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PREFACE

- With this new edition we have, as usual, reorganized and thoroughly revised the preceding
edition. The more prominent changes are new chapters on modeling, error estimation and
convergence; modernization of the chapter on elastic-plastic problems; and inclusion of
application problems in which a finite element analysis is planncd and executed, and
results are critically examined. Much of the latter material comes from the book Finite
Element Modeling for Stress Analysis (Wiley, 1995; used by permission of the publisher).

This book steers a middle course between books that are quite elementary or favor
applications to the exclusion of theory, and books that are strongly theoretical, advanced,
or highly detailed. We believe this book is suitable for a first course in the subject and con-
tains enough material for a second course as well. Prerequisites are the usual undergradu-
ate courses in calculus, statics, dynamics, and mechanics of materials. Knowledge of
matrix notation and elementary matrix algebra, as summarized in Appendix A, is also
assumed. Concepts from other courses are introduced as needed. Prior knowledge of these
concepts is not necessary but will, of course, smooth the way. Throughout the book we
emphasize the more basic, simple, and useful concepts. Advanced techniques are left to
references cited. Tens of thousands of references are available; we cite only those that
seem most appropriate or most accessible. In most cases, a citation does not imply priority
of discovery.

A course that leans toward practical application may emphasize Chapters 1, 2, 3, 9, and
10. A course more oriented toward theory may emphasize other chapters. Worked-out
solutions to analytical problems are available on a CD-ROM that the publisher will provide
on request to instructors who adopt the book as a course text. The same CD also contains
simple Fortran programs for linear time-independent, buckling, and vibration problems,
into which the user can insert test code for element formulation and postprocessing such as
stress calculation.

Our experience is that study of the theory of finite elements is not sufficient to produce
competence in their use. Accordingly, we hope that students will be required to solve
problems using software already written, with proper attention to planning the analysis,
anticipating results, and properly checking the results. Computational problems are sug-
gested at the ends of several chapters. These problems are of simple geometry so that time
need not be wasted on data input chores. More complicated problems can, of course, be
chosen, but even simple problems reveal many misunderstandings about modeling, on the
part of graduate students as well as undergraduates.

This book is not directed toward use of any particular software package. However, in asso-
ciation with the book, the publisher offers the finite element software VisualFEA, written by
J. Y. Lee. This software addresses linear statics and dynamics, some nonlinear structural
problems, seepage flow, and steady-state heat conduction. It includes powerful pre- and post-
processing and graphic display, and educational features not found in commercial software.

Our presentation of structural dynamics is partially based on course notes of Ted
Belytschko. T. J. R. Hughes provided guidance. Jeff Crowell supplied helpful notes about
plasticity. We are grateful to all.

vii
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NOTATION

Symbols used throughout most of the book are listed. Symbols less frequently used, or
that have different meanings in different contexts, are defined where they are used. Matri-
ces and vectors are identified by boldface type.

MATHEMATICAL SYMBOLS

[0 Rectangular matrix or square matrix, diagonal matrix

{ LL] Column vector, row vector

[ Matrix transpose (thus { } = | |

(LT Matrix inverse, transpose of inverse (= inverse of transpose)

%)

LATIN SYMBOLS

A

{a}

B

[B]

Cm

[C]

D

{D}, {d}
{D} -
d.o.f.

E

(E]

{F}

]

J]

k

(K], [k]
(Kol k&gl

&:l~wq3\

—

Norm of a matrix or vector

Time differentiation; for example, i = du/ds, it = d*u/df
Partial differentiation if the following subscript is a letter; for
example w,, = dw/dx, Wiy = 9%w./9xdy

T
oIl JIl EJ ,where Il = Il(ay, a3, -+, a,)

RCpI'eSEIltS [a—%' a_[,12 ver 3a

n

Area or cross-sectional area

Generalized d.o.f. (also known as generalized coordinates)
Bulk modulus, B = E/(3 — 6v)

Spatial derivatives of field variables are [B]{d}

Field continuity of degree m (Section 3.2)

Damping matrix; constraint matrix

Displacement; flexural rigidity of a plate or a shell
Nodal d.o.f. of structure and element, respectively
Amplitudes of nodal d.o.f. (as in vibration or buckling)
Degree(s) of freedom

Modulus of elasticity

Matrix of elastic stiffnesses; [E] = E in one dimension
Body forces per unit volume

Cyclic frequency of vibration, f = w/27r; flux

Shear modulus

Characteristic length; convective heat transfer coefficient
Moment of inertia of cross-sectional area

Unit matrix, also called identity matrix

Determinant of [J]

Jacobian matrix (Section 6.2)

Spring stiffness, or bar stiffness AE/L, or thermal conductivity
Conventional stiffness matrix of structure, element
Stress stiffness matrix of structure, element

Xv



xvi NOTATION

L, Ly Length of element, length of structure
I,mn Direction cosines
[M], [m] Mass matrix of structure, element
Neis Number of elements
[N] Shape (or basis, or intergolation) functions
0 Order; for example O(h“) = a term of order n2
[0], {0} Null matrix, null vector
{P} Externally applied concentrated loads on structure nodes
p Pressure; degree of a complete polynomial
q Distributed load, per unit length or per unit area
(R} Total load on structure nodes; {R} = {P} + ) {r,}
{r,} Loads applied to nodes by an element (Section 2.5)
S Surface or surface area
T Temperature
t Thickness; time
[T] Transformation matrix
U, U, Strain energy, strain energy per unit volume
u, v, w Displacement components in coordinate directions
{u} Vector of displacements, {u} =[x v w|T
\% Volume
X, 92 Cartesian coordinates
GREEK SYMBOLS
a Coefficient of thermal expansion; penalty number
1N Jacobian matrix inverse, [[] = [J]!
{e}, {&}) Vector of strains, vector of initial strains
n A global error measure, computed from the gradient field
0. 6), 6, Rotation components about coordinate axes
[k], {x} Matrix of thermal conductivities, vector of curvatures
A Eigenvalue; Lagrange multiplier
v Poisson’s ratio
& Damping ratio (ratio of actual damping to critical damping)
&Enl Reference coordinates of isoparametric elements
II A functional; for example IL, = potential energy functional
p Mass density
{o}., {og} Vector of stresses, vector of initial stresses
o, von Mises stress, Eq. 3.12-2 (also called effective stress)
[®] Modal matrix
{®} Surface tractions

o, w?] Circular frequency in radians per second, spectral matrix



CHAPTER

INTRODUCTION

This chapter outlines the finite element method—what it is, to what problems it may be
applied, and how it should be used. Details of these matters and appropriate theory occupy
the remainder of the book.

1.1 FINITE ELEMENT ANALYSIS

Finite element analysis (FEA), also called the finite element method (FEM), is a method
for numerical solution of field problems. A field problem requires that we determine the
spatial distribution of one or more dependent variables. Thus we may seek the distribution
of temperature in the piston of an engine, or we may seek the distribution of displacements
and stresses in a paving slab. Mathematically, a field problem is described by differential
equations or by an integral expression. Either description may be used to formulate finite
elements. Finite element (FE) formulations, in ready-to-use form, are contained in general-
purpose FEA programs. It is possible to use FEA programs while having little knowledge
of the analysis method or the problem to which it is applied, inviting consequences that
may range from embarrassing to disastrous.

Individual finite elements can be visualized as small pieces of a structure. The word
“finite” distinguishes these pieces from infinitesimal elements used in calculus. In each
finite element a field quantity is allowed to have only a simple spatial variation, perhaps
described by polynomial terms up to x%, xy, and y%. The actual variation in the region
spanned by an element is almost certainly more complicated, so FEA provides an approx-
imate solution. Elements are connected at points called nodes (Fig. 1.1-1). The assem-
blage of elements is called a finite element structure, the word “structure” being used in a
general sense to mean a defined body or region. The particular arrangement of elements is
called a mesh. Numerically, an FE mesh is represented by a system of algebraic equations
to be solved for unknowns at nodes. Nodal unknowns are values of the field quantity and,
depending on element type, perhaps also its first derivatives. The solution for nodal quan-
tities, when combined with the assumed field in any given element, completely determines
the spatial variation of the field in that element. Thus the field quantity over the entire
structure is approximated element by element, in piecewise fashion. Although an FEA
solution is not exact (unless the problem is so simple that FEA is probably inappropriate),
the solution can be improved by using more elements to represent the structure.

FEA has advantages over most other numerical analysis methods, including versatility
and physical appeal.

» FEA is applicable to any field problem: heat transfer, stress analysis, magnetic fields,
and so on.

¢ There is no geometric restriction. The body or region analyzed may have any shape.
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Figure 1.1-1. A two-dimensional model of a gear tooth. All nodes and
elements lie in the plane of the figure. Supports are not shown.

Boundary conditions and loading are not restricted. For example, in stress analysis,
any portion of a body may be supported, while distributed or concentrated forces may
be applied to any other portion.

» Material properties are not restricted to isotropy and may change from one element to
another or even within an element,

» Components that have different behaviors, and different mathematical descriptions,
~can be combined. Thus a single FE model might contain bar, beam, plate, cable, and
~ friction elements.

* An FE structure closely resembles the actual body or region to be analyzed.

» The approximation is easily improved by grading the mesh so that more elements
appear where field gradients are high and more resolution is required.

Other numerical methods have arisen since FEA appeared, but at present only FEA can
confidently claim all these attributes.

Overview of the Book. The rest of this chapter elaborates on the foregoing remarks in an
introductory way. The most easily understood finite elements are those for structures com-
posed of axial elements and beams. They are discussed in Chapter 2, along with some
FEA procedures used with all element types. Simple triangular and rectangular elements
for plane problems are discussed in Chapter 3. General formulation methods for finite ele-
ments are treated in Chapters 4 and 5. Chapters 6 and 7 discuss arbitrarily shaped quadri-
lateral elements and elements that may have curved sides. Chapters 8 through 10 discuss
modeling procedures, sources of error, and how a sequence of analyses with successively
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refined meshes may be deemed to be adequately converged. Chapters 11 through 13 deal
with the application of FEA to dynamics and vibrations, thermal problems, and a few
problems that involve fluids and incompressible media. Chapters 14 through 18 are
devoted to topics in structural mechanics, including material nonlinearity. Appendices
deal with matrix manipulations, equation solving, and eigenvalue extraction.

Over many years, element formulations and analysis procedures have been modified,
extended, and fine-tuned to improve performance. Throughout the book we emphasize the
more basic concepts, elements, and procedures. Refinements are often beyond the scope
of this book but are included in commercial software and are described in references cited.

1.2 PROBLEM CLASSIFICATION,
MODELING, AND DISCRETIZATION

Classification. The first step in solving a problem is to identify it. What are the more important
physical phenomena involved? Is the problem time-independent or time-dependent? (In stress
analysis terminology, we ask whether the problem is static or dynamic.) Is nonlinearity involved,
so that iterative solution is necessary? What results are sought from analysis? What accuracy is
required? Answers to such questions influence how much information must be gathered to carry
out an analysis, how the problem is modeled, and what method of solution is adopted.

A complicated problem may not lie entirely in one category. An example is a fluid-structure
interaction problem, such as earthquake excitation of a storage tank that contains liquid.
Motion of the liquid makes a thin-walled tank deflect, and deflection modifies the liquid
motion. Therefore, structural displacement and fluid motion fields cannot be considered sepa-
rately; calculations must take their interaction into account. This example involves what may
be called direct or mutual coupling, in which each field influences the other. There is also
what may be called indirect or sequential coupling, in which only one field influences the
other. An example is ordinary analysis for thermal stresses, where temperature influences
stresses but stresses have negligible influence on temperature.

Modeling. An analytical method is applied to a model problem rather than to an actual
physical problem. Even laboratory cxperiments use models unless the actual physical struc-
ture is tested. A model for analysis can be devised after the physical nature of the problem
has been understood. In modeling, the analyst seeks to exclude superfluous detail but
include all essential features, so that analysis of the model is not unnecessarily complicated
yet provides results that describe the actual problem with sufficient accuracy. A geometric
model becomes a mathematical model when its behavior is described, or approximated, by
selected differential equations and boundary conditions. The equations, depending on their
particular forms, may incorporate restrictions such as homogeneity, isotropy, constancy of
material properties, and smallness of strains and rotations.

It is important to recognize that FEA is simulation, not reality. FEA is applied to the
mathematical model. Even very accurate FEA may be at odds with physical reality if
the mathematical model is inappropriate or inadequate.

A mathematical model is an idealization, in which geometry, material properties, loads,
and/or boundary conditions are simplified based on the analyst’s understanding of what
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features are important or unimportant in obtaining the results required. As examples in stress
analysis, material may be regarded as homogeneous, isotropic, and linearly elastic (although
common materials are otherwise); a load distributed over a small area may be regarded as
concentrated at a point (which is not physically possible); a support may-be designated as
fixed (although no support is completely rigid); a reentrant comer may be introduced but
high stresses there ignored (if stresses elsewhere are sought); and an almost-flat structure may
be modeled as two-dimensional (if stress variation in the thickness direction is considered to
be practically zero, or regarded as linear as it often is for bending). Behavior of an
axisymmetric pressure vessel might be described by equations of axisymmetric elasticity or
by equations of axisymmetric shells, depending on whether the wall thickness is judged to be
thick or relatively thin. Modeling decisions such as these precede FEA.

Discretization. A mathematical model is discretized by dividing it into a mesh of finite
elements. Thus a fully continuous field is represented by a piecewise continuous field
defined by a finite number of nodal quantities and simple interpolation within each ele-
ment. Clearly, discretization introduces another approximation. Relative to reality, two
sources of error have now been introduced: modeling error and discretization error. Mod-
eling error can be reduced by improving the model; discretization error can be reduced by
using more elements. Even if discretization error could be reduced to zero, reality is not
perfectly represented because modeling error remains. Also, as a computer does arith-
metic, it introduces numerical error by using numbers of finite precision to represent data
and the results of manipulation. Numerical error is usually small but can be made large by
some physical situations and by poor discretization.

As a very simple example of modeling and discretization, consider a tapered support
post, as in Fig. 1.2-1. Its cross-sectional area varies from A, at the bottom to A, at the top.
In modeling, we elect to show the ground as a rigid support. Once we have omitted defor-
mation of the ground from the model, deflection at the top is due entirely to shortening of
the post, and stresses at the bottom differ in magnitude and distribution from stresses in
the actual post. We may presume that the state of stress is uniaxial at every cross section,
which is an acceptable approximation if taper is slight. In the mathematical model of
uniaxial stress, the axial coordinate is the only independent variable. This representation is
consistent with uniform stress across the bottom. Similarly, in this model the manner of
load distribution on top does not matter; only its magnitude P is important. The distributed
load of the post’s own weight usually may be neglected. We may also assume that the
model material is homogeneous and linearly elastic. Thus, if the material is concrete, we
ignore its cemented-particle structure and consequent local stress variations, and ignore
nonlinearity in its stress-strain relation.

For uniaxial stress and linear elasticity, we can obtain a valid discretized model by rep-
resenting the tapered model by a stack of uniform members, each of elastic modulus E but
different cross-sectional area A, as shown in Fig. 1.2-1. Discretization error can be reduced
by increasing the number of members. This manner of discretizing a tapered structure is
not at all new, but it can be regarded as a simple instance of FEA, as explained in the next
section.

After completing an analysis, it is important to check the results. In Fig. 1.2-1 it is obvi-
ous that, prior to discretization, axial stresses throughout the model have magnitudes
between P/A, and P/A,. Even simple checks such as this may detect a large error, due
perhaps to a blunder in data input.
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1.3 INTERPOLATION. ELEMENTS, NODES,
AND D.O.FE

The essence of FEA is approximation by piecewise interpolation of a field quantity. Usu-
ally, polynomial interpolation is used. Here we illustrate the method by applying it to the
tapered bar shown in Fig. 1.3-1, modeled as a problem of uniaxial stress. We will briefly
describe a bar element and the nature of results it provides. The results have features in
common with results produced by most other FE analyses, however complicated the phys-
ical problem may be.

Mathematical model ‘ Finite element model
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Figure 1.3-1. A tapered bar, discretized by three uniform two-node elements.
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Bar Element. Figure 1.3-1 shows a discretization of a tapered bar into three elements,
each uniform, linearly elastic, and of length L. The field quantity is axial displacement u.
Along a typical element, say the middle one, u is stated in terms of nodal displacements u,
and u3 by the equation '

u= (1 —%Juz + Eu3 (1.3-1)
where s is an axial coordinate along the element. Clearly, Eq. 1.3-1 expresses a linear vari-
ation of u# with s that has values u = uy ats = Oand u = u3 at s = L. The same form
applies to the rightmost element, but with nodal displacements u3 and u,. Similarly the
form applies to the leftmost element, but with #; = 0 because the left end of the structure
is fixed. Linear displacement # = u(s) dictates that axial strain ¢ is constant over an ele-
ment. From the stress-strain relation o = Ee and the elementary definition of strain as
change in length divided by original length, and with u; = 0, we obtain the following
expressions for axial stress in the respective elements of Fig. 1.3-1.

Uu Ua—U Uu,—u
2 3 2 4 3
— Oy 2 = E fog =F

L 23 L 34 L

0'1_2 =F (13-2)

The problem of Fig. 1.3-1 is simple enough that the FE solution can be obtained without
matrix formulations and systematic manipulation procedures. Instead we solve for nodal
displacements using methods of elementary mechanics of materials, as follows.

The three bar elements are each uniform, of respective cross-sectional areas 64, 44,
and 24, which are cross-sectional areas of the tapered bar at element midpoints. Nodal dis-
placements can be obtained from the elementary expression for elongation of a bar under
axial load. Thus

PL PL PL

6A——E Uy = u2+4A—E Uy = Uz +m (13—3)

u1=0 Uy =

" These displacements can be expressed in terms of overall length L by the substitution
L = Ly/3. Next, element stresses can be obtained from Eqgs. 1.3-2. To check results, we
can simply divide load P by element cross-sectional areas, because this simple problem is
statically determinate.

Results are plotted in Fig. 1.3-1. The displacement plot is reminiscent of using straight
lines for numerical interpolation between points on a continuous curve, but here points do
not lie on the correct curve. In other words, nodal values of field quantities are not exact.
The cause is discretization error. Only for certain very simple problems are nodal values
exact. “Exact” means full agreement with behavior of the mathematical model, not neces-
sarily agreement with physical reality. The stairstep axial stress plot shows that stresses in
this example are accurate at element centers. Elsewhere stresses are represented less accu-
rately than displacements, as should be expected in FEA results because most types of
finite elements are based on displacement fields, and stresses are usually computed from
displacement gradients.

An alternative form of Eq. 1.3-1is

U= a;+ axs (1.3-4)
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where a; and a, are constants that can be expressed in terms of u) and u3 by requiring that
u=1uyats =0andu = uzats = L. The g; are known as generalized coordinates or
generalized degrees of freedom. The term “degrees of freedom” is abbreviated “d.o.f.” and
is explained at the end of this section. ,

Other Elements. From Figs. 1.1-1 and 1.3-1 one may surmise (incorrectly) that an FE
discretization is obtained by conceptually sawing an actual structure into small fragments
and then reconnecting them at convenient points. If applied to the gear tooth of Fig. 1.1-1,
this process would result in triangular fragments connected at corner and midside nodes.
Such a patchwork would be weaker than the actual structure, with strain concentrations
near nodes, sliding of some fragments on one another, and gaps between others. These
defects do not arise in FEA because elements are based on simple fields, which do not
contain terms capable of representing a strain concentration, and which provide interele-
ment compatibility.1 Fields used for some simple two-dimensional elements are as fol-
lows. In subsequent chapters we explain how these fields are used in FEA.

Figure 1.3-2a shows a three-node triangular element that can represent a two-dimensional
field ¢ = ¢(x,y). As examples, ¢ might represent temperature, voltage, hydraulic head in
seepage flow, or lateral deflection of an inflated membrane. In the form of Eq. 1.3-4, the ele-
ment field is

¢ = a; + ayx + a3y (1.3-5)

The three a; can be expressed in terms of values of ¢ at the three element nodes, as will be
shown in Chapter 3. Figure 1.3-2b shows that a mesh of these elements approximates a
smooth function ¢ = ¢(x,y) by a surface of triangular facets. The four-node rectangular
element shown in Fig. 1.3-2b has the field

¢ = ay +ayx +agy +asxy (1.3-6)

and the six-node triangular element with midside nodes has the field
¢ = ay + ax +azy + P’ +asxy +agy” (1.3-7)

The four-node rectangular element displays ¢ = ¢(x,y) over the element as a surface that
may be flat or warped. The six-node triangular element can display a parabolic ¢ surface.
In all these elements, the variation of ¢ along an element edge is completely determined
by values of ¢ at nodes on that edge. Therefore, adjacent elements that share nodes along
a common edge automatically display the same function ¢ along the entire shared edge,
and no incompatibilities such as gaps appear between elements.

Summing up, we may say that FEA is an analysis method in which a field variable is
approximated by connecting simple interpolation functions, each defined over a small
region. The region is called a finite element. The interpolation function (such as Eq. 1.3-5)
is adapted to the number of nodes in the element type, and amplitudes of the a; are deter-
mined by numerical values of the field quantity at specific points called nodes. Elements

ISome elements, discussed subsequently, are incompatible. Along element edges, but not at
nodes, gaps or overlaps can appear between adjacent elements. Such elements are formulated
in a way that enhances coarse-mesh accuracy and causes incompatibilities to tend toward zero
as a mesh is refined.
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Figure 1.3-2. (a) A three-node triangular element. (b) A smooth function ¢ = ¢(x,y) can be
approximated by various element types.

are connected at nodes, where they share values of the field quantity (and may also share
one or more of derivatives of the field quantity, depending on element type). Nodes are
also locations where loads are applied and boundary conditions are imposed.

Degrees of Freedom (d.o.f.). Degrees of freedom are independent quantities that govern
the spatial variation of a field. For example, Eq. 1.3-7 defines a field ¢ = ¢(x,y) that has
six d.o.f., namely the six a;. Six nodal d.o.f. ¢, can be used instead to define the same field.
Each element in Fig. 1.1-1 has 12 d.o.f., namely six nodal displacements u; that govern the
x-direction displacement field # = u(x,y) and six nodal displacements v; that govern
the y-direction displacement field v = v(x,y). The u; and v; are displacements of spe-
cific points; in general the g; are not.

14 EXAMPLE APPLICATIONS.
HISTORY OF FEA

Applications. Figure 1.4-1 shows an application of FEA that dates from 1965 [1.1]. The
structure is an axisymmetric solid, whose axis of revolution lies above the cross section
shown. Each finite element is a toroidal ring of triangular cross section. Each element has
a node (or in this case a nodal circle) at each vertex. Field quantities at each node are tem-
perature for heat conduction analysis, and radial and axial displacements for stress analy-
sis. The same discretization can be used for both analyses. Computed nodal temperatures
are transferred to the stress analysis model and used to determine thermal stresses.

In Fig. 1.4-2, FEA is applied to an induction motor. Only part of the motor is shown;
symmetry is exploited by modeling only a repetitive portion. The mesh of triangular ele-
ments spans spaces between pole pieces as well as the pole pieces themselves. For magne-
tostatic analysis, nodal unknowns are values of the magnetic potential.

Examples of FEA could be given from many other areas of application. The concept of
piecewise interpolation is common to all of them. Howcver, familiarity with concepts of
FEA does not confer competence in all applications. For example, the problem of Fig. 1.4-1
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Figure 1.4-1. Cross section of a multi-material rocket nozzle, showing construction (left
portion) and possible finite element mesh (right portion), from [1.1].

poses no great challenge to today’s stress analyst, but if presented with the magnetics prob-
lem of Fig. 1.4-2, a stress analyst may not know what kind of result to seek or what input
data is required. It is important to understand the physics of the problem.

FEA was accepted by industry soon after its introduction, for reasons suggested by the
foregoing two applications. Finite elements can represent structures of arbitrarily complex
geometry. A discretized model resembles the actual body or region. Each element can be
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Figure 1.4-2. Part of an induction motor. Computed magnetic flux contours for zero rotor speed
are shown by the right-hand figure. (Courtesy of A. O. Smith Corp., Data Systems Division,
Milwaukee, Wisconsin.)
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regarded as a piece of the actual structure (but having idealized behavior). Systematic pro-
cedures of FEA allow calculations to be almost completely automated. Unfortunately,
automation makes it possible to do FEA with so little understanding that results may be
worthless. Some critics say that most FEA results are worthless. If is important to under-
stand how finite elements behave, and important to check for errors.

History. In 1851, to derive the differential equation of the surface of minimum area
bounded by a given closed curve in space, Schellbach discretized a surface into right trian-
gles and wrote a finite difference expression for the total discretized area [1.2]. He pro-
posed no other application or generalization of the idea. FEA is now regarded as a way to
avoid differential equations by replacing them with an approximating set of algebraic
equations.

Starting in 1906, researchers noted that a framework having many bars in a regular pat-
tern behaves much like an isotropic elastic body [1.3,1.4]. Application to problems of
plane elasticity and plate bending was reported in 1941 [1.5]. This work exploits well-
known methods for analysis of framed structures but cannot be applied to bodies of arbi-
trary shape. Also, rather than discretization of a continuum into smaller pieces, structural
members of a different type are substituted. The framework method may be regarded as a
precursor to FEA rather than an early form of it.

The FE method as we know it today seems to have originated with Courant in his 1943
paper, which is the written version of a 1941 lecture to the American Mathematical Soci-
ety [1.6]. Courant determined the torsional rigidity of a hollow shaft by dividing the cross
section into triangles and interpolating a stress function ¢ linearly over each triangle from
values of ¢ at net-points (or nodes, as we now call them). He does not mention Schell-
bach’s work. Courant notes that the method “suggests a wide generalization which pro-
vides great flexibility and seems to have considerable practical value.” Practical
applications did not appear until aeronautical engineers developed the method, apparently
without knowing of Courant’s work.

Engineers in the aeronautical indusiry made remarkable progress in the early to mid-
1950s, although some of the work was not published until much later due to company poli-
cies. Early in this period, equations from conventional analysis methods were solved on the
small computers then available. In the United States, conventional methods proved inade-
quate for wings of low aspect ratio, so Turner devised a three-node triangular element to
model the wing skin [1.7]. In England, Taig did similar work [1.8]. In Germany, Argyris
included FEA concepts in a set of influential papers about matrix procedures [1.9]. Details
may be found in the references cited; see also [1.10-1.13].

The name “finite element” was coined by Clough in 1960. Many new elements for
stress analysis were soon developed, largely by intuition and physical argument. In
1963, FEA acquired respectability in academia when it was recognized as a form of the
Rayleigh-Ritz method, a classical approximation technique. Thus FEA was seen not just
as a special trick for stress analysis but as a widely applicable method having a sound
mathematical basis. Papers about heat conduction and seepage flow using FEA appeared
in 1965. General-purpose computer programs for FEA emerged in the late 1960s and
early 1970s. Since the late 1970s, computer graphics of increasing power have been
attached to FE software, making FEA attractive enough to be used in actual design. Pre-
viously, FEA was so tedious that it was used mainly to verify a design already com-
pleted or to study a structure that had failed.
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Computational demands of practical FEA are so extensive that computer implementa-
tion is mandatory. Analyses that involve more than 100,000 d.o.f. are not uncommon. It is
no accident that developments in computers and programming languages were contempo-
raneous with early developments in FEA. :

The first textbook about FEA appeared in 1967 [1.14]. By 1995, Mackerle [1.15] estimated
that about 3800 papers about FEA were being published annually, and that the cumulative
total of FEA publications amounted to some 380 books, 400 conference proceedings, and
56,000 papers (excluding papers on fluid mechanics). Mackerle also counted 310 general-
purpose FE computer programs.

1.5 SOLVING A PROBLEM BY FEA

Solving a practical problem by FEA involves learning about the problem, preparing a
mathematical model, discretizing it, having the computer do calculations, and checking
results. Most often, more than one cycle through these steps is required. Time spent by the
computer is a small fraction of time spent by the analyst, but the analyst must have an
understanding of what the computer is doing. Material of the present section is discussed
in detail in Chapter 10.

Problem Classification. As summarized in Section 1.2, the analyst must understand, the
nature of the problem. Without this step a proper model cannot be devised, nor can FEA
software be told what to do. At present, software does not automatically decide that non-
linear analysis is to be undertaken if stresses are high enough to produce yielding, that
buckling is to be considered if thin sections carry compressive load, and so on. Although
the trend is for software to be given more decision-making capability, the analyst should
not abdicate control. Software has limitations and almost certainly contains errors, yet the
engineer, not the software provider, is legally responsible for results obtained.

Mathematical Model. Before undertaking FE discretization and a numerical solution,
we devise a model problem for analysis. This step involves deciding what features are
important to the purpose at hand, so that unnecessary detail can be omitted, and deciding
what theory or mathematical formulation describes behavior. Thus we may ignore geo-
metric irregularities, regard some loads as concentrated, and say that some supports-are
fixed. Material may be idealized as linear and isotropic. Depending on the dimensions,
loading, and boundary conditions of this idealization, we may decide that behavior is
described by beam theory, by plate-bending theory, by equations of plane elasticity, or by
some other analysis theory. The simplified problem, with the analysis theory to be applied
in solving it, constitutes the mathematical model.

Because subsequent FEA is approximate and pertains only to the mathematical model,
FEA is two or three steps removed from reality. Modeling decisions are influenced by what
information is sought, what accuracy is required, the anticipated expense of FEA, and its
capabilities and limitations. Also, initial modeling decisions are provisional. It is likely that
results of the first FEA will suggest refinements, in geometry (perhaps by restoring geometric
irregularities previously omitted), in applicable theory (perhaps by adding in-plane stretch-
ing terms to plate-bending theory), and so on.
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As an example of modeling, consider the very simple problem depicted in Fig. 1.5-1a.
The ring thickness (measured normal to the figure) is uniform and is considerably less
than the ring diameter. The material is considered linearly elastic, homogeneous, and iso-
tropic. We ask for stresses and deflections due to the ring’s own weight as it rests on the
ground. It is easy to arrive at the plane model in Fig. 1.5-1b, in which symmetry about the
vertical centerline has been exploited. Details of pressure applied by the ground have been
discarded, replaced by a point support. If mean radius R is perhaps 5¢ or more, the largest
stresses in the actual problem are circumferential flexural stresses. Then the theoretically
infinite stresses at D associated with a point support are not important (and could only be
calculated as high stresses by conventional finite elements). A two-dimensional model is
adequate. Instead, if the physical structure is not a ring but a long, thin-walled pipe, should
the model be three-dimensional? Probably not. Stress analysts recognize that deflections
and stresses are essentially constant along the length, that they vary only near ends, and
that the variation has only a small effect on the largest magnitudes of deflection and stress.
However, in a long pipe the situation is more nearly plane strain than plane stress. Thus the
model is changed, and appropriate data must be supplied to software and appropriate anal-
ysis options chosen.

The foregoing conceptual models become complete mathematical models when we
decide on the appropriate analysis theory. For a slender ring, it can be beam theory. For a
not-so-slender ring, plane elasticity theory is appropriate. For a thin-walled pipe in which
end effects are to be represented, thin-shell theory is appropriate. Elements based on the
respective theories would be used for FEA of the respective mathematical models.

Why not use a three-dimensional model? After all, reality is always three dimensional,
and elements for three-dimensional FEA are available. The reason is cost. Demands on the
analyst’s time and computer resources are likely to increase by a factor of 10 or more in
going from two dimensions to three.

(Gravity)
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ground, loaded by its own
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& ®) model.
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A gear tooth poses a more complicated problem than the ring. In Fig. 1.1-1, supports are
not shown. Is it satisfactory to impose full fixity along ABCD, where elastic support is
actually provided by the remainder of the gear? An actual gear is not of uniform thickness;
is a two-dimensional model satisfactory? Is load P uniformly distributed in the z-direction
across the tooth? If not, stresses will be considerably higher, and the situation cannot be
considered two-dimensional.

Preliminary Analysis. Before going from a mathematical model to FEA, at least one pre-
liminary solution should be obtained, using whatever means are conveniently available—
simple analytical calculations, handbook formulas, trusted previous solutions, or experiment.
Some of this effort may lead to a better mathematical model. Subsequently it will be used to
check computed results. If we do this work before FEA rather than after, we reduce a natural
tendency to find answers that support whatever FEA results have already been obtained,
especially if it took considerable effort to get them. It is easy to make mistakes in supplying
data to software, and even a crude preliminary solution may detect a result that errs greatly
due to a mistake in data input.

Preliminary analysis for the ring problem of Fig. 1.5-1 is easy if R is considerably
greater than ¢. Formulas for deflection and stress in a slender ring are available in hand-
books [1.16]. If R is comparable to ¢, these formulas are approximate but still useful for
checking.

Finite Element Analysis. Use of general-purpose FEA software involves the following
steps.

¢ Preprocessing: Input data describes geometry, material properties, loads, and bound-
ary conditions. Software can antomatically prepare much of the FE mesh, but must be
given direction as to the type of element and the mesh density desired. That is, the
analyst must choose one or more element formulations that suit the mathematical
model, and state how large or how small elements should be in selected portions of
the FE model. All data should be reviewed for correctness before proceeding.

* Numerical analysis: Software automatically generates matrices that describe the
behavior of each element, combines these matrices into a large matrix equation that
represents the FE structure, and solves this equation to determine values of field
quantities at nodes. Substantial additional calculations are performed if behavior is
nonlinear or time-dependent. )

¢ Postprocessing: The FEA solution and quantities derived from it are listed or graphi-
cally displayed. This step is also automatic, except that the analyst must tell the soft-
ware what lists or displays to prepare. In stress analysis, typical displays include the
deformed shape, with deformations exaggerated and probably animated, and stresses
of various types on various planes.

Check the Results. First, we examine results qualitatively and ask if they “look right”—
that is, are there obvious errors? Have we solved the problem we intended to solve, or some
other problem? Boundary conditions are often misrepresented; does the deformed FE struc-
ture show displacements where there should not be any? Are expected symmetries present
in the results? If answers to such questions are satisfactory, FEA results are compared with
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Unaveraged stress bands Averaged stress bands

(@ (b)
Figure 1.5-2. Stress bands in a portion of a mesh of rectangular elements. (a) Without
nodal averaging, interelement discontinuity suggests how good or bad results are.
(b) After nodal averaging, continuity prevails, but important information is lost.

solutions from preliminary analysis, and with any other useful information that may be
available.

For example, let us qualitatively examine the problem of Fig. 1.5-1. Points along CD
and AF should move downward but not left or right. Points along BE should move down-
ward and rightward. Vertical stresses should be compressive near B and D. Horizontal
stresses should be tensile near A and C, compressive near D and F. Stresses normal to
boundaries ABC and DEF should be zero, but will not be exactly so because the solution is
approximate. Similarly, due to symmetry, shear stress should be zero along CD and AF,
and stress contours of flexural stress should be normal to CD and AF, but will not be
exactly so.

One way to judge the adequacy of a discretization is to look at plots of stress (or plots of
heat flux in thermal analysis). Software can plot either stress contours or “stress bands,”
which are zones of color. Different colors are used for different levels of stress. Stress is
related to gradients of the field quantity, and gradients in a given element depend on field
quantities at nodes attached to that element only. Therefore, as will be shown subse-
quently, stress bands are discontinuous across interelement boundaries. Strong discontinu-
ities indicate too coarse a discretization, whereas practically continuous bands suggest
unnecessarily fine discretization [1.17]. In Fig. 1.5-2a, bands are discontinuous but not
badly so, and the discretization may be adequate for the purpose intended.

Software can be instructed to display bands computed from nodal average values of
stress (or of flux). Thus interelement discontinuities are removed. The resulting picture is
visually more pleasing, but information useful in judging the quality of computed results
is lost. Bands plotted from nodal averages, Fig. 1.5-2b, may suggest that results are of
higher quality than is actually the case.

Expect to Revise. Rarely is the first FE analysis satisfactory. Obvious blunders must be
corrected. Uncomfortably large discrepancies between what is expected and what is com-
puted demand explanation. Either physical understanding or the FE model, or both, may
be at fault. Disagreements must be satisfactorily resolved by repair of the mathematical
model and/or the FE model. After another analysis cycle, the discretization may be judged
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Figure 1.5-3. Outline of a finite element analysis project.

inadequate, perhaps being too coarse in some places. Then mesh revision is required, fol-
lowed by another analysis.

In analyzing a new problem, it is almost always appropriate to begin with a simple FE
model, to which detail is added as the analyst learns more. Each revision is an expected
step on the way to an adequate solution, not a penalty for failure in the preceding attempt.

The flow of an analysis project by FEA is outlined in Fig. 1.5-3.

1.6 LEARNING AND USING FEA

Why study the theory of FEA? Satisfactory elements and versatile analysis procedures are
already available in widely used software, and software has become so accommodating
that even an inept user can obtain a result. Seasoned practitioners stress that reliable
results are obtained only when the analyst understands the problem, how to model it,
behavior of finite elements, assumptions and limitations built into the software, input data
formats, and when the analyst checks for errors at all stages. It is not realistic to demand
that analysts understand details of all elements and procedures, but misuse of FEA can be
avoided only by those who understand fundamentals. For example, it is important to real-
ize that each individual element has very limited ability to represent spatial variation of the
field quantity, and to understand how this ability differs from one element type to another.

Older engineers sometimes complain that younger engineers have naive faith in com-
puter programs, value computer skills over analytical skills, and lack the ability to produce
“ballpark” answers. Such deficits can be overcome while learning FEA. A student can use
FEA to analyze problems for which results are already available and known to be reliable,
discovering and fixing the inevitable mistakes in modeling, data input, and software
options until computed results agree with established results. Problems for which results
are not available can be solved analytically—crudely if necessary—and then solved by
FEA, with the process repeated until results are reconciled. This exercise will improve
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analytical skills as well as FE skills. Initial failure to achieve agreement may be discourag-
ing, but it is more instructive than success.

A study of computer misuse in engineering [1.18] considers cases in which incorrect
results caused damage in the form of expensive delay, a need to redesign, poor perfor-
mance, or even collapse. Of 52 cases cited, 7 were due to hardware error, 13 to software
error, 30 to user error, and 2 to other causes. User error was usually associated with poor
modeling, and sometimes with poor understanding of software limitations and input data
formats. Most errors could have been caught early had users been careful to check results.
Often, after damage was done, the cause of the trouble was found by consultants who used
hand calculation to check computer output.

A cautionary example is depicted in Fig. 1.6-1. Here a straight beam with hinge sup-
ports is loaded by a pressure pulse that causes yielding of the material and vibration of the
beam. Analysis seeks to track lateral displacement at the midpoint as a function of time.
Results plotted come from 10 reputable analysis codes operated by users regarded as
expert [1.19]. Yet if any of the curves is correct, we cannot tell which one it is. Admittedly,
the problem is difficult: results indicate “strong sensitivities of both physical and computa-
tional nature” [1.19]. This example reminds us that analysis software is based on theory
and approximation, and that a user may push the software beyond its range of validity
[1.20].
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Figure 1.6-1. Lateral midpoint displacement versus time for a beam loaded by a pressure pulse
[1.19], reproduced courtesy of ASME. The material is elastic—perfectly plastic. Plots were
generated by various analysts and various software packages.



Analytical Problems 17

ANALYTICAL PROBLEMS

1.3-1 (a) For the problem of Fig. 1.3-1, determine both exact and finite element values of
axial displacement u at x = Ly/3, x = 2Ly/3, and x = Ly . Hence,, verify the
plots of u versus x.
(b) In similar fashion, verify the plots of o versus x in Fig. 1.3-1.

1.3-2 Strain g, is given by the expression &, = du/dx. What expression for &, is obtained
when u in a four-node plane element is given by the right-hand side of Eq. 1.3-6?
For a mesh of such elements, what can you say about interelement continuity of £,?

1.3-3 (a) In a three-node triangle, field quantity ¢ can be written as ¢ = a; + ayx + asy,
where the g; are generalized d.o.f. For the particular shape of triangle shown,
express ¢ in the form ¢ = fid; + fob; + f3¢3, where the f; are functions of x, y, a,
and b. Suggestion: Obtain three equations for the g; from the conditions ¢ = ¢, at
x=y=0,¢ = ¢pyatx =gandy = O,and ¢ = ¢satx = Oandy = b.

(b, ¢, d) In similar fashion, obtain expressions ¢ = fi¢; + fo¢, + f3¢3 for the trian-

gles shown.
] Y d )
3 f T |
b b b b
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Problem 1.3-3

1.3-4 For the plane quadrilateral element shown, imagine that field quantity ¢ has the
form ¢ = ay + ayx + aszy + ayxy, where the a; are generalized d.o.f. How does ¢
vary with x or y along each side? Do you think this element will be compatible with
neighboring elements that may be attached to it?

y

4 3
p
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Problem 1.3-4 Problem 1.4-1

1.4-1 The sketch shows a propped cantilever beam under uniformly distributed load, as it
might be sketched in a book about mechanics of materials. What idealizations of
reality may have been introduced in arriving at this model?

1.4-2 A cylindrical pipe, shown in cross section, has nominal temperatures 7y on the
inside and T, on the outside. The standard analytical solution for temperature T at
arbitrary radius r in the pipe is
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In(r/r))
T = T] + (Tz— Tl)m

However, actual circumstances may differ sufficiently from the ideal that this equa-
tion is not accurate enough, and temperature distribution must instead be deter-
mined from FEA. What are some of these circumstances?

Problem 1.4-2 Problem 1.4-3

1.4-3 The sketch shows the cross section of a concrete gravity dam. The V symbols indi-
cate water surfaces. Imagine that stress analysis for loading due to hydraulic pres-
sure is required. Has anything of importance been omitted from the sketch? What
considerations influence the mathematical model devised? What additional infor-
mation will be needed before undertaking numerical analysis?

1.4-4 In the gravity dam of Problem 1.4-3, imagine that the rock is slightly porous and
that analysis for seepage flow under the dam is required. Answer thc questions
posed in Problem 1.4-3.

1.4-5 Two steel plates are connected by a single rivet to form a lap joint, as shown. Axial
load is applied. If accurate and detailed stress analysis is required, what aspects of
material properties, geometry, and loading must be considered in planning an analysis?

5 1o S

I L 1
il | —— > P

Problem 1.4-5




CHAPTER

ONE-DIMENSIONAL ELEMENTS AND
COMPUTATIONAL PROCEDURES

We consider straight elements that have a node at each end, and apply physical arguments
to obtain matrices that represent element behavior. Then we use these comparatively simple
elements and matrices to explain computational procedures that are generally applicable in
FEA, regardless of element type. Thus in this chapter we survey the entire computational
process of linear static FEA: formulation of element matrices, their assembly into a struc-
tural matrix, application of loads and boundary conditions, solution of structural equations,
and extraction of gradients (element strains and stresses, in this chapter).

2.1 INTRODUCTION

One-dimensional elements include a straight bar loaded axially, a straight beam loaded lat-
erally, a bar that conducts heat or electricity, and so on. In structural terminology, a bar can
resist only axial load, whereas a beam, in its most general sense, can resist axial, lateral,
and twisting loads. In time-independent analysis, a truss of » members can be modeled by
n bar elements, and a frame having » straight members usually requires # beam elements.
A beam continuous over two or more supports can usually be modeled using one beam
element per span between supports. Thus, when one-dimensional elements are used for
static analysis, the discretization phase of modeling becomes trivial, and for stress analysis
the name “matrix methods of structural mechanics” may be used in preference to “FEA.”
However, bar and beam elements are provided in FEA software and are much used, both
as stand-alone elements and in combination with finite elements of other types. For exam-
ple, beam elements can be attached to plate elements to model stiffened plates.

In this chapter we restrict our attention to linear problems, which means that material
properties are essentially unchanged by loading (by force or moment, by temperature, by
voltage, and so on). In mechanical problems, linearity also requires that deformations be
small enough that equilibrium equations can be written using original geometry rather than
deformed geometry. That is, we exclude nonlinear behavior such as yielding of steel, crum-
bling of concrete, opening or closing of gaps, and lateral deflection large enough to generate
membrane-siretching action. Also, we consider only steady-state problems, which are
called static or (more properly) quasistatic in structural mechanics. As an approximation,
if a structure is loaded by a cyclic force whose frequency is less than about one-quarter the
structure’s lowest natural frequency of vibration, the loading can be regarded as quasistatic,
and analysis of the type described in the present chapter is acceptable.

A finite element has a characteristic matrix, which is a stiffness matrix for load-deformation
analysis, a conductivity matrix for heat conduction analysis, and so on. One-dimensional ele-
ments are simple enough that the characteristic matrix can usually be formulated by the

19
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“direct method”; that is, by physical reasoning. Symbolic methods of element formulation,
discussed in subsequent chapters, are applicable to one-dimensional elements but are usually
not needed for this purpose.

A one-dimensional element often incorporates the exact variation of the field quantity.
For example, the usual mathematical model of a uniform beam loaded by concentrated lat-
eral forces displays a cubic variation of lateral displacement between load points. The
standard beam element is also based on a cubic field, so an FE model built of beam ele-
ments, with nodes at Joad points, provides results in exact agreement with the mathemati-
cal model. Exact agreement is generally not achieved by an FE model of a plane or solid
continuum, where element displacement fields are only approximate.

Regardless of the number or types of elements used, the computational procedure for
time-independent FEA is as follows:

1. Generate matrices that describe element behavior.

2. Connect elements together, which implies assembly of element matrices to obtain a
structure matrix.

3. Provide some nodes with loads.

4. Provide other nodes with boundary conditions, which may be called support condi-
tions in structural mechanics.

5. The structure matrix and the array of loads are parts of a system of algebraic equa-
tions. Solve these equations to determine nodal values of field quantities.

6. Compute gradients: strains in structural mechanics, heat flux in thermal analysis, and
SO on.

In this chapter we use one-dimensional elements as vehicles for explanation of these pro-
cedures.

In this and subsequent chapters, we make displacements visible in drawings by showing
them greatly exaggerated, following the usual practice.

2.2 BAR ELEMENT

Consider a uniform prismatic elastic bar element of length L and elastic modulus E. Often
a bar element is represented as a line, as in Fig. 2.2-1, but the element has cross-sectional
area A. A node is located at each end. For now, we allow nodes to displace only in the axial
direction. Axial displacements at nodes are u; and u,. Internal axial stress o can be related
to nodal forces F, and F, by free-body diagrams, Fig. 2.2-1a. In turn o is related to elastic
modulus E and axial strain & = (4, — u;)/L, as shown in Fig. 2.2-1b. Note that we adopt
a sign convention in which nodal forces and nodal displacements are positive in the same
direction. From Fig. 2.2-1 we obtain

AE
T("l —uy) = F;

- F
or | F ML Ghee k=4E (221
AE -k kj|u, F, L
T (uy—uy) = F,



2.2 Bar Element 21

—>D—c; < > Fi+Ac=0 Fp—Ac=0 Figure?2.2-1.(a)A

F i F oeEe et two-node bar element,
L showing internal stress
L ot o and nodaj d.o.f.
| o Fy+AE21=0 and u,. (b) Equilibrium
— 2 equations, stress-strain
Fy F, Fy—AE U2=M _ o relation, strain-
S L - L displacement relation,
and nodal forces F;
@ ®) and F),.
Obviously, for this element, equilibrdum requires F; = —F,. The matrix equation in
Eqgs. 2.2-1 is abbreviated as
(kl{d} = —{r} (2.2-2)

where [K] is called the element stiffness matrix. For the present two-node bar element with
only axial displacements at nodes, [K] is the 2 by 2 matrix in Eq. 2.2-1. Vector {r} in
Eq. 2.2-2 has a negative sign because we will use {r} to mean loads associated with ele-
ment deformation that are applied by an element fo structure nodes to which the element
will be connected. Thus forces —{r} = |F; F,| T are applied to the element.

Note that AE/L can be regarded as k, the stiffness of a linear spring. A bar and a spring
have the same behavior under axial load and are represented by the same stiffness matrix.

In the stiffness matrix of Eq. 2.2-1, we see an instance of the following general rule.

A column of [K] is the vector of loads that must be applied to an element at its nodes
to maintain a deformation state in which the corresponding nodal d.o.f. has unit
value while all other nodal d.o.f. are zero.

For example, let #; = 0 and ¥, = 1 in Eq. 2.2-1, so that the multiplication [k]{d} pro-
duces the second column of [K]. Thus,

B L R R B

which corresponds to Fig. 2.2-1a when & = w,/L.

Heat Conduction. Let a uniform bar have cross-sectional area A, thermal conductivity k,
and insulation that prevents heat transfer across its lateral surface (Fig. 2.2-2). According
to the Fourier heat conduction equation, the rate of axial heat flow, g, is

g = —Ak (2.2-4)

dx
where T is temperature relative to an arbitrarily chosen reference temperature (0 °C, per-
haps). SI units for g are W (watts). The negative sign indicates that the direction of heat
flow is opposite to the temperature gradient d7/dx. Here dT/dx is independent of x

because the bar is uniform and its lateral surface is insulated. Specifically, d7/dx =
(T, - T)/L.
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G

: TR . =
g1 =—Ak+ 42=Akf1 g1 =Ak3=

Figure 2.2-2. Nodal heat flow in a uniform bar of cross-sectional area A whose lateral
surface is perfectly insulated. Flows are shown for 7} > Owith T, = Oandfor7T; = 0
with T2 > 0.

I
L

qp=-~Ak

In formulating the element we adopt the convention that heat flow g at ends of the bar is
positive when heat flows out of the element, and thus positive when heat flows into struc-
ture nodes to which the element will be connected. This sign convention is analogous to
that used with {r} in Eq. 2.2-2. We relate nodal temperatures to nodal heat flows by equa-
tions shown in Fig. 2.2-2. In matrix form, the equations in Fig. 2.2-2 are

[ Ak/L —Ak/LHTI} _ {ql} 225)
-Ak/L  Ak/L ||T, 9,
in which the square matrix is the element conductivity matrix, analogous to the stiffness
matrix of structural mechanics. In analogy to the argument associated with Eq. 2.2-3, a
column of a conductivity matrix can be regarded as the vector of nodal heat flows associ-
ated with unit value of the corresponding nodal temperature and zero values of all other
nodal temperatures (relative to the reference temperature).

Equation 2.2-5 is also applicable to a flat sheet of material whose opposite surfaces

have different but uniform temperatures. Then L represents the sheet thickness. If A = 1in
Eq. 2.2-4, g can be interpreted as heat flow per unit area (see Eq. 2.2-9).

Structure Equations. Consider a structure built of two uniform elastic bars attached end
to end, as shown in Fig. 2.2-3a. Only axial displacements are allowed. Stiffnesses of the
respective elements are &, and k,. The structure stiffness equation is

k, -k 0 u; F,
—ky kyt+ky, —ky |quyp={F,p or [KI{D} = {R} (2.2-6)
0 ~k, ky |(us F

[K] is called either the structure stiffness matrix or the global stiffness matrix. This partic-
ular [K] is easily obtained by applying the general rule stated above Eq. 2.2-3. Thus, as
shown in latter portions of Fig. 2.2-3, we activate each d.o.f. in turn, giving unit value to
the activated d.o.f. while other d.o.f. are zero, and calculate the nodal forces required for
static equilibrium. For each d.o.f. activated, we array nodal forces in a column, ordered by
d.o.f. number, with negative sign if directed opposite to nodal displacement. Each such
array is a column of [K].
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Figure 2.2-3. (a) Structure formed by two bar elements. (b,c,d) Nodal forces associated
with unit displacement of each d.o.f. in turn.

An alternative way to obtain [K] is as follows. Imagine that the two elements in Fig. 2.2-3a
are not yet connected but are provided with numbered ends: 1 and 2 for element 1, and 2 and 3
for element 2. Separately, when expanded to “structure size,” stiffness matrices for elements 1
and 2 can be written

Uy Uy U Uy Uy U
k, =k, 0 0 0 O
—k; k; 0| and 0 ky —k, 2.2-7
0 0 O 0 —k, Kk,
Element 1 Element 2

where appended column headings u;, u,, and u; indicate d.o.f. activated to generate
matrix columns. Added zeros in the matrix for (say) element 1 can be explained as
follows. The row of zeros indicates that because element 1 is not connected to node 3,
displacement of any node cannot cause element 1 to produce a force at node 3. The
column of zeros indicates that displacement u; does not strain element 1, so element 1
applies no force to any node: Clearly, addition of the two matrices in Eq. 2.2-7 produces
[K] of Eq: 2.2-6. In general, one can imagine a physical space, initially empty except for
numbered nodes in their proper positions, that becomes a structure as elements are
added. Simultaneously the structure stiffness matrix [K] becomes populated by addition
of stiffness coefficients from elements. This process of building a structure matrix [K]
from constituent element matrices [k] is called assembly.

Support conditions, more generally called boundary conditions, are discussed in Section
2.7. For now we note only that if, for example, the left end of the structure in Fig. 2.2-3a is
attached to a rigid support, then ; = 0, and the structure stiffness matrix that relates the
remaining “active” d.o.f. u, and u; is

kit+k, —k,|[u F.
178 T2 T2 2.2-8)
—ky Ry (s Fy
from which u, and u3 can be determined when loads F, and F; on structure nodes 2 and 3

are prescribed. As with other stiffness matrices, columns of [K] in Eq. 2.2-8 can be obtained
by activating d.o.f. in turn and calculating nodal loads required to maintain equilibrium.



24 ONE-DIMENSIONAL ELEMENTS AND COMPUTATIONAL PROCEDURES

1 i
k1 § @ 21 N
2 i Figure 2.2-4. A two-
-material layered
g ke { ® 2 construction with
3 temperatures T; and T3
Ty at outer surfaces.

Structure matrices for problems of other types are assembled in similar fashion. For the
thermal problem of Fig. 2.2-4, the structure equation for heat conduction is

—k/t; (ki/t) +(ky/t) —ky/ty 3T = 3/> (2.2-9)
0 —ky/ 1y ky/t, || Ts fs

where k; and k, are thermal conductivities of layers 1 and 2, and f}, f5, and f; are net rates
of heat flow per unit area, positive when directed into imagined structure nodes at upper,
intermediate, and lower surfaces, respectively. In the absence of a heat source or a heat
sink along the interface between layers, continuity requires that f, = 0.If T| and T3 are
prescribed, unknowns are T, fi, and f5. Further, if T'| > T, it will be found that f] is posi-
tive, and f; = —f; because the problem is steady-state.

When [K] is assembled for an FE structure, however complex, computer software uses
the addition process just described, but without formal expansion of element matrices to
“structure size.” Generation of [K] is accomplished by starting with a null matrix [K] and
then, for each element in turn, adding element stiffness coefficients to locations in [K] dic-
tated by the numerical labels assigned to structure nodes to which the element is attached.
In Section 2.5 we will consider these details of assembly, and we will subsequently dis-
cuss loading, boundary conditions, solving equations for nodal quantities, and extracting

_element strains (or gradients) from the nodal solution.

2.3 BEAM ELEMENT

2D Beam Element. Let a uniform beam lie on the x axis. A 2D beam element has a node
at each end. Each node has two d.o.f., namely, lateral translation and rotation (Fig. 2.3-1a).
Nodal rotations contain subscript z to denote that their vector representations point along
the z axis, which is normal to the xy plane. Nodal loads, each positive if acting in the same
direction as its corresponding d.o.f., are shown in Fig. 2.3-1b. To begin, we restrict lateral
displacements to the xy plane and consider bending deformations only, assuming that
transverse shear deformation can be ignored. That is, we use elementary beam theory,
which is more formally known as Euler-Bernoulli beam theory. Transverse shear deforma-
tion is taken into account by Timoshenko beam theory [2.1], a name usually applied when
beam vibration is studied. We will use the name for statically loaded beams as well.

Beam element stiffness matrices discussed in the present section are subject to restric-
tions stated in the Cautions subsection that follows Eq. 2.3-8.
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Figure 2.3-1. (a) Beam element in the xy plane and its nodal d.o.f. (b) Nodal loads associated with
nodal d.o.f. (c—f) Dashed lines show lateral displacements due to bending associated with activation
of each d.o.f. in turn. Formulas shown for v = w(x) are obtained from elementary beam theory.

With axial deformation d.o.f. omitted, the stiffness matrix of a 2D beam element is 4 by
4. It can be constructed column by column. The jth column is the vector of nodal loads
associated with unit value of the jth d.o.f. and zero values for all other d.o.f. The load vec-
tor contains moments as well as forces. To obtain the column associated with v; we calcu-
late nodal loads shown in Fig. 2.3-1c. These loads are named ky;, ky;, k37, and k4 to
indicate that they will appear in rows 1, 2, 3, 4 and in column 1 of element stiffness matrix
[k]. Loads are shown in the positive sense; that is, in the same direction as their associated
d.o.f. To obtain k;; and k,; we can apply handbook formulas of elementary beam theory by
regarding Fig. 2.3-1c as a cantilever beam fixed at node 2 and loaded at node 1 by force k;;
and moment k,; such thatv; = 1and 6,; = 0. Thus

kL kyyL? kL kL

= 1: — =1 6, =0 - —_
n=b 3L 3, 2 2ET, © EL

=0 (23-1)
where E is the elastic modulus and 7, is the moment of inertia of the beam cross-sectional

area about a centroidal axis parallel to the z axis. Equations 2.3-1 yield

12E1, 6EL
ki = — ky = —= (2.3-2)
L L
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Now that k;; and k,; are known, k3; and k4; can be determined from considerations of
static equilibrium. We elect to sum y-direction forces and moments about node 2:

kll + k31 = 0 k21 + k41 - kllL = 0 (2.3—3)

From Egs. 2.3-2 and 2.3-3 we obtain

k31 = - k4] = (2.3-4)
L’ ’

Similar analysis of the latter three parts of Fig. 2.3-1 provides terms in the latter three col-
umns of [Kk]. The complete 2D beam element stiffness matrix is

[ 12BI,  6EI, -12EI, 6EI, |
3 2 3 2 ¢!
L L L L
6EI,  4El, —6EI, 2EI,
L L L L | %
[k] = 23-5)
_12EI, —6EI, 12EI, -6EI,
3 2 3 2 Y2
L L L L
6EI,  2EI, —6El, 4EI,
2 2 022
L L L L |

The column of symbols on the right is appended merely to indicate that [k] operates on the
column vector of element d.o.f. {d} = | v, 6, v, 022JT. A different ordering of d.o.f.
in {d} would change the ordering of coefficients in [k] but not their numerical values.

If the left end of the beam element is fixed so that v; = 0 and 6,; = 0, we obtain a
structure with “active” d.o.f. v, and 6,,. The stiffness matrix of this one-element cantilever
beam is the lower right 2 by 2 submatrix in Eq. 2.3-5.

Generalizations. To allow the beam element to stretch as well as bend, we add axial
translations u; and u, to the array of nodal d.o.f., and expand [K] to size 6 by 6 by includ-
ing axial stiffness coefficients AE/L from Eq. 2.2-1. Also, we modify the bending stiffness
terms to account for transverse shear deformation, thus producing a Timoshenko beam
element. Its derivation, not presented here, may be found in several references, including
[2.2-2.5]. See also Section 4.10. For deformation in the xy plane,

X 0 0 -X 0 0 Uy
0 Y, v, 0 -Y, Y,y
[k] = 0 Y, Y, 0 -Y, Y,|6, 2.3-6)
-X 0 0 X 0 0 Uy
0 -v, -Y, 0 Y -Y,| v
o Yy, v, 0 -Y, Y;|6,
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where
12EI 6EI
=7 N er el
+ -
( ) Y 2.3-7)
- (4+ ¢,)EL v - (2- ¢,)EI, ) 12ELk,
(1+¢,)L tT 1+ ¢)L 7 AGL?

and A’k is the effective shear area for transverse shear deformation in the y direction.
Commonly accepted factors are k, = 1.2 for a solid rectangular cross section, k, = 2.0
for a thin-walled tube of circular cross section, and so on. More nearly exact factors appear
in [2.1]. Note that as an element becomes more and more slender, qby approaches zero, so
that flexure coefficients Y; reduce to coefficients seen in Eq. 2.3-5, where transverse shear
deformation is neglected.

In Eq. 2.3-5, a rotational d.o.f. defines the nodal value of both beam slope dv/dx and
rotation of the beam cross section. If transverse shear deformation is present, beam slope
and cross-section rotation differ. Then 6, and 6,, must be regarded as rotations of beam
cross sections at nodes.

3D Beam Element. We allow six d.o.f. per node: three translations and three rotations, as
shown in Fig. 2.3-2. The w and 6, d.o.f. account for lateral deflection in the zx plane. The
0, d.of. account for twist about the x axis, for which the stiffness coefficient is GK/L,
where X is a property of the shape and size of the cross section. (Only for a circular cross
section, either solid or a tube, does K become equal to J, the polar moment of inertia of the
cross-sectional area about its centroid. For thin-walled open cross sections, such as those
of standard I beams and channels, X is a small fraction of J.) Partitioned by nodes for the
sake of clarity, [k] is

(X 0 0 0 0 0,-Xx 0 0 0 0 0]y
Y 00 0 ¥,)0 -Y; 0 0 0 Y,| v
’ Z, 0 -Z, 0,0 0 -Z 0 -Z, 0| w,
S 0 0,0 0 0 -S 0 0]6,
Z; 0,0 0 2z, 0 2 0]6,
k] = _____________¥3_E_(_)___Y2_q__O__q_¥4_ 9.1 (2.3-8)
X 0.0 0 0 0w
LY, 0 0 0 -, v
symmetric : Z, 0 Z, 0| w,
E S 0 06,
: Zy 0| 6y
i ! Y3] 0

where S = GK/L, X and Y, terms are defined in Eq. 2.3-7, and Z; terms are defined as in
Eq. 2.3-7 but with interchange of subscripts. For example, Z; = 12EI,/(1 + ¢Z)L3 and
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Figure 2.3-2. Beam element
0 T B ZT 2 g, on the x axis of a rectangular
—>> : > x coordinate system, with nodal
;/w; ;42 2 d.o.f. used to define axial
/0 ) /0 displacement, twisting, and
P z 2 lateral deflection in the y and 2z
z directions.

o, = 12EkaZ/AGL2. Sign differences among Y; and Z; terms in Eq. 2.3-8 arise because of
the positive directions assigned for nodal rotations in Fig. 2.3-2. For example, 6,; pro-
duces negative z-direction lateral displacement, whereas 6,; produces positive y-direction
lateral displacement. In all cases, positive senses of nodal forces and moments have the
same directions as their associated d.o.f. in Fig. 2.3-2.

When elements are assembled, as in Fig. 2.3-3a, element d.o.f. at a shared node are
merged into a single set of “global” d.o.f. This process requires that “local” d.o.f. of each
element (shown in Fig. 2.3-2) are mated to appropriate local d.o.f. of a connecting ele-
ment. At node B in Fig. 2.3-3a, for example, the axial translation d.o.f. of element AB is a
lateral translation d.o.f. of element BC. In terms of d.o.f. in Fig. 2.3-2, u, of element AB
must be identified as the same d.o.f. as v; of element BC, and so on, which is most easily
accomplished by applying a coordinate transformation to the d.o.f. of element AB before
assembly of elements (see Section 2.4).

Cautions. It is assumed in the preceding development that axes y and z are principal cen-
troidal axes of the cross section. This assumption is true in the elementary case where
y = z = 0 at the centroid and the cross section has at least one symmetry axis that is
coincident with either axis y or axis z. If the cross section is unsymmetric, principal axes
must be established by calculation [2.6]. If y and z were not principal axes, different terms
would appear in Eq. 2.3-8, and there would be fewer zero coefficients, because activation
of a d.o.f. would produce more nodal forces and moments.

When a member of noncircular cross section is twisted, cross sections “warp”; that is,
cross sections do not remain plane. Channels, I beams, and other thin-walled open mem-
bers have low torsional stiffness, and their cross sections tend to warp appreciably when
the member is twisted. Restraint of warping may have a large effect. For example, let
member AB in Fig. 2.3-3b be an I beam five times as long as it is deep, with torque T

Figure 2.3-3. (a) A plane

frame built of beam

p=3>—>- clements AB, BC, and

T CD. (b) A beam fixed at
A and loaded by torque T

@) (b) at B.

Z 1 section
A

oy
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applied at end B. Complete restraint of warping at end A reduces rotation at"B by about
half and introduces axial normal stresses much larger than the torsional shear stress. In
Fig. 2.3-3a, warping is at least partially restrained at lettered nodes, and such restraint
influences response due to loads normal to the plane of the frame.

To account for full or partial restraint of warping, another d.o.f. must be added at each
node, so that [K] for a 3D beam element becomes a 14 by 14 matrix. The added d.o.f. are
rates of twist 46, /dx at nodes, each associated with a load term called a bimoment. Unfor-
tunately, commercial software typically allows only six displacement d.o.f. per node, so
restraint of warping is ignored in beam elements.

Software may accept nodes on an x axis that does not pass through centroids of cross
sections. Software may also accept a general shape for the cross section of a thin-walled
member, so if that software is supplied with data about cross section geometry, it computes
cross-sectional properties such as moments and product of inertia, sectorial properties, and
locations of centroid and shear center. (The shear center is the point in a cross section
through which transverse forces must be directed if a prismatic beam is to bend without
twisting.) If centroid and shear center do not coincide, or if they do not lie on the x axis,
coordinate transformation is required in formulating the element stiffness matrix, which is
then more complicated than shown in Eq. 2.3-8. Similar considerations influence the mass
matrix used for dynamics. If cross sections have shear centers that do not coincide with
their centroids, a structure built of such members, even if planar and loaded in its plane,
usually requires the d.o.f. of Eq. 2.3-8; the d.o.f. of Eq. 2.3-6 do not suffice.

Equation 2.3-8 is correct for a member of circular cross section, for which cross sec-
tions have no tendency to warp. It is also correct for a member whose cross section has
two axes of symmetry (so that its shear center and its centroid coincide), whose centroid is
on the x axis, and whose cross sections are free to warp when the element is twisted about
its axis. The theory of finite elements for thin-walled open members is discussed in many
references, of which we cite [2.7-2.12].

24 BAR AND BEAM ELEMENTS
OF ARBITRARY ORIENTATION

Elements discussed in Sections 2.2 and 2.3 lie along the x axis. For general use, elements
must be capable of assuming any orientation in space. This capability can be provided by
simple manipulation of element matrices already derived. For this purpose we regard the
stiffness matrices of Eqs. 2.2-1 and 2.3-8 as stiffness matrices [k’] that lie on the x” axis of
a “local” coordinate system xy’z’, which is arbitrarily oriented in a global coordinate sys-
tem xyz. To obtain an element matrix [k] that operates on d.o.f. referred to global coordi-
nates xyz, we apply a rotational coordinate transformation to [K'].

The following rotational transformations do not alter intrinsic element properties,
Rather, they alter the formal expression of element properties so that they agree with use
of d.o.f. whose arrows are parallel to global coordinate directions rather than to local coor-
dinate directions.

Bar Element. Consider first a two-dimensional transformation. Starting with a bar ele-
ment along a local axis x” in the xy plane, we seek the stiffness matrix of a bar element
arbitrarily oriented in the xy plane, so that it operates on the four nodal d.o.f. shown in
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Figure 2.4-1. (a) Local nodal d.o.f. and loads of a bar element lying on a local axis x".
(b) Global nodal d.o.f. and loads of a bar element that lies in the plane of global axes xy.

Fig. 2.4-1b. The relation between local and global d.o.f. is easily written by resolving
global d.o.f. into local components at a node, then adding collinear components; for
example, u] = u;cos B+ v,sinf (Fig. 2.4-2a). In matrix format, displacement arrays in
Fig. 2.4-1 have the relation

{d'} = [T}{d} (2.4-1)

in which transformation matrix [T] is

[T] = ¢S 00 where ¢ =cosB and s = sinf 2.4-2)
. 00¢c s

Relations between local and global nodal loads are established by resolving nodal loads F;
and F, into components parallel to x and y axes (Fig. 2.4-2b). Thus force arrays in
Fig. 2.4-1 have the relation

{r} = [TI7(x} (2.4-3)

(The inverse relationship, {r'} = [T]{r}, has the same form as Eq. 2.4-1; see Section 8.1
for virtual work arguments.) The element stiffness relation in local coordinates is

Local: [k'1{d’} = —{r'} (2.4-4)
The negative sign is explained following Eq. 2.2-2. In Eq. 2.4-4 we substitute
{d'} = [T]{d} from Eq. 2.4-1, premultiply both sides by [T]%, and then, on the right-hand
side, substitute for [T]7{r’} from Eq. 2.4-3. Thus Eq. 2.4-4 is transformed to

Global: [k]{d} = —{r} where k] = [TIFK][T] (2.4-5)
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Uy R
u1=uqcos B + vq sin B

- F,
/ F. 1 sin B =F. 1y
1 uy cos B 1 B i
L Fycos B="Fy, Figure 2:4.2:
vy sin B (a) Contributions of
Uy and v, to ul’,
(b) Resolution of F;
(2) (®) into F,; and Fy;.

(This triple product form for [k] is not restricted to rotational transformation. For other
changes of d.o.f., as described in Chapter 8, [T] is again the matrix that multiplies “new”
d.o.f. {d} to produce “old” d.o.f. {d'}, as in Eq. 2.4-1.)

For the bar problem, [k’] is the 2 by 2 matrix of Eq. 2.2-1. The same element in global
coordinates xy operates ond.o.f. {d} = | u; v} u, vZJT, for which [K] is the 4 by 4 matrix
[ 2 2 i
c ¢cs —¢ —cs

2 2 -
k] = k| ¢ § —es = where © P (2.4-6)
—c2 —cs ¢ cs s = sinf

2

2
l—¢cs —§  ¢s S

and axial stiffness k of the bar is k = AE/L. Note that if node numbers are interchanged,
sin 3 and cos S both change sign, and the same [Kk] is produced.

Equation 2.4-6 can also be obtained directly by applying the rule stated following
Eq. 2.2-2: obtain a column of [K] by activating the corresponding d.o.f. and calculating
nodal loads needed to preserve the deformation state. Thus, displacement u; = 1 pro-
duces axial shortening 6 = —cos 8 and axial compressive force of magnitude & cos 3. The
x and y components of end loads that equilibrate this force appear as column 1 of [k].

A bar element arbitrarily oriented in global coordinates xyz has a 6 by 6 stiffness matrix
that operates on nodal d.o.f. {d} = |_u1 v, W, U, U, w2JT, where u, v, and w are dis-
placement components in x, y, and z directions respectively. The argument that leads to
Eq. 2.4-5 remains applicable even though an additional d.o.f. is present at each node.
Again, Eq. 2.4-5 states the transformation, and again [k’ ] is as stated in Eq. 2.2-1, but now
the transformation matrix is

! 0
= |1mm 0 00 @2.4-7)

where [, m;, and n; are direction cosines of local member axis x” with respect to global
axes x, ¥, and z (Fig. 2.4-3). If the element happens to lie in the xy plane, then /; = cosf3,
my; = sinf, and n; = 0, and nonzero terms in the 6 by 6 matrix [k] agree with terms in
Eq. 2.4-6. Whether in two dimensions or three, matrix [k] is completely defined by A, E,
and global coordinates of the two end nodes.
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Figure 2.4-3. A vector V can be expressed in terms of components uzvw in global system
xyz or in terms of components ¥’2'w’ in local system xy'7.

Beam Element. Now Eq. 2.3-8 must be regarded as [k’], the stiffness matrix of an ele-
ment that lies along a local axis x”, with its nodal d.o.f. represented by arrows that point in
local directions x”, y”, and z” . Components of translation and rotation transform from glo-
bal to local directions in the same way; for example,

uy= liuy+mw, +nw, and b = 110, +my 0, +n,6, (2.4-8)

Transformation of the stiffness matrix from local to global d.o.f. is as stated by Eq. 2.4-5,
and the transformation matrix is

A 0 0 0 Lomy
0 A 0 O
- o 0 0 A s my g

Local directions should be suited to the element geometry so that cross-sectional proper-
ties of a beam element can be stated without confusion. For example, one might define the
X'y’ plane as being coincident with the web of an I beam. The direction of local axis x” is
defined by global coordinates of the two beam nodes, which may be placed at centroids of
end cross sections. If coordinates are supplied for a third point that is not collinear with the
end nodes, there is enough information to establish the orientation of the x'y’ plane in glo-
bal coordinates xyz, and hence to establish direction z”. Direction cosines of axis y’ are
provided by the cross product of unit vectors in z”and x” directions.

2.5 ASSEMBLY OF ELEMENTS

In this section we elaborate on the rationale and procedure of assembling elements to pro-
duce a set of equations that describes the structure. Concepts discussed are not limited to
structures built of bars and beams. The same procedures are applicable regardless of prob-
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lem type, element type, and number of nodes per element. When stiffness matrices and
load terms are assembled, boundary conditions may also be treated. The details of bound-
ary conditions and loads are discussed in subsequent sections.

Equilibrium Equations. We regard each structure node as a small connector to which
elements are attached, and we argue that assembly of elements and load terms pro-
duces a set of equations stating that each node is in equilibrium. Loads applied to a
node come from element deformation, from initial stress in elements, from external
loads distributed over elements, and from loads applied directly to nodes. In Eq. 2.2-2,
—{r} represents loads applied fo an element at its nodes to maintain its deformed
state. Equal and opposite loads {r} are applied by an element to the structure nodes to
which it is connected. That is, loads applied to structure nodes include:

Loads on structure nodes from element deformation: {r} = —[k]{d} 2.5-1)

Additional loads applied to structure nodes by an element (from sources other than ele-
ment deformation) include loads due to temperature and the action of gravity. For exam-
ple, heating a truss member creates an outward push against nodes, and element weight
pushes down on nodes. Structural supports apply loads directly to nodes. We adopt the fol-
lowing symbolism for such additional loads applied to structure nodes:

Loads applied by an element when its d.o.f. are zero: {r,} 2.52)
External loads applied directly to structure nodes: {P} '

These loads may have components in each coordinate direction and, in general, include
moments as well as forces.
The matrix equation that places structure nodes in equilibrium is

N,

els

Nes
Y ekt Y x4 (P} = (0) (2.5-3)
i=1 i=1

where N, is the number of elements in the structure. To repeat, we regard each structure
node as a small connector that must be in static equilibrium under the action of all loads
applied to it. Substitution from Eq. 2.5-1 yields h

Nels

K] = 2"‘]"
i=1

[K]{D} = {R} where N (2.5-49

{R} = {P}+ 2{‘e}f

i=1

Summations imply the expansion of element matrices to “structure size,” as in Egs. 2.2-7,
so that {d}, of each element i becomes identical to {D}, the vector of d.o.f. for the entire
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structure. Loads {R} are applied fo (not by) structure nodes and include all loads other
than loads —[K]{D} applied to nodes by elastic deformation of structural members. The
foregoing development shows that [K]{D} = {R} is a set of equilibrium equations.

Similar argument may be applied to a nonstructural problem. For example, in steady-
state heat conduction analysis, equilibrium of a node means that the net heat flow into (or
out of) a structure node is zero. With the convention that heat flow into a structure node is
positive, Eq. 2.2-5 is the thermal analog of Eq. 2.5-1. For example, a vector {r,} may
account for heating due to electric current flow, and a vector { P} may account for convec-
tion heat transfer at nodes on the surface of a solid body.

Assembly and Structure Node Numbers. The following example shows that locations
to which terms of element matrices [Kk]; are assigned in a structure matrix [K] depend on
structure node numbering. For this purpose the number of nodes per element does not mat-
ter, and we need not know how any (K], is derived. We consider three-node triangular ele-
ments. For illustration only, we allow matrices to be unsymmetric, and we give names to
individual coefficients in each [k]; to show more clearly what becomes of them upon
assembly. We show that formal expansion of [K]; to “structure size” is not required.

In Fig. 2.5-1, let there be one d.o.f. per node. For the respective elements, in the element
numbering system,

For triangular element 1: For triangular element 2:
a; a, az||d; b, b, by||d,

(kl;{d}; = | a4, a5 ag|y d, kl,{d}, = | by bs bg |4 dy ¢ (2.5-5)
a; ag ag|| ds b; bg by || ds

where the a’s and b’s are symbolic names for coefficients in element matrices [k]; and
[k],. The loads applied to elements by structure nodes are —{r}, where —{r} = [k]{d]}.
To identify the same loads when structure node numbers are substituted for element node
numbers, we add superscript s. Thus, for element 1,

Element node numbering: Structure node numbering:
-r; = a,d, +a,d, +a;d, —ri = a,D,+a,D,+a;D,
—ry = aud, +asd, +agd, and —ri = a,D+asD, +acD, (2.5-6)
~ry = a4d; +agd, + agd, —r; = a;D,+agD, +ayD,
Elements and their node numbers Structure and its node numbers

4

Figure 2.5-1. A hypothetical four-node structure built of two triangular three-node
elements. Each node has one d.o.f.
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To the latter group of equations we can add the equation r; = 0, because structure node 3
is not attached to element 1. For the same reason, D5 produces no load at any node of ele-
ment 1. After these additions, and rearrangement to place the D’s in numerical order, we
have for element 1

-r a, a3 0 a,|| D
-r | _|a a 0 agl| D,
3 0 0 0 O0]|]| D,
-y a, ag 0 as|| D,

2.5-7)

in which the 4 by 4 matrix is [K];. Element 2 can be treated similarly.
The net load associated with each node can be written in terms of a’s, b’s, and D’s. For
example, the net load applied by structure node 4 to the two elastically deformed elements is

~Fy = (a;Dy + agDy + 0 + asDy) + (0 + b3D, + b,D5 + b D) (2.5-8)

By writing the net nodal loads in structure node number order and gathering coefficients
of each D,, we conclude that, because [k]; and [K], have the same size and operate on the
same vector {D}, we can write [K]{D} = (Q.[k]){D}, where

a, a3 0 a, 0 0 0 O
a, a; 0 a 0 by by b
K] = [k, +(kl, =| ' °° 8 1+ o8 (2.5-9)
0 0 0 0 bg by by
a, ag 0 as 0 by b, b

We see that coefficients originally below the diagonal of an element matrix [k] may be
assigned to locations above the diagonal of [K]. Whether or not this happens, it is the
structure numbers of element nodes that determine where element coefficients are placed
in structure matrix [K]. This fact may be demonstrated by cyclically permuting element
node numbers; for example, by permuting node numbers in element 1 of Fig. 2.5-1 so that
the lower left node becomes element node 2. Then the first of Egs. 2.5-6 becomes
-r, = ayd, + ayds + azd;, but if structure node numbers are unchanged, Eq. 2.5-7 is
again obtained.

] 1 Figure 2.5-2. A plane three-bar truss loaded by force P.
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What if there are n d.o.f. per node rather than a single d.o.f. per node? Then, in
Eq. 2.5-7, each —rf and each D, becomes a column array of » terms, and each a; becomes
an n by n submatrix. As an example, consider the three-bar plane truss of Fig. 2.5-2, for
which n = 2. Imagine that supports are temporarily removed. With displacements con-
fined to the xy plane, Eq. 2.4-6 provides the stiffness matrix of each element, with k the
axial stiffness A;E;/L; of element i. Element node numbers may be chosen in either order.
For example, if the order is 1-3 for element 2, then angle B lies in the second quadrant,
so sin B = 0.8 and cos B = —0.6. If the order is 31, then angle B lies in the fourth
quadrant, so sin 8 = —0.8 and cos B = 0.6. Either way, the same [k] is obtained for ele-
ment 2. After assembly of elements, structure equations [K]{D} = {R} are

[ ky+036k, 048k, —k; 0 -036k, 048k, || u, | 0 ]
048k, 064k, 0 O 048k, -0.64k, || v, P
—k, 0 &k 0O 0 0 fJuml|_)r|
0 0O 0 k 0 —k, v, a0
036k, 048k, 0 O 036k, -048k, || u, 2
048k, -0.64k, 0 -k -048k, k;+0.64k, || o3 | | O |

(2.5-10)

in which load P is negative because it is directed opposite to the direction of d.o.f. v;. Load
terms p,, g,, and p5 are horizontal and vertical forces applied to nodes 2 and 3 by supports.
(Analogous assembly of beam elements is illustrated by Eq. 2.9-7.) Boundary conditions
shown in Fig. 2.5-2 dictate that u, = v, = u; = 0. Treatment of boundary conditions is
discussed in Section 2.7.

The foregoing procedure, in which element coefficients are added to locations in [K]
and {R} dictated by structure node numbering, is called the direct stiffness method. An
alternative procedure, called congruent transformation, is more formal but less suited to
computer implementation. It is used in the latter equations of Section 4.8.

Discussion of assembly leads directly to implementation procedures in computer soft-
ware, for details of which see the third edition of this book; also [2.13-2.15]. In software,
the assembly process is likely to be augmented to allow connection of elements with dif-
ferent numbers of d.o.f. per node and to allow certain boundary conditionsto be imposed
as part of the assembly process.

Thus far we have included no more d.o.f. than necessary in our arguments. Subse-
quently, we must be aware that software typically allows three translations and three rota-
tions per node. Some of these d.o.f. may be irrelevant in a given problem, and those may
have to be suppressed to provide adequate support to a structure so that a solution can be
obtained.

2.6 PROPERTIES OF STIFFNESS MATRICES

Element and structure stiffness matrices already seen—in Egs. 2.2-1, 2.2-6, 2.3-5, and 2.5-
10, for example—have properties such as symmetry, positive diagonal terms, and zeros
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off-diagonal. We now discuss these and other properties, and when they can be expected
for stiffness matrices in general. Characteristic matrices for nonstructural problems have
analogous properties.

Nonnegative K;;. Imagine that all d.o.f. in {D} are zero but a single d.o.f. Di. Then the
product [K|{D} yields R; = K;D; as the externally applied load that corresponds to D;. It
is physically unreasonable that a single load in a given direction would produce a displace-
ment component in the opposite direction. Therefore, diagonal coefficients K;; cannot be
negative; that is, Kj; 2 0. If K;; = 0, we infer either that no element is attached to d.o.f. i
or that there is a mechanism that involves d.o.f. i (see below).

Symmetry. The stiffness matrix of any element or structure is symmetric if loads are lin-
early related to displacements. This property can be proven by applying the Betti-Maxwell
reciprocal theorem, which states that if two sets of loads act on a linearly elastic structure,
work done by the first set of loads in acting through displacements produced by the second
set of loads is equal to work done by the second set in acting through displacements pro-
duced by the first set. That is, if loads {R}; and {R}, produce the respective displace-
ments {D}; and {D},, then

{R){(D}, = {R}3(D}, (2.6-1)
Substitution for {R}, and {R}, yields

(KH{D})T{D}, = (KI{D})T(D}; or (DHIKI{D}, = (DHIKI{D},
(2.6-2)

Both sides of the latter equation are scalars, so either side can be transposed without
changing anything. Transposing the right-hand side and then gathering terms, we obtain

DYIKI'(D), = (DYIKID}, or (DY(KI'-[K){D), =0  (263)

Because neither {D}; nor {D}, is null, the expression in parentheses must vanish. There-
fore [K]7 = [K], which means that [K] is symmetric.

Sparsity. A global stiffness coefficient K;; is zero unless at least one element is attached to
both d.o.f. i and d.o.f. j. For example, in Eq. 2.2-6, K;3 = 0, because d.o.f. u; in Fig. 2.2-3
is attached to element 1 only. (Occasionally K;; is zero even when both d.o.f. are present in
the element, perhaps because of element orientation. An example appears in Eq. 2.5-10,
where there is a zero in column 4 of row 1. The horizontal member is attached to both
and v,, yet K;4, = 0, which indicates that displacement v, does not cause a horizontal
force to appear at node 1.)

A matrix is called “sparse” if it contains many zeros. The stiffness matrices of example
structures considered thus far are not sparse, but only because the structures contain few
elements. A practical FE structure may contain hundreds or thousands of elements, and
more than 99% of coefficients in its stiffness matrix may be zero. To avoid storing and
processing vast numbers of zeros in [K], general-purpose software uses special storage
formats and algorithms adapted to these formats.
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Singularity: No Support. Until boundary conditions are imposed, a structure is free to
“float” in space; that is, the structure is unsupported and can undergo rigid-body motion.
Rigid-body motion includes translation and rotation. When we consider rotation of a
structure (or any of its parts), it is important to recognize that, in commonplace linear
analysis, deformations and rotations are assumed to be small, and [K] is constructed
using the original undeformed geometry. Figure 2.6-1 shows rigid-body rotation of a bar
about its left end. Approximations u, = -L8%/2 and v, ~ L8 are valid only for small 6,
and come from substitution of series for sin 6 and cos ¢ and truncation of each resulting
expression to a single term. For small 6, u, is negligible in comparison with v,, and
0=~ v,/L. For this reason, if v, is the only nonzero d.o.f. and v, << L, this displacement
state may be regarded as rigid-body rotation about node 1. Note that if § = /2, actnal
displacements in {d} are u, = —L and v, = L, but then [k]{d} # {0} because [K] is not
valid for so large a rotation.

If {D} represents a small rigid-body displacement, then [K]{D} = {0}; no loads
are required. Imagine that the supports of the plane truss in Fig. 2.5-2 are temporarily
removed so that all nodal displacements in the xy plane are allowed. Four examples of
plane rigid-body displacement for this structure are then

(D}, =lc0c0c0)f {DL=l0co0coc)

(2.6-4)
{Diy=|lcccce c_IT {D},=146 36 46 0 0 OJT
where ¢ is a small displacement and 8 is a small angle of rotation. Respectively, these four
displacement vectors represent translation along the x axis, translation along the y axis,
translation along the direction x = y, and small rotation about node 3.

For any structure, infinitely many rigid-body displacement vectors can be written, but
for plane motion only three are linearly independent. For motion in 3D space, six are lin-
early independent. In Eqgs. 2.6-4 the first three nodal displacement vectors are linearly
dependent, because {D}; + {D}, = {D},. A linearly independent set could be composed
of {D}, and any two of the first three vectors.

_ For the plane truss of Fig. 2.5-2, with supports removed, the equation [K]{D}; = {0}
with ¢ = 1 in {D}; says that terms in a row of [K] sum to zero. For the beam element
whose [K] is stated in Eq. 2.3-5, row sums prov1ded by the multiplication
[kKlL1 11 1_[ are not zero, because {D} = |11 1 1 1J is not rigid-body motion; it is
a nodal displacement vector that both translates the element laterally and bends it into an
“S” shape.

The stiffness matrix of an unsupported structure is singular, so structural equations have
no unique solution vector {D}. If asked to solve for {D} when [K] is singular, software
may complain of an attempt to divide by zero or issue some other error message, and stop

2
T*” 2 — up=—-L(1 - cos 6) =- L&

i e vp=Lsin 8 ~L0
- 1
) T § 0 \ote hence 6 = "z? Figure 2.6-1. Rigid-body rotation
o= Iy L through angle 6. The stated
I J 2 displacement approximations are
< L > valid for small 6.
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without providing a solution. Other software may automatically insert a “fix”” and continue
processing without explanation of the trouble.

Singularity: Inadequate Support; Mechanisms. An inadequately supported ‘structure
has a singular [K]. The truss of Fig. 2.5-2, for example, would be inadequately supported
if the restraint shown at node 3 were removed, because the truss could then rotate as a rigid
body about node 2.

The quadratic form that represents strain energy U in a linearly elastic structure is
U= {D}T[K]{D}/ 2. In general, there exists a {D} for which U = 0 if the structure has
no support, has only partial support, or contains a mechanism. A mechanism, also called
an instability, is a displacement mode that is not rigid-body motion but for which U = 0.

An example of a structure that contains a mechanism is depicted in Fig. 2.6-2a, where
axial load is applied to two bars connected end to end. Physically, this structure is stable
when supported and loaded as shown. However, a lateral load applied at node 2 would not
be resisted. Resistance would appear if lateral displacement became large, but this effect is
not taken into account by linear theory, which is based on original (undeformed) geometry.
It does not matter that no lateral load is actually applied at node 2: [K] is singular, and no
unique solution for {D} can be obtained.

It is a simple matter to solve the cantilever beain problem of Fig. 2.6-2b by using beam
elements. However, an analyst accustomed to two-dimensional problems may restrain
only d.o.f. u, v, and 6, at node 1. These restraints are inadequate, because the structure is
still free to have the rigid-body motions of translation normal to the xy plane and rotation
about the x and y axes. An analyst must remember that general-purpose software allows
six displacement d.o.f. per node, so six rigid-body motions must be suppressed to achieve
adequate support of a structure.

Software may help by automatically suppressing nodal d.o.f. w, 6,, and 6, if input data
states that the problem is plane. If the problem is a plane truss, whose bars are assumed to
be connected by frictionless pins at nodes, what about nodal d.o.f. 6,7 Resistance to 6,
d.o.f. is absent from element stiffness matrices (Eq. 2.4-6), so the structure stiffness matrix
would be singular, because it contains zero rows and columns in positions that correspond
to the 6, d.o.f. Rather than assuming that software will automatically suppress the 6, d.o.f.
for a truss in the xy plane, a cautious analyst will determine what the software actually
does. If documentation is unclear, a simple test problem should resolve the matter.

Note that suppression of d.o.f. 6, at nodes of a plane truss neither prevents the truss
from having rigid-body rotation in the xy plane nor prevents elements from rotating with
respect to one another. Here one can regard a node as a frictionless pin that connects ele-
ments but can rotate freely in the joint (until 6, is suppressed). For a plane frame, whose
members are rigidly connected together at nodes, elements resist 6, and share a single 6,
d.o.f. at nodes where they are connected, so suppression of 6, at all nodes would prevent
all joints from rotating, which is probably not intended.

YU Bar elements

1 2 3 P I 1 2 3
- — xu @ $ X4
b = L1

v Beam elements

@) (b)
Figure 2.6-2. Two-element structures built of (a) bar elements and (b) beam elements.
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2.7 BOUNDARY CONDITIONS

Formal Explanation. Let a structure be fully assembled. By partitioning, accompanied
by such rearrangement of matrix coefficients as may be necessary, we can write structural
equations [K]{D} = {R} for an unsupported structure as

K Kpp {Dx} _ { Rc} 2.7-1)
K21 I(22 D c Rx
where subscript ¢ denotes known quantities, and subscript x denotes unknown quantities.
Thus, where loads {R_} are prescribed, the corresponding d.o.f. {D,} are unknown, and
where d.o.f. {D,} are prescribed, the corresponding loads {R,} are unknown. Typically
{R,]} represents support reactions, and the corresponding d.o.f. {D_} are zero, because

they represent motions prevented by supports. However, prescribed nonzero d.o.f. are also
acceptable. In expanded form, Eq. 2.7-1 is

K 1{D,} + [K;,1{D.} = {R} (2.7-2a)
(Ky 1{D,} + [K){D.} = {R,} (2.7-2b)

Submatrix [K;;] is nonsingular if prescribed d.o.f. {D_} are sufficient in number and
arrangement to prevent rigid-body motion. Then unknown d.o.f. {D,} can de determined
from Eq. 2.7-2a:

(D} = K, T'({R.} - K, 1{D.}) (2.7-3)

Finally, loads {R,} can be determined from Eq. 2.7-2b by substitution of d.o.f. {D,},
which are now known. Loads {R,} are computed from elastic deformations and do not
include external loads transmitted directly to supports. For example, to account for bar
weights W;, W,, and W5 in the truss of Fig. 2.5-2, half the weight of a bar is assigned to its
two end nodes and is included in the contents of {R_}. However, the term in {R,} that rep-
résents vertical support reaction at node 2 does not include W,/2 and W;/2 applied at
node 2.

An Alternative Procedure. Again imagine that structure equations [K]{D} = {R} have
been assembled, but no boundary conditions have yet been imposed. In software, the re-
arrangement operations needed to obtain the partitioned format of Eq. 2.7-1 are awkward
and time-consuming. Instead we wish to impose boundary conditions without destroying
the symmetry of [K], changing its size, or rearranging its terms. The method we now
describe is applicable to any type of problem—structural, thermal, and so on.

An arbitrary 3 by 3 example system suffices to explain the method. Let the global equa-
tions be

Ky, Ky Kis(| Dy R,
Ky Ky KujyDyp=1R; (2.7-4)
K31 K3 Kyl | Ds Ry
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in which K;; = Kj; because [K] is symmetric. For any d.o.f. i we can prescribe either D;or
R; (but not both). Assume, for example, that R; and R; are known and the condition
D, = A, is to be imposed, where A, is a prescribed quantity (rather than an uriknown).
The corresponding load term R, is therefore unknown. As a first step we take known prod-
ucts Kj»A, to the right-hand side. Thus

Kll 0 K13 Dl RI—K12A2
K31 0 K33 D3 R3 - K32A2

Now, however, the matrix lacks symmetry, and the term R, — K,,A, contains a mixture of
known and unknown quantities. We remedy these troubles by replacing the second equa-
tion with the trivial equation D, = A,. Thus, Eq. 2.7-5 becomes

Kll 0 K13 Dl RI_K12A2
0 1 0[{D,¢= A, (2.7-6)
K31 0 K33 D3 R3 - K32A2

(An alternative is to zero out the second row and column, but lcave K,, in place and
replace R, by K»,A,.) Equation 2.7-6 can be modified again in similar fashion if D; or D,
is also prescribed. The procedure of Eq. 2.7-6 is particularly simple when d.o.f. A; are to
be suppressed; that is, when A; = 0.

As an example application, let boundary conditions u, = v, = u3; = 0 depicted in
Fig. 2.5-2 be imposed on Eq. 2.5-10. The method of Eq. 2.7-6 leads to the result

L,
[k, +0.36k, —048k, 0 0 O 0.48k, || u, 0
-048k, 064k, 0 0O 0  —064k, ||ov, -P
0 0 1 0 0 0 dupl =1 0¢ (2.7-7)
0 0 0 1 0 0 v, 0
0 0 0 0 1 0 Uy 0 -
048k, 064k, 0 0 0 K +064k, || vy 0

This set of equations may be solved to obtain the desired values of u;, v;, and v3 (and, of
course, the expected results u, = v, = u; = 0).

The method of Eq. 2.7-6 is somewhat wasteful of storage space if many d.o.f. must be
set to zero. Programming procedures that omit suppressed d.o.f. from the assembly process
are described in the third edition of this book and in [2.13-2.15]. For a plane frame prob-
lem, d.o.f. w;, 6,;, and 6,, can be suppressed by omitting them during assembly, so that the
assembled matrix [K] operates only on the in-plane d.o.f. u;, v;, and 6,;. For a plane truss
problem, 8, can also be suppressed, so that u; and v; are the only d.o.f. retained. Finally,
some of the remaining d.o.f. must be prescribed in order to prevent rigid-body motion of
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the structure. In Fig. 2.5-2, these remaining boundary conditions are u, = v, = u3 = 0,
and if these d.o.f. are suppressed by discarding them during the assembly process the final
set of equations is

ky+036k, -048k, 048k, |[u, 0
~0.48k, 0.64k, —0.64k, |Jv,}=1{-P (2.7-8)

Unknown d.o.f. ¥, v, and v; can now be calculated. Equations 2.7-7 and 2.7-8, of course,
provide the same results. Support reactions p,, g,, and p; can be obtained from Eq. 2.5-10
by premultiplying solution vector {D} by rows 3, 4, and 5 of [K]. Information in these rows
is discarded when boundary conditions are imposed as shown in Eq. 2.7-7 and Eq. 2.7-8.
However, software should have provision for saving or reconstructing information in
affected rows of [K] so that support reactions can be calculated (but see remarks that follow
Eq. 2.7-3).

Boundary conditions can also be treated by Lagrange multipliers and by the penalty
method. They are discussed in Sections 13.2 and 13.3.

2.8 EXPLOITING SPARSITY.
SOLVING EQUATIONS

Structure nodes can be numbered in arbitrary sequence. A different sequence produces a
different topology of the structure matrix; that is, coefficients are assigned to different loca-
tions in the array. We seek a topology that favors compact storage and rapid solution of the
structural equations [2.15]. We can choose any of several solution algorithms, influenced
by matrix topology, the number of equations, and whether they are ill-conditioned or not. A
software user may be obliged to choose among available options or take an active role if
difficulties develop. Discussion in the present section is supplemented in Appendix B.

Numbering and Sparsity. Consider the structure in Fig. 2.8-1, which consists of two-
node elements that may represent beam elements, electrical resistors, pipes in a distribu-
tion system, and so on. The physical problem does not matter for our discussion. However,
for explanation we imagine that there is a single d.o.tf. per node. For the node numberings
of Figs. 2.8-1a and 2.8-1b respectively, we obtain the structure matrices

Skyline Skyline

G H I B DF

H J K

KN P
P S R (2.8-1)
R 0 M

I M L

B A

D c

F E
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Figure 2.8-1. Different
3 9
5 7 2 3

node numberings for an
assembly of two-node
@ (b) elements.

in which nonzero coefficients are represented by capital letters and zero coefficients are
represented by blanks. The skyline encloses the uppermost nonzero coefficients in each
column. Although the same coefficients appear in each matrix, topologies differ.

Because of symmetry, only the upper triangle of the matrix need be stored to retain all
information in the matrix. Also, in solving equations we need process only entries below
the skyline, down to and including the diagonal. Therefore, we can store all needed coeffi-
cients in a one-dimensional array, taking columns in order, and including information
from the skyline down to the diagonal. Zeros between the skyline and the diagonal are
retained because a direct (noniterative) equation solver creates fills; that is, it converts
most zeros under the skyline to nonzero coefficients. Unlike zeros, which can be skipped
during numerical processing, fills must be processed, and storage space must be reserved
for them. For the numbering of Fig. 2.8-1a, we store the one-dimensional array

I[ACEBDFGHJIOLKONMOQPRS] (2.8-2)

The number of terms stored in this format is sometimes called the profile of the matrix. In
equation solving, this storage format is associated with the name active column storage.
Software must be told which terms in the one-dimensional array are diagonal terms of the n
by # structure matrix. This information is supplied by an auxiliary array of » numbers that
lists the height of each column. For Fig. 2.8-1a, this array is [1 1 1 4 2 3 3 3 3],
The sum of these numbers, 21, is the matrix profile. The second matrix in Eq. 2.8-1 has a
profile of 39, which reflects the poor numbering arrangement of Fig. 2.8-1b.

General-purpose software usually includes a renumbering option that examines the
node numbering provided by input data, renumbers nodes for efficient storage and equa-
tion solving, and then converts back to the input numbering for presentation of results.
References include [2.16].

Solution of Equations. Formally, the solution of structure equations [K]{D} = {R}is
written as {D} = [K]J'{R}. The latter equation should be regarded as saying “solve for
{D}” rather than requiring that [K] be inverted. The inverse is not needed in order to solve
for {D}. Also, [K]'1 is full even when [K] is sparse, so inversion is time-consuming and
too demanding of storage space.

In structural mechanics, {D} represents nodal displacements, so we require that the
structure be kinematically determinate; that is, the structure can have no rigid-body modes
or mechanisms. Because unknowns are displacements rather than forces, static indetermi-
nacy does not make a problem more complicated. Indeed, if a high degree of static indeter-
minacy arises because of many supports, the problem becomes simpler because there are
fewer nontrivial equations.

Equation solvers can be classified as either direct or iterative. In a direct solution such
as Gauss elimination, the number of operations required depends on matrix topology and
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the number of equations and can be calculated in advance. In an iteraﬁve solution, the
number of operations required is uncertain. Iterative cycling continues until a convergence
test is satisfied. .

A direct solver is efficient when the matrix profile is small, as it is for the cantilever
beam in Fig. 2.8-2a. Then nonzero entries in the structure matrix are tightly clustered
along its diagonal, so elimination produces few fills (none, in this particular example). In
contrast, the structure of Fig. 2.8-2b creates a matrix that is sparse but has large profile, so
storage demands and processing effort become large if the number of nodes is large. A
matrix of large profile also has a large semibandwidth, which we denote by b. For each
row i, semibandwidth ; is equal to the number of columns from the diagonal to the right-
most nonzero term. In the first matrix of Eqs. 2.8-1, b, for the respective rows is 4, 3, 2, 3,
3, 3, 3, 2, 1. A root-mean-square average of the b; may be taken as a representative b for
the entire matrix: b = 2.79 in this example. If matrix order » is large and » is much
smaller than n, the computational effort required for a direct solution is approximately
proportional to nb?.

When using a direct solver, we need not assemble the entire structure matrix before
starting to solve equations. Steps of assembly can alternate with steps of solution. When
enough elements have been assembled to complete the initial portion of the structure
matrix, solution begins, then temporarily ceases when more of the matrix must be built by
assembly. Names associated with this approach are frontal method or wavefront method,
because d.o.f. currently active can be visualized as a “wave” or “front” that passes over the
structure as the assembly-solution alternation progresses. The order in which equations are
processed depends on element numbering, not node numbering. Efficiency is increased by
element numbering that decreases front size. A frontal solution requires less storage than
building the entire structure matrix before starting the solution, but it is more complicated
to program.

Iterative solvers converge more slowly as the condition number of the structure matrix
increases [2.13,2.15,2.17]. For the present discussion, the condition number can be
thought of as the square of the ratio of the highest to the lowest vibration frequencies (see
also Section 9.3). The beam of Fig. 2.8-2a produces a large condition number: in the mode
of highest frequency, every element assumes an “S” shape; in the mode of lowest fre-
quency, the entire beam flaps in a “diving board” mode. On the other hand, the structure of
Fig. 2.8-2b has a comparatively low condition number. Condition number is influenced by
the types of elements used; it is increased by larger aspect ratio (that is, elongation) of the
structure and by larger aspect ratio of individual elements. Practical iterative solvers
employ “preconditioners” that provide more rapid convergence. i

Iterative solvers have the advantage that they are not obliged to convert zeros under the
skyline to nonzero terms. Thus, there is no need to reserve storage space for fills or to pro-

Figure 2.8-2. (a) A
cantilever built of many
beam elements. (b) A

cube built of many

(a) (b) cubical elements.
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cess them. Indeed, [K] need not even be assembled. Information needed for iteration con-
sists of nodal forces associated with deformations. These forces can be computed element
by element as needed, often by procedures that require less computation than generating
|k] and the product [k]{d} for each element. Iterative solvers are particularly well suited
to vector and parallel computation, which achicve greatest efficiency when special data
storage schemes are used. An iterative solver can be considerably faster than a direct
solver if there are a great many d.o.f., equations are well conditioned, and [K] would have
a large profile even if nodes were optimally numbered.

If solutions for many different load vectors {R} on the same structure are needed, a
direct solver has the advantage that after [K] has been processed by the solver, each addi-
tional load vector is processed with very little additional effort. An iterative solver may
require a complete new solution for each additional load vector, although some progress
toward removing this drawback has been made [2.18].

Gauss Elimination. A direct equation solver uses Gauss elimination, Cholesky decom-
position, or another of many methods that are closely related. In Gauss elimination, equa-
tions [K]{D} = {R} are solved for {D} by reducing [K] to upper triangular form, then
solving for unknowns in reverse order by back substitution. With reference to the example
of Fig. 2.8-3, steps of the process are as follows.

The first row of [K] in Fig. 2.8-3a is multiplied by the factor X,;/K;; = —6/18 and sub-
tracted from row 2, and multiplied by the factor K3,/K;; = —6/18 and subtracted from row
3. Similarly we subtract (K,;/K;;)R; from R, and (K5;/K;{)R; from Rj3. Thus the first
unknown D is eliminated from subsequent equations, as if we had done the formal algebra
of solving the first equation for D; and substituting it into subsequent equations, resulting in
Fig. 2.8-3b. Row 4 is not changed by elimination of D;; software would exploit this circum-
stance by skipping calculations because K;; = 0. Next, D, is eliminated by similar treatment

Original equations:

After one elimination:

18 -6 -6 0] (D, 60 18 -6 -6 0} (D, 60

-6 12 0 -6||Dy| | O 0 10 2 -6||Dy|_ |20

-6 0 12 -6 |Dz[ " |20 0 -2 10 -6| | D3|~ ]40

0 -6 -6 12| |Dy 0 0 -6 -6 12| | D, 0

(a) (b)

After two eliminations: After three eliminations: _
18 -6 -6 0 Dy 60 18 -6 -6 0| (D4 60

0 10 -2 -6 | |Dy| {20 0 10 -2 —6||Dy| |20

0 0 96-72 Dy |44 0 0 96-72]||Dg( |44

0 0 -72 84| |D, 12 0 0 0 3 D, 45

©)

@

Solve for unknowns by back substitution:
D,=45/3=15
Dy= (44 +7.2D4)/9.6 = (44 + 108)/9.6 = 15.83
D, =(20 + 2D3 + 6D4)/10 = (20 + 31.67 + 90)/10 = 14.17
D, = (60 + 6D, + 6D3)/18 = (60 + 85 + 95)/18 = 13.33

©

Figure 2.8-3. Example of
solving simultaneous
linear algebraic equations
by Gauss elimination.
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of equations 3 and 4 in Fig. 2.8-3b, for which the multiplying factors are K3,/K,, = -2/10
and K4, /Ky, = -6/10, resulting in Fig. 2.8-3c. Finally, D, is eliminated from equation 4 in
Fig. 2.8-3c using the multiplying factor K43/K33 = —7.2/9.6, resulting in'Fig. 2.8-3d. [K] is
now triangularized, and unknowns are determined in reverse order by back substitution as
shown in Fig. 2.8-3e.

Coefficient K,5 is a “fill” because it becomes nonzero, but the zero above the skyline,
K, 4, remains zero. Skyline topology is not changed by forward reduction, and the portion
of the matrix below the eliminated equations remains symmetric. Therefore, a multiplying
factor such as K,;/Kj; could as well be written K;,/K;;. In other words, information
stored and processed can reside entirely in the upper triangle of [K], from the skyline
down to and including the diagonal. Note also that information needed to process terms on
the right-hand side is retained in the triangularized matrix, which means that additional
right-hand sides can be processed very quickly.

The foregoing illustration uses “pivots on the diagonal,” which means that the ith equa-
tion is used to eliminate the ith unknown. This procedure is convenient in programming,
but it requires that stiffness coefficient K;; be nonzero when used to eliminate the ith
unknown. Such will be the case if the structure is adequately supported and contains no
mechanism and if displacements are used as nodal d.o.f. With some alternative FE formu-
lations and some methods of imposing constraints, some diagonal coefficients are zero
when equation solving begins (Sections 5.6 and 13.2).

2.9 MECHANICAL LOADS. STRESSES

Loads applied directly to structure nodes are added directly to the structure load vector
(loads {P} in Eq. 2.5-4). In the present section we consider element loads {r,} produced
by externally applied forces and/or moments that act within elements, at locations other
than structure nodes. We also consider how stresses in bar and beam elements may be cal-
culated. Similar discussion of loads and stresses caused by temperature change appears in
the following section.

Introductory Remarks. In Fig. 2.5-2, imagine that load P is omitted and that the struc-
ture is instead loaded by the weight of its own members. Let respective members have
weights W;, W,, and W;. Then it is physically reasonable to say that nodal loads consist of
downward forces (W, + W3)/2 at node 1, (W; + W3)/2 at node 2, and (W; + W,)/2 at
node 3. Thus we have “lumped” gravity loads at node points. Even if members are pin-
connected at nodes, the structure is not strictly a truss, because members do not carry
purely axial load; all nonvertical members also carry gravity loads that cause them to bend
and develop flexural stress. If members are rigidly connected together at nodes, then the
structure is a frame, and the foregoing lumped or “reduced” loading ignores moments that
members also apply to structure nodes. These moments are part of the “consistent” load-
ing discussed in what follows. Reduced loading is likely to be a good approximation for a
structure that contains many members; in that case, flexural stress is apt to be negligible in
truss members, and nodal moment loads contributed by weights of frame members are apt
to be negligible. If desired, flexural stress in a truss member can be computed by regarding
it as a simply supported beam loaded by its own weight. Flexural stress is superposed on
axial stress due to nodal displacements.
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“Lost” Loads. With P = 0 and reduced loading as described in the foregoing 'paragraph,
the load vector on the right-hand side of Eq. 2.7-8 becomes

[o Yw,ewy  “Low +W)JT
2 2 3 2 1 2

Thus, the downward load (W; + W3)/2 at node 2 is “lost” from the equation system and
does not affect computed displacements and member forces. This load is “lost” because
the support reacts against it directly. To determine the vertical reaction at node 2 after
nodal d.o.f. have been calculated, we can add (W; + W;)/2 to the value of g, determined
from Eq. 2.5-10. Temperature change also contributes to support reactions if supports act
to inhibit displacements associated with temperature change.

Consistent Nodal Loads. For unifortn bar and beam elements, element loads can be
treated by methods of elementary mechanics of materials, to obtain a “consistent” set of
loads that act on structure nodes. This set of loads is the same as the set produced by for-
mal procedures of FEA described in Section 3.3, where the terminology “consistent” is
explained. For some structures, including those built of uniform bar or uniform beam ele-
ments, consistent nodal loading leads to computed nodal displacements that agree exactly
with displacements at these locations in the mathematical model [2.5]. This behavior con-
tinues to prevail in uniform beams even when transverse shear deformation terms are
included in element [k]’s and in the vector of consistent nodal loads [2.5]. In what follows,
we omit transverse shear deformation in beams.

Loads on Bar Elements. Let a uniformly distributed axial load ¢ act on a uniform bar
fixed at both ends (Fig. 2.9-1a). This is a simple, statically indeterminate problem in
mechanics of materials, whose solution shows that reactions on the bar are gL /2 at each
end. Regarding the bar as a single element whose end nodes are fixed, we obtain nodal
loads gL/2 at each end. Similarly, if a concentrated axial load P acts at, for example,
x = L/3 on the element (Fig. 2.9-1b), nodal loads are 2P/3 on the left node and P/3 on
the right node, both acting in the same direction as P. Loads gL/2, 2P/3, and P/3 in
Fig. 2.9-1a and 2.9-1b are “consistent” element loads {r,} applied to nodes by the ele-
ment. They are directed opposite to end reactions on the statically indeterminate bar.

Stresses in Bar Elements. In a bar element, axial stress due to nodal displacements is
calculated by determining elongation e, axial strain £ = e/L, and axial stress ¢ = Ee.
Specifically, for a bar element of arbitrary orientation in xyz coordinates,

o= ‘Ilf [(u2 —u)l + Wy — )M + (wy wl)n] (2.9-1)

where /, m, and n are direction cosines of the bar axis, as used in Section 2.4. Numerical
values of all nodal d.o.f. in the structure appear in {D} after global equations have been
solved. Values of d.o.f. associated with the element at hand are extracted from {D}.

When mechanical loads produce nonzero element loads {r,}, we may (optionally) add
the “fixed-ended” element stresses now described. Let the bar in Fig. 2.9-1a be regarded as
a one-element structure. Then, according to Eq. 2.9-1, axial stress is zero because both
nodes are fixed. However, if we add the stress o, shown, which is the analytically obtained
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Figure 2.9-1. Nodal loads and stress fields that result from axial loads applied to bar elements
between nodes.

stress distribution in the bar with both ends fixed, we obtain the correct result. Stated more
generally, stresses are more accurately calculated by superposing stresses calculated by
FEA (stresses due to nodal displacements) and separately calculated stresses associated
with mechanical loading of the element while all of its d.o.f. are fixed. For thermal load-
ing, element stresses must be included; see Section 2.10.

When elements are assembled, loads contributed by adjacent elements combine at
shared nodes, as shown in Fig. 2.9-1c for a uniformly distributed load. No load is shown at
the leftmost node, because that node is fixed. If a load were applied there, it would become
a “lost” load, discarded in the process of imposing boundary conditions. Stress o, shown
by dashed lines is produced by nodal displacements. Superposition of fixed d.o.f. element
stresses yields the solid line, which is exact.

Remark. The foregoing superposition procedure of stress calculation can also be applied
to beam elements. For elements other than bars and beams it is not easy to separately cal-
culate element stresses due to mechanical load when all element d.o.f. are fixed. Accord-
ingly, this element stress field is likely to be included only for beam elements. Its
contribution to total stress tends toward zero as element size is reduced. Inclusion of these
element stresses usually enhances accuracy in a coarse mesh, but omission does not pre-
vent convergence toward correct stresses as the mesh is refined.
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Loads on Beam Elements. A uniformly distributed load on a uniform beam, with both
ends fixed produces support reactions that can be calculated by elementary beam theory.
If reversed in direction, these reactions comprise the nodal loads shown in Fig: 2.9-2a,
which are ;

—gL/2

(r = 1-aL’/12
¢ —qL/2

gl*/12

(2.9-2)

in which negative signs indicate loads directed opposite to the positive senses of their
respective d.o.f. When elements are assembled, moment loads at interior nodes tend to
cancel (Fig. 2.9-2b).

Load vectors {r,} can easily be written for other loadings on a fixed-fixed beam, such
as a concentrated force or moment at arbitrary x, or a linearly varying distributed load.
General-purpose software typically is capable of computing load vectors for such loadings
on beams. It may also be capable of using the corresponding fixed-end element moment
fields in stress calculation, in the manner previously described for element stress fields of
bar elements. Thus, for uniformly distributed loading, the element moment field M shown
in Fig. 2.9-2a would be added to the bending moment produced by nodal displacements.

Stresses in Beam Elements. We consider stress calculation in the local coordinate sys-
tem of Fig. 2.3-2. Thus, the first step is calculation of local d.o.f. by the transformation
[T1{d}, where [T] is given by Eq. 2.4-9. Numerical values of d.o.f. {d}, for the element at
hand and referred to the global coordinate system, can be extracted from {D} after global
equations have been solved.

»e - Application of part (a) to a cantilever beam:
' .  EEEEEREEEREERRERRL
Y ¥ Vv v ¥ ¥ ¥ ¥
Consistent nodal loads -
lqusz , l oa+ By qb/iz
= SN ~ Lo >4

Reduced nodal loads

M TN 1 % 1 gla+ b2 l b2
|

a { b 7—{

(@) ®)
Figure 2.9-2. Nodal loads and bending moment field that result from lateral loads applied to bcam
elements between nodes.
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Nodal displacements produce a cubic lateral displacement field v = v(x) in a 2D ele-
ment, as shown in Fig. 2.3-1. The bending moment due to nodal displacements is calcu-
lated from the curvature of this field. As shown in elementary beam theory, the bending
moment field M, = M,(x) and transverse shear force field V, are

2 aM 3
M, = Elz‘ﬂ; and V, = —= = E LY (2.9-3)
dx x dx
Figure 2.3-1 provides lateral displacement # = w(x) for unit values of the respective nodal
d.o.f By differentiation we obtain curvature d’v/dx* and hence bending moment

M, = M/(x) in terms of nodal d.o.f.

6  12x 4  6x 6 12x 2 6x
MZ = EIZ[(—- 17 + F‘) Ul + (— z + 17) 0z1 + (17 - F) 1)2 + (—Z + l—li)ozz] (2.9—4)

Then dM,/dx is the expression for V, in terms of nodal d.o.f.
The 3D beam element described by Eq. 2.3-8 and Fig. 2.3-2 can also display axial force N,
torque T"about its axis, bending moment M, about the y axis, and transverse shear force V,, where

2 3
N = AElizLi T = GK ECZ—LE M, = EI},d—2 vV, = Elyi—z-’ (2.9-5)
dx dx
Lateral displacement w = w(x) is a cubic field govemed by nodal d.o.f. wy, 6,;, w,, and
6. Bending moment M, = M,(x) is provided by an equation like Eq. 2.9-4, with signs of
nodal rotations reversed. Normal and shear stresses associated with the forces and
moments of Eqs. 2.9-3 and 2.9-5 are

N My Mz _Ter
*TA I, K
y v (2.9-6)
_ Yy _ 2
’Ty = CyX Tz = CZX

The locations of these maximum values of the three shear stresses depend on the shape of
the cross section. If the cross section is a solid circle of radius R, then A = 7R?,
I, = I, = mR*/4,K = aR"/2,c; = R,andc, = ¢, = 4/3. Maximum magnitudes of
flexural stress appear at y = * R due to M, and at z = £R due to M,. The maximum
magnitude of 7rappears on the outer surface. Maximum magnitudes of 7, and 7, appear on
the neutral surface of bending. If the cross section is a solid square with sides of length a
parallel to the y and z axes, then A = a%, I, = I, = a%/12, K = 0.14064"%,
cr = 0.675a,and ¢, = ¢, = 1.500. The maximum magnitude of 7 appears on the outer
surface at the four locations closest to the centroid of the square cross section. Data such
as this, appropriate to each element cross section present in the FE model, must be pro-
vided to software if it is to calculate stresses in beam elements correctly. Software may
report o, at four points on a cross section. Often these points are flange tips of an I section.
Some software may (misleadingly) use polar moment J of the cross section rather than K
in Eq. 2.9-6, and adjust c7 accordingly.



2.9 Mechanical Loads. Stresses 51

Consistent vs. Reduced Loads. A nodal load vector that omits moment terims may be
called “reduced” or “lumped.” Thus, the reduced load form of {r,} in Eq. 2.9-2 is
l-gL/2 0 —gL/2 0]7, which leads to the reduced nodal loading shown in Fig. 2.9-2b.
For this two-element structure, after displacement boundary conditions have been
imposed, equations [K]{D} = {R} for reduced nodal loading are

12/a> +12/b° -6/a” +6/b° -12/b° 6/b" |[ v, ~g(a+b)/2
—6/a>+6/b° 4/a+4/b -6/b> 2/b ||02| 0
1 c1p’ —6/b>  12/b° —6/b"|| v, —qb/2
6/b> 2/b ~6/b>  4/b |6z 0
(29-7)

As L shrinks in Eq. 2.9-2, moment terms tend toward zero more rapidly than force terms.
Omission of moment terms does not prevent convergence toward correct results as a mesh
is refined. Indeed, accuracy in a given mesh is sometimes greater if moment terms are omit-
ted. In Fig. 2.9-3, a circular arch is modeled by a coarse mesh of straight elements. Because
elements are of unequal length in the mesh shown, nodal moments remain at the two upper-
most nodes after elements are assembled. These moments are slightly detrimental.
Moments at the two lowermost nodes are clearly detrimental, because the actual structure
can have no bending moment at a pinned support. And, in bending moment calculation, the
element bending moment fields of Fig. 2.9-3c should not be included. There is no bending
moment in the actual arch, and there will not be any in the FE model if reduced loading is
used and element moment fields are omitted from moment calculation.

In general, for any type of element, we define reduced loading as nodal loads computed
as if the element had no rotational d.o.f. Thus, for example, transverse load Patx = L/3
on a beam element produces reduced nodal loads 2P/3 at node ! and P/3 at node 2, as if
ends of the beam were simply supported rather than fixed. This result is not the same as
would be obtained by omitting nodal moments after they are calculated, because nodal
forces are.changed by restraint of end rotation when the load is off-center.

Elements for beams, plates, and shells all have rotational d.o.f., which are ignored in the
calculation of reduced nodal loads. Whether reduced loading leads to better or worse results
than consistent loading depends on the nature of the problem, what results are sought, and

Structure Net consistent nodal loads Element bending moments

A~

Figure 2.9-3. (a) Uniformly distributed load on a circular two-hinged arch. (b) Loading on a coarse-
mesh FE model. Element lengths are unequal. (c) Element bending moment fields, calculated as in
Fig. 2.9-2a.

@ ®)
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what calculation options are chosen. For example, in the problem of Fig. 2.9-2b, suppose
we omit the moment field of Fig. 2.9-2a from final moment calculation. Then consistent
loading leads to exact nodal displacements but approximate bending moments at nodes,
whereas reduced loading leads to approximate nodal displacements but exact bending
moments at nodes. Either loading system produces convergence toward correct results as
the mesh is refined.

2.10 THERMAL LOADS. STRESSES

Thermal Stress Problems. Stresses in an elastic FE model produced by a temperature
field are calculated as follows. The procedure is not restricted to bar and beam elements. It
is used for all finite elements that are based on displacement fields and use nodal displace-
ments as d.o.f. The following steps are carried out automatically by software.

1. In each element, compute “initial” stresses, which are stresses produced by the tem-
perature field when all displacements are prohibited. Also compute loads applied to
nodes by initial stresses. (See Sections 3.1 and 3.3 for a general treatment of initial
stresses {ap}.)

2. Assemble the elements and loads calculated in Step 1. The result is a structure whose
nodes as yet have no displacements but are loaded by initial stresses produced by
temperature changes.

3. Solve for nodal d.o.f. produced by loads of Step 2, and compute element strains
and stresses they produce. Superpose on these stresses the initial stresses calculated
in Step 1.

If mechanical loads arc also applied, they may be superposed on thermal loads in Step 2.
An example will follow.

Remarks. A temperature field can be defined relative to an arbitrary reference tempera-
ture. Absolute temperatures are not needed for thermal stress analysis (but are needed to
calculate temperatures when heat is transferred by radiation). If the reference temperature
chosen is 0 °C, then temperatures are simply stated in degrees Celsius. The computation
procedure provides changes in stress associated with the temperature field. Residual
stresses that may exist at the reference temperature play no role in computation and must
be superposed on computed thermal stresses.

A temperature gradient does not necessarily produce stress. Consider a body that is
homogeneous, isotropic, and linearly elastic, whose supports do nothing to inhibit defor-
mations caused by temperature change. Then, if the temperature field is linear in rectangu-
lar Cartesian coordinates and the coefficient of thermal expansion is independent of
temperature, there are no thermal stresses. For example, if a uniform and simply supported
straight beam is caused to have a linear temperature variation from upper surface to lower
surface, the beam deforms to a circular arc but remains free of stress.

Due to temperature change 7, initial stress in a bar element is oy = —Eg,, where initial
strain & is oT. Howcver, if coefficient of thermal expansion « is temperamre-dependent, &y
must be computed as the integral of « 4T from the initial temperature to the final temperature.
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And, if T is not constant along the length of the bar, it is best to use average temperature in the
final stress calculation of step 3 [2.19].

Example. A uniform bar of length 2L fixed at both ends is modeled by two elements, as
shown in Fig. 2.10-1. Lateral deflection d.o.f. are set to zero; thus we avoid the possibility
of a hinge at node 2. Initially the bar is isothermal at temperature 7 = 0. Then the bar is
loaded by axial force P and by linear temperature variation from 7, to T3 in the right ele-
ment only. Initial stress exists only in the right element. From node 2 to node 3, based on
the average temperature (T, + 73)/2, initial stress oy is

T,+T,
2

0y = -Ea (right element only) (2.10-1)

where « is the coefficient of thermal expansion. The heated element applies forces of mag-
nitude F to nodes 2 and 3, where

T,+T,
F = |Acy| = AEa

(2.10-2)

Before fixed-end conditions are imposed, and with support reactions H; and Hj; included,
equations [K]{D} = {R} are

1 -1 07|, H,

AE

T -1 2 -1|Juyp = P-AEa(T,+T3)/2 (2.10-3)
0-1 1fus Hy+AEa(T, +T;)/2

Boundary conditions #; = 0 and u; = 0 can be imposed according to the scheme of
Eq. 2.7-6. Thus Eq. 2.10-3 becomes

RIS 0
10 2 0Juy[=1P-AE«(T,+T5)/2 (2.10-4)
0 0 1]|u, 0 )

from which

PL al(T,+T3)
2AFE 4

=0 = u3 = 0 (2.10-5)

Reactions H; and H, if desired, can now be obtained by returning to the first and third of
Egs. 2.10-3 with the known values of u;, u,, and u,. These results are

p AEa(T,+Ts)
1 = —_——t—_—

2 4

AEa(T, +T.
and  Hy = —g——(—:—i) (2.10-6)
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Figure 2.10-1. (2) Bar fixed at both ends, loaded by force P and a temperature field. (b) Nodal
loads and final axial stress distribution.

Final stresses in the two elements are

Uy uy _ P Ea(T, +T3)
o1 = E2— 4+ (ze10) = 5 - ———> 210

For uniform temperature (7, + T3)/2 in the right element, the correctness of these results
can easily be verified by methods of elementary mechanics of materials.

‘What if the linearly varying temperature shown in Fig. 2.10-1 is used, rather than the average
temperature (T, + 73)/2? Then, with displacements suppressed throughout the structure, the
right element has initial stresses oy = —EaT, atnode 2 and o, = —EaT; at node 3 instead of
the oy, given by Eq. 2.10-1. Force F remains as stated by Eq. 2.10-2 because it depends on the
integral of initial stresses over element length (see Eq. 3.3-8). Therefore Eqs. 2.10-2 through
2.10-6 are unchanged, o,_, remains as stated in Egs. 2.10-7, but 0;_3 becomes

Uy — U Ea(3T,-T.
Atnode?2: v, 3 = E 3L 2—EaT2=—%—_(42—3)
' Ea(3T.-T.) (2.10-8)
. e e _ P £alBl3-1h
Atnode3: o0, 5, = E 2 EoT; = 24 7

Clearly these results are incorrect, because in this problem axial stress must be constant
throughout each element. In this example at least, it is better to use average element temper-
ature in final stress calculation. Further discussion of thermal stress problems appears in
Section 3.12.

2.11 STRUCTURAL SYMMETRY

If symmetry is recognized and exploited, the size of the FE model is reduced. Thus less
computation is required and, usually of more importance, there is less input data to be pre-
pared and checked by the analyst. Reflective and skew symmetry are discussed in the
present section. Axial and repetitive symmetry are discussed in subsequent chapters. Ref-
erences include [2.20-2.22].
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Figure 2.11-1. (2) Plane structure having reflective symmetry aboutx = Oandy = 0 planes.
(b) Beamn under symmetric loading. (c) Beam under antisymmetric loading.

A structure has reflective or mirror symmetry if there is symmetry of geometry, support
conditions, and elastic properties with respect to a plane. Reflective symmetry of structure
and loads is shown in Fig. 2.11-1a: if reflected by the plane x = 0, the left half yields the
right half, and vice versa. There is also reflective symmetry about the y = 0 plane. One
can say that reflection brings the structure and its loads into “self coincidence.” Analysis
of either half provides a complete solution, because symmetric loading on a symmetric
structure produces symmetric results.

IftpP, = P, in Fig. 2.11-1a, planes x = 0,y = 0,x = y,and x = —y are all planes of
reflective symmetry, and we need analyze only one-eighth of the structure, using, for
example, the segment in the first octant between lines y = 0 and x = y, with boundary
conditions on the two lines such as to allow only radial motion from the origin
x =y = 0. Load on this octant is P/ 2, because the original load P, is bisected by the
symmetry plane y = 0. (In a related example, if a stiffening beam under a floor slab is
longitudinally bisected by a planc of symmectry, only half its stiffness is retained in the por-
tion analyzed.)

The symmetric beam problem of Fig. 2.11-1b can be solved by analysis of either half,
with rotation 6, prevented at x = 0. The beam problem in Fig. 2.11-1c is antisymmetric
because of the loading. Reflection about the plane x = 0, followed by reversal of all
loads, results in self-coincidence. Analysis of either half as a simply supported beam pro-
vides a complete solution. These examples are simple, but it is not hard to see that, if the
structure were large and complicated, it would be a waste of effort and storage space to
ignore symmetry and prepare a model of the entire structure.

The following rules help in setting correct displacement boundary conditions for reflec-
tive symmetry. The conditions stated apply only to boundary nodes of the FE model that
lie in a plane of reflective symmetry of the entire structure. If the problem is symmetric,

S1. Translational motion has no component normal to a plane of symmetry.
S2. Rotation vectors have no components in a plane of symmetry.

If the problem is antisymmetric, that is, symmetric except that loads must be reversed to
achieve self-coincidence,

Al. Translational motion has no component in a plane of antisymmetry.
A2. Rotation vectors have no components normal to a plane of antisymmetry.
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Plane of Plane of
symmetry antisymmetry
Figure 2.11-2. Degrees of freedom
(Permitted (Permitted permitted (that is, not restrained) at a node
motions} motions)

in a plane of symmetry or antisymmetry. A
double-headed arrow represents a rotational
d.of.

Figure 2.11-2 depicts these rules in terms of d.o.f. permirted rather than d.o.f. restraincd.
Software may be able to insert appropriate boundary conditions automatically at nodes in
a symmetry plane after input data defines the plane in question and states whether symme-
try or antisymmetry prevails.

Figure 2.11-3a depicts an example problem in which symmetry concepts can be
applied even though symmetry is not obvious at the outset [2.21]. By representing the
original loading as the sum of symmetric and antisymmetric parts, we obtain the cases in
Figs. 2.11-3b and 2.11-3c. Superposition of solutions of the latter two cases provides the
solution of the original problem. Thus, bending moments in Fig. 2.11-3a are M| = M,,
M, = Ms+ M,, and M; = M,. We have traded one analysis of the entire structure for
two analyses of half the structure, with different loading and support conditions.

Skew or inversion symmetry is illustrated in Fig. 2.11-4. In Fig. 2.11-4a, a half-revolution
about the z axis (normal to the figure) results in self-coincidence. The same resnlt would be
produced by two successive reflections, aboutthe x = Oandy = O planes. In Fig. 2.11-4b,
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Figure 2.11-3. Modeling a plane frame problem as the sum of symmetric and antisymmetric
cases. (Reproduced from C. Meyet, Finite Element Idealization, American Society of Civil
Engineers, New York, 1987, by permission of the publisher.)
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Figure 2.11-4. Skew symmetry of a plane frame, with loads that are (a) skew symmetric, and
(b) skew antisymmetric.

a half-revolution followed by reversal of loads results in self-coincidence. In each case only
half the structure need be analyzed. Boundary conditions for skew symmetry are discussed
in detail in [2.22].

If symmetries are suspected but their nature is unclear, one may elect to do a coarse-
mesh analysis of the structure in order to see whether computed results confirm or refute
existence of the suspected symmetries.

Caution. Symmetry should be invoked sparingly and carefully in problems of vibration and
buckling. For example, a uniform simply supported beam has symmetry about its center but
has gntisymmetric vibration modes as well as symmetric vibration modes. If half the beam
were analyzed, the support conditions of Fig. 2.11-1b would permit only symmetric modes,
whereas the support conditions of Fig. 2.11-1c would permit only antisymmetric modes. Sim-
ilarly, unsymmetric modes are prominent in analyses for vibration and buckling of a shell of
revolution. Caution is also needed in static problems that involve nonlinearity, because sym-
metries that are present when loading begins may subsequently disappear.

2.12 REVIEW. REMARKS
REGARDING MODELING

Let us solve the truss problem of Fig. 2.5-2 by hand calculation. After all boundary condi-
tions have been imposed, the structural equations are Eqs. 2.7-8. Triangularizing these
equations by Gauss elimination, for the special case k = AE/L the same for each mem-
ber, we obtain

13600 -0.4800  0.4800 | | u, 0
kl 0 04706 -0.4706 (yv, [ = 1-P (212-1)
0 0 1.0000 | | v5 ~P

Hence, by back substitution, we obtain the nodal displacements
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P I-,; (2.12-2)

up = -075007 v = -31250 v =-

These displacements agree with displacements obtained by classical analysis, using, for
example, Castigliano’s second theorem. Discretization error is zero in this problem, so
FEA results should agree with results of classical analysis to one part in a million or better,
the discrepancy being due to truncation or rounding error during formation of [K] and
solution of equations. Recall that all these results presume that stiffness k = AE/L is
large enough that displacements are much smaller than overall dimensions of the truss, so
that linear small-deflection theory is applicable.

The foregoing example problem can easily be solved by standard analytical methods, but
for a truss or frame of even modest complexity (especially if it is statically indeterminate),
hand calculation becomes very tedious, with ample opportunity to make sign and manipula-
tion errors. For this reason, FEA software may be the preferred analysis tool for all but the
simplest trusses and frames. Hand calculation is used to obtain approximate results as a
check on FEA results.

By using the mesh generation capabilities of general-purpose software, a user can easily
fill a region with elements. A novice user may activate this capability when its use is
unwarranted or even wrong. If each member of our example truss were meshed with two
or more bar elements connected end to end, FEA would yield either no result or a nonsen-
sical result due to numerical difficulties such as a “small pivot” or “divide by zero” error.
This kind of failure would arise because each junction between generated elements acts as
a hinge, thus creating a mechanism. No additional information is to be gained from multi-
ple collinear truss elements: each truss member experiences uniform strain, which is
exactly modeled by a single bar element.

Similarly, a general-purpose FE software package contains an extensive element library
that permits a user to choose among dozens of element types. A novice user may choose
complicated elements, even if they contain features inappropriate for the problem at hand.
Thus it may be tempting to use beam elements to model a truss, especially because each
truss member can then be meshed using many beam elements connected end to end with-
out creating a mechanism. If joints of the truss are indeed frictionless pins that connect
fruss members, then beam elements are inappropriate, because they prevent relative rota-
tion between truss members at nodes, thus converting the truss to a frame. Bar elements,
though simple, are the appropriate choice for truss analysis.

Figure 2.12-1 depicts a uniform beam that is continuous over simple supports at A, C, E,
and G. Spans AB, BC, CD, DE, and EF can each be modeled by a single beam element. In
these spans, use of more than one element per span is acceptable but not helpful, because
the cubic lateral displacement field of a single beam element provides an exact representa-
tion of a mathematical model. Such is not the case in spans FG and GH, where, unless the
element moment field depicted in Fig. 2.9-2a is included in the stress calculation phase,
exact results for bending moment and flexural stress are only approached by using more
and more elements in spans FG and GH.

lﬁ le
| ?WWW‘PW\H{#W?(I
A B c D E F G H

Figure 2.12-1. A uniform straight beam continuous over several simple supports.
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Figure 2.12-2. (a) A tapered plane beam of uniform thickness. (b,c) FE models that use
tapered and uniform elements respectively. Element depths are suggested by dotted lines.

Consider next the tapered beam shown in Fig. 2.12-2. Only for some special cases (such
ashy = hpands = L, = L,)is it possible to exploit symmetry. There is unlikely to be a
convenient analytical solution. More importantly, in obtaining results for comparison with
FEA results, there may be no unique or obvious choice among analytical approximations.
Also, many different types of elements (not only beam elements) might be used to con-
struct the FE model. Beam elements are appropriate only if the structure is slender. This
example is representative of professional practice in that engineering judgment must be
used to construct the FE model and to check FEA results.

To obtain approximate results for comparison with results of FEA, we might replace the
actual taper by a uniform depth #,,. based on some average of the continuously varying
depth. Handbook results are available for a uniform beam with fixed ends and a single off-
center load [1.16]. Alternatively, we might assume (incorrectly) that the portion of the
structure te the right of load P prevents rotation at load P, and use handbook results for a
simple tapered beam with one end fixed and rotation prevented at the other end [1.16]. In
FEA analysis, if the element library contains a tapered beam element, we might use the
model of Fig. 2.12-2b. Otherwise, we may use a number of uniform elements to model
each simple taper (Fig. 2.12-2c).

The following example problem illustrates further aspects of modeling using beam elements.

2.13 AN APPLICATION

We consider an example problem, with emphasis on FE modeling and checking results
rather than on FE theory. The physical structure is a flat oval bar loaded in its own plane
(Fig. 2.13-1). Deflections and stresses of greatest magnitude are sought. The solution
strategy suggested in Section 1.5 is used in the following analysis.

Preliminary Analysis. The structure is roughly circular. Therefore a crude model is a cir-
cular ring, having the same perimeter as the oval and loaded by concentrated forces as
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Figure 2.13-1. (2) Plane structure under mechanical loading. (b) Data used in the numerical example.

shown in Fig. 2.13-2. Data are such that the substitute ring has radius » = 78.2 mm, and
pressure load produces forces F = pt(b + ¢) = 300 N. Handbook formulas [1.16] state
deflections due to flexure and bending moments in a circular ring loaded by two diametri-
cally opposing forces. By superposing two such cases, one with inward forces F and the
other with outward forces F but 90 degrees away, we obtain

3
6 = 0.143% = 0.338 mm and M =05Fr = 11,730 Nemm  (2.13-1)

as magnitudes of radial deflection and bending moments at loaded points on the substitute
ring. At these locations, direct circumferential stress and bending stress have magnitudes

o, = % =333MPa  and o, = IK};@ = 174 MPa (2.13-2)

These results are estimates of uncertain accuracy. If they differ greatly from FEA results
subsequently computed, we must question the computed results, the physical understand-
ing on which the estimates are based, or both.

We should also -anticipate how the structure will deform. This matter is discussed in
-connection with the critique of FEA results.

Finite Element Analysis. Because of symmetry about horizontal and vertical centerlines,
only one quadrant need be analyzed (Fig. 2.13-3). Supports shown are consistent with hor-
izontal displacement allowed at end A, vertical displacement allowed at end D, and neither
A nor D allowed to rotate about the z axis (normal to the xy plane).

4 Figure 2.13-2. Simple mathematical model for
approximate analysis, withr = R+ (@ + b + ¢ + d)/7.
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Figure 2.13-3. (a) Quadrant modeled. (b) Coarse-mesh FE model with consistent nodal loads.
(c) Boundary conditions.

Our mathematical model is the plane oval shape shown in Fig. 2.13-1, with the assump-
tion that behavior is described by flexure theory. Accordingly, beam elements are used for
FEA. A coarse-mesh FE model is shown in Fig. 2.13-3b. Portion BD is modeled by two ele-
ments, BC and CD, so that nodal loads described in Fig. 2.9-2a can be computed, and
applied as shown in Fig. 2.13-3b. No moment load is needed at D, because it would be
reacted by the support instead of acting to deform the structure. Rigid-body motions w, @,
and 0y of the model must be restrained, even though there are no loads that would make
these d.o.f. nonzero at any node. Support conditions indicated in Fig. 2.13-3c allow only
translation u at A and only translation v at D, with the result that all displacements of the FE
model are confined to the xy plane. The same result would be obtained if we were to omit
restraint of w, 6., and 6, at either A or D. The remaining fixity at the other end would provide
adequate restraint, because loads have no tendency to produce z-direction displacements.

Critique of Results. Before examining the computed output, we sketch an intuitive
approximation of the displaced shape, as shown dashed in Fig. 2.13-4a. Software will plot
the computed displaced shape, scaled up so as to be easily visible, and animated so that the
model is seen to move back and forth between its original configuration and its displaced
configuration. We should see reasonable agreement between the anticipated and computed
shapes. In particular, point A should move only to the right, point D should move only
upward, and neither point should rotate. (In checking the displaced shape we must allow
for the inability of most software to plot anything but a straight line between two nodes;
actual cubic curves are not displayed.) Thus, we visually check that intended boundary
conditions have indeed been imposed. Upon examining a list of computed values of nodal
d.o.f., we should see that w, 6,, and 6, are zero at all nodes. We also compare displace-
ments u, and vy with the approximate displacements, Eq. 2.13-1.

()

Figure 2.13-4. (a) Original centerline (solid) and deformed centerline (dashed) of the quadrant
modeled. (b) Free-body diagram, showing loads applied to the quadrant modeled. (c) Refined
FE model with consistent nodal loads.
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If the foregoing examination discloses no obvious error in displacements, we proceed to
examine stresses. We should find that the direct axial component o, = N/A is tensile at A
and compressive at D, while the bending component 0, = Mc/I is tensile on the inside at
A and tensile on the outside at D. A summary of computed results for the coarse-mesh FE
model of Fig. 2.13-3b is as follows:

u, = 0.135 mm (04)4

0.316 mm (o,)p

0 (,), = +166 MPa

(2.13-3)
—3.33 MPa (op)p = £117 MPa

Up

Software may report o, and oy, individually, report their algebraic sum at beam surfaces, or
both. The value of o, at A at first looks wrong; why is it zero? Elementary statics, applied
to Fig. 2.13-4b, shows that member AB carries transverse shear force but zero axial force
because of its 45° orientation. Therefore (0,,), = 0 is correct for this particular FE model.

An improved mesh for the same problem is shown in Fig. 2.13-4c. Now arc AB is mod-
eled by two chords rather than one, which is the most significant improvement. Portion BC
is not refined, because doing so would make no difference. This portion is straight and no
loads are applied between B and C, so it has cubic lateral deflection and a single beam ele-
ment can represent it exactly. Computed results from the improved mesh are

+163 MPa

(2.13-9)
+116 MPa

u, = 0.121 mm (o,), = 1.80 MPa (93),

~3.33 MPa CON

vy = 0.349 mm AN

These results are in reasonable agreement with Egs. 2.13-1 and 2.13-2, and in good agreement
with Eqgs. 2.13-3 except for g, at A, which is a small stress for which the discrepancy has been
satisfactorily explained. We conclude that computed results from the refined mesh are reliable,
although one more mesh refinement and reanalysis might provide additional confidence.

It would be instructive to repeat the analysis using reduced nodal loads (m = O in
Fig. 2.13-3b). Other concerns about modeling may be raised, as follows. Truly concentrated
loads are not possible; therefore, the horizontal forces F in Fig. 2.13-1 are idealizations
whose actual distribution should perhaps be represented more precisely. The ratio 4/R is
probably small enough that transverse shear deformation is negligible, but it does no harm
to use elements that include it. We have assumed from the outset that the material is linearly
elastic. Stresses are not large and the elastic modulus suggests that the material is steel, so
the assumption of linearity appears reasonable. Our linear analysis also assumes that defor-
mations are small enough that equilibrium equations [K]{D} = {R]}, which are based on
original geometry, remain sufficiently accurate after deformations have been produced by
load. This assumption is seen to be true for this problem, because u, and v are much
smaller than overall dimensions of the structure. A problem that is nonlinear, because the
material yields or because deformations are large, is much harder to solve, because informa-
tion needed in the solution—namely, material properties at all locations, the deformed
geometry, or both—is not known in advance.

ANALYTICAL PROBLEMS

2.2-1 (a) Consider a two-node bar element, as in Fig. 2.2-1, but let cross-sectional area A
vary linearly with x from Agatx = OtocAgatx = L, where cis a constant. Write
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222

2.2-3

2.2-4

the element stiffness matrix, first as in Eq. 2.2-1 using the average A, then using the
exact relation between axial load and change in length of the member. Evaluate
both matrices numerically for the case ¢ = 2. ’

(b) A bar of length Ly has linearly varying cross-sectional area A, from A at the
left end to 34 at the right end. The bar is stretched by axial forces P at each end.
The bar is modeled by the “average A” elements of part (a). Calculate the elonga-
tion of the bar, using one, two, three, then four elements of equal length. What is
the percentage error in each case?

(a,b) In each of the two plane structures shown, rigid blocks are connected by lin-
ear springs. Imagine that only horizontal displacements are allowed. In each case,
write the structure equilibrium equations [K]{D} = {R} in terms of spring stiff-
nesses k;, displacement d.o.f. u;, and applied loads F;.

31
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Problem 2.2-2

The plane structure shown consists of a rigid, weightless bar and linear springs of
stiffnesses k; and k,. Only small vertical displacements are permitted. Stiffness
matrix [K] of this structure is 2 by 2 but can have various forms, depending on the
choice of d.o.f. Determine [K] for each of the following choices of lateral transla-
tion d.o.f. (a) v; atx = O and v, at x = L, as shown. (b) v; atx = 0 and v, at
x = L/2.(c)vyatx = Landvgatx = 2L.

»v

d.of. in part (a)

Problem 2.2-3

Consider a cable element of length L under constant tension 7, as shown. Assume
that lateral deflection v is linear in x and that v << L. What is the 2 by 2 stiffness
matrix that operates on d.o.f. v; and »,? (The matrix will contain 7. Lateral forces
F; and F, will be collinear with the d.o.f.)
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2.2-5

2.3-1

23-2

2.3-3

2.3-4
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™
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Problem 2.2-4

InFig. 2.2-4,letk;, = k, = kand?; = ¢, = ¢

(@ LetT; = 0°Cand T3 = 200 °C. Solve for T, and the unknown rates of heat
flow in terms of k and ¢.

(b) Let T, = 400 °C and let f; have the prescribed value f. What are the
unknowns? Solve for them in terms of %, ¢, and f .

For the structure described in Problem 2.2-3, determine [K] for each of the follow-
ing choices of d.o.f. (a) Lateral displacement v; at x = 0 and small rotation ¢
about x = 0. (b) Lateral displacement vp at x = 2L and small rotation 6 about
x = 2L. ’
(a,b) The plane structures shown consist of rigid weightless bars connected by lin-
ear springs, each of stiffness k. Degrees of freedom are horizontal translations u;
and small rotations 6; fori = 1,2, as shown. Vertical motion and out-of-plane dis-
placements are not_allowed. In each case determine the 4 by 4 structure stiffness
matrix in terms of k£ and b.

Problem 2.3-2

The plane structures shown consist of rigid weightless members and springs. In
each case determine the stiffness matrix that operates on the two d.o.f. shown.

(a) Spring k4 resists translation; spring kg resists relative rotation between bars AB
and BC. Each bar has length 5L and slides without friction on the horizontal surface.
(b) Rotation 6 is small. Assume that the roller can apply upward or downward
force to the trapezoidal block.

To elevate the end of a cantilever beam without rotating it, as shown, force and
moment are required. From the information shown, fill in as many numerical val-
ues as you can in an element stiffness matrix that operates on nodal d.o.f.
{d} = Lvl 0,1 vy 0Z2JT, where v and v, are measured in millimeters. Do not
use beam deflection formulas or Eq. 2.3-5. Instead rely on the given data, physical
argument, statics, and the symmetry of [k]. Ignore transverse shear deformation.
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(@ (b)

Problem 2.3-3
v
400Nem I
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Problem 2.3-4

2.3-5 Using Egs. 2.3-1 to 2.3-4 as a guide, apply elementary beam theory to derive the
following columns of [k] in Eq. 2.3-5. (a) Column 2. (b) Column 3. (c) Column 4.

2.3-6 (a,b) The slender plane beams shown have both axial and bending stiffness. With-
out calculation, determine the algebraic sign of each coefficient in the element
stiffness matrix [K] associated with the d.o.f. shown (or enter zero if the coefficient
is null). Assume that displacements and rotations are small, and that nodal forces
and moments have the same positive senses as their corresponding nodal d.o.f.

(a) ®)
Problem 2.3-6
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2.3-7

2.3-8

24-1

24-2

ONE-DIMENSIONAL ELEMENTS AND COMPUTATIONAL PROCEDURES

(a) Let a uniform beam element have simply supported ends. Apply end loads such

that bending moment is constant along the beam. Use Eq. 2.3-6 to show that there

is no transverse shear deformation in this case.

(b) Let a uniform cantilever beam be supported at the loaded end so that this end

cannot rotate, as shown. For the cross section shown, and with £ = 2G, use

Eq. 2.3-6 to calculate the lateral deflection at node 2 in terms of P and E. Consider
= 8mm, L = 16 mm, and L = 32 mm. In each case, what fraction of the

deflection is due to transverse shear deformation?

(c) For the beam of part (b), verify that lateral deflection according to Eq. 2.3-6 agrees

with mechanics of materials theory for the two limiting cases L — 0 and L — .

I}’
ﬂ' iﬁ I4mm
! L P _)I I(—S'“m

1
Problem 2.3-7(b)

Two identical cantilever beams lie in the xy plane and are welded together where
they meet at right angles, as shown. Set up a 2 by 2 matrix that operates on lateral
deflection and rotation d.o.f. at B. Note that rotations about x and y axes are equal
in magnitude at B. Solve for the lateral deflection at the loaded point. Neglect
transverse shear deformation but include torsional stiffness. If the two beams have
I sections, what can be said about the calculated deflection as compared with the
actual deflection, and why?

¢ -; "«’.’:

Problem 2.3-8

For a bar element arbitrarily oriented in the xy plane, Fig. 2.4-1b, determine [k] by
activating each d.o.f. in turn, rather than by using the transformation of Eq. 2.4-5.

(2) Derive a 4 by 4 stiffness matrix for a uniform bar element, using the d.o.f. shown.
(b) Obtain the same result by coordinate transformation of the 2 by 2 matrix in Eq. 2.2-1.

Problem 2.4-2
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24-3

24-4

25-1

2.5-2

2.5-3

2.5-4

2.5-5

(a) For a two-node bar element arbitrarily oriented in space, determine the 6 by 6
matrix [K] by activating each d.o.f. in turn, rather than by using the transformation
of Eq. 2.4-5. :

(b) Verify the result of part (a) by carrying out the coordinate transformation.

Obtain the stiffness matrices requested in the following problems by applying
coordinate transformation to the stiffness matrix determined in Problem 2.2-3(a):
(a) Problem 2.2-3(b) (b) Problem 2.2-3(c)

(c) Problem 2.3-1(a) (d) Problem 2.3-1(b)

In Fig. 2.5-1, permute element node labels so that element nodes are numbered as
shown in the sketch for the present problem. Maintain structure node numbers as shown
in Fig. 2.5-1. Show that [K] of Eq. 2.5-9 is again obtained.

1

5
Problem 2.5-1 Problem 2.5-2

The structure shown consists of a two-node element A, a three-node element B, and
a four-node element C. There is one d.o.f. per node. Place letters A, B, and C in
appropriate positions in arrays [K] and {R} to indicate the locations to which con-
tributions from element matrices are assigned.

Two collinear cantilever beams are connected by a frictionless hinge, as shown.
Flexural stiffness EI, is the same for both beams. Load P and deformations are
confined to the xy plane. Write the stiffness matrix that operates on the “active”
d.o.f. Ignore transverse shear deformation.

(21 ,Fy1

F

x1

Problem 2.5-3 Problem 2.5-4

For the frame shown, wn'}e equilibrium equations [K]{D} = {R} using d.o.f.
{D} = |u; v; 6, 6, | .Both members are slender and have the same E, I, A,
and L. Express matrix coefficients in terms of L, a = AE/L,andb = EI/L.

For the plane frame of Fig. 2.3-3(a), assume that members are slender and have the
same EI,, and that axial deformations are negligible in comparison with bending
deformations. Let loads and deformations be confined to the plane of the frame.
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2.5-6

2.5-7

2.6-1

2.6-2

2.6-3

2.6-4
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Write the structure _stiffness matrix that operates on “active” d.of.
_ T

{D} = |ug 6,5 0,

Imagine that a beam element has positive directions for nodal loads and nodal

d.o.f. as shown in the sketch. How does this arrangement alter [k] of Eq. 2.3-5?

What is awkward about this arrangement?

Problem 2.5-6 Problem 2.5-7

Displacements of the two-member truss shown are confined to the plane of the fig-
ure. Both members have the same A, E, and L. Obtain the 2 by 2 stiffness matrix
that operates on horizontal and vertical displacements of the top node. Solve for
these displacements, and for axial stress in members, when downward load P is
applied.

Let each of the following beam elements lie along the x axis. Write the most gen-
eral nodal displacement vector that describes a small rigid-body motion of the ele-
ment. (a) 2D element (see Eq. 2.3-6). (b) 3D element (see Eq. 2.3-8).

For the 2D beam element cited in Problem 2.6-1(a), write the nodal displacement
vector {d} that describes a rigid-body rotation of 180° about node 1. For this vec-
tor, [k]{d} is not zero. Why?

Remove supports from the truss of Fig. 2.5-2. Use L = 5a as the length of bar 2,
where a is a constant having units of length. Write rigid-body displacement vectors
for the following small motions (a), (b), and (c) in the plane of the truss. Show that
each vector produces zero forces {R}.

(a) Translation in the direction of bar 2

(b) Rotation about node 3

(c) Rotation about the pointx = 3a,y = 4a

(d) Are the foregoing three displacement vectors linearly independent?

(e) Let the nodal displacement vector be {D} = |-7 -3 —4 0 0 —4JT. Is the
product [K]{D} equal to zero? Does this {D} represent rigid-body motion?

For the quarter-circle curved beam element shown, use the d.o.f. indicated and
confine displacements to the xy plane.

(a) Do individual rows (or columns) of [k] sum to zero? Why or why not? (Do not
construct [Kk] to answer.)

(b) Write the most general nodal displacement vector that expresses rigid-body
motion.

(c) Write {d} (all six terms) such that [k]{d} = {0}. There are infinitely many
possibilities; write three {d}’s that are linearly independent.
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2.6-5

2.6-6

2.6-7

2.6-8

2.7-1

2.7-2

ds
dg -
y
R
e Ty e Y
X _ _ _
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Problem 2.6-4 Problem 2.6-5

(a,b) Repeat the instructions of Problem 2.6-4(a,b) with reference to the uniform
two-element beam structure shown.

(c) Sketch the deformation mode that corresponds to a {D} that makes each nodal
load R; in {R} equal to the sum of the K; in row i. Show the R; by sketching prop-
erly oriented arrows on the structure.

Write the most general nodal displacement vector {d} that expresses rigid-body
motion in the xy plane for the following truss elements:

(a) The bar element of Fig. 2.4-1bwith 8 = 0

(b) The bar element of Fig. 2.4-1b with >0

(¢) The bar element of Problem 2.4-2

(a) There must be n restraints to prevent rigid-body motion, where np = 3 for 2D
(plane) motion and ny = 6 for motion in 3D space. However, the d.of. to be
restrained cannot be chosen arbitrarily. Explain why. Also, provide 2D and 3D
examples for which np restraints are inadequate.

(b) The choice of restraints adequate to prevent rigid-body motion is not unique.
For the two-element cantilever beam of Fig. 2.6-2b, starting with no supports,
write six sets of boundary conditions, each adequate to prevent rigid-body motion
in 3D space and yet also adequate to model a plane problem. Avoid unnecessary
restraint.

For a given {D}, why does the form {D}T[K]{D}/2 represent strain energy in a
structure? Suggestion: Consider work done by applied loads.

In each of the following beam problems, confine displacements to the xy plane, use
a single element, and ignore transverse shear deformation. Write [K]{D} = {R}
with {D} = |_v2 012J T Impose d.o.f. at node 2 by using the method of Eq. 2.7-6.
Solve by matrix operations; then check results by elementary beam theory.

(a) A cantilever beam is fixed at its left end. A lateral displacement o, is imposed
at its right end. What is the associated force, and what is 6,,?

(b) A simply supported beam is forced to rotate 6, units at its left end. What is
the associated moment, and what is 6,,?

(a) Let AE/L be the same for each bar of the plane truss in Fig. 2.5-2. Remove
load P. Using the method of Eq. 2.7-6, impose the following displacements at node

1: u; = c (where c is a small number), and v; = 0. Determine v; and the x and y
components of load applied at node 1.
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2.8-1

2.8-2

2.8-3

2.8-4
2.8-5

2.8-6
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(b) Use the results of part (a) in Eq. 2.5-10 to determine support reactions at nodes
2 and 3.
(c) Show that the forces of parts (a) and (b) place the truss in static équilibrium.

Renumber nodes in Fig. 2.8-1a as follows: 7 becomes 6, 9 becomes 7, and 6
becomes 9. Numbers of other nodes are not changed. What now are the maximum
semibandwidth and the profile of [K}? How many “fills” will Gauss elimination
produce?

(a,b) Reverse the node numbering in Fig. 2.8-1a, so that 9 becomes 1, 8 becomes 2,
and so on. Do likewise for Fig. 2.8-1b. In each case, answer the questions posed in
Problem 2.8-1.

(a) Assume that the structure shown has one d.o.f. per node, and that each straight
line between nodes is a two-node element. Try to assign a node numbering that
minimizes the largest semibandwidth &,,,,. For this numbering, what arte b, pro-
file p, and the number of “fills” created by Gauss elimination?

(b) Repeat part (a), but now try to assign an alternative numbering that maximizes
b

max*

Problem 2.8-3 Problem 2.8-4

(a,b) Repeat Problem 2.8-3 with reference to the structure shown.

The stiffness matrix of Fig. 2.8-3a can be provided by an actual structure. Devise
such a structure, using linear springs and rigid blocks, in the manner of structures
considered in Problem 2.2-2.

Apply Gauss elimination to the stiffness equations that represent the inadequately
supported plane structures shown. In what equation does trouble appear, in the
form of a zero diagonal term? Could the step number be predicted in advance?

y’v
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(a) (b)
Problem 2.8-6
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2.8-7

2.8-8

2.8-9

(a) Each of the three bar elements has the same A and E. Each node acts as a hinge
connection. There are four active d.o.f.
(b) Use Eq. 2.3-5 to represent the unsupported beam.

The sketch shows an axially loaded structure and its structural equations after
boundary conditions have been imposed.

(2) Use Gauss elimination to solve for u,, u3, and u,.

(b) After the first elimination, what physical interpretation can be given to K,,?
And what interpretation to K3, after the second elimination?

(c) Structural equations can be written in the following form:

U, = (24 +6u3)/12 Uy = (24 +6u2 +6u4)/12 Uy = Uy

In Gauss-Seidel iteration, one solves the equations serially, using the most recently
calculated values of the u;in each equation. Thus, in the first iteration, starting with
Uy = u3 = uy = 0, one obtains u, = 2 from the first equation, then u; = 3
from the second equation, then u, = 3 from the fourth equation. Camy out
another three cycles of this process. (Note: There are ways to greatly increase the
convergence rate.)

2 3 4 [12 -6 o] u] (24
—y —>4 ¢ —u -6 12 -8 [u3}=[24]

P=24 P=24 0 -6 6](% 0

Problem 2.8-7

(a) For the structure of Problem 2.2-2(a), let all springs have the same stiffness .
Let all loads be zero but F,. Use Gauss elimination to determine the displacement
d.o.f. in terms of k and F,.

(b) For the same structure, change the loading so that all loads are zero but F;.
Determine the displacement d.o.f. in terms of £ and F,. However, rather than start-
ing over, use the triangularized matrix of part (a) to reduce the load vector, then
back-substitute.

(a,b) Repeat the instructions of Problem 2.8-8, but with reference to the structure
of Problem 2.2-2(b).

2.8-10 (a) In Fig. 2.5-2, let k = AE/L be the same for each member of the truss. Use

2.9-1

Gauss elimination to determine u;, v, and v5 in terms of stiffness k and load P.
(b) Use Eq. 2.5-10 and the results of part (a) to determine the support reactions.
Verify that these reactions and load P place the truss in static equilibrium.

The uniform bar shown carries uniformly distributed axial load g over its right
half. Determine the axial stress distribution in the bar, both with and without ele-
ment stress fields that exist when all nodal d.o.f. are zero. (a) Use one element of
length 2L. (b) Use two elements, each of length L.

Problem 2.9-1
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2.9-2 (a,b) Repeat Problem 2.9-1, but remove the support at the right end of the bar.

2.9-3 Solve the problem of Fig. 2.9-2(a) using two elements of equal length in span L.
Plot bending moment M in the beam using (a) M as produced by nodal d.o.f. only,
and (b) M as produced by nodal d.o.f. in combination with element M fields that
exist when all nodal d.o.f. are zero. -

2.9-4 Distributed lateral force ¢ and the slender cantilever beam are both uniform (see
sketch). Determine the tip deflection and root bending moment using consistent
nodal loads produced by g. Omit element M fields that exist when all nodal d.o.f.
are zero. Then repeat the calculation, this time using reduced nodal loads. (a) Use a
single element. (b) Use two elements of equal length.

a® a?

2 ‘(P(Lz L

93— x 2
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Problem 2.94 Problem 2.9-5

2.9-5 The uniform slender cantilever beam shown carries a concentrated lateral force P.
Model the beam by a single element.
(a) Calculate nodal d.o.f. v, using consistent nodal loads (shown in the sketch).
Express the answer in terms of P, L, E, I, and a.
(b) Again calculate v, now using reduced nodal loading (only force Pa/L atx = L).
(c) For part (a) and for part (b), calculate the ratio of the calculated v, to the exact
v, according to elementary beam theory. Plot these ratios versus a/L for0 < a < L.
(d) Use the nodal d.o.f. of part (a) to calculate bending moment M = Elv, at the
left end, without including the bending moment that exists when all nodal d.o.f. are
zero. Repeat for part (b). In each case compute the ratio of calculated end moment
to exact end moment, and plot these ratios versus a/Lfor0<a< L.

2.10-1 Repeat the example problem of Section 2.10, but alter support conditions by letting
~  the bar be fixed at its left end and free at its right end.

2.10-2 The bar shown is confined between rigid walls. Cross-sectional area A varies linearly
from Ay to 1.6A,. The bar is uniformly heated an amount AT from its stress-free tem-
perature. Calculate stresses in a model that contains three uniform elements, each of
length L;/3 and having the respective cross-sectional areas 1.14,, 1.34,, and 1.5A,,
On axes x (abscissa) and aL AT (ordinate), plot exact results and FE results.

Ao 1.64,
” N
Lr >

Problem 2.10-2

2.10-3 Remove load P in Fig. 2.5-2. Heat bar 2 only, an amount 7" degrees. Use the three-
step method described in Section 2.10 to determine nodal displacements and ele-
ment stresses. Let bar 2 have length 5a, where a is a constant.
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2.10-4 (a,b) Each beam shown is slender and has a solid rectangular cross section of
dimensions 2¢ by t. Each is loaded by a temperature field that is constant along the
beam but varies from +7 on the top surface to —T on the lower surface. In each
case use a single element and the three-step method described in Section 2.10 to
determine stress o, on the top surface as a function of x, E, a, T, and dimensions.

lk—%é -

(2) (b)
Problem 2.10-4

x

2.11-1 For the slender beam shown, decompose the problem into the sum of symmetric and
antisymmetric cases, then use beam theory to determine the deflection of load P in
terms of P, L, E, and I. Check the result by a handbook formula of beam theory.

|
- e
—%——

Problem 2.11-1

2.11-2 The ring shown is loaded in its plane by moments M, at opposite ends of a diame-
ter. For a complete solution, only the first quadrant need be modeled and analyzed.
‘What boundary conditions and loads are appropriate?

Problem 2.11-2 Problem 2.11-3

2.11-3 The half-ring shown lies in the xy plane and is symmetric about the yz plane. Loads

P and F are applied at points equidistant from the yz plane and act paralle] to it.
Symmetry conditions are to be exploited by analysis of only the half of the ring
that lies in the first quadrant. Fixed support is provided at the xz plane.
(a) At the yz plane, what displacement boundary conditions must be imposed on the
quadrant analyzed? At this location, which of the nodal loads are known to be zero?
(b) Reverse the directions of loads P and F in the first quadrant only, and answer
the questions posed in part (a).

2.11-4 The model shown is a square grillage of uniformly spaced beam elements that lie
in the xy plane and are welded together at nodes. Assume that all elements are
identical and that nodal d.o.f. are lateral (z direction) displacements w; and rota-
tions §; and 6,;. Supports impose w; = 0 at all nodes i on the square boundary of
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the grillage. Internal nodes are not restrained. In each part of this problem, lateral
(z direction) forces of magnitude P act on internal nodes as described below. State
what portion of the grillage constitutes the smallest acceptable model, and what its
boundary conditions must be, if:

(a) Each node carries a load P, all acting in the same direction.

(b) Loads P act upward for y >0, act downward for y <0, and are omitted on
y = 0.

(c) Loads P alternate in direction by quadrant. That is, they act upward in the first
and third quadrants, downward in the second and fourth quadrants, and are omitted
on x and y axes.

(d) Loads P alternate in direction by octant.

y

Problem 2.11-4 Problem 2.11-5

2.11-5 The sketch represents a uniform rectangular plate with lateral load P applied at one

corner. Imagine that the FE mesh (not shown) is uniform and is supported by a uni-
form elastic foundation. The d.o.f. at each node are lateral displacement w; and
rotations 6,; and 6,;. Describe how the entire plate under the given loading can be
analyzed for lateral deflection w = w(x,y) by analyzing a single quadrant four
times, each time using different loading and/or support conditions, or then super-
posing results.

COMPUTATIONAL PROBLEMS

In the following problems, compute peak values of displacement and stress or bending
moment. Exploit symmetry where possible. When mesh refinement is used, estimate the
maximum percentage error of results provided by the finest FE mesh. Where dimensions
or loads are not assigned, choose values that seem reasonable or convenient. Where mate-
rial properties are needed but not stated, use properties of steel. Apply the analysis meth-
odology suggested in Section 1.5.

C2.1 (a) Does the software you use include transverse shear deformation in beam ele-

ments? Rather than consulting program documentation, find out by devising and
running simple cantilever beam test cases.

(b) Similarly, consider uniformly distributed load on a beam. Analyze it using con-
sistent nodal loads, then reduced nodal loads (Section 2.9). Then analyze again,
this time obtaining loads automatically by using the gravity load option in FE soft-
ware. Which nodal load formulation appears to be coded in the software?
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C2.2 Use FEA software to determine displacements due to load P in Problem 2.5-7.

C23

C24

Compare computed results with results determined by hand calculation in Problem
2.5-7. In computation, include cases for which angle ¢ is very small.

A stepladder contains a linkage mechanism that permits the ladder to be folded, as
shown. As a simple idealization, a stepladder can be analyzed as a plane structure.

(a) Do an analysis for a load P acting downward on top of the ladder. Use the sim-
plest workable FE model. Both bar and beam elements may be needed.

(b) Do an analysis for load P on a step of the ladder. Modify the FE model of
part (a) only to the extent necessary.

(c) Repeat the foregoing stepladder analyses, but improve the model by making it a
three-dimensional structure. Obtain dimensions by measuring an actual stepladder.

fe—z—>

| L } L —s

Problem C2.3 Problem C2.4

Members of the plane structure shown may be bars connected by pins to create a
truss, or beams rigidly connected at joints to create a frame. For the frame model,
nodal rotations at the wall may be either permitted or prohibited. Investigate how
displacements and stresses differ between the truss model and the frame model.
Assume that all members have a square cross section, b units on a side. Suggested
casesinclude b = Smm, b = 15mm, and b = 30 mm; also H = 120 mm and
L = 160 mm. Unitload P = 1.0 N is convenient.

Members of the plane structure shown may be bars connected by pins to create a
truss or beams rigidly connected at joints to create a frame. Investigate how dis-
placements and stresses differ between the truss model and the frame model.
Assume that all members have a square cross section. Dimensions shown are in
meters. Loading may be by uniformly distributed load g or by the weight of the
structure itself. Obtain nodal loads by the reduced approach described in
Section 2.9. (It is also instructive to omit diagonals from the frame model, so that
upper and lower chords are connected only by vertical members.)

i 6@1.6=96 I'

Yy vy

17 1.5

Problem C2.5
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C2.6

C2.7

C2.8
C29

C2.10

C2.11

C2.12

ONE-DIMENSIONAL ELEMENTS AND COMPUTATIONAL PROCEDURES

Analyze the circular ring shown in Fig. 2.13-2, but with loads F directed normal to
the plane of the ring and alternating in direction from one load to the next. Let
= 80 mm, and let the cross section be circular and of diameter 6.0 mm.

Consider the tapered beam shown in Fig. 2.12-2a. Let the beam have unit thickness
normal to the figure, and let depth % vary linearly in the axial direction. Confine
displacements to the plane of the figure. Suggested cases include the following.
@L =Ly, =5 =200mm, ~#; = by = 40mm, s, = 20 mm

®bLy =L, =5 =200mm, hy = hy = 20mm, s, = 40 mm

©L; =200mm,L, = 0,s = 80mm, s = 40mm, s, = h, = 20 mm
(a,b,c) Repeat Problem C2.7, now letting an end of the beam be simply supported.

Consider the problem of a plane beam on a continuous “Winkler” elastic founda-
tion [2.6]. The foundation can be represented by discrete springs that connect
nodes of an FE beam model to a rigid support (see sketch). This is not the best FE
representation of the problem, but it is instructive to discover how displacements
and bending moments in the FE beam model converge toward exact results as the
mesh is refined. Analytical solutions for straight beams with various arrangements
of loading and support are available [1.16]. A circular ring built of straight ele-
ments can also be investigated, under loads normal to the plane of the ring.

/‘ Typical beam element

L
=

< <
= =

h—e

L
=
=

Problem C2.9

Idealize a bicycle wheel as a planar structurc having 36 radial spokes. Properties
are as follows [2.23]. Spokes: diameter = 2.1 mm, E = 210 GPa,
length = 309.4 mm from the center of the wheel to the centroidal axis of the rim
cross section. Rim: A = 138.4 mm?, E = 70 GPa, v = 0.33, centroidal / of
A = 1469 mm* I/c = 176 mm? (for stress calculation). Assume that initial ten-
sion in the spokes is sufficient to maintain tension in every spoke when load is
applied. Consider the following loadings:

(a) A vertical force of 490 N applied by the road.

(b) A force of 100 N applied tangentially by caliper brakes at the top of the wheel.

The structure shown has unit thickness nonnal to the figure. Depth 4 of the cross
section varies linearly in the circumferential direction. Confine displacements to
the plane of the figure. Some possible choices of geometry are as follows.

@ ¢, = 45° ¢, = 90°, R = 500mm, h; = h, = 30mm

b)¢, = 20°, ¢, = 40°R = 500mm, 4, = hy = 30 mm

)¢ =20°% ¢, = 90°%R = 500mm, sy = hy, = 30 mm

d ¢; = 20° ¢, = 90°,R = 500 mm, #; = 30mm, 2, = 10 mm

Problem C2.11 can be repeated with either end or both ends simply supported. Uni-
form or nonuniform temperature change can be applied. Additional loadings may
include prescribed zero or nonzero values of translational and/or rotational d.o.f. at
one end.
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t: 1N (unit load)

¢2

Problem C2.11

C2.13 Uniform pipes, each fixed at one end, lie in a horizontal xy plane and intersect at
right angles, where they are welded together (see sketch). A steel rod BD of cross-
sectional area 100 mm? connects B to fixed support D. The pipes have the hollow
circular cross section shown. All members are steel. Determine the largest deflec-
tions and largest stresses in each member.

(a) Omit pipe AB, so that only pipe BC is present, supported by hanger BD.
(b) Include both pipes and hanger BD in the analysis.

Lip=20m

LBC= 30m

Lgp=10m

Problem C2.13

C2.14 Apply loading directed normal to the plane of the structure analyzed in
Problem C2.4. Load(s) may be applied to joints or to members between joints. Let
members have a circular cross section.

C2.15 Use the structure geometry described in Problem C2.11, but orient load P so that it
acts normal to the plane of the figure. Let # represent the diameter of a solid
circular cross section. Alternative loadings and support conditions suggested in
Problem C2.12 may also be addressed. End loading may include torque or
prescribed angle of twist.



CHAPTER

BASIC ELEMENTS

Most elements in common use are displacement-based. This chapter discusses interpola-
tion and simple elements based on displacement fields, and shows how their stiffness
matrices are formulated. Additional formulation procedures, and similar elements of more
general shape, are discussed in subsequent chapters.

An understanding of element displacement fields, and especially of shortcomings an
element may have because of its displacement field, is needed in order to prepare a good
FE model and to properly check computed results.

3.1 PRELIMINARIES

Few elements can be formulated using the direct method, as applied to bars and beams in
Chapter 2. In general, formulation of elements for structural mechanics relies on long-
established tools of stress analysis, including stress-strain relations, strain-displacement
relations, and energy considerations [3.1]. In this chapter we state formulas in rectangular
Cartesian coordinates. Analogous formulas in polar and cylindrical coordinates are stated
where needed. Formulations for problems other than structural mechanics appear in subse-
quent chapters.

Stress-Strain Relations. Let {¢} be the array of stresses and {e} the array of strains.
Subscripts zero indicate initial values. Constitutive matrix [E] contains elastic constants.
For linearly elastic conditions, stress-strain relations can be stated in the matrix forms

{o} = [El{e} + {gg} or {o} = [El({e} - {&})
where {og} = ~[El{&g} (3.1-1)

This relation is valid in one, two, or three dimensions. For a uniaxial stress state, with no
initial stress, it is simply o = Eg, where E is the elastic modulus. In two dimensions, with
x and y as the in-plane coordinates, Eq. 3.1-1 is

Stresses = Constitutive matrix X  Strains + Initial stresses

o, Ey Eyy Ey3 &y Oro

(3.1-2)
o,0 = |Ey Ep Ep I R
Tyy E3 Eg) Esy Yy Tey0

78



3.1 Preliminaries 79

Constitutive matrix [E] is symmetric; E; = Ej;. [E] can represent isotropié‘ or anisotropic

material properties. For isotropy and plane stress conditions (o, = 7,, = 7,, = 0), [E]
and its inverse are
E 1 v 0 1/E -v/E 0
[El=—|» 1 0 [EI'=|-wE 1/E 0 (3.1-3)
1=v10 0g-wr2 0 0 1/G

where v is Poisson’s ratio and G = 0.5E/ (1 + v) is the shear modulus. (For plane strain
conditions, namely £, = y,, = ¥, = 0, see Eq. 3.4-11). Inverting Eq. 3.1-1, we obtain

General form: For isotropy and plane stress conditions:

e =0/E- voy/E+ €.

{e} = [ET{o} + (&} g =-vo/E+a/E+ &

30 (3.1-4)

Yy = 'rxy/ G+ Yxy0

Initial strains {&;} may have various causes, including temperature change and swelling
due to moisture or radiation. If convenient, in order to account for initial effects from the
simultaneous action of two or more sources, {&,} and {g,} can both appear in the stress-
strain relation. If the material is isotropic and initial strains are produced by temperature
change T, then &4 = &y = aT and vy, = 0, where « is the coefficient of thermal
expansion, here assumed to be independent of temperature. Temperature T is measured
relative to a reference temperature, perhaps room temperature, at which the body may be
regarded as free of stress.

In three dimensions, [E] is a symmetric 6 by 6 array that relates stresses {g} =
lo, 0y 0, T, T, TUJTand strains {e} = | &, & & Yy Yy 'quT.
For the case of isotropy and initial strains caused by temperature change 7, nonzero entries
in [E] and {g;} are

E\ = Ey = Ey3 = (1-v)c £ = afF
Ey=FEy =Ex=6G £, = aT (3.1-5a)
Ep=E) =E3=Ey =E3y=Ep=vc  g&g=al )
where ¢ E E (3.1-5b)

STewacam ™ STaaew

Analogous coefficients for an orthotropic material are stated in Egs. 10.5-1.

Temperature may vary from one part of a body to another, and it may happen that mate-
rial properties are temperature-dependent. Then [E] must contain terms appropriate to the
temperature at the location where [E] is used. And, if « is a function of temperature, aT
must be replaced by a,,.I, so that a,,.T is equal to the integral of o dT over the tempera-
ture range imposed. If material properties are stress-dependent, the problem is nonlinear
(see Chapter 17).
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Strain-Displacement Relations. A displacement field describes how a body deforms as
well as how it displaces. Strain-displacement relations extract the strain field contained in
a displacement field and play a prominent role in formulating commonly used elements.

To obtain formulas, we use engineering definitions of strain. Normal strain is change in
length divided by original length; shear strain is the amount of change in a right angle.
Deformations shown in Fig. 3.1-1 provide formulas shown for strains &,, &y, and Yay in the
xy plane. In general, x-direction displacement u and y-direction displacement v are func-
tions of the coordinates; ¥ = u(x,y) and v = wv(x,y). Therefore, we must use partial
derivatives. Doing so, and letting Ax and Ay approach zero, we obtain the two-dimensional
strain-displacement relations

ou Jov ou Jdv

= = = =+ 3.1-
a7 T o Twm (3-1-6)
Subsequently it will be convenient to use a comma to denote partial differentiation with
respect o the subscript that {ollows. In this notation, Eqs. 3.1-6 are

e = u, e, = v,

'y '),xy = u’y + v,x (3.1—7)

In three dimensions, displacements in coordinate directions x, y, and z are u = u(x,y,2),
v = v(x)y2),and w = w(x,)y,2), and Egs. 3.1-7 are supplemented by the relations

g =W, Yoz = U + Wy Yoo = Wiy t U, (3.1-8)

In matrix operator format, for 2D and 3D cases respectively, the strain-displacement
relations are

- i}
3 0 0
o 3
U x 0o 2 o
9 0 £ dy
£, ox Y ] ~
y e, o 0 £
e, L = 9 { } ) R z (3.1-9)
y 0
9| (v Yay 9 9
Yxy 9 0 y dy ox
| dy Ox | ” 0 9
_yzx az ay
d d
0

Symbolically, for both of Egs. 3.1-9 and for strain-displacement relations in general, we
write

{e} = [d]{u} (3.1-10)
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& _A! & =M =£‘ L
= Ay Y~ Ay Av Yoy Ay = Ax
Au
Au_)1 l(_ ,—----—--—"—1L —)I I(— ————— =77
_ = !
Ax : Ax ;li ‘,l’- Ax ’l
1
1
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Figure 3.1-1. An infinitesimal rectangle, subjected to (a) x-direction normal strain, (b) y-direction
normal strain, and (c) shear strain.

Compatibility. When a body is deformed without breaking, no cracks appear in stretch-
ing, no kinks appear in bending, and material particles do not interpenetrate. Stated
more elegantly, the compatibility condition requires that displacements be continuous
and single-valued functions of position.

In a plane problem, the compatibility equation is &, ,, + &, = 7Yy, [3.1,3.2]. This
equation states the relation among strains that must exist if the compatibility condition is
to be satisfied. There are additional equations for a three-dimensional problem. Arbitrarily
assumed expressions for &, &, and 7,, may not satisfy the compatibility equation, but
arbitrarily assumed displacement fields are certain to satisfy it, provided they are single-
valued and continuous, as may be verified by substituting Eqgs. 3.1-6 into the compatibility
equation. One reason for the widespread use of displacement-based finite elements, which
use assumed polynomials as displacement fields, is the ease with which compatibility can
be satisfied.

Equilibrium Equations. Figure 3.1-2a shows stresses that act on a differential element in
a two-dimensional problem. In rectangular Cartesian coordinates, we now develop equa-
tions stating that the differential element is in equilibrium under forces applied to it.
Forces come from stresses on the sides and from body forces.

Body forces, F, and F, in x and y directions respectively, are defined as forces per unit
volume, positive when acting in positive coordinate directions. Body forces can be pro-
duced by gravity, acceleration, a magnetic field, and so on. On each differential element of
volume (dV = tdxdy, wheret = thickness), F, and F, produce differential forces F, dV
and F, dV. In general, body forces and stresses are functions of the coordinates. Thus, for
example, o, , is the rate of change and o, , dx is the amount of change in o, over distance
dx. For uniform thickness ¢, static equilibrium of forces in the x direction requires that

—otdy — T tdx + (0, + 0, dX)tdy + (’Txy + Ty dytdx+ Ftdxdy =0 (3.1-11)
There is a corresponding y-direction equation of equilibrium. After simplification, the dif-

ferential equations of equilibrium for a plane (2D) problem are as follows. For reference,
analogous equations for a solid (3D) problem are also stated here.
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2D: 3D:
x direction: Oy xt Ty tFy =0 Oy xt Tayyt T v F, =0
y direction: Tyt 0y, +F, =0 Tayxt Oyt Ty + F =0 (3.1-12)
z direction: (not used) Toex ¥ Typy T 0t F, =0

Although derived for static conditions, Egs. 3.1-12 can also be used if acceleration is
present, provided that F,, F,, and F, include d’Alembert or “effective” body forces per
unit volume. For example, if there is x-direction acceleration a,, then F, must include the
inertial force term —pa,, where p is the mass density. Whether in two dimensions or
three, equilibrium equations can be symbolized as

©17{c} + {F} = {0} (3.1-13)

where [d] is given in Egs. 3.1-9 and, in 2D and 3D rectangular Cartesian coordinates
respectively, {F} is | F, FyJT or|F, F, FZJT.

Boundary Conditions. Boundary conditions include prescriptions of displacements or
stresses on sides or surfaces of a body. For example, in the plane problem of Fig. 3.1-2b,
the rigid support implies that u = v = 0 along the left side. Stress boundary conditions
prevail along the remaining sides: 7, = 0 and 0y, = - p along the top side, o, = 0
and 7, = 0 along the right side, and o, = 0 and 7,, = 0 along the boitom side.

In general, distributed load can act tangent to a boundary as well as normal to it. On any
boundary, including one not perpendicular to a coordinate axis, normal and tangential
loads can be expressed as surface tractions, which are forces per unit of surface area,
directed parallel to the coordinate axes. In rectangular Cartesian coordinates xyz, surface

tractions {®} are

(I)x (I)x = la'x+m'rxy+n'rzx
{®} = <I)y where (I)y = I1,,+mo, +nT, (3.1-14)
o, e, = l'rzx+m'ryz+n0'z

in which /, m, and » are direction cosines of a vector normal to the surface. When Egs. 3.1-14
are satisfied, each differential element of the surface is in equilibrium under the action of sur-
face tractions and internal stresses (evaluated at the surface). Such is also the case on a por-
tion of the boundary where displacements rather than tractions are prescribed, but tractions
applied by a support are not known a priori and are usually not calculated in the course of a
solution.

Exact and Approximate Solutions. An exact solution must satisfy compatibility, equi-
librium, and boundary conditions. For example, if we begin with a compatible displace-
ment field, we can obtain strains from Eq. 3.1-10 and then stresses from Eq. 3.1-1. If these
stresses satisfy Eq. 3.1-13 at every point throughout the volume of a body, and all bound-
ary conditions are satisfied, then we have obtained the exact solution of the mathematical
model (which is subject to basic assumptions such as linearity of the stress-strain relation
and smallness of displacements). This is easy to say but difficult to do. Exact solutions are
known only for simple combinations of geometry, loading, and support conditions.
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Figure 3.1-2. (2) Stresses and body forces that act on a plane differential element of
uniform thickness. (b) Tapered cantilever beam with pressure p on its top surface.

Finite elements based on displacement fields do not satisfy equilibrium conditions at
every material point. Instead, displacement-based elements satisfy Eqs. 3.1-13 and 3.1-14
in an integral or average sense. The matter is more fully explained in Chapters 4 and 5,
where generally applicable methods of formulating approximate solutions are discussed.

Other Problems. The foregoing formulas of structural mechanics have counterparts in
other areas. Details appear as needed in subsequent chapters. Here we briefly compare
basic equations of structural mechanics and heat conduction. First we note that heat con-
duction is a scalar problem because the field quantity, temperature 7, has no direction
associated with it. In contrast, the displacement field of structural mechanics is a vector
field having components in coordinate directions. The following list is for static (steady-
state) conditions:

Quantity Structural mechanics Heat conduction
Independent variables Coordinates x, y, z Coordinates x, y, z
Dependent'variable(s) Displacements u, v, w Temperature T
Field gradient Strains &, &, ¥y etc. {Vr} = |T,, T, T,zJT
Constitutive matrix Elastic constants [E] Thermal conductivities [K|
Induced field Stresses {0} = [E]l{&} Heat fluxes {f} = —[«]{VT}
Surface load Tractions {®} on boundary Normal flux f,, at a boundary
Internal load Body forces F,, Fy, F, Internal heat generation O
Equilibrium equation [(017{o} + {F} = {0} fox+fyy +f, -0 =0

3.2 INTERPOLATION AND
SHAPE FUNCTIONS

To interpolate is to devise a continuous function that satisfies prescribed conditions at a
finite number of points. In FEA, the points are nodes of an element, and the prescribed
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conditions are nodal values of a field quantity (and perhaps its derivatives as well). Nodal
values are rarely exact, and even when they are, interpolation generally provides approxi-
mate values at other locations. In FEA, the interpolating function is almost always a poly-
nomial, which automatically provides a single-valued and continuous field.

In terms of generalized d.o.f. g;, an interpolating polynomial with dependent variable ¢
and independent variable x can be written in the form

¢ = za,.x“ oo ¢ =|X]{a} (3.2-1a)
=0

in which
Ix]=|1 x & x| and {a)=|a, a; a a,|T (32-1b)

where n = 1 for linear interpolation, n = 2 for quadratic interpolation, and so on. The ag;
can be expressed in terms of nodal values of ¢, which appear at known values of x. The
relation between nodal values {d,} and the a; is symbolized as

{$.} = [Al{a} (3.2-2)

where each row of [A] is [X] evaluated at the appropriate nodal location (examples fol-
low). From Eqgs. 3.2-1 and 3.2-2 we obtain

¢ = INJ{$,} where [N]=|XJAI! =[N Ny o] (3.2-3)

An individual N; in matrix IN] is called a shape function. The name basis function is
sometimes used instead. Each N, states the interpolated ¢ = ¢(x) when the correspond-
ing ¢; is unity and all other ¢; are zero. In FEA, assembly of elements causes element
nodal values {¢,} to appear in {D}, the global vector of d.o.f. Thus, in FEA, {¢,} for each
element is determined by solving global equations [K]{D} = {R}.

Degree of Continuity. Field quantity ¢ is interpolated in piecewise fashion over an FE
mesh. That is, each “interpolation piece” is defined only within its element. So. while ¢
can be guaranteed to vary smoothly within each element, the transition between elements
may not be smooth. The symbol C™ is used to describe the continuity of a piecewise field.
A field is C™ continuous if its derivatives up to and including degree m are interelement-
continuous. Thus, in one dimension, ¢ = ¢(x) is C° continuous if ¢ is continuous but ¢, "
is not, and ¢ = ¢(x) is C! continuous if both ¢ and ¢,, are continuous but ¢,,, is not.
These two cases are illustrated in Fig. 3.2-1, where x = a represents an interelement
boundary. In general, it is necessary that derivatives of ¢ of order m be included as nodal
d.o.f. if field ¢ is to be C™ continuous.

The C™ terminology is also applied to element types. In Chapter 2 we encountered the bar
element and the beam element, which are types of “C° element” and “C" element” respec-
tively. Usually, C° elements are used to model plane and solid bodies. C* elements are used
to model beams, plates, and shells, thus providing interelement continuity of slope.
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Figure 3.2-1. Function ¢, is C° continuous. Function ¢, is C! continuous.

C? Interpolation. We begin with linear interpolation between points (x;,¢) and (x,,&,),
forwhich|X] = |1 xJin Eq. 3.2-1. Evaluating | X | at points 1 and 2, we obtain

{d)l} = [A]{a(’} where  [A] = [1 xl] (3.2-4)
b, a; 1 x,

Inverting [A] and using Eq. 3.2-3, we obtain

Xp—=%11 -1 1 X=Xy X=X

(AT = ;[xz _xl} and |NJ = [xz_x aliet! J (3.2-5)

The two linear shape functions N; and N, are shown in Fig. 3.2-2a. This example displays
the simplest interpolation used in FEA. In formulating properties of a two-node element of
length L, we willuse x; = 0,x, = L, and nodal d.o.f. ¢; and ¢,.

N, = (2 = X)(x3 — 1)

(x2 — x)(x3 — xp)

X2 =X

X1 - 17)(153 - x3)

N. o — X)) — X)) — X — x)
3 (xl — x3)(xz — X3)

‘ & &
L e {
X2 X3 %

(@ (b)

Figure 3.2-2. (a) Linear interpolation and shape functions. (b) Quadratic interpolation
and shape functions.
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Quadratic interpolation fits a parabola to the points (x;,¢;), (x,,¢$,), and (x3,¢3). These
points need not be equidistant. Now [(X] =11 x »*] and Eq. 3.2-2 becomes

¢, 0 1 .xi x7
bt = [ARq where [Al = [1 x, x3 (3.2-6)
b3 a, 1 x3 x3

Equation 3.2-3 yields | N|, whose individual shape functions are shown in Fig. 3.2-2b.

Results shown in Fig. 3.2-2 can be regarded as particular instances of Lagrange’s inter-
polation formula, which provides the following shape functions for a curve fitted to ordi-
nates at n points.

(2, = X) (3 — 1)+ (x, = ) (= x) (x5 = 1)+ (x, )

N; = R N, = S
! 2 (2 = %) (X3 = x5) -+ (%, = X3)

- (%3 = x) (x5 = xp) - (%, — %)

etc.

(3.2-7a)

or more generally

(x; =x)(xy =) [x —x] -+ (x,,— x)
N, = 3.2-7b
k (%1 = x) (xg = %) -~ g — xp ] -+ (%, — %) ( )

in which the bracketed terms are omitted to obtain the kth shape function. For linear inter-
polation, N’s and x’s having subscripts greater than 2 do not appear; for quadratic interpo-
lation, N’s and x’s having subscripts greater than 3 do not appear; and so on. The foregoing
shape functions have the following characteristics:

« All shape functions N;, along with function ¢ itself, are polynomials of the same degree.
* For any shape function N;, N; = 1 whenx = x;and N; = O when x = x; for any
integer j # i. That is, NV, is unity at its own node but is zero at other nodes.

» (9 shape functions sum to unity; that is, ZN,- = 1. This conclusion is implied by
Eq. 3.2-3, because we must obtain ¢ = 1 when {¢,]} is a column of 1’s.

Lagrange’s interpolation formula uses only ordinates ¢ in fitting a curve. Slope informa-
tion is not used, so Lagrange interpolation may display slopes at nodes other than those
desired (see Fig. 3.2-3a). Use of both ordinate and slope information in curve fitting,
sometimes called Hermitian interpolation, is described as follows.

ct Interpolation. Consider a cubic curve ¢ = ¢(x), whose shape is determined by four
data items. We take these items to be ordinates ¢; and small slopes (d¢/dx); at either end of
a line of length L, as shown in Fig. 3.2-3b. Now [ X] = [1 x £ 2], and upon evaluat-
ing ¢pand ¢, atx = Oandatx = L, Eq. 3.2-2 becomes
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Figure 3.2-3. (a) The solid line is a C° cubic interpolation fitted to ordinates of four
points on the dashed line. (b) A cubic interpolation curve based on ordinate and
slope information at end points.

b, ag

10 0 0
. a, 01 0 0
= [A] where [A] = 2 3 (3.2-8)
¢2 a, 1 L L L
s a5 01 2L 31

The four shape functions produced by Eq. 3.2-3 turn out to be the four lateral dis-
placement nodes of a beam shown in Fig. 2.3-1. These shape functions are repeated in
Fig. 3.2-4, where their behavior at end points is listed. In Section 3.3 we illustrate how
these shape functions can be used to generate the stiffness matrix of a beam element.

2D and 3D Interpolation. Interpolations described thus far use a single independent
variable. In two- or three-dimensional problems, two or three independent variables are
needed. These interpolations are extensions of one-dimensional interpolations and are
described where they are used. When there are two or three dependent variables, such as
displacement components in 2D or 3D problems, usually all components are interpolated
using the same shape functions, as we will see shortly.

x=0 x=1L Atx =0 Atx =L
| L |
I ‘ N; Nix N; Ni,x
3x2  2x3
il\ N =1 12 F 1 (1] 0 0
3
N, =x - 2_1_2 + x_z 0 1 0 0 )
L L Figure 3.2-4. Shape
2 . .
) n,- 3iz _ @ 0 0 | o  functions of a cubic
N L curve fitted to
2 x3 ordinates and
—@ Ne=-Z4+ X 0 ] 0 1
,( L re slopesatx = Qand

x = L.
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3.3 FORMULAS FOR ELEMENT MATRICES

In this section we use the principle of virtual work to obtain formulas for the. element stiff-
ness matrix and for load vectors associated with initial strains, body forces, and surface
tractions. These results apply to commonly used elements, which are based on interpola-
tion of displacements from nodal d.o.f. The same results can be obtained by alternative
methods discussed in Chapters 4 and 5 that yield further insight into the nature of FEA and
permit its extension to problems other than structural mechanics. The virtual work
approach provides essential formulas without requiring much mathematics.

A virtual displacement is an imaginary and very small change in the configuration of a
system. For analysis purposes we imagine that a virtual displacement takes place relative
to the equilibrium configuration (when all loads have been fully applied), and that the dis-
placement is admissible. An admissible displacement does not violate compatibility or
displacement boundary conditions. Neither loads nor stresses are altered by a virtual dis-
placement. The principle of virtual work, also known as the principle of virtual displace-
ments, can be stated in the form [3.2]

J{as}T{u} dv = J{au}T{F} av + I {6u)T{®} dS (3.3-1)

Here {8€} is the vector of strains produced by Eqgs. 3.1-9 and virtual displacement {éu},
where {Su} = |éu &v wl'. The symbol & has the same meaning as d for differential,
but by convention & is used when displacements are virtual. In words, Eq. 3.3-1 says that
for any quasistatic and admissible virtual displacement {du} from an equilibrium configu-
ration, the increment of strain energy stored is equal to the increment of work done by
body forces {F} in volume V and surface tractions {®} on surface S.

Equation 3.3-1 can also be obtained by multiplying the left-hand sides of the equilib-
rium equations, Eq. 3.1-13, by {8u}, integrating over the volume, and using integration
by parts to change the form. This approach, described in the latter part of Section 4.7,
makes plausible the statement that displacement-based finite elements satisfy differential
equations of equilibrium in an average or integral sense.

Let displacements {u} be interpolated over an element in the same way as ¢ in Eq. 3.2-3,
that is

{u} = [N}{d} where f{u}=1Ilu v wl (3.3-2)

and {d} lists the nodal displacement d.o.f. of an element. Examples appear in subsequent
sections. Strains are determined from displacements according to Eq. 3.1-10; that is
{e} = [d]{u}. Hence

{e} = [Bl{d} where [B] = [d][N] (3.3-3)
Matrix [B] is called the strain-displacement matrix. From Eqgs. 3.3-2 and 3.3-3 we obtain
(du}? = (8d}TIN]T and  {8e)T = {8a}7[B]T (3.3-4)

From Eq. 3.1-1 (the stress-strain relation, now including both initial strain and initial stress
for the sake of generality), and Eqgs. 3.3-1, 3.3-3, and 3.3-4, we obtain
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{ad}TU (BI[E][B] 4V {d} - j[B]T[El{so} dv + I B) {oy) @V ;
- j INIT{F} dv- J INTT{®} dS) =0 (3.3-5)

Vectors {8d} and {d} do not appear within integrals because they are not functions of the
coordinates. Equation 3.3-5 must be true for any admissible virtnal displacement {&d}
from the equilibrium configuration. Therefore Eq. 3.3-5 yields

[kl{d} = {r,} (3.3-6)

where the element stiffness matrix is
k] = I[B]T[E] [B] dV (3.3-7)

and the vector of loads applied to structure nodes by elements, due to all sources but ele-
ment deformation, is

(r,) = j[N]T{F} av + j[N]T{rb} ds + J.[B]T[E]{so} av - j BT{oo) AV (33-8)

This equation defines “consistent” nodal loads, which means that {r,} is determined by
use of the same shape functions as are used to determine the element stiffness matrix.
Examples of consistent loads {r,} for bar and beam elements appear in Section 2.9.

Assembly of elements to form an FE structure can be indicated by adding a summation
sign before the entire left-hand side of Eq. 3.3-5. Thus we are led to the assembly process
described in Section 2.5. That is, element matrices are conceptually expanded to “structure
size” and their terms rearranged as necessary, followed by addition of overlapping terms.
In this step we can also add concentrated loads {P} applied directly to nodes. The result is
structure equations [K]{D} = {R}, as stated by Eq. 2.5-4.

In a particular problem, any integral on the right-hand side of Eq. 3.3-8 may vanish.
Even when present, an integral may vanish for most elements. For example, {0} may be
nonzero only for elements in a portion of the structure, and {®} is nonzero only for ele-
ment surfaces that lie on the boundary of the structure and are loaded by surface traction.

Bar Element. A simple example confirms that Egs. 3.3-7 and 3.3-8 provide the same
results as obtained in Chapter 2. For the bar element in Fig. 3.3-1a, we set x; = 0 and
¥, = LinFig. 3.2-2a. Axial displacement is linearly interpolated from nodal d.o.f. x; and
u,. Thus the shape function and strain-displacement matrices are

INJ =[L%x ,’-jJ LBJ=d£xLNJ=[:L1 %J (33-9)

With E and A both constant, Eq. 3.3-7 yields the element stiffness matrix
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L —
k] = I |IBJE |BlA dx = ‘S‘Lf [_i ﬂ (3.3-10)
0

which agrees with [k] in Eq. 2.2-1. In Eq. 3.3-8, {®} dS becomes force P and LN is eval-
vated at x = L/3. If there is also initial stress o due to a uniform temperature change T,
Eq. 3.3-8 yields

L -
{r,} = I_NL/SJTP—J (B (-Ean)A dx = {ZP/ 3}+ EAaT{ 1} (3.3-11)
0 P/3 1

which agrees with the results in Figs. 2.9-1a and 2.10-1b.

An initial lack of fit, as for a bar initially AL units too long, is accommodated by taking
the initial stress as oy = —Egy = —E(AL/L). This initial stress can be superposed on
initial stress due to a temperature change.

Beam Element. As another simple example, we can confirm the results obtained in
Chapter 2 for a uniform beam element without transverse shear deformation.

In formulating a beam element, we deal with bending moment M and curvature « rather
than stress and strain. In the first integral of Eq. 3.3-1, the integrand becomes (8«)7 M dx.
For a uniform beam element, Fig. 3.3-1b,

v, _|NJa) « = [BJ) 53.12)
X

d

2
M=EIZK K = =—

where v = »(x) is lateral displacement. Nodal d.of. are {d} = |v; 6, o, 022JT.
Using shape functions listed in Fig. 3.2-4, we obtain

2 -
LBJ=d—2|_NJ=[—%+-1%J-C -‘-‘+§’-2‘ S _12x -3+6—’,_fJ (3.3-13)
dx L L L LI I L L L

With E and I, both constant, the element stiffness matrix is

12 6L -12 6L

L EI 2 . 2
k] = j |BYEL B ax = —2| OL 4L 6L 2L (3.3-14)
6 3| -12 6L 12 -6L

6L 21* —6L 41>

which agrees with [K] in Eq. 2.3-5.

To obtain nodal loads produced by the uniform downward load g in Fig. 3.3-1b, we use
the second integral in Eq. 3.3-8, with {®} = —g and dS = dx. Results turn out to be the
same as shown in Eq. 2.9-2 and Fig. 2.9-2a. To similarly treat thermal load, we use the
third integral in Eq. 3.3-8, with {0} replaced by m; and dV replaced by dx. If for example
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Figure 3.3-1. (a) Uniform bar element with concentrated load P at the one-third point. (b) Uniform
beam element with uniformly distributed downward load of intensity g.

the beam cross section has two axes of symmetry and depth 2¢, and temperature varies lin-
early from — T at the upper surface to + T at the lower surface, then

aT El aT
my = —EIZKO Ky = _C_ {l'e} = z

lo -1 0o 1f (3.3-15)

[

This load vector consists of equal and opposite moments applied to nodes at element ends.

3.4 LINEAR TRIANGLE (CST)

A linear triangle is a plane triangle whose field quantity varies linearly with Cartesian
coordinates x and y. In stress analysis, a linear displacement field produces a constant
strain field, so the element may be called a constant-strain triangle (CST).

For convenience of explanation only, we place node 1 atx = y = 0 and side 1-2 along
a local x axis (Fig. 3.4-1). This choice [3.3] causes no loss of generality in a scalar field
element, but would require a final coordinate transformation to obtain a generally applica-
ble element for stress analysis. A formulation that accommodates an element arbitrarily
oriented in global coordinates appears in Chapter 7.

Scalar Field Element. In terms of generalized d.o.f. a;, field quantity ¢ is interpolated
over the element by the polynomial
a4

=11 x yla, (3.4-1)

a3

Evaluating this expression at the nodes in Fig. 3.4-1, and noting thatx; = y; = y, = 0,
we obtain

o) 4 1 0 0
¢, b = [Alda, where [Al=| 1 x, O (3.4-2)

?3 as I x3 3
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Figure 3.4-1. Linear triangles. (a) Scalar field element. (b) CST element for 2D stress analysis.

Matrix [A] is already triangularized, allowing solution for g;’s in terms of ¢;’s by forward
substitution, analogous to the back substitution of Gauss elimination (Section 2.8). Thus

we obtain
X, —X x
B T Y W e W (34-3)
X2¥3 V3

a, = ¢ = ————¢2—¢l a
1 1 ay X, 3 %,

Hence, for the element in Fig. 3.4-1a, the interpolated field ¢ = [NJ{d} is

[ 1 0 0]
# 11
6=11 x ylAl !¢, where [Al' =| * X
\—’—J
LN b3 I S B S
| Y3 X3 Vs
(3.4-4)
Gradients of the field are
. 5
. 9/9x
{ ¢x} = [B] ¢, where [(B] = {a /ay}LNJ (3.4-5)
Y s )
Specifically, for the element in Fig. 3.4-1a,
% 5 °
010 _ 2 2
[B] = [ }[A] = (3.4-6)
001 Bon %L

XYz X3Y3 V3

For heat conduction analysis in the xy plane, ¢ represents temperature, and the conductiv-

ity matrix of the element is
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k] = j[B]T[K][B]tdA (3.4-7)

where [k] is a matrix of materiaiconducﬁvities, t is the element thickness, and A is the
area of the triangle. If [k] and 7 are independent of x and y, then [K] is the simple 3 by 3
matrix [B][x][B]  A.

Stress Analysis Element (CST). The interpolation of Eq. 3.4-1 is applied to both dis-
placement components, u and v. Six generalized d.o.f. g; are now required.

a, ay
u=[1 x ylay v=|1 x y[as (3.4-8)
as ag

Because displacement functions are linear in x and y, all lines in the element, including
its sides, remain straight as the element deforms. From Eqgs. 3.1-6, element strains are
constants:

g, = a, &, = ag Yy = a3+ a5 (3.4-9)

Accordingly, this element may be called a CST, for “constant-strain triangle.” Its strain-
displacement matrix [B] can be obtained from information already obtained for the scalar
field element, Egs. 3.4-1 to 3.4-6. For the choice of axes in Fig. 3.4-1b,

1 1 1(*]
— 0 = 0 0 0l
e, 2 2
—_ — u
2| = BTH, X3 0 1 J 2y (34-10)
v X2Y3 X3Y3 Y3 ||V2 )
Tomtma s o1 1 |,
X2Y3 2) X2Y3 59 Y3 v,
L J L J
[B]

The strain-displacement matrix for an arbitrary choice of axes appears in Section 7.2. If
element thickness # and constitutive matrix [E] are constant, Eq. 3.3-7 yields the 6 by 6 ele-
ment stiffness matrix as [k] = [B}Z[E][B]zA. In the following section, the performance of
the CST is compared with that of another triangular element.

Element Defects. The linear triangle was the first element devised for plane stress analy-
sis [1.7]. It does not work very well. In bending, a mesh of these elements is undesirably
stiff. Correct results are approached as a mesh is refined, but convergence is slow. In plane
strain conditions, a mesh can “lock” so that it cannot deform at all.

Consider the beam in Fig. 3.4-2a, which is loaded in pure bending. Each CST in the
model displays constant o,, rather than the linear variation of o, with y that an exact solu-
tion requires. Therefore o, along the x axis is not zero as expected from beam theory.
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Figure 3.4-2. (2) Stress o, along the x axis in a beam modeled by CSTs and loaded
in pure bending. (b) Deformation of the lower-left CST in the model.

Rather, o, displays the square-wave pattern shown. This CST model predicts y-direction
deflections and o, stresses that are only about one-quarter the correct values. The inability
of the CST to represent linearly varying stress and strain is partly to blame for this poor
result. But the CST also displays a spurious shear stress. Consider the lower left element
in the model, shown in Fig. 3.4-2b, which has nonzero d.o.f. ¥, and v,, as it should.
Applying Eq. 3.4-10 to this element, with x, = a and x3 = 0, we obtain &, = u,/a,
&, = 0, and y,, = v,/a. The element displays transverse shear strain, which should not
be present. Spurious shear strain absorbs energy, so that if a given deformation is pre-
scribed, the load needed to produce it is larger than the correct value. This is a reason for
the excessive stiffness in bending of the CST.

Locking of the mesh can occur when CSTs are used to model a rubberlike material in
the plane strain condition. Plane strain exists when strain normal to the analysis plane is
constrained to be zero. When &, = 0, matrix [E] of Eq. 3.1-3 must be replaced by

£ 1-v v 0
[E] = O+na=2n| ? 1-v» 0 - (3.4-11)
0 0 (1-2v)/2

With g, = 0, consider the volumetric strain AV/V = ¢, + &y When v approaches 0.5, as
it does for a rubberlike material, the pressure required to produce volumetric strain
approaches infinity. As a result, a stiffness matrix has nearly infinite resistance to nodal
displacements that produce volumetric strain. In Fig. 3.4-3 for example, any in-plane dis-
placement of node 5 would create volumetric strain in element 1-4-5 and/or element 1-5-2.
Therefore, as v approaches 0.5, node 5 becomes almost immovable. The argument then
extends to nodes 6, 8, and so on, with the final conclusion that the entire mesh is practi-
cally rigid or “locked.” The corresponding scalar field element, Egs. 3.4-1 to 3.4-7, does
not display a mode analogous to volumetric strain, and does not lock.
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™
5 6 9 12
3
2%
5 5 8 11
1 ' — xu  Figure 3.4-3. A mesh of CSTs that may lock
4 7 10 under plane strain conditions.

As commonly used in FEA, the term “locking” refers to excessive stiffness in one or
more deformation modes. With elements whose shape can be nonrectangular, large aspect
ratio may interact unfavorably with nonrectangularity to exacerbate locking behavior.
Usually, locking does not imply complete rigidity. Thus, locking may not preclude conver-
gence with mesh refinement, but may preclude reasonable accuracy in coarse to intermedi-
ate mesh densities. Procedures for dealing with locking include supplementing the
element displacement field with additional modes and use of reduced numerical integra-
tion rules to evaluate Eq. 3.3-7. None of these procedures is applicable to the constant
strain triangle.

3.5 QUADRATIC TRIANGLE (LST)

A quadratic triangle is shown in Fig. 3.5-1a. It has side nodes in addition to vertex nodes.
For stress analysis, nodal d.o.f. are u; and v, at each node, i = 1,2,...,6, for a total of 12
d.o.f. per element. In terms of generalized d.o.f. g;, the element displacement field is the
complete quadratic

2 2
u = al +a2x+a3y+a4x +a5xy+a6y
) ) (3.5-1)
= a7 fa8x+a9y+a10x +auxy+a12y

v =

(a) ®) ©

Figure 3.5-1. (a) Quadratic triangle (LST) and its 12 nodal d.o.f. (b,c) Displacement modes
associated with vertex and side d.o.f. (For visualization only, displacement is imagined to take
place normal to the plane of the element.)
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Figure 3.5-2. Tip deflection v, and flexural stress o, at point B in an isotropic cantilever beam of
uniform thickness [3.4].

From Egs. 3.1-6 and 3.5-1, element strains are

gx = 02 + 2a4x + asy
&, = a9+ ayx + 2a;5y (3.5-2)
’yxy = (a3 + ag) + (as + 2a10)x + (2(16 + au)y

If required by the problem being modeled, element strains can vary linearly within the ele-
ment. Hence the element may be called an LST, for “linear-strain triangle.” Because dis-
placement functions are quadratic in x and y, all lines in the element, including its sides,
can deform into quadratic curves (Fig. 3.5-1b,c). One can show that the element models
pure bending exactly by applying the argument associated with Egs. 3.7-3 and 3.7-4.

Ia Fig. 3.5-2, CST and LST elements are used to solve a cantilever beam problem.
Transverse tip load is parabolically distributed over depth & on the right end. Each numer-
ical result in Fig. 3.5-2 is the ratio of computed result to exact result as predicted by theory
of elasticity [3.1]. Despite having many more d.o.f., even the finer CST mesh is less accu-
rate than the LST mesh. In modeling this particular problem, the only shortcoming of the
LST is that v,, is represented as linear rather than quadratic in y.

Discussion of the LST element continues in Chapter 7, where element formulation is
completed and also extended to allow sides to have initial curvature (that is, before loads
are applied).

3.6 BILINEAR RECTANGLE (Q4)
The bilinear rectangle is a four-node plane element having eight d.o.f. (Fig. 3.6-1). The

name “Q4” identifies the element as a quadrilateral having four nodes. In terms of general-
ized d.o.f. a;, its displacement field and associated strain field are
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&, = a,+ ayy

u = a;+a,x+agy+auxy
& = aj + agx . (3.6-1)
Yy = (a3 + ag) + agx + agy

Shape functions can be determined by the same argument as used in Egs. 3.2-1 to 3.2-3, but
it is more instructive to apply Lagrange’s interpolation formula, Eq. 3.2-7, as follows. Con-
sider x-direction displacement u. First, we interpolate linearly along top and bottom sides
to obtain side displacements u;, and u,3. Thus, in Eq. 3.2-7, x; = —a and x, = q, so that

a-—-x a+x a—x at+x

2a e 2a “2 tas = 2a at 2a “3 (3.6-2)

Uy =
Next, we interpolate linearly in the y direction between u;, and u3.
(3.6-3)

Substitution of Egs. 3.6-2 into Eq. 3.6-3 yieldsu = ZN,-u,- , in which N; is a shape function
of the rectangular four-node element. This development results in &, that can be produced
as products of linear shape functions obtainable from Eq. 3.2-7. Indeed such Lagrange
product formulas can be used as shape functions for Lagrange elements. Quadratic and
higher-order Lagrange elements have side and internal nodes if two-dimensional, and edge,
surface, and internal nodes if three-dimensional. For the rectangular four-node element,
shape functions N; are

N = @=0k-y o (@+0(k-y)

L™ 4ab 2 dab (3.6-4)
! N o< @rDB+y) o (a-x)(b+y) ‘
3 dab 4 4ab
»v
f a a—->
(73 v3 \
ug 14 3| 43 T
b
* x,u
b
“ | 2| |
v v - Figure 3.6-1. Bilinear quadrilateral (Q4) and
! 2 its eight nodal d.o.f.
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The element is called “bilinear” because its shape functions are products of one-dimensional
linear polynomials. The N; contain only one quadratic term, namely xy. Shape functions dis-
play the three properties noted following Egs. 3.2-7. The complete element displacement field,
{u} = [NJ{d},is

U
N, 0ON, O N; O N, O
uly _ 1 2 3 4 {u,t (3.6-5)
v 0O NN ON, 0O N; ON,

Element strains in terms of nodal d.o.f. are {e} = [B]{d}. From Egs. 3.1-9, 3.6-4, and 3.6-5,

-(b-y) O -y) 0 (b+y) 0 —(b+y) O

[B] = Ztlz_b 0 —(a-x) 0 —(a+x) 0 (a+x) 0 (a-x)
~(a-x) —(b-y) —(a+x) (b-y) (a+x) (b+y) (a-x) —(b+y)
(3.6-6)

The element stiffness matrix is

b ma
k] = j [BIT(E] [B] ¢ dx dy (3.6.7)
8§x8 b _asx3 Ix33x8

where ¢ is the element thickness. The integrand contains x and y to first and second powers
and is easily evaluated.

The foregoing Q4 element is restricted to rectangular shape, which is a severe limita-
tion. An isoparametric formulation of the element, discussed in Section 6.2, removes the
shape restriction. An element of general quadrilateral shape has behavior similar to that of
the rectangular element.

Element Defects. Like the CST, the Q4 element cannot exhibit pure bending. When bent,
it displays shear strain as well as the expected bending strain. This parasitic shear absorbs
strain energy, so that if a given bending deformation is prescribed, the bending moment
needed to produce it is larger than the correct value. In other words, the Q4 element exhib-
its shear locking behavior. The argument is quantified as follows.

As shown in Section 4.4, strain energy U in a linearly elastic body of volume V, without
initial stress or strain, can be evaluated from the expression

U= %JI{B}T[E]{S}(W where, for the 2D case, (e} = L& & 7ol (3.69)

and, for isotropy and plane stress conditions, [E] is given by Eq. 3.1-3. For a plane element
of thickness 7, the volume increment is dV = ¢ dx dy. In pure bending, as shown in
Fig. 3.6-2a, a block of material has strains
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Figure 3.6-2. (a) Deformation mode of a rectangular block of material in pure
bending. (b) Deformation mode of the Q4 element under bending load.

0,y 0,y
£, = —Z Sy = VE 'yxy =0 (3-6'9)
When a Q4 element is bent, as shown in Fig. 3.6-2b, its top and bottom sides remain
straight, and each node has only horizontal displacement of magnitude 6,,b/2. Hence,
from the strain-displacement relation {&} = [B]{d}, element strains are
e, = —OLI}-) g, =0 = —de
*7  2a y - Yo = "7,

(3.6-10)

We see that &, in the element is exact and that &, is approximate (but exact if v = 0). Of
greatest concern is the nonzero shear strain ¥,,, which should be zero in bending. Bending
deformation of a Q4 element automatically generates this spurious shear strain, which is
therefore identified as parasitic shear. Equations 3.6-8 and 3.6-9 yield strain energy U, in
the actual block of material, and Eqgs. 3.6-8 and 3.6-10 yield strain energy U, in the ele-
ment. Work done by a moment load is equal to strain energy stored, so that M,6,/2 = U,
and M,,0.,/2 = Ug. If 64 = 6, then M, > M, and U, > U, Or, if M), = My, then the
ratio of rotations produced is

0 _ 2
A 1-v (3.6-11)

91, 1-v(a)? ~
“T(z)

The (a/b) term is present only because of parasitic shear. The ratio 6,/6), approaches
zero as aspect ratio a/b increases without limit. This condition is called shear locking.
Bending is not prohibited by shear locking, but bending tends to be excluded from element
behavior because it is penalized by high strain energy in the unwanted shear mode.

Figure 3.6-3 depicts an FE model that tests element bending capability. Stress o, in
each element is independent of x, as might be anticipated by inspection of Egs. 3.6-1 or
Eg. 3.6-6. Except at element centers, shear stress 7, on the x axis is dominated by the par-
asitic shear effect, which is more pronounced in elements that have greater bending defor-
mation. If elements are square and Poisson’s ratio is 0.3, transverse tip deflection and o, at
point A (where x = a) are each about two-thirds their correct values. (For a/b = 1 and
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0 <v<05, Eq. 3.6-11 yields 0.600 < 6,/6, <0.686, with 6,/6, = 0.674 for
v = 0.300.) An additional example problem appears in Fig. 3.7-2.

Remedies for the parasitic shear effect in four-node quadrilaterals are discussed in
Section 3.10.

3.7 QUADRATIC RECTANGLE (Q8, Q9)

A quadratic rectangle is obtained by adding side nodes to the linear rectangle, much as
side nodes are added to the CST to obtain the LST triangular element. Here we describe
the displacement field and the strain field. Shape functions and procedures of element for-
mulation are discussed in Section 6.4, where the element is allowed to be an arbitrarily
shaped quadrilateral and to have curved sides.

In terms of generalized d.o.f. g;, the displacement field of the element in Fig. 3.7-1 is

2 2 2 2
) ) ) (3.7-1)

We use the name “Q8” for this eight-node quadrilateral. The name “serendipity” is also
used; the reader is invited to read the dictionary definition. By letting x or y be constant,
we see from Egs. 3.7-1 that lines in the element, including element sides, can become qua-
dratic curves in the deformed element. From Egs. 3.1-6 and 3.7-1, element strains are

L = ay + 2a,% + asy + 2a;xy + agy?

o)
|

o)
|

= ay) + apx + 2a;14y + ajsx + 24,65y (3.7-2)
= (a3 + ajg) + (a5 + 2a17)x + (2ag + a3)y + a7x2 + 2(ag + as)xy + a16y2

S
|
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As an option, a ninth node can be placed at x = y = 0, to produce an element we call Q9.
This node is internal to the element; it is not connected to any other element. With a ninth
node, u and v of Eq. 3.7-1 are augmented by modes u = a17x2y2 and v = a13x2y2, and
strain expressions are augmented by terms that contain a;; and a;g. Element Q9 is a
“Lagrange” element, whose shape functions can be obtained as Lagrange product formu-
las, as noted for element Q4 following Eq. 3.6-3. Element Q9 is biquadratic, as its shape
functions are products of one-dimensional quadratic functions. In the stiffness matrix for-
mula, Eq. 3.3-7, the size of [E] is 3 by 3, while [B] is 3 by 16 for the Q8 element and 3 by
18 for the Q9 element. Thus the respective stiffness matrices are 16 by 16 and 18 by 18.

A quadratic rectangle does not display the parasitic shear effect that plagues the bilin-
ear element when it is bent. To show that this is so, let a cantilever beam such as that in
Fig. 3.6-3 be built of Q8 clements and carry counterclockwise tip moment rather than
transverse tip force. The exact displacement field and strains are [3.1]

g, =-Cy
u = —Cxy
C 2 2 and &, = vCy (3.7-3)
v = E(x +vy’)
Yoy = 0

where C is a constant. In Egs. 3.7-1, the a; can assume values such that Eqs. 3.7-3 are pro-
duced. Specifically, let all g; be zero except for

C C
as = -C a = 3 a4 = V3 (3.7-4)
v;
L Uu;
e
a4 7 3] ¥
yv b
- 8 I._ X1 6" 4*
b
1 5 2 i
@)
/ Y Figure 3.7-1.
(a) A quadratic
quadrilateral.
g (b,c) Displacement
6 modes associated with
vertex and side d.o.f.
(For visualization
only, displacement is
1 imagined to take place

normal to the plane of
) ©) the element.)
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CST 40d.of. 0.25 Q4 40 d.of. 0.67
PNSSSRRRRN T
W' Qs - éo d.of. 0.93 r

I |

Q9 24 d.of. 0.95 I One two-node beam element
i 2d.o.f 1.00 (exact)f

Figure 3.7-2. Tip-loaded cantilever beams of aspect ratio 10 and Poisson’s ratio » = 0.30.
Transverse tip displacement is reported as the ratio of computed value to exact value.

Hence Egs. 3.7-2yield g, = -Cy, &, = vCy,and y,, = 0, which are the correct strains.
The a;, term allows the a5 term to exist without creating nonzero v,, in the element.
Accordingly, one expects Q8 and Q9 elements to perform well in applications where
bending is important.

Numerical examples appear in Fig. 3.7-2. The cantilever beam is of uniform thickness
and ten times as long as it is deep. Transverse tip displacement is reported as the ratio of
computed value to exact value. As might be expected, the Q9 element performs better than
the Q8 element. These two elements are further discussed in Chapter 6, where nonrectan-
gular shapes are allowed and stiffness matrices are generated by using numerical integra-
tion. In the terminology of Chapter 6, data in Fig. 3.7-2 is obtained from “fully integrated”
elements. The standard two-node beam element in Fig. 3.7-2 provides an exact result
despite having only two nonzero d.o.f. This model serves as a reminder that standard beam
elements are most appropriate for this particular problem. Other parts of Fig. 3.7-2 show
how some other elements perform, but these FE models are not recommended for a canti-
lever beam.

3.8 RECTANGULAR SOLID ELEMENTS

Rectangular solid elements, sometimes called “brick” elements, are direct extensions of
rectangular plane elements. Two brick elements are shown in Fig. 3.8-1. In the first, the
eight-node solid, x-direction displacement u is described by the polynomial displacement
field

U = ap +ayx + azy + a4z + asxy + agyz + a72x + agxyz (3.8-1)

Similar expressions are used for displacements v and w, for a total of 24 d.o.f. in the ele-
ment. In terms of shape functions, the element displacement field {u} = [N}{d}is
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«] [N o oN, 0 0N 0 O
v = 0 Nl 0 0 N2 0 O N3 0 sen |4 q (3'8_2)
w| |0 0N O ON O 0N, -

where individual shape functions N; have the form

(axx)(bxy)ctz)

Sabc (3.8-3)

Algebraic signs are all negative for N,, all positive for N, and so on (to choose signs, recall
that N; = 1 when x, y, and z assume the coordinatcs of node i.) The element may be called
“trilinear” because each of its shape functions contains the product of three linear func-
tions. On any element surface, such as the surface z = ¢, Egs. 3.8-1 and 3.8-3 yield forms
used for the four-node rectangular element, Eqs. 3.6-1 and 3.6-4. The strain-displacement
matrix is [B] = [d][N], where [d] is given by the latter rectangular array in Eq. 3.1-9. The
element stiffness matrix is

c rb pa
k] = J' I [BIT[E] [B] dx dy dz (3.8-4)
24 x 24 _cv-pY _g24X6 6x66x24

The 20-node solid, shown in Fig. 3.8-1b, has comer nodes and midside nodes. Its x-direc-
tion displacement u is described by the polynomial displacement field

2 2 2 2 2
u=a +ay,x + asy tasz+agx + agy + a;z + agXxy + agy2 + A19iX + apXx ytapxy

2 2 -2 2 2 2 2
+ (}13)’ Ztayz +ta52 x + a1g2X +a.7Xyz + aigX ¥z + AgXy 2 + a,pxyz

(3.8-5)
v »v
/2C713 l ! , ‘
4 i ~ g L,
T I °
1
T i P xu ? Qr xXu
2b :E/F 6 ¢ ! ¢
L R caiinintiebiaitdy -—- A Ratadels il
Lol w o w
1 5 ¢
2a

@ (b)
Figure 3.8-1. Rectangular solid elements. (a) Eight-node trilinear element, which has 24 d.o.f.
(b) Twenty-node solid element, which has 60 d.o.f.
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In order to provide interelement compatibility, the three cubic terms £y, and z% do not
appear. Instead the three quartic terms x’yz, xy’z, and xyz” are used. Similar expressions
are used for displacements v and w, for a total of 60 d.of. in the element. The element
stiffness matrix formula resembles Eq. 3.8-4, except that [B] is a 6 by 60 matrix and [k] is
a 60 by 60 matrix.

Behavior of the foregoing solid elements resembles that of their plane counterparts,
elements Q4 and Q8. Solid elements can display bending modes such as seen in Fig. 3.6-2 but
with z-direction variation, and can display a twisting mode about each coordinate axis. As
described in the present chapter, these solid elements are restricted to rectangular (brick-like)
shape. A formulation that permits nonrectangular shapes is discussed in Section 6.5.

3.9 CHOICE OF INTERPOLATION
FUNCTIONS

In this section we review elements discussed in the present chapter, with attention to
choices made and reasons for them.

The choice of interpolation field may appear to be somewhat arbitrary. For a three-node
triangle, instead of the linear displacement field of Egs. 3.4-8, why not use a quadratic
suchasu = a;x*> +a,xy + asy* and similarly for v? The linear field is chosen because an
element must be able to display rigid body motion and constant strain states if mesh
refinement is to produce convergence toward correct results. Thus the lowest-order terms
of a polynomial field must not be omitted. For a three-node triangle, which has the dis-
placement field of Eqs. 3.4-8, constant strain states are given in Egs. 3.4-9, and rigid body
motions are a; (x-direction translation), a4 (y-direction translation), and a5 — a5 (rigid
body rotation, defined as (v,, — u,,)/2 in the theory of elasticity [3.1]). The necessary con-
stant strain and rigid body motion capabilities are not provided by the polynomial
ax? +a,xy +azy?. Interpolation fields for all displacement-based elements discussed
will be seen to contain constant and linear terms. For elements that must bend, such as
elements for beams, plates, and shells, convergence requirements demand that constant
curvature also be possible. For example, see [ X used for a beam element, just preceding
Eq. 3.2-8. (Convergence is discussed further in Sections 4.9, 6.13, and 9.6.)

Another attribute of satisfactory polynomial displacement fields is balance; that is, the field
should favor neither x nor y. Plane elements use the polynomial terms shown in Fig. 3.9-1.
Thus, in element Q4 for example, among the three possible quadratic terms x2, y?, and xy, bal-
ance requires that we choose the latter. Were we to use either 2or y2 rather than xy, the mag-
nitude of curvature produced in a square element loaded by couple-forces on opposite sides
would depend on whether the couple-forces are applied to x-parallel sides or to y-parallel
sides. Similar considerations influence the choice of higher-order terms in plane elements Q8

Terms CSsT LST Q4 Q8(Q9)

Constant 1 1 1 1

Linear xy x y x y x Yy

Quadratic - ---- x2 xy ¥y x»y x2 xy 2

Cubic  ————mmmmmm e x%y n? Figure 3.9-1. Terms used in interpolation

Quartic -----------———-——--- *2y® functions for various plane elements.
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i @ [ @

Figure 3.9-2, Adjacent elements.

and Q9 and in solid elements. In general, choices made in element formulation should provide
elements with geometric isotropy or frame invariance, so that behavior of an FE structure is
independent of how local xy coordinates of its elements are oriented with respect to a global
coordinate system. An FE model that is sensitive to coordinate system orientation is said to
display artificial bias or induced anisotropy [3.3].

One might propose that terms be combined, for example, by replacing xy by x*> +»? in
the Q4 element. This choice provides balance but makes elements incompatible. The argu-
ment is as follows. With the usual displacement field, Eq. 3.6-1, consider an element side
such as side x = a of element 1 of Fig. 3.9-2. On that side, displacement u is linear in y
and is completely determined by nodal d.o.f. », and u3 (see Eq. 3.6-4). In a neighboring
Q4 element to the right, element 2 in Fig. 3.9-2, u is linear in y along the left side and is
completely determined by the same two nodal d.o.f., u, and u;. Thus both elements pro-
vide the same displacement # = u(y) along the shared side, so there is no gap or overlap
between adjacent Q4 elements. But if xy were replaced by x? +y? in the displacement
field,  on side x = a in element 1 would be quadratic in y and could not be completely
determined by d.o.f. u, and u; alone, which implies that # on this side would also depend
ond.o.f. at nodes 1 and 4. Thus if all d.o.f. of nodes 2, 3, 5, and 6 in Fig. 3.9-2 are zero, but
d.o.f. are nonzero at nodes 1 and 4, displacements could not be the same in elements 1 and
2 along sides that connect nodes 2 and 3. A similar argument can be used with the Q8 ele-
ment, to show that x> and y* should not replace x?y and xy? in the displacement expression.

Other objections can be raised to replacing xy by x* +y?* in the Q4 element. Normal
strains would then be &, = a5 +2ayx and &, = a; + 2agy. Comparing these strains with
those in Eq. 3.6-1, we see that the ability to represent bending deformation has been lost.
Also, if we attempt to determine shape functions by using the procedure of Eqs. 3.2-1 to
3.2-3, we discover that matrix [A] is singular and therefore not invertible.

In two dimensions, a polynomial is of degree » if it contains a term of the form xy™,
where ! and m are nonnegative integers and [ + m = n. The polynomial is complete if it
contains all combinations of / and m for which [ + m < n. For example, a complete qua-
dratic, n = 2, has the form u = a; +ayx +azy +a* + asxy +agy*. A complete poly-
nomial of degree n in two dimensions contains (n + 1)(n + 2)/2 terms (see Fig. 3.9-3). In
three dimensions, similar remarks apply, so that a complete quadratic contains 10 terms,
which include a constant term, the linear terms x, y, and z, and the quadratic terms £, yz,
2, %y, yz, and zx. A complete polynomial of degree ~ in three dimensions contains
(n + 1)(n +2)(n + 3)/6 terms (see Fig. 3.9-4).

Pascal triangle: Degree and number of terms:
1 0 (constant) 1 term
x y 1 (linear) 3 terms
2 xy y? 2 (quadratic) 6terms  Figure 3.9-3. Pascal triangle,
P2 1y 2 3 (cubic) 10terms  showing the number of terms in
xt X3y xH2 3yt 4 (quartic) 15terms  complete polynomials in two

B oxty xBH2 B0ty 5 (quintic) ~ 21terms  jpdependent variables x and y.
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Figure 3.9-4. Pyramid showing
the number of terms in complete
polynomials in three
independent variables x, y, and z.

An element whose displacement expression is a complete polynomial automatically has
a balanced field. The CST element uses a complete linear polynomial; the LST element
uses a complete quadratic polynomial. Equation 3.8-1, for the eight-node solid element, is
an incomplete cubic. It is complete only through linear terms because it contains only
three of the quadratic terms and only one cubic term. Nevertheless it is balanced because it
favors no coordinate direction over another.

The number of independent displacement modes an element can display is equal to the
number of its d.o.f. In the CST, all six of its d.o.f. are needed to endow the essential modes
of rigid-body motion and constant strain. The eight-node solid element has 24 d.o.f., of
which six are needed for rigid-body motion (three translations and three rotations) and
another six for constant strain states. This leaves 12 independent deformation modes asso-
ciated with bending, twisting, and other non-constant strain states.

3.10 IMPROVED TRIANGLES
AND QUADRILATERALS

Ways to improve the performance of three-node triangles and four-node quadrilaterals
include addition of drilling d.o.f. Four-node quadrilaterals can also be improved by addi-
tion of incompatible modes and by “underintegration” of the element stiffness matrix.
Depending on element type, these procedures reduce or even eliminate parasitic shear
strain. The procedures are applied to stress analysis elements but not to scalar field ele-
ments because a gradient term analogous to shear strain does not appear in scalar field
problems.

Drilling d.of. A drlling d.o.f. in a plane element is a rotational d.o.f. whose vector is
normal to the analysis plane. An appeal of drilling d.o.f. is that they can enable elements
having only corner nodes to provide acceptable performance while using fewer d.o.f. than
elements having both comer and side nodes. For example, a triangular element having
drilling d.o.f. and only vertex nodes performs much better than the six-d.o.f. CST,
although not as well as the 12-d.o.f. LST. Another part of their appeal occurs in shell anal-
ysis. A shell element can easily be formed as the combination of a plane element and an
element for plate bending. Unless drilling d.o.f. are present in the plane element, this com-
bination leaves rotational d.o.f. normal to the element unused and their possible benefit to
in-plane (membrane) performance unexploited. A shell element that uses all six d.o.f. at
each node is perhaps best suited to analysis of folded plates, where many elements are
coplanar. In modeling a continuously curved shell, drilling d.o.f. may interact unfavorably
with bending deformation [3.3].
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In their simplest implementation, drilling d.o.f. in a plane element remove two d.o.f. at
the middle of each side while adding one rotational d.o.f. at each comer. Thus, plane ele-
ments LST and Q8 can be converted to elements that have corner nodes only, with three
d.o.f. per node. In a large plane mesh of LSTs, the conversion reduces the total number of
d.o.f. by a factor of 5/8. For Q8 elements the reduction factor is 1/2. The 20-node solid ele-
ment of Fig. 3.8-1b can be converted by removing translational d.o.f. at the 12 midedge
nodes and adding three rotational d.o.f. at each corner node. Thus the number of d.o.f. in a
large 3D mesh is reduced by a factor of 1/2.

Consider a typical side of a plane element, Fig. 3.10-1a, in which & is the component of
side-normal displacement due to drilling d.o.f. @; and w; at nodes i and j. We regard 6 as
quadratic in side-tangent coordinate s. Thus, & and its midside value §,, are

s(L—-s L
- (2 - Y —w) 8, = S (@ - ) (3.10-1)
If ; = w, the side remains straight. If ; = — wj, then §,, can be regarded as the mid-

span deflection of a simply supported beam of length L, loaded by end moments such that
end rotations are of equal magnitude but opposite sign. The form of Eq. 3.10-1 can be
modified by substituting the x and y components of 3, and L, specifically 8,,cos 8 = u,,
S,sinB = v,,LcosB = y;-y;,and Lsin B = x; — x;. Side-tangent displacement at
midside is taken as the average of side-tangent displacements at the corner nodes at the
two ends of the side. Thus, after adding the contribution to displacement from nodes i and
j, we obtain the midside displacement components

u u; U, w;,—w.|Y;—Y;
mi_ LRl LR B B (3.10-2)
v, 2 v; 2 v; 8 |x- X;
The complete relation between d.o.f. in elements LST and TR in Fig. 3.10-1 can be written

[ v U ug vl = 1[21;(]9 loy, v7 o w v, @ uz vy wf

(3.10-3)

Uy

L]

(2) () ©

Figure 3.10-1. (a) Side displacement associated with drilling d.o.f. @; and @;. (b) A
linear strain triangle (LST). (c) Triangular element with drilling d.o.f. (TR).
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Transformation matrix [T] contains six 1’s to state that 4; = u; and v; = v, fori = 12,3,
and contains information from Eq. 3.10-2 to relate the six translational d.o.f. at midside nodes
to translational and drilling d.o.f. at vertex nodes. Because Eq. 3.10-3 has the same form as
Eq. 2.4-1, we could obtain the 9 by 9 stiffness matrix [k] of element TR in Fig. 3.10-1 by
applying the transformation of Eq. 2.4-5, specifically [k] = [T17[k’)[T], where in the present
case [k] is the 12 by 12 stiffness matrix of element LST. Computationally, it is more efficient
to use Eq. 3.3-7 with [B] = [B’][T], where, in the present example, strain-displacement
matrices are denoted as [B] for element TR and [B’] for element LST.

Clearly the same kind of transformation can be applied to element Q8 to obtain a 12-
d.o.f. plane element with two translational and one drilling d.o.f. at each of its four cor-
ners. If the cantilever beam of Fig. 3.7-2 is modeled by 10 square elements of this type,
with all d.o.f. at the support set to zero so that the model contains 60 d.o.f., transverse tip
displacement is about 90% of the correct value.

In the preceding development, drilling d.o.f. have been given the symbol @ rather than
6 because they are not true rotations, which are defined as (v,, — u,,)/2 in the theory of
elasticity. The matter is discussed in [3.5].

In the foregoing formulation of drilling d.o.f., the consistent load vector of Eq. 3.3-8
includes nodal moments as well as nodal forces. Thus, a uniformly distributed load g
directed normal to an element side of length L produces nodal forces gL/2 and nodal
moments gL2/12, as shown in Fig. 2.9-2a.

A “zero-energy mode” is possible in elements with drilling d.o.f. Equation 3.10-2 shows
that if translational d.o.f. are zero at comner nodes and w; = w,, then u,, = v,, = 0. The
result is that a mesh of elements formulated in this way displays no strain energy if all drilling
d.o.f. in the mesh are equal. Therefore the structure stiffness matrix is singular. Singularity
can be avoided by setting one drilling d.o.f. in the mesh to zero. An alternative for four-node
quadrilateral elements is to invoke a penalty constraint (Section 13.3) by associating strain
energy with the function w; — wy + w3 — w, [3.3]. This function, being zero for rigid body
motion and constant strain modes, does not corrupt the element or structure stiffness matrix.

Because of the zero-energy mode, element TR of Fig. 3.10-1c has only 8 d.o.f. available to
model deformation, despite having a total of 9 nodal d.o.f. The analogous four-node quadrilateral
has 11 d.o.f. available, out of a total of 12 d.o.f. at nodes. Therefore both of these elements use
incomplete quadratic fields, because a complete 2D quadratic, Eq. 3.5-1, has 12 d.o.f.

Since the original formulation [3.5], described by Eqgs. 3.10-1 to 3.10-3, elements with drilling
d.o.f. have been considerably improved. Of many papers, we cite [3.6—3.10]. Numerical results
reported in Fig. 3.10-2 come from [3.9], whose element is better than the foregoing element TR.

»v Mesh CST? Ref. 3.9°
B } N=2 0502 0.852
C  N=4 0765 0954

N=8 0921 0989
3No drilling d.o.f.; 6 d.o.f./el.
bDrilling d.o.f.; 9 d.o.f/el.

A

Mesh N=4

x,u

Figure 3.10-2. A swept panel with uniformly distributed load along the right side
and Poisson’s ratio » = 0.333. Numerical results report the computed y-direction
deflection at C (exact = 1.000). The element with drilling d.o.f. is that of [3.9].



3.10 Improved Triangles and Quadrilaterals 109

Incompatible Modes (Q6 Element). The shear-locking defect of element Q4 is explained
in connection with Fig. 3.6-2. This defect is associated with an element displacement field
that contains no terms quadratic in x and y, and can be remedied simply by adding the
desired modes [3.11]. Thus the displacement field of element Q6 becomes

4
u = ZNiui+(1 —§2)a1 +(1 - nz)az £ = %

e

'4 where (3.10-4)
v = ZNivi+(1—§2)a3+(1—n2)a4 n = %

i=1

The four NV, are shape functions of the Q4 element, Egs. 3.6-4, and the four g; are generalized
d.of. The g, are not associated with any node nor are they connected to d.o.f. of any other
element. In this way they resemble d.o.f. at the internal node of element Q9 (Section 3.7).
The g; are appended to the array of clement nodal d.o.f. {d}. Physically, displacement modes
associated with the g; are displacements relative to the displacement field dictated by the
summations in Egs. 3.10-4. The element described by Egs. 3.10-4 is given the name Q6 to
indicate that it is a quadrilateral and has six shape functions. Details of element formulation
appear in Section 6.6, where a general quadrilateral shape is permitted, and the swept panel
of Fig. 3.10-2 is used in a numerical example.

Element Q6 is called “incompatible” because of behavior illustrated in Fig. 3.10-3b. With
the loading shown, a gap appears between elements. If forces were reversed, elements would
overlap. (With the same loading, Q4 elements remain compatible but their behavior is overly
stiff.) For pure bending of the upper element in Fig. 3.10-3b, corner nodes have no vertical
displacement and a; = a, = 0 in Egs. 3.10-4. With ¢ a constant, nonzero d.o.f. of this
deformation field are

Figure 3.10-3. (a) Displacement modes u = (1 — 1;2)a2 and v

a b
Uy =C U)=—C Uy =C Uy =—-C a3 = —C Q4 = V—=C 3.10-5
1 2 3 4 3= 35 4 22 ¢ )
N v
ea)leaa—‘
4 3
\ L \ as - . -
> e > ke — < > .
a2 /e \ / \ /
1 2 N Q6 / Y Q4 y’
P yaa /] \ /
NS 2F 2F |\ /] _2F
4 ’_Lﬁa 3 > ll\\¢,/\\ € > /, \ €
el T = /Q \ ¥ o \
b /| Q8 \ / \
IY_“_ x,u 4 \ FF /) N\ F
3 = > € >
P e I N
1 A
(2) (®) ©

(1 - #)a, in the

Q6 element. (b) Incompatibility between adjacent Q6 elements. (c) No
incompatibility between adjacent Q4 elements.
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In general, strains in the rectangular Q6 element are '

4 4

_ oN; 2x _ _ o9N; 2y
x = Eui - ?al Sy = U,y = in — ?
i=l i=1

£ = u, a,

(3.10-6)

4
=u, +v, = N, N —2—ya _ 2,
yxy = My sy — z a—yui+$vi k) a2 3

i=1

From Egs. 3.10-5 and 3.10-6 we obtain the correct strain field for the pure bending mode
of the upper element in Fig. 3.10-3b:

_ < — cy _
g, = o g, = —VE) Yoy = 0 (3.10-7)

In this bending mode, a3 makes it possible for 7, to vanish, and a, makes it possible for
the relation &, = —vs, to exist. Respectively, d.o.f. a, and a, play similar roles in bending
fields rotated 90° to those shown in Fig. 3.10-3b. Note, however, that pure bending is rep-
resented exactly only if element sides are oriented with respect to the moment field as
shown in Fig. 3.6-2.

No gaps or overlaps appear in a physical continuum. Why then do incompatible elements
provide a satisfactory model? It is because repeated mesh refinement causes elements to
approach a state of constant strain. Initially straight lines, such as sides of undeformed
elements, remain straight when deformation is such as to produce a state of constant strain.
Thus an FE model composed of Q6 elements allows exact results to be approached as the
mesh is refined. Convergence may be “from above” because a coarse mesh of Q6 elements
may be overly flexible. In contrast, Q4 elements converge “from below” because they are
always too stiff (or at best exact, in a field of constant strain).

If the beam problem of Fig. 3.6-3 is solved again, now using Q6 elements, results are as
shown in Fig. 3.10-4. Transverse tip deflection is only about 1% too small. Axial stress o,
is exact along the vertical (y-parallel) centerline of each element. Transverse shear stress is
the average value everywhere, specifically 7,, = 2F/A = F/bt, without the spurious
x-direction variation seen in Fig. 3.6-3. In an actual beam 7, varies quadratically with y, but
its representation in the Q6 element contains no quadratic terms. Neither Q4 nor Q6 ele-
ments display the correct linear variation of o, with x, as can be anticipated by examining
element displacement fields. Further discussion of the Q6 element appears in Section 6.6.

Underintegration. In computing stiffness matrix [k] of a quadrilateral element, the inte-
gral in Eq. 3.3-7 can be evaluated numerically rather than analytically (Section 6.3). The
simplest and cheapest form of numerical integration is one-point quadrature, which pro-
duces an element that resists only constant strain states. Thus the element has zero-energy
modes that correspond to bending modes of deformation. These models must be sup-
pressed if the element is to be usable, so a stabilization scheme is invoked. Discussion
appears in Section 6.8, where pertinent references are cited.
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y
9 ) .
a —>| Q6 (incompatible) elements \

tr

Finite
element

Figure 3.10-4. A cantilever beam modeled by

Exact and Finite element Q6 elements, showing qualitative variation of

i / axial stress o, on the lower surface and average
b_l;‘ . J x  shear stress 7, on the x axis (compare with
} Ave. ., (bt throughout) Fig. 3.6-3).

3.11 NODAL LOADS

Equation 3.3-8 states how body forces and surface tractions are converted to consistent
nodal loads. In the present section we consider mechanical loads and show that consis-
tent nodal loads are also work-equivalent, and provide results for selected loadings on
elements discussed in the present chapter. Thermal loads can be represented by either {o}
or {g} in Eq. 3.3-8; see Section 2.10 for one-dimensional examples and Section 6.10 for
further discussion.

Consistent (Work-Equivalent) Loads. We can show that work W done by nodal loads
{r,} in moving through nodal displacements {d} is equal to work done by distributed
loads {F} and {®} in moving through the displacement field defined by {d} and element
shape functions. Work done by nodal loadsis W = { a7 r,}. We substitute for {r,} from
Eq. 3.3-8, and in integrals note that {d}7[N]7 = {u}”. Thus

W = {d}¥{r,} = J‘{u}T{F}dV+j{u}T{(I>} ds (3.11-1)

Integrals sum the work of load increments {F} dV and {®} 4S in moving through dis-
placements {u} produced by nodal d.o.f. Equation 3.11-1 shows that loads {r,}, as consis-
tently defined by Eq. 3.3-8, are work-equivalent to distributed loads.

Consistent nodal loads are also statically equivalent to the original distributed load-
ing, which means that both load systems have the same resultant force and the same
moment about an arbitrarily located point. That this is so can be seen by considering
work-equivalence of the load systems during a rigid-body translation and a small rota-
tion about an arbitrarily located point.

Side and internal displacements of element Q6, discussed in Section 3.10, are influ-
enced by generalized d.o.f. a; to a,, so one might expect that these d.o.f. would influence
nodal loads associated with body force and surface traction and should be included in load
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vector {r,}. In practice, incompatible modes of the Q6 element are ignored in nodal load
calculation, so that nodal loads for Q4 and Q6 elements are identical. With this simplifica-
tion, Q6 elements pass the “patch test,” discussed in Section 6.13, which is regarded as an
essential test of element reliability.

Examples. Equation 3.3-8 can be used to account for concentrated loads as well as
distributed loads. A force F applied at a point on surface S is regarded as the limiting case of
intense pressure over infinitesimal area, so that {®} dS approaches F. Thus, for surface
traction,

Distributed traction {®}: Concentrated force F:

{r,} = I[N]T{Q} as {r,}) = IN.JJF (3.11-2)

where [N.] is obtained by evaluating [N] at coordinates of the point to which force F is
applied. A similar argument can be used if force F acts within an element, now regarding
F as alimiting case of the body force term {F} dV.

As example applications of Egs. 3.11-2, consider the loadings shown in Fig. 3.11-1.
Load g = gq(x) is force per unit length, so that pressure on the side is g/z, where 7 is ele-
ment thickness. For plane elements, only side displacements enter into Egs. 3.11-2, so the
same nodal loads are obtained whether elements in Fig. 3.11-1a are Q4, Q6, or CST ele-
ments (recall that incompatible modes, if present, are not loaded). Shape functions on the
loaded side can be obtained by evaluating Eqs. 3.6-4 aty = b. Here we reorder individual
shape functions merely for the convenience of reading nodal loads left to right along the
loaded side. Thus, for the upper side in Fig. 3.11-1a,

[N] = zl—aLa—x a+x] (@} = %[N]{Zd'} (3.11-3)
3
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Figure 3.11-1. Distributed loads g on sides of Q4 and Q8 elements, and their nodal force
equivalents.
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and dS = tdx. To account for the concentrated force atx = a/2 in Fig. 31 1-1a we eval-
uate [N4] in Eq. 3.11-2 at x = a/2. Hence, nodal loads associated with the linear side in
Fig. 3.11-1a are »

F4_J'ar 94 r_ a|l2 lila| FJ1
R CE WL R W

These loads have the same magnitude as reactions on a simply supported beam of length
2a, loaded as side 4-3 is loaded.

Side load ¢ = g(x) in Fig. 3.11-1b is treated similarly. Shape functions on this side can
be obtained from Lagrange’s formula, Egs. 3.2-7, using x; = —a,x, = 0,and x; = a.
Arranging individual N, to suit the node order 4-7-3, we have

94
1 1
[N] = = | xx—a) 2@®-2) xx+a)] {®} = - [N1{47 (3.11-5)
a :
7

Hence, nodal loads associated with a quadratic variation on a quadratic side are

Fy a q4 . 4 2 -1 ||g4
F, =j NNl dxigrt = 72| 2 16 2 |{g, (3.11-6)
Fy - 93 -1 2 4 g,

If loading is uniform, then g, = g7 = g3, and Eq. 3.11-6 says that of the total force on
the side, one-sixth is allocated to each end node and two-thirds to the midside node.

The foregoing results do not require that side traction act normal to the side. For exam-
ple, if uniform side-tangent traction ¢ acts on collinear sides of equal length and having
midside nodes, nodal loads shown in Fig. 3.11-2 are obtained.

Body force is treated by the first integral in Eq. 3.3-8. Consider the weight W of an ele-
ment. Contents of body force array {F} are obtained by dividing W by element volume
and, if W does not act parallel to a coordinate axis, resolving W into axis-parallel compo-
nents. Example results appear in Fig. 3.11-3. The fraction of total weight assigned to each
node is independent of element orientation, but nodal loads shown are correct only if ele-
ments are of uniform material and thickness, quadrilaterals are rectangular, and side nodes

Uniform g o 2 g 2 g
[ i S T S 6 3 3 3 6
¢ . - >t —Pt—>-¢

¢ S ¢

. . | S :
SRR FUREPIIN [ P

@
Figure 3.11-2. Allocation of uniformly distributed side-tangent load to
uniformly spaced nodes.
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Figure 3.11-3. Consistent nodal loads associated with element weight W in the negative y direction,
for triangular and rectangular quadrilateral elements of uniform thickness.
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are at midside. In Figs. 3.11-3c and 3.11-3d we see some surprises. Vertex nodes of the
LST element are not loaded. Corner nodes of the Q8 element carry upward loads, but the
sum of all eight nodal loads is W, acting downward, as must be the case. A uniform trac-
tion on a surface of a solid element creates nodal loads like those in Fig. 3.11-3. For exam-
ple, if uniform pressure p acts on a rectangular surface of the solid element in Fig. 3.8-1b,
so as to produce total force F on the surface, then F/3 is allocated to each of the four mid-
side nodes and F/12 in the opposite direction to each corner node.

Remarks. A given nodal load may represent any of several distributed loadings. Figure
3.11-4 shows two of the many load distributions that have P as their consistent and stati-
cally equivalent nodal load. This being so, all these loadings produce identical deforma-
tions in the FE model. In a physical continuum the different loadings would produce
different results, but only close to the loaded area, in accord with Saint-Venant’s principle.
This example reminds us that fine detail cannot be modeled by a coarse mesh.

A nodal moment can be applied to a beam element, whose nodes have rotational d.o.f.
Excluding elements with drilling d.o.f., elements discussed in this chapter have only trans-
lational d.o.f., and so cannot resist a nodal moment load. A moment load can be applied to
these elements only as couple-forces. For example, in Fig. 3.11-4, a clockwise couple PL
would result if a leftward force P were added at node A. Although moment can be applied
to a node that has drilling d.o.f., accurate results in the neighborhood of the loaded node
are not to be expected.
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Figure 3.11-4. (a) Force P normal to a side formed by elements having corner
nodes only. (b,c) Two load distributions that are statically equivalent to force P.
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Most FE software is capable of calculating nodal loads of proper magnitude and direc-
tion. The user need only describe the direction, spatial variation, and intensity of distrib-
uted surface traction and body force, and the spatial variation and intensity of initial
stresses or initial strains. Software does not require that loaded sides be collinear or of the
same length.

3.12 STRESS CALCULATION

Structural d.o.f. {D} are calculated by solving structural equations [K]{D} = {R}. Vec-
tor {D} contains nodal d.o.f. {d} of every element. Nodeless or internal d.o.f. of elements
such as Q6 and Q9 may appear in {D} or may be eliminated before assembly and later
recovered by separate element-by-element calculations (see Section 6.7). Stresses in each
element can be calculated according to Eq. 3.1-1, with {e} = [B]{d}. Thus for isotropy,
plane stress conditions, and initial strains due to temperature change T with temperature-
independent coefficient of thermal expansion o, element stresses in the analysis plane are

o, 1 v 0 aT

g E2 v 1 0 [B]{d}-{aT (3.12-1)
1-v

- 0 0 (1-v»)/2 0

Matrix [B] is a function of the coordinates and must be evaluated at the location in the ele-
ment where stresses are desired. Step 3 on page 52 uses Eq. 3.12-1.

Typically, temperature is a function of the coordinates. An example problem in Section 2.10
suggests that if the element temperature field 7 is of higher degree than the element strain
field, then the degree of T'in Eq. 3.12-1 should be reduced to that of the element strain field in
order to improve the accuracy of computed stresses. However, the following counterexample
can be given. Imagine that v = Oand F = 0in Fig. 3.6-3, and impose the temperature field
T = (- 3y2)T0 , where Ty, is a constant. Nodal forces and displacements are zero, and use
of this temperature variation in Eq. 3.12-1 provides the correct o, but an incorrect o, If we
simplify the temperature field so that, like the strain field, it contains no quadratic terms, then
the best-fit temperature field is 7 = 0, which leaves the body free of stress. Clearly, neither
way of treating temperature is best in all cases. Both ways provide convergence toward exact
results with repeated mesh refinement. References include [2.19,3.12,3.13]. Further discus-
sion of thermal stress appears in Section 6.10.

Strain fields (and hence stress fields) are likely to display greater error than the dis-
placement field. This behavior is apparent in the problem of Fig. 3.10-4, where nodal
d.o.f. are almost exact but o, varies in stairstep fashion. The reason for this behavior is that
strain-displacement matrix [B] is obtained by differentiation of the displacement field, and
differentiation discloses differences. As an example, imagine that a simply supported
beam element displays a quadratic lateral displacement, while the exact lateral displace-
ment is a half sine wave. If plotted, the two v = wv(x) functions appear almost identical.
Not so the bending moment, calculated as M, = Elz(d2v/dx2); it is constant throughout
the beam element, while the exact bending moment field is a half sine wave.
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Figure 3.12-1. Stress appears in element 2 but not in
element 1. The differential element (shaded) spans the
interelement boundary.

Computed stresses are usually most accurate at locations within an element rather than
on its boundaries. This is unfortunate because stresses of greatest interest usually appear at
boundaries. Therefore, stresses may be calculated at certain points within an element, then
extrapolated to element boundaries (Section 6.10), or treated by smoothing schemes that
span a “patch” of elements (Section 9.9).

Elements discussed in the present chapter are C° elements, which means that gradients
of element fields are in general not continuous across boundaries between elements.
Therefore, computed stresses are in general not interelement-continuous. This behavior is
immediately apparent in the pair of CST elements shown in Fig. 3.12-1. Because #, is the
only nonzero nodal displacement, the left element is free of stress while stress o, prevails
throughout the right element. Discontinuous stress fields also appear in Figs. 3.6-3 and
3.10-4.

In general, adjacent elements display different states of stress at a node they share. As it
is not known which of these stress states is most accurate, the average stress at a node is
more to be trusted than stress at the node in any element attached to that node. Typically,
software computes average stresses at nodes, and uses them to plot stress bands (or stress
contours). These bands are interelement-continuous, and have a more pleasing appearance
than discontinuous element-by-element stress bands. However, because pronounced stress
discontinuity provides a visual waming that the mesh is too coarse to provide reliable
results, element-by-element stress bands are more useful to the analyst. Example stress
bands appear in Fig. 1.5-2. The reader may wish to review the discussion in that section of
Chapter 1. Stresses produced by smoothing operations are discussed in Section 9.9.

There are other circumstances in which stresses should not be averaged at nodes. Parts
joined by shrink fit, such as a disk on a shaft, have different circumferential stresses on
either side of the interface between parts. An average circumferential stress would not be
the correct circumferential stress in either part. A discontinuity of thickmness or modulus
also causes a discontinuity in stress. As examples, in Fig. 3.12-2a, o, is discontinuous at
x = 0 because x-direction force must be continuous but thicknesses differ. Atx = 0 in
Fig. 3.12-2b, o, (normal to the xz plane) is discontinuous because both parts must have
the same strain &, but E, &, # E,¢,. In Fig. 3.12-2c, different local coordinate systems
have been established in adjacent elements, and an average such as (o, + 0,,)/2 has no
physical meaning. If elements of different type are somehow connected, such as a beam
element and a plane element, an average stress at a node shared by the two is not likely to
be meaningful.

Some stress quantities are invariant; that is, they have the same numerical value regard-
less of the coordinate system in which they are computed. One such quantity is the von
Mises or “effective” stress o, which is used to predict the onset of yielding when material
behaves in a ductile fashion. In terms of general stress components and principal stresses
respectively, o, is
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Figure 3.12-2. Some situations in which stresses should not be averaged at a node. (a,b)
Plane elements seen in cross section, with Cartesian coordinates xyz. (c) Plane elements
seen in plan view, with interelement boundary AB.
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in which o, 05, and o3 are the principal stresses at the point in question, where (conven-
tionally) label o, is assigned to the algebraically largest and o to the algebraically small-
est. Principal stresses can be determined from the six stresses in {g'} by standard methods
[2.6]. Equation 3.12-2 reduces to o, = o if oy is uniaxial, thatis,if o, = o3 = 0. Note
that o, may exceed the magnitude of oy, for example, when oy = — 5. Also, o, is always
positive and does not identify the algebraic signs of stresses that contribute to it. Another
stress invariant is the stress intensity S;, where

SI =0 — 0y (3.12‘3)

Thus, by definition, S; is twice the maximum shear stress. Like o, it serves as a yield cri-
terion. Note that S;is not the stress intensity factor used in fracture mechanics. No direc-
tion is associated with o,. The orientation of planes that carry the maximum shear stress
§;/2 can be determined, but usually this information is not of interest.

The von Mises stress g, is often computed, and its element-by element contours plot-
ted, because it is a scalar measure of the intensity of the entire state of stress. Contours of
some other stress, such as g, might be similarly informative in one part of the model but
less so in another part because a stress other than o, is dominant there. Symmetry in the
FE model should provide symmetry in contours of o, or S;.

If a body is in a state of uniform stress, its FE model should display complete unifor-
mity of the stress field, so that computed results display no stress contours. This will not
happen if the model contains a patch of elements with improper connections, some of
which are shown for plane elements in Fig. 3.12-3. Along CD for example, elements LST
and Q4 should apply to one another nodal loads consistent with uniform traction, but from
the discussion in Section 3.11 we realize that because nodal loads on sides of elements
that meet along CD must be proportioned differently, the desired nodal loads cannot exist.
A disturbed and incorrect stress pattern will result. If poor connections are localized in a
model, the region of inaccurate stresses will also be localized, in accord with Saint-
Venant’s principle. One can also note that displacements are incompatible along CD and
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also along EF, being quadratic in elements LST and Q8 but linear in element Q4 and a dif-

ferent quadratic displacement in element Q6. Along GH, all three sides can displace to
become parabolic segments, but because the segments are offset, sides cannot be compati-
ble. At node A there is no connection at all because element CST has no side node. Some
of these faulty connections can be made to work properly by imposing constraints, which
are discussed in Chapter 13.

Software may report stresses with reference to global coordinates or with reference to
local coordinates such as used for the beam element in Fig. 2.3-2. In a beam, flexural
stress is referred to local coordinates because it is a normal stress in the beam’s axial direc-
tion. Elements for plates and shells may be arbitrarily oriented in global coordinates, but
their membrane and bending components of stress are computed in local coordinates tan-
gent to the element surface. A software user must consult documentation to understand
how local axes are oriented in the global system.

Elements discussed thus far, and indeed most elements in common use, are based on
displacement fields. There are other formulation methods, some based on simultaneous use of
separate fields for displacement and stress. Although such elements may have displacement
d.o.f., element stresses are not calculated by the same formulas as used for displacement-based
elements. A casual software user may be unaware of the basis of element formulation. In any
case the analyst should study documentation and run simple test cases in order to appreciate
how an element behaves before using it in applications.

3.13 NATURE OF A FINITE
ELEMENT SOLUTION

In an exact solution, every differential element of material is in equilibrium, compatibility
prevails everywhere, and all boundary conditions on stress and displacement are met. A
solution by FEA, being approximate, does not satisfy these requirements in every way. In
what follows we note the extent to which the requirements are met in static FEA when ele-
ments are based on displacement fields.

o Compatibility prevails at nodes. At connection points (nodes), elements have identi-
cal displacement components. A partial connection implies a relaxation of this state-
ment. For example, let two adjacent elements have three translational and three
rotational d.o.f. per node. If only the translational d.o.f. are connected where elements
meet at a node, the node acts like a ball-and-socket joint.

* Compatibility may or may not be satisfied across interelement boundaries. Compati-
bility prevails when displacements along an element side are entirely determined by
d.o.f. of nodes on that side, and adjacent elements share these nodes and all their d.o.f.
Such is not the case for element Q6, and it is not the case for some elements often used
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for plates and shells. It is also not the case when element types are mixed and elements
are poorly connected, as in Fig. 3.12-3. For properly connected elements that are valid
in the patch-test sense (including element Q6), incompatibilities tend toward zero as
the mesh is repeatedly refined. )

Compatibility is satisfied within elements. Internal compatibility requires only that
the element displacement field be continuous and single-valued. These conditions are
automatically satisfied by polynomial displacement fields.

Equilibrium of nodal forces and moments is satisfied. Solution vector {D} satisfies

structural equations {R} — [K]{D} = {0}, which state that each node is in static
equilibrium under the action of applied loads {R} and elastically-generated internal
loads — [K]{D}.
» Equilibrium is usually not satisfied at or across interelement boundaries. Computed
stresses usually do not satisfy Eqs. 3.1-14. For example, in an FE model of the struc-
ture in Fig. 3.1-2b, computed results will not display o,, = 0 and 7,, = 0 along the
lower side. A lack of equilibrium across interelement boundaries is displayed by the
differential element in Fig. 3.12-1, on which all stresses are zero except for o,, > 0
on its right side. A similar situation appears in Fig. 3.10-4. These disagreements with
boundary and interelement equilibrium tend toward zero as the mesh is repeatedly
refined.

*» Equilibrium is usually not satisfied within elements. Computed stresses usually do not
satisfy the differential equations of equilibrium, Egs. 3.1-13, except in an average or
integral sense over the element volume, as noted before Eq. 3.3-2. An exception is the
CST element, for which Eqgs. 3.1-13 are always satisfied. But equilibrium across
interelement boundaries is poorly modeled by CST elements, and Fig. 3.7-2 shows
that CST elements may perform poorly. Clearly, good element behavior requires more
than satisfaction of Eqs. 3.1-13. However, with any acceptable element, Egs. 3.1-13
become more nearly satisfied as a mesh is repeatedly refined.

3.14 EXAMPLE: A SIMPLE STRESS
CONCENTRATION PROBLEM

We illustrate the behavior of LST elements by applying them to a plane problem for which
results are already known. Imagine that a circular hole exists in an isotropic infinite plate
that is subjected to uniform uniaxial far-field stress o,.. Unless we wish to use special
“infinite” elements, discussed in Section 8.8, we must develop a model with a finite
domain. Because horizontal and vertical axes through the center of the hole are axes of
symmetry, only one quadrant of the problem need be modeled (Fig. 3.14-1a). Saint-
Venant’s principle suggests that stress disturbance due to the hole extends no more than a
few diameters from the hole. Thus it is perhaps reasonable to use a 10R by 10R domain to
represent one quadrant. Then, for this geometry, the tabulated stress concentration factor is
2,722 [1.16]; hence Oymax = 2.722(04, /0.9) = 3.0250,. According to the theory of
elasticity [3.1], for a circular hole in an infinite plate under plane stress conditions, the
maximum normal stress is 0, = 30, where the hole intersects the x-axis in Fig. 3.14-1a,
and the minimum normal stress is 0, = — o, where the hole intersects the y-axis.

Our mathematical model consists of a central circular hole of radius R in a 20R by 20R
square plate under plane stress conditions, which implies that the hole diameter in the
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physical structure should be greater than the plate thickness so that stress components with
z subscripts are indeed negligible. On the quadrant shown in Fig. 3.14-1a we apply stress
boundary conditions of zero traction on the arc that defines the hole and on the side
x = 10R, and y-direction traction o, on the side y = 10R. Thus we assume that these
conditions on the finite mathematical model are very nearly consistent with stresses along
these lines in the infinite domain. Displacement boundary conditions arez = Qonx = 0
andv = Oony = 0, as indicated by rollers. These displacement conditions are exact, and
no additional approximation is implied by exploiting symmetry and analyzing a quadrant.
For FE analysis of this mathematical model, LST elements under plane stress condi-
tions are used. Stress gradients are expected to be much larger near the hole than farther
away, so elements are graded in size as shown in Fig. 3.14-1a. The mesh was generated by
software. Eight uniform divisions were prescribed on the circular arc that defines the hole,
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and three uniform divisions on the outer boundaries. The software generaEed a mesh of
122 LST elements with 279 nodes (558 d.o.f.), not accounting for any reduction due to
imposition of boundary conditions. The material is isotropic, with E = 200 GPa and
v = 0.3. )

FEA provides stresses throughout the model. Unaveraged contours of oy, in the vicinity of
the hole are shown in Fig. 3.14-1b. The list of stresses tabulated by the software shows that the
largest oy, is 3.1280, and the smallest o, is —1.0910. Each of these stresses appears in
the anticipated location. Although these values are close to expectations, Fig. 3.14-1b
shows obvious inter-element discontinuities in unaveraged ¢, contours around the hole. Far
from the hole (not shown in Fig. 3.14-1b), the o, distribution appears uniform, which suggests
that both the location of the far-field boundary and the coarseness of the far-field mesh are
acceptable. To improve results we might refine elements near the hole, but no refinement
appears necessary near the outer boundary.

The software used provides a numerical measure of how well averaged and unaveraged
stress fields agree. This measure, described in Section 9.10 and symbolized by 7, becomes
zero if the two fields are identical. FE discretization is often considered acceptable if
7 < 0.05. For the LST mesh of Fig. 3.14-1a, we obtain n = 0.012.

In theory, stresses are independent of E and ». FEA stresses are indeed independent of
E, but changing v from 0.3 to zero changes Oymax from 3.1280,, to 3.1220,, in the mesh
used here. Mesh refinement should reduce the disagreement.

3.15 AN APPLICATION WITH
HIGH STRESS GRADIENT

The preceding example may suggest that any plane problem can be satisfactorily solved by
elements discussed in this chapter if the mesh is sufficiently dense in regions where strain
gradients are high. Figure 3.15-1 depicts an apparently simple problem that will disabuse
us of this notion. The problem is a reminder that we must think carefully about each prob-
lem despite the power of FEA.

Figure 3.15-1 depicts a bimetal body, consisting of two different but isotropic metals
bonded together in an unstressed state at room temperature. Material moduli, Poisson
ratios, and thermal expansion coefficients differ, with E; > E_, v; < v, and a, < a,,
where subscripts s and a denote steel and aluminum, respectively. We seek stresses that
result from unconstrained and uniform heating to 100 °C above the stress-free temperature.
Our choice for the mathematical model is a body of uniform thickness 20 mm normal to the
xy plane, with plane stress conditions in the xy plane (despite the appreciable thickness).

20mm |E,=200GPa  »,=029 o,=12(107%)/rC

Y |E,=70GPa  1,=033 «,=24(10~6)C
40 mm | y

Figure 3.15-1. Geometry and

x . - .
material properties of a bimetal
l(—— 90 mm ——)I(——— 90 mm ——)l problem.
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Preliminary Analysis. Because «; < a,, we expect the structure to bend in the xy plane,
placing the upper surface of the top layer in compression and the lower surface of the bot-
tom layer in tension. For preliminary analysis we assume that stresses do not vary along
the length, and apply elementary mechanics of materials, summarized as follows. If axial
expansion is prevented, initial axial stresses — 240 MPa and —168 MPa appear in the steel
and aluminum layers respectively, with associated axial compressive forces of restraint
F, = 96,000 N and F, = 134,400 N in the respective layers (Fig. 13.5-2). Next we
remove axial restraint by applying these forces in the opposite sense, and use the trans-
formed section method for stress analysis. Transforming (say) the steel portion, we obtain
an aluminum T-section beam, whose upper part has dimension 20(200/70) = 57.14 mm
normal to the xy plane and whose centroidal axis is 37.647 mm from the base. Loads are
centroidal force P = F, +F, = 230400 N in axial tension and moment
M = 1,186,000 N * mm that bends the beam concave up. With I = 568,300 mm?, the
resulting axial stress on the top of the T-section is P/A — Mc/I = 71.9 MPa. Transform-
ing back to the original steel and superposing the initial stress, we obtain
71.9(200/70) - 240 = -34 MPa as the estimate of the final axial stress on top of the
actual bimetal beam in its central portion, away from end effects. Similar analysis pro-
vides the estimate 29 MPa on the bottom of the bimetal beam.

Finite Element Analysis. Figure 3.15-3a depicts the initial FE model as well as the
resulting deflection profile under thermal load. Roller supports along the y axis provide
symmetry about the vertical centerline of the structure. The single roller support at the
lower right corner permits unconstrained expansion of the structure while preventing rigid
body translation in the y direction. A coarse mesh of Q8 elements is used. The maximum
computed deflection is approximately 0.25 mm in the x direction, as shown (not to scale).
Critique of Results. The displaced shape, Fig. 3.15-3a, is reasonable: the body expands
in both x and y directions and becomes concave up, as expected. But it appears that the
upper left corner, on the y axis, has zero vertical displacement. Has a mistake been made
in boundary conditions, so that vertical displacement is prevented at this node? A simple
calculation shows that the zero-displacement result is only fortuitous. Returning to the T-
section beam of preliminary analysis, we calculate that moment M = 1,186,000 N ¢ mm
creates downward displacement ML?/8EI = 0.121 mm at the middle of a simply sup-
ported beam of length L = 180 mm, while thermal expansion creates upward displace-
ment (40a,, +20a,)100 = 0.120 mm. Thus the two motions very nearly cancel.

Figure 3.15-3b shows unaveraged contours of o,. On the y axis, tabulated values of o,
produced by the FE software indicate that o, = 294 MPaaty = Qand o, = —34.0 MPa
aty = 60 mm, in almost exact agreement with stresses obtained in preliminary analysis. As
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3.15 AnApplication with High Stress Gradient

20 mm
40 mm

I

—-23.1

+24.0

(a)

()
Figure 3.15-3. (a) FE domain, mesh, boundary conditions, and displacement profile in the bimetal

Contours of o, (unaveraged)
+39.7
-38.8
—23.1
-7.4
+8.3
+24.0

+71.0

body after a uniform temperature increase of 100 °C. (b) Unaveraged contours of o, from the mesh

in part (a).
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expected, there is a discontinuous transition between tensile and compressive g, as we move
through the material interface from top to bottom. Particularly in this case, plotting averaged
values of o, would eliminate important information. Because the right boundary is a free
surface, we expect o, to approach zero there, and o, contours indicate that g, does indeed
approach zero everywhere on the right boundary except for a small region around the mate-
rial interface.

Based on these results, it would appear that the FE model is good. However, near where
the material interface meets the right-hand boundary, we see large discontinuities in o,
contours. Contour plots of ¢, and T, (not shown) display enormous strain gradients
through individual elements adjacent to the material interface at the right boundary. Fur-
thermore, we find that repeated mesh refinement fails to alleviate the problem. What is
wrong? It happens that this simple-looking problem has a stress singularity at the bound-
ary on the material interface [3.14,3.15]. For most combinations of material properties, the
singular stress field is proportional to 1/r?, where r is radial distance measured from an
origin at the right boundary on the material interface and p is a coefficient that depends on
the relative material properties. Because interpolation functions of the elements used are
incapable of modeling this behavior, repeated mesh refinement never achieves infinite
stressatr = 0.

Note that modeling choices may significantly affect results away from the singularity.
Imagine, for example, that the roller support in Fig. 3.15-3a is replaced by a pin, so that
u = v = 0 atthe lower right corner. In this case, the tendency toward outward expansion
would be prevented by horizontal force applied by the support, significantly altering defor-
mation and stress in the central portion of the structure, and producing a stress singularity
at the pin, for which again mesh refinement would not result in convergence of stresses. Of
course, a pin support is inconsistent with our intention to analyze unrestrained thermal
loading of the bimetal bar.

Because the actual body is rather thick normal to the xy plane, our plane-stress mathe-
matical model differs from reality, but provides no information about the magnitude of the
difference. A 3D analysis would display nonzero stresses 0, 7,,, and 7,,, and values of g,
o,, and 7,, somewhat different than those computed in plane analysis. In a 3D model, a
stress singularity analogous to that observed at a point in the plane model would be
expected along the rectangular boundary line where the material interface meets the outer
surfaces.

We conclude by reminding ourselves that considerable frustration can be avoided by
ensuring that we understand the nature of the problem before we begin numerical analysis.

ANALYTICAL PROBLEMS

3.1-1 (a) By writing equations analogous to Eq. 3.1-11, derive differential equations of
equilibrium for the three-dimensional case.
(b) Use a free-body diagram to derive the two-dimensional form of stress bound-
ary conditions, Egs. 3.1-14.

3.1-2  Imagine that stresses in the xy plane are reported to be o, = —6a,x%, o, = 12a,42,
and 7, = 12a,y?, where g, is a constant.
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3.1-4

3.1-5

3.2-1

3.2-2

323

324

3.2-5

3.2-6

(a) Consider the square region 0 <x < b, 0 <y < b. Write expre;sions for trac-
tions @, and ®, on each side of this square, in terms of x, y, b, and a;.
(b) If body forces are zero, is this state of stress in fact possible? Explain.

Determine if the following stress field is a valid solution of a plane elasticity
problem: o, = 3a112y, o, = a;y°, and Ty = ~3a;xy?, where a, is a constant.
The body is isotropic and linearly elastic, and body forces are zero.

(2) Consider volume V of a differential element and its change AV under stress.
Show that AV/V = &, + &, + &, if strains are small.

(b) Let hydrostatic pressure p be applied. Obtain an expression for (AV/V)/p.

(c) Hence, show that a rubberlike material is almost incompressible.

Let displacements in an isotropic body in a state of plane stress be as stated by
Eqgs. 3.5-1. What relation among constants a; is needed if differential equations of
equilibrium are to be satisfied?

InFig. 3.2-2b,letx; = 0,x, = 2,andx3 = 3. Then use this data in the following.
(a) Verify numerically that shape functions sum to unity.

(b) What should the sum of x derivatives of the shape functions be? Verify the
property numerically.

Shape functions of C? elements satisfy the relation z N; = 0, but such is not
the case for shape functions of a C* element such as a plane beam. Why?

In Fig. 3.2-3a, let numbered points have respective x; of 1, 3, 5, and 8, and respec-
tive ¢; of 2,2, 2, and 5.

(a) Use Lagrange’s formula to obtain an interpolating polynomial.

(b) What values of ¢ does the formula predictatx = 0,atx = 2,atx = 4, and
atx = 77

Invert matrix [A] of Eq. 3.2-8. Hence verify the shape functions shown in Fig. 3.2-4.
Suggestion: Regard Egs. 3.2-8 as four equations to be solved for the four g;. Arrange
results in matrix format, identify a 4 by 4 matrix as [A]™}, then use Eq. 3.2-3 to
obtain | NJ.

Imagine that a curve ¢ = ¢(x) is to be fitted to three data values: ¢; and ¢, at

"x = 0 and ¢, at x = L (analogous to Fig. 3.2-3b but with ¢,,, unspecified).

Determine the shape functions. Also sketch them and check their behavior at
x = Oandatx = L (in the manner of Fig. 3.2-4).
Imagine that, at points A, B, and C in the sketch, both ordinate and slope data are
known. Slope data are indicated by short lines through data points. Without calcu-
lation, sketch
(a) a Lagrange interpolation curve through all three points.
(b) a piecewise interpolation of C continuity.
(c) a piecewise interpolation of C! continuity.

¢

C
——

A
~ ——

Problem 3.2-6
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3.3-1

332

333

3.4-2

3.4-3

BASIC ELEMENTS

(a) The shape function matrix for a bar element of length L can be written as
[N] =1 xJ[A]"!, where [A]! is given by Eq. 3.2-4 with x; = 0 and
x, = L. Hence [B] =0 1]J{A] ~1 | and the element stiffness matrix is

L .
k] = [A]_Tj {(1)} AE|0 1]dx[A]!
0

Use this form to generate [k] of a uniform bar element, Eq. 3.3-10.
(b) Using a similar form for a uniform beam element, verify [k] of Eq. 3.3-14.

(a) Imagine that, at each end node, a uniform bar element is to have not only axial dis-
placement d.o.f., but axial strain d.o.f. as well, so that {d} = |u;, &; u, €,
Derive the resulting 4 by 4 element stiffness matrix.

(b) How can this element be used to model a bar that carries concentrated axial
loads, or has abrupt changes in elastic modulus or in cross-sectional area?

A uniform bar element of length L has a node at each end and a node at the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>