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Preface

It don’t mean a thing
(if it ain’t got that swing)'
Edward “Duke” Ellington

This book stems from a 45-hour course that I delivered for the Master degree at the
Department of Mathematics of the University of Trento.

Partial differential equations (PDEs) are an extremely wide topic, and it is not
possible to include them into a single course, no matter how many lessons are
assigned to it. Thus, the first question I had to face was the viewpoint I wanted
to adopt and choice of the arguments.

I decided to focus on linear equations. It is well known to everyone that
the mathematical description of natural phenomena is mainly based on nonlinear
models; however, in many cases, a reasonable approximation is obtained by a linear
formulation, and, moreover, the knowledge of linear problems is the first step for
dealing with more complex nonlinear cases.

The second choice I made is to limit the presentation to the so-called weak
formulation of partial differential equations. This means that our point of view
is the following: solving a linear partial differential equation is interpreted as the
solution of a problem associated to a linear operator acting between suitable infinite
dimensional vector spaces.

The path for arriving at this abstract formulation needs some tools that were not
available in the classical theory. In a nutshell, the four main missing ingredients are
the following:

e Weak derivatives

¢ Weak solutions

* Sobolev spaces

* A bit of functional analysis

UIf you are curious, take a look on the web: you can find nice videos on YouTube with this title.

vii
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The first results in this direction date back to the 1930s, with the pioneering works
of Jean Leray,” Sergei L. Sobolev,? and others. In the same period, the study of
infinite dimensional vector spaces and of functional analysis attracted the attention
of many researchers: let us only mention the milestone book by Stefan Banach.*

Still speaking about concepts not present in the classical theory, I decided not
introducing the distributions and the distributional derivatives, as they are not
essential for the presentation. In fact, as it is well known, the distributional derivative
of a function essentially coincides with its weak derivative, and dealing with spaces
of functions permits to avoid further generalizations.

The determination of the weak formulation is essentially performed by trans-
forming the original problem into a set of infinitely many integral equations, one
for each “test” function belonging to a suitable vector space. In several points
of the book, I have tried to motivate the various steps of this approach starting
from the analysis of finite dimensional linear systems, then enlightening analogies
and differences when passing to the infinite dimensional case. In particular, the
third chapter is devoted to results of functional analysis that show some typical
differences between a finite dimensional and an infinite dimensional vector space.
Another section of that chapter has the aim to clarify that suitable spaces for the new
approach are those endowed with a scalar product, more precisely those for which
the orthogonal projection on a closed subspace is well-defined: in other words, this
means Hilbert spaces.

This recurring comparison between algebraic linear systems and weak formula-
tions of linear PDEs has the aim of making clear that for the latter, subject functional
analysis plays the role of linear algebra, namely, it is a basic tool for its study;
however, as it has been observed by Lawrence C. Evans, this does not mean that it
is a good idea to transform the whole topic into a too abstract branch of functional
analysis itself.

When I started to teach the course, I suggested a couple of books to the students:
those by Evans [8] and Salsa [24]. For this reason, I cannot hide that the structure
of these books has influenced what I presented then to my students and what is
included now in this book. However, I hope that the reader can find here at least a
different flavor (together with some new topics).

The book is organized as follows. Chapter 1 is a very brief introduction to the
subject, in which some definitions are given and a list of examples are presented.

In the second chapter, many important items already appear: second order elliptic
equations and related boundary value problems, weak solutions, and finally also the
Lax—Milgram theorem. However, the functional analysis framework is not made

2 Leray [18]. It seems that Leray has been the first one to speak about weak solutions (“solutions
turbulentes”) and weak derivatives (“quasi-dérivées”).

3 Sobolev [25]. The functional framework where we describe and analyze the problems is given by
Sobolev spaces, a name on which there is agreement since the middle of last century.

4 Banach [2].
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clear, and for that the reader is referred to following results included in Chaps. 3
and 4.

Chapter 3 is devoted to analogies and differences between finite dimensional
and infinite dimensional vector spaces, and to the motivation that makes useful the
introduction of Hilbert spaces.

In Chap. 4, some core topics are introduced and analyzed: weak derivatives and
Sobolev spaces.

The fifth chapter is a central part of the book: a systematic presentation of weak
formulations of elliptic boundary value problems is there included. Moreover, the
properties of the bilinear forms which describe the problems are presented in full
detail. A section is also devoted to the boundary value problems associated to the
biharmonic equation.

Chapter 6 is devoted to several technical results that have been used in the
previous chapters: approximation in Sobolev spaces, Poincaré and trace inequalities,
Rellich compactness theorem, and du Bois-Reymond lemma.

In Chap. 7, a rich variety of additional results is presented: Fredholm alternative,
spectral theory for elliptic operators, maximum principle, regularity results and
Sobolev embedding theorems, and finally Galerkin numerical approximation.

The eighth chapter deals with constrained minimization and Lagrange multipliers
in the infinite dimensional case. A general theory for saddle point problems is
presented, and two specific examples are described: second order elliptic equations
rewritten as a first order system of two equations, and the Stokes problem. The
Galerkin approximation of saddle point problems is also described and analyzed.

Chapter 9 is focused on parabolic problems, starting from the abstract evolution
theory in Hilbert spaces and then arriving to its application to specific problems,
among them non-stationary linear Navier—Stokes equations. The proof of maximum
principle is also included.

A similar presentation is given in Chap. 10 for hyperbolic problems, including
Maxwell equations, ending with the proof of the property of finite propagation
speed.

The book finishes with some appendices, devoted to technical results: a detailed
construction of a partition of unity; the precise definition of the regularity of the
boundary of a domain; integration by parts formulas; the Reynolds transport theo-
rem; the Gronwall lemma; a general well-posedness theorem for weak problems.

Each chapter of the book is complemented by some exercises: they have different
difficulty, and in some case could be more properly intended as an additional in-
depth analysis. For the ease of the reader, I decided to present the complete solution
of all of them.

At the end, a few words about the sentence by “Duke” Ellington that I chose as
an incipit: a book is not a course, even though the title seems to suggest it. Thus, for
the delight of the students, a colleague who will decide to follow this presentation
should find the way to add some swing to these barren pages: I tried my best, but it
is never enough.

This book would not have been written without my former Master students Fede-
rico Bertacco and Laura Galvagni, who a day (but after the exam!) entered my office
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with the Latex file of my unrefined handwritten notes. This has been the irresistible
push for rearranging everything into a better structured textbook. I am also grateful
to Gabriele Dalla Torre, who suggested the best way for drawing the figures, to my
old friend Paolo Acquistapace, who helped me in clarifying the proof of uniqueness
in Theorem 10.1, to Nicold Drago, who furnished the proof of Exercise 6.11, and to
Arte Sella and Giacomo Bianchi for having permitted the reproduction of the photo
on the cover.

Finally, I want to thank the editors Luigi Ambrosio, Paolo Biscari, Ciro Ciliberto,
Camillo De Lellis, Victor Panaretos, and Lorenzo Rosasco and the editor-in-chief
Alfio Quarteroni for having accepted to publish this book in the Springer series
UNITEXT: La Matematica per il 3+2. Special thanks to Francesca Bonadei from
Springer, who encouraged me to undertake this project and with great experience
and enthusiasm has followed me along its realization.

In the second edition of this book some sections and exercises have been
added. In particular, Sect.2.2.2 (on a general strategy for solving linear problems
in an infinite dimensional vector space), Sect.5.6 (on the biharmonic equation),
Sect.9.2.2 (on non-stationary linear Navier—Stokes equations), and Sect. 10.1.2
(on Maxwell equations) are new, as well as Exercises 1.2, 4.1, 6.11, 7.18, 7.20,
7.21, 7.22, 8.4, 9.3, 9.5, and 10.1; moreover, the solutions of Exercises 6.4, 7.8,
and 9.1 have been largely rewritten. Theorem 7.16, Corollary A.1, and Remark 2.6
are also new, while the proofs of Theorems 6.7, 7.7, 7.10, 7.12, 9.4, and 10.1,
as well as the solutions of Exercises 7.2 and 7.3, have been modified for better
understanding. Finally, many misprints have been corrected and many sentences
have been rephrased.

Some final considerations: I recently read the nice book by Vladimir Maz’ya and
Tatyana Shaposhnikova on the life and scientific activity of Jacques Hadamard,> and
I learnt that the last work of Hadamard is a book on partial differential equations,
completed at the age of 97 years (!) and published in Beijing in 1964.° just after
his death. This book is a treasure trove of very interesting and elegantly presented
results on partial differential equations and shows the deep knowledge that one of
the most relevant mathematicians of the last century had of the subject. However,
as Maz’ya and Shaposhnikova also remarked, it looks dramatically old, even for
that time: weak derivatives, Sobolev spaces, and functional analysis are completely
missing and the variational approach, the one systematically adopted here, is not
even mentioned. Without any doubt, for a young mathematician of that time, the
theory of partial differential equations was already a different thing.

Without comparing me to Hadamard, which would be clearly a nonsense, I
vaguely feel that today we are in a similar situation. In this book, I put the knowledge
of the subject that I achieved and metabolized in 50 years: but it is possible that all
this material becomes rapidly old, like the classical theory presented by Hadamard
in the 1960s.

5 Maz’ya and Shaposhnikova [20].
6 Hadamard [13].
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Indeed, it is a rather general opinion that the main importance of partial
differential equations lies in the fact that they are, since Galileo and Newton, the
way in which we have modeled natural phenomena; and being able to solve partial
differential equations, both at the theoretical and the numerical level, gives the
possibility of finding answers on the behavior of those phenomena. In other words,
it opens the road to predict the future.

What we see now arriving is a different paradigm: for getting answers on
natural phenomena modeling seems no longer strictly necessary, as artificial neural
networks and machine learning methods could furnish an efficient alternative. In
front of us, we see a turning point: huge amount of data versus equations. The
question is: will these approaches live together, or in about a dozen of years (this
period of time could be enough, as changes are running faster than 60 years ago...)

the new strategy will cancel the old one? “Ai posteri I’ardua sentenza”.’

Povo, Italy Alberto Valli
May 2023

7 A. Manzoni, Tl cinque maggio.
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Chapter 1 ®
Introduction Check for

Very often the description that we give of natural phenomena is based on physical
laws that express the conservation of some quantity (mass, momentum, energy,
...). In addition, some experimental relations are also taken into account (how the
pressure is related to the density, how the heat flux is related to the variation of
temperature, .. .).

Conservation and variation are thus basic ingredients: in mathematical words, the
latter one means derivatives. More precisely, very often the description we want to
devise involves many variables: therefore we have to play with partial derivatives
and with equations involving unknown quantities and their partial derivatives.

Definition 1.1 A partial differential equation (PDE) is an equation involving an
unknown function # = u(x) of two or more variables x = (xq, ..., x;),n > 2, and
certain of its partial derivatives. An expression of the form

F(x1, ...,xn,u,Z)u,Dzu,...,Z)ku) =0
is called a kth order PDE, where k > 1 is an integer and we have denoted by D¥u a
generic partial derivative of order k.
Equivalently, keeping on the left all the terms involving the unknown u and putting
on the right all the other terms, we can write a PDE in the form

Lx,u)=f,

where L is called partial differential operator and f turns out to be a given datum.
Definition 1.2 A PDE is said to be non-linear if it is not linear.

The reason of this apparently meaningless definition is that we want to enlighten
the fact that the crucial point is to understand the definition of what is a linear PDE.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1
A. Valli, A Compact Course on Linear PDEs, La Matematica per il 342 154,
https://doi.org/10.1007/978-3-031-35976-7_1
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2 1 Introduction

Definition 1.3 A PDE in the form L(x, u) = f is said to be linear if the operator
L is linear, i.e., L (x, ajw; +opwy) = a1 L(x, wy) + apL(x, wy) forall ¢y, oy € R
and all functions wi, ws.

This definition is a little bit inaccurate, as the operator L has not a meaning for
all functions w: it is necessary that the derivatives appearing in L do exist for these
functions.

Definition 1.4 Let the operator L be linear; then the linear equation Lu = f # 0
is said to be non-homogeneous, while the linear equation Lu = 0 it is said to be

homogeneous.
We use the notation D;u for indicating the partial derivative 597“ Other equivalent
notations are uy;, Dy, u, Oy, u.

Remark 1.1 The general form of a linear operator of first order (k = 1) is:

L(x,w) = Zéi(x)ﬂiw +ap(x)w.
i=1

The general form of a linear operator of second order (k = 2) is:

n n
L(x,w)= Z a;;(x)D;Djw + Zlgi(x)i)iw + ag(x)w.
i,j=1 i=1

We will see in the sequel that very often a second order linear operator will be
written in the variational form

Lx,w)=— Z Di(ajj(x)Djw) + Zbi(x)Z)iw +apg(x)w.

i,j=1 i=1

Clearly, for smooth coefficients a;; it is easy to return to the previous form.

1.1 Examples of Linear Equations

Transport equation: u; +b - Vu = f,where V = (D, ..., Dy).

Laplace equation/Poisson equation: —Au =0/—Au = f,where A =) ", D?
is the Laplace operator. A solution u of the Laplace equation is called harmonic
function.

Helmholtz equation: —Au — @*u = 0, with @ # 0.

Biharmonic equation: A%y = 0, where A2 = AA.
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Heat equation: u; — kAu = f, with k£ > 0 (thermal conductivity). A solution u
has an infinite speed of propagation.

Schrodinger equation:  —ifiu; — %Au + Vu = 0, with i > 0 (reduced Planck
constant), m > 0 (mass).

Wave equation:  u;; — ¢c>Au = f, with ¢ > 0 (speed of propagation). A solution
u has the finite speed of propagation c.

Damped wave equation:  u;; — Au+ou; = f,withc > 0,0 > 0.

Klein—Gordon equation:  u;; — Au+ %u =0,withc>0,A>0,m > 0.

Telegraph equation:  u;; — t2uyy + diu; +dou = 0, with T > 0,d; > 0,
d> > 0 (the three constants being related to resistance, inductance, capacitance,
conductance).

Plate equation:  u;; + A%y = f.

1.2 Examples of Non-linear Equations

Burgers equation:  u; + uu, = euyy (viscous: ¢ > 0; inviscid: ¢ = 0).

Korteweg—de Vries equation:  u; + cuuy + uyxx = 0, with ¢ # 0.

Cahn-Hilliard equation:  u, + vA%u — A(Bu’ —au) = 0, with v > 0, « > 0,
B > 0.

Minimal surface equation:  div (L> = 0, where divw = V .- w =

J1HVu?
> i1 Diw;.

Monge—-Ampere equation:  det(Hu) = f(x,u, Vu), where H is the Hessian
matrix of second order derivatives.

1.3 Examples of Systems

Elasticity system: —uAu — vVdivu = f, where © > 0, v > 0 (Lamé
coefficients).
Incompressible Navier—Stokes/Euler system:

ou+ wu-VIYu —vAu+Vp=f

divu =0 (incompressibility condition) ,

where (4 - V)u is the vector with components [(u - V)u]; = Z'j:l u;Dju;, and

v > 0 (viscosity per unit density) for Navier—Stokes, v = O for Euler.
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Compressible Navier—Stokes/Euler system (barotropic case):

0rp + div(pu) =0
p(du + (u-Vyu) — pAu— (& + "T_ZM)Vdivu +VP=pf
P = p.(p) (barotropic condition) ,

where > 0 (kinematic viscosity) and ¢ > 0 (bulk viscosity) for Navier—Stokes,
u = 0and ¢ = 0 for Euler.
Maxwell system:

0;B +curlE =0 , divB=0
oD —curlH =—J, , divD=p
B=uH
D =¢E,

where i > 0 (magnetic permeability), € > 0 (electric permittivity),
i j ok
curlE =V x E =det | D) Dy D3
E, E; E3

Eddy current system:

0B +curlE=0, divB=0

curlH = J , xidivD = p
B=uH
D =¢E

JZXC6E+J€5

where o > 0 (electric conductivity), x; and yc are the characteristic functions
of Q7 and Qc, respectively, and Q; and Q¢ are two subsets which furnish a
splitting of the whole domain. This is an approximation of Maxwell system for
slow varying electromagnetic fields.

1.4 Exercises

Exercise 1.1 Write the Poisson equation —Au = f as a first order system in terms
of uandg = —Vu.
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Solution Since Au = divVu, we have

q+Vu=0
divg = f.
The problem in this form will be analyzed in Chap. 8 (see Example 8.3).
Exercise 1.2
(i) Write the wave equation u;;, — c>Au = f as a first order system in terms of
w =u; and g = cVu.
(i) Note that the first order system obtained in (i) can be written as a symmetric
system of the form U; + 371_, AiD;U = F, with A; = Al and U =
(w,q1,---,qn)-

Solution

(i) Setting w = u; and ¢ = cVu we have w; = uy = 2divVu + f=cdivg+ f.
Moreover, g; = cVu; = ¢Vw. Thus we have obtained

w; —cdivg = f
qgr —cVw =0.

Since —div is the (formal) adjoint of V, the above system has the anti-

symmetric form
o vT
Ut—l—c(_v 0>U=F,

withU = (w, q1,--.,qn), F = (f,0,...,0). This can be a little bit surprising
when looking at the second part of the exercise.

(i) Expanding the expressions just derived, it is straightforward to check that the
first order system obtained in (i) can be written as U, + Z?:l AiDU = F
with U and F as above and A;,i = 1,...,n,the (n + 1) x (n + 1) symmetric
matrices given by

0 —0...0 0 00...—¢
— 00...0 000... 0
Aa=] 0000l . a=]000...0

0 00...0 —c00... 0
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Exercise 1.3

(i) Determine the second order system that is obtained for the electric field E by
applying the backward Euler scheme to the Maxwell system (assume that
and € are constants).

(i) Determine the second order system that is obtained for the magnetic field H
by applying the backward Euler scheme to the Maxwell system (assume that
W and € are constants).

(iii)) Note that the two systems have the same structure curl curl + « 1, with @ > 0.

Solution

(i) Approximating the time derivatives by the difference quotients

B — BOld D — Dold
B~ —— , 4D~ ——
T T

where t > 0 is the time step, and remembering that B = uH and D = €E we
find

wH + t curlE = B w1)
€E —tcurllH = —t J + D% . .

Applying the curl operator to the first equation and using the second equation
for expressing curl H we easily find

1
curl curlE + M—;E = —curlB% + %D"ld Ky
T T T T
(i) Applying the curl operator to the second equation in (1.1) and using the first
equation in (1.1) for expressing curl E we have

€ 1 €
curl curlH + M—zH = ——curlD% + —ZBOId + curlJ .
T T T

(iii) Evident from (i) and (ii).
Exercise 1.4 Let u be a smooth solution in R? of the equation u — Vdivu = f.

(i) Show that divu is a solution in R3 of the equation p — Ap = divf.

(ii) If curl f = 0 in R3, show that u = V' for a suitable function .
(iii) If curlf = 0inR3, divf = 0 in R? and the derivatives of u decay fast enough
at infinity, say, |divu| + |Vdivu| < Cylx|™¢ for o > % and |x| > g, large

enough, then u = Vi for a suitable harmonic function .
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Solution

®
(i)

(iii)

Taking into account that divVdiv = Adiv, the result follows at once by
applying the div operator to the equation.

Taking into account that curl V = 0, applying the curl operator to the equation
we find curly = curl f = 0. Since R? is a simply-connected domain, we deduce
that there exists a function ¥ such that u = Vi in R3.

Multiply the equation divu — Adivu = divf = 0 by divu and integrate over
the ball B; = {x € R3||x| < s}, s > g4. It holds

0= / [(divu)? — (Adivu)divu]dx
B; (1.2)

= [(divu)2 + Vdivu - Vdivuldx — / Vdivu - ndivu dSy ,
By 0By

where we have used the integration by parts formula (C.5). The boundary
integral can be estimated as follows

‘/ Vdivu - ndivu dSy| < Cys ™ 47s?,
0By

and moreover

[ (divi)?dx = [ (divu)*dx + / (divu)®dx
* Bﬂi* BN\BQ*
=Cp
N
<Co+ C*/ Ix|7%dx = Cy +4nc*/ r2rdr < Qy,
By\ By, «

where Qg is independent of s > g, as o > % Similarly,

[Vdivu|?dx < Q.
Bg

Passing to the limit as s — +o0 in (1.2) we find

/}R}[(divu)2 + |Vdivu|*ldx =0,

therefore divu = 0 in R3. Since from (ii) we already know that u = Vi, it
follows that divVy = Ay = 0 in R3.

Exercise 1.5 Let u be a smooth solution in R? of the equation u +curl curlu = f.

®
(i)

Show that curlu is a solution in R3 of the equation ¢ + curl curlg = curl f.
Ifdivf =0in R3, show that u = curlW for a suitable function W.



(iii)

1 Introduction

If curl f = 0in R3, divf = 0 in R? and the derivatives of u decay fast enough
at infinity, say, |curlu| 4 |curl curlu| < Cy|x|™% for o > % and |x| > g, large
enough, then u = curlW for a suitable function W that satisfies curl curl¥ = 0.

Solution

®
(ii)

(iii)

This a sort of “curl” version of the previous exercise. The first result follows at
once by applying the curl operator to the equation.

Taking into account that div curl = 0, applying the div operator to the equation
we find divu = divf = 0. It is well-known that this condition R? is equivalent
to the fact that there exists a function W such that u = curl¥ in R3.

Note that, if we know that the vector potential ¥ decays sufficiently fast at
infinity, we can apply the classical Helmholtz decomposition and write W =
V¢ +curlQ. Thus ¥, = ¥ — V¢ satisfies curl ¥, = u and div¥, = 0: in other
words, we have found a divergence free vector potential W,.

Take the scalar product of the equation curlu + curl curl curlu = curl f = 0 by
curlu and integrate over the ball By = {x € R3||x| < s}, s > g+ It holds
0= [|curlu|2 + curl curl curlu - curlu]dx
By
= | [lcurlu|® + curl curly - curl curlu)dx (1.3)
By

—/ n x curlcurlu - curlu dS, ,
9 By

where we have used the integration by parts formula (C.8). The boundary
integral can be estimated as follows

‘ / n x curl curly - curlu dSy | < Cyls|*%4ms?,
9B,

and moreover

5. lcurlu|?>dx :/ |curlu|2dx+/ |curlu > dx
: B

Bq* S\BQ*
—— —_——
=C0
s
< Co+C, / [ 2dx = Co+ 4 Cs f 22 dr < 0y,
B'V\Bq* *

where Q is independent of s > ¢, as o > % Similarly,

/ |curlcurlu|2dx <Q.
By
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Passing to the limit as s — 400 in (1.3) we find
/ 3(|cur1u|2 + Jeurl curlu|?)dx =0,
R

therefore curluy = 0 in R3. Since from (ii) we already know that u = curlW, it
follows that curl curl¥ = 0 in R3.

As in case (ii), if we know that the vector potential ¥ decays sufficiently fast
at infinity, we can modify it and find a vector potential W, such that curl¥, = u
and divW, = 0. Thus

0 = curlcurl¥, = —AY, + Vdivy, = —AVY, ;

in other words, all the components of W, are harmonic functions.



Chapter 2 ®
Second Order Linear Elliptic Equations oo

This chapter is concerned with a general presentation of second order linear elliptic
equations and of some of the most popular boundary value problems associated to
them (Dirichlet, Neumann, mixed, Robin).

Before introducing the concept of weak solution and of weak formulation we
briefly describe the general ideas behind two quite classical methods for finding the
solution of partial differential equations: the Fourier series expansion in terms of an
orthonormal basis given by the eigenvectors of the operator, and the representation
of the solution by integral formulas, using the fundamental solution of the operator
as integral kernel.

The approach leading to the weak formulation is then described without giving all
the technical details, but only trying to specify which steps are needed for obtaining
the desired result. Though the complete functional framework is not yet clarified,
nonetheless we end the chapter with the proof of the fundamental existence and
uniqueness result: the Lax—Milgram theorem.

2.1 Elliptic Equations

In this chapter we will study the boundary value problem

Lu=f inD
BC ondD,

2.1)

where D is an open, connected and bounded subset of R, u : D +— R is the
unknown, and BC stands for “boundary condition”. Here f : D — R is given and
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12 2 Second Order Linear Elliptic Equations

L denotes a second order partial differential operator having the form

n n
Lw=— " Di@;Djw)+ Y biDiw+aow. 2.2)
ij=1 i=1

The second order term — Zf j=1DiaijDjw) is called the principal part of L. The
reason of the (mysterious) minus sign will be clear in the sequel (see Remark 2.3).

Remark 2.1 In physical models, # in general represents the density of some
quantity, for instance a chemical concentration. In the operator L, the principal part
represents the diffusion of u within D. The first order term represents advection
(transport) of u within D. The term of order zero describes the local reactions that
occur in D.

We will focus on four different types of boundary condition (here below 7 is the
unit outward normal vector on 9 D):

Dirichlet BC : u = 0 on 9 D [homogeneous case].

n
Neumann BC Z niajjOju = gonadD.
ij=1

Mixed BC :u =0onTp and Xn: niaijDju = gonl'y, where D = TpUTH,
I'pNI'y =0 [homogeneousi}:jeisle onI'pl.

Robin BC : i nia;jOju + ku = g on dD, where k > 0 almost everywhere
(ae. hencefl(;igll) ondD and [, kdS, # 0.

Remark 2.2 In the case of a non-homogeneous Dirichlet boundary condition
u=uy onadD

(and, similarly, of the non-homogeneous mixed boundary condition # = uy on I'p)
we proceed as follows:

1. find @ : D — R such that Ujyp = Ug;

2. setting w = u —u, we see that wjyp = 0and Lo = Lu— Lu = f — Lu. Then the
second step is: find w, a solution of the homogeneous Dirichlet boundary value
problem Lw = f — Lu, wjyp = 0;

3. finally define u = w + u.

For arriving at the definition of elliptic equation we need now to give a deeper
look at the matrix {a;; (x)}l’.’ j=1 of the coefficients of the principal part of L.

Definition 2.1 A (real) matrix A is said to be positive definite if Av - v > 0 for
everyv € R*, v # 0.
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Exercise 2.1 A matrix A is positive definite if and only if it exists &« > O such that
Av - v > a|v|? for every v € R”.

Exercise 2.2 Consider a positive definite matrix A (thus satisfying Av - v > a|v|?
for every v € R”, for a suitable « > 0). Then the real part of an eigenvalue of A is
greater than or equal to «; in particular, a positive definite matrix is non-singular.

Exercise 2.3

(1) A matrix A is positive definite if and only if % is positive definite.

(il)) A matrix A is positive definite if and only if all the eigenvalues A; of AJFZAT are

strictly positive.

Definition 2.2 The partial differential operator L is said to be (uniformly) elliptic
in D if the matrix {a;; ()c)};1 j=1 is (uniformly) positive definite, i.e., if there exists a
constant &g > 0 such that

n
Z a;j(x)n;n; > aolnl*
i,j=1
for almost all x € D, for every n € R".

Exercise 2.4

(1) Show that the operator
Lw = =D ((1 + x1x2)D1w) — D1 (x1Drw) — Dr(x2D1w) — DrDow,

is uniformly ellipticin D = {x e R?|0 < x1 < 1/2,0 < x < 1}.
(i1) Show that the operator Lw = — Z?,j:l D;(a;jD;jw), with

1 —x3 X2
{aijy = x3 1+x} x

—Xy X2 1+x32

is uniformly ellipticin D = {x € R3||x|] < 1}.

2.2 Weak Solutions

Before speaking about a different idea of what is the solution of a partial differential
equation, let us spend a few words about a couple of “classical” approaches
concerning this question (say, in use throughout nineteenth century and after).
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2.2.1 Two Classical Approaches

A first approach is based on series expansion. Suppose we want to solve the problem

{—Au =f inD 23)

UlpDp = 0 ondD s
and we have a countable basis {wk},‘:il, with wy : D — R and wrpp = 0. We can
expand u and f asu = Y po ukwx and f = Y o, frwk, with ug, fi € R, and

impose equation (2.3); (we are not making precise here in which sense these series
are convergent. .. ). This formally gives

D fion=f=—Au=) up(—Awy). 2.4)
k=1

k=1

Expanding also —Awy (and admitting that this is possible. .. ) we find

oo
k
— Aok =) qjo;,
j=1

and inserting this result in (2.4) we obtain

(0.¢] o oo o o
ijwj :Zuk<2qfa)j) :Z(quuk>wj. (2.5)
Jj=1 k=1 j=1 j=1 k=1
Thus we have to solve the infinite dimensional linear system
o0
Y dtu=f . j=12... 2.6)
k=1

This simplifies a lot if wy are eigenvectors of the — A operator: —Awy = Agwy, with
Ak € R the associated eigenvalues. In this case the coefficients qj? have to satisfy

oo
k
Awy = quwj ;
j=1

hence we infer
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where §;; is the Kronecker symbol, defined by §j = 0if k # j, &; = 1ifk = j.
Then (2.6) can be easily solved by setting

provided that A ; # 0. In particular, if the eigenvectors w; are an orthonormal basis
with respect to some scalar product (-, -), one has f; = (f, w;), the classical Fourier
coefficients.

We have thus solved the problem via Fourier series expansion. This procedure
requires that we are able to find an orthonormal basis given by eigenvectors of
the operator which satisfy the boundary condition. Clearly, one has to check that
the formal procedure we have described can be rigorously justified: the series
expansions hold, the series can be differentiated term by term, the eigenvalues A ; are
different from 0. Some answers concerning these points can be found in Sect. 7.2.

The following exercise furnishes an example of orthonormal system of eigenvec-
tors in L?(D) (the proof that it is a orthonormal basis, namely, that any function f €
L%(D) can be expressed by a convergent Fourier series requires some additional
work: for this, see Theorem 7.7):

Exercise 2.5 Consider D = (0,a) x (0, ). Determine the eigenvalues and the
eigenvectors associated to the operator —A with homogeneous Dirichlet boundary
condition, and verify that, after a suitable normalization, the eigenvectors are an
orthonormal system in L2(D). [Hint: use the method of separation of variables.]

Still referring to problem (2.3), a second approach we want to describe is the
following: suppose we know a function K (x,£) : D x D +— R satisfying, for
x €D,

/D (=D K)(x, 8) F(E)E = f(x). @.7)

Before proceeding, let us see in which way such a function K could be determined.
Fix x € D and for m > 1 set

pm(&; x) = XB(x,%)(S)’

meas(B(x, n%))

where B(x, %) ={feR"||x—&| < %} and XB(x. 1y is the characteristic function

m

of B(x, %). It is readily verified that fB(x.t) om(&; x)dE = 1 for each t > 0 and
m > 1/t. Moreover, it is well-known that, if f is continuous at x, then

im_ fD P (&3 3) F(E)AE = F(x).
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Thus one could try to find a function K(x,£) such that —(AK)(x,&) =
~(A¢K) (€. x) and

—(AgK) (&, x) = mli_)moopm(é; x).

Clearly, the weak point here is that lim p,,(§; x) = 0, in the pointwise sense for
m—00

all £ # x, and moreover in the limit the condition saying that the average on B(x, t)
is equal to 1 is lost. A surrogate of this choice can be to look for K (x, £) such that
—(AxK)(x,&) = —(AgK) (&, x) = 0 for & # x and satisfying

—f (VeK)(E ) - n(E)dSs = 1,
IB(x.1)

where #n is the unit outward normal vector on d B(x, t). The reason of this condition
is that by the divergence theorem (see Theorem C.3) we have — f B(.1) Ag&)dE =

- faB(x’t) Vg(§) - n(&)dSg for a smooth function g.

This procedure is indeed feasible (in Exercise 2.6 we give an example of the
construction of a function with these two properties: which however is just the
starting point for saying that (2.7) is satisfied in some suitable sense).

Exercise 2.6
(i) Find a function Ko = Ko(&) defined in R? \ {0} and such that
— AKy=0inR?\ {0} and —/ VKo -ndSg =1
dB(0.1)

for any > 0. [Hint: look for a radial function Ko = Ko(|€]).]

(ii) Verify that a function K (x, §) satisfying —(A,K)(x,§) = —(A:K)(§,x) =0
for & # x and — faB(XJ)(VgK)(S, x) -n(§)dSg = 1 foreach ¢ > 0 is given by
K(x,8) = Ko(lx —&1).

Let us go back to (2.7). Being K (x, &) available, we set
u(x) = /D K (x, €) f (€)dE 2.8)
and proceeding formally from (2.7) we have
— Aux) = fD(—Axm(x,s)f(é)ds — f().

What is missing is the fact that u satisfies the boundary condition. This difficulty
can be overcome if we know a function G(x, §) : D x D +— R satisfying (2.7) and
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also G(x, &)|xeagp = 0 foreach & € D. Then setting

u(x) = /D Gx, &) f (E)dE

furnishes a solution of (2.3).

The possibility of finding the function K introduced above depends on the
properties of the operator —A, while the possibility of finding G also depends on
the properties of the domain D. Therefore, it could be useful to devise a procedure
only based on the knowledge of K. Given a function v : D > R, by integration by
parts (see Theorem C.2) we obtain

/D(—Asm(s)ms,x)ds—/Dv(sx—AgK)(s,x)ds

2.9)
_ /aD(_ Veu(E) n()K 1) + 0@ VK € 2) n(©))dS;

If K(x,&) = K(§,x),sothat (A¢K)(&,x) = (AxK)(x, &), and we select v = u,
where u satisfies —Au = f in D, from (2.9) and (2.7) we find for x € D

/D FE)K(E, x)dE —u(x)

(2.10)
= /ap (— Veu(§) -n(§)K (&, x) + u§)Ve K (&, x) ~n($))dSs .

This is a representation formula for u(x), x € D, in terms of K, f and the values
of Vu - n and u on the boundary dD. If we are considering the Dirichlet or the
Neumann boundary value problems, on the boundary d D we know only one of the
two functions Vu - n and u: thus we cannot conclude our argument. But if a similar
formula can be obtained for x € 9D (to be more precise, what it is known to hold
is the same formula with the only modification given by the replacement at the left
hand side of u(x) with p(x)u(x), for a suitable function p), and we assume that u
is a solution of the Dirichlet boundary value problem with boundary datum u, then
we finally obtain

/aD Veu(§) -n(€)K (€, x)dSe = —/Df(%)l((é,X)dé + p(x)ug(x)

2.11)
+/ up(§)VeK (£, %) -n(€)dSe , x €dD.
aD

This is a boundary integral equation for the boundary unknown Vu -n. If we are able
to solve it, we can put the obtained value of Vu - n in (2.10) and we have found a
representation formula for the solution u(x), x € D. Note that a similar dual result is
obtained if we assume that u satisfies the Neumann boundary condition: in that case
the unknown function of the boundary integral equation is u)3p, while (Vu - n)|3p
becomes a known datum.
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With this procedure we have thus transformed the original boundary value
problem into a boundary integral equation. Also in this case we need to show that
this formal process gives indeed the solution we are looking for. This means that we
have to show that all the integrals appearing in (2.10) and (2.11) have a meaning,
that the function given by (2.10) is differentiable as many times as we need and
satisfies the equation, and that as x — % € 9D the given boundary condition is
achieved at .

The theory related to this method is called potential theory: indeed, the function
x — K(x, &), up to a normalization, is the potential of the electric field generated
by a point charge placed at £. The function K (x, &) satisfying (2.7) is called the
fundamental solution of the partial differential operator (in our presentation, of the
operator —A). A classical (and a little bit old fashioned) reference on this topic is the
textbook by Kellogg [14] (originally printed in 1929, and several times reprinted);
for a more recent one see McLean [21].

2.2.2 An Infinite Dimensional Linear System?

When it is looked from far enough, a linear partial differential equation is essentially
an infinite dimensional linear system:

* the solution we look for is a function, thus an object depending on infinitely many
independent information (say, its values in all the points of the domain where it
is defined, or, in more specific cases, the coefficients of a series expansion which
represents it);

« the relations between these unknowns are expressed by a linear operator.

Therefore it could be reasonable trying to extend to the infinite dimensional
case the theory of existence and uniqueness that is known for a linear system of
m equations with m unknowns. This problem can always be associated to a square
m X m-matrix, say Q, and takes the form

Og=p, (2.12)

with ¢, p € R™.

From linear algebra we know various necessary and sufficient conditions that
imply existence and uniqueness of a solution g for any given p. By far the most
famous is assuming that Q is non-singular, namely, that det Q # 0. Unfortunately,
when Q has infinitely many rows and columns, it does not seem so easy to translate
this condition in something of simple use.
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From a more abstract perspective a simple answer is that the problem is well-
posed if and only if the map » > Qr, r € R™, is one-to-one and onto. In this
respect a simplification indeed occurs: in fact the so-called “rank—nullity” theorem
states that

dim N(Q) + dim R(Q) = m, (2.13)

where N(Q) = {v € R | Qv = 0}and R(Q) = {Qv € R™ | v € R} are the kernel
and the range of Q, respectively. Therefore it follows that N (Q) = {0} (namely, the
map r — Qr is one-to-one) implies R(Q) = R™ (namely, the map r — Qr is
onto) and vice versa: in other words, from uniqueness one obtains existence and
vice versa. However, also in this case a direct extension to the infinite dimensional
case of the “rank—nullity” theorem does not seem immediate, as an equation like
(2.13) loses its meaning when m = +-o00.

Instead, another interesting and well-known result seems to be much more
promising: the characterization of the range of Q given by R(Q) = N(QT)*,
where N (QT)L denotes the subspace orthogonal to N (QT) (see Exercise 7.2).
Here we are not playing with infinite quantities, but with simple space relations. In
particular, existence and uniqueness follows from the two conditions N(Q) = {0}
and R(Q)* = N(Q") = {0}.

For obtaining that the kernels of Q and QT are trivial it is sufficient that Q
is positive definite, as this implies that QT is positive definite, too. Clearly, we
already know that a positive definite matrix is non-singular (see Exercise 2.2); but
here we are interested in conditions that can have a simple extension to the infinite
dimensional case, continuing to be sufficient for existence and uniqueness also in
that case. We will see in Sect. 2.3 that, with a slight modification, the condition Q
positive definite will be the right one.

Let us conclude this section with two additional remarks about the strategy
described above. The first one is that in an infinite dimensional vector space the
range of a linear and bounded operator is not always closed (see Sect. 3.1, item
5), and that the correct relation between the range of Q and the kernel of QT
is R(Q) = N(QT)* (see Exercise 7.3). Therefore it will be necessary to find
conditions assuring that the range of Q is closed. What is nice here is that a
positiveness condition is also sufficient for this result.

The second remark is that a linear differential operator typically does not act
from a vector space V into itself, but from V into its dual space (i.e., the space of
linear and bounded functionals from V to R), that will be denoted by V’. Clearly, by
using the Riesz representation theorem 3.1 one could go back to an operator from V
to V: this will be done, for instance, in the proof of the Lax—Milgram theorem 2.1.
However, if this step is not performed, we have at hand an operator Q from V to V',
and therefore the relations between the range and the kernel must be reconsidered, as
R(Q) c V' while N(QT) c V; the orthogonal subspace N (QT )1 will be replaced
by the polar set N(QT)ﬁ (see Theorem 8.4).
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In conclusion, we have seen that the following conditions seem to be sufficient
for the existence and uniqueness of the solution of an infinite dimensional linear

problem Qg = p:

* N(Q)={0}
e R(Q)isclosed
« N(QT) = {0}

We are saying “seem” instead of “are” as we still have to clarify which properties
the infinite dimensional vector space V has to satisfy in order that for a linear and
bounded operator Q : V +— V' itholds R(Q) = N(QT)n.

2.2.3 The Weak Approach

After the two examples in Sect. 2.2.1 and the general presentation in Sect. 2.2.2, the
aim now is to completely describe a different point of view, based on the definition
of what is called a weak solution u of (2.1).

Let us start again from the finite dimensional linear problem. System (2.12) is
equivalent to

(Qq,r)=(p,r) Vr eR", (2.14)

where we have denoted by (-, -) a scalar product in R™. In fact, from (2.14) we have
(Qq — p,r) = 0 for each r € R™, and taking r = Qg — p the result follows.
We can also remark that the same holds true if (2.14) is valid for all r in a set V
that is dense in R™: it is enough to recall the continuity of the scalar product due to
Cauchy—Schwarz inequality.

Noting that the new form (2.14) of problem (2.12) has at the left hand side a
bilinear form and at the right hand side a linear functional, one is led to analyze the
problems that can be written in this form: find the solution ¢ € R™ of

b(g,r) = F(r) VreR", (2.15)

where b(-, -) is a bilinear form on R” x R™ and F(-) is a linear functional on R"”.
It is straightforward to check that this can be easily rewritten in the matrix form
Qq = p, by setting Q;; = b(w;, ;) and p; = F(w;), where w; are basis vectors
of R", i = 1,...,m. Then we could go back to the analysis of a linear system
associated to a matrix that has been constructed in terms of the bilinear form b(-, -)
and a basis of R™. However this is not so enlightening, and it is better to introduce
a more abstract approach, which avoids the use of a basis and which will be easily
extended to the infinite dimensional case. Applying to (2.15) the finite dimensional
Riesz representation theorem we know that, for each fixed w € R, we can represent
the linear functional » +— b(w,r) by means of the scalar product of a unique
element w,, € R™ and r, namely, b(w, r) = (wy, r) for each r € R™. The same
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happens for r — F(r), say, F(r) = (gr, r) for each r € R™. The map w +— w,,
is clearly linear, thus w,, can be represented as M w for a suitable m x m matrix M.
Then solving (2.15) is equivalent to finding the solution ¢ € R of the linear system
Mg = gr. In particular, well-posedness of (2.15) is satisfied if and only if the map
r +— Mr is one-to-one and onto from R™ to R"”: this will be the strategy employed
in the proof of Lax—Milgram theorem 2.1.

Having clarified this correspondence between the matrix formulation (2.12) and
formulation (2.15), let us come back to our elliptic boundary value problem. We
assume in the following that

aij, bi, ap € L®(D) (,j=1,...,n) (2.16)
and
feL*D), (2.17)

and, for the sake of definiteness, in the rest of this section we will consider the
Dirichlet boundary value problem.

When solving (2.1), we are looking for an element in an infinite dimensional
vector space (loosely speaking, functions are elements of a vector space, as we can
add them and we can multiply them by a real number; moreover, for identifying
each one of them we need infinitely many information, namely, its value in all the
points of the domain D: thus they live in a infinite dimensional vector space). If we
can play with a scalar product, we could repeat what has been done here above for
a finite dimensional linear system.

We know that in an infinite dimensional vector space we can have infinitely many
scalar products, and they are not equivalent to each other. Thus we must choose the
scalar product to be employed for mimicking the finite dimensional case, and the
natural choice is the simplest scalar product we use when dealing with functions:
the L?(D)-scalar product, i.e.,

(w, v)12(p) :/ wvdx . (2.18)
D

Let us start now from (2.1). We know that the space of smooth functions with
compact support C°(D) is dense in L?(D), thus it could play the role of the dense
subspace V. With this in mind, for each function v (we will call it a test function)
Eq. (2.1) could be rewritten as

(Lu, U)L2(D = (f, U)LZ(D Yve CgO(D)
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(we are admitting, for the moment, that u € C 2(D) and the coefficients a; j €
C!(D), so that all the three terms defining Lu belong to L2(D)). This reads

n n
/ -y @,»(ai,Dju)vder/ Zbil)iuvdx+/ aouvdx=/ fodx .
D D5 D D

i,j=1

The term associated to the principal part can be balanced in a better way. In fact,
integrating it by parts and remembering that vj3p = 0, we obtain

n n
/ — Z Z),-(a,-jl)ju)vdx :/ Z aiijuDivdx
D D .

i,j=1 i,j=1

n
—/ Z niaij@juv‘apde
oD

i, j=1

=0
and so

n n
f Z a;ijDjuD;vdx +/ Zbiﬂiuvdx +f aouvdx
b b D

i,j=1
=/ fvdx YveCFD).
D

Definition 2.3 The bilinear form By (- , -) associated with the elliptic operator L
introduced in (2.2) is defined by

n n

BL(w,v)zf ZaiijwDivdx+f§ biZ)iwvdx+/ apwvdx . (2.19)

D .~ D D
i,j=1 i=1

Remark 2.3 Having chosen the minus sign in (2.2) has as a consequence that in
the definition of the bilinear form (2.19) we have the plus sign!

We indicate by Fp(-) the linear functional associated to the right hand side f,
namely, we set

Fp() = /D fudx. (2.20)

With this notation, problem (2.1) has been rephrased as follows: find u (in which
space?) such that

BL(u,v) = Fp(v) YveCED). 2.21)
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Remark 2.4 Let us note, from the very beginning, that the weak problem is the
right problem to face and we can focus on it without being afraid of considering
something that is not meaningful. In fact, suppose we have a classical solution u
to problem (2.1). We have just seen that u is also a solution to problem (2.21).
If we know that for problem (2.21) a uniqueness result holds, then solving (2.21)
furnishes the solution to (2.1). Furthermore, if the classical problem (2.1) has not a
solution (for instance, the right hand side f has a jump discontinuity, so that a twice
differentiable solution u cannot exist), it is still possible that the solution to (2.21)
does exist (for example, the definition of the right hand side just needs f € L%(D)),
and that it has a correct physical meaning. In this respect, remember that physical
models are based on conservation principles, where the balance between integral
quantities is required, and the process leading to pointwise partial differential
equations is a limit process as volumes shrink at a point.

As we have remarked, the missing point in (2.21) is that we have to devise
a suitable infinite dimensional vector space V where looking for u (and possibly
also selecting the test functions v). The analogy with the finite dimensional matrix
problem suggests that V should enjoy the following properties:

1. V is a subspace of L%(D) and is endowed with a scalar product (possibly,
stronger than the L2%(D)-scalar product);

2. the bilinear form By (-, -) and the linear functional Fp(-) are defined and bounded
in V x V and V, respectively;

3. the (infinite dimensional) Riesz representation theorem holds in V. This essen-
tially says that V must be a Hilbert space: namely, any Cauchy sequence in V is
convergent to an element of V. (See Sect. 3.2 for the proof of Riesz theorem and
also for some other interesting remarks.)

4. C8°(D) is a subspace of V. (We will see that relaxing the assumption that
Cg°(D) is a subspace of V is possible, but one must be careful: see Sect. 5.5
and the second part of Sect. 5.6.)

5. C§°(D) is dense in V with respect to the convergence in V.

Let us note that in a finite dimensional vector space a linear functional is always
bounded, while this is not true in the infinite dimensional case (see Sect. 3.1).
Therefore in property 2 we have explicitly assumed boundedness. As shown in
Exercise 2.7 this means that By (-, -) and Fp(-) are continuous, thus by a density
argument we see that (2.21) is satisfied also forall v € V.

Note also that in property 5 the assumption that C3°(D) is dense in V is related to
the fact that we are considering the homogeneous Dirichlet boundary value problem;
we will see that for the other boundary value problems this assumption could refer
to other subspaces of C (D).

Another remark about the space Cgo (D) is in order: here we have not yet shown
which is its essential role (we only underlined the fact that it is suitable to assume
that it is a subspace of V, as we have built our procedure by using test functions in
Cf)’o (D)). We will see in Chap. 4 that its use will permit us to introduce new relevant
concepts and new Banach spaces, giving a solid ground to our analysis.
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The following exercise clarifies the relation between boundedness and continuity
for a linear functional.

Exercise 2.7 Let V be a Hilbert space (indeed, a normed space would be enough),
and F : V  Ralinear functional. Then F is bounded if and only if it is continuous.

An inspection of the terms in By (u, v) shows that the principal part of it is
defined if Vu, Vv belong to (L*(D))" (and the assumption ajj € L*(D) is
sufficient); for the lower order terms we must add the assumption u, v € L%(D).
Thus we could choose V = {v € C (D) | vjpp = 0}, but the choice of the scalar
product (w, v) L2(D) would not be enough (there is not a control of the integrals
where first order derivatives appear). Therefore, we could endow V with the scalar
product

(w,v); = / (wv + Vw - Vo)dx . (2.22)
D

However, it is easy to check that with these choices of V and (-, -)1 property 3 here
above is not satisfied. In fact, let us consider this exercise:

Exercise 2.8

(i) Consider D = (—1, 1) and for x € D define f(x) = 1 —|x|, g(x) = —sign(x).
Show that there exists a sequence vy € V = {v € cl(D) | vjpp = 0} such that
v — fin L?(D) and v, — g in L*(D).

(ii)) Show that V is not a Hilbert space with respect to the scalar product (-, -);
defined in (2.22).

Thus a new problem is enlightened: on one side, the scalar product (-, -)1, that
seems to be quite reasonable, requires that the gradient is defined (and square-
summable); on the other side, the sequence v, constructed in Exercise 2.8, part
(i), is a Cauchy sequence with respect to the scalar product (-, -)1, and, if we could
obtain that f/(x) = g(x) (which is definitely not true in the standard sense, but also
does not seem to be completely meaningless), then we would have that v,, converges
to f with respect to the scalar product (-, -)1.

Summing up, here there is something to do: we need derivatives (and that they
belong to L?(D)), and we also need that a “corner” function admits a derivative
(belonging to L?). Therefore a natural question arises: is it the time to introduce a
different definition of derivative?

We will see: for the moment, assume that we will be able to overcome these
difficulties, and let us analyze how to solve a general problem of the form:

findueV:Bu,v)=Fw) YveV, (2.23)
where V is a Hilbert space, endowed with the scalar product (-, -)y and the norm

|| - ||v, and the bilinear form B(-, -) and the linear functional F(-) are defined and
bounded in V x V and V, respectively.



2.3 Lax-Milgram Theorem 25

A particular interesting and at the same time simple situation arises when B(-, -)
satisfies |B(w, v)| < y|lw|lvllv|ly for each w,v € V (boundedness), B(v, v) >
a||v||%/ for each v € V (coerciveness) and is symmetric, i.e., B(w, v) = B(v, w) for
each w, v € V (for the bilinear form By (-, -) introduced in (2.19) this means that the
coefficients of the operator L satisfy a;; = aj; and b; = Oforeachi, j =1,...,n).
In this case B(-, -) is a scalar product in V, and the induced norm is equivalent to
the original one: in fact from boundedness and coerciveness we have

alvll} < B, v)) < yllvl?.

Thus solving problem (2.23) is a direct consequence of the (infinite dimensional)
Riesz representation theorem (see Theorem 3.1).

Let us note, however, that in the finite dimensional case the linear system Qg =
p has a unique solution if and only if det Q # 0. Hence, as shown in Exercise 2.2,
a sufficient condition to have a unique solution is that Q is positive definite, i.e.,

(Or,r)>alr> VreR"

for some o > 0. Therefore symmetry does not seem to be essential: we could hope
that the well-posedness of (2.23) is true even if B(-, -) is not symmetric, but still
bounded and such that B(v, v) > a||v||%, foreachv € V.

The answer is in the quite important result presented in next section.

2.3 Lax-Milgram Theorem

In this section we assume V is a (real) Hilbert space, with norm || - ||y and scalar
product (-, -)y (note however that the result below, with easy modification, is also
true for a complex Hilbert space).

Theorem 2.1 (Lax-Milgram Theorem) Let B:V x V> Rand F : V +— R be
a bilinear form and a linear functional, respectively. Assume that B(-, -) is bounded
and coercive in V X V, ie., there exist constants y > 0, « > 0 such that
|B(w,v)| < yllwlvlvily Yw,veV (2.24)
and
B(w,v) > alvl}, YveV, (2.25)

and that F : 'V + R is bounded in V, i.e., there exists a constant M > 0 such that

IF)| < Mlvlly YveV. (2.26)
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Then there exists a unique element u € V such that
Bu,v)=F@w) YvelV.

Moreover the stability estimate ||uly < % holds true.

Proof The proof presented here is based on the Riesz representation theorem 3.1
and the projection theorem (see Yosida [28, Theorem 1, p. 82]), two well-known
results of functional analysis. Another proof, using the less known closed range
theorem 8.4, can be found in Exercise 8.4.

The proof is divided into 6 steps. The first three have the aim to rewrite the
problem as an equation in the Hilbert space V for a suitable linear and bounded
operator.

1. For each fixed element w € V, the mapping v — B(w, v) is a bounded linear
functional on V'; hence the Riesz representation theorem 3.1 asserts the existence
of a unique element w,, € V satisfying

B(w,v) = (wy,v)y YveV.
Let us write Aw = w,,, so that for w, v € V it holds
B(w,v) = (Aw, v)y .

2. Similarly, once more from the Riesz representation theorem 3.1 we observe that
we can write

F() = (gr,v)y YveV

for a unique element gr € V. Then problem (2.23) reduces to finding a unique
u € V satisfying Au = g, namely, to show that A : V + V is one-to-one and
onto.
3. We first claim A is a bounded linear operator. Indeed if A1, > € R and wy, wy €
V, for each v € V we see that
(A iwi + 22wz), v)v = B(Ajwi + Aaws, v)
= M B(wi, v) + 22 B(w2, v)
= M (Awi, v)v + 22(Aws, v)v
= (MAw + A Awa, v)y .
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This equality is true for each v € V, thus we have proved that A is linear.
Furthermore

lAv]T = (Av, Av)y = B(v, Av) < y[[v]lv[[Av]y .

Consequently ||[Av|ly < y|lv|ly forall v € V and A is bounded.
4. Next we assert

A 1s one-to-one
and 2.27)

R(A), the range of A, is closed in V.
To prove this, let us compute
a|vly < Bv,v) = (Av,v)y < [[Av]lv|v]lv .

Hence «||v|ly < ||Av]|ly. This inequality easily implies that A is one-to-one.
Moreover, take a sequence Av, € R(A) such that Av, — wo € V. Since
Av, is convergent, it is a Cauchy sequence; using the linearity of A and the
last inequality we also have ||v, — vplly < «|Av, — Av,lly, thus v, is a
Cauchy sequence, too. Being V a Hilbert space we have that v, — wy € V,
and since A is bounded it follows Av, — Awg. The uniqueness of the limit
yields wgp = Awy, thus R(A) is a closed subspace.
5. We prove now that

R(A)=V. (2.28)

By the projection theorem (see Yosida [28, Theorem 1, p. 82]), it is enough to
prove that R(A)* = {0}. Let us take w € R(A)*; then

alwlly < Bw, w) = (Aw, w)y =0,

hence w = 0. In conclusion, A is onto.
6. Finally we have that

allully < B(u,u) = F(u) < Mlully,

thus Jlufly < 2.

O
Remark 2.5 As already said, the dual space of V (i.e., the space of linear and

bounded functionals from V to R) will be denoted by V. Following this notation,
in Lax—Milgram theorem we have assumed F € V.
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Remark 2.6 It is well known that if V is a Hilbert space then V' is a Hilbert space,
too. Its scalar product is given by (¥, ®)yy = (ww, we)y, Where by the Riesz
representation theorem 3.1 it holds ¥ (v) = (wy, v)y and ®(v) = (we, v)y for
each v € V (see, e.g., Yosida [28, Corollary 1, p. 91]).

Remark 2.7 Necessary and sufficient conditions for a general existence and
uniqueness result are presented in Theorem F.1.

Remark 2.8 For the sake of simplicity, in the sequel we will often say that a
bilinear form B(-,-) : V x V — R is bounded or coercive in V, instead of in
VxV.

2.4 Exercises

Exercise 2.1 A matrix A is positive definite if and only if it exists &« > O such that
Av - v > a|v|? for every v € R”.

Solution
(<) Trivial.
(=) Themap v = Av - v is positive for all v # 0 and it is continuous. On the

subset |v| = 1, which is bounded and closed, it has a minimum « > 0 and a
minimum point v* such that Av* - v* = . Now take v # 0 and let v¥ =

= o
|v#| = 1. Therefore we have that Av? - v > o > 0, that is

v 1 5
ong—~—=—2Av-v — Av-v > afv|”.
vl vl

Exercise 2.2 Consider a positive definite matrix A (thus satisfying Av - v > «|v|?

for every v € R", for a suitable o« > 0). Then the real part of an eigenvalue of A is
greater than or equal to «; in particular, a positive definite matrix is non-singular.

Solution Let A € C be an eigenvalue of A, with (unit) eigenvector v = v+iw € C",
v, w € R". We have

)\,:)\,|Q)|§Cn = (o, w)or = (Aw, 0)cr = Av- v —iAv-w+iAw-v+ Aw - w,
thus
Rei=Av-v+Aw-w > a(v* + w)?) = «.

As a consequence, all the eigenvalues of A are different from O and det A # 0, thus
A is non-singular.
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Exercise 2.3

(i) A matrix A is positive definite if and only if A+2A is positive definite.

(i) A matrix A is positive definite if and only if all the eigenvalues A; of A+2AT are

strictly positive.

Solution

(i) We have

A+ AT
2

1
v-v:E(Av~v+ATv~v):Av~v,

thus (i) is proved.
(ii) It is enough to note that AJFZA is a symmetric matrix, thus being positive
definite is equivalent to say that its minimum eigenvalue is strictly positive.

Exercise 2.4

(i) Show that the operator
Lw = —=Di((1 + x1x2)D1w) — D1(x1Drw) — Dr(x2D1w) — DaDrw

is uniformly ellipticin D = {x € R210<x; <1/2,0 <xy < 1}.
(i) Show that the operator Lw = — Zij:l Dj(a;j Djw), with

1 —x3 X2
{aij} = x3 14+x7 xi
—x3 Xx2 14 x%
is uniformly ellipticin D = {x € R3 | |x| < 1}

Solution Using Exercise 2.3, it is enough to show that the minimum eigenvalue
A1(x) of the matrix {%(aij + aj;)} satisfies infp A1 (x) > 0.

(i) Writing A = {a;;} we have

Ao (1 + x1x2 xl)
X2 1

and

L+x1x2 $(x +X2))

Ly an =
2 )= <%(X1 + x2) 1
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A simple calculation shows that

1
rx) = E(2 + x1x2 — \/x7x3 + (x1 +xz)2) .

Since fora > 0, b > 0 we hﬁ/e Ja+b < Ja+ «/B, it follows that A1 (x) >
%(Z—xl —xp) > 4—1‘ for x € D.

(ii)) We have

1 1 0 0
SA+AD =10 T+xf 00 +x)
0501 +x) 143

Clearly one of the eigenvalues is equal to 1, while the minimum of the other
two is given by

1
rx) = 5(2+x12 +x3 —\/(xf — x4 (x) —i—xz)z).

Using again the inequality v/a + b < /a + +/b, we find

1 1 V2
M) = 5 (24t +xd = —ad = +l) = 5 (2- e 4nl) = 1- 52

forx € D.

Exercise 2.5 Consider D = (0,a) x (0, b). Determine the eigenvalues and the
eigenvectors associated to the operator —A with homogeneous Dirichlet boundary
condition, and verify that, after a suitable normalization, the eigenvectors are an
orthonormal system in L2(D). [Hint: use the method of separation of variables.]

Solution We must find functions w = w(x, y) and numbers A such that —Aw = Aw
in (0, a) x (0, b) and wjyp = 0. Using the technique of separation of variables we
look for w(x,y) = p(x)g(y), with p(0) = p(a) = 0 and ¢q(0) = g(b) = 0.
Imposing the equation we find

—Aw=—p"q—pq" =rpqg =io in(0,a)x(0,b),

and dividing by pgq (this is justified for p # 0 and g # 0, but let us go on...) we
obtain
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Since % is a function of the variable x only and % is a function of the variable

y only, this equation can be satisfied if and only if %ﬂ and %ﬁ are both equal to a
constant. , ,
Let us write % = —pu (thus "7 = —A). The ordinary differential equation p” -+

up = 0 has a general solution given by p(x) = c; exp(y/—pux) + ¢2 exp(—/—pux)
for u < 0,by p(x) = c1+cox for u = 0 and by p(x) = c sin(,/px)~+c2 cos(/ux)
for v > 0. In the first two cases imposing the boundary conditions p(0) = p(a) =0
readily yields ¢; = ¢ = 0, thus p is vanishing and it is not an eigenvector; in the
third case from p(0) = 0 it follows ¢ = 0, thus we have to impose p(a) =
cy sin(,/pma) = 0 without setting ¢y = 0. The condition to be satisfied is therefore

sin(\/pua) =0 = /pa = mn form > 1.

2.2 .
We have thus found the sequence u,, = '”a’; ,m > 1, and the corresponding

functions p,,(x) = sin(ma—”x). Setting v = A — u, a similar computation for the

other factor ¢ yields v; = ’zb—?;z and ¢;(y) = sin(%y), forl > 1.
We have thus determined

m?x?  [?n?

a? b?

l
, aml(x,y)=sin(—mﬂx>sin(%y) ,m>1,1>1.
a

Aml =
From [; sin(“%x) sin(malx)dx = 0 form # m' and [ sinz(”;—”x)dx = §itis

readily seen that w,,; = ﬁ@ml is an orthonormal system in L2((0, a) x (0, b)).

Exercise 2.6

(i) Find a function Ko = Ko(&) defined in R? \ {0} and such that

— AKy=0inR?\ {0} and —/ VKo-ndSs = 1
dB(0,1)

for any ¢ > 0. [Hint: look for a radial function Ko = Ko(|£]).]

(i) Verify that a function K (x, &) satisfying —(AxK)(x,§) = —(A¢K)(§,x) =0
for £ # x and —faB(x’t)(VgK)(é, x) -n(§)dSg = 1 foreacht > 01is given by
K(x,8) = Ko(lx — &|).

Solution

(1) Let us write |£] = r and look for Ko(r). The Laplace operator in polar
coordinates is given by

1 1
A=a,2+;a,+r—zag
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(see Exercise 7.14). Therefore we have to solve, for » > 0,
" 1 / 1 / /
OZKO(F)~|—;KO(}’)=;(VK0(I’)) ’

thus we have rK(’)(r) = ¢y, a constant. Consequently we find Ko(r) = cologr+
c1, and, for simplicity, we can choose ¢; = 0. Then let us compute VK. We
obtain

1 1§
DiKo(r) = coDjlogr = co—Dir = co—g—l .
r rr
On the other hand, on dB(0, t) we have n; = ‘%—’ Thus on dB(0, t) we obtain

VKon= co%éé = cot%|$|2 = co%. Let us integrate this function on 9 B(0, ¢):

1 1
/ VKg-ndSg = cop—meas(0B(0, 1)) = co—2nt = 2ncy.
3B(0,1) t t

In conclusion we have found ¢y = —% and Ko (&) = —% log |£].

The result is straightforward as K (x, &) given by Ko(|x —&|) is symmetric with
respect to x and &, and then radial with center at x.

Exercise 2.7 Let V be a Hilbert space (indeed, a normed space would be enough)
and F : V +— R alinear operator. Then F is bounded if and only if it is continuous.

Solution If F is bounded, namely, |F(v)| < y|v|ly for a suitable y > 0, from
linearity we readily obtain that F(vy) — F(vg) if vp — voin V.

Conversely, assume that F is continuous. Since F is linear we have F(0) = 0; then
there exists § > 0 such that |F(v)] < 1 for ||[v|ly < §. Take now v € V, v # 0.
Define w = 82—, so that |w|y = 8. We have |F(w)| < 1, hence |F(v)| <

vlly >

1
slvllv.

Exercise 2.8

®

Consider D = (=1, 1) and for x € D define f(x) = 1— x|, g(x) = —sign(x).
Show that there exists a sequence vy € V = {v € cl(D) | vjpp = 0} such that
v — fin L*>(D) and v, — gin L%(D).

(ii)) Show that V is not a Hilbert space with respect to the scalar product (v, w);

defined in (2.22).

Solution

(i) Take vy defined as follows:

1— x| for—l<x<—%
L _ k.2 1 1
ve(x) =y 1= 5 —5x for — ¢z <x =<1

1 —|x| for%<x<1.
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(ii)

Exercises

It is easily seen that vy € V and that

1 for—l<x<—%
v(x) ={ —kx for —%§x§%
—1 for%<x<1.

Then

1 0 1
/ (v} (x) + sign(x))2dx = / (—kx — 1)2dx + / " (—kx + 1)2dx
—1

(kx+1)3‘ (kx—1)3’%_ 2
—x 07 3k”
On the other hand
/ (vk(x)—1+|x|)2dx—/ (1————x — 1+ x)%dx

(1 L_k 1—x)%d
2% 2x rar

f( a2 28

— x X)“dx - — =

k k2 K3

33

Part (i) says that v, and v are convergent sequences, therefore Cauchy
sequences in L?(D). Thus v is a Cauchy sequence with respect to norm
induced by the scalar product (-, -);. Assume, by contradiction, that vx con-

verges with respect to this norm to a function vy € V. Since the scalar
product (-, -)1 is stronger than the scalar product (-, -) L2(D> One also has that

Vg converges to vg in L2(D), therefore vy = f. Since f ¢ V, a contradiction is

produced.



Chapter 3 )
A Bit of Functional Analysis oo

For the ease of the reader, in this chapter we present some results of functional
analysis: in particular, we show how a finite dimensional normed vector space and a
infinite dimensional normed vector space enjoy different properties, and which are
some basic points that make a Hilbert space different from a pre-Hilbertian space.

3.1 Why Is Life in an Infinite Dimensional Normed Vector
Space V Harder than in a Finite Dimensional One?

1. The boundedness (continuity) of a linear functional must be explicitly required.
In fact:
If dim V < 400 a linear functional is bounded.
If dim V = +o0 this is not true anymore.

Example 3.1 Let’s take the space of trigonometric polynomials

V = {v :[0,27r]— R |3N >0, 3 {ak,bk},ivzo such that
N
v = (ak cos(kx) + by sin(kx))} ,
k=0

endowed with the scalar product (v, w)y = fozn vwdx. Set Lv = v/ and take
Uy = sin(mx), m > 1, then

2 2
/ v,zndx = / (sin(mx))zdx =
0 0

2 2
/ (Lvm)zdx = / (m cos(mx))zdx =m’n
0 0
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and

ILunlly  mym
lvm llv ﬁ

Hence the functional L is linear but not bounded.

=m — Q.

. The precompactness of a bounded set must be explicitly proved. In fact:

If dmV < 400 from a bounded sequence you can extract a convergent
subsequence (Bolzano—Weierstrass Theorem).

If dim V = 400 this is not true anymore.

Example 3.2 Let’s take w, an orthonormal system in L%(0,27) = V (for

instance wy, (x) = JLE sin(mx)). Then

lwally =1
and, for k # m,

2
lwpy — welly = Wy — Wi, Wy — Wiy
2 2
= [lwp Iy + lwelly — 2w, w)y = 2.
—
=0

Thus any subsequence extracted by w,, is not convergent, as it is not a Cauchy
sequence.

. The convergence of Cauchy sequences must be explicitly proved. In fact:

If dimV < 400 any Cauchy sequence in V is convergent to an element in V.
[Indeed a Cauchy sequence is bounded (see Exercise 3.1 (i)) and from point 2.
you can extract a convergent subsequence; if a Cauchy sequence has a convergent
subsequence then the whole sequence is convergent (see Exercise 3.1 (ii)).]

If dim V = 400 this is not true anymore.

Example 3.3 Let us take V = C°([—1, 1]) endowed with the scalar product
(v, w)y = f_ll vwdx and consider

0 xel=1.0]
vn(x) = 1mx x € (0,1/m) 3.1)
1 xell/m1]

(see Fig. 3.1).
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0.5 0.5

X X

-1 1 -1 1

Fig. 3.1 The graph of the function v, in (3.1) for m = 2 (left) and m = 4 (right)

Then setting

io x e[=1,0]
v(x) =
1 xe(1],

we have that

1 1/m 1
/ |vm—v|2dx=/ (l—mx)zdxf — = 0.
-1 0

m

Therefore v, is a Cauchy sequence in V, but it is not convergent to an element
inV,asv ¢ CO(—1, 1]).

4. The closure of a vector subspace must be explicitly proved. In fact;
If dim V < 400 a subspace is always closed.
If dim V = 400 this is not true anymore.

Example 3.4 Let us take V = L?(—1, 1) with (v, w)y = fil vwdx. As a
subspace of V take W = CO([—I, 1]) and choose vy, as in the previous example.
Then v,, € W, v,, > vin V butv ¢ W.

5. The closure of the range of a linear and bounded operator A : V +— W, V and
W Hilbert spaces, must be explicitly proved. In fact;
If dim W < 400 the range of A, being a subspace, is always closed.
If dim W = +o0 this is not true anymore.

Example 3.5 Take V = W = L*(—=1,1) and A : v > Av where (Av)(x) =
ffl v(t)dt. Clearly A is a linear operator, Av € V and finally A is a bounded
operator, as by Cauchy—Schwarz inequality

1 1 X 2 1 X
f (Av)z(x)dx=/ (/ v(t)dt) dxs/ (x+1) (/ v(r)2dt> dx
—1 —1 —1 —1 -1

1 2 1
< (/ v(t)zdt> M‘l = 2/ v(r)%dr .
—1 2 -1 -1
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Indeed, we have a further regularity result, as any Av € R(A) is uniformly
continuous in [—1, 1]. In fact, for x1, xp € [—1, 1], x; < xp it holds

X2
/ v(t)dt
X1

= (|

-1

[(Av)(x2) — (Av)(x1))| =

1 1/2

=
~——
Cauchy—Schwarz

v(t)zdt>

Choose now w,,, € V as follows:

0 for —1<x=<0
opx)=1mfor0<x <1/m
0 forl/m<x<I1.

As a consequence we have that Aw,, is given by
0 for—1<x<0
(Awp)(x) =y mx forO<x <1/m

1 forl/m<x<1,

thus Aw,, are equal to the functions v,, in Example 3.3, (3.1). There we have
seen that Aw,, = v, converges to

0 xe[—1,0]
1 xe1].

v(x) =

Since v is discontinuous, it follows that v ¢ R(A) and therefore the range of A
is not closed.

3.2 Why Is Life in a Hilbert Space Better than in a
Pre-Hilbertian Space?

Definition 3.1 A pre-Hilbertian space is a space endowed with a scalar product.

It is clearly difficult to express which is the main basic difference between a
pre-Hilbertian space and a Hilbert space. A possible answer, the one on which we
first focus here, is that in a Hilbert space we have the Riesz representation theorem,
whereas in a pre-Hilbertian space that is not true. We will see later that we can make
more precise this assertion.
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Theorem 3.1 (Riesz Representation) Ler V be a Hilbert space, and let ¥ : V +>
R be a linear and bounded functional. Then there exists a unique w € V such that
Fv) = (w, v)y foreachv € V.

Let us give a proof of Riesz theorem. If an element w € V satisfies F(v) =
(w,v)y forallv € V,thenw € Nt = {w € V|(w,v)y =0V v € N}, where
N =1{v e V|Flv) = 0L If Flv) = 0 forall v € V, take @ = 0. Otherwise
take @ # 0, ® € N=, and look for  in the form w = a® for a suitable « € R.
Imposing that the representation formula is true for v = @, namely, that we have
Flw) = (ad, @)y, it follows

Fw)
o0=——.
ol
We claim that
F(®) .
w=——0wn.
llolly

We have to prove that such w satisfies F(v) = (w, v)y for each v € V. It holds

Fo) L LD 6 )y = Fo)@ by — F@)@ vy 20
(v, ®)y

= (F)d— F@), d)y =0,
thus it is sufficient to prove that (F(v)® — F(®)v) € N.Indeed by linearity we have

FloF(v) — vF(@)) = FlOF(v)) — FuF(@))
= F(@)F(v) — F(v)F(@®) =0.

We have thus completed the proof of the Riesz representation theorem. But where
did we use the assumption that V is a Hilbert space and not simply a pre-Hilbertian
space? At a first look it is not so evident. . .

The point is that we have assumed that there exists & # 0, & € N-+. But we only
know that there exists w* # 0 such that F(w*) # 0, namely, w* # 0, * ¢ N.
In a pre-Hilbertian space this does not mean that we can find & # 0, ® € Nt It
is possible that N* = {0} even if N # V! On the contrary this is not possible for
a Hilbert space, as we have the projection theorem (see Yosida [28, Theorem 1, p.
82]) and therefore if N % V we know that N is not trivial, because we can split
V =N @ N*, writing »* # 0 as

o* = Pyo* + PyLo*
— S——
eN eNL

with PyLo* # 0if w* ¢ N.
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Example 3.6 Let us give an example of N % V, N+ = {0} for a pre-Hilbertian
space V. Take V = C8°(D) with D an open, connected, bounded set, and endow
V with the scalar product (v, w)y = [}, vwdx. Consider F(v) = |}, vdx and note
that # is linear and continuous, as by the Cauchy—Schwarz inequality

1/2
|F(v)| = ‘/ vdx| < f lvldx < (meas(D))'/? </ vzdx) YveV.
D D D

It is also clear that

N:{UEC(‘)’O(D)‘ / vdx:O} (3.2)
D

is a subspace with N # V, as there are C{°(D) functions that are positive and
not identically 0, thus satisfying | pvdx > 0.1t is also easy to show that N is a
closed subspace, namely, if a sequence v,, € N converges to v* € V with respect
to the norm associated to (-, -)y, then fD v*dx = 0, thus v* € N.If w € N+
(orthogonality in V, thus w € C(‘)’O(D). ..), foreach v € N it follows

0:/ a)vdx:[ (a)—a)D)vdx—i—a)D/ vdx:/ (w — wp)vdx ,
D D D D
~——

=0

where

1
wp = —/ wdx .
meas(D) Jp

If we prove that N is dense in
L2(D) = {v e L2(D) ( /Dvdx - o}

(see below, Exercise 3.2), then by a density argument we can also write
0= /D (w—wp)vdx YveL(D).

Taking v = @ — wp, which satisfies v € C*°(D) with fD vdx = 0, therefore
belongs to Lﬁ(D), it follows that

/(a)—a)p)zdxzo — w—wp=0inD.
D

As a consequence  is constant in D, and from w € C;°(D) it follows @ = 0.
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Example 3.7 In particular, we can also see thatin V = Cgo(D), endowed with the
scalar product (v, w)y = fD vwdx, the Riesz theorem is false. If we had w € V
such that

T(v):f vdx = (w,v)y YveV,
D

then we would have
(w,v)y =0 YveN,
hence @ € N+. From what we have seen above we would obtain w = 0, and this is

a contradiction as there exists v € V with F(v) = f pvdx #0.

As a final comment, let us come back to the main basic difference between a
pre-Hilbertian space and a Hilbert space. We can conclude that, in our context, it is
the fact that for a Hilbert space the projection theorem holds, and, as a consequence,
the Riesz theorem is valid.

3.3 Exercises

Exercise 3.1 Let V be a normed vector space.

(i) A Cauchy sequence v € V is bounded.
(ii)) A Cauchy sequence v € V with a convergent subsequence is convergent.

Solution
(i) Fix ¢g > 0 and consider N, € N such that vy — vs|ly < €g for k,s > N,.
Then for k > N, it holds

lvelly < vk —ow,llv + llow, v < €0+ llow, v,
thus v is bounded as there are only a finite number of terms vi for k < N,.
(ii) Let vy, be a subsequence convergent to v, € V. Fix € > 0: we know that there
exists N¢ € N such that
vk, —villy <€, llvs —velly <€
for m > N¢ and s,r > Nc. Since the sequence of integers k,, is strictly
increasing (definition of a subsequence...) it holds k, > m; thus taking

m > N¢ it follows

lvm — vellv < llvm — vk, lv + vk, — velly < 2e.
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Exercise 3.2 N, defined as in (3.2), is dense in Li(D).

Solution Take v € Li(D). Since C3°(D) is dense in L?(D), we have ¢, € C3e(D)
with [|¢,; — vlly — 0asm — oo. Take ¢ € C3°(D) with fD Ydx # 0 and define

4

1/f=m;

thus ¥ € Co(D) and [}, Vdx = 1. Define I, = [ ¢mdx and take

(ﬁm:(ﬂm_]ml//}'

We have ¢, € Cj°(D) and

/(Z)mdx:/(pmdx—lm/ @dx:O,
D D D

thus ¢, € N. Moreover

I@m — vllv = l¢m — Ln¥ — vllv < lgm — vllv + Unl 1%y .

Since

< (meas(D)'|lgm — vllv ,

[In| = V Omdx / (om — v)dx
D D

the result follows.
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Weak Derivatives and Sobolev Spaces oo

The functional spaces defined in terms of classical derivatives are unfortunately not
a suitable setting for a PDEs theory based on weak formulations, as we are not
usually able to prove that weak solutions actually belong to such spaces. Therefore
other kind of spaces are needed: we must weaken the requirement of smoothness for
the functions belonging to them. On the other hand, the bilinear form determined in
(2.19) contains derivatives. Summing up, we need to speak about derivatives, but
this is not possible in the classical sense: we have to introduce a new concept.

The aim of the next section is to extend the meaning of partial derivative. On the
basis of this new idea, in Sect. 4.2 we define the functional spaces that will be used
for the variational formulation of the boundary value problems we are interested in.

4.1 Weak Derivatives

Let us start with some preliminaries.

Remark 4.1 (Motivation for Definition of Weak Derivatives) Assume we are
given a function u € C'(D). Then if ¢ € Cg°(D) (we will call a function ¢
belonging to C3°(D) a test function), we see from the integration by parts formula
(see Theorem C.2) that

/ui),-<pdx:—/1),-u<pdx Vi=1,...,n. 4.1)
D D

There are no boundary terms, since ¢ has a compact support in D and thus vanishes
near d D. More generally, if k is a positive integer, u € C k(D) ando = (1, ...,a,)
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 43

A. Valli, A Compact Course on Linear PDEs, La Matematica per il 342 154,
https://doi.org/10.1007/978-3-031-35976-7_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35976-7protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4
https://doi.org/10.1007/978-3-031-35976-7_4

44 4 Weak Derivatives and Sobolev Spaces

is a multi-index of order |¢| = o] + - - - + 0, = k, then

/ uDpdx = (=1l / D*updx 4.2)
D D

This equality holds since

9% 9%

dx, ox,"

D = @

and we can apply (4.1) |«| times.

We next examine if (4.2) can be generalized to functions u that are not k times
continuously differentiable. The left hand side of (4.2) makes sense if u is only
locally summable: the problem is rather that if u is not C*, then the expression D%u
on the right hand side of (4.2) has no obvious meaning. We overcome this difficulty
by asking that there exists a locally summable function w,, for which formula (4.2) is
valid, with w, replacing D*u. (We remember that a function v is locally summable,
written v € L}_(D), if for every measurable subset E that is bounded and satisfies

loc

E C D, written E CC D, we have that v € L!(E).)

Definition 4.1 Let D C R” be an open set. Suppose u, w, € L. (D), and « is a

loc
multi-index. We say that w, is the ath-weak partial derivative of u, written

D*u = wy ,

/u@“godx: (—1)'“'/ wepdx 4.3)
D

D

for all test functions ¢ € C{°(D).

Remark 4.2 Note that, for the sake of simplicity, we are using the same notation
D*u for weak derivatives and for classical derivatives. However, we believe that in
the sequel it will be easy to understand from the context which type of derivative we
refer at.

Remark 4.3 Let us not that in the classical sense differentiation is a local concept:
we define the derivative of a function u at a point xo € D C R, and we say that u is
differentiable in D if its derivative exists at each point x € D. Here the concept of
weak derivative is global: the weak derivative is a function defined in D.

Proposition 4.1 (Uniqueness of Weak Derivatives) A weak ath-partial deriva-
tives of u, if it exists, is uniquely defined up to a set of measure zero.
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Proof Assume that wy, @y € LIIOC(D) satisfy

/ uD*pdx = (—1)‘“'/ we@dx = (—1)'“'/ e pdx
D D D

for all ¢ € C;°(D). Then

/ (0 — Ba)pdx = 0
D

for all ¢ € C3°(D); whence, since wy — @y € Llloc(D), we have that wy — @y = 0

almost everywhere by du Bois-Reymond lemma (see Lemma 6.1). O

Remark 4.4 Note that if a function u is continuously differentiable in D, then its
classical derivative D;u coincides with its weak derivative, as it is a function which
belongs to LIIOC(D) and satisfies (4.3). Hence the concept of weak derivative is a
generalization of the concept of classical derivative.

However, take into account that there are differentiable functions (but not
continuously differentiable) for which the classical derivatives are not the weak
derivatives, as they do not belong to LIIOC(D) (see Exercise 4.1).

Exercise 4.1 Find a function u : (—1,1) — R which is differentiable and whose
classical derivative 4’ does not belong to Llloc(—l, 1) (therefore u’ is not the weak
derivative of u).

Proposition 4.2 The map u +— wq, where wy is the ath-weak partial derivatives of
u, is linear.

Proof Straightforward from the definition. O

Exercise 4.2 Set X, = {v € L3(D)| D% e L*(D)}, where « is a multi-index.
The operator D : u > D%u defined in X, is a closed operator from L?(D) to
LZ(D), namely, if for u#,, € Xy one has u,, — u in L2(D) and D%u,, — wy in
L2(D) then it follows wy = DYu.

Example 4.1 Letn =1, D = (0, 2), and

1— if 0 <1
u(x) = ronU=As (4.4)
x—1 ifl<x<?2

(see Fig. 4.1).
Define

w(x) = 4.5)

-1 if0<x<l1
1 fl<x<2.
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Fig. 4.1 The graph of the 1
function u in (4.4)

0.5

Let us show that u’ = w in the weak sense. To see this, we must prove that

2 2
/ ug'dx = —/ wedx
0 0

foreach ¢ € C3°(D). We easily compute, integrating by parts in (0, 1) and in (1, 2),

2 1 2
/ ug'dx = / (1 —x)¢'dx +/ (x — D¢'dx
0 0 1

1 2
=/ wdx—fp(O)—f pdx + ¢(2)
=0 =0

2
= — / wedx
0
as required.

Example 4.2 Letn =1, D = (0, 2), and

| if0<x<I
u(x) = Hhu=x= (4.6)
2 ifl<x<?2

(see Fig. 4.2). We claim that u” does not exist in the weak sense. To check this, we

must show that it is not possible to find any function w € LIIOC(D) satisfying

2 2
/ ug'dx = —/ wedx 4.7)
0 0

for all ¢ € Cgo (D). Suppose, by contradiction, that (4.7) is valid for some w €
LIIOC(D) and all ¢ € C8°(D). Then, taking into account that ¢ (0) = ¢(2) =0,

2 2 1 2
— | wedx = / ug'dx = / ¢'dx + 2/ ¢'dx
/0 0 0 1 (4.8)

=) =2¢(1) = —p().
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Fig. 4.2 The graph of the
function u in (4.6)

Choose in C;°(D) a sequence {¢,};_, satisfying
0<en<L! @ou()=1, @ux)—>O0forallx #1, suppy, C K CC (0,2).

Replacing ¢ by ¢, in (4.8) and sending m — oo, we discover, by the Lebesgue
dominated convergence theorem,

2
I = lim ¢,(1) = lim / wpmdx =0,
m— o0 m— 00 0

a contradiction. Note that we can apply the Lebesgue dominated convergence
theorem, as f02 wPmdx = [ wpmdx and |og,| < o], with® € L'(K).

Remark 4.5 The computations in Example 4.2 in particular show that the func-
tional ¢ > ¢(1), ¢ € C3°(0, 2), cannot be represented by foz wedx for a function

w € LllOC (0, 2). In other words, the Dirac § “function” is not a function.

An example of sequence ¢, € C;°(0, 2) with the required properties is given by

| P
e 1=m-1F f |x — 1] <

if|x — 1] >

1
Ym(x) = 2]’" 4.9)
2m

(see Fig. 4.3).

Exercise 4.3 Let ¢, as in (4.9) and set ¥, (x) = [, Yom(x), x € (0,2), where
Iy = [ @mdx. Show that [ Ymedx — (1) for each ¢ € C5°(0,2). Repeat the
proof for each ¢ € C°(0, 2).
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0.5 0.5

X X
1 2 1 2

Fig. 4.3 The graph of the function ¢,, in (4.9) for m = 1 (left) and m = 2 (right)

4.2 Sobolev Spaces

In this section we finally introduce the infinite dimensional vector spaces that furnish
the “right” framework for the weak formulation of partial differential equations.
In some particular case, these spaces had been considered since the beginning of
the last century, but their systematic definition and use dates back to the thirties,
especially in the papers by Sergei L. Sobolev!?.

Take 1 < p < +o00 and let k be a non-negative integer. Now we define certain
functional spaces, whose elements have weak derivatives of some order lying in L?.

Definition 4.2 Let D C R” be an open set. The Sobolev space
whP(D)

consists of all locally summable function u : D — R such that for each multi-index
a with |«| < k the derivative D%u exists in the weak sense and belongs to L? (D).
Remark 4.6

(1) If p =2, we usually write
wk2(D) = H*(D).
In particular, W2(D) = HY(D) = L*(D).

(i) From the definition it is clear that we identify functions in wkp(D) if they
agree almost everywhere.

I'S.L. Sobolev [26].
2S.L. Sobolev [27].
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Definition 4.3 If v € Wk’P(D), with 1 < p < 400 we define its norm to be

1/p 1/p
lolwero = ( f virdx) = (Y 1DMI)
D

lal<k lal<k
If p = +o0 the norm is defined as

vl . = max || D%v||reo(p) -
lvllwkeo(p) max l > (D)

For 1 < p < 400 we may also use the equivalent norm defined as

> D™ vlLrw) -

| <k
Definition 4.4 We denote by
k,
Wy (D)

the closure of C3°(D) in wk-r (D).

Thus v € Wg’p (D) if and only if there exist functions v, € Cgo (D) such
that v,, — v in W&?(D). We will se later (see Remark 6.5) that we can interpret
Wg P (D) as the space of those functions v € W*-P (D) such that

“D*v=0o0nadD” forall | <k—1.
It is customary to write
Wo*(D) = HY (D) .
Remark 4.7 The norm || - |ly#.p(p) is actually a norm. Indeed

1/p
L llwir o) = ( Szt 1970000y ) 2 0.
—

>0
2. If v = 0 then trivially [|[v]lykprpy = 0. On the other hand, if [[v|lykrpy = O

1/p
we have (Zlalfk ||Z)°‘v||€p(D)> = 0, thus in particular ||v||.rpy = O which
implies v = 0 a.e. in D.
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3. Take A € R: then

1/p
Volhenioy = (32 1D Gl )

la|<k

1/p
=M Y 1D ) = R el

lal<k

lwllwtrpy + llVllwkrpy holds true. Indeed, if 1 < p < +oo, the discrete
Minkowski’s inequality implies

4. We have finally to verify that the triangular inequality ||w + vllwk,p( p) =

1/p
lwtvllpermy = (D 1D +0)15p)

la|<k

1/p
= (X 10w+ 0ol )

lal<k

I/p
= (X U0 wlirw) + 1900w

lal<k
1/p I/p
< (X 1D winp) "+ (X 1D )
lal<k la|<k

= ”w”Wk,P(D) + ”U”WkF(D) .

The case p = 400 is trivial.
Theorem 4.1 The space W*P (D) is a Banach space.

Proof We have already proved that WX P (D) is a normed space. It remains to prove
that each Cauchy sequence {v,,}°° | is convergent in WX P (D). Assume that for each
& > O itexists M, € N such that for all n, m > M,

1/p
lon = vmllweroy = (20 19" @n = vlfn ) <

|| <k
forl < p < 4ooor

v, — Um”W’wO(D) = |m|€g1(< ”Da(vn - vm)”LOO(D) <e.
aj=

In particular we have that for all ¢ with |o| < k

D% (v — v)llLr(py < €.,
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ie., {D%,}°2, is a Cauchy sequence in L (D). Since L” (D) is a Banach space,
for any « with || < k there exits vy, € LP (D), such that

LP
D%, = vy asn — 00.

.....

vg). We now claim that
vo € WEP(D) and D%vo = vg .

To verify this assertion, fix ¢ € C;°(D). Then

[ voD%pdx = lim v D%pdx =
D n—od D

n—o0

= lim (—1)'“‘/ D v,0dx =
D

=(—l)|"‘/ Ve@dx .
D

LP .
Thus we have D*vy = v, and consequently D*v,, — D%vg for all |¢| < k, which
means v, — vg in WP (D), as required. O

Remark 4.8 The Sobolev space Wk2(D) = H*(D) is a Hilbert space. In fact, it is
easy to prove that the norm

ey = D /D|z)%|2dx DI 2

lo|<k la|<k

is induced by the scalar product

(w, V) gk(py = Z /DD“wZ)"‘vdx.

lee] <k

In particular, if K = 1 we have that

(w,v)Hl(D)=/ wvdx—i—/ Vw - Vvdx
D D

and therefore

12
||v||Hu(D)=(f v2dx+/ woPd) "
D D
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10 10 ¥
5 5
X /J!x

-1 1 -1 1

Fig. 4.4 The graph of the function |x|~% for « = 1/2 (left) and « = 1/4 (right). (The graph is
drawn for 0.01 < |x| < 1)

Remark 4.9 It is proved that WX-7(D) is a reflexive Banach space when 1 < p <
~+o00 and is a separable Banach space when 1 < p < 400 (see Adams [1, Theorem
3.5)).

Example 4.3 Take D = Bj, the open unit ball in R" centered at 0, and
u(x)=|x|"* (xeD,x+#0)

(see Fig. 4.4). We notice that u ¢ L°°(D) and we want to find for which « > 0,
p €[1,400), n > 1 the function u belongs to W7 (D).

To answer, note first that # is smooth away from 0, i.e., for x with |x| > 0 we
have that x > u(x) € C°; thus in this set we can compute the derivatives in the
classical sense. We have

D = (—a) e Dy(lxl) = (0 1x[ ! i (Y0 )7?)

j=1
11 —ox;
= ol S o2 =
therefore for x # 0 it holds
Vuo = =2 @
x| +2 [x|et]
Fori =1, ..., n let us define

Diu(x) forx #0

w,-(x):{o forx =0.
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Let us determine for which values of o« we have u € L?(D) and w; € LP(D). We
can employ polar coordinates (in dimension »), and we find

1 1
/ lul?dx = f o~ " dp = K, f p~ P lap
D 0 0

where k;, is the (n — 1)-measure of the set {x € R" | |x| = 1}. Thus u € L?(D)
if and only if ap < n (in particular, u € LY (D) if and only if @ < n). A similar
calculation shows that

" p/2 1
[ (S5) st [ remiroi,
D 0

1=1

thus w; € LP(D) if and only if (@ + 1)p < n (and w; € L'(D) if and only if
a+1<n).

Assume therefore n > 2 and ¢ < n — 1, so that u, w; € LI(D) and we are
allowed to consider weak derivatives of u. We want to show that the weak derivative
Diju is equal to w;. Let ¢ € C°(D) and fix ¢ > 0. Then, denoting by B, the ball
centered at 0 with radius ¢ > 0,

fD\Bg uDipdx = —fD\Bg Diupdx — faBg uen;dSy
=- /D\BS wipdx — faBg upn;dsS; ,

where n denotes the unit normal on 9 B, external to B. It holds

/ upn;dS
3B

as @ < n — 1. Thus passing to the limit as ¢ — 0T and taking into account that
uD;p € LY(D) and w;¢ € L' (D) one finds

f uDjpdx = —/ wipdx
D D

for all ¢ € Cgo (D). We have thus proved that D;u = w;, and in conclusion u €
W1P(D) if and only if « < (n — p)/p; in particular u ¢ W17 (D) for each p > n.

This example seems to show that unbounded functions are not allowed to belong
to wWhp (D) when p > n: we will see later on that this in fact true, but for the
stronger restriction p > n.

Exercise 4.4 Let1 < p < 4oo,u € W'?(D), ¢ € C5°(D). Then ugp € wlr(D)
and D; (up) = eDju + uD;¢.

= ||(p||L°°(D)/ e %S, = Cn,¢8"717°‘ -0,
B

£
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Exercise 4.5 Letu € Hé (D) and v € H' (D) (or viceversa). Then

/ vDjudx = —/ uD;vdx .
D D

4.3 Exercises

Exercise 4.1 Find a function # : (—1, 1) — R which is differentiable and whose
classical derivative u’ does not belong to Llloc(—l, 1) (therefore u’ is not the weak
derivative of u).

Solution Take

2 -2 _
u(x) = x“cos(x™%) forx € (—1,1),x £0
0 forx =0.
Clearly we have u’(0) = 0 and u’(x) = 2x cos(x2) 4+ 2x~!sin(x~2) for x # 0.
Since the first term in u’(x) can be extended to a continuous function in [—1, 1], we
focus on x ! sin(x~2). Consider the interval (—%, %) CC (—1, 1): it holds

1 1

2 2 0 | sint
/ e~ [ sin(x—2)|dx =2/ xUsin(x~2)|dx = f S oo

x=

<

Exercise 4.2 Set X, = {v € L%(D)| D% € L?*(D)}, where « is a multi-index.
The operator D* : u — D%u defined in X, is a closed operator from L%(D) to
L%(D), namely, if for u,, € X, one has u,, — u in L>(D) and D%u,, — wq in
L2(D) then it follows wy = D%u.

Solution The definition of D%u,, reads
/ um D*pdx = (—l)lalf D%y, pdx
D D

for each ¢ € C;°(D). Then passing to the limit in this equality we find

qu“wdx:(—l)lalf We @dx
D D

hence wy = D%u.
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Exercise 4.3 Let ¢, as in (4.9) and set ¥, (x) = In;lfpm (x), x € (0,2), where
I, = foz @mdx. Show that f02 Ympdx — ¢(1) for each ¢ € C3°(0, 2). Repeat the
proof for each ¢ € Y0, 2).

Solution Since foz Y (x)dx = 1, we have

2 2
Vo Vm (x)p(x)dx —w(l)‘ = V Y () (9(x) — @(1))dx

1+2m
‘/ Y (0) (9(x) — @(1))dx

= max |p(x) — w(l)l‘/ Ym (x)dx

[x— 1|<*
= max |px)—e()].

lx— 1|<*

Since in both cases ¢ € Cgo 0,2) and ¢ € CY(0, 2) we have that @ is uniformly
continuous in each compact subset K of (0, 2), the thesis follows with the same
argument.

Exercise 4.4 Let 1 < p < +oo,u € W'P(D), ¢ € C°(D). Then up € W»(D)
and O; (up) = ¢Dju +uD;e.

Solution Clearly ug, pDju, uD;p € LP (D) (u and D;u belong to LP (D), and ¢ is
smooth. .. ). Thus it is enough to show that D; (u@) = ¢D;u + uD;¢p. We have, for
¥ € Cg°(D)

/ upD;vdx =/ uZ)i(got/f)dx—/ uy Dipdx
D D D
—/ (Diu)wl/fdx—f uDipyrdx
D D
—/ lpDiu +uD;p] vdx,
D

as gy € C3°(D).
Exercise 4.5 Letu € Hy (D) and v € H'(D) (or viceversa). Then

/ vDjudx = —/ uD;vdx .
D D

Solution Take uy — u in HY (D) with uy € CSO(D). The result is true for uy, v and
then we just pass to the limit to conclude the proof.



Chapter 5 ®
Weak Formulation of Elliptic PDEs Qe

In this chapter we want to derive and analyze the weak formulation of the boundary
value problems associated to the (uniformly) elliptic operator

n n
Lw=— )" Di(@;Djw)+ Y _ biDiw+apw, (5.1)
i, j=1 i=1

where, as done in Sects. 2.1 and 2.2, we assume that D C R” is a bounded,
connected, open set, a;; € L®(D) fori,j = 1,...,n, bj € L®(D) fori =
1,...,n,a9 € L°°(D). When considering the Robin problem, the assumptions on
the coefficient are k € L°°(dD), x > 0 a.e. on D and fBD kdSy # 0. On the
data we assume that f € L?*(D) and g€ L?(3D) (Neumann and Robin problems),
g€ L?*(T'y) (mixed problem).

5.1 Weak Formulation of Boundary Value Problems

We have seen in Chap. 2 that a standard way for rewriting the boundary value
problem

Lu=f inD
BC ondD

is:

1. multiply the equation by a test function;
2. integrate in D;

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 57
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3. reduce the problem to a more suitable form (we could say: a more balanced form)
by integrating by parts the term stemming from the principal part (using in this
computation the information given by the boundary condition).

This typically leads to a problem of the form
ueV : Bu,v)y=Fw) VYveV

(see (2.23); see also (2.21), which has been specifically obtained taking into account
the homogeneous Dirichlet boundary condition). In order to analyze this problem by
means of tools from functional analysis, we have also clarified in Chap. 2 that the
infinite dimensional vector space V must be a Hilbert space.

Our aim now is to make precise this procedure for all the boundary value
problems we are interested in: Dirichlet (homogeneous case), Neumann, mixed
(homogeneous case on I"p), Robin.

Dirichlet BC In this case the problem is

{Lu =f inD 52

u=>0 ondD.

For the ease of the reader, we repeat here the procedure presented in Chap. 2.
This procedure is formal, namely, we are implicitly assuming that all the terms
we are going to write have a meaning. We start choosing a function v € C3°(D),
thus satisfying vjyp = 0, and we multiply the equation by v. Integrating over D
we obtain

n n

—/ > z)i(aijz)ju)vdx+/ Zbiﬂiuvdx+/ aguvdx =/ fudx.

D, %2, D D D
= i=

Integrating by parts, we obtain

n n
—/ Z Z)i(aijZ)ju)vdx =/ Z aijZ)juZ)ivdx
D D

i,j=1 i,j=l1

n
—/ Z n,-al-jZ)juvade
aD

i,j=1

=0, as vjyp=0

n
:/ Z aiijuZ)ivdx.
D .

i,j=1
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Thus we are left with

n n
/ Z aiijuDivdx+/ Zbii)iuvdx—i—/ aouvdx=/ fudx.
D D D D

i,j=1

Up to here, as we said, this is just a formal procedure; the aim now is to check
for which choice of the space V this equation has a meaning for u, v € V.

If u € H'(D) (thus the derivatives appearing in the equation above have to be
considered as weak derivatives) all the terms are well-defined. Moreover, since
the space of test functions C°(D) is dense in the Sobolev space HO1 (D), it is
easy to check that by continuity we can extend this equation to test functions v €
H(} (D). Finally, a reasonable interpretation of the boundary condition uj3p = 0
is that u can be approximated by functions vanishing near the boundary: thus we
can require u € H(} (D). Our last step now is clear: the Hilbert space we choose
is V.= H}D).

We observe that the original problem (5.2) has been transformed into a set of
infinitely many integral equations, or, equivalently, into an equation in the infinite
dimensional vector space V = H(}(D).

We recall the definitions of the bilinear form

n n
B (w, v) :/ Z a;jDjwD;vdx —I—/ Zbiﬂiwvdx +/ apwvdx
D D D

i,j=1 i=1
and the linear functional
Fp(w) = / fudx
D

(see (2.19) and (2.20)). Problem (5.2) has been therefore rewritten in the weak
form:

findueV : B(u,v)=F(@w) YveV, (5.3)
where
B(w,v) = Bp(w,v) , F(v)= /vadx , V=H}(D). (5.4)
Neumann BC In this case the problem is

Lu=f in D

n
Z nia;jOju=g ondD. 5-5)

ij=1
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Besides conditions (2.16) on the coefficients and (2.17) on the right hand side of
the equation, as already told here we also assume g € L?(d D).

In this case the structure of the boundary condition is qualitatively different from
that of the Dirichlet problem. In particular, there is no longer reason to impose
to the test function v to vanish on dD. Thus we choose v € C*®(D) and we
multiply the differential equation by v. Proceeding formally, we integrate over D
and obtain

n n
/ — Z Di(aiiju)vdx+/ Zbiﬂiuvdx—i—/ aouvdx=/ fudx.
D D D D

i,j=1

Integrating by parts the first term, the following boundary integral appears:

n
—/ Z n,-aijl)juv‘aDde. (5.6)
3Di,j=1

Using the Neumann condition it can be rewritten as — f ap 8VapdSy; thus we
have finally obtained

n n
/ Z a,-ji)jul),-vdx—i-/ ZbiZ)iuvd)H—/ apuvdx
D D D

i,j=1

=/ fvdx+/ gvjapd Sy .
D oD

Proceeding similarly to the Dirichlet case, we can choose V equal to the closure
of C*°(D) with respect to the H'(D)-norm. We will see in Theorem 6.3 that,
if D has a Lipschitz continuous boundary 3D, the subspace C*°(D) is dense
in H'(D). Thus we choose V = H'(D), and assume that the boundary 8D is
Lipschitz continuous (see Appendix B for a precise definition of this regularity
assumption).

Let us now give a look at the equation we have obtained. Four of its terms were
also present in the Dirichlet case, thus we already know that they have a meaning
for u € Hl(D). The new one is fBD gvjapdSy: this needs some additional
attention. In fact, first of all we have to show that it is possible to give a meaning
to vjap forv € H'(D) (remember that 3 D is a set whose measure is equal to
zero. .. ), and moreover show that it belongs to L2(8 D); secondly, if we want that
the right hand side of the equation above is bounded for v € H'(D), we need
that the following inequality holds true:

/ Vi pdSy < c*/ w? +|Vv|®)dx Yve HY(D) (5.7)
oD D
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for a suitable Cy, > 0. We will see in Theorem 6.5 that, for v € H I(D), both
these issues have a positive answer: the value vj3p will be called the trace of v
and (5.7) will be called the frace inequality.

Problem (5.5) has been therefore rewritten in the weak form:

findueV : B(u,v)=F(@w) YveV, (5.8)

where

B(w,v) = Br(w, v) , F(v):/ fvdx—i—/ gvpopdSx V:Hl(D).
D aD
(5.9

Remark 5.1 The “thumb rule” for identifying which are the Dirichlet boundary
condition and the Neumann boundary condition associated to a general second order
partial differential operator L (not necessarily the elliptic operator L in (5.1)) is the
following. Multiply Lu by v, integrate in D and integrate by parts the principal
(namely, second order) terms. Some terms given by integrals on the boundary 0 D
will appear (for the operator L they are shown in (5.6)): they can be canceled either
by putting to O the first order terms related to u or by putting to O the zero order
terms related to v. The Neumann boundary condition is expressed by the first order
terms related to u, the Dirichlet boundary condition is expressed by the zero order
terms related to v. For the homogeneous Dirichlet boundary value problem the
boundary condition is inserted as a constraint in the definition of the variational
space V, whereas for the (non-homogeneous) Neumann boundary value problem
the boundary condition is used to give a boundary contribution to the linear and
bounded functional F (-) at the right hand side of the variational problem.

Mixed BC In this case the problem is

Lu=f inD

—0 r
“ ontp (5.10)

n
E nia,-jZ)juzg OHFN,
i,j=1

where 9D =T pUTy, [pNTy = @, and, besides (2.16) and (2.17), we assume

g € L*(I'y).
Choose as space of test functions

CI‘ZOD(B) = {v € C®(D) | v = 0 in a neighborhood of T'p} .
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Multiplying the differential equation by v € C I‘ZOD (D) and integrating over D we
obtain

n n
/ — Z Z)i(aijZ)ju)vdx+/ Zb,i)mvdx—i—/ aouvdx:/ fudx .
D D= D D

ij=1

By proceeding as in the previous cases, integrating by parts the first term and
using the boundary conditions we obtain

n n
/ Z a,-jZ)juZ),-vdx—i—/ Zbiz)iuvdx—l—/ apuvdx
D D D

ij=1
=/ fvdx—i—/ gurydSx .
D I'n

We take the space V equal to the closure in H' (D) of Cl‘3‘1’) (D). Tt will be shown
that, if 9D (here I'p would be enough...) is a Lipschitz continuous boundary,
this closed subspace is Hrlg (D) (see Sect. 6.5 for a precise definition and further
details). Moreover, it will be also possible to define the trace of v on ['p and on
I'w, to show that vir, = 0, that v, € L%*(T'y) and finally that the map from
Ve Hrlg (D) toits trace vry, € L%(T'y) is continuous, namely, that the following
trace inequality holds:

/ Vi dSy < C*/ (*+|Vo|Hdx YveH (D) (5.11)
'y D

for a suitable C, > 0 (see Remark 6.7).
Problem (5.10) has been therefore rewritten in the weak form:

findueV : B(u,v)=F@w) VYveV, (5.12)
where
B(w,v) = Bp(w,v) , F() = / fudx +/ gurydSy , V= HllD(D).
D Ty
(5.13)

Robin BC In this case the problem is

Lu=f inD

n
Z niaijOju+ku=g onadD, (5.14)

ij=1
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where, besides (2.16) and (2.17), we also assume g € L2(dD), k € L>®(3D),
k > 0a.e.ondD and faDKde #£0.

We choose C*°(D) as space of test functions. Multiplying the differential
equation by v € C*°(D) and integrating over D we obtain

n n
/ - Di(a;jDjuyvdx +/ > biDiuvdx +/ aguvdx = / fudx.
D=1 Dici b b
Integrating by parts the first term, the following boundary integral appears:
n
—/ Z n,-a,-jZ)juv‘aDde.
oD 2,

Using the Robin condition it can be written as

—/ (g — kupp)v)spd Sy .
aD

Thus we have obtained
n n
/ Z aiijuZ)ivdx—i—/ Zbil)iuvdx—}—/ aouvdx—i—/ Ku|ppVapdSy
D D D oD

i,j=1
=/ fvdx+/ gujapdSy .
D oD

The results that have been used for giving a meaning to the Neumann problem
are employed also here: thus we assume that dD is a Lipschitz continuous
boundary, so that the trace vjgp of v € H 1(D) is defined in L2(3 D) and depends
continuously on v.

Problem (5.14) has been therefore rewritten in the weak form:

findueV : B(u,v)=F(@w) YveV, (5.15)
where
B(w,v) = By, (w, v) + faDleaDUHJDde

(5.16)
F() = [}, fvdx + [, gvopdS: , V =H (D).
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5.2 Boundedness of the Bilinear Form B(-, -) and the linear
functional F(-)

For the analysis of the boundary value problems we have derived in the previous
section we want to apply the Lax—Milgram theorem 2.1. Thus, as a first step,
we have to verify that B(-,-) and F(-) are bounded in H (D). Let us remind
the assumptions on the coefficients and the right hand side: a;; € L°°(D) for
i,j=1,...,n,b; € L®(D) fori = 1,...,n, a9 € L®(D), f € L*(D) for
all the problems, then g € L?(3D) (for the Neumann and Robin problems) or
g € L*(T'y) (for the mixed problem), and finally « € L*°(dD), « > 0 a.e. on
dD and fa p kdSy # 0 (for the Robin problem). Finally, we have assumed that D
has a Lipschitz continuous boundary 0 D.

Let us denote by A = {g; j}ﬁ j=1 the coefficient matrix of the principal part, by

Al = /Zf j=1 al.zl. its norm, and by b = {b;}}_, the vector field describing the
first order part of the operator L. We readily check, using the Cauchy—Schwarz
inequality in LZ(D),

n n
|Br(w, v)| = ‘/ Z a;jDjwDjvdx +/ Zb,i)iwvdx +/ aowvdx‘
D=1 Do b

sup||A||/ |Vw||Vv|dx+sup|b|/ [Vw||v|dx
D D D D

IA

+ sup |ag| |w||v|dx
D D

IA

ylwlgrpy Wl g1 p)

for a suitable constant y > 0 depending on the L°°-norms of A, b and ag. Moreover,

‘/ Kw|3DU|3DdS
aD

by the Cauchy—Schwarz inequality in L2(d D). The trace inequality (5.7) permits
to estimate |wigpll 2py and [vjapll 29p) in terms of [[w| g1 py and V]l g1 (pys
respectively, and the boundedness of B(-, -) is therefore proved.

< llxlize@pyllwapllp2pyllvian 2oy »

Remark 5.2 Other conditions assuring boundedness of the bilinear form By (-, -)
can be found in Exercise 7.16, (i).

Let us come to the boundedness of the linear functional F. We have, again by the
Cauchy-Schwarz inequality,

|[p fedx| < I fll2pyllvllz2p)
| fop gvapdSy| < gl 2@pyllvian 2y

"/FN gU|rNde

< llglhz2arpyllviry 22y -
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The trace inequalities (5.7) and (5.11) give an estimate of |lvjapliz2p) and
lviry ll2(ry) in terms of [[vl 51 (p), and the boundedness of F(-) thus follows at
once.

5.3 Weak Coerciveness of the Bilinear Form B(., -)

First of all we need a new definition. Assume that V C H!(D) is a Hilbert space
with respect to the H'(D)-scalar product.

Definition 5.1 A bilinear form B(-,-) : V x V > R is said to be weakly coercive
in V if there exist two constants « > 0 and o > 0 such that
B, v) +olvl}sp, = allvliiy, YveV.
Remark 5.3 It is clearly seen that, if it possible to choose o = 0 in this definition,
then the bilinear form B(-, -) is coercive in H!(D).
We consider the bilinear forms By, (-, -) and B(-, -) defined as

B (w,v) = /
D

n n
Z ajiDjwD;vdx +/ Zbiﬂngdx +f apwvdx
' Doy D

i,j=1
and
Br (w, v) for the Dirichlet, Neumann,
B(w, v) = mixed problems
By (w, v) —I—/ kw|apvapdSy for the Robin problem ,
oD

under the same assumptions of Sect.5.2. Having assumed « > 0 it follows
faD KU%aDdSX > 0, thus we can limit our analysis to By (v, v). We have

i,j=1

n n
B (v, v) =/ Z aijZ)ij),-vdx—i—/ Zb,i),-vvdx—i—/ aovzdx.
D Dy D )

1 [2] [3]

[1] By ellipticity, for almost all x € D and for all n € R” we have that

n
Z aij(xX)njn; > agln|?  for some g > 0.
ij=1
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Thus, setting n = Vv(x) and integrating in D it follows that

/ Z a;jDjvD;vdx > aO/ |Vv|2dx
D

i,j=1

[2] Using the Cauchy—Schwarz inequality we find that

’/ Zb Divvdx

</ Zlblll)zvllvldx =< ||b||L°°(D)/ |Vullvldx
D

12 1/2
< Ibllz=m) ( f |Vv|2dx> ( / vzdx)
D D
5 1/2 s ) 1/2
D D

Consider now the elementary inequality [2AB| < A% + B?: from this, replacing
A by \/e¢A and B by B/./¢e, where ¢ > 0, we can easily derive the following
inequality

B2

|AB| < S A% +
2 28

Applying this we obtain

n
/ Zbﬂ)ivvdx
Doy

€ 2 1 2 2
and so
" e 1
/ > biDivvdx > —-/ |VolPdx — —||b||§m(,))/ vidx .
D5 2Jp 2e D

[3] We have that

/ aovzdx > infao/ v2dx .
D D D

Putting everything together and choosing ¢ = g we have

(200] 2 . 1 2 2
Br(v,v) > — Vu|“d fag — — 0|5 dx .
L. v) = 2/D| vl x+<1gao 2o P11 “”)/D” x
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Therefore the following inequality holds

@0 2 . 1 2 2
By (v, v)+o vzdx>—f Vul“dx+| o +infag — —||b||5 = /vdx.
L(v,v) /D =5 [ 1vel ( nfao — 5 —IIbI (D)) i
Set u = infp ag — 2370||b||%m(D). Choosing o as follows:

=0 ifu>0
o>—u>0ifu =<0,

and denoting by p = ¢ 4+ 1 > 0 we find the desired result:

2 @0 2 2
BL(v,v)+a/vdx2—/|Vv|dx+,0/vdx
D 2 Jp D

> min (%, ,o) /D (leI2 + v2> dx .

Remark 5.4 Weak coerciveness with o > 0 is not enough to apply the Lax—
Milgram theorem 2.1. Therefore, in this respect the result just proved is satisfactory
only when we can choose o = 0, namely, when © = infp ag — ﬁ”b”iw(D) > 0.

(5.17)

This requires infpap > 0 and ||b||%oo (D) small enough. The following example
shows that for the “queen” of our operator, the Laplace operator —A, this is not
satisfied.

Example 5.1 Consider the (homogeneous) Dirichlet boundary value problem

—Au=f inD
u=0 ondD.

In this case we have b = 0 and ap = 0, thus the condition infp ag — ﬁ b ||%OO(D) >
0 is not satisfied. Since

B(v,v) = / Vv - Vvdx = / |Vv|2dx,
D D

to prove coerciveness we have to find a constant « satisfying 0 < « < 1 such that

B(v,v):/ |Vo|2dx Za/ (IVu*> +v?)dx Vv e H} (D)
D D
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or, equivalently, we have to prove that

there exists a constant Cp > 0 :

) ) | (5.18)
/vdxfCDf|Vv| dx YveHyD)).
D D

Assuming that such a constant exists, we observe that

2 1 2 1 2
B(v,v) = [Vu|“dx = = |Vu|“dx + = [Vu|“dx
D 2Jp 2J/p
1 2 1 2
> — [IVu|“dx + —— | vodx
2 Jp 2Cp Jp

(1 1 2 2
>min| -, — (w* + |Vv|©)dx .
2 2Cp/) Jp

Inequality (5.18) is called Poincaré inequality in H(} (D): we will present its proof
in Sect. 6.2. For the moment, let us note that this inequality is surely false if we can
select as function v a non-zero constant. The fact that the only constant in H(} (D) is
0 opens the possibility of showing that (5.18) is indeed true.

5.4 Coerciveness of the Bilinear Form B(-, -)

Assuming more regularity on the vector field b and some other qualitative relations,
we want now to show that the bilinear form B(-, -) is coercive for all the boundary
value problems we have presented.

The starting point for this analysis is the remark that in some cases we succeed
in proving the Poincaré inequality

/ v2dx < C*/ |Vv|2dx;
D D

this tells us that the principal part of the bilinear form can be bounded from below
by ||v||il1 (D)’ namely, it is coercive. Thus we have only to be careful that the other
terms, coming from b and ag, do not destroy this property.

Let us consider the term coming from the vector field b. Assume that b €
W12 (D) so that by the Sobolev immersion theorem 7.15 we also have bj3p €
L*°(dD) for the Neumann and Robin problems or b, € L*(I'y) for the mixed
problem (it is possible to require less restrictive assumptions, but the proof would
become more technical). We proceed by analyzing each boundary condition.

Dirichlet BC. The choice of the Hilbert space is V = HOl (D), and in this case
Poincaré inequality holds (see Theorem 6.4). Since CgO(D) is dense in HO1 (D)
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we can first suppose that v € C3°(D). We have, by integrating by parts (see
Exercise 4.5)

n n 2
v
fD§ b Div vdx = 2 /Db,@,-?dx
i=1 i=1
v? I . 5
=— Dib;—dx = — —divbvodx.
Zl_:l b 2 b2

By a density argument we see that this relation is also true for v € H(} (D). Hence
we have

n n
B(v, v) =/ Z aijDjv D,-vdx—i—/ Zbiﬂiv vdx+/ apv>dx
D D D

ij=1 =
1
> Olo/ |Vv|2dx +/ (ao - —divb)vzdx
D D 2

and coerciveness in HO1 (D) is guaranteed by the Poincaré inequality and
assuming

1
ao—zdivbzo inD.

Neumann BC  The Hilbert space in this case is V = H!(D). Since in this space
Poincaré inequality doesn’t hold (e.g., consider v = 1), we could be led to modify
this choice. Let us start, as before, by looking at the term coming from the first
order part of the operator. We want to perform an integration by parts, which
will show up an integral on d.D involving the trace vjyp of v on dD. To give a
meaning at this term we assume that d D is a Lipschitz continuous boundary, thus
the space C*°(D) is dense in H'(D) and the trace is defined (see Theorem 6.5).
We can first assume that v € C*°(D). By integration by parts (see Exercise 6.7)
we have

n n 2
v
/D;bi@,-uvdx - i}_I:/DbiD,-?dx
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By a density argument this relation is true also for v € H'(D). In conclusion,
we easily see that sufficient conditions for coerciveness are

1
ao—zdivb28>OinD , bpp-n=00ndD.

However, these conditions are not satisfactory, as, for instance, the Laplace
operator —A does not satisfy them. On the other hand this is not a surprise,
as for the Neumann problem associated to the Laplace operator we cannot have
a unique solution, as, if u is a solution, also u 4 ¢ with ¢ € R is a solution, and
therefore the assumptions in the Lax—Milgram theorem 2.1 cannot be satisfied.
(Remember that Lax—Milgram theorem guarantees the existence and uniqueness
of the solution.)

In order to devise a weak problem for which the associated bilinear form is
coercive, the idea is to define a new Hilbert space that doesn’t contain constants
different from 0. A space with this property is given by

H!(D) = {v c H‘(D)( / vdx = 0} . (5.19)
D

This is a closed subspace of HY(D) (indeed if vy — vin H'(D) and fD vrdx =
0, then [}, vdx = 0: the quantity | [, (vx — v)dx| is estimated by vk — vll2(p)
by the Cauchy—Schwarz inequality), therefore it is a Hilbert space with respect
to the same scalar product. In this space the Poincaré inequality holds (see
Theorem 6.10) and therefore we can prove the coerciveness of B(:, -) in HJ (D)
by following the same procedure we have employed in the case of the Dirichlet
boundary condition. More precisely, sufficient conditions that guarantee the
coerciveness of B(-, -) are

1
ao—zdiviOinD , bpp-n>=00ndD.

Mixed BC The Hilbert space in this case is V = HIlD(D), and we will see that
in this space the Poincaré inequality holds (see Theorem 6.11), provided 9D is a
Lipschitz continuous boundary. Therefore we can proceed exactly as in the case
of the Neumann condition with the space H*1 (D) and we conclude that sufficient
conditions that guarantee the coerciveness of B(:, -) are

1
ao—zdivszinD , bry -n>=0onTy.
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Robin BC  The Hilbert space in this case is V = H (D), and the bilinear form is
given by

n n
B(w, v) =/ Z a;iDjwD;vdx +/ ZbiZ),-wvdx
D, Doy

i,j=1

+/ aowvdx—i—/ kw|apv|apdSy ,
D aD

where k is a non-negative function defined on dD. By assuming that dD is
Lipschitz continuous and performing an integration by parts in the first order
term as in the Neumann case we have that

1
B(v, v)zaof |Vv|2dx+/ (ao——divb> v2dx
D D 2
+ Ly 2 d
—bigp -n+« Visp Sy
ap \2

1
= (/ |Vo|dx +f otOIKU%Dde) +/ <a0 - = divb) vidx
D oD D 2
1 2
+ §b|aD-nv‘aDde.
aD

We assume that

1
ao—zdivszinD , bap-n=>=00n0dD,

and we note that the function g = ()éa]K satisfies ¢ > O on dD and fBD qdSy #
0, thus we can apply the Poincaré-type inequality (see Theorem 6.12). In
conclusion we are left with

B(v,v) > ap (/ |Vv|2dx+/ oto_licvfaDde>
D aD
- % (/D |Vol2dx +/6D ao—lmﬁwdsx>
(o40] 2 —-1,.2

+ 2 (/1-) |Vv|“dx +/;Da0 KUlaDde)
@0 2 -1,.2 @0 2
> (LWM dx+/aDa0 KvlaDde> +E/Dv dx
z@f |Vo2dx 4+ —2 /vzdx

2 D ZC* D

> min @, %0 /v2dx+/ |Vv|2dx .
2 2C D D

v
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Exercise 5.1 Show that in all cases coerciveness is satisfied even if the assumption
ap — %divb > 01in D is weakened to ag — %divb > —vypin D for a constant v > 0
small enough.

Remark 5.5 Other conditions assuring coerciveness of the bilinear form By (-, -)
can be found in Exercise 7.16, (ii).

5.5 Interpretation of the Weak Problems

We want to clarify which is the “strong” interpretation of the weak problems we
have presented up to now. To this aim, we first need a definition.

Definition 5.2 If we have ¢; € Ll (D),i=1,...,n, wesaythat w € Ll (D) is

loc loc

the weak divergence of ¢ = (g1, ..., qn) if

n
/ > qiDipdx = —/ wedx Vg eCE(D).
D i—1 D

Remark 5.6 If we know that the weak derivatives D;q; exist, for each i =
1,...,n, thenclearly w = )", Djq;.

Let us start our discussion from a simple example.

Example 5.2 Suppose we have found the solution u € HO1 (D) of

/Vu~Vvdx=/fvdx VveH(}(D),
D D

where f € L?(D). What have we solved?
We can take ¢ € C3°(D) C HO1 (D) and we get

n
/ZDiuDi(pdx=/ fedx,
D D

thus from the definition above, with ¢; = D;u € L%(D), we obtain that
—divVu=f inD,

where div is the weak divergence and V is the weak gradient. Thus, in this weak
sense, —Au = f in D, where A is the weak Laplace operator.
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This interpretation is based on the fact that C°(D) C V = H& (D), the
variational space where we have solved the problem. When considering the mixed
problem, we have V = HllD(D), and again C(C)’O(D) C V. For the Robin problem,
we have V = HY(D), and C(D) C V.

A difference comes for the Neumann problem for the Laplace operator, for the
weak formulation in which we have chosen

V:HJ(D):{veHI(D)‘ / vdx:O} ,
D

with the aim of obtaining the Poincaré inequality in this space.
This time C;°(D) ¢ V, thus the interpretation in this case needs some care. Let
us write the weak problem:

uEH*l(D) : /Vu-Vvdx:/ fvdx—i—/ 8V)apd Sy VveH*l(D).
D D oD

Take a test function w € H' (D), namely, without the restriction f D wdx = 0. Then
we define

1
vV=w—wp, wD:—/wdx.
meas(D) Jp

Then v € H*1 (D), and we can use it as a test function. We have Vw = Vv, thus for
each w € H!(D) we have

fVu~dex=/ Vu-Vvdx:f fvdx—i—/ gvjapd Sy
D D D aD

- / Fw — wp)dx + f (Wb — wp)dS;
D oD

=/ fwdx—wD/ fdx—i—/ gw‘apde—wD/ gdS;
D D aD aD

=/ fwdx+/ gw)apdSy (5.20)
D oD

(e o) s e
=1~ sy ([ [ 05 ) e

+/ gwapdSy .
oD
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Taking in particular w € C3°(D), it follows

1 .
—Auzf—m</Dfdx+/angSx> inD.

If we have p € HY(D), g € H'(D) with —Ag € L?*(D), by approximation we
have the integration by parts formula

qu-Vpdx:—f qudx+/ (Vg -n)pjapdSx .
D D aD

The last term should be clarified, indeed it is not obvious that there is a trace for
Vgq - n. However, we do not deal here with this question, and we go on somehow
formally. Let us come back now to the choice of a generic w € H'(D): taking
p = w and g = u in (5.20) we thus find

Jyp Vu -nwppdSy + [p (=&ujwdx = [, Vu - Vwdx

=/p [f - meal' aD gde) wdx + [, §wiapd Sy .
As a consequence
/ (Vu-n—g)wypdSy =0 VweHl(D),
oD

which is a weak form of Vu - n = g on 3 D. In conclusion, the “strong” form of the
weak problem we have solved reads

(5.21)

—AM:f—m(fodX“{‘fangSX) in D
Vu-n=g onaD.

This problem has been solved for any f € L?(D) and g€ L%(3D); but it is not the
Neumann problem we had in mind, namely

{—Au =f inD 522

Vu-n=g ondD.

On the other hand, we know by the divergence theorem that this last problem cannot
be solved unless the following compatibility condition is satisfied:

/fdx+/ gdS, =0.
D aD
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In fact

/fdx:—/ Audx:—/divVudx:—/ Vu~nde:—/ gdsSs; .
D D D aD aD

In conclusion, if fD fdx + fal) gdS, = 0 problem (5.21) becomes our original
problem, and we have found a unique solution in H*1 (D), namely, with f D udx = 0.

Remark 5.7 Why is problem (5.21) always solvable? It is a Neumann problem,
therefore the compatibility condition on the data at the right hand side must be
satisfied. The new right hand side in D is

~ 1
F= 1 iy ([ e [ )

Take its integral in D: it holds

/D[f_m(/l)fdxﬂL/wgde)]dx

:/;)fdx—[/l)fdx—f—/angSx]:—/angSx.

Thus

/fdx+/ gdS, =0,
D aD

and the compatibility condition for the Neumann problem (5.21) is satisfied.

Exercise 5.2 Taking hint from the definition of the weak divergence in Defini-
tion 5.2, give the definition of the weak curl of a vector field g € (Llloc(D))3,
D C R

Exercise 5.3
(i) Show that there exists a unique solution of the weak problem

findu € H! (D) :/

Vu - Vvdx +/ U|3pV|a pd Sy
D aD

=/ fvdx—i—/ guapdSy Vve HND),
D aD

where H*1 (D) is defined in (5.19).
(i1) Devise the “strong” interpretation of the weak problem above.
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5.6 A Higher Order Example: The Biharmonic Operator

The biharmonic operator is A% = AA, and the associated biharmonic equation is
Au=f inD.

In this section we want to devise and then analyze the variational formulation of
some “reasonable” boundary value problems associated to this equation. Assuming
f € L?(D), multiply this equation by a test function v and integrate in D:

f(Azu)vdxzf fuvdx.
D D

Taking into account that A = Y "_, D;D;, integrating by parts at the left hand side
gives
[ A2wyvdx = [, O°F | DiD; Au)vdx
= — fD Z?ZI(Z)Z'AM) Divdx + fBD Z?:l(n,‘@iAu) vdSy .

We still have a third order operator acting on u and a first order operator acting on
v. Therefore we proceed with another integration by parts and we find

[p fvdx = [ (A%u)vdx
= [pAu Y i Didivdx
— faD Au ! ni DivdSy + faD Yo (niDiAu) vdSy

= [pAudvdx — [,, AuVv-ndSy + [,, VAu-nvdS;.
(5.23)

Looking at the boundary integrals that appear above it can be asserted that the
“reasonable” boundary conditions associated to the biharmonic operator stem from
the choice of a couple of the following ones:

upp =0 ondD (5.24)
(Vu-n)jjp =0 ondD (5.25)
(Au)jpp =g ondD (5.26)
(VAu-n)ygp=h onaD, (5.27)

where it is assumed that g € L2(3D) and h € L2(3D).

When considering the Dirichlet boundary conditions (5.24) and (5.25) we assume
that also the test function v satisfies the same conditions, namely, vj3p = 0 and
(Vv - n)jpp = 0. Therefore the integrals on the boundary disappear and we are left
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with the bilinear form
B(w,v) = / Aw Avdx .
D

The variational formulation associated to (5.24) and (5.25) is thus identified with
the choices:

V ={ve H*D)|vyp =0, (Vv-n)p = 0}
B(w,v) = [, Aw Avdx
F@) = [, fvdx.

Since v € H?(D) we have in particular v € H'(D) and Vv € (H'(D))"; therefore
their values on d D have a meaning (by Theorem 6.5 we have that vy p and (Vv)|3p
belong to (L%(3 D))").

When considering the so-called Navier boundary conditions (5.24) and (5.26) we
assume that also the test function v satisfies vj3p = 0 and therefore the two integrals
on the boundary become

—/ Aqu-nde—f—/ VAu-nvde:—/ gVv-ndS;.
aD aD aD

The variational formulation associated to (5.24) and (5.26) is thus identified with
the choices:

V = H*(D)NH}(D) = {ve H*(D)|vj3p = 0}
B(w,v) = [, Aw Avdx
F) = [p fvdx+ [,,gVv-ndS,.
When considering the boundary conditions (5.24) and (5.27) we assume that also

the test function v satisfies vj3p = 0 and therefore one of the two integrals on the
boundary vanishes:

—/ Aqu-nde—i—/ VAu-nvdez—/ AuVv-ndSy.
aD aD aD

But the other boundary integral is not treatable, as in this boundary value problem
we are not assigning (Au)yp nor (Vu -n)jyp = 0 (which would have allowed us to
impose (Vv - n)jyp = 0). Moreover, Au is only a L?(D)-function, thus it has not a
well-defined value on d D. Hence the boundary conditions (5.24) and (5.27) do not
seem to lead to a good variational problem.
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When considering the boundary conditions (5.25) and (5.26) we assume that also
the test function v satisfies (Vv - n)j3p = 0 and therefore one of the two integrals
on the boundary vanishes:

—f Aqu~nde+f VAu~nvde=f VAu-nvdsS,.
aD aD oD

But, similarly to the previous case, the other boundary integral is not treatable, as
in this boundary value problem we are not assigning (VAu - n)j3p nor ujsp = 0
(which would have allowed us to impose vj3p = 0). Moreover, VAu - n has not
even a well-defined value on 0 D. Hence the boundary conditions (5.25) and (5.26)
do not seem to lead to a good variational problem.

When considering the boundary conditions (5.25) and (5.27) we assume that also
the test function v satisfies (Vv - n)j3p = 0 and therefore the two integrals on the
boundary become

—/ Aqu~nde+f VAu~nvde=/ hvdS, .
aD oD oD

The variational formulation associated to (5.25) and (5.27) (sometimes called the
Riquier—-Neumann boundary conditions) is thus identified with the choices:

V ={ve H*D)|(Vv-n);p = 0}
B(w,v) = [, Aw Avdx
F@) = [, fvdx— [, hvdS,.

However, it is clear that using this variational formulation the problem cannot be
well-posed (adding a constant to a solution one still finds a solution). Therefore
the space V should be replaced by a closed subspace of it which does not contain
non-zero constants, say,

V, = {v e HX(D) | (Vv - n)ap = 0,/ vdx = o}.
D

Finally, when considering the Neumann boundary conditions (5.26) and (5.27)
the two integrals on the boundary become

—/ Aqu-nde—f—/ VAu-nvde:—/ ng-nde+/ hvdsS, .
aD aD aD oD

Since both boundary conditions are imposed in a weak way (in the sense that they
give a contribution to the linear functional at the right hand side, while do not appear
in the definition of the variational space), the solution and the test functions are
possibly expected to be less regular than in the preceding cases, namely, in general
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they are not foreseen to belong to H?(D). Therefore the variational formulation
associated to (5.26) and (5.27) is at first identified with the choices:

V =L*(A; D) ={veL*D)|Av € L>(D)}
B(w,v) = [, Aw Avdx
F) = [, fvdx+ [;,8Vv-ndS, — [;phvdS,.

Here the Laplace operator is intended in the following weak sense: for v € L}OC(D)
we say that a function g € LIIOC(D) is the weak Laplacian of v if

/qgodx:/vAgodx V¢ eCyP(D).
D D

By repeating the proof of Theorem 4.1 it is easily seen that L?(A; D) is a Hilbert
space with respect to the natural scalar product || p(wv + Aw Av) dx. However,
also in this case it is clear that by this choice of the variational space V the problem
cannot be well-posed (adding to a solution a harmonic function belonging to L?(D)
gives another solution). Therefore the space V should be replaced by a closed
subspace of it which does not contain non-zero harmonic functions, say,

V. = {v e LX(A; D) | / wndx = 0 for each y € L3(D) with An = 0 in D}
D

(another example will be proposed below). Note also here that the definition of the
linear operator F(-) is not completely clear: having only assumed g € L?(3 D) and
h e L2(8 D), the boundary integrals would require vjyp € L2(8D) and (Vv-n)jpp €
L?(3D), and for a function v belonging to L?(A; D) this is not always the case.
Higher regularity of g and & could be the cure, but anyway one should also develop
a suitable trace theory for vj3p and (Vv - n)|3p; this can be done, but we will not
insist on it here. Clearly, a drastic answer to this issue is to take g = 0 and 4 = 0; but
we will see later that a regularity assumption on the boundary 9D (say, 3D € C*)
will be enough for giving a meaning to these boundary integrals (see Lemma 5.1).

Let us come now to the analysis of the first three boundary value problems we
have described; we use the regularity results presented in Sect. 7.4. Assume that
D C R" is a bounded, connected and open set, and that its boundary 9 D is of class
C?.In all the considered cases the bilinear form B(, -) is clearly bounded in H (D),
and the same holds for the linear functional F(-), provided we assume f € L*(D),
g € L2(3D), h € L*(dD) (the estimates for the boundary integrals come from
the trace theorem 6.5). Moreover, for the Dirichlet boundary conditions (5.24) and
(5.25) and for the Navier boundary conditions (5.24) and (5.26) from Theorem 7.12
and Exercise 7.13 we have that

el 2y < CllAull2p) -
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The same is true for the boundary conditions (5.25) and (5.27), just replacing
in the argument above L*(D) and HY(D) with Li(D) and HJ(D), namely, the
corresponding spaces with the additional constraint || pvdx = 0. The conclusion
is that in all these three cases the bilinear form B(-, -) is bounded and coercive in
H?(D), and the Lax—Milgram theorem 2.1 can be applied.

Since for the boundary conditions (5.25) and (5.27) the variational space V,
does not contain C§°(D), it is appropriate to verify which problem we have indeed
solved. Following what we have done in Sect. 5.5 we can easily see that we have
found a solution of

2L _
Au=f meaS(D)(fodx fathsx>.

Since the condition || pJSdx— /: 9p 1 dSx = 01is necessary to solve the problem (take
v = 1 in (5.23)), the solution of the variational problem is the one we are looking
for.

Note also that the solution of the boundary value problems associated to the
Navier conditions (5.24) and (5.26) and to the Riquier—-Neumann conditions (5.25)
and (5.27) can be also obtained by a two step procedure only involving the Laplace
operator —A. In fact, proceeding formally without taking into account the regularity
of the boundary data, for the Navier conditions we can solve

—Au=win D

—Aw = finD
u=0 ondD,

and then {
w=—g ondD

while for the Riquier—-Neumann conditions we can solve

—Aw=f inD —Au=w inD
Vw-n=—hondD andthen Vu-n=0 ondD
Jpwdx =0 [pudx=0.

5.6.1 The Analysis of the Neumann Boundary Value Problem

The analysis for the Neumann boundary conditions (5.26) and (5.27) is more
complicated. In order to use the Lax—Milgram theorem 2.1 and thus obtaining well-
posedness we need a Poincaré-type inequality like

lvllL2py < ClIAVIIL2(py
for all v € V. This inequality would follow if the immersion L2(A; D) < L?*(D)

was compact, as we could repeat line by line the proof of Theorem 6.10. But from
Exercise 6.11 we know that this immersion is not compact! Then we could try to
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show that the immersion of Vi — L3(D) is compact. However, this result is more
elusive, and for the moment we leave it apart (but see Remark 5.9).

A different attempt can be done by changing the variational space; it will be
educational to follow this path as we will see again how a variational space that
does not contain C3°(D) can be a delicate choice. We introduce

X = {w = Ar|r € HY(D) N H}(D))

(see Definition 4.4). We verify at once that X C H 2(D); moreover, assuming that
the boundary 9D is smooth, say, of class C*, we see that X is closed in HZ(D)
with respect to the H 2(D)-norm (thus X is a Hilbert space with the H 2(D)-scalar
product). In fact, if oy = Ary — w in H?(D), we take the solution r € HOZ(D)
of the biharmonic problem A%r = Aw € L?(D) with the homogeneous Dirichlet
boundary conditions (5.24) and (5.25), namely, rjyp = 0 and (Vr - n)|5p = 0 (the
existence and uniqueness of this solution has been proved above in this section).
From the regularity results for higher order elliptic equations we obtain

Ire — rllgapy < CllAwk — Awllp2(p)

(see Gazzolaet al. [10, Corollary 2.21]). Since wy — w in HZ?(D), it follows ry — r
in H*(D), and consequently Ary = wy — Ar in H2(D), thus Ar = @ and X is
closed.

On the other hand, the estimate above also says that for each w € X it holds

lollg2py = 1Al g2(py < Clirllg4py < CllA®l2(py

therefore the bilinear form B(v, w) = fD Av Awdx is coercive in X, and we find
a unique solution of the variational problem

findue X : [, Auldwdx = [, fodx+ [,,gVw-ndS,

(5.28)
—[iphwdS, YoeX.

Let us also remark that for w € X we have

/a)ndx:/Arndx:/rAndx:O
D D D

for each n € L2(D) with Ay = 0 in D, the integration by parts being justified by a
density argument as r € H&(D). Therefore X C Vj.

We have thus proved the existence and uniqueness of a weak solution u € X C
V¢ of a variational problem related to the same bilinear form and the same linear
functional which describe the Neumann boundary value problem for the biharmonic
operator. Moreover, the variational space X does not contain any directly imposed
boundary condition, as it is usual for “natural” boundary conditions like those of
Neumann type.
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However, the proof that the solution we have found is the solution of the
Neumann boundary value problem for the biharmonic operator needs some work:
as we already underlined, difficulties come from the fact that the variational space
X does not contain C3°(D) and it is not straightforward how to trace back it to a
space containing C;°(D), thus problems arise when we try to interpret the meaning
of the weak solution.

Let us see: we start trying to determine which equation satisfies # when we use
test functions belonging to H 2(D) (instead of X; note that C§°(D) is contained in
H?(D)).Set H = {n € L>(D) | An = 0in D}. This is a closed subspace of L?(D),
thus we can use the L2(D)-0rth0g0nal projection Py on H. Take g € H?(D) and set
w = q — Pyq: clearly, Aw = Aq, thus [, AuAgdx = [, AuAwdx. Moreover,
w € L%(A; D) and

/wndx=/(q—qu)ndx=O,
D D

for each € H, hence w € V;.
It is now useful the following lemma:

Lemma 5.1 Assume that D C R”" is a bounded, connected, open set, with a smooth
boundary 3D, say, 9D € C*. Then X = Vi, and the norms || - ||x and || - ||y, are
equivalent.

Proof Here above we have verified that X C V;. Let us prove the opposite
inclusion. Take @ € V; and solve A%r = Aw € L%*(D) with rap = 0 and
(Vr -n)jpp = 0 (namely, find r € HOZ(D)). We have already seen that this is
possible and that, by the regularity results for the biharmonic operator and provided
that 9D € C*, we obtain a unique solution r € H4(D) N HOQ(D) with the estimate
17l g4py < CllA®| 12(p)- Thus we have (Ar —w) € H. Moreover, for each n € H,

/Arndx:/rAndx:O,
D D

due to the boundary conditions rjy3p = 0 and (Vr - n);3p = 0; hence Ar € H*
and also (Ar — w) € H*. Having already seen (Ar — w) € H, we obtain w = Ar,
r € H*(D) N HZ (D), therefore w € X.

Finally, we have

lollx = ||w||H2(D) = ||A”||H2(D) = C||”||H4(D) = C”A(UHLZ(D),
and also
lolly, = )72 + 180172 1) < Cllolifa g, -

which ends the proof. O
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Thus we can go on with the interpretation of the weak result, as now we know
that w = (¢ — Pugq) € X. Moreover, we also see that Pyg € H>(D),as g € H*(D)
and w € X C H*(D). By inserting w in the variational problem (5.28) we easily
find

JpAuAgdx= [, Auhwdx= [}, fodx + [,,gVw -ndSx — [, hwdS,
=[p fadx+ [,,8Vq -ndSx — [;,hqdS,
—Jp fPrgdx — [, 8V Puq-ndSc+ [,ph PuqdS; .

Since a necessary condition for determining a solution of the Neumann problem is

/fndx+f gVn~nde—/ hndSy =0
D oD aD

foreachn € HN H?(D) (take Av = 0in (5.23)), by taking n = Pyq we conclude
that the solution # € X we have found also solves (5.28) for each g € H 2(D).

Now selecting g € CgO(D) we first obtain A2y = f in D (in the weak sense).
Then we take ¢ € H?>(D) and we integrate by parts (assuming that u is smooth
enough to give a meaning to the computations):

[pAulAgdx =— [, VAu-Vgdx+ [, AuVq-ndS;
= [pANugdx — [,, VAu-nqdSx+ [;, AuVq-nds,.

Taking into account that A%y = f in D, it follows
—/ (VAu-n—"h)qds, +/ (Au—g)Vqg-ndSy ¥q e H*(D).
aD oD

We must now select ¢ € H*(D) in a suitable way; precisely, it will be the solution
o € H*(D) of the Dirichlet boundary value problem A?p = 0in D with P13Dp = P1,
(Vp -n)jgp = p2, with arbitrary p; and p; in suitable trace spaces. This solution p
exists and is unique (see Gazzola et al. [10, Theorem 2.16]). Choosing p, = 0 we
obtain (VAu - n)j3p = h; choosing p; = 0 it follows (Au)j3p = g.

Remark 5.8 We have thus realized that for the Neumann problem the situation
is much more delicate than in the other three cases. An additional remark is in
order: first, let us recall that for the biharmonic operator A? the three boundary
conditions (5.24) and (5.25), (5.24) and (5.26), (5.25) and (5.27) satisfy the so-
called Lopatinskii-Sapiro condition (see Wloka [27, Sect. 11, Example 11.9])
or, equivalently, the Agmon—Douglis—Nirenberg complementing condition (see
Gazzola et al. [10, Definition 2.9]). These conditions are notoriously a crucial tool
for obtaining a priori estimates for classical solutions, and are often described as
necessary conditions for well-posedness.
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On the contrary, the Neumann boundary conditions (5.26) and (5.27) do not
satisfy the Lopatinskii-Sapiro condition (see Wloka [27, Sect. 11, Example 11.9])
or the Agmon—Douglis—Nirenberg complementing condition (see Gazzola et al. [10,
Section 2.3]). Rather surprisingly, in spite of this fact we have proved existence
and uniqueness of the weak solution for the Neumann problem associated to the
biharmonic operator.

Remark 5.9 Looking at the proof just presented, we see that, under the assumption
dD e C*, we have also proved that the continuous immersion

V; = L2(A; D) NHE — HA(D)

holds true. In fact, we have shown V; = X, with equivalence of the norms, and X is
a closed subspace of H?(D). Therefore, by the Rellich theorem 6.9, the immersion
L*(A; D) N HE L%(D) is compact; let us note again that for L?(A; D) or for
L?(A; D) N H this is not true (see Exercise 6.11).

5.7 Exercises

Exercise 5.1 Show that in all cases coerciveness is satisfied even if the assumption
ap — %divb > 01in D is weakened to ay — %divb > —vin D for a constant v > 0
small enough.

Solution Let us consider the case of the Dirichlet boundary condition. We have, by
using the Poincaré inequality 5.18 and proceeding as before,

1
B(v,v) > aof |Vv|2dx +f (ap — = div b)vzdx
D D 2

@/ |Vv|2dx+ﬂ/ vzdx—v/ v2dx
2 Jp 2Cp Jp D

@/ |Vv|2dx+ ﬂ—v /vzdx,
2 D 2Cp D

therefore coerciveness holds provided that v < zoé—OD. The proof in the other cases

is similar, using the result provided by the Poincaré inequality in Theorem 6.10
(Neumann problem) or in Theorem 6.11 (mixed problem), or the Poincaré-type

inequality in Theorem 6.12 (Robin problem).

A%

Exercise 5.2 Taking hint from the definition of the weak divergence in Defini-
tion 5.2, give the definition of the weak curl of a vector field g € (LI]OC(D))3,
D CR3.
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Solution Having in mind the integration-by-parts formula (see Theorem C.7)

/ curlg - vdx = / q - curl vdx
D D

valid for ¢ € (CY(D))3, v € (Cgo(D))3, the weak curl of ¢ is a vector field w €

(L} (D))3 such that
/ w - vdx :/ w - curl vdx
D D

loc

for each v € (C$°(D))>.
Exercise 5.3
(i) Show that there exists a unique solution of the weak problem

findu € H (D) : /

Vu - Vvdx +/ u‘3DU|3DdSX
D oD

:/ fvdx—}—/ guapdS, Vve HND),
D aD

where H*1 (D) is defined in (5.19).
(ii) Devise the “strong” interpretation of the weak problem above.

Solution

(i) The bilinear form

/ Vw - Vudx
D

is coercive in Hj (D) (see Theorem 6.10), and faD vlzaDde > 0. Thus Lax—
Milgram theorem 2.1 guarantees existence and uniqueness of the weak solution.

(ii) Asin Sect. 5.5, take a test function w € H(D) and define v = w — wp, where
wp = m fD wdx. Then v € Hj (D), and we can use it as a test function,
obtaining

/ Vu - Vwdx +/ upp(Wigp — wp)dSy
D D

= f f(w—wp)dx +/ gwpyp —wp)dSy
D oD
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which can be rewritten as

1
/ Vu-dex——/ (/ u|3Dde> wdx—i—/ uppw|ypdSy
D meas(D) Jp \Jsp 9D
:/ fU)dX+f gw|apd Sy
D aD

1
_—meas(D) /D (/D fdx—l—/aD gde> wdx .

Thus, following the procedure in Sect. 5.5, we obtain the equation

1 1
AU——— dS, = f—— d ds inD,
" meas(D) /az) uopdSe=f meas(D) (/D fdx + /BD 8 x) "

and the boundary condition

ou
— +upgp=g ondD;
on

clearly, the solution u also satisfies the constraint f D udx = 0.
Exercise 5.4

(i) Findw € N*, w # 0, where N C V = L?(D) is defined as in (3.2) and L
means orthogonality with respect to the scalar product in (w, v)y = |, pwvdx.
Compare with Example 3.6.

(i) Find w € N+, w # 0, where N C V = H'(D) is defined as in (3.2) and L
means orthogonality with respect to the scalar product in (w, v))y = f p(wv+
Vw - Vv)dx. Compare with Example 3.6.

Solution

(i) We simply take @ = 1. From an abstract point of view, it is the solution w €
L?(D) of the problem

(0, V)y =/ vdx Yvel*D),
D

whose existence is assured by the Riesz representation theorem . The difference
with Example 3.6 is that now we are working in the Hilbert space L*(D), so
that the Riesz representation theorem holds.

(i) Similarly to what done in (i), we take the solution w € H 1(D) of the problem

(w, v)y =/ vdx VYveHYD).
D
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The well-posedness follows from the Riesz representation theorem 3.1, and
w € N*t. Again, the difference with Example 3.6 is that H'(D) is a Hilbert
space, thus the Riesz representation theorem holds.

Exercise 5.5

(i) Devise a variational formulation for the homogeneous Dirichlet boundary
value problem associated to the operator Lw = — Z:’ j=1 Di(aijDjw) +
Y biDiw+ Y1 Di(ciw) + apw, where ¢; € L®°(D),i =1,...,n.

(ii)) Determine a sufficient condition on the coefficients ¢; ensuring existence and
uniqueness of the solution.

Solution

(i) Assuming w, v € Hé (D), a formal integration by parts yields the bilinear form

n n
1§L(w,v) :/ Z aijZ)ij)ivdx—i—/ Zbii),-wvdx
D D=1

i,j=1

n
—/ Zciwl)ivdx+/ apwvdx ,
D D

that is defined and bounded in HOl (D) x HOI(D) under the sole assumption
¢ € L®(D),i =1,...,n. The variational formulation is thus

ue HH (D) : BL(u,v)zf fvdx YveHND).
D

(ii) Taking w = v, the two terms coming from the first order terms of the operator
become

n n n
/ ZbiZ)[v vdx — f Zcin)ivdx = / Z(bi —c¢i)Dijvvdx .
Dy Dy Dy

Therefore, proceeding as in Sect. 5.4, coerciveness is achieved provided that
ap — %div(b —¢)>0in D.

Exercise 5.6 The physical conservation principles used to derive the time-indepen-
dent linear Stokes system lead to the problem

(5.29)

—v Y Di(Diuj+ Dju;) +Djp = fjin D
divu =0 inD,

for v > 0 (viscosity).
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(i) Show that for a smooth solution u this problem can be rewritten as
—VvAu+Vp=finD

5.30

{ divu =0 inD. (5-30)

(i) Devise a variational formulation for the homogeneous Dirichlet boundary
value problems associated to (5.29) and associated to (5.30), and show that
these two variational formulations are equivalent.

(iii) Devise the variational formulation for the Neumann boundary value problem
associated to (5.29), and determine the strong form of the Neumann boundary
condition.

(iv) Devise the variational formulation for the Neumann boundary value problem
associated to (5.30), and determine the strong form of the Neumann boundary
condition.

(v) Compare the two Neumann boundary conditions in (iii) and (iv), and show that
they are not equivalent.

Solution

(1) From the relation D;Dju; = D;D;u; (that is valid for smooth functions) it
follows

n
—v Y Di(Djuj+ Dju) = —vAuj —vD;divu,
i=1

thus using the second equation in (5.29) the result follows.
(i1) Taking the scalar product of (5.29) by a vector field v, integrating in D and
integrating by parts we readily find

n n n
/Dijvjdxz/DZ[—vZ@i(Diuj ~|—Z)ju,-)+1)jp]vjdx
j=1 j=1 i=1

n
=V/ E (Diuj+Djui)Z)ivjdx—fpdivvdx
D 5 D
i,j=1

n
—U/ Z (Diuj + Djui)n;ivjjapdSy +/ P Vjap - ndSy .
o0 2 aD
(5.31)

For the homogeneous Dirichlet boundary value problem we assume v € V =
{ve H(} (D))" | divv = 0 in D}, thus the term fD p div vdx and the boundary
terms disappear and we are left with

n n
ueV : v/ > (Diuj +Z).,'u,-)1),'vjdx=/ > fjvidx YveVv.
D . D~
j=1

i,j=1
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Repeating the same procedure for problem (5.30) we find

n n n
[ ijvjdx :/ Z[—vZDiD,‘uj—i—Djp]vjdx
D D — i
j=1 j=1 i=l
n
=v/ Z Z)iujZ)ivjdx—/ p divvdx
D, D

n
—v/ Z DiujnivjapdSy +/ pYop - ndSy ,
aD aD

ij=1
(5.32)
and the variational formulation
n n
uev: v/ Z Z)iu,!)iv/dx:/ Zf/v/dx YveV.
D .=~ ' ’ D"

i,j=1 j=1

The two formulations are equivalent as [, 7 j=1 DjuiDivjdx =

/ p divu divvdx. In fact, by a density argument we can suppose v € C3°(D):
thus

n n
f Z Djuii),-vjdx = —/ Z u,-Z)jD,-vjdx
D D

i,j=1 i,j=1

n n
= —f Z uiZ)iDjvjdx Zf Z Diuil)jvjdx.
D . D .

i,j=1 i,j=1
(iii) Proceeding as in (ii) we obtain (5.31). The boundary terms
n
—v/ Z(D,‘uj+Z).,‘M,')n,'vj|3pd5x+/‘ P Vap - ndSy

oD 7, aD

can be rewritten as
n
/ Z [—v(Diuj + Dju;) + pdijlnivjjapdSx ,
oD 5T

where §;; is the Kronecker symbol, and imposing the condition

n
VY (Duj+Djun; —pnj=g; . j=1....n, (5.33)

i=1
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leads to the variational formulation

n
ueWw . v/ Z(Diuj +Dju;)Divjdx
D=1

n n
2/ ijvjdx+/ Zgjvijde YveWw,
Dj=1 aD =1

where W = {v € (H' (D))" |divv = 0in D}.

The strong form of the Neumann boundary condition (see Remark 5.1) is
thus given by (5.33).
Proceeding as in (ii) we obtain (5.32). The boundary terms

n
—l)/ Z DiujnivﬂaDde—i—/ P YD - ndSy
oD 2, aD
2
can be rewritten as
n
/ Z (=vDiuj + péijInivjapdSx ,
D ; =1

where §;; is the Kronecker symbol, and imposing the condition
n
vZZ)iujni—pnjzgj, j=1,...,n. (5.34)
i=1

leads to the variational formulation

n
ueWw . v/ E Diu;iDjvjdx
D .=
i,j=1

n n
2/ Zf.iv./dx +/ ZngﬂaDde Yve W,
D= D

where W = {v € (H' (D))" |divv = 0 in D}.

The strong form of the Neumann boundary condition (see Remark 5.1) is
thus given by (5.34).
The two Neumann boundary conditions are different due to the term
' Djuin;, which is not present in (5.34). Anyway, there are divergence
free vector fields for which this term is not vanishing, as, for instance,
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v(x1,x2) = (x1, —x2) on the flat boundary {(x1,x2) € R2 |x2 = 0}. In
this case we have n = (0, 1) and

n n
ZDluini =0 . ZZ)zuini =—1.
i=1 i=1

Exercise 5.7

(i) Devise a variational formulation for the homogeneous Dirichlet boundary value
problem associated to the linear elasticity operator —uA—vVdiv, u > 0,v > 0
(Lamé coefficients).

(i1) Show its well-posedness.

Solution

(i) In components, the equation —puAu — vVdivu = f can be rewritten as

n
—MZDiZ)iuj—vZ)jdivuzfj , j=1,...,n;
i=1

thus, multiplying by v; € HO1 (D), adding over j = 1, ..., n, integrating in D
and integrating by parts we find:

n n n
/ > fvjdx =f > (= n)_ DiDiuj — vDjdivu)v;dx
D Do i=1
n

:/ (M Z Dju;Djvj + v divu div v)dx,
ij=1

which leads to the variational formulation

n
u e (Hol(D))" : / (/1, Z DiujDjv; + vdivu div v)dx
D .5
i,j=1

:/ ijvjdx Yve (HOI(D))"-
DT

(i) Since f p v(div v)2dx > 0, well-posedness follows at once by the Poincaré
inequality in HO1 (D) (see Theorem 6.4)) and Lax—Milgram theorem 2.1.

Exercise 5.8

(i) Devise a variational formulation for the homogeneous Dirichlet boundary
value problem and for the Neumann boundary value problem associated to the
operator curl curl + /.
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Show their well-posedness.

Solution

®

(i)

Take the scalar product of the equation curl curlu + cu = f by v, integrate in
D and integrate by parts: taking into account Theorem C.8 we find

/ f-vdx = / (curlcurlu + au) - vdx
D D

=/(curlu-curlv+au-v)dx+/ n xcurlu - vdSy .
D aD

Since on the boundary it holds v = (v - n)n + n X v X n, the boundary term
faDn x curlu - vdS, can be rewritten as faD” x curlu - (n X v x n)dSy. As
explained in Remark 5.1, the Neumann boundary condition is thus given by
curlu x n = g, with g - n = 0, while the homogeneous Dirichlet boundary
condition is given by n x v x n = 0, or, equivalently, v x n = 0.

The variational formulations are the following: for the Neumann problem

u € H(curl; D) : /(curlu curl v + ou - v)dx

/f vdx+/ g-(nxvxn)dS, Yve H(curl; D),
aD

where H (curl; D) = {v € (L%(D))?|curlv € (L?(D))%}, endowed with the
scalar product

(w, V)eurl = / (curlw - curlv + w - v)dx
D

(the curl being intended in the weak sense), and for the homogeneous Dirichlet
problem

u € Hy(curl; D) : / (curlu - curlv + au - v)dx = / f -vdx Y v € Hy(curl; D),
D D

where Hy(curl; D) = {v € H(curl; D) |v x n = 0 on d D}.

The well-posedness of the two problems is easily proved, as the bilinear form
f pleurlu - curlv + au - v)dx defines a scalar product which is equivalent to
(w, v)curl- Thus it is enough to apply the Riesz representation theorem 3.1.
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[Indeed, here we are putting under the carpet some technical problems (that have
a similar structure with those we had to face for the elliptic operator L):

e Is H(curl; D), endowed with the scalar product (-, -)curl, @ Hilbert space? (The
positive answer to this question is in Exercise 10.1.)

* Have the tangential component n x v x n and the tangential trace v x n a meaning
on dD for v € H(curl; D)?

e s the linear map v = v x n bounded from H (curl; D) to a suitable tangential
trace space (so that Hy(curl; D) is a closed subspace of H (curl; D), therefore a
Hilbert space)?

e What is the real meaning of the term faD g - (n x v x n)dS,? Namely, is it an
integral?

e Which is the required regularity of the Neumann datum g?

We know all the answers (and for the first three questions they are positive),
but it is not completely straightforward to obtain them. .. for these issues, see, e.g.,
Monk [22, Chapters 3 and 5].]

Exercise 5.9

(1) Devise a variational formulation for the homogeneous Dirichlet boundary
value problem and for the Neumann boundary value problem associated to the
operator —V div + o1.

(ii)) Show their well-posedness.

Solution

(1) As in the previous exercise, take the scalar product of the equation —V divu +
oau = f by v, integrate in D and integrate by parts: taking into account
Theorem C.6 we find

ff-vdx:/(—Vdivu+au)-vdx
D D
=/(divudivv+au-v)dx—[ divun-vdSy .
D aD

As explained in Remark 5.1, the Neumann boundary condition is thus given by
divu = g, while the homogeneous Dirichlet boundary condition is given by
v-n=0.

The variational formulations are the following: for the Neumann problem

u € H(div; D) : f (divudivv + au - v)dx
D

:/f~vdx+/ gv-ndS, VYve H(dv; D),
D aD
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where H (div; D) = {v € (L*(D))" |divv € L%(D)}, endowed with the scalar
product

(w, v)giv = / (divwdivv + w - v)dx
D

(the divergence being intended in the weak sense), and for the homogeneous
Dirichlet problem

u € Hy(div; D) : / (divu divv+au-v)dx = f f-vdx Vv e Hy(div; D),
D D

where Hy(div; D) = {v € H(div; D) |v-n =0on dD}.

(ii)) The well-posedness of the two problems is trivial, as the bilinear form

/, pdivudivy + au - v)dx defines a scalar product which is equivalent to
(w, v)giv- Thus it is enough to apply the Riesz representation theorem 3.1.

[As in the previous exercise, here there are some technical problems:

Is H(div; D), endowed with the scalar product (-, -)4iv, @ Hilbert space? (The
positive answer to this question is in Exercise 8.5.)

Has the normal component v - n a meaning on d D for v € H(div; D)?

Is the linear map v — v-n bounded from H (div; D) to a suitable tangential trace
space (so that Hy(div; D) is a closed subspace of H (div; D), therefore a Hilbert
space)?

What is the real meaning of the term [, ap 8 V- ndS,? Namely, is it an integral?
Which is the required regularity of the Neumann datum g?

Again, we know all the answers (and for the first three questions they are

positive): see, e.g., Monk [22, Chapters 3 and 5].]



Chapter 6 ®
Technical Results Chock or

This chapter contains some technical results that have been frequently used in
the previous sections: strictly speaking, if we had followed a ‘“‘chronological”
presentation, we should have proved these results before. We preferred to adopt
a description without lateral interruptions, though it is quite clear that without these
technical results the general ideas behind weak formulations would not have reached
the desired end.

The following sections are devoted to approximation in Sobolev spaces, to
the Poincaré and trace inequalities, to compactness results in H 1(D) (the Rellich
theorem), and to the du Bois-Reymond lemma. An “obvious” result assuring that
if in a connected open set D the weak gradient of a function f vanishes then f is
constant is also presented.

6.1 Approximation Results

Theorem 6.1 Let D C R" be an open set and define
D, = {x € D|dist(x,dD) > ¢}.

Take u € W5P (D), where k is a non-negative integer and 1 < p < +oo. Then
there exists a sequence us € C*°(D;) withug, — u in Wl];'cp(D) as e — O.

Proof We use the so-called mollifiers, introduced and named by Kurt O. Friedrichs!
(earlier versions of them can be found in some seminal papers by Jean Leray” and

! Friedrichs [9].
2 Leray [18].
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Fig. 6.1 The graph of the y
function 7 in (6.1)

0.5
X
-2 -1 1
Sergei L. Sobolev?). To define them let us consider the function
1 .
coexp(—+——= if [x] <1
ne)y=1" p( 1*'*‘2> - 6.1)

if x| >1,
where cg is such that fR” ndx = 1. In the one-dimensional case the graph of 7 is

drawn in Fig. 6.1.
For every ¢ > 0 set

Ne(x) = %n (9 .

This is called a e-mollifier. It is known that if u € Lﬁ)C(D) then the e-mollified
version u, defined in D, as

ug(x) = (e *u)(x) = /D ne(x — Y)u(y)dy

belongs to C*°(D,) and converges to u in L]’:)c(D) (see, e.g., Evans [8, Theorem 6,
pp. 630-631]). We need to prove that D*u, — D%u in L{Z)C(D). To this aim, it is
sufficient to show that

D% =1 x D%,
that is, the ordinary o-partial derivative of the smooth function u, is the e-mollified

version of the o™-weak partial derivative of u. To confirm this, we compute for
x € D,

Du,(x) = /Di)i’ns(x — yuy)dy = (=) /Dﬂifne(x — uy)dy,

3 Sobolev [25].
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where the results comes from the fact that any derivative with respect to x is the
opposite of the correspondent derivative with respect to y. For fixed x € Dy, the
function ¢(y) = ne(x — y) belongs to C;°(D), because its support is given by
{y € R"||y—x| < &}. Consequently, the definition of the o"-weak partial derivative
implies:

/D Dine(x = pu)dy = (=D fD ne(x — Y)D*u(y)dy .

The proof is thus complete, as (—1)/*l(=1)l¢l = 1. O
Exercise 6.1 Prove that H} (R") = H'(R").

We now ask when it is possible to approximate a given function u € W57 (D) by
functions belonging to C°°(D). Such an approximation requires some conditions
on the regularity of the boundary d D. We start with an extension result.

Theorem 6.2 (Extension Result in WP (D)) Let D be a bounded, connected,
open subset of R" with Lipschitz continuous boundary dD. Let 1 < p < 400
and k > 1, and let Q a bounded, connected, open subset with D CC Q. Then there
exists a linear and bounded operator

E : WP (D) > WEPRY)

such that

(i) Euip =u a.e. in D;
(ii) supp(Eu) CC Q.

Proof We only present an idea of the proof, in the case k = 1. As a first step we
consider a flat boundary. Set Bg + = {§ e R"||§| < R, &, > 0} and Bg - = {§ €
R" | |&| < R, &, < 0}, and consider w € Wl’p(BR,Jr). We set, by reflection,

o) — {w(x’,xn) if x € Br 4
— s vn) —

w(x’, —x,) ifx € Bgr_,

having set x = (x/, x;), x’ = (x1, ..., x4—1). As shown in Exercise 6.8, we see that
E_w e WhP(Bg).

Let us consider now a general domain D and u € W17 (D). As in Theorem 6.7
we can cover the domain D by a finite union of open balls B, CC Q,s =1,..., M,
each one centered at a point x; € 9D, plus an internal open set By (say, D¢, for a
suitable €y > 0; the covering is finite as d D is a closed and bounded set, therefore
a compact set in R"). Consider a partition of unity ¢; associated to the covering By
of D (in particular, the support of ¢, is a compact set in By: see Appendix A). The
assumption on the regularity of the boundary tells us that there is a finite set of local
charts Y5, s = 1,..., M, bijective Lipschitz continuous maps from B onto Bg =
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{§ e R"||§| < R}, with the inverse map v/~ ! that is Lipschitz continuous, and such
that B; N D is mapped onto Bg . The functions (¢su) o ¥ ! belong W7 (Bg )
(see, e.g., Ziemer [29, Theor. 2.2.2, p. 52]) and has a compact support in Bg + N Bg.
We can thus apply the reflection result obtained above, and we construct the function
E_((&u) o 1//;1) belonging to W' (Bg) (with compact support in Bg). Then we
have to go back to the domain D by defining in B, the extension uy = E_(({su) o
Yo o Yy; since it has a compact support in By, we can extend it by 0 outside By,
obtaining Esug € WLP(R™). It can be noted that (Esus)p = (&u)|p. We finally
set Eu = Z?’lz o Esus (having simply set Eogug the extension by 0 outside By of
Zou). Now it is not difficult to check that Eu has the property listed in the statement
of the theorem.

For more details on this proof see, e.g., Salsa [24, Section 7.8.2]. A similar proof
for the general case k > 1 would need the introduction of higher order “reflections”
and, due to the use of local charts, a C¥-regularity of the boundary 8 D. The result
for a Lipschitz continuous boundary is proved in Stein [26, Section VI.3], by means
of a different approach. O

Remark 6.1 It is also easily checked that the “extension-by-reflection” Eu con-
structed in the proof of the theorem satisfies Eu € whr@®") N CORM) if u e
wbr(D)yn D).

The following approximation result is now an easy consequence.

Theorem 6.3 Let D be a bounded, connected, open subset of R* with Lipschitz
continuous boundary dD. Let u € WoP(D), 1 < p < +oo. Then there exists a
sequence Ug € C®(D) with ug — u in Wk”’(D).

Proof We consider the extension Eu € WKP(R") of u, with supp(Eu) CC Q.
Then, by Theorem 6.1 we can construct a sequence of e-mollified versions i, €
C®(Q,) with Uy — Eu in WIIE’CP(Q) as & — OT. Taking u, = ﬁSIE we have the
desired result. O

Remark 6.2 We also obtain that, if u € W'?(D) N C%(D), then the sequence
ug € C®(D) constructed in Theorem 6.3 converges to u not only in wl-r(D) but
also in C%(D). In fact, from Remark 6.1 we know that in this case the extension
Eu € C°(Q), and it is well-known that the e-mollified versions of a continuous
function in Q converge uniformly on compact subsets of Q as ¢ — 07, thus
converge uniformly on D C Q.

Exercise 6.2 Let 1 < p < +o00 and let p’ be given by % + % = 1 (with p’ = +00

for p = 1 and viceversa). If fy — f in L?(D) and gz — g in Lp/(D), then
fD frgrdx — fD fedx.

Exercise 6.3

(i) Letu € HY(D), v € HY(D). Then uv € Wh(D) and

Di(mv) = (Diju)v + u(D;v).
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(ii) The same result holds for u € W'“P(D), v € WP (D), 1 < p < 400,

1,1
p—i-p,—l.

6.2 Poincaré Inequality in H (D)

Theorem 6.4 (Poincaré Inequality in H(} (D)) Let D be a bounded, connected,
open subset of R". Then there exists a constant Cp > 0 such that

/ vidx < CD/ |Vo|’dx Yve Hj(D).
D D

Proof (1st Way) Since Hol(D) is the closure of C3°(D), we can proceed by
approximation. Indeed, if we assume that the inequality holds in C3°(D) it can
be easily extended to HOI(D) by the following continuity procedure: consider
v € HO1 (D), then there exists a sequence {vx} in C3°(D) such that vy — v in
H'(D); in particular we have that

/v,%dx—>/ vidx /|Vvk|2dx—>/ |Vv|2dx
D D D D

(see Exercise 6.4), and therefore the inequality holds for v by passing to the limit in

/v,%deCD/ |Vvk|2dx.
D D

We thus need now to prove the inequality in C3°(D); let v € C3°(D), and choose
a ball large enough to contain the bounded set D, say D C B(xg, R) with x9 € D.
Note that div(x — x¢) = n, then integrating by parts and using the Cauchy—Schwarz
inequality

/ v2dx =n_1f nvldx = n_I/ div(x —xo)vzdx
D D D

= —n! / (x — x0) - V()dx = —n~! / (x — xp) - 2vVvdx
D D

1/2 172
<2n7! sup |x — xo| </ vzdx) </ |Vv|2dx> .
xeD D D
———

<R
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We simplify ([}, vzdx)l/ % and defining

2R\?> 4R?
Co=\7) =77
n n

we obtain the estimate. m]

Exercise 6.4 Prove that if vy — v in H'(D) then

/v,%dxe[ vidx /|Vvk|2dx—>/ |Vv|2dx.
D D D D

Exercise 6.5 Using an approach similar to the one presented in the first proof of
Theorem 6.4, prove the Poincaré inequality for D bounded in one direction, with
constant S2 (S being the dimension of the strip containing D).

Proof of the Poincaré Inequality, 2nd Way We have already noted that, since
HOI(D) is the closure of C§°(D), we can proceed by approximation. Take
v € C3°(D) and extend it by 0 outside D. Since D is bounded, it is bounded
in all directions; let us say that, having set x = (x, x,,), X’ = (x1, ..., X,—1), for
each x € D we have a < x, < b. Thus we have v(x’, a) = 0 for all x’ such that
(x’, x,) € D and therefore

v(x’,xn)=/ ' Z)nv(x/,é)dé—i-v(x’,a):/ " Dy, £)dE .
a — a

=0

Consequently,

V2(x', xp) = (/x 1-Dyv(x/, g)dg)

1 X, 1 2
< (( / "12ds) ( / (@nv(x’,snzds) )

< (n —a) / " (Do, £))dE

2

Integrating in dx’ we obtain
Xn
/Rn_l UZ()C/,xn)dx/ < (n—a) /R”_l / (Z)nv(x/, 5))2d“§dx/
a

<G —a) [, D6 sy’
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Thus

b b
/ f 2, x)dx iy < / (n — ) [/ (Dw(x’,s))zdsdx’}dxn
a Rnil a R"

1 2 2
==(b-a) / (Dpv(x))“dx
2 R”

= %(b —a)? f (Duv(x)?dx (v =0 outside D)
D

and
b
f / V2 (x’, x,)dx dxp :/ v(x)2dx (v =0 forx, ¢ (a, b))
a Rn—l Rn
= / v(x)?dx (v =0 outside D).
D
In conclusion
1 1
/ vidx < =(b —a)2/ (Dyv)2dx < =(b —a)2/ |Vo|%dx ,
D 2 D 2 D

thus the stated estimate with Cp = %(b —a)2. O

Exercise 6.6 The Poincaré inequality still holds in W(:’p (D), 1 < p < +o0: there
exists a constant Cp > 0 such that

/ lo|Pdx < CD/ IVolPdx Vv e Wy "(D).
D D

6.3 Trace Inequality

Next we discuss the possibility of assigning “boundary values” on 9 D to a function
v € H'(D), assuming that 3D is Lipschitz continuous. When we deal with v €
C(D), clearly it has values on 3D in the usual sense. The problem is that a typical
function v € H'! (D) is not in general continuous and, even worse, is only defined
almost everywhere in D. Since d D can have n-dimensional Lebesgue measure equal
to zero, it seems that we cannot give a clear meaning to the expression “v restricted
to 0 D”. The notion of a trace on the boundary solves this problem.
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Theorem 6.5 (Trace on 0D and Trace Inequality) Let D be a bounded, con-
nected, open set with a Lipschitz continuous boundary 3 D. Then for v € H'(D)
there is a way to determine a function yov € L*(d D) such that

Yov =vjp forve C®(D)

and
f (vov)?dx < C, / W* + |Vo))dx
oD D

for a suitable C, > 0 (independent of v). Moreover, the map v — yyv is linear and,
from the inequality above, continuous from H' (D) to L*(3 D).

Definition 6.1 We call ygv the trace of v on d D, and, even if this can lead to some
confusion, very often in the sequel we will continue to write vj3p instead of ygv.

The proof of this theorem needs some steps. We start by proving it for smooth
functions defined in a half-space. To clarify this point, we need some notation.
Suppose we have v € CI(R’jL), where R = {x € R"|x, > 0}, withv = 0
out of

Br+ =f{x €R"|x, = 0, |x| < R}.

Then we have

Theorem 6.6 (Trace Inequality in R for C'-Functions) For any v € C'(R™)
vanishing outside Bg 4 it holds

/RH v (x', 0)dx’ < R/Rn (Dyv)*dx .

+

Proof For (x',0) € Bg 4+ we have

R R
v(x’,0) = —/ Dpv(x’, £)de +v(x’, R) = —/ Dy, £)dE .
0 — 0

Thus, as in the second proof of the Poincaré inequality:

R
/ V2 (x, 0)dx’ < R/ </ (Dnv(x/,g))2d§> dx' = R/ (D,v)ldx ,
R R \Jo R"

where the last equality is justified since v = 0 outside Bg . O
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Now we can obtain the following theorem:

Theorem 6.7 (Trace Inequality in D for C!-Functions) Let D be a bounded,
connected, open set with a Lipschitz continuous boundary 0D. There exists a
constant Cy. > 0 such that

/ ViypdSy < C*/ W+ |VvPdx  Vvecl(D).
oD D

Proof The proof is rather technical and we will only enlighten some essential ideas.
To simplify a little the procedure, let us also suppose that the regularity of the
boundary is C'; the proof for the Lipschitz case is just a little bit more complicate,
as in that case we have to deal with almost everywhere differentiable functions with
bounded derivatives (this is the case of Lipschitz functions, by the Rademacher
theorem: see, e.g., Ziemer [29, Theor. 2.2.1, p. 50]).

We can cover the boundary d D by a finite union of open balls By, s = 1,..., M,
each one centered at a point x; € 9D (the covering is finite as dD is a closed
and bounded set, therefore a compact set in R"). Consider a sub-covering E, s =
1,..., M, with EA CC By, and a set of cut-off functions ¢ such that ¢, € C§°(By),
0 <¢&(x) <1lforx € R"and ¢;(x) = 1 forx € 73} (in particular, the support of
s 1s a compact set in By; see Corollary A.1). The assumption on the regularity of
the boundary tells us that there is a finite set of local charts vy, bijective C'-maps
from B; onto Bg = {£ € R"||&|] < R}, with the inverse map 1//;1 that is C',
and such that By N D is mapped onto Br + = {£ € R" ||| < R,&, > 0}. The
functions ({5v) o ¥y I are C!-functions in M, vanishing outside m. Therefore
we can apply to each of them the result of Theorem 6.6, and we get

L @0 w26 0 < & [ @ne o s,

Transforming these integrals into integrals in By N d D and By N D we find, by the
chain rule and some straightforward estimates,

/ (&v)%dSy < c/ (IVv)? + v)dx .
B;N3D B;ND

Now we can add for s = 1, ..., M, and using the fact that ¢ is equal to 1 on §S we
obtain the final result. m|

We can now give the proof of the trace theorem (Theorem 6.5).

Proof of Theorem 6.5 We proceed by approximation. Consider v; € C*°(D) such
that vy — v in H'(D). By the trace theorem for C'-functions we have that

fw ViapdSy < C*/D(u,f + |V Hdx Vk=>1 (6.2)
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and

/ (Vkjap — Vs)ap)°d Sy < Ci / [(ve — v)*> +|V(vk — v5)[Pldx  Yk,s>1.
oD D
(6.3)

Since vy, is convergent, it is a Cauchy sequence in H' (D). Therefore
f (koD — vsjap)*dSy < Cs f [k = v9)> + |V (v = v5)Pldx < Cue
aD D

for k, s large enough, and thus we see that vg|yp is a Cauchy sequence in L%(3D).
Since LZ(BD) is a Hilbert space, we find g € LZ(BD) such that vg3p — ¢ in
L2(8 D). Taking the limit in (6.2) we have

/ q*dS, < C. / W* +|Vo)dx.
oD D

This value g does not depend on the approximating sequence v, but only on v. In
fact, if wy is another approximating sequence of v, and p is the limit in L?(d D) of
Wy D, it follows

/ lg — pl*dS, = / |g — vkjap + Vkjap — Wijap + Wrjap — pl*dSy
aD aD
< 3[/ (¢ — vijap)>d Sy +/ (p — wrjap)*d Sy
aD aD
+/ (vkjop — wka)zde]
9D
<3 / (¢ — vip)dS, + / (p — wiap)dS,
aD aD
2 2
+ C*f [(Uk —wr)” + [V(vk — wy)| ]dX] ,
D

and all the terms go to 0, as vy — v in HY(D) and wy — vin H (D).

In conclusion, we define the trace yov as the unique value ¢ € L?(d D) obtained
with the above procedure. Clearly the map v > ¢ is linear; moreover, if v € C*(D)
we can choose v, = v for all k > 1, therefore

Vk|aD = V|ap —> Yov,

showing that the trace of a smooth function v (the limit of vj3p...) is coincident
with its restriction on the boundary. O
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Remark 6.3 As we have seen the proof of the trace inequality is based on an
elementary argument that we have already met many times. Indeed, if we consider
a continuous function f : Q — R and we want to extend this function to all R,
how can we do? Let x be an irrational number; since Q is dense in R, we can take a
sequence {7y} C Q such that r; — x. Then the natural step is to define f(x) as the
limit of f (). To led this argument to its end we have to verify that the limit exists,
proving for example that { f(r;)} is a Cauchy sequence, and that its limit does not
depend on the sequence {ry} we have chosen.

Remark 64 If v € H_I(D) N C€%(D), we know from Remark 6.2 ‘we can find
a sequence vg € C°°(D) that converges to v in H'(D) and in C°(D) (namely,
uniformly in D). Then on one side

Vk]gp — YoV in L2(8 D) (definition of the trace yyv)
and on the other side
Vkjagp = Vjgp inC 0(8 D) (uniform convergence in D),

in particular vgj3p — vjgp in L2(8D). Thus the trace Yov on aD is equal to the
restriction vj3p on 0 D for all functions v € HY(D)n (D).

Remark 6.5 It can be proved that H(}(D) is equal to the space {v €
H'(D)|vyp = 0 on dD}. The proof of the inclusion Hj(D) C {v €
Hl(D)|v|3D = 0 on 9D} is easy. In fact, an element v € HOI(D) can be
approximated by a sequence vy € Cé’o (D); since vgjpp = O, it follows that the
trace vjyp satisfies vj3p = 0. The opposite inclusion is also true, but the proof is a
little bit technical, therefore we do not present it here (see Evans [8, Theorem 2, pp.
259-261]).

Remark 6.6 Let us note that the trace inequality still holds in W-7(D) (1 <
p < +00). The proof of the basic estimate for smooth functions in Theorem 6.6
is essentially the same of the similar estimate for the Poincaré inequality (see
Exercise 6.6).

Remark 6.7 A result similar to that presented in Theorem 6.5 can be proved for
the trace on I', a (non-empty) open and Lipschitz continuous subset of 9 D.

Having defined the trace, we can prove an integration by parts formula. We state
it as an exercise.

Exercise 6.7 Let D a bounded, connected, open set with a Lipschitz continuous
boundary 8D, and take u € H'(D), v € H'(D). Then the integration by parts
formula

/ Diu)vdx = —/ MDide—i-/ niu\apv‘apde
D D aD

holds.



106 6 Technical Results

Another couple of exercises are the following:

Exercise 6.8 Let us assume that D is a bounded, connected, open set with a
Lipschitz continuous boundary 3D, and that D = D U D,, D| N D, = {, where
D1 and D, are (non-empty) open sets with a Lipschitz continuous boundary. Set
I' =9D1NdDyand take v € LP(D), 1 < p < +00. Thenv € Wl’p(D) if and
only if vp, € whlr(Dy), Vp, € WL-P(D,) and the trace of v|p, and v|p, on I is
the same.

Exercise 6.9 Let D a bounded, connected, open set with a Lipschitz continuous
boundary d D. The statement “there exists a constant C > 0 such that

/ lv|PdSy < c[ lv|Pdx Yv e Co%D)”
oD D

is false for 1 < p < +o0.

6.4 Compactness and Rellich Theorem

First of all, we see a compactness criterion (similar to Ascoli-Arzela theorem, and
due to Kolmogorov and M. Riesz).

Theorem 6.8 (Precompactness) Let D C R”" be a bounded, connected, open set.
Consider 1 < p < 400 and X C LP(D). Then X is precompact if and only if

(i) there exists M > 0 such that
lvllLrcpy =M YveX;
(ii) extending v by 0 outside D, it holds
/}i_I}}) lv(-+h) —v)llLrp) =0,

uniformly with respect tov € X.

Remark 6.8 Remember that a subset X of a Banach space Y is said to be
precompact if its closure is compact, i.e., from any sequence in X we can extract a
subsequence convergent in Y to an element that does not necessarily belong to X.

The principal compactness result in Sobolev spaces is the following:

Theorem 6.9 (Rellich Theorem) Let D a bounded, connected, open subset of R”,
with a Lipschitz continuous boundary 3D, and let 1 < p < 4o00. Then WP (D)
is compactly immersed in L?(D): from any bounded sequence vy € WP (D) it is
possible to extract a subsequence vy, that converges in LP (D) to a limitv € L? (D).
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Proof We use the precompactness theorem, and we limit ourselves to the case
p = 2. Let us start with an estimate that is valid for smooth functions. Taking
v € Ci°(R") it follows

1 1
vix+h)—vx) = / i[v(x + th)]dt = / Vu(x + th) - hdt,
o dt 0

hence

2
< |h|?

2

1 1
lo(x +h) — v(x)|> = ‘/ Vo(x + th) - hdt / Vo(x + th)dt
0 0

1
< |h|2f |Vu(x + th)|*dt
0

by the Cauchy—Schwarz inequality. Integrating in R”

1
/ |v(x+h)—v(x)|2dx§|h|2/ <f |Vv(x+th)|2dt>dx
R" rR" \Jo
1
:|h|2/ (/ |Vv(x+th)|2dx>dt
0 R”

= 'h'szn Voldax,

having performed the change of variable x + th = y (and then replaced dy with
dx...). By approximation, since Cgo (R™) is dense in HOl (R™), we have that this
inequality is true for v € Hg (R™):

/ [v(x 4+ h) — v(x)|%dx < |h|2/ [Vv|?dx . (6.4)
R” R"

Now we want to prove that a bounded set X C H!(D) is precompact in L?(D).
Consider

X C{ve H (D) |vllgp < M}
By the extension theorem (Theorem 6.2) we know that, for v € X, Ev € H(} (R™),
supp(Ev) CC Q. Thus Ev € H&(Q) and is vanishing outside Q; moreover, from

the continuity of the extension operator we have

IEV g1y = ||EU||H1(R") < Cillvllgi(py < CM VveX.
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Let us denote by E X the set of the extensions of elements of X
EX = {w e Hy(Q)|3 v € X such that w = Ev}.

We have just shown that E X is bounded in LZ(Q). Furthermore we know that (6.4)
is satisfied for all w € E X, thus

/ (Ev)@ + h) — (Ev)()dx < /R ED) G+ ) — (Ev)@)Pdx
9

< |h|2/ IVEv|’dx<CiM*|h|> VveX.
(6.4) R

Applying Theorem 6.7 we obtain that EX is precompact in L2(Q). Take now a
sequence v; € X: since EX is precompact in L>(Q), we can select a subsequence
Evy, convergent to wog in L2(Q). Then vy, = Evi,p converges to wo|p in LZ(D),
and the proof is complete. O

Exercise 6.10 Let D a bounded, connected, open set with a Lipschitz continuous
boundary dD. Let v; be a bounded sequence in Wl’p(D), 1 < p < 400, and
consider a subsequence vi, which converges to v in L” (D) by the Rellich theorem.
Prove that the limit v indeed belongs to W17 (D).

6.5 Other Poincaré Inequalities

We are now in a condition to prove other Poincaré inequalities that are useful in
the proof of the coerciveness of the bilinear form By (-, -) introduced in (2.19) (see
Sect. 5.4 for these coerciveness results).

Theorem 6.10 Let D be bounded, connected, open subset of R" with a Lipschitz
continuous boundary 3 D. Denote by

H!(D) = {v c Hl(D)‘ / vdx = o} .
D
Then there exists Cy > 0 such that
f vidx < C*/ |Vvl’dx YveHND).
D D

Proof Assume, by contradiction, that for each k € N, k # 0, we can find vy €

H! (D) such that
/ vidx > k/ |Voe|dx .
D D
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Thus f D v,%dx > (0, and we can consider
Uk

12
(fD v,%dx) /

which satisfies | D w,%dx = 1. We clearly have that

wy = e H\ (D),

1
1=f widx >k/ [Vwi|?dx = f |Vwg|?dx < —, (6.5)
D D D k

in particular

1/2
||wk||Hl(D)=(/Dw,zdx+/D|Vwk|2dx) -V

From Rellich theorem we can extract a subsequence wy, which converges to wg in
L%(D), therefore

/w%dx: lim/w,%dx:l.
D s—=> Jp §

From (6.5) we have Vwy, — 0 in (L%(D))"; therefore for each NS C§°(D) and
foreachi =1, ..., nitholds

/ woDjpdx = lim / wi, Dipdx = — lim /(Z)iwks)q)dx =0.
D S—>00 D §—> 00 D

As a consequence Vwg = 0 and wg € HY(D). From Wi, —> wp in L2(D) we also
have that

/wodxz lim / wi,dx =0,
D §—>00 D

thus wg € H*1 (D). From D;wg = 0 foreachi = 1, ..., n we can infer wy = const
(see Sect. 6.7) and thus we have a contradiction, as the only constant belonging to
H*1 (D) is the null constant, but then f D w(z)dx = 1 is impossible. O

Let us continue by presenting other similar results. We start with this remark:

Remark 6.9 Let D be bounded, connected, open subset of R" with a Lipschitz
continuous boundary 9D, and let I'p C 9D be a non-empty, open Lipschitz
continuous subset. It can be proved that HllD (D), the closure of CI‘Z‘I’) (D) in H' (D),
is equal to the space {ve H'(D)|vr, =0}, where v, is the trace on T'p
(see Remark 6.7). As already seen in Remark 6.5, the easy part is the inclusion
HFID(D) c{ve HY(D)| virp, = 0}; the inverse inclusion is more technical.
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Theorem 6.11 Let D be bounded, connected, open subset of R" with a Lipschitz
continuous boundary 3 D. Denote by

Ht, (D) = |ve H'(D)|vr, =0} .

where I'p C 0D is a non-empty, open Lipschitz continuous subset. Then there exists
Cy > 0 such that

/ v2idx < C*/ IVul’dx Vove HllD(D)-
D D

Proof 1t is essentially the same as before. The only change is a consequence of
the remark that, having found wy, — wp in LZ(D) with Vwg, — 0 = Vuwy in
(L2(D))", we have indeed obtained wy, — woin H 1 (D). Thus by the continuity of
the trace operator we find 0 = wy,r, — wor,, in LZ(FD), hence wy € HFID(D).
Since we also know that wy = const and that the only constant belonging to HllD (D)
is the null constant, again we obtain a contradiction from f D w(z)dx =1. m]

For the Robin problem this Poincaré-type inequality is important.

Theorem 6.12 Let D be bounded, connected, open subset of R" with a Lipschitz
continuous boundary 0 D. Let q : 0D +— R be a non-negative and bounded function,
not identically vanishing, namely, such that [, 9p 9dSy > 0. Then there exists Cyx > 0
such that

/ vidx < C, (f |Vu|?dx +/ qv2de> Vve HY(D). (6.6)
D D aD

Proof The result is proved as before. We arrive at wy, — wp in H L(D), with
/ D w%dx = 1 and woy = const. By the continuity of the trace operator we obtain

that wy,j9p — wopap in L2(dD), thus also /Gwk,j9p — /qwojap in L2(dD). As
a consequence,

/qw,%de—>/ qw(z)de,
aD ' aD

by applying Exercise 6.2 in LZ(d D). On the other hand, from the assumption that
inequality (6.6) does not hold we have

1
f |V, [dx +/ quids, < —,
D ap ks

hence |. 9D qw,id Sx—0. The contradiction comes from the fact that . 9D qwéd Sy =
0 implies wo = 0, as wy is constant and faD qdSy > 0. |
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We conclude with the following theorem:

Theorem 6.13 Let D be bounded, connected, open subset of R" with a Lipschitz
continuous boundary o D. Then there exists Cy > 0 such that

f(v—vD)zdx < C*/ [Vv|?’dx YveH\D),
D D

_ 1
where vp = o Jp vdx.

Proof The proof is trivial. Indeed it is sufficient to consider w = v — vp, which is
average free and satisfies Vw = V. Thus we can apply Theorem 6.10. O

6.6 du Bois-Reymond Lemma

Lemma 6.1 Let D be an open set in R". If f € L} (D) satisfies

loc

/ fodx =0 V¢ e Cy°(D) (6.7)
D

then f =0a.e. in D.

Proof Forr > 0and e > O denoteby B, = {x € R"||x| < r}and by D, = {x €
D | dist(x, 0D) > ¢}. Take ko large enough to have D1/, N By, # 9. For a fixed
k € N, k > kg and for 0 < § < 1/k consider the §-mollified version f5 = ns * f
defined in Ds O D k.

For any fixed x € Dy, the map y — ns(x —y) € Cgo(D), thus by (6.7) we
obtain

fs(x) = /D fOIns(x — y)dy =0.

We also know that fs — f in LIIOC(D), in particular fs — f in Ll(Dl/k N By).
Therefore, for a suitable subsequence we find f5, — f a.e.in D/ N By.
Putting together the two results it follows f(x) = 0 a.e. in D1/ N By. Since

D= U,‘j‘;ko(Dl/k N By), the thesis is proved. O

6.7 V f = 0implies f = const

Proposition 6.1 Let D be an open and connected set in R". Suppose that €
L}OC(D) satisfies D; f = 0 foreachi =1,...,n. Then f = const a.e. in D.
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Proof 1t is enough to prove that there exists ¢ € R such that
/ f¢dx=cof¢dx Ve Cy(D).
D D

In fact, from this it follows fD (f — co)pdx = 0 foreach ¢ € C;°(D), thus from du
Bois-Reymond Lemma 6.1 we obtain f = c¢ a.e. in D. Consider now ¢ € C3°(D):
the assumption says that the weak gradient of f is vanishing, namely,

O:/fZ),-<pdx foreachi=1,...,n.
D

Take Q CC D, Q open and connected. Consider the e-mollified version f, =
ne * f, defined in Q for & < eg. We already know that

Dife=nexDi f
(see the proof of Theorem 6.1), thus

Dife=0 inQ.
Therefore we have

fe=cp InQ,

and for any ¢ € Cgo(Q) it follows, for ¢ < ¢y,

/ fepdx = cg,Q/ pdx . (6.8)
0 0

Selecting ¢ € C3°(Q) such that fQ Podx # 0, for e < g9 we have from (6.8)

Since f; — fin LIIOC(D), we get fQ fePodx — fQ f@odx, hence

fQ foodx
fQ Podx

Cg,Q —> =CO,Q-



6.8 Exercises 113

On the other hand, we also have fQ fepdx — fQ fodx for any ¢ € C3°(Q), thus
from (6.8) we obtain

ff¢dx:c0’Qf (pdx V(pECgO(Q)
0 0

In conclusion, we have f = cp ¢ a.e. in Q. Since when Q1 N Q> # @ it follows
0,0, = €0,0,, the proof is completed by “invading” D by a sequence of open and
connected sets Q,, CC D. O

6.8 Exercises

Exercise 6.1 Prove that H& [R™) = HY(RM).

Solution We only need to show that a function v € H'(R") can be approximated
in H'(R") by functions belonging to Cg°(R™). For this aim, the keywords are:
“truncate” and “mollify”. In fact, adapting the proof of Theorem 6.1, one sees that
the e-mollified versions v, € C*°(R") converge to v in H L(R™), but v, have not a
compact support, unless v itself has a compact support.

Then let us first suppose that v € H'(R") and has a compact support. We
take ve = ne * v, where 7, is the Friedrichs e-mollifier introduced in the proof
of Theorem 6.1. It is known that v, € Cgo (R™) (here it is used that v has a
compact support) and that v, — v in L>(R") (here it is used that v € L?(R™)).
Moreover, adapting the proof of Theorem 6.1 to the whole space R", we see that
Dive = (Div), in R”, thus Djv, — D;v in LZ(R").

Now we have to show that each function v € H'(R") can be approximated by
a function belonging to H'(R") with compact support. It is enough to “truncate”
v out of a compact set. Precisely, we take a function ¢ € Cgo (R™) such that 0 <
C(x) < 1,¢(x) = 1for |x] < 1and ¢(x) = 0for |x| > 2 and for r > 0 we define
v (x) = v(x)¢(x/t). Clearly v, € H '(R™) and has a compact support. Then

1
Vui(x) = Vo(x)E(x/t) + ;v(x)V;(x/t) .
We have

/ (W(x) — v () 2dx = / (1 — £(r/0)2dx < / 2 (0)dx
R" R" x>t
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and

e IV0(6) = Vo) Pdx = o [Vo)(1 = ¢(x/) = Lo Ve (x/n)*dx

<2 fpr VU1 = Z(x/0)?dx + 5 [fpn v2(0)IVE(x/1)[*dx

2
<2 [z IV Pdx + 2 fpn v? (0)dx,
where M = sup [V (x)|. Taking the limit for 7 — +o00 we obtain the result.
xeR"
Exercise 6.2 Let 1 < p < +o0 and let p’ be given by % + # — 1 (with p/ = 400

for p = 1 and viceversa). If fy — f in L”(D) and gz — g in L”/(D), then
[p fegkdx — [, fgdx.

Solution Indeed, by Holder inequality,

‘/D(fkgk — fe)dx| = ‘/D(fkgk — frg + frg — fgdx

=<

/ Si(gr — @dx| + ‘/ g(fi — fdx
D D

< I fllzroyligk =8l Lo (py + 1811 Lo py I fe= FllLep)y = O,

as || fellLr(py = Il fllLr(py (by the triangular inequality).
Exercise 6.3

(i) Letu € HY(D), v € HY(D). Then uv € Wh(D) and
Di(uv) = (Dju)v + u(D;v) .

(i) The same result holds for u € W“P(D), v € WP (D), 1 < p < 400,

1,1 _
p—i-p,—l.

Solution

(i) The proof is similar to that of Exercise 4.4. First of all, we know that
uv € LY(D). Moreover (D;u)v and u(D;v) belong to LY(D), as products of
functions in L2(D). Thus it is enough to prove D; (uv) = (Diju)v+u(D;v). We
choose ¢ € C;°(D) and we set Q = supp(¢). Then we take an open set Q such
that 0 CC Q CC D. By Theorem 6.1 we find uy € Cm(é), vk € C°°(Q)
such that uy — u in Hl(é), vy — vin HI(Q). Since ¢ € C(‘)’O(Q) we have

/; urvk Dipdx = — /A D; (urvg)pdx
) 0

= — /Q [(Diur)vp + ur(Divg)] pdx .
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Taking into account Exercise 6.2, the result follows passing to the limit for
k — 00, as we obtain

/ uvD;pdx = féuvZ)igodx
D
= — /;[(Z)iu)v 4+ u(D;v)]p dx

=— | [(Diu)v +u(D;v)]pdx .
D

(i) The proof is the same, just noting that uv, (D;u)v and u(D;v) belong to
L'(D), as products of functions in L? (D) and L (D), and using the approxi-
mation results given by Theorem 6.1 for functions belonging to W!7(D) and
wlr' (D).

Exercise 6.4 Prove that if vy — v in H!(D) then

/v,%dx—)/ vidx /|Vvk|2dx—>/ |Vv|2dx.
D D D D

Solution It is enough to apply Exercise 6.2, since from vy — v in H!(D) we have
in particular that vy — v in L2(D) and Vv — Vv in L?(D). An alternative proof
is simply based on the triangular inequality:

|(/D u,%dx>l/2—</l) vzdx>1/2

Similarly we prove that fD Vg |2dx — fD |Vv|2dx.

=[lvell 2oy = Il 2y | < k=2l 2y = O

Exercise 6.5 Using an approach similar to the one presented in the first proof of
Theorem 6.4, prove the Poincaré inequality for D bounded in one direction, with
constant S (S being the dimension of the strip containing D).

Solution By proceeding as in Theorem 6.4 it is enough to prove the inequality for
v € C3°(D). Suppose that D is contained in the strip {x € R" | |x, — x2| < S/2}.
Since D, x, = 1, we have

/ vidx = / Dy (xn — x)v%dx
D D

= —/ (xn — x) D, (v*)dx = —f (xn — x0) 20D, vdx
D D

g 1/2 1/2
<2-— (/ vzdx> </ |Z)nv|2dx> ,
2 \Up D

thus the Poincaré inequality holds with Cp = S2.
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Exercise 6.6 The Poincaré inequality still holds in WO1 P (D), 1 < p < +4o0: there
exists a constant Cp > 0 such that

/ lv|Pdx < CD/ |VolPdx Vv e WyP(D).
D D

Solution As in the proof of Theorem 6.4, 2nd way, we assume that a < x, < b and
we start writing, for v € Cg°(D),

Xn
v(x’, xp) =/ Dpv(x', §)dE .
a
For 1 < p < 40 it follows

v, x0)|7 =

/ Y Do, £)d

P Xn 4
5(/ 1-|Dnv(x’,f>|ds> .

By Holder inequality, for 1 < p < +o00 and % + # = 1 (for p = 1 you do not even
need the Holder inequality. . . ) it follows

Xn p Xn L/ Xn % P
(/ 1'|@nv(x/7§)|d$) S((/ 1p/d$>p (/ |Dnv(x/,§)|pd$))

< (g —a)?!? / Do, £) P

a

Since 5 = p — 1, integrating in dx” we obtain

Xn
/ lu(x’, x)|Pdx" < (xy — a)p_lf f |Dypv(x', £)|Pdgdx’
Rn—] Rn—] a
<G [ 1D olrdeay
Thus
b b
/ / |U(-x/a xn)|pdx/dxn = / (xXn — a)pil |:/ |Dnv(x/v E)|pd$dx/i| dxy
a Rnfl a Rn
1
=—(b- a)p/ | Dpv(x)|Pdx .
p R"

In conclusion, taking into account that v = 0 outside D,

1
f |v|”dx§—(b—a)”/ |Vu|Pdx .
D p D
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Exercise 6.7 Let D a bounded, connected, open set with a Lipschitz continuous
boundary 8D, and take u € H'(D), v € H'(D). Then the integration by parts
formula

/ (Dju)vdx =—/ uZ),-vdx—i—/ niu)gpvjapdSy
D D aD

holds.

Solution We proceed by approximation. We have uy € C ®(D), uy — uin H'(D),
v € C®(D), vy — v in HY(D). Then

/ (Diup)vedx = —/ MkDivkdX+/ niukapvkapd Sy .
D D aD

[11 [2] (3]

By Exercise 6.2 we have these first two results:

[1] As k — oo we have

/(Diuk)vkdX—)/ (Diu)vdx .
D D

[2] As k — oo we have

/ukl)ivkdxa/ uD;vdx .
D D

[3] The final step is to check that

/ nijupvrdS, — / niugpvppdSy .
aD aD
We know that the map v — vjyp is continuous from H! (D) to L2(3D), thus
ugap — uppp  in L2(3D)
and
vkjap —> vjpp  in L*(dD).
Since n is a bounded vector field,
nilgpp — NiUjyp in L2(8D),

which ends the proof, applying the result of Exercise 6.2 in L2(d D).
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Exercise 6.8 Let us assume that D is a bounded, connected, open set with a
Lipschitz continuous boundary d D, and that D = D, UD,, D; N Dy = @, where
D1 and D, are (non-empty) open sets with a Lipschitz continuous boundary. Set
' =9D; NdD, and take v € LP(D), 1 < p < 4o00. Then v € WP (D) if and
only if vjp, € whr(Dy), vip, € WL-P(D,) and the trace of vp, and v|p, on I" is
the same.

Solution (=) The proof that vip, € WUP(Dy) and vp, € WIP(D,) is
straightforward. Then consider a sequence vy € C* (D) which converges to v in
WP (D) (see Theorem 6.3); in particular, Wik = Vkp, € C>®(Dy) converges to
v|p, in WbP(Dy) and Wk = VD, € C®(Dy) converges to v|p, in wbhrP(D,).
Hence wy k- converges in L?(T") to the trace of vp, on I" and w; yr converges in
LP(T") to the trace of v|p, on I'. Since wy xr = wa k|, the thesis follows.

(=) For the sake of simplicity, let us write v; and v, for v|p, and v|p,. Take a
test function ¢ € C3°(D) (and thus not necessarily vanishing on the interface I")
and define w; € L?P (D) by setting w;|p, = D;v; and w;p, = Divz, i =1,...,n.
We find, by integration by parts as in Exercise 6.7,

[p wipdx = fDl Divipdx —i—sz Divapdx
= —fD, viDjpdx + [ nijvirerdSy

— sz vDipdx + [ nyjvorerdSy,

where n; is the unit normal vector on I'" directed outside D;, j =1, 2. Since vy r =
vyr and ny; = —ny ;, it follows

/ wipdx = —/ 1 D;pdx —f v D;ipdx = —/ vD;pdx ,
D Dy D D

hence D;v = w; € LP (D).

Exercise 6.9 Let D a bounded, connected, open set with a Lipschitz continuous
boundary d D. The statement “there exists a constant C > 0 such that

f lv|PdS, < c/ lv|Pdx Yve D) (6.9)
oD D

is false for 1 < p < +o0.

Solution Consider the sequence vy € CcY(D) satisfying 0 < vr(x) < I and defined
as follows:

1 for x e 5\ Dy
vk (x) = { continuous for x € D1k \ Dy
0 for x € Doy,
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where D, is as in Theorem 6.1. Then
/ |vi|?dSy = meas(dD) > 0
aD
and

1
/ lvk|Pdx < meas(D \ Dyji) < Cz,
D

thus (6.9) cannot hold.

Exercise 6.10 Let D a bounded, connected, open set with a Lipschitz continuous
boundary dD. Let v; be a bounded sequence in W'P(D), 1 < p < +4oo, and
consider a subsequence vi, which converges to v in L” (D) by the Rellich theorem.
Prove that the limit v indeed belongs to whr(D).

Solution Since W!-P(D) is a reflexive Banach space (see Remark 4.9), from the
bounded sequence vy, we can extract a subsequence, still denoted by vi,, which
converges weakly to w € W!P(D). In particular, vk, converges weakly to w in
LP (D), and since it converges to v in L?(D), it follows v = w by the uniqueness
of the weak limit and thus v € W!-7(D).

Exercise 6.11 Let D = Bg C R? be the disc of radius R centered at 0 and consider
the Hilbert space L*(A; D) = {v € L3¥D)|Av € L?*(D)}, endowed with the
natural scalar product fD (w v+Aw Av) dx. Show that the immersion LZ(A; D) <>
L*(D) is not compact.

Solution In polar coordinates, for k > 1 take vi(r, 0) = ck;—i sin(k6), where ¢, =

%\/k + 1 is chosen so that ||kl 2(py = 1. Clearly we have Avx = 0 in D,
therefore [|vkllz2(a,py = 1. If we had a subsequence vy, of vx which converges to v

in L2(D), then we would also have a subsequence of vk, which pointwise converges
to v almost everywhere in D. Therefore we would obtain v = 0 almost everywhere
(forr < R we easily see that vy — 0 pointwise) and [|v||;2(p) = 1, a contradiction.



Chapter 7 ®
Additional Results Chock or

In this chapter a series of additional results are described and analyzed: the
Fredholm alternative theory applied to second order elliptic problems; the spectral
theory for an elliptic operator (in the general case and in the symmetric case);
the maximum principle for weak subsolution of elliptic equations; some results
concerning further regularity of weak solutions, together with higher summability
or regularity results in the classical sense for functions belonging to Sobolev spaces;
and finally the Galerkin approximation method.

7.1 Fredholm Alternative

We can employ the Fredholm theory for a compact perturbation of the identity
operator to glean more detailed information regarding the solvability of second order
elliptic PDE.

We start by briefly analyzing the finite dimensional case. Let A be a n x m matrix,
associated to the linear map v — Av, v € R™, Av € R". From linear algebra it is
known that dim N (A) + dim R(A) = m, where N(A) = {v € R" | Av = 0} is the
kernel of A and R(A) = {Av € R"|v € R™} its range. Therefore, if n = m it
follows that N(A) = {0} implies R(A) = R" and viceversa: in other words, from
uniqueness one obtains existence and viceversa.

Another interesting and well-known result is a characterization of the range of
A, given by R(A) = N(AT)* (see Exercise 7.2).

We want to understand if something of this type is also true in a Hilbert space
V whose dimension is infinite. The answer is provided by the Fredholm alternative.
Before stating the result, we need a definition.

Definition 7.1 A linear operator K : X +— Y, X and Y Banach spaces, is said to
be compact if it is bounded and it maps bounded sets into precompact sets (namely,
sets whose topological closure is a compact set).
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122 7 Additional Results
The following result is the core of Fredholm theory (see, e.g., Evans [8, Theorem 5,
pp. 641-643]).

Theorem 7.1 (Fredholm Alternative) Let V be a Hilbert space and K : V +— V
be a compact linear operator. Then:

I. NI —K)={0}ifandonlyif RI — K)=V;

2. N(I — K) is a finite dimensional subspace;

3. dimN( — K)=dimN({ — KT);

4. R(I — K) is closed and therefore R(I — K) = N(I — KT)' (see Exercise 7.3).

Let us recall that, if A : X > Y is a bounded linear operator, X and Y being Hilbert
spaces, its adjoint operator AT : ¥ > X is defined as

(ATy,x)x =(y,Ax)y VyeY xeX.
Let us consider the elliptic operator
n n
Lw=— Z Di(aiijw) + Zbi.@,’w + apw ,
i,j=1 i=1
witha;; € L*(D) fori, j=1,...,n,b; € L°(D)fori =1,...,n,a0 € L>(D).
The formal adjoint L7 is defined by
n n
LTw=-Y" Di@Djw) - > Di(biw)+ apw.
i,j=1 i=1
The bilinear form By, (-, -) is defined as

n
By (w, U):/ Z aijZ)ij)ivdx+/

n

Zbii)iwvdx—i—/ apwvdx ,
“ D
i,j=1

i=1 D
while the adjoint bilinear form is defined by
n n
B, r(w,v) = / Z a;; DjwD;vdx +f Zbin),-vdx +/ apwvdx
D=1 i=1 D

where integration by parts has been applied not only to the second order term but
also to — [}, D; (bjw)vdx. Consequently,

Byr(w,v) =Br(v,w) Vv, we Hl(D).

Let us start focusing on the homogeneous Dirichlet boundary condition. As usual,
we will say that u is a weak solution of Lu = f with homogeneous Dirichlet
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boundary value if u € Hé (D) is a solution of
Br(u,v) = f fvdx YveHND).
D

Similarly, we will say that w is a weak solution of LT w = p with homogeneous
Dirichlet boundary value if w € Hé (D) is a solution of

B;r(w, v):/ pvdx VveH(}(D).
D

Theorem 7.2 (Existence and Uniqueness Theorem Based on Fredholm Alterna-
tive) Let D C R" be a bounded, connected, open set.

(i) Precisely one of the following statements holds:

(o) either for each f € L*(D) there exists a unique solution u € HO1 (D) of
Br(u, v) =/ fvdx Yve HND), (7.1)
D

(B) orelse there exists a solution w € H(} (D), w #0, of
Br(w,v)=0 YveH D). (7.2)
The dichotomy (@), (B) is called the Fredholm alternative.

(ii) Furthermore, when assertion (8) holds, the dimension of N (L), the space of
the solutions of problem (7.2), is finite, and it is equal to the dimension of
N(LT), the space of the solutions of the problem

By r(w,v) =0 YveHj(D).

(iii) Finally, when assertion (B) holds, problem (7.1) has a solution if and only if

/ foedx =0 Vo, e NLT).
D

Proof

(i) Choose T > 0 in a such a way that

B;(w,v) = Br(w, v) + ‘L’/ wvdx
D
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is coercive in Hé (D). We have seen in Sect. 5.3 that this is possible choosing
T > max(0, —u),

where u = infp ag — ﬁ”b”%ww)' Then for each ¢ € L?(D) there exists a
unique solution u, € HO1 (D) of

By (uy, v) =/ qudx Vv e H}(D). (7.3)
D

Let us write u, = (L + 1)~ 'g whenever (7.3) holds. Indeed (7.3) is the weak
form of Lu, + tu, = q.
Now observe that u € H(} (D) is a solution of (7.1) if and only if

B:(u,v) = /;)(ru + fHlvdx VYve HOI(D),
namely, if and only if
u=L+tD ' au+fH=t@L+tH u+L+DH7f.
Let us write this as
u—Ku=L+tDH7'f,

where K = t(L + t1)~'. We have thus found that a solution u € H& (D) C
L%(D) to (7.1) is a solution of ¥ — Ku = h, with a right hand side & =
(L+tD)~'f e H (D) C L*(D).

On the other hand, let us take a solution # € L*(D) of i — Kii = h with
h e L2(D), namely, we have

d—t(L+tDH) Yi=h.

If we know the additional information that & € HO1 (D), then u = (L +
D~ 'i+he HO1 (D). Moreover, we can rewrite the problem as (L + 1) —
tu = (L + tI)h or simply Li = (L + tI)h. Therefore, choosing h = (L +
1)~ f = LK f with f € L*(D), the two problems Lu = f withu € HJ (D)
and (I — K)u = h with u € L*>(D) are equivalent.

We claim that K : L?(D) ~ L*(D) is a linear and compact operator. In
fact, from the coerciveness of B;(-, -) for the solution u, of (7.3) we have

a”u*”iﬂ(D) < Be(uy, uy) = fD quidx

< lgliz2pylusllz2py = gl 2y lltsll gipy »
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hence, being u, = (L + tI)_lq, K =1t(L+ rI)_1 and Kq = tu,,

T
I1Kqll g1 (py = a”anz(D)' (7.4)

In particular we have

T
I1Kqll 2py < IKqllgipy < &”CIHLZ(D)’

that proves the boundedness of K. Moreover estimate (7.4) and Rellich
Theorem 6.9, (that in HO1 (D) is valid without assumptions on d D, as we can
freely use the trivial extension by 0 outside D) tell us that K is compact.

We now apply the Fredholm alternative that states that

N(I — K) = {0} if and only if R(I — K) = L%(D).

In other words

() we always find u € L?(D), solution of u — Ku = h € L*(D), and u is
unique
or

(B) N — K) is not trivial and has finite positive dimension.

We have already seen that case («) can be rephrased as follows: choosing & =
(L+tDH™'f, f € LA(D), we always find u € HO1 (D) solution of Lu = f.

In case (B8) we have that there exists w € N(I — K), w # 0; this means
w = Kw, namely,

w:t(L—i—tI)*]w <— (L+thHhw=tw < Lw =0,

thus w € N(L).

In case (8) we know that dimN (I — K) = dimN(I — KT) and also that
dim N (I —K) is finite; since we have just seen thatdim N(/ —K) = dim N (L),
we obtain that dim N (L) is finite. Moreover, it is easy to check that K T =
(LT + tI)™' (see Exercise 7.1). Thus, similarly to what proved for the
operator L, we deduce that v € N(I — KT) is equivalent to v € N(LT), and
consequently dim N(LT) =dimN(I — KT) =dimN(I — K) = dim N(L).

Finally, we know that R(/ — K) = N(I — KT)*. Thus u — Ku = h has a
solution if and only if h € N(I — K Tyl Let us make explicit this condition:
take v, € N(I — K7), i.e., v = KT v,, and remember that we are interested
in solving the problem for & = %K f. Then we can solve the problem if and
only if & satisfies

1 1 1
0:/ hv*dxzf —Kfv*dxzf —fKTv*dxzf — fogdx .
D DT DT DT
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Thus h = 1Kf € N(I — KT)* is equivalent to f € N(I — KT)L, which
means f € N(LT)* or, explicitly, fD fvsdx =0 forall v, € N(LT).
O

Exercise 7.1 Prove that in Theorem 7.2 one has KT = (LT + tI)~L.

Similar arguments can be used for other boundary value problems. Let us present
how the result can be adapted to the Neumann problem for Laplace operator —A.
Let us restrict our attention to the homogeneous case Vu - n = 0, namely, g = 0.
The weak problem reads:

findu € H'(D) : /

Vu - Vudx = / fvdx VYveHY(D). (7.5)
D D

Theorem 7.3 (Existence and Uniqueness Theory for the Neumann Problem)
Assume that D C R" is a bounded, connected and open set, with a Lipschitz
continuous boundary 3 D. There exists a weak solution w € H'(D), w # 0, of

f Vw-Vudx =0 YveH\(D). (7.6)
D

The dimension of the space of such solutions is 1, and problem (7.5) has a solution

if and only if
/ fdx =0.
D

Proof We can repeat the procedure used for the homogeneous Dirichlet boundary
value problem. We can introduce the operator K = t(L + 7/ y~!, from L2(D)
to H'(D), and prove that K is compact from L?(D) into itself (the regularity
of the boundary 9D assures that the Rellich theorem is valid in H'(D)). Then
Fredholm alternative can be applied, and in this case we see that there are non-
trivial solutions of the homogeneous problem. In fact, a weak solution w of (7.6)
must satisfy f D [Vw|?dx = 0, hence w is a constant. Note now that the bilinear
form || p Yw - Vudx is symmetric, thus the adjoint problem coincides with the given
problem, and therefore the solutions of the homogeneous adjoint problem are only
constants. Then from the Fredholm alternative theorem applied to this problem we
have that (7.5) has a solution if and only if

/ fwdx =0

D

for all the solutions w of the homogeneous adjoint problem, thus for all the constants
w € R. This is equivalent to [, fdx = 0. m

As final remark, let us note that for a weak solution w of (7.6) the conclusion w =
0 follows if we require f D wdx = 0; thus with this additional condition the solution
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of problem (7.5) is unique. We have already proved this result: if f p Jdx = 0 there
is a solution of (7.5) and it is unique in H*1 (D) = {ve H(D)| fD vdx = 0} (see
Sect. 5.4).

Exercise 7.2 Let A be a n x m matrix, associated to the linear map v — Av,
v € R™, Av € R". Prove that R(A) = N(AT)L.

Exercise 7.3 Let A : X — Y be a linear and bounded operator, X and Y Hilbert
spaces. Define the adjoint operator A7 : ¥ — X as (AT y, x)x = (v, Ax)y for all
y € Y,x € X.Prove that

(i) R(A) =N(AT)*
(i) R(A)T = N(AT).

7.2 Spectral Theory

Definition 7.2 Let V be a Banach space and A : V +— V a bounded linear
operator.

(i) The resolvent set of A is
p(A) = {n € R| A — nl is one-to-one and onto} .
(i) The spectrum of A is
o (A) =R\ p(A).

(iii)) n € o(A) is an eigenvalue of A if N(A — nl) # {0}.
(iv) If n is an eigenvalue of A, any w € V, w # 0, satisfying

Aw = nw

is an associated eigenvector.

Theorem 7.4 (Spectrum of a Compact Operator) Let V be a Hilbert space and
assume that dimV = 4o00. Let K : V + V be a linear and compact operator.
Then

(i) 0 € o(K).
(ii) If n # 0 belongs to o (K), then 1 is an eigenvalue of K.
(iii) The eigenvalues n # 0 are either the empty set, or a finite set, or a sequence
tending to 0.
(iv) If n # 0 is an eigenvalue, then dim N(K — nl) < +oo.
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We now apply this general theorem to a boundary value problem. We focus on
the elliptic operator L (with bounded coefficients) and the homogeneous Dirichlet
boundary condition.

Theorem 7.5 Let D be a bounded, connected and open set in R". There exists an
at most countable set ¥ C R such that the problem

ue HY(D) : BL(u,v)z)\/ uvdx—i—/ fvdx  Yuve Hj(D) (7.7)
D D

has a unique solution for each f € L*(D) if and only if . ¢ . Moreover, if T is
infinite, then ¥ = {)\k},ﬁl with Ay — —+00. In particular, Ay can be reordered in a
non-decreasing way, with A1 < Xy <Az <....

Proof Choose T > 0 in such a way that

B (w,v) = Bp(w,v) + 1’/ wvdx
D

is coercive in HO1 (D). We have seen in Sect. 5.3 that this is possible choosing

T > max(0, —pu),

where u = infp ag — ﬁ ||b||%oo (D) (let us note that there we wrote o instead of ,

but now o denotes the spectrum. . . ).

For . = —1 we know that (7.7) has a unique solution, as B; is coercive. Thus
let us assume from now on that A # —7. According to the Fredholm alternative
(applied to the bilinear form By (w, v) — A f p Wv...), we know that problem (7.7)
has a unique solution for each f € L?(D) if and only if the only solution of

By (u,v) = ,\/ uvdx Vv e H)(D)
D
is u = 0 (see Theorem 7.2). This means that # = 0 is the only solution to
BL(u,v)+1:/ uvdx = (t +A)/ uvdx VUEHOI(D).
D D

We can rewrite this relation as

T+ A

u=L+tH '+ Nu= Ku,

having set K = 7(L 4+ tI)~'. We have already proved that K : L>(D) — L*(D)
is linear and compact. Thus its spectrum is given by O (in fact K is not onto form
L%(D) to L*(D): HOI(D) is a subspace of L%(D), strictly contained in it) and by
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eigenvalues. Thus u = 0 is the only solution to Ku = #u if and only if # is

not an eigenvalue of K. The eigenvalues n; # 0 of K are either the empty set, or a
finite set or a sequence convergent to 0. In the last case, from

T
M= T+ Ak
we get
1—
M=T Nk
Nk

We want now to show that n; > 0. Being n; an eigenvalue of K, we have
Kwg = nrwy , wr #0,

which is equivalent to
T
T(L+ D)™ wp = mewp &= Twg = (L + 1DHwy <= (L+1Hwi = .
k
This means
T
By (wi, v) = —f wivdx
Nk JD
and from the coerciveness of B, (-, -) we get
w2 ) < Br(wiowe) = — | widx < — gl
oWk HI(D) = D (W, Wg) = e Jp k —= Nk k HI(D)'

Thus i > o > 0, hence n; > 0 (and consequently Ay > —1). In conclusion

nk—>0+ and A=t k—)—i—oo,

Nk

which is the stated result. m|

Exercise 7.4 Under the assumptions of Theorem 7.5, take A ¢ X and for each
feL*D)letu HOl (D) be the unique solution of (7.7). Prove that the solution

operator Sy : f > u is a bounded operator in L2 (D), namely, there exists a constant
C > 0 such that

lull 2y = Clf 2y -

Exercise 7.5 Under the assumptions of Theorem 7.5, take A ¢ X and for each
feL*D)letu HO1 (D) be the unique solution of (7.7). Prove that the solution



130 7 Additional Results

operator Sy : f > u is a bounded operator from L?(D) to HOl (D), namely, there
exists a constant C > 0 such that

”“”H'(D) =< C||f||L2(D)-

Another important result is the following.

Theorem 7.6 (Spectrum of a Compact and Self-Adjoint Operator) Let V be a
separable Hilbert space and let K : 'V + V be a linear, compact and self-adjoint
operator. Then there exists an (at most) countable orthonormal Hilbertian basis of
V consisting of eigenvectors of K in particular, if dim V = 400 the eigenvectors
of K are an infinite sequence, and if moreover dim N (K) < 400 the eigenvalues of
K are an infinite sequence.

As a consequence, it holds:

Theorem 7.7 (Spectrum of a Symmetric Elliptic Operator) Let D be a bounded,
connected and open subset of R". Let the coefficients of the operator L be bounded
and satisfy a;j = aj; fori,j = 1,...,n, b = 0fori = 1,...,n. Then there
exist an infinite sequence {A}3o., of eigenvalues of L and a countable L%(D)-
orthonormal Hilbertian basis {wy}72 | given by eigenvectors of L with homogeneous
Dirichlet boundary condition, namely, solutions wy € HO1 (D) of

Br(wi, v) = ,\k/ wyvdx  Yv e Hj(D).
D
The eigenvectors
Wk

wf = ——
k S+t

are an orthonormal Hilbertian basis of H& (D) with respect to the scalar product
given by

B (w,v) = BL(w,v)—i—r/ wvdx ,
D

where T > 0 is such that B;(w, v) is coercive in H(} (D).

Proof Let us first consider the case T > 0 (namely, By (-, -) is not coercive HOl (D)).
We know that L2(D) is a separable Hilbert space; furthermore, we have already
seen that the operator K = (L + t/ )y~ Lis compact in L?(D), whose dimension is
infinite, and we trivially see that N(K) = {0}. Moreover, from a;; = a;; and b; =0
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we see that K is also self-adjoint. Indeed we have that

n n
Lv=— Z Di(aijDjv) + ZbiDiv + agv
ij=1 i=1

n n
LTy =— Z Dia;iDjv) — ZDi(biU) + apv
i,j=1 i=1

and so L = LT . Thus there exists a sequence of eigenvalues 1, and eigenfunctions
wy of K such that wy are an orthonormal Hilbertian basis in L(D). Let us see
what is the meaning of this statement. We have wy € L?(D), wy # 0, such that
Kwi = nrwg; this is equivalent to

(L + Tl)ilwk = nwg < twr = N (L + tHwyg

k
Wk ,

T
<— L+thHwy=—wr < Lwy =7
Nk Nk

thus wy are the eigenvectors of L corresponding to the eigenvalues A, = i

—1. Coming back to the bilinear forms, we see that "
B (wg,v) = Bp(wg,v) + 71 /D wivdx = (A + 7) /D wrvdx Yv e H& (D).
Thus
Br(wi, wj) = (A + 1) /D wrw;jdx = (A + 7)d; .

In conclusion,

wi

S+t

Wy =

is an orthonormal system with respect to the scalar product B; (-, -) in H(; (D). For
verifying that it is a Hilbertian basis, it is sufficient to see thatif v € Hé (D) satisfies
B (v, wg) = 0 for every k > 1, then it follows v = 0. This is true as

0= B;(v,wy) = Br (v, wr) + 1:/ vordx = (Mg + r)/ vordx ,
D D

thus f p Vwigdx = 0 for every k > 1. Since wy is an orthonormal Hilbertian basis in
L*(D) it follows that v = 0.

The proof for the case T = 0 (namely, By (-, -) is coercive HOI(D)) is essentially
the same, just replacing the compact operator K by L™!. This leads to a sequence
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of eigenvalues Ay = % > 0, 1 being the eigenvalues of L™!, of eigenvectors wy

orthonormal in L?(D), and of eigenvectors wy = f—ﬁ orthonormal in HOl (D) with
respect to the scalar product given by By (w, v). O
Exercise 7.6 Prove that the minimum eigenvalue A; of the Laplace operator —A
associated to the homogeneous Dirichlet boundary condition is equal to %, where

Ip vidx

Cp =
b SuP [p IVv|2dx

veH}H(D),v#£0

is the “best” Poincaré constant (see Sect. 6.2).
Exercise 7.7

(i) Consider the elliptic operator

n
Lw=— Z Di(aijDjw) + apw ,
ij=1

with a;; = aj; and a9 > 0. If A, is an eigenvalue of L associated to anyone
of the boundary conditions of Dirichlet, Neumann, mixed or Robin type, then
Ae > 0.

(i) The case A, = 01is possible if and only if the boundary condition is of Neumann
type and ap = 0. In that case the corresponding eigenvector w, is a constant
(different from 0).

7.3 Maximum Principle

A peculiar property of a solution of an elliptic boundary value problem is that, under
suitable assumptions, its values on the boundary d D are a bound for its values in the
interior D. Just to propose a simple physical example, one can think to an elastic
membrane fixed on the boundary: looking for the position u in the vertical direction,
the simplest model is given by the solution of the Poisson equation —Au = f,
where f is the external force. When the membrane is charged by a load (thus f <
0), the values of u on the boundary are higher than its values inside (or viceversa, if
you pushes it from below, with f > 0).

We start by underlying a clear fact: for a function v € H'!(D) the meaning of
v > 0 on 9D is that its trace vjyp € L2(3D) satisfies vipp > 0 (since we are
considering the trace vjyp, we have to assume that the boundary 9D is Lipschitz
continuous).

Another remark is that it is possible to see that v* = max(v,0) and v~ =
max(—v, 0) belong to HY(D) forv € HY(D) (see Exercise 7.8); moreover, v < vT
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and v > —v~ a.e. in D. A consequence is the fact that the statement v > 0 on d D
can to be interpreted as v~ € Hé (D); similarly v < 0 on 3D means v € HO1 (D).

Exercise 7.8 Let D C R" an open set. Prove that v = max(v,0) and v~ =
max(—v, 0) belong to W7 (D) forv € Wh-P(D), 1 < p < 400. More precisely,
defining

4 Div wherev > 0 _ —D;v wherev <0
w. = , W = )
! 0 where v <0 ! 0 where v > 0
one has D;vT = wi‘|r and Djv- =w; ,i=1,...,n.

i

We need now a definition. We say that u € H (D) satisfies Lu < 0 on D if
Br(u,v) <0 VYveHJ(D),v>0ae.inD.

Definition 7.3 If u € H'(D) satisfies Lu < 0 in D, then it is called subsolution of
L. A function u € H'(D) is called supersolution of L if —u is a subsolution of L
(namely, if By (u,v) > Oforallv € HO1 (D), v > 0a.e.in D).

Theorem 7.8 Let D C R" be a bounded, connected and open set with a Lipschitz
continuous boundary dD. Let L be the elliptic operator

n n
Lv=— Z Z),'(aijZ)jv) + Zbi@,'v +apv,
ij=1 i=1
with bounded coefficients a;j, b; and ag. Assume that ap > 0 a.e. in D. Then:

(i) if u is a subsolution of L we have

supu < supu™;
D aD

in particular, ifu < 0on D (thusu™ € HO1 (D)) it follows u <0 a.e. in D;
(ii) if u is a supersolution of L we have

.
i 2 o)

in particular, ifu > 0 on 3D (thus u™ € H(} (D)) it follows u > 0 a.e. in D.

Proof Let us give the proof under the assumption that the weak divergence div b
exists and satisfies divb < 0 a.e. in D. The proof for the general case can be found
in Gilbarg and Trudinger [11, Theorem 8.1, p. 168].
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(i) Let u be a subsolution of L. Then

n n
/ Z a;jDjuDivdx < —/ Zbiﬂiu vdx —/ apuvdx
D D

ij=1 D

for each v € Hol(D), v > 0ae. in D. Set M = sup,p u™, which clearly
is > 0 (this is an important point in the proof). We can suppose M < +oo,
otherwise we would have sup,,, u™ = +00 and nothing has to be proved. Take
v = max(u — M, 0); clearly v > O a.e. in D and from u < M on d D we have
v E H& (D). Moreover, note that in the set {u > M} we have v = u — M, thus
Vv = Vu; instead, where {u < M} one has v = 0 and Vv = 0. Then we have

n n
/ Z a,-jZ)juZ),-vdx = / Z a,-jZ)juZ),-vdx
D {u>M} .

i,j=1 i,j=1

n
+/ Z aijZ)juZ),-vdx
{fu<m} .

i,j=1

n
:/ Z aijZ)ij),-vdx
{u>M} .

i,j=1

n
:/ Z a,-jZ)ijivdx
D .

i,j=1
zao/ Voldx .
D

where oy > 0 is the ellipticity constant. Moreover

n
—/ Zbil),-uvdx:—/
D {u>M}

i=1

n n
1
1 biDivvdx = —/;)21: Ebi Di(vz)dx
=

i=

1

=/ —divbv3dx <0
D2 ——
<0

and

—/ apuvdx = —/ apuvdx —/ apuvdx = —f apuvdx
D {u>M} {fus<m} {u>M}

:—/ ap u (W—M)dx <0.
{u>M}VV"-/
>0 =M>0  >o
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Thus
/ |Vv|2dx <0,
D
hence Vv = 01in D. Since v € Hd (D), it follows v = 0a.e.in D,henceu < M
a.e.in D.

(ii)) The proof in the case of u supersolution comes from the fact that —u is a
subsolution and (—u)t = u~.
O

Exercise 7.9 Prove that

sup ut = max(supu,0) and inf(—u#~) = min(infu, 0)

oD 9D aD oD
(so that the conclusion of Theorem 7.8 can be written as supp u < max(sup,p u, 0)
for a subsolution and infp u > min(infyp u, 0) for a supersolution).

Remark 7.1 Note that in the Theorem 7.8 we cannot substitute supy, u™ with
supyp u or infyp u™ with infyp u. The following example can clarify the point:
consider the one dimensional elliptic problem

—u"+u=0
u=D =1, u(ly=1.

(7.8)

To find the solution, consider the associated polynomial —r? + 1, whose roots are
r = 1,r = —1. The general solution of —u” + u = 0 is thus given by
X

u(x) =cre* +ce .

Imposing the boundary conditions, it follows

cle ' +me=1, cle+cre ' =1,
thusc; = ¢ = #, and we finally obtain
u(x) = X +e
(1) = 3 )

(see Fig.7.1).

Taking the derivative we see that u'(x) = —.

e+e*1
forx > 0and ¥’ < O for x < 0, therefore u has its minimum for x = 0 (as it is

also clear from Fig.7.1). This minimum value is #, which is larger than 0 and

(e* —e™), which satisfies u’ > 0
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Fig. 7.1 The graph of the y
solution 1
M(X) = H%(ex + e_x) of \‘/
problem (7.8)
0.5
X
-1 -0.5 0.5 1

smaller than 1. Thus

2
inf u=—<1= inf u,
(-1,1) e+e! A(=1,1)
but, as the theorem says,
. 2 . _
inff u=—>0= inf (—u").

(1,0 e+e! a(=1,1)

One can revisit this example noting that the solution u satisfies u > 0. Therefore
—u” = —u < 0, and u is a subsolution of the elliptic operator Lv = —v".
Therefore the theorem assures that the (positive) maximum is on the boundary, as it

is reasonable for a charged elastic membrane.

Remark 7.2 Instead, if a9 = 0 we can substitute sup,, u™ with sup,,u and
infyp u™ with infyp u. In fact, in this case one can repeat the same proof (again,
for simplicity, with divb < 0), but now setting M = sup,p u (which is no longer
assured to be non-negative). Choosing v = max(u — M, 0), the assumptions that u
is a subsolution, that div b < 0 and that ag = O still yield

n
/ Z aiijuZ)ivdx <0,
D .

i,j=1

and everything goes on as in the previous case.
An interesting consequence is the following result.

Theorem 7.9 (Existence Theorem via Fredholm Alternative) Let D C R” be a
bounded, connected and open set, with a Lipschitz continuous boundary dD. Let L
be an elliptic operator with bounded coefficients a;j, b;, ap. Assume that ag > 0 a.e.
in D. Then there exists a unique solution u € HO1 (D) of the homogeneous Dirichlet
boundary value problem

BL(u,v)szvdx Vv e H)(D).
D
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Proof Letw € HOl (D) be a solution with f = 0. Then it is both a subsolution and
a supersolution, thus

0=inf(—w™) <infw < supw < sup wt =0,
oD D D aD

hence w = 0 in D. Thus the thesis follows from the Fredholm alternative, see
Theorem 7.2. o

Remark 7.3 The existence and uniqueness of a solution for the homogeneous
Dirichlet boundary value problem has been proved, via coerciveness, if b €
W1°(D) and ay — %divb > —v, with v > 0 and small enough (precisely, such
that og — 2Cpv > 0, with g > 0 the ellipticity constant and Cp > 0 the Poincaré
constant; see Exercise 5.1). Therefore the two results are not comparable. In one
case b is only assumed to be bounded, but one needs ag > 0 in D. In the other
case b is assumed to belong to WL (D) and to satisfy divb < 2(ap + v), but no
assumption on the sign of ag in D is required.

7.4 Regularity Issues and Sobolev Embedding Theorems

7.4.1 Regularity Issues

Let us look back at the existence theorems for the four boundary value problems we
have considered. In all cases, we have found a weak solution u € V of

B(u,v):/ fvdx YveV,
D

where V is a infinite dimensional, closed subspace of H L(D).
Since this is the weak form of the second order elliptic equation

n n
Lu=—- )" Dia;Dju)+ Y bDu+au=f,
i,j=1 i=1
and the right hand side f belongs to L?(D), we could expectu € H?(D).

Let us show with a formal example that this is reasonable. Suppose that u is a
solution to —Au = f in D, and assume that u € C3°(D). Then we have

/(—M)%:/ fdx.
D D
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Integrating by parts we obtain

n
/ fzdx:/(—Au)zdx :[ Zz)ipiuz)jz)judx
D D D

i,j

=D.D;
n n
= —/ E Z)jZ)i D,’M.Z)jl/ldx 2/ E DjDiuZ)iDjudx
D .~ D .~
i,j=1 i,j=1

=y / (D; Dju)*dx Z/(Z)kl)lu)zdx,
D

ij=1YP
(7.9)

for any fixed couple of indices k,/ = 1, ..., n. Hence the LZ(D)-norm of all the
second order derivatives is bounded by the L2(D)-norm of the right-hand side f.

For a general operator L it is necessary to take into account the regularity of the
coefficients. Rewriting the second order term we have

n n n
— Z Z)i(aiiju) = — Z aijDiZ)ju — Z (Dia,-j)Z)ju s
i,j=1 i,j=1 i,j=1

thus

= > @ DiDju= Y (Diai)Dju— Y biDiu—aou+ f. (7.10)

i,j=1 i,j=1 i=1
Already knowing that u € H'(D), this suggests that we have to assume
a;j € CY(D) fori,j=1,....,n

(or simply a;; € W1-2°(D)). With this choice the right-hand side in (7.10) belongs
to L2(D), because only products between L°°(D)-functions and L?(D)-functions
appear.

Theorem 7.10 (Interior Regularity) Assume that D C R" is a bounded, con-
nected and open set. Let u € H'(D) be a weak solution of Lu = f in D,
with f € L*(D). Assume that ajj € Ccl(D), b; € L®(D), ag € L®(D) for
i,j=1,...,n. Thenu € HI%C(D) and for each subset Q CC D it holds

lull 2oy = CULF L2y + NullL2py) »

where the constant C > 0 only depends on D, Q and a;j, b;, ay.
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Proof We only give a brief description of the ideas. There are some steps:

1. To localize the problem into Q use a cut-off function ¢, namely, a C°°-function
with (x) = 1in Q,¢(x) = 0onR*"\ 7,0 < ¢(x) < 1in D, where Q CC
T cC D (see Corollary A.1).

2. Forw € L*(D),k = 1,...,n and h # 0 consider the difference quotients

w(x + hey) — w(x)
h 9

Diw(x) = (7.11)

definedin Q CcC D for 0 < |h| < dist(Q, a D).
3. Take as test function in the weak formulation

v=—D"2Dlu)

and proceed to estimate all the terms.
4. This leads to the estimate

lull 20y = CULS N 2oy + Nl g rry) s

with a similar procedure one finds

lullgrry = CULF L2y + el L2p)) »
( )

thus the stated result.

Two important properties of difference quotients are used: see Exercises 7.10 and
7.11. |

Exercise 7.10 Take v € L?(D), ¢ € L*(D) with ® = suppg C D, and consider
the difference quotients defined in (7.11). Then we have the integration by parts
formula

/vl)f(pdxz—/@k_hvwdx,
D D

for all 2 with O < |h| < dist(®,0D), k=1,...,n.
Exercise 7.11

(i) Take v € H'(D) and consider Q CC D. Then the difference quotient Dy =
(Z)ﬁ’v, R Z)ﬁ v) defined in (7.11) satisfies

1D vl 120y < IVl L2

for each h with 0 < |h| < dist(Q, a D).
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(ii) Take k with 1 <k <n,v € L3(D)and Q CC D. Suppose that there exists a
constant C, > 0 such that

1Dl 2(0) < Cu

for each h with 0 < |h| < dist(Q, dD). Then Dyv € L*(Q).
(iii) Take k with1 < k <n,v € L*(D) and suppose there exists a constant Cy > 0
such that

1Dt vl 12(p,,) < C

for each h # 0, where Dy, = {x € D|dist(x,dD) > |h|}. Then Dyv €
L*(D) and | Dyvl|;2py < Cs.

An inductive argument gives:

Theorem 7.11 (Higher Interior Regularity) Assume that D C R" is a bounded,
connected and open set. Let u € H'(D) be a weak solution of Lu = f in D, with
f € H"(D), m > 1. Assume that a;j € CmH(D), b; € C"™(D), ap € C"™(D) for
i,j=1,...,n. Thenu € Hl’('sz(D), and for each Q CC D we have the estimate

||u||H"'+2(Q) =C (||f||H’"(D) + ||M||L2(D)) ,

where the constant C > 0 only depends on m, D, Q and a;j, b;, ay.

These regularity results can be extended up to the boundary 9 D. For simplicity,
let us focus on the homogeneous Dirichlet boundary value problem; however, the
results are also true for the homogeneous Neumann and Robin problems.

Theorem 7.12 (Regularity Up to the Boundary) Letr the assumptions of the
interior regularity Theorem 7.10 be satisfied. Assume moreover that a;; € C (D)
and that 3D is of class C?. Assume that u € H(% (D) is a weak solution of Lu = f,
upp =0. Thenu € HZ(D) and it holds

Il g2y < € (1 lz2¢py + Nl z2(py) »

where the constant C > 0 only depends on D and a;j, b;, a.
Proof As for the interior regularity result, there are some steps.

1. Since it is assumed that u € H(; (D), the lower order terms of the operator L
belong to L?(D) and thus can be put at the right hand side, focusing only on the
principal part of L.

2. Reduce the problem to a flat boundary by local charts (here the fact that the
boundary 9D is of class C? is used). Note that the transformed differential
operator remains uniformly elliptic.
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3. To localize the problem into Br + = {x € R"||x| < R, x, > 0} use a cut-off
function ¢ € C(‘)’O(BR), namely, a function with {(x) = 1in B, ¢(x) = 0 on
R"\ By, 0 < ¢(x) <1inR", where B, CC B, CC B (see Corollary A.1).

4. Rewrite the elliptic problem in the half-ball Bg 4 and use as test function v the
difference quotient

v=-D"DM) , k=1,...,n—1,

namely, only acting in the directions tangential to the boundary {x, = 0} (this
will give a control on all the second order derivatives in which at least one is
tangential).

5. Use the ellipticity of the transformed operator for estimating the second order
normal derivative D, D,u in terms of the other derivatives (see also Exer-
cise 7.12).

6. Use the fact that ¢ = 1 in B, and put together all the estimates.

7. This gives the estimate

lull 2oy < € (1 2y + el g1y -

By using the weak coerciveness of the bilinear form By (-, -) (see Sect.5.3) it
follows at once

Il g1y < € (1 lz2epy + Nl z2(py) »
thus the stated result.
O

Exercise 7.12 Prove that all the terms a;; (x) on the diagonal of a uniformly positive
definite matrix in D (namely, a matrix {a;;(x)} such that Zij aij(xm;n; > aolnl?
for all n € R" and almost every x € D) satisfy a;;(x) > «p for almost every in
x €D.

Exercise 7.13 Under the assumptions of Theorem 7.12, the stronger estimate

lull g2py < CILf 2y
holds, provided that we know that for each f € L?(D) there exists a unique weak
solution u € Hé (D).
By induction, we obtain:

Theorem 7.13 (Higher Regularity Up to the Boundary) Let the assumption of
Theorem 7.11 be satisfied. Assume moreover that a;j € c"t(D), b; € C"(D),
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71 —

Fig. 7.2 The sectors S, for o = ZT” (left) and @ = ST” (right)

ap € C'"(E) fori, j = 1,...,n and that dD is of class C™*2. Assume that u €
Hd (D) is a weak solution of Lu = f, ujyp = 0. Thenu € H™t2(D) and it holds

lull gmrzcpy < C (I f lem(py + lull z2(py) -

where the constant C > 0 only depends on m, D and a;;, b;, ao.

Remark 7.4 Similar results hold for the Neumann and Robin problems, having
assumed a boundary datum g = 0. In the case g # O the trace theory for the
derivatives of u and for higher order Sobolev spaces is needed.

As we have seen, the regularity results require some assumptions on the
smoothness of the boundary and have been stated for Dirichlet, Neumann and Robin
problems. It is interesting to give a couple of examples on the regularity of the
solution in domains with corners and for the mixed problem.

Example 7.1 (Domains with Corners) Consider S, = {(r,0)|0 < r < 1, —
a/2 <0 <a/2}with0 < o < 27 and o # 7 (for « = 7 there are no corners; see
Fig. 7.2 for the cases o = 27” and @ = ST”).

Consider

T T
u(r,0) =re cos (—9) .
o

Remember that the Laplace operator in polar coordinates is given by

1

1
A:8,2+;8,+r—28§

and that the length of the gradient is given by

1
IVul? = (3,v)* + = (9v)?
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(see Exercise 7.14). Thus it is easy to check that

{Au =0 in Sy
2 T _ .
IVul? = Zr2w=D in S, .
Moreover for 6 = —«/2 and 6 = /2 we have u = 0, and for r = 1 we have u =
cos(%@). Thus u is the solution in S, of a (non-homogeneous) Dirichlet boundary

value problem for the Laplace operator, and the boundary datum is a continuous
function on the boundary. Moreover,

/2 1.2 -
[Vul>dx = / d@/ n—zrz(a_l)rdr =« re_r )
So( —a/2 0 2
thus u € H'(S,). On the other hand |2)2u| ~raZasr~ 0, therefore

1 1
s b4
|Z)2u|2dx~/ rz(a_z)rdr:/ r2e=3dr,
Sa 0 0

and this integral is convergent if and only if 3 — 27 /o < 1, namely if ¢ < 7.
In conclusion, if Sy is convex we have u € H?(S,); if Sy is not convex we have
u ¢ H?(S,). Re-entrant corners are a threshold for regularity.

Exercise 7.14 Prove that the Laplace operator in polar is given by
1 1
2 2
A=3r+;8r+r—289,
and that the gradient is given by
1. ) 1
Dy, =cos60, — —sinBdg , Dy, =sinBd, + —cosbdy .
r r

Example 7.2 (The Mixed Problem) Consider u = r!'/?sin(6/2) in § =
{r,0)|]0 < r < 1,0 < 6 < 7} (see Fig.7.3). As before, we have Au = 0 in
S, ujr=1 = sin(6/2), ujp=o = 0. We have seen in Exercise 7.14 that D, u is given
by Dy, = sinf9, + %005989, thus

5 o () 2 L conn ) o [
=SINU ——5 S| - — COS —COoS| - ) =
walt 2172\ ) TR
1 0 si 0 + cosd 0
= ——= | SIno Sin — cosgcos -1,
2172 \P7H S 2

which vanishes for 6 = z. Therefore u is the solution in S of the mixed problem
for the Laplace operator, with homogeneous Neumann boundary datum on 6 = ,
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Fig. 7.3 The domain S: the y
homogeneous Neumann

condition is imposed on the

part of the boundary

represented by a thicker line,

while the Dirichlet condition 0.5
is imposed on the remaining

part of the boundary

-1 -0.5 0.5 1

homogeneous Dirichlet boundary datum on & = 0 and non-homogeneous Dirichlet
boundary datum for r = 1 (note however that the Dirichlet boundary datum is
continuous on the boundary).

We have |Vu|? = (3,u)> + 1/r*(dgu)? = ;-, thus

T 1
1
/|Vu|2dx:/ d@/ “rdr="=
Ky 0 0 4)’ 4

andu € H'! (S). On the other hand, we have
|D%u| ~r3Pasr~0,

thus
1 1
/|Z)2u|2dx ~/ r_3rdr=/ r=2dr = 400
S 0 0
andu ¢ H*(S).

In conclusion, the mixed boundary value problem can have solutions that are
not regular. Note that the singularity has nothing to do with the corners at the points
(1,0) and (—1, 0). In fact, we can modify S in such a way that it becomes as smooth
as we want at those points, and we can then reconsider this same example in that
smooth domain.

7.4.2 Sobolev Embedding Theorems

An element in the Sobolev space W!7(D) has additional “summability” or
“regularity” properties. These properties are usually stated as “Sobolev embedding
theorems”. We will not present here the proofs (for that, see Evans [8, Section 5.6]),
which are not so difficult but present some technicalities: we only underline that the
idea is to prove suitable inequalities for smooth functions, and then use the fact that
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smooth functions are dense in W7 (D). We divide the final statement in two cases:
l<p<nandn < p < +o0.

Theorem 7.14 Let D C R" be a bounded, connected and open set. Suppose that
dD is Lipschitz continuous. Assume 1 < p < n. Then if u € WV-P(D) it follows
u € LP" (D), where

bS]

*
S| =
|
S| =

and the estimate

”u”LP*(D) S C”u”Wl,p(D)

holds with a constant C > 0 only depending on p, n and D.
Note that p* > p and p* < 400 (with p* — +oo for p — n7).

Example 7.3 Take n = 2 and u € W'2(D): then u € L9(D) for all ¢ < +o0.
Indeed u € WP (D) for an arbitrary p < 2 = n, so that u € LP" (D) for p*
converging to +ooas p — 27.

Example 7.4 Take n = 3 and u € W'2(D): then u € Lo(D), as

Remark 7.5 We have already seen that |x|~% belongs to W7 (B;) (B; being the
ball centered at 0 with radius 1), provided that p < nand 0 < a < %. Thus for

p < n, unbounded functions are admitted in W7 (D). This is also true for p = n >
1. Consider in fact u(x) = (—log|x[)* fora > O and By, = {x e R" | |x]| < 1/2}.
We have, writing |x| = r:

1
|Vu| = a(—logr)* ' |Viogr| = a(—logr)* =,
r

thus
172 |
/ |Vu|"dx N/ a"(—logr)@=Dn —pn=lgy
Bi)2 0 rh

12 1
=ao" / (—log r)(“_l)”—dr .
0 r
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Changing variable with t = —logr, dt = —%dr, we have

+00
f |Vul"dx ~ a”/ re=bngy
B]/z 10g2

which is convergent for (@ — 1)n < —1, namely 0 < o < "n;l For these values of

«a the unbounded function u(x) = (— log |x|)* belongs to Wl'”(Bl/z).

Let us come now to the second result we want to present. We first introduce the
Holder space C™*(D), withm > 0,0 < A < 1. This is given by the functions
u € C"™(D) such that

max |D%(x1) — Du(x2)| < K|x; —xal*  Vxi,xeD,
loe|=m

where the constant K does not depend on x; and x;.

Theorem 7.15 Let D C R” be a bounded, connected and open set. Suppose that
9D is Lipschitz continuous. Assume n < p < +o0. Then ifu € WP (D), possibly
modifying it on a set of measure equal to 0, we have u € C%*(D) with > = 1 — %
and the estimate

lullcorpy = Cllullwiepy

holds with a constant C > 0 only depending on p, n and D.

The norm [[u| cm.» ) is given by the sum of ||u|| cm 75 and

D — D
[M]Crii,x(ﬁ) = Z | u(xl) M()C2)|

sup -
la|=m ¥1,%2€D, x17x2 X1 = x|

Example 7.5 Taken =2andu € W3 (D): thenu € C%*(D) with A = 1—%

NI— W=

Example 7.6 Taken =3andu € W!®(D): thenu € C%*(D) withr = 1-3 =

The following characterization of Lipschitz continuous functions Lip(B) (see
Appendix B, Definition B.1) is also interesting:

Theorem 7.16 Let D C R" be a bounded, connected and open set and suppose
that 3D is Lipschitz continuous. If u € W1 (D) then u € Lip(D) (possibly having
modified it on a set of measure equal to 0). Vice versa, if u € Lip(D) then u €
wle(D).

Proof This proof is essentially taken from Evans [8, Theor. 4, p. 279]. Let u €
WLo°(D); from Theorem 6.2 we know that there exists an extension Eu, in the
following denoted #, that has a compact support in R” and belongs to W12 (R")
(thus, possibly having modified it on a set of measure equal to 0, is continuous in
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R" by Theorem 7.15). Taking the e-mollified version u, we know that u, uniformly
converges to u and that

||Vﬁ5||Loo(R”) = ”(VE)SHLOC(R") = ”Vﬁ”Loc(R”)

(for the first equality see Theorem 6.1). Then, for x, y € R"

i1 () — w1 = | fy Llie(y +1(x — y)ldt]
= | Jo Viie(y +1(x — ) - (x = ) dt| < |x = y| | VEe ]| oo g

By passing to the limit for ¢ — 0" we see that % is a Lipschitz function in R”, with
Lipschitz constant ||Vu|| Loo(R") and therefore u a Lipschitz function in D.

Assume now that u € Lip(ﬁ), with L as Lipschitz constant; in particular, u is
continuous in D and therefore bounded. The function

u(x) = inf (u(w) + L|x — w|)
weD

is defined for each x € R" (as u(-) + L|x — -] iibounded from bel_ow) and is an
extension of u. In fact, first of all for a fixed x € D and for any w € D we have

ux) —u(w) < |u(x) —u(w)| < Llx —wl,

thus u(x) < u(w) + Lix — w| and u(x) < inf, 5 (u(w) + Ljx — u)|) = u(x).
Secondly, taking into account that x € D,

ulx) = inﬁ(u(w) + Li|x — w|) <u(@x)+Lix —x| =ux).
weD

Note now that the function u# belongs to Lip(R") with Lipschitz constant L. In fact,
for each fixed x € R” the function w — u(w) + L|x — w| is continuous in D, thus
ulx) = inf, 5 (u(w) + Lix — w|) = u(wy) + L|x — wy| for a some w, € D. Take
now x, y € R" and assume that z(y) > %(x) (the opposite case is treated similarly);
it follows

[w(x) —u(y)| = u(y) — u(x) = inf, 5 (u(w) + Ly — w|) — u(wy) — L|x — wy
<u(wy) + L]y — wy| —u(wy) — L|x —w,| < L|x — y|.

For each fixedi = 1,...,n and each h € R, h # 0, the difference quotient Z)l._ n
satisfies [|D; h'zi|| Le@®"y = L since L>°(R") is the dual space of L'(R"), we can
find a sequence h,, — 0 and a function w; € L*(R") such that D; o converges
to w; with respect to the weak® convergence in L°°(R") (see, e.g., Yosida [28,
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Corollary to Theor. 1, p. 137]). Therefore, for each ¢ € C§°(R") and taking into
account Exercise 7.10 we have

Jrr#Digpdx = lim_ - 7D g dx

= — lim (pZ)l._h”‘Tidx = —f Y w;dx,
Rn

m—0Q R”

thus, in the weak sense, D;it = w; € L*(R") and D;ju = w;|p € L*(D). O

Clearly, by a simple induction argument one can also obtain immersion theorems
for higher order Sobolev spaces.

Theorem 7.17 Let D C R" be a bounded, connected and open set. Suppose that
d D is Lipschitz continuous. Assume u € Wk’p(D), k>21<p < +oo.

1. If pk < n, then u € L1(D), where

S |-
S|

1
q
and

lullLapy = Cllullwerpy

with a constant C > 0 only depending on k, p, n and D.
2. If pk > n, thenu € Ck_[”/”]_l’)‘(D), where

- [n/pl4+1—n/p if n/p is not an integer

any positive number < 1 ifn/p is an integer

and

lell cr—tn/pi-10. 5y < Cllullwer(py

with a constant C > 0 only depending on k, p, n and D.

Example 7.7 Take n = 3 and u € H*(D) = W?2(D): then u € C%*(D), with
A=[3/2]+1-3/2=1/2.

Exercise 7.15 Let D C R3 be a bounded, connected and open set, with aLipschitz
continuous boundary d D. Show that the immersion W22(D) — C%1/2(D) holds,
using Theorems 7.14 and 7.15.
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Remark 7.6 (About Compactness)

(1) Let p < n. We have seen that
whP(D) — L (D)

for p* = %; thus, since D is bounded, we also have

WlP(D) < L1(D)

for ¢ satisfying p < g < p*. It can be proved that this immersion is compact
for p < g < p* (note the strict inequality between g and p*).
(i) Let p > n. We have seen that

wlP(D) — c®*(D)
for A = 1 — n/p; thus, since D is bounded, we also have

wlP(D) — c%*(D)
for p satisfying 0 < p < A. It can be proved that this immersion is compact for
0 < @ < A (note the strict inequality between w and A).

Exercise 7.16

(i) Let D C R3 be a bounded, connected and open set, with a Lipschitz continuous
boundary d D. Show that the bilinear form

n n
B (w, v) :/ Z a;jDjwDvdx +/ Zbil)iwvdx +/ apgwvdx
D . D5 D

i,j=1

is bounded provided that the coefficients satisfy a;; € L*°(D), b; € L3(D) and
ap € L32(D).

(ii) Prove that By (w, v) is coercive in H(} (D), H*1 (D) and HllD(D), provided that
1bill 3y, i =1, ..., n,and llagll3/2(py are small enough.

Exercise 7.17 Show that the solution u# of the homogeneous Dirichlet boundary

value problem

—Au=1inD
u|3D:0 OnaD,

where D = {x € R" | |x| < 1}, belongs to C*>°(D).
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Exercise 7.18 Show that the eigenvectors wy, of the homogeneous Dirichlet bound-
ary value problem

—Aw; = Aywg in D
wk\BD =0 on 3D,

where D = {x € R"||x| < 1}, belong to C*®°(D).

7.5 Galerkin Numerical Approximation

The general form of the variational problem we have dealt with is:
findueV : Bu,v)=F(w) YveV, (7.12)

where V is an infinite dimensional Hilbert space.

This is a problem with infinitely many “degrees of freedom” (as we need
infinitely many informations for determining a function in an infinite dimensional
Hilbert space). Moreover, very often we have not an explicit formula for represent-
ing the solution. Therefore, in concrete applications it is important to devise an
approximation method to compute a suitable approximate solution.

To this aim, a very popular and efficient idea is to discretize the problem by
projecting it onto a finite dimensional subspace of V, say Viy C V, such that
dimVy = N < +oo. Notice that Vi is a Hilbert space because it is a finite
dimensional subspace.

The approximate problem in Vj can be simply formulated as follows:

finduy € Vy : B(uy,vy) = F(vy) Vuy e Vy. (7.13)

Let us assume that i1, ..., ¥y is basis of Vy: as a consequence of the linearity of
B(-, -) and F (-) this problem is equivalent to

ﬁnduNeVN : B(MN,l/fj)ZF(I/Ij) Vj=1,...,N.

This is the so-called Galerkin method. Note that it corresponds to the solution of the
linear system

AU=F,

with uy = Z?Izl Uivj,Uj € R,U = (Uy,...,Un), A = {Aj;} with A} =
B, j) and F = (F(Y1), ..., F(¥n)).

The convergence analysis is very easy, and it is based on the following important
result.
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Theorem 7.18 (Céa Theorem) Assume that bilinear form B and the linear func-
tional F satisfy to hypotheses of the Lax-Milgram theorem, i.e., that the following
conditions hold

(i) |B(w,v)| = ylwlvllvlv for y > 0 [boundedness of B(-, )]
(ii) B(v,v) > a||v||%,fora > 0 [coerciveness of B(-, -)]
(iii) |F(v)| < M|v|lv for M > 0 [boundedness of F(-)].
Then by Lax-Milgram theorem in V there exists a unique u € V, solution of the
infinite dimensional problem (7.12), and by Lax-Milgram theorem in Vy there exists

a unique uy € Vy, solution of the approximated problem (7.13). Moreover, the
following error estimate holds

lu—unlly <X inf Ju—oylly = Ldistu, Vy) .
o vyeVy o

Therefore, the convergence of the Galerkin method follows at once, provided that
forall w € V we have that dist (w, Vy) — 0as N — oc.

Proof Since B(u,v) = F(v) for all v € V, in particular we have that B(u, vy) =
F(vy) for all vy € Viy C V. Moreover B(uy,vy) = F(vy) for all vy € Vy.
Therefore B(u—uy, vy) = Oforall vy € V. Employing this consistency property,
we easily have that

as B(u—uy,uy)=0
—
allu —unl} < Bu—uy,u—uy)= B —uy,u)

as B(u—upy,vy)=0

=Bu —un,u—vN) <vylu—uylvlu—vyllv Vuy € Vyn,

and so we have obtained that
Y .
lu —unlly <= inf |lu—vylv,
o vyeVN

the desired estimate. O

Exercise 7.19 Let D C R3 be a bounded, connected and open set, with a Lipschitz
continuous boundary dD. Let V be a closed subspace of H'(D), and let the
assumptions of Theorem 7.18 be satisfied. Suppose moreover that for each w €
C%(D) one can find 7y (w) € Vy such that lw—myW)|ly = 0as N — oo. Then
show that the Galerkin method is convergent.

Remark 7.7 One of the most important examples of Galerkin approximation is that
based on finite elements. For the variational problems described in Chap. 5 the finite
dimensional subspace Vy is given by piecewise-polynomial and globally continuous
functions (see Exercise 6.8 for the proof that this is indeed a subspace of H!(D)).
Here it is assumed that the domain D is the union of (non-overlapping) subsets of
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simple shape T, the elements: say, for n = 3, tetrahedra or hexahedra. Denoting by
h the maximum diameter of the elements, let N}, be the dimension of the space

Vy,={v: D> R|veC'D),vr el VT},

where P, is the space of polynomials of degree less than or equal to r, r > 1.
Thus when &2 — 0 the number of elements T goes to infinity, and therefore one has
Ny — 4o00.

For this type of finite elements one has an error estimate between the exact
solution u and the approximate solution u), that satisfies ||u — up | g1py = O(h")
(having assumed that the hypotheses of Theorem 7.18 are satisfied and provided that
the solution u is smooth enough).

7.6 Exercises

Exercise 7.1 Prove that in Theorem 7.2 one has K7 = t(LT +tI)~1.

Solution Let us first observe that this result is clearly reasonable, as this would be
the case for a matrix K = t(L + t1)~ L.

Let us write for simplicity (-, -) instead of (-, ~)L2(D), and for w,v € L%*(D)
compute (Kw, v): defining by g € HOI(D) the solution of (L 4+ t/)g = w (in the
weak sense, B;(q, ¥) = (w, ¥) foreach ¢ € H& (D)), we have

(Kw,v) = (z(L + II)_lw, v) = (1q,v) =1t(q, V).

Then define by p € HO1 (D) the solution of (LT 4+ t1)p = v (namely, Bir(p,¥)+
t(p,¥) = (v, ¥) foreach ¢ € HOI(D)) and compute (t(LT +t1)~ v, w): it holds

(‘L’(LT + II)_lv, w) = (tp,w) =1(p,w).
Thus we must prove that (g, v) = (p, w). We have

B, 1 (p.9)+7(p.q) Byr(p.q) B(q.p)
——e ——

(g,v) = (g, (LT +tD)p) =(q. p) + (¢, LT p) = t(p,q) + (p, Lq)

and

(p,w)=(p,(L+thHg)=1(p,q)+ (p,Lq),
—————— ——
B:(q,p) B(g,p)
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thus the result
(Kw,v) = (LT + D)~ v, w)

is proved.

Exercise 7.2 Let A be a n X m matrix, associated to the linear map v — Av,
v e R™, Av € R". Prove that R(A) = N(AT)L.

Solution

(©) y € R(A) means that exists x € R” such that Ax = y. Taking now
w e N(AT), namely, ATw =0, itis easily checked that (y, w) = (Ax, w) =
(x, ATw) = 0.

(D) y e N(AT)' can be written (as any vector in R") as

y=9+Ax, $eRA, xeR".
Since we already know that Ax € N(AT)L, it follows at once § € N(AT). Also
AT5,x) =3, Ax) =0 VxeR" = AT5=0 = $eNAT).

Since § € N(AT) N N(AT)*L, it follows § = 0 and y = Ax € R(A).

Exercise 7.3 Let A : X — Y be a linear and bounded operator, X and Y Hilbert
spaces. Define the adjoint operator A7 : ¥ — X as (ATy, x)x = (v, Ax)y for all
y e Y,x € X. Prove that

(i) R(A) = N@AT)*
(i) R(A)*T = N(AT).

Solution

(i) The proof that R(A) C N(AT)L is as in Exercise 7.2; since N(AT)* is closed,
we have R(A) C N(AT)L. On the other hand, let us first verify that for a
subspace W C Y it holds wi = WL. In fact, a vector v orthogonal to all the
elements of W is clearly orthogonal to all the elements of W; viceversa, suppose
we have (v, w)y = O for all w € W and take w, € W: then w, = limg wg,
wr € W, and therefore (v, wy)y = limg(v, wr)y = 0. As a second step,

consider the orthogonal decomposition given by ¥ = R(A) & R(A)L and take
y € N(AT). We can write y = 3 + ¢, where § € R(A)" = R(A)L and
q € R(A). Now the proof is as that of Exercise 7.2: since we already know that
g € R(A) C N(AT)L, it follows § € N(AT)*; moreover

(AT9,x)x =, Ax)y =0 VxeX,

thus § € N(AT) and therefore $ = 0. In conclusion, y = g € R(A).
(ii) Follows at once from (i) by passing to the orthogonal.



154 7 Additional Results

Exercise 7.4 Under the assumptions of Theorem 7.5, take A ¢ ¥ and for each
feL*D)letu HO1 (D) be the unique solution of (7.7). Prove that the solution

operator Sy : f > u is a bounded operator in L?(D), namely, there exists a constant
C > 0 such that

||”||L2(D) < C||f||L2(D)~

Solution We prove that the operator S), is closed, thus, being defined on the whole
space L2(D), it is bounded as a consequence of the closed graph theorem (see
Yosida [28, Theorem 1, p. 79]). Take fiy — f in LZ(D) and uy = S fx — ¢
in L2(D). For a suitable T > 0 we know that uy is the solution of the coercive
problem

BL(uk,v)—i-r/ upvdx = (t +,\)/ ukvdx—i—/ fivdx Vv e H)(D).
D D D
(7.14)

Thus by Lax—Milgram theorem we have the estimate
luill gipy < Cllurll 2y + il 2(py) -

Therefore u; is bounded in H!(D), and since H!(D) is a Hilbert space we
can extract a subsequence uy, which is weakly convergent to w € H '(D) (see
Yosida [28, Theorem 1, p. 126, and Theorem of Eberlein—Shmulyan, p. 141]), in
particular is weakly convergent to w in L>(D). As a consequence of the uniqueness
of the weak limit we obtain ¢ = w, and passing to the limit in (7.14) we find

BL(q,v)—l—t/qux:(t—i—)L)/qux—i—/fvdx VUEH(}(D).
D D D

This shows that ¢ = S, f, thus S, is closed.

Exercise 7.5 Under the assumptions of Theorem 7.5, take A ¢ ¥ and for each
feL*D)letu € HO1 (D) be the unique solution of (7.7). Prove that the solution
operator S : f + u is a bounded operator from L?(D) to HOl (D), namely, there
exists a constant C > 0 such that

lull grpy = CIf 2oy -

Solution In Exercise 7.4 we have seen that « is the solution of the coercive problem

By (u,v) + r/

uvdx:(r—l—k)/uvdx—i—f fudx VveH(}(D),
D D D
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T > 0 being a suitable constant, and that by Lax—Milgram theorem u satisfies the
estimate

lull g1py < Clull2(py + 1 f l2(py) -

Thus the result follows from Exercise 7.4.

Exercise 7.6 Prove that the minimum eigenvalue A; of the Laplace operator —A
associated to the homogeneous Dirichlet boundary condition is equal to CI—D, where

Ip vidx

Cp =
b sup [p IVv|2dx

veH}(D),v#£0

is the “best” Poincaré constant (see Sect. 6.2).

Solution The eigenvalues Ay and their related eigenvectors wy € HOl (D), wi # 0,
k=1,2,...,satisfy

f Vwy - Vodx = xk/ wrvdx Vv e H} (D), (7.15)
D D

thus A1 can be represented by the Rayleigh quotient

[p |Vwi2dx
M=
fD widx
and we have at once
Vo|2dx 1
veH (D).v£0  [pvidx Cp

On the other hand, knowing that the sequence of eigenvectors wy is an L>(D)-
orthonormal Hilbertian basis (see Theorem 7.7), we can write v = Z,fil VW,
where vy = [}, vwgdx, so that

o0 o0

[ = [ (v (S vm)ar =302

k=1 j=1 k=1
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and, using (7.15),

o o0
/D|Vv|2dx = /D (; kawk) . (;vijj)dx

vkvj/ Vwg - Vwjdx
D

oo
vkvj)»k/. wi widx = Zv,%)»k
D
k=1

> ——— =Xl
2
vedx 2
Ly
k=1
thus
1 Vol|2dx
_ inf fD|—| > A,

Cp  veml(pyvto [pv2dx

and the thesis is proved.
Exercise 7.7

(i) Consider the elliptic operator

n
Lw=— Z Di(aijDjw) + apw ,
ij=1

with a;; = aj; and a9 > 0. If A, is an eigenvalue of L associated to anyone
of the boundary conditions of Dirichlet, Neumann, mixed or Robin type, then
A > 0.

(i1) The case A, = 0 1is possible if and only if the boundary condition is of Neumann
type and ap = 0. In that case the corresponding eigenvector w, is a constant
(different from 0).
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Solution

(i) The eigenvalue X, and the correspondent eigenvector w, € V, w, # 0, satisfy
B(w,, v) =A*/ w,vdx YveV,
D

where V and B(-, -) are the Hilbert space and the bilinear form associated to
the different boundary value problems (see Sect. 5.1). In particular, we have

B(wy, wy)
A=

[p w2dx
and, by the ellipticity assumption (and the assumption that the coefficient « for
the Robin problem is non-negative) we obtain

B(w,, wy) > Br(w,, wy) = fD Z?,j:l a;i Djw,Diw,dx + fD aow%dx

> ao [ |Vw,|2dx + Ip agw?dx > 0.

(i1) When we have 1, = 0, from the arguments in (i) we deduce B(w,, w,) = 0.
Therefore coerciveness and the assumption ap > 0 imply w, = const. For the
Dirichlet, mixed and Robin boundary value problems this would give w, = 0,
a contradiction. (Note that for the Robin problem this follows from the fact that

0 = B(w,, wy) = Br(w,, wy) +f kw2dS,
oD

thus [;, kw?dS, = w? [;,kdS, = 0, only possible for w, = 0.) For the
Neumann boundary condition knowing that w, = const has as a consequence
f p @odx = 0, which gives ag = 0. Finally, it is trivial to show that the Neumann
problem with ap = 0 has a vanishing eigenvalue correspondent to a constant
eigenvector (different from 0).

Exercise 7.8 Let D C R" an open set. Prove that v¥ = max(v,0) and v~ =
max(—v, 0) belong to W7 (D) forv € WhP(D), 1 < p < 400. More precisely,
defining

i Div wherev >0 _ —PDijv wherev <0
wi = . wi = i
0 where v <0 0 where v > 0
ot — ot T — T —
one has Djv" = w;" and Djv™ =w; ,i =1,...,n.

Solution Since [v*| < |v|, [v™| < |v], |wl.+| < |Djvl and |w; | < |D;v] itis clear
that v™, v, wl‘|r and w;” belong to L?(D); therefore the only things to be proved are
the differentiation formulas. Let us first make some naive considerations. Nothing
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has to be proved if either v > O a.e. in D or v < 0 a.e. in D. Thus we can consider
the case in which both sets {v > 0} and {v < 0} have positive measure. Let us
focus on vT. Defining wiJr as above and taking ¢ € C3°(D) we formally have, by
integration by parts,

/ wi+<pdx = / w;"(pdx +f wi+<pdx = Divedx
D {v>0} {v=<0} {v>0}

= —/ vZ),-(pdx+/ njvedS, = —/ v Djpdx
{v>0} 9{v>0} D

where we have deduced that fa{v>0} nivpdS, = 0as dfv > 0} = (Afv > 0} N
D)U (d{v > 0}NaD), ¢ = 0on dD and we expect that v = 0 on d{v > 0} N D.
However, this formal proof is not rigorous, as when v € W7 (D) is not smooth the
set {v > 0} is only a measurable set, and an integration by parts formula like the one
here above is not necessarily valid. Moreover, even the additional information that
v is smooth would not solve the problem, as in that situation it would be true that
the set {v > 0} is an open set and that v = 0 on d{v > 0}, but still this boundary
d{v > 0} could be as wild as you (do not) like.

Thus we have to adopt a different strategy, that we essentially borrow from
Gilbarg and Trudinger [11, Lemma 7.6, p. 145]. First of all let us prove the following
“chainrule”:ifv € LIIOC(D) with D;v € Llloc(D) and F € C'(R) with F/ € L®(R),
then D;[F(v)] = F/(W)D;jvin D,i = 1,...,n. In fact, take ¢ € C8°(D), set
® = supp ¢ and take an open set O with a Lipschitz continuous boundary d Q0 and
such that ® € Q cC D. From Theorem 6.1 there exists a sequence v,, € C*®(Q)
such that v,, — v and Dj;v,, - D;v in Ll(Q); for these smooth functions (and
knowing that d Q is Lipschitz continuous) by integration by parts we clearly have

/ F(um) Dip = _/ F/(vm)DiUm(p-
0] 0]
The “chain rule” [}, F(v) Dj¢ = — [, F'(v)D;v ¢ thus follows as
/ |F(v) — F(v)] < SUP|F/|/ lvm — vl =0
] 0]

and
fQ |F' (Vm) Djvm — F'(v)D; v

< Jo IF' @m|Divm — Divl + [ |F' (o) — F'(0)[|Div]
= Sup|F/|fQ |D;ivy — Divl +/Q |F/(Um) - F/(U)”-Divl — 0.
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This last result holds true since (for a subsequence...) v,, — v a.e.in Q, F'(v,) —
F’(v) a.e. in Q (here the continuity of F’ has been used) and thus

/ |F' () — F' ()| Div] — 0
Q

by the Lebesgue dominated convergence theorem.
Take now v € WLP(D), 1 < p < 400, and consider the approximation of the
function s + max(s, 0) given by

0 fors <0
Fc(s) = %SZ forO0 <s <e

s—5 fors>e,

which clearly satisfies F. € C!'(R), F/ € L®(R), F.(s) — max(s, 0) and F/(s) —
xF(s) for s € R, where x T (s) is the characteristic function of {s > 0}. Thus we
have

/Fe(v)Dzw:—/ F.(v)Dive,
D D

and by the Lebesgue dominated convergence theorem we find

/v+1)i<0=—/ xT(WDive =— Di”‘/’=_/ w' .
D D D

{v>0}

For another proof of this exercise and other related results we refer to the classical
book by Kinderlehrer and Stampacchia [15, Theorem A.1, p. 50].

As a final remark, take into account that it is not even trivial to prove the
following “trivial” result: for v € WLP(D) it holds Vv = 0 ae. in E = {x €
D |v(x) = 0}. Its proof is indeed a consequence of the results provided by this
exercise, as v = vt — v,
Exercise 7.9 Prove that

supu™ = max(supu,0) and inf(—u~) = min(infu, 0)
oD 9D aD oD

(so that the conclusion of Theorem 7.8 can be written as supp, # < max(sup,p u, 0)
for a subsolution and infp # > min(infyp u, 0) for a supersolution).

Solution For the sake of simplicity let us write B = supypu’ and A =
max(sup, p u, 0). Suppose that supy, u > 0 and define Q = {x € 9D |u(x) > 0}:
we have u™ = uin Q andu®™ = 0in 9D \ Q, thus B = supypu™ = suppu™t =
supgu = supypu = A. On the other hand, if supyp,u < 0 we have A = 0



160 7 Additional Results

and u < 0 on 3D, thus u™ = 0 on 3D and finally B = 0 = A. The proof of
infyp(—u~) = min(infy p u, 0) is similar.

Exercise 7.10 Take v € L2(D), ¢ € L*(D) with ® = supp¢ C D, and consider
the difference quotients defined in (7.11). Then we have the integration by parts
formula

/ vZ)Zgodx = —/ Z)k_hmpdx,
D D

for each 4 with 0 < |h| < dist(®,0D), k=1,...,n.

Solution Set ® = supp ¢ and define ®X = {y € D |y = x — hey, x € ®}. Then we
have

/ v(x — hep)p(x)dx = / v(x — hep)p(x)dx
D

=1, v(Y)@(y + hey)dy = / v(Y)e(y + her)dy,
of D

having used the change of variable y = x — hey. Then it easily follows

/ U(x)fﬂ(x the) —¢() _/ v(x — hey) — v(x)(p(x)dx’
D D

h —h
which is the stated result.
Exercise 7.11
(i) Take v € H'(D) and consider Q CC D. Then the difference quotient Dhy =
(D, ..., Dlv) defined in (7.11) satisfies
1D vl 120y < IVl 220

for each h with 0 < |h| < dist(Q, a D).
(i) Take k with 1 < k < n, v € L*(D) and Q CC D. Suppose that there exists a
constant C,, > 0 such that

1Dl 200y < Cs
for each h with 0 < |h| < dist(Q, dD). Then Dyv € L2(Q).
(iii) Take k with1 <k < n,v € L%(D) and suppose there exists a constant Cy > 0

such that

h
”Dkv”Lz(Dv,') S Cj
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for each h # 0, where D, = {x € D|dist(x,dD) > |h|}. Then Dyv €
L*(D) and | Dyvl|;2py < Cs.

Solution

®

(ii)

By approximation, we can assume that v is smooth. Take x € Q and let e the
unit vector in the k-th direction. Since

d - d
Ev(x +they) = ;(Djv)(x +thek)a(x]- +thég;) = h (Dyv)(x +they) |

we have
1
v(x + her) —v(x) = h/ (Drv)(x + ther)dt
0

and consequently

lv(x + hex) — v(x)[?
5 dx
0 h

/ (Z),i’v)z(x)dx =
0

2

1
=/ (/ (Dkv)(x—l-thek)dt) dx
Q 0
1
< / ( / (Z)kv)z(x+thek)dt) dx
o 0
1
= / ( / (Dkv)z(x+thek)dx) dt
0 [¢)
1
< / ( / (Dw)%y)dy) dt = / (Drv)?(x)dx
0 D D

having used the change of variable x + they = y.
The idea is to pass to the limit in the integration by parts formula in
Exercise 7.10:

/Z),j‘/’”vgodxz—f v, " pdx (7.16)
0 0

where ¢ € CSO(Q) and m is such that 1/m < dist(supp ¢, Q). Since L2(Q)
is a Hilbert space, the estimate ||Z)hv||Lz(Q) < Cyforh = —1/m (and m
large enough to have 1/m < dist(Q, D)) has as a consequence that from
the sequence D;l/ " we can extract a subsequence, still denote by D;l/ "y
which converges weakly to wy in L%(Q) (see Yosida [28, Theorem 1, p. 126,

and Theorem of Eberlein—Shmulyan, p. 141]). On the other hand, it is easily

>
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(iii)
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seen that Z),i/ ™ o converges to Dye in L2(Q): in fact, by Taylor expansion

@(x + hep) — o)
h

h 2 A
— Dip(x) = SDp(¥)

where X is between x and x + heg. Thus

2
2 \2 h?
dx < (mf)lxl@kgol) meas(Q) T

— Drp(x)

/ ‘(ﬂ(x +her) — ()
0 h

Passing to the limit in (7.16) we obtain

/wupdx:—/ v Dyrpdx ,
0 0

namely, Dyv = wy € L2(Q).

From part (ii) we know that the weak derivative Dy v exists in each subset O
with Q CC D and that Z)k_l/ " converges weakly to Dyv in L2(Q). Since the
weak derivatives are unique, by the arbitrariness of O we deduce that the weak
derivative Dy v exists in D and moreover it satisfies

P —1/m
1Drvllp20) = rlnlg_}_%g 1D, " vliz20) = Css
(see Yosida [28, Theorem 1, p. 120]). If we define

_ } Oxv)p,,, in Dijm
qk,m = .
0 in D\ Di/p ,

we readily see that q,% m— Ok v)? pointwise in D as m goes to +o00 and q,% m
is an increasing sequence with respect to m. Then by the Beppo Levi monotone
convergence theorem it follows that |, Di/m (Drv)dx = [, q,amdx —

[p(Drv)?dx, thus Dyv € L*(D) and | Dpvll 12(py < Cy.

Exercise 7.12 Prove that all the terms a;; (x) on the diagonal of a uniformly positive
definite matrix in D (namely, a matrix {a;; (x)} such that Zij aij(x)njn; = aoln|?

for all n € R” and almost every x € D) satisfy a;; (x) > «g for almost every in
x € D.

Solution Taken = ¢® _ the k-th element of the Euclidean basis, k = 1, ..., n. Then

k) (k
a0 = aole®? <Y aij(nePef) = ap(x) .
ij
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Exercise 7.13 Under the assumptions of Theorem 7.12, the stronger estimate

lull 2oy < CIfllL2py

holds, provided that we know that for each f € L*(D) there exists a unique weak
solution u € H& (D).

Solution Knowing that for each f € L?(D) there exists a unique weak solution
u e HOI(D) means that the solution operator Sg : f + u is well-defined and thus
0 is not an eigenvalue. Then, looking at Exercise 7.4, we know that | u|| L2y =
Cll fll2(p) and therefore from Theorem 7.12 we find

lull 2oy = CIf 2Dy -
Exercise 7.14 Prove that the Laplace operator in polar coordinates is given by

2 1 1 2
A=07+ -0 + 05

and that the gradient is given by
1. ) 1
Dy, =c0s60, — —sinBdg , Dy, =sin00d, + —cosbdy .
r r

Solution Polar coordinates are given by x; = rcosf, x» = rsinf. Setting
f(@r,0) = f(rcos6,rsinf), we have

af ) 3

—f :—fcos9+—fsin9
ar _ 0xy X2

10 0 b

——f = ——f sin6 + —fcos9
r 00 8)61 3)62

(here and in the sequel, for the sake of simplicity and with abuse of notation,
we are not writing that the derivatives of f have to be computed at (x,y) =
(r cos 6, r sinf)). For determining %, multiply the first equation by cos & and the

second one by — sin 6, and add the equations; for determining %, multiply the first

equation by sin 6 and the second one by cos 8, and add the equations. The final result
is

af af sin@ af
—— =cosf — — —
ax1 or. r o 00_
af of cos@ af

—sing 2L ,
oy Ot T e
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hence D = cos b 9, — Si%g dg and Dy = sinfb 9, + @ dp. This permits to compute

the second order derivatives, yielding

2f 3 f sin6 9f\ sin@ 9 af sind af
—2=0056— cosf — — — | - — | cosf® — — -
0x] ar ar r 00 r a0 ar r a0
9? 9 af 0 9f 0 9 af 0af
—]2C=sin9— <sin9—f cos _f)+cos —(sin@—f+cos _f) -
dx; ar r 00 r a0 ar r 00

By straightforward computations we obtain the representation of the Laplace
operator in polar coordinates:

a2f+ 19f 13%fF
ar?

Af = - .
f ror r? 002

Exercise 7.15 Let D C R3 be a bounded, connected and open set, with aLipschitz
continuous boundary d D. Show that the immersion W22(D) — C%1/2(D) holds,
using Theorems 7.14 and 7.15.

Solution We have that Vu € W12(D), thus, by Theorem 7.14, Vu € L%(D). The
same holds for u, therefore we have u € W1’6(D). Since p = 6 > 3 = n, from
Theorem 7.15 it follows that the Holder exponent is A = 1 — % = %, thus u €
CO’I/Z(B).

Exercise 7.16

(i) LetD C R3 be a bounded, connected and open set, with a Lipschitz continuous
boundary d D. Show that the bilinear form

n n
By (w, v) =/ Z a;jDjwD;vdx +/ Zb,-i),-wvdx —i—/ apgwvdx
D D D

ij=1

is bounded provided that the coefficients satisty a;; € L*°(D), b; € L3(D) and
ag € L32(D).

(ii) Prove that By (w, v) is coercive in H& (D), H*l (D) and HllD(D), provided that
16ill13(py. i = 1,...,n,and |laoll13/2(py are small enough.

Solution
(1) We have, using Holder inequality,

n
< Z/Dwina-wnvw)c
i=1

n

‘/ Z b; D;wvdx
D

i=1

n
<Y Ubill sy 1Diwl 2y 1011 6y
i=1
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and

/ apgwvdx
D

The result follows from the Sobolev embedding Theorem 7.14.

(ii) From the Sobolev embedding Theorem 7.14 we have [[vllz6(py < Cllvllg1(p);
from the Poincaré inequality, that holds in all the spaces H(}(D), H,! (D) and
H]\ (D), we have ||v]| 12(py < ~/CplIVvll12(py. Therefore it holds [|v]l 16y <
C«lIVvll2(p)- Then we have found

< f jaollwllvldx < laoll 1320 1l oy 10l 6o -
D

n
1/2
Br(v,v) = [ao — (Y Wil )P - Cfnaonmw)]||Vv||iz(,)) :

i=1
and the result follows.

Exercise 7.17 Show that the solution u# of the homogeneous Dirichlet boundary
value problem

—Au=1inD
upp =0 ondD,

where D = {x € R" | |x| < 1}, belongs to C*®(D).

Solution The coefficients of the operator and the right hand side are constant and
the boundary is a C°°-manifold, thus by the regularity result in Theorem 7.13 we
see that u € H"1%(D) for any m > 0. Therefore by the Sobolev embedding
Theorem 7.17 we deduce u € C™t1="/21(D) for any m > [n/2] — 1, hence
u € C®(D).

Exercise 7.18 Show that the eigenvectors wy of the homogeneous Dirichlet bound-
ary value problem

—Awg = Agwg in D
Wk|aD = 0 ondD s

where D = {x € R" | |x| < 1}, belong to Cc>®(D).

Solution The coefficients of the operator are constant and the boundary is a C°°-
manifold; moreover, we can consider Aywy as a right hand side for the Laplace
operator. Since the variational solution wy belongs to H!(D), by the regularity
result in Theorem 7.13 we see that wy € H>(D). Now we can apply a bootstrap
argument: from what we have just proved, the right hand side Azwj; belongs to
H?3(D). Therefore we apply once again Theorem 7.13 and we find wy € H>(D).
By iterating this procedure, we see that wy € H" (D) for any m > 0. Therefore
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by the Sobolev embedding Theorem 7.17 we deduce u € C m=1=[/21(D) for any
m > [n/2]+ 1, hence u € C*®°(D).

Exercise 7.19 Let D C R3 be a bounded, connected and open set, with a Lipschitz
continuous boundary dD. Let V be a closed subspace of H!(D), and let the
assumptions of Theorem 7.18 be satisfied. Suppose moreover that for each w €
C%(D) one can find 7y (w) € Vy such that ||w — 7y (w)|ly — 0as N — o0o. Then
show that the Galerkin method is convergent.

Solution Let u € V be the exact solution of the problem. By the approximation
Theorem 6.3 for each € > 0 we can find u, € C°°(D) such that [|u — u.|ly < €.
Thus, using Theorem 7.18, we have

Y . Y
lu —unlly <= inf |lu—vyllv < =llu—7my@dllv
o vyeVN o

IA

Y 14
=(lu —uslly + llusx —an@)llv) <2 =€
o o

for N large enough.

Exercise 7.20 Let X be a Hilbert space with scalar product (-, -)x and let {¢;,},
m > 1, be an orthonormal Hilbertian basis of X. Prove that ¢,, — 0 weakly in X,
thus furnishing an example of a sequence which is weakly convergent in X but not
convergent in X.

Solution Since {¢,,} is an orthonormal Hilbertian basis of X, for each v € X we
have the Fourier expansion

o o0
2 2
V= 0. 0m)xem - V1% =Y W ew)k-
m=1 m=1
Being the series anozl (v, (pm)%( convergent, we have at once (v, ¢,)x — 0.

Exercise 7.21 Let X be a Hilbert space with scalar product (-, -) x. Prove that v,, —
v in X if and only if v,, — v weakly in X and |Jv,|lx — [v|x.

Solution Suppose that v,, — v in X: then for any w € X we have (v, w)xy —
(v, w)x by the Cauchy—Schwarz inequality: moreover, ||v,llx — |lv|x by the
triangular inequality.

Vice versa, it holds

2 2 2.
lvm —vlix = Wn = v, v = V)x = Vmlly — 2, V)x + IV]I% 3

since (v, w)x — (v, w)x for each w € X, it follows (v, V)x — ||v||§( and thus
llom — vl = 0.

Exercise 7.22 Let X and Y be Hilbert spaces and K : X + Y alinear and compact
operator. Prove thatif u; — u weakly in X then Ku; — KuinY.
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Solution Being weakly convergent, the sequence u; is bounded in X (see, e.g.,
Yosida [28, Theorem 1, p. 120]). Therefore, due to the compactness of K, from
each subsequence u;, of u; we can extract another subsequence, denoted by u;, ,
such that Ku j converges to an element w, € Y. Then for each v € ¥ we have

(@, = Ku,v)y =lim (Kuj,, — Ku,v)y = lim (u,, —u, KTv)x =0,

where K7 is the adjoint operator of K, and thus Ku = w,. Hence from any
subsequence Ku j we have extracted another subsequence Kuj; ~which converges
to Ku, and this limit is the same for all the possible choices of the subsequence
Ku . This implies that the whole sequence Ku; converges to Ku in Y.



Chapter 8 ®
Saddle Points Problems Creck fo

This chapter is devoted to the solution of saddle point problems that can be written
in the abstract form

Au+BTA=F
Bu=G

for some linear operators A and B, A having the role of a Lagrangian multiplier
associated to the constraint Bu = G.

The first section, concerned with constrained minimization, is divided into two
parts: the finite dimensional case and the infinite dimensional case. Then we
describe and analyze the Galerkin approximation method for saddle point problems,
and finally we present some issues of the Galerkin method based on finite elements.

8.1 Constrained Minimization

This section is divided into two parts, regarding the finite dimensional and the
infinite dimensional case, respectively. We chose this approach as we believe that
the leading ideas are more easily caught when dealing with vectors. In this way we
hope that the process of extending known results of finite dimensional linear algebra
to the infinite dimensional case can become an easier task.

8.1.1 The Finite Dimensional Case

Let us start from a problem in R”. We have a function f : R” — R and we want to
minimize it subject to a set of constraints, expressed by g(x) = 0, with g : R" »
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R™ withm < n.If m = 1and Vg # 0 on {g(x) = 0}, we know that at a minimum
point X we must have

V() =2aVe),

where & € R is a Lagrange multiplier. If 1 < m < n and Vgi are linearly
independent on {g(x) = 0}, we know that at a minimum point X we must have

VIE =Y mVe@),

k=1

where Ay € R, k =1, ..., m, are Lagrange multipliers.
In other words, we can look for the stationary points (i.e., the points where the
gradient vanishes) of the Lagrangian

Lw, ) = fw)+ ) pge(w);
k=1

clearly, we mean stationary points related to derivatives with respect to all the
components of w and .
Suppose now we have a quadratic function

1
f(w): E(Aws w)_(Fs w)’

where A is an x n matrix and F € R" and we denote by (-, -) the scalar product in
R™. Let us also consider linear (indeed, affine) constraints

g(w) =Bw -G,

where B is an m x n full-rank matrix and G € R™. Assuming that A is symmetric,
it is well-known that the problem

min f(w) (8.1
weR", g(w)=0

can be interpreted in a suitable matrix form.

Theorem 8.1 Suppose that A is a symmetric matrix. Let u € R" be a solution of
problem (8.1). Then there exists . € R™ such that the couple (u, L) is a solution to

Au—F+BTr=0
Bu—G=0.

(8.2)
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Proof As explained above, it is enough to take the derivatives of the Lagrangian
m
Lw, p) = l(Aw w) — (F,w) + Y ux(Bw — G)
) > ) ) 2 k k-
Taking the derivative with respect to w; we obtain

n

n n
1 d ow,
E)w] E Ajswsw; — E Few; | = 5 § Ajs _Bwj (wsw;) — ;—1 F aw;

l s=1 s=1 i,s=1

l n n
=3 Z Ajs (Bsjwi + wydij) — Z Fidy;

i,s=1 s=1

(ZA,,w,@A,Yw) = (A )

J

and
8 m 3 m n
na [z s (B c»} o [z " (z B, - c)]
Wi L= J Lk=1 s=1
m n aw m
=D ey Biss—= =) By = (B ).
k=1  s=1 Wi =
Differentiating with respect to u;, [ = 1, ..., m, it easily follows
0L ) [w—
() = | D (Bw — Gy | = (Bw — G
ap I\

Therefore the Euler equations of the Lagrangian £ are

AT+4A T
AT+Ay _F 41 BT, =0
{ o wo b bEu (8.3)

Bw—-G=0,
and, having assumed that the matrix A is symmetric, a stationary point (u, 1) of £
satisfies problem (8.2). O

We can also show that problems (8.2) and (8.1) are indeed equivalent (provided
that A is not only symmetric but also non-negative definite). In fact, it holds:

Theorem 8.2 Suppose that A is a symmetric and non-negative definite matrix. A
solution (u, X) to (8.2) furnishes a solution u of the minimization problem (8.1).
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Proof Take v such that g(v) = 0, namely Bv = G. Then it can be written as
v =u + w, with Bw = 0. We have

%(Av, v) — (F,v) = %(A(u +w),u+w)— (F,u+w)
= %(Au, u) + (Au, w) + %(Aw, w) — (F,u) — (F,w) (A is symmetric)

1 1
= E(Au,u) — (F,u) — ( iTi ,w) + E(Aw, w)
=F—-Au

1 1 1
= E(AI/[,M) - (F’ I/l) - ()"a Bw) + E (va w) Z E(Auv I/[) - (F’ M) )
=0 >0
thus u solves the minimization problem (8.1). |

We can give some additional information on the stationary point (u#, A) of the
Lagrangian L. In fact we have:

Proposition 8.1 Suppose that A is a symmetric and non-negative definite matrix. A
solution (u, \) of (8.2) is a saddle point of the Lagrangian

1 m
Law, 1) = 5 (Aw, w) = (F.w) + 3 pux(Bw = G,
k=1

i.e., it satisfies
Lu,n) < Lu,2) < L(v, 1) (8.4)

oreachv € R" andn € R™.
n

Proof Writing v = u + w, we have for each w € R",

Lu+w,)) = %(A(u +w),u+w)— (F,u+w) +Z)»k(B(u +w) — G
k=1

= l(Au, u)+ (Au, w) + l(Aw, w) — (F,u)— (F,w)
2 2 ———’

— *
*

m m
+ Z Ax(Bu — Gy + Z Ac(Bw)e (A is symmetric)
k=1 k=1

*

1 m n
= L(u, ») +(Au — F, w) + E(Aw, w) + ;xk 21: By ws
= s=

*
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n m

1
= L, )+ (Au— F, w) + E(Aw, w) + X;ws ; Bis Mk
s§= =

:B.ka
1
=L, M)+ (Au — F+ BTr, w) + = (Aw, w) > L(u, 1).
~— 2_\/—‘

Moreover, for each n € R™

1 m
L, ) = 5 (Au,u) = (Fou) + > i (Bu— G
k=1 5

= %(Au, u) — (F,u) = L(u, r),

and (8.4) is completely proved. O

Example 8.1 In order to show, by means of a figure, the saddle point structure of a
constrained minimization problem like those we are considering, let us take n = 1,
m=1,A=1,B =2, F =3 and G = 4. This leads to the Lagrangian L(w, u) =
%wz — 3w+ (2w —4). The graph of this function is drawn in Fig. 8.1, where it can
be possible to recognize that (2, %) is a saddle point, and that w — L(w, %) has a
minimum at w = 2, while u — £(2, w) is constant.

We are now in a position to prove the well-posedness of problem (8.2).

Theorem 8.3 Suppose that A is a positive definite matrix and that N(BT) = {0}.
Then (8.2) has a unique solution.

Fig. 8.1 The graph of the

Lagrangian L(w, u) =
fw? = 3w+ pnQw — 4)
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Proof For a finite dimensional linear problem existence and uniqueness are equiv-
alent. Let us prove the uniqueness, namely, let us show thatif F = 0and G = 0 in
(8.2) we obtain u = 0 and X = 0. Take the scalar product of the first equation by u:

0= (Au,u) + (BTA,u) = (Au, u) + (.. Bu)
=0

= (Au,u) = u =0 (as A is positive definite).

Since u = 0, we have BT A = 0, then the assumption N(BT) = {0} givesA = 0. O

Remark 8.1 The condition N(BT) = {0} is necessary for uniqueness. If we had
BTn* = 0 for n, # 0, from a solution (u, A) of (8.2) we could construct another
solution (u, A + 71y).

Remark 8.2 The symmetry of A is not needed in this theorem. On the other hand,

it has been used to show that the solution of the minimization problem (8.1) is a
solution to (8.2) and viceversa (see Theorems 8.1 and 8.2).

Remark 8.3 Giving a deeper look at the proof, we see that it is possible to weaken
a little bit the assumption on A. In fact, the proof of the theorem also works if we
only assume that

(Aw, w) = 0 for w with Bw = 0 implies w = 0.

8.1.2 The Infinite Dimensional Case

Before entering the problem of how we can extend Theorem 8.3 to Hilbert
spaces having infinite dimension, let pose the following question: in the infinite
dimensional case, do we encounter problems with a structure like (8.2)?

Example 8.2 Consider the Stokes problem

—VvAu+Vp=f inD
divu =0 in D (8.5)
u=20 ondD,

where u is the velocity of a fluid, p is the pressure (indeed, the pressure divided by
the density), v > 0 a constant (the kinematic viscosity) and f is the acceleration of
the external forces. The constraint divu = 0 represents the incompressibility of the
fluid.
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‘We know that formally V is the adjoint operator of —div:

fV(p-vdxz—/ @ div vdx forp € C3°(D), v e C(D).
D D

Then if we call A = —v A (A being the Laplace operator acting on vector functions,
associated with the homogeneous Dirichlet boundary condition) and B = —div (so
that BT = V), we rewrite the Stokes problem as

Au+BTp=f
Bu=0.

Example 8.3 Consider the elliptic operator (without the first order and zero order
terms)

n
Ly =— Z Di(ai;Djp)
ij=1

and define
n
qi Z—Zal’j@j(p, i=1,...,n.
j=1

Then the problem

Lp=g inD
o=0 on dD

can be rewritten

qi—l—z;f:laiji)jgo:O inD,i=1,....n
Y1 Digi=¢ in D
=0 ondD.

Due to the ellipticity assumption we know that the matrix {a;;} is (uniformly)
positive definite, hence non-singular. If we define Z = {z;;} its inverse matrix,
which is also positive definite, we have, since Z'}zl Zijdjs = Ojg,

n
ZZijqj+Di¢=0 inD,i=1,...,n.
j=1
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Thus we have finally rewritten the problem as a first order elliptic system:

Zg+Veo=0 1inD
—divg = —¢ in D (8.6)
=0 ondD.

In this case the operator A is not a differential operator, but simply Aqg = Zgq,
where the matrix Z has entries {z;;}. Instead, as before, the operator B is —div and
BT =v.

We want to extend to infinite dimensional Hilbert spaces the results in Theo-
rem 8.3; in particular we want to devise which sufficient conditions will take the
place of those appearing there.

Let us present the abstract theory that covers both cases (8.5) and (8.6). It can be
described in two equivalent ways. In the first one we are given with two bounded
bilinear formsa : VxV = Rand b : V x M — R, where V and M are two
Hilbert spaces. Clearly, these two forms define two linear and bounded operators
A:V >V ,B:Vi> M, where V' and M’ are the dual spaces of V and M,
respectively, namely, the space of linear and bounded operators from V to R and
from M to R, respectively. This is done as follows: for each w € V we define

Aw isthe map v+ a(w,v) VYveV

Bw isthemap ¢ — b(w,¢¥) V¥ eM;

in this way BT : M + V' is defined by saying that, for each . € M, BT 11 is the
map v — b(v, ) forallv € V.

The other way around is described by starting from two linear and bounded
operators A : V — V’'and B : V — M’, and introducing two bilinear and bounded
formsa:V x Vi Randb: V x M — R by setting

a(w,v) = (Aw, v) Yw,veV
b(w, ) = (Bw, ¥) YweV,yeM,
where (-, -) are the duality pairings between V and V' and M and M’ (we use the
same notation for both of them, and the specific context will permit to identify which
duality pairing is considered). As a consequence, one can also see that BT : M
V' is defined as
(BTp,v) =b(v,p) = (Bo,p)  VueM veV.

We will present and analyze the problem in terms of the operators A, B and BT .
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Before going on, a clearer picture of the situation in the infinite dimensional case
can come from a more direct proof of the existence of a solution to problem (8.2).
We can devise a procedure that have three steps, as described here below.

1. Find a solution ug € R” of Bug = G: this requires that the range of B, namely,
the space R(B) = {u € R™ |3 v € R” such that u = Buv}, satisfies R(B) = R™.
2. Find u € R" solution to

Al = —BTA+ F — Aug
Bu=0.

This would require the knowledge of A. However, if we project the first equation
on the kernel N (B) we find that

ieN(B) : (Ail,v) = —(BTA, v) +(F — Aug,v) Vv e N(B),
N e’

=—(,Bv)=0

a problem where A is no longer present. For solvability, here a sufficient
assumption is that A is positive definite on N (B).
3. Find a solution A € R™ to

BTh=F — Aug — Air.

Here we have, by the second step, (F — Aug — Au,v) = 0 for all v € N(B),
therefore the needed property is that R(BTY = N(B)L.

In the finite dimensional case we know that the property R(BT) =N (B)J- is
always satisfied, as well as R(B) = N (BT)~ (see Exercise 7.2). Thus the existence
of a solution to problem (8.2) follows by assuming that A is positive definite on
N (B) and that N(BT) = {0}, so that R(B) = N(BT)L = R™.

In this respect, the situation at the infinite dimensional level is somehow different.
First, for a linear and bounded operator K : X — Y, X and Y Hilbert spaces, it is
no longer true that R(K) = N(KT)L, asin general the range R(K) is not a closed
subspace in Y (see Sect. 3.1, item 5, and Exercise 7.3; in particular, in the latter it is
proved that R(K)* = N(KT) and R(K) C R(K) = (R(K)1)*t = N(KT)L, thus
the equality in this last relation is true if and only if R(K) is closed in Y'). Moreover,
here we have to deal with operators B : V + M’ and BT : M — V', V' and M’
being the dual spaces of V and M, respectively, and it is more suitable to focus in a
more precise way on this specific situation.

Thus we start with a definition.

Definition 8.1 The polar set of N(B) is
NB);={geV'|(g,v)=0 VveN(B)}.

As seen in Exercise 8.1, N (B); can be identified with a suitable dual space.
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Exercise 8.1 N (B); can be isometrically identified with the dual of N (B)L.

We are now in a position to “translate” conditions 1, 2 and 3 for the infinite
dimensional case. With respect to condition 2, when considering the Lax—Milgram
theorem 2.1 we have already seen that a natural extension of the assumption that the
matrix A is positive definite is that the operator A : V + V' is coercive, namely,
there exists @ > 0 such that (Av, v) > oc||v||%, for all v € V. However, we have
seen in Remark 8.3 that in the present case it could be sufficient to assume that
coerciveness is satisfied only in the kernel of B, namely, it holds (Av, v) > a||v||%,
forallv e N(B) ={ve V|Bv=0}

A remark is in order about condition 3: since the operator A takes values in
the dual space V', the relation R(BT) = N(B)' clearly has to be replaced by
R(BT) = N(B);.

Conditions 1 and 3 are strictly related. In fact, by a suitable version of the closed
range theorem (see Yosida [28, Theorem 1, p. 205]) we know that

Theorem 8.4 (Closed Range) Let B : V + M’ be a linear and bounded operator,
where V and M are Hilbert spaces and M’ is the dual space of M. Denote by
BT : M+ V' the adjoint operator of B, V' being the dual space of V. Then

(i) The range R(B) is closed in M if and only if the range R(B") is closed in V'.
(ii) The range R(B) is closed in M' if and only if R(B) = N(BT)n.
(iii) The range R(BTY is closedin V' if and only ifR(BT) = N(B).

Itis now easy to see that, for repeating the finite dimensional existence procedure,
it is sufficient to assume that A is coercive on N(B), N(BT) = {0} and R(BT)
is closed in V’. In fact, in this case from (i) we have that R(B) is closed in M’,
hence from (ii) we see that R(B) = N (BT)ﬁ = M’ and finally from (iii) we obtain
R(BT) = N(B);. Moreover, from the coerciveness of A in N (B) and N(BT) = {0}
it follows that the solution is unique.

To this end, the key point is the following result.

Proposition 8.2 Suppose that there exists B > 0 such that
VueMIv, €V,v,#0: (BT vu) = Blllmllvaly - (8.7)

Then N(BT) = {0} and R(BT) is closed in V'.

Proof Condition (8.7) clearly says that N(B”) = {0}. Moreover, in Theorem 2.1
we have already presented an argument that shows that R(BT) is closed in V'. Let
us repeat it here for the ease of the reader. From (8.7) we see that for all u € M it
holds

(BT, vy _ (BT, vy)
IB jully = sup > L

> > Bl - (8.8)
vevuzo IVl lvpllv
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Suppose that BT iy — ¢ in V', thus BTy is a Cauchy sequence in V'’ and by
condition (8.8) wy is a Cauchy sequence in M. Since M is a Hilbert space we find
Ur — o in M and by the continuity of BT it follows BTy — BT g, hence
¢ = BT po. m

Remark 8.4 Condition (8.7) is called inf—sup condition since it can be rewritten as

(BT, v)) . (BT, v)

inf ———  sup = inf sup ——— > >0.
neM.p#0 \ |kl vevzo NVllv HeM u#0 yey v=o 1lm V]l

Exercise 8.2 The inf—sup condition (8.7) is equivalent to each one of the following
conditions:

(a) The operator BT is an isomorphism from M onto N (B); and
3B>0: B uly = Blluly  YueM.
(b) The operator B is an isomorphism from N (B)* onto M’ and
3B>0: [|Bvly = Blvly  YveNB)*.

For the solution of Exercise 8.2 it is useful to use the following result:

Exercise 8.3 Let V be a Hilbert space and F € V’. Show that the norm || F ||y
defined as

(F,v)
|Flly: = sup
vev,uz0 Vllv

is indeed equal to

(F,v)

F|lyy = max
I1Flly Vol

namely, there is vy € V, vr # 0, such that

(F,vF)

IFlly = ———
lvrlly

We are now in a position to prove the existence and uniqueness theorem we are
interested in. The problem reads: for each F € V', G € M’, find a unique solution
(u,p) € Vx M of

(8.9)

Au+BTo=F
Bu=¢G.
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Theorem 8.5 Let A be a linear and bounded operator from'V to V', with |A|| = y.
Let B be a linear and bounded operator from V in M'. Assume that the operator A
is coercive over the kernel of the operator B, namely,

Fa > 0 such that (Av, v) 205||U||%/ Yve N(B), (8.10)
and that the inf—sup condition (8.7) is satisfied, namely,

3B > 0suchthatVueM3Iv, eV, v, #0: (BT/L, ve) = Bllwllpllvglly -
(8.11)

Then there exists a unique solution (u, ¢) to (8.9). Moreover

1 1 %
Jally = JIF v+ 5 (142 ) 1G e

1 Y Y Y
ol = 5 (14 ) 1Ry + 25 (14 2 ) 1G e

Proof Uniqueness is easy: from F' = 0 and G = 0 it follows Bu = 0 and from the
first equation we get

0= (Au,u) + (B ¢, u) = (Au,u) + (¢, Bu),
=0

thus u = 0 from condition (8.10), as u € N(B). Hence it follows BTcp = 0 and,
taking 1 = ¢ in condition (8.11), we obtain [@|ls|lv,lly = O for v, # 0, thus
¢ =0.

Now, from Proposition 8.2 and Theorem 8.4 we know that R(B) = M’, thus we
find ug € N(B)' such that Bug = G and moreover

1
luglly < ZIGlim
B
(see Exercise 8.2 (b)). Then we rewrite problem (8.9) as

Ai+BTop=F—A
“rble e (8.12)
Bu=0,
with # = u — u¢. Taking the pairing with v € N (B), we can eliminate ¢: we find

(F — Aug, v) = (Ail, v) + (BT 9, v) = (All, v) + (o, Bv) = (A, v).
=0
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Since we look for &1 € N(B), we can apply the Lax—Milgram theorem 2.1 in N (B),
where A is coercive by condition (8.10). Then we have a unique solution &z € N(B)
of

(Al + Aug — F,v) =0 YveN(B),

satisfying
. 1
lully < =IIF — Auglly .
o
Setting u = it + ug, we have that

(Au—F,v) =0 VYveN(B),

thus (Au — F) € N(B)g. From Proposition 8.2 and Theorem 8.4 there exists a
unique ¢ € M such that

BTy =F — Au,

and estimate (8.8) holds, i.e.,

1 1 1
lol < < 1B olly: = EIIAM —Fly = B (lAully: 4 [1Flly)

B
y 1

< Zlullv + <1 Fllvr .
B B

Thus (u, ¢) is a solution to problem (8.9). Moreover we have

. 1
lully = lally + llugly = —IF = Auglly + llugllv

=

Y 1 1 Y
1F v+ (14 2 ) luglly = ~1F v+ 2 (14 2) 1G 1
o o B o

Q| ~

Concerning ¢, we easily obtain

1 Y 1 14 14 14
Il < S IFIv + Sl < 5 (14 D) 1FIv + 55 (14 2) 161
p p Bl " A
which ends the proof. O

Exercise 8.4 Give a proof of the Lax—Milgram theorem 2.1 based on the closed
range theorem 8.4.

Let us come back now to our Examples 8.2 and 8.3. We want to show that they
can be written in the general form we have described in Theorem 8.5. The first
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step is the identification of the variational spaces: in case (8.5) we take u € V =
(HOl (D))", so that each component of the velocity vector u belongs to H(} (D), and
p eEMC L*(D) (M yet to be determined). The reason of this choice is that
integrating by parts we obtain

/ (—vAu) - vdx =/ —v Z (DsDsup)vrdx
D D

k,s=1
n

n
=/Dv Z DsurDgvrdx _/B v Z Dsugng vi dSy,

— D —
k,s=1 k,s=1 -0

and the last integral vanishes if v € (HO1 (D))". Moreover

Vp-vdx:—/pdivvdx—}—/ pn- v dSy,
/;) D aD -

and again the last integral vanishes if v € (Hé (D))", while the first integral has a
meaning for p € L?(D).

Concerning the second equation divu# = 0 in D, it is easily seen that it can be
simply written in weak form as

/ (divu)rdx =0 foreachr € L*(D).
D

However, here it is worthy to note that, by the divergence theorem C.3, f D divvdx =
faD v-ndS, = 0 for each v € (H(}(D))"; namely, divv is orthogonal to the
constants. Therefore, it is sufficient to require that the equation above is satisfied
for each r € L2(D) = {r € L*(D)| [, rdx = 0}. In conclusion, the right choice
of the pressure space is M = LE(D). Let us note that in (8.5) the pressure p is
determined up to an additive constant: thus this choice permits to select a unique
pressure.

Let us see now which are the variational spaces in case (8.6). Take the scalar
product of the first equation in (8.6) by m: integrating in D and integrating by parts
we obtain

O:/ Zq-mdx+/ Vo - mdx
D D

:/ Zq-mdx—/ (pdivmdx+/ @ n-mdSy
D D aD —~—

=0
:/ Zq-mdx—/ ¢ divmdx .
D D
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From the second equation in (8.6) we get, for any v,

f (—divq)yrdx = — / e
D D

Thus we need g, m € (L*(D))" with divg, divm € L?*(D), and ¢, ¥ € L*(D).
Summing up, in this second case (8.6) we have

V = H(div; D) = {m € (LX(D))" | divm € L*(D)}

and M = L%(D). It is easy to see that H (div; D) is a Hilbert space with respect to
the scalar product

@y = [ (@ me+divgdvms. 8.13)
D
Exercise 8.5 Prove that H(div; D) is a Hilbert space with respect to the scalar

product (8.13).

In order to apply Theorem 8.5, let us check if the operator A is coercive over the
kernel of the operator B. In the first case (8.5) we have V = (H(; (D))" and

n n
(Av, v):v[ ZVvk~Vvkdx=vZ/ |V |2dx
Dy k=1YD
vV " v "
=— Vour|Pdx + — Vur|’d
2,§/p' vl H%;/D' vel2dx
vV " V "
— |Vor|?dx + — /vzdx

(Poincaré inequality in HO1 (D))

v

2
Z ‘x”v”Hl(D)
where @ = min (%, ﬁ), and Cp is the Poincaré constant in Hé (D).

We have thus seen that for problem (8.5) the operator A is indeed coercive in V,

and not only on the kernel of B. A natural question then arises: are there interesting
cases for which the “strong” assumption

(Av,v) > allvl}, a>0

is not satisfied and we really need a weaker assumption? The answer is yes, as the
second Example 8.3 shows.
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In fact, in case (8.6) we have V = H (div; D) and
(Am, m) = / Zm - mdx
D

> o|m ||i2 (Z is positive definite, uniformly in x € D),

(8.14)

(D)

but this is not enough as the control on | p (div m)2dx is missing. However, we note
that in this case Bm = 0 means

/ divmydx =0
D

for each i € L2(D); thus it follows at once divim = 0 in D. Summing up, for m
satisfying divm = 0 in D we can rewrite (8.14) as

(Am,m) = almly = o (Iml s ) + Idivmids ).
— ———
=0

and we have a control from below in terms of the norm of the space V, namely,
coerciveness is restored in the closed subspace of V given by N (B).

Let us now verify that the condition (8.11) is fulfilled for the Stokes problem (8.5)
and the first order elliptic system (8.6). Let us start from problem (8.5). We have to
check that for each g € Li(D), q # 0, wecanfind v, € (H(; (D))", vg # 0, such
that

(BT q,v,) = —/ q divvg dx > Blgll 2y gl 1 )
D

with a positive constant 8 not depending on g. Since ¢ is average-free, i.e.,
fD gdx = 0, it is known that there exists v, € (H& (D))" such that divv, = —¢ in
D (with v; # 0, as g # 0) and

lvgll 1oy < exllgll2p)

(see Remark 8.5 here below).

Remark 8.5 There are many ways to prove the result here above, and all of them
require some work. Just to quote a classical result, it is possible to furnish an explicit
formula, at least for a (connected) bounded open set that is star-shaped with respect
to all the points of a ball BY = B(xq, r9) CC D, xo € D, ro > 0. 1In this geometrical
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case, take w € C3°(BY) with [ wdx = 1. For g € C°(D) with [, gdx = 0,
definefori =1,...,n

v +o00o _
wwmm:—/qwﬁﬁl¥%/m w<x+rx y)Ux—ﬂ+n*4m]@.
D lx —yI" Jo lx — vl

In 1979 Mikhail E. Bogovskii! has proved that v, € (Hj (D))" and divv, = —¢q
in D, with [|vg [l g1 (py =< ¢«llqllL2(p)- Since a bounded, connected, open set D with
Lipschitz continuous boundary d D is the finite union of domains that are star-shaped
with respect to all the points of a ball, the result for this general geometrical situation
is obtained by localization. Then by a density argument the result is also extended
toall g € L*(D) with [, g dx =0.

Let us use the function v, thus determined for checking condition (8.11). We
have

. 1
—/ g div vgdx Z/ q*dx = lglz2pyllgll 2oy = Nlgliz2py—llvg g1 oy »
D D Cx

thus we get 8 = 1/c,, independent of g.
Let us come now to problem (8.6). For any g € L?(D), take the solution @ €
HO1 (D) of the weak form of the homogeneous Dirichlet problem

-Ag, =q inD
0, =0 ondD,

and set v; = Vg,. We have
—divyy = -Ag; =q inD
and

legll g (py < exllgllL2p

by the Lax—Milgram theorem 2.1. Thus

: 2 2 2 2
g I aiv: py = 10g132(py + 11div g 172y < €Elgl12 ) + g 172 ) -

—-q

1 Bogovskii [3].
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Hence

lvg | 5 div; D) < +/ c2+1 lgllz2py

and the thesis now follows as in the previous case.

8.2 Galerkin Numerical Approximation

Let us now give a look at the Galerkin numerical approximation. In the present case
we change the notation used in Sect. 7.5, and we take V, C V, M), C M, two finite
dimensional subspaces of dimension N }Y and N fl"’ , respectively, where h > 0 is a
parameter; for 4 — 0% one has N,Y — 400 and N,f” — +o00.

Writing the saddle point problem in terms of the bilinear forms, we want to solve
the finite dimensional problem

a(up, vp) +b(vp, op) = (F,vp) Yo, €V
I/LhEVh,(phEMh:: ¢

bup, Yn) = (G, ¥n) VY€ M.
(8.15)
The assumptions assuring well-posedness are:
Jap >0 : alop, vp) = apllvplly,  Yup €Ny (8.16)

where Ny, = {v, € Vj | b(vy, ¥y) = 0V ¥y, € My} (coerciveness of a(-, -) on the
discrete kernel of b(-, -)) and

3B >0 :VuyeMy, 30, € Vi, 0 #0 1 b(On, n) = BullnllaellOnlly
(8.17)

(discrete inf—sup condition for b(-,-)). In this case, in fact, we can repeat the
procedure that has led to determine the solution (u, ¢) to problem (8.9).

Note that these two assumptions are not a consequence of conditions (8.10) and
(8.11). Indeed in general N, ¢ N(B) (as M}, is a proper closed subspace of M).
Moreover, from condition (8.11) we know that for each u, € M, C M we can find
v € V, 0 # 0, satisfying the desired estimate, but not v, € V,, 05, # 0.

8.2.1 Error Estimates

Under assumptions (8.16) and (8.17) it is possible to prove the convergence of the
Galerkin approximation method. This can be done as follows. The first step is a
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consistency property: since V;, C V, we can take a test function v, € Vj in (8.9).
Thus the first equations in (8.15) and (8.9) give

a(up, vp) + b(vs, op) = (F, vp) = a(u, vy) + b(vs, @) . (8.18)

Now we want to make appearing a difference between the approximate solution ¢y,
and a test function u; € Mj,: subtracting from (8.18) b(vy, up) we find

a(up, vp) +b(wn, op — un) = a(u, vy) + b(vp, @ — up) . (8.19)

A similar procedure is in order for the approximate solution u: take vy € Vj, such
that b(vy, ¥u) = (G, ¥y) for each ¥, € Mj. Note that any element of the form
up + wp, wp € Ny, has this property. We will denote by N f the affine subspace

{w; € Vi |wp = up + wp, wy € Np}: we have thus selected vy € NhG. Subtracting
a(vy, vp) we get

a(up — vy, vp) + b, on — up) = a(u — vj, vp) + b(vp, @ — wp) . (8.20)
Taking now v;, = uy, — vy, it follows
anllun — villy < atup —vj, up — v})

= —b(up — Vi, op — pun) +alu — vy, up — vy)

+b(up — vy, @ — wp) .
Since
b(up — vy, Yn) = (G, Yn) — (G, ¥p) =0 Yy € My,

the term b (uy, — vZ, ¢n — Wp) vanishes. Therefore we have found

1
s — i ll < o (7l = 97y o=+ Wl a7V N = o)

Thus
lu —unlly < llu—vpllv + lup — vy llv
(Il

y
- o v ok =i _
< llu = vjlly + =l = villy 2 le = pall (8.21)

Y (el
< <1 + —) lu —villy + —ll¢ — unllm,
ap ap

for each v € NhG and for each u;, € Mjy,.
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For a fixed vy € V), consider now the linear functional v, — b(u — vy, ¥p),
Y, € My, . From condition (8.17) we know that there exists a unique z;, € N hL such
that

b(zp, Yn) = b(u — vi, Yp) VY € My,

with

1 b(u —vp, Yn) D]l
lzully < —  sup ————— < —|u—uplly
hoyneMy, yu20  Vnllm B

Setting w;; = z; + vy, we see that
b(wy,, Yn) = b(zn + vp, Yn) = bu, ) = (G, ¥n) Y Yn € My
Thus wj; € NhG and

inf lu—wpllv < llu—wplly < llu—uvilly + lzallv
wheNh

Il
1+,3_ lu — vplly Y, € V.

In conclusion, inserting this estimate in (8.21) we have found the error estimate
o]l o]l
lu —uplly < 1+ 1+ —) inf [ju—vy ||v+— inf |l¢ — unlly -
/Bh v eVy h€Mp
(8.22)

The estimate of the error ||¢ — ¢, || s is obtained as follows: by condition (8.17),
in correspondence with ¢;, — u we can find v, € Vj, vy, # 0, such that

b(vp, on — n) = Brllvallvlien — unlim, . (8.23)

On the other hand from (8.18) we have a(u — uy, vj,) + b(vp, ¢ — @) = 0 for each
v, € Vy, hence

b(vn, on — wn) = b(vp, op — @) +b(Vp, @ — jup)
=a(u —up, vp) +bp, @ — up) .
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Thuse from condition (8.23) we have

lon — Ly < 0= o) + b@n @ — )

= B lvrllv
4 Il

< ——u—uplly + —llo — unllum -
B B

Finally, we have found
lo —onllm < llo — wnlly + llon — pnllm

51 4
< (1 +— ) llg — unllpm + Ellu —uplly Y un € My,

B
hence
161y . 14
lo —onllm < (1+——) inf llo—punllm+ ——llu—unlv, (8.24)
Bi ) wneMy Bn

which, together with (8.22), is the error estimate we wanted to prove.

Remark 8.6 It is evident that a speed of convergence that only depends on the
approximation properties of V;, in V and of M}, in M is achieved if o, > « > 0
and B, > B > 0, uniformly with respect to the parameter .. Thus the art of the
approximation here is to find finite dimensional subspaces V}, and Mj such that
conditions (8.16) and (8.17) are satisfied uniformly with respect to 4.

8.2.2 Finite Element Approximation

The uniform approximation of V and M by Vj, and Mj, is possible for many
interesting cases, for instance for V = (HOI(D))” and M = Li(D) or V =
H(div; D) and M = L*(D), the spaces related to Examples 8.2 and 8.3 that we
have considered here. To illustrate this fact, let us focus on a very important type of
Galerkin approximation: the finite element method.

As already noted in Remark 7.7, the main ingredients of a finite element
approximation are the facts that the domain D is the union of a finite number of
non-overlapping subsets T of simple shape (say, triangles or tetrahedra) and that the
finite dimensional spaces Vj, and M), are given by functions whose restrictions to
the elements T are polynomials. The parameter % represents the mesh size, namely,
the maximum diameter of the elements 7.

Let us show some examples of finite elements that satisfy the two conditions
(8.16) and (8.17), focusing on the two-dimensional case. A first example for the
Stokes problem described in Example 8.2 is the P,-Pg element, in which the two
components of the velocity are piecewise-quadratic polynomials and the pressure
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JANVANWANVAN

Fig. 8.2 The degrees of freedom of the P,-P( element (left) and of the “mini-element” (P & B)-P;
(right): point values for the velocity and for the pressure

AN

Fig. 8.3 The degrees of freedom of the Raviart-Thomas element: fluxes for the vector u;, and
point values for scalar ¢y,

is a piecewise-constant, therefore a discontinuous function; its degrees of freedom
are point values, at the nodes drawn in Fig.8.2, left. A second example is the
“mini-element” (P; & B)-Pp, in which the two components of the velocity u, are
linear combination of first order polynomials and of a fixed third order polynomial
vanishing on the sides (this is called “a bubble”), and the pressure ¢y, is a continuous
piecewise-linear polynomial; its degrees of freedom are point values, at the nodes
drawn in Fig. 8.2, right.

For the first order elliptic system presented in Example 8.3 a classical instance is
the Raviart-Thomas element, for which in each element T the vector field uy, is of
the form a+bx, witha € R? and b € R, and the scalar @y, 1s a piecewise constant; its
degrees of freedom are point values of the scalar ¢, at the node drawn in Fig. 8.3,
and fluxes of the vector uj, across the sides of T, i.e., integrals of uj, - n on the sides.

For all these elements it is proved that the convergence in V x M of the
approximate solutions to the exact solution is linear with respect to the mesh size 4.

8.3 Exercises

Exercise 8.1 N (B); can be isometrically identified with the dual of N (B)*.
Solution Take g € (N (B)1)’, we define § € V' by setting

(g,v) = (g, PLv) YveV,
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where P, v is the orthogonal projection on N (B)*. Clearly § € N(B)g,as PLv =
0 for v € N(B). The map g > g from (N(B)1) to N (B)3 is clearly one-to-one, as
g = g on N(B)™,. Itis also onto: in fact, taking g € N (B)3, we need to verify that
there exists g, € (N(B)1) such that g, = g. Let us define g, € (N(B)*) by

(g w) = (g, w) YweNB?.

Thus we have g, = g on N(B)', and also g = g, on N(B)’, thus g, = g on
N(B)L. On the other hand, g+ = 0and g = 0 on N(B), as both of them belong to
N(B)g, thus g, = gon V.

Finally, for each v € V, v # 0, one has (g,v) = 0if v € N(B), while for
v e N(B)*

(g v) _ (g.v) _ (g, w)
= < sup
vl vl

= |lgll,
weN(B)L,w#0 [[wll

thus ||2]| < llgll. Moreover, for w € N(B)™, w # 0, it holds

A

u) _@w @)

T vevozo V]l

flwll wll

Exercise 8.2 The inf—sup condition (8.7) is equivalent to each one of the following
conditions:

(a) The operator BT is an isomorphism from M onto N (B); and

IB>0: B uly = Blluly  VYueM.
(b) The operator B is an isomorphism from N (B)* onto M’ and
3B>0: [Bvlyw = Blvlly  VveN@B) .

Solution (b) = (a). From (b) we know that R(B) = M’ is closed, so that by the
closed range theorem 8.4 R(BT) is closed in V' and R(BT) = N(B)y, R(B) =
N(BT); = M’, thus N(BT) = {0}. In conclusion, BT is an isomorphism from
M onto N (B);. The estimate in (b) says that |B~! ”.E(M’;N(B)J-) < 1/B, while the
estimate in (a) says that |[(BT)~! ”L(N(B)n;M) < 1/B. Thus they are equivalent,
since

-1 T\—1
1B~ Lawrinmyty = 1B Loves)amy »

as it can be easily verified by looking at the definition of adjoint operator and taking
into account that (B~1)7 = (BT)~! and the identification N(B); = (N(B)1)'.
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(a) = (8.7). It is enough to note that

T

1B il = max {Z 0
veVu#0  |[vlly
(see Exercise 8.3).

(8.7) = (b). By Proposition 8.2 we know that (8.8) is satisfied, R(BT) is closed
in V' and N(BT) = {0}, so that, by the closed range theorem 8.4, R(B) = M'.
By decomposing V into the two ortoghonal subspaces N (B) and N (B)*, it is easy
to check that also the restriction of B to N(B)L is onto M’. Therefore B is an
isomorphism from N (B)' onto M’. Finally, (8.8) is equivalent to the estimate in
(a), which, as already seen, is equivalent to the estimate in (b).

Exercise 8.3 Let V be a Hilbert space and F € V’. Show that the norm || F |y
defined as

(F,v)
|Flly: = sup
vev,zo Vllv

is indeed equal to

(F,v)

[Fllyy = max .
veV,u#0 vy

namely, there is vp € V, vr # 0, such that

(F,vF)

IFlly: = :
lvellv

Solution We can assume that F # 0, otherwise the result is trivial. By the Riesz
representation theorem 3.1 we know that there exists a unique vy € V such that
(F,v) = (vp, v)y for any v € V. Moreover, || F|y = ||[vr]v: in fact

(F,v) = (vp,v)v < lvrlvivly YveV,

which implies || F|ly < ||lvr|lv. On the other hand

2
(F,vp) el
) _ =llvrllv < IFlly.
lvrllv — llvrllv
. _ (F,up)
Thus || Flly = llvrlly = j50p; -

Exercise 8.4 Give a proof of the Lax—Milgram theorem 2.1 based on the closed
range theorem 8.4.



8.3 Exercises 193

Solution For any w € V define the linear and bounded operator Q : V > V' as
(Qw,v) = B(w,v) VYveV.

As a consequence we have that Q7 : V - V' isdefined as (Q7 w, v) = B(v, w) for
all v € V. The existence and uniqueness result in the Lax—Milgram theorem 2.1 has
been thus transformed into the existence of a unique u € V such that Qu = F € V’,
namely, in showing that Q is one-to-one and onto, or, equivalently, in showing that
N(Q) = {0} and R(Q) = V'. The coerciveness assumption on the bilinear form
B(-, -) straightforwardly shows that N(Q) = {0} and N(QT) = {0}. Moreover, by
proceeding as in step 4 of the proof of the Lax—Milgram theorem 2.1, we obtain
that the range of Q is closed. Therefore the closed range theorem 8.4 gives that
R(Q) = N(QT):l = V' and the proof is completed.

Exercise 8.5 Prove that H(div; D) is a Hilbert space with respect to the scalar
product (8.13).

Solution Take a Cauchy sequence g in H (div; D): in particular g and div gx are
Cauchy sequences in (L2(D))" and L?(D), respectively, thus we have that g — ¢
and divgy — w in (L%(D))" and in L%(D), respectively. From the definition of
weak divergence we know that div g, satisfies

/ div gy pdx = —/ gr - Vodx ¥ ¢ € Ci°(D).
D D
Passing to the limit we find
/ wodx = —f q-Vedx Y@ e CiP(D),
D D

which means that w € L?(D) is the weak divergence of g. As a consequence we
have proved that the sequence g; converges to g in H (div; D).



Chapter 9 ®
Parabolic PDEs Chock or

Parabolic equations are equations of the form

0

8—':+Lu=f inDx0,T),
where L is an elliptic operator, whose coefficients can depend on ¢. The “prototype”
is the heat equation

ou .
E—Au:f inD x (0,T).

Since with respect to the space derivative the operator g—[ + L is associated to an
elliptic operator, it is necessary to add boundary conditions (for instance, one of the
four types we have considered before: Dirichlet, Neumann, mixed, Robin). Since
with respect to the time derivative the operator % + L is a first order operator, it is
necessary to add one initial condition on u, the value of # in D at t = 0.

In the first two sections of this chapter we present the abstract variational
theory related to parabolic equations and its application to various examples of
initial-boundary value problems, including linear Navier—Stokes equations. The last
section is devoted to an important property of the solutions: the maximum principle.

9.1 Variational Theory

Before considering some specific problems, let us present an abstract theory for
first order evolution equations in Hilbert spaces. First of all we need to clarify
some theoretical results concerning functions with values in an infinite dimensional
Hilbert space. We will not enter in depth this topic, limiting ourselves to give some
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general ideas. A complete description of the functional analysis framework can be
found in Dautray and Lions [6, Chapter X VIII, §1].

We start with some definitions. Let X be an Hilbert space: we set, for 1 < p <
+OO,

LPO, T;X)={v:(0,T)— X |t — v(¢) is measurable in (0, T')
and t — |lv(t)| x is a L?- function in (0, T)}

C°»0, T1; X) ={v:[0,T]— X |t + v(t) isa C function in [0, T]} .

The norms in these spaces are, respectively,

T 1/p
p
v Xy = v(t dt) , v vy = max ||v(t .
I ||LP(0,T,X) (/(; Il ()”X l ”CO([O,T],X) 1el0.T] lv(®)llx

For p = 2 the scalar product of the Hilbert space LZ(O, T; X) is defined as

T
(v, w)r20,7:x) = /0 (v(@), w(t))xdr,

having as usual denoted by (-, -)x the scalar product in X.
Then we define the weak derivative with respect to ¢ € [0, T'].

Definition 9.1 We say that ¢ € L! (0,T;X) is the weak derivative of u €

loc

LllOC (0, T; X) if, as elements of the space X,

T T
/ ®(t)g(H)dt = —/ ' (Hu(t)dt
0 0

for each ® € C§°(0, T), or, equivalently, if

T T
/0 @ (1)(q (1), v)xdt = _/o () (u(t), v)xdt

foreachv € X and ® € C(C)x’ (0, 7). In this case we write u’ = g, as an element of
L} .(0,T; X).

Now it is a standard task to define the Sobolev spaces wlp (0, T; X). We write, as
usual, H'(0, T; X) = W'2(0, T; X).
An important theorem is the following:

Theorem 9.1 Ifu € H'(0, T; X), then u € C°([0, T1; X) and

lullcoqo.rr:x) = Crllullgio,r:x) -
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This is not enough for our needs, and we are going to present a similar
theorem which is even more important. Before giving its statement, we need some
preliminary considerations. First of all the following result holds:

Exercise 9.1 Suppose that V and H are two Hilbert spaces, that V is immersed
in H with continuity and that V is dense in H. Then H’, the dual space of H, is
immersed with continuity in V', the dual space of V. Moreover, H’ is dense in V’.

Identifying H with H' we can thus write
Ve Hx~H <V,

orsimply V.C H C V'.
We can now furnish a definition of the derivative of u with respect to ¢ which is
weaker than that given in 9.1. Suppose that u € L! (0, T; H); we say that there

loc
exists the derivative u’ € Llloc(O, T; V') if there exists ¢ € L} (0, T; V') such that

loc

T T
f q()®()dt = —/ u(t)d' (1)dt
0 0

for each ® € C§°(0, T). This equality has an element of V’ at the left-hand side
and an element of H at the right-hand side; it can be more explicitly specified by
writing

T T
<f gD (1)d1, v> = —</ u () (1)dt, v>
0 0

T
= —/ (u(), v)®'(t)dt
0

@ [T
> _/ (), v)g® (t)dt YveV,
0

where (-, -) denotes the duality pairing between V and V'’ and (-, )y the scalar
product in H. Thus

T T
/ (g(t), V)P (t)dt = —/ u(t), v)gd'()dt YveV.
0 0

Therefore, if foru € L1 (0, T; H) we know thatu’ € L! (0, T; V'), we have

loc loc

T T
/ (W' (1), v)P()dt = —f (@), v)g®'(t)dt YveV,
0 0
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which can be also rewritten as
d /
E(u(t), v)g = (u'(1),v) 9.1

for almost all ¢ € [0, T] and all v € V, where %(u (1), v) g has to be intended as the
weak derivative with respect to 7 of the real valued function ¢ + (u(¢), v)y. From
now on the notation u’ will always refer to the weak derivative of u with respect to ¢.

Remark 9.1 A remark on (e). Due to the identification of H’ with H, we have that
® € H implies @ € V' and in particular

(w, V)yry = {0, V) g = (0, V) YveV.

We are now ready to state the theorem we will often use in the sequel.

Theorem 9.2 Let H be a separable Hilbert space, V a separable Hilbert space
immersed with continuity and dense in H. Let u € L2(0, T;V) with u' €
L%*(0,T;V'). Thenu € C°([0, T1; H) and

lullcoqo, 1.y < Cr (1l 200 75wy + 14 20, 73v7)) -

Moreover, if v € L*>(0,T; V) with v/ € L*(0,T; V') for each t,s € [0,T] the
integration by parts formula holds

! t
/ (W' (r), v(r))dt = —/ (W'(0), u(m))dt + W), vt) g — Wls), v(s)H -
Also, for almost all t € [0, T]

d
77 W@, v0)m = (' (1), v(®) + (V' (1), u(®))

and

1d
mnu(r)u%, = (u/(t), u(r)).

9.2 Abstract Problem

Let us formulate now the abstract problem we want to solve. Suppose we have a
separable Hilbert space H, a separable Hilbert space V such that V < H with
continuous and dense immersion. Assume that we are given with ug € H and F €



9.2 Abstract Problem 199

L2(0, T; V') and with a family of bilinear forms a(z; - , -), defined in V x V and
valued in R for almost each ¢ € [0, T].

We want to find u € L2(0, T; V) with u’ € L2(0, T:; V') such that u(0) = ug
(note that from Theorem 9.2 we know that u € C°([0, T']; H), thus this equality has
a meaning) and

(W' (1), v) +a(t; u(t), v) = (F(1), v) 9.2)

for almost all + € [0, T] and for each v € V. Let us remind that this can be
equivalently rewritten as

T

T T
—/ (u(t),v)HCD/(t)dt:—/ a(t;u(t),v)CD(t)dt-i—/ (F(t), v)®(t)dt
0 0 0

forall ® € C§°(0, T) and foreach v € V.
For showing the existence and uniqueness of such a solution we need some
assumptions on the family of bilinear forms a(¢; -, -). We suppose that:

(i) a(t; -, -) is uniformly weakly coercive in V' x V, namely, there exist a constant
o > 0 and a constant o > 0 (both not depending on ¢ € [0, T']) such that

a(t;v,v)+o(w,v)g > oe||v||%, Vv e Vandalmostallr € [0, T]

(1) a(t; -, -) is uniformly bounded in V' x V, namely, there exists a constant y > 0
(not depending on ¢ € [0, T']) such that

la(t; w, v)| < yllwlvvlv YV w,v € V and almost all ¢ € [0, T]

(iii) the map ¢t +— a(t; w, v) is measurable in (0, T') for every w, v € V.
The existence and uniqueness theorem reads as follows:

Theorem 9.3 (Existence and Uniqueness) Let H and V be two separable Hilbert
spaces, with V. — H with continuous and dense immersion. Assume ug € H
and F € L*(0, T; V'). Assume that the family of bilinear forms a(t; -, -) is defined
in V. x V and valued in R for almost each t € [0, T] and satisfies (i), (ii) and
(iii). Then there exists a unique solution u € L*(0,T; V) of Eq.(9.2), satisfying
u' € L*(0,T; V') and u(0) = ug. Moreover, for each t € [0, T] the stability
estimate

T B 1 T B
lu(@)lI% + /0 7T u(r) |3 dr Sez‘”nuon%ﬁa /0 TN F )|, dt
9.3)

holds.
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Remark 9.2 In (i) we can always assume that 0 = 0, namely, that a(¢; -, -) is
uniformly coercive in V x V. In fact, if we set # = e °'u, we see that i is a
solution to

(@' (1), v) + a(t; a(), v) + o (1), v)g = (e °"F(1), v),

and now the bilinear forms a(¢; -, -) + o (-, -) g are uniformly coercivein V x V.

Proof The proof of the theorem requires several steps. For the proof of uniqueness
and existence we assume ¢ = 0 in (i) (see Remark 9.2).

First Step Let us start from the uniqueness. It is enough to show that the only
solution for FF = 0 and ug = Oisu = 0. Let ¢t € [0, T] be a value for which
Eq. (9.2) is satisfied. Take v = u(¢). Then

W' (@), u@®)) +a(t;u),u)) =0.

On the other hand we have

d 2 ) /
EIIM(I)IIH = 2(u' (1), u(®))
and

a(t; u(t), u(t)) > allu®ll?}

thus
1d 2 )
EEHu(t)HH +alu@®)lly <0 for almost all ¢ € [0, T'].

As a consequence, integrating in [0, 7] we find
lu( e < luOla = lluollz =0 forall T € [0, T].

Second Step The proof of the existence of a solution is based on an approxi-
mation procedure (Galerkin method for a time-dependent problem). Since V' is
separable, we have a countable orthonormal Hilbertian basis {¢,,} C V (see, e.g.,
Brezis [4, Théor. V.10, p. 86]). Define Vy = span{¢y, ..., on} C V. We want
to find an approximate solution #y in Vy. Since V is dense in H, we can find a
sequence ug y € Vy such that ug y converges to up in H. Then we look for an
approximate solution u” of the form

N
Ny = ul (g

j=1
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that has to satisfy uMN(0) = uo, v (this means uj.V(O) = (uo,n, ¢j)v) and

(@Y @), @) +a@; u™ @), @) = (Ft), 1)

for almostallt € [0, T]and forall/ =1, ..., N. Inserting the expression of ulv,
we find
N N
(i )@Y () + Y a(ts @), ou? (1) = (F(1), 1) 9.4)
j=1 j=1

foreach/ =1,..., N and almost all r € [0, T'].

Setting M;; = (pj, @1), Aij () = a(t; @j, @), UN@) = @ @),...,ul @),
Uon=((wo,n, ¢Dv, ..., (uo,n, ¢n)v) and b(6) = (F (1), ¢1), ..., (F(0), ¢N))
we have obtained the linear system of ordinary differential equations

Ny’ N _
{M(U ) () + ADUN (1) = b(1) ©5)

UN(0) = U,y .

The matrix M;; = (¢, ¢;) can be rewritten as (¢;, ¢;) g (take into account that
@;j € V and see Remark 9.1); it is clearly symmetric and moreover it is positive
definite. In fact, taking n € RY one has

N N N N 2
> (i eDunim = (Z’W’/’ Z’W’)H = H D_0i9i HH =0
j=1 I=1 j=1

ji=1

and the equality gives Z;V:l nje; = 0in H and thus in V, since V is immersed
in H. Since ¢; are linearly independentin V,itfollowsn; = Oforj =1,..., N.
Thus the matrix M;; = {(¢;, ¢;) is non-singular, therefore there exists a unique
solution (u{v(t), uN(t)) of the linear system (9.5) and u e C9([0, T]) with
W} € L*0, 7).

Third Step Now we want to pass to the limit in Eq. (9.4) as N — oco. We need
suitable a-priori estimates, in such a way that we can apply some known results
of functional analysis. Precisely, we want to find a subsequence u™* such that
ulk converges weakly to u in LZ(O, T; V). For this purpose, we need to find
uniform estimates for «® in L2(0, T; V). Multiplying expression (9.4) by u lN (1)
and adding over [ we get

(@™ @), u™ (@) +alt; u (1), u (1)) = (F@), u™ (1)) .
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Since
1d
——tuuN(r)n%, = (@™ @), u™ ),
integrating on (0, t), we have for each 7 € [0, T']
1 T 1 T
EuuN(r)n%, +/ a(t; u (0), u™ (1))dt = Enuo,Nn%, +/ (F (), u™ (t))dr .
0 0

By coerciveness we have
T T
[ a0 andr = a [ oiar:
0 0

moreover, from the inequality ab < %az + 21—8192, valid forany a € R, b € R and
& > 0, we obtain, with ¢ = «,

/O(F(t),uN(t»dtS/O IE@ v ™ @) vd

< “/T 1N O3 dt + — / IF@)di
—_— u - ’ 5
-2 0 v 2a 0 v

and consequently
Loveviz 2@ [T N2 1 2 Lfr 2
7 llu (T)IIH+§/O l[u (t)llvdtizlluo,zvlly+£/o IE@y.dt .

Since ug, y converges to ug in H, we have obtained a uniform bound for u in
LZ(O, T; V). Since LZ(O, T; V) is a Hilbert space, it exists a subsequence uNVe
(still denoted u™) that converges weakly to an element u € L2(0, T;V) (see
Yosida [28, Theorem 1, p. 126, and Theorem of Eberlein—-Shmulyan, p. 141]).
Take now & € CgO(O, T) and v € V. We have a sequence vy € Vy such that
vy — vin V. If we define ¢V : [0, T] — V and ¢ : [0, T] — V by setting

yN(@t) = ¢y, () = (1),

we have at once ¥V —  in L%(0,T; V) and (¢'V) — ¢’ in L%(0, T; V).
Rewriting Eq. (9.4) as

(@Y @), w™y +a@; u @), w") = (F@),w") vuw"evy (9.6)
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and taking w” = ¥V (¢), by integrating by parts in (0, T) it follows
T T
- /0 @™ @), N @) mdr + /0 a(t; u™ (1), Y™ (1)d1

T
- /0 (F(0). yY @)

Since u® converges weakly to u € L2(0, T;V), wN converges to ¥ in
L%(0,T; V) and (wN)’ converges to ¥’ in L2(0,T; V), we can pass to the limit
(see Exercise 9.2) and obtain

T
- / (), vy ® ()t + f
0 0

hence u’ € L?(0, T; V') and u satisfies Eq. (9.2), namely,

T

T
a(t;u(t), v)®(r)dt =/ (F(t), v)®(t)dt
0

W' (1), v) +a(t; u(t), v) = (F(t),v) YveV

for almost all ¢ € [0, T'].

Fourth Step It remains to show that u(0) = ug. Let ® € C*°([0, T]), with
®(T) = 0 and ®(0) # 0. First of all, by integration on (0, T') from Eq. (9.2)
it follows

T

T T
/ ' (@t), v)P(t)dt = —/ a(t;u(t),v)d)(t)dtJr/ (F(t), v)®P(t)dr .
0 0 0

The integration by parts formula in Theorem 9.2 yields

T T
/0 (o' (1), v)®(dt = —/0 w(®), v)g @' ()dt — u(0), )y P(0),

thus

T
—/O W(®), v)p @' ()t — (u(0), v) g (0)

T T
= —f a(t;u(t),v)cb(t)dt+/ (F(t), v)®(t)dr .
0 0
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Now define as before ¥V (1) = ®(t)vy, v () = ®(t)v, where v € V and
vy € Vy with vy — v in V. Taking w" = ¥V (¢) in (9.6), integration by parts
gives

T T
- / @™ @), N (@) udt — @ (©0), vV (0)y + / a(t; u (1), vV (1))dt
0 — 0

=Uo,N
T
= /0 (F(t), ¥V (t))dr,

and passing to the limit as N — co one gets

T
_ /0 W), ) a® Odt — (o, v) B (O)

T T
= —/ a(t;u(t),v)@(t)dtJr/ (F(t),v)®(t)dt .
0 0
Hence for each v € V we have obtained

(0, V)HP(0) = ((0), v)# P(0).

Since we have assumed ®(0) # 0 and V is dense in H, it follows ©(0) = ug.

Fifth Step The last step is related to the stability result (9.3). For a while let us
assume again that o = 0 in (i). Taking v = u(¢) in Eq. (9.2) (we have u(t) € V
for almost all ¢ € [0, T]), it follows

(W' @), u(®) +a(t; ut), u()) = (F(@0), u(r)),
thus proceeding as in the third step

1d 1 o
ﬁnu(r)n%, +allu®l}y < IFOly lu@®)lv < %nm)nzv/ + znu(r)n%.

In conclusion, for each t € [0, T'] an integration on (0, ) gives

T 1 T
lu (I +f¥f0 a1y dt < luolly; + Efo IF () 13.d1

and when o = 0 the proof is complete. For the case o > 0 it is enough to replace
u(t) with e="u(r) and F (t) with e " F(¢) and then (9.3) follows easily.
O

Exercise 9.2 Let V be a Hilbert space, and suppose that vy € V converges to v in
V and that wy converges weakly to w in V. Then (v, wy)y — (v, w)y.
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9.2.1 Application to Parabolic PDEs

We are now in a position to present some examples that are covered by this abstract
theory. Let D C R” be a bounded, connected, open set with a Lipschitz continuous
boundary 9 D. For the operator

n n
Lv=— Z D,‘(Cl,’j@jv) + Zb,’@iv + apv
i,j=1 i=1

in the elliptic case we have considered four boundary value problems: Dirichlet,
Neumann, mixed, Robin. The related variational spaces and bilinear forms are:

Dirichlet V = H}(D), H = L*(D),

n n
a(w,v):/ Z a,-ijwZ)ivdx—i—/ Zbil)iwvdx—i—/ apwvdx .
D D

i,j=1

Neumann V = H!'(D), H = L*(D), a(w, v) as in the Dirichlet case.

Mixed V = HllD(D) ={ve H'(D)|vr, =0}, H = L*(D), a(w, v) as in the
Dirichlet case.

Robin V = HY (D), H = L*(D),

n n
a(w, v) :/ Z a;iDjwD;vdx +f Zb,i),-wvdx
b Dz

i,j=1

—i—/ aowvdx—i—/ kwvdSy .
D aD

In the present situation, we have also time dependence; therefore the bilinear forms
are more generally given by

a(t; w, v) :/ E aij()DjwD;vdx +/ E b ()D;wvdx —i—/ ap(H)wvdx
D T D D
L] i=1

and similarly for the Robin problem.

We assume that a;;, b;, ap belong to L (D x (0, T')) and « belongs to L>°(d D x
(0, T)) (with k(x, t) > 0 for almost all (x,?) € dD x (0, T) and faD k(1)dSy #0
for almost all # € [0, T]), so that conditions (ii) and (iii) in Theorem 9.3 are satisfied.
Moreover we also assume that there exists a constant «g > 0 such that

n
> aijx.tmmi = eolnl* Y eR”
i,j=1
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for almost all (x,7) € D x (0, T), i.e., on the operator L we assume ellipticity,
uniformly with respect to x and 7.

Under these assumptions we have already seen in Sect. 5.3 that condition (i) in
the existence and uniqueness theorem is satisfied, with

o > max(0, —u),

. 1
where . = infpxo,1) ao — MHbH%C’O(DX(O,T)) and

e
o =m1n<—,o+u) .
2
Thus a(t; w, v) is uniformly weakly coercive in H'(D).

Then we have to check that V and H satisfy the required properties. First of all,
it is well-known that L2(D) is a separable Hilbert space. Moreover, H& (D) and
Hllb(D) are closed subspaces of H 1(D), which is a separable Hilbert space (see
Remark 4.9); thus they are separable Hilbert spaces (if M is a closed subspace of
a separable Hilbert space X and S is a countable set dense in X, the orthogonal
projection Py S C M is a countable set dense in M). We also have that

C*(D) < Hy(D) — H} (D) < H'(D) — L*(D)

and we know that C(‘)’O(D) is dense in L?(D); therefore for all the boundary value
problems we have V < H with continuous and dense immersion.

On the data, we assume that ug € L?(D) and we remember that in the four cases
the linear and continuous functional F is defined as follows:

Dirichlet F(r) € V'is givenby v — (F(¢),v) = / f(®)vdx.
D

Neumann F(t) € V'is givenby v — (F (), v) =/ f(@)vdx +/ g(t)vd Sy.
D aD

Mixed F(r) € V'isgivenby v — (F(¢),v) = / f(t)vdx +/ g(®)vdSy.
D 'y

Robin F(¢) € V'is givenby v — (F (1), v) :/ f(t)vdx +f g(t)vdSy.
D oD

Thus we assume that f € L2(D x (0, T)), g € L>(3D x (0, T)) (for the Neumann
and Robin cases) or g € L2(I'y x (0, T)) (for the mixed case), and we conclude
that Theorem 9.3 can be applied.

As a final remark, one easily sees that in some case weaker assumptions would
be sufficient, for instance f € L2(0, T’ (HO1 (D))") for the Dirichlet boundary value
problem.
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9.2.2 Application to Linear Navier-Stokes Equations
for Incompressible Fluids

The abstract theory we have presented can also be used for the analysis of the
incompressible linear Navier—Stokes equations. They read as follows:

—vAu+Vp=f inD x (0, T)

u|3D=0 ondD x (0, T)
Ujt=0 = UQ in D .

where u is the velocity of the fluid, p the pressure (per unit density), f the
(acceleration of the) external force field, u( the initial velocity and v > O the
kinematic viscosity. As usual, D C R” is assumed to be a bounded, connected,
open set with a Lipschitz continuous boundary o D.

Multiplying for a test function w = w(x) satisfying divw = 0in D and w = 0
on d D and integrating by parts we obtain

/f~wdx
D

n
— Da.wdx—v/;llzlﬂiﬂiujwjd)c“r/VP'U)dx

:—fu wdx—i—v/ ZDu]Z)w]dx—v/ Zni)u]w]dS
D D

i,j=1 i,j=1
/pdlvwdx+/ pw-ndSy

:—fu wdx—}—v/ ZDu]Z)w]dx

i,j=1

Thus the term related to the pressure disappears, and we are left with the variational
problem

d
— u wdx+v/ ZD,u]Dlw]dx_ff wdx YweV, 9.8)
dt Dz] |

set in

V = {w € (Hj (D))" | divw = 0in D}
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for the only unknown u. Concerning the space H we set
H={we (L*(D))"|divw =0in D, w-n=0o0ndD},

with the L2(D)-norm.

It is known that for w € H the normal trace (w - n)|3p has a meaning on 0D,
and that the map w + (w - n);3p is bounded from H to a suitable trace space
(see Exercise 5.9). Thus V and H are closed subspaces of (HO1 (D))" and (L*(D))",
respectively, and therefore they are separable Hilbert spaces. Clearly we have V <
H, with continuous immersion; moreover, it is known that the space V = {w €
(Ce°(D))"|divw = 0 in D} is dense in H (see, e.g., Girault and Raviart [12,
Theor. 2.8, p. 30]), thus V is dense in H.

The bilinear form

n
a(v,w):v/ Divi Diw;j
DZ iVjiWj

ij=1

is clearly bounded in V x V and also weakly coercive in V x V, for any constant
o > 0 (and @« = min(v, 0)). If we assume 1y € H and consider the functional

w—>(F,w)=f f - wdx
D

for f € L%0, T; (L>(D)"), we easily check that all the assumptions of The-
orem 9.3 are satisfied, and we conclude that there exists a unique solution u €
L?(0, T; V) of Eq. (9.8), satisfying u’ € L2(0, T; V') and u(0) = uy.

Recovering the pressure needs some additional work. For that, we refer to the
results of Chap. 8. The couple of Hilbert spaces V and M that appear in Sect. 8.1.2
will be denoted here by X and M (the notation V in this section is always used
for {w € (HOI(D))’Z |divw = 0 in D}), and are given by X = (H(; (D))" and
M = Lﬁ(D). The bilinear form b(-, -) is given by b(v,r) = fD divvrdx, and
the operators B : X + M’, BT : M +— X’ are defined by (Bv,r) = b(v,r) =
(BTr,v) forv € X and r € M. In particular, it is easily checked that the kernel of
the operator B is N(B) = V.

We have seen in Sect. 8.1.2 that with these choices the inf—sup condition 8.7 is
satisfied. Thus from Proposition 8.2 and Theorem 8.4 we have that N (B Ty = {0},
R(BT)is closed in X’ and R(BT) = N(B); = V;.

We have just proved that there exists u € LZ(O, T;V)Nn CO([O, T1; H) with
u' € L0, T; V') satisfying u(0) = ug and (9.8), namely,

d
), )2y +alu), w) = (FO. W)y YweV. 9.9)
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Defining for ¢ € [0, T']
t t
U(t):/ u(s)ds , F(t):f f(s)ds,
0 0

we have U € C%([0, T]; V) and F € C°([0, T]; (L?(D))"); thus integrating (9.9)
from O to r we find

(l/l(t), U))LZ(D) - (u(), w)LZ(D) +a(U(t), U)) - (F(t), w)LZ(D) =0 YweV.
For each ¢ € [0, T'] the functional

v (), v)2py — (o, V) 2(py +aU @), v) — (F (1), v)2(py » vEX,

belongs to X’ and vanishes on V = N (B), namely, it belongs to N (B)3. Therefore
it belongs to R(BT), so that for each ¢ € [0, T'] there exists a unique P(t) € M such
that

(M(t), U)LZ(D)_(MO, U)L2(D)+a(U(t), U)_(F(t), U)LZ(D) Zb(v, P(t)) Vve X .

(and moreover it is easily shown that P € C 0([0, T'1; M)). Taking the (weak) time
derivative we obtain

d
E[(“(l‘)’ U)LZ(D) — b, P(1))] = —au(),v) + (f (), U)LZ(D) (9.10)

forall v € X and almost all ¢ € [0, T].

A stronger form of this equation can be derived having additional information on
the smoothness of u# and P (see, e.g., Dautray and Lions [7, Chap. XIX, §2.3]). At
a formal level, the pressure p appearing in the Navier—Stokes equations is given by

_ 2
p@) = 5 P(1).

Remark 9.3 It is not difficult to check that a similar analysis can be performed
assuming f € L*(0, T; ((H}(D))")) instead of f € L*(0, T; (L*(D))"). This is
not the case if one assumes f € LZ(O, T; V'), as the space V does not contain
(Cy° (D))", therefore the use of weak derivatives is not always justified and the
interpretation of the variational problem does not necessarily lead to the partial
differential equations at hand.

9.3 Maximum Principle for Parabolic Problems

The maximum principle also holds in the case of parabolic problems. Let us start
with some definitions, that are similar to those given for elliptic problems.
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Definition 9.2 We say thatu € L2(0, T; V) withu’ € L>(0, T; V') is a subsolution
for the operator

if the inequality
(W' (1), v) +a(t; u(), v) <0 9.11)

holds for almost all # € [0, T] and for all v € H(} (D) such that v > O a.e. in D.

A similar definition is given for a supersolution: it is enough to say that —u is a
subsolution.

Theorem 9.4 Let D C R" be a bounded, connected, open set with a Lipschitz
continuous boundary dD. Let L be the elliptic operator

n n
Lw=— Z Di(aiijw) + Zbiﬂiw “+ agw ,
ij=1 i=1

with bounded coefficients a;j = a;j(x,t), b; = bi(x,t), ap = ap(x, t). Assume that
ap(x,t) > 0a.e.in D x (0, T). Then if u is a subsolution for L we have

sup u < suput =max |supu,0],
Dx[0,T] St St

where ST = (0D x [0, T]) U (D x {0}). Similarly, if u is a supersolution for L we
have

inf u > inf(—u~) = min (infu, 0) .
Dx[0,T] Sr St

Proof For the sake of simplicity, the proof we present is somehow formal. The
lines of a rigorous proof can be found in Dautray and Lions [5, Theorem 1,
p- 252] (indeed, under someway different assumptions on the regularity of « and the
coefficients; there a good exercise is also to find out and correct some misprints. . . );
a complete presentation is in LadyZhenskaja, Solonnikov and Ural’ceva [17, Chapter
111, §7].

Let us start from the case of the subsolution. Set M = sup Sy u™T; we can assume
M to be finite, otherwise we have nothing to prove, and clearly M > 0. Choose
v(t) = max(u(t) — M, 0), so that v(¢) € HO1 (D) and v(t) > 0 for almost all
t € [0, T']. When considering the maximum principle for the elliptic case, we have
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already noted that Vv(t) = Vu(t) in {u(¢t) > M}, while v(t) = 0 and Vu(t) = 0 in
{u(t) < M}. Thus

/ Z ai; ()Djut)Div(r)dx —/ Z aij (1)Djv(1)Djv(t)dx

i,j=1 i,j=1

> aO/ IVo(t)|?dx .
D

Moreover, and similarly to what we have just seen

, , 1d )
(@), v(®) = (1), v(") = 5 Dv(t) dx,

asin {u(t) > M} we have v(t) = u(t) — M, while in {u(t) < M} itholds v(¢) =0
(here the argument is a little bit formal, but let us go on...; for a detailed proof see
Ladyzhenskaja, Solonnikov and Ural’ceva [17, Theorem 7.2, p. 188]).

Finally

n

- f Zbi(t)Diu(t)v(t)dxz— / Zb,-(t)D,-v(t)v(t)dx
Dy

{u(t)>M} =1

§||b||L°°<Dx(0,T))/ [Vu(@)]| [v(2)]|dx
D

1512
s%/ Vo) Pdx + — 2L T”/| (1) 2dx
D

and

>0 >M=>0 >0

—~—— I —_——
—/ ag(Hu(t)v(t)dx = —/ ap(t) u(t) (u@) —M)dx <0.
D {u(t)>M}

From (9.11) we have thus obtained the following inequality

1d 12117 s
-4 v(t)zdx—i—a—o/ Vo) 2dx < —% (DX(O T”f ()| 2dx
24t 2 /b

for almost all ¢ € [0, T']. Integrating in [0, 7], T € [0, T], it follows

T
O, +00 [ IVUOIR
9.12)

1512 o s
< POy + X0 / 10Oyt
0
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Since v(0) = max(u(0) — M, 0) = 0, from Gronwall lemma E.2 it follows v(t) = 0
and therefore u(t) < M fort € [0, T].

For the supersolution, just note that if u# is a supersolution, then —u is a
subsolution, and (—u)T = u~. i

Remark 9.4 If we have %—’; +Lu=f>0inD x (O, T),u(t)sp >0, ur= >0,
by the change of variable i (t) = e‘k’u(t), k > —infpy 0, ag, we can easily prove
that u(¢) > O for all 7 € [0, T]. In fact, with respect to u the problem is related to a
bilinear form with the coefficient of the zero order term, say dy, that satisfies ag > 0.
Since #(t)jpp > 0, d;=0 > 0 and f(t) = ek f(r) > 0, it follows @(r) > 0 and
consequently u(z) > 0.

In other words, if you maintain a positive temperature on the walls of a room in
which the temperature was positive at the initial time and in which you are injecting
heat, then the temperature in the room will remain positive for all the subsequent
time. Do you see the power of mathematics?

Remark 9.5 If ap = 0, one can substitute supg, u™ with sup s, u (and infs, (—u™)
with infg, u). In fact, the same proof applies choosing M = supg, u (which now is
no longer non-negative) and v = max(u — M, 0). This yields inequality (9.12) and
the thesis follows.

9.4 Exercises

Exercise 9.1 Suppose that V and H are two Hilbert spaces, that V is immersed
in H with continuity and that V is dense in H. Then H’, the dual space of H, is
immersed with continuity in V’, the dual space of V. Moreover, H' is dense in V’.

Solution Take an element ® € H’, which by the Riesz representation theorem 3.1
can be written as ®(h) = (we,h)y for each h € H, with we € H. To this
functional we can associate the element ¥ € V' given by ¥(v) = (we, v)y for
each v € V. We want to show that the map from ® € H' to ¥ € V’, which
is clearly continuous, is one-to-one. Thus suppose that there exists ® € H’ given
by (we, v)g and such that (we, v)y = (we,v)y foreachv € V. Take h € H:
since V is dense in H there exists a sequence vy € V such that vy — h in H.
Therefore (we, Vi) — (we, h)y and (we, Vi)g — (W, h) g, and consequently
(we, W)y = (we, h) gy for each h € H, namely, ® = ® in H'.

Concerning the density result, by the projection theorem (see, e.g., Yosida [28,
Theorem 1, p. 82]) it is enough to show that in V' it holds (F)J- = {0} (or,
equivalently, (H')* = {0}). Take ¥ € V’ that satisfies (¥, ®)y» = 0 for each
® e H'. By the Riesz representation theorem in V we have W (v) = (wy, v)y
and ®(v) = (we,v)y for vy € V, wep € V and for each v € V, and finally
(W, ®)yr = (wy, we)y; moreover, by the same theorem in H we know that
®(h) = (We,h)y for wp € H and for each h € H, then ®(v) = (Do, V)H
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for each v € V. Thus we can write
0=V, )y = (wy, we)y = P(wy) = (Bo, W) H .

This is true for each ® € H’, in particular, fixed any g € H, for the functional
®, given by h +— (q,h)g = D, (h). Therefore wp, = ¢, and we conclude that
(g, wy)y = 0foreachqg € H. Thus wy = 0in H and also wy = 0in V,as V is
immersed in H. In conclusion ¥ = 0, and the result is proved.

[Here it could be interesting to open a parenthesis: making the identification of
H with H’, we obtain the chain V < H ~ H’ < V’; with a further step, the
identification of V with V' seems to imply that all the four spaces V, H, H and V'
are the same. This is clearly too much for the educated reader: thus, what is wrong?

What we have surely seen is that, if V < H with continuous and dense
immersion, then H’ < V’ with continuous and dense immersion. The situation
is completely symmetric, thus we can now decide to identify, by means of the
Riesz representation theorem in H, the dual H' with H, obtaining the chain V <>
H ~ H' < V', or, alternatively, to identify, by means of the Riesz representation
theorem in V, the dual V' with V, obtaining the other chain H' < V'~V «— H.
We can make only one of these identifications: the “glue” can be used only once,
and everything depends on the choice of the “pivot” space: either H or V.

The most typical example we have in mind is V = H(} (D), H = L*(D) and
vV = H (D) = (H(; (D))'. Everything should be clear when we think at the
identification of L2(D) with its dual, obtaining the chain

Hy (D) < L*(D) =~ (L*(D)) < H™ (D).

But what happens when we decide to identify H& (D) with its dual H~1(D)? Then
the chain becomes

(L*(D)) < H™'(D) ~ H}(D) — L*(D),

and again it seems that everything collapses on a single space, as we are used to
think that (L?(D))’, the dual of L?(D), is equal to L>(D).

Keep calm and carry on: the identification of H(} (D) with its dual H~!(D) has
been done by means of the Riesz representation theorem in HO1 (D). This signifies
that any element W € H~!(D) has been represented by means of the scalar product
in HO1 (D) in the following way: W is identified to the element wy € H(} (D) that
satisfies

/w¢v+/ Vg - Vv = ¥ (v) VUEHOI(D)
D D

On its side, an element ® € (L2(D)), our old nice dual space, is a functional
g ®(g) = fD weq with we € L%(D) and q € L%*(D).In particular, it is also an
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element of H~!(D), and thus can be identified with the solution wg € Hé (D) of

/wcpv—i-/Va)q;-Vv:CD(v):/@qpv Vv e Hy(D),
D D D

namely, the solution we of —Awge + we = @g in D, with homogeneous Dirichlet
boundary condition. In conclusion, if we are using the identification H& (D) ~
H~!(D), an element ® € (L?*(D)) is (identified to) an element of the space

0 ={ve Hj(D)| Av € L*(D)}

(which, if the boundary 9 D is of class C 2, by Theorem 7.12 coincides with H 2 (D)N
HO1 (D)), and we can rewrite the chain above as

0 < H}(D) < L*(D).

Do you feel this digression too long and impenetrable? In case, just skip it. . . ]

Exercise 9.2 Let V be a Hilbert space, and suppose that vy € V converges to v in
V and that wy converges weakly to w in V. Then (v, wi)y — (v, w)y.

Solution First of all, let us note that a weakly convergent sequence in a Hilbert
space is bounded (see Yosida [28, Theorem 1, p. 120]) ). Then we have

[, w)y — (v, wy| = [(vg — v, wp)y + (V, W — W)y
< |k —v,wp)y| + [V, wx — w)y|

< llve = vllvilwlly + (v, wp — w)y].

Being wy bounded, the first term goes to 0; since for any v € V the linear functional
Y — (v,¥)y = F,(¥) is bounded, from the weak convergence of wy to w it
follows F,(w; — w) — 0, and the result is proved.

Exercise 9.3 Let V be a separable Hilbert space. Then V' is a separable Hilbert
Space, too.

Solution From Remark 2.6 we already know that V' is a Hilbert space. Since V is
separable, we have a countable set {vy };2 | thatis dense in V. Consider the countable
set of linear and bounded functionals given by W;(v) = (vg, v)y and take now
W e V’; by the Riesz representation theorem it can be written as W (v) = (wy, v)y
for a suitable wy € V and for each v € V. For each € > 0 there exists an element
vk, such that oy — vi, |lv < €. For ¥, we have

W (v) — Wi, (V)] [(wy — vg,, V)v]
¥ — Yy, lyy= sup ——————= sup ————
veV,v£0 lvllv VeV, v£0 vllv

by the Cauchy—Schwarz inequality, and thus the proof is complete.
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Exercise 9.4 Let D C R” be a bounded, connected, open set with a Lipschitz
continuous boundary 9 D. Consider the problem

o —Au=0 inD x (0,+00)
uldD :0 on 3D X (07 +OO)

Ujp=0 = UQ inD,

where ug € L%(D). Show that:

(i) there exists a unique solution u € L?(0, +o0; Hy (D)) N C°([0, +00); L*(D))
with u’ € L?(0, +-00; L?(D));
(ii) z—ljinoo lu@ll2py = 0.

Solution

(i) Looking at the proof of Theorem 9.3 we easily see that, for a right hand side
f =0, it is possible to prove the existence of a solution u(t) for ¢ € [0, +00),
and moreover the estimate

T
(@72, + /O VU372 pydt < lluoll7sp, (9.13)

holds for each T € [0, +00).
(i1) Using the Poincaré inequality (6.2) in (9.13) we find

T
(@17 + /0 )32y d1 < N0l 72, (9.14)
for each 7 € [0, +00), where o0 = % Now set w(t) = e°’u(t). We obtain at

once w'(t) = e?'u’(t) + oe’u(t), thus
(W' (1), v) +at; w), v) —o(w(), v)LZ(D) =0 Vve Hé (D). 9.15)
Since

a(r;w(n,w(r))—o(w(mw(r»Lz(D)=/D|Vw<r>|2dx—af])w(r>2dxzo,

Eq. (9.15) and the relation w(0) = ug lead to the estimate
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for almost all 7 € [0, T'] and thus
2 2
”w(T)”LZ(D) E ”uOHLZ(D)
for each 7 € [0, +00). In conclusion [[u(7)|l2p) < e_”||u0||Lz(D) — 0 as

T — +o00.

[From the physical point of view this result says that, if no heat is furnished and
the boundary temperature is kept to 0, then the internal temperature goes to O as
time becomes larger and larger: a well-known situation in our real life experience.]

Exercise 9.5 Let D C R” be a bounded, connected, open set with a Lipschitz
continuous boundary dD. For ug € L*(D), f € L*(D x (0,T)) and g €
L2(3D x (0, T)) consider the Neumann problem for the heat equation

WM _Au=f inDx(0T)
Vu-n=g ondD x (0, T)

Ujr=0 = UQ inD,

whose solution u € L?(0, T; H (D)) with u’ € L*(0, T; (H'(D))') exists and is
unique by Theorem 9.3. Under the assumption [, f(x, 1) dx + faD gx,t)dS, =0
for almost all ¢ € [0, T'] show that fD ulx,t)dx = fD ug(x)dx foreacht € [0, T].

Solution The solution u satisfies the weak problem

(u’(t),v)—i—/ Vu(t)ondx:/ f(t)vdx—i—f gvdsS,
D D D

9

for each v € H'(D) and for almost all t € [0, T']. Choosing v = 1 it follows

@@, 1) 2/ f(l)dX+/ g(t)dSx
D aD

for almost all ¢ € [0, T']. By the integration by parts formula in Theorem 9.2 we find
forall T € [0, T]

Jo (fD fydx+ [yp g(t)de)dt = [y /@), 1)dt
= [pu(t)dx — [Hu(0)dx = [u(r)dx — [puodx.

Hence we have obtained the balance equation

/u(t)dx:/ uodx—i—/r(/ f(t)dx+/ g(t)de>dt,
D D 0 D aD
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and the condition [, f(x,t)dx + [, g(x,1)dS, = 0 for almost all ¢t € [0, T
yields [, u(t)dx = [uodx forall T € [0, T].

Exercise 9.6 Propose a numerical scheme for finding the approximate solution
of a parabolic problem which is based on the Galerkin approximation and on the
backward Euler method for discretizing %—‘t‘.

Solution Let Vj; be a finite dimensional subspace of V (not necessarily the space
generated by the first M elements of an orthonormal basis of V'), whose basis is
denoted by {¢1, ..., ¢pm}. Choose a time-step t = T/K > 0, define t = kr,
k=0,1,..., K, and consider the backward Euler approximation of the first order
derivative:

~u'(tre1) , k=0,1,..., K.
T

Then the parabolic equation
(W' (1), v) +a(t; u(®), v) = (F(1), v)

can be approximated by means of the following numerical scheme: being given
“(1)\/1 € Vuy, a suitable approximation of the initial datum uq, for each k =

0,1,..., K —1find u]f‘,}H € Vi, solution of the problem

Ukl K .

0| tatsuy o) = (Fu), @), i=1,....M.
H

More explicitly, at each time step #;41, kK = 0,1,..., K — 1, one has to solve the

discretized elliptic problem

1 1
- Wi g mta(teen ub ! o) = - Wy, )+ (Ftign), i) , i=1,....,M.

This linear system is associated to the matrix Af;’l = %(d)j, G H+altes1; ¢, di).
Note thatif a(¢; -, -) is uniformly weakly coercive in V x V, then for T small enough
the bilinear form % (-, )g+a(t; -, -) isuniformly coercive in V x V, hence the matrix

Akt g uniformly positive definite fork =0, 1,..., K — 1.



Chapter 10 ®
Hyperbolic PDEs Qe

Hyperbolic equations have the form

Pu + L f in D x (0,7)

— u= inD x (0,T),

or?
where L is an elliptic operator, whose coefficients can depend on ¢. The “prototype”
is the wave equation

— —PAu=f inD x (0,7),

with speed ¢ > 0.

As for the parabolic equations, we have to add a boundary condition (one of
those we have considered for elliptic problems: Dirichlet, Neumann, mixed, Robin).
Since with respect to time we have a second order derivative, we also need to add
two initial conditions, namely u|,—o and %I ,—o have to be assigned in D.

In the first section of the chapter we present the abstract variational theory for
second order evolution equations in Hilbert spaces; then the application of this
theory to hyperbolic equations and to the Maxwell equations is described. The
second section is concerned with an important property of the solutions: the finite

propagation speed.

10.1 Abstract Problem

We again assume that we are given with a separable Hilbert space H and a separable
Hilbert space V, with V < H with continuous and dense immersion. Assume that
up € V,u; € Hand F € L0, T; H). We look for a solution u € L2(0, T; V),
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withu’ € L?(0, T; H) and u” € L?(0, T; V') of the problem
W" (1), v) +a(t; u®),v) = (Ft),v)n (10.1)

for each v € V and almost all ¢+ € [0, T], with u(0) = uo and u’(0) =
u1. Let us remind that the derivatives have to be intended in the weak sense.
Since u € L%2(0,T;V) c L20,T;H) and ' € L*0,T; H), it follows
that u € CO([O, T1; H), thus the value #(0) has a meaning; similarly, since
u' € L>0,T; H) C L*0,T;V'yand u” € L?(,T;V’), it follows that u’ €
CO([0, T1; V'), thus u’(0) has a meaning. Note that, similarly to relation (9.1) valid
for the parabolic case, if u’ € L>(0, T; H) and u” € L*>(0, T; V') it holds

%(u’(t), Vg = W), v) (10.2)

for almost all ¢+ € [0, T'] and each v € V, where % has to be intended as the weak
time derivative of the real valued function ¢ — (u/(¢), v) . Therefore (10.1) can be
equivalently rewritten as

T

T T
—/ (u/(t),v)ch’(t)dtJr/ a(t; u(t), v)®(t)dt :/ (F(t), v)g®(t)dt
0 0 0

forall ® e Cgo (0, T) and each v € V. Since under the present assumptions (9.1)
can be written as

d
E(u(t)’ Vg = '), v)=w'@),Vn. (10.3)
we also have
4 t _ T t = W't 10.4
W(”()av)H—Z(u()vU)H—W(),U), (10.4)

where dez has to be intended as the second order weak time derivative of the real
valued function t — (u(t), v)py.

Let us now clarify the assumptions on the family of bilinear forms ¢ +— a(¢; -, -).
We assume that

a(t; w,v) =a(t; w,v) +ai(t; w,v),

where a1 (t; w, v), the “lower order part”, satisfies

(i) t — ai(t; w,v) is measurable in (0, T) forall w,v € V

@ii) |a1(t; w,v)| < Ci||lw|lv||v|lg for all w, v € V and almost all ¢ € [0, T], with
C1 > O independent of ¢ € [0, T,
whereas a(t; w, v), in some sense the “principal part”, satisfies
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(iii) ¢t — a(t; w, v) is differentiable for ¢+ € [0, T] and for all w,v € V (the
derivative of thus map will be denoted by @’ (r; w, v))

(v) @@t w,v)| < 51||w||v||v||v for all w, v € V and almost all ¢ € [0, T], with
61 > 0 independent of t € [0, T']

W) la@; w,v)| < 60||w||v||v||v for all w, v € V and almost all ¢ € [0, T], with
60 > 0 independent of t € [0, T']

vi) a(t;v,v) +o(v,v)g > oe||v||%, forallv € Vandallt € [0, T], where o > 0
and o > 0 are independent of ¢ € [0, T']

(vii) a(t; w,v) = a(t; v, w) forall w,v € V and all ¢ € [0, T] (symmetry of the
principal part).

Let us underline from the very beginning that the symmetry of the principal part
is a crucial point. The abstract theorem reads as follows.

Theorem 10.1 (Existence and Uniqueness) Ler H and V be two separable
Hilbert spaces, with V. — H with continuous and dense immersion. Assume uqy €
V,uy € Hand F € L%(0, T; H). Assume that the family of bilinear forms a(t; -, -)
satisfies the hypothesis (i)—(vii) listed here above. Then there exists a solution
u € L*(0,T; V) of Eq.(10.1), with u' € L*(0,T; H), u” € L*(0,T; V') and
u(0) = ug, u’(0) = u;. Uniqueness also holds, under the additional assumption

(viii) a1 (t; w,v)| < Cal|lwllgllvlv for all w,v € V and almost all t € [0, T],
with Co > 0 independent of t € [0, T].

Remark 10.1 Note that one can obtain a better result, as it is true that u €
CY%0,T]; V) and ' € C9(I0, T]; H). For this result see, e.g., Dautray and
Lions [6, Chapter XVIII, §5.5].

Proof The proof is obtained by approximation, by proceeding as in the parabolic
case.

First Step Since V is separable, we have a countable orthonormal Hilbertian
basis {¢n} C V (see, e.g., Brezis [4, Théor. V.10, p. 86]). Define Vy =
span{e; ...@y} C V. Since V is dense in H, we can select a sequence uj y €
Vy such that u1 y — u; in H. Moreover, we also have ug y € Vy such that
uo,y — upin V. We look for

N
N6y =Y ul (g
j=1

such that ™ (0) = uo_y (this means u?’(O) = (uo,n, ¢j)v), @Y (©0) = uyn
(this means (uﬁ.v)’(O) = (u1,n, ¢j)v) and moreover

(@Y @), @) +at; u™ @), @) = (F@t), o)1
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for almost all + € [0, T] and for all Il = 1, ..., N. Inserting the expression of
u™N (1), we find

N N
> i o) )+ Y alt: g eoul (1) = (F@0), )i - (10.5)

j=1 j=1

We have already verified in Theorem 9.3 that the matrix (¢;, ¢;) is non-singular
(it is symmetric and positive definite), thus this is a linear system of second order
ordinary differential equations. Setting g (t) = (ui.v ) (), it can be rewritten as a
standard linear system of first order ordinary differential equations, thus we know
that there exists a unique solution (uiv(t), R u%(r)), with uiv e C'([0, T]) and
W}y € L*0, 7).

Second Step  We must now find suitable a-priori estimates for passing to the limit.
Multiply Eq. (10.5) by (ulN)’(t) and add over /. It holds

(@) @), @Y @)y +a@; u® @), @) @)
= —ar(t; uM (@), @MY (0) + (F@), @Y ) n .

We know that

1d
@@, ™Y @) = Mn(u’v)/(t)n%, :

Moreover
—_ N N ld_ N 1, N N
a(t;u” (1), ™) (1) = s —alt;u™ (1), u™ (1) — sa t;u” (1), u” (1),
2dt 2
due to the symmetry of a(¢; -, -). Finally, from assumption (ii),

| —ar(t; u™ @), @™Y @) < Crll™ @) v @Y @)l u

and moreover

[(F @), @) @)ul < IFOImll@™) @l -

Summarizing, for almost all ¢ € [0, T] we have

1i Ny 2 liA N N
2a,tll(u )(t)||H+2dta(t,u ®),u” @) <

IA

1
Sla'a u @), u™ @)+ il OV I @™Y Ollg + IF Ol @™ Oy

IA

1~
zcnmN(r)n% + Cillu™ Ol I @™Y Ollg + IF Ol @™ Oy,
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having used assumption (iv). Integrating with respect to ¢ on [0, 7] we have

Lo ny 2 (DS N N

zll(u YOl + za(t; u" (r),u" (1))

LNy 2 1 N N L (7 N2
< Ell(u ) O)lIF + Ea((); u” (0),u” (0)) + §C1 A lu™ Ny de
T T
+C /O ™ @Ol @™ @) || pdt + /0 IF Ol @™ @) gt .
Using the weak coerciveness of a(z; -, -) we find
acz, u™ (0), u¥ () = el @15 — ollu @l -

From the inequality ab < %az + %bz and using assumption (v) we get

allu @13 + 1) ()%

N2 2 A 2
=olu” (Ol + llui,n g + Colluon Iy

T T
vel [Ciromdr [ (o) + 1ty o) ).
0 0

Since ug y — up in V and u1 vy — u; in H, we have ||u0,N||%, + ||u1,N||%1 <
const. Moreover, we have

uV(r) = fr @™y ®dt + u™ (),
0 \ﬁ/—/

=Uo,N

thus, noting that (a+b)? < 2(a®+b?) and using the Cauchy—Schwarz inequality,
we obtain

I ()13, < <H /0 WY (1

T 2
<2 (( /0 ||(uN)’(r>||Hdr> + ||uo,zv||%i>

< 2 ' Ny 113, dt 2.
= <T/0 1@™) @)l gdt + lluo,n Iy

Cauchy—Schwarz

2
+ IIMO,NIIH)
H

Note that this last series of inequalities is not needed if ¢ = 0, namely, if the
bilinear form a(z; -, -) is coercive and not only weakly coercive.
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In conclusion, setting Q(t) = ||uN(r)||%, + 1 @™) (7)||%,, we have found

O(t) <K+ K2/ Q(t)dt forallt € [0, T].
0

From Gronwall lemma E.2 we have
() < K152 forallt €[0,T],

therefore u” is bounded in L2(0, T; V) and (uV)’ is bounded in L2(0, T; H),
respectively (more precisely, in L°°(0,7;V) and L°(0,T; H)). Since
L2(O, T: V) and L2(0, T; H) are Hilbert spaces, by known results in functional
analysis we can select a subsequence (still denoted by u”) such that u¥ — u
weakly in L%(0, T; V) and (u") — w weakly in L2(0, T; H) (see Yosida [28,
Theorem 1, p. 126, and Theorem of Eberlein—Shmulyan, p. 141]). It is an easy
task to show that w = u’; in fact, for each h € H and n € Cgo(O, T) by
integration by parts we have

T T
[0 (@™ @), hyun(t)dt = —/0 (un (), yun' ()dt

and passing to the limit, using the weak convergence of u" and (u")' in
L2(0, T; H), we obtain

T T
/0 (W), Wygn(t)dt = — /0 W), Wy (),

namely, ' = w. Take now ® € CgO(O, T),v € Vand vy € Vy such that vy —
v in V (remember that Vy = span{gi,..., N}, where ¢; is an orthonormal
Hilbertian basis of V). Set

YN @) = D@y, Y@ = ).
It is clear that ¥ — v in L2(0, T; V) and (V) = ®'vy converges to /' =

®'vin L2(0, T; V).
Equation (10.5) can be rewritten as

(@' @), w™y +a@t; u™ @), w") = (F@), wN)y (10.6)
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for each w" € Vy and almost all ¢+ € [0, T]; choosing wN = WN(I) and
integrating by parts in (0, T), it follows

T T
[ (@0 @y @), des [ e o0 @
0 H 0
T

- fo (F@), vN () dr

Passing to the limit we find
T T T
—/ (u’(t),v)HCI>’(t)dt+/ a(t;u(t),v)d)(t)dt:f (F(@t),v)gd®)dt,
0 0 0

thus u” () € L*>(0, T; V') and Eq. (10.1) is satisfied.

Third Step The proof of the existence of a solution is completed if we show that
u(0) = ug and u’(0) = u;. Take ® € C*°([0, T']) with ®(T) = 0 and ®'(T) =
0, and define as before 1//N(t) = ®(t)vy, v () = D(t)v, with vy € Vy and
vy — vin V. Integrating Eq. (10.1) on (0, T') we find

T T T
/ (1), V)P ()dt = —/ a(t; u(t), v)®(t)dt +/ (F(t),v)g®(t)dt .
0 0 0

On the other hand, integrating by parts twice on (0, T') we obtain

T
/ (u”(t), v)P(t)dt
0

T
=/0 (®), V) g @"(t)dt — (u'(0), v)@(0) + ((0), v) P'(0)

(for a similar computation see (10.8), where some additional explanations on the
functional framework are also added). Thus

T
/0 w(®), v)y " (t)dt — (' (0), v)@(0) + ((0), v)  P'(0)

T T
- —[ a(t;u(t),v)CD(t)dt-l—/ (F(t), v)pd(t)dt .
0 0
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Inserting w" = ¥V (¢) in Eq. (10.6), it follows, by integration by parts on (0, T),

T
/ @™ @), @MY @) pdt — (@Y (©0), ¥V (0) i + (@) ), WY ()
0 —— ~———

=Ui,N =Uuo,N
T T
=— / a(t; ul (1), vV (t))dr + / (F@), yN () pdt
0 0

Then passing to the limit as N — +o00, we obtain
T
/ @®), V) g @ (t)dt — (u1, v) pP(0) + (uo, v) r ®'(0)
0

T T
= —/ a(t;u(t),v)CD(t)dt—l—/ (F@),v)g®t)dt,
0 0
and in conclusion
— (' (0), v)®(0) + (u(0), V) gD (0) = —(u1, V) FP(0) + (1o, V) g D' (0).

Due to the arbitrariness of ®(0) and ®'(0) and v we conclude u’'(0) = u; and
u(0) = uop.

Fourth Step Let us come to the proof of the uniqueness of the solution. It is better
to divide the proof in two parts, and consider later the general case. In this step
we thus make two additional assumptions: firstly that a; (¢; -, -) = 0 and secondly
that a(-, -) does not depend on 7 € [0, T].

Let us assume F = 0, ug = 0, u; = 0; thus Eq. (10.1) reads

" (@), v) +a@),v) =0 10.7)

forall v € V and for almost all ¢ € [0, T']. Here one would like to follow the same
idea employed for the finite dimensional approximation: select a value ¢ among
those for which (10.7) is satisfied, and choose v = u’(¢). However, this cannot
be done since u’ does not belong to L%0,T: V) but only to L%(0, T; H). Thus
we adopt a classical procedure proposed by Olga A. LadyZenskaya! (see also
Dautray and Lions [6, p. 572]), and we choose as a test function an antiderivative
of u: precisely, for a fixed s € [0, T] set

ffu(r)dr if0<r<s
0 ifs<t<T.

v(t) =

! LadyZenskaya [16].
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We have v(t) € V foreveryr € [0,T], v € L2(0,T; V) and v'(t) = —u(r) for
0 <t <s,thusv € L2(0,s; V). Let us choose this v = v(¢) in Eq. (10.7); using
the density of C°°([0, s]; H) in the space
W(,s; H; V') ={w e L*0,s; H)| w’ € L*0,s; V"))
and the density of C*°([0, s]; V) in the space
H'0,s; V) ={we L*0,s; V)| w' € L*0, s; V)}

(the proof of these density results can be done as in Dautray and Lions [6, Lemma
1, p. 473]), due to the fact that u’ € W (0, s; H; V') and v € H'(0, 5; V) we have

Jow" @), v(0)dt = — [’ (1), V(1)) dt
+(u'(s), v(s)) — (u'(0), v(0))
= [/ (), u(®)pdr  (since u’(0) = 0 and v(s) = 0)

= Jo AL\ u(0)|%dt = Sllu(s)3,  (since u(0) = 0).
(10.8)

Moreover, for 0 <t < s it holds
- o~/ 1d ~
au(t), v()) = —a (1), v()) = —Eg[a(v(t), v()], (10.9)

where the last equality holds as @(-, -) is symmetric and not depending on . Thus
integrating (10.7) over (0, s) it follows

a3 = f5 S Law@), v(t))dt

3 (lu@) 1% +a@@(0), v(0)))  (since v(s) = 0)
(10.10)
> 2 (Ilu®% + allvO)3 — o llv©0)]3)

(since a(-, -) is weakly coercive) .

We have v(0) = [i u(t)d, thus

s 2 s
||v(0)||%,s(/ ||u(r>||Hdr) < s/ lu(t)|%dr,  (10.11)
0 — 0

Cauchy—-Schwarz
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and then
2 2 : 2
luz +alvOly < GS/O lu(T)IgdT
)
gaT/ lu(x)|4dt Vs el0,T].
0

From Gronwall lemma E.2 it follows |u(s)||g = O fors € [0, T] and uniqueness
is proved.

Fifth Step Repeat now the uniqueness result without assuming that a; (¢; -,-) =0
and a(t; -, -) is independent of ¢ € [0, T]. Instead of (10.7) we have the equation

W" (), v() +a(t; u@), v(t)) = —a(t; u(r), v(r)), (10.12)
and instead of (10.9) we have
a(t;u(),v(t) = —a(t; v'(t), v(t))
_ld 1, (10.13)
- _EE[a(L U(t), U(t))] + Ea (ta U(t), U(t)) )

thus

w%mwm—E%memwml (10,14
= —a;(t; u(t), v()) — 5@ (t; (1), V(1)) .

Therefore integrating (10.14) over (0, s) and proceeding as in (10.8) and (10.10)
(where one has to replace a(-, -) by a(0; -, -)) it follows

— /Sal(t; u(t), v(t))dt — l/Sfi’(t; v(t), v(t))dt
0 2 Jo

> = (I + O — o O

Using the boundedness of @'(¢; -, ) in V x V and of a;(z; -, ) in H x V (see
assumptions (iv) and (viii)), we obtain

lu(s)1% + allvO)]?

N N
SommmZ+MhA|mmmmmmwm+chénwm@m

s s
< Ullv(0)||%1+C2/ llu(®)1%,dt + (Cy +C2)/ o)l dr .
2ab<a?+b?
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For 0 <t < T set now w(t) = fot u(t)dr. It holds v(0) = w(s) and v(¢t) =
w(s) — w(t), for 0 < ¢t < s. Thus, using that (a + b)?> < 2a® + 2b?, we can
rewrite the last equation as

lu) 1% + allws)l>

<ot + ([ uiar+ [ e - wold)
0 0

<ol + ([ odi+2 [ oo+ 2siwolR),

where C* = 61 + C,. Since w(s) = v(0), we have already seen in (10.11) that

S
o) < sfo el de .

therefore forO <s < T <T

N
o) < T1/0 (% .
and consequently
lu() 13 + (@ — 2T1C*) lw(s) 3

s s
<(oTi+ c*)/ ()12, dt + 20*/ @) IRd: .
0 0

Choosing 71 > 0 so small that « — 277C* > 3, we can apply Gronwall
lemma E.2 on the interval [0, T7] to the function n(s) = ||u(s)||%1 + %IIw(s)H2 ,
thus obtaining n(s) = 0 for s € [0, T1]. Since 77 only depends on the data of the
problem through C* and «, we can repeat the same argument on [T}, 277] and so
on. O

10.1.1 Application to Hyperbolic PDEs

Let us show some examples of hyperbolic problems that are covered by this abstract
theory. Let D C R” be a bounded, connected open set with a Lipschitz continuous
boundary d D. The operator L will be as usual

n n
Lw=—Y" Dia;O)Djw)+ Y _ bi)Diw + ao()w,
i,j=1 i=1
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that we assume to be elliptic uniformly in space and time, namely, there exists o >
0 such that

n

Z aij(x, On;n; = aolnl*
ij=1

for all n € R”, almost all x € D and all ¢+ € [0, T]. The associated bilinear form,
depending on the boundary conditions we have to consider, is

n n
a(t; w,v) = / Z a;j()DjwD;vdx +/ Zbi(t)Z),-wvdx
D; Do

i,j=1

—i—/ aop(H)wvdx [—l—/ K(t)wvdei| )
D aD

where the integral inside the square brackets is present only in the case of the Robin
boundary condition. We define

alt;w,v) = / a; (DD ;wD;vdx |:+f
p 2 D :

K(t)wvdei| ,
i,j=1

D

which is the bilinear form associated to the principal part.

We assume that a;;, b;, ap belong to L*°(D x (0, T)), and that ¥ belongs to
LD x (0,T)), with k(x,¢) > 0 for almost all x € D and all ¢t € [0, T] and
faD k(t)dS, # 0forall t € [0, T]. We also assume that a;;(x, t) is differentiable

with respect to ¢ in [0, T'] for almost all x € D, and that 3;1% belongs to L (D x
(0, T)). Similarly we assume that « (x, ) is differentiable with respect to ¢ in [0, T']
for almost all x € 9D, and that %—’f belongs to L*°(d D x (0, T')). Finally, we assume
that the coefficient matrix of the principal part of the operator L is symmetric, i.e.,
that

ajj(x,t) =ajj(x,t) foralmostallx € Dandallt € [0, T].

With these hypotheses it is an easy task to verify that all the assumptions of the
abstract Theorem 10.1 are satisfied, choosing H and V as in the parabolic case: in
conclusion, the existence of a solution is assured.

Remark 10.2 Let us note that in the hyperbolic case, due to the presence of the
second order time derivative, it is not possible to rewrite the given problem as
a hyperbolic problem associated to a coercive bilinear form, by using a suitable
change of variable (see Remark 9.2 and Exercise 10.5). However, it is possible to
choose ¢ = 0 in the weak coerciveness assumption provided that the Poincaré
inequality is satisfied (or the generalized Poincaré inequality in the case of the Robin
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problem); in other words, only in the case of the Neumann problem the principal part
of the bilinear form is weakly coercive and not coercive.

Concerning uniqueness, we need to check that there exists C» > 0 such that
lai(; w, v)| = Collwllallvllv (10.15)

forallw, v € V and almostall ¢ € [0, T], where |-z = [I-Il .2(pys I Ilv = -l g1y
and

n
ai(t; w,v) = / Zbi () D;wvdx +/ ap(Hwvdx .
D D

The second term satisfies (10.15), thus we only have to verify (10.15) for the
first term. Let us integrate by parts formally (we will see here below when this
is possible):

/ > bi(t)Diwvdx = —/ wZD,-(b,-(t)v)dx—}—/ w b(r) - nvd Sy
D= b i b

:—[ wdivb(t)vdx—/ wb(t)-Vvdx—}—/ wb(t) -nvdSy .
D D aD

Therefore we can easily verify that estimate (10.15) holds if for example:

(i) divb € L*®(D x (0,T)),V = Hé (D) (Dirichlet problem)
(i) divb € L®(Dx(0,T)),b-n =0a.e.ondDx(0,T),V = H' (D) (Neumann
or Robin problem)
(iii) divb € L>®°(D x (0,T7)),b-n=0ae.on'y x (0,7),V = HILD(D) (mixed
problem).

Thus, concerning the regularity of b, we can simply assume b € L>(0, T; W™
(D)) (so that, by the Sobolev immersion theorem 7.15, b(t)|3p and b(t)|r, have a
meaning). Clearly, all these conditions are satisfied if b; = 0fori =1, ..., n.

10.1.2 Application to Maxwell Equations

The Maxwell equations describe the propagation of electromagnetic waves. In terms
of the electric induction D, the electric field E, the magnetic induction B and the
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magnetic field H they read

% +curl E=0 [Faraday]

33—? —curl H = —J, [Maxwell-Ampere]
divB=0 [Gauss magnetic]
divD =p [Gauss electric]
B=uH

D =¢E,

where J, is the applied current density, p is the electric charge density, u > 0 is
the magnetic permeability, € > 0 is the electric permittivity, and the operator curl is
defined as

ik
curl Q =V x Q =det | Dy Dy D3
01 02 03

Two initial conditions must be added: E|;—9 = E¢ and H;—o = Hy. Instead, the
two Gauss equations can be left apart; the second one can be seen as a definition
of the charge density, and gives as a consequence g—‘; + div J, = 0, the equation of
conservation of the total electric charge (just take the divergence of the Maxwell—
Ampere equation); the first one is always satisfied if it is satisfied at the initial time
(just take the divergence of the Faraday equation).

Taking the curl of the first equation and the time derivative of the second one
easily leads to

PE 19J,
— curlcurl E = —— .
ar? +eteurten € ot
where ¢? = LG Similarly, differentiating in time the first equation and taking the
curl of the second one gives
3’H
912 + cZeurlcurl H = c*curl J, .

The two equations have the same structure, and from now on we will focus on the
first one.

When the boundary of the physical domain D C R is a perfect conductor, the
boundary condition for the electric field is £ x n = 0 on d D. We have therefore to
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solve the following problem:

0’E 19J
YR + Zcurlcurl E = — 8: inD x (0,T)
Exn=0 ondD x (0, T)
. (10.16)
Ei—o = Ey in D
oE .
_— — inD,
at |r=0

where E| = %(curl Hy — Jeji=0).

Let D C R3 be a bounded, connected open set with a Lipschitz continuous
boundary d D. A variational formulation is easily devised. Multiply the first equation
by v, integrate in D and integrate by parts: using Theorem C.8 gives

O’E 5 )
— -vdx +c curl E - curlvdx + ¢ nxcurl E-vdSy
D

p 012 aD
10J,
=—/— ° . vdx.
D € at

The boundary integral can be rewritten as

/ (vxn)-curl EdSy ,
oD

therefore it vanishes if we assume that the test function v satisfies v x n =0 on 0D
(as it is assumed for the electric field E).
In Exercise 5.8 we have introduced the space

H(curl; D) = {v € (L*(D))? | curlv € (L*(D))?}

(the curl being intended in the weak sense), endowed with the scalar product
(w, vV)eurl = / (curlw - curlv + w - v)dx, (10.17)
D

and its closed subspace
Hy(curl; D) = {v € H(curl; D) |v xn =0o0n dD}.

Both H(curl; D) and Hy(curl; D) are Hilbert spaces (see Exercise 10.1). We set
V = Hy(curl; D) and H = (LZ(D)3. Clearly, the immersion V < H is
continuous; moreover, (Cg° (D))? is dense in Hy(curl; D) (see, e.g., Monk [22,
Theor. 3.33, p. 61]). By adapting the proof given in Adams [1, Theor. 3.5, p. 47],
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it is also easily verified that H (curl; D) is separable, thus Hy(curl; D) is separable,
too.
Finally, we define the bilinear form

a(v,v) = czf curlv - curlvdx ,
D

which clearly is symmetric, bounded and weakly coercivein V x V.
The Maxwell equations have therefore the following variational formulation:

d? 19J,
— E(t) vdx +a(E(1),v) = / (10.18)
dt D€

for all v € V and almost all + € [0, T]. Assuming that Ey € Hy(curl; D),
Ei € (L*(D))? and 98,J, € L2(0,T; (L*(D))?) we can apply Theorem 10.1
and obtain for this problem a unique solution E € L2(0, T; Hy(curl; D)), with
8,E € L*(0,T; (L3(D))3), 3, E € L*(0, T; (Ho(curl; D))’) and E(0) = Eg in D,
0,E(0) = E; in D.

Remark 10.3 When considering as unknown the magnetic field H the formulation
of the problem is

’H :
57 + cZcurlcurl H = c*curl J, inD x (0, T)
(curlH — J,) xn=0 ondD x (0, T)
. (10.19)
Hj;=0 = Ho inD
oH .
—_— = H; inD,
at 1=0
with Hy = —ﬁcurl Ep. The corresponding variational formulation is given by
2 / H@) - wdx+a(H(),w)=c / Jo(t) - curl wdx (10.20)

for all w € V and almost all ¢ € [0, T'], where V = H (curl; D). For devising this
formulation one has taken into account that the boundary integral

c2/ [n x (curl H — J,)] - wdSy
oD

vanishes due to the boundary condition in (10.19).

Note that proceeding formally, the boundary condition (curl H (t) — J.(¢)) xn =
0 says that £ (t) x n = 0foreacht € [0, T], therefore assuming Eg x n = 0 gives
E(t) xn= Oforeacht e [0, T].
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Remark 10.4 Sufficient assumptions for applying both existence theorems are
Eo € Ho(curl; D), Hy € H(curl; D), J, € L?*(0,T;(L*(D))?) and 8,J, €
L*(0, T; (L*(D))?).

Exercise 10.1 Prove that H (curl; D) is a Hilbert space with respect to the scalar
product (10.17).

10.2 Finite Propagation Speed

The hyperbolic equations have the property of finite propagation speed. This is a
general property, but we will give a proof of it only for the wave equation, with
velocity ¢ > 0.

Consider a point (xg, fp), with xg € R" and 7y > 0, and for 0 < ¢ < 1y define the
sets

Dy = {x e R"||x — xo| < c(tg — 1)}

W ={(x,t) e R" x [0,19) | x € D;}.

. S 2 .
Let us write for simplicity u, = %—Lt‘ and u;, = ?37?' The following result holds true:

Theorem 10.2 Suppose that u is a (smooth enough) solution of u;; — c>Au = 0
and thatu = 0, u; = 0on Dy. Thenu =0in W.

Proof Define
1
e(t) = _/ W? + 2|\ Vu|*)dx .
2 Jp,

We want to compute ¢’(z). We have, by the Reynolds transport theorem D.1,

1 1
) = -/ (ut2+cz|Vu|2),dx+—/ W? + A|Vul*)V - ndS,
2 Jp, 2 Jap,

where V is the velocity of d D; and n is the external unit normal on 9 D;. Since d D;
is the zero level-set of

Qx, 1) = |x —xo| —c(to — 1)
and D; = {x e R"| Q(x, 1) < 0}, we have

Vo X — Xo
n=—-—=——+—.
IVO[  |x — X0
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For a particle x = x(¢) belonging to dD; we have |x() — xo| = c(t9 — t); thus
differentiating with respect to t we have

x(t) — xo

—|x(t)—xo| -xXt)y=n-V.

—dl(t) | =
C_dtx Xxo| =

Summing up, using the Cauchy—Schwarz inequality and the fact that for any a, b €
R it holds 2ab < a® + b%, we obtain

1 1

)=~ Quiuy+2c* Vu-Vu, )dx—i——/ W? + | Vu|*)(—c)dS,

2 D, ' —— 2 D,
integrate by parts

=/ Uy u,tdx—c2/ Au ugdx
Dy Dy,

C
+02/ Vu - nu; de——f (M,2+CZ|VM|2)de
oD, ——— 2 Jop,
Cauchy—Schwarz

C
5/ u (g — > Au)dx + 5/ 2¢|Vullu;| dSy
D, —_— 0D; "
' =0 ' 2ab<a’+b?

C
5 | @b,
2 Jop,

< E/ (02|V1,¢|2 +uz2> dSy — E/ U7 + | VulHdS, =0,
2 Jop, 2 Jop,

so that e(t) < e(0) = 0 for each ¢t € [0, fp]. Since e(¢t) > 0, it follows e(t) = 0 for
each t € [0, 7o]. In particular this gives u; = 0 in W and, since u = 0 on the basis
Dy, it follows u = 0in W. d

Remark 10.5 The real-life interpretation of this result looks clear: if you throw a
stone in a pond, the generated wave reaches the other side not immediately but after
a little time. Do you see how mathematics is powerful?

10.3 Exercises

Exercise 10.1 Prove that H (curl; D) is a Hilbert space with respect to the scalar
product (10.17).

Solution Take a Cauchy sequence gi in H (curl; D): in particular g; and curl gy are
Cauchy sequences in (L*(D))3, thus we have that qr — q and curlgy — w in
(L?(D))3. From the definition of weak curl (see Exercise 5.2) we know that curl g
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satisfies

/ curl gg - vdx = / gr -curlvdx Vv e (CSO(D))3.
D D

Passing to the limit we find
/ w - vdx =/ g -curlvdx Vv e (C(D))?,
D D

which means that w € (L2(D))? is the weak curl of q. As a consequence we have
proved that the sequence gx converges to g in H (curl; D).

Exercise 10.2 Suppose that « is a smooth solution in D x (0, T') of the homoge-
neous Dirichlet boundary value problem associated to the wave equation

3%u .

m—cAu—O inDx(0,T).
Show that E(¢) = ||u’ (t)||L2(D) +c ||Vu(t)||L2(D) is constant for each ¢ € [0, T].
Solution Fix t € (0,T), and choose v = u'(t) as test function in the weak

formulation of the wave equation. We obtain
W @), u' (1)) + c2/ Vu(t) - Vu'(1)dx = 0.
D

This can be rewritten as

1d
sai )” "(1)’dx + ——/ [Vu()|>dx =0,
therefore [, u'(t)*dx + ¢? [, |Vu(t)|*dx is constant for each t € [0, T].

[The physical meaning of this equality is that for an event steered by the wave
equation the total energy (kinetic plus potential energy) is conserved.]

Exercise 10.3 Devise a variational formulation for the homogeneous Dirichlet
boundary value problem associated to the damped wave equation

92 B
_';+ﬂa_btl_c2Au=f inD x (0,7T),

where 8 > 0 is a given parameter.
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Solution The result is quite simple: by proceeding as for the wave equation,
we look for u € L?(0,T; Hj(D)), with ' € L?(0,T; L*(D)) and u” €
L?(0, T; (H} (D))", solution of

(u” (1), v) + B (1), V) 2(py + (Vu(), Vo) 12

= (f(t)y U)LZ(D) Vve Hé(D) .

Exercise 10.4 Suppose that # is a smooth solution in D x (0, +o00) of the
homogeneous Dirichlet boundary value problem associated to the damped wave
equation described in the previous exercise, with f = 0. Show that the total energy

E@) = [lu'®)3, ot AVu @3, (p) I8 decreasing.

Solution First of all, let us note that by proceeding as in Theorem 10.1 one could
prove the existence and uniqueness of a solution u € LZ(O, T; HO1 (D)) of the
damped wave equation, with u’ € L*(0, T; L*(D)) and u” € L*(0, T; (H} (D))).
However, this would not permit us to use u’(r) as a test function in the weak
formulation, as it does not belong to H(} (D) but only to L2(D). Thus let us proceed
formally and assume that u is a smooth solution and set u(0) = ug and u’(0) = u;.
Fix ¢t € (0, +00), and choose v = u'(¢) as test function in the weak formulation of
the damped wave equation. We have

W (@), u' (1)) + ﬂ/ u' (1) 2dx + 02/ Vu(t) - Vu'(t)dx = 0.
D D

This can be rewritten as

1d ) d 2 // 2
- — H°d —— Vu(@)|“d Hdx =0.
2 ar ], 7O x+2dt/D| uPdx+p | w'@ids

Therefore we have
E(t) = —2/3/ W' (1)dx <0.
D

[The physical meaning of this equality is that for an event steered by the damped
wave equation the total energy (kinetic plus potential energy) is dissipated as time
increases. |

Exercise 10.5 Show that a suitable change of variable transforms the hyperbolic
problem

— +Lu=f inD x (0,7T)
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associated to a weakly coercive bilinear form By (-, -) into a damped hyperbolic
problem
Pu b b= F  nDx©.T)
— — u= in D x (0,
a2 ot ’
associated to a coercive bilinear form By, (-, -).
Solution Set w(t) = e "u(t) where n = /o > 0 and o is the constant related to
weak coerciveness. Then
w (@) =—ne Mu(t) + e Mu'(t) = —nw ) + e Mu'(t)
w’ (1) = n?e Mu(t) — 2ne "u' (1) + e " u’ (1)
= Pw(t) = 2n(w' (1) + nw(®)) + e "u" (1)
= —n2w(t) — 2nw'(t) + e "u" (1) .

Thus from u” = f — Lu it follows
w” (1) 4+ 2w (t) + Lw(t) + ow(t) = e V' £ (1),

thus the desired result with Ly = L + o1, B = 2,/0 and f(t) = e_\/‘?’f(t).

Exercise 10.6 Propose a numerical scheme for finding the approximate solution
of a hyperbolic problem which is based on the Galerkin approximation and on a

. o . g2
suitable finite difference scheme for discretizing 3873‘.

Solution As in Exercise 9.6, let V), be a finite dimensional subspace of V (not
necessarily the space generated by the first M element of an orthonormal basis of
V), whose basis is denoted by {¢1, ..., ¢y }. Choose a time-step t = T/K > 0,
define #,, = ktr, k = 0,1,..., K, and consider the (second order) centered
approximation of the second order derivative:

uk+l —yk g k-l

5 ~u't) , k=1,..., K —1.
T

Then the hyperbolic equation
"), v) +a(t; u(t), v) = (F(t), v)

can be approximated by means of the following numerical scheme: being given
”(/)w € Vy, a suitable approximation of the initial datum u(, and u,lw e Vuy, a
suitable approximation of u(#;) constructed in terms of ug,[ and of an approximation

u1,u of the initial datum u; (for instance, ”}w = ”(/)w + T uy, M, or, better, a higher
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order approximation), foreachk = 1,..., K — 1 find uﬁ,}"l € Vy, solution of the
problem
k+1 k k—1
u —2u'y, +u )
( " ,¢>,») +al; Wy, ) = (Fu). ¢i) , i=1,....M.
H

In the literature, this is often called the (second order) “explicit” Newmark method
(see, e.g., Raviart and Thomas [23, Sections 8.5 and 8.6]). Here the term “explicit”
is used though at each time step #x+1,k = 1, ..., K — 1, one has indeed to solve the
discretized linear problem

h ' i n = —T2alt uby. i) + Quby, — ' didm
+THF @), ¢, i=1,...,M;
this linear system is associated to the so-called mass matrix M;; = (¢;, ¢;) y, where

the contribution of the bilinear form a(¢; -, -) is not present, thus the operator L is
not playing any role.



Appendix A
Partition of Unity

A technical result that have been used in the previous chapters is that of partition of
unity. Let us explain which is its meaning.

Let K be a compact set in R”, covered by a finite union of open sets, K C
UM, Vi. Define

Vie =1{x € Vi |dist(x,dV;) > ¢} .

The first result that we want to prove is the following one: we can find other open
coverings Ul[‘i 1 Vieos Uf‘i 1 Vi,2¢,, for a suitable &g. Let us prove this assertion.

Proposition A.1 Ifa compact set K C R" is covered by a finite union of open sets,
K C Uf‘il Vi, then there exists ey > 0 such that K C U,Ail Vi.eo-

Proof We proceed by contradiction, and suppose that the statement is not true.
Then for each ¢ > 0 we can find x; € K, x; ¢ U[Ail Vie. Since K is compact,
we can select a subsequence x,, — xo € K, with &g — 0. Then there exists
ip € {1, ..., M} such that xy € Vj,. On the other hand, since x,, ¢ U,Ail Vi ep» I
particular x;, ¢ Vi, ¢, and consequently we know that

dist(xg,, 0Viy) < e —> 0.

Thus dist(xg, dV;,) = 0, a contradiction as V;, is an open set. O
Now we can state the result concerning the partition of unity.

Proposition A.2 Let K be a compact set in R”", covered by a finite union of open
sets, K C Uf‘il Vi. Then there exist functions w; : R" — R, i = 1,..., M, with
the following properties:

(i) w; € Cg°(V;) foreachi=1,...,M;
(ii) 0 < wj(x) < 1foreachi =1,..., M and for each x € R";
(iii) Zlﬂil w;(x) = 1 for each x € K.
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242 A Partition of Unity

Proof Take the characteristic function x; of V; 2., and for some fixed ¢ < &g
consider its mollified version {; = n, * x; defined as

Gi(x) = /R" Xi(Mne(x —y)dy . xeR"

(see Theorem 6.1). We know that ¢; € C*°(R") and that ¢; (x) > 0 for all x € R”,
as both x; and 7, are non-negative functions. Since the integral is indeed computed
on V; o, N B(x, &), where B(x,e) = {y € R"||y — x| < ¢}, we have {;(x) =0
for x ¢ V;g,, as in this case V; 2., N B(x, &) = @; therefore ¢; € Cgo(Vi). More
precisely, we can see that £;(x) > 0 forx € V; 25—, £i(x) = 0forx ¢ V; 25—,

namely supp §; = V; 2¢,—¢. We now define
= ifx € Ve
w0 = | D60 e
0 ifx e R"\ Vi 2gp— -
Therefore w; € CgO(R”), suppw; = Vi 2¢g—e C Vigy CC Vi, wi(x) = O0forallx e

R" and w; (x) < 1 forall x € R". Finally, forx € K C U,Ail Vi2ey C Ulﬂil Vi2eo—e
let us define

Li={i=1,...,M|x € Vigey—e};

then we have

M
&s(x)
;wi(X) D wyx) = Z<me§s(x)) L,

sel, sely

and the proof is complete. O
An immediate consequence of this result is the construction of a cut-off function:

Corollary A.1 Let D C R”" be a bounded, connected, open set. Let Q be an open
subset with Q CC D. Then there exists a cut-off function { € Cy°(D) satisfying
0<¢x)<lforx e Dand¢(x) =1 forx € Q.

Proof Tt is enough to apply Proposition A.2 with K = Q and with a covering V;
satisfying Uf‘i Vi €C D. For x € D the cut-off function is then given by ¢(x) =

Z,Ai | wi (x), and the property ¢(x) < 1 in D follows by the definition of w;. |



Appendix B
Lipschitz Continuous Domains
and Smooth Domains

In this appendix we clarify the meaning we give to the concept of “regularity” of
the boundary of a domain.
First of all we have:

Definition B.1 Let O C R" be an open set. We say that a function g : O+ R'isa
Lipschitz function in O, and we write ¢ € Lip(O), if there exists a constant L > 0
such that

lg(x) —g(¥)| < L|x —y|

for every x, y € 0.

To give an example, it is easily verified that, if O is a bounded open set, then
a function ¢ € C l(5) (namely, the restriction to OofacC L(R™)-function) is a
Lipschitz function in O.

Consider now a bounded, connected, open set D C R". Then the Lipschitz
continuous regularity of its boundary 9 D is defined as follows:

Definition B.2 We say that D is a Lipschitz domain, or equivalently a domain with
a Lipschitz continuous boundary, if for every point p € 9D there exist an open ball
B, centered at p, an open ball BO centered at 0, a rigid body motion R, : By > BO
givenby R,x = Apx+b)p, with R, p = 0, A, an orthogonal n x n- matrlx b e R",
and amap ¢ : Q —~ R, where Q = {§ € By | Sn = 0}, such that

1. ¢ €Lip@ and 9(0) =0
2. Rp(BpNaD) = {E', &) EABO 16 =9(E), & eq)
3. Ry(B,ND)={(&" &) € Bol& > &), & Q).

The meaning of the second condition is that d D coincides locally with the graph of
a Lipschitz function; the third condition asserts that D is locally situated on one part
of its boundary 9 D.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 243
A. Valli, A Compact Course on Linear PDEs, La Matematica per il 342 154,
https://doi.org/10.1007/978-3-031-35976-7


https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7
https://doi.org/10.1007/978-3-031-35976-7

244 B Lipschitz Continuous Domains and Smooth Domains

Fig. B.1 A (polyhedral) domain whose boundary is a Lipschitz manifold but it is not locally the
graph of a Lipschitz function. The “bad” points are the four vertices of the square that is the
interface between the two bricks (Courtesy of Jarno and Beatrice)

In particular, this definition says that a Lipschitz domain is a domain whose
boundary is a manifold with a system of local charts that are invertible Lipschitz
functions, namely, a Lipschitz manifold.

It can be interesting to note the opposite is not true: if you have a good
geometrical intuition you can verify that the boundary of the two-brick set described
in Fig. B.1 is an example of a surface that is not locally the graph of a Lipschitz
function. On the other hand, it is a Lipschitz manifold (for complete description of
this situation, see for instance a recent paper by Licht!).

For a Lipschitz domain at almost every point x € dD a tangent (hyper)plane is
well defined, together with the unit outward normal vector 7.

Definition B.3 We say that D is a domain of class C¥, or equivalently a domain
with a Ck-boundary, k > 1, and we write 9D € Ck, if the function @ in
Definition B.2 belongs to C*.

I Licht [19].



Appendix C
Integration by Parts for Smooth
Functions and Vector Fields

This appendix is devoted to various “integration by parts” formulas that have been
used several times in the previous chapters.

Let us start from the “fundamental theorem of calculus” (whose proof can be
found in any Calculus textbook): the integral of a derivative of a function f can be
explicitly expressed by an integral of f over a lower dimensional set.

Theorem C.1 (Fundamental Theorem of Calculus) Let D C R" be_ a bounded,
connected, open set with a Lipschitz continuous boundary, and let f : D — R be a
function of class C'(D). Then

/Z),fdx:/ fnidSy (C.1)
D oD

where n is the unit outward normal vector, defined on 0D for almost every x € dD.
From this theorem we easily obtain many well-known results:

Theorem C.2 (Integration by Parts) Let D C R" be a bounded, connected, open
set with a Lipschitz continuous boundary, and let f, g : D — R be two functions of
class C1 (D). Then

/ D, f gdx = —/ f Digdx +f fgnidSy . (C.2)
D D aD

Proof 1t is enough to remember that D;(fg) = D;fg + fDig and to apply
Theorem C.1. |
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246 C Integration by Parts for Smooth Functions and Vector Fields

Theorem C.3 (Divergence or Gauss Theorem) Let D C R" be a bounded,
connected, open set with a li'pschitz continuous boundary, and let F : D — R"
be a vector field of class C'(D). Then

/ didex:f F-ndSy. (C.3)
D aD

Proof Since div F = )| D; F;, one has only to apply Theorem C.2 for f = F;,
g=1landtoaddoveri =1,...,n. m]

Theorem C.4 Let D C R" be a Eounded, connected, open set with a Liﬁschitz
continuous boundary, and let F : D + R" be a vector field of class cl(D), g :
D > R be a function of class C' (D). Then

[divngx:—/ F-ngx+/ F-ngdSy. (C4
D D aD

In particular, taking F € Cg°(D) and g € C3°(D) one verifies that —V is the
(formal) transpose operator of div.

Proof 1t is enough to apply Theorem C.2to f = F; andtoaddoveri =1, ..., n.
O

Theorem C.5 Let D C R" be a bounded, connected, open set with a Lipschitz
continuous boundary, and let f : D +— R be a function of class C*(D),g:D—R
be a function of class C' (D). Then

/(—Af)gdx:/ Vf'ngx—f Vf-ngdSy. (C.5)
D D aD

In particular, taking g = 1 it follows

/ Afdx:/ Vf-ndS,. (C.6)
D 3D

Proof Recalling that —Af = —divV f, it is enough to apply Theorem C.4 to F =
-Vf. m|

Theorem C.6 Let D C R" be a Eounded, connected, open set with a Lzschitz
continuous boundary, and let F : D — R" be a vector field of class C (D), G :
D > R”" be a vector field of class C*(D). Then

/ (—VdivG) - Fdx = f divG divFdx —/ divG F -ndS, . (C.7)
D D aD

Proof 1t is enough to apply Theorem C.4 to g = divG. O
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Theorem C.7 Let D C R" be a bounded, connected, open set with a Lipschitz
continuous boundary, and let F, G : D > R" be two vector fields of class C' (D).
Then

/ curlF - Gdx =/ F - curlGdx +/ nx F-GdSy. (C.8)
D D aD

In particular, taking F € Cg°(D) and G € Cg°(D) one verifies that curl is
(formally) equal to its transpose operator.

Proof Recalling that curl F' can be formally computed as the vector product V x F,
one has only to apply Theorem C.2 to all the terms of the scalar product curlF - G
and to check that the result follows. |

Theorem C.8 Let D C R" be a bounded, connected, open set with a Lipschitz

continuous boundary, and let M : D + R" be a vector field of class C 2(D),
G : D — R" be a vector field of class C' (D). Then

/ curlcurlM - Gdx = / curl M - curlGdx +/ nxcurlM-GdS,. (C.9)
D D aD

Proof Just take F = curlM in Theorem C.7. O



Appendix D
Reynolds Transport Theorem

In this appendix we are concerned with a well-known result of differential calculus,
which is often useful in continuum mechanics. In the literature we are not aware of
a reference presenting its proof in a detailed way (but surely it exists!). Anyway, for
the ease of the reader we decided to present the proof here.

We need a preliminary result. Let us denote by Lip(R") the space of Lipschitz
functions on R".

Lemma D.1 Consider v = v(t, X) € L'(0, +o0; LipR")), x € R, and let & =
D (¢, x) be the solution of the Cauchy problem

d
Z(IJ(t,x) =v(t, d(t,x)) , t >0

(D.1)
®0,x)=x.
Defining j(t, x) = detJac, ® (¢, x), it holds
dj . .
E(r, x) = [(divyv) o ®](t, x)j (¢, x) . (D.2)

Remark D.1 In fluid dynamics one says that v is the velocity of the flow &: in
other words, the position ® (¢, x) is determined by integrating the velocity v along
the trajectories of the fluid particles. This means that ® (¢, x) is the position at time ¢
of a particle that at time 0 was at x: then X = ®(z, x) is the Lagrangian coordinate,
whereas x is the Eulerian coordinate.

Proof Being j a determinant, its derivative is given by
di <
- = det My, ,
dt kX_; g
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250 D Reynolds Transport Theorem
where, for k = 2, ..., n — 1, the matrix My is given by

Dy ®1 ... Dy, Py
My = Dt-Dxl (7 Dthn o |,

Dy @y ... Dy, @,

with obvious modification for the cases k = 1 and k = n. Fork,j = 1,...,n
from (D.1) we have

D[ijq)k = ijD[CDk = ij'(vk o q)) )

where we have denoted by g o ® the function (¢, x) — g(¢, (¢, x)). Moreover, by
means of the chain rule we also find, fork, j = 1,...,n,

n
oV
Dy (o®) =) <_ax o <I>> Dy, Dy .
s

s=1

Take for a while k = 2, ..., n — 1. Using the two last results we obtain

Dy, P1 Dy, Py

n n
vk vk
M = Z(E)X 0®>@x1®s~-- E (BX oq))Z)an)s < k-th row .
N s

s=1 s=1

Dy, . Dy, Dy
Since the determinant is linear with respect to the rows we find

Dy, @1 ... Dy, Dy

n 3Uk . . .
deth:Z ox. ° 2 )det| Dy ®s ... Dy, &y | kethrow.

s=1 §

Dy, @y ... Dy, Pp
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When s # k the matrix has two rows that are equal, thus its determinant vanishes;
therefore

Dy, @1 ... Dy, Dy

oV
det M} = 3%
k

. . . ka '
o® |det| Dy, &r ... Dy, Pr | = od|j.

Dy @ ... Dy, Py

For k = 1 and k = n we have the same result, with straightforward modification.
Adding over k form 1 to n we find (D.2). O

We are now ready for the main result. Let Dy C R" be a bounded, connected,
open set with a Lipschitz continuous boundary. For r > 0 define

D, ={X eR"| X = ®(¢, x) for some x € Dy}
and
W ={(t,X) € (0, +00) x R" | X € D,}.

Theorem D.1 (Reynolds Transport Theorem) Let f : W — R be a (smooth
enough) scalar function. Then

d oF
4 ax) = [ YLax 1 FdSy.
dr </Df > /D o1 +/3D,v nJdSx

where v is the velocity of the boundary 0 D; and n is the unit outward normal vector
on dD;.

Proof For any fixed ¢ consider the change of variables X = & (¢, x), which yields
f@, X)dX = / f@t, ®(t,x))| detJac, P (¢, x)| dx . (D.3)
D, Dy

Since j (0, x) = detJac, ®(0, x) = detJacld = 1, from (D.2) we find

t
j,x) =exp </ (divyv)(s, ®(s, x)) ds) >0.
0
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Thus in (D.3) we can drop the absolute value of the determinant. Let us now
differentiate with respect to ¢. Since the integral in Dy is on a fixed set, we can
differentiate inside the integral and we find

/ fdX = — f(t D (1, x)) detJac, @ (¢, x) dx
:/ —[f (@, ®(z,x))] detJac, P(z, x) dx (D.4)
Dy dt
+/ f(t,<I>(t,x))i[detJacde(t,x)]dx.
Do dt

By the chain rule, and taking (D.1) into account, the first factor in the first term
of (D.4) can be rewritten as

d 3 ) do;
E[f(t’ @(r,x)] = —f(l, @(1,x)) + Z —f_(t, (1, X))W(I,X)
f(z (1, x))—i-z (t O(t, x)vi (£, (2, x))
<8f +uv- fo) (, ©(t,x)).
ot
Using (D.2) in the second term of (D.4) we obtain
f, o, x))%[det]acxdb(t, x)] = (fdivyv)(t, (¢, x)) detJac, P (¢, x) .

In conclusion, we have seen that

d
T thf(t,X)dX
of .
= /D (5 +v-Vxf+ fdivy v) (t, D(t,x)) detJac, @ (t, x)dx
0
= f (% + divx(fv)> (t, ®(t,x)) detJac, @ (¢t, x)dx .
Dy at

Rewriting the integral at the right hand side by means of the change of variable
X = &(¢, x) we have

d (.
ar ), 16 X0dx = /D (m ~|—d1vx(fv)> (1, X)dX,

hence the thesis by using the divergence theorem C.3. O



Appendix E
Gronwall Lemma

The Gronwall lemma is an useful tool in the analysis of evolution equations. Its
statement is the following.

Lemma E.1 (Gronwall Lemma) Let f € L'(0, T) be a non-negative function, g
and ¢ be continuous functions in [0, T]. If ¢ satisfies

t
o) < g(0) + fo Fg@dr Ve, T],
then
t t
p(t) < g(1) +f f(s)g(s)exp (/ f(r)dr) ds Vtel0,T]. (E.1)
0 s

The proof of this lemma will be given below. For the moment let us show some
consequences of it.

Corollary E.1 If g is a non-decreasing function, then

t
o(t) < g(t)exp (/ f(r)dr) Vrel0,T].
0

Proof 1f g is non-decreasing, we have g(s) < g(¢) for 0 < s < ¢, thus from

Eq. (E.1)
t t

(1) < g(0) [1+ f F(s) exp ( / f(r)df)ds]
0 K
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254 E Gronwall Lemma

Since

5—S <exp (/Yt f(t)dr)) = —exp </: f(‘[)d‘l,') f(s),

we have that

/Otf(s)exp (/Stf(t)dr)ds: —/Ot% <exp </St f(t)dt))ds
= —<1—exp ([()tf(r)dr)) ,

hence the result. a

Corollary E2 If g(t) = ki and f(t) = ko, then
o(t) <k Viel0,T].

Proof Just apply Corollary E.1. O

Proof (of Lemma E.1) For s € [0, T] set R(s) = f(; f(@)e(t)dr. The assumption
yields

R'(s) = f(s)p(s) < f(s)lg(s) + R(s)].

Then

i |:R(s) exp (— /S f(r)dr)]
ds 0

= R'(s) exp (— /OS f(l')dl’) — R(s) f(s) exp (— /Os f(t)dt)

=[R'(s) = R(s) f(s)]exp (-/0 f(f)df>

< F(9)g(s) exp (— /0 f(r)df) .

Integrating over [0, ¢], we find, as R(0) = 0,

t t s
R(t) exp <—/0 f(r)dr) 5/0 f(s)g(s)exp <_/0 f(r)dt) ds,
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thus

t
R() < / ' F(5)8(s) exp ( / f(t)dt) ds
0 K

which gives the stated result as a consequence of the assumption ¢ (1) < g(t)+ R(?).
O



Appendix F

Necessary and Sufficient Conditions

for the Well-Posedness of the Variational
Problem

We present here the well-posedness result for a general variational problem of the
form

findueV : Bu,v)=F@w) YveV, (F1)

where V is a Hilbert space, B(-,-) : V x V R is a bounded bilinear form and
F(-) : V — Ris a bounded linear functional.

Theorem F.1 Problem (F.1) is well-posed (namely, it has one and only one solution
u for each bounded and linear functional F, and the solution map F +— u is
bounded) if and only if the following conditions are satisfied:

. . . B(w, v)
(i) there exists o > 0 : inf sup ——— >
weV, w0 yey v=20 lwlv vl

(ii) if B(w,v) =0forallw €V thenv =0.

Proof We introduce the linear and bounded functionals Q : V +— V’ and Q7 :
V + V' defined as

(Qw,v) = B(w,v) YveV , (QTv,w)zB(w,v) YwelV.

The well-posedness statement is thus reformulated as: Q is an isomorphism from V
onto V.

(=) Suppose that Q is an isomorphism from V onto V’. Then N(Q) = {0} and
R(Q) = V’, thus in particular R(Q) is closed. From the closed range theorem
(see Yosida [30, Theorem 1, p. 205]) R(Q) = N(QT):, thus N(QT); = V'
and N(QT) = {0}. This means that Q7v = 0 implies v = 0, namely, that
(0Tv, w) = B(w, v) = 0 for each w € V implies v = 0. This is condition (ii).
Moreover, since Q is an isomorphism from V onto V', its inverse is bounded,
namely, there exists @ > 0 such that || Qw||y > «a|w]|y for each w € V. This
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means

(Qw,v) B(w, v)

——— = sup —— >vu|w|ly YweV,
vevuzo IVl vevuzo  Vllv

thus condition (i).
(<) Let us assume now that (i) and (ii) are satisfied. We can follow the lines of the
proof of the Lax—Milgram theorem 2.1. From condition (i) it follows

(Qw, v) )
Qwllyr = sup ———— >alwly; (F2)
vevozo lvllv

as a consequence we derive that Q is one-to-one, as from Qw = 0 it follows
at once w = 0, and that Q! is bounded (at the moment, from R(Q) to V).
Moreover, we can also prove that R(Q) is closed. In fact, consider a sequence
Qur € R(Q) such that Qv — w € V’. In particular, Qv is a Cauchy sequence
in V’/, and from (F.2) we have that vy is a Cauchy sequence in V. Therefore we
find vg € V such that vy — v in V, thus Quy — Qup in V', which gives
Qvo = .

Since R(Q) is closed, the closed range theorem gives that R(Q) = N (QT)ﬁ (see
Yosida [30, Theorem 1, p. 205]). Thus for proving that R(Q) = V' it is enough
to show that N(QT) = {0}, namely, that (Q7 v, w) = 0 for all w € V implies
v = 0: since (Q7 v, w) = B(w, v), this is exactly condition (ii). |

Remark F.1 It is straightforward to verify that the coerciveness of B(:, -) implies
both (i) and (ii).
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