

Unreal Engine 5
Game Development
with C++ Scripting

Become a professional game developer
and create fully functional, high-quality games

Zhenyu George Li

BIRMINGHAM—MUMBAI

Unreal Engine 5 Game Development with C++ Scripting
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Rohit Rajkumar

Publishing Product Manager: Vaideeshwari Muralikrishnan

Senior Editor: Hayden Edwards

Technical Editor: Simran Udasi

Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan

Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Ponraj Dhandapani

Marketing Coordinators: Namita Velgekar & Nivedita Pandey

First published: August 2023
Production reference: 1110823

Published by Packt Publishing Ltd.
Grosvenor House
11 St Paul’s Square
Birmingham
B3 1R

ISBN 978-1-80461-393-1

www.packtpub.com

http://www.packtpub.com

Foreword

I have known and worked with George Li in various capacities for more than 20 years.

We met first as colleagues at a private college of interactive arts in downtown Vancouver, Canada. I
was a full professor of linguistics at a university in the area, with extensive experience in developing
a cognitive science program at the university. Establishing a curriculum for such a program involved
familiarizing myself with areas well beyond the area of my specific academic position and collaborating
closely with colleagues – particularly in computing science (cognitive), psychology, and philosophy
(particularly concerning socio-epistemological issues such as AI). It was in this spirit that I was happy
to associate myself with a private college, focusing on language study and teaching, together with
preparing students to handle 3D computer applications (e.g., 3ds Max, 3D GameStudio, and Unreal)
and showing them how to generate animation materials for film, TV, and games.

George Li was in charge of all the technical requirements of the college. I very quickly realized that he
was not merely extremely competent and forthcoming (he had already occupied high-level computing-
related positions, software engineering for instance, in China prior to emigrating to Canada) but
also computationally competent and brilliantly innovative. He also had a particular interest in the
development of game engines and was already collaborating with his colleague, Charles Yeh, on a
practical reference book, XNA PC & Xbox360 C# Game Programming, with proprietary-produced
text and games to his credit.

As colleagues in the college, George and I found common, mutually strengthening interests. Eventually,
he and I found ourselves in charge of creating a two-year interactive-arts program curriculum for
the college.

My whole career, at universities in the UK and Canada, and as a member of the editorial boards of
a major academic journal and a very influential series, has closely involved the evaluation of the
intellectual quality of people’s capabilities and work, and in my opinion, George Li’s innate talents
shine out clearly throughout his work and will continue to do so in the future. His ability to express
his knowledge of the subject at hand is outstandingly demonstrated in all his work, performance,
expressions, and character.

This book, like the one co-authored with Yeh, is designed for independent developers and company
training, plus for reference after post-secondary education. The knowledge presented herein is most
intelligently, clearly, and effectively presented so as to be as efficiently applicable and pedagogically
effective as possible on any device or platform, producing high-quality games, accessories, and edits.

This volume will certainly stand the test of time and fulfill the majority of the needs of those working
in the field of gaming. However, I am certain that George will make further, very crucial contributions
to this topic.

Until then, this volume will serve you excellently, helping you enjoy and prosper with your future
activities and products.

Dr. E. Wyn Roberts (M.A. Ph.D (Cantab.))

Emeritus Professor of Linguistics, Simon Fraser University

Contributors

About the author
Zhenyu George Li is a passionate video game developer with over 20 years of experience in the field.
As a seasoned software engineer, George has contributed significantly to the development of numerous
games throughout his career and currently serves as a senior development consultant at Unity.

George’s fascination with video games was sparked during his college studies, igniting a passion that
would shape his professional journey. During the early stages of his game development endeavors,
George immersed himself in technologies such as Visual Basic, C/C++, DirectX, OpenGL, and Windows
GUI. These foundational experiences laid the groundwork for his subsequent success in the industry.

Throughout his career, George has made substantial contributions to various commercial games.
Notable titles in his portfolio include Halo Infinite, Magic: The Gathering Arena, Stela, Dead Rising 2,
The Bigs 2, and so on. His involvement in these projects has allowed him to gain extensive knowledge
and practical experience in a wide range of domains, including programming, game engines, gameplay
and AI, graphics, animation, multiplayer games, multiplayform games, and game physics. In practical
applications, George has used both the Unreal and Unity engines in the development of real game projects.

In addition to his achievements as a game developer, George has also honed his teaching abilities during
his eight years of college-level instruction. He has shared his knowledge and expertise with aspiring
developers, serving as a lecturer at the Vancouver Film School (VFS), the College of Interactive Arts,
and Hefei Union University. During his teaching at VFS, George instructed students in the intricacies
of Unreal Engine.

I express my gratitude to my wife, Alison Guo, for her support in handling family responsibilities and
for enabling me to dedicate time to completing this book. I also extend my thanks to Sarah Beck and
Willy Campos for their encouragement and support throughout the writing process.

About the reviewers
Aditya Dutta holds a game programming advanced diploma from Humber College and is a highly
accomplished senior software engineer at Archiact Interactive, bringing expertise in Unreal Engine
and C++ system design and implementation.

With a strong collaborative spirit, Aditya leads feature development and takes ownership of tools
while actively improving team processes. These leadership skills were evident during his tenure
as lead programmer at Humber College, where he successfully guided and mentored a team of
programmers, overseeing the technical aspects of significant projects in the virtual production and
architecture industries.

His contributions at UP360 Inc. as a programmer included shipping numerous training VR simulations,
developing iterative tools, and implementing gameplay mechanics using Unreal Engine.

Michael Oakes is a senior software consultant for Unity and has over 27 years of experience in the
IT industry. He has worked with real-time 3D and games for over eight years, specializing in mixed
reality design and development, shader programming, and AI and multiplayer systems.

He has worked as a technical consultant on other titles, including Packt Publishing’s Learn ML-Agents
– Fundamentals of Unity Machine Learning, written by Micheal Lanham.

Part 1 – Getting Started with Unreal C++
Scripting

1
Creating Your First Unreal C++ Game 3

Technical requirements 3
Understanding C++ scripting in Unreal 4
What is the difference between C++ and
Blueprint? 4
When do you use C++? 5
What is the difference between C++
programming and C++ scripting? 5

Creating your C++ Shooter project
from a template 6
Installing Visual Studio 2022 6

Ensuring your UE has the source code installed 9
Launching the UE5 editor through the Epic
Games Launcher 10
Creating the MyShooter C++ project 10
Associating VS with UE5 as the default source
code editor 12
Opening the C++ source code in VS (optional) 13

Converting an existing Blueprint
project to a C++ project 15
Summary 20

2
Editing C++ Code in Visual Studio 21

Technical requirements 21
Launching VS 22
Walking through the VS IDE’s UI 24
Code editor 25
Menus 26
Search box 26
Toolbar 26

Solution Explorer 26
Output window 27
Error List window 28

Editing code in VS 29
Controlling the caret (input cursor) 30
The text editing keys 30
Code selection 30

Table of Contents

Table of Contentsviii

IntelliSense 31
Useful editing hotkeys 31

Practicing C++ coding 32
Creating a new C++ solution in VS 33

Creating the main.cpp file 35
Changing the editor theme 37
Writing the initial code for main.cpp 38
Adding the Calculator class 40

Summary 42

3
Learning C++ and Object-Oriented Programming 43

Technical requirements 44
What is C++? 44
Exploring the C++ program structure 45
Defining C++ functions 46
Defining functions with or without parameters 47
Calling functions 47
Writing the main() function 47

Working with a basic calculator
program 48
Learning the C++ syntax 49
Using the C++ data types 50
Defining variables 51
Using C++ arrays 52
Using C++ operators 53
Accepting user input 57
Adding C++ comments 57
Controlling the C++ flow 58

Working on the improved calculator
program 66
Creating references and pointers 72
References 73
Pointers 74

Understanding OOP 74
What is OOP? 75
What are classes and objects? 75
Creating classes in C++ 76
Creating objects in C++ 77

Working on an OOP calculator
program 78
Adding constructor and getter functions for
the calculator class 83
Creating the CalculatorEx class, which
inherits from the Calculator class 84

Summary 88

4
Investigating the Shooter Game’s Generated Project and C++ Code 89

Technical requirements 89
Understanding the MyShooter C++
project structure 90
Understanding the game program
structure 92

Getting familiar with the source code 95
MyShooterCharacter.h 95
MyShooterCharacter.cpp 100
MyShooterProjectile.h and
MyShooterProjectile.cpp 103

Table of Contents ix

TP_PickUpComponent.h and TP_
PickUpComponent.cpp 106
TP_WeaponComponent.h and TP_
WeaponComponent.cpp 108
MyShooter.h and MyShooter.cpp 110
MyShooterGameMode.h and
MyShooterGameMode.cpp 110

MyShooter.Build.cs, MyShooter.Target.cs,
and MyShooterEditor.target.cs 111

Launching Unreal Editor and
opening the game project in Visual
Studio 112
Summary 114

Part 2 – C++ Scripting for Unreal Engine

5
Learning How to Use UE Gameplay Framework Base Classes 117

Technical requirements 118
Creating a Pangaea top-down game
project 118
Understanding the gameplay
framework base classes 119
Creating game actor classes 120
Creating the ADefenseTower class 120
Creating the AProjectile class 125
Creating the APlayerAvatar class 125

Recompiling C++ projects 127
Using the UPROPERTY macro 128
The UPROPERTY syntax 129
The UPROPERTY specifiers and metadata keys 130
Marking the ADefenseTower, AProjectile,
and APlayerAvatar attributes as UE properties 130

Using the UFUNCTION macro 132
The UFUNCTION syntax 132
UFUNCTION specifiers and metadata keys 132
Tagging ADefenseTower and APlayerAvatar
member functions as UFUNCTION macros 133

Adding components to the new actors 136
Including component header files 136

Defining private properties for these two
components 136
Adding public getter functions to the
components 137
Creating components in the class constructor 138

Creating blueprints from the new
actor classes 138
Learning about the Unreal gameplay
framework classes 142
Locating and creating gameplay framework
classes in Pangaea 142
Learning about the PlayerController class 143
Learning about the GameModeBase class 144
GameState 144
GameInstance 144
Retrieving class instances from your code 145

Using the Cast template function 145
Summary 147

Table of Contentsx

6
Creating Game Actors 149

Technical requirements 149
Setting up the player avatar 150
Adding SpringArmComponent and
CameraComponent to PlayerAvatar 150
Initializing the player avatar 154

Setting up the character’s
SkeletalMeshComponent 155
Importing the character model 155
Using the Hero skeletal mesh in BP_
PlayerAvatar 160

Replacing the game’s player pawn 160

Creating the player avatar’s
animation blueprint 162
Creating the PlayerAvatarAnimInstance class 163
Creating the ABP_PlayerAvatar blueprint 169
Creating the State Machine on ABP_
PlayerAvatar 171
Syncing the movement speed with the
animation instance 174

Summary 176

7
Controlling Characters 179

Technical requirements 180
Controlling the player character to
attack 180
Adding the Attack action to the action map 180
Binding the handler function to the Attack
action 181
Implementing the OnAttackPressed() action
handler function 182
Implementing the CanAttack() and Attack()
functions 182
Processing non-loop animations 184

Implementing the OnStateAnimationEnds
function 186

Destroying actors 187
Creating the enemy character 189
Creating the Enemy class 190
Creating the EnemyController class 195
Creating the ABP_Enemy animation blueprint 200
Creating the BP_Enemy blueprint 201

Testing the game 203
Summary 204

8
Handling Collisions 205

Technical requirements 205
Understanding collision detection 206
Setting the collision presets 210

Using collisions for game interactions 213
Downloading and creating the weapon,
defense tower, and fireball actors 214

Table of Contents xi

Picking up weapons 218
Spawning a weapon for the enemy 224
Defense tower firing fireballs 225
Moving the fireball and checking whether the

target is hit 230
Processing a defense tower hit 234

Summary 236

9
Improving C++ Code Quality 239

Technical requirements 239
Refactoring code 240
Combining the PlayerAvatarAnimInstance
and EnemyAnimInstance classes 240
Making PangaeaCharacter the parent class of
APlayerAvatar and AEnemy 243

Refining code 255
Using caching variables 255

Creating a fireball pool 256

Outputting debug messages 263
Using the UE_LOG macro 264
Printing debug messages to the screen 265

Checking an Actor instance’s actual
class type 266
Summary 269

Part 3 – Making a Complete Multiplayer Game

10
Making Pangaea a Network Multiplayer Game 273

Technical requirements 273
Comparing single-player and
multiplayer games 274
Launching the multiplayer Pangaea
game in the editor 275
Understanding multiplayer game
network modes 277
Handling network synchronizations 278
Notifying player attacks with RPCs 278
Syncing actor variables to clients with

replications 282
Updating the character health bar with
RepNotify 284
Processing hits on the server 290
Spawning fireballs on the server side 291

Summary 293

Table of Contentsxii

11
Controlling the Game Flow 295

Technical requirements 295
Designing the Pangaea game’s flow 296
Creating the UI widgets 297
Creating BP_LobbyWidget 298
Creating BP_HUDWidget 301
Creating BP_GameOverWidget 303

Adding networking functions to
PangaeaGameInstance 306
Adding UI widgets to game levels 310
Adding the game timer 312

Adding the Timer variable to the
APangaeaGameState class 313
Making the Timer variable replicable 314
Defining OnTimeChangedDelegate 314
Creating and binding the custom event to
OnTimeChangedDelegate 315
Counting down the timer 317
Designating APangaeaGameState as the
project’s game state class 319

Destroying a base defense tower to
win the game 320
Summary 326

12
Polishing and Packaging the Game 327

Technical requirements 327
Polishing the game 328
Importing and using high-quality game assets 328
Fixing bugs 331
Profiling and optimization 331

Using Unreal Engine console
commands 332
Exploring modes and console commands 332
Executing console commands in C++ 336

Packaging the game 338
Configuring the project settings for packaging 338
Making the build a windowed game 340
Avoiding the hardcoded path for finding
content 341
Packaging the project 344

What to do next 347
Summary 348

Index 349

Other Books You May Enjoy 360

Preface

Welcome, and thank you for choosing to pick up the Unreal Engine 5 Game Development with C++
Scripting book! This comprehensive book is designed to assist game developers and students in
advancing their professional skills in C++ programming for Unreal Engine game development.

Unreal Engine is a powerful and versatile game engine widely used in both the gaming and movie-
making industries. Possessing advanced and professional Unreal Engine development skills enables
individuals to adapt more effectively to the demands of a career in game development, opening a
multitude of opportunities for them.

When developing with Unreal Engine, you have the option to use either one or both of two available
programming tools:

• Blueprint provides a user-friendly interface suitable for non-programmer developers

• C++ is predominantly employed by software engineers, providing a more robust and flexible
approach to game development

As an Unreal Engine developer, you may have a genuine interest in understanding C++ and how it
integrates with the engine, even if you don’t identify as a software engineer or aspire to become one.

This book is designed to assist you in expanding your knowledge and skills by guiding you through
the necessary steps to create a fully fledged game, covering essential aspects of game development. It
aims to smoothen the learning curve, allowing for a more seamless and efficient grasp of the concepts
presented. The carefully organized topics eliminate the need for random searching and prevent wasted
time on unrelated readings, enabling you to focus on the relevant information. Moreover, this book
serves as a valuable reference manual, offering a comprehensive resource that can be revisited and
utilized for further study.

Who this book is for
It is important to note that this book does not serve as a beginner’s guide to using Unreal Engine. Prior
to exploring its contents, you should already possess a basic understanding of, and practical experience
with, Unreal Engine and Blueprint. This prerequisite ensures that you have a solid foundation of
knowledge to fully leverage the material covered in this book, maximizing your learning experience.

Prefacexiv

This book caters to a diverse range of readers:

• Non-engineer game developers, such as game designers and artists who aspire to learn and
comprehend C++ in the context of Unreal Engine development

• Software engineers who may lack prior experience in Unreal Engine C++ programming but
wish to quickly acquire the necessary skills for their next project or job

• Students who are interested in learning and digging into Unreal C++ programming for their
study or personal projects

• Individuals with a keen interest in game development using Unreal Engine will benefit from
the comprehensive knowledge presented within these pages

What this book covers
Chapter 1, Creating Your First Unreal C++ Game, guides you quickly through creating a new C++
game project based on the Shooter template in Unreal. This chapter also introduces how to convert
an existing Blueprint game project into a C++ game project.

Chapter 2, Editing C++ Code in Visual Studio, provides basic information on how to use the powerful
integrated development environment Microsoft Visual Studio to edit C++ code. This chapter not only
presents the editing skills needed but also demonstrates how to create a calculator application in C++.

Chapter 3, Learning C++ and Object-Oriented Programming, goes deeper into C++ programming based
on the previous chapter’s calculator project. This chapter covers the fundamental C++ syntax, data
types, flow control, and so on. C++ object-oriented programming is also introduced in this chapter.

Chapter 4, Investigating the Shooter Game’s Generated Project and C++ Code, explores the details of
the generated shooter game project, including the project files’ structure and the source files. In this
chapter, the C++ code lines are briefly explained, so that you gain an overall understanding of how
C++ code works.

Chapter 5, Learning How to Use the UE Gameplay Framework Base Classes, instructs you on how to
create our new top-down game project, Pangaea. You will be guided on how to create the game actors,
DefenseTower, for instance, and the game character, PlayerAvatar classes, for instance, as
well as defining actor properties and functions in C++.

Chapter 6, Creating Game Actors, provides steps to write code and set up the main character for the
Pangaea game. It includes setting up the character, creating the animation instance, defining the state
machine, and synchronizing the animations.

Chapter 7, Controlling Characters, provides methods of controlling game characters. This includes
configuring the input map, handling player input, and effectively processing the reactions of the
player character. Additionally, you will be introduced to the AI controller and the navigation system
for controlling non-player characters.

Preface xv

Chapter 8, Handling Collisions, discusses the engine’s collision system and its configurations for game
interactions. To handle collision events – attack hits and projectile hits, for example – you will learn
how to configure actor colliders and triggers. Using ray casts to check whether a projectile hits the
target is also introduced in this chapter.

Chapter 9, Improving C++ Code Quality, presents how to employ software engineering practices during
code refactoring and refinement. This chapter implements class generalization, caching, and pooling
methods to improve the game code’s quality and performance.

Chapter 10, Making Pangaea a Network Multiplayer Game, starts by introducing the fundamental
concepts related to multiplayer games, including servers, clients, and multiplayer modes. You will
be guided step by step through converting the single-player Pangaea game into a multiplayer game.

Chapter 11, Controlling the Game Flow, intends to make Pangaea a complete multiplayer game, which
has a main menu as the lobby, so that players can decide whether they want to start a host or join
a game session. C++ and Blueprint scripting skills for user interface operations are also revealed in
this chapter.

Chapter 12, Polishing and Packaging the Game, provides resources, methods, and suggestions on how to
polish games from both visual experience and product quality aspects. This chapter also provides steps
for configuring and packaging the Pangaea project to be an executable standalone game for distribution.

To get the most out of this book
You will need to have knowledge and experience in using Unreal Engine. Basic Blueprint scripting
knowledge is also required prior to reading this book.

Software/hardware covered in the book Operating system requirements
Unreal Engine 5.0 and up Microsoft Windows 10 and up
Microsoft Visual Studio 2002 with the C++ compiler

If you conduct experiments with the samples on systems other than Microsoft Windows, such as
macOS, please keep in mind that there may be user interface and configuration differences that may
not be addressed in this book.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting.
If there’s an update to the code, it will be updated in the GitHub repository.

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting

Prefacexvi

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:
"The AProjectile class can be inherited as child classes for creating various fireable objects, such as
AFireBall, AMissile, ABomb, and so on."

A block of code is set as follows:

#pragma once
#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "DefenseTower.generated.h

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

void APangaeaCharacter::BeginPlay()
{
…
_AnimInstance = Cast<UPangaeaAnimInstance>(
GetMesh()->GetAnimInstance());
…
}

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance, words in
menus or dialog boxes appear in bold. Here is an example: "In the Unreal Project Browser window,
choose the GAMES tab on the left side. Then select the First Person template."

Tips or important notes
Appear like this.

https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xvii

Additionally, the C++ sample code provided in this book adheres primarily to Unreal Engine’s coding
standard, ensuring consistency and minimizing confusion for readers. For detailed information, you
can visit the official Code Standard website here: https://docs.unrealengine.com/5.0/
en-US/epic-cplusplus-coding-standard-for-unreal-engine/.

Exceptions may occur when using compact expressions that are clear and easily understood, allowing the
text to fit within the constraints of the page printing layout without compromising reader comprehension.
For example, the following line of code follows the code standard by explicitly declaring the type of
the assigned GameInst variable:

UPlayerAvatarAnimationInstance* GameInst = Cast
 <UPlayerAvatarAnimationInstance>(GetMesh()->GetAnimInstance())

The following modified version is used instead:

auto GameInst = Cast<UPlayerAvatarAnimationInstance>(
 GetMesh()->GetAnimInstance())

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of your
message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

https://docs.unrealengine.com/5.0/en-US/epic-cplusplus-coding-standard-for-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/epic-cplusplus-coding-standard-for-unreal-engine/
http://www.packtpub.com/support/errata
http://authors.packtpub.com

xviii

Share Your Thoughts
Once you’ve read Unreal Engine 5 Game Development with C++ Scripting, we’d love to hear your thoughts!
Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

https://packt.link/r/1-804-61393-2

xix

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804613931

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804613931

Part 1 –
Getting Started with
Unreal C++ Scripting

In this part, the primary focus will be on providing an introduction to the basics of C++ programming,
specifically for game development with Unreal Engine. You will gain knowledge on creating a C++
game project in Unreal, as well as utilizing MS Visual Studio to access and modify the game’s source
code. Moreover, essential concepts of C++ and object-oriented programming, along with their syntax,
will be introduced. Building upon this foundation, we will examine the generated source code to
conduct an initial investigation into the game project.

This part contains the following chapters:

• Chapter 1, Creating Your First Unreal C++ Game

• Chapter 2, Editing C++ Code in Visual Studio

• Chapter 3, Learning C++ and Object-Oriented Programming

• Chapter 4, Investigating the Shooter Game’s Generated Project and C++ Code

1
Creating Your First Unreal

C++ Game

Unreal Engine (UE) is one of the most popular 3D computer graphics game engines developed by Epic
Games, providing a comprehensive set of tools and functionalities to develop high-quality, immersive
3D simulations. The engine offers its intuitive visual scripting system, Blueprint, and a robust C++
programming framework for developers of all skill levels. This book provides a concise introduction
to C++ programming and demonstrates how to write C++ scripts in UE for game development.

In this chapter, you will learn the essential skill of creating an Unreal C++ project from scratch
or converting an existing Unreal Blueprint project into an Unreal C++ project, which serves as a
fundamental skill to advance in game development. By mastering this process, you will gain the
necessary foundation to take your game development abilities to the next level.

This chapter will cover the following topics:

• Understanding C++ scripting in Unreal

• Creating your C++ shooter project from a template

• Converting an existing Blueprint project to a C++ project

Technical requirements
As a reader of this book, you will be expected to have common computer operational skills. You
should also have basic knowledge of and experience with the UE5 editor, as well as some Blueprint
scripting skills.

To follow this chapter, you should have installed Epic Games Hub and the 5.03 or later version of
the engine editor on your computer. If you haven’t done so, please go to the official Epic website
(https://www.unrealengine.com/en-US) to register an account and download the Epic
Games Launcher.

https://www.unrealengine.com/en-US

Creating Your First Unreal C++ Game4

The minimum required development environment is as follows:

• Operating system: Windows 10

• Processor: Intel 7th generation or equivalent

• Memory: 16 GB of RAM

• GPU: GTX 1080 (or AMD equivalent)

• DirectX: Version 12

• Storage: 25 GB of available space

• Additional notes: 8 GB of VRAM recommended

The official system requirements can be found here: https://docs.unrealengine.com/5.0/
en-US/hardware-and-software-specifications-for-unreal-engine/. To save
game editing time in the UE5 editor, it is recommended to use a computer with an i9 (or an AMD
equivalent) CPU, 64 GB of RAM, and a GeForce RTX 3060 video card.

Understanding C++ scripting in Unreal
Before getting started, we need to answer some questions that people usually ask about C++ scripting.
This will help to clarify the pros and cons of using C++, the reasons to use C++, and the difference
between UE C++ scripting and C++ programming.

What is the difference between C++ and Blueprint?

Both C++ and Blueprint are scripting languages that can accomplish the same tasks, but one might be
better suited than the other under certain circumstances. The main difference between them is that
C++ is a programming language that allows you to write general-purpose, text-based code, whereas
Blueprint is a visual scripting system for UE.

For UE projects, game studios usually use both C++ and Blueprint to develop commercial-level games.
C++ is usually used for advanced techniques, complex algorithms, and big-scale logic code. If you
can script with C++, you will have more chances to work on a professional team.

One of the most important advantages of using C++ is performance. C++ allows you to write low-level
operational code. It also provides control over the core system that is not accessible to Blueprint.
In addition, the final C++ code will eventually be optimized and compiled to be machine-friendly
binary native code. On the other hand, Blueprint scripts are interpreted and executed by a middle
layer, which means more execution time.

https://docs.unrealengine.com/5.0/en-US/hardware-and-software-specifications-for-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/hardware-and-software-specifications-for-unreal-engine/

Understanding C++ scripting in Unreal 5

C++ code and files can be well-organized based on an entire project’s mechanics. It is easy to globally
search, locate, and access code blocks to edit, maintain, and troubleshoot. In the meantime, it is also
easier to read and understand a big chunk of code that implements complex algorithms and logic.
Blueprint, on the other hand, is a context-sensitive scripting environment. Blueprint graphs are
relatively independent. When a graph needs to solve complex logic, the nodes and the connection
lines create messy spaghetti that can hardly be understood and maintained.

C++ also has some shortcomings. One example is that it may cause critical errors that may crash an
entire system. That is usually caused by the developer’s mistakes. Since Blueprint is a protected layer,
it is safer, and hence, the chances of the system crashing are fewer.

In conclusion, the choice between C++ and Blueprint should be made based on specific development
requirements and conditions, considering the pros and cons of each approach.

When do you use C++?

Both C++ and Blueprint can handle game development processes without a problem. There is no
exact rule that regulates when to use C++ or Blueprint. It mainly depends on your experience and the
actual needs of different games. You make your own decision based on how much you know about
the two scripting systems.

Before you start working on something, you can ask yourself this question: “Where does it make sense
to use C++, and where does it make sense to use Blueprints?” We recommend basing your answer on
the following aspects and trade-offs:

• Performance

• Logic and algorithm complexity

• Accessibility to a system’s core functions

• The developer’s experience

If you want higher performance and deal with advanced game logic and system processes, and you
are capable of coding and solving complex problems, you should go for C++.

What is the difference between C++ programming and C++
scripting?

You may be confused about the difference between C++ programming and C++ scripting. We want
to clarify the meanings of these two terms.

Creating Your First Unreal C++ Game6

C++ programming means using the C++ programming language to write code for any purpose; it
doesn’t have to be just for UE projects. C++ scripting, in this book, is a specific dialect of the C++
programming language supported by the UE. It takes advantage of the power of C++ syntax and also
works with UE’s Application Programming Interfaces (APIs), which allow developers to create and
extend the engine’s functionalities for their games and the development environment’s context, such
as objects, graphics, audio, and network communication.

Now that we have a basic overview of C++ and have learned why and when to use C++ for Unreal
game developments, let’s dive deeper into C++ scripting by creating a sample project.

Creating your C++ Shooter project from a template
Now, it’s the time to get your hands dirty working on a UE5 C++ project yourself. We will go through
the steps to create a new C++ project from scratch based on the First Person template.

The First Person template is one of the default game templates that come with UE. When you want
to create a new project, you can pick this template from the Unreal Project Browser window. Our
new MyShooter game will derive all the features from the template game, and we don’t have to do any
additional work.

To get started with C++ scripting, we first need to install an IDE. In this book, we will use MS Visual
Studio 2022 as an example.

Installing Visual Studio 2022

Visual Studio (VS) is an Integrated Development Environment (IDE) from Microsoft. It is a tool used
to create, edit, debug, and compile code. In order to do C++ scripting, you need to go to the official
website at https://visualstudio.microsoft.com/vs/ and download the Community
2022 version installation package (see Figure 1.1).

https://visualstudio.microsoft.com/vs/

Creating your C++ Shooter project from a template 7

Figure 1.1 – Downloading VS 2022

Note
To install VS, a Microsoft account is typically required. If you don’t have a Microsoft account, you
can register using the following page: https://account.microsoft.com/account/.

Next, launch VisualStudioSetup.exe inside the folder where you downloaded the VS installer
(the \Downloads folder, for example).

Enable the two Game development with C++ and Desktop development with C++ checkboxes –
these two options tell the installer to install the C++ compiler and the professional game development
support for UE (see Figure 1.2).

https://account.microsoft.com/account/

Creating Your First Unreal C++ Game8

Figure 1.2 – Picking workloads for the VS installation

Also, keep an eye on the following options on the Installation details panel that belongs to the Desktop
development with C++ group, and make sure the following are checked:

• C++ profiling tools

• C++ AddressSanitizer

• Windows 10 SDK

• IntelliCode

• IDE support for Unreal Engine

Then, click the Install button to install the workloads and reboot the system, and then you will see a
prompt from the dialog popup (see Figure 1.3):

Figure 1.3 – The VS Done installing dialog box

Creating your C++ Shooter project from a template 9

The next thing we need to do is to confirm that we have installed the engine source code together
with the UE5 editor. The reason why we need this is that when we generate a new project, the engine
source code can be integrated into the new project; under certain circumstances, we may need to
modify or customize the engine for the game’s specific needs.

Ensuring your UE has the source code installed

Before launching the UE5 editor, we first need to check whether Engine Source is installed for the
editor. By doing this check, we make sure that the UE5 source code is integrated with the C++ projects
we are going to create.

The three steps to check or install the engine source code are as follows:

1. Click the downward arrow button and choose Options from the drop-down menu.

2. Make sure that the Engine Source option is checked.

3. Press the Apply button:

Figure 1.4 – The UE5 Options menu

UE is an ongoing development product, with bugs and defects that may need to be fixed by its users.
Also, professional developers sometimes modify the engine source code to adapt to their specific
needs. An example of this is when we face an issue with geometry instancing (or instanced rendering)
working only in the game’s development build but not in the release build, which is subsequently
resolved by our engineer modifying the engine’s source code.

Creating Your First Unreal C++ Game10

Note
Geometry instancing is a rendering technique that renders multiple instances of a visual object
in a single draw call and provides each instance with some unique attributes: https://
en.wikipedia.org/wiki/Geometry_instancing.

We are now ready to start the UE editor through the Epic Games Launcher.

Launching the UE5 editor through the Epic Games Launcher

Launching the UE5 editor is pretty straightforward. You simply click the Launch button on the 5.03
engine card to start the editor (see Figure 1.5).

Figure 1.5 – Launching the UE5 editor from the Epic Games Launcher

The next thing we want to do is to create a new game project. Let’s name the new project MyShooter.

Creating the MyShooter C++ project

To create the project, follow these steps (and see Figure 1.6 for reference):

1. In the Unreal Project Browser window, choose the GAMES tab on the left side.

2. Select the First Person template.

3. Select the C++ button.

https://en.wikipedia.org/wiki/Geometry_instancing
https://en.wikipedia.org/wiki/Geometry_instancing

Creating your C++ Shooter project from a template 11

4. Choose the project location (for example, C:\UEProjects) and type MyShooter in the
Project Name field.

5. Click the Create button.

Figure 1.6 – Creating the MyShooter project

The created game project also includes the starter content, which is packaged with assets and resources
that can be used to prototype the game.

The engine will do some initialization work and then open the editor when things are ready. If you
look at the project tree panel’s MyShooter tab in the bottom-left corner of the editor window, you
should see the C++ Classes node on the same layer as the Content node (see Figure 1.7).

Creating Your First Unreal C++ Game12

Figure 1.7 – The MyShooter C++ project opened in the UE5 editor

Associating VS with UE5 as the default source code editor

Since we created the C++, project, all the C++ source code for the game was already generated. To open
the source files directly in the UE5 editor, we want to associate VS as the engine editor’s default IDE.

On the UE5 Editor’s main menu, select Edit | Editor Preferences to open the preference window, then
find the General | Source Code item on the left panel, and finally, pick Visual Studio 2022 from the
Source Code Editor dropdown (see Figure 1.8).

Creating your C++ Shooter project from a template 13

Figure 1.8 – Making VS the default source code editor

You can now use VS to open the source code files.

Opening the C++ source code in VS (optional)

If you want to open and view the C++ source code in VS, you can find the source code file (for example,
C++/MyShooter/MyShooterCharacter.cpp) in the project and simply double-click on it
(see Figure 1.9).

Figure 1.9 – Opening MyShooterCharacter.cpp source code in VS

The system will automatically launch VS, and the VS editor will open the MyShooterCharacter.
cpp file (see Figure 1.10).

Creating Your First Unreal C++ Game14

Figure 1.10 – Viewing the MyShooterCharacter.cpp source code in VS

Back in the Unreal editor, click the Play () button to start the game. While playing the game on the battlefield,
you can control your character, move them around, and pick up the gun in front of them (see Figure 1.11).

Figure 1.11 – Playing the MyShooter game

Converting an existing Blueprint project to a C++ project 15

We have learned how to create a UE C++ project from scratch. However, what if we already have a
Blueprint project and want to convert it to a C++ project? UE allows developers to do it by adding a
new C++ class to the project. Let’s practice converting a MyBPShooter Blueprint project.

Converting an existing Blueprint project to a C++ project
UE provides a very straightforward way to convert an existing Blueprint project to a C++ project.
All you need to do is add a C++ class to your project and then let UE take care of the conversion and
add the needed project files:

1. First of all, you have to create a Blueprint project, MyBPShoopter, under C:\UEProjects
(you can choose a different path to create the new project). Use the same steps introduced in
the Creating the MyShooter C++ project section, but choose BLUEPRINT instead of C++ for
the creation of the MyBPShooter project.

Figure 1.12 – Creating MyBPShooter in UE5

Creating Your First Unreal C++ Game16

2. Secondly, open the new project in UE5. Pay attention to the project tree; it doesn’t have the
C++ Classes node at this stage.

Figure 1.13 – Open MyBPShooter in UE5

3. Select Tools | New C++ Class from the editor’s main menu, and then, in the Add C++ Class window
(see Figure 1.14), choose Character as the base class (a class that contains common attributes
and methods that are shared by its derived classes) to create the MyShooterCharacter class.

Converting an existing Blueprint project to a C++ project 17

Figure 1.14 – Adding a new C++ class from the Character class

Once you click the Next> button, it will navigate to the NAME YOUR NEW CHARACTER screen.

4. On the NAME YOUR NEW CHARACTER screen, type MyBPShooterCharacter into
the Name field.

Figure 1.15 – Adding the MyBPShooterCharacter C++ class

Creating Your First Unreal C++ Game18

Please pay attention to the path where the header and the source files will be placed. They look
different from the MyShooter project because the C++ node hasn’t been created yet. Don’t worry
about it at the moment. Once the conversion job is done, the system will automatically move
the files to the right place.

5. After clicking the Create Class button, you will see a progress bar.

Figure 1.16 – The MyBPShooterCharacter C++ class Adding code to project… progress bar

Wait for the pop-up message, which indicates that the C++ class job has been added.

Figure 1.17 – A message saying that the MyBPShooterCharacter C++ class is now added

6. Click the OK button. Now, you will see the message dialog, which asks you whether you want
to edit the code (see Figure 1.18). Choose No here.

Figure 1.18 – Dialog for editing the MyBPShooterCharacter source code

7. Shut down your UE editor and reopen MyBPShooter. When you see a dialog that asks
whether you want to rebuild the project, answer Yes here.

Converting an existing Blueprint project to a C++ project 19

Figure 1.19 – The rebuilding MyBPShooter dialog

When it is done, you will find the new C++ Classes node on the project tree, and the
MyShooterCharacter class is already placed in the MyBPShooter folder:

Figure 1.20 – The converted MyBPShooter C++ project

You may have noticed that some other files, such as MyBPShooterGameMode are missing, in
comparison with the MyShooter project. That is because the Blueprint versions already exist, so the
corresponding C++ versions are not automatically generated. You can choose to manually convert
those blueprints to C++ classes only when necessary; otherwise, you just keep the blueprints.

Creating Your First Unreal C++ Game20

Summary
In this chapter, we introduced C++ and the advantages of using it for professional game development.
Then, you practiced creating the new MyShooter C++ project and converting the MyBPShooter
Blueprint project to a C++ project. Plus, you also set up the development environment with VS and
the C++ solution files.

In the next chapter, we will first walk through each part of the IDE’s user interface. Then, you will
create a C++ project and practice writing some simple C++ code. Some code editing tricks will be
introduced while editing your code.

2
Editing C++ Code in

Visual Studio

Are you new to coding in general? Then you need to use an editing tool!

C++ source code is just regular text files named with some special extension names, such as .cpp, .h,
and so on. You can basically use Windows Notepad to open and edit C++ source code files. However,
since Notepad is a basic editing tool that lacks functionalities, we recommend using Visual Studio
(VS) as the code editor.

Why use VS? VS is a feature-rich integrated development environment (IDE) that supports many
aspects of software development. It empowers you to complete the entire development cycle in one
place. You can use VS to create, edit, debug, test, and build your code. VS also has the most popular
programming language compilers integrated with the installation package so that C++ source code
can be directly compiled to be executable machinery code. Moreover, VS especially supports Unreal
Engine and works well with the engine’s development environment.

By following the step-by-step journey of this chapter, you will get to know the IDE’s user interface
(UI), be capable of creating and writing C++ code, and learn how to build C++ solutions to generate
standalone executables. This chapter includes the following sections:

• Launching VS

• Walking through the VS IDE’s UI

• Editing code in VS

• Practicing C++ coding

Technical requirements
To explore the creation of C++ projects and editing C++ code, it is necessary to have VS installed on
your system.

Editing C++ Code in Visual Studio22

VS has both Windows and macOS versions. It also has Community, Professional, and Enterprise
editions. The examples of this book are based on the VS 2022 Windows Community edition.

Since VS is an IDE that you will use for C++ scripting, being familiar with the development environment
and the scripting skills is a prerequisite.

The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter02/MyCPP_01.

Launching VS
In Chapter 1, we went through the installation of VS, so you should already have installed VS on your
system. Since VS is an independent application, you can launch it either from the operating system
(OS) or in Unreal Engine.

In Windows, simply search for virtual studio and pick the version of the IDE that you wish to launch:

Figure 2.1 – Starting VS in Windows

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter02/MyCPP_01
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter02/MyCPP_01

Launching VS 23

Now, let’s practice launching VS in Unreal Engine. Say we want to open the MyShooterCharacter.
cpp file—you first need to find MyShooter/All/C++ Classes/MyShooter on the Content
Drawer, and then you can double-click on the MyShooterCharacter C++ Class item:

Figure 2.2 – Starting VS in Unreal Engine

This operation will launch VS if it hasn’t been launched yet and open the MyShooterCharacter.
cpp file in the editor:

Editing C++ Code in Visual Studio24

Figure 2.3 – VS opened MyShooterCharacter.cpp

Now, you should have your Unreal game development environment installed and set up. The engine
editor and VS are both open. Next, we’ll take a close look at the IDE’s UI.

Walking through the VS IDE’s UI
VS is a powerful and complex tool set. This book only covers features and functionalities that you
will need for learning C++ scripting. You can visit Microsoft’s official websites to learn more about
VS in the future. Here are the links:

• VS IDE documentation: https://learn.microsoft.com/en-us/visualstudio/
ide/?view=vs-2022

• Learn to code in VS: https://visualstudio.microsoft.com/vs/getting-
started/

Once you have opened VS, you will see the IDE editor:

https://learn.microsoft.com/en-us/visualstudio/ide/?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/ide/?view=vs-2022
https://visualstudio.microsoft.com/vs/getting-started/
https://visualstudio.microsoft.com/vs/getting-started/

Walking through the VS IDE’s UI 25

Figure 2.4 – VS IDE editor

Using Figure 2.4, let’s take a look at all the important elements present in the editor.

Code editor

The code editor on the left side is the place where you write your C++ code. You can open multiple
source code files in the code editor. The opened filename tabs are displayed at the top of the editor.
Figure 2.5 shows four source code files opened in the editor: MyShooterGameMode.cpp,
MyShooterGameMode.h, MyShooterCharacter.cpp, and MyShooterCharacter.h:

Figure 2.5 – VS code editor open file tabs

You can select to view any source file by clicking on the respective tab. In the case where too many
files are opened, and not all the file tabs can be shown on the tab bar, you can click the drop-down
button in the top-right corner to show a list of all open files.

Editing C++ Code in Visual Studio26

Menus

The menu bar along the top of VS groups commands and categories. Each menu item has its own
drop-down vertical sub-menus. The menus provide interfaces to the operations, options, and features
that you can use for your coding work.

Search box

The search box on the menu bar is a special tool that helps you to find IDE menus and options, while
also searching your code. This feature offers a quick and easy way to search across IDE features and
your code. It will show you a list of options that are relevant to the entered text.

Toolbar

The toolbar is a horizontal strip beneath the menu bar that contains some shortcut buttons that are
bound to commands, such as Open File, Save, Save All, Start, Start Debug, and so on.

Solution Explorer

Solution Explorer shows a solution’s projects, folders, and files in a hierarchical tree representation.
You can browse the tree to select and open files in the editor.

A VS solution file is a file that organizes multiple projects into a single solution. It assists developers in
managing the various files and dependencies within a project, making complex software applications
easier to work on and build. The solution file contains information about projects, their configurations,
and their dependencies, which allows VS to compile and build the entire solution.

A VS solution may contain multiple projects, and each project has its own project, source code,
configuration, dependencies, and other files. In this case, the MyShooter solution contains two
projects, UE5 and MyShooter:

Walking through the VS IDE’s UI 27

Figure 2.6 – VS Solution Explorer

In Figure 2.6, the Properties window shows the properties of the selected item—in this case, the
properties of MyShooter. The MyShooter project contains the Myshooter.uproject Unreal
project file.

Output window

The Output window shows output messages from the code-building process. Let’s build the project
to see the build outputs.

Editing C++ Code in Visual Studio28

Choose Build Solution from the Build menu. The Output window should then obtain the screen
focus and show the build result (see Figure 2.7). You can also manually open the Output window by
going to View | Output:

Figure 2.7 – VS Build and the Output window

In Figure 2.7, the Output window informed us that the building process succeeded without any errors.

Error List window

The Error List window shows build errors, warnings, and messages about the current state of your
code. When building your code, if the code has errors, warnings, or messages, the Error List window is
automatically opened. You can also manually open the Error List window by going to View | Error List.

As an example, let’s make a small change to the MyShooterCharacter.cpp code by deleting
the semicolon (;) at the end of line 18:

Editing code in VS 29

Figure 2.8 – VS Build and the Error List window

This code error will automatically cause the editor to complain by showing the TurnRateGamepad
variable name with a red squiggly underline. From the Build menu, choose Build Solution, and you
will see that our change caused nine errors.

The Errors, Warnings, and Messages toggle buttons can enable or disable filters so that you can choose
to view information you are interested in.

Please remember to restore the deleted semicolon after the test. Reopen the MyShooter project in
UE5, and answer Yes to rebuild MyShooter. Then, open the C++ solution in VS, and then choose
Build Solution. This will clear the generated errors.

You should now have a basic idea about the VS UI. It is time to learn how to edit code in the IDE.

Editing code in VS
The VS IDE has ample powerful editing features and tools that can help developers effectively create
and edit their code. Almost all the tools can be found on the main menu system. Here, we'll only
introduce the commonly used editing tools and the shortcut keys that can help you to get started.
It is recommended to utilize and practice the following shortcuts and keys in your later exercises.

Editing C++ Code in Visual Studio30

Controlling the caret (input cursor)

The caret is often represented as a blinking vertical line when editing in VS. It indicates the current
input point and determines where new text will be entered.

Knowing how to use the keys for caret navigation is an essential editing skill, so let’s find out a bit
more about this:

• Up, Down, Left, Right arrow keys: Move the caret up, down, left, or right, respectively

• Home, End: Move the caret to the beginning or the end of a code line, respectively

• Ctrl + Home, Ctrl + End: Move the caret to the beginning or the end of the code file, respectively

• Page Up, Page Dn: Move the caret one page up or down, respectively, when a big code file needs
to be viewed on multiple pages

• Mouse click: Moves the caret to the position where you just clicked

The text editing keys

The text editing keys are used to toggle between Insert and Overwrite modes, as well as to facilitate
text deletions. Here’s what they do:

• Insert (Ins): Toggles between the Insert and Overwrite modes.

• Delete (Del): Deletes the character on which the caret is. When a block of text code is selected,
it deletes the entire selected code.

• Backspace: Deletes the character before the caret’s current position and moves the caret to the
deleted character’s position.

Code selection

Code selection allows developers to highlight specific portions of text for actions such as copying,
cutting, deleting, and so on. Code blocks can be selected not only by clicking and dragging with your
mouse but also using these key combinations:

• Shift + Left arrow key, Shift + Right arrow key: Select one more character on the left or right
side, respectively, when extending a selection area. Deselect a character on the left or right side,
respectively, when shrinking a selection area.

• Shift + Up arrow key, Shift + Down arrow key: Select up or down one more line, respectively, when
extending a selection area. Deselect up or down one line, respectively, when shrinking a selection area.

• Ctrl + Shift + Left arrow key, Ctrl + Shift + Right arrow key: Select one more meaningful section—
such as a word, a variable, a symbol, and so on—on the left or right side, respectively, when
extending a selection area. Deselect a meaningful section on the left or right side, respectively,
when shrinking a selection area.

https://learn.microsoft.com/en-us/visualstudio/ide/using-intellisense?view=vs-2022

Editing code in VS 31

IntelliSense

IntelliSense is a valuable resource when you are writing code. It is like a smart agent working in the
background that can show you relevant information about an object’s name, available members of a
type, or parameter details for different overloads of a method. IntelliSense can also be used to complete
a word after you have typed in a sufficient number of characters to disambiguate it.

As with other text editing tools, VS supports basic editing operations, such as copy/paste and find/
replace. Knowing the useful editing operations and the hotkeys will improve your coding performance.

Useful editing hotkeys

To enhance editing performance, as with most text editors, VS adheres to common editing conventions
by supporting editing hotkeys.

Copy and paste

Use the following keys to copy and paste text:

• Ctrl + C: Copies the selected text

• Ctrl + X: Cuts the selected text

• Ctrl + V: Pastes the text on the clipboard at the current caret position

Find and replace

Use the following keys to search and replace texts:

• Ctrl + F: Searches for the keyword in the current document. Relocates the caret at the first
found position.

• Ctrl + Shift + F: Globally searches for the keyword—calculator, for example—in all the
solution files. A “matches found” list is displayed in the Find calculator window. This is a very
useful tool when you are working on big-scale projects.

• Ctrl + H: Allows searching and replacing a keyword with different text inside the current document.

• Ctrl + Shift + H: Allows searching and replacing a keyword with different text for all source
files in the solution.

Code block operations

You can comment and uncomment code by typing comment symbols, but these hotkeys will make it
easier and faster to do this kind of work:

• Ctrl + K + C: Comments out the selected block of code

• Ctrl + K + U: Uncomments the selected block of code

Editing C++ Code in Visual Studio32

• Ctrl + K + F: Automatically arranges the selected block of code to be the formatting settings

• Ctrl + K + D: Automatically arranges the document code to be the formatting settings

Go to operations

The Go to operation hotkeys can help you quickly navigate and locate the code you want to view.
This is what they do:

• F12, Ctrl + F12: Goes to the definition or the declaration of the selected keyword, such as a
variable, a class name, a function name, and so on.

• Ctrl + G: Goes to a line by a line number.

• Ctrl + T: Goes to all. This is a useful tool when you know a filename and want to open the file,
especially when you’re working on a big-scale project with hundreds or thousands of source files.

• Ctrl + Tab: Navigates between the most recent two document windows.

Debugging

Debug tools are used for troubleshooting errors and mistakes in your code, allowing you to pause the
execution at certain breakpoints and do investigations. Debugging is a basic skill that programmers
should have. The following are the basic debugging functions you need to know:

• F9: Toggles a breakpoint on a line of code. When running under the Debug mode, the program
execution will pause at the breakpoint.

• F5: Starts running the program under the Debug mode.

• Ctrl + F5: Starts running the program without the Debug mode. Breakpoints will be ignored.

• F10: When pressed, the IDE will show you what it’s doing one step at a time so that you can
figure out where the problem is.

• F11: When pressed, the IDE will set the tracing focus on the function’s first line so that you can
dig deeper into that function for more details.

Now, it’s time to apply the aforementioned editing skills to write code in a real C++ project.

Practicing C++ coding
Now, it’s time to practice writing C++ code in VS. To simplify the learning process and avoid noise
from the Unreal Engine code, we will use a pure C++ solution as the learning example.

Here are some recommendations to consider while editing the code:

Practicing C++ coding 33

• You don’t need to fully comprehend the source code at this stage; simply copy the provided C++
code in this section and concentrate on the editor features, as the C++ programming syntax
will be introduced in the next chapter.

• Try using the introduced VS editing keys as much as possible.

• Type the code manually instead of relying on copy and paste, as this will assist you in quickly
mastering editing skills and becoming familiar with the editing environment.

So, let’s get started.

Creating a new C++ solution in VS

Begin by starting VS from Windows and selecting Create a new project:

 Figure 2.9 – VS: Creating a new project

Then, choose Empty Project on the Create a new project screen and click Next:

Editing C++ Code in Visual Studio34

Figure 2.10 – VS: Creating a new empty C++ project

Now, VS should navigate to the Configure your new project screen. Here, you can choose the target
folder to save your project. In this book, we are saving our examples into the C:\C++Projects
folder, so create a C++Projects folder on your C: drive, and then select it in the Location box. You
can type MyCPP_01 into the Project name box and select C:\C++Projects\ for the Location
box (see Figure 2.11):

Practicing C++ coding 35

Figure 2.11 – VS: Configuring your new project

When it’s done, click Create to proceed with the creation of the VS project solution.

When VS is launched, a MyCPP_01.sln solution file is already created and placed under the C:\
C++Projects\MyCPP_01 folder, and a MyCPP_01.vxproj project file is placed under the
C:\C++Projects\MyCPP_01\MyCPP_01 folder.

We can now add a C++ source code file to the project.

Creating the main.cpp file

In Solution Explorer, right-click on Source Files, then select Add | New Item…:

Editing C++ Code in Visual Studio36

Figure 2.12 – Creating a new item

On the Add New Item window, choose C++ File (.cpp) and type main.cpp into the Name field.
Click the Add button to create a main.cpp file:

Figure 2.13 – Creating main.cpp

Practicing C++ coding 37

The VS editor should now have a main.cpp tab with the file open, and an input cursor in the editing
area. In the Solution Explorer window, you will also see that the main.cpp file has been added as
a child node under Source Files:

Figure 2.14 – main.cpp is created and ready for editing

We just worked on a C++ project in the VS IDE. By default, the IDE editor is set to use the Light color
theme, but you can always customize it to your preferred color theme.

Changing the editor theme

You may have noticed that the screenshots of the Visual Studio editor captured for this book have
black text on a white background. We purposely changed to the Light color theme for the IDE so that
you can easily read the screenshots. However, you can choose to use your favorite color theme; for
example, the Dark color theme may help reduce the chance of eye fatigue. To change the IDE’s color
theme, you can perform the following steps:

1. Open the menu bar and select Tools | Options.

2. In the Options list, select Environment | General.

3. In the Color Theme list, choose the color theme that you want to set—here, I have picked Light:

Editing C++ Code in Visual Studio38

Figure 2.15 – Changing the color theme for the IDE

Now that we have created the main.cpp source code file, let’s start writing some code to fill it up.

Writing the initial code for main.cpp

Now, we want to write the C++ code for main.cpp. C++ defines that the main() function is the
starting point of the program. You can type or copy the following code into the editing area (you
don’t need to understand the source code at this moment; C++ programming will be explained in
the next chapter):

#include <iostream>

int main()
{
 std::cout << "MyCPP_01: Hello world!";
 return 0;
}

Practicing C++ coding 39

You can see the code in the editing area in Figure 2.16:

Figure 2.16 – Writing the code for main.cpp

Build the solution and play the program by clicking either the Start () or Start without Debug
() button.

VS opens the Debug Console (a window in the VS editor that displays warnings, error messages,
logs, and other useful information generated during execution time) and shows the output result,
MyCPP_01: Hello world!:

Figure 2.17 – Running and outputting a message

We just added the main() entry function to the main.cpp module. Let’s now add two more source
files (Calculator.cpp and Calculator.h) to the project, which will contain the Calculator
class’s definition and implementation code.

C++ allows developers to create multiple source code modules. The benefits of using multiple code
modules are set out here:

• Code is logically organized and grouped

• Module sizes are controllable

• It's easy to read and maintain the source code

• It's easy to search and locate code

So, let’s get into it.

Editing C++ Code in Visual Studio40

Adding the Calculator class

The Calculator class is designed to create a calculator object capable of performing addition and
subtraction operations. To include the Calculator class in our project, we will add its header and
source files to the project, as follows:

1. Add Calculator.h under /MyCPP_01/Header Files in Solution Explorer. Then,
type in the following code:

#pragma once

#include <iostream>

class Calculator
{
public :
float Add(float a, float b);
float Subtract(float a, float b);
private:
void OutputResult(float, std::string, float, float);
};

2. Add Calculator.cpp under /MyCPP_01/Source Files in Solution Explorer. Then,
type in the following code:

#include "Calculator.h"

float Calculator::Add(float a, float b)
{
 float result = a + b;
 OutputResult(a, " + ", b, result);
 return result;
}

float Calculator::Subtract(float a, float b)
{
 float result = a - b;
 OutputResult(a, " - ", b, result);
 return result;
}

void Calculator::OutputResult(float a, std::string op, float b,
float result)

Practicing C++ coding 41

{
 std::cout << "Calculator: "
<< a << op << b << " = " << result << "\n";
}

If you inspect Solution Explorer now, Calculator.h and Calculator.cpp files should
be included in the MyCPP_01 project:

Figure 2.18 – Adding Calculator.h and Calculator.cpp

3. To test the calculator, change the main.cpp code to do some addition and subtraction calculations:

#include <iostream>
#include "Calculator.h"

int main()
{
 std::cout << "MyCPP_01: Hello world! \n";

 Calculator Calculator;

 Calculator.Add(1.0f, 2.0f);
 Calculator.Subtract(10.0f, 5.0f);

 return 0;
}

Editing C++ Code in Visual Studio42

4. Now, run the program to see the output result:

Figure 2.19 – MyCPP_01 output

Congratulations—you have now successfully developed a calculator application using C++!

Summary
By walking through the content in this chapter, you should have mastered basic code editing skills
in VS. Being familiar with the IDE and the editing tools is fundamental for learning C++ scripting
in the next chapters, and will also help in your future Unreal Engine game development practices.

The shortcut keys and the functions introduced in this chapter are particularly useful tools that you
will want to remember and use when you edit your code—they will benefit you in terms of both your
coding performance and code quality.

We also practiced creating and editing C++ source code in a C++ solution. Based on this, we will
continue learning more C++ programming syntax, structural programming, and object-oriented
programing (OOP) in the next chapter.

3
Learning C++ and Object-

Oriented Programming

To use C++ to program games in Unreal Engine, you need to learn the C++ programming language.
Almost all game engines need to support at least one scripting programing language because scripting
provides interfaces that developers can use to control the game flow, integrate complex game logic,
manipulate interactions between players and game entities, as well as process game events.

In order to utilize the Unreal Engine C++ APIs, it is essential to have a solid understanding of Object-
Oriented Programming (OOP) principles and possess basic skills in C++ programming, which is
what we will focus on in this chapter.

In this chapter, we will cover the following topics:

• What is C++?

• Exploring the C++ program structure

• Defining C++ functions

• Working with a basic calculator program

• Learning the C++ syntax

• Working on the improved calculator program

• Creating references and pointers

• Understanding OOP

• Working on an OOP calculator program

Learning C++ and Object-Oriented Programming44

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter03.

What is C++?
C++ is a programming language that supports OOP, can be used to create high-performance applications,
and gives developers low-level control over system resources and memory. C++ is the most suitable
programming language for certain applications that have special demands on performance and
low-level system controls (for example, operating systems, embedded systems, game applications,
and graphics rendering).

C++ is designed to be a compiled language, which means it is generally translated into machine
language code that can be directly understood and executed by a system, making the generated code
highly efficient:

Figure 3.1 – Compiling C++ source code and executing machine language code

Exploring the C++ program structure 45

While writing C++ scripts in Unreal Engine, whenever you make changes, you need to compile your
code first and then launch your game. Since Visual Studio comes with the C++ compiler, you should
have no problem building your code in the IDE.

C++ is still evolving to adapt to modern programming trends. The language was first implemented
in 1979, following which standard C++ versions were founded and implemented in the early 1990s.
Versions after 2011 are named in the following format – the C++ prefix followed by a two-digit version
number. C++20 is currently the latest version.

Note
C++ was developed as an extension of the C programming language, and both languages have
almost the same syntax. The main difference between C++ and C is that the former supports
OOP, which means when you learn C++, you also learn C.

Now that we have a basic idea about C++, let’s start learning the fundamentals of the C++
programming syntax.

Exploring the C++ program structure
In C++, programs execute code line by line, with each statement typically terminated by a semicolon.
A collection of code lines that perform specific tasks can be grouped as a function, enclosed by a pair
of curly braces, with the function having a name followed by a set of parentheses.

For example, the main.cpp file we created in Chapter 2 has two statement lines of code – the two
lines of code are enclosed within a pair of curly braces, and the grouped block of code’s function name
is main (see Figure 3.2).

Figure 3.2 – The main.cpp code sample

C++ source programs generally follow the same program structure:

• #include statements at the beginning of the program, which allow this program to access
the C++ system library and other C++ source program functionalities. #include statements
are special statements that don’t end with a semicolon.

Learning C++ and Object-Oriented Programming46

Note
The C++ system library is a collection of pre-compiled functions and data structures that can
be used by C++ programs. It provides a way to reuse code and avoid duplication of effort by
allowing developers to access pre-written code instead of writing their own from scratch.

• The Main() function, which is run when the program is executed.

• Return 0, located at the end of the main() function, which notifies the completion result
of running the program execution. Returning 0 usually means success, whereas some other
values indicate error codes.

Let’s go through the lines of code of main.cpp:

• Line 1: This contains the #include statement, which allows you to use the std::cout
object and the << operator (a symbol or keyword that is used to perform a specific operation
on one or more operands), defined in the iostream library in the main.cpp file module

Note
The iostream header name is enclosed within two angle brackets (< >), which indicate that
the header file is a system or library header file.

• Line 3: This defines the main() function

• Lines 5 and 6: These are the two statement lines terminated with semicolons

• Lines 4 and 7: This is a pair of braces that enclose the function body code

Having familiarized yourself with the basic structure of a C++ program, let’s proceed to define some
C++ functions.

Defining C++ functions
A function is a block of code that only runs when it is called. Functions are usually defined and
used to perform certain actions, and they can be called anytime when needed; therefore, they are
reusable code. Through the use of functions, we can avoid redundant code, reducing the risk of code
inconsistency and the chance of program bugs.

Defining C++ functions 47

Defining functions with or without parameters

To define a function, you should specify the name and return type of the function, followed by a pair
of parentheses. Presented here is a function that has no parameter and a void return type:

void DisplayLabel()
{
 std::cout << "The result of 1 + 2 is ";
}

You can pass data as parameters into a function, and the function parameters are placed in between
the parentheses. Presented here is a function that has two int parameters and returns the addition
of the two input values as the result:

int Add(int a, int b)
{
 return a + b;
}

Calling functions

To call a function, you can write the function’s name followed by two parentheses. If the function
requires a certain number of parameters, you should write the parameters so that the values will be
passed into the function. Remember to put a semicolon at the end.

The following code snippet illustrates how to call the two functions defined earlier:

 Std:count << DisplayLabel() << Add(1, 2) << std:endl;

The output of the aforementioned line of code is the following:

The result of 1 + 2 is 3

Writing the main() function

Every C++ program must have a main function. It is a special function that indicates the start execution
point of the program. A C++ program only has one main() function.

The return type of the main() function can be int or void, such as the following:

int main()

Or it can be the following:

void main()

Learning C++ and Object-Oriented Programming48

The difference is that int main() tells the compiler that the program will return an integer value
to the operating system, whereas void main() tells the compiler that the program will not return
any value.

In order to better understand the basic C++ program structure, let’s use the steps provided in the previous
chapter to do an exercise by creating a MyCPP_02 project, which will do some simple calculations.

Working with a basic calculator program
The MYCPP_02 program should have a main() function and an Add() function. The signature
and the tasks defined for these two functions are as follows:

• void Main(): This calls the Add() function to calculate 1 + 2 and 3 + 4 and output the results

• int Add(int a, int b): This adds up the two integer parameter values, a and b, and
returns the calculation result

So, let’s create a new C++ project, name it MyCPP_02, and then add a new main.cpp file.

Then, type in the following code for main.cpp:

#include <iostream>

int Add(int a, int b)
{
 return a + b;
}

void main()
{
 std::cout << "My Calculations" << std::endl;

 int result = Add(1, 2);
 std::cout << "Integer addition: 1 + 2 = "
 << result
 << std::endl;
 result = Add(3, 4);
 std::cout << "Integer addition: 3+4="
 << result
 << std::endl;

 std::cout << "Finished!";
}

Learning the C++ syntax 49

The following bullet points will help break down this code:

• The std:cout object represents the standard output device, which usually is the output console.

• The << operator is applied to an output stream. In this example, it transfers the value on its
right side to the output device on the left side. Multiple << operators can be linked up so that
the values can be output in the same order.

• std:endl represents a newline character in the output sequence. Another way to insert
a newline character into a string is to use \n (in C++, the \n escape sequence represents a
newline character). The output line has the same result as the following substitute – std::cout
<< "Integer addition: 3+4=" << result << "\n";.

• The int result = Add(1, 2) statement defines an integer type variable to store the
return result calculated by the Add() function. C++ data types and variable declarations will
be introduced in the next section.

Now, compile and run the program in the pop-up console. You should get the program’s output:

Figure 3.3 – MyCPP_02 calculation output

The program displays My Calculations on the first line; after that, it displays the two calculation
results on lines 2 and 3, and eventually, it prints out Finished!.

In this exercise, we used the int data type to declare the result variable. Now, let’s learn more
about C++ data types and variable declarations, user input, operators, and flow control. After that,
we will practice using them to improve the MyCPP_02 calculation project.

Learning the C++ syntax
Learning C++ syntax is crucial to write correct and reliable code, and the ability to write effective
C++ code is a fundamental skill that C++ developers must possess. In this section, we will introduce
the essentials of C++ syntax, beginning with data types.

Learning C++ and Object-Oriented Programming50

Using the C++ data types

Besides the int data type that we just have used, C++ has many other built-in data types that can be
used. Here is a list of some basic data types:

Data type Size (bytes) Description

int 4

Stores signed integer numbers without decimals.

Data range: -2,147,483,648 to 2,147,483,647

Example: int i = -1; int j = 1;

unsigned
int

4

Stores unsigned integer numbers without decimals.

Data range: 0 to 4,294,967,295

Example: unsigned int i = 0; int j = 1;

float 4

Stores floating-point numbers.

Data range: -3.4E+38 to 3.4E+38

Example: float pi = 3.14f;

double 8

Stores floating-point numbers with two times the precision of float.

Data range: -1.7E+308 to 1.7E+308

Example: double pi = 3.1415926;

char 1

Stores a single character or a signed integer value that is within the
data range of -128 to 127.

Example: char c = 'A'; or char c = 65;

(The ASCII code assigned to the 'A' character is 65)

unsigned
char

1

Stores a single character or an unsigned integer value that is within
the data range of 0 to 255.

Example: char c = 'B'; or char c = 66;

(The ASCII code assigned to the 'B' character is 66)

short 2

Stores signed integer numbers without decimals.

Data range: -32,768 to 32,767

Example: short i = -1; short j = 1;

Learning the C++ syntax 51

unsigned
short

2

Stores unsigned integer numbers without decimals.

Data range: 0 to 65,535

Example: short i = 0; int j = 65535;

bool 1
Stores Boolean values with two states: true (1) or false (0).

Example: bool isAttacking = true;

void 0 The void type indicates the absence of a function’s return value.

string varied

Stores text surrounded by double quotes. The string library needs to
be included to use the string type.

Example: #include <string>

 string playerName = "George";

Figure 3.4 – C++ data types

C++ data types are usually used to declare variables. The next thing we need to learn is how to declare
different types of variables.

Defining variables

A variable is a container that stores data values. The way to declare (create) a variable is to specify a
type, the variable name, and assign a value to it.

Here is the general format to declare a variable:

type variableName = value;

And here are some examples:

• int health = 100;

• float cash = 50.0f;

• bool isHit = false;

• string message = "Hello, I am George!";

You can use commas (,) as delimiters to declare multiple variables of the same type. Here is an example
that declares three int variables, x, y, and z, and stores the 0, 0, and 10 values to them, respectively:

int x = 0, y = 0, z = 10;

Learning C++ and Object-Oriented Programming52

We saw some variable declaration examples, but you may wonder whether there are any rules for
variable names. A C++ variable name must be identified with its unique name within a code scope. A
variable name can be a short name (such as i, j, x, or y) or a descriptive name (such as playerName,
teamId, age, rank, strength, or defense). The general rules for naming variables are as follows:

• Variable names can contain letters, digits, and underscores.

• Variable names must begin with either a letter or an underscore (mostly used for private
and protected variables). When coding with C++, it is preferable to follow the camel casing
standard to name variables (e.g., MyVariables).

• Variable names are case-sensitive.

• Variable names cannot contain whitespace or special characters such as !, @, #, $, and %.

• Variable names cannot use C++ reserved words, such as int, float, and bool.

• For descriptive variable names that contain multiple meaningful words, it is recommended to
use caps for the leading letters of each word (it is optional for the first word) and for the rest
to be lowercase – for example, playerName or PlayerName.

Putting a const keyword ahead of a variable declaration makes the variable a constant, which
means unchangeable and read-only. In C++, once a name is declared to be a constant, this name is
equivalent to the stored value – for example, const float PI = 3.14f;. This statement tells
the compiler that the PI constant is an equivalent expression of the 3.14f float value and can be
used to represent the value in your program.

The benefit of using constant names in your program is that changing the declared value (const
float PI = 3.1415926f;, for instance), will update all the places that reference the constant
name, PI. It also avoids value inconsistency and reduces the use of system memory.

Using C++ arrays

An array is a series of elements of the same type placed in a contiguous memory block that can be
individually referenced by the element index. By using an array, you can store a set of similar type
values rather than declaring multiple variables for each value.

To declare an array, define the variable type, followed by the name of the array, and then a pair of
square brackets. You can provide a number that specifies the length of the array. The following example
defines a string array, playerName, that can store eight player names:

string playerNames[4];

Learning the C++ syntax 53

You can initialize array elements by listing the string values. This list of strings should be placed
in between a pair of braces and separated with commas. Here is an example of initializing the
playerNames array:

string playerNames[] = { "George", "Sarah", "Willy", "Mike" };

Note that the array length is omitted. This is allowed because the compiler will automatically assume
the array size to match the number of provided values.

To access the array elements, you can use the array name followed by the bracketed index number.
Remember that the index number starts from 0. The following example outputs the second player’s
name and changes the last player’s name to Charles:

Cout << playerNames[1] << endl;
playerNames[4] = "Charles";

Using C++ operators

Operators perform operations on variables and values. C++ operators are categorized into five groups:

• Arithmetic operators: These perform mathematical operations:

Operator Operation Description Example(s)

+ Addition Adds together two values 1 + 2, 2.1 + 3.5, and
v1 + v2

- Subtraction Subtracts a value from another 5 - 1, 1.2 - 3.3, and
v1 - v2

* Multiplication Multiplies two values 3 * 2, 3.14f * 2, and
a * b

/ Division Divides a value by another 4 / 2, 3.14f / 2, and
a / b

% Modulus Returns the remainder of
the division 11 % 3 (returns 2)

++ Increment Increases the current value by 1 3++ or ++3 (returns 4)

-- Decrement Decreases the current value by 1 3-- or --3 (returns 2)

Figure 3.5 – Arithmetic operators

Learning C++ and Object-Oriented Programming54

• Assignment operators: These assign and store values to variables:

Operator Operation Description Example(s)

= Assign Assigns a value to the variable const float PI = 3.14f;

+=
Add
and assign

Adds a value and assigns the
result back

pi += 3.14f; (the value of pi will
be 6.28f)

-=
Subtract
and assign

Subtracts a value and assigns
the result back

pi = PI;

pi -= 3.14f; (the value of pi will
be 0.0f)

*=
Multiply
and assign

Multiplies a value and assigns
the result back

pi = PI;

pi *= 2.0f; (the value of pi will
be 6.28f)

/=
Divide
and assign

Divides a value and assigns
the result back

pi /= 2.0f; (the value of pi will
be 1.57f)

%=
Mod
and assign

Mods a value and assigns the
result back

Int n = 13;

n %= 5; (the value of n will be 3)

&=
Bitwise
And
and assign

Applies a bitwise A n d
operation first, and then
assigns the result back

char byte = 0b10010001;

byte &= 0b11100010; (the value of
byte will be 0b01000000; 0b is a prefix
that indicates a binary value expression)

|=
Bitwise Or
and assign

Appl i e s a b i t w is e O r
operation first, and then
assigns the result back

char byte = 0b10010001;

byte |= 0b11100010; (the value of
byte will be 0b11100011)

^=

Bitwise
Exclusive
Or
and assign

Applies a bitwise exclusive
Or operation first, and then
assigns the result back

char byte = 0b10010001;

byte &= 0b11100010; (the value of
byte will be 0b01110011)

<<=
Left-shift
and assign

Shifts the value a certain
number of bits to the left, and
then assigns the result back

char byte = 0b10010001;

byte <<= 2; (the value of byte will
be 0b01000100)

>>=
Right-shift
and assign

Shifts the value a certain
number of bits to the
right, and then assigns the
result back

char byte = 0b10010001;

byte >>= 2; (the value of byte will
be 0b00100100)

Figure 3.6 – Assignment operators

Learning the C++ syntax 55

• Comparison operators: These compare two values. The results of comparison operators are
always a bool data type:

Operator Operation Description
Example(s)

int x = 0, y = 5, z = 0;

== Equal Checks whether two values are equal
x == y (false)

x == z (true)

!= Not equal Checks whether two values are
not equal

x != y (true)

x != z (false)

> Greater than Checks whether the first value is
greater than the second value

x > y (false)

y > z (true)

< Less than Checks whether the first value is
less than the second value

x < y (false)

z < y (true)

>=
Greater than
or equal to

Checks whether the first value
is greater than or equal to the
second value

x >= y (false)

x >= z (true)

y >= z (true)

<=
Less than or
equal to

Checks whether the first value is less
than or equal to the second value

x <= y (true)

x <= z (true)

y <= z (false)

Figure 3.7 – Comparison operators

• Logical operators: These determine the final logical result based on combining two
logical statements:

Operator Operation Description
Example(s)

int x = 0, y = 5, z = 0;

&& AND
Returns true if both statements
are true

x > y && y > z (false)

x < y && y > z (true)

|| OR
Returns true if one statement
is true

x > y && y > z (true)

x < y && y > z (true)

Learning C++ and Object-Oriented Programming56

! NOT
Returns true if the statement is
false, and returns false if the
statement is true

!(x > y) (true)

!(x < y) (false)

!(x == z) (false)

!(x > y && y > z) (true)

!(x < y && y > z) (false)

Figure 3.8 – Logical operators

• Bitwise operators: These perform bit-by-bit operations. Binary values are usually used as flags
or masks. Bitwise operations are used alongside number types, such as char, short, and int:

Operator Operation Description

Example(s)

(char b1 = 0b00100101;

char b2 = 0b10100011;)

& Bitwise AND
Compares two values bit by bit.
Returns 1 only when both bits are
1; otherwise, it returns 0.

b1 & b2 (0b00100001)

| Bitwise inclusive OR
Compares two values bit by bit.
Returns 0 only when both bits are
0; otherwise, it returns 1.

b1 | b2 (0b10100111)

^
B i t w i s e
exclusive XOR

Compares two values bit by bit.
Returns 1 when the two bits are
different; otherwise, it returns 0.

b1 ^ b2 (0b10000110)

~ Bitwise NOT Applies unary complement
(bit inversion).

~b1 (0b11011010)

~b2 (0b01011100)

<< Shift left Shifts bits left.

b1 << 1 (0b01001010)

b1 << 3 (0b00101000)

b2 << 2 (0b10001100)

>> Shift right Shifts bits right.

b1 >> 1 (0b00010010)

b1 >> 3 (0b00000100)

b2 >> 2 (0b00101000)

Figure 3.9 – Bitwise operators

Learning the C++ syntax 57

Accepting user input

We have already used the iostream library’s cout object to output (print) values. Now, we will
learn how to use the cin object to accept user input.

cin reads data from a keyboard with the extraction operator (>>). In the following example, a user
can input a number, which is stored in the x variable. Then, the stored value is printed out:

int x;
cout << "Please input your age: ";
cin >> x;
cout <<"Your age is: "<< x;

This will produce the following output when the user inputs 21:

Please input your age: 21
Your age is: 21

Adding C++ comments

Comments are used to provide extra descriptions and explanations to one line or a block of code.
Commented text in C++ source files are not treated as executable code, so they are also used to prevent
executions of testing code.

Single-line comments start with two forward slashes, //, and the entire line of text is treated as a
comment, which is not executable code:

 string name; //this is a player name

Multiline comments start with /* and end with */. All the text lines between these two tags are
treated as comment lines, which are not executable code:

/* Add(int a, int b) is an addition function
 Parameters: a and b will be added up
 Return value: the addition result
 */
 int Add(int a, int b);

We have now learned about lots of elements of functional statements. Since C++ code is executed line
by line, we can only use functional statements to write linear programs.

However, what if we want some code blocks to be executed under certain conditions? In such cases,
our programs need to become smart and know how to pick the right things to do, rather than follow
simple orders. This brings in the need for flow controls.

Learning C++ and Object-Oriented Programming58

Controlling the C++ flow

As a complete and powerful programming language, C++ should support not only sequential statements
but also conditional branches and repeatable actions. Flow control refers to the order of function
calls, instructions, and statements that are executed or evaluated while a program runs. It determines
which block of code is run under a certain circumstance (condition).

In C++, if, switch, while loop, and for loop statements are mainly used to control program flows.

Working with the if statements

We use the if statement to execute a block of C++ code if a condition is true.

An if statement starts from the if keyword followed by a condition, which is enclosed by a pair of
parentheses. Following that is the code block that will be run when the condition is true.

The if statement has three forms – if, else, and else if.

if

An if statement checks the condition expression first, and the process is executed only when a
condition’s result is true:

Figure 3.10 – An if statement flowchart

Learning the C++ syntax 59

The following code is an example of the if statement in use:

if(condition)
{
 //Process code block
}

else

An else statement checks the condition to determine whether the process for true (Process 1) or
the process for false (Process 2) should be executed:

Figure 3.11 – An else statement flowchart

The following code is an example of the else statement in use:

if(condition)
{
 //Process 1 code block
}
else
{
 //Process 2 code block
}

Learning C++ and Object-Oriented Programming60

else if

The else if statement allows multiple conditional branches to be sequentially evaluated; each
else if branch is checked only if the preceding conditions are false.

As we did for the other two statements, let’s have a look at the flowchart for the else if statement:

Figure 3.12 – An else if statement flowchart

The following code is an example of the else if statement in use:

if(condition1)
{
 //Process 1 code block
}
else if(condition2)
{
 //Process 2 code block
}
else
{
 //Process 3 code block
}

Learning the C++ syntax 61

Working with the switch statement

The switch statement is used to select one of many code blocks to be executed. It evaluates the
expression first, then compares the result with the values of each case, and finally, executes the code
block (or process) when a match is found; otherwise, the default code block is executed:

Figure 3.13 – A switch statement flowchart

Learning C++ and Object-Oriented Programming62

The following code shows an example of a switch statement:

switch(expression)
{
case constant1:
 //Process 1 code block
 break;
case constant2:
 //Process 2 code block
 break;
case constantn:
 //Process n code block
 break;
default:
 //Default process code block
}

Working with loop statements

Loop statements are used to repeat the execution of a block of code if a specified condition is reached.
For example, the calculator program we worked on earlier can be modified to allow users to input
multiple data values, calculate them, and output the results.

There are three types of loops:

• The for loop

• The while loop

• The do/while loop

Let’s take a look at them.

Learning the C++ syntax 63

for loop

When a loop’s execution times are known, you can use the for loop:

Figure 3.14 – A for loop flowchart

The syntax of the for loop is as follows:

for(initialization; condition; update)
{
 //loop body code
}

Learning C++ and Object-Oriented Programming64

Let’s break it down:

• The initialization statement: This initializes one or more variables. This statement is
executed only once at the beginning of the loop.

• The condition statement: When this condition is false, the loop ends; otherwise, it continues.
The condition is usually related to the value of the initialized variable(s).

• The update statement: This updates the value of the initialized variable(s).

Here is an example, which will output 0, 1, 2, 3, 4:

for(int i = 0; i < 5; ++i)
{
 Cout << i << ",";
}

while and do/while loops

The while and do/while loops are similar loop statements. They both loop through a block of code
as long as a specified condition is true. The difference is that the former checks the condition before
executing the body code, whereas the latter does the check after, which means the do/while loop
executes the body code at least once, irrespective of whether the condition is true or false.

The while loop and do/while loop syntaxes are as follows:

while loop example do/while loop example

While(condition)
{
 //loop body code
}

do
{
 //loop body code
} while(condition);

The condition statement controls when to exit the loop. When this condition is false, the loop
ends; otherwise, the program continues.

The following two examples will output the same results, which are 0, 1, 2, 3 , 4:

while loop example do/while loop example

int i = 0;
 while(i < 5)
{
 cout << i << ","
 ++i;
}

int i = 0;
do
{
 Cout << i << ",";
 ++i;
} while(i < 5);

Learning the C++ syntax 65

We’ll show another pair of examples with different execution results. Here, the do/while loop will
output the message executed! once:

while loop example do/while loop example

bool condition = false;
while(conditiion)
{
 cout << "executed!"
}

bool condition = false;
do
{
 cout << "executed!"
} while(condition);

As with the statements, you can see the while and do/while loops illustrated here:

Figure 3.15 – Comparing while loop and do/while loop flowcharts

Using the break and continue statements

The break statement is not only used to exit a switch statement but can also be utilized to terminate
a loop prematurely.

The continue statement halts the current loop and proceeds to the next iteration, bypassing the
remaining code within the loop.

Learning C++ and Object-Oriented Programming66

Let’s look at the following code:

while(health > 0)
{
 if(Hit()) //check if hit by others
 {
 health -= 3; //Reduce health for 3 point
 If(health <= 0) //check if killed
 {
 Break; //jump out to DieProcess()
 }
 ProcessHit(); //play hit animation
 Continue; //start the next iteration
 }
 MoveForward();
}
DieProcess(this); //play die animation

This example shows the following:

• How the break statement terminates the loop when the actor is hit and the health is lower
than or equal to 0

• How the continue statement skips moving forward when the actor is hit

With that, we have covered a lot of information about the C++ syntax. In order to practice what we just
learned, let’s create a new project, MyCPP_03, which is a second version of the calculator program.

Working on the improved calculator program
In this new program, we want to add the following features:

• Allow a user to repeatedly input numbers for calculations

• Make another version of the Add function, which adds float values

• Add some comments to explain what the code blocks do

• Put the Add functions into the separate header and source files – Calculator.h
and Calculator.cpp

Follow these steps:

1. Create a new project and name it MyCPP_03.

Working on the improved calculator program 67

2. Add the main.cpp, calculator.cpp, and calculator.h files to the project. Your
Solution Explorer window should now have the files under the Header Files and Source
Files folders, like so:

Figure 3.16 – The MyCPP_03 Solution Explorer

3. Next, type the following code into the main.cpp file:

#include <iostream>
#include "Calculator.h"

using namespace std;

void main()
{
 cout << "My Calculations" << endl;

 float input1, input2;
 while (true)
 {
 cout << "Input the first value (0 to exit): ";
 cin >> input1;

Learning C++ and Object-Oriented Programming68

 if (input1 == 0) //exit if the user enters 0
 {
 break;
 }
 cout << "Input the second value (0 to exit): ";
 cin >> input2;
 if (input1 == 0) //exit if the user enters 0
 {
 break;
 }

 int a = input1;
 int b = input2;
 if (a == input1 && b == input2)
 {
 int result = Add(a, b);
 cout << "Integer addition: "
 << a << " + " << b << " = "
 << result
 << std::endl;
 }
 else
 {
 float result = Add(input1, input2);
 cout << "float addition: "
 << input1 << " + " << input2 << " = "
 << result
 << std::endl;
 }
 }
std::cout << "Finished!";
}

Working on the improved calculator program 69

Refer to Figure 3.17, which depicts the appearance of the main.cpp content in the VS editor.

Figure 3.17 – The main.cpp code

The main.cpp file contains the main() function, which accepts user inputs and outputs
the calculation results:

 � Line 1 includes the system’s iostream library.

 � Line 2 includes Calculator.h so that the Add functions can be used in this module. The
filename is not enclosed with angular brackets – this is usually used for programmer-defined
header files (not compiler/IDE-designated directory files, which usually are C++ Standard
Library or target platform files).

Learning C++ and Object-Oriented Programming70

 � Line 4 uses the namespace std. It simplifies using cout and cin without the namespace
tag, std::. Namespaces provide a method to prevent name ambiguity in large projects.

 � Line 10 defines two float variables to accept user input.

 � Line 11 is the while loop; as the condition is true, this means it is an endless loop.

 � Lines 13 to 41 are the loop body code.

 � Lines 14 and 20 retrieve user inputs and store the values to the two input variables.

 � Lines 15 to 17 and 21 to 24 check whether the user inputs 0 – if it is true, then the loop ends.

 � Lines 26 and 27 trim the decimals from the float values and assign the results to the
integer variables.

 � Line 28 checks whether the two input values are integers – if it is true, the Add(int, int)
function is called; otherwise, the Add(float, float) function is called.

4. Then, type the following code into the Calculator.h file:

#pragma once
/*
 Function Add: adds two integers and returns the result
 Parameters a, b: the two integer input values
*/
int Add(int a, int b);

/*
 Function Add: adds two floats and returns the result
 Parameters a, b: the two float input values
*/
float Add(float a, float b);

Refer to the screenshot in Figure 3.18, which depicts the appearance of the Calculator.h
content in the VS editor.

Figure 3.18 – The Calculator.h code

Working on the improved calculator program 71

The Calculator.h header file only contains the function signature declarations. Whenever
other source files need to call these two functions, they have to include this header file with the
#include "Calculator.h" statement. Let’s break down the code:

 � Line 1 includes #pragma once, which is a C++ preprocessor directive to ensure the current
source file is included only once in a single compilation. We recommend always making it
the first line of your header code.

 � Lines 3 to 6 and 9 to 12 are comments that provide more details about the functions.

 � Lines 7 and 13 are the function declarations without the implementations.

5. Then, type the following code into the Calculator.cpp file:

#include "Calculator.h"

int Add(int a, int b)
{
 return a + b;
}

float Add(float a, float b)
{
 return a + b;
}

Refer to the screenshot in Figure 3.19, which depicts the appearance of the Calculator.
cpp content in the VS editor.

Figure 3.19 – The Calculator.cpp code

The Calculator.cpp file contains the implementations of the two Add functions. These two
functions have the same name but different parameter types – we call this function overloading.
When the Add function is called, C++ picks the most suitable version. For example, when the
two parameters are both float types or one of them is a float type, Add(float a, float
b) is called. When both of the parameters are integers, Add(int a, int b) is called.

Learning C++ and Object-Oriented Programming72

6. Now, build and run the program, and then try inputting some data. You should get output as
shown in the following figure:

Figure 3.20 – The MyCPP_03 output

We have worked on two versions of the calculator program, which involve variable and function
definitions, along with the manipulation of flow control statements. Moving forward, we will learn
how to use references and pointers.

Creating references and pointers
When writing C++ code, a variable may not be accessed in only one place. Copying variable values
into multiple places brings the risk of inconsistent variable values, as well as lower performance and
more memory usage.

Look at the following addition example:

float Add(float a, float b)
{
 return a + b;
}

Void main()
{
 int x = 1, y = 2;
 cout << Add(x, y);
}

Creating references and pointers 73

You can see that the function’s parameters actually copy the x and y values into the two a and b
variables, which means that a and b have their own storage, and any value changes on a and b within
the Add function won’t affect the values of x and y.

Using references and pointers in C++ can not only help to use less memory and improve performance
but also provide the flexibility to modify the original variable values.

References

A reference variable is a reference to an existing variable, and it is defined with the & operator ahead
of the reference variable name. A reference variable name can be considered as a synonym for the
original variable name. Once defined, you can use either the reference name or the variable name to
indicate the same thing.

Look at the modified addition example:

float Add(float &a, float &b)
{
 return a + b;
}

Void main()
{
 int x = 1, y = 2;
 cout << Add(x, y);
}

Here, the function parameters are both reference variables. When calling the Add function, the
parameter values are not copied; a and b are considered to be the two aliases of x and y at this time.
Changing the values of the reference variables inside the Add function will result in changes to the
values of x and/or y.

To illustrate the point, here are some more examples:

string myName = "George"; //defines a string variable
string &nameOfMe = myName; //defines a reference
cout << "My name:" << myName; //outputs "My name: George"
cout << "My name: " << nameOfme; //outputs "My name: George"
myName = "Li";
cout << "My name:" << nameOfMe; //outputs "My name: Li"

Learning C++ and Object-Oriented Programming74

Pointers

A pointer is a variable that stores the memory address of another variable, and it is created with the
* operator ahead of the variable name. Look at the following modified addition example:

float Add(float *a, float *b)
{
 return *a + *b; //add and return the pointed values
}

Void main()
{
 int x = 1, y = 2;
 cout << Add(&x, &y); //pass the address of x and y
}

Here, the function parameters are both pointers. When calling the Add function, the a and b parameters
only copy the input values’ memory addresses; to get the pointed values inside the Add function, you
have to add the * prefix to the pointer variable names.

Here are some more examples:

string myName = "George"; //defines a string variable
string *pMyName = &myName; //defines a pointer
string *pNameOfMe = pMyName;//defines another pointer
cout << "My name:" << *pMyName; //outputs "My name: George"
cout << "My name: " << *pNameOfme;//outputs "My name: George"
myName = "Li";
cout << "My name:" << *pMyName; //outputs "My name: Li"
You just learned cout << "My name:" << *pNameOfMe; //outputs "My name:
Li"

Having grasped the significant C++ programming feature of using references and pointers, the next
crucial aspect to explore is OOP.

Understanding OOP
Before diving into the world of OOP, it is necessary to lay the groundwork by explaining some
fundamental OOP concepts and terms. Following this, you will learn how to create C++ classes and
utilize the new classes to instantiate objects, allowing for the practical implementation of OOP principles.

Understanding OOP 75

What is OOP?

In the MyCPP_0x projects, we wrote functions to perform operations on the data. The approach we
used is actually called procedural programming.

OOP is defined as a programming paradigm built on the concept of objects. OPP tries to reflect real-
world concepts by creating objects that contain attributes (fields) and functions (methods).

There are three major pillars on which OOP relies:

• Encapsulation: This means that data and functions can be wrapped up into classes so that
some sensitive data is hidden from users.

• Inheritance: This means that a class can derive from another base class to be its child class.
The child class can inherit public and protected attributes and functions from the base class.
In addition, the child class can also have its own extra attributes and functions.

• Polymorphism: This means that one class method can have multiple forms.

The main benefits of using OOP over procedural programming are as follows:

• Modularity: Objects act as containers that wrap their attributes and methods up. It eases
troubleshooting and collaborative development.

• Reusability: Code can be reused through inheritance, which minimizes the possibility of
redundant code and change risks.

• Productivity: OOP is more productive than procedural programming because of OOP’s
capabilities for natural world reflection and code reusability.

Note
In addition to the aforementioned points, OOP also has other advantages over procedural
programming. You can search online if you are interested in finding out more by
yourself (https://en.wikipedia.org/wiki/Object-oriented_programming).

What are classes and objects?

Classes and objects are the two main features of OOP. A class is a template that can be used to create
objects; on the other hand, an object is an instance of a class. In other words, a class can be used as
a blueprint to instantiate objects.

To illustrate the distinction between classes and objects, let’s consider an example. A Computer class
serves as a blueprint for computer products, encompassing attributes such as CPUType and RAMSize.
This blueprint acts as a template from which a certain number of computers can be manufactured.

https://en.wikipedia.org/wiki/Object-oriented_programming

Learning C++ and Object-Oriented Programming76

In essence, the class defines the common properties and behaviors, whereas the objects represent
individual instances that were created based on the class blueprint.

Creating classes in C++

A class is a user-defined data type that starts with the class keyword, followed by the class name.
The body of the class is defined within a pair of curly braces and terminated by a semicolon at the end.

A class can have attributes, which are variables that represent the properties of the class. It can also
have methods (member functions).

Let’s create our first class, called Computer, which encompasses a private attribute, _
ComesWithMonitor, and two public attributes, CPUType and RAMSize:

class Computer
{
 Private:
 bool _ComesWithMonitor = true; //true or false
 Public:
 string CPUType = "Intel"; //"Intel" or "AMD"
 int RAMSize = 4096; //Unit: Giga bytes

 void TurnOn()
 {
 //…
 }
 void Shutdown()
 {
 //…
 }
 void SetComesWithMonitor(bool ComesWithMonitor)
 {
 _ComesWithMonitor = ComesWithMonitor;
 }
 bool GetComesWithMonitor()
 {
 Return _ComesWithMonitor;
 }
 }

Let’s examine the accessibilities of the attributes and methods defined for the Computer class in
more detail.

Understanding OOP 77

The class attributes

The Computer class has three attributes – _ComesWithMonitor, CPUType, and RAMSize.
Note that _ComesWithMonitor is placed under the private group, and the rest of the attributes
are placed under the public group.

The public and private specifiers define access scopes for attributes and functions. public
attributes and functions can be accessed outside of the class, whereas private attributes and functions
are only visible inside the class.

In this example, we used an underscore (_) prefix to indicate that _ComesWithMonitor is a
private attribute. However, this coding convention is not obligatory, and you are free to adopt an
alternative coding convention of your own.

The class methods

Methods are functions that belong to a class. The Computer class has four functions – TurnOn,
Shutdown, SetComesWithMornitor, and GetComesWithMonitor. I only implemented the setter
and getter functions, which allow outsiders access to the private flag attribute, _ComesWithMonitor.

Creating objects in C++

Returning to objects, C++ provides two methods to create them.

Method 1 – defining a variable

Here is an example of defining a MyComputer instance from the Computer class:

Computer MyComputer; //method 1

This method simply defines a new variable named myComputer. The attributes and the methods of
the MyComputer object can be accessed with the dot (.) syntax.

The following example sets the computer’s CPUType as "AMD" and the private variable,
_ComesWithMonitor, as false by calling the Set function:

MyComputer.CPUType = "AMD";
MyComputer.SetComesWithMonitor(false);

Method 2 – using the new keyword to instantiate an object and store it to a
pointer

Here is an example of using the Computer class to instantiate a new MyComputer instance and
store the pointer of the new instance to the pMyComputer pointer:

Computer *pMyComputer = new Computer(); //method 2

Learning C++ and Object-Oriented Programming78

This second method requests the system to allocate a block of memory for the new Computer instance
and return the pointer to the memory address. The attributes and the methods of the pMyComputer
object can be accessed with the pointer (->) syntax.

The following example also sets the computer’s CPUType as "AMD" and the private variable,
_ComesWithMonitor, as false by calling the Set function:

pMyComputer->CPUType = "AMD";
pMyComputer->SetComesWithMonitor(false);

Since the storage of the computer object information is requested by the programmer’s code and is
dynamically allocated, it is important to release the memory when it is not used. Forgetting to release
this memory will cause a memory leak. The delete keyword is used to free unused memory, like so:

delete pMyComputer;

Based on the knowledge gained in this section, you should now have a solid understanding of
implementing OOP classes and objects. Are you enthusiastic about applying this knowledge to convert
the MyCPP_03 program into an OOP program? Let’s dive into it.

Working on an OOP calculator program
Let’s create a new project, MyCPP_04, and create the main.cpp, Calculator.cpp, and
Calculator.h files. What we mainly want to do is to create a Calculator class and then make
the Add functions the class methods.

Follow these steps:

1. Type the following code into the main.cpp file:

#include <iostream>
#include "Calculator.h"

using namespace std;

void main()
{
 Calculator calculator; //defines the calculator object
 cout << "My Calculations: " << calculator.GetName() << endl;

 float input1, input2;
 while (true)

Working on an OOP calculator program 79

 {
 cout << "Input the first value (0 to exit): ";
 cin >> input1;
 if (input1 == 0) //exit if the user enters 0
 {
 break;
 }

 cout << "Input the second value (0 to exit): ";
 cin >> input2;
 if (input1 == 0) //exit if the user enters 0
 {
 break;
 }

 int a = input1;
 int b = input2;
 if (a == input1 && b == input2)
 {
 int result = calculator.Add(a, b);
 cout << "Integer addition: " << a << " + " << b << "
= "
 << result
 << std::endl;
 }
 else
 {
 float result = calculator.Add(input1, input2);
 cout << "float addition: " << input1 << " + " <<
 input2 << " = "
 << result
 << std::endl;
 }
 }

 std::cout << "Finished!";
}

Learning C++ and Object-Oriented Programming80

Refer to the screenshot in Figure 3.21, which depicts the appearance of the main.cpp content
in the VS editor.

Figure 3.21 – The OOP main.cpp code

Working on an OOP calculator program 81

The main points to note are as follows:

 � Line 10 creates the calculator object

 � Lines 32 and 39 call the calculator’s Add method

2. Type the following code into the Calculator.h file:

#pragma once
#include <iostream>
using namespace std;

class Calculator
{
protected:

 string _name;

public:
 Calculator(); //This is the constructor

 string GetName();

 /*
 Function Add: adds two integers and returns the result
 Parameters a, b: the two integer input values
 */
 int Add(int a, int b);

 /*
 Function Add: adds two floats and returns the result
 Parameters a, b: the two float input values
 */
 float Add(float a, float b);
};

Learning C++ and Object-Oriented Programming82

Refer to the screenshot in Figure 3.22, which depicts the appearance of the Calculator.h
content in the VS editor.

Figure 3.22 – The OOP Calculator.h code

The main points to note are as follows:

 � Line 3 defines the Calculator class

 � Lines 5 to 17 are the body of the class, which has the two methods

3. Type the following code into the Calculator.cpp file:

#include "Calculator.h"

Calculator::Calculator()
{
 _name = "Addition Calculator";
}

string Calculator::GetName()
{
 return _name;
}

int Calculator::Add(int a, int b)
{
 return a + b;
}

Working on an OOP calculator program 83

float Calculator::Add(float a, float b)
{
 return a + b;
}

Refer to the screenshot in Figure 3.23, which depicts the appearance of the Calculator.
cpp content in the VS editor.

Figure 3.23 – The OOP Calculator.cpp code

Let’s break this down:

 � Lines 3 to 6 show the implementation of the integer version’s Add method

 � Lines 8 to 11 show the implementation of the float version’s Add method

In this example, the two Add methods of the class are implemented outside of the definition
of the class. To make a function a method of a class, we use the name of the class followed by
the :: operator ahead of the function names.

Build and run this modified program. You should get the same result as that obtained from the Working
on the improved calculator program exercise (see Figure 3.20).

At this point, the calculator is functioning as anticipated. Building upon this progress, we will explore
additional aspects of OOP, such as class constructors, getter functions, and class extension, to further
expand our knowledge of OOP.

Adding constructor and getter functions for the calculator class

A constructor of a class is a special method that is automatically called when an object is created.
A constructor’s name must be the same as the class name, and the function should have no return
type. Developers usually put the class attribute initializations in the constructors.

Let’s add a constructor for the Calculator class:

1. Add a private _name attribute to the Calculator class, which will store the calculator’s name:

string _name;

Learning C++ and Object-Oriented Programming84

2. Add the constructor and the getter declarations to the class:

Calculator();
String GetName();

3. Implement the constructor and the getter in Calculator.cpp:

Calculator::Calculator()
{
 _name = "Addition Calculator"; //set the name
}

string Calculator::GetName()
{
 Return _name;
}

Having successfully added the constructor and the GetName function to the Calculator class, let’s
now explore extending the Calculator class by creating a new subclass named CalculatorEx.

Creating the CalculatorEx class, which inherits from the
Calculator class

The final aspect of OOP that we want to experiment with is inheritance.

By now, the Calculator class only offers additions, which may be good enough under certain
circumstances, but what if we need the calculator to support subtraction?

Directly adding the subtraction functions to the Calculator class may solve the problem, but when
certain applications do not need subtractions, the new subtraction functions become unused code.

The better way to solve the problem is to create a second class, which can be named CalculatorEx.
This class inherits from the Calculator class and has its own subtraction methods. This makes it
possible to use the right version of the calculator for different situations.

Working on an OOP calculator program 85

Let’s use a UML class diagram to illustrate the relationship between the two classes (see Figure 3.24).

Figure 3.24 – A CalculatorEx and Calculator class diagram

UML
UML stands for Unified Modeling Language. A UML class diagram is a graphical representation
to construct and visualize object-oriented systems.

In the diagram, note the following notations:

• The upward arrow indicates that CalculatorEx inherits from Calculator

• The - notation indicates private or protected attributes or functions

• The + notation indicates public attributes or functions

Learning C++ and Object-Oriented Programming86

To implement the class inheritance, open the MyCPP_04 project, add a new file called CalculatorEx.h,
and then enter the following code:

#pragma once

#include "Calculator.h"

class CalculatorEx : public Calculator
{
public:

 CalculatorEx(); //This is the constructor

 int Subtract(int a, int b);

 float Subtract(float a, float b);
};

Refer to the screenshot in Figure 3.25, which depicts the appearance of the CalculatorEx.h
content in the VS editor.

Figure 3.25 – The OOP CalculatorEx.h code

Let’s break down this code:

• Line 9 is the constructor’s declaration

• Lines 11 and 13 are the declarations of the two overloaded Subtract functions

Working on an OOP calculator program 87

Then, create another new file, called CalculatorEx.cpp, and enter this code:

#include "CalculatorEx.h"

CalculatorEx::CalculatorEx()
{
 _name = "Advanced Calculator";
}

int CalculatorEx::Subtract(int a, int b)
{
 return a + b;
}

float CalculatorEx::Subtract(float a, float b)
{
 return a - b;
}

Refer to the screenshot in Figure 3.26, which depicts the appearance of the CalculatorEx.cpp
content in the VS editor.

Figure 3.26 – The OOP CalculatorEx.cpp code

Learning C++ and Object-Oriented Programming88

Let’s break down this code:

• Lines 3 to 6 are the constructor of CalculatorEx, which will be executed after the constructor
of Calculator, which is the base class

• Lines 8 to 11 and lines 13 to 16 are the implementations of the two overloaded Subtract functions

One more thing that needs to be done is to move the _name variable in the Calculator class from
the private group to the protected group. The difference is that private attributes and methods
are hidden from their child classes, whereas protected attributes and methods are like public ones
that are inherited by the child classes:

Protected:
 String _name;

Since the CalculatorEx class is a child class of the Calculator class, it inherits all the attributes
and functions from its parent class (the _name attribute and the Add functions) and has its own
unique functions (the Subtract functions). It is obvious that CalculatorEx is more powerful
than Calculator.

Would you like to integrate the CalculatorEx class into the Calculator program? We encourage
you to try for yourself and explore further on your own. However, we will still provide the MyCPP_05
project as a reference, which you can download from the GitHub repository.

Summary
In this chapter, you learned the essentials of the C++ programing language. This chapter covered the
topics of the compilation process, the program structure, data types, variable creation, functions,
comments, the Standard Library’s user input, reference and pointer creations, flow control, and OOP.

The three exercises should be very helpful to learn and practice the C++ syntax, procedural programming,
and OOP skills. The five MyCPP_x projects are also good samples that can be referenced in your
later studies.

Since C++ is a very powerful programming language, providing ample features and functionalities, it is
not possible to cover everything in this chapter. We will explain other C++ syntaxes when they are used.

You should now have the necessary knowledge about C++ programming. In the next chapter, we will
investigate the Unreal Engine-generated C++ source code for the shooter game. This should help you
to quickly understand the commonly used Unreal Engine classes and APIs.

4
Investigating the Shooter

Game’s Generated Project and
C++ Code

Game developers choose to use game engines because they provide toolsets that help accelerate
developer workflows. In Unreal Engine, what C++ scripting does is to program based on Unreal
Engine’s predefined classes and APIs. Therefore, the best way to start learning about and understanding
Unreal Engine C++ scripting is to review an engine-generated project.

By investigating the project structure and the source code, you will obtain not only an overall view of
the C++ project’s structure but also the most used engine programming APIs. Based on the knowledge
you just gained and the MyShooter C++ project created in Chapter 1, we will go through the
following topics in this chapter:

• Understanding the MyShooter C++ project structure

• Understanding the game program structure

• Getting familiar with the source code

• Launching Unreal Editor and opening the game project in Visual Studio

Technical requirements
In this chapter, while examining the code, we will just be previewing the concepts and the use of APIs,
elements, and functions in the project. The technical details will be introduced in the subsequent chapter.

Investigating the Shooter Game’s Generated Project and C++ Code90

Understanding the MyShooter C++ project structure
You already learned about the regular C++ project structure in Chapter 3; now, let’s take a close look
at an Unreal game’s C++ project structure.

Open MyShooter in Unreal Editor and select the C++ Classes/MyShooter folder in the Content
Drawer window. There, you can find five C++ class files:

Figure 4.1 – MyShooter C++ project source files

Double-click on any C++ class file to open the C++ project in VS.

Now, let’s look at Solution Explorer:

Figure 4.2 – MyShooter C++ project Solution Explorer

Understanding the MyShooter C++ project structure 91

The first layer of the tree has three folder nodes – Engine, Games, and Visualizers:

• The Engine folder contains the Unreal Engine project and the source code. In some cases,
you may want to modify and customize the engine code.

• The Games folder contains game projects. Here, it only has one project – MyShooter.

• The Visualizers folder contains the .natvis files, which contain XML syntax configurations
for viewing objects and other data in Visual Studio. You can customize data visualizations in
the .natvis files; this means that users can view data better (as per their preferences) when
editing or debugging code.

For now, we are only interested in the structure of MyShooter. This folder has all the files belonging
to the game project (see Figure 4.3). Developers usually add new source files to the project under the
\Source subfolder.

Figure 4.3 – MyShooter C++ project structure

Investigating the Shooter Game’s Generated Project and C++ Code92

Let’s look at the project structure in detail:

• The References folder contains references to other solutions or shared projects. We are not
going to do anything on references in this book, so keep it empty.

• The External Dependencies folder has all the dependencies’ header files that you
will need when writing the game code. Files under this folder are automatically generated by
IntelliSense. You can edit the project’s MyShooter.build.cs build file to tell IntelliSense
what dependencies you need in this project. By default, the Core, CoreUObject, Engine,
and InputCore modules are added to the public dependency list.

• The Source folder has the MyShooter.uproject Unreal project files and two subfolders
under it:

 � The \Config subfolder has all the .ini configuration files.

 � The \MyShooter subfolder, which has an identical name to the Unreal project, contains
the build and target files (these are C#.cs files). All the generated C++ source code files
(.cpp and .h files) are placed under the \MyShooter subfolder.

Now that we have a basic idea of the Unreal C++ project structure, let’s explore the source code inside
the \MyShooter folder. We will begin by introducing the basic game program structure, and then
look into the C++ source code.

Understanding the game program structure
A typical and simple game program usually has three phases – game initialization, game loop, and
game end – and Unreal Engine handles these internally.

Unreal Engine offers a range of programming interfaces, including base classes, APIs, and systems,
empowering developers to create highly immersive and interactive games. Leveraging these interfaces,
developers write C++ code that integrates their custom functionality into the game.

The following flowchart illustrates the fundamental game flow and should give you an idea about
writing game code for functional modules:

Understanding the game program structure 93

Figure 4.4 – Game program structure

Let’s take a look at some of these ideas:

• Game initialization happens when a game program starts. All the initialization tasks, such
as setting the display mode, loading required contents, spawning game objects, and so on, are
done during this phase.

• Game loop is the main gameplay period. A game loop involves the repeated retrieval of player
inputs, updating of the game, and drawing of the game scene. A complete game loop also refers
to the accomplishment of one frame update.

Investigating the Shooter Game’s Generated Project and C++ Code94

While updating the game, game objects (actors) – bullets that are being shot, for instance –
may be created. The created actor also needs to be initialized. Unreal actors have their own
OnConstruction() and BeginPlay() event functions. These two functions are only
called once, when the object is created. The actor’s Tick() event function is called in every
frame. Game logic and controls are handled inside this function.

• Game end is a phase that ends the game. It takes care of cleanup work, such as destroying
existing actors, releasing memory, shutting down network connections, and so on. The actor’s
EndPlay() event function is called at this time. You need to do the cleanup work for the
actor when this function gets called.

The actor event functions have corresponding Blueprint Event Nodes:

Actor Blueprint Event Actor C++
Event Function

Comment

OnConstruction() Called when the actor
is created

BeginPlay() Called after
OnConstruction() when

the actor is created

Tick() Called in every frame

EndPlay() Called before the actor
is destroyed

Figure 4.5 – An actor’s C++ event functions and the corresponding Blueprint Event Nodes

Not all of the event functions are mandatory for actor classes. In MyShooterCharacter.h, only the
BeginPlay() function is declared and the implementation can be found in MyShooterCharacter.
cpp.

Getting familiar with the source code 95

Now it is time to investigate the generated C++ source code files.

Getting familiar with the source code
In this section, we will go through the generated .cpp and .h source code and explain the code lines
or line blocks so that you can better understand how code is organized and written to implement the
expected functionalities.

First of all, let’s take a look at the MyShooterCharacter.h header file for the definition of a
typical Unreal class.

MyShooterCharacter.h

MyShooterCharacter.h is the header file that defines the game’s character class.
The MyShooterCharacter class is going to be used to create player characters.

The code of this header file can be divided into four parts:

• The definition of the AMyShooterCharacter class

• The definition of the class variables

• The declaration of the class member functions

• The declaration of the functions for setting up inputs and the getter functions

The header file’s first part mainly defines the MyShooterCharacter class, which inherits from
Unreal’s ACharacter class:

 Figure 4.6 – MyShooterCharacter.h (Part 1)

Investigating the Shooter Game’s Generated Project and C++ Code96

The code is broken down as follows:

• Lines 9-14 declare some Unreal classes that will be used in this module. C++ allows the use of
external classes without implementing them inside a module, which means that these classes
are implemented somewhere else.

• Line 18 is a C++ macro offered by Unreal Engine that can be used to declare the FOnUseItem
delegate function type. This delegate function type is then used to define the OnUseItem
delegate function variable to which external functions can be dynamically assigned. In the
MyShooter example, the weapon will attach its Fire() function to this delegate function
variable so that when the player pushes the Fire button, the delegated function is called.

Note
A delegate is essentially a function pointer that can be dynamically bound to one or more methods
or functions. Delegates provide a way to invoke multiple functions when a particular event or action
occurs. You can refer to the Unreal Engine documentation for more information: https://
docs.unrealengine.com/5.0/en-US/delegates-and-lamba-functions-
in-unreal-engine/.

• Line 20 uses a UCLASS macro to indicate that the C++ class defined next will be part of Unreal’s
Reflection System (Unreal’s internal system that interprets information, such as macros and
specifiers, to process associated C++ classes, variables, and functions). UCLASSes are recognized
by Unreal Editor and can use the engine’s memory management system. The UCLASS macro
on line 20 also has a specifier, config=game, which indicates that this class is allowed to
save its data in the DefaultGame.ini configuration file.

• Line 21 defines AMyShooterCharacter, which inherits from the engine’s ACharacter
class. The class has the prefix A, which is required by the engine’s coding standard; all classes that
inherit from AActor are prefixed with A. Since ACharacter inherits from APawn, APawn
inherits from AActor, and AMyShooterCharacter is a child class of ACharacter,
they all should be prefixed with A.

• The GENERATED_BODY macro on line 23 should always be placed on the first line of the
class definition.

https://docs.unrealengine.com/5.0/en-US/delegates-and-lamba-functions-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/delegates-and-lamba-functions-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/delegates-and-lamba-functions-in-unreal-engine/

Getting familiar with the source code 97

The second part of the header file defines the class variables (properties) and declares the class
constructor and the BeginPlay() function:

Figure 4.7 – MyShooterCharacter.h (Part 2)

The code is broken down as follows:

• Lines 27, 31, 42, and 46 define four variables: Mesh1P, FirstPersonCameraComponent,
TurnRateGamepad, and OnUseItem. The USkeletonMeshComponent and
UCameraComponent engine classes both inherit from the UObject class, so they are
prefixed with U.

• The UPROPERTY macros on lines 26, 29, 41, and 45 are used to expose the variables defined on
the next lines to Unreal Editor and include the properties in the engine’s memory management
system. UPROPERTY can have specifiers, such as VisibleAnywhere, BlueprintReadOnly,
Category, and so on. (We will explain the specifiers after we have finished reviewing the
header file code.)

• Line 34 is the declaration of the class’s constructor, which has no return type and has the same
name as the class. The constructor is called when the class object is created.

• Line 37 declares the BeginPlay() function that is called during the object creation time
after the constructor. The virtual keyword indicates that this function can be overridden
by its subclasses.

Investigating the Shooter Game’s Generated Project and C++ Code98

• The public: keyword on lines 33 and 39 indicates that the following variables and functions
can be accessed either internally or externally.

• The protected: keyword on line 36 indicates that the following variables and functions can
only be accessed internally and are also visible to the subclasses.

• Lines 25-31 have no access keyword above them, so they will be allied with the private:
keyword, which means internal access only.

The third part of the header file declares functions that handle character moves and player touch inputs:

Figure 4.8 – MyShooterCharacter.h (Part 3)

The code is broken down as follows:

• Lines 50, 53, 56, 62, 68, and 78-80 are function declarations.

• Line 70 defines the TouchData structure (called struct in C++). A C++ struct groups
related variables in one place. Each variable in a struct is called a member of the struct.
Structs are defined in a manner similar to classes, except for the use of the struct keyword
instead of class. By default, struct variables and functions allow public access, making
them accessible externally.

• Line 81 defines the TouchData variable.

Getting familiar with the source code 99

The last part of the MyShooterCharacter.h header file mainly includes the input setup and the
getter functions:

Figure 4.9 – MyShooterCharacter.h (Part 4)

The code is broken down as follows:

• Line 85 overrides its APawn base class’s virtual function named SetupPlayerInputComponent,
which is called by the engine during the setting-up phase.

• The getter functions on lines 98 and 100 provide public functions so that other objects can
retrieve the pointer of the private variables.

When reviewing the MyShooterCharacter.h code, the UPROPERTY specifiers were not
explained. Property specifiers are added to control how the property behaves with various aspects of
the engine and editor. The following are the specifiers used in the MyShooterCharacter.h file:

• VisibleDefaultsOnly indicates that the property is only visible in property windows
for archetypes, and cannot be edited

• VisibleAnywhere indicates that this property is visible in all property windows, but
cannot be edited

• BlueprintReadOnly indicates that this property is readable but not editable to Blueprints

• BlueprintAssignable indicates that Blueprints can assign a value to this property

• Category= specifies the category of the property when displayed in Blueprint editing tools

More information about property specifiers can be found in Unreal Engine’s official online
documentation: https://docs.unrealengine.com/5.0/en-US/unreal-engine-
uproperty-specifiers/

https://docs.unrealengine.com/5.0/en-US/unreal-engine-uproperty-specifiers/
https://docs.unrealengine.com/5.0/en-US/unreal-engine-uproperty-specifiers/

Investigating the Shooter Game’s Generated Project and C++ Code100

MyShooterCharacter.cpp

Functions declared in the MyShooterCharacter.h file should be implemented in the
MyShooterCharacter.cpp file.

The first implemented function is the class constructor:

Figure 4.10 – MyShooterCharacter.cpp (the class constructor)

Let’s look at the code:

• Line 18 gets ACharacter's capsule component and then initializes the size for collision
detections by calling its InitCapsuleSize method.

• Line 21 sets the initial value for the TurnRateGamepad variable.

• Line 24 uses the CreateDefaultSubobject function to create the player camera and
stores the camera component pointer to the FirstPersonCameraComponent variable.
CreateDefaultSubObject is a template function that has the UCameraComponent
type enclosed by a pair of angle brackets. This makes the function create an instance of
UCameraComponent and return the pointer to the new instance.

Getting familiar with the source code 101

• Lines 25-27 set the FirstPersonCameraComponent properties.

• Lines 30-36 do similar work to creating and setting up the camera, with the
SkeletalMeshComponent created and initialized here.

The next function is the MyShooterCharacter BeginPlay() function, which simply calls its
ACharacter base class’s BeginPlay() function (see Figure 4.11):

Figure 4.11 – MyShooterCharacter.cpp (the BeginPlay function)

Even though MyShooterCharacter has nothing to do here, its ACharacter base class may do
some meaningful work, so don’t forget to call the overridden function.

The next function is the SetupPlayerInputComponent function, which binds player input
actions and axis changes to their handling functions (see Figure 4.12). For example, when the Jump
button is pressed, the Jump function within the ACharacter class is called.

Figure 4.12 – SetPlayerInputComponent in MyShooterCharacter.cpp

Investigating the Shooter Game’s Generated Project and C++ Code102

All the input Action Mappings (Jump and PrimaryAction) and the Axis Mappings (move
forward / backward, for example) are defined in the engine editor settings. In the engine editor,
open the Project Settings window and select Engine | Input, and you should see the input map:

Figure 4.13 – MyShooter project editor input map

If you pay attention to line 59 in Figure 4.12, you will notice that the OnPrimaryAction function
is bound to PrimaryAction. When the left mouse button is clicked or the gamepad’s right trigger
is pressed, the OnPrimaryAction function is called. Then, the OnPrimaryAction function
uses the delegated variable to broadcast calling functions assigned to it:

Figure 4.14 – The OnPrimaryAction function in MyShooterCharacter.cpp

The remaining functions in MyShooterCharacter.cpp are responsible for character controls.
We are not going to go deep into the implementation details. It is recommended that you read the
code and use it as a reference in your future development work.

Getting familiar with the source code 103

Since AMyShooterCharacter is a UCLASS, it can be inherited by not only C++ subclasses but
also Blueprints. The MyShooter game has a BP_FirstPersonCharacter Blueprint, which
inherits from the AMyShooterCharacter class:

Figure 4.15 – BP_FirstPersonCharacter

From here, you can see that most properties are derived from the ACharacter class and only three
new properties are added to the new class.

Note that the FirstPersonCamera and Mesh1P components are added in the Components view,
whereas the TurnRateGamepad variable is added to the Details panel because the TurnRateGamepad
variable is an attribute of the class and not a component.

MyShooterProjectile.h and MyShooterProjectile.cpp

The AMyShooterProjectile class is defined for instantiating bullets that can be fired during the
gameplay. Bullets are spawned in front of gun muzzles and move forward, either until they hit something
or until the end of their lifespan, so the class only needs two components: ProjectileMovement
and USphereComponent (see Figure 4.16).

Investigating the Shooter Game’s Generated Project and C++ Code104

A Class C++ function can be declared as a UFunction (the UFUNCTION macro will be introduced
in Chapter 5) so that the function can be recognized by the engine’s Reflection System. In Figure 4.16,
you may notice that the OnHit function is designated as a UFunction, which enables the engine to
recognize and associate it with the OnComponentHit delegate event of UsphereComponent:

Figure 4.16 – MyShooterProjectile.h

Here, lines 30-31 declare the OnHit function with the UFUNCTION() macro above them.

Getting familiar with the source code 105

MyShooterProjectile.cpp only implements two functions – the class constructor and the
OnHit function:

Figure 4.17 – MyShooterProjecttile.cpp

Let’s break down the code:

• Lines 10-18 create and initialize the sphere collision component.

• Lines 24-29 create and initialize the projectile movement component.

• Line 32 sets the lifespan for the projectile. If the bullet doesn’t hit anything after the lifespan
time, it is destroyed.

• The if statement on line 39 checks whether the projectile hits a valid object.

• Line 41 adds some force to the hit object.

• Line 43 destroys the projectile after it hits the object.

Investigating the Shooter Game’s Generated Project and C++ Code106

The MyShooterProjectile class serves as an example that demonstrates how to control the
movement of an actor within the game and effectively handle collisions. By studying this class,
developers can gain insights into implementing projectile behavior and incorporating collision
detection mechanisms into their own games.

TP_PickUpComponent.h and TP_PickUpComponent.cpp

The UTP_PickUpComponent class inherits from USphereComponent and adds the feature that
handles the overlap event. When a player enters this sphere area, the weapon with this component
is picked up.

The main task of the header file is to define an OnPickUp delegate, which will be called when the
OnSphereBeginOverlap event is triggered:

Figure 4.18 – TP_PickUpComponent.h

Let’s break down the code:

• Line 12 uses the DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam macro to define
the delegate, and this delegate requires the subscribing function to have a single parameter of
type AMyShooterCharacter*.

Getting familiar with the source code 107

• The UCLASS macro in line 14 has some specifiers here:

 � Blueprintable indicates that this class is an acceptable base class for creating Blueprints.

 � BlueprintType indicates that this class can be used for variables in Blueprints.

 � ClassGroup = (Custom) indicates that this class should be within the Custom group.

 � meta =(meta tags) informs the engine to use the meta tags as instructed. For instance,
the BlueprintSpawnableComponent tag tells the engine that this component can
be spawned by Blueprint, and the class name will show on the list of available components
for the Blueprint SpawnActor node. Another example is when you want to display a class
with a different name from its original class name of UTP_PickupComponent in the
editor; add meta = (DisplayName="New Class Name") as the specifier to the
UCLASS macro.

• Line 23 defines the OnPickUp delegate variable.

• The UFUNCTION() macro on line 32 allows the C++ OnSphereBeginOverlap function
to be recognized by the Unreal Engine Reflection System. This function must be a UFUNCTION
to be added to the OnComponentBeginOverlap delegate in the base class.

Based on the declaration of the delegate and the event handler function in the header file, the constructor
of the class and the BeginPlay and OnSphereBeginOverlap functions are implemented
in TP_PickupComponent.cpp:

Figure 4.19 – TP_PickUpComponent.cpp

Investigating the Shooter Game’s Generated Project and C++ Code108

Let’s break down the code:

• Line 8 initializes SphereRadius.

• Line 13 calls the BeginPlay function of the USphereComponent base class.

• Line 16 adds the OnSphereBeginOverlap delegate function.

• Line 24 calls the Cast template function, which casts the input AActor pointer to be a
MyShooterCharacter pointer. If the cast fails, the return value is nullptr, which means
it is a null pointer. In Unreal Engine, functions are usually generalized to take in parameters
and return values in the base class pointers. When you know what an actual pointer type is,
you can cast it so that you can access the right class members.

• Line 25 checks whether the collided character is valid (Character != nullptr). When
the condition is true, lines 28-31 in the code are executed.

Please be aware that extending collision components and handling the OnComponentBeginOverlap
event by associating event functions is very commonly used in processing game interactions.

TP_WeaponComponent.h and TP_WeaponComponent.cpp

The weapon component takes care of firing processes, including playing the firing animation, spawning
a projectile, playing sound effects, and attaching the weapon to a character who has picked it up.

Specifically, the TP_WeaponComponent.h file defines properties and functions for the class:

Figure 4.20 – TP_WeaponComponent.h

Getting familiar with the source code 109

Let’s break down the code:

• Lines 18-31 define the class properties.

• Line 34 is the class constructor.

• Lines 37-42 declare the two functions: AttachWeapon and Fire. Both these functions
have the BlueprintCallable specifier, which indicates that they are visible to Blueprints.

• Line 47 defines the EndPlay event function.

• Line 51 defines an AMyShooterCharacter pointer, which points to the player character
who picked the weapon up.

The TP_WeaponComponent.cpp file contains useful gameplay features for scripting implementations.
From this part, you can learn how to spawn actors, play a sound at a location, play animations, and
attach and detach delegate functions:

• Spawning an actor: Spawning characters frequently happens while playing a game. Shooting
projectiles is a typical example of dynamic spawning. To spawn an actor, you need to get the
pointer to the current game world first by calling the GetWorld() function:

UWorld* const World = GetWorld();

The const keyword between the (UWorld*) data type and the (World) variable name
indicates that the retrieved object’s contents are unchangeable.

Now, you can call the world’s SpawnActor function to actually create a new actor and place
it in the world:

World->SpawnActor<AMyShooterProjectile>(ProjectileClass,
SpawnLocation, SpawnRotation, ActorSpawnParams);

Here, the SpawnActor function has four parameters that tell the engine what type of actor
is going to be spawned and where to place the new actor.

• Playing a sound at a location: To play the firing sound effect, the weapon’s fire() function
simply calls the PlaySoundAtLocation() function of the UGameplayStatics static
class (a class that is never instantiated and provides static functions), which provides useful
gameplay utility functions. The sound play function needs a location parameter because it
plays stereo sound effects:

UGameplayStatics::PlaySoundAtLocation(this, FireSound,
Character->GetActorLocation());

The function’s first parameter, this, is a special alias in C++ that means the owner object
itself. In this example, it means the weapon component.

Investigating the Shooter Game’s Generated Project and C++ Code110

• Playing an animation: To play the firing animation, it calls the Montage_Play function
of the animation instance. This function takes two parameters – the animation and the speed
of the animation:

AnimInstance->Montage_Play(FireAnimation, 1.f);

• Attaching and detaching the Fire() function to the OnUseItem delegate variable defined in
AMyShooterCharacter: When the AttachWeapon function of the UTP_WeaponComponent
class is called, it registers its Fire function pointer to the character’s OnUseItem delegate variable:

Character->OnUseItem.AddDynamic(this, &UTP_
WeaponComponent::Fire);

When the EndPlay event function is called, the Fire function is unregistered from the
character’s OnUseItem delegate variable:

Character->OnUseItem.RemoveDynamic(this, &UTP_
WeaponComponent::Fire);

The engine APIs mentioned previously presented techniques for spawning actors, playing 3D sound
effects, executing montage animations, and dynamically attaching and detaching delegate event
functions. These methods are valuable references for your future game development.

MyShooter.h and MyShooter.cpp

The MyShooter module simply does the initial tasks for starting the game:

Figure 4.21 – MyShooter.cpp

The only line of code in MyShooter.cpp is the IMPLEMENT_PRIMARY_GAME_MODULE macro,
which designates that the project’s primary module is MyShooter. The root directory of the primary
module is Source/MyShooter, where the MyShooterBuild.cs build file should reside.

MyShooterGameMode.h and MyShooterGameMode.cpp

Every Unreal project has a GameMode object that handles information about the game played. The
AMyShooterGameMode class defined in this module extends the engine’s AGameMode class but
doesn’t add anything new to it:

Getting familiar with the source code 111

Figure 4.22 – MyShooterGameMode.h

MyShooterGameMode has no additional information and currently behaves identically to its base
class. Keep in mind that AMyShooterGameMode is the place where you add new game rules, such
as level transition and game-specific behaviors in future development.

MyShooter.Build.cs, MyShooter.Target.cs, and MyShooterEditor.
target.cs

These C# files contain the build settings information. Only the build.cs file may need to be edited
to add or remove modules for advanced programming needs. There should be no need to make any
changes to the two target.cs files.

Here is the code from MyShooter.Build.cs:

Figure 4.23 – MyShooter.build.cs

The MyShooter.build.cs file specifies that the project should include the five modules of Core,
CoreUObject, Engine, InputCore, and HeadMountedDisplay. When building the project, the engine
packs those modules into the final package so that the supported features are available in the game.

Investigating the Shooter Game’s Generated Project and C++ Code112

The two target.cs files are configurations for different build types – Game or Editor and Client
or Server, for example. The two target.cs files are not our concern here, so we’ll skip delving into
the details of these files.

In this section, we have gone through the essential parts of the source code and the project configurations.
As MyShooter is an Unreal C++ project, you have an additional option to open the engine editor
and the project. Rather than going through the Epic Games Launcher, you can directly launch the
engine and open the game project in Visual Studio. Let’s explore this new option.

Launching Unreal Editor and opening the game project in
Visual Studio
You already know how to open an existing Unreal C++ project in Unreal Editor through the Epic
Games Launcher – this is the standard, easy method in most situations – but another way to launch
Unreal Editor and open your game project is by directly running the program in Visual Studio.

The main benefits of starting Unreal Editor and opening game projects in Visual Studio are as follows:

• Debugging the source code and troubleshooting bugs

• Having accessibility to the engine source

• Customizing the engine for special needs

• Fixing engine bugs

Follow these steps to open the game project in VS:

1. Launch Visual Studio.

2. Open the MyShooter.sln C++ solution.

3. Choose the right build configuration from Solution Configurations:

Figure 4.24 – Visual Studio Solution Configurations

Launching Unreal Editor and opening the game project in Visual Studio 113

The build configuration options are as follows:

 � DebugGame builds the engine code with optimizations and game code with debugging symbols

 � DebugGame Editor does the same work as DebugGame and loads the engine editor

 � Development builds the engine and the game code with optimizations for some
time-consuming code and adds debugging symbols to the rest

 � Development Editor does the same work as Development and also loads the engine editor

 � Shipping builds the engine and game code with the most optimized performance for
shipping products

4. Build the solution (if needed).

5. Start running the solution by clicking Start Debugging (the solid green play button) or Start
Without Debugging (the play button with a green outline) on the toolbar. You can also find
the menu items on the Debug menu:

Figure 4.25 – Visual Studio Debug menu

For debugging purposes, it is highly recommended to utilize the Development Editor option.
This configuration enables using a comprehensive set of debug features, such as toggling breakpoints,
step-by-step tracing, and observing variable values, offering methods for efficient troubleshooting processes.

Please be aware that one important benefit of opening game projects in Visual Studio is that you can
debug not only your own game source code but also the engine code. On the other hand, when closing
the project, please do so in the editor rather than in Visual Studio. By doing this, you can avoid losing
unsaved editing work.

Besides the convenience of code debugging, it is crucial to note that another significant advantage of
opening game projects in Visual Studio is the ability to trace not only the game source code but also
the engine code. However, when it comes to closing the project, again, it is recommended to do so
within the editor rather than directly in Visual Studio. This practice helps prevent the loss of unsaved
editing work, ensuring that any changes made are properly saved before the project is closed.

Investigating the Shooter Game’s Generated Project and C++ Code114

Summary
We just investigated the C++ MyShooter project by looking at the basic project structure and
reviewing the source code. You should now have an overall idea about what the C++ scripts do and
how they collaborate with the engine and the Blueprints.

From the sample game code, you have also learned some useful Unreal C++ scripting skills.

First, we reviewed the code for creating Unreal recognizable C++ classes by marking them with the
UCLASS macro and the specifiers. You now understand that the Unreal Engine Reflection System will
use the information associated with the macros and the specifiers to spawn objects and components. You
then got to know some Unreal base classes such as ACharacter, AActor, USphereComponent,
UActorComponent, and AGameModeBase that can be inherited to create new game classes.

Second, we looked at the code that defines class variables and declares class functions with the
UPROPERTY and UFUNCTION macros. Like the UCLASS macro you learned about before, these
macros can also have specifiers and work with the Unreal Reflection System. We also introduced
the three basic Actor functions: BeginPlay(), EndPlay(), and Tick(). The DECLARE_
DYNAMIC_MULTICAST_DELEGATE_OneParam macro for declaring delegated function types
and how to dynamically attach delegated functions were also explained.

Third, you also learned about some useful engine APIs that can be used for spawning actors
(SpawnActor()), playing 3D sound effects (PlaySoundAtLocation()), playing montage
animations (Montage_Play()), and getting the current actor’s location (GetActorLocation()).

The last thing you learned was how to launch the Unreal Editor and open the C++ project in Visual Studio.
This method avoids going back and forth between the Epic Games Launcher and the engine editor.

Based on the knowledge gained in this chapter, the upcoming chapter will go deeper into Unreal C++
scripting skills, including the creation of actor classes, defining UPROPERTYs and UFUNCTIONs,
and more. To facilitate exploration and practical application, we will start a new top-down game named
Pangaea that will provide hands-on experience and further insights into Unreal C++ development.

Part 2 –
C++ Scripting for

Unreal Engine

In this part, we will introduce the essential classes in Unreal Engine and the C++ scripting skills
required to create the top-down game Pangaea. Key topics we will cover include actor creation, player
input, character animation control, and game interactions.

Additionally, we will explore useful game-related engine features, such as spawn and despawn, input
map settings, state machines, collision settings, navigation, and physics ray casting, that are required
for developing the game.

The last chapter of this part delves into commonly employed software development processes for
ensuring high-quality coding practices, offering insights into real-world development scenarios. By
covering aspects of code refactoring and refinement, you will gain a better understanding of practical
software development processes.

This part contains the following chapters:

• Chapter 5, Learning How to Use the UE Gameplay Framework Base Classes

• Chapter 6, Creating Game Actors

• Chapter 7, Controlling Characters

• Chapter 8, Handling Collisions

• Chapter 9, Improving C++ Code Quality

5
Learning How to Use UE Gameplay

Framework Base Classes

Based on what you learned in the previous chapters, you should already know how to write C++
scripts for UE games and have an overall view of a typical UE C++ project structure. Now is the time
to start learning basic C++ scripting skills in this chapter.

Games usually include a game environment, some actors (or game objects), and the interactions
between the actors. Player characters are controlled by players, whereas non-player characters (NPCs)
are controlled by game logic or artificial intelligence (AI) agents. In this chapter, you will learn how
to derive base classes from Unreal Engine’s gameplay framework to create your own game actors and
characters. Here, three game project configuration classes—PlayerController, GameMode,
and GameInstance—are going to be introduced, which will help us to define the game’s specific
players and rules.

Knowing the framework base classes is fundamental to writing C++ scripts for Unreal Engine.
All the game actors and components are built up based on the engine’s base classes.

The following topics will be covered in this chapter:

• Creating a Pangaea top-down game project

• Understanding the gameplay framework base classes

• Creating game actor classes

• Recompiling C++ projects

• Using the UPROPERTY macro

• Using the UFUNCTION macro

• Adding components to the new actors

• Creating blueprints from the new actor classes

Learning How to Use UE Gameplay Framework Base Classes118

• Learning about the Unreal gameplay framework classes

• Using the Cast template function

Technical requirements
The code for the Pangaea game project can be found at https://github.com/
PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/
tree/main/Chapter05/Source.

The code for the My_CPP06 project can be found at https://github.com/PacktPublishing/
Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter05/
MyCPP_06.

Creating a Pangaea top-down game project
We believe that actually using what you have just learned to develop a real game is a very effective
way for learners to quickly master new knowledge and skills.

Starting from this chapter, while still learning new C++ scripting skills, you will be working on a
top-down game called Pangaea. The gameplay will involve controlling the main character running
around the game map, killing enemies, and destroying enemy towers.

So, to get started, launch the UE5 editor from Epic Games Launcher:

Figure 5.1 – Steps to create the Pangaea project

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter05/Source
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter05/Source
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter05/Source
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter05/MyCPP_06
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter05/MyCPP_06
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter05/MyCPP_06

Understanding the gameplay framework base classes 119

Then perform the following steps to create the game project (see Figure 5.1):

1. Select GAMES.

2. Select Top Down.

3. Choose C++.

4. Choose the target directory (C:\UEProjects, for example).

5. Input the project name, which is Pangaea.

6. Then, click the Create button.

We have now created the game project. Let’s have an overall view of the most used base classes as well
as their relationships.

Understanding the gameplay framework base classes
Unreal Engine provides gameplay framework base classes for developers so that they can use and
inherit from these base classes to create their new game-specific classes. Before utilizing the base classes,
you need to understand the definitions of these classes as well as the relationships between them. The
following class diagram will give you an overall view of the classes and the inheritance relationships:

Figure 5.2 – UE5 gameplay framework classes diagram

Learning How to Use UE Gameplay Framework Base Classes120

From the diagram, you can see the following:

• UObject is the ancestor class of all the remaining classes

• AActor is the base class that is inherited by three groups of subclasses including the game
actor (APawn), game information (AInfo), and player controller (AController) subclasses

• UActorComponent is the base class for all the component classes

• UGameInstance is a globally unique game instance manager class that can be extended to
define game-specific variables, functions, and so on

Let’s learn how to extend the aforementioned base classes to create some game-specific classes. When
scripting, we will mainly follow the UE5 coding standard (please go to the official website https://
docs.unrealengine.com/5.0/en-US/epic-cplusplus-coding-standard-for-
unreal-engine for more details).

Creating game actor classes
The term game actor classes refers to the AActor, APawn, and ACharacter classes. These three
classes are used to instantiate game actors that will be placed in the game levels, as follows:

• AActor is the base class for creating a wide range of objects, such as buildings, spawn points,
portals, vehicles, characters, and so on. We will extend this class to create ADefenseTower,
AWeapon, and AProjectile classes.

• APawn is a subclass of AActor that is used to create non-character, player-controllable actors
(not characters) that accept and react to player inputs—racing cars, for example.

• ACharacter extends the APawn class for creating characters. A character can not only
accept user inputs and moves but also has at least one skeletal mesh and the character state
animations, such as idle, walk, run, attack, die, and so on. We will extend this class to create a
new APlayerAvatar class.

Let’s practice creating the three important gameplay actor classes, ADefenseTower (the defense tower),
AProjectile (the projectile that defense towers shoot), and the player character (APlayerAvatar)
for the Pangaea game.

Creating the ADefenseTower class

The ADefenseTower class will be used to place a defense tower on game maps. A defense tower
fires projectiles to attack the player when the player character is within its attack range. Defense towers
have their life points—when a tower is hit by the player, the life point value drops and the tower is
destroyed when the life point value is lower or equal to 0.

https://docs.unrealengine.com/5.0/en-US/epic-cplusplus-coding-standard-for-unreal-engine
https://docs.unrealengine.com/5.0/en-US/epic-cplusplus-coding-standard-for-unreal-engine
https://docs.unrealengine.com/5.0/en-US/epic-cplusplus-coding-standard-for-unreal-engine

Creating game actor classes 121

Perform the following steps to create the ADefenseTower class:

1. Select Pangaea | All | C++ Classes | Pangaea from the Content Browser.

2. Right-click on an empty area in the source code browser and choose New C++ Class… from
the pop-up menu or select Tools | New C++ Class… from the UE editor’s main menu:

Figure 5.3 – Creating a new C++ class

3. Since defense towers don’t need to accept player inputs, you can choose AActor to be the
base class for creating the ADefenseTower class. Then, click the Next> button to continue:

Figure 5.4 – Choosing a base class

Learning How to Use UE Gameplay Framework Base Classes122

4. Next, leave the class type’s Public and Private buttons unselected. Then, type DefenseTower
into the Name field, and click the Create Class button (note that Unreal will automatically add
the prefix A to the new class name and make it ADefenseTower):

Figure 5.5 – Setting up the base class

After completing these steps, the DefenseTower class should show up in the class list, like so:

Figure 5.6 – The DefenseTower class has been created and now shows in the class list

Creating game actor classes 123

5. Now, double-click to open the class’s DefenseTower.cpp source code file in Visual Studio.
Then, open DefenseTower.h, where you will find the following code in the header file:

#pragma once
#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "DefenseTower.generated.h"

UCLASS()
class PANGAEA_API ADefenseTower : public AActor
{
 GENERATED_BODY()
protected:
 virtual void BeginPlay() override;
public:
 virtual void Tick(float DeltaTime) override;
};

6. Here, we can add some basic class attributes (variables) and member functions to the
ATowerDefence class. First, add the public attributes, like so:

int HealthPoints = 100;
int ShellDefense = 2;
float AttackRange = 15.0f;
float ReloadInterval = 1.0f;

Public attributes usually have fixed values that are not frequently changed during runtime,
but these values should be configurable either during editing time or set at the beginning of
gameplays. For example, a tower’s AttackRange value is set to 15, which means that when
the player character is within this range, the tower fires at it. This value may be increased only
when the tower levels up or is purposely set with a different value in the editor.

7. Then, add the protected attributes, as follows:

int _HealthPoints;
float _ReloadCountingDown;

Protected attributes can be accessed within the class itself or its child classes. Their values are changed
during gameplay time to indicate some gameplay states. For example, ReloadCountingDown
is set to be the value of ReloadInterval, and its value will be reduced every tick. The tower
cannot do the next fire until _ReloadCountingDown goes back to 0.

You may have noticed that we added an underscore (_) prefix for the protected variables.
It is recommended to name private and protected variables this way to distinguish them from
public variables.

Learning How to Use UE Gameplay Framework Base Classes124

8. Next, add the public functions, like so:

int GetHealthPoints();
bool IsDestroyed();
bool CanFire();
void Fire();
void Hit(int damage);

Public functions can be called either internally or by their child classes and outside callers.
To determine whether a function is public, protected, or private, you should consider the actual
requirements and designs.

9. Finally, add the protected functions, as follows:

void DestroyProcess();

Unlike private functions that only can be called internally, in addition, protected functions also
can be called by their child classes. In this case, the DestroyProcess() function is called
when the tower’s life point reaches 0.

The ADefenseTower header file code should now look like this:
#pragma once
#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "DefenseTower.generated.h"

UCLASS()
class PANGAEA_API ADefenseTower : public AActor
{
 GENERATED_BODY()
public:
 ADefenseTower();
 int HealthPoints = 100;
 int ShellDefense = 2;
 float AttackRange = 15.0f;
 float ReloadInterval = 1.0f;
protected:
 virtual void BeginPlay() override;

 int _HealthPoints; //the tower's current health points
 float _ReloadCountingDown;
public:
 virtual void Tick(float DeltaTime) override;

 int GetHealthPoints();
 bool IsDestroyed();

Creating game actor classes 125

 bool CanFire();
 void Fire();
 void Hit(int damage);
protected:
 void DestroyProcess();
};

Now, let’s move on to the AProjectileTower class.

Creating the AProjectile class

Projectiles can be fired out by defense towers. Once a projectile is fired, it flies along its initial direction
at a constant speed. If the projectile hits something, it deals damage to the hit object and destroys
itself; otherwise, if the projectile runs out of its lifetime, it is destroyed too.

The AProjectile class can be inherited as child classes for creating various fireable objects, such as
AFireBall, AMissile, ABomb, and so on. We will work on creating such child classes in the future.

You can follow the steps you learned for creating the ADefenseTower class to create the AProjectile
class and add the following attributes to the class:

1. Add the public attributes, like so:

float Speed = 100.0f;
float Lifespan = 5.0f;
float Damage = 10.0f;

2. Then, add the protected attribute, as follows:

float _LifeCountingDown;

And that’s it! Now, let’s move on to the APlayerAvatar class.

Creating the APlayerAvatar class

Instead of the default pawn class, the APlayerAvatar class is going to be used by the engine to
spawn the player character. The player character not only accepts and reacts to player inputs by playing
character animations and moving the character but also handles events to simulate interactions
among actors.

Learning How to Use UE Gameplay Framework Base Classes126

You can now choose Character as the base class for creating the APlayerAvatar class (see Figure 5.7):

Figure 5.7 – Selecting Character as the base class for creating the APlayerAvatar class

Note
The main difference between ACharacter and AActor and APawn is that ACharacter
contains the SkeletalMesh, Movement, and Capsule collider components by default,
as well as the animation supports.

Now, add the following basic attributes to the APlayerAvatar class:

1. Add the public attributes, as follows:

int HealthPoints = 500;
float Strength = 10;
float Armer = 3;
float AttackRange = 6.0f;
float AttackInterval = 1.2f;

Recompiling C++ projects 127

2. Add the protected attributes, like so:

int _HealthPoints;
float _AttackCountingDown;

3. Add the public functions, as follows:

int GetHealthPoints();
bool IsKilled();
bool CanAttack();
void Attack();
void Hit(int damage);

4. Add the protected functions, like so:

void DieProcess();

We have now added several new C++ classes derived from AActor and ACharacter, such as
ADefenseTower, AProjectile, and APlayerAvatar, into the Pangaea project. However,
adding new classes to an Unreal C++ project and making modifications to the source code necessitates
recompiling the C++ project in Visual Studio. Let’s now learn how to accomplish this work.

Recompiling C++ projects
Whenever you make changes to your C++ project, including code changes, adding new source files,
and removing unused source files, you need to recompile the C++ project.

The simplest and most straightforward way is to click the Recompile and Reload button in the
bottom-right corner of the UE editor:

Figure 5.8 – The Recompile and Reload button recompiles and

reloads C++ code for game systems on the fly

Sometimes, this may not work because of the addition or removal of classes from the project. If this
is the case, you can close the UE editor and build the project or the solution in Visual Studio.

Learning How to Use UE Gameplay Framework Base Classes128

If you manually delete source files in File Explorer, you should regenerate the Visual Studio project
files before recompiling. To complete this task, find your Pangaea.uproject file in File Explorer,
right-click on the .uproject file, and choose Generate Visual Studio project files from the
pop-up menu:

Figure 5.9 – Generating Visual Studio project files

Once the Visual Studio project files have been regenerated, our new C++ classes are seamlessly
incorporated into the project. In the subsequent step, what we aim to explore involves leveraging
Unreal’s UPROPERTY and UFUNCTION macros to declare properties and functions that can be
recognized and utilized by the engine.

Using the UPROPERTY macro
The UPROPERTY macro is placed above the definition of standard C++ class variables to declare
Unreal-recognized class properties. The UPROPERTY macro can have specifiers and metadata for
different use cases.

Using the UPROPERTY macro 129

The UPROPERTY syntax

Let’s take a look at the UPROPERTY syntax:

UPROPERTY([specifier1, specifier2, …], [meta(key1=value, key2=value2,
…)]
Type VariableName;

Let’s break it down:

• As with function parameters, the specifiers and metadata are enclosed by a pair of parentheses

• The square brackets are used to indicate that the enclosed content is optional

• The ellipsis means that you can include more items

• The metadata keys are only valid in the editor, and not for any game logic

Let’s look at two examples. The first example shows how to define a simple UPROPERTY variable:

UPROPERTY()
bool bHasWeapon;

This example defines the bHasWeapon property without any specifiers and metadata.

The second example shows a more complex UPROPERTY variable with specifiers:

UPROPERTY(EditAnywhere, Category=Params, Meta=(DisplayName="SPD"))
float Speed;

This example defines the Speed property. Let’s look at this in a bit more detail:

• The EditAnyWhere specifier indicates that this property can be edited in the editor’s
property window

• The Category specifier groups the property into the Params category name in the Blueprint
Editor window

• The MetaData specifier contains only one key, which indicates that the property name will
be displayed as SPD instead of Speed in the Blueprint Editor window

Having learned how to declare class variables as Unreal-recognized UPROPERTY macros, let us delve
deeper into using UPROPERTY specifiers and metadata keys.

Learning How to Use UE Gameplay Framework Base Classes130

The UPROPERTY specifiers and metadata keys

In the following table, we will introduce you to just some of the UPROPERTY specifiers and metadata
keys that are most used in this book. For details about UPROPERTY specifiers and metadata keys,
you can visit the UE5 properties website (https://docs.unrealengine.com/5.0/en-US/
unreal-engine-uproperties/):

Specifiers

BlueprintAssignable
This delegate property can be assigned with a custom event
function in Blueprint.

BlueprintAuthorityOnly
This is a delegate property that only accepts events with the
BlueprintAuthorityOnly tag.

BlueprintReadOnly This property is read-only in Blueprint.

BlueprintReadWrite This property can be read and written in Blueprint.

Category = "name1|name2…"
This property belongs to a category in the Blueprint Editor.
You can use | as the delimiter to define nested categories.

EditAnywhere This property is editable anywhere in the editor.

VisibleAnywhere This property is visible but read-only anywhere in the editor.

Metadata keys

AllowPrivateAccess This private property is accessible to Blueprint.

DisplayName = "Property
Name"

This property should display the given Property Name
value instead of the code-generated name in the editor.

Figure 5.10 – UPROPERTY specifiers and metadata keys

Now, we can mark the existing class variables of the actor classes to be UE properties so that we can
configure the actor’s properties in the editor.

Marking the ADefenseTower, AProjectile, and APlayerAvatar
attributes as UE properties

Having learned about the usage of UPROPERTY and UFUNCTION, now is the opportunity to use the
macros to designate our C++ class attribute variables as Unreal-recognized properties.

Open the header files and tag the attributes with the UPROPERTY macro. So, in ADefenseTower.h,
enter the following code:

UPROPERTY(EditAnywhere, Category="Tower Params")
int HealthPoints = 500;

https://docs.unrealengine.com/5.0/en-US/unreal-engine-uproperties/
https://docs.unrealengine.com/5.0/en-US/unreal-engine-uproperties/

Using the UPROPERTY macro 131

UPROPERTY(EditAnywhere, Category="Tower Params")
int ShellDefence = 3;
UPROPERTY(EditAnywhere, Category="Tower Params")
float AttackRange = 6.0f;

UPROPERTY(EditAnywhere, Category="Tower Params")
float ReloadInterval = 1.0f;

Then, in AProjectile.h, enter the following code:

UPROPERTY(EditAnywhere, Category = "Projectile Params")
float Speed = 100.0f;

UPROPERTY(EditAnywhere, Category = "Projectile Params")
float Lifespan = 5.0f;

UPROPERTY(EditAnywhere, Category = "Projectile Params")
float Damage = 10.0f;

Then, in APlayerAvatar.h, enter the following code:

UPROPERTY(EditAnywhere, Category = "PlayerAvatar Params")
int HealthPoints = 500;

UPROPERTY(EditAnywhere, Category = "PlayerAvatar Params")
float Strength = 10.0f;

UPROPERTY(EditAnywhere, Category = "PlayerAvatar Params")
float Armor = 3.0f;

UPROPERTY(EditAnywhere, Category = "PlayerAvatar Params")
float AttackRange = 6.0f;

UPROPERTY(EditAnywhere, Category = "PlayerAvatar Params")
float AttackInterval = 1.2f;

In the previous code snippets, we utilized the UPROPERTY macro to designate a set of properties.
Additionally, we employed the EditAnywhere specifier to ensure that all these properties are visible
and editable within the Unreal editor. Furthermore, the Category specifier was applied to group
these properties in the Unreal editor for organized display.

As with tagging UE properties, Unreal also provides another macro for marking C++ functions to be
UE-recognized functions. Let’s learn about the UFUNCTION macro next.

Learning How to Use UE Gameplay Framework Base Classes132

Using the UFUNCTION macro
The UFUNCTION macro can be placed above the line of standard C++ function declarations.
As with the UPROPERTY macro, UFUNCTION also has its specifiers and metadata to interpret the
use of the functions.

The UFUNCTION syntax

Let’s first check out the UFUNCTION syntax:

UFUNCTION([specifier1, specifier2, …], [meta(key1=value,
 key2=value2, …)]
ReturnType FunctionName([param1, param2, …]) [const];

Let’s break it down:

• The square brackets are used to indicate that the enclosed content is optional

• The ellipsis means that you can include more items

• The metadata keys are only valid in the editor, not for any game logic

The following example demonstrates how to mark the GetHealthPoints() function to be a
UFUNCTION macro with a displayname value of Get HP:

UFUNCTION(BlueprintCallable, Category="Player Avatar",
 Meta=(DisplayName="Get HP"))
int GetHealthPoints();

This example declares the GetHealthPoints() function. Let’s look at this in a bit more detail:

• The BlueprintCallable specifier indicates that this function can be called by Blueprint

• The Category specifier groups the function into the Player Avatar category name in the
Blueprint editing tools

• The MetaData specifier contains only one key, which indicates that the function node name
will be displayed as Get HP instead of GetHealthPoint in the Blueprint graph editing window.

Having learned how to declare class functions as Unreal-recognized UFUNCTION macros, let us delve
deeper into using UFUNCTION specifiers and metadata keys.

UFUNCTION specifiers and metadata keys

The following table introduces just some of the UPROPERTY specifiers and metadata keys that are
most used in this book. For details about UPROPERTY specifiers and metadata keys, you can visit

Using the UFUNCTION macro 133

the UE5 UFunctions (https://docs.unrealengine.com/5.0/en-US/ufunctions-
in-unreal-engine/) website:

Specifiers

BlueprintCallable This function can be a node and called in Blueprint.

BlueprintPure
This function doesn’t change any owning object’s
data and generates a Blueprint node without the
execution pin.

BlueprintImplementableEvent This function can be implemented in Blueprint.

BluprintNativeEvent
This function’s C++ implementation can be
overridden by a Blueprint function.

Category = "name1|name2…"
This function belongs to a category in the Blueprint
editor. You can use | as the delimiter to define
nested categories.

Metadata keys

DisplayName = "Property Name"
This property should display the given Property
Name value instead of the code-generated name in
the editor.

Figure 5.11 – UFUNCTION specifiers and metadata keys

Now, we can mark the existing class functions of the created actor classes to be UE functions so that
they can be recognized by the engine as well as be called by blueprints.

Tagging ADefenseTower and APlayerAvatar member functions as
UFUNCTION macros

Since we intend to handle most game logic on the C++ side rather than in Blueprint, only the getter
functions are marked as UFUNCTION macros. The AProjectile class doesn’t have any function
that needs to be tagged.

Open the PlayerAvatar.h and DefenseTower.h header files and tag the existing functions with
the UFUNCTION macro. Afterward, proceed to implement these functions in the PlayerAvatar.
cpp and DefenseTower.cpp files.

Let’s begin by applying the UFUNCTION macro to the functions in DefenseTower.h:

UFUNCTION(BlueprintCallable,
Category = "Pangaea|Defense Tower",
meta=(DisplayName="GetHP"))
int GetHealthPoints();

https://docs.unrealengine.com/5.0/en-US/ufunctions-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/ufunctions-in-unreal-engine/

Learning How to Use UE Gameplay Framework Base Classes134

UFUNCTION(BlueprintCallable,
Category = "Pangaea|Defense Tower")
bool IsDestroyed();

UFUNCTION(BlueprintCallable,
Category = "Pangaea|Defense Tower")
bool CanFire();

This code uses the BlueprintCallable specifier for the getter functions. These getter functions
can also be marked with the BlueprintPure specifier.

The following is another version of the code using the BlueprintPure specifier instead of the
BlueprintCallable specifier:

UFUNCTION(BlueprintPure,
Category = "Pangaea|Defense Tower",
meta=(DisplayName="GetHP"))
int GetHealthPoints();

UFUNCTION(BlueprintPure,
Category = "Pangaea|Defense Tower")
bool IsDestroyed();

UFUNCTION(BlueprintPure,
Category = "Pangaea|Defense Tower")
bool CanFire();

In order to avoid compiling errors, now add the following function implementations to the
ADefenseTower.cpp file:

int ADefenseTower::GetHealthPoints()
{
 return _HealthPoints;
}

bool ADefenseTower::IsDestroyed()
{
 return (_HealthPoints > 0.0f);
}

Using the UFUNCTION macro 135

bool ADefenseTower::CanFire()
{
 return (_ReloadCountingDown <= 0.0f);
}

Having converted DefenseTower functions into UFUNCTION macros, we can now proceed to use
the UFUNCTION macro to annotate the functions in PlayerAvatar.h, like so:

UFUNCTION(BlueprintCallable,
Category="Pangaea|PlayerCharacter",
meta=(DisplayName="Get HP"))
int GetHealthPoints();

UFUNCTION(BlueprintCallable,
Category = "Pangaea|PlayerCharacter")
bool IsKilled();

UFUNCTION(BlueprintCallable,
Category = "Pangaea|PlayerCharacter")
bool CanAttack();

To avoid compiling errors, now add the following function implementations to the APlayerAvatar.
cpp file:

int APlayerAvatar::GetHealthPoints()
{
 return _HealthPoints;
}

bool APlayerAvatar::IsKilled()
{
 return (_HealthPoints <= 0.0f);
}

bool APlayerAvatar::CanAttack()
{
 return (_AttackCountingDown <= 0.0f);
}

We have tagged and implemented UFUNCTION macros for both the ADefenseTower and
APlayerAvatar classes. Based on that, the last thing we want to do to complete our new C++
actor classes is to add some components to them.

Learning How to Use UE Gameplay Framework Base Classes136

Adding components to the new actors
Unreal provides useful components that can be added to actors; for example, you can add a static
mesh component to an actor so that the actor is visually represented in the game levels. In our case,
we want to add a box collision component and a static mesh component to ADefenseTower and
AProjectile, as follows:

• UBoxComponent: This is added as the actor’s root component for collision detection

• UstaticMeshComponent: This is added as the child of the actor’s root component, which
allows us to select and display a 3D mesh in the game levels

To use these two components, you should include their header files at the beginning of
ADefenseTower.h and AProjectile.h files.

Including component header files

The order of #include statements in C++ is not a big concern, but you should ensure that
the *.generated.h statement is placed as the last include statement and right before the
UCLASS definition.

Here is the example from ADefenseTower.h:

#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "Components/BoxComponent.h"
#include "Components/StaticMeshComponent.h"
#include "DefenseTower.generated.h"

UCLASS()
Class ADefenseTower

Remember to add the two bold text lines to AProjectile.h file as well.

Now, we can define the pointer variables—UBoxComponent* _BoxComponent, for instance—of
the component types to store the created component instances.

Defining private properties for these two components

To reference the two added components, we can define two pointer variables: _BoxComponent
and _MeshComponent. These variables will allow us to interact with and manipulate the respective
components as needed.

Adding components to the new actors 137

Open DefenseTower.h and add the following code:

private:
UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
Category = "Tower Component",
meta = (AllowPrivateAccess = "true"))
UBoxComponent* _BoxComponent;

UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
Category = "Tower Component",
meta = (AllowPrivateAccess = "true"))
UStaticMeshComponent* _MeshComponent;

Here, we used the AllowPrivateAccess meta tag to inform the engine that this private variable
can be accessed in the editor.

Adding public getter functions to the components

Now, we can add the getter functions as well so that the components can be accessed outside of the
class. In DefenseTower.h, we can add the following code:

Public:
FORCEINLINE UBoxComponent* GetBoxComponent() const
{
return _BoxComponent;
}
FORCEINLINE UStaticMeshComponent* GetMeshComponent() const
{
return _MeshComponent;
}

Let’s quickly understand this code:

• FORCEINLINE is a UE macro that forces the compiler to insert a copy of the code instead
of calling the function by its address. Small and frequently called functions are preferred to
declaring them as inline functions to reduce the function call overhead.

• Placing the const keyword after a function declaration guarantees that the function doesn’t
modify its parameters or mutable class members via pointers or references internally.

Please be aware that components of a class have to be instantiated in the constructor of the class, so we
will create BoxComponent and StaticMeshComponent components in the ADefenseTower()
constructor of the ADefenseTower class.

Learning How to Use UE Gameplay Framework Base Classes138

Creating components in the class constructor

Open DefenseTower.cpp and add the following bold text code lines:

ADefenseTower::ADefenseTower()
{
PrimaryActorTick.bCanEverTick = true;

_BoxComponent = CreateDefaultSubobject<UBoxComponent>(
 TEXT("Box Collision"));
SetRootComponent(_BoxComponent);

_MeshComponent =CreateDefaultSubobject
 <UStaticMeshComponent>(TEXT("Static Mesh"));
_MeshComponent->SetupAttachment(_BoxComponent);
}

Let’s break down the code:

• Setting PrimaryActorTick.bCanEverTick to true tells the engine that the Tick()
function of this class needs to be called every frame or every interval (when the TickInterval
value is greater than 0).

• The CreateDefaultSubobject<Class>(ObjectName) function instantiates an object
of the bracketed Class type. The new object is managed by the engine’s garbage collection
manager, so you don’t need to manually release the memory in the future.

• The SetRootComponent function sets the box collision component to be the actor’s
root component.

• Calling a component’s SetupAttachment(ParentComponent) function attaches this
component as a child of ParentComponent.

From the example provided, you have acquired knowledge on how to add components to an actor.
Once we have completed all the necessary work on a C++ class, we can proceed to create Blueprint
classes based on our newly created C++ actor classes. This will allow for further customization and
implementation of the actor’s behavior and functionality within Unreal Engine.

Creating blueprints from the new actor classes
You may wonder why we would want to create Blueprint classes even after having C++ actor classes.
The answer is in finding the right balance.

While it is totally acceptable to create actor classes solely with C++, particularly to increase performance,
there is a trade-off involved—by exclusively relying on C++, you sacrifice the flexibility provided
by blueprints. On the other hand, utilizing blueprints to handle relatively simple and editable data

Creating blueprints from the new actor classes 139

settings proves to be a more advantageous choice. It allows for easier tweaking and iteration without
requiring code changes.

Thus, combining the power of both C++ and blueprints enables us to strike the ideal balance between
performance, complexity, and flexibility in game development.

For instance, a character class for the initial settings and display meshes for different characters may
vary; in such a scenario, it would be much easier and less work to edit them in the Blueprint editor
rather than defining extra C++ subclasses and recompiling the project.

To create a Blueprint class from a C++ class, the C++ class must be tagged with the Blueprintable
specifier. So, add the following specifier for all three classes’ UCLASS macro:

UCLASS(Blueprintable)

Then, rebuild the project, re-launch the editor, and carry out the following steps:

1. Choose the appropriate folder where you want to create the new blueprint (for example, All |
Content | TopDown | Blueprints) and right-click. From the pop-up menu, choose Blueprint
Class ….

2. Search for the base class by typing the class name—DefenseTower, for example—in the
ALL CLASSES window (see Figure 5.12).

3. Select the required class from the class tree and click Select:

Figure 5.12 – Selecting a base class to create a new Blueprint

Learning How to Use UE Gameplay Framework Base Classes140

4. Rename the new Blueprint class with the format of a BP_ prefix and the base class name—
BP_DefenseTower, for example.

You can follow the previous steps to create blueprints for BP_DefenseTower, BP_Projectile,
and BP_PlayerAvatar.

Once done, double-click BP_ DefensePower to open it, and have a close look in the Blueprint editor:

Figure 5.13 – BP_DefenseTower in the editor

Taking a look at the editor, we can see the following:

• 1 shows the Components view. It shows that the Box component is the root, and the Mesh
component is the child of the Box component.

• 2 shows the Details panel where the properties under the Tower Params group are shown.

Now that we have learned how our new actor properties are displayed in the editor, we then want to
explore how we can utilize our new actor UFUNCTION nodes in the event graph.

To find and use the UFUNCTION nodes on the event graph, navigate to the Event Graph window,
right-click to open the All Actions for this Blueprint window, then find the Pangaea group, and
expand it. Here, you should find the DefenseTower node, which contains three functions: Can
Fire, GetHP, and Is Destroyed:

Creating blueprints from the new actor classes 141

Figure 5.14 – Adding DefenseTower’s GetHP function node onto the graph

When you select GetHP on the list of actions, the corresponding Blueprint node will be added and
displayed in the Event Graph window in the editor.

Let’s recall that we introduced the two versions of the GetHP function, utilizing either the
BlueprintCallable or the BlueprintPure specifier. The two function versions will show
the node slightly differently, as here:

Figure 5.15 – DefenseTower’s GetHP function nodes

Learning How to Use UE Gameplay Framework Base Classes142

In the left node, the C++ function is tagged with the BlueprintCallable specifier, while in the
right node, the C++ function is tagged with the BlueprintPure specifier.

Through the creation of the three actor classes for the Pangaea game, you have acquired knowledge
on how to create actors with both C++ and Blueprint within Unreal Engine. Moving forward, let’s
learn about the four crucial gameplay framework classes.

Learning about the Unreal gameplay framework classes
The Unreal gameplay framework includes four classes, PlayerController, GameModeBase,
GameState, and GameInstance, playing vital roles in managing various aspects of gameplay
and overall game functionality. The first two classes are usually created automatically when a project
is generated, while the remaining classes need to be manually added to the project.

Locating and creating gameplay framework classes in Pangaea

If you go to the All | C++ Classes | Pangaea folder, you should find that the project already has
PangaeaGameMode and PangaeaPlayerController classes (see Figure 5.16). These two
classes were created when the game project was initiated:

Figure 5.16 – The existing PangaeaGameMode and PangaeaPlayerController C++ classes

PangaeaPlayerController inherits from PlayerController, and PangaeaGameMode
inherits from GameModeBase.

In addition to the existing PangaeaGameMode and PangaeaPlayerController classes, we can
create PangaeaGameState and PangaeaGameInstance classes based on the following guidance:

Learning about the Unreal gameplay framework classes 143

1. Choose GameStateBase as the base class to create PangaeaGameState.

2. Choose GameInstance as the base class to create PangaeaGameInstance.

Now, the C++ Classes | Pangaea container has two more classes, as we can see here:

Figure 5.17 – Adding the PangaeaGameState and PangaeaGameInstance C++ classes

In the Pangaea project, we now have the gameplay framework classes in place. The next is to know
the responsibilities of these classes and what they are used for. We will begin our exploration with
the PlayerController class.

Learning about the PlayerController class

PlayerController is the engine’s base C++ class, which can be extended for specific gameplay
controls. PangaeaPlayerController is an instance that inherits from PlayerController,
which encapsulates commonly used variables and functions needed for controlling player pawns.

It is not mandatory but recommended to consider using PlayerController in your game.
PlayerController can be considered an invisible pawn that bridges the player and the controlled
pawn or character. PlayerController decouples the player pawn’s logic and view and makes it
easier to let the player possess different pawns or characters.

When using PlayerController, you should consider letting it take care of the following responsibilities:

• Receiving and handling player inputs

• Moving and rotating the controlled pawn or character

• Changing the state of the controlled pawn or character

• Manipulating the camera views

Learning How to Use UE Gameplay Framework Base Classes144

You have discovered that PlayerController plays a vital role in managing interactions between
players and the game. Now, let’s delve into the GameModeBase class, which is the next class we are
interested in.

Learning about the GameModeBase class

The GameMode object is needed for all UE projects. It stores important game information and settings,
such as the starting level, the default player pawn, the player controller, and so on. By extending the
GameModeBase class, you can add more gameplay information and rules to the child class. It could
include the following:

• Flags that allow pausing the game, playing cinematics, enabling tutorials, and so on

• Level-transition conditions and processes

• Spawn locations

• For multiplayer games, the minimum number of players to start the game

• The conditions to end a game—the maximum game time, for example

For online games, the GameMode object only exists on the server side; we will discuss this topic later
in Chapter 11.

GameState

The GameState object is usually used to store dynamic gameplay information. By extending the
GameStateBase class, you can store important gameplay information in the child class. It could
include the following:

• The time elapsed since the start of the game

• Total scores

• Waves of enemies

• Enemy positions for the minimap

• A countdown timer

For online games, the GameState object exists on both the server and client sides. The GameState
object’s information can be synced from the server to the clients.

GameInstance

The GameInstance object is a high-level manager representing the instance of a running game.
By extending the UGameInstance class, you can put important local gameplay variables into the
child class. In the context of online games, it’s important to note that the GameInstance object
exclusively exists on the client side.

Using the Cast template function 145

Unreal games are internally built up on the multiplayer game framework, even if they may be single-player
games. Therefore, during game development, you should always assume that the game was an online
game and determine whether those global variables are necessary on the server. If a variable doesn’t
need to exist on the server, it can be considered a local gameplay variable and appropriately assigned
as an attribute of the GameInstance class.

Obviously, the gameplay framework class instances encompass global variables that we may need to
access from any part of our code. Thus, our next objective is to learn how to retrieve the instances to
gain access to them.

Retrieving class instances from your code

To retrieve the previously introduced gameplay framework class instances from your code, you can
refer to the following example:

UWorld* World = GetWorld();
APlayerController* PlayerController = World->
 GetFirstPlayerController();
AGameModeBase* GameMode = World->GetAuthGameMode();
AGameStateBase* GameState = World->GetGameState();
UGameInstance* GameInstance = World->GetGameInstance();

Observing the preceding sample code provided, you can discover that obtaining the game world
instance is a prerequisite for acquiring instances of the gameplay framework classes. Once the world
pointer is obtained, we can invoke its method functions to retrieve any of the framework class instances.

It is also noticeable from the previous sample code that all the retrieved variables are of the base class-type
pointers instead of the desired child class-type pointers. This is because the engine only deals with
generalized classes rather than our game-specific classes. However, it is possible to transform base
class pointers into child class pointers by utilizing the powerful Cast function.

Using the Cast template function
Unreal Engine is designed as a universal graphics development tool. It provides base classes that can
be inherited for developing specific games. That means the standard functions can only return the
base type results, and game developers are responsible for casting the results to the specific types
defined in their games.

In Unreal, Cast is a safe conversion function used for casting data types. Here is the syntax:

ToType* Cast<ToType>(FromType* theObjectPointerOfFromType)

Learning How to Use UE Gameplay Framework Base Classes146

Let’s break the syntax down:

• ToType represents the target type that you want to get after the conversion

• FromType represents the original type that you want to convert from

• The angular brackets (< and >) are C++ template expressions

• The function returns nullptr if the casting operation failed

In C++, a function can be declared to be generic with a template expression, which means that the
function can accept and process different data types.

Recall the C++ MYCPP_05 project in Chapter 4—the Calculator and CalculatorEx classes
have two versions of the Add and Subtract functions:

int Add(int a, int b);
float Add(float a, float b);
int Subtract(int a, int b);
float Subtract(float a, float b);

To gain a clearer comprehension of programming with C++ template functions, please download
the MYCPP_06 project from the book’s repository. In this sample project, the technique employed
by the new Calculator and CalculatorEx classes involves merging and transforming the
aforementioned Add and Subtract functions into two template functions, as follows:

template <typename T>
T Add<T>(T a, T b)
{
 return a + b;
}
template<typename T>
T Subtract<T>(T a, T b)
{
 Return a – b;
}

Note
Template function implementations should be moved into the header file so that the compiler
knows to generate different versions of executions.

Summary 147

To use these two functions for additions and subtractions, you simply call them with the data type,
as follows:

float f = calculator.Add<float>(1.5f, 2.0f); //f is 3.5f
float i = calculator.Subtract<int>(3, 2); //i is 1

You should have a basic idea of why the Cast function is defined as a template function. Use the
following code to cast the objects into Pangaea objects:

APangaeaPlayerController* pangaeaPlayerController =
 Cast<APangaeaPlayerController>(playerController);
APangaeaGameMode* pangaeaGameMode =
 Cast<APangaeaGameMode*> gameMode;
APangaeaGameStateBase* pangaeaGameState =
 Cast<APangaeaGameStateBase*>(gameState);
UPangaeaGameInstance* panGaeaGameInstance =
 Cast<UPangaeaGameInstance>(gameInstance);

The provided code snippet exemplifies the utilization of the Cast template function to convert base
class pointers into the corresponding child class pointers within the game. It is essential to emphasize
that casting operations are a commonly employed technique in object-oriented programming (OOP).

Summary
Throughout this chapter, you learned about Unreal Engine’s basic gameplay framework classes, including
AActor, APawn, ACharacter, APlayerController, AGameModeBase, AGameStateBase,
and UGameInstance. By extending these classes, you can create the most needed elements for
developing new games. Besides creating game actors, two important macros, UPROPERTY and
UFUNCTION, were also introduced so that you can make actor properties and functions recognizable
and work together with the engine. Your new classes’ data can also be edited in the engine editor.

In this chapter, the following tasks were completed to enhance the game development process in
Pangaea. New classes, including DefenseTower, Projectile, and PlayerAvatar, were
created by inheriting from the Actor and Character classes. These classes were enriched with
additional properties and functions to provide customization and unique behaviors.

Different methods for rebuilding uprojects after code changes were learned, ensuring that modifications
were properly integrated into the game. Blueprint classes were then generated based on the C++ classes.

One important tool introduced as the final topic was the Cast template function, which facilitated
the conversion of base class pointers into the appropriate child class pointers.

The upcoming chapter will guide you through the process of configuring the player avatar, including
skeletal mesh setup, animations, and additional features. By the end, you will have the opportunity
to replace the default player character with the newly customized player character.

6
Creating Game Actors

Game actors are the main elements of video games; they are controlled by either players (player actors
or player characters) or AI controllers (non-player characters). A game actor may be represented by
either a skeletal mesh (a warrior character, for instance) or a static mesh (a spaceship, for instance).
The interactions between various game actors make up the gameplay.

This chapter will mainly guide you in creating your own player character (PlayerAvatar) for
Pangaea. You will start by creating the animation instance class in C++, and then based on it, you
will create the animation blueprint.

For the new animation blueprint, you will add the State Machine and define the states’ animations.
You will also set up the character’s visual display in the character blueprint, define user inputs, and
write code to implement the player controller and control the character states via the parameters
defined in the animation instance class.

Once the player character setup is done, we will use it to replace the default player pawn for the Game
Mode. After that, we will also create the defense tower and projectile actors.

The Unreal C++ scripting skills covered in this chapter are as follows:

• Setting up the player avatar

• Setting up the character’s SkeletalMeshComponent

• Creating the player avatar’s animation blueprint

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter06.

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter06
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter06

Creating Game Actors150

Setting up the player avatar
Different actors are created for different purposes, so actors need different combinations of components.
For example, a player character may need a Camera component attached to it for the top-down view,
whereas a building needs a collision box to prevent pawns from moving through it.

Writing a script to add components to a new actor needs four steps:

1. Define a private variable that will hold the component pointer.

2. Add the public getter function, so that the component pointer can be retrieved outside of
the class.

3. Include the added component’s header file.

4. Instantiate the component in the class’s constructor function.

To set up the top-down view for the game, we want to attach two more components
(SprintArmComponent and CameraComponent) to the player avatar.

Adding SpringArmComponent and CameraComponent to
PlayerAvatar

The PlayerAvatar class already has the components inherited from its parent class, Character,
including a Capsule component, a SkeletalMesh component, a CharacterMove component,
and an Arrow component.

To make it a player character for the top-down game, we need to add a SpringArm component
and a Camera component to the PlayerAvatar class. The sprint arm should be bound to the
origin of the character, and the camera is attached to the other end of the spring arm. You can see
this illustrated here:

Figure 6.1 – Setting up the spring arm and camera for the player

Setting up the player avatar 151

In this case, we want to define the two variables, _springArmComponent and _cameraComponent,
for storing the pointers of SpringArmComponent and CameraComponent. These two variables
are marked with the UPROPERTY macro with the VisibleAnyWhere specifier so that they are
visible in the editor.

To do this, add the following code to the end of APlayerAvatar in the header file:

private:

UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
Category = "Camera",
meta = (AllowPrivateAccess = "true"))
class USpringArmComponent* _springArmComponent;

UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
Category = "Camera",
meta = (AllowPrivateAccess = "true"))
class UCameraComponent* _cameraComponent;

Furthermore, apart from incorporating the properties into the class, our next objective is to include
two getter functions, GetStringArmComponent and GetCameraComponent, in the public
section of the class within the header file. For better performance, the functions can also be tagged
with the FORCEINLINE macro:

FORCEINLINE USpringArmComponent* GetSringArmComponent() const
{
 return _springArmComponent;
}

FORCEINLINE UCameraComponent* GetCameraComponent() const
{
 return _cameraComponent;
}

About C++ inline functions
In C++ programming, an inline function’s code is directly inserted at the call site instead
of invoking a separate function call. This mechanism helps to improve the code execution
performance by reducing the overhead of function calls. However, inline functions should only
contain small and straightforward code snippets without complex flow control.

Creating Game Actors152

Now is the time to include SpringArmComponent.h and CameraComponent.h to avoid
compilation errors. Please make sure to include PlayerAvatar.generate.h in the last include
statement, so that Unreal’s Build tool can properly parse Unreal macros:

#include "CoreMinimal.h"
#include "GameFramework/Character.h"
#include "GameFramework/SpringArmComponent.h"
#include "Camera/CameraComponent.h"
#include "PlayerAvatar.generated.h"

Next, we call the Unreal UObject class’s member function, CreateDefaultSubobject,
to instantiate components. Here is the function’s syntax:

template<class TReturnType>
TReturnType * CreateDefaultSubobject
(
 FName SubobjectName,
 bool bTransient
)

Now, let’s examine the function’s parameters and its return value:

• SubobjectName: The name of the newly created component

• bTransient: The default value is false, which means the new component doesn’t inherit
the parent class defaults

• The CreateDefaultSubobject() function returns the pointer to the created object

Now, let’s switch to PlayerAvatar.cpp, and add the instantiation code to the PlayerAvatar
constructor function:

//Create the camera spring arm
_springArmComponent =CreateDefaultSubobject<USpringArmComponent>(
 TEXT("SpringArm"));
_springArmComponent->SetupAttachment(RootComponent);
_springArmComponent->SetUsingAbsoluteRotation(true);
_springArmComponent->TargetArmLength = 800.f;
_springArmComponent->SetRelativeRotation(
FRotator(-60.f, 0.f, 0.f));
_springArmComponent->bDoCollisionTest = false;

//Create the camera
_cameraComponent =CreateDefaultSubobject
 <UCameraComponent>(TEXT("Camera"));
_cameraComponent->SetupAttachment(_springArmComponent,

Setting up the player avatar 153

 USpringArmComponent::SocketName);
_cameraComponent->bUsePawnControlRotation = false;

The previous code, which includes some UObject member functions and variables, the TEXT macro,
and the FRotator struct, is used to set up the camera view.

Let’s take a closer look at the UObject member functions and variables first:

Function Description

SetupAttachment
(class: SceneComponent)

Attaches SceneComponent as a child to a parent
scene component.

This function can also attach the scene component
to a designated skeletal mesh socket.

SetUsingAbsoluteRotation
(class: SceneComponent)

Sets the flag to determine whether the scene
component rotates with its parent or keeps its own
absolute world rotation.

SetRelativeRotation
(class: SceneComponent)

Sets the scene component’s relative rotation to
its parent.

Variable Description

TargetArmLength
(class: SprintArmComponent)

This variable determines the length of the spring
arm component.

bDoCollisionTest
(class: SprintArmComponent)

This flag indicates whether a collision test is applied
to this spring arm component.

bUsePawnControlRotation
(class: CameraComponent)

This flag indicates whether the rotation of the
CameraComponent is controlled by the view/
control rotation of the owning pawn.

Figure 6.2 – Component functions for setting up the player camera

In the previous code snippet, you may have observed the utilization of the TEXT macro to mark string
literals as localization keys. The TEXT macro also guarantees appropriate data types for characters or
string literals on different platforms. Different platforms may encode characters or strings according to
different encoding standards, such as UTF8, UTF16, or UTF32, so using the TEXT macro can ensure
characters and strings are encoded correctly and avoid type conversion errors. The value output from
the TEXT macro can be assigned to FName (text strings optimized for higher performance), FText
(text strings for displaying information to players that may be localized), and FString (regular
mutable text strings) type variables.

Creating Game Actors154

The FRotator structure represents a 3D rotation. Like a class, a structure type is also an encapsulation
of a set of variables and functions. The main difference is that a structure is a value type (a block of
memory that stores some values), whereas a class is a reference type (stores an address pointing to
a block of memory that stores some values). FRotator can be constructed with the Pitch, Yaw,
and Roll parameters.

Besides creating components, we need to do some initializations, such as enabling ticking, setting
controller constraints, and configuring the movement parameters, while constructing the player avatar.

Initializing the player avatar

For the player avatar, we still need to do some initializations in the class constructor to restrict the
character’s rotation and configure the MovementComponent.

Why do we do the initialization works inside the class’s constructor rather than the BeginPlay
function? This is because BeginPlay is only a game runtime function, whereas the added components
and settings are needed during editing. So, runtime gameplay initializations can be placed in the
BeginPlay function.

Let’s add some code to APlayerAvatar::APlayerAvatar(). The first thing is to enable the
ticking function, which indicates that the character’s Tick function will be called with the game’s
frame update:

PrimaryActorTick.bCanEverTick = true;

Next, since the top-down gameplay requires the character to orient its running direction, the character’s
rotation should not be controlled by the player:

bUseControllerRotationPitch = false;
bUseControllerRotationYaw = false;
bUseControllerRotationRoll = false;

The last thing we want to set up is the character’s movement component. The movement component
should control the character to rotate toward its moving direction, and the rotation speed is 640
degrees around the y axis. In the meantime, the character needs to be constrained and snapped to
the ground. Enter this code to set up this component:

auto characterMovement = GetCharacterMovement();
characterMovement->bOrientRotationToMovement = true;
characterMovement->RotationRate = FRotator(0.f, 640.f, 0.f);
characterMovement->bConstrainToPlane = true;
characterMovement->bSnapToPlaneAtStart = true;

Setting up the character’s SkeletalMeshComponent 155

Here, we used a new C++ keyword, auto, which allows the CharacterMovement variable’s data
type to be automatically determined by the GetCharacterMovement function’s return value type.

Now the PlayerAvatar class is basically done. We can use it as a base class to create a new character
blueprint so that we can set up and replace the game’s default player pawn.

Setting up the character’s SkeletalMeshComponent
To set up the player avatar, we set the skeletal mesh and its animations for the BP_PlayerAvatar
blueprint and replace the default player pawn in the game mode settings.

But before the setting up works, we need to import the fancy character model and its animations.

Importing the character model

For the player avatar, we want to use another skeletal model to substitute the default skeletal mesh
provided by Unreal Engine. You may choose to use any character models that are compatible with
UE5. In this book, we are going to use the Hero model (the .FBX and .TGA files), which you can
download from the book’s GitHub repository under the PangaeaAssets/Hero folder, to set up
the player avatar’s SkeletalMesh component.

The next thing is to create a subfolder for importing the character assets. Here, we choose to create
the new Hero folder under All | Content | Characters:

Figure 6.3 – Creating a new Hero folder

Creating Game Actors156

Now, perform the following steps to import the character assets:

1. The first step is to import the character model and its skeleton. Right-click on the Hero folder
and choose Import to | Game | Characters | Hero in the pop-up menu. Find Hero.fbx in
the Import dialog box and click the Open button to open the FBX Import Options window.

Figure 6.4 – Importing the Hero.fbx model and the skeleton

Setting up the character’s SkeletalMeshComponent 157

In the FBX Import Options window, do the following:

 � The Skeleton field should be set to None – this means that, currently, the system doesn’t
have the skeleton for this model and the skeleton will be imported

 � Make sure that the Import Animations option is unchecked, as the model file doesn’t contain
any animation information

 � Then, click the Import All or Import button to start the process

Once the importing is done, close any popups and you should see four new imported assets:
the skeletal mesh, the physics asset, the skeleton, and the material (matHero).

Figure 6.5 – The four imported assets from Hero.fbx

2. Now, carry out the same tasks as in step 1 to import the two image files: T_CharA_COL.png
and T_Char_NOR.png. These two images will be used as the color map and the normal map
for the model’s material:

Figure 6.6 – The two imported color and normal maps

Creating Game Actors158

3. You may notice that all the model asset previews are in gray. We need to make some slight changes
to the material so that the color and normal maps can be used as the skin to wrap the model:

i. Double-click matHero to open the Material Editor.

ii. Add two Texture Sample nodes to the graph, and then connect the two nodes’ RGB
outputs to the material’s Base Color and Normal input pins.

iii. Select T_CharA_COL for the Base Color texture sample node.

iv. Select T_CharA_NOR for the Normal texture sample node:

Figure 6.7 – Creating material for the Hero model

After clicking Apply and Save on the new material, the Hero assets should look colorful now:

Figure 6.8 – The Hero assets preview after changing the material

Setting up the character’s SkeletalMeshComponent 159

4. The downloaded Hero.zip file also comes with six .fbx files, which start with the prefix
Hero_Anim_. You can import these animation files the same way as you did in step 1. This
time, though, in the FBX Import Options window, the Skeleton field should be filled with
Hero_Skeleton and the Import Animations option should be checked.

Figure 6.9 – Importing Hero animations

Creating Game Actors160

We’ve got the Hero assets all set now. Let’s use them in the player avatar blueprint.

Using the Hero skeletal mesh in BP_PlayerAvatar

Open the BP_PlayerAvatar blueprint in the editor and click the Viewport tab; select the Mesh
component from the components hierarchy, and choose the Hero skeletal mesh in the Details view.
Then adjust the model’s location by lowering it to -90.0 units on the Z axis and rotating the model
-90.0 degrees around the Z axis as well. Now the character’s feet are aligned with the ground and the
character is facing the front:

Figure 6.10 – Using the Hero skeletal model in BP_PlayerAvatar

Don’t forget to save and compile the blueprint. Now, the player avatar blueprint is ready to be used
to replace the default player pawn.

Replacing the game’s player pawn

The game’s default player pawn is set in the project’s game mode in the Project Settings window.
So, go to the editor’s main menu and choose Edit | Project Settings. From here, you can then open
the Project Settings window.

From the Project list group, choose Map & Modes. Then, from the drop-down list of the Default
GameMode field, select PangaeaGameMode.

Setting up the character’s SkeletalMeshComponent 161

When PangaeaGameMode is picked as Default GameMode, expand Selected GameMode; you
should find that the Default Pawn Class field is initially set as BP_TopDownCharacter and is grayed
out, meaning it is not changeable.

The reason why the configuration fields under the Selected GameMode section are not changeable is
that PangaeaGameMode is a C++ class, so the fields have to be assigned with appropriate values in the
constructor of the class. To do that, open PangaeaGameMode.cpp and type in the following code:

static ConstructorHelpers::FClassFinder<APawn>
PlayerPawnBPClass(TEXT("/Game/TopDown/Blueprints/BP_
TopDownCharacter"));
if (PlayerPawnBPClass.Class != nullptr)
{
 DefaultPawnClass = PlayerPawnBPClass.Class;
}

The preceding code snippet tries to find the BP_TopDownCharacter asset with the engine’s
static function, ConstructorHelpers::FClassFinder, and assigns the result to the
DefaultPawnClass system variable.

Since the path for finding the asset here is hardcoded, we simply change the asset name from
BP_TopDownCharacter to BP_PlayerAvatar. Now, Default Pawn Class should be
BP_PlayerAvatar, like so:

Figure 6.11 – Setting Default GameMode and Default Pawn Class in Project Settings

Creating Game Actors162

Attention
When exiting the running C++ program, do not Stop in Visual Studio. Instead, make sure that
you first close your Unreal Editor window to ensure that all your imported assets are saved
properly. Failure to do so might result in the loss of the currently imported assets and the settings.

Now, when you launch the game, the player character is the Hero character instead of the old
top-down character:

Figure 6.12 – The Hero is now the player character

The character currently doesn’t play animations when it moves around, so the next thing we want to
do is to create the animation blueprint for the Hero character.

Creating the player avatar’s animation blueprint
Once the character is set, the subsequent objective is to control the character animations. To accomplish
this, we first create a C++ animation instance class, PlayerAvataAnimInstance, and then use
it as the base class to create the animation blueprint, ABP_PlayerAvatar.

To keep things simple, we will assign the player character only the following animation states:

• Locomotion: This state has a Blend Space 1D that blends the Idle, Walk, and Run animations.
A Speed float variable will be used to control the blending work.

Note
Unreal Engine’s Blend Space 1D is a tool used to blend animations based on a single-axis
parameter. It allows smooth transitions between animations by interpolating values along
the specified axis. Animation poses, such as walk and run, are mapped along the speed axis.

Creating the player avatar’s animation blueprint 163

• Attack: This state plays the Attack animation. A Boolean variable, IsAttacking, will be
used to transit to and from this state.

• Hit: When the character gets hit, the player’s avatar plays the Hit react animation.

• Die: If the character’s HP equals or is lower than 0, the player’s avatar plays the Die animation.

At the end of playing the Attack, Hit, and Die animations, the animations should fire an event to notify
the animation instance class to set the flags to false, so that the State Machine transitions from its
current state to the next appropriate state.

Note
A State Machine in Unreal is a graphical expression tool used in animation blueprints. It breaks
the skeletal mesh into a series of states and controls the transitions among the animation states,
based on user-defined rules.

As PlayerAvatarAnimInstance serves as a base class, our first focus is to create this C++ class.

Creating the PlayerAvatarAnimInstance class

To create the animation instance class, you should find the AnimInstance parent class in the
Add C++ Class window. So, choose the All Classes tab button and type Anim in the search box; the
AnimInstance class should appear in the list:

Figure 6.13 – Find the AnimInstance parent class for creating ABP_PlayerAvatar

Creating Game Actors164

Click Next, then type PlayerAvatarAnimInstance into the class’s Name box. This example
simply places the new source code files into the …/Source/Pangaea folder:

Figure 6.14 – Creating the PlayerAvatarAnimInstance class

Now, press the Create Class button, then reload and rebuild the project.

Next, open the PlayerAvatarAnimInstance.h file in VS – we need to write some code to add
an EPlayerState enumeration type and two public variables: Speed and State. The Speed
variable is used to control the interpolation of Idle, Walk, and Run animations when the current state
is Locomotion. The enumeration type State variable can only be set with one of the enumerated
values (Locomotion, Attack, Hit, and Die) to control and transit from one state to another.

Note
In C++ programming, an enumeration is a user-defined data type. The value of an enumeration
can only be one of its defined range of values. The enumeration’s values are explicitly expressed
by constant names. To define an enumeration data type in C++, you should use the keyword
enum class or enum. When scripting for Unreal, you should use the former.

Creating the player avatar’s animation blueprint 165

The following code defines an EPlayerState enumeration type:

UENUM(BlueprintType)
enum class EPlayerState : uint8
{
 Locomotion,
 Attack,
 Hit,
 Die
};

Let’s break this code down:

• This code defines a new enumeration data type called EplayerState (we use the E prefix
for the type name to indicate that this is an enumeration data type).

• The EPlayerState variables can only be assigned one of the four values: Locomotion,
Attack, Hit, and Die.

• The UENUM macro has a BlueprintType specifier, which indicates that the enum data
type is friendly to blueprints.

• We used : uint8 to tell the compiler to reserve only 8 bits (1 byte) to store the value.
Otherwise, the compiler will use 32 bits (4 bytes).

Now, we can define the Speed and State variables:

public :

UPROPERTY(EditAnywhere, BlueprintReadWrite)
float Speed;

UPROPERTY(EditAnywhere, BlueprintReadWrite)
EPlayerState State;

We also need to add a function, OnStateAnimationEnds, which takes care of changing the
State when the Attack, Hit, or Die animation ends:

 UFUNCTION(BlueprintCallable)
 void OnStateAnimationEnds ();

Even though State is visible to blueprints and can be directly set in blueprints, we want to use this
example to demonstrate how to use BlueprintCallable functions. In some cases (complex logic,
for instance), writing C++ code is more effective and clearer than drawing spaghetti blueprint diagrams.

Creating Game Actors166

Here is the full code for the PlayerAvatarAnimInstance.h file:

#include "CoreMinimal.h"
#include "Animation/AnimInstance.h"
#include "PlayerAvatarAnimInstance.generated.h"

UENUM(BlueprintType)
enum class EPlayerState : uint8
{
 Locomotion = 0,
 Attack,
 Hit,
 Die
};

UCLASS()
class PANGAEA_API UPlayerAvatarAnimInstance : public UAnimInstance
{
GENERATED_BODY()

public :

 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 float Speed;

 UPROPERTY(EditAnywhere, BlueprintReadWrite)
 bool IsAttacking;

UPROPERTY(EditAnywhere, BlueprintReadWrite)
EPlayerState State;

UFUNCTION(BlueprintCallable)
void OnStateAnimationEnds ();

};

In the code, we declare the OnStateAnimationEnds function in the header file.

Then, the implementation of this function should be positioned in the PlayerAvatarAnimInstance.
cpp source file:

#include "PlayerAvatarAnimInstance.h"
#include "PlayerAvatar.h"

Creating the player avatar’s animation blueprint 167

void UPlayerAvatarAnimInstance::OnStateAnimationEnds()
 {
 if (State == EPlayerState::Attack)
 {
 State = EPlayerState::Locomotion;
 }
 else
 {
 auto ownerActor = this->GetOwningActor();
 auto playerAvatar =
 Cast<APlayerAvatar>(ownerActor);
 if (playerAvatar == nullptr)
 {
 Return;
 }
 if (State == EPlayerState::Hit)
 {
 if (playerAvatar->GetHealthPoints() > 0.0f)
 {
 State = EPlayerState::Locomotion;
 }
 else
 {
 State = EPlayerState::Die;
 }
 }
 else if (State == EPlayerState::Die)
 {
 //…
 }
 }
}

Looking into PlayerAvatarAnimationInstance.cpp, the first line of code, #include
"PlayerAvatar.h", provides the definition of PlayerAvatar and enables casting the animation
instance’s owner character from an Actor pointer to be a PlayerAvatar pointer, and as a result,
the PlayerAvatar::GetHealthPoints() member function is accessible and can be invoked.

Creating Game Actors168

Figure 6.15 is a reference showing the function event graph, which does the equivalent process as the
OnStateAnimationEnds function:

Figure 6.15 – The equivalent OnStateAnimationEnds function event graph

Creating the player avatar’s animation blueprint 169

Once the PlayerAvatarAnimationInstance class has been implemented, we can proceed
to create the ABP_PlayerAvatar animation blueprint. Based on this animation blueprint, we
will define a State Machine that controls the character’s animations by responding to state changes.

Creating the ABP_PlayerAvatar blueprint

To create the blueprint, right-click on the folder where you want to place the new blueprint
(we chose the folder from All | Content | TopDown | Blueprints). Then select Animation | Animation
Blueprint from the pop-up menu:

Figure 6.16 – Creating a new animation blueprint

Creating Game Actors170

The next thing to do is to choose which skeleton and what parent class are used to create this animation
blueprint. Here, we chose to use the imported character skeleton and PlayerAvatarAnimInstance
as the parent class:

Figure 6.17 – Selecting the skeleton and parent class to create ABP_PlayerAvatar.png

After hitting the Create button, you should have the new animation blueprint in the Blueprints
folder. Rename it ABP_PlayerAvatar.

The next step is to create a State Machine on the ABP_PlayerAvatar animation blueprint.

Creating the player avatar’s animation blueprint 171

Creating the State Machine on ABP_PlayerAvatar

The Unreal State Machine allows developers to set up character states and the corresponding state
animations. By using a State Machine, we can easily use the Speed and State variables to control
the transitions between states.

Since this book’s focus is on C++ scripting, we will not go into the detailed steps of how to create a
State Machine. If you don’t have knowledge of the State Machine in Unreal, please visit https://
docs.unrealengine.com/5.0/en-US/state-machines-in-unreal-engine/ to
learn the fundamentals and search online for Unreal State Machine video tutorials.

Here in this book, we just list the results for all the steps for creating a Blend Space 1D asset, adding a
new State Machine to the animation Blueprint, and adding states and state transitions. So, let’s get started:

1. Create a Blend Space 1D asset, HeroBlendSpace1D, for the Locomotion state. Then
add the idle, walk, and run animations to the blending space line, and change Horizontal
Axis Name to Speed.

Figure 6.18 – Creating the BlendSpace1D asset

https://docs.unrealengine.com/5.0/en-US/state-machines-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/state-machines-in-unreal-engine/

Creating Game Actors172

2. Add a new State Machine to the animation blueprint and connect the State Machine’s output
to Output Pose.

Figure 6.19 – Adding a State Machine to ABP_PlayerAvatar

3. For the State Machine, add four new states and name them Locomotion, Attack, Hit,
and Die. Then, connect them as shown in the following figure:

Figure 6.20 – The ABP_PlayerAvatar State Machine

Creating the player avatar’s animation blueprint 173

4. Double-click on the Locomotion node to enter the state’s graph editor, add the HeroBlendSpace1D
and Speed nodes, and connect the nodes as shown in Figure 6.21. The Speed node can
be found in the All Possible Actions list; this getter node returns the value of the
PlayerAvatarAniminstance::Speed variable.

Figure 6.21 – Adding HeroBlendSpace1D to the Locomotion state

In the state graph, the HeroBlendSpace1D node utilizes the Speed input value to interpolate
the idle, walk, and run animations for the Output Animation Pose node.

5. Set up the Attack, Hit, and Die states by simply adding appropriate animations to the states,
and then connect the animation outputs to the Output Animation Pose nodes.

Figure 6.22 – Adding animations to the Attack, Hit, and Die states

Creating Game Actors174

6. For each state transition (arrowed connection) created in Figure 6.20, set the state transition
conditions by adding the State and the State comparison nodes. Each comparison between
PlayerAvataAnimInstance::State and the specific state triggers the transition when
the comparison result is true.

Figure 6.23 – Adding conditions to transition between states

7. Compile and save the animation blueprint.

8. Now, we can associate it with our player avatar. Open BP_PlayerAvatar, select the Mesh
component, and set Use Animation Blueprint for Animation Mode and ABP_PlayerAvatar
for Anim Class.

The last thing we want to do is to sync the character’s movement speed with the Speed variable of
PlayerAvatarAnimInstance for the Locomotion state to blend the animations.

Syncing the movement speed with the animation instance

To sync the movement speed, we can write some code in PlayerAvatar.cpp. For every tick, the
code will do the following:

• First, get the animation instance from the character’s skeletal mesh and cast it to be
a UPlayerAvatarAnimInstance class pointer; then the result is assigned to the
playerAvatarAnimInst variable.

• Second, read the Velocity vector from the character’s movement component.

Creating the player avatar’s animation blueprint 175

• Finally, calculate the Velocity vector’s length and assign it to the Speed variable
of playerAvatarAnimInst.

Here is the new code for the Tick() function:

void APlayerAvatar::Tick(float DeltaTime)
{
Super::Tick(DeltaTime);

 UPlayerAvatarAnimInstance* animInst =
 Cast<UPlayerAvatarAnimInstance>(
GetMesh()->GetAnimInstance());
animInst->Speed =
 GetCharacterMovement()->Velocity.Size2D();
}

The Tick() function’s DeltaTime parameter indicates the elapsed time in seconds since the previous
frame tick. For example, if a game ticks at 100 frames per second, the DeltaTime value is 0.01f.

The velocity value we get here is an FVector struct data type, which indicates the velocities along
with the x, y, and z axes in the world coordinate system. But what we are interested in is the combined
speed of x and y. So, what we need is the return value of Fvector::Size2D().

The FVector structure type is an expression of the 3D space mathematical term vector. In Unreal,
an FVector value is composed of three float-type components (X, Y, and Z). FVector is used for
3D space representations (location, Euler angle rotation, etc.) and vector calculations (movement,
cosine of the angle between two vectors, the normal vector of two vectors, etc.). For your reference,
we list some frequently used FVector functions here:

Function Name Is Static? Description

CrossProduct Yes Calculates two vectors’ cross product, which is the normal
vector of the surface formed by the original two vectors

DotProduct Yes
Calculates two vectors’ dot product; the result equals a
multiplication of the lengths of the two vectors and the cosine
value of the two vectors’ angles

Distance Yes Calculates the distance between the two locations

DistSquare Yes Calculates the squared distance between the two vector locations

RotateAngleAxis No Rotates this vector along an axis for degree angles and returns
the rotated vector

Rotation No Returns the rotation (FRotator) of this vector

Size No Returns the 3D (X, Y, Z) length of this vector

Creating Game Actors176

Size2D No Returns the 2D (X, Y) length of this vector

F V e c t o r
Operators

No +, -, ==, !=, and so on.

Figure 6.24 – List of some useful FVector functions

Visit the Unreal Engine documentation site for more details on vectors: https://docs.
unrealengine.com/4.26/en-US/API/Runtime/Core/Math/FVector/.

Upon completing this chapter, you should have your own player character, the Hero, for the Pangaea
game. You can now launch the game and make your Hero walk around:

Figure 6.25 – Pangaea’s new player character

Summary
Having completing this chapter, you should now be capable of creating your own game-player character
from scratch.

First, you learned how to set up the top-down camera view by adding a Camera component and a
SprintArm component to the PlayerAvatar class. The camera is attached to the spring arm,
so it is placed at the top-down view position and moves with the character. In the PlayerAvatar
constructor, you not only created the SpringArm and Camera components but also initialized the
settings for the character as well as its CharacterMovement component.

https://docs.unrealengine.com/4.26/en-US/API/Runtime/Core/Math/FVector/
https://docs.unrealengine.com/4.26/en-US/API/Runtime/Core/Math/FVector/

Summary 177

Once BP_PlayerAvatar was set up, it was used to substitute the default top-down game character.

You then created the PlayerAvatarAnimInstance class and defined the two variables (Speed
and State). Based on that, you also created the animation blueprint and defined the State Machine
for leveraging the character’s state animations.

Finally, you wrote the code for the APlayerAvatar::Tick() function to sync the character’s
velocity with the Speed variable of the animation instance.

In the next chapter, we will show you how to set up user inputs and control the player character.
We will also create an enemy character and the AI controller that controls the enemy’s behaviors.

7
Controlling Characters

In Chapter 6, we created our player character, the PlayerAvatar class, and the BP_PlayerAvatar
blueprint. The next thing we want to do is to control the player character. Since the engine automatically
generated the default PangaeaPlayerController class when the project was created, moving
the player character is already functional. However, that is not enough because we want more control
over the player character.

In this chapter, you will learn how to add a new input action to the action map, handle an input event
to trigger an attack, as well as how to add a notify to the timelines of attack, hit, and die animations.

This chapter will also introduce the concept of garbage collection, which is the engine’s important
mechanism for memory management; the code for destroying characters demonstrates how to
manually trigger garbage collection.

Additionally, you will learn how to create an enemy character and control the enemy with AIController.
This entails enabling the enemy to sense and chase the player and make decisions to attack, as well as
handling destruction upon being defeated.

Both EnemyController and PangaeaPlayerController move the controlled character with
the pathfinding algorithm, based on the NavMesh system, so we will explain the essential concepts
of pathfinding and demonstrate the practical setup process within the game map.

This chapter covers the following topics:

• Controlling the player character to attack

• Destroying actors

• Creating the enemy character

• Testing the game

Controlling Characters180

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter07.

Controlling the player character to attack
When you created the Pangaea project, the engine automatically generated the
PangaeaPlayerController class so that you had basic control over the player character.
To understand how PangaeaPlayerController controls the player, let’s open the
PangaeaPlayerController.cpp file in Visual Studio (VS) and look at the code.

First of all, the SetupInputComponent() function binds the OnSetDestinationPressed()
and the OnSetDestinationReleased() event handler functions to the SetDestination
action defined in the project’s input settings. These two event handler functions call the movement
functions, StopMovement and SimpleMoveToLocation, to move the character toward the
next new destination.

Can we add a new attack action to the system and hook it up to our own handler function? The answer
is yes. Let’s start by defining the new attack action.

Adding the Attack action to the action map

In Unreal, PlayerController is defined as an interface that interprets player input, enabling the
controlled pawn to respond accordingly to the player’s commands and actions.

PangaeaPlayerontroller is a child class of the engine’s PlayerController class, so it
inherits all the useful variables and functions from the parent. For example, you can periodically call
the following three checking functions of PlayerControllers to directly check whether an input
key (e.g., the Esc key) was just pressed down, was just released up, or is held down, like so:

• bool WasInputKeyJustPressed(Ekeys::Escape)

• bool WasInputKeyJustReleased(Ekeys::Escape)

• bool IsInputKeyDown(Ekeys::Escape)

It is easy and simple to capture user inputs directly from specific input keys, but directly capturing
key inputs is not very flexible to support multiple input devices. Suppose that a game needs to support
firing bullets by pressing either the spacebar, the left mouse button, or a controller trigger; in such
cases, you will need to call the previous functions three times to check the states of all three devices.

Unreal provides another solution to handle user inputs, known as input mapping. The idea is that
you can define Action or Axis mapping groups in your game project, and then bind any number of
input methods to the action or axis. For our Pangaea game, we can add a new action, Attack, and
bind the right mouse button to it.

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter07
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter07

Controlling the player character to attack 181

To accomplish this, begin by navigating to Edit | Project Settings from the main menu in Unreal
Editor. Next, locate Input under the Engine group, and press the + button to add a new Attack action
to the Action Mappings. Finally, add Right Mouse Button and Space Bar as the inputs for this action:

Figure 7.1 – Adding the new Attack Action Mapping

Once you’ve added the new Action Mapping, you can close the Project Settings window and try
binding the process function to the Attack action in your code.

Binding the handler function to the Attack action

The checking functions you have just learned about need to check the input device states upon every
tick, which is not a very efficient process. The Input mapping mechanism, on the other hand, handles
player input by events. Only when a player input is captured will it trigger the event, and then the event
handler functions are called. In that case, we can write a function and bind it to the Attack action.

Open PangaeaPlayerController.h and add the following code to declare the new
member function:

void OnAttackPressed();
Then, in PanggaeaPlayerController.cpp, find the SetupInputComponent
function, and add the following code at the end to bind
OnAttackPressed() function to the Attack action:
 InputComponent->BindAction("Attack",
IE_Pressed,

Controlling Characters182

this,
&APangaeaPlayerController::OnAttackPressed);

The next question is, what will happen when the Attack event is triggered? The answer is very
straightforward. We want to check whether PlayerAvatar can attack; if it returns true,
PlayerAvatar’s Attack() function is called.

Implementing the OnAttackPressed() action handler function

Open PangaeaPlayerController.cpp and add the following code block to implement the
OnAttackPressed() function:

void APangaeaPlayerController::OnAttackPressed()
{
 auto playerAvatar = Cast<APlayerAvatar>(GetPawn());
 if (playerAvatar->CanAttack())
 {
 playerAvatar->Attack();
 }
}

Let’s break down this code:

• The GetPawn function returns the pointer of the pawn currently controlled

• The Cast function casts the returned APawn* pointer to be an APlayerAvatar* pointer

Next, we need to implement the two CanAttack and Attack functions. The former checks whether
the player has cooled down and is allowed to start another attack, whereas the latter simply restarts
the countdown, which will then cause the player to start playing the Attack animation.

Implementing the CanAttack() and Attack() functions

As you may recall, we previously declared the CanAttack and Attack functions during the
creation of the PlayerAvatar class. Now is the time to add the code to get them to work. Let’s
open PlayerAvatar.cpp and enter the following code block for the implementation of the
CanAttack function:

bool APlayerAvatar::CanAttack()
{
UPlayerAvatarAnimInstance* animInst = cast<UPlayerAvatarAnimInstance>(
 GetMesh()->GetAnimInstance());
return (_AttackCountingDown <= 0.0f &&
animInst->State == EPlayerState::Locomotion);
}

Controlling the player character to attack 183

Let’s break down this code:

• The GetMesh function returns the pointer of the character’s SkeletalMesh component

• The GetAnimInstance function returns the pointer of the animation instance associated
with the skeletal mesh

• The cast function casts the returned UAnimInstance* pointer to be the
UPlayerAvatarAnimInstance* pointer

• This CanAttack() function returns true if the Attack state counting down time is over
and its current state is Locomotion; otherwise, it returns false

Now, we will implement the Attack() function:

void APlayerAvatar::Attack()
{
 _AttackCountingDown = AttackInterval;
}

The Attack function simply resets the Attack state cooling down timer. Since the character’s
Tick function checks and changes the character’s state to Attack when the values of
_AttackCountingDown and AttackInterval are equal, setting _AttackCountingDown
with AttackInterval can start playing the Attack animation.

There are two more tasks we want to do in the character’s Tick function:

• Change the PlayerAvatar animation state to Attack so that the state machine starts
playing the Attack animation

• Reduce _AttackCountingDown so that the CanAttack function can return true after
_AttackCountingDown reaches 0

These two tasks are implemented like so:

void APlayerAvatar::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);
 auto animInst = Cast<UPlayerAvatarAnimInstance>(
 GetMesh()->GetAnimInstance());
 animInst->Speed =
GetCharacterMovement()->Velocity.Size2D();

 if (_AttackCountingDown == AttackInterval)
 {
 animInst->State = EPlayerState::Attack;
 }

Controlling Characters184

 if (_AttackCountingDown > 0.0f)
 {
 _AttackCountingDown -= DeltaTime;
 }
}

Now, compile and launch the game by clicking your mouse’s right button – the character should
attack. The problem now is that your character plays the Attack animation, never terminates, and
transits back to the Locomotion state. Let’s solve the problem when playing non-loop animations.

Processing non-loop animations

To solve the problem of playing and terminating non-loop animations (Attack, Hit, and Die), we need
to add notifications on the timelines of the non-loop animations in the animation blueprint. Then,
we can write and hook event handler functions to do the corresponding processes. Let’s get started.

Adding animation end notifies

To add a notify on to the Attack animation, we will use the Hero_Anim_Attack animation in the
Content Drawer/All/Content/Characters/Hero folder. Double-click on it to open an
animation in the Animation Sequence Editor, and then perform the following steps to add a new
notify on the animation timeline (see Figure 7.2):

1. Right-click on the Notifies track at a position near the endpoint of the animation.

2. Select Add Notify… from the pop-up menu.

3. Select New Notify… from the submenu.

Figure 7.2 – Adding a new notify on the Attack animation timeline

Controlling the player character to attack 185

4. Input AttackEnds as the name of the new notify. The notify tag should be shown on the
animation timeline:

Figure 7.3 – The AttackEnds notify is added to the animation timeline

5. You can follow the same process to add notifies for the hit and die animations, using HitEnds
and DieEnds as the notify names, respectively.

Once all the animation notifies are set up, we can handle the corresponding events and transit the
character’s animation state to the next appropriate state.

Handling the notify events on the animation blueprint

We just added notifies to trigger the animation events while playing the animations; now, the animation
blueprint can handle those events and do the processes.

On the event graph of ABP_PlayerAvatar, follow these steps:

1. Right-click on the Event Graph area and search for AttackEnds, HitEnds, and DieEnds
to add the events.

2. Right-click on the Event Graph area and search for the OnStateAnimationEnds function.
This is defined in the AplayerAvatarAnimInstance class.

3. Connect all the events’ outputs to the OnStateAnimationEnds function.

Controlling Characters186

The Event Graph blueprint should look like the following figure:

Figure 7.4 – The Event Graph to handle animation end events

We have added notifies for the attack, hit, and die animations and handled the animation notifies in
the blueprint to call the OnStateAnimationEnds event handler function. To accomplish this
mechanism, we have to implement the event function and get the system functional.

Implementing the OnStateAnimationEnds function

The OnStateAnimationEnds function’s main job is to transit the animation state to the next
state properly. The function can be called when the current animation state is either Attack, Hit,
or Die, so they need to be processed based on the following logic:

• If the function is called when the current state is Attack, meaning that the Attack animation
just ended, then it should go back to the Locomotion state.

• If the function is called when the current state is Hit, we need to check whether the
HealthPoints value of the character is greater than 0, and then we turn the next state to
Locomotion; otherwise, the character is killed and should transit to the Die state to start
playing the Hero_Anim_Die animation.

• If the function is called when the current state is Die, this means that the character is dead.
We will want to call the APlayerAvatar::DieProcess() function to remove and
destroy the character from the scene.

To implement this, here is the code for the OnStateAnimationEnds() function:

void UPlayerAvatarAnimInstance::OnStateAnimationEnds()
{
 if (State == EPlayerState::Attack)
 {

Destroying actors 187

 State = EPlayerState::Locomotion;
 }
 else
 {
 auto playerAvatar =
 Cast<APlayerAvatar>(this->GetOwningActor());
 if (State == EPlayerState::Hit)
 {
 if (playerAvatar->GetHealthPoints() > 0.0f)
 {
 State = EPlayerState::Locomotion;
 }
 else
 {
 State = EPlayerState::Die;
 }
 }
 else if (State == EPlayerState::Die)
 {
 playerAvatar->DieProcess();
 }
 }
}

We just implemented the PangaeaPlayerController, allowing players to control the hero’s
attacks. In the next section, we will address the issue of appropriately destroying actors upon their demise.

Destroying actors
Game actors may need to be destroyed when they are killed or no longer needed in a game map.
The Pangaea player character, for example, is killed when HealthPoints reaches 0; once it reaches 0,
then we want to remove the player character from the map and kick the player from the game.

To complete this task, we will do three things in the DieProcess() function:

• Stop the character from ticking. Setting the PrimaryActorTick.bCanEverTick variable
as false does this.

• Call the K2_DestroyActor() function to destroy the character. This Unreal actor API
destroys the actor and marks the occupied memory for garbage collection, resulting in the
release of memory

• Call the engine’s ForceGarbageCollection function to force the engine to perform
garbage collection.

Controlling Characters188

To implement this, we can insert the following three lines of code within the curly braces of the
DieProcess function:

void APlayerAvatar::DieProcess()
{
 PrimaryActorTick.bCanEverTick = false;
 Destroy();
 GEngine->ForceGarbageCollection(true);
}

The code block was used to demonstrate how to explicitly stop an actor’s ticking and request a garbage
collection for the system.

However, in this case, you can opt for the following simplified line of code, as it achieves the same
outcome, the difference being that we let the engine handle the processes internally:

void APlayerAvatar::DieProcess()
{
 Destroy();
}

When an actor is instantiated, the engine allocates a block of memory to store the actor’s information,
and in the meantime, the returned actor pointer stores the starting address of the memory block.
When actors are destroyed, their memory blocks are not immediately released. Only when a garbage
collection starts will all the destroyed objects’ memory be released for new memory allocations.

Garbage collection is a memory management mechanism that Unreal uses to recycle unused memory
blocks. Unreal internally manages memory allocations and deallocations. Garbage collection can be
started under three conditions:

• Garbage collection starts periodically

• When a system is running out of memory

• When a developer manually forces garbage collection to start

In the case of destroying the player character in our game, we force the engine to recycle the released
memory because the game is over, and we want the engine to clear the unused memory before exiting.

Garbage collection is a very expensive process, so you should try to avoid triggering it during gameplay;
it may impact the frame rate and cause noticeable chops.

We are basically done with the player character setups. The next thing we want to do is create the
enemy character. This will make the game fun to play.

Creating the enemy character 189

Creating the enemy character
Creating the enemy character is similar to creating the player character. First, we create the AEnemy
class, which inherits from ACharacter. Second, we create the BP_Enemy blueprint, with AEnemy
as the parent class. Third, we create the ABP_Enemy animation blueprint, which is identical to ABP_
PlayerAvatar.

The main difference between the enemy and player characters is the controller. The EnemyController
class inherits from the engine’s AIController and will make decisions to move to the target and attack.

The enemy will share the hero’s model and animations, so to distinguish between the two, enemy
models will use a gray material, which puts all the enemies in gray (see Figure 7.5):

Figure 7.5 – The hero versus an enemy

Before we start, we want to clarify that we will apply some iterative processes in the development of
the game. While creating the enemy character, we will copy some code and borrow some assets from
the player character. The benefit of doing this is that it makes it easier and clearer for you. It is great if
you notice some redundant code and feel it would be better to combine such instances of code – this
means you have a good understanding of the term code refactoring, which we shall cover in Chapter 9.

Controlling Characters190

Creating the Enemy class

In the same way that we created the APlayerAvatar class, we can create a new AEnemy class,
which also inherits from ACharacter. The newly generated Enemy.h and Enemy.cpp files
should still be placed under the path of C++ Classes/Pangaea.

Type the following code into the Enemy.h header file:

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Character.h"
#include "Enemy.generated.h"

UCLASS()
class PANGAEA_API AEnemy : public ACharacter
{
 GENERATED_BODY()

public:
AEnemy();

UPROPERTY(EditAnywhere, Category = "Enemy Params")
int HealthPoints = 100;

UPROPERTY(EditAnywhere, Category = "Enemy Params")
float Strength = 5.0;

UPROPERTY(EditAnywhere, Category = "Enemy Params")
float Armor = 1;

UPROPERTY(EditAnywhere, Category = "Enemy Params")
float AttackRange = 200.0f;

UPROPERTY(EditAnywhere, Category = "Enemy Params")
float AttackInterval = 3.0f;

protected:
virtual void BeginPlay() override;

int _HealthPoints;
float _AttackCountingDown;
APawn* _chasedTarget = nullptr;

Creating the enemy character 191

public:
virtual void Tick(float DeltaTime) override;

UFUNCTION(BlueprintCallable,
Category = "Pangaea|Enemy",
meta = (DisplayName = "Get HP"))
int GetHealthPoints();

UFUNCTION(BlueprintCallable, Category = "Pangaea|Enemy")
bool IsKilled();

UFUNCTION(BlueprintCallable, Category = "Pangaea|Enemy")
bool CanAttack();

UFUNCTION(BlueprintCallable, Category = "Pangaea|Enemy")
void Chase(APawn* targetPawn);

void Attack();
void Hit(int damage);
void DieProcess();

private:
UPROPERTY(VisibleAnywhere,
BlueprintReadOnly,
meta = (AllowPrivateAccess = "true"))
class UPawnSensingComponent* PawnSensingComponent;
};

Note that the AEnemy class header file code looks quite similar to that of the APlayerAvatar
class, except for the following differences:

• The initial values of the HealthPoints, Strength, Armor, and AttackInterval
variables are set differently so that the enemy is weaker and slower than the player character.
These values can also be fine-tuned in the character’s details window in the editor.

• We added the _chasedTarget variable to cache the pointer to the current target, which,
in this case, is the player character.

• We added PawnSensingComponent. This component works like a radar that checks
whether the player character is within the sensing scope. When the player character is detected,
the _chasedTarget variable is set to the player character. If the player character is out of
range, this variable is set as nullptr.

Controlling Characters192

• We added a new Chase(APawn* targetPawn) function. This function is marked
as a BlueprintCallable function. When PawnSensingComponent triggers the
OnSeePawn event, the blueprint calls the Chase function to set the target, and then the
enemy character starts to chase the player character.

• Since enemy characters don’t accept player input, we don’t want to override the
SetupPlayerInputComponent function as we did for the PlayerAvatar class.

Now, here is the code for Enemy.cpp:

#include "Enemy.h"
#include "Perception/PawnSensingComponent.h"
#include "GameFramework/CharacterMovementComponent.h"
#include "EnemyController.h"
#include "EnemyAnimInstance.h"

AEnemy::AEnemy()
{
PrimaryActorTick.bCanEverTick = true;

PawnSensingComponent =
CreateDefaultSubobject<UPawnSensingComponent>(
TEXT("PawnSensor"));
}

void AEnemy::BeginPlay()
{
Super::BeginPlay();
_HealthPoints = HealthPoints;
}

void AEnemy::Tick(float DeltaTime)
{
Super::Tick(DeltaTime);

auto animInst = Cast<UEnemyAnimInstance>(
GetMesh()->GetAnimInstance());
animInst->Speed =
GetCharacterMovement()->Velocity.Size2D();

if (_AttackCountingDown == AttackInterval)
{
animInst->State = EEnemyState::Attack;
}

Creating the enemy character 193

if (_AttackCountingDown > 0.0f)
{
_AttackCountingDown -= DeltaTime;
}

if (_chasedTarget != nullptr &&
animInst->State == EEnemyState::Locomotion)
{
auto enemyController =
Cast<AEnemyController>(GetController());
enemyController->MakeAttackDecision(_chasedTarget);
}
}

int AEnemy::GetHealthPoints()
{
return _HealthPoints;
}

bool AEnemy::IsKilled()
{
return (_HealthPoints <= 0.0f);
}

bool AEnemy::CanAttack()
{
auto animInst = GetMesh()->GetAnimInstance();
auto enemyAnimInst = Cast<UEnemyAnimInstance>(animInst);
return (_AttackCountingDown <= 0.0f &&
enemyAnimInst->State == EEnemyState::Locomotion);
}

void AEnemy::Chase(APawn* targetPawn)
{
auto animInst = GetMesh()->GetAnimInstance();
auto enemyAnimInst =
Cast<UPlayerAvatarAnimInstance>(animInst);
if (targetPawn != nullptr &&
enemyAnimInst->State == EEnemyState::Locomotion)
{
auto enemyController =

Controlling Characters194

Cast<AEnemyController>(GetController());
enemyController->MoveToActor(targetPawn, 90.0f);
}
_chasedTarget = targetPawn;
}

void AEnemy::Attack()
{
GetController()->StopMovement();
_AttackCountingDown = AttackInterval;
}

void AEnemy::Hit(int damage)
{
_HealthPoints -= damage;

auto animInst = GetMesh()->GetAnimInstance();
auto enemyAnimInst =
Cast<UEnemyAnimInstance>(animInst);
enemyAnimInst->State = EPlayerState::Hit;

if (IsKilled())
{
DieProcess();
}
}

void AEnemy::DieProcess()
{
PrimaryActorTick.bCanEverTick = false;
K2_DestroyActor();
GEngine->ForceGarbageCollection(true);
}

In comparison with the PlayerAvatar class, the two additional things that the Enemy class does
is create PawnSensingComponent and implement the Chase function.

In the class constructor, the CreateDefaultSubobject function is called to create the component.

The Chase function has one parameter, which passes in the target pawn to be chased. The function
first gets the enemy character’s controller, which is a subclass of AIController, and then it calls
the MoveToActor function to move the enemy to the target player character.

Creating the enemy character 195

You may have noticed that VS at this point complains about some errors, but don’t panic – we haven’t
created the EnenmyController class and implemented the Chase function yet. Obviously,
the enemy needs its controller, which controls the enemy to chase and attack in the game, and the
animation instance – let’s create them.

Creating the EnemyController class

In Unreal, you have a few different options to control non-player characters (NPCs). For instance,
the Behavior Tree (BT) and the Blackboard can be used to design NPCs’ behaviors. However, here,
we will create a subclass of AIController and control the enemy character by writing scripts.

Even though the demo game only needs EnemyController to implement one function, which
makes the decision to attack, it shows you how the new controller works, and you can always add
more complex decision-making logic with advanced AI algorithms later.

Now, let’s create the new C++ class, EnemyController, which inherits from the AIController
class. The newly generated EnemyController.h and EnemyController.cpp files should be
placed under C++ Classes | Pangaea.

The source code for EnemyController.h should be like this:

#pragma once

#include "CoreMinimal.h"
#include "AIController.h"
#include "EnemyController.generated.h"

UCLASS()
class PANGAEA_API AEnemyController : public AAIController
{
GENERATED_BODY()
public:
void MakeAttackDecision(APawn *targetPawn);
};

And the source code for EnemyController.cpp should be like this:

#include "EnemyController.h"
#include "Enemy.h"

void AEnemyController::MakeAttackDecision(APawn* targetPawn)
{
auto controlledCharacter = Cast<AEnemy>(GetPawn());
auto dist = FVector::Dist2D(
targetPawn->GetActorLocation(),

Controlling Characters196

GetPawn()->GetTargetLocation());

 if (dist <= controlledCharacter->AttackRange
 && controlledCharacter->CanAttack())
 {
 controlledCharacter->Attack();
 }
}

What the MakeAttackDecision function does is check whether the distance between the chased
target and the enemy is shorter than the enemy’s attack range. If the target is within the attack scope
and the enemy can attack, it calls the Attack function of the controlled character, which is the
owner enemy.

In addition to making attack decisions, movement is another essential function for enemies.
To accomplish this task, we will utilize AIController, provided by the game engine.

The AIController class is a useful tool to control NPCs. In Pangaea, the enemies are NPCs, so their
movements are controlled by the AIController instances. Enemies can call the MoveToActor
or MoveToLocation function of AIController to navigate within game maps.

To enhance your understanding of the navigation and the underlying theory, we want to introduce
a bit more about AIController’s navigation functions as well as how the pathfinding works with
the NavMesh:

• MoveToActor: Moves the possessed pawn to an actor’s location.

• MoveToLocation: Moves the possessed pawn to a destination location. Movement information
is passed through multiple parameters.

• MoveTo: Moves the possessed pawn to a destination location. Use the FAIMoveRequest
struct as the parameter to pass the movement information.

• StopMovement: Stops and aborts the current movement.

NavMesh
If you have no experience of NavMesh generation setups, you can search online for the official
documentation and video tutorials, or refer to the official documentation on the Unreal
navigation system web page: https://docs.unrealengine.com/5.0/en-US/
navigation-system-in-unreal-engine/.

https://docs.unrealengine.com/5.0/en-US/navigation-system-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/navigation-system-in-unreal-engine/

Creating the enemy character 197

The AIController-controlled movement is based on an algorithm called heuristic search or the
A* pathfinding algorithm. What the pathfinding algorithm does is find the shortest path from a start
location to a destination location on the map. The map should have navigation information, which
includes the nodes and the connections between nodes. Unreal builds the navigation information
from the map’s meshes, and the generated navigation data is stored as the maps’ NavMesh.

When any Move function of the AIController class is called, it uses the owner pawn’s current
location as the starting point and the given destination location to generate the shortest walkable
path, based on the map’s NavMesh. The controlled pawn then moves along with the path toward
its destination.

To ensure that the found path is valid and game pawns navigate properly, the map’s NavMesh should
be set up accordingly. To generate NavMesh, the basic requirement entails dragging and dropping
NavMeshBoundsVolume into your game level and making it encompass the designated area for
NavMesh generation (see Figure 7.6).

Figure 7.6 – Placing NavMeshBoundsVolume for NavMesh generation

Controlling Characters198

To toggle showing or hiding the NavMesh, you can press P on your keyboard. The green shape covering
the ground areas shows the NavMesh:

Figure 7.7 – The NavMesh is shown on the map after pressing the P key

Now, the enemies have an EnemyController, allowing them to sense, chase, and attack the player
hero. The subsequent objective is that we need to create an animation instance and an animation
blueprint to synchronize the behavior animations.

Create the UEnemyAnimInstance class by inheriting from the AnimInstance class. The header
file should contain the following code:

#pragma once

#include "CoreMinimal.h"
#include "Animation/AnimInstance.h"
#include "EnemyAnimInstance.generated.h"

UENUM(BlueprintType)
enum class EEnemyState : uint8
{
 Locomotion,
 Attack,
 Hit,
 Die

Creating the enemy character 199

};

UCLASS()
class PANGAEA_API UEnemyAnimInstance : public UAnimInstance
{
 GENERATED_BODY()

public:

UPROPERTY(EditAnywhere,
BlueprintReadWrite, Category = "Enemy Params")
float Speed;

UPROPERTY(EditAnywhere,
BlueprintReadWrite, Category = "Enemy Params")
EEnemyState State;

UFUNCTION(BlueprintCallable)
void OnStateAnimationEnds();

};

The provided code is similar to that in PlayerAvatarAnimInstance.h, which should already
be familiar to you. Now, let’s proceed by entering the following code into EnemyAnimInstance.
cpp for the function implementations:

#include "EnemyAnimInstance.h"
#include "Enemy.h"

void UEnemyAnimInstance::OnStateAnimationEnds()
{
 if (State == EEnemyState::Attack)
 {
 State = EEnemyState::Locomotion;
 }
 else
 {
 auto enemy = Cast<AEnemy>(GetOwningActor());
 if (State == EEnemyState::Hit)
 {
 if (enemy->GetHealthPoints() > 0.0f)
 {
 State = EEnemyState::Locomotion;

Controlling Characters200

 }
 else
 {
 State = EEnemyState::Die;
 }
 }
 else if (State == EEnemyState::Die)
 {
 enemy->DieProcess();
 }
 }
}

In this case, the code for the EnemyAnimInstance class looks quite similar to that for the
PlayerAvatarAnimInstance class, except for the redefined EEnemyState and casting the
owning actor as the Enemy class pointer. Instead of applying class generalization, there are two reasons
to retain the redundant code for the EnemyAnimInstance class:

• Maintaining consistency avoids confusion, as it is easier to understand the code

• Making the class extendable is useful for future developments

Now, we can create the animation blueprint, ABP_Enemy.

Creating the ABP_Enemy animation blueprint

For the Pangaea game, the enemy animation blueprint can be created in the same way that we
created the ABP_PlayerAvatar blueprint in Chapter 6, except that its parent class is the
EnemyAnimInstance class.

Perform the following steps to create ABP_Enemy:

1. Create a new animation blueprint.

2. Select EnemyAnimInstance as the parent class.

3. Select Hero Skeleton so that the enemy can share the animations of the hero.

4. Create a state machine on AnimGraph.

5. Add the states of Locomotion, Attack, Hit, and Die to the state machine.

6. For each state, add the corresponding animation.

7. Add state transitions and set the transit conditions.

Creating the enemy character 201

8. Hook up the events of AttackEnds, HitEnds, and DieEnds to the
OnStateAnimationEnds handler function.

You can see the result in Figure 7.8:

Figure 7.8 – The State Machine for ABP_Enemy

After completing the preceding tasks, we have everything ready to create the enemy blueprint.

Creating the BP_Enemy blueprint

We will download and import the enemy assets before the creation of the blueprint. Please follow
these steps:

1. Download the assets from the Git repository under the Enemy folder, and then import the
model into the project.

2. Create an Enemy folder under All|Content|Characters.

3. Import the Enemy.FBX model into the new Enemy folder.

Figure 7.9 – Importing the Enemy model

Controlling Characters202

Now, we can create the animation blueprint.

4. Under the All|Content|Topdown|Blueprints folder, right-click and choose the
Blueprints | Blueprint class to create BP_Enemy.

Then, we need to do some configuration work.

5. Set up the enemy’s SkeletalMesh component. Choose Enemy for the skeletal mesh and
ABP_Enemy for the Anim Class fields:

Figure 7.10 – Setting up the enemy’s SkeletalMesh component

6. Set the Pawn Sensing Component values for visual detection, such as Hearing Threshold,
Sight Radius, Sensing Interval, Enable Sensing Updates, See Pawns, and Hear Noises.

Figure 7.11 – Setting the Pawn Sensing Component values

Testing the game 203

7. Select the Character Movement component. Then, on the Details panel, adjust Max Walk
Speed to 500.0 for the enemy to make it move a little bit slower than the hero, which means
that it is possible for the player to run away from enemies.

Figure 7.12 – Setting Max Walk Speed to 500

Now ,we can compile and save the project, as it is the time now to test the game and see how things
work together.

Testing the game
Drag BP_Enemy from the Content Drawer and place it in the game level. Then, launch the game.
The enemy should chase the player character when the player character runs within its vision range:

Figure 7.13 – The enemy chases the hero

Controlling Characters204

When the enemy runs close enough to the player character, it starts playing the Attack animation:

Figure 7.14 – The enemy attacks the hero

Summary
In this chapter, we showed you how to control both a player and an NPC character. First, we added
the Attack action to the input action map and added the event handling function to the player
controller. Then, we bound the function to the Attack action to control the hero to attack.

We learned how to add notifies to the animation timelines so that when the non-loop animations end,
the animation blueprint can capture the notifications and properly transit to the next state, or if the
character is killed, the DieProcess function is called to release memory and force garbage collection.

We imported new assets for the enemy character and created the Enemy class, the blueprint, and the
animation blueprint, as we did for the player character. We also added PawnSensingComponent
to the Enemy class so that enemies can detect whether the player character is within their vision range.

The main difference from the player character we made for the enemy was that we created the
EnemyController class, which derives from the AIController class. Then, we used the
controller to move the enemy based on Unreal’s NavMesh. Also, we wrote code to make the Attack
decision for enemies.

Now, our game has a hero and an enemy. They both can walk around and attack each other, but how
do they really interact with each other? That should be handled by collisions. In the next chapter, we
will explore adding collision components to actors and handling collision events.

8
Handling Collisions

Collision detection is a useful and effective mechanism to deal with interactions between game actors.
The basic idea is that when one actor collides with another actor, a collision event is triggered to notify
the two actors about the collision. The game developer can write a script to handle the events and
perform the corresponding processes.

In this chapter, we will first introduce you to the basics of the collision detection system, the types of
collision components, the collision events, and some of the collision presets that we will use for the
development of Pangaea.

Throughout this learning process, you will acquire several skills. This includes adding colliders to
actors and meshes to enable accurate collision detection, configuring collision presets, handling overlap
events for weapon pickup, and casting rays to perform projectile hit checks.

To demonstrate the usage of the robust mathematical tool FVector, we will focus on simulating the
trajectory and movement of projectiles. By utilizing FVector and employing vector calculations, you
can enhance your understanding and proficiency in the aforementioned fundamental mathematical
skills, empowering you to apply them throughout your own game development journey.

This chapter covers the following topics:

• Understanding collision detection

• Setting the collision detection presets

• Using collisions for game interactions

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter08.

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter08
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter08

Handling Collisions206

Understanding collision detection
Game collision detection is a system to detect when two or more game objects overlap or interact with
each other in a game world. The process of collision detection is based on mathematical calculations
that check whether two shapes intersect with each other (overlap detection) or whether a line goes
through a surface (ray casting detection).

To detect actor collisions, Unreal offers certain types of simple collision components that use simple
shapes to deal with collision detections:

• UCapsuleComponent

• UBoxComponent

• USphereComponent

Figure 8.1 – Simple shape collision components

Besides using the collision components, another option to add simple collision shapes to static meshes
is to add them via the Mesh Editor. Double-click on any mesh (model) on the Content Drawer to
open the Mesh Editor. You should find the Collision menu item in the Blueprint Editor menu or
on the toolbar:

Understanding collision detection 207

Figure 8.2 – Adding a simplified collision shape for the pyramid in the Mesh Editor

From here, choose an appropriate collision shape for the mesh from the drop-down list. Figure 8.2
shows that the 18DOP Simplified Collision (a bounding volume with 18 axis-aligned planes) item
is selected to create the collision shape for the pyramid.

If no simple collision shape is added to a mesh, the mesh itself can be used for collision detections.
The benefit is that you get very accurate collision detections, but the trade-off is a loss in performance.

The Unreal collision detection system provides interfaces for the gameplay program to sense what
just happened in the game world. Messages of detected collisions are sent to the gameplay program
in the form of collision events.

There are three basic collision events – OnBeginOverlap, OnEndOverLap, and OnHit:

• OnBeginOverlap events are triggered when an actor or a component enters a trigger area.
For example, the player character enters a pickup area covered by the collision component and
triggers the OnBeginOverlap event of the weapon, and then the weapon’s event handler
function attaches the weapon to the player character.

Handling Collisions208

Figure 8.3 – The player picks up the sword when entering the trigger area

• OnEndOverlap events are triggered when an actor or a component leaves a trigger area.
For example, when the player character walks close to a door, the door automatically opens,
whereas when the player leaves the door area, the OnEndOverlap event is triggered, and
the door closes.

Figure 8.4 – Closing the door when the player leaves

Understanding collision detection 209

• OnHit events occur when an actor moves and hits a solid object – for example, a wall. In this
case, the actor is blocked from moving further so that overlapping with the wall is prevented.

Figure 8.5 – The player is stopped when colliding with the wall

When an actor has collidable components, such as StaticMeshComponent,
SkeletalMeshComponent, BoxComponent, SphereComponent, and
CapsuleComponent, the following actor collision events can be handled by event
handler functions:

• OnActorBeginOverlap

• OnActorEndOverlap

• OnActorHit

A collidable component also has its own collision event interfaces that can be handled with event
handler functions:

• OnComponentBeginOverlap

• OnComponentEndOverlap

• OnComponentHit

When designing a new actor, you should add appropriate collidable components to the actor and
then hook up event handler functions to the actor or component collision events. For example, both
a player character’s skeletal mesh and an added capsule component are collidable components added
to the character, and it’s preferable to choose the capsule component instead of the SkeletalMesh
component for better performance.

Handling Collisions210

Collidable components can be configured independently for different use cases. They can be defined
as a blocker, an overlap, a trigger, and so on. We can set the collision properties for a collidable
component through its collision presets.

Setting the collision presets
Open an actor in the Actor Editor and find the Collision Presets section in the Details panel (see
Figure 8.6). The collision presets property of a collidable component has only one drop-down box,
which lists the optional collision presets. The settings of a selected preset can be expanded and viewed
by clicking the Play button to the left of the Collision Presets label in the actor’s Details tab panel.

The drop-down box has a number of options that you can choose from, but we will just introduce a
few of them here (for more information, you can go to the official document site: https://docs.
unrealengine.com/5.0/en-US/collision-response-reference-in-unreal-
engine/):

• Custom: All the collision settings can be freely set by the developer.

• NoCollision: This collider has no collision.

• BlockAll: This collider blocks all actors in the scene. If a moving actor collides with this actor,
the OnActorHit and OnComponentHit events are triggered.

• OverlapAll: This collider overlaps with all actors in the scene. If a moving actor enters or leaves
this collider’s scope, the actor and the component’s BeginOverlap and EndOverlap
events are triggered.

• BlockAllDynamic: This option is like BlockAll but only blocks pawns, cameras, and vehicles.

• OverlapAllDynamic: This option is like OverlapAll but only overlaps with pawns, cameras,
and vehicles.

https://docs.unrealengine.com/5.0/en-US/collision-response-reference-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/collision-response-reference-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/collision-response-reference-in-unreal-engine/

Setting the collision presets 211

• OverlapOnlyPawn: This option is like OverlapAll but only overlaps with pawns.

Figure 8.6 – The Collision Presets settings

If you select the Custom preset, you can change the collision setting according to your actual need.
The custom preset is a matrix that has nine rows of object types and three checkbox columns titled
Ignore, Overlap, and Block:

• Ignore: The physics body of this object type is ignored by this collision component.

• Overlap: The physics body of this object type is not blocked and generates Overlap events.
This collision component acts like a trigger.

Handling Collisions212

• Block: The physics body of this object type is blocked and generates Hit events. This collision
component acts like a collider.

When two actors overlap with each other, the Generate Overlap Events checkboxes of these two
actors’ collision components must be checked to trigger the Overlap events.

Similarly, the Hit events are triggered only when the Simulation Generates Hit Events checkbox
is checked.

The following table shows the collision settings of the actors in Pangaea:

Actor class Collision component Preset type Generate
overlap?

Simulation
generates

hit events?

PlayerAvatar
Capsule Pawn Yes No

SkeletalMesh NoCollision No No

Enemy
Capsule Pawn Yes No

SkeletalMesh NoCollision No No

Weapon

(s w o r d , a x e ,
or hammer)

StaticMesh OverlapAll Yes No

DefenseTower
SphereCollision OverlapAllDynamic Yes No

StaticMesh BlockAllDynamics Yes No

Projectile

(fireball)
StaticMesh NoCollision No No

Figure 8.7 – Pangaea actor collision preset settings

The provided list of collision settings for different actor types facilitates the game’s interaction
mechanism within the game:

• Both the PlayerAvatar and Enemy actors have two collision components – Capsule and
SkeletalMesh. Their Capsule components are set as Pawn so that they can be blocked
by other BlockAll or BlockAllDynamics collision components.

Using collisions for game interactions 213

• The Capsule component of the PlayerAvatar and Enemy actors’ Generate Overlap option
is set to true to enable overlapping events to trigger when overlapped by other OverlapAll
and OverlapAllDynamics collision components.

• The StaticMesh component of the Weapon actors is set as an OverlapAll type of trigger.
The Generate Overlap option is set to true so that when the weapon overlaps an actor, it can
handle the BeginActorOverlap event to deal damage to the target.

• DefenseTower actors have two collision components – SphereCollision and
StaticMesh. The SphereCollision component is set as OverlapOnlyPawn and
the Generate Overlaps option is set to true so that when any pawn enters or leaves the sphere
scope, the tower starts or stops firing at the invading target.

Projectile actors do not rely on collision components to detect hitting targets. Instead, we will utilize
the engine’s ray-tracing system. Therefore, the StaticMesh component is set as NoCollision.
We have introduced the knowledge required for handling collisions; now, let’s apply it to develop the
Pangaea game interactions.

Based on the completed setups of actor collisions, we can proceed to develop the game interactions,
which will ultimately deliver an enjoyable and engaging gameplay experience.

Using collisions for game interactions
To make it fun to play the game, we want to add the following gameplay features:

• Two types of weapons (sword and axe) can be placed in the game level. The player should walk
through a weapon to pick it up. If the player character already has a weapon, when they pick
up another weapon, the old weapon is dropped.

• When an enemy is activated, spawn a hammer weapon for the enemy.

• Defense towers should be placed in the game level. If the player character enters and stays
within the attack range of the tower, the tower fires at the player character by spawning fireballs.

• A fireball moves along its firing direction and checks whether it hits the target. If the target
is hit, it deals damage and destroys itself. Otherwise, the fireball flies for three seconds and
destroys itself.

Before we start working on the game, we need to import the weapon and defense tower assets.

Handling Collisions214

Downloading and creating the weapon, defense tower, and
fireball actors

To get started, download the assets from the GitHub repository under the /PangaeaAssets/
Weapons and /PangaeaAssets/DefenseTower folders. Here, you will find the following assets:

• Axe: Axe.FBX and Axe_c.TGA

• Hammer: Hammer.FBX and Hammer_c.TGA

• Sword: Sword.FBX and Sword.TGA

• Defense tower: DefenseTower.FBX and DefenseTower_c.TGA

Import these assets into the Pangaea project and create the BP_Axe, BP_Hammer, BP_Sword,
and BP_DefenseTower blueprint. It is recommended to organize the files into suitable folders:

• Put the weapon assets, including the mesh, the texture, and the material files, into the All/
Content/Assets/Weapons folder

• Put the defense tower assets, including the mesh, the texture, and the material files, into the
All/Content/ Assets/Buildings folder

• Put all the new blueprints into the All/Content/Assets/TopDown/Blueprints folder

All the new materials simply have a single Texture Sample node, which takes in a diffuse texture map
and connects to the Base Color pin of the Result node.

Figure 8.8 – The Sword material

This material simply connects the texture map to the Metallic and Roughness pins. Then, we add a
1 – x node to revert the value to make the blade reflective, which you can see in Figure 8.9:

Using collisions for game interactions 215

Figure 8.9 – The sword with the reflection effect

We also need to create another M_Fireball material for the fireball (see Figure 8.10); the fireball
actor can use the Shape_Sphere mesh, which comes from StarterContent.

Figure 8.10 – Creating the M_Fireball material

Handling Collisions216

To create the BP_Axe, BP_Hammer, and BP_Sword blueprints, we will inherit them from the Weapon
class. These blueprints will utilize the Axe, Hammer, and Sword meshes for visual representation.
Additionally, we need to assign the M_Axe, M_Hammer, and M_Sword materials to the respective
weapon meshes.

Moreover, the Collision Presets settings should be set to OverlapAll, and the Generate Overlap
Events box should be checked. This configuration enables the triggering of overlap events whenever
weapons come into contact with any pawns or static meshes.

Figure 8.11 is an example of the creation of BP_Sword.

Figure 8.11 – Creating the BP_Sword blueprint

We then create the defense tower blueprints by inheriting from the DefenseTower class. Use the
DefenseTower mesh for the visualization and the M_DefenseTower material. For the Sphere
Component, set Sphere Radius to 800.0 and Collision Presets to OverlapAllDynamic, making
sure that the Generate Overlap Events box is checked:

 Figure 8.12 – BP_DefenseTower blueprint – Sphere Component setup

Using collisions for game interactions 217

After setting up the Sphere Component, the Mesh Component’s collision presets should be set
as BlockAllDynamics:

Figure 8.13 – BP_DefenseTower blueprint – Mesh Component setup

We create the fireball blueprint by inheriting from the Projectile class. The Shape_Sphere
mesh and the M_Fireball material are used for the visualization. The mesh needs to be scaled
down to 0.2 to fit the game, and Collision Presets should be set as NoCollision.

Figure 8.14 – Creating the BP_Fireball blueprint

Handling Collisions218

Now, drag and drop some defense towers and weapons into the game level. For example, we can
arrange two towers, one sword, and one axe on the ground :

Figure 8.15 – Placing actors into the game level

Here, the player is spawned on the right side of the scene. A sword and an axe are placed in front of
the player character to pick up. Two defense towers are on the path to the stage. One enemy is the
guard of the ramp, and another enemy character represents the boss.

The next thing we want to do is to write some code to get things to work.

Picking up weapons

To make the actor pick up weapons, we let the Weapon class handle the OnActorBeginOverlap
event. When the event is triggered and the overlapped actor is the player character, the weapon attaches
itself to the character.

You may be asking, which part of the character will be the parent of the attached weapon? The solution
is that we can add a socket to the right-hand bone of the character’s skeleton, and then attach the
picked weapon to that socket.

Using collisions for game interactions 219

To add the socket, open Hero_Skeleton in the editor. Find the hand_r bone on the skeleton,
right-click on it, and choose Add Socket from the pop-up menu to add a new socket under the bone.
Rename the socket hand_rSocket. With the socket selected, change its Relative Location and
Relative Rotation values according to those shown in the following figure:

Figure 8.16 – Adding the socket to attach a weapon

To add a Preview Asset to the socket, right-click on the socket and select Add Preview Asset from
the pop-up menu. From there, you can choose a weapon of your choice as the Preview Asset.

Note
The Preview Asset will not be visible during gameplay. Its purpose is solely to assist in adjusting
the relative location and rotation of the socket during the editing phase.

Once done setting the socket, we can add the declaration of the OnWeaponBeginOverlap()
event handler function to the Weapon class in the header file:

UFUNCTION()
void OnWeaponBeginOverlap(AActor* OverlappedActor,
AActor* OtherActor);

To ensure proper functionality, we must bind the OnWeaponBeginOverlap function to the
OnActorBeginOverlap delegate event of the weapon actor within the BeginPlay() function.
This binding establishes the connection between the event and the corresponding function to handle
weapon overlap events.

Handling Collisions220

The delegate’s macro function, AddDynamic, can then be used to bind event handler functions:

OnActorBeginOverlap.AddDynamic(this,
 &AWeapon::OnWeaponBeginOverlap);

The first parameter, this, represents the weapon actor itself, and the second parameter,
&AWeapon::OnWeaponBeginOverlap, represents the handler event function’s address.

In the OnWeaponBeginOverlap function, we utilize the two functions from the AActor class,
AttachToComponent and DetachFromActor. These functions are employed to handle the
process of picking up and attaching the weapon to the overlapped player, as well as dropping the
previously picked-up weapon.

Let’s take a close look at the AttachToComponent function first:

AttachToComponent(Hero->GetMesh(),
FAttachmentTransformRules::SnapToTargetIncludingScale,
FName("hand_rSocket"));

Here is an explanation of the code:

• The first parameter passed is the player character’s skeletal mesh

• The second parameter is an engine-defined enum value, which tells the function to snap the
weapon to the target node on the mesh’s skeleton

• The third parameter provides the target socket name

Next, let’s examine the DetachFromActor function:

DetachFromActor(FDetachmentTransformRules::KeepWorldTransform);

The only parameter of this function is an engine-defined Enum value, which tells the function to drop
the weapon at its current location.

Based on the previously explained pickup process and the related functions, here is the complete code
for Weapon.h and Weapon.cpp, provided for your reference.

This is the weapon.h code:

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Actor.h"
#include "GameFramework/Character.h"
#include "Components/SphereComponent.h"
#include "Weapon.generated.h"

Using collisions for game interactions 221

UCLASS()
class PANGAEA_API AWeapon : public AActor
{
GENERATED_BODY()
public:
AWeapon();

UPROPERTY(VisibleAnywhere, BlueprintReadWrite)
ACharacter* Holder = nullptr;

UPROPERTY(EditAnywhere, Category = "Weapon Params")
float Strength = 10;

protected:
virtual void BeginPlay() override;

UPROPERTY(VisibleAnywhere, BlueprintReadOnly)
UStaticMeshComponent* _StaticMesh;

UFUNCTION()
void OnWeaponBeginOverlap(AActor* OverlappedActor,
AActor* OtherActor);

bool IsWithinAttackRange(float AttackRange,
AActor* Target);

public:
virtual void Tick(float DeltaTime) override;
};

Here is an explanation of the code:

• The Holder variable will be set when the weapon is attached to the player character or an
enemy when the weapon is picked up. It is also used to determine whether the weapon spins
when it is not picked up.

• The Strength variable is used to calculate the damage dealt to the hit target.

• The IsWithinAttackRange function will be implemented in Chapter 9.

This is the weapon.cpp code:

#include "Weapon.h"
#include "PlayerAvatar.h"
#include "DefenseTower.h"

Handling Collisions222

AWeapon::AWeapon()
{
 PrimaryActorTick.bCanEverTick = true;

_StaticMesh =CreateDefaultSubobject<UStaticMeshComponent>
 (TEXT("Static Mesh"));SetRootComponent(_StaticMesh);

void AWeapon::BeginPlay()
{
Super::BeginPlay();

OnActorBeginOverlap.AddDynamic(this,
&AWeapon::OnWeaponBeginOverlap);
}

void AWeapon::Tick(float DeltaTime)
{
Super::Tick(DeltaTime);

 if (Holder == nullptr)
 {
 FQuat rotQuat = FQuat(
 FRotator(0, 300.0f * DeltaTime, 0));
 AddActorLocalRotation(rotQuat);
 }
 }
 void AWeapon::OnWeaponBeginOverlap(AActor* OverlappedActor,
 AActor* OtherActor)
 {
 auto character = Cast<ACharacter>(OtherActor);
 if (character == nullptr)
 {
 Return;
 }
 if (Holder == nullptr)
 {
 auto playerAvatar = Cast<APlayerAvatar>(character);
 if (playerAvatar != nullptr)
 {
 Holder = character;
 TArray<AActor*> attachedActors;
 OtherActor->GetAttachedActors(attachedActors, true);

Using collisions for game interactions 223

 for (int i = 0;
 i < attachedActors.Num(); ++i)
 {
 attachedActors[i]-
 >DetachFromActor(FDetachmentTransformRules::KeepWorldTransform);
 attachedActors[i]->SetActorRotation(FQuat::Identity);
 AWeapon* weapon = Cast<AWeapon>(attachedActors[i]);
 weapon->Holder = nullptr;
 }
 AttachToComponent(Holder->GetMesh(),
 FAttachmentTransformRules::SnapToTargetIncludingScale,
 FName("hand_rSocket"));
 }
 }
 else if(IsWithinAttackRange(0.0f, OtherActor))
 {
 //deal damage to the target: hero or enemy
 }
}

Here is an explanation of the provided code:

• The Tick() function checks whether the Holder variable is nullptr. When the result
is true, that means that the weapon has not been picked up, and the weapon spins to attract
the player’s attention.

• The OnWeaponBeginOverlap function starts by checking whether the overlapped
OtherActor is a character. It casts the OtherActor pointer into a character pointer.
If the casting failed, the character pointer value should be assigned nullptr.

• When the overlapped actor is a character, if the weapon’s Holder is nullptr, it will attach to
the player character if the overlapped character is PlayerAvatar. The AttachToComponent
function is called to do the attachment work.

• Before attaching the weapon, we need to check and drop the player character’s current weapon.
Calling OtherActor->GetAttachedActors() can fill up the attachedActors
array with all the actors (weapons, accessories, etc.) currently attached to the player character.
We then use a for loop to detach all the found attached actors. In our case, the returned array
length should always be 1 because the player character only picks up one weapon at a time.
The DetachFromActor function is called to do the detachment work.

Handling Collisions224

• Once a weapon is dropped, we call the actor’s SetActorRotation function to set an identity
quaternion, so that the weapon is placed straight on the ground.

• If the weapon has Holder when overlapping OtherActor, it should deal damage to the
overlapped OtherActor. We will add the implementation code in Chapter 9.

• If OtherActor isn’t a character, then we cast this OtherActor pointer to be a DefenseTower
pointer. If the returned pointer is not nullptr, the weapon should deal damage to the
overlapped tower. We will add the implementation code in Chapter 9 too.

Play the game and move the hero through any weapon placed in the game level; you should see that
the hero can pick up and drop weapons.

For the enemy, we can simply spawn a hammer and attach it to the enemy when the enemy begins
to play. Let’s see how to do this.

Spawning a weapon for the enemy

In Pangaea, we don’t allow enemies to pick up weapons; instead, we spawn a particular weapon, the
hammer, and attach it to its Holder enemy. To do that, we first need to add two protected variables,
WeaponClass and Weapon, to the AEnemy class:

protected:
UClass* _WeaponClass;
AWeapon* _Weapon;

The _WeaponClass variable is used to store the blueprint class type value of the hammer. It is then
used to instantiate the hammer.

Next, in the constructor of AEnemy, we can write the following two lines of code to find and set the
_WeaponClass value:

static ConstructorHelpers::FObjectFinder<UBlueprint> blueprint_
finder(TEXT("Blueprint'/Game/TopDown/Blueprints/BP_Hammer.BP_
Hammer'"));

_WeaponClass = (UClass*)blueprint_finder.Object->GeneratedClass;

Here is an explanation of the code provided:

• The Unreal Engine’s ConstructorHelpers::FObjectFinder struct helps find an
asset from a given path in the project. We put UBlueprint between the two brackets as the
template class, which indicates that the asset we want to find is a blueprint. The variable name
is blueprint_finder.

• The asset path starts with the asset type specification, Blueprint, followed by an apostrophe
('). It implies that the actual path starts right after Blueprint'.

Using collisions for game interactions 225

• The format of the blueprint asset name should be expressed as
<blueprintName>.<blueprintName>. Here is an example – BP_Hammer.BP_
Hammer.

• The returned value of blueprint_finder.Object->GeneratedClass is the found
asset’s UClass value, which can be assigned to _WeaponClass.

The task of finding and storing asset classes must be performed in the constructor of classes.

The next thing we want to do is to spawn the hammer in the BeginPlay() function:

_Weapon = Cast<AWeapon>(GetWorld()->SpawnActor(_WeaponClass));
_Weapon->Holder = this;
_Weapon->AttachToComponent(GetMesh(),
 FAttachmentTransformRules::SnapToTargetIncludingScale,
 FName("hand_rSocket"));

Here is an explanation of the code:

• The first line of this block of code calls the SpawnActor() function with _WeaponClass
as the parameter to instantiate the hammer. The spawned actor pointer is cast as AWeapon*
and assigned to the _Weapon variable.

• The second line assigns the this actor, which is the enemy itself, to be the holder of the
weapon (the hammer).

• The third line attaches the hammer to hand_rSocket on the character’s skeleton.

Now, the hero and the enemy have their weapons. Let’s write some code to make the defense tower
fire at an invading player.

Defense tower firing fireballs

Unlike the weapon, which has only one collision component, the defense tower has two collision
components, SphereComponent and StaticMeshComponent:

• SphereComponent takes care of firing the OnBeginComponentOverlap and
OnEndComponentOverlap events when the player character enters or leaves its
scope, respectively.

• StaticMeshComponent acts like a collider that blocks pawns from moving through the
tower. This collider is also used to generate OnComponentHit events when a player attacks
the tower. Handling OnComponentHit will be described in Chapter 9.

Handling Collisions226

Let’s declare two more event handler functions for these two SphereComponent events in the
DefenseTower.h header file:

UFUNCTION()
void OnBeginOverlap(UPrimitiveComponent* OverlappedComponent,
AActor* OtherActor,
UPrimitiveComponent* OtherComponent,
int32 OtherBodyIndex,
bool bFromSweep,
const FHitResult& SweepResult);
UFUNCTION()
void OnEndOverlap(UPrimitiveComponent* OverlappedComponent,
AActor* OtherActor,
UPrimitiveComponent* OtherComponent,
int32 OtherBodyIndex);

Both of the two functions have four common parameters that we are interested in here:

• The first parameter, OverlappedComponent, is the component that fires this event

• The second parameter, OtherActor, is the pointer to the other entering or leaving actor

• The third parameter, OtherComponent, is the other actor’s component

• The fourth parameter, OtherBodyIndex, represents the other actor’s body index

We also need a variable that holds the pointer to the target character. Since the target will only be the
player, the pointer type can be APlayerAvatar*:

class APlayerAvatar* _Target = nullptr;

Note that we added the class keyword before APlayerAvatar here. The purpose of doing
so is to not include the PlayerAvatar.h file in the DefenseTower.h header file, only
in DefenseTower.cpp.

Using the class keyword here declares that APlayerAvatar is a class, so the compiler won’t
complain about the unknown symbol. When building DefenseTower.cpp, the compiler can still
find the definition of the APlayerAvatar class because the .cpp file includes PlayerAvatar.h
at the beginning of the file.

The next task that needs to be done is the implementation of the event handler functions.
Handling the overlapping events in the event handler function is pretty straightforward. When the
OnComponentBeginOverlap event is triggered, it simply sets _Target to OtherActor.
Conversely, _Target is set to be nullptr when OnComponentEndOverlap is fired. We can
see this code here:

Using collisions for game interactions 227

void ADefenseTower::OnBeginOverlap(
UPrimitiveComponent* OverlappedComponent,
AActor* OtherActor,
UPrimitiveComponent* OtherComponent,
int32 OtherBodyIndex,
bool bFromSweep,
const FHitResult& SweepResult)
{
APlayerAvatar* player = Cast<APlayerAvatar>(OtherActor);

 if (player)
 {
 _Target = player;
 }
 }
 void ADefenseTower::OnEndOverlap(
 UPrimitiveComponent* OverlappedComponent,
 AActor* OtherActor,
 UPrimitiveComponent* OtherComponent,
 int32 OtherBodyIndex)
 {
 if (_Target != nullptr && OtherActor == _Target)
 {
 _Target = nullptr;
 }
}

The previously presented code demonstrates the implementation of the two event handler functions,
OnBeginOverlap and OnEndOverlap. Now, the defense tower can sense the position of the
player character within its attach range. The next step is to make the defense tower shoot fireballs at
the player.

To fire fireballs, we need a UClass* variable to store the found fireball asset’s class. Then, we can add
the Fire() function to the ADefenseTower class. This function should be called in the Tick()
function when _Target is a valid character. So, add the public function to DefenseTower.h:

void Fire();

Handling Collisions228

In DefenseTower.cpp, implement the Fire() function and call it in the Tick() function:

ADefenseTower::ADefenseTower()
{
 …
 static ConstructorHelpers::FObjectFinder<UBlueprint> blueprint_
 finder(TEXT("Blueprint'/Game/TopDown/Blueprints/BP_Fireball.BP_
 Fireball'"));
 _FireballClass = (UClass*)blueprint_finder.Object->GeneratedClass;
}

void ADefenseTower::Fire()
{
 auto fireball = Cast<AProjectile>(
 GetWorld()->SpawnActor(_FireballClass));
 FVector startLocation = GetActorLocation();
 startLocation.Z += 100.0f;
 FVector targetLocation = _Target->GetActorLocation();
 targetLocation.Z = startLocation.Z;
 FRotator rotation =
 UKismetMathLibrary::FindLookAtRotation(
 startLocation, targetLocation);
 fireball->SetActorLocation(startLocation);
 fireball->SetActorRotation(rotation);
}
void ADefenseTower::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);
 if (_Target != nullptr)
 {
 Fire();
 }
}

Let’s break down this code:

• The Fire() function spawns the fireball from _FireballClass and places it at the location
of the defense tower with a height of 100.0 units. GetTargetLocation() is the function
that returns the actor’s current location in an FVector struct.

Using collisions for game interactions 229

• The fireball is also set with a rotation that makes the fireball orient to the current location of its
target; this is because the fireball script will move the ball forward along with its orientation (see
Figure 8.17). To set the fireball's rotation, we can use the location where the fireball is spawned
as startLocation, get and use the target’s current location as targetLocation, call
the FindLookAtRotation function to get the rotator, and eventually, use the rotator as a
parameter to invoke the SetActorRotation function.

Figure 8.17 – Calculating the fireball rotation based on the start and target locations

• The Tick() function calls Fire() when there is a target to fire at.

Now, if you kick off the game and walk your hero close to a defense tower, the tower will fire hundreds
of fireballs (see Figure 8.18). This problem is caused by the frequency of calling the Fire() function
– the Tick() function is executed every frame, which means that it could be called 60 times every
second when the frame rate is 60 fps.

Figure 8.18 – The tower frequently firing hundreds of fireballs

Handling Collisions230

Under this ad hoc case, we want to change the tower’s tick time to be twice every second. That is 0.5
seconds for the tick interval. Calling SetActorTickInterval() can solve the problem, like so:

void ADefenseTower::BeginPlay()
{
 Super::BeginPlay();
 SetActorTickInterval(0.5f);
}

The last thing to do is to move the fireball and check whether it hits the target.

Moving the fireball and checking whether the target is hit

As a fireball moves forwards, it casts a ray ahead of its current position to check whether any obstacles
are going to be hit in the next frame. If the fireball hits the player character, then it deals damage to
the player. This functionality can be implanted within the Projectile class.

First, a fired fireball should constantly move forward in its set direction. This is done by getting the
fireball’s current location, calculating the velocity vector based on its speed and orientation, adding
the velocity to the current location, and setting the actor to the new location, like so:

FVector currentLocation = GetActorLocation();
FVector vel = GetActorRotation().RotateVector(FVector::ForwardVector)
* Speed * DeltaTime;
 FVector nextLocation = currentLocation + vel;
 SetActorLocation(nextLocation);

To calculate the velocity (vel) vector, we use the fireball’s current rotation to rotate the unit forward
vector, which is actually (1, 0, 0), and then we multiply the rotated vector by the speed and the
delta time. The new location is the addition between the current location and the velocity.

Second, the fireball should have a limited lifespan. When the fireball travels for a certain number of
seconds and still hits nothing, it should be destroyed by calling the Destroy function:

void AProjectile::BeginPlay()
{
 Super::BeginPlay();
 _LifeCountingDown = Lifespan;
}

void AProjectile::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);
 if (_LifeCountingDown > 0.0f)
 {

Using collisions for game interactions 231

 …
 _LifeCountingDown -= DeltaTime;
 }
 else
 {
 PrimaryActorTick.bCanEverTick = false;
 Destroy();
 }
}

Here, the _lifeCountingDown variable is initialized in BeginPlay(). Then, the
_lifeCountingDown variable is checked on every tick. If the value is greater than 0, reduce
DeltaTime from it; otherwise, it will stop ticking and destroy the fireball.

The last and most important thing that the previous code does is detect whether it hits any targets
while moving forward. It is possible to use the overlap events to check whether it hits any targets.

The Projectile class can be the parent of not only the fireball but also any other fired actors, such
as a bullet. When a bullet moves too fast, it can skip the target without triggering any overlap events.
Figure 8.19 shows that when the fireball moves at a very fast speed, it may not hit the hero.

Figure 8.19 – A projectile moving fast may skip the player without firing overlap events

To avoid the aforementioned issue, a better solution is to cast a tracing ray in front of the projectile while
it is moving. The length of the tracing ray can be set identically to the magnitude of the velocity. Then,
we can choose to call an appropriate version of the LineTrace functions to detect any collisions.

Handling Collisions232

Figure 8.20 – A projectile moving fast with a tracing line can detect hitting the player

Unreal Engine offers a bunch of ray-tracing functions (LineTrace functions), including the following:

• Multiple-hit and single-hit line-tracing functions

• Synchronized and asynchronized line-tracing functions

• Tracing by channel, object type, and profile

You can visit the official documentation for the function details here: https://docs.unrealengine.
com/5.0/en-US/API/Runtime/Engine/Engine/UWorld/.

In our case, we will use the LineTraceSingleByObjectType() function
(the LineTrace function):

FHitResult hitResult;
FCollisionObjectQueryParams objCollisionQueryParams;
objCollisionQueryParams.AddObjectTypesToQuery(ECollisionChannel::ECC_
Pawn);

if(GetWorld()->LineTraceSingleByObjectType(hitResult,
currentLocation,
nextLocation,
objCollisionQueryParams))
{
auto playerAvatar = Cast<APlayerAvatar>(
hitResult.GetActor());
if (playerAvatar != nullptr)
{
playerAvatar->Hit(Damage);
PrimaryActorTick.bCanEverTick = false;
Destroy();

https://docs.unrealengine.com/5.0/en-US/API/Runtime/Engine/Engine/UWorld/
https://docs.unrealengine.com/5.0/en-US/API/Runtime/Engine/Engine/UWorld/

Using collisions for game interactions 233

}
}
…
}

Here is an explanation of the code:

• We define a FHitResult type variable, hitResult, which will be used as the first parameter
to call the LineTrace function.

• The second variable, objectCollisionQueryParams, is used as the fourth parameter to
tell the LineTrace function what type of object it should collide with. The next line calls the
AddObjectTypesToQuery method to add ECC_Pawn to the query parameter collection.
This means that the LineTrace function will only check whether the tracing line hits any
pawn target. This can be the player character or the enemy.

• The second and third parameters of the LineTrace function are the start and end locations
of the tracing line.

• The LineTrace function returns true when a pawn is hit. The script checks whether the
hit pawn is PlayerAvatar and deals damage when the check result is true.

Launch the game in the editor. You can use mouse clicks to walk around and pick up a weapon; when
you are in a defense tower’s attack range, the tower shoots fireballs at your character. The enemies
will chase and attack you when your character is within their vision range; right-click on your mouse
to fight back.

Figure 8.21 – Playing Pangaea in the editor

Handling Collisions234

Processing a defense tower hit

In the Defense tower firing fireballs section, we associated two event handler functions with the actor’s
BeginOverlap and EndOverlap events. This configuration allows the tower to detect and fire
at the player when the player’s character enters its domain. However, to handle hits on the defense
tower itself, we will adopt a different approach, which handles the OnBeginOverlap event of the
tower’s MeshComponent.

To initiate the implementation of this process, add a new UFUNCTION named OnMeshBeginOverlap
at the end of DefenseTower.h:

UFUNCTION(BlueprintCallable)
void OnMeshBeginOverlap(AActor* OtherActor);

This function declaration indicates that this function can be called in Blueprint.

The function implementation should be added to DefenseTower.cpp:

void ADefenseTower::OnMeshBeginOverlap(AActor* OtherActor)
{
 AWeapon* weapon = Cast<AWeapon>(OtherActor);
 if (weapon == nullptr || weapon->Holder == nullptr)
 {
 return;
 }

 APangaeaCharacter* character = weapon->Holder;
 if (character->IsA(APlayerAvatar::StaticClass()) &&
 character->IsAttacking() &&
 CanBeDamaged())
 {
 Hit(weapon->Holder->Strength);
 }
}

This code accomplishes the following tasks:

• It casts the other overlapped actor to type AWeapon* and checks whether the casted actor is
a valid weapon and has a holder

• If the other actor is a weapon and is held by a character, it proceeds to process the Hit event
only when the holding character is a player avatar, the player avatar is in an attacking state, and
the tower can currently be damaged

• The Hit function is called when all the previous conditions are met

Using collisions for game interactions 235

With the OnMeshBeginOverlap function now prepared for invocation, let’s proceed to add the
BeginOverlap event node to the BP_DefenseTower event graph. This particular event node
will handle the task of calling OnMeshBeginOverlap whenever the event is triggered.

Follow these steps to create the event node:

1. Open BP_DefenseTower in the editor.

2. Select Mesh Component (Static Mesh) in the Components panel.

Figure 8.22 – Selecting the Mesh Component in BP_DefenseTower

3. Click the + button to add the Begin Overlap node to the event graph.

Figure 8.23 – Click the + button to add the BeginOverlap node to the event graph

4. Add the On Mesh Begin Overlap node.

5. Connect the execution pins from On Component Begin Overlap to On Mesh Begin Overlap.

6. Connect the Other Actor pin from On Component Begin Overlap to the pin of the On Mesh
Begin Overlap node.

Handling Collisions236

Figure 8.24 – Call the OnMeshBeginOverlap function when the

OnComponentBeginOverlap event is triggered

7. Save and compile the BP_DefenseTower blueprint after your edits.

With the collision settings completed, the Pangaea game now possesses the essential interactions that
make it enjoyable and playable.

Summary
In this chapter, you learned about collision detection and how to use the engine’s collision system to
bring interactions into the Pangaea game.

The first part of this chapter explained the three collision shape components
(CapsuleComponent, BoxComponent, and SpherComponent) as well as the two mesh
components (StaticMeshComponent and SekeltalMeshComponet). Adding collision
shape components to actors and disabling the mesh collisions for better performance was
also explained.

After that, you learned about the OnBeginOverlap and OnEndOverlap collision events and
how they work with your C++ code. It was emphasized that you can handle collision events on either
an actor or a component, depending on your actual needs.

Appropriate collision presets are vital to gameplay to properly process interactions between actors.
It is important to understand what collision preset type, such as BlockAll, OverlapAllDynamic,
and NoCollision, should be used for different collision components. You also learned how to
customize a new collision preset for special uses.

Summary 237

Based on our knowledge of the mechanism of the collision system, we worked together to import and
create the assets of weapons, the defense tower, and the fireball actors.

We coded a function to handle the weapon’s OnActorBeginOverlap event to make the
weapons pickable. We also added functions to handle the OnComponentBeginOverlap and
OnComponentEndOverlap component events of DefenseTower. By doing that, the defense
tower knew when the player was within its attack range and shot fireballs at the player character.

The last part of this chapter introduced the concept of ray casting and the engine’s LineTrace functions.
You learned to write the code to move the fireball and used the LineTraceSingleByObjectType()
function to detect hitting the target.

The next chapter will focus on code refactoring and completing the rest of the gameplay (hit and
damage processes, for example). Some useful UE5 APIs will be introduced here too.

9
Improving C++ Code Quality

Congratulations, you have completed eight chapters and have made the game playable! But do you
notice something in the C++ code you wrote that makes you feel uncomfortable – for example, the
duplicated variables and functions in the APlayerAvatar and AEnemy classes? This chapter will
introduce two approaches (code refactoring and code refinement) that developers regularly use to
improve their code quality.

Additionally, you will also learn how to output debug messages in Unreal and two ways (by calling
the Cast and IsA functions) to find out an actor’s class type.

By the end of this chapter, you will have a valuable awareness of the importance of maintaining code
quality in programming, as well as knowledge regarding code refactoring, code refining, as well as the
iterative process. This understanding will empower you to write high-quality and professional code.

Topics covered in this chapter include the following:

• Refactoring code

• Refining code

• Outputting debug messages

• Checking an Actor instance’s actual class type

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter09.

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter09
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter09

Improving C++ Code Quality240

Refactoring code
You probably felt a little uncomfortable with the redundant code blocks we wrote in the previous
chapters; for example, the PlayerAvatar and Enemy classes have some identical attribute variables
and functions. Can we instead combine them and maintain only one copy of code for those replicated
variables and functions? Yes, and this will require us to refactor the code.

Code refactoring helps improve the internal structure of code so that it becomes more readable,
maintainable, and efficient. The process includes algorithm optimization, duplicate removal, and
code simplification.

For the Pangaea project, we identified two refactoring tasks:

• Combining the two animation instance classes

• Adding a parent class for the PlayerAvatar and Enemy classes

Let’s start with the first task.

Combining the PlayerAvatarAnimInstance and
EnemyAnimInstance classes

Open and compare the PlayerAvatarAnimInstance.h, PlayerAvatarAnimInstance.
cpp, EnemyAnimInstance.h, and EnemyAnimInstance.cpp files – you should find that
the two pairs of header and source code files are almost identical, except for the class names.

For the Pangaea game, we know that the game design won’t be changed in the future, so we can
combine these two classes. We can create a new class called PangaeaAnimInstance, with the
class files called PangaeaAnimInstance.h and PangaeaAnimInstance.cpp. Of course,
the old files can be removed from the project (if you have forgotten how to remove code files, please
refer to the Recompiling C++ Projects section of Chapter 5).

Here is the code for PangaeaAnimInstance.h:

#pragma once
#include "CoreMinimal.h"
#include "Animation/AnimInstance.h"
#include "PangaeaAnimInstance.generated.h"

UENUM(BlueprintType)
enum class ECharacterState : uint8
{
 Locomotion,
 Attack,
 Hit,
 Die

Refactoring code 241

};

UCLASS()
class PANGAEA_API UPangaeaAnimInstance : public UAnimInstance
{
 GENERATED_BODY()
public:
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
"PangaeaAnimInstance Params")
 float Speed;
UPROPERTY(EditAnywhere, BlueprintReadWrite, Category =
"PangaeaAnimInstance Params")
 ECharacterState State;

 UFUNCTION(BlueprintCallable)
 void OnStateAnimationEnds();
};

Here is the code for PangaeaAnimInstance.cpp:

#include "PangaeaAnimInstance.h"
#include "PangaeaCharacter.h"

void UPangaeaAnimInstance::OnStateAnimationEnds()
{
if (State == ECharacterState::Attack)
{
 State = ECharacterState::Locomotion;
}
else
{
auto character = Cast<APangaeaCharacter>(GetOwningActor());

if (State == ECharacterState::Hit)
{
 if (character->GetHealthPoints() > 0.0f)
 {
 State = ECharacterState::Locomotion;
 }
 else
 {
 State = ECharacterState::Die;
 }
}

Improving C++ Code Quality242

else if (State == ECharacterState::Die)
{
 character->DieProcess();
}
}
}

The previous code for the PangaeaAnimInstance class combined the redundant code in both
PlayerAvatarAnimInstance and EnemyAnimInstance into one place. Since the two
animation blueprints, ABP_Player and ABP_Enemy, were created based on the old animation
instance classes, they both need to be reparented to the new PangaeAnimInstance class.

To do that, open ABP_Player in the Animation Blueprint Editor and select File | Reparent
Blueprint from the main menu:

Figure 9.1 – Reparenting ABP_Player to PangaeaAnimInstance.png

Refactoring code 243

Then, choose PangaeaAnimInstance from the Reparent Blueprint list.

Unfortunately, you have to re-set up the state machine, variables, and animations for the blueprint
(follow the steps introduced in the Creating the State Machine on ABP_PlayerAvatar section of
Chapter 6 to do this).

Figure 9.2 illustrates the different class diagrams before and after the refactoring process:

Figure 9.2 – Class diagrams before and after refactoring PlayerAvatarAnimInstance

and EnemyAnimInstance into PangaeaAnimInstance

Next, we want to refactor the PlayerAvatar and Enemy classes to avoid having replicated attribute
variables and functions.

Making PangaeaCharacter the parent class of APlayerAvatar and
AEnemy

By investigating the APlayerAvatar and AEnemy classes, we can draw the class diagram, which
includes information about the class variables and functions:

Improving C++ Code Quality244

Figure 9.3 – Pangaea actors class diagram before the refactoring

In the diagram, + indicates that the subsequent variable or function is publicly accessible, and –
indicates that the subsequent variable or function is only privately accessible.

As you can see, the APlayerAvatar class and the AEnemy class have some variables and functions
in common, for instance, the HealthPoints variable and the GetHealthPoints function. The
two copies of the same code may potentially cause inconsistency and confusion, which will make it
harder to maintain the code. Therefore, we want to refactor these two classes and their relationship.

Refactoring code 245

To refactor the class structure of APlayerAvatar and AEnemy, we can change and make the
APangaeaCharacter class (which was already created with the Pangaea project) the parent class
that is inherited by classes. Then, we can move the common variables and functions from the two
child classes into the parent class:

Figure 9.4 – Pangaea actors class diagram after the refactoring

Improving C++ Code Quality246

As you can see, the common variables and functions are now written only once in the APangaea
Character class, which helps avoid ambiguity and improves the code quality for maintenance.

We will present the code for the .h and .cpp files for the three refactored classes: APangaeaCharacter,
APlayerAvatar, and AEnemy.

Here is the code for PangaeaCharacter.h:

#pragma once

#include "CoreMinimal.h"
#include "GameFramework/Character.h"
#include "PangaeaCharacter.generated.h"

UCLASS(Blueprintable)
class APangaeaCharacter : public ACharacter
{
GENERATED_BODY()
public:
APangaeaCharacter();
UPROPERTY(EditAnywhere, Category = "Pangaea Character Params")
int HealthPoints = 100;

UPROPERTY(EditAnywhere, Category = "Pangaea Character Params")
float Strength = 5;

UPROPERTY(EditAnywhere, Category = "Pangaea Character Params")
float Armer = 1;

UPROPERTY(EditAnywhere, Category = "Pangaea Character Params")
float AttackRange = 200.0f;

UPROPERTY(EditAnywhere, Category = "Pangaea Character Params")
float AttackInterval = 3.0f;

public :
virtual void Tick(float DeltaTime) override;

UFUNCTION(BlueprintCallable,
 Category = "Pangaea|Character",
 meta = (DisplayName = "Get HP"))
int GetHealthPoints();

Refactoring code 247

UFUNCTION(BlueprintCallable, Category = "Pangaea|Character")
bool IsKilled();

UFUNCTION(BlueprintCallable, Category = "Pangaea|Character")
bool CanAttack();

virtual void Attack();
virtual void Hit(int damage);
virtual void DieProcess();

protected:
virtual void BeginPlay() override;

class UPangaeaAnimInstance* _AnimInstance;
int _HealthPoints;
float _AttackCountingDown;
};

In PangaeaCharacter.h, you may have noticed the new UPangaeaAnimInstance-type
variable, _AnimInstance, of the APangaeaCharacter class. This variable is used as a cache
variable. We will explain it in the Refining code section.

We also changed the APlayerAvatar and AEnemy classes’ parent to be APangaeaCharacter
and removed those variables and functions that were already moved to the parent class.

The code for PangaeaCharacter.cpp is provided here:

#include "PangaeaCharacter.h"
#include "PangaeaAnimInstance.h"
#include "UObject/ConstructorHelpers.h"
#include "Camera/CameraComponent.h"
#include "Components/DecalComponent.h"
#include "Components/CapsuleComponent.h"
#include "GameFramework/CharacterMovementComponent.h"
#include "GameFramework/PlayerController.h"
#include "GameFramework/SpringArmComponent.h"
#include "Materials/Material.h"
#include "Engine/World.h"

APangaeaCharacter::APangaeaCharacter()
{
 PrimaryActorTick.bCanEverTick = true;
}

Improving C++ Code Quality248

void APangaeaCharacter::BeginPlay()
{
 Super::BeginPlay();

 _AnimInstance = Cast<UPangaeaAnimInstance>(
 GetMesh()->GetAnimInstance());
 _HealthPoints = HealthPoints;
}

void APangaeaCharacter::Tick(float DeltaSeconds)
{
 Super::Tick(DeltaSeconds);
}

int APangaeaCharacter::GetHealthPoints()
{
 return _HealthPoints;
}

bool APangaeaCharacter::IsKilled()
{
 return (_HealthPoints <= 0.0f);
}

bool APangaeaCharacter::CanAttack()
{
 return (_AttackCountingDown <= 0.0f &&
 _AnimInstance->State == ECharacterState::Locomotion);
}

void APangaeaCharacter::Attack()
{
 _AttackCountingDown = AttackInterval;
}

void APangaeaCharacter::Hit(int damage)
{
 _HealthPoints -= damage;
 _AnimInstance->State = ECharacterState::Hit;

if (IsKilled()) {
 PrimaryActorTick.bCanEverTick = false;
}

Refactoring code 249

}

void APangaeaCharacter::DieProcess()
{
 PrimaryActorTick.bCanEverTick = false;
 Destroy();
 GEngine->ForceGarbageCollection(true);
}

Next up is the code for PlayerAvatar.h:

#pragma once
#include "CoreMinimal.h"
#include "GameFramework/SpringArmComponent.h"
#include "Camera/CameraComponent.h"
#include "PangaeaCharacter.h"
#include "Weapon.h"
#include "PlayerAvatar.generated.h"

UCLASS(Blueprintable)
class PANGAEA_API APlayerAvatar : public APangaeaCharacter
{
GENERATED_BODY()
public:
APlayerAvatar();
protected:
virtual void BeginPlay() override;
public:
virtual void Tick(float DeltaTime) override;
virtual void SetupPlayerInputComponent(
 class UInputComponent* PlayerInputComponent) override;

UFUNCTION(BlueprintCallable,
 Category = "Pangaea|PlayerAvatar")
void AttachWeapon(AWeapon* Weapon);

UFUNCTION(BlueprintCallable,
 Category = "Pangaea|PlayerAvatar")
void DropWeapon();
void Attack() override;

FORCEINLINE
class UCameraComponent* GetCameraComponet() const
{ return _CameraComponent; }

Improving C++ Code Quality250

FORCEINLINE
class USpringArmComponent* GetSringArmComponet() const { return _
SpringArmComponent; }

private:
UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
 Category = "Camera", meta = (AllowPrivateAccess = "true"))
USpringArmComponent* _SpringArmComponent;

UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
 Category = "Camera", meta = (AllowPrivateAccess = "true"))
UCameraComponent* _CameraComponent;
};

The implementation code for PlayerAvatar.cpp is provided here:

#include "PlayerAvatar.h"
#include "GameFramework/CharacterMovementComponent.h"
#include "PangaeaAnimInstance.h"

APlayerAvatar::APlayerAvatar()
{
bUseControllerRotationPitch = false;
bUseControllerRotationYaw = false;
bUseControllerRotationRoll = false;

auto characterMovement = GetCharacterMovement();
characterMovement->bOrientRotationToMovement = true;
characterMovement->RotationRate = FRotator(0.f, 640.f, 0.f);
characterMovement->bConstrainToPlane = true;
characterMovement->bSnapToPlaneAtStart = true;

_SpringArmComponent =
 CreateDefaultSubobject<USpringArmComponent>(
 TEXT("SpringArm"));
_SpringArmComponent->SetupAttachment(RootComponent);
_SpringArmComponent->SetUsingAbsoluteRotation(true);
_SpringArmComponent->TargetArmLength = 800.f;
_SpringArmComponent->SetRelativeRotation(
 FRotator(-60.f, 0.f, 0.f));
_SpringArmComponent->bDoCollisionTest = false;

CameraComponent =

Refactoring code 251

 CreateDefaultSubobject<UCameraComponent>(TEXT("Camera"));
_CameraComponent->SetupAttachment(_SpringArmComponent,
 USpringArmComponent::SocketName);
_CameraComponent->bUsePawnControlRotation = false;
}

void APlayerAvatar::BeginPlay()
{
Super::BeginPlay();
}

void APlayerAvatar::Tick(float DeltaTime)
{
Super::Tick(DeltaTime);

_AnimInstance->Speed =
 GetCharacterMovement()->Velocity.Size2D();

if (_AttackCountingDown == AttackInterval)
{
 _AnimInstance->State = ECharacterState::Attack;
}

if (_AttackCountingDown > 0.0f)
{
 _AttackCountingDown -= DeltaTime;
}
}

void APlayerAvatar::SetupPlayerInputComponent(
 UInputComponent* PlayerInputComponent)
{
Super::SetupPlayerInputComponent(PlayerInputComponent);
}

void APlayerAvatar::AttachWeapon(AWeapon* Weapon)
{
Weapon->AttachToComponent(GetMesh(),
 FAttachmentTransformRules::SnapToTargetIncludingScale,
 FName("hand_rSocket"));
}

void APlayerAvatar::DropWeapon()

Improving C++ Code Quality252

{
TArray<AActor*> attachedActors;
GetAttachedActors(attachedActors, true);
for (int i = 0; i < attachedActors.Num(); ++i)
{
 attachedActors[i]->DetachFromActor(
 FDetachmentTransformRules::KeepWorldTransform);
 attachedActors[i]->SetActorRotation(FQuat::Identity);
 AWeapon* weapon = Cast<AWeapon>(attachedActors[i]);
 if (weapon != nullptr)
 {
 weapon->Holder = nullptr;
 }
}
}

void APlayerAvatar::Attack()
{
 APangaeaCharacter::Attack();
}

Lastly, we’ll modify the code for the AEnemy class. Here is the code for Enemy.h:

#pragma once

#include "CoreMinimal.h"
#include "PangaeaCharacter.h"
#include "Weapon.h"
#include "Enemy.generated.h"

UCLASS()
class PANGAEA_API AEnemy : public APangaeaCharacter
{
 GENERATED_BODY()

public:
 AEnemy();

protected:
 virtual void BeginPlay() override;

 APawn* _chasedTarget = nullptr;
 UClass* _WeaponClass;
 AWeapon* _Weapon;

Refactoring code 253

public:
 virtual void Tick(float DeltaTime) override;

 void Attack() override;
 void DieProcess() override;

 UFUNCTION(BlueprintCallable, Category = "Pangaea|Enemy")
 void Chase(APawn* targetPawn);
private:
 UPROPERTY(VisibleAnywhere, BlueprintReadOnly,
 meta = (AllowPrivateAccess = "true"))
 class UPawnSensingComponent* PawnSensingComponent;
};

The implementation code for Enemy.cpp is as follows:

#include "Enemy.h"
#include "Perception/PawnSensingComponent.h"
#include "GameFramework/CharacterMovementComponent.h"
#include "EnemyController.h"
#include "PangaeaAnimInstance.h"

AEnemy::AEnemy()
{
PawnSensingComponent =
 CreateDefaultSubobject<UPawnSensingComponent>(
 TEXT("PawnSensor"));
static ConstructorHelpers::FObjectFinder<UBlueprint>
blueprint_finder(
TEXT("Blueprint'/Game/TopDown/Blueprints/BP_Hammer.BP_Hammer'"));
_WeaponClass = (UClass*)blueprint_finder.Object->GeneratedClass;
}

void AEnemy::BeginPlay()
{
Super::BeginPlay();

_Weapon = Cast<AWeapon>(GetWorld()->SpawnActor(_WeaponClass));
_Weapon->Holder = this;
_Weapon->AttachToComponent(GetMesh(),
 FAttachmentTransformRules::SnapToTargetIncludingScale,
 FName("hand_rSocket"));
}

Improving C++ Code Quality254

void AEnemy::Tick(float DeltaTime)
{
Super::Tick(DeltaTime);

_AnimInstance->Speed =
 GetCharacterMovement()->Velocity.Size2D();

if (_AttackCountingDown == AttackInterval)
{
 _AnimInstance->State = ECharacterState::Attack;
}

if (_AttackCountingDown > 0.0f)
{
 _AttackCountingDown -= DeltaTime;
}

if (_chasedTarget != nullptr &&
 _AnimInstance->State == ECharacterState::Locomotion)
{
auto enemyController =
 Cast<AEnemyController>(GetController());
enemyController->MakeAttackDecision(_chasedTarget);
}
}

void AEnemy::Chase(APawn* targetPawn)
{
if (targetPawn != nullptr &&
 _AnimInstance->State == ECharacterState::Locomotion)
{
auto enemyController =
 Cast<AEnemyController>(GetController());
enemyController->MoveToActor(targetPawn, 90.0f);
}
_chasedTarget = targetPawn;
}

void AEnemy::DieProcess()
{
 Super::DieProcess();
 _Weapon->Destroy();

Refining code 255

}

void AEnemy::Attack()
{
 APangaeaCharacter::Attack();

 GetController()->StopMovement();
}

The previously presented header and .cpp files demonstrated the code implementation for adding
the APangaeaCharacter class and refactoring the APlayerAvatar and AEnemy classes.
Moreover, we employed _AnimInstance as a cache variable to avoid constantly retrieving the
character’s animation instance.

In fact, using caching variables for improved performance is a process of refinement. Let’s proceed to
explain and carry out additional refinement tasks.

Refining code
Code refinement is performed to improve the overall quality of code and make changes to its external
behavior. This usually involves improving performance, enhancing functionality, adding new features,
and fixing bugs, which in turn improve the user experience.

We have identified two ways to refine the code:

• Using caching variables

• Creating a fireball pool

Let’s go through each one.

Using caching variables

A caching variable is used to store a retrieved value that will be frequently used in the future. If you
review the old APlayerAvatar and AEnemy source code, you will find the following two lines of
code are executed at every frame in the Tick functions of the two classes:

auto animInst = Cast<UPlayerAvatarAnimInstance>(
 GetMesh()->GetAnimInstance());

auto animInst = Cast<UEnemyAnimInstance>(
 GetMesh()->GetAnimInstance());

If you look further into the implementations of the CanAttack, Hit, and Chase functions, the
operation of getting and casting the character’s animation instance is also executed.

Improving C++ Code Quality256

We don’t want to waste CPU time by repeatedly retrieving the animation instance all the time.
Therefore, we use the caching variable, _AnimInstance, to store the retrieved pointer value in
the APangaeaCharacter::BeginPlay function, which is called only once at the beginning;
we can then directly read the value when needed:

void APangaeaCharacter::BeginPlay()
{
 …
 _AnimInstance = Cast<UPangaeaAnimInstance>(
 GetMesh()->GetAnimInstance());
 …
}

bool APangaeaCharacter::CanAttack()
{
return (_AttackCountingDown <= 0.0f &&
 _AnimInstance->State == ECharacterState::Locomotion);
}

Having just introduced the utilization of caching variables as part of the code refinement process, our
next objective is to implement a fireball pool. This pool will enhance the performance of managing
pre-spawned fireballs and avoiding frequent spawns and despawns.

Creating a fireball pool

A fireball pool is created based on the concept of the Object Pool pattern, which allows the reuse of
fireballs to avoid the overhead of creating and destroying them frequently. A fireball pool is essentially
a collection of fireballs.

When shooting a fireball, the system checks and tries retrieving and reusing a fireball created upfront;
otherwise, a new fireball is instantiated. Once a fireball’s lifetime runs out or it hits something, instead
of destroying it, we hide the fireball and add it to the fireball pool for future use.

The main benefits of using a fireball pool are as follows:

• Better performance: A fireball pool helps reduce the overhead involved in the frequent creation
and destruction of fireballs

• Reduction in the chances of facing the memory management problem: By reusing fireballs,
the number of memory allocations and garbage collections can be reduced, which avoids the
problem of memory fragmentation

• Control of the number of fireballs created in the system: The fireball pool makes it possible
to centralize the control over the maximum number of fireballs, which avoids the potential
memory overflow problem

Refining code 257

To create a fireball pool, we need a data container that will temporarily store inactive fireballs. Unreal
provides different types of data containers, such as TArray, TQueue, and TMap (see Table 9.1),
which we can choose from for the fireball pool:

Data container Description
TArray A data array that supports random access by index values. A loop must be

used to search for an item by value.
TQueue A data container that allows First In, First Out (FIFO) access operations. You

can add items to the queue and dequeue items when it is not an empty queue.
TMap A data container that stores pairs of keys and data values. It acts like a dictionary

that allows querying values by keys. The search operation on TMap is based
on a high-performance algorithm and is much faster than that on TArray.

Figure 9.5 – Descriptions of some Unreal data containers

For the Pangaea project, we’ll simply use TQueue to create the FireballPool variable as a member
of the APangaeaGameMode class. In this use case, the TQueue container is a suitable data structure
that can satisfy the basic requirement. Making FireballPool a member of the game mode makes
it convenient to globally access the fireball pool.

The following is the syntax of TQueue:

template<typename ItemType, EQueueMode Mode>
class TQueue

We also add two functions to APangaeaGameMode, the interfaces for retrieving and recycling fireballs:

AProjectile* SpawnOrGetFireball(UClass * ProjectileClass);
void RecycleFireball(AProjectile* projectile);

Let’s break this code down:

• The SpawnOrGetProjectile function will spawn a new fireball actor if the fireball pool
is empty; otherwise, it dequeues the first fireball from the pool and returns it

• The RecycleProjectile function simply enqueues the unused fireball onto the queue

• The parameter and return value of the fireball are of the AProjectile* type because
AProjectile is the parent of the BP_Fireball blueprint

The new code for APangaeaGameMode.h is shown here:

#pragma once

#include "CoreMinimal.h"

Improving C++ Code Quality258

#include "GameFramework/GameModeBase.h"
#include "Projectile.h"

#include "PangaeaGameMode.generated.h"

UCLASS(minimalapi)
class APangaeaGameMode : public AGameModeBase
{
GENERATED_BODY()

public:
APangaeaGameMode();
~APangaeaGameMode();

AProjectile* SpawnOrGetFireball(UClass * ProjectileClass);
void RecycleFireball(AProjectile* projectile);

protected:
TQueue<AProjectile*, EQueueMode::Spsc> _FireballPool;
};

The new code for APangaeaGameMode.cpp is shown here:

#include "PangaeaGameMode.h"
#include "PangaeaCharacter.h"
#include "PangaeaPlayerController.h"
#include "UObject/ConstructorHelpers.h"

APangaeaGameMode::APangaeaGameMode()
{
PlayerControllerClass = APangaeaPlayerController::StaticClass();

static ConstructorHelpers::FClassFinder<APawn>
PlayerPawnBPClass(TEXT("/Game/TopDown/Blueprints/BP_PlayerAvatar"));
if (PlayerPawnBPClass.Class != nullptr)
{
 DefaultPawnClass = PlayerPawnBPClass.Class;
}

static ConstructorHelpers::FClassFinder<APlayerController>
PlayerControllerBPClass(TEXT("/Game/TopDown/Blueprints/BP_
TopDownPlayerController"));

Refining code 259

if(PlayerControllerBPClass.Class != NULL)
{
 PlayerControllerClass = PlayerControllerBPClass.Class;
}
}

APangaeaGameMode::~APangaeaGameMode()
{
AProjectile* fireball;
while (!_FireballPool.IsEmpty() &&
 _FireballPool.Dequeue(fireball))
{
 fireball->Destroy();
}
_FireballPool.Empty();
}

AProjectile* APangaeaGameMode::SpawnOrGetFireball(UClass*
projectileClass)
{
AProjectile* fireball = nullptr;

if (_FireballPool.IsEmpty())
{
 fireball = Cast<AProjectile>(
 GetWorld()->SpawnActor(projectileClass));
}
else
{
 _FireballPool.Dequeue(fireball);
 fireball->Reset();
}
return fireball;
}

void APangaeaGameMode::RecycleFireball(AProjectile* projectile)
{
 if (projectile == nullptr)
 {
 return;
 }

 projectile->SetActorHiddenInGame(true);

Improving C++ Code Quality260

 projectile->SetActorEnableCollision(false);
 projectile->SetActorTickEnabled(false);
 _FireballPool.Enqueue(projectile);
}

For better comprehension, let’s clarify the code:

• _FireballPool is defined as being of the TQueue type. The template specification tells
Unreal that the queue elements should be of the AProjectile* type.

• When calling the RecycleFireball function to recycle a fireball, we use three steps (hide,
disable collision, and disable ticking) to deactivate the fireball:

projectile->SetActorHiddenInGame(true);
projectile->SetActorEnableCollision(false);
projectile->SetActorTickEnabled(false);

• When calling the SpawnOrGetFireball function, a fireball is dequeued from the pool;
we call the fireball’s Reset function to reactivate it.

Now, FireballPool is ready to be used. Let’s make some changes to the DefenseTower and
Projectile classes so that we can utilize FireballPool and improve the performance of the game.

To use the fireball pool, we need to make three changes to the ADefenseTower class.

First, we add a new member variable to _PangaeaGameMode:

class PANGAEA_API ADefenseTower : public AActor
{
 …
protected:
 class APangaeaGameMode* _PangaeaGameMode;
 …
};

Next, we retrieve and store the APangaeaGameMode instance to the _PangaeaGameMode variable
in the ADefenseTower::BeginPlay function:

void ADefenseTower::BeginPlay()
{
 …
 _PangaeaGameMode = Cast<APangaeaGameMode>(
 UGameplayStatics::GetGameMode(GetWorld()));
}

Refining code 261

Finally, we call the APangaeaGameMode::SpawnOrGetFireball function instead of the
UWorld::SpawnActor function to fire a fireball:

…
void ADefenseTower::Fire()
{
/* This block is commented
auto fireball = Cast<AProjectile>(
 GetWorld()->SpawnActor(_FireballClass));
*/
auto fireball = _PangaeaGameMode->SpawnOrGetFireball(
 _FireballClass);
 …
}

Fireballs are deactivated, meaning they are hidden, and their collision and ticking functionalities are
disabled when they are recycled to the pool; we need to add and use a new Reset function to the
AProjectile class, which takes care of re-activating the fireball before reusing it.

We also want to add the _PangaeaGameMode variable to the AProjectile class to cache the
APangaeaGameMode instance. The following code shows the changes in the Projectile.h file:

…
UCLASS(Blueprintable)
class PANGAEA_API AProjectile : public AActor
{
…
class APangaeaGameMode* _PangaeaGameMode;

public:
…
void Reset();
};

The provided code simply introduces a new variable, which is a pointer to the APangaeaGame
Mode instance.

In Projectile.cpp, the primary objective of making this change is to recycle unused fireballs in
the pool instead of destroying them:

…
void AProjectile::BeginPlay()
{

Improving C++ Code Quality262

Super::BeginPlay();
_PangaeaGameMode = Cast<APangaeaGameMode>(
 UGameplayStatics::GetGameMode(GetWorld()));
Reset();
}

void AProjectile::Tick(float DeltaTime)
{
Super::Tick(DeltaTime);

if (_LifeCountingDown > 0.0f)
{
 FVector currentLocation = GetActorLocation();
 FVector vel = GetActorRotation().RotateVector
 (FVector::ForwardVector) * Speed * DeltaTime;
 FVector nextLocation = currentLocation + vel;
 SetActorLocation(nextLocation);

 //Ray cast check
 FHitResult hitResult;
 FCollisionObjectQueryParams objCollisionQueryParams;
 objCollisionQueryParams.AddObjectTypesToQuery(
 ECollisionChannel::ECC_Pawn);

 if (GetWorld()->LineTraceSingleByObjectType(
 hitResult, currentLocation, nextLocation,
 objCollisionQueryParams))
 {
 auto playerAvatar = Cast<APlayerAvatar>(
 hitResult.GetActor());
 if (playerAvatar != nullptr)
 {
 playerAvatar->Hit(Damage);
 //Destroy();
 _PangaeaGameMode->RecycleFireball(this);
 }
 }

 //Reduce time
 _LifeCountingDown -= DeltaTime;
}
else
{
 //Destroy();

Outputting debug messages 263

 _PangaeaGameMode->RecycleFireball(this);
}
}

void AProjectile::Reset()
{
 _LifeCountingDown = Lifespan;
 SetActorHiddenInGame(false);
 SetActorEnableCollision(true);
 SetActorTickEnabled(true);
}

Here is the explanation of the primary tasks performed by the code:

• In BeginPlay, the UGameplayStatics::GetGameMode function gets and stores the
APangaeaGameMode instance to the _PangaeaGameMode variable

• In BeginPlay, the Reset function is called to reset the projectile’s states

• In Tick, RecycleFireball is called instead of calling the Destroy() function when
the projectile hits something or its lifetime runs out

• The implementation of the Reset() function restores the projectile’s lifespan, makes the
projectile visible in the game, and enables the collision detection and the ticking functionality
for the projectile

In addition to the previous processes, you can try to identify and fix some other bugs and add or remove
code to make the gameplay smoother. Please download the source code files from the Chapter09
folder in this book’s GitHub repository and compare them with those in the Chapter08 folder.

Refactoring and refining code is essential for programmers to develop good coding habits as well as
produce efficient, maintainable, and adaptable software. Regularly refactoring and refining code helps
identify and eliminate code smells, such as duplication, design defects, excessive complex code blocks,
and potential bug causes, and generate robust and high-quality code.

After learning the skills of refactoring and refining code, we want to introduce another useful
programming tool used to output log information during runtime.

Outputting debug messages
Using logs in programming has several benefits. Firstly, it can help developers to trace runtime
information and use the clues to troubleshoot problems. Secondly, developers can also use logs to
track and fix dynamic runtime errors that are usually difficult to identify during static debugging.
Finally, logs can be used to monitor program running states for analyzing and improving performance,
security, and quality. Logs are an essential tool for developers.

Improving C++ Code Quality264

Here, we will introduce two ways through which you can output debug messages in Unreal: the
UE_LOG macro and the AddOnScreenDebugMessage function.

Using the UE_LOG macro

UE_LOG is a macro that logs messages to either the Output Log window, the Console, or the log
files. Use the tilde key (~) to open and close the console.

Figure 9.6 – UE5 editor Output Log window

The syntax of UE_LOG is as follows:

UE_LOG(<LogType>, <LogLevel>, <Message>)

The following is a description of the UE_LOG macro’s parameters:

• LogType is the logging category name. Commonly used options are LogTemp ,
LogBlueprintUserMessage, and LogWorld.

• Verbosity Level tells the engine what verbosity level (log, warning, or error) message
should be displayed and where the message should be output (the Console, the Output Log
window, and/or the log files). Commonly used options are as follows:

 � Log: Prints a log message to the Output Log window and the log files. The color of the text
of the message in the Output Log window is gray.

 � Warning: Prints a warning message to the Output Log window and the log files. The color
of the text of the message in the Output Log window is yellow.

 � Error: Prints an error message to the Output Log window and the log files. The color of
the text of the message in the Output Log window is red.

• Message is the actual text message. You can use the TEXT macro to format and convert
C++ strings (the char* type) into FText type values, which will then be used as the third
parameter of the UE_LOG macro.

Outputting debug messages 265

All the log files are saved in subfolders of the /Saved folder under your game project folder.

The following example demonstrates how to output a message showing the Weapon overlapped!
message when the OnWeaponBeginOverlap event is triggered:

void AWeapon::OnWeaponBeginOverlap(AActor* OverlappedActor, AActor*
OtherActor)
{
 UE_LOG(LogTemp, Log, TEXT("Weapon overlapped!"));
 …
}

We just introduced the UE_LOG macro, which provides a way to print log information out to the Output
Log window, the game console, and the log file. Let’s now look at the AddOnScreenDebugMessage
function to directly print debug messages onto the game screen.

Printing debug messages to the screen

Logging messages to the Output Log window, the Console, and the log files is useful, but it is more
convenient to directly display messages on screen when you want to get some real-time debug
information on a standalone game, for example, running and testing a game on mobile or VR devices.

For this, we can call the AddOnScreenDebugMessage function anytime in our program to display
messages on the game screen. The syntax of this function is as follows:

void AddOnScreenDebugMessage
(
 uint64 Key,
 float TimeToDisplay,
 FColor DisplayColor,
 const FString & Message,
 bool NewerOnTop = true,
 const FVector2D & TextScale = FVector2D::One
)

Breaking this code down, we have the following:

• Key: A unique key for the message to prevent it from being added multiple times.

• TimeToDisplay: The number of seconds the message will stay on display.

• DisplayColor: The text color used for the message.

• Message: The actual text message.

• NewerOnTop: The default value is true, which indicates that new messages will be displayed
before older messages.

Improving C++ Code Quality266

• TextScale: The width and height scales of the message text. The default values are
FVector2D::One (1.0, 1.0).

Here is an example to display the same message that UE_LOG output on the game screen:

void AWeapon::OnWeaponBeginOverlap(AActor* OverlappedActor, AActor*
OtherActor)
{
 GEngine->AddOnScreenDebugMessage(-1, 1.0f,
 FColor::Orange, TEXT("Weapon overlapped"));
 …
}

Please be aware that AddOnScreenDebugMessage is a member function of GEngine, which is
a unique instance of the UEngine class.

After learning how to output debug messages, the last thing we want to introduce in this chapter is
how to use the Cast and IsA functions to find out an Actor’s actual class type. In addition, we will
clarify the distinction and connection between the two functions, enabling you to select the more
suitable function under any particular circumstances.

Checking an Actor instance’s actual class type
In Unreal, the OOP approach regularly utilizes inheritance to declare class relations. Even though
inheritance has the advantage of code reuse, it has the limitation of storing and returning instances
while only knowing the base class types.

Based on the inheritance design pattern, type casting very often occurs in OOP. An example in Unreal
scripting is that when a collision triggers an overlap event, the two parameters of the event function
are both AActor* type pointers, whereas they should be of the APlayerAvatar*, AEnemy*,
or ADefenseTower* type.

To find out whether AActor* is another child class type pointer, we use the Cast function to cast
the AActor* pointer to the required type of pointer (APangaeaCharacter*, for example) and
check whether the result is nullptr or not. If the Cast operation fails, it means that the actor is
not the type of actor we need:

void AWeapon::OnWeaponBeginOverlap(AActor* OverlappedActor, AActor*
OtherActor)
{
 auto character = Cast<APangaeaCharacter>(OtherActor);
 if (character != nullptr)
 { … }
else

Checking an Actor instance’s actual class type 267

{ … }
}

This example shows how we check whether the other overlapped actor is a PangaeaCharacter-type actor.

Another way to check actor types is to call AActor’s IsA function. The following code does the same
job as the previous example by using the IsA function:

void AWeapon::OnWeaponBeginOverlap(AActor* OverlappedActor, AActor*
OtherActor)
{
 if (character->IsA(APangaeaCharacter::StaticClass()))
 { … }
else
{ … }
}

The question you may have is which of the functions, Cast or IsA, is better? The former does a little
bit more work than the latter. The Cast function checks whether the input pointer is nullptr first,
and then calls the IsA function to check and return the type. Therefore, the former is safer while
the latter has better performance. Another benefit of using the Cast function is that it returns an
expected subclass type pointer.

We put the full implementation for the AWeapon::OnWeaponBeginOverlap event function
in the following code snippet, so that you can see how we use the two methods to check the collided
actors’ types:

void AWeapon::OnWeaponBeginOverlap(AActor* OverlappedActor, AActor*
OtherActor)
{
//GEngine->AddOnScreenDebugMessage(-1, 1.0f,
 FColor::Orange, TEXT("Weapon overlapped"));
//UE_LOG(LogTemp, Log, TEXT("Weapon overlapped"));

auto character = Cast<APangaeaCharacter>(OtherActor);
if (character != nullptr)
{
 if (Holder == nullptr)
 {
 auto playerAvatar = Cast<APlayerAvatar>(character);
 if (playerAvatar != nullptr)
 {
 Holder = character;
 playerAvatar->DropWeapon();

Improving C++ Code Quality268

 playerAvatar->AttachWeapon(this);
 }
}
 else if(character != Holder &&
 IsWithinAttackRange(0.0f, OtherActor) &&
 character->CanBeDamaged() &&
 Holder->IsAttacking())
 {
 character->Hit(Holder->Strength);
 if (character->IsA(APlayerAvatar::StaticClass()))
 {
 GEngine->AddOnScreenDebugMessage(- 1, 1.0f, FColor::Red,
 TEXT("Hit PlayerAvatar"));
 UE_LOG(LogTemp, Log, TEXT("Hit PlayerAvatar"));
 }
 else
 {
 GEngine->AddOnScreenDebugMessage(-1, 1.0f, FColor::Cyan,
 TEXT("Hit Enemy"));
 UE_LOG(LogTemp, Log, TEXT("Hit Enemy"));
 }
 }
}
else if(Holder != nullptr &&
 Holder->IsA(APangaeaCharacter::StaticClass()) &&
 Holder->IsAttacking())
{
 auto tower = Cast<ADefenseTower>(OtherActor);
 if (tower != nullptr &&
 tower->CanBeDamaged() &&
 IsWithinAttackRange(0.0f, tower))
 {
 tower->Hit(Strength);
 GEngine->AddOnScreenDebugMessage(-1, 1.0f, FColor::Cyan,
 TEXT("Hit Tower"));
 }
}
}

In the preceding code, we also completed the code to process hits to characters and towers by calling
their Hit member functions. Please read the code and understand how the conditions are checked
for the different hit processes.

Summary 269

Summary
In this chapter, you mainly learned how to improve the quality of the code in the Pangaea project, as
well as how to output debug messages to monitor real-time game information.

Firstly, we introduced the concepts of code refactoring and code refinement, which made you aware
of the importance of regular code quality improvement.

After that, we analyzed the Pangaea source code and identified two main issues that could be overcome: the
redundant two animation instance classes of UPlayerAnimInstance and UEnemyAnimInstance
and the duplicated member variables and functions of APlayerAvatar and AEnemy.

To resolve the first issue, you added a new class, UPangaeaAnimInstance, to replace the existing
UPlayerAnimInstance and UEnemyAnimInstance classes. To resolve the second issue, you
made the APangaeaCharacter class the parent class of APlayerAvatar and AEnemy, so that
the duplicated variables and functions could be moved into the parent class.

Then, improving the code performance through code refinement, you used the _AnimInstance
cache variable in the APangaeaCharacter class and added a fireball pool to avoid the frequent
spawning and destroying of fireballs.

Finally, you learned how to use the UE_LOG macro and AddOnScreenDebugMessage to output
debug messages, as well as using the IsA function to check whether an actor is of a certain class type.

In the next chapter, we will introduce some basic multiplayer game elements and demonstrate how
to make Pangaea a multiplayer game.

Part 3 –
Making a Complete

Multiplayer Game

In this part, we will delve into Unreal Engine’s multiplayer support and guide you through writing
C++ code to convert some Pangaea game actors into networked actors, explaining the fundamental
concepts of client/server and the multiplayer modes.

To create a comprehensive multiplayer game, you will also learn how to extend the game's core classes,
such as GameMode, GameState, and GameInstance, as well as how to create the multiplayer
game’s menu and the HUD for the game flow, so that players can start the server or join a session to
play the game.

Additionally, you will learn valuable techniques for optimizing the game and utilizing high-quality
assets to enhance its polish. Plus, we will cover the process of packaging the game for distribution.

This part contains the following chapters:

• Chapter 10, Making Pangaea a Network Multiplayer Game

• Chapter 11, Controlling the Game Flow

• Chapter 12, Polishing and Packaging the Game

10
Making Pangaea a Network

Multiplayer Game

Unreal Engine was initially developed for the Unreal first-person shooter (FPS) game in 1998, and
the game’s multiplayer mode allowed up to 16 players to join a session. Owing to the game’s popularity,
Epic Games released Unreal Tournament in 1999, and it was one of the most popular multiplayer
shooter games.

Multiplayer support is one of the key strengths of Unreal Engine; it is, in fact, one of the reasons
why the engine is so popular and successful. This chapter will walk you through the steps to convert
Pangaea into a multiplayer game so that you can learn how to start the game as a server or a client,
synchronize game states, and send messages between the server and connected clients.

We will cover the following topics in this chapter:

• Comparing single-player and multiplayer games

• Launching the multiplayer Pangaea game in the editor

• Understanding multiplayer game network modes

• Handling network synchronizations

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter10.

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter10
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter10

Making Pangaea a Network Multiplayer Game274

Comparing single-player and multiplayer games
A single-player game runs on a local machine (PC, game console, and so on) as a standalone application.
The player interacts with the game directly through one or more connected input devices (keyboard,
mouse, game pad, and so on). The game simulation is handled on the local machine. Here’s how its
setup looks:

Figure 10.1 – Single-player game

As with single-player games, a local multiplayer game runs on a local machine as a standalone
application. The game allows multiple players (usually one to four players) to play the game together
and interact with the game directly through their input devices. The game simulation is still handled
on the local machine. The setup looks like this:

Figure 10.2 – Local multiplayer game

Launching the multiplayer Pangaea game in the editor 275

A network multiplayer game allows multiple players to play together on different types of devices (PCs,
game consoles, mobile devices, and so on) over a network connection. A network multiplayer game
usually involves a server and connected game clients. Players interact with each other in real time on the
game clients, and their inputs are sent to the server for the game simulation. The game states are then
synced to clients for the displays. You can see an example setup of a network multiplayer game here:

Figure 10.3 – Network multiplayer game

You should now have a basic idea of how network multiplayer games differ from single-player and
local multiplayer games. But you may wonder: does Unreal Engine support network multiplayer game
development? The answer is yes. Let’s launch and play the multiplayer game in the engine.

Launching the multiplayer Pangaea game in the editor
The first important thing you need to know is that Unreal Engine is internally designed based on the
network multiplayer mechanism, which means that all games built with Unreal, irrespective of whether
they are single-player or multiplayer, are client/server (CS) multiplayer games.

To verify whether our Pangaea game supports multiplayer mode, you can launch the game with two
players in the Unreal Editor. To do that, click the Change Play Mode and Play Settings button from
the toolbar and set Number of Players to 2:

Making Pangaea a Network Multiplayer Game276

Figure 10.4 – Setting the number of players

Then, select Net Mode from the same drop-down menu and select Play As Listen Server:

Figure 10.5 – Setting the play mode as Play as Listen Server

Now, click the Play button (the green triangle) to launch the game. You should get two game windows
(one in the viewport and another one as a separate window), and you will notice that the game spawned
two heroes in the scene (see Figure 10.6):

Understanding multiplayer game network modes 277

Figure 10.6 – Launching Pangaea with two players

If you click to set the focus on the separate game window and try moving your hero around, you will
see that the hero moves in the other viewport game window. Picking up weapons and enemy moves
are also synced between the two game windows.

This way, we just launched the game, then started a server and a client. The game in the editor’s viewport
was acting as a listen server (a host), whereas the other game in a separate window was a pure client.

Let’s learn and understand more about multiplayer game network modes.

Understanding multiplayer game network modes
Network mode refers to a game application’s relationship to a multiplayer game session. A game
instance can adopt any of the following game modes:

• Listen server (host): In this mode, one player’s machine serves as both the game server and
the local player’s game environment. The game running on the server is hosting a network
multiplayer session, which accepts connections from remote clients. This mode is often used
for casual cooperative and competitive multiplayer games.

• Dedicated server: In this mode, the game is running as a server hosting a network multiplayer
session. It accepts connections from remote clients but has no local players. The dedicated
server mode is often used for large-scale multiplayer games.

Making Pangaea a Network Multiplayer Game278

A headless dedicated server is a server packaged without any graphic and audio, input, or
other player-oriented features, so that the server runs more efficiently and uses less memory.

• Client: In this mode, the game is running as a client that is connected to a server. Player inputs
are accepted on the clients and sent to the server for game simulation. Game states are synced
from the server to the clients for visualizing the game scene to the players.

An Unreal game application can run as either a listen server, a dedicated server, or a client. We will
introduce how to write code to execute the console command to start the game as a listen server or
a client in Chapter 12.

Next, let’s delve into the process of synchronizing actors across the client-server gameplay network.

Handling network synchronizations
When you played the multiplayer Pangaea game, you would have noticed some bugs; for example,
if you attacked on the client side, the player’s server avatar wouldn’t attack. These bugs occurred
because our single-player code didn’t handle multiplayer synchronizations.

Before writing multiplayer code, we want to emphasize that you must be very clear in your mind
whether the code will be executed on the server side, the client side, or both the server and client sides.

To make Pangaea playable as a multiplayer game, we need to do the following:

• Notify player attacks with remote procedure calls (RPCs)

• Sync actor variables to clients with replications

• Update the character health bar with RepNotify

• Process hits on the server

• Spawn fireballs on the server side

Let’s look at how we can implement all of these listed actions.

Notifying player attacks with RPCs

In Pangaea, a player’s attack events are triggered when the player clicks the right mouse button on the
client side. This event message should be sent to the server so that the server can process the hit and
broadcast the hit and the result to all clients.

Handling network synchronizations 279

We can use RPCs to complete this work. An RPC is a mechanism that allows a program running on
one device to invoke a procedure on another device over a network.

A remote procedure can be called from any remote machine and executed on a specific machine that
is connected to the same network session.

There are three types of RPCs, as listed here:

• Server RPCs are called from clients and executed on the server

• Client RPCs are usually called from the server and executed on a client that owns the receiving actor

• NetMulticast RPCs are called on the server and executed on all clients as well as the server itself

RPCs can be either reliable or unreliable. Tagging an RPC as reliable or unreliable indicates
whether the RPC function is guaranteed to arrive at its intended destination. Multiplayer games
usually send critical messages (attack and chat messages, for example) by calling reliable RPCs. For
non-critical messages (move to the next location, for example), unreliable RPCs can be used to achieve
faster networking performance, but they introduce the risk of message loss.

RPC functions should be tagged with the UFUNCTION macro, which comes with one of the RPC-type
specifiers (Server, Client, or NetMulticast) and, optionally, a reliability specifier (reliable
or unreliable). RPC functions without a reliability specifier are by default reliable RPC functions.

To solve the problem of out-of-sync attack animation for Pangaea, we can add the following RPC functions:

• On the client side, once the player inputs an attack command, APlayerAvatar should call
the Server RPC (Attack_RPC()) to notify the server of this action

• On the server side, once an attack message is received, APangaeaCharacter calls the
NetMulticast RPC (Attack_Broadcast_RPC()) to notify all clients

In Figure 10.7, you can observe how the RPC functions are called to synchronize the server and the
clients during gameplay, using the attack use case:

Making Pangaea a Network Multiplayer Game280

Figure 10.7 – Attack RPC calls diagram

The preceding diagram demonstrates how a player’s input is handled and synchronized across the
network server and clients, as follows:

• The player in Client 1 attacks by clicking the right mouse button

• Client 1 calls Attack_RPC() from the server

• The server processes the attack and calls Attack_Broadcast_RPC() to notify all clients,
and all the clients play PlayerAvatar 1’s attack animation

You may be wondering why the Attack_Broadcast_RPC() function is a member of
APangaeaCharacter instead of APlayerAvatar. This is because APangaeaCharacter
is a parent class, so the RPC function can be shared by both APangaea and AEnemy to broadcast
Attack events.

To add the Attack_RPC() function to APlayerAvatar and the Attack_Broadcast_
RPC() function to APangaeaCharacter, we can start by declaring the two RPC functions for
APlayerAvatar and APangaeaCharacter.

Handling network synchronizations 281

First, append the declaration of the Attack_RPC() function in PlayerAvatar.h, like so:

UFUNCTION(Server, Reliable)
void Attack_RPC();

Second, add the declaration of the Attack_Broadcast_RPC() function in PangaeaCharacter.h,
as follows:

UFUNCTION(NetMultiCast, Reliable)
void Attack_Broadcast_RPC();

Both of the two new RPC functions are tagged with the reliable specifier, telling the engine that
the RPC messages must be guaranteed to reach their destinations without fail.

Third, the implementation of Attack_RPC() should be added to the PlayerAvatar.cpp file,
as follows:

void APlayerAvatar::Attack_RPC_Implementation()
{
 Attack_Broadcast_RPC();
}

Finally, the implementation of Attack_Broadcast_RPC() should be added to the
PangaeaCharacter.cpp file, like so:

void APangaeaCharacter::Attack_Broadcast_RPC_Implementation()
{
 Attack();
}

Note
The implemented RPC functions must be appended with the _Implementation suffix.

Now, we can slightly change APangaeaPlayerController::OnAttackPressed() to call
Attack_RPC() when the Attack button is clicked on the client side. So, add the following code
to PangaeaPlayerController.cpp:

void APangaeaPlayerController::OnAttackPressed()
{
auto playerAvatar = Cast<APlayerAvatar>(GetPawn());
if (playerAvatar != nullptr && playerAvatar->CanAttack())
{
StopMovement();

Making Pangaea a Network Multiplayer Game282

playerAvatar->Attack_RPC();
}
}

Using RPCs to sync an attack action between servers and clients has limitations. For example, the
owner player may notice a delayed reaction after clicking the Attack button. This is because the
message needs time to go around. Advanced multiplayer game processes, such as prediction and lag
compensation, can be used to improve the player experience, but they are out of the scope of this book.

Based on the aforementioned changes to the newly added APangaeaCharacter::Attack_
Broadcast_RPC() function, we can easily resolve the network synchronization issue for enemy
attacks in AEnemyController.cpp. Enemies are only owned by the server, so all we need to
do is to make enemies call Attack_Broadcast_RPC() when they decide to attack, as follows:

void AEnemyController::MakeAttackDecision(APawn* targetPawn)
{
 auto enemy = Cast<AEnemy>(GetPawn());
 auto dist = FVector::Dist2D(
targetPawn->GetActorLocation(),
GetPawn()->GetTargetLocation());

 if (dist <= enemy->AttackRange && enemy->CanAttack())
 {
 StopMovement();
 enemy->Attack_Broadcast_RPC();
 }
}

RPCs can be used to send messages and some parameter data across network connections, but they
are not suitable for synchronizing actor variables when the variable values are changed. In this case,
the replication mechanism is brought in to take care of synchronizing actor variables.

Syncing actor variables to clients with replications

Variable replication is a useful networking tool that you can use in Unreal to develop multiplayer
games. Actor variables with a Replicated tag indicate that whenever their values are changed,
they are automatically replicated (synced) to all connected remote proxies. For example, a character
needs to replicate its _HealthPoints value from the server to all clients for displaying the health
points bar.

We will create a HealthBar widget and add a replication notification for displaying the characters’
health points after.

Handling network synchronizations 283

Open PangaeaCharacter.h and add the Replicated tag as the specifier of the UPROPERTY
macro for the _HealthPoints variable, as follows:

UPROPERTY(Replicated)
int _HealthPoints;

We also want to declare the GetLifetimeReplicatedProps() overriding function. Unreal
requires our code to explicitly return the replicated variables in this function. Here’s how we can do this:

void GetLifetimeReplicatedProps(
 TArray<FLifetimeProperty>& OutLifetimeProps) const override;

In PangaeaCharacter.cpp, add the following code:

#include <Net/UnrealNetwork.h>
void APangaeaCharacter::GetLifetimeReplicatedProps(TArray<
FLifetimeProperty >& OutLifetimeProps) const
{
Super::GetLifetimeReplicatedProps(OutLifetimeProps);
DOREPLIFETIME(APangaeaCharacter, _HealthPoints);
}
APangaeaCharacter::APangaeaCharacter()
{
 PrimaryActorTick.bCanEverTick = true;
 bReplicates = true;
}

The preceding code snippet does the following three things:

• Includes the Net/UnrealNetwork.h header file to enable calling the DOREPLIFETIME macro

• The GetLifetimeReplicatedProps function’s implementation calls the superclass’s
overridden function and the DOREPLIFETIME macro to replicate the _HealthPoints variable

• In the constructor of APangaeaCharacter, bReplicates is set to true to ensure the
character and its networking variables will be replicated

Now, while playing the game, once a character’s _HealthPoints variable is changed on the
server, it will be replicated to update the corresponding character’s _HealthPoints value on all
connected clients.

The next thing we want to do is display characters’ _HealthPoints value with a health bar.

Making Pangaea a Network Multiplayer Game284

Updating the character health bar with RepNotify

RepNotify indicates that a replicated variable can have a handler function, which is called when the
variable’s value changes. For example, if _HealthPoints is designated the RepNotify function
OnHealthPointsChanged(), when the variable value is changed on the server and replicated
to the clients, OnHealthPointsChanged() is then invoked on all connected clients.

So, we can update the character’s health bar inside the RepNotify function.

Note
In comparison to RPCs, RepNotify is preferable because it helps simplify your code and
uses less network bandwidth.

Creating the RepNotify handler function

To carry out corresponding processes on the client side when the value of a network-replicated property
is updated from the server, we can associate a function with that property.

In Pangaea, to visualize health bar changes whenever any actor’s _HealthPoints value is
updated from the server, let’s add OnHealthPointsChanged() as a UFUNCTION macro to the
APangaeaCharacter class. So, in PangaeaCharacter.h, add this code:

UFUNCTION()
void OnHealthPointsChanged();

And in PangaeaCharacter.cpp, add this code:

void APangaeaCharacter::OnHealthPointsChanged()
{
//We will write code here to update the health bar
}

This OnHealthPointsChanged handler function should then be hooked up to the RepNotify event.

Hooking up the RepNotify handler function

We can use ReplicatedUsing to replace the old Replicated specifier. The new specifier
allows _HealthPoints to designate OnHealthPointsChanged () as its RepNotify
handler function, as follows:

UPROPERTY(Replicatedusing = OnHealthPointsChanged)
int _HealthPoints;

Now, we want to create a health bar for displaying character _HealthPoints values (remember
that health bars are only required on the client side).

Handling network synchronizations 285

Creating the UHealthBarWidget class

To create a health bar for Pangaea characters, we first create a new UI widget class, UHealthBarWidget,
which inherits from UUserWidget. This operation will generate new HealthBarWidget.h and
HealthBarWidget.cpp files.

So, in the new header file, we want to define the UHealthBarWidget class, like so:

#pragma once
#include "CoreMinimal.h"
#include "Components/ProgressBar.h"
#include "Blueprint/UserWidget.h"
#include "HealthBarWidget.generated.h"

UCLASS()
class PANGAEA_API UHealthBarWidget : public UUserWidget
{
 GENERATED_BODY()
public:
UPROPERTY(VisibleAnywhere,
 BlueprintReadWrite,
 meta = (BindWidget))
 UProgressBar* HealthProgressBar;
};

The preceding code snippet defines the UHealthBarWidget class, which contains only one property:
HealthProgressBar. The HealthProgressBar property stores the pointer of the associated
Progress Bar UI component.

HealthProgressBar is a public property of type UProgressBar*, with the meta=(BindWidget)
specifier. It implies that if a Progress Bar UI component is added to the widget blueprint with the
same identifier (HealthProgressBar), it will automatically be bound to this property.

Since no function is declared in the header file, HealthBarWidget.cpp only needs one line of
code, which simply includes the header file:

#include "HealthBarWidget.h"

Creating the BP_HealthBar blueprint

We now want to create a new UI widget, BP_HealthBar, which only has a progress bar on it.

Reopen the project in the Unreal Editor and create a BP_HealthBarWidget blueprint, saving it under
Content | Topdown | Blueprints. Then, make the new blueprint a child of the UHealthBarWidget
class, as seen in Figure 10.8:

Making Pangaea a Network Multiplayer Game286

Figure 10.8 – Creating a BP_HealthBar.png blueprint

Let’s explore the steps for creating the BP_HealthBar widget:

1. Drag and drop Canvas Panel onto the scene.

2. Drag and drop Progress Bar onto the scene.

3. Change ProgressBar_0 to HealthProgressBar. This name has to be identical to the
UHealthBarWidget::HealthProgressBar variable name.

4. Select HealthProgressBar and set the attributes as shown in Figure 10.8.

Having followed the previous steps, we have created the BP_HealthBar widget. Now, we can add
it and associate it with both the player and enemy characters.

Adding the HealthBar to BP_PlayerAvatar and BP_Enemy

Now, we need to add the BP_HealthBar UI widget to both BP_PlayerAvatar and BP_Enemy
so that the health bar shows up above the character.

Handling network synchronizations 287

Open BP_PlayerAvatar and add a widget (see Figure 10.9):

Figure 10.9 – Adding a widget to BP_PlayerAvatar

Rename the added widget from Widget to a meaningful name – HealthBar, for example – and
configure the attributes, like so:

• Set Space to Screen so that the health bar is always facing the player camera.

• Choose BP_HealthBarWidget for Widget Class.

• Make the Draw Size value 50 by 20:

Figure 10.10 – Setting up the HealthBar widget for PlayerAvatar

Making Pangaea a Network Multiplayer Game288

You can follow the preceding steps to add BP_HealthBarWidget to BP_Enemy.

The next thing we want to do is to update the health bar when the character’s health points value changes.

Updating the health bar when the RepNotify function is invoked

Now is the time to implement the OnHealthPointsChanged() function to update the progress
bar on BP_HealthBarWidget. The idea is to add a UUserWidget*-type variable to the
APangaeaCharacter class, and this variable should be both readable and writeable to blueprints.

Open PangaeaCharacter.h and add the following variable definition to the public section of
the APangaeaCharacter class:

UPROPERTY(VisibleAnywhere, BlueprintReadWrite)
UUserWidget* HealthBarWidget;

Having defined the HealthBarWidget variable, we can get and assign the Health Bar widget to
this variable in BP_PlayerAvatar and BP_Enemy, like so:

Figure 10.11 – Event Graph to set the Health Bar Widget reference for PlayerAvatar

The provided Event Graph achieves the assignment task through the following approach:

• When BeginPlay is triggered, the Get Widget node retrieves the Health Bar widget

• The Set node sets APangaeaCharacter::HealthBarWidget with the retrieved
Health Bar widget instance

Handling network synchronizations 289

Let’s write the implementation code for the OnHealthBarChanged() function in
PangaeaCharacter.cpp, setting the progress bar value of HealthBarWidget whenever its
value is updated from the server:

void APangaeaCharacter::OnHealthPointsChanged()
{
 if (HealthBarWidget != nullptr)
 {
 float normalizedHealth = FMath::Clamp(
 (float)_HealthPoints / HealthPoints, 0.0f, 1.0f);
 auto healthBar = Cast<UHealthBarWidget>(HealthBarWidget);
 healthBar->HealthProgressBar->SetPercent(normalizedHealth);
 }

 if (_AnimInstance != nullptr)
 {
 _AnimInstance->State = ECharacterState::Hit;
 }

 if (IsKilled())
 {
 PrimaryActorTick.bCanEverTick = false;
 }
}

Let’s break this code down:

• (float)_HealthPoints / HealthPoints calculates the current health percentage.
It converts the current value of _HealthPoints into a float type and then divides it by
the maximum HealthPoints value.

• The FMath::Clamp() math function clamps the float value between 0.0f and 1.0f.

• Since the type of HealthBarWidget is a UUserWidget* type, it has to be cast into a
UHealthBarWidget* type so that its HealthProgressBar variable can be accessed.

• The HealthProgressBar->SetPercent() function is called to update the progress
bar display.

• _AnimInsntance->State is set to be ECharacterState::Hit to play the Hit animation.

• PrimaryActorTick.bCanEverTick is set to false to stop the ticking functionality
of this actor when it is killed.

Making Pangaea a Network Multiplayer Game290

Now, launch the game, and you should now see nice health bars appearing over the characters, as
represented here:

Figure 10.12 – Characters with health bars

One more thing we want to take care of is processing hits on the server because only the game server
has the authority to change characters’ HealthPoints values.

Processing hits on the server

In multiplayer games, only authoritative actors have control over their actor states. Unreal Engine by
default uses a server-authoritative strategy for multiplayer games. The server is the place where the
gameplay happens, and all the clients are just remote proxies that accept player inputs and reflect the
current game to players.

Since the Pangaea server is an authoritative server, the hit process should only be handled on the
server side. The changed implementation of the Hit() function of APangaeaCharacter is
shown as follows:

void APangaeaCharacter::Hit(int damage)
{
 if (IsKilled())
 {
 return;
 }

if (GetNetMode()== ListenServer::NM_Client

Handling network synchronizations 291

 && HasAuthority())
 {
 _HealthPoints -= damage;
 OnHealthPointsChanged();
 }
}

Let’s take a look at the code:

• Calling AActor::GetNetMode() can get the game mode, which could be either NM_Client
or NM_ListenServer in this case

• Calling AActor::HasAuthority() returns true when the actor is authoritative

• The code only reduces _HealthPoints when it is running on the server and the actor
is authoritative

• Calling OnHealthPointsChanged() on the listen server processes the RepNotify
function locally

The last issue we want to resolve in this chapter is the non-visibility and non-movement of fireballs
on the client side.

Spawning fireballs on the server side

Since the multiplayer Pangaea game is built on the server-authoritative approach, fireballs should be
spawned and pooled on the server side rather than on the client side. It is very easy to change the
code in ADefenseTower::Tick() to avoid spawning fireballs on the client side, as seen here:

void ADefenseTower::Tick(float DeltaTime)
{
 Super::Tick(DeltaTime);

 if (_Target != nullptr && GetNetMode() != NM_Client)
 {
 Fire();
 }
}

Making Pangaea a Network Multiplayer Game292

To show and move active fireballs on clients, you can open BP_FireBall and make sure that the
Replicates and Replicate Movement boxes are checked:

Figure 10.13 – Enabling fireball replication

Summary 293

In the editor, launch and enjoy playing the multiplayer version of the Pangaea game:

Figure 10.14 – Playing the multiplayer Pangaea game

At this point, you should have acquired essential concepts and techniques for creating an immersive
and interactive multiplayer game in Unreal.

Summary
This chapter demonstrated how to make a single-player game a multiplayer game in Unreal. The content
we introduced in this chapter focuses on learning essential concepts and methods to follow to solve
common multiplayer game issues. The knowledge you gained from this chapter can be a starting point
that will help you continue learning about advanced multiplayer game development in the future.

In the first section, we introduced the concepts of single-player, local multiple, and network multiplayer
games so that you got a basic sense of what is required for multiplayer gameplay.

Then, you learned how to launch the Pangaea game with two players (one listen server and one client)
in the editor. Based on that, we explained multiplayer game net modes as well as identified some issues
associated with multiplayer gameplay.

To solve issues in the multiplayer version game, you learned to use RPCs to notify the server and
the other clients of attack actions, replicate actor states (_HealthPoints, for example) to clients,
handle the RepNotify variable to update the character health bar, and eventually spawn fireballs
and process hits on the server.

Making Pangaea a Network Multiplayer Game294

At the end of this chapter, we have a playable multiplayer game.

In the next chapter, we are going to develop some UI screens to control the game flow that allows
players to host a game server or connect as a client to join the game session, disconnect to leave the
session, and exit the game.

11
Controlling the Game Flow

In the previous chapter, we completed the core gameplay for Pangaea. To transform it into a fully
fledged game, we will incorporate a basic game flow that enables players to go into the game through
the main menu and return to the main menu upon exiting the game.

A game’s flow control could be very complex, depending on the game’s design. Many games use a
centralized control system, such as a finite-state machine (FSM), to control transitions from one game
state to another, but using the advanced control system is outside the scope of this book.

To make it easier to learn the C++ scripting skills to control the game’s flow, we will design and implement
a minimum game flow for the Pangaea game. We will do this by covering the following topics:

• Designing the Pangaea game’s flow

• Creating the UI widgets

• Adding networking functions to PangeaGameInstance

• Adding UI widgets to game levels

• Adding the game timer

• Destroying a base defense tower to win the game

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter11.

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter11
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter11

Controlling the Game Flow296

Designing the Pangaea game’s flow
To minimize the complexity of the Pangaea game’s flow, the game is designed to have only one lobby
(LobbyMap) and one gameplay (TopDownMap) level. The lobby level shows the main menu, which
allows players to choose to play as a game host or a client, whereas the gameplay level is the map on
which players fight. Here is the game flow chart:

Figure 11.1 – Pangaea game flow diagram

Based on this flow chart, the next thing we need to do is create the three UI widgets for displaying
the main menu, the HUD, and the Game Over window, respectively.

Creating the UI widgets 297

Creating the UI widgets
To create UI widgets, first, select the All | Content | TopDown | Blueprints folder (or wherever you
want to place the new widgets in the Content Drawer). Then, right-click in the empty area and choose
User Interface | Widget Blueprint from the pop-up menu:

Figure 11.2 – Creating a UI widget from the editor pop-up menu

Controlling the Game Flow298

Now, click the User Widget button to pick the root widget:

Figure 11.3 – Clicking the User Widget button to create the widget

After picking the root widget, you should see a new item named NewWidgetBlueprint in the folder:

Figure 11.4 – The new widget blueprint

Rename the new widget to the name you want – I will choose BP_LobbyWidget. Then, repeat these
steps and create two more widgets called BP_HUDWidget and BP_GameOver.

Now, let’s edit these widgets’ settings.

Creating BP_LobbyWidget

With BP_LobbyWidget created, double-click to open it in the Widget Editor. Now, you can design
the user interface, as seen in Figure 11.5. To do this, follow these steps:

1. Drag and drop a Canvas Panel property onto the screen design area.

2. Place an Image control onto the screen with the following settings:

 � Name: BGImage

 � Anchors: Stretch Both

Creating the UI widgets 299

 � Alignment: (0.0, 0.0)

 � Brush | Image: LobbyBG (you can download LobbyBG.png from this book’s GitHub/
PangaeaAssets folder and import it into the project)

3. Add a button to the screen with the following settings:

 � Name: ButtonHost

 � Alignment: (0.0, 0.0)

 � Anchors: Center

 � Position X: 1000.0

 � Position Y: 500.0

 � Size X: 500.0

 � Size Y: 120.0

4. Add a TextBox control as the child of ButtonHost with the following settings:

 � Horizontal Alignment: Center Align Horizontally

 � Vertical Alignment: Center Align Vertically

 � Text: "Host"

 � Color and Opacity (RGBA): (0.04, 0.15, 0.5, 1.0)

 � Font:

 � Font Family: Roboto

 � Type Face: Bold

 � Size: 48

5. Add one more button to the screen with the following settings:

 � Name: ButtonJoin

 � Anchors: Center

 � Alignment: (0.0, 0.0)

 � Position X: 1000.0

 � Position Y: 700.0

 � Size X: 500.0

 � Size Y: 120.0

Controlling the Game Flow300

6. Add a TextBox control as the child of ButtonJoin and set it up with the same settings as step 4,
except substitute Host with Join.

7. Add an EditableTextBox control to the screen with the following settings:

 � Name: InputAddress

 � Anchors: Center

 � Alignment: (0.0, 0.0)

 � Position X: 1000.0

 � Position Y: 700.0

 � Size X: 500.0

 � Size Y: 120.0

 � Text: "127.0.0.1" (the default is the local server IP address)

 � Justfication: Align Text Center

Again, you can see the result in Figure 11.5:

Figure 11.5 – Designing BP_LobbyWidget in the Widget Editor

Creating the UI widgets 301

Creating BP_HUDWidget

Now, with BP_HUDWidget created, open it in the Widget Editor. Then, design the user interface as
seen in Figure 11.6. To do so, follow these steps:

1. Drag and drop a Canvas Panel property onto the screen design area.

2. Place a TextBox control in the top-left corner with the following settings:

 � Name: Timer

 � Anchors: Top-left

 � Alignment: (0.0, 0.0)

 � Position X: 50.0

 � Position Y: 50.0

 � Size X: 300.0

 � Size Y: 60.0

 � Justification: Align Text Left

 � Color and Opacity (RGBA): (0.04, 0.15, 0.5, 1.0)

 � Font:

 � Font Family: Roboto

 � Type Face: Bold

 � Size: 48

3. Add a button to the screen with the following settings:

 � Name: ButtonLeave

 � Anchors: Top-right

 � Alignment: (1.0, 0.0)

 � Position X: -50.0

 � Position Y: 50.0

 � Size X: 200.0

 � Size Y: 80.0

Controlling the Game Flow302

4. Add a TextBox control as the child of ButtonLeave with the following settings:

 � Horizontal Alignment: Center Align Horizontally

 � Vertical Alignment: Center Align Vertically

 � Text: "Leave"

 � Color and Opacity (RGBA): (0.04, 0.15, 0.5, 1.0)

 � Font:

 � Font Family: Roboto

 � Type Face: Bold

 � Size: 48

Again, you can see the result in Figure 11.6:

Figure 11.6 – Designing BP_HUDWidget in the Widget Editor

Creating the UI widgets 303

Creating BP_GameOverWidget

For the last widget, with BP_GameOverWidget created, open it in the Widget Editor. Then, design
the user interface as seen in Figure 11.7. To do so, follow these steps:

1. Drag and drop a Canvas Panel property onto the screen design area.

2. Place an Image control on the screen with the following settings:

 � Name: Background

 � Anchors: Stretch Both

 � Alignment: (0.0, 0.0)

 � Brush | Image: None

 � Color and Opacity (RGBA): (0.0, 0.0, 0.0, 0.5)

3. Drag and drop another Image control on the screen with the following settings:

 � Name: Panel

 � Anchors: Center

 � Position X: 0.0

 � Position Y: 0.0

 � Alignment: (0.5, 0.5)

 � Brush | Image: None

 � Color and Opacity (RGBA): (0.2, 0.2, 0.2, 0.5)

4. Add a TextBox control to the screen with the following settings:

 � Name: Title

 � Anchors: Center

 � Alignment: (0.5, 0.5)

 � Position X: 0.0

 � Position Y: -200.0

 � Size X: 800.0

 � Size Y: 100.0

 � Justification: Align Text Left

 � Color and Opacity (RGBA): (1.0, 1.0, 1.0, 1.0)

Controlling the Game Flow304

 � Font:

 � Font Family: Roboto

 � Type Face: Bold

 � Size: 64

5. Add one more TextBox control to the screen with the following settings:

 � Name: Result

 � Anchors: Center

 � Alignment: (0.5, 0.5)

 � Position X: 0.0

 � Position Y: 0.0

 � Size X: 800.0

 � Size Y: 80.0

 � Justification: Align Text Left

 � Color and Opacity (RGBA): (1.0, 1.0, 1.0, 1.0)

 � Font:

 � Font Family: Roboto

 � Type Face: Bold

 � Size: 48

6. Add a button to the screen with the following settings:

 � Name: ButtonLobby

 � Anchors: Center

 � Alignment: (0.5, 0.5)

 � Position X: 0.0

 � Position Y: 200.0

 � Size X: 600.0

 � Size Y: 80.0

Creating the UI widgets 305

7. Add a TextBox control as the child of ButtonLobby with the following settings:

 � Horizontal Alignment: Center Align Horizontally

 � Vertical Alignment: Center Align Vertically

 � Text: "Go to Lobby"

 � Color and Opacity (RGBA): (0.0, 0.0, 0.0, 1.0)

 � Font:

 � Font Family: Roboto

 � Type Face: Bold

 � Size: 32

The results can be seen in Figure 11.7:

Figure 11.7 – Designing BP_GameOverWidget in the Widget Editor

Controlling the Game Flow306

While designing the three UI widgets, we added four buttons to the screen: ButtonHost, ButtonJoin,
ButtonLeave, and ButtonLobby. To make these four buttons functional, we need to create three
functions (StartListenServer, JoinAsClient, and LeaveGame) and hook them to these
button events (ButtonLeave and ButtonLobby share the LeaveGame function).

Adding networking functions to PangaeaGameInstance
Before we add these functions to APangaeaGameInstance, it is important to explain why we
must add these functions to this class but somewhere else.

We know that GameInstance only exists on the client side and that the ButtonHost, ButtonJoin,
ButtonLeave, and ButtonLobby buttons are pressed by players when they are playing the game on
their end, so it makes sense to implement those functions that allow players to host, join, and leave
games on the client side.

Now, let’s open the PangaeaGameInstance.h file and add the following code to declare the
functions in the ApangaeaGameInstance class:

public:
UFUNCTION(BlueprintCallable, Category = "Pangaea")
 void StartListenServer();
 UFUNCTION(BlueprintCallable, Category = "Pangaea")
 void JoinAsClient(FString IPAddress);
 UFUNCTION(BlueprintCallable, Category = "Pangaea")
 void LeaveGame();

All the functions are marked with the BlueprintCallable specifier, which indicates that these
functions can be called from blueprints.

Now, we can implement these functions in PangaeaGameInstance.cpp:

#include "PangaeaGameInstance.h"
#include "Kismet/GameplayStatics.h"

void UPangaeaGameInstance::StartListenServer()
{
auto world = GEngine->GetCurrentPlayWorld();
 UGameplayStatics::OpenLevel(world,
 "TopDownMap", true, "?listen");
}

Adding networking functions to PangaeaGameInstance 307

void UPangaeaGameInstance::JoinAsClient(FString IPAddress)
{
 auto world = GEngine->GetCurrentPlayWorld();
 UGameplayStatics::OpenLevel(world,
 *IPAddress, true, "?join");
}
void UPangaeaGameInstance::LeaveGame()
{
 auto world = GEngine->GetCurrentPlayWorld();
 UGameplayStatics::OpenLevel(world, "LobbyMap");
}

Let’s understand this code a little more:

• All three functions call GEngine->GetCurrentPlayWorld() at the beginning.

• GEngine is a global engine pointer that allows developers to access the engine’s core information
anywhere at runtime. GetCurrentPlayWorld, GetFirstLocalPlayerController,
GetGamePlayers, and so on are the most useful member functions.

• UGameplayStatics is a useful static engine class that provides utility functions that can
be called from both C++ and Blueprint. OpenLevel, GetGameMode, GetGameState,
and GetGameInstance are frequently called functions.

• UGameplayStatics::OpenLevel(world, "TopDownMap", true, "?listen");
starts the game as a listen server and travels to TopDown, which is the gameplay level.

• UGameplayStatics::OpenLevel(world, *IPAddress, true, "?join");
starts the game as a client and connects to the server. The server’s IP address is provided by the
second parameter, IPAddress.

To convert an FString’s IPAddress value into an FName variable, add * before the variable’s name
(*IPAddress). The OpenLevel function’s second parameter, IPAddress, is of the FName
type, while the JoinAsClient caller function is an FString type with a value of IPAddress.

Now, we can open the UI widgets we just created and hook up these functions to the corresponding
events. For example, the Host button on BP_LobbyWidget should trigger the OnClick event, and
then call the StartListenServer() function. The Join button retrieves a string value from the
InputIPAddress text box and uses it as a parameter when calling the JoinAsClient() function:

Controlling the Game Flow308

Figure 11.8 – Handling the Host and Join buttons’ OnClick events on BP_LobbyWidget

Let’s break this down a bit more:

• The On Clicked nodes are the events that are triggered when the Host or Join button is pressed.

• Once one of the two events is trigged, the Cast To PangaeaGameInstance node gets the current
system’s game instance and casts it so that it’s a PangaeaGameInstance type of instance.
This ensures that the graph can access and call its member functions

• The Start Listen Server node calls the ApangaeaGameInstance class’s member C++
function, StartListenServer.

• The Join As Client node calls the ApangaeaGameInstance class’s C++ member
function, JoinAsClient.

• The Get Text node fetches the text from the Input Address input box. Then, the text is converted
into an FString value, which is then passed as a parameter to the Join As Client node.

Follow a similar process to make both the Leave Game and Go to Lobby button events call the
ApangaeaGameInstance class’s LeaveGame member function when the events are triggered.

Open BP_HUDWidget and add the following blueprint graph to handle the On Clicked
(ButtonLeave) event:

Adding networking functions to PangaeaGameInstance 309

Figure 11.9 – Handling the LeaveGame button event to navigate to the lobby

Then, open BP_GameOverWidget and add the following blueprint graph to handle the On Clicked
(ButtonLobby) event:

Figure 11.10 – Handling the GoToLobby button event to navigate to the lobby

With the multiplayer UI operations connected, our next objective is to change Multiplayer Options
in the Player Mode and Player Settings menu. The Number of Players value can remain set to 2,
but the Net Mode can now be changed to Play Standalone:

Figure 11.11 – Changing the multiplayer options

Since we’ve already written code and started the game as either a listen server or a client from the lobby,
we no longer rely on the engine to automatically launch the multiplayer mode game windows and
establish the connection. By changing Net Mode to Play Standalone, we can launch two standalone
games when clicking the Play button.

Controlling the Game Flow310

Now that we’ve created three UI widgets called BP_LobbyWidget, BP_HUDWidget, and
BP_GameOverWidget, we can incorporate them into the corresponding game levels.

Adding UI widgets to game levels
UI widgets can be created and added to the viewport of the current game level, but the preferred place
to create UI widgets is in Level Blueprints. So, click on the List of World Blueprints button on the
toolbar and choose Open Level Blueprint to open and edit the Level Blueprint:

Figure 11.12 – Opening the current Level Blueprint

Next, open LobbyMap and edit the Level Blueprint as follows:

1. Search for and add a Create Widget node to the graph. The new node’s title only displays
Construct NONE at the moment.

2. Select BP_LobbyWidget from the Class drop-down menu. The Create Widget node’s title will
now display Create BP Lobby Widget Widget.

3. Add a Add to View Port node and connect the output pin of the Create BP Lobby Widget
Widget node to the input pin of Add to View Port node. Connect the execution pins of these
two nodes as well:

Figure 11.13 – Creating and showing BP_LobbyWidget on LobbyMap

Adding UI widgets to game levels 311

Next, open TopDownMap and edit the Level Blueprint the same way we just did for LobbyMap. Here,
select BP_HUDWidget from the drop-down list under Class:

Figure 11.14 – Creating and showing BP_HUDWidget on TopDownMap

Now, if you want to play the game, remember to open LobbyMap as the current level. When you
launch the game in the editor, you should see two game instances – one in the editor’s viewport and
another in a separate window:

Figure 11.15 – Launching two game instances

On one game screen, click the Host button to start the game as a listen server. Then, click the Join
button in the other window to join the game. We currently don’t need to change the server IP address

Controlling the Game Flow312

because we are running the server and the client on the same machine, which means that it is a local
server (the IP address is 127.0.0.1).

While playing the game, the game HUD will display the Timer property in the top-left corner and
the Leave button in the top-right corner:

Figure 11.16 – Playing the game with the HUD screen displayed

The next thing we will do is process how the game ends. The idea is that when the game’s timer
counts down to 0, the players lose the game; otherwise, if the designated base tower is destroyed, the
players win the game. So, let’s add a game timer and its gameplay mechanism to the game so that it
can control when to end the game.

Adding the game timer
The game timer serves the purpose of counting down and restricting the duration of a game session.
To make the timer work, follow these steps:

• Introduce a new float variable named Timer into the APangaeaGameState class.

• Ensure that the Timer variable is capable of being replicated to inform clients about changes
to the timer’s value.

Adding the game timer 313

• Define a C++ Delegate that can be linked to Blueprint events, enabling the execution of an
event function whenever the timer’s value changes. This function will update the display for
the countdown.

• Create a custom event on BP_HUDWidget and bind the customer event to the C++ Delegate.
In the meantime, link the custom event to an event function, which will be responsible for
updating the display.

• Count down the Timer variable within the Level Blueprint of TopDownMap.

• Display the Game Over window once the timer reaches 0.

Let’s get started!

Adding the Timer variable to the APangaeaGameState class

The rationale behind including the Timer variable in APangayaGameState is its presence on
both the server and client sides – any game-related states that are shared between all connected clients
should be properties of this class.

Ensure that you have already created the APangaeaGameState class, which is derived from the
AGameState class. Then, open the PangaeaGameState.h file and insert the following code snippet:

public:
void GetLifetimeReplicatedProps(
 TArray<FLifetimeProperty>& OutLifetimeProps) const override;

UPROPERTY(BlueprintReadWrite, Category = "Pangaea")
float Timer = 0;

Here, the GetLifetimeReplicatedProps function is needed to replicate variables, and the
BlueprintReadWrite specifier indicates that blueprints can read and write this variable.

Next, add the implementation of the GetLifetimeReplicatedProps function to Pangaea
GameState.cpp:

void APangaeaGameState::GetLifetimeReplicatedProps(TArray<
FLifetimeProperty >& OutLifetimeProps) const
{
 Super::GetLifetimeReplicatedProps(OutLifetimeProps);
 DOREPLIFETIME(APangaeaGameState, Timer);
}

The DOREPLIFETIME macro generates the necessary code to synchronize the Timer value across
the network for all the clients.

Controlling the Game Flow314

Making the Timer variable replicable

To make the Timer variable replicable, we can add the ReplicatedUsing specifier and the
OnTimerChanged notification handler function, like so:

public:
 UFUNCTION(BlueprintCallable, Category = "Pangaea")
 void OnTimerChanged();

 UPROPERTY(BlueprintReadWrite, ReplicatedUsing = OnTimerChanged,
 Category = "Pangaea")
 float Timer = 0;

Timer counts down only on the server side and will be synced to the clients. When the value of
Timer is changed and replicated to the clients, the OnTimerChanged function will be called.

OnTimerChanged is a BlueprintCallable function because it needs to be called from the
Level Blueprint on the listen server. Replication notifications are not fired on the server side, so to
update the timer’s display on the host, the notification’s handler function should be directly called on
the listen server once the timer’s value is changed.

Defining OnTimeChangedDelegate

We already know how to use the BlueprintCallable specifier to make a C++ function callable
to Blueprints. On the contrary, a C++ Delegate can be bound with one or more Blueprint custom
events, which makes it possible to call custom Blueprint event functions from C++.

We can use the C++ DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam macro to define
the FOnTimerChangedDelegate delegate, and then use this delegate to create the Delegate
variable, like so:

DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam
 (FOnTimerChangedDelegate, float, Timer);

UCLASS()
class PANGAEA_API APangaeaGameState : public AGameStateBase
{
 public:
 UPROPERTY(BlueprintAssignable, Category = "Pangaea")
 FOnTimerChangedDelegate OnTimerChangedDelegate;
…
}

Adding the game timer 315

So, the DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam macro defines the
FOnTimerChangedDelegate delegate (a Delegate name must start with an uppercase “F”),
and the Delegate function should have only one float type parameter.

Plus, the BlueprintAssignable specifier indicates that Blueprint custom events can be bound
to the OnTimerChangedDelegate variable.

Creating and binding the custom event to
OnTimeChangedDelegate

Now, open BP_HUDWidget and edit the Event Graph to complete the following three tasks:

1. Get the OnTimerChangedDelegate node and bind it to the custom event,
OnTimerCchangedEvent.

2. Update and display the timer.

3. Show the Game Over screen and pause the game.

You can see the results in Figure 11.17:

Figure 11.17 – Binding a custom event to OnTimerChangedDelegate on BP_HUDWidget

Let’s investigate the details of each part of the graph.

Controlling the Game Flow316

Binding OnTimerChangedEvent to OnTimerChangedDelegate

The first part of the Event Graph gets GameState and casts it to PangaeaGameState first. Then,
it uses the Bind Event node to bind to OnTimerChangedDelegate:

Figure 11.18 – Binding OnTimerChangedEvent to OnTimerChangedDelegate

Setting and displaying Timer

In the second part of the Event Graph, the parameter of OnTimerChangedEvent is the new
Timer value, which is rounded to an integer number (we don’t want to display the decimal part of
the value on screen), and then converted into a text value that acts as the input of the Set Timer node:

Figure 11.19 – Setting and displaying Timer

Adding the game timer 317

Opening the Game Over window and pausing the game

The third part of the Event Graph checks whether the Timer value is smaller than or equal to 0; if
the result is true, it means that time has run out and the game is over:

Figure 11.20 – Showing the GameOver window and pausing the game

Once the game is over, the Create Widget node creates BP_GameOverWidget and adds it to the
viewport. Unreal allows you to stack multiple layers of UI widgets on the current viewport; in this
case, BP_GameOverWidget is stacked in front of BP_HUDWidget.

The Delay node delays pausing the game for 1 second to allow the game to update displays and avoid
rapidly pausing the game.

The Set Game Paused node’s Paused box is checked, so it pauses the game.

With all that done, let’s count down the timer while the game is running.

Counting down the timer

To implement the timer’s counting down job, we can edit the TopDownMap Level Blueprint.
The initialization of Timer is linked to the BeginPlay event:

Controlling the Game Flow318

Figure 11.21 – Setting the Timer node’s initial value

Here, the Is Server node returns true when the game is running on the server. The reason why we
check it here is that we only want to set the initial value of Timer on the server.

Once we’ve confirmed that the game is running as a server, the Set node sets the PangaeaGameState
node’s Timer variable to 90 seconds.

Now, to count down the Timer, we need to create the following graph and establish its connection
to the Tick event node:

Figure 11.22 – Counting down the Timer variable

Adding the game timer 319

The graph first checks whether the game is running as a server.

If it is a server, the Timer variable’s current value is retrieved from PangaeaGameState; then the
Subtraction node subtracts Delta Seconds from the Timer value and sets the result back to Timer.

Once the new value is set to Timer, OnTimerChanged is called to notify the game (remember,
OnTimerChanged is called by the timer replication notification on clients).

With that, the Timer node is working, but it is updated every frame, which unnecessarily consumes
CPU time and network bandwidth too frequently. Let’s learn more about this issue and try to improve it.

Since the Tick event is triggered every frame by default, this means this event function is called every
frame. If the frame rate is 60, then the game updates Timer every 1/60 second. This seems to be
unnecessarily too frequent, which may impact the game’s performance and networking bandwidth
because it is enough to be updated and synced for all the players once per second.

To improve this, we can simply open the TopDownMap node’s Level Editor and change Tick Interval
(secs) from 0.0 to 1.0:

Figure 11.23 – Setting the TopDownMap node’s Level Blueprint Tick Interval (secs) to 1 second

Designating APangaeaGameState as the project’s game state
class

One more thing we need to do is designate the game project’s game state class – ApangaGameState
should be used to substitute the original AGameState class.

Controlling the Game Flow320

To complete this task, we can simply add one more line of code at the end of the constructor of the
APangayaGameMode class:

APangaeaGameMode::APangaeaGameMode()
{
 …
 GameStateClass = APangaeaGameState::StaticClass();
}

Since the game is designed as an online co-op game, and the game has a timer to count down, once the
timer reaches 0, the players lose the game. But how do players win the game? The idea is to designate
one defense tower as the base, and once the base is destroyed, the players win.

Sound like a good idea? Let’s make some changes to the DefenseTower class and get things up
and running.

Destroying a base defense tower to win the game
To complete the implementation as well as add the IsBase tower’s designation support for the
ADefenseTower class, we must do the following:

• Add the IsBase flag to ADefenseTower.

• Modify the Hit function so that it deals with the server and client processes when the tower
is destroyed.

• Add the GameWin flag and the OnGameWin function to APangaeaGameState.

• Add OnGameWinLoseDelegate to APangaeaGameState.

• Edit the BP_DefenseTower blueprint to bind OnGameWinLoseEvent to
OnGameWinLoseDelegate.

• Show win or lose information in the Game Over window.

So, let’s get started. First, open the DefenseTower.h file and add the IsBase flag to AdefenseTower.
Then, add the following code:

public:
…

UPROPERTY(EditAnywhere, Category = "Tower Params")
bool IsBase = false;

Destroying a base defense tower to win the game 321

Next, in DefenseTower.cpp, modify the Hit function so that it deals with the server and client
processes when the tower is destroyed, like so:

void ADefenseTower::Hit(int damage)
{
 if (IsKilled())
 {
 return;
 }

 if (GetNetMode() == ENetMode::NM_ListenServer &&
 HasAuthority())
 {
 _HealthPoints -= damage;
 OnHealthPointsChanged();

 if (_HealthPoints <= 0)
 {
 if (IsBase)
 {
 APangaeaGameState* gameState = Cast<APangaeaGameState>
 (UGameplayStatics::GetGameState(GetWorld()));
 gameState->OnGameWin();
 }
 else
 {
 Destroy();
 }
 }
 }
}

bool ADefenseTower::IsKilled()
{
 return (HealthPoints <= 0.0f);
}

The Hit function only reduces _HealthPoints. When _HealthPoints reaches 0, it is the
server’s responsibility to change the GameWin flag to true and call the OnGameWin function and
process it on the server side. This is because only the server possesses the necessary authority.

Once a base tower is destroyed (_HealthPoints <= 0), the Hit function calls the
APangaeaGameState::OnGameWin function, and the OnGameWin function sets the GameWin
flag and notifies all the clients.

Controlling the Game Flow322

Once a regular tower is destroyed, the Hit function simply removes the tower by calling the
Destroy function.

Now, we must add the GameWin flag and the OnGameWin function to APangaeaGameState in
the PangaeaGameState.h file:

Public:
…

UPROPERTY(BlueprintReadWrite, ReplicatedUsing = OnGameWin,
 Category = "Pangaea")
bool GameWin;

UFUNCTION(BlueprintCallable, Category = "Pangaea")
void OnGameWin();

Let’s break this down quickly:

• The GameWin variable is tagged so that it can be accessed by Blueprints

• GameWin is also tagged as a replicable variable, and the value change notification is hooked
up with the OnGameWin function

• OnGameWin is tagged as a BlueprintCallable function, which means that Blueprints
can call this function

The following is the OnGameWin function’s implementation in the PangaeaGameState.cpp file:

void APangaeaGameState::OnGameWin()
{
 GameWin = true;
 OnGameWinLoseDelegate.Broadcast(true);
}

The next step is to add FOnGameWinLoseDelegate to ApangaeaGameState. This delegate
type is used to define the OnGameWinLoseDelegate delegate variable, which is an interface that
allows C++ to call blueprint functions:

DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam(
 FOnGameWinLoseDelegate, bool, Win);

UCLASS()
class PANGAEA_API APangaeaGameState : public AGameStateBase
{
public:
 …

Destroying a base defense tower to win the game 323

 UPROPERTY(BlueprintAssignable, Category = "Pangaea")
 FOnGameWinLoseDelegate OnGameWinLoseDelegate;
}

The previous code uses the same method that we used to create OnTimerChangedDelegate.

We can now edit BP_DefenseTower to bind the OnGameWinLoseEvent event function to C++’s
OnGameWinLoseDelegate. Open BP_DefenseTower to create the graph, as shown in Figure 11.21:

Figure 11.24 – Binding OnGameWinLoseEvent to OnGameWinLoseDelegate

This graph binds OnGameWinLoseEvent to OnGameWinLoseDelegate when the BeginPlay
event occurs. Once OnGameWinLoseEvent is triggered, BP_GameOverWidget is created and
added to the viewport to be displayed. The game then delays for 1 second and is paused.

Controlling the Game Flow324

Since BP_DefenseTower still doesn’t have its health bar, we can add a Widget component to the
Components hierarchy and name it HealthBar:

Figure 11.25 – Adding the tower’s HealthBar

Then, fill in the following settings in the widget component’s Details window (see Figure 11.26):

• Variable Name: HealthBar

• Location: (0.0, 0.0, 380.0)

• Space: Screen

Destroying a base defense tower to win the game 325

• Widget Class: BP_HealthBarWidget:

Figure 11.26 – The HealthBar widget component’s settings

The last thing we must do is let the Game Over window display You Win! or You Lose! To do so,
open BP_GameOverWidget and add the Blueprint graph shown here:

Figure 11.27 – Setting the Game Over result text graph

Controlling the Game Flow326

The blueprint checks the ApangaeaGa,eState::GameWin flag – if it is True, the WinLose text
box, You Win!, is set; otherwise, You Lose! is set. Once a base tower is destroyed, the game should
be paused and show the Game Over window with the You Win! text:

Figure 11.28 – The Game Over screen when the players win

With the game now reaching basic completion, it is crucial to allocate time to iteratively refactoring
and refining both the game project and source code to enhance its overall quality. This practice aligns
with the real game development process, which is required by the end of prototyping and adding
new features.

Summary
In this chapter, you started by designing the basic game flow for Pangaea and then created three UI
widgets called BP_LobbyWidget, BP_HUDWidget, and BP_GameOverWidget. You also learned
how to use Unreal’s OpenLevel function to start a listen server, join a game as a client, and travel
back to the lobby. Based on knowing that a game instance always exists on the client side, you created
the networking member functions for APangaeaGameInstance. By clicking buttons on the user
interfaces, players can play the online game by choosing to host a game or join other people’s game
sessions and even exit the current game to go back to the lobby.

To add something fun to this game, you added some conditions for players winning or losing the
game. The Timer value was used to determine whether the game ends due to a timeout. You also
finished implementing DefenseTower by allowing designers to designate any defense tower to be the
base tower so that once a base tower is destroyed, the players win the game.

The next chapter will show you how to package the project for publication and will include some useful
recommendations on importing high-quality assets to polish the game using console commands and
recovering corrupted projects.

12
Polishing and

Packaging the Game

Welcome to the last chapter of this book. In the preceding chapters, we worked together and crafted
a basically playable Pangaea game. The current stage beckons us to focus on polishing, packaging,
and presenting the immersive Pangaea game to players.

We will discuss and explore a range of potential approaches to polishing and improving the game’s
quality. This will include incorporating high-quality assets, fixing bugs, and leveraging the engine’s
profiling tools to improve performance.

Some useful Unreal Engine console commands will be introduced so that you can use them to start
the standalone game with preferred settings.

We will also outline the essential settings required for packaging the Pangaea game, then we will
follow the steps to package and generate a standalone game for Windows. By providing this guidance,
we aim to assist you in successfully preparing the game for distribution.

This chapter includes the following sections:

• Polishing the game

• Using Unreal Engine console commands

• Packaging the game

• What to do next

Technical requirements
The code for this chapter can be found at https://github.com/PacktPublishing/Unreal-
Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter12.

https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter12
https://github.com/PacktPublishing/Unreal-Engine-5-Game-Development-with-C-Scripting/tree/main/Chapter12

Polishing and Packaging the Game328

Polishing the game
Having completed the preceding 11 chapters, we have now arrived at a significant milestone where
we possess a playable Pangaea game prototype that serves as a foundation for further development.
Our next task, polishing the game, involves the following three aspects:

• Importing and using more game content

• Fixing bugs

• Profiling and improving the performance of the game

Let’s get started.

Importing and using high-quality game assets

To enhance the visual quality and create a more immersive player experience, it is possible to incorporate
additional assets into the game during the polishing phase. These assets may include high-quality
artwork, audio clips, videos, and more. The acquisition of these art assets depends on the specific
project requirements and available budget.

Certain types of assets can be used to polish the game, such as characters, structures, props, items,
animations, particle effects, sound effects, music clips, and videos.

Of course, we can also create new content based on the new assets; for example, we can design new
game levels with new terrains, plants, and buildings.

There are mainly two ways to obtain more assets for your games, as outlined here:

• Epic Games Marketplace provides a convenient way to acquire free assets or purchase third-
party-developed assets (see Figure 12.1). To access the marketplace, simply open the Epic
Games Launcher and select Marketplace from the top horizontal menu:

Polishing the game 329

Figure 12.1 – Epic Games Marketplace

• One other way to obtain game assets is to hire designers and artists to develop unique game
assets that will be used for your game in production. This investment needs to be carefully
evaluated and well planned, depending on your development budget.

To showcase how high-quality assets can enhance the game’s visual immersion, we can acquire the
Infinity Blade: Grass Lands asset (see Figure 12.2) from the Epic Games Marketplace and add it to
the Pangaea project:

Polishing and Packaging the Game330

Figure 12.2 – Adding Infinity Blade: Grass Lands from Epic Games Marketplace

Subsequently, we can develop a new version of the Topdown game level by strategically placing
enemies and towers within the environment (see Figure 12.3):

Figure 12.3 – Playing Pangaea in the new Topdown level

Polishing the game 331

While delivering an enjoyable gameplay experience, the presence of bugs can introduce frustration if
they are not promptly addressed. Therefore, we should always pay attention to bugs.

Fixing bugs

Bug fixing is an essential part of the development life cycle aimed at improving the functionality and
reliability of the game code. Bug fixing is an iterative process that needs developers to repeatedly
troubleshoot, identify, and fix bugs and eventually deliver a game that meets the expected quality.

Code review

Code review for bug fixes is a process where developers examine and evaluate code and address
bugs. This process helps to ensure the correctness of logic and algorithms and adherence to coding
standards, as well as identify potential issues or improvements. It is usually a multiple team members’
collaboration practice.

Quality assurance

Quality assurance (QA) activities are usually carried out by QA teams that systematically test and
inspect games to ensure that products or services meet specified requirements and quality standards.
A found bug is reported by the QA tester and will be fixed by the developer. The process helps to
enhance the overall quality of the product.

In addition to addressing bug fixes, optimizations play a vital role in enhancing the overall gameplay
experience for players. The optimization process often entails the implementation of profiling practices.

Profiling and optimization

Profiling and optimization are essential aspects of game development. The main purpose of profiling
is to identify CPU and GPU performance bottlenecks, memory usage, memory leaks, content and
package-size issues, and so on. Optimization techniques vary depending on the detected issues and
may involve code, algorithm, data structure, asset, and memory management optimizations.

Besides code analysis, profiling usually relies on a set of profiling tools. We are not going to look
further into this topic in this book, but here is a list of some profiling tools:

• Unreal Insights is a set of profilers that assist developers to investigate performance, memory,
networking, and UI details. Here is the link to the documentation page: https://docs.
unrealengine.com/5.0/en-US/unreal-insights-in-unreal-engine/.

• The Built-in profiler tools, such as GPU Visualizer (press Ctrl + Shift + , to open the GPU
Visualizer window in the editor). Please refer to the official documentation for more
information (https://docs.unrealengine.com/5.0/en-US/testing-and-
optimizing-your-content/).

https://docs.unrealengine.com/5.0/en-US/unreal-insights-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/unreal-insights-in-unreal-engine/
https://docs.unrealengine.com/5.0/en-US/testing-and-optimizing-your-content/
https://docs.unrealengine.com/5.0/en-US/testing-and-optimizing-your-content/

Polishing and Packaging the Game332

• Using the viewport View Modes, such as the Wireframe (Alt + 2), Light Complexity (Alt +
6), Shader Complexity views (Alt + 7), and so on.

Unreal Engine also offers a valuable arsenal of console commands that can be utilized in testing and
tuning games. Let’s explore the concept of the console command system and acquaint ourselves with
a selection of fundamental commands.

Using Unreal Engine console commands
Unreal Engine allows testers to use console commands to interact with the game while playing.
Console commands are widely used to change game settings, view the game status, manipulate game
attributes, change game behaviors, tune game parameters, and so on.

Exploring modes and console commands

A pop-up UI called the Debug menu is usually developed to link UI actions (buttons, input boxes,
and selections) to certain console commands. Testers can use the Debug menu to quickly jump into
a particular game state. If you want to learn more about the Debug menu, you can visit https://
en.wikipedia.org/wiki/Debug_menu.

Please be aware of the prerequisite for using console commands in standalone games, which requires
games to be packaged as Development builds instead of Shipping builds.

To use console commands while playing the game, press the tilde key (~) on your keyboard to toggle
between showing the small console, showing the large console, and hiding the console. Please be
aware that the command console may show in slightly different places depending on which play mode
(Debug or Simulate) you are currently using.

The compact Debug mode command console usually appears in the viewport of the engine editor:

Figure 12.4 – The compact command console when it is in the Debug mode

https://en.wikipedia.org/wiki/Debug_menu
https://en.wikipedia.org/wiki/Debug_menu

Using Unreal Engine console commands 333

The compact Simulate mode command console usually appears in seperate Play In Editor (PIE) windows:

Figure 12.5 – The compact command console when it is in Simulate mode

The expansive command console occupies a big portion of the game screen, providing an extensive
display of command history and previous command responses:

Figure 12.6 – The expansive command console

Polishing and Packaging the Game334

While it is not within the scope of this book to delve into every console command, we will focus
on introducing a curated selection of useful commands listed in the following table to enhance
your understanding:

Command Description Example(s)
Exit Exits the game >exit

Stat FPS Toggles the visibility of
the FPS

>stat fps

(see Figure 12.8)
Stat Unit Toggles the visibility of

helpful performance info
>stat unit

(see Figure 12.9)
r.SetRes Sets the standalone

game’s screen resolution
and the fullscreen or
windowed mode

>r.setres 1280x720w

(w stands for windowed)

>r.setres 1920x1080f

(f stands for fullscreen)
Open
[MapName]?Listen

Starts the game on
the given map as a
Listen Server

>open TopDown?listen

(Opens the TopDown level and
starts the game as a Listen Server)

Open [IP address]
[:Port]

Connects the game as
a client to the remote
server with the given IP
address (for example,
127.0.0.1) and
the port number (for
example, 7777)

>open 127.0.0.1:7777

(Connects to the
127.0.0.1:7777 server as
a game client. The game map
will be the same as the server’s
current map.)

DumpConsoleCommands Prints out all console
commands on the console

>dumpconslecommands

Figure 12.7 – Some Unreal Engine console commands

The following screenshots show the use of the stat.fps and stat.unit commands to enable the
display of the FPS and basic performance information in the top-right corner of the game window.

Using Unreal Engine console commands 335

When displaying the frame rate with stat.fps, the frame interval time is also presented beneath it:

Figure 12.8 – Using the stat.fps command to display the current FPS

The stat unit command displays the CPU and GPU time spent on the current frame, as well as
some of the current game performance information:

Figure 12.9 – Using the stat.unit command to display the current performance state

Polishing and Packaging the Game336

For further exploration of Unreal’s console commands, you can visit the suggested websites or conduct
online searches to access specific command documentation and related resources:

• https://docs.unrealengine.com/5.2/en-US/stat-commands-in-unreal-
engine/

• https://docs.unrealengine.com/5.2/en-US/audio-console-commands-
in-unreal-engine/

• https://docs.unrealengine.com/5.2/en-US/console-commands-for-
network-debugging-in-unreal-engine/

• https://pongrit.github.io/

You can also utilize the dumpconsolecommands command to display a comprehensive list of all
available commands directly in the console:

Figure 12.10 – Viewing the command list on the command console screen

Apart from entering console commands manually, Unreal also offers an API that allows the execution
of console commands in Blueprint and C++. Let’s delve into writing the C++ code to execute
console commands.

Executing console commands in C++

In Unreal Engine C++, you can execute console commands by calling the APlayer
Controller::ConsoleCommand function.

Here is the syntax of the ConsoleCommand function:

bool ConsoleCommand(const FString& Command, bool bWriteToLog);

https://docs.unrealengine.com/5.2/en-US/stat-commands-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/stat-commands-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/audio-console-commands-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/audio-console-commands-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/console-commands-for-network-debugging-in-unreal-engine/
https://docs.unrealengine.com/5.2/en-US/console-commands-for-network-debugging-in-unreal-engine/
https://pongrit.github.io/

Using Unreal Engine console commands 337

Let’s break down this syntax:

• Command parameter: The console command that will be executed

• bWriteToLog parameter: Determines whether the execution of this command will be logged
(true) or not (false)

• The return value of the function is a bool value that indicates whether the command execution
succeeded (true) or failed (false)

Refer to the following code example to learn how to execute console commands programmatically in C++,
and make sure that this sample code is part of an UObject or AActor subclass’s member function:

#include "Engine/World.h"
#include "GameFramework/PlayerController.h"

// ...
auto World = GetWorld(); //Get the world

if (World)
{
 auto PlayerController = World->GetFirstPlayerController();

 if (PlayerController)
 {
 FString Command = TEXT("stat fps");
 PlayerController->ConsoleCommand(Command, true);
 }
}

In the previous code snippet, you first obtain a reference to the current UWorld object using
the GetWorld() function. Then, you retrieve the first player controller using the world’s
GetFirstPlayerController() member function. Finally, you execute a console command (for
example, stat fps) using the ConsoleCommand() function of the APlayerController class.

The last thing we want to do in this book is to package the Pangaea game. Let’s explore the packaging
process steps.

Polishing and Packaging the Game338

Packaging the game
During the development process, we extensively played the Pangaea game within Unreal Editor.
However, our goal is to make the game accessible to players without requiring them to install Unreal
Engine. Luckily, Unreal Engine provides a convenient packaging feature that allows us to create
standalone install packages for various platforms. This means we can distribute the Pangaea game as
a separate application for Windows, macOS, iOS, Android, and more. To demonstrate this, we will
create a Pangaea Windows game installation package.

Prior to the packaging process for the game, certain project settings need to be configured.

Configuring the project settings for packaging

To successfully package a game, as the bare minimum, there are two tasks you need to complete,
as follows:

• The first task involves setting the project defaults, which entails designating the default game
mode, player pawn, and so on

• The second task involves including the necessary game levels within the generated installation
package, ensuring that the game levels are present for the gameplay

Let’s start setting the project defaults in the project settings.

Setting the project defaults

To work on the settings, choose Edit | Project Settings… from the editor’s main menu. Then, from
the Project Settings window, find and select Maps & Modes under the Project group on the All
Settings panel. Now, choose the following settings:

• Default Game Mode: PangaeaGameMode

• Default Pawn Class: BP_PlayerAvatar

• Player Controller Class: BP_TopdownPlayerController

• Game State Class: PangaeaGameState

• Game Default Map: LobbyMap

• Game Instance Class: PangaeaGameInstance

Packaging the game 339

We can see these settings in the following screenshot:

Figure 12.11 – Project – Maps & Modes settings

Next, we want to add the required game levels to the list of included maps.

Including the game levels in the built package

In the Project Settings window, find and select Packaging under the Project group. Then, click the
Add Element button (denoted by the + symbol) to add LobbyMap and TopDownMap to the List
of maps to include in a packaged build setting:

Polishing and Packaging the Game340

Figure 12.12 – Adding game maps that will be included in the package build

The project settings are now prepared for packaging the project, but if we desire the built game to
run in the 1,280x720 window mode, this is the opportune moment to utilize the r.setres console
command to accomplish it.

Making the build a windowed game

By default, the packaged standalone build of the game is launched in fullscreen mode. However, it is
more convenient to test the multiplayer functionality by running two instances of Pangaea in separate
windows on your machine.

Packaging the game 341

To facilitate this, you can configure the game to start as a windowed application with a resolution of
1,280x720 and ensure that the mouse cursor is visible. To achieve this, a minor modification can be
made to the level blueprint of the LobbyMap level blueprint, as follows:

1. Execute the console command to start the game in the 1,280x720 window mode.

2. Check the Show Mouse Cursor checkbox in the SET node:

Figure 12.13 – Modifying the LobbyMap level blueprint

We just accomplished the task by utilizing the LobbyMap level blueprint to ensure we start the
game with the required resolution and in window mode. One more thing to improve is to remove
the hardcoded path for finding the BP_Fireball and BP_Hammer blueprint classes for spawning
the actors.

We just completed a task that allowed us to ensure that the game starts with the required resolution
and in window mode. One further improvement is to eliminate the hardcoded path used to locate
the BP_Fireball and BP_Hammer blueprint classes for spawning actors.

Avoiding the hardcoded path for finding content

Within the game’s C++ source code, we utilized ConstructorHelpers::FObjectFinder to
obtain references to the BP_Fireball and BP_Hammer classes for spawning fireball and hammer
instances. However, this approach employs hardcoded paths to the assets, which may lead to runtime
errors when the target asset is missing or if the specified path cannot be located.

The following code snippets depict the original implementation of the ADefenseTower and AEnemy
classes that we aim to replace.

Here is DefenseTower.cpp:

static ConstructorHelpers::FObjectFinder<UBlueprint> blueprint_
finder(TEXT("Blueprint'/Game/TopDown/Blueprints/BP_Fireball.BP_
Fireball'"));
_FireballClass = (UClass*)blueprint_finder.Object->GeneratedClass;

Polishing and Packaging the Game342

And here is Enemy.cpp:

static ConstructorHelpers::FObjectFinder<UBlueprint> blueprint_
finder(TEXT("Blueprint'/Game/TopDown/Blueprints/BP_Hammer.BP_
Hammer'"));
_WeaponClass = (UClass*)blueprint_finder.Object->GeneratedClass;

To improve this code, we want to define _FireballClass and _WeaponClass as UPROPERTY
variables so that we can select and specify Blueprint classes in the editor.

Let’s start by modifying the DefenseTower class:

1. In Enemy.h, change the _FireballClass variable type to TSubClassOf<AProjectile>.
Then, move the variable definition code to the public section. To maintain the code standard,
we can change the variable name to FireballClass (removing the heading underscore, _):

public:
 UPROPERTY(EditAnywhere, Category = "Tower Params")
 TSubclassOf<AProjectile> FireballClass;

2. In Enemy.cpp, remove the following two lines of code:

static ConstructorHelpers::FObjectFinder<UBlueprint>
 blueprint_finder(TEXT("Blueprint'/Game/TopDown/Blueprints/
 BP_Fireball.BP_Fireball'"));
FireballClass = (UClass*)blueprint_finder.Object-
>GeneratedClass;

3. Change the parameter name from _FireballClass to FireballClass when calling
the SpawnOrGetFireball function:

void ADefenseTower::Fire()
{
auto fireball = _PangaeaGameMode->SpawnOrGetFireball(
 FireballClass);
 …
}

4. Select BP_Fireball for the FireballClass field for BP_DefenseTower in the editor.
Then, do the following:

I. Compile and reopen the project in the Unreal Editor.

II. Open BP_DefenseTower from the Content | Topdown | Blueprints folder.

Packaging the game 343

III. Select BP_Fireball for the Fireball Class field:

Figure 12.14 – Selecting BP_Fireball for the FireballClass field on the blueprint editor

5. Compile and save BP_DefenseTower.

Similarly, we can apply the aforementioned steps to make modifications to the AEnemy class. In
Enemy.h, define the WeaponClass variable as a subclass of AWeapon:

public:
 UPROPERTY(EditAnywhere)
 TSubclassOf<AWeapon> WeaponClass;

Then, comment or remove the two asset finder lines of code from the constructor of AEnemy
in Enemy.cpp:

AEnemy::AEnemy()
{
 …
 //static ConstructorHelpers::FObjectFinder<UBlueprint>
 blueprint_finder(TEXT("Blueprint'/Game/TopDown/Blueprints/
 BP_Hammer.BP_Hammer'"));
//_WeaponClass = (UClass*)blueprint_finder.Object->GeneratedClass;
}

Polishing and Packaging the Game344

void AEnemy::BeginPlay()
{
 Super::BeginPlay();
_Weapon = Cast<AWeapon>(
 GetWorld()->SpawnActor(WeaponClass));
 …
}

We are now ready to package the game build.

Packaging the project

To package the project, we can complete the following steps:

1. Click Platforms on the editor’s toolbar. Then, select Windows.

2. Next, choose one of the packaging configuration types (see Figure 12.15):

I. DebugGame: When packaging with this configuration, the game engine code is optimized,
whereas the game code is debuggable without optimizations

II. Development: This is the engine’s default compiling configuration, which only optimizes
the most time-consuming engine and game code but leaves the other code unoptimized
and debuggable

III. Shipping: When packaging with this configuration, all debug symbols—including logs,
status, profiling data, and so on—are stripped off, and the project is fully optimized for
the best game performance

Packaging the game 345

3. Click the Package Project item on the second-layer menu.

Figure 12.15 – Starting to pack the game

4. Select the target folder for where the packaged build will be saved (see Figure 12.16). Once the
Select Folder button is pressed, Unreal will start the packaging process:

Polishing and Packaging the Game346

Figure 12.16 – Selecting the target folder (for example, C:\Projects\PangaeaBuild) to save the game build

5. While packaging, you can view the progress and the logs in the Output Log window located
at the bottom of the editor:

Figure 12.17 – Viewing packaging progress logs in the Output Log window

What to do next 347

6. Once the packaging process is complete, you can locate the packaged files and their corresponding
subfolders in the designated target folder (see Figure 12.18):

Figure 12.18 – The generated package build files

7. Then, to launch the standalone game, simply double-click on the Pangaea.exe executable.

Congratulations on acquiring the playable multiplayer Pangaea game build, which you can now copy
and distribute to share the game with others!

What to do next
This book is structured to provide comprehensive insights and techniques essential for creating and
developing Pangaea, a multiplayer game in the top-down genre. It covers a range of topics, including
fundamental C++ coding skills, the Unreal Actor class and its subclasses, animation control, player
interactions, collision handlers, UI, and multiplayer game fundamentals. However, the book does not
delve extensively into each area and could not cover all aspects of techniques for game development
as there is a vast and intricate body of knowledge to explore. Becoming an advanced expert in Unreal
C++ game development requires continuous learning, practice, and experience accumulation to
further refine your skills.

The key to success lies in consistent practice and dedication. You can choose to embark on a new
project from scratch or enhance the existing Pangaea game by gradually incorporating additional
features and exploring advanced technologies. Aim to gain familiarity with APIs, C++ syntax, the
Visual Studio IDE, and the UE5 development environment. Cultivate your ability to analyze and solve
problems, and continuously refactor, refine, profile, and optimize your ongoing development efforts
using an iterative process. This will enable you to broaden your knowledge base and explore different
directions within various areas.

Polishing and Packaging the Game348

Engage in practices such as refactoring, refining, and adding new features, as well as digging into
certain areas. When seeking to expand your understanding of specific technologies, the Unreal Engine
API documentation (https://docs.unrealengine.com/5.0/en-US/API/) and the
abundance of online tutorials serve as excellent references.

Summary
What you just learned in the chapter was ways of polishing the Pangaea game by importing new assets,
fixing bugs, profiling to improve performance, and using console commands to manipulate and tune
the game. You also followed instructional steps to configure the packaging settings and generated a
Windows executable game for distribution. The last section of this book also provided my suggestions
for your further learning based on the knowledge and skill set you gained from this book.

I hope this book can help to accelerate your learning experience and be the starting point for your
Unreal Engine C++ game development career. I wish you all the best with your future professional
game development career and I hope you make your dream games come true!

https://docs.unrealengine.com/5.0/en-US/API/

Index

A

ABP_Enemy animation blueprint
creating 200

ABP_PlayerAvatar
blueprint, creating 169, 170
State Machine, creating on 171-174

Actor instance
actual class type, checking 266-268

actors components
adding 136
creating, in class constructor 138
header files, including 136
private properties, defining 136
public getter functions, adding 137

actor variables
syncing, to clients with replications 282, 283

ADefenseTower attributes
marking, as UE properties 130

ADefenseTower class
creating 120-125

ADefenseTower member function
tagging, as UFUNCTION macros 133-135

animation blueprint
creating, for player avatar 162, 163

APangaeaGameState
designating, as project’s game

state class 319, 320

APangaeaGameState class
Timer variable, adding to 313

APlayerAvatar attributes
marking, as UFUNCTION macro 131

APlayerAvatar class
creating 125-127

APlayerAvatar member function
tagging, as UFUNCTION macros 133-135

Application Programming
Interfaces (APIs) 6

AProjectile attributes
marking, as UFUNCTION macro 131

AProjectile class
creating 125

arithmetic operators 53
array 52
artificial intelligence (AI) 117
assignment operators 54

B
base defense tower

destroying, to win game 320-326
basic calculator program

working with 48, 49
Behavior Tree (BT) 195

Index350

Bitwise operators 56
Blackboard 195
Blueprint 3

classes, creating from actor classes 138-142
project, converting to C++ project 15-19
versus C++ 4

BP_Enemy blueprint
creating 201-203

BP_GameOverWidget
creating 303-306

BP_HUDWidget
creating 301, 302

BP_LobbyWidget
creating 298-300

BP_PlayerAvatar
Hero skeletal mesh, using in 160

break statement 65, 66

C
C++ 44, 45

arrays, using 52, 53
classes, creating 76
comments, adding 57
console commands, executing 336, 337
data types, using 50, 51
need for 5
program structure 45, 46
versus Blueprint 4

C++ coding
Calculator class, adding 40-42
editor theme, modifying 37
initial code, writing for main.cpp 38, 39
main.cpp file, creating 35-37
practicing 32

C++ flow
break statement, using 65
continue statement, using 65

controlling 58
working with, if statements 58
working with, loop statements 62
working with, switch statement 61, 62

C++ functions
calling 47
defining 46
defining, with or without parameters 47
Main() function, writing 47

C++ operators
arithmetic operators 53
assignment operators 54
Bitwise operators 56
comparison operator 55
logical operators 55
using 53-56

C++ programming
versus C++ scripting 6

C++ programming framework 3
C++ project

Blueprint project, converting to 15-19
creating, from First Person template 6
MyShooter project, creating 10, 11
recompiling 127, 128
source code, opening in Visual

Studio (VS) 13-15
UE5 editor, launching through

Epic Games Launcher 10
UE5 source code editor, installing 9
Visual Studio (VS) 2022, installing 6-9
Visual Studio (VS), associating with

UE5 source code editor 12, 13
C++ scripting 4

in Unreal Engine (UE) 4
versus C++ programming 6

C++ solution
creating, in VS 33-35

Index 351

C++ source code 21
C++ syntax

learning 49
caching variables

using 255, 256
CalculatorEx class

creating 84-88
camel casing standard 52
CameraComponent

adding, to PlayerAvatar 150-154
caret 30
caret navigation keys 30
Cast template function

using 145-147
character health bar

updating, with RepNotify 284
character model

importing 155-160
characters

spawning 109
class 75
classes, in C++ 76

class attributes 77
class methods 77

class instances
retrieving, in code 145

code block operations 31, 32
code refactoring 189, 240

PangaeaCharacter class, making
parent class 243-255

PlayerAvatarAnimInstanc class, combining
with EnemyAnimInstance class 240-243

code refinement 255
caching variables, using 255, 256
fireball pool, creating 256-263

code selection 30

coding, in VS
reference link 24

collision presets 205
setting 210-212

collisions for game interactions
defense tower firing fireballs 225-230
defense tower hit, processing 234-236
enemy weapon, spawning 224, 225
fireballs, moving 230-233
using 213
weapon and defense tower assets,

creating 214-218
weapon and defense tower assets,

downloading 214-218
weapons, picking up 218-224

comments 57
comparison operator 55
constructor

adding, for Calculator class 83, 84
continue statement 65, 66
copy and paste keys 31

D
debugging functions 32
debug messages

outputting 263
printing, to screen 265, 266

debug messages
printing, to screen 265, 266
outputting 263
outputting, with UE_LOG macro 264, 265

delegate 96
do/while loop 64, 65

Index352

E
editing hotkeys 31

code block operations 31, 32
copy and paste 31
debugging 32
find and replace 31
Go to operations 32

else if statement 60
else statement 59
enemy character

ABP_Enemy animation blueprint,
creating 200, 201

BP_Enemy blueprint, creating 201-203
creating 189
Enemy class, creating 190-194
EnemyController class, creating 195-200

Epic Games Launcher 112
used, for launching UE5 editor 10

F
find and replace keys 31
fireball pool

benefits 256
creating 256-263

firing animation
playing 110

firing sound effect
playing 109

first-person shooter (FPS) 273
First Person template 6

C++ project, creating 6
flow control 58
for loop 63, 64
function 46
function overloading 71

G
game

base defense tower, destroying
to win 320-326

game actor classes
ADefenseTower class, creating 120-125
APlayerAvatar class, creating 125-127
AProjectile class, creating 125
creating 120

game actors
destroying 187, 188

game collision detection 206-209
OnBeginOverlap event 207
OnEndOverlap event 208
OnHit event 209

GameInstance object 145
game levels

UI widgets, adding to 310-312
GameModeBase class

learning 144
gameplay framework base classes 119, 120
game program structure 92

game end 92-94
game initialization 92, 93
game loop 92-94

GameState object 144
game testing 203, 204
game timer

adding 312
APangaeaGameState, designating as

project’s game state class 319
counting down 317-319
custom event, creating and binding to

OnTimeChangedDelegate 315
OnTimeChangedDelegate, defining 314, 315
setting and displaying 316

Index 353

Timer variable, adding to
APangaeaGameState class 313

Timer variable replicable, making 314
garbage collection 188

conditions 188
geometry instancing 9, 10
getter functions

adding, for Calculator class 83, 84
Go to operation hotkeys 32

H
Hero skeletal mesh

using, in BP_PlayerAvatar 160
heuristic search 197

I
if statement 58, 59
improved calculator program

working 66-72
input mapping 180
instanced rendering 9
Integrated Development

Environment (IDE) 6, 21
IntelliSense 31, 92

L
logical operators 55
loop statements 62

do/while loop 64, 65
for loop 63, 64
while loop 64, 65

M
multiplayer game

versus single-player game 274, 275
multiplayer game network modes 277

client 278
dedicated server 277
listen server 277

multiplayer Pangaea game
launching, in editor 275-277

MyShooter.Build.cs 111
MyShooter C++ project

opening, in Visual Studio 112, 113
source code 95
structure 90-92

MyShooterCharacter.cpp 100-103
MyShooterCharacter.h header file 95-98

specifiers 99
MyShooter.cpp 110
MyShooterEditor.target.cs 111
MyShooterGameMode.cpp 110, 111
MyShooterGameMode.h 110, 111
MyShooter.h 110
MyShooter project

creating 10, 11
MyShooterProjectile.cpp 103-106
MyShooterProjectile.h 103-106
MyShooter.Target.cs 111

N
NavMesh system 179
networking functions

adding, to PangaeaGameInstance 306-310
network synchronizations

actor variables, syncing to clients
with replications 282, 283

character health bar, updating
with RepNotify 284

Index354

fireballs, spawning on server side 291, 293
handling 278
player attacks, notifying with RPCs 278-282
server-authoritative strategy,

processing 290, 291
non-player characters (NPCs) 117, 195

O
object 75
object-oriented programming

(OOP) 74, 147
encapsulation 75
inheritance 75
polymorphism 75
reference link 75
versus procedural programming 75

objects, in C++
creating 77
instantiating, with new keyword 77, 78
variable, defining 77

OnBeginOverlap event 207
OnEndOverlap event 208
OnHit event 209
OnTimeChangedDelegate

custom event, creating and binding 315
defining 314, 315
Game Over window, opening 317
game, pausing 317
OnTimerChangedEvent, binding to 316
Timer, setting and displaying 316

OOP calculator program
working on 78-83

P
Pangaea

Unreal gameplay framework
classes, creating 142

Unreal gameplay framework
classes, locating 142, 143

Pangaea game
bugs, fixing 331
flow, designing 296
hardcoded path, avoiding for

finding content 341-343
high-quality game assets, importing 328-331
high-quality game assets, using 328-331
levels, including in built package 339, 340
packaging 338
polishing 328
profiling and optimization 331, 332
project defaults, setting 338, 339
project, packaging 344-347
project settings, configuring

for packaging 338
windowed game build, making 340, 341

Pangaea game, bugs
code review 331
quality assurance (QA) 331

PangaeaGameInstance
networking functions, adding to 306-310

Pangaea top-down game project
creating 118, 119

player attacks
notifying, with RPCs 279-282

player avatar
animation blueprint, creating 162, 163
initializing 154, 155
movement speed, syncing to

animation instance 174-176
setting up 150

Index 355

PlayerAvatar
CameraComponent, adding to 150-154
SpringArmComponent, adding to 150-154

PlayerAvatarAnimInstance class
creating 163-169

player character
animation end notifies, adding 184, 185
Attack action, adding to action map 180
Attack() function, implementing 182-184
CanAttack() function,

implementing 182-184
controlling, to attack 180
handler function, binding to

Attack action 181
non-loop animations, processing 184
notify events, handling on animation

blueprint 185, 186
OnAttackPressed() action handler

function, implementing 182
OnStateAnimationEnds function,

implementing 186, 187
PlayerController class

learning 143, 144
player pawn

replacing 160-162
pointers

creating 72-74
procedural programming 75

versus OOP 75
property specifiers

reference link 99
protected attributes 123
public attributes 123
public functions 124

Q
quality assurance (QA) 331, 332

R
references

creating 72, 73
remote procedure calls (RPCs) 278

types 279
used, for notifying player attacks 278-282

RepNotify
BP_HealthBar blueprint, creating 285, 286
handler function, creating 284
handler function, using 284
HealthBar, adding to BP_Enemy 286-288
HealthBar, adding to BP_

PlayerAvatar 286-288
health bar, updating 288-290
UHealthBarWidget class, creating 285
used, for updating character health bar 284

S
single-player game

versus multiplayer game 274, 275
SkeletalMeshComponent

setting up 155
source code, MyShooter C++ project

MyShooter.Build.cs 111
MyShooterCharacter.cpp 100-103
MyShooterCharacter.h 95-99
MyShooter.cpp 110
MyShooterEditor.target.cs 111, 112
MyShooterGameMode.cpp 110, 111
MyShooterGameMode.h 110, 111
MyShooter.h 110
MyShooterProjectile.cpp 104-106
MyShooterProjectile.h 103-106
MyShooter.Target.cs 111
TP_PickUpComponent.cpp 106-108
TP_PickUpComponent.h 106-108

Index356

TP_WeaponComponent.cpp 108-110
TP_WeaponComponent.h 108-110

SpringArmComponent
adding, to PlayerAvatar 150-154

State Machine
creating, on ABP_PlayerAvatar 171-174

struct 98
switch statement 61

T
text editing keys 30
Timer variable

adding, to APangaeaGameState class 313
replicable, making 314

TP_PickUpComponent.cpp 106-108
TP_PickUpComponent.h 106-108
TP_WeaponComponent.cpp 108-110
TP_WeaponComponent.h 108-110

U
UCLASSes 96
UE5 coding standard

reference link 120
UE5 editor

launching, through Epic Games Launcher 10
UE5 properties

reference link 130
UE5 source code editor

installing 9
used, for associating Visual

Studio (VS) 12, 13
UE_LOG macro

using 264, 265
UE properties

APlayerAvatar attributes, marking 131

UFunction 104
UFUNCTION macro

ADefenseTower attributes, marking 130
ADefenseTower member function,

tagging 133-135
APlayerAvatar attributes, marking 131
APlayerAvatar member function,

tagging 133-135
AProjectile attributes, marking 131
using 132

UFUNCTION specifiers and
metadata keys 132, 133

UFUNCTION syntax 132
UI widgets

adding, to game levels 310-312
BP_GameOverWidget, creating 303-306
BP_HUDWidget, creating 301, 302
BP_LobbyWidget, creating 298-300
creating 297, 298

UML class diagram 85
Unified Modeling Language (UML) 85
Unreal Editor

benefits 112
launching 112

Unreal Engine (UE) 3
C++ scripting 4
console commands, executing

in C++ 336, 337
console commands, exploring 332-336
console commands, using 332
modes, exploring 332-336

Unreal gameplay framework classes
class instances, retrieving in code 145
creating, in Pangaea 142, 143
GameInstance object 144
GameModeBase class, learning 144
GameState object 144

Index 357

learning 142
locating, in Pangaea 142, 143
PlayerController class, learning 143

Unreal’s reflection system 96
UPROPERTY macro

UPROPERTY specifiers and
metadata keys 130

using 128
UPROPERTY specifiers and

metadata keys 130
reference link 132

UPROPERTY syntax 129
user input

accepting 57
user interface (UI) 21

V
variable replication 282
variables

defining 51, 52
Visual Studio (VS) 6, 21, 180

associating, with UE5 source
code editor 12, 13

basic editing operations 31, 32
C++ project, source code opening 13-15
C++ solution, creating in 33-35
caret navigation keys 30
code editor 25
code selection 30
Error List window 28, 29
game project, opening 112, 113
launching 22-24
menus 26
Output window 27
search box 26
Solution Explorer 26, 27

text editing keys 30
toolbar 26
UI 24

Visual Studio (VS) 2022
installing 6-9

VS IDE documentation
reference link 24

VS solution 26
VS solution file 26

W
while loop 64, 65
Windows Notepad 21

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare%40packtpub.com?subject=
mailto:customercare%40packtpub.com?subject=
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Blueprints Visual Scripting for Unreal Engine 5

Marcos Romero | Brenden Sewell

ISBN: 9781801811583

• Understand programming concepts in Blueprints.

• Create prototypes and iterate new game mechanics rapidly.

• Build user interface elements and interactive menus.

• Use advanced Blueprint nodes to manage the complexity of a game.

• Explore all the features of the Blueprint editor, such as the Components tab, Viewport, and
Event Graph.

• Get to grips with OOP concepts and explore the Gameplay Framework.

https://www.packtpub.com/product/blueprints-visual-scripting-for-unreal-engine-5-third-edition/9781801811583

361Other Books You May Enjoy

Unreal Engine 5 Character Creation, Animation, and Cinematics

Wilhelm Ogterop | Henk Venter

ISBN: 9781801812443

• Create, customize, and use a MetaHuman in a cinematic scene in UE5.

• Model and texture custom 3D assets for your movie using Blender and Quixel Mixer.

• Use Nanite with Quixel Megascans assets to build 3D movie sets.

• Rig and animate characters and 3D assets inside UE5 using Control Rig tools.

• Combine your 3D assets in Sequencer, include the final effects, and render out a high-quality
movie scene.

• Light your 3D movie set using Lumen lighting in UE5.

https://www.packtpub.com/product/unreal-engine-5-character-creation-animation-and-cinematics/9781801812443

362

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you’ve finished Unreal Engine 5 Game Development with C++ Scripting, we’d love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the Amazon review
page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1-804-61393-2
https://packt.link/r/1-804-61393-2

363

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781804613931

2. Submit your proof of purchase

3. That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781804613931

	Cover
	Title Page
	Copyright and Credits
	Foreword
	Contributors
	Table of Contents
	Preface
	Part 1 –
Getting Started with
Unreal C++ Scripting
	Chapter 1: Creating Your First Unreal
C++ Game
	Technical requirements
	Understanding C++ scripting in Unreal
	What is the difference between C++ and Blueprint?
	When do you use C++?
	What is the difference between C++ programming and C++ scripting?

	Creating your C++ Shooter project from a template
	Installing Visual Studio 2022
	Ensuring your UE has the source code installed
	Launching the UE5 editor through the Epic Games Launcher
	Creating the MyShooter C++ project
	Associating VS with UE5 as the default source code editor
	Opening the C++ source code in VS (optional)

	Converting an existing Blueprint project to a C++ project
	Summary

	Chapter 2: Editing C++ Code in
Visual Studio
	Technical requirements
	Launching VS
	Walking through the VS IDE’s UI
	Code editor
	Menus
	Search box
	Toolbar
	Solution Explorer
	Output window
	Error List window

	Editing code in VS
	Controlling the caret (input cursor)
	The text editing keys
	Code selection
	IntelliSense
	Useful editing hotkeys

	Practicing C++ coding
	Creating a new C++ solution in VS
	Creating the main.cpp file
	Changing the editor theme
	Writing the initial code for main.cpp
	Adding the Calculator class

	Summary

	Chapter 3: Learning C++ and Object-Oriented Programming
	Technical requirements
	What is C++?
	Exploring the C++ program structure
	Defining C++ functions
	Defining functions with or without parameters
	Calling functions
	Writing the main() function

	Working with a basic calculator program
	Learning the C++ syntax
	Using the C++ data types
	Defining variables
	Using C++ arrays
	Using C++ operators
	Accepting user input
	Adding C++ comments
	Controlling the C++ flow

	Working on the improved calculator program
	Creating references and pointers
	References
	Pointers

	Understanding OOP
	What is OOP?
	What are classes and objects?
	Creating classes in C++
	Creating objects in C++

	Working on an OOP calculator program
	Adding constructor and getter functions for the calculator class
	Creating the CalculatorEx class, which inherits from the Calculator class

	Summary

	Chapter 4: Investigating the Shooter Game’s Generated Project and C++ Code
	Technical requirements
	Understanding the MyShooter C++ project structure
	Understanding the game program structure
	Getting familiar with the source code
	MyShooterCharacter.h
	MyShooterCharacter.cpp
	MyShooterProjectile.h and MyShooterProjectile.cpp
	TP_PickUpComponent.h and TP_PickUpComponent.cpp
	TP_WeaponComponent.h and TP_WeaponComponent.cpp
	MyShooter.h and MyShooter.cpp
	MyShooterGameMode.h and MyShooterGameMode.cpp
	MyShooter.Build.cs, MyShooter.Target.cs, and MyShooterEditor.target.cs

	Launching Unreal Editor and opening the game project in Visual Studio
	Summary

	Part 2 –
C++ Scripting for
Unreal Engine
	Chapter 5: Learning How to Use UE Gameplay Framework Base Classes
	Technical requirements
	Creating a Pangaea top-down game project
	Understanding the gameplay framework base classes
	Creating game actor classes
	Creating the ADefenseTower class
	Creating the AProjectile class
	Creating the APlayerAvatar class

	Recompiling C++ projects
	Using the UPROPERTY macro
	The UPROPERTY syntax
	The UPROPERTY specifiers and metadata keys
	Marking the ADefenseTower, AProjectile, and APlayerAvatar attributes as UE properties

	Using the UFUNCTION macro
	The UFUNCTION syntax
	UFUNCTION specifiers and metadata keys
	Tagging ADefenseTower and APlayerAvatar member functions as UFUNCTION macros

	Adding components to the new actors
	Including component header files
	Defining private properties for these two components
	Adding public getter functions to the components
	Creating components in the class constructor

	Creating blueprints from the new actor classes
	Learning about the Unreal gameplay framework classes
	Locating and creating gameplay framework classes in Pangaea
	Learning about the PlayerController class
	Learning about the GameModeBase class
	GameState
	GameInstance
	Retrieving class instances from your code

	Using the Cast template function
	Summary

	Chapter 6: Creating Game Actors
	Technical requirements
	Setting up the player avatar
	Adding SpringArmComponent and CameraComponent to PlayerAvatar
	Initializing the player avatar

	Setting up the character’s SkeletalMeshComponent
	Importing the character model
	Using the Hero skeletal mesh in BP_PlayerAvatar
	Replacing the game’s player pawn

	Creating the player avatar’s animation blueprint
	Creating the PlayerAvatarAnimInstance class
	Creating the ABP_PlayerAvatar blueprint
	Creating the State Machine on ABP_PlayerAvatar
	Syncing the movement speed with the animation instance

	Summary

	Chapter 7: Controlling Characters
	Technical requirements
	Controlling the player character to attack
	Adding the Attack action to the action map
	Binding the handler function to the Attack action
	Implementing the OnAttackPressed() action handler function
	Implementing the CanAttack() and Attack() functions
	Processing non-loop animations
	Implementing the OnStateAnimationEnds function

	Destroying actors
	Creating the enemy character
	Creating the Enemy class
	Creating the EnemyController class
	Creating the ABP_Enemy animation blueprint
	Creating the BP_Enemy blueprint

	Testing the game
	Summary

	Chapter 8: Handling Collisions
	Technical requirements
	Understanding collision detection
	Setting the collision presets
	Using collisions for game interactions
	Downloading and creating the weapon, defense tower, and fireball actors
	Picking up weapons
	Spawning a weapon for the enemy
	Defense tower firing fireballs
	Moving the fireball and checking whether the target is hit
	Processing a defense tower hit

	Summary

	Chapter 9: Improving C++ Code Quality
	Technical requirements
	Refactoring code
	Combining the PlayerAvatarAnimInstance and EnemyAnimInstance classes
	Making PangaeaCharacter the parent class of APlayerAvatar and AEnemy

	Refining code
	Using caching variables
	Creating a fireball pool

	Outputting debug messages
	Using the UE_LOG macro
	Printing debug messages to the screen

	Checking an Actor instance’s actual class type
	Summary

	Part 3 –
Making a Complete
Multiplayer Game
	Chapter 10: Making Pangaea a Network Multiplayer Game
	Technical requirements
	Comparing single-player and multiplayer games
	Launching the multiplayer Pangaea game in the editor
	Understanding multiplayer game network modes
	Handling network synchronizations
	Notifying player attacks with RPCs
	Syncing actor variables to clients with replications
	Updating the character health bar with RepNotify
	Processing hits on the server
	Spawning fireballs on the server side

	Summary

	Chapter 11: Controlling the Game Flow
	Technical requirements
	Designing the Pangaea game’s flow
	Creating the UI widgets
	Creating BP_LobbyWidget
	Creating BP_HUDWidget
	Creating BP_GameOverWidget

	Adding networking functions to PangaeaGameInstance
	Adding UI widgets to game levels
	Adding the game timer
	Adding the Timer variable to the APangaeaGameState class
	Making the Timer variable replicable
	Defining OnTimeChangedDelegate
	Creating and binding the custom event to OnTimeChangedDelegate
	Counting down the timer
	Designating APangaeaGameState as the project’s game state class

	Destroying a base defense tower to win the game
	Summary

	Chapter 12: Polishing and
Packaging the Game
	Technical requirements
	Polishing the game
	Importing and using high-quality game assets
	Fixing bugs
	Profiling and optimization

	Using Unreal Engine console commands
	Exploring modes and console commands
	Executing console commands in C++

	Packaging the game
	Configuring the project settings for packaging
	Making the build a windowed game
	Avoiding the hardcoded path for finding content
	Packaging the project

	What to do next
	Summary

	Index
	Other Books You May Enjoy

