c z specific heat at constant pressure of saturated liquid, kJ/(kg • K)
c specific heat at constant pressure of saturated vapor, kJ/(kg • K)
c,. specific heat at constant volume, kJ/(kg • K)
c,. / specific heat at constant volume of saturated Equid, kJ/(kg • K)
c,. Q specific heat at constant volume of saturated vapor, kJ/(kg • K)
d constant in equation
e constant in equation
g acceleration of gravity, m/s2 
h specific enthalpy, kJ/kg
II geopotential altitude, m
A/ molecular weight
P pressure, bar
P, vapor pressure of saturated liquid, bar

vapor pressure of saturated vapor, bar
Pr Prandtl number = pcp/k
R gas constant, J/(kg • K)
5 temperature exponent
s specific entropy, kJ/(kg • K)
s, specific entropy of saturated hquid, kJ/(kg • K) 

specific entropy of saturated vapor, kJ/(kg • K)
T temperature, K
Tt boiling temperature, K
Tn, melting temperature, K
v specific volume, m3 /kg
Ui specific volume of saturated liquid, m3/kg



NOMENCLATURE 22.41

v, specific volume of saturated vapor. n?/kg
r, velocity of sound, m/s
7 compressibility factor = Pv/RT
7 geometric altitude, m

Greek Symbols
a thermal diffusivity = k/pcp m2/s
a thermal expansion coefficient, K 1
fiT isothermal compressibility coefficient, bar-1
y ratio of principal specific heats, = cp/cu
p dynamic viscosity, Pa • s
Pi dynamic viscosity of saturated Equid, Pa • s
pg dynamic viscosity of saturated vapor. Pa • s
p density, kg/m3
<t surface tension, N/m
t any thermophysical property

any thermophysical property at the critical point (such as critical temperature, 
pressure, etc.)
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Ablation cooling system, 2.53
Absorption coefficient. 19.11
Absorptivity, 1.11
Acceleration, 1.17-1.18
Ad hoc mass-flux hypothesis, 13.14
Adiabatic wall temperature, 2.31,2.48 

incompressible flow over flat plate, 2.44-2.45
Air, laminar flow, correlations, 15.33
Algebraic eddy-viscosity model, 12.23
Algebraic stress model, 2.43
Annular sector ducts, fully developed flow, 

3.75, 3.78-3.80
entrance lengths, 3.80 
friction factors, 3.75, 3.78
incremental pressure drop numbers, 3.80
Nusselt numbers, 3.79

Annulus:
concentric horizontal, laminar mixed 

convection, 15.33-15.35
concentric turbulent flow, 18.21 
eccentric, radial temperature distributions, 

13.29
horizontal, heat transfer correlation, 

13.39-13.40
liquid-metal heat transfer, 8.10
vertical:

hydrodynamically and thermally fully 
developed flow, 15.16-15.17

laminar mixed convection, 15.16-15.20
thermally developing flow, 15.18-15.20

Apparent viscosity, 20.6 
vs. wall shear rate, 20.12

Aspect ratio, 13.19
Asymptotic analysis, natural convention in 

enclosures, 13.11-13.15
Atmosphere, U.S. standard, thermophysical 

properties, 22.13
Average specific heat, 18.28
Axial distance x*, 3.7
Axial distance x+, 3.5

Barotropic fluid, 2.20

Bayley correlation, 18.47
Bejan-Tien solution for natural convection, 

shallow porous layers, 16.18, 16.21
Benard convection, porous media:

Darcy flow, 16.24
Forschheimer flow, 16.24

Bends, 5.2, 10.2
angle, 10.2

loss coefficient as function of, 10.7
circular cross section, 10.3-10.15

fluid flow, 10.3-10.8
friction factors:

laminar flow, 10.4-10.5, 10.16
turbulent flow, 10.4, 10.6, 10.16

heat transfer:
downstream pipe, 10.11
90°, 10.8, 10.17
180°, 10.13, 10.17, 10.23
0<25O°, 10.21

loss coefficient, 10.3-10.4
miter, in series, 10.24-10.26
Nusselt numbers, 10.9-10.11,10.13,10.15,

10.17-10.19, 10.23
rectangular cross sections, 10.16-10.24 

fluid flow, 10.16 
friction factors, 10.16
outer or inner wall heating, 10.23-10.24
velocity profiles, 10.16

Bernoulli equation, 2.20-2.21, 6.4
Biot number, 3.13
Blackbody, 1.12
Blasius equation, 17.32, 20.26
Blowing and suction, flat plate heat transfer, 

2.52-2.56
Body forces, 1.17
Boiling temperature, normal, miscellaneous 

fluids, 22.4-22.9
Boltzmann number, 19.18-19.19
Boundary conditions, 3.7, 8.4. See also

Thermal boundary conditions
complex, enclosures, 13.36
curved tubes, 5.3
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Boundary conditions (Continued) 
fundamental, 3.30-3.31
laminar flow in parallel-plate channel. 11.25 
parallel-plate channel, 11.14
transient laminar forced convection, 11.5, 

11.7
transient turbulent forced convection, 11.19

Boundary layer: 
approximations, 1.28-1.29, 12.6-12.7 
Blasius solution, 20.43 
boundary-layer thickness, 20.40-20.41 
buffer layer, 4.5 
conditions, 2.25-2.26 
configuration and coordinate system, 2.24 
drag force over turbulent boundary layer, 

20.48 
flow, 19.4

over axisymmetric body, 2.27-2.28 
hydrodynamic, 3.3 
laminar, 20.42-20.45
laminar sublayer, 4.5
porous media:

forced convection, 16.8
natural convection, 16.13-16.15

thermal, 1.10, 3.3 
thickness, 1.10 

transition, 20.46-20.47
region, 20.41

turbulent:
boundary layer, 20.41
core, 4.5 
flow, 20.47-20.48 
heat transfer, 20.49-20.50 

velocity, 1.10 
virtual origin, 20.47

Boundary-layer equations, 2.24-2.30 
incompressible, constant-property two

dimensional turbulent flow, 2.26 
three-dimensional, 2.28-2.29 
turbulent, 1.31

Boussinesq approximation, 2.33, 12.6, 13.5, 
16.9, 18.34-18.35, 18.42 

continuity equation, 15.25 
energy equation, 15.28 
momentum equation, 15.7, 15.25

Brinkman number, 3.12
Bulk mean temperature, 3.6, 15.8, 19.10 

local, 15.37
Buoyancy:

effects, 8.7-8.8
vertical plate, 15.23

flow, 12.2 
three-dimensional, 13.19-13.21 
turbulent three-dimensional, 13.34-13.35 
turbulent two-dimensional, 13.31-13.34

force, 18.37
Nusselt number effect 15.11
parameter, 14.2 
ratio, 16.27 
supercritical pressure, 18.26-18.27 
vertical tube effects, 18.26

Capillary-tube viscometer, 20.9-20.13 
apparent viscosity vs. wall shear rate, 20.12 
schematic, 20.10

Carbon dioxide:
buoyancy, vertical tube effects, 18.26
physical properties, 18.22
temperature along surfaces of horizontal tube, 

18.27
thermophysical properties:

gas, 22.15
solid, liquid and vapor, 22.14

Camavos correlations, 17.32
Cartesian coordinate system, 2.8-2.9, 

2.12-2.13
Central integration method, 13.17
Centrosymmetry conditions, 13.14
Cesium, thermophysical properties:

gas, 22.17
liquid and vapor, 22.16

Channel flow:
confined flows, 9.26-9.28, 9.31-9.33
Hartmann problem, 9.31
horizontal rectangular, laminar mixed 

convection, 15.38-15.39
Nusselt number, 9.31
transverse magnetic field, 9.32

Characteristic dimension:
generalized length, 4.11
hydraulically effective zone, 4.10
hydraulic diameter, 4.9
laminar equivalent diameter, 4.9

Cheng’s correction factor, 20.30
Circular duct, see Transient laminar forced 

convection, circular tubes
with centered polygonal cores, 3.117-3.118, 

3.120
with centered regular polygonal cores, fully 

developed flow, 3.120
circumferentially corrugated, 3.81-3.84 
correlations:

gases, 18.18-18.19
liquids, 18.16-18.17

corrugated, fully developed flow, 3.82-3.83 
entrance lengths:

hydrodynamic, 3.14, 3.16, 4.44, 4.66, 
4.83, 4.99, 4.143

thermal, 3.18, 3.21, 3.23, 3.28, 4.50, 
4.53, 4.100, 4.135 
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friction factors:
fully developed, 3.10, 4.24, 4.26, 4.63, 

4.77, 4.87, 4.110
hydrodynamically developing, 3.14, 4.41, 

4.48, 4.131, 4.138
transition, 4.16, 4.59

geometry, 11.5
horizontal:

correlations, 15.28
laminar mixed convection, 15.28-15.33
temperature along surfaces, 18.27
thermally developing flow, 15.30-15.33
thermally and hydrodynamically fully

developed flow, 15.28-15.30
transitional flow, 15.40
turbulent mixed convection, 15.44

incremental pressure drop numbers. 3.14,
3.16

Nusselt numbers:
fully developed, 3.11-3.13, 4.32, 4.42,

4.63-4.66, 4.77-4.82,4.88,4.92-4.95, 
4.104, 4.118-4.131

simultaneously developing. 3.25-3.41, 
4.56-4.58, 4.84

slug flow, 3.27-3.28
thermally developing, 3.17-3.22, 

4.53-4.55, 4.73, 4.99-4.101
transition, 4.16, 4.60

with rectangular indentations:
friction factors, 4.110
primary-flow isovels, 4.108-4.109
secondary-flow pattern, 4.108-4.109

temperature distribution:
fully developed laminar, 3.11-3.12, 3.17, 

3.19, 3.22. 3.24, 3.27-3.28
fully developed turbulent, 4.25-4.31 

transient turbulent forced convection,
11.19-11.22

turbulent flow, 18.8-18.15
turbulent forced convection correlations at 

supercritical pressure, 18.30-18.32
velocity distribution:

fully developed laminar, 3.10
fully developed turbulent, 4.17-4.23, 

4.61-4.62, 4.116-4.117, 4.136
hydrodynamically developing turbulent, 

4.41-4.43
vertical:

average heat transfer, 15.15
hydrodynamically and thermally

developing flow, 15.13-15.15
hydrodynamically and thermally fully 

developed flow, 15.11
laminar mixed convection, 15.11-15.15
thermal entrance length, 15.12

thermally developing flow, 15.11-15.13
transitional upward flow, 15.39-15.40

Circular fin, enhanced geometries, 17.21
Circular sector ducts, 3.72-3.74

fully developed flow, 3.75
hydrodynamically developing flow, 3.76

Circular segment ducts, 3.74-3.77
fully developed flow, 3.77
thermally developing flow, Nusselt numbers, 

3.77
Circular tube, see Circular duct
Circumferentially corrugated circular ducts,

3.81- 3.84
Clauser formulation, 2.36
Cleanliness factor, 21.14-21.15
Closure models, 13.9
Coefficient of thermal expansion, 2.8
Coefficient of volumetric expansion, 18.36,

18.38
Coiled tubes, assessment:

laminar flow, 5.21
turbulent flow, 5.25

Collocation method, 13.17
Combined entrance region, 3.5
Combined entry length solutions, see

Simultaneously developing flow 
Compressibility coefficient, isothermal, water,

22.37
Compressible flow, flat plate heat transfer,

2.47-2.52
Computer simulation, external flow forced 

convection, 2.3
Concentration expansion coefficient, 16.27
Concentric annular duct:

entrance lengths:
hydrodynamic, 4.132
thermal, 3.99, 3.104, 4.135

friction factors:
fully developed, 3.92, 4.117
hydrodynamically developing, 3.97, 4.131
transition, 4.115

helical coils, 5.30
incremental pressure drop numbers, 3.97,

4.118
Nusselt numbers:

fully developed, 3.93-3.96, 4.118-4.131 
simultaneously developing, 3.106, 4.134 
thermally developing, 3.97-3.99,

4.132-4.134
velocity distribution:

fully developed laminar, 3.92
fully developed turbulent, 4.116-4.117

Concentric annulus:
horizontal, laminar mixed convection, 

15.33-15.35
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Concentric annulus (Continued) 
turbulent flow, 18.21

Concentric sphere: 
confined flows, porous media, 16.20 
correlation equation, 13.40

Conduction, 1.2, 1.3, 1.8
Conduction-to-radiation parameter, 19.20, 

19.24-19.25
effect on local Nusselt number, 19.25, 19.27 

Cone-and-plate viscometer, 20.18-20.19 
Confined flows:

channel flow, 9.26-9.28, 9.31-9.33 
free convection systems, 9.22 
pipe flow, 9.33-9.35
porous media:

concentric spheres, 16.20 
forced convection, 16.9 
horizontal annular space, 16.20 
horizontal cylinder, 16.19 
horizontal layers heated volumetrically, 

16.25
layers heated from below, 16.22-16.25 
layers heated from side, 16.16-16.21 
rectangular space, 16.16 
vertical annular space, 16.20

tube flows, 9.22-9.26
Confined heat and mass transfer, porous media, 

16.27-16.28
Confocal elliptical ducts, 3.117-3.119 

fully developed flow, 3.118-3.119
Conjugate problem: 

circular duct, 3.25 
flat duct, 3.41

Conservation of chemical species, porous 
media, 16.7

Constitutive equation:
Newtonian Fourier fluid, 13.5 
purely viscous time-independent fluids, 

20.6-20.9
Continuity equation, 1.14-1.17, 1.30 

Boussinesq approximation, 15.25 
external flow forced convection, 2.4 
inviscid flow, 2.19-2.21 
natural convection, 12.5 
nonradiating fluid, 19.5, 19.7 
radiating fluid, 19.17 
Reynolds form, 2.15-2.16 
turbulent flow in circular ducts, 18.8

Continuum, 1.9, 1.14
Control volume, 1.3-1.4, 1.6
Convection, see specific types of convection 

correlations for liquid-metal, 8.23-8.26 
defined, 1.3, 1.9 
magnetohydrodynamics, 9.35-9.40 
porous media, 16.1-16.28

fundamental principles, 16.2-16.7

reviews, 16.2
velocity, 12.7

Convective heat transfer, 1.2
defined, 1.3

Convective mass transfer coefficient, 21.6
Conventional averaging procedure, 2.14
Conversion factors, 22.3
Coordinate systems, 2.8-2.12

Cartesian, 2.8-2.9, 2.12-2.13
cylindrical, 2.12-2.13
orthogonal curvilinear, 2.9-2.11
spherical, 2.12-2.13
two-dimensional or axisymmetric body

intrinsic, 2.12-2.13
Corona discharge:

basic physics, 9.7-9.10
corona wind, 9.2, 9.10
ionic mobilities for gases, 9.3
ionization potentials, 9.7-9.8
multiple, 9.17-9.21
pressure rise, 9.12
single, 9.10-9.17

free convection systems, 9.12-9.17
heat transfer coefficient, 9.14
point-plane and wire-plane electrodes, 

9.11-9.12
velocity field, 9.16

Corona wind, 9.2
fluid mechanics, 9.10
impingement, computational domain, 9.15
velocity, 9.24

Correlation equation:
concentric and eccentric spheres, 13.40
horizontal annulus, 13.39
three-dimensional enclosures, 13.41
vertical two-dimensional rectangular

enclosure, 13.38
Correlation parameter, 13.25
Corrugated circular ducts, fully developed flow,

3.82- 3.83
Corrugated flat ducts, fully developed flow,

3.83, 3.85
Creeping flows, 1.27-1.28

regime, 6.5, 6.7, 6.12
tube in bundle, 6.27

solutions, 3.16
Crocco’s equation, 2.22
Cross flow:

cylinder and sphere, 6.7, 6.10
finned-tube bundles, 6.39

drag, 6.37-6.39
Euler numbers, 6.37-6.38
fluid flow, 6.36-6.37
Nusselt numbers, 6.40-6.41

flat plates, 14.23-14,24
heat transfer coefficient, local, 6.5 
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noncircular bodies, 6.13-6.14 
rough-tube bundles, 6.34

Euler numbers, 6.33-6.34 
fluid flow, 6.32-6.33
Nusselt numbers, 6.34-6.35
Prandtl number effect. 6.34 

smooth-tube bundles, 6.15, 6.28 
drag coefficient, 6.18-6.36 
Euler numbers, 6.21, 6.24 
fluid flow, 6.14-6.18 
longitudinal pitch effect, 6.28, 6.30 
Nusselt numbers, 6.28-6.31 
pressure coefficient, 6.16-6.18 
transverse pitch effect, 6.30 

tube and sphere:
average heat transfer, 6.10
critical flow regime, 6.12 
drag, 6.5-6.7
factors influencing heat transfer, 6.12 
fluid dynamics, 6.4-6.5 
local heat transfer, 6.7

yawed-tube bundles, 6.31 
Current-voltage relationship, 9.9 
Curvature ratio, loss coefficient as function of, 

10.7
Curved tubes, 5.2-5.3 

boundary conditions, 5.3 
noncircular cross section, 5.30-5.35 
non-Newtonian fluids, 5.25-5.30

Cycle, 1.5
Cylinder:

aspect ratio, empirical constant, 9.39 
forced convection, porous media, 16.8-16.9 
horizontal:

correlations for Nusselt numbers, 14.14, 
14.17-14.21

natural convection, 12.16-12.18, 16.19 
natural convection, 12.18, 12.26-12.28, 

16.12-16.13, 16.19
non-Newtonian cross flow, 20.45-20.46 
porous media, natural convection, 

16.12-16.13, 16.19
single, 90° cross flow, liquid-metal heat 

transfer, 8.10-8.11
vertical:

heat transfer coefficients, 18.45 
natural convection, 12.18
Nusselt number correlations, 14.12,14.14, 

14.16

Darcy flow model, 16.3
Brinkman’s modification, 16.5 
confined layers heated from below, 16.24 
Forschheimer modifications, 16.5, 16.14, 

16.24
Darcy friction factor, 20.21

Dean number, 5.4, 5.7
local Nusselt number effect, 5 36

Density:
atmosphere, U.S. Standard, 22.13 
miscellaneous fluids, 22.4-22.9

Designing for fouling service, 21.12-21.27 
basic considerations, 21.12-21.14 
exchangers:

gas-side service, 21.27
liquid-side service, 21.21-21.27

fouling factors, 21.18-21.24 
heat transfer, 21.14 
low-finned tubes, 21.24-21.27 
pressure drop, 21.15-21.18 
properties of fouling deposits, 21.25 
surface area chart, 21.13

Developing flows, see Hydrodynamically 
developing flow; Simultaneously developing 
flow; Thermally developing flow

Developing heat transfer, 7.8
liquid metals, 7.41 
ordinary fluids, 7.38-7.39 
square array, rod bundles, 7.11-7.13 
wall subchannels, 7.17

Differential view factor, 19.3
Diffusely reflecting, diffusely emitting 

boundaries, 19.14-19.15
Diffusiophoresis, 21.7-21.8
Dimensionless radiation heat flux, 19.20
Dimensionless variables, 19.7
Dissipation function, 1.24, 2.8

generalized curvilinear coordinates, 2.12
Disturbance growth, 12.21
Dittus-Boelter equation, 17.32, 18.33,

20.32
Dodge-Metzner equation, 20.23, 20.26
Doubly connected ducts, 3.3
Drag:

cylinder and sphere, 6.5, 6.7 
finned tube bundles, 6.37-6.39 
rough-tube bundles, 6.33-6.34 
smooth-tube bundles, 6.18-6.25 
yawed-tube bundles, 6.25

Drag coefficient: 
cylinder, 6.7-6.8 
sphere, 6.7 
surface roughness effect, 6.8

Duct, see Curved tubes; specific types of ducts 
forced convection, 19.6-19.11 

radiating fluid, 19.22-19.29 
temperature-dependent property effects, 

18.4-18.21
formed by intersection of circular rods with 

flat plates, friction factors, 4.112
laminar forced convection, temperature

dependent property effects, 18.4-18.8
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Duct (Continued)
transient laminar forced convection, 

11.2-11.4
transient turbulent forced convection, 

11.18-11.24
turbulent forced convection, see Turbulent 

forced convection, ducts
uniform heat flux, 15.2
uniform wall temperature, 15.2

Eccentric annular duct:
entrance lengths:

hydrodynamic, 3.116, 4.143
thermal, 4.143

friction factors:
fully developed, 3.112, 4.138
hydrodynamically developing, 3.116,4.143 

incremental pressure drop numbers, 3.116 
Nusselt numbers:

fully developed, 3.114-3.115, 
4.141-4.143

simultaneously developing, 3.117 
thermally developing, 3.116

velocity distribution:
fully developed laminar, 3.111
fully developed turbulent, 4.136
isovel maps, 4.137

Eccentric annulus, radial temperature 
distributions, 13.29

Eccentric sphere, correlation equation, 13.40 
Eckert number, 2.25, 2.31, 19.18-19.19 
Eckert reference temperature, 2.48 
Eddy conductivity, 4.4, 8.2-8.3
Eddy diffusivity, 1.31, 4.4, 12.22
Eddy viscosity, 4.3, 12.22, 18.8-18.9
Eigenvalue problem, 11.28
Elbows, 10.8-10.9
Electrical discharge, see Corona discharge
Electric field, see Corona discharge;

Electrohydrodynamics
Electric number, dimensionless, 9.6
Electric wind, 9.2, 9.6
Electrohydrodynamics:

confined flows, see Corona discharge 
channel flow, 9.26-9.28 
free convection systems, 9.22 
tube flows, 9.22-9.26

corona wind, see Corona wind 
dimensionless groups, 9.5-9.7 
electric body force, 9.4 
electric field, threshold, 9.9 
electric wind, 9.2
energy equation, incompressible fluid, 9.4 
external flows:

forced-convection systems, 9.18-9.21 
free convection systems, 9.12-9.17

fluid-dynamic equations, 9.2
governing equations, 9.2
heat transfer augmentation, 9.22-9.23
Maxwell’s equations, 9.2
Ohm’s law, 9.3

Electromagnetic waves, 1.11
Electrophoresis, 21.6
Elliptical duct:

with centered circular cores, 3.117, 3.121 
confocal, 3.117-3.119
entrance length, hydrodynamic, 3.64 
friction factors:

fully developed, 3.63, 4.105 
hydrodynamically developing, 3.66

helical coils, 5.30
Nusselt number, 3.67-3.68

fully developed, 3.65, 4.104-4.106 
thermally developing, 3.66

temperature distribution, fully developed 
laminar, 3.65

turbulent flow, 18.20-18.21
velocity distribution:

fully developed laminar, 3.63
hydrodynamically developing laminar, 3.66 

Ellis model fluid, 20.8-20.9
Emissivity, 1.12
Enclosure:

annular, 13.4
cylindrical annuli, 13.26-13.27
density extremum, 13.37
effects of complex boundary conditions, 

13.36
filled with porous media, see Confined flows, 

porous media
heat transfer augmentation, 13.37
heat transfer correlation, 13.37-13.41 

concentric and eccentric spheres, 13.40 
three-dimensional bodies, 13.41 
two-dimensional vertical horizontal annuli, 

13.39-13.40
two-dimensional vertical rectangular 

enclosures, 13.37-13.38
horizontal annuli, 13.39-13.40
inclined box, 13.30
interaction between radiation and natural 

convention, 13.36
laminar natural convection, 13.18-13.31 

average Nusselt numbers, 13.28 
cylindrical annuli, 13.26-13.27 
eccentric annulus, 13.29 
isotherms, 13.20-13.22, 13.26 
streamlines, 13.20-13.22, 13.26 
three-dimensional buoyant flow, 

13.19-13.21
tilted enclosure, 13.22-13.25 

melting, 13.37



INDEX I *7

natural convention:
asymptotic analysis, 13.11-13.15
centrosymmetry conditions, 13.14 
classification of methods analysis, 

13.10-13.11
dimensionless parameters, 13.10 
finite difference methods, 13.15-13.17 
finite element methods, 13.17-13.18 
governing equations, 13.5-13.6
hybrid and other numerical methods ,13.18 
interactions with other processes,

13.36-13.37
mathematical formulation for three

dimensional flows, 13.5-13.8
nondimensionalization and scaling, 13.9
numerical methods, 13.15
turbulent, 13.8-13.9

open, 13.7
opening, 13.7-13.8
porous media, 13.37
shallow, 11.3
solidification, 13.37
square, natural convection, 18.42, 18.44
three-dimensional bodies, 13.41
three-dimensional turbulent buoyant flow, 

13.34-13.35
tilted, 13.22-13.24
transient and unsteady phenomena, 

13.35-13.36
two-dimensional turbulent buoyant flow, 

13.31-13.34
types, 11.3-11.4

Energy, 1.5
energy per unit mass, 1.7
internal, 1.5, 1.7, 1 23
kinetic, 1.5, 1.7, 1.23
potential, 1.5, 1.7

Energy conservation, 20.41-20.42
porous media, 16.6-16.7

Energy equation, 1.21, 1.23-1.28, 1.31
boundary conditions, 19.20
Boussinesq approximation, 15.28
cylindrical coordinates, 15.16-15.17
dimensionless, 9.30
dimensionless incompressible, 9.6
external flow forced convection, 2.7-2.8
frictional heat dissipation, 20.42
laminar flow:

circular tube, 11.5
parallel-plate channel, 11.25

laminar forced convection in ducts, 18.4
mechanical, 1.24
natural convection, 12.5
nonradiating fluid, 19.5, 19.7
pressure work and viscous dissipation effects, 

12.7

radiating fluid, 19.17, 19 19
Reynolds form, 2.17-2.18
thermal, 1.24
three-dimensional enclosure flows, 

13.5-13.6
total, 1.23
transient forced convection, timewise variation 

of inlet temperature, 11.27-11.30
transient laminar forced convection, 11.7
turbulent flow in circular ducts, 11.9, 18.8
vertical parallel plates, 15.20

Engine oil, thermophysical properties, 22.38
Enhanced surface geometries:

extended surfaces:
gases, 17.9, 17.17, 17.20-17.22, 17.24
liquids, 17.29-17.35

insert devices for tubes, 17.35-17.44
internally finned tubes, 17.29-17.35
regenerator packings, 17.28-17.29
roughness, 17.44-17.47
swirl flow inserts for tubes, 17.38-17.44

Enthalpy, 1.7, 1.25
thickness, 2.54

Entrance length, see Hydrodynamic entrance 
length; Thermal entrance length

effects, extended surface geometries for gases, 
17.14-17.15

Entrance region, 20.20-20.21
Entropy, 1.7. See also individual

thermophysical properties
generation, 1.8

Equation of radiative transfer, 19.10-19.13
Equation of state, 19.18
Equations of motion, 1.17-1.22. See also

Momentum equation
Equilateral triangular duct:

friction factors:
fully developed, 3.53, 4.86-4.87
hydrodynamically developing, 3.58
transition, 4.85

Nusselt numbers:
fully developed, 3.53, 4.87-4.89
simultaneously developing, 3.60
thermally developing, 3.60, 4.99-4.101

velocity distribution, fully developed laminar, 
3.53

Ethylene glycol:
flow in horizontal circular tube, 15.29
upflow in parallel plate vertical channel, local

Nusselt numbers, 15.24
Euler equation, 2.20
Euler number, 2.30

cross flow:
finned tube bundles, 6.40-6.41
rough-tube bundles, 6.33-6.34
smooth-tube bundles, 6.21,6.24
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Euler number (Continued)
tube row effect, 6.24, 6.39

Exchange coefficients, diffusive transport, 13.32
Exponential distribution, natural convection,

12.12
Extended surface insert, 17.37
Extended surfaces for:

gases:
finned tube heat exchangers, 17.16-17.17
geometries, 17.9
individually finned tube heat exchangers, 

17.17-17.24
oval and flat tube geometries, 17.24-17.25 
plate fin heat exchangers, 17.8,17.10-17.16

entrance length effects, 17.14-17.16
louvered fin, 17.13-17.15
offset strip fin, 17.8,17.10-17.13,17.19
perforated fin, 17.14
plain fin, 17.14
wavy fin, 17.14

row effects, 17.26-17.28
liquids:

externally finned tubes, 17.29
internally finned tubes, 17.29-17.35

laminar flow, 17.30-17.32
turbulent flow, 17.32-17.35

External flow, 20.41
forced-convection systems, 2.4-2.7,

9.18-9.21
free convection systems, 9.12-9.17
magnetohydrodynamics, 9.35-9.40
natural convection, 12.27

External non-Newtonian turbulent flow, 
20.46-20.47

Extinction coefficient, 19.11-19.12

Falling-ball viscometer, 20.13-20.14
Falling-needle viscometer, 20.14-20.16
False-diffusion problem, 13.16
Fanning friction factor, 3.5, 20.9, 20.21. See

also Fully developed flow;
Hydrodynamically developing flow

apparent, 3.5
concentric annuli, 3.97

power-law fluids, 5.26
rectangular ducts, 3.46, 3.49
relation with Reynolds number, 20.26

FG criteria, 17.6-17.7
Fick’s law, 21.6
Film temperature, 2.47, 18.34
Fin factor, 6.36
Finite analytic method, 13.18
Finite difference methods, 13.15-13.17
Finite element methods, 13.17-13.18
Finned tube heat exchangers, 17.8-17.24

individually finned, 17.17-17.24

enhanced fin geometries, 17.20—17.24 
oval and flat tube geometries, 17.24-17.25 
plain fins, 17.18-17.20

plate fins, 17.16-17.17
enhanced fin geometries, 17.17—17.18
plain fins, 17.16-17.17

row effects, 17.26-17.28
First law of thermodynamics, 1.5-1.8, 1.21,

1.23
control volume, 1.7

First-order closure, 2.33
Fittings, 10.2

friction factors, 10.4-10.6, 10.16
types, 10.8

Flat duct:
corrugated, fully developed flow, 3.83,

3.85
entrance lengths:

hydrodynamic, 3.33, 4.66
thermal, 3.38, 3.40, 4.73

friction factors:
fully developed, 3.30, 4.62-4.63
hydrodynamically developing, 3.35, 4.66
transition, 4.59-4.60

incremental pressure drop numbers, 3.33
Nusselt numbers:

fully developed, 3.30-3.36, 4.63-4.66
simultaneously developing, 3.41-3.45, 

4.72-4.73
slug flow, 3.42-3.44
thermally developing, 3.36-3.41,

4.66-4.72
transition, 4.60

spanwise-periodic triangular corrugations, 
3.83-3.85, 3.91

temperature distribution, fully developed 
laminar, 3.32,3.36,3.38-3.40,

3.42-3.44
velocity distribution:

fully developed laminar, 3.30
fully developed turbulent, 4.61-4.62
hydrodynamically developing laminar,

3.33
Flat plate:

blowing and suction, 2.52-2.56
compressible flow, 2.47-2.52
cross flow, correlations for Nusselt numbers, 

14.23-14.26
forced convection, 19.4-19.6

radiating fluid, 19.19-19.22
horizontal, correlations for Nusselt numbers,

14.5, 14.7-14.8, 14.10-14.11, 14.13, 
14.15, 14.24-14.25

inclined, correlations for Nusselt numbers, 
14.5, 14.7, 14.9, 14.11, 14.14-14.15

incompressible flow, 2.43-2.46
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vertical, correlations for Nusselt numbers, 
14.5-14.7, 14.9-14.11, 14.13, 14.15, 
14.24-14.25

Flat surface: 
inclined and horizontal, natural convection, 

12.25-12.26
vertical, natural convection, 12.24-12.25 

Flow work, 1.6
Fluids, see Non-Newtonian fluids

Bingham plastic, 20.5 
classification, 20.3-20.4 
dilatant, 20.5 
low Prandtl number, 8.2 
pseudoplastic, 20.4-20.5 
rheological, 20.6 
rheopectic, 20.5 
thixotropic, 20.5 
viscoelastic, 20.4

FN criteria, 17.6-17.7 
Fn method, 19.15-19.16 
Forced convection, 1.11. See also Laminar 

forced convection; Turbulent forced 
convection

configurations, porous media, 16.4 
ducts, 19.6-19.11

radiating fluid. 19.22-19.29 
temperature-dependent property effects, 

18.4-18.21
flat plate, 19.4-19.6 

radiating fluid, 19.19-19.22 
heat transfer, 9.40 
porous media. 16.7-16.9 
transient, see Transient forced convection 
vertical circular tubes, 15.4

Forschheimer’s constant. 16.5
Fouling, 21.2-21.3. See also Gas-side fouling, 

combating; Liquid-side fouling, combating 
deleterious effects, 21.3-21.4 
factors, tabulated, 21.18-21.24 

gas-side, 21.22-21.24 
liquid-side, 21.18-21.21 
TEMA, 21 19-21.20, 21.22 
velocity, 21.23-21.24

measuring devices, 21.34-21.38 
gas-side service, 21.37-21.38 
liquid-side service, 21.34-21.37

mechanisms, 21.5-21.8 
attachment to surface, 21.8 
deposit aging, 21.8 
initiation, 21.5 
removal from surface, 21.8 
transport to surface, 21.5-21.8 

models, 21 9-21 12 
parameters, 21.8-21.9
phenomenological aspects, 21.4-21.12 
removal models, 21.11

resistances, values, 21.18
types, 21.3

Fourier’s law, 1.8-1 9,2.7, 11.8, 11.20, 12.3
Free convection, 1 11

circular tubes:
horizontal, 15.5
vertical, 15.4

confined flows, 9.22
distortion, liquid metals, 8.4-8.8
helical coils, 5.17
magnetohydrodynamics, 9.35-9.36

Free and mixed convection, 20.32-20.39
horizontal cylinder, 20.36-20.37
parallel plate:

single, 20.38
vertical, 20.37

previous investigations, 20.33-20.34
single sphere, 20.36
single vertical plate, 20.35-20.36
vertical tube, 20.38-20.39

Frequency response method, 11.29
Frictional drag force, laminar flow over flat 

plate, 20.43
Friction coefficient:

cylinder, Reynolds number, 6.6
laminar cooling and heating, 18.8

Friction factors, 9.25-9.26, 9.27. See also
specific friction factors

annular sector ducts, 3.75, 3.78
apparent, elliptical ducts, 3.66
arbitrary triangular ducts, 3.59
bends:

laminar flow, 10.4-10.5, 10.16
rectangular cross section, 10.16
turbulent flow, 10.4, 10.6, 10.16

circular ducts:
with centered polygonal core, 3.118
circumferentially corrugated, 3.82, 

3.84-3.85
with triangular corrugation, 3.83

circular sector ducts, 3.72
concentric annular ducts, 3.91-3.92
cooling gases, 18.13
correlations, circular ducts, 18.12
curved rectangular ducts, 5.36-5.37 
eccentric annular ducts, 3.112, 3.114 
elliptical ducts:

with centered circular cores, 3.121
confocal, 3.118

equivalent annular zone, 7.6-7.9, 7.29, 7.31 
fittings, 10.4-10.6, 10.16
flat ducts with spanwise-periodic triangular 

corrugations, 3.85, 3.84
friction coefficient of fluids with yield-stress, 

20.44
as function of Reynolds number, 10.25
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Friction factors (Continued) 
heating and cooling liquids, 18.11 
heating gases, 18.13
helical coils, 5.6-5.8, 5.22, 5.26-5.27, 5.32 

rectangular cross section, 5.32
hydrodynamically developing laminar flow, 

7.17
inline, staggered bank, 17.29
isosceles triangular ducts, 3.60

with inscribed circular cores, 3.120 
laminar flow:

cell solutions, 7.23 
circular array, 7.23-7.27 
finite rod bundles, 7.20-7.22 
forced convection in ducts, 18 7 
rod bundles, 7.5, 7.7-7.8 
square array, 7.8, 7.19 
triangular array, 7.17-7.18 
tubes with twisted tape insert, 17.41 
wall subchannel, 7.15-7.16 
wire-wrapped rod bundles, 7.46

miter bends in series, 10.25
open-channel flow, 20.23
plain flat fins, 17.17
plain staggered-tube fins, 17 18
polygonal ducts, 3.70

with centered circular cores, 3.118 
power-law fluid, 20.42
spacer grids, 7.43
spiral coils, 5.8, 5.23, 5.27

inelastic power-law fluid, 5.27 
stadium-shaped ducts, 3.81 
subchannel, 7.33-7.34, 7.46 
technically important duct geometries, 

3.122-3.126
tube-bank, 17.19
turbulent cooling, 18.14
turbulent flow, 7.33

square array, 7.31-7.32
triangular array, 7.28-7.31
tubes with twisted tape insert, 17.43 

turbulent heating, 18.14
upper limit, 7.30-7.31
variable-property, 18.3
wire-coil inserts, 17.37
wire-wrapped rod bundles, 7.45

Friction power, 17.7
Friction similarity model, 17.48
Fully developed flow, 3.3

annular sector ducts, 3.75-3.76, 3.78-3.80 
arbitrary triangular ducts, 3.58 
circular duct, 3.10, 4.17

circumferential variable heat flux, 3.12, 
4.38

convectively heated wall, 3.12 
exponential wall heat flux, 3.13

friction factor, 3.10, 4.26 
non-Newtonian duct, 20.29-20.30 
radiantly heated wall, 3.13 
uniform wall heat flux, 3.12, 4.31 

circular ducts with centered regular polygonal 
cores, 3.120

circular sectoi ducts, 3.73 
circular segment ducts, 3.77 
concentric annular ducts, 3.92, 4.114 

constant heat fluxes at both walls, 3.95, 
4.118

constant temperature at both walls, 3.94, 
friction factors, 3.42 
fundamental solutions, 3.93, 4.124
T at one wall, H at other wall, 3.96 

confocal elliptical ducts, 3.119 
comer subchannel, 7.18-7.20 
corrugated circular ducts, 3.81 
corrugated flat ducts, 3.83, 3.85 
eccentric annular ducts, 3.111,4.136 

friction factors, 3.112, 4.138 
fundamental solutions, 3.114 

elliptical ducts, 3.63, 4.102
with centered circular cores, 3.121 

equilateral triangular duct, 3.53, 4.86
with rounded comers, 3.53 

finite rod bundles, 7.23 
flat duct, 3.30, 4.61

convective boundary conditions, 3.33 
exponential wall heat flux, 3.33, 4.66 
friction factor, 3.30, 4.62
specified wall temperature, 3.36, 4.66 
uniform wall temperature and heat flux, 

3.30, 4.63
helical coil, 5.5, 5.26, 5.28 

internally finned circular ducts, 3.76 
isosceles triangular ducts, 3.55, 4.89

with inscribed circular cores, 3.120 
liquid metals, 7.39-7.41
miscellaneous singly connected ducts, 3.83, 

3.85, 3.91, 4.112
pressure drop, 20.22-20.23, 20.26-20.27 
quadrilateral ducts, 3.71 
rectangular ducts, 3.45, 4.75

friction factors, 3.46, 4.76
uniform wall heat flux, 3.47
uniform wall temperature, 3.46 

regular polygonal ducts, 3.71
with centered circular cores, 3.119 

rhombic ducts, 3.71
right triangular ducts, 3.56, 4.95 
rod bundles, 7.5-7.7, 7.20-7.23 
sine ducts, 3.68
square array, 7.9-7.10 
stadium-shaped ducts, 3.81 

with twin circular cores, 3.121 
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trapezoidal ducts, 3.68, 4.106 
wall subchannels, 7.16-7.17

Fully developed region, 3.4
Fully developed temperature profile, 3.11 
Fundamental boundary conditions, 3.30-3.31 
Fundamental solutions:

concentric annular ducts. 3.93, 3.97, 3.106, 
4.124

eccentric annular ducts, 3.114 
flat duct, 3.31, 4.72

Galerkin method, 13.17, 19.15-19.16
Gases with variable properties, 18.15, 

18.18-18.19
Gas-side fouling, combating, 21.30-21.34 

combustion conditions control, 21.20-21.31 
fuel cleaning techniques, 21.30 
fuel and gas additives, 21.31-21.32 
gas cleaning techniques, 21.34 
operating conditions control, 21.33-21.34 
quenching, 21.33 
surface cleaning techniques, 21.32-21.33

General laws, 1.2, 1.8
Gill’s solution, 13.14
Glycerol, viscosity measurement comparisons, 

20.16
Graetz number, 15.9
Graetz-Nusselt problem, 3.17-3.21
Graetz problem, 3.17-3.21, 11.7
Grashof number:

concentric horizontal annulus, 15.34 
critical, 14.27, 14.29
inclined and horizontal flat surfaces, 

12.25-12.26
laminar natural convection in enclosures, 

13.19
liquid metal heat transfer, 8.7 
local, 18.41
mixed convection, 15.9-15.10 
modified, 8.18
natural convection, 12.7-12.8 
turbulent natural convection, 12.23-12.24 
vertical annulus, 15.18

Gravitational field, 12.2
Gray surfaces, radiation exchange, 19.3-19.4

Hagenbach’s factor, 3.6
Hagen-Poiseuille parabolic profile, 3.10
Hartmann problem, 9.31
Heat, 1.2
Heat-capacity ratio, saturated porous media, 

16.6
Heated vertical surfaces, 12.2
Heat exchangers:

as diagnostic tools, 21.34-21.35 
dynamic response, 11.3-11.4 

finned tube. 17.8-17.24 
plate fin, 17.8, 17.10-17.16 
regenerators, 17.28-17.29 
spiral plate, 5.35

Heat flux:
convective, 19.8
radiative, 19.8
uniform, along vertical porous layer, 16.18 
variation, 7.7, 7.10, 7.13 
wall, see Wall heat flux

Heat rejection, to atmosphere, 12.2
Heat storage:

latent, 1.11
sensible, 1.10

Heat transfer, 1.2 
augmentation, 17.4 
axial, liquid metals, 8.16 
enhanced, 17.2-17.5, 17.7 

active techniques, 17.2, 17.4 
passive techniques, 17.2-17.4 
pseudocritical region, 18.23-18.24 

heated vertical surface, 12.10 
modes, 1.2-1.3 
non-Newtonian duct flows, 20.27-20.32 
non-Newtonian external flows, 20.40-20.50 
ordinary fluids:

square array, 7.37-7.38
triangular array, 7.32-7.37 

from roughness surfaces:
cylinders, 6.12 
tube bundles, 6.34

at supercritical pressure, 18.23-18.27 
buoyancy, 18.26-18.27 
correlations to fluids in circular ducts, 

18.30-18.32
empirical correlations, 18.27-18.33 
impaired, 18.25
Nusselt numbers, 18.28

triangular array, rod bundles, 7.7-7.8 
turbulent boundary layer, 20.49-20.50 
vertical parallel plates, 15.22 
from vertical surface, 12.2

Heat transfer coefficient, 1.10, 12.3 
augmented, 9.21, 9.23-9.24 
average, 9.16 
axially local, 3.6 
centrifugal convection term, 17.43 
corona-wind impingement, 9.19 
correlations, 18.15

turbulent flow, liquid, gases, 18.11 
curved tubes, 5.4
cylinder in non-Newtonian crossflow, 20.45 
film coefficient, 1.10 
film conductance. 1.10 
flow-length average, 3.6, 5.4
increase, downward-facing square plate, 9.20
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Heat transfer coefficient (Continued) 
local, 9.13, 12.3, 15.8, 18.44 
local surface, 12.11

normalized free convective, 9.15 
parameters, local, isothermal and uniform 

heat flux, 18.43
peripherally average and axially local, 5.4 
peripherally local, 5.4
under single corona discharge, 9.14 
stagnation region, 9.17-9.18 
swirl convection term, 17.43 
transients, 12.19
values, 1.11
vertical cylinders, 18.45

Helical coil number, 5.4, 5.8
Helical coils, 5.2. See also Horizontal coil;

Vertical coil
circular cross section, 5.5, 5.21, 5.25 
concentric annular ducts, 5.30
critical Reynolds number, 5.8-5.9, 5.28 
elliptical ducts, 5.30
free convection, 5.17
hydrodynamically developing flow, 5.18, 

5.34
inelastic power-law fluid, 5.26-5.27 
laminar flow, 5.5

friction factors, 5.6, 5.8, 5.22, 5.26-5.27, 
5.32

fully developed, 5.5
Hl temperature profiles, 5.11,5.32 
hydrodynamically developing, 5.18 
thermally developing, 5.18, 5.20 
T temperature profiles, 5.9-5.11 
velocity profiles, 5.6, 5.26, 5.30

Nusselt numbers:
boundary condition effect, 5.16 
coil pitch effect, 5.15
curvature radius effect, 5.15
Hl boundary condition, 5.13-5.14, 5.20
H2 boundary condition, 5.13, 5.15, 5.20 
peripheral variation, 5.15
T boundary condition, 5.11-5.13, 5.18 
viscosity and density effect, 5.17

parallel plates, 5.37 
rectangular cross section, 5.32, 5.34, 5.37 
square cross section, 5.30-5.35
thermally developing and hydrodynamically 

developed flow, 5.18-5.20, 5.28, 5.35
turbulent flow, 5.21

friction factors, 5.22, 5.36
Nusselt numbers, 5.24, 5.37 
temperature profiles, 5.23 
velocity profiles, 5.21

viscoelastic power-law fluid, 5.27 
Helical fins, 7.41, 7.43, 7.45-7.46

heat transfer, 7.47

pressure drop, 7.45-7.46 
Homoenergic flow, 2.22 
Homogeneous porous media, 16.2 
Horizontal channels, rectangular, laminar 

mixed convection, 15.38-15.39
Horizontal coil, 5.2
Horizontal ducts:

governing equations, 15.25 
mixed convection:

correlations, 15.26-15.27
laminar, 15.24-15.39

Horizontal parallel plates: 
enhanced heat transfer, 15.37 
laminar mixed convection, 15.35-15.38 
thermally developing flow, 15.35-15.38 
thermally fully developed flow, 15.35

Hydraulic diameter, 3.5, 8.3
Hydraulic drag coefficient: 

inline bundles, 6.22 
rough-tube bundles, 6.33-6.34 
staggered bundles, 6.23

Hydrodynamically developing flow, 3.3, 3.14 
circular duct, 3.14, 4.39 
circular sector ducts, 3.76 
concentric annular ducts, 3.97, 4.131 
eccentric annular ducts, 3.116, 4.143 
elliptical ducts, 3.66 
equilateral triangular duct, 3.58 
flat duct, 3.33, 4.66 
helical coils, 5.18, 5.34 
pentagonal duct, 3.73 
rectangular ducts, 3.49, 4.83 
trapezoidal duct, 3.68

Hydrodynamic entrance length, 3.5, 7.17, 7.38 
annular sector ducts, 3.78 
circular duct, 3.14, 3.16, 4.44 
concentric annular ducts, 4.132 
eccentric annular ducts, 3.116, 4.143 
elliptical ducts, 3.64 
flat duct, 3.33, 4.66 
helical coils, 5.18 
rectangular ducts, 3.46, 4.83 
square array, rod bundles, 7.11

Hydrodynamic entrance region, 3.3 
axial velocity and pressure distribution, 3.15, 

3.34
Hydrodynamic equations, 9.29 
n- Hydrogen, thermophysical properties, 22.17 
Hydrostatic pressure, 1.6, 12.5

Ice, thermophysical properties, 22.30-22.33 
Inclined porous layers, 16.24 
Incompressible flow:

flat plate heat transfer, 2.43-2.46 
model, 16.3

Incompressible fluids, 1.16, 1.25
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Incremental pressure drop number, 3.6 
annular sector ducts, 3.78 
circular duct, 3.14, 3.16 
concentric annular ducts, 3.97, 4.118 
eccentric annular ducts, 3.116 
flat duct, 3.33 
rectangular ducts, 3.46

Industrial heat exchanger, Equid- liquid service, 
21.14

Inline tube array, 6.14, 6.22, 6.30, 6.38, 6.40
Inline tube banks, 17.26-17.29
Insert devices for tubes:

displaced enhancement devices,17.35-17.36
extended surface insert, 17.37
swirl flow inserts, 17.38-17.44

laminar flow, 17.38-17.42
turbulent flow, 17.42-17.44

wire coil inserts, 17.36-17.37
Internally finned tubes, 17.29-17.35

laminar flow, 17.30-17.32
turbulent flow, 17.32-17.35

Inviscid flow, 2.19-2.23
Ionic mobilities, 9.3
Ionization potentials, polyatomic molecules, 9.8
Irrotational flow, 2.21
Isentropic process, 2.23
Isoenergetic flow, see Homoenergic flow
Isosceles triangular ducts:

friction factors, fully developed, 3.55, 3.57, 
4.91

with inscribed circular cores, 3.117, 3.120
Nusselt numbers:

fully developed, 3.56, 4.92 
simultaneously developing, 4.101

velocity distribution, fully developed laminar, 
3.55

Isothermal compressibility coefficient, water, 
22.37

Isotropic scattering, 19.13

Jacobian, 2.9

Kamar-Judd correlation, 17.37 
k-e models, 12.23, 13.32, 13.34 
Kirchhoff s law, 1,12

Laminar equivalent diameter, 18.20-18.21
Laminar flow, 1.28-1.29, 2.59-2.60, 

3.1-3.137
annular sector ducts, 3.76
buoyancy-aided, 15.2
circular duct, 3.10 

with centered regular polygonal cores, 
3.120

corrugated, 3.81
circular sector ducts, 3.73

circular segment ducts, 3.76
coiled tubes, 5.21
concentric annular ducts, 3.91
eccentric annular ducts, 3.110
elliptical ducts, 3.63

with centered circular cores, 3.121
confocal, 3.119

entrance lengths, 8.13-8.14
flat duct, 3.30
forced convection inside ducts, 19.22-19.26
heated downward-facing plates, 8.21
heated upward-facing plates, 8.21
helical coils, see Helical coils, laminar flow
horizontal cylinders, 8.22
inclined plates, 8.22
laminar boundary-layer equations, 1.29
miscellaneous singly connected ducts, 3.83,

3.85, 3.91
non-Newtonian, 20.45
over flat plate, 20.42-20.44

frictional drag force, 20.43
quadrilateral ducts, 3.71
rectangular duct, 3.45
regular polygonal ducts, 3.71

with centered circular cores, 3.119
rhombic ducts, 3.71
rod bundles, 7.5-7.28
sine ducts, 3.68
stadium-shaped ducts, 3.81

with twin circular cores, 3.121
trapezoidal ducts, 3.68
triangular duct, 3.52

isosceles with inscribed circular cores, 
3.120

tubes:
heat transfer enhancement, 17.30-17.32
swirl-flow insert devices, 17.38-17.42

variation with surface temperatures, 7.14
Laminar forced convection:

ducts, temperature-dependent property 
effects, 18.4-18.8

gases, temperature-dependent property
effects, 18.7-18.8

geometry and coordinates, 19.7
liquids, temperature-dependent property

effects, 18.5-18.7
unsteady incompressible, 11.3

Laminar heat transfer:
fully developed, non-Newtonian duct flows, 

20.29-20.30
liquid metals, 8.4
over flat plate, 20.44
thermally developing flow in circular tubes, 

20.30-20.32
Laminar mixed convection:

circular tubes:
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Laminar mixed convection (Continued) 
horizontal, 15.28-15.33
vertical, 15.11-15.15

concentric horizontal annulus, 15.33-15.35 
ducts:

horizontal, 15.24-15.39
vertical, 15.10-15.24

global constraint condition, 15.16
Nusselt number, 15.3
parallel plates:

horizontal, 15.35-15.38
vertical, 15.20-15.24

rectangular horizontal channels, 15.38-15.39
vertical annuli, 15.16-15.20

Laminar natural convection:
enclosures, 13.18-13.31
horizontal cylinder and sphere, 12.16-12.18
inclined and horizontal surfaces,

12.14-12.16
velocity and temperature profiles, 12.15 

temperature variation across boundary layer,
isothermal vertical surface, 12.11

velocity variation across boundary layer, 
isothermal vertical surface, 12.10

vertical heated surface, parameter <I>(Pr), 
12.12

vertical surfaces, 12.8-12.13
Laminar-to-turbulent transition, 4.7,

7.41-7.42
boundary layer growth, 12.21-12.22
circular duct, 4.15
concentric annular ducts, 4.115
eccentric annular ducts, 4.136
fiat duct, 4.59
intermittency factor, 4.8
laminarization, 4.8
liquid metals, 8.22
mixed convection, 14.29-14.30,

15.39-15.40
natural convection, 12.20-12.21
rectangular ducts, 4.73
Reynolds number, 7.42, 7.46

critical, 4.7
shear stress gradient parameter, 4.8
transverse magnetic field, 9.32, 9.34
triangular ducts, 4.85
turbulent region, 18.44

Laplace equation, velocity potential, 2.21
Large-eddy simulation, 2.33
Leveque problem, 3.19-3.20
Leveque’s solution:

circular duct, 3.19, 3.24
elliptical ducts, 3.68
flat duct, 3.38, 3.40

Lewis number, porous media, 16.27
1’Hospital’s rule, 3.57

Line heat source, porous media:
forced convection, 16.8
natural convection, 16.12

Liquid metal heat transfer:
axial heat conduction, 8.16
developing, 7.41
flow in annuli, 8.10
flow between parallel plates, 8.10
flow in tube bundles, 8.11-8.12
free convection distortion, 8.4-8.8
fully developed, 7.39-7.41
laminar, 8.4
natural convection, 8.16-8.18, 8.22
Nusselt number, effect of variable properties, 

8.16
other channel shapes, 8.12
pipe flow, 8.8-8.9
single cylinder in 90° cross flow, 8.10-8.11
spacer grids, 7.45
thermal entrance lengths, 8.12-8.16
wetting effects, 8.4
wire-wrapped rod bundles, 7.47

Liquids, with variable properties, 18.15-18.17
Liquid-side fouling, combating.

additives, 21.28-21 29
control of operating conditions, 21.28
surface cleaning techniques, 21.29-21.30

Lithium, thermophysical properties, 22.18
Loss coefficient, bends, 10.3-10.4

as function of bend angle and curvature ratio, 
10.7

Louvered fin, 17.13-17.15
Low-finned tubes, 21.24-21.27
Lykoudis number, 9.37-9.38

Mach number, 2.22-2.23, 2.30
Magnetic induction, 9.29

dimensionless equation, 9.30
Magnetohydrodynamics:

basic physics, 9.30
conducting liquids, 9.2
confined flows:

channel flow, 9.31-9 33
pipe flow, 9.33-9.35

dimensionless groups, 9.29-9.30
external flows, 9.35-9.40
governing equations, 9.28-9.29
natural convection, 9.35-9.40

Mangier transformation, 2.57
Mass conservation, 1.3-1.4, 1.8, 20.41

porous media, 16.3-16.4
Mass conservation equation

cylindrical coordinates. 15.16-15.17
three-dimensional enclosure flows,

13.5-13.6
Mass diffusivity, 16.7
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Mass flux. 2.2
Mass transfer, porous media. 16.27-16.28
Mas'-weighted averaging, 2.15
Maxwell’s equations, 9.28
Melting:

in enclosures, 13.37
temperature, miscellaneous fluids, 22.4-22.9 

Mercury:
horizontal pipe flow:

local Nusselt number, 8.7
temperature profiles, 8.5

thermophysical properties:
gas, 22.21
liquid and vapor, 22.19-22.20

velocity profiles in vertical pipe flow, 8.6 
Method of characteristics, 11.3, 11.8 
Method of least squares, 13.17 
Miropolski-Shitsman correlation, 18.28 
Miter bends, in series, 10.24-10.26

fluid flow, 10.25
friction factors, 10.25
heat transfer, 10.25
Nusselt number, 10.26

Mixed convection, see Free and mixed 
convection; Laminar mixed convection; 
Turbulent mixed convection 

boundary-layer equations, 14.2-14.3 
buoyancy parameter, 14.2 
correlations for Nusselt number, 6.12, 

14.3-14.5
flat plates:

in cross flow, 14.23-14.24
horizontal, 14.5, 14.7-14.8, 

14.10-14.11, 14.13, 14.15
inclined, 14.5, 14.7, 14.9-14.11, 

14.14-14.15
vertical, 14.5, 14.7, 14.9-14.11, 14.13, 

14.15
horizontal cylinders, 14.14, 14.17-14.21 
moving sheets:

horizontal, 14.7-14.8, 14.16
inclined and vertical, 14.7-14.8, 14.15

spheres, 14.21-14.23
turbulent flow:

flat plates, 14.24-14.27
horizontal plates, 14.24-14.25
vertical plates, 14.24-14.25

in cross flow, 14.25-14.26
vertical cylinders, 14.12, 14.14, 14.16 

forced convection effect, 14.2 
free convection effect, 14.2 
fundamentals, 14.2-14.3 
governing equations, 15.6-15.10 
horizontal circular tubes, 15.5 
instability, 14.27-14.30

critical Grashof number, 14.27, 14.29 

critical Reynolds number 14.27, 14.29 
vortex mode, 14.27-14.30 
wave mode, 14.27-14.30

laminar-to-turbulent transition, 14.29-14.30, 
15.39-15.40

regimes, 14.2
secondary flow, 15.2
vertical circular tubes, 15.4 

transitional upward flow, 15.39-15.40 
Molecular conduction, 8.3 
Molecular weight, miscellaneous fluids, 

22.4-22.9
Momentum equation, 1.17, 1.31, 20.41 

boundary conditions, 19.20
Boussinesq approximation, 15.7, 15.25 
cylindrical coordinates, 15.16-15.17 
dimensionless, 9.6, 9.29 
external flow forced convection, 2.4-2.7 
laminar forced convection in ducts, 18.4 
laminar natural convection flow, inclined 

surfaces, 12.14 
natural convection, 12.6 
nonradiating fluid, 19.5, 19.7 
porous media, 16.3, 16.5-16.6 
radiating fluid, 19.17, 19.19 
Reynolds form, 2.16-2.17 
semi-infinite horizontal surface, 12.14 
three-dimensional enclosure flows, 

13.5-13.6
turbulent flow in circular ducts, 18.8
Vafai and Tien’s, 16.6 
vertical parallel plates, 15.20 

Momentum theorem, 1.4 
Monte Carlo methods, 19.16 
Motion pressure, 12.5
Moving sheets, correlations for Nusselt numbers, 

14.7-14.8, 14.15-14.16
Multiple-scale phenomena, 13.9 
Multiplicative correction factor, 18.38 
Multiregion analysis, 7.13-7.14, 7.23, 7.25

Natural conditions, 13.7-13.8
Natural convection, 1.11. See also Enclosure, 

natural convention; Laminar natural 
convection

approximations, 12.6-12.7 
boundary layer equations, 18.34 
Boussinesq approximations, 18.34-18.35, 

18.42
confined porous media:

heated from below, configurations, 16.22 
heated from side, configurations, 16.17 

coordinate system, 12.3 
cylinder, 12.26-12.28
definition, 12.2 
dimensionless parameters, 12.7-12.8
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Natural convection (Continued) 
empirical correlations, 12.24-12.28 
enhancement, 17.55 
exponential distribution, 12.12 
external flow, 12.27 
governing equations, 12.5-12.6, 18.35 
heat transfer, 9.40 
inclined and horizontal flat surfaces, 

12.25-12.26
influence of property variations, 18.46 
liquid metals, 8.16-8.18

horizontal cylinders, 8.22 
horizontal plates, 8.21 
inclined plates, 8.22 
vertical plates, 8.18, 8.20-8.21 

porous media, 16.9-16.28
concentric spheres, 16.20 
configurations, 16.11 
confined layers heated from side, 

16.16-16.21
Forschheimer modification of Darcy flow 

model, 16.14
horizontal annular space, 16.20 
horizontal layers heated volumetrically, 

16.25
horizontal walls, 16.15 
impermeable partition, 16.13, 16.19 
layers heated from below, 16.22-16.25 
partition between porous medium and fluid 
reservoir, 16.13-16.14 
stratification, 16.13
vertical annular space, 16.20 
vertical walls, 16.13-16.15 

power-law distribution, 12.12 
sphere, 12.26-12.28 
temperature-dependent property effects, see

Temperature-dependent properties natural 
convection

transients, 12.18-12.20
transition, liquid metals, 8.22 
turbulent, 12.21-12.24

enclosures, 13.8-13.9 
transition, 12.20-12.21

variable-property, 18.47
velocity and temperature distributions, 12.4 
vertical cyfinder, 12.18
vertical flat surfaces, 12.24-12.25
vertical plate, heat transfer, 18.36 

Navier-Stokes equation, 1.20-1.22, 2.5-2.7, 
9.4, 16.6, 20.41

time-averaged, see Reynolds equations 
Newtonian flow theory, modified, 2.58-2.59 
Newtonian fluids, 1.14

energy equation, 1.26-1.27 
experimental flow curve, 20.11 
motion equations, 1.20, 1.22

Newtonian Fourier fluid, constitutive relations, 
13.5

Newton’s law of cooling, 1.9-1.11, 2.32
Newton’s law of viscosity, 1.14
Newton’s second law of motion, 1.4, 1.8, 1.14,

1.17, 1.19
Nitrogen, thermophysical properties, gas, 22.22
Nondimensional parameters, 19.18
Non-Newtonian fluids:

apparent viscosity, 20.6
defined, 20.3
description and classification, 20.2-20.9
free and mixed convection, 20.32-20.39

Nonparticipating media, 19.2
forced convection:

inside ducts, 19.6-19.11
over flat plate, 19.4-19.6

radiation exchange among gray surfaces,
19.3-19.4

simultaneous convection and radiation,
19.2-19.11

Nonplanar media, 19.16
Nusselt numbers, 2.31-2.32, 13.10, 14.3,

20.28. See also Mixed convection, 
correlations for Nusselt number

annular sector ducts, 3.78-3.79
average:

for air, 15.33
buoyancy-assisted turbulent flow,

15.42-15.43
buoyancy-opposed turbulent flow, 

15.42-15.43
horizontal circular tubes, 15.29-15.30, 

15.33
natural convection, 18.39
turbulent flow, 10.13
vertical tube, 15.15

axial distribution, effect of Rayleigh number, 
15.31

axially averaged, horizontal circular tubes, 
15.30-15.31

axially local, 3.7
horizontal circular tubes, 15.30-15.31

axially mean, 3.7, 15.9
bends, 10.9-10.11, 10.13, 10.15,

10.17-10.19, 10.23
90°, 10.10-10.11, 10.17
180°, 10.13, 10.15, 10.17, 10.19, 10.23
with outer or inner wall heating,

10.23-10.24
boundary condition effect, 5.16
boundary-layer convection regime, 16.21
buoyancy effect, 15.11
channel flow, 9.31
circular duct, 3.20, 3.22, 3.26

with centered polygonal cores, 3.120
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circumferential, air heating, 180c bend, 
10.14

circumferential-average:
concentric annuli, 3.104
local axial variation, 15.39
local variation, 15.32

circumferentially corrugated circular ducts, 
3.83

coil pitch effect, 5.15
concentric annular ducts, 3.91, 3.95
concentric sphere, 13.40
confined flows in porous media, 16.9
confined layers heated from side, 16.16
confocal elliptical ducts, 3.118
constant axial heat fluxes, 3.96
constant heat flux, straight pipe, 10.12 
convection-dominated regime, 16.19 
correlated, 18.42
cross flow, 6.3-6.4
curvature radius effect, 5.15
cylinder:

cross flow, 6.12
non-Newtonian cross flow, 20.45

dependence on parameter Z, 8.8 
Dittus-Boelter form, 18.33
downstream pipe heat transfer during fluid 

cooling, 10.11
eccentric annular ducts, 3.114-3.115
eccentric sphere, 13.40
elliptical and circular tubes, 6.13
elliptical ducts, 3.67-3.68
equivalent-annulus solution, 7.34-7.36
finned-tube bundles, cross flow, 6.40-6.41 
flat duct, 3.31, 3.38, 3.45

with spanwise-periodic triangular 
corrugations, 3.84

forced convection, flat plate, 9.21
fully developed laminar flow, 20.29-20.30 
fully developed turbulent flow, 9.35
Graetz’s solution, 3.20-3.21
H, helical coils, 5.13, 5.18, 5.20, 5.34
Hl boundary condition, 5.13-5.14, 5.20
H2, helical coils, 5.13, 5.20
H2 boundary condition, 5.13, 5.15, 5.20 
heat transfer for water, 18.29 
helical coils:

parallel plate cross section, 5.37 
rectangular cross section, 5.34, 5.37
square cross section, 5.34
turbulent flow, 5.24

high Rayleigh numbers, 16.25
horizontal annuli, 13.39-13.40
horizontal curved circular tube, 5.17
horizontal cylinder, 12.27
hydrodynamically and thermally fully 

developed, 5.5 

inclined and horizontal surfaces, 12.16,12.26 
incompressible flow over flat plate,

2.43-2.46
inline bundles, 6.40
inline tube bundles, with cylindrical pins, 

6.41
laminar flow:

cell solutions, 7.24-7.25
central subchannel, 7.13
circular array, 7.27
circular duct, 18.6
finite rod bundles, 7.23
square array, 7.19
tubes with twisted tape insert, 17.40,17.42
wall and comer cells, 7.24-7.25
wall subchannels, 7.16

laminar forced convection, 19.6
laminar mixed convection, 15.3

horizontal parallel plates, 15.37-15.38
vertical annulus, 15.17

liquid-metal heat transfer:
flow between parallel plates, 8.10
pipe flow, 8.8-8.9
single cylinder in 90° cross flow,

8.10-8.11
local, 12.12, 19.25

concentric annuli, 3.106, 3.108-3.109, 
15.34

conduction-to-radiation parameter effect, 
19.25, 19.27

Dean number effect, 5.36
dependence on value of n, 12.13
downstream pipe, 10.15
ethylene glycol upflow in parallel plate 

vertical channel, 15.24
forced convection in porous media, 16.8
horizontal cylinder and sphere, 12.17
horizontal surfaces, 12.15-12.16
horizontal walls, 16.15
isothermal cylinder, 16.14
laminar flow in circular duct, 18.6
mercury horizontal pipe flow, 8.7
natural convection, 18.39
peripheral, 5.5
radiation effects, 19.9, 19.11
reflectivity effect, 19.28
single-scattering albedo effect, 19.25,

19.28
transients, 12.19-12.20

maximum, 7.36
mean, 5.5
miter bends in series, 10.26
mixed convection, 6.12, 15.8
natural convection, 8.17, 9.38, 12.4

sphere and cylinder, 16.12-16.13
vs. Peclet number, 7.40
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Nusselt numbers (Continued') 
pentagonal duct, 3.74 
peripheral average, free- and 

forced-convection regions, 10.21 
peripheral average and axially local, 5.5, 

10.17-10.18
peripheral local, development in 180° bend, 

10.19
peripheral variation, 5.15
plate, 8.20-8.21
polygonal ducts, 3.74

with centered circular cores, 3.120
Prandtl number effect, 5.19
pure free convection, 15.43
pure water at atmospheric pressure, 16.14
quadrilateral ducts, 3.73
rectangular ducts, 3.47-3.48, 3.50-3.52
vs. Reynolds number, air heating, 10.21
rhombic ducts, 3.73
rod-average, 7.14
rough-tube bundles, cross flow, 6.34-6.35
semicircular duct, 3.77
simultaneous development of flow and heat 

transfer, 7.12
slug flow, 8.12
smooth-tube bundles, cross flow, 6.28-6.31 
spacer grid, 7.43-7.44
sphere, 12.28
square array, rod bundles, 7.9-7.10
square duct, 3.50, 3.53
square enclosures, 13.28
staggered tube bundles, 6.40
subcritical flow regime, 6.14
supercritical flow regime, 6.14
supercritical pressure, 18.28
T:

boundary condition, 5.11-5.13, 5.18 
helical coils, 5.11, 5.18
spiral coils, 5.20

technically important duct geometries, 
3.122-3.126

temperature-dependent properties, 7.10 
thermally developing laminar flow, 7.12 
three -dimensional enclosures, 13.41 
tilt angle effect, 13.31 
transient, step change:

heat flux, 11.23
wall temperature, 11.23

transition region, 18.48
trapezoidal ducts, 3.71-3.72
triangular array, rod bundles, 7.7-7.8 
triangular duct, 3.53, 3.56-3.57, 3.59, 

3.61-3.63
tube row effect, 6.31, 6.41
turbulent flow, 7.36

circular ducts, 18.9-18.10

helical coils, 5 24
mean, 10.20
mixed convection, 15.3
natural convection, 12.23
pipe flow, 8.15
rod bundles, 7.35
spiral coils, 5.25
square array, 7.37
triangular array, 7.40
tubes with twisted tape insert, 17.44

uniform heat flux, 8.18, 8.21
uniform wall heat flux, 8.16
uniform wall temperature, 8.20-8.21
variable-property, 18.3

liquid metals, 8.16
variation with coefficient of volumetric

expansion, 18.38
vertical cylinder, 12.18, 18.45
vertical flat surfaces, natural convection, 

12.24-12.25
viscosity and density effect, 5.17
wire-coil inserts, 17.36-17.37
wire-wrapped rod bundles, 7.47

Offset strip fin, 17.8, 17.10-17.13, 17.19
Ohm’s law, 9.3, 9.28
One-equation models, 2.39-2.40
One-half equation models, 2.38-2.39
One and one-half- and two-equation models, 

2.41-2.42
Opaque, black boundaries, 19.14
Open-channel flow, 20.23
Optically thick limits, 19.21
Optically thin limits, 19.21
Optical variable, 19.12
Ordinary fluids:

developing flow and heat transfer, 7.38-7.39
heat transfer:

square array, 7.37-7.38
triangular array, 7.32-7.37

spacer grids, 7.43
Orthogonal curvilinear coordinates, 2.9-2.11
Oxygen, thermophysical properties, gas, 22.22

Parallel-plate channel, see Transient laminar
forced convection, parallel-plate channels

coordinate system, 11.25
flow between, liquid-metal heat transfer, 

8.10
geometry, 11.13

Participating media, 19.2
boundary-layer simplifications, 19.17-19.18
equations of motion and energy for radiating 

fluids, 19.16-19.18
forced convection:

inside ducts, 19.22-19.29
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over flat plate, 19.19 
nondimensional parameters, 19.18 
simultaneous convection and radiation, 

19.10-19.29
solving radiation problems: 

multidimensional media, 19.16 
one dimensional media, 19.15-19.16

Particular law, 1.2, 1.13
Path functions, 1.5
Peclet number, 2.31, 3.7

vs. Nusselt number, 7.40
Penalty-functional method, 13.17
Penetration length, 16.26
Penetrative flow, porous media, 16.25-16.26
Perfect gas, energy equation, 1.25
Perforated fin, 17.14
Performance evaluation criteria, 17.5-17.8 

internally finned tubes, 17.30, 17.33-17.34 
offset strip fin, 17.10-17.13

Permeability, 16.3
Petukhov-Kirillov correlation, 18.10
Peturbation parameter, 18.41
Physical laws, 1.2
Pipe flow:

confined flows, 9.33-9.35 
liquid-metal heat transfer, 8.8-8.9 
turbulent, 8.15

Plain fin, 17.14
Plane-parallel medium, 19.12
Plate heat exchanger, 21.23, 21.26
Pv method, 19.15
Point heat source, porous media: 

forced convection, 16.7 
natural convection, 16.10-16.12

Point-plane electrode, single corona discharges, 
9.11-9.12

Polyatomic molecules, ionization potentials, 9.8
Polygonal ducts, 3.69-3.70, 3.74

with centered circular cores, 3.117-3.120
Porosity, 16.2
Porous media: 

conservation of chemical species, 16.7 
energy conservation, 16.6-16.7 
forced convection, 16.7-16.9

sphere and cylinder, 16.8-16.9
mass conservation, 16.3-16.4 
momentum conservation, 16.3, 16.5-16.6 
natural convection, 16.9-16.28 
nonhomogeneous, 16.19 
penetrative flow, 16.25-16.26

Potassium, thermophysical properties: 
gas, 22.24
liquid and vapor, 22.23

Power law fluid, 5.25, 20.8 
distribution, natural convection, 12.12 
experimental flow curve, 20.11

friction factor, 20.42
fully developed pressure drop, 20.23-20.25
modified, 20.8
unsteady thermal-entrance heat transfer,

11.4
Prandtl boundary layer, 2.2
Prandtl number, 2.31,3.7,19.18-19.19,20.28.

See also Thermophysical properties 
critical Rayleigh number effect, 15.36 
dimensionless temperature distributions,

8.18
dimensionless velocity distributions, 8.19
generalized, 20.28, 20.44

cylinder in non-Newtonian cross flow, 
20.45

limiting cases, 13.12
low, fluids, 8.2
miscellaneous fluids, 22.4-22.9
molecular, 4.4
natural convection, 12.8
Nusselt numbers effect, 5.19
porous media, 16.24
roughness dependency, 17.51-17.52 
turbulent, 2.37, 4.4,7.39,13.10,13.32,

18.9
uniform wall temperature, 8.20

Prandtl’s equations, 1.29, 2.34
Pratt’s correlation, 5.24
Pressure coefficient, 2.30, 6.19

circular cylinder, 6.4
tube, inner rows:

inline bundle, 6.18, 6.20
staggered bundle, 6.17, 6.20

tube bundle, 6.16-6.18
Pressure drop, see Incremental pressure drop 

number
bends, 10.3-10.4
bundle, 6.21
finned-tube bundle, 6.39
fully developed laminar, 20.22-20.23
fully developed turbulent, 20.23,

20.26-20.27
multirow bundle, 6.21
non-Newtonian duct flows, 20.20-20.27
parameter, 15.13-15.14
triangular array, rod bundles, 7.8

Pressure gradient, 19.18
laminar and turbulent flows, 2.59-2.60
similarity solution, 2.56-2.59

Pressure work, 12.7
Process, 1.5, 1.7-1.8
Property, 1.5
Property-ratio method, 18.2-18.3

gases, 18.3
liquids, 18.3

Pseudocritical temperatures, 18.21
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Quadrilateral ducts, 3.69, 3.73
fully developed flow, 3.73

Quenching, combating gas-side fouling, 21.33

Radiation, 1.3, 1.11
boundary conditions, 19.13-19.15
enclosures, 13.36
exchange, gray surfaces, 19.3-19.4
heat flux, 1.12, 19.20

dimensionless, 19.23, 19.26
intensity, 19.11

dimensionless, 19.23, 19.27
shape factor, configuration factor, 1 13

Radiosity, 19.3
Ratio of principal specific heats, see Specific 

heat ratio
Rayleigh number, 13.10

critical, Prandtl number effect, 15.36
effect on axial distribution of local Nusselt 

number, 15.31
high regime, 16.12, 16.16, 16.18

laminar natural convention in enclosures, 
13.19

laminar mixed convection in vertical annulus, 
15.17

limiting, 18.44
low regime, 16.10
mixed convection, 15.10
natural convection in enclosures, 13.15
thermal entrance length and, 15.12

Recovery factor, 2.32
Rectangular ducts:

entrance lengths:
hydrodynamic, 3.46, 4.83
thermal, 3.51, 4.83

friction factors:
fully developed, 3.46, 4.76
hydrodynamically developing, 3 49, 4.83
transition, 4.73

incremental pressure drop numbers, 3.46 
Nusselt numbers:

fully developed, 3.46-3.47, 4.77
simultaneously developing, 3.52, 4.83
thermally developing, 3.50, 4.83
transition, 4.73

turbulent flow, 18.15, 18.20
velocity distribution:

fully developed laminar, 3.45, 3.46
primary-flow isovels, 4.76
secondary-flow pattern, 4.76

Reference enthalpy, 2.48
Reference-property methods, 2.48-2.49
Reference temperature, 18.34, 18.36, 18.42,

18.44
Reference temperature method, 18.2

Reflectivity, 111
effect on Nusselt number, 19.28

Refrigerant 12, thermophysical properties: 
gas, 22.25 
liquid and vapor, 22.24-22.25

Refrigerant 22, thermophysical properties, 
22.26

Regenerator, gas-gas, packings, 17.28-17.29
Regular polygonal ducts:

with centered circular cores, fully developed 
flow, 3.119-3.120

fully developed flow, 3.70, 3.74 
simultaneously developing flow, 3.74

Rehme’s correlation, 7.45
Reynolds analogy, 2.37 

factor, 2.44-2.45
Reynolds equations, 2.12, 2.14-2.19 

continuity equation, 2.15-2.16 
conventional averaging procedure, 2.14 
energy equation, 2.17-2.18 
mass-weighted averaging, 2.15 
momentum equation, 2.16-2.17

Reynolds number, 1.28, 2.30-2.31, 
19.18-19.19, 20.22

apparent, critical value, 15.42 
critical, 5.8-5.9, 14.27, 14.29 

helical coils, 5.28 
horizontal circular tubes, 15.40 

effective, 6.12
electric, 9.6, 9.15
friction factors as function of, 10.25 
generalized, 20.22, 20.42

cylinder in non-Newtonian cross flow, 
20.45

laminar friction factors as function of circular 
cross-section bends, 10.5

local pore, 16.5
vs Nusselt number, air heating, 10.21 
offset strip in, 17.12-17.13
relation with friction factor, 20.10, 20.26 
roughness, 17.48
transition from laminar to turbulent flow, 

7.42, 7.46
vertical annulus, 15.18

Reynolds stress models, 2.33, 2 42-2 43
Reynolds stress tensor, 13.9
Rheological fluids, steady laminar free and 

mixed convection, 20.34
Rheological property:

capillary-tube viscometer, 20.9-20.13 
purely viscous fluids, 20.9
representative measurements, 20.19-20.20

Rhombic ducts, 3.69, 3.72-3.73 
fully developed flow, 3.72-3.73

Richardson number, gradient, 13.10
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Rod bundles:
cell solutions, 7.23-7.25
circular array, 7.2-7.3
concentric, 7.25-7.28
finite:

fully developed flow, 7.20-7.23
fully developed heat transfer, 7.23 
regular triangular and square arrays, 

7.20-7.23
flow domain of comer and wall cells, 7.24 
fully developed flow, 7.5-7.7
fully developed heat transfer, 7.7-7.8
laminar flow, 7.5-7 28
multiregion analysis, 7.5
Nusselt numbers, turbulent flow, 7.35
square array, 7.2, 7.8-7.13

comer subchannel, 7.19-7.20
developing flow, 7.11
developing heat transfer, 7.11-7.13
friction factors, 7.31-7.32
fully developed flow, 7.8-7.9
fully developed heat transfer, 7.9-7.10
liquid metals, 7.39
ordinary fluids, 7 37-7.38

subchannel, 7.2
analysis, 7.2, 7.4-7.5

triangular array, 7.2
central subchannel, 7.7
comer subchannel, 7.17-7.18
developing flow, 7.8
developing heat transfer, 7.8
friction factors, 7.28-7.31
liquid metals, 7.39-7.40
ordinary fluids, 7 32-7.37
thermal boundary conditions, 7.13-7 14

turbulent flow, 7.28-7.41
friction factors, 7.28-7.31

wall subchannel, 7.15-7.17
Rod displacement, 7.14, 7.26
Rotary regenerators, 17.28-17.29
Rotating-cylinder viscometer, 20.16-20.18
Roughness, 17.44- 17.55

design methods, 17.52-17.54
enhanced surface geometries, 17.44-17.47
equivalent sand-grain, 4.12
heat transfer and friction correlations, 

17.48-17.51
Prandtl number dependence, 17.51-17.52
Reynolds number, 4.12, 17.48
types, 17.44-17.45

cormgated tubes, 17.3, 17.46
helical ribs, 17.3, 17.46, 17.49
preferred, 17.54-17.55
transverse ribs. 17.45, 17.47, 17.49

Rubidium, thermophysical properties, 22.27

Scale-analysis results, porous media, 
16.1-16.28

Scattering coefficient, 19 11
Schmidt number, 21.6
Secondary flow:

circular duct:
with singular rectangular indentation, 4.108
with twin rectangular indentations, 4.109

elliptical duct, 4.103
equilateral triangular duct, 4.86
rectangular ducts, 4.76
right-angled isosceles triangular duct, 4.96
trapezoidal duct, 4.107

Second law of thermodynamics, 1.7-1.8 
Second-order closure, 2.33
Sedimentation, 21.7
Segmented fins, 17.22
Semi-infinite conduction solutions, 12.19 
Semi-infinite horizontal surface, natural

convection, 12.14-12.15
Shaft work, 1.6
Shear stress:

apparent turbulent, 4 3
laminar, 4.3

Shell-and-tube exchangers, 21.22-21.23
Sherwood number, 21.6
Similarity analysis, 18.39
Similarity solutions, 2.56-2.59
Similarity transformation, 12.9
Similarity variable, 12.9, 12.15
Simple algebraic models, 2.34-2.38
Simple shear flow, 1.14
Simultaneously developing flow, 3.3, 3.4, 7.9,

7.11
annular sector ducts, 3.78
circular duct, 3.25, 4.55

convective boundary condition, 3.30
solution for Pr= 0, 3.27, 4.36
solution for Pr= °°, 3.27, 4.44
uniform wall heat flux, 3.28, 4.38
uniform wall temperature, 3.41, 4.40 

concentric annular ducts, 3.106. 4.134 
eccentric annular ducts, 3 117 
equilateral triangular duct, 3.60 
flat duct, 3.41, 4.72

convective heated wall, 3.45
uniform wall:

heat flux, 3.43, 4.63
temperature, 3.41, 4.63

isosceles triangular duct, 4.101
pentagonal duct, 3.73
rectangular ducts, 3.52, 4 83
right-angled isosceles triangular duct,

3.60
trapezoidal duct, 3.68
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Sine ducts, 3.68, 3.70
fully developed flow, 3.70

Single-scattering albedo, 19.12
effect on local Nusselt number, 19.25, 19.28

Singly connected ducts, 3.3 
miscellaneous. 3.86-3.90

Skin friction coefficient, 2.31, 2.43, 2.49, 
2.51-2.52, 2.54, 6.18, 6.20

transpiration effect, 2.55
Slug flow:

circular duct, 3.27-3.28, 4.36
concentric annual ducts, 4.127, 4.128
elliptical ducts, 4.105
flat duct. 3.42-3.44
rectangular ducts, 4.80
solution, circular duct, 3.27

Sodium, thermophysical properties:
gas, 22.29
liquid and vapor, 22.28

Sonic velocity, see Velocity, sound
Sound, speed, 2.22-2.23
Space-charge dimensionless parameter, 9.6
Spacer, 7.43-7.47

grids, 7.43-7 45
heat transfer, 7.43-7.45
pressure drop. 7.43

helical fins, 7.41, 7.43, 7.45-7.47
types, 7.43
wire wraps, 7.43, 7.45-7.47

Specific enthalpy, see individual 
thermophysical properties

Specific entropy, see individual thermophysical 
properties

Specific heat, see Thermophysical properties 
at constant pressure, miscellaneous fluids, 

22.4
at constant volume:

cesium, gas, 1 bar, 22.17 
lithium, gas, 1 bar, 22.18 
mercury, gas, 1 bar, 22.21 
miscellaneous fluids, 22.4 
potassium, gas, 1 bar, 22.24 
rubidium, gas, 1 bar, 22.27 
sodium, gas, 1 bar, 22.29 
steam, 22.34-22.35

variations, 15.13
Specific heat ratio:

air, gas, 22.11
cesium, gas, 1 bar, 22.17
lithium, gas, 1 bar, 22.18
mercury, gas, 1 bar, 22.21
potassium, gas, 1 bar, 22.24
rubidium, gas, 1 bar, 22.27
sodium, gas, 1 bar, 22.29

Specific volume, see individual thermophysical 
properties

Spectral methods, 13.18
Spectral radiation intensity, 19.10-19.11
Specularly reflecting, diffusely emitting 

boundaries, 19.15
Sphere:

concentric:
confined flows in porous media, 16.20
correlation equation, 13.40

correlations for Nusselt numbers, 
14.21-14.23

eccentric, correlation equation, 13.40 
forced convection, porous media, 16.8-16.9 
natural convection, 12.16-12.18,

12.26-12.28
porous media, 16 12-16.13

Spiral coils:
critical Reynolds number, 5.9
friction factors, 5.27

laminar flow, 5.8
turbulent flow, 5.23

inelastic power-law fluids, 5.27
Nusselt numbers:

laminar flow, 5.13, 5.20
turbulent flow, 5.25

Spiral plate heat exchangers, 5.35
Spirals, 5.2
Stadium-shaped ducts, 3.81

fully developed flow, 3.81
with twin circular cores, 3.117, 3.121

fully developed friction factors, 3.121
Staggered tube array, 6.14, 6.23, 6.31, 

6.33-6.35, 6.37, 6.39-6.41
Staggered tube banks, 17.26-17.29
Stagnation points, 2 58
Stanton number, 2.32, 2.49-2.50, 2.54,

20.32, 20.44
incompressible flow over flat plate, 2.43
roughness, 17.48
transpiration effect, 2.55

Stark number, 3.13
Steady flows, 1.16
Steam:

high pressure, 22.35
miscellaneous fluids, 22.4-22.9
saturated, 22.30-22.33
thermophysical properties, 22.30-22.33

1 Bar, 22.34
Stefan-Boltzmann constant, 1.12
Stefan-Boltzmann law of radiation, 1.11-1.13
Stokes flow problem, 3.16
Stokes hypothesis, 2.5
Stratification, 13.34
Stream function, 2.19-2.20

dimensionless, 13.13
horizontal circular tubes, 15.28
porous media, 16.10
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Stress:
Newtonian fluid, 20.3
normal, 1.18-1.19
shear, 1.18-1.19

Stress tensor, 13.9
generalized curvilinear coordinates.

2.10-2.11
Strouhal number, 12.8
Subchannel analysis, 7.20, 7.28
Subcritical flow regime, 6.5, 6.7, 6.14
Substantial derivative, 1.16, 2.7-2.8
Supercritical flow regime, 6.5, 6.7, 6.14

tube in bundle, 6.28
Surface forces, contact forces, 1.17
Surface tension:

miscellaneous fluids, 22.4-22.9
refrigerant 22, 22.26
water, 22.30-22.33

Sutherland equation, 2.48
System, 1.3

Temperature:
bulk mean, 3.6, 15.8, 19.10

local, 15.37
flow-average, 3.6
fluctuating, 4.3
instantaneous, 4.3
mixing cup, 3.6
t:me- average, 4.3

Temperature-dependent properties, 7.9-7.10,
7.13, 7.16, 18.2-18.3

correlations:
gases, 18.16-18.17
liquids, 18.18-18.19

laminar cooling, 18.8
laminar flow:

gases. 18.7-18.8
liquids, 18.5-18.7

laminar heating, 18.8
natural convection, 18.23-18.48

buoyancy force, 18.37
coefficient of volumetric expansion, 18.36 
experimental studies, 18.44-18.48
governing equations, 18.35
local heat transfer parameters, 18.43 
multiplicative correction factor, 18.39 
Nusselt number, 18.38-18.39, 18.42 
reference temperature, 18.36,18.42,18.44 
similarity analysis, 18.39
vertical cylinders, 18.45-18.47
viscosity variation effects, 18.40-18.41

transition region, 18.48
turbulent cooling, 18.14
turbulent flow:

circular ducts, 18.8-18.15
gas flow in ducts, 18.12-18.15

liquid flow inducts, 18.10-18.12 
natural convection, 18.47 
noncircular ducts, 18.15, 18.20-18.21 

turbulent heating, 18.14
Temperature difference ratio, 13.10
Temperature variation, 7.7-7.8, 7.14, 7.23, 

7.41, 7.47
Thermal boundary conditions, 3.7-3.10, 

20.28-20.29
central subchannel, 7.13-7.14
finite rod bundles, 7.23
H, 3.7
Hl, 3.8, 3.10
H2, H3, H4, H5, 3.9-3.10
T, T3, 3.8, 3.10

Thermal boundary-layer, 8.3
Thermal conductivity, 1.9. See also 

Thermophysical properties 
miscellaneous fluids, 22.4-22.9 
variations, 15.13

Thermal diffusivity, 1.25
saturated porous media, 16.7

Thermal energy source number, 3.12
Thermal entrance length, 3.7, 7.8, 7.38, 7.41

annular sector ducts, 3.78
circular duct, 3.18, 3.21, 3.23, 3.28, 4.50, 

4.53
concentric annular ducts, 3.99, 3.104, 4.135 
eccentric annular ducts, 4.143 
flat duct, 3.38, 3.40, 4.66 
helical coils, 5.20
horizontal circular tubes, 15.32 
liquid metal heat transfer, 8.12-8.16 
rectangular ducts, 3.51, 4.83 
spacer grids, 7.44
vertical circular tubes, 15.12

Thermal entrance region, 3.4, 20.27-20.28
Thermal equilibrium, 1.12
Thermal expansion coefficient, 15.7, 16.9, 

18.34
water, 22.37

Thermally developing flow, 3.3, 3.4, 
20.30-20.32

circular duct, 3.16, 4.44, 20.30-20.32 
convectively heated wall, 3.21 
horizontal, 15.30-15.33 
radiatively heated wall, 3.21 
specified wall: 

heat flux, 3.22 
temperature, 3.17

vertical, 15.11-15.13
concentric annual ducts, 3.97, 4.132 

fundamental solutions, 3.97, 4.124 
specified Tw and q”, 3.105, 4.118 

eccentric annular ducts, 3.116 
elliptical ducts, 3.66
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Thermally developing flow {Continued} 
.equilateral triangular duct, 3.60, 4.99 
flat duct, 3.35, 4.66

convective boundary condition, 3.41 
exponential wall heat flux, 3.41 
specified wall:

heat flux, 3.39
temperature, 3.36 

horizontal ducts, 15.35-15.38 
rectangular ducts, 3.50, 4.83 
semicircular ducts, 3.76

Thermally developing and hydrodynamically 
developed flow, helical coils, 
5.18-5.20, 5.28, 5.35

Thermally and hydrodynamically developing 
flow, helical coils, 5.20, 5.35

Thermal modeling parameter, 7.13-7.14
Thermal radiation, 1.3
Thermodynamic state, 1.5
Thermophoresis, 21.7
Thermophysical properties:

air:
ideal gas, 22.11-22.12
liquid and vapor, 22.10

carbon dioxide:
gaseous, 22.15
solid, liquid and vapor, 22.14

cesium:
gaseous, 22.17
saturated, 22.16

engine oil, unused, 22.38
fluids, 1 bar, 300K, 22.4-22.9
functional representations, 22.38-22.39 
ice-water-steam, 22.30-22.33 
lithium, 22.18
mercury:

gas, 22.21
liquid and vapor, 22.19-22.20

n-hydrogen, 22.17
nitrogen, gas, 22.22
oxygen, gas, 22.22
potassium, 22.23
refrigerant 12:

gas, 22.25
liquid and vapor, 22.24-22.25

refrigerant 22, 22.26
rubidium, 22.27
saturated ice-water steam, 22.30 
sodium:

gas, 22.29
liquid and vapor, 22.28 

steam:
1 bar, 22.34
high pressures, 22.35-22.36

U.S. standard atmosphere, 22.13 
water, high pressures, 22.35-22.36

Tilt angle, 13 22. 13.25
average Nusselt number effect, 13.31 
critical, 13.22-13.23

Transient forced convection, 11.2 
timewise variation of inlet temperature, 

11.24-11.30
Transient laminar forced convection: 

circular tubes, 11.2-11.4, 11.10, 11.12 
arbitrary time variations in wall 

temperature, 11.10-11.12
parabolic velocity distribution, 

11.7-11.10
step change in:

wall heat flux, 11.12-11.13
wall temperature, 11.4-11.10

ducts, 11.2-11.4 
parallel-plate channels, 11.2-11.3, 11.12, 

11.15
step change in wall temperature, 

11.12-11.15
unsteady flow, 11.15-11.18

Transient laminar slug flow, 11.3, 11.5-11.6, 
11.24-11.30

circular tube, 11.3, 11.5-11.6
general solution, 11.27-11.30 
parallel-plate channel, 11.3, 11.24-11.27 
with time varying inlet temperature, 

11.24-11.30
Transients, natural convection, 12.18-12.20
Transient turbulent forced convection:

circular tubes, 11.19-11.22
ducts, 11.18-11.24
parallel-plate channel, 11.22-11.24

Transition, see Laminar-to-turbulent transition 
turbulent-to- laminar (reverse) transition, 

4.8
Transmissivity, 1.11
Transparent, 1.11
Transparent boundaries, 19.13-19.14
Transpiration cooling, 2.53
Transport parameters, liquids, with viscosity 

variations, 18.40
Trapezoidal ducts, 3.68, 3.71-3.72

fully developed flow:
friction factors, 3.71, 4.77
Nusselt numbers, 3.71

primary-flow isovels, 4.107
secondary-flow pattern, 4.107

Triangular ducts, see Equilateral triangular duct;
Isosceles triangular ducts 

friction factors, 3.59-3.60 
Nusselt number, 3.61-3.62 
turbulent flow, 18.20

Trigamma function, 3.113-3.114
Tube bundles, flow, liquid-metal heat transfer, 

8.11-8.12
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Tube row effect:
Euler numbers, 6.24, 6.39
Nusselt numbers, 6.31, 6.41

Tubes, see specific types of tubes 
confined flows, 9.22-9.26 
heat transfer enhancement, 17.32-17.35 
swirl-flow insert devices, 17.42-17.44

Turbulence, 1.29
natural convection, 12.21-12.24
transition to, 20.22

Turbulence models, 1.32, 2.32-2.33, 12.23
algebraic stress model, 2.43 
momentum thickness, 2.35-2.36 
one-equation models, 2.39-2.40 
one-half equation models. 2.38-2.39 
one and one-half- and two-equation models, 

2 41-2.42
Reynolds stress models, 2.33, 2.42-2.43 
simple algebraic or zero-equation models, 

2 34-2.38
turbulent-viscosity models, 2.33
zones, 2.35

Turbulent flow, 1.29-1.32, 2.59-2.60,
4.1-4.9

boundary-layer equations, 1.31
buoyancy-assisted and buoyancy-opposed, 

15.3
circular duct, 4.14

with rectangular indentations, 4.106
coiled tubes, 5.25
concentric annular ducts, 4.114
concentric annuli, 18.21
ducts formed by intersection of circular rods 

with flat plates, 4.107
eccentric annular ducts, 4.136 
elliptical ducts, 4.102, 18.20-18.21 
entrance lengths, 8.13, 8.15-8.16
flat duct, 4.59
flat plates, 14.24-14.27
forced convection inside ducts, 19.26-19.29 
governing equations, instantaneous flow in

boundary layer, 12.23
heated upward-facing plates, 8.21
heat transfer, 9.32
helical coils, see Helical coils, turbulent flow 
longitudinal magnetic field, 9.34
natural convection, transition, 12.20-12.21 
noncircular ducts, 18.15, 18.20-18.21 
recirculating, 12.23
rectangular channels, 18.15, 18.20
rectangular ducts, 4.73 
rod bundles, 7.28-7.41 
steady, 1.30
trapezoidal ducts, 4.106
triangular ducts, 18.20
tubes:

heat transfer enhancement 17.32-17.35 
swirl-flow insert devices, 17.42-17.44

Turbulent forced convection, 18.15 
correlations to fluids in circular ducts at 

supercritical presssure, 18.30-18.32 
ducts, at supercritical pressure, 18.21-18.33.

See also Heat transfer, at supercritical 
pressure

Turbulent heat transfer, fully developed, 
20.32

Turbulent mixed convection, 15.40-15.44 
horizontal circular tubes, 15.44 
Nusselt number, 15.3 
vertical ducts, 15.41-15.44

Turbulent natural convection, enclosures: 
three-dimensional, 13.34-13.35 
two-dimensional, 13.31-13.34

Turbulent region, 18.44
Turbulent-viscosity models, 2.33 
Twisted tape insert, 17.38-17.42

Unheated starting length, 2.46
Uniform-flux surface, 12.16
Uniform heat flux, 12.13
Units, S.I.:

fundamental, 22.2
prefixes, 22.3

van Driest II, 2.51-2.52
Vapor pressure, see Thermophysical properties 

miscellaneous fluids, 22.4-22.9
Variable-property effects, 18.2, 18.42
Velocity:

field, 9.16
fluctuating, 4.3
gradient, near wall, 6.5
instantaneous, 4.3
potential, 2.23

Laplace equation, 2.21
power law, 4.17
shear, 4.4
sound, see Thermophysical properties 

miscellaneous fluids, 22.4-22.9
time-average, 4.3
turbulent friction, 4.4 
velocity-defect law, 4.19 
wall coordinates, 4.4

Velocity distribution:
axial, 15.11 
parabolic, 11.7-11.10 
parallel-plate channel, 11.14 
property variation effect, 18.3

Vents, 13.7
Vertical coil, 5.2
Vertical cylinder, variable-property natural 

convection, 18.47
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Vertical ducts:
laminar mixed convection, 15.10-15.24
turbulent mixed convection, 15.41-15.44

Vertical plate:
buoyancy effects, 15.23
coordinates for heating and cooling, 18.35 
hydrodynamically and thermally developing 

flow, 15.23-15.24
hydrodynamically and thermally fully 

developed flow, 15.20-15.23
laminar mixed convection, 15.20-15.24
natural convection, heat transfer, 18.36

VG criteria, 17.6-17.7
View factor, 19.3
Viscometer:

capillary-tube, 20.9-20.13 
cone-and-plate, 20.18-20.19
falling-ball, 20.13-20.14
falling-needle, 20.14-20.16
rotating-cylinder, 20.16-20.18

Viscosity, 1.14. See also Thermophysical 
properties

bulk, 2.5
dynamic, 1.14, 1.20

variations, 15.13
eddy, 4.3, 12.22, 18.8-18.9
kinematic, 1.21
miscellaneous fluids, 22.4-22.9
parameter, 18.6

circumferentially averaged local Nusselt 
number correlation, 15.32

temperature-dependent, 18.41
turbulent, 2.39, 2.41, 13.32
variations, effects, 18.40-18.41

Viscosity-variation coefficient, 18.39
Viscous dissipation, 12.7-12.8

viscous heating, 1.24
Viscous flow, 2.23-2.30
Viscous region:

displacement effect, 2.3
Volume, specific, see Specific volume
Volume-averaged quantities, 16.2
von Karman constant, 2.35
von Karman similarity law, 2.51
Vortex methods, 13.18
Vorticity, 2.22

Wall heat flux, 11.8-11.9. 11 11.11.14, 11.20
exponential axial, 3.9

circular ducts, 3.13, 3.25
flat duct, 3.33, 3.41

following step change in pressure gradient:
with initial heating, 11.17-11.18
and wall temperature, 11.16-11.17

specified:
circular duct, 3.22
flat duct, 3.39

step jump in wall temperature, 11.21
uniform, 8.16

circular duct, 3.28, 4.31
flat duct, 3.43, 4.63

Wall shear stresses, 7.7
variation, 7.9

Wall subchannel, 7.15-7.17
Water:

cold, near 4°, convection in porous media, 
16.14, 16.21, 16.25

compressed, thermophysical properties, 
22.35

density extremum, 12.6
isothermal compressibility coefficient, 22.37
saturated, thermophysical properties, 

22.30-22.33
thermal expansion coefficient, 22.37

Watkinson-Epstein equation, 21.12
Wavy fin, 17.14
Wedge flow, 2.56-2.57
Wedge-shaped porous layers, 16.25
Wetting, effects, liquid metal heat transfer, 8.4
Wire-coil inserts, 17.36-17.37
Wire-plan electrode, single corona discharges, 

9.11-9.12
Wire wraps:

heat transfer, 7.47
pressure drop, 7.45-7.46

Wissenberg number, 5.27

Yaw angle effect:
on single tube, 6.14
tube bundle, 6.25-6.26, 6.31

Zero-equation models, 2.34-2.38
Zero-shear-rate viscosity, 20.6
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