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Preface 

It don’t mean a thing 
(if it ain’t got that swing)1 

Edward “Duke” Ellington 

This book stems from a 45-hour course that I delivered for the Master degree at the 
Department of Mathematics of the University of Trento. 

Partial differential equations (PDEs) are an extremely wide topic, and it is not 
possible to include them into a single course, no matter how many lessons are 
assigned to it. Thus, the first question I had to face was the viewpoint I wanted 
to adopt and choice of the arguments. 

I decided to focus on linear equations. It is well known to everyone that 
the mathematical description of natural phenomena is mainly based on nonlinear 
models; however, in many cases, a reasonable approximation is obtained by a linear 
formulation, and, moreover, the knowledge of linear problems is the first step for 
dealing with more complex nonlinear cases. 

The second choice I made is to limit the presentation to the so-called weak 
formulation of partial differential equations. This means that our point of view 
is the following: solving a linear partial differential equation is interpreted as the 
solution of a problem associated to a linear operator acting between suitable infinite 
dimensional vector spaces. 

The path for arriving at this abstract formulation needs some tools that were not 
available in the classical theory. In a nutshell, the four main missing ingredients are 
the following: 

• Weak derivatives 
• Weak solutions 
• Sobolev spaces 
• A bit of functional analysis

1 If you are curious, take a look on the web: you can find nice videos on YouTube with this title. 

vii



viii Preface

The first results in this direction date back to the 1930s, with the pioneering works 
of Jean Leray,2 Sergei L. Sobolev,3 and others. In the same period, the study of 
infinite dimensional vector spaces and of functional analysis attracted the attention 
of many researchers: let us only mention the milestone book by Stefan Banach.4 

Still speaking about concepts not present in the classical theory, I decided not 
introducing the distributions and the distributional derivatives, as they are not 
essential for the presentation. In fact, as it is well known, the distributional derivative 
of a function essentially coincides with its weak derivative, and dealing with spaces 
of functions permits to avoid further generalizations. 

The determination of the weak formulation is essentially performed by trans-
forming the original problem into a set of infinitely many integral equations, one 
for each “test” function belonging to a suitable vector space. In several points 
of the book, I have tried to motivate the various steps of this approach starting 
from the analysis of finite dimensional linear systems, then enlightening analogies 
and differences when passing to the infinite dimensional case. In particular, the 
third chapter is devoted to results of functional analysis that show some typical 
differences between a finite dimensional and an infinite dimensional vector space. 
Another section of that chapter has the aim to clarify that suitable spaces for the new 
approach are those endowed with a scalar product, more precisely those for which 
the orthogonal projection on a closed subspace is well-defined: in other words, this 
means Hilbert spaces. 

This recurring comparison between algebraic linear systems and weak formula-
tions of linear PDEs has the aim of making clear that for the latter, subject functional 
analysis plays the role of linear algebra, namely, it is a basic tool for its study; 
however, as it has been observed by Lawrence C. Evans, this does not mean that it 
is a good idea to transform the whole topic into a too abstract branch of functional 
analysis itself. 

When I started to teach the course, I suggested a couple of books to the students: 
those by Evans [8] and Salsa [24]. For this reason, I cannot hide that the structure 
of these books has influenced what I presented then to my students and what is 
included now in this book. However, I hope that the reader can find here at least a 
different flavor (together with some new topics). 

The book is organized as follows. Chapter 1 is a very brief introduction to the 
subject, in which some definitions are given and a list of examples are presented. 

In the second chapter, many important items already appear: second order elliptic 
equations and related boundary value problems, weak solutions, and finally also the 
Lax–Milgram theorem. However, the functional analysis framework is not made

2 Leray [18]. It seems that Leray has been the first one to speak about weak solutions (“solutions 
turbulentes”) and weak derivatives (“quasi-dérivées”). 
3 Sobolev [25]. The functional framework where we describe and analyze the problems is given by 
Sobolev spaces, a name on which there is agreement since the middle of last century. 
4 Banach [2]. 
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clear, and for that the reader is referred to following results included in Chaps. 3 
and 4. 

Chapter 3 is devoted to analogies and differences between finite dimensional 
and infinite dimensional vector spaces, and to the motivation that makes useful the 
introduction of Hilbert spaces. 

In Chap. 4, some core topics are introduced and analyzed: weak derivatives and 
Sobolev spaces. 

The fifth chapter is a central part of the book: a systematic presentation of weak 
formulations of elliptic boundary value problems is there included. Moreover, the 
properties of the bilinear forms which describe the problems are presented in full 
detail. A section is also devoted to the boundary value problems associated to the 
biharmonic equation. 

Chapter 6 is devoted to several technical results that have been used in the 
previous chapters: approximation in Sobolev spaces, Poincaré and trace inequalities, 
Rellich compactness theorem, and du Bois-Reymond lemma. 

In Chap. 7, a rich variety of additional results is presented: Fredholm alternative, 
spectral theory for elliptic operators, maximum principle, regularity results and 
Sobolev embedding theorems, and finally Galerkin numerical approximation. 

The eighth chapter deals with constrained minimization and Lagrange multipliers 
in the infinite dimensional case. A general theory for saddle point problems is 
presented, and two specific examples are described: second order elliptic equations 
rewritten as a first order system of two equations, and the Stokes problem. The 
Galerkin approximation of saddle point problems is also described and analyzed. 

Chapter 9 is focused on parabolic problems, starting from the abstract evolution 
theory in Hilbert spaces and then arriving to its application to specific problems, 
among them non-stationary linear Navier–Stokes equations. The proof of maximum 
principle is also included. 

A similar presentation is given in Chap. 10 for hyperbolic problems, including 
Maxwell equations, ending with the proof of the property of finite propagation 
speed. 

The book finishes with some appendices, devoted to technical results: a detailed 
construction of a partition of unity; the precise definition of the regularity of the 
boundary of a domain; integration by parts formulas; the Reynolds transport theo-
rem; the Gronwall lemma; a general well-posedness theorem for weak problems. 

Each chapter of the book is complemented by some exercises: they have different 
difficulty, and in some case could be more properly intended as an additional in-
depth analysis. For the ease of the reader, I decided to present the complete solution 
of all of them. 

At the end, a few words about the sentence by “Duke” Ellington that I chose as 
an incipit: a book is not a course, even though the title seems to suggest it. Thus, for 
the delight of the students, a colleague who will decide to follow this presentation 
should find the way to add some swing to these barren pages: I tried my best, but it 
is never enough. 

This book would not have been written without my former Master students Fede-
rico Bertacco and Laura Galvagni, who a day (but after the exam!) entered my office
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with the Latex file of my unrefined handwritten notes. This has been the irresistible 
push for rearranging everything into a better structured textbook. I am also grateful 
to Gabriele Dalla Torre, who suggested the best way for drawing the figures, to my 
old friend Paolo Acquistapace, who helped me in clarifying the proof of uniqueness 
in Theorem 10.1, to Nicolò Drago, who furnished the proof of Exercise 6.11, and to 
Arte Sella and Giacomo Bianchi for having permitted the reproduction of the photo 
on the cover. 

Finally, I want to thank the editors Luigi Ambrosio, Paolo Biscari, Ciro Ciliberto, 
Camillo De Lellis, Victor Panaretos, and Lorenzo Rosasco and the editor-in-chief 
Alfio Quarteroni for having accepted to publish this book in the Springer series 
UNITEXT: La Matematica per il 3+2. Special thanks to Francesca Bonadei from 
Springer, who encouraged me to undertake this project and with great experience 
and enthusiasm has followed me along its realization. 

In the second edition of this book some sections and exercises have been 
added. In particular, Sect. 2.2.2 (on a general strategy for solving linear problems 
in an infinite dimensional vector space), Sect. 5.6 (on the biharmonic equation), 
Sect. 9.2.2 (on non-stationary linear Navier–Stokes equations), and Sect. 10.1.2 
(on Maxwell equations) are new, as well as Exercises 1.2, 4.1, 6.11, 7.18, 7.20, 
7.21, 7.22, 8.4, 9.3, 9.5, and 10.1; moreover, the solutions of Exercises 6.4, 7.8, 
and 9.1 have been largely rewritten. Theorem 7.16, Corollary A.1, and Remark 2.6 
are also new, while the proofs of Theorems 6.7, 7.7, 7.10, 7.12, 9.4, and 10.1, 
as well as the solutions of Exercises 7.2 and 7.3, have been modified for better 
understanding. Finally, many misprints have been corrected and many sentences 
have been rephrased. 

Some final considerations: I recently read the nice book by Vladimir Maz’ya and 
Tatyana Shaposhnikova on the life and scientific activity of Jacques Hadamard,5 and 
I learnt that the last work of Hadamard is a book on partial differential equations, 
completed at the age of 97 years (!) and published in Beijing in 1964,6 just after 
his death. This book is a treasure trove of very interesting and elegantly presented 
results on partial differential equations and shows the deep knowledge that one of 
the most relevant mathematicians of the last century had of the subject. However, 
as Maz’ya and Shaposhnikova also remarked, it looks dramatically old, even for 
that time: weak derivatives, Sobolev spaces, and functional analysis are completely 
missing and the variational approach, the one systematically adopted here, is not 
even mentioned. Without any doubt, for a young mathematician of that time, the 
theory of partial differential equations was already a different thing. 

Without comparing me to Hadamard, which would be clearly a nonsense, I 
vaguely feel that today we are in a similar situation. In this book, I put the knowledge 
of the subject that I achieved and metabolized in 50 years: but it is possible that all 
this material becomes rapidly old, like the classical theory presented by Hadamard 
in the 1960s.

5 Maz’ya and Shaposhnikova [20]. 
6 Hadamard [13]. 
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Indeed, it is a rather general opinion that the main importance of partial 
differential equations lies in the fact that they are, since Galileo and Newton, the 
way in which we have modeled natural phenomena; and being able to solve partial 
differential equations, both at the theoretical and the numerical level, gives the 
possibility of finding answers on the behavior of those phenomena. In other words, 
it opens the road to predict the future. 

What we see now arriving is a different paradigm: for getting answers on 
natural phenomena modeling seems no longer strictly necessary, as artificial neural 
networks and machine learning methods could furnish an efficient alternative. In 
front of us, we see a turning point: huge amount of data versus equations. The 
question is: will these approaches live together, or in about a dozen of years (this 
period of time could be enough, as changes are running faster than 60 years ago. . . )  
the new strategy will cancel the old one? “Ai posteri l’ardua sentenza”.7 

Povo, Italy Alberto Valli 
May 2023

7 A. Manzoni, Il cinque maggio. 
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Chapter 1
Introduction

Very often the description that we give of natural phenomena is based on physical
laws that express the conservation of some quantity (mass, momentum, energy,
. . . ). In addition, some experimental relations are also taken into account (how the
pressure is related to the density, how the heat flux is related to the variation of
temperature, . . . ).

Conservation and variation are thus basic ingredients: in mathematical words, the
latter one means derivatives. More precisely, very often the description we want to
devise involves many variables: therefore we have to play with partial derivatives
and with equations involving unknown quantities and their partial derivatives.

Definition 1.1 A partial differential equation (PDE) is an equation involving an
unknown function .u = u(x) of two or more variables .x = (x1, . . . , xn), .n ≥ 2, and
certain of its partial derivatives. An expression of the form

.F(x1, . . . , xn, u,Du,D2u, . . . ,Dku) = 0

is called a .kth order PDE, where .k ≥ 1 is an integer and we have denoted by .Dku a
generic partial derivative of order k.

Equivalently, keeping on the left all the terms involving the unknown u and putting
on the right all the other terms, we can write a PDE in the form

.L(x, u) = f ,

where L is called partial differential operator and f turns out to be a given datum.

Definition 1.2 A PDE is said to be non-linear if it is not linear.

The reason of this apparently meaningless definition is that we want to enlighten
the fact that the crucial point is to understand the definition of what is a linear PDE.
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2 1 Introduction

Definition 1.3 A PDE in the form .L(x, u) = f is said to be linear if the operator
L is linear, i.e., .L(x, α1w1 + α2w2) = α1L(x,w1) + α2L(x,w2) for all .α1, α2 ∈ R
and all functions .w1, w2.

This definition is a little bit inaccurate, as the operator L has not a meaning for
all functions w: it is necessary that the derivatives appearing in L do exist for these
functions.

Definition 1.4 Let the operator L be linear; then the linear equation .Lu = f �= 0
is said to be non-homogeneous, while the linear equation .Lu = 0 it is said to be
homogeneous.

We use the notation .Diu for indicating the partial derivative .
∂u
∂xi

. Other equivalent
notations are .uxi

, .Dxi
u, .∂xi

u.

Remark 1.1 The general form of a linear operator of first order (.k = 1) is:

.L(x,w) =
n∑

i=1

b̂i (x)Diw + a0(x)w .

The general form of a linear operator of second order (.k = 2) is:

.L(x,w) =
n∑

i,j=1

âij (x)DiDjw +
n∑

i=1

b̂i (x)Diw + a0(x)w .

We will see in the sequel that very often a second order linear operator will be
written in the variational form

.L(x,w) = −
n∑

i,j=1

Di (aij (x)Djw) +
n∑

i=1

bi(x)Diw + a0(x)w .

Clearly, for smooth coefficients .aij it is easy to return to the previous form.

1.1 Examples of Linear Equations

Transport equation: ut + b · ∇u = f , where ∇ = (D1, . . . ,Dn).
Laplace equation/Poisson equation: −�u = 0 /−�u = f , where� = ∑n

i=1D2
i

is the Laplace operator. A solution u of the Laplace equation is called harmonic
function.

Helmholtz equation: −�u − ω2u = 0, with ω �= 0.
Biharmonic equation: �2u = 0, where �2 = ��.
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Heat equation: ut − k�u = f , with k > 0 (thermal conductivity). A solution u

has an infinite speed of propagation.
Schrödinger equation: −ih̄ut − h̄

2m�u + V u = 0, with h̄ > 0 (reduced Planck
constant), m > 0 (mass).

Wave equation: utt − c2�u = f , with c > 0 (speed of propagation). A solution
u has the finite speed of propagation c.

Damped wave equation: utt − c2�u + σut = f , with c > 0, σ > 0.

Klein–Gordon equation: utt − c2�u + m2c4

h̄2
u = 0, with c > 0, h̄ > 0, m > 0.

Telegraph equation: utt − τ 2uxx + d1ut + d2u = 0, with τ > 0, d1 > 0,
d2 > 0 (the three constants being related to resistance, inductance, capacitance,
conductance).

Plate equation: utt + �2u = f .

1.2 Examples of Non-linear Equations

Burgers equation: ut + uux = εuxx (viscous: ε > 0; inviscid: ε = 0).
Korteweg–de Vries equation: ut + cuux + uxxx = 0, with c �= 0.
Cahn–Hilliard equation: ut + ν�2u − �(βu3 − αu) = 0, with ν > 0, α > 0,

β > 0.

Minimal surface equation: div

(
∇u√

1+|∇u|2

)
= 0, where divw = ∇ · w =

∑n
i=1Diwi .

Monge–Ampere equation: det(Hu) = f (x, u,∇u), where H is the Hessian
matrix of second order derivatives.

1.3 Examples of Systems

Elasticity system: −μ�u − ν∇divu = f , where μ > 0, ν > 0 (Lamé
coefficients).

Incompressible Navier–Stokes/Euler system:

.

{
∂tu + (u · ∇)u − ν�u + ∇p = f

div u = 0 (incompressibility condition) ,

where (u · ∇)u is the vector with components [(u · ∇)u]i = ∑n
j=1 ujDj ui , and

ν > 0 (viscosity per unit density) for Navier–Stokes, ν = 0 for Euler.
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Compressible Navier–Stokes/Euler system (barotropic case):

.

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div(ρu) = 0

ρ
(
∂tu + (u · ∇)u

) − μ�u − (ζ + n−2
n

μ)∇div u + ∇P = ρf

P = p∗(ρ) (barotropic condition) ,

where μ > 0 (kinematic viscosity) and ζ > 0 (bulk viscosity) for Navier–Stokes,
μ = 0 and ζ = 0 for Euler.

Maxwell system:

.

⎧
⎪⎪⎨

⎪⎪⎩

∂tB + curlE = 0 , divB = 0
∂tD − curlH = −Je , divD = ρ

B = μH

D = εE ,

where μ > 0 (magnetic permeability), ε > 0 (electric permittivity),

.curlE = ∇ × E = det

⎡

⎣
i j k

D1 D2 D3

E1 E2 E3

⎤

⎦ .

Eddy current system:

.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tB + curlE = 0 , divB = 0
curlH = J , χIdivD = ρ

B = μH

D = εE

J = χCσE + Je ,

where σ > 0 (electric conductivity), χI and χC are the characteristic functions
of QI and QC , respectively, and QI and QC are two subsets which furnish a
splitting of the whole domain. This is an approximation of Maxwell system for
slow varying electromagnetic fields.

1.4 Exercises

Exercise 1.1 Write the Poisson equation −�u = f as a first order system in terms
of u and q = −∇u.
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Solution Since �u = div∇u, we have

.

{
q + ∇u = 0
div q = f .

The problem in this form will be analyzed in Chap. 8 (see Example 8.3).

Exercise 1.2

(i) Write the wave equation utt − c2�u = f as a first order system in terms of
w = ut and q = c∇u.

(ii) Note that the first order system obtained in (i) can be written as a symmetric
system of the form Ut + ∑n

j=1 AiDiU = F , with Ai = AT
i and U =

(w, q1, . . . , qn).

Solution

(i) Setting w = ut and q = c∇u we have wt = utt = c2div∇u+f = c div q +f .
Moreover, qt = c∇ut = c∇w. Thus we have obtained

.

{
wt − c div q = f

qt − c∇w = 0 .

Since −div is the (formal) adjoint of ∇, the above system has the anti-
symmetric form

.Ut + c

(
0 ∇T

−∇ 0

)
U = F ,

with U = (w, q1, . . . , qn), F = (f, 0, . . . , 0). This can be a little bit surprising
when looking at the second part of the exercise.

(ii) Expanding the expressions just derived, it is straightforward to check that the
first order system obtained in (i) can be written as Ut + ∑n

j=1 AiDiU = F

with U and F as above and Ai , i = 1, . . . , n, the (n + 1) × (n + 1) symmetric
matrices given by

.A1 =

⎛

⎜⎜⎜⎜⎜⎝

0 −c 0 . . . 0
−c 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

0 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
, . . . , An =

⎛

⎜⎜⎜⎜⎜⎝

0 0 0 . . . −c

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

...
...

−c 0 0 . . . 0

⎞

⎟⎟⎟⎟⎟⎠
.
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Exercise 1.3

(i) Determine the second order system that is obtained for the electric field E by
applying the backward Euler scheme to the Maxwell system (assume that μ

and ε are constants).
(ii) Determine the second order system that is obtained for the magnetic field H

by applying the backward Euler scheme to the Maxwell system (assume that
μ and ε are constants).

(iii) Note that the two systems have the same structure curl curl + αI , with α > 0.

Solution

(i) Approximating the time derivatives by the difference quotients

.∂tB ≈ B − Bold

τ
, ∂tD ≈ D − Dold

τ

where τ > 0 is the time step, and remembering that B = μH and D = εE we
find

.

{
μH + τ curlE = Bold

εE − τ curlH = −τ J + Dold .
(1.1)

Applying the curl operator to the first equation and using the second equation
for expressing curlH we easily find

.curl curlE + με

τ 2
E = 1

τ
curlBold + μ

τ 2
Dold − μ

τ
J .

(ii) Applying the curl operator to the second equation in (1.1) and using the first
equation in (1.1) for expressing curlE we have

.curl curlH + με

τ 2
H = −1

τ
curlDold + ε

τ 2
Bold + curlJ .

(iii) Evident from (i) and (ii).

Exercise 1.4 Let u be a smooth solution in R3 of the equation u − ∇divu = f .

(i) Show that divu is a solution in R3 of the equation p − �p = divf .
(ii) If curlf = 0 in R3, show that u = ∇ψ for a suitable function ψ .
(iii) If curlf = 0 in R3, divf = 0 in R3 and the derivatives of u decay fast enough

at infinity, say, |divu| + |∇divu| ≤ C∗|x|−α for α > 3
2 and |x| ≥ q∗ large

enough, then u = ∇ψ for a suitable harmonic function ψ .
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Solution

(i) Taking into account that div∇div = �div, the result follows at once by
applying the div operator to the equation.

(ii) Taking into account that curl∇ = 0, applying the curl operator to the equation
we find curlu = curlf = 0. SinceR3 is a simply-connected domain, we deduce
that there exists a function ψ such that u = ∇ψ in R3.

(iii) Multiply the equation divu − �divu = divf = 0 by divu and integrate over
the ball Bs = {x ∈ R3 | |x| < s}, s > q∗. It holds

.

0 =
∫

Bs

[(divu)2 − (�divu)divu]dx

=
∫

Bs

[(divu)2 + ∇divu · ∇divu]dx −
∫

∂Bs

∇divu · n divu dSx ,

(1.2)

where we have used the integration by parts formula (C.5). The boundary
integral can be estimated as follows

.

∣∣∣
∫

∂Bs

∇divu · n divu dSx

∣∣∣ ≤ C∗s−2α4πs2 ,

and moreover

.

∫
Bs

(divu)2dx =
∫

Bq∗
(divu)2dx

︸ ︷︷ ︸
=C0

+
∫

Bs\Bq∗
(divu)2dx

≤ C0 + C∗
∫

Bs\Bq∗
|x|−2αdx = C0 + 4πC∗

∫ s

q∗
r2r−2αdr ≤ Q0 ,

where Q0 is independent of s > q∗, as α > 3
2 . Similarly,

.

∫

Bs

|∇divu|2dx ≤ Q1 .

Passing to the limit as s → +∞ in (1.2) we find

.

∫

R
3
[(divu)2 + |∇divu|2]dx = 0 ,

therefore divu = 0 in R3. Since from (ii) we already know that u = ∇ψ , it
follows that div∇ψ = �ψ = 0 in R3.

Exercise 1.5 Let u be a smooth solution in R3 of the equation u+curl curlu = f .

(i) Show that curlu is a solution in R3 of the equation q + curl curlq = curlf .
(ii) If divf = 0 in R3, show that u = curl� for a suitable function �.
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(iii) If curlf = 0 in R3, divf = 0 in R3 and the derivatives of u decay fast enough
at infinity, say, |curlu| + |curl curlu| ≤ C∗|x|−α for α > 3

2 and |x| ≥ q∗ large
enough, then u = curl� for a suitable function � that satisfies curl curl� = 0.

Solution

(i) This a sort of “curl” version of the previous exercise. The first result follows at
once by applying the curl operator to the equation.

(ii) Taking into account that div curl = 0, applying the div operator to the equation
we find divu = divf = 0. It is well-known that this condition R3 is equivalent
to the fact that there exists a function � such that u = curl� in R3.

Note that, if we know that the vector potential � decays sufficiently fast at
infinity, we can apply the classical Helmholtz decomposition and write � =
∇φ +curlQ. Thus �� = � −∇φ satisfies curl�� = u and div�� = 0: in other
words, we have found a divergence free vector potential ��.

(iii) Take the scalar product of the equation curlu+ curl curl curlu = curl f = 0 by
curlu and integrate over the ball Bs = {x ∈ R3 | |x| < s}, s > q∗. It holds

.

0 =
∫

Bs

[|curlu|2 + curl curl curlu · curlu]dx

=
∫

Bs

[|curlu|2 + curl curlu · curl curlu]dx

−
∫

∂Bs

n × curl curlu · curlu dSx ,

(1.3)

where we have used the integration by parts formula (C.8). The boundary
integral can be estimated as follows

.

∣∣∣
∫

∂Bs

n × curl curlu · curlu dSx

∣∣∣ ≤ C∗|s|−2α4πs2 ,

and moreover

.

∫
Bs

|curlu|2dx =
∫

Bq∗
|curlu|2dx

︸ ︷︷ ︸
=C0

+
∫

Bs\Bq∗
|curlu|2dx

≤ C0 + C∗
∫

Bs\Bq∗
|x|−2αdx = C0 + 4πC∗

∫ s

q∗
r2r−2αdr ≤ Q0 ,

where Q0 is independent of s > q∗, as α > 3
2 . Similarly,

.

∫

Bs

|curl curlu|2dx ≤ Q1 .
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Passing to the limit as s → +∞ in (1.3) we find

.

∫

R
3
(|curlu|2 + |curl curlu|2)dx = 0 ,

therefore curlu = 0 in R3. Since from (ii) we already know that u = curl�, it
follows that curl curl� = 0 in R3.

As in case (ii), if we know that the vector potential� decays sufficiently fast
at infinity, we can modify it and find a vector potential�� such that curl�� = u

and div�� = 0. Thus

.0 = curl curl�� = −��� + ∇div�� = −��� ;

in other words, all the components of �� are harmonic functions.



Chapter 2 
Second Order Linear Elliptic Equations 

This chapter is concerned with a general presentation of second order linear elliptic 
equations and of some of the most popular boundary value problems associated to 
them (Dirichlet, Neumann, mixed, Robin). 

Before introducing the concept of weak solution and of weak formulation we 
briefly describe the general ideas behind two quite classical methods for finding the 
solution of partial differential equations: the Fourier series expansion in terms of an 
orthonormal basis given by the eigenvectors of the operator, and the representation 
of the solution by integral formulas, using the fundamental solution of the operator 
as integral kernel. 

The approach leading to the weak formulation is then described without giving all 
the technical details, but only trying to specify which steps are needed for obtaining 
the desired result. Though the complete functional framework is not yet clarified, 
nonetheless we end the chapter with the proof of the fundamental existence and 
uniqueness result: the Lax–Milgram theorem. 

2.1 Elliptic Equations 

In this chapter we will study the boundary value problem 

.

{
Lu = f in D

BC on ∂D ,
(2.1) 

where D is an open, connected and bounded subset of . Rn, .u : D �→ R is the 
unknown, and . BC stands for “boundary condition”. Here .f : D �→ R is given and 
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L denotes a second order partial differential operator having the form 

.Lw = −
n∑

i,j=1

Di (aijDjw) +
n∑

i=1

biDiw + a0w . (2.2) 

The second order term .−∑n
i,j=1Di (aijDjw) is called the principal part of L. The  

reason of the (mysterious) minus sign will be clear in the sequel (see Remark 2.3). 

Remark 2.1 In physical models, u in general represents the density of some 
quantity, for instance a chemical concentration. In the operator L, the principal part 
represents the diffusion of u within D. The first order term represents advection 
(transport) of u within D. The term of order zero describes the local reactions that 
occur in D. 

We will focus on four different types of boundary condition (here below n is the 
unit outward normal vector on . ∂D): 

Dirichlet BC : .u = 0 on . ∂D [homogeneous case]. 

Neumann BC : .
n∑

i,j=1

niaijDj u = g on . ∂D. 

Mixed BC : .u = 0 on . �D and .

n∑
i,j=1

niaijDj u = g on . �N , where .∂D = �D ∪�N , 

.�D ∩ �N = ∅ [homogeneous case on . �D]. 

Robin BC : .
n∑

i,j=1

niaijDj u + κu = g on . ∂D, where .κ ≥ 0 almost everywhere 

(a.e. henceforth) on . ∂D and .
∫
∂D

κdSx �= 0. 

Remark 2.2 In the case of a non-homogeneous Dirichlet boundary condition 

. u = u� on ∂D

(and, similarly, of the non-homogeneous mixed boundary condition .u = u� on . �D) 
we proceed as follows: 

1. find .̂u : D �→ R such that .̂u|∂D = u�; 
2. setting .ω = u− û, we see that .ω|∂D = 0 and .Lω = Lu−Lû = f −Lû. Then the 

second step is: find . ω, a solution of the homogeneous Dirichlet boundary value 
problem .Lω = f − Lû, .ω|∂D = 0; 

3. finally define .u = ω + û. 

For arriving at the definition of elliptic equation we need now to give a deeper 
look at the matrix .{aij (x)}ni,j=1 of the coefficients of the principal part of L. 

Definition 2.1 A (real) matrix A is said to be positive definite if .Av · v > 0 for 
every .v ∈ Rn, .v �= 0.
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Exercise 2.1 A matrix  A is positive definite if and only if it exists .α > 0 such that 
.Av · v ≥ α|v|2 for every .v ∈ Rn. 

Exercise 2.2 Consider a positive definite matrix A (thus satisfying . Av · v ≥ α|v|2
for every .v ∈ Rn, for a suitable .α > 0). Then the real part of an eigenvalue of A is 
greater than or equal to . α; in particular, a positive definite matrix is non-singular. 

Exercise 2.3 

(i) A matrix  A is positive definite if and only if .
A+AT

2 is positive definite. 

(ii) A matrix  A is positive definite if and only if all the eigenvalues . λi of .
A+AT

2 are 
strictly positive. 

Definition 2.2 The partial differential operator L is said to be (uniformly) elliptic 
in D if the matrix .{aij (x)}ni,j=1 is (uniformly) positive definite, i.e., if there exists a 
constant .α0 > 0 such that 

. 

n∑
i,j=1

aij (x)ηjηi ≥ α0|η|2

for almost all .x ∈ D, for every .η ∈ Rn. 

Exercise 2.4 

(i) Show that the operator 

. Lw = −D1
(
(1 + x1x2)D1w

) −D1(x1D2w) −D2(x2D1w) −D2D2w ,

is uniformly elliptic in .D = {x ∈ R2 | 0 < x1 < 1/2, 0 < x2 < 1}. 
(ii) Show that the operator .Lw = −∑3

i,j=1 Di(aijDjw), with 

. {aij } =
⎛
⎝ 1 −x3 x2

x3 1 + x2
1 x1

−x2 x2 1 + x2
3

⎞
⎠

is uniformly elliptic in .D = {x ∈ R3 | |x| < 1}. 

2.2 Weak Solutions 

Before speaking about a different idea of what is the solution of a partial differential 
equation, let us spend a few words about a couple of “classical” approaches 
concerning this question (say, in use throughout nineteenth century and after).
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2.2.1 Two Classical Approaches 

A first approach is based on series expansion. Suppose we want to solve the problem 

.

{−
u = f in D

u|∂D = 0 on ∂D ,
(2.3) 

and we have a countable basis .{ωk}∞k=1, with .ωk : D �→ R and .ωk|∂D = 0. We can 
expand u and f as .u = ∑∞

k=1 ukωk and .f = ∑∞
k=1 fkωk , with .uk, fk ∈ R, and 

impose equation (2.3). 1 (we are not making precise here in which sense these series 
are convergent. . . ).  This  formally  gives  

.

∞∑
k=1

fkωk = f = −
u =
∞∑

k=1

uk(−
ωk) . (2.4) 

Expanding also .−
ωk (and admitting that this is possible. . . )  we  find  

. − 
ωk =
∞∑

j=1

qk
j ωj ,

and inserting this result in (2.4) we obtain 

.

∞∑
j=1

fjωj =
∞∑

k=1

uk

( ∞∑
j=1

qk
j ωj

)
=

∞∑
j=1

( ∞∑
k=1

qk
j uk

)
ωj . (2.5) 

Thus we have to solve the infinite dimensional linear system 

.

∞∑
k=1

qk
j uk = fj , j = 1, 2, . . . (2.6) 

This simplifies a lot if . ωk are eigenvectors of the .−
 operator: .−
ωk = λkωk , with 
.λk ∈ R the associated eigenvalues. In this case the coefficients . qk

j have to satisfy 

. λkωk =
∞∑

j=1

qk
j ωj ,

hence we infer 

.qk
j = λkδkj , k, j = 1, 2, . . .
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where . δkj is the Kronecker symbol, defined by .δkj = 0 if .k �= j , .δkj = 1 if .k = j . 
Then (2.6) can be easily solved by setting 

. uj = fj

λj

, j = 1, 2, . . .

provided that .λj �= 0. In particular, if the eigenvectors . ωj are an orthonormal basis 
with respect to some scalar product .(·, ·), one has .fj = (f, ωj ), the classical Fourier 
coefficients. 

We have thus solved the problem via Fourier series expansion. This procedure 
requires that we are able to find an orthonormal basis given by eigenvectors of 
the operator which satisfy the boundary condition. Clearly, one has to check that 
the formal procedure we have described can be rigorously justified: the series 
expansions hold, the series can be differentiated term by term, the eigenvalues . λj are 
different from 0. Some answers concerning these points can be found in Sect. 7.2. 

The following exercise furnishes an example of orthonormal system of eigenvec-
tors in .L2(D) (the proof that it is a orthonormal basis, namely, that any function . f ∈
L2(D) can be expressed by a convergent Fourier series requires some additional 
work: for this, see Theorem 7.7): 

Exercise 2.5 Consider .D = (0, a) × (0, b). Determine the eigenvalues and the 
eigenvectors associated to the operator .−
 with homogeneous Dirichlet boundary 
condition, and verify that, after a suitable normalization, the eigenvectors are an 
orthonormal system in .L2(D). [Hint: use the method of separation of variables.] 

Still referring to problem (2.3), a second approach we want to describe is the 
following: suppose we know a function .K(x, ξ) : D × D �→ R satisfying, for 
.x ∈ D, 

.

∫
D

(−
xK)(x, ξ)f (ξ)dξ = f (x) . (2.7) 

Before proceeding, let us see in which way such a function K could be determined. 
Fix .x ∈ D and for .m ≥ 1 set 

. ρm(ξ ; x) = 1

meas(B(x, 1
m

))
χ

B(x, 1
m

)
(ξ) ,

where .B(x, 1
m

) = {ξ ∈ Rn | |x − ξ | < 1
m

} and .χ
B(x, 1

m
)
is the characteristic function 

of .B(x, 1
m

). It is readily verified that .
∫
B(x,t)

ρm(ξ ; x)dξ = 1 for each .t > 0 and 
.m > 1/t . Moreover, it is well-known that, if f is continuous at x, then 

. lim
m→∞

∫
D

ρm(ξ ; x)f (ξ)dξ = f (x) .



16 2 Second Order Linear Elliptic Equations

Thus one could try to find a function .K(x, ξ) such that . −(
xK)(x, ξ) =
−(
ξK)(ξ, x) and 

. − (
ξK)(ξ, x) = lim
m→∞ ρm(ξ ; x) .

Clearly, the weak point here is that . lim
m→∞ ρm(ξ ; x) = 0, in the pointwise sense for 

all .ξ �= x, and moreover in the limit the condition saying that the average on . B(x, t)

is equal to 1 is lost. A surrogate of this choice can be to look for .K(x, ξ) such that 
.−(
xK)(x, ξ) = −(
ξK)(ξ, x) = 0 for .ξ �= x and satisfying 

. −
∫

∂B(x,t)

(∇ξK)(ξ, x) · n(ξ)dSξ = 1 ,

where n is the unit outward normal vector on .∂B(x, t). The reason of this condition 
is that by the divergence theorem (see Theorem C.3) we have . − ∫

B(x,t)

g(ξ)dξ =

− ∫
∂B(x,t)

∇g(ξ) · n(ξ)dSξ for a smooth function g. 
This procedure is indeed feasible (in Exercise 2.6 we give an example of the 

construction of a function with these two properties: which however is just the 
starting point for saying that (2.7) is satisfied in some suitable sense). 

Exercise 2.6 

(i) Find a function .K0 = K0(ξ) defined in .R
2 \ {0} and such that 

. − 
K0 = 0 in R2 \ {0} and −
∫

∂B(0,t)
∇K0 · ndSξ = 1

for any .t > 0. [Hint: look for a radial function .K0 = K0(|ξ |).] 
(ii) Verify that a function .K(x, ξ) satisfying . −(
xK)(x, ξ) = −(
ξK)(ξ, x) = 0

for .ξ �= x and .− ∫
∂B(x,t)

(∇ξK)(ξ, x) · n(ξ)dSξ = 1 for each .t > 0 is given by 
.K(x, ξ) = K0(|x − ξ |). 

Let us go back to (2.7). Being .K(x, ξ) available, we set 

.u(x) =
∫

D

K(x, ξ)f (ξ)dξ (2.8) 

and proceeding formally from (2.7) we have 

. − 
u(x) =
∫

D

(−
xK)(x, ξ)f (ξ)dξ = f (x) .

What is missing is the fact that u satisfies the boundary condition. This difficulty 
can be overcome if we know a function .G(x, ξ) : D × D �→ R satisfying (2.7) and
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also .G(x, ξ)|x∈∂D = 0 for each .ξ ∈ D. Then setting 

. u(x) =
∫

D

G(x, ξ)f (ξ)dξ

furnishes a solution of (2.3). 
The possibility of finding the function K introduced above depends on the 

properties of the operator . −
, while the possibility of finding G also depends on 
the properties of the domain D. Therefore, it could be useful to devise a procedure 
only based on the knowledge of K . Given a function .v : D �→ R, by integration by 
parts (see Theorem C.2) we obtain 

.

∫
D

(−
ξv)(ξ)K(ξ, x)dξ −
∫

D

v(ξ)(−
ξK)(ξ, x)dξ

=
∫

∂D

(
− ∇ξ v(ξ) · n(ξ)K(ξ, x) + v(ξ)∇ξK(ξ, x) · n(ξ)

)
dSξ .

(2.9) 

If .K(x, ξ) = K(ξ, x), so that .(
ξK)(ξ, x) = (
xK)(x, ξ), and we select .v = u, 
where u satisfies .−
u = f in D, from  (2.9) and (2.7) we find for . x ∈ D

.

∫
D

f (ξ)K(ξ, x)dξ − u(x)

=
∫

∂D

(
− ∇ξ u(ξ) · n(ξ)K(ξ, x) + u(ξ)∇ξK(ξ, x) · n(ξ)

)
dSξ .

(2.10) 

This is a representation formula for .u(x), .x ∈ D, in terms of K , f and the values 
of .∇u · n and u on the boundary . ∂D. If we are considering the Dirichlet or the 
Neumann boundary value problems, on the boundary . ∂D we know only one of the 
two functions .∇u · n and u: thus we cannot conclude our argument. But if a similar 
formula can be obtained for .x ∈ ∂D (to be more precise, what it is known to hold 
is the same formula with the only modification given by the replacement at the left 
hand side of .u(x) with .p(x)u(x), for a suitable function p), and we assume that u 
is a solution of the Dirichlet boundary value problem with boundary datum . u�, then 
we finally obtain 

.

∫
∂D

∇ξ u(ξ) · n(ξ)K(ξ, x)dSξ = −
∫

D

f (ξ)K(ξ, x)dξ + p(x)u�(x)

+
∫

∂D

u�(ξ)∇ξK(ξ, x) · n(ξ)dSξ , x ∈ ∂D .
(2.11) 

This is a boundary integral equation for the boundary unknown .∇u ·n. If we are able 
to solve it, we can put the obtained value of .∇u · n in (2.10) and we have found a 
representation formula for the solution .u(x), .x ∈ D. Note that a similar dual result is 
obtained if we assume that u satisfies the Neumann boundary condition: in that case 
the unknown function of the boundary integral equation is .u|∂D , while . (∇u · n)|∂D

becomes a known datum.
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With this procedure we have thus transformed the original boundary value 
problem into a boundary integral equation. Also in this case we need to show that 
this formal process gives indeed the solution we are looking for. This means that we 
have to show that all the integrals appearing in (2.10) and (2.11) have a meaning, 
that the function given by (2.10) is differentiable as many times as we need and 
satisfies the equation, and that as .x → x̂ ∈ ∂D the given boundary condition is 
achieved at . x̂. 

The theory related to this method is called potential theory: indeed, the function 
.x → K(x, ξ), up to a normalization, is the potential of the electric field generated 
by a point charge placed at . ξ . The function .K(x, ξ) satisfying (2.7) is called the 
fundamental solution of the partial differential operator (in our presentation, of the 
operator . −
). A classical (and a little bit old fashioned) reference on this topic is the 
textbook by Kellogg [14] (originally printed in 1929, and several times reprinted); 
for a more recent one see McLean [21]. 

2.2.2 An Infinite Dimensional Linear System? 

When it is looked from far enough, a linear partial differential equation is essentially 
an infinite dimensional linear system: 

• the solution we look for is a function, thus an object depending on infinitely many 
independent information (say, its values in all the points of the domain where it 
is defined, or, in more specific cases, the coefficients of a series expansion which 
represents it); 

• the relations between these unknowns are expressed by a linear operator. 

Therefore it could be reasonable trying to extend to the infinite dimensional 
case the theory of existence and uniqueness that is known for a linear system of 
m equations with m unknowns. This problem can always be associated to a square 
.m × m-matrix, say Q, and takes the form 

.Qq = p , (2.12) 

with .q, p ∈ Rm. 
From linear algebra we know various necessary and sufficient conditions that 

imply existence and uniqueness of a solution q for any given p. By far the most 
famous is assuming that Q is non-singular, namely, that .det Q �= 0. Unfortunately, 
when Q has infinitely many rows and columns, it does not seem so easy to translate 
this condition in something of simple use.
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From a more abstract perspective a simple answer is that the problem is well-
posed if and only if the map .r �→ Qr , .r ∈ Rm, is one-to-one and onto. In this 
respect a simplification indeed occurs: in fact the so-called “rank–nullity” theorem 
states that 

.dim N(Q) + dim R(Q) = m , (2.13) 

where .N(Q) = {v ∈ Rm | Qv = 0} and .R(Q) = {Qv ∈ Rm | v ∈ Rm} are the kernel 
and the range of Q, respectively. Therefore it follows that .N(Q) = {0} (namely, the 
map .r �→ Qr is one-to-one) implies .R(Q) = Rm (namely, the map .r �→ Qr is 
onto) and vice versa: in other words, from uniqueness one obtains existence and 
vice versa. However, also in this case a direct extension to the infinite dimensional 
case of the “rank–nullity” theorem does not seem immediate, as an equation like 
(2.13) loses its meaning when .m = +∞. 

Instead, another interesting and well-known result seems to be much more 
promising: the characterization of the range of Q given by .R(Q) = N(QT )⊥, 
where .N(QT )⊥ denotes the subspace orthogonal to .N(QT ) (see Exercise 7.2). 
Here we are not playing with infinite quantities, but with simple space relations. In 
particular, existence and uniqueness follows from the two conditions . N(Q) = {0}
and .R(Q)⊥ = N(QT ) = {0}. 

For obtaining that the kernels of Q and .QT are trivial it is sufficient that Q 
is positive definite, as this implies that .QT is positive definite, too. Clearly, we 
already know that a positive definite matrix is non-singular (see Exercise 2.2); but 
here we are interested in conditions that can have a simple extension to the infinite 
dimensional case, continuing to be sufficient for existence and uniqueness also in 
that case. We will see in Sect. 2.3 that, with a slight modification, the condition Q 
positive definite will be the right one. 

Let us conclude this section with two additional remarks about the strategy 
described above. The first one is that in an infinite dimensional vector space the 
range of a linear and bounded operator is not always closed (see Sect. 3.1, item 
5), and that the correct relation between the range of Q and the kernel of . QT

is .R(Q) = N(QT )⊥ (see Exercise 7.3). Therefore it will be necessary to find 
conditions assuring that the range of Q is closed. What is nice here is that a 
positiveness condition is also sufficient for this result. 

The second remark is that a linear differential operator typically does not act 
from a vector space V into itself, but from V into its dual space (i.e., the space of 
linear and bounded functionals from V to . R), that will be denoted by . V ′. Clearly, by  
using the Riesz representation theorem 3.1 one could go back to an operator from V 
to V : this will be done, for instance, in the proof of the Lax–Milgram theorem 2.1. 
However, if this step is not performed, we have at hand an operator Q from V to . V ′, 
and therefore the relations between the range and the kernel must be reconsidered, as 
.R(Q) ⊂ V ′ while .N(QT ) ⊂ V ; the orthogonal subspace .N(QT )⊥ will be replaced 
by the polar set .N(QT )� (see Theorem 8.4).
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In conclusion, we have seen that the following conditions seem to be sufficient 
for the existence and uniqueness of the solution of an infinite dimensional linear 
problem .Qq = p: 

• . N(Q) = {0}
• .R(Q) is closed 
• .N(QT ) = {0}. 
We are saying “seem” instead of “are” as we still have to clarify which properties 
the infinite dimensional vector space V has to satisfy in order that for a linear and 
bounded operator .Q : V �→ V ′ it holds .R(Q) = N(QT )�. 

2.2.3 The Weak Approach 

After the two examples in Sect. 2.2.1 and the general presentation in Sect. 2.2.2, the  
aim now is to completely describe a different point of view, based on the definition 
of what is called a weak solution u of (2.1). 

Let us start again from the finite dimensional linear problem. System (2.12) is  
equivalent to 

.(Qq, r) = (p, r) ∀ r ∈ Rm , (2.14) 

where we have denoted by .(·, ·) a scalar product in . Rm. In fact, from (2.14) we have  
.(Qq − p, r) = 0 for each .r ∈ Rm, and taking .r = Qq − p the result follows. 
We can also remark that the same holds true if (2.14) is valid for all r in a set . V
that is dense in . Rm: it is enough to recall the continuity of the scalar product due to 
Cauchy–Schwarz inequality. 

Noting that the new form (2.14) of problem (2.12) has at the left hand side a 
bilinear form and at the right hand side a linear functional, one is led to analyze the 
problems that can be written in this form: find the solution .q ∈ Rm of 

.b(q, r) = F(r) ∀ r ∈ Rm , (2.15) 

where .b(·, ·) is a bilinear form on .R
m × Rm and .F(·) is a linear functional on . Rm. 

It is straightforward to check that this can be easily rewritten in the matrix form 
.Qq = p, by setting .Qij = b(ωj , ωi) and .pi = F(ωi), where . ωi are basis vectors 
of . Rm, .i = 1, . . . , m. Then we could go back to the analysis of a linear system 
associated to a matrix that has been constructed in terms of the bilinear form . b(·, ·)
and a basis of . Rm. However this is not so enlightening, and it is better to introduce 
a more abstract approach, which avoids the use of a basis and which will be easily 
extended to the infinite dimensional case. Applying to (2.15) the finite dimensional 
Riesz representation theoremwe know that, for each fixed .w ∈ Rm, we can represent 
the linear functional .r �→ b(w, r) by means of the scalar product of a unique 
element .ωw ∈ Rm and r , namely, .b(w, r) = (ωw, r) for each .r ∈ Rm. The  same
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happens for .r �→ F(r), say,  .F(r) = (gF , r) for each .r ∈ Rm. The  map  . w �→ ωw

is clearly linear, thus . ωw can be represented as Mw for a suitable .m × m matrix M . 
Then solving (2.15) is equivalent to finding the solution .q ∈ Rm of the linear system 
.Mq = gF . In particular, well-posedness of (2.15) is satisfied if and only if the map 
.r �→ Mr is one-to-one and onto from . Rm to . Rm: this will be the strategy employed 
in the proof of Lax–Milgram theorem 2.1. 

Having clarified this correspondence between the matrix formulation (2.12) and 
formulation (2.15), let us come back to our elliptic boundary value problem. We 
assume in the following that 

.aij , bi, a0 ∈ L∞(D) (i, j = 1, . . . , n) (2.16) 

and 

.f ∈ L2(D) , (2.17) 

and, for the sake of definiteness, in the rest of this section we will consider the 
Dirichlet boundary value problem. 

When solving (2.1), we are looking for an element in an infinite dimensional 
vector space (loosely speaking, functions are elements of a vector space, as we can 
add them and we can multiply them by a real number; moreover, for identifying 
each one of them we need infinitely many information, namely, its value in all the 
points of the domain D: thus they live in a infinite dimensional vector space). If we 
can play with a scalar product, we could repeat what has been done here above for 
a finite dimensional linear system. 

We know that in an infinite dimensional vector space we can have infinitely many 
scalar products, and they are not equivalent to each other. Thus we must choose the 
scalar product to be employed for mimicking the finite dimensional case, and the 
natural choice is the simplest scalar product we use when dealing with functions: 
the .L2(D)-scalar product, i.e., 

.(w, v)L2(D) =
∫

D

wvdx . (2.18) 

Let us start now from (2.1). We know that the space of smooth functions with 
compact support .C∞

0 (D) is dense in .L2(D), thus it could play the role of the dense 
subspace . V. With this in mind, for each function v (we will call it a test function) 
Eq. (2.1) could be rewritten as 

.(Lu, v)L2(D = (f, v)L2(D ∀ v ∈ C∞
0 (D)
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(we are admitting, for the moment, that .u ∈ C2(D) and the coefficients . aij ∈
C1(D), so that all the three terms defining Lu belong to .L2(D)). This reads 

. 

∫
D

−
n∑

i,j=1

Di (aijDj u)vdx +
∫

D

n∑
i=1

biDiuvdx +
∫

D

a0uvdx =
∫

D

f vdx .

The term associated to the principal part can be balanced in a better way. In fact, 
integrating it by parts and remembering that .v|∂D = 0, we obtain 

. 

∫
D

−
n∑

i,j=1

Di (aijDj u)vdx =
∫

D

n∑
i,j=1

aijDj uDivdx

−
∫

∂D

n∑
i,j=1

niaijDj uv|∂DdSx

︸ ︷︷ ︸
= 0

and so 

. 

∫
D

n∑
i,j=1

aijDj uDivdx +
∫

D

n∑
i=1

biDiuvdx +
∫

D

a0uvdx

=
∫

D

f vdx ∀ v ∈ C∞
0 (D) .

Definition 2.3 The bilinear form .BL(· , ·) associated with the elliptic operator L 
introduced in (2.2) is defined by 

.BL(w, v) =
∫

D

n∑
i,j=1

aijDjwDivdx+
∫

D

n∑
i=1

biDiwvdx+
∫

D

a0wvdx . (2.19) 

Remark 2.3 Having chosen the minus sign in (2.2) has as a consequence that in 
the definition of the bilinear form (2.19) we have the plus sign! 

We indicate by .FD( · ) the linear functional associated to the right hand side f , 
namely, we set 

.FD(v) =
∫

D

f vdx . (2.20) 

With this notation, problem (2.1) has been rephrased as follows: find u (in which 
space?) such that 

.BL(u, v) = FD(v) ∀ v ∈ C∞
0 (D) . (2.21)
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Remark 2.4 Let us note, from the very beginning, that the weak problem is the 
right problem to face and we can focus on it without being afraid of considering 
something that is not meaningful. In fact, suppose we have a classical solution u 
to problem (2.1). We have just seen that u is also a solution to problem (2.21). 
If we know that for problem (2.21) a uniqueness result holds, then solving (2.21) 
furnishes the solution to (2.1). Furthermore, if the classical problem (2.1) has not a 
solution (for instance, the right hand side f has a jump discontinuity, so that a twice 
differentiable solution u cannot exist), it is still possible that the solution to (2.21) 
does exist (for example, the definition of the right hand side just needs .f ∈ L2(D)), 
and that it has a correct physical meaning. In this respect, remember that physical 
models are based on conservation principles, where the balance between integral 
quantities is required, and the process leading to pointwise partial differential 
equations is a limit process as volumes shrink at a point. 

As we have remarked, the missing point in (2.21) is that we have to devise 
a suitable infinite dimensional vector space V where looking for u (and possibly 
also selecting the test functions v). The analogy with the finite dimensional matrix 
problem suggests that V should enjoy the following properties: 

1. V is a subspace of .L2(D) and is endowed with a scalar product (possibly, 
stronger than the .L2(D)-scalar product); 

2. the bilinear form .BL(·, ·) and the linear functional .FD(·) are defined and bounded 
in .V × V and V , respectively; 

3. the (infinite dimensional) Riesz representation theorem holds in V . This essen-
tially says that V must be a Hilbert space: namely, any Cauchy sequence in V is 
convergent to an element of V . (See Sect. 3.2 for the proof of Riesz theorem and 
also for some other interesting remarks.) 

4. .C∞
0 (D) is a subspace of V . (We will see that relaxing the assumption that 

.C∞
0 (D) is a subspace of V is possible, but one must be careful: see Sect. 5.5 

and the second part of Sect. 5.6.) 
5. .C∞

0 (D) is dense in V with respect to the convergence in V . 

Let us note that in a finite dimensional vector space a linear functional is always 
bounded, while this is not true in the infinite dimensional case (see Sect. 3.1). 
Therefore in property 2 we have explicitly assumed boundedness. As shown in 
Exercise 2.7 this means that .BL(·, ·) and .FD(·) are continuous, thus by a density 
argument we see that (2.21) is satisfied also for all .v ∈ V . 

Note also that in property 5 the assumption that .C∞
0 (D) is dense in V is related to 

the fact that we are considering the homogeneous Dirichlet boundary value problem; 
we will see that for the other boundary value problems this assumption could refer 
to other subspaces of .C∞(D). 

Another remark about the space .C∞
0 (D) is in order: here we have not yet shown 

which is its essential role (we only underlined the fact that it is suitable to assume 
that it is a subspace of V , as we have built our procedure by using test functions in 
.C∞
0 (D)). We will see in Chap. 4 that its use will permit us to introduce new relevant 

concepts and new Banach spaces, giving a solid ground to our analysis.
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The following exercise clarifies the relation between boundedness and continuity 
for a linear functional. 

Exercise 2.7 Let V be a Hilbert space (indeed, a normed space would be enough), 
and .F : V �→ R a linear functional. Then F is bounded if and only if it is continuous. 

An inspection of the terms in .BL(u, v) shows that the principal part of it is 
defined if .∇u,∇v belong to .(L2(D))n (and the assumption .aij ∈ L∞(D) is 
sufficient); for the lower order terms we must add the assumption .u, v ∈ L2(D). 
Thus we could choose .V = {v ∈ C1(D) | v|∂D = 0}, but the choice of the scalar 
product .(w, v)L2(D) would not be enough (there is not a control of the integrals 
where first order derivatives appear). Therefore, we could endow V with the scalar 
product 

.(w, v)1 =
∫

D

(wv + ∇w · ∇v)dx . (2.22) 

However, it is easy to check that with these choices of V and .(·, ·)1 property 3 here 
above is not satisfied. In fact, let us consider this exercise: 

Exercise 2.8 

(i) Consider .D = (−1, 1) and for .x ∈ D define .f (x) = 1−|x|, .g(x) = −sign(x). 
Show that there exists a sequence .vk ∈ V = {v ∈ C1(D) | v|∂D = 0} such that 
.vk → f in .L2(D) and .v′

k → g in .L2(D). 
(ii) Show that V is not a Hilbert space with respect to the scalar product . (·, ·)1

defined in (2.22). 

Thus a new problem is enlightened: on one side, the scalar product .(·, ·)1, that 
seems to be quite reasonable, requires that the gradient is defined (and square-
summable); on the other side, the sequence . vn constructed in Exercise 2.8, part 
(i), is a Cauchy sequence with respect to the scalar product .(·, ·)1, and, if we could 
obtain that .f ′(x) = g(x) (which is definitely not true in the standard sense, but also 
does not seem to be completely meaningless), then we would have that . vn converges 
to f with respect to the scalar product .(·, ·)1. 

Summing up, here there is something to do: we need derivatives (and that they 
belong to .L2(D)), and we also need that a “corner” function admits a derivative 
(belonging to . L2). Therefore a natural question arises: is it the time to introduce a 
different definition of derivative? 

We will see: for the moment, assume that we will be able to overcome these 
difficulties, and let us analyze how to solve a general problem of the form: 

.find u ∈ V : B(u, v) = F(v) ∀ v ∈ V , (2.23) 

where V is a Hilbert space, endowed with the scalar product .(·, ·)V and the norm 
.‖ · ‖V , and the bilinear form .B(·, ·) and the linear functional .F(·) are defined and 
bounded in .V × V and V , respectively.
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A particular interesting and at the same time simple situation arises when . B(·, ·)
satisfies .|B(w, v)| ≤ γ ‖w‖V ‖v‖V for each .w, v ∈ V (boundedness), . B(v, v) ≥
α‖v‖2V for each .v ∈ V (coerciveness) and is symmetric, i.e., .B(w, v) = B(v,w) for 
each .w, v ∈ V (for the bilinear form .BL(·, ·) introduced in (2.19) this means that the 
coefficients of the operator L satisfy .aij = aji and .bi = 0 for each .i, j = 1, . . . , n). 
In this case .B(·, ·) is a scalar product in V , and the induced norm is equivalent to 
the original one: in fact from boundedness and coerciveness we have 

. α‖v‖2V ≤ B(v, v)) ≤ γ ‖v‖2V .

Thus solving problem (2.23) is a direct consequence of the (infinite dimensional) 
Riesz representation theorem (see Theorem 3.1). 

Let us note, however, that in the finite dimensional case the linear system . Qq =
p has a unique solution if and only if .detQ �= 0. Hence, as shown in Exercise 2.2, 
a sufficient condition to have a unique solution is that Q is positive definite, i.e., 

. (Qr, r) ≥ α|r|2 ∀ r ∈ Rm

for some .α > 0. Therefore symmetry does not seem to be essential: we could hope 
that the well-posedness of (2.23) is true even if .B(·, ·) is not symmetric, but still 
bounded and such that .B(v, v) ≥ α‖v‖2V for each .v ∈ V . 

The answer is in the quite important result presented in next section. 

2.3 Lax–Milgram Theorem 

In this section we assume V is a (real) Hilbert space, with norm .‖ · ‖V and scalar 
product .(·, ·)V (note however that the result below, with easy modification, is also 
true for a complex Hilbert space). 

Theorem 2.1 (Lax–Milgram Theorem) Let .B : V × V �→ R and .F : V �→ R be 
a bilinear form and a linear functional, respectively. Assume that .B(·, ·) is bounded 
and coercive in .V × V , i.e., there exist constants .γ > 0, .α > 0 such that 

.|B(w, v)| ≤ γ ‖w‖V ‖v‖V ∀ w, v ∈ V (2.24) 

and 

.B(v, v) ≥ α‖v‖2V ∀ v ∈ V , (2.25) 

and that .F : V �→ R is bounded in V , i.e., there exists a constant .M > 0 such that 

.|F(v)| ≤ M‖v‖V ∀ v ∈ V . (2.26)
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Then there exists a unique element .u ∈ V such that 

. B(u, v) = F(v) ∀ v ∈ V .

Moreover the stability estimate .‖u‖V ≤ M
α
holds true. 

Proof The proof presented here is based on the Riesz representation theorem 3.1 
and the projection theorem (see Yosida [28, Theorem 1, p. 82]), two well-known 
results of functional analysis. Another proof, using the less known closed range 
theorem 8.4, can be found in Exercise 8.4. 

The proof is divided into 6 steps. The first three have the aim to rewrite the 
problem as an equation in the Hilbert space V for a suitable linear and bounded 
operator. 

1. For each fixed element .w ∈ V , the mapping .v �→ B(w, v) is a bounded linear 
functional on V ; hence the Riesz representation theorem 3.1 asserts the existence 
of a unique element .ωw ∈ V satisfying 

. B(w, v) = (ωw, v)V ∀ v ∈ V .

Let us write .Aw = ωw, so that for .w, v ∈ V it holds 

. B(w, v) = (Aw, v)V .

2. Similarly, once more from the Riesz representation theorem 3.1 we observe that 
we can write 

. F(v) = (gF , v)V ∀ v ∈ V

for a unique element .gF ∈ V . Then problem (2.23) reduces to finding a unique 
.u ∈ V satisfying .Au = gF , namely, to show that .A : V �→ V is one-to-one and 
onto. 

3. We first claim A is a bounded linear operator. Indeed if .λ1, λ2 ∈ R and . w1, w2 ∈
V , for each .v ∈ V we see that 

.

(A(λ1w1 + λ2w2), v)V = B(λ1w1 + λ2w2, v)

= λ1B(w1, v) + λ2B(w2, v)

= λ1(Aw1, v)V + λ2(Aw2, v)V

= (λ1Aw1 + λ2Aw2, v)V .
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This equality is true for each .v ∈ V , thus we have proved that A is linear. 
Furthermore 

. ‖Av‖2V = (Av,Av)V = B(v,Av) ≤ γ ‖v‖V ‖Av‖V .

Consequently .‖Av‖V ≤ γ ‖v‖V for all .v ∈ V and A is bounded. 
4. Next we assert 

.

⎧⎪⎪⎨
⎪⎪⎩

A is one-to-one

and

R(A), the range of A, is closed in V.

(2.27) 

To prove this, let us compute 

. α‖v‖2V ≤ B(v, v) = (Av, v)V ≤ ‖Av‖V ‖v‖V .

Hence .α‖v‖V ≤ ‖Av‖V . This inequality easily implies that A is one-to-one. 
Moreover, take a sequence .Avn ∈ R(A) such that .Avn → ω0 ∈ V . Since 
.Avn is convergent, it is a Cauchy sequence; using the linearity of A and the 
last inequality we also have .‖vn − vm‖V ≤ α‖Avn − Avm‖V , thus . vn is a 
Cauchy sequence, too. Being V a Hilbert space we have that .vn → w0 ∈ V , 
and since A is bounded it follows .Avn → Aw0. The uniqueness of the limit 
yields .ω0 = Aw0, thus .R(A) is a closed subspace. 

5. We prove now that 

.R(A) = V . (2.28) 

By the projection theorem (see Yosida [28, Theorem 1, p. 82]), it is enough to 
prove that .R(A)⊥ = {0}. Let us take .w ∈ R(A)⊥; then 

. α‖w‖2V ≤ B(w,w) = (Aw,w)V = 0 ,

hence .w = 0. In conclusion, A is onto. 
6. Finally we have that 

. α‖u‖2V ≤ B(u, u) = F(u) ≤ M‖u‖V ,

thus .‖u‖V ≤ M
α
. 

��
Remark 2.5 As already said, the dual space of V (i.e., the space of linear and 
bounded functionals from V to . R) will be denoted by . V ′. Following this notation, 
in Lax–Milgram theorem we have assumed .F ∈ V ′.
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Remark 2.6 It is well known that if V is a Hilbert space then . V ′ is a Hilbert space, 
too. Its scalar product is given by .(�,�)V ′ = (ω�, ω�)V , where by the Riesz 
representation theorem 3.1 it holds .�(v) = (ω�, v)V and .�(v) = (ω�, v)V for 
each .v ∈ V (see, e.g., Yosida [28, Corollary 1, p. 91]). 

Remark 2.7 Necessary and sufficient conditions for a general existence and 
uniqueness result are presented in Theorem F.1. 

Remark 2.8 For the sake of simplicity, in the sequel we will often say that a 
bilinear form .B(·, ·) : V × V �→ R is bounded or coercive in V , instead of in 
.V × V . 

2.4 Exercises 

Exercise 2.1 A matrix A is positive definite if and only if it exists α >  0 such that 
Av · v ≥ α|v|2 for every v ∈ Rn. 

Solution 

(⇐) Trivial. 
(⇒) The map v �→ Av · v is positive for all v �= 0 and it is continuous. On the 

subset |v| =  1, which is bounded and closed, it has a minimum α >  0 and a 
minimum point v∗ such that Av∗ · v∗ = α. Now  take  v �= 0 and let v� = v 

|v| , 
|v�| =  1. Therefore we have that Av� · v� ≥ α >  0, that is 

. α ≤ A
v

|v| · v

|v| = 1

|v|2Av · v �⇒ Av · v ≥ α|v|2 .

Exercise 2.2 Consider a positive definite matrix A (thus satisfying Av · v ≥ α|v|2 
for every v ∈ Rn, for a suitable α >  0). Then the real part of an eigenvalue of A is 
greater than or equal to α; in particular, a positive definite matrix is non-singular. 

Solution Let λ ∈ C be an eigenvalue of A, with (unit) eigenvector ω = v+iw ∈ Cn, 
v, w ∈ Rn. We have  

. λ = λ|ω|2
C

n = (λω, ω)
C

n = (Aω,ω)
C

n = Av · v − iAv · w + iAw · v + Aw · w ,

thus 

. Re λ = Av · v + Aw · w ≥ α(|v|2 + |w|2) = α .

As a consequence, all the eigenvalues of A are different from 0 and det A �= 0, thus 
A is non-singular.



2.4 Exercises 29

Exercise 2.3 

(i) A matrix  A is positive definite if and only if A+AT 

2 is positive definite. 

(ii) A matrix  A is positive definite if and only if all the eigenvalues λi of A+AT 

2 are 
strictly positive. 

Solution 

(i) We have 

. 
A + AT

2
v · v = 1

2
(Av · v + AT v · v) = Av · v ,

thus (i) is proved. 

(ii) It is enough to note that A+AT 

2 is a symmetric matrix, thus being positive 
definite is equivalent to say that its minimum eigenvalue is strictly positive. 

Exercise 2.4 

(i) Show that the operator 

. Lw = −D1((1 + x1x2)D1w) −D1(x1D2w) −D2(x2D1w) −D2D2w ,

is uniformly elliptic in D = {x ∈ R2 | 0 < x1 < 1/2, 0 < x2 < 1}. 
(ii) Show that the operator Lw = −∑3 

i,j=1 Di(aijDjw), with 

. {aij } =
⎛
⎝ 1 −x3 x2

x3 1 + x2
1 x1

−x2 x2 1 + x2
3

⎞
⎠

is uniformly elliptic in D = {x ∈ R3 | |x| < 1}. 
Solution Using Exercise 2.3, it is enough to show that the minimum eigenvalue 
λ1(x) of the matrix { 1 2 (aij + aji)} satisfies infD λ1(x) > 0. 

(i) Writing A = {aij } we have 

. A =
(
1 + x1x2 x1

x2 1

)

and 

.
1

2
(A + AT ) =

(
1 + x1x2

1
2 (x1 + x2)

1
2 (x1 + x2) 1

)
.
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A simple calculation shows that 

. λ1(x) = 1

2

(
2 + x1x2 −

√
x2
1x

2
2 + (x1 + x2)2

)
.

Since for a ≥ 0, b ≥ 0 we have
√

a + b ≤ 
√

a + √
b, it follows  that  λ1(x) ≥

1 
2

(
2 − x1 − x2) ≥ 1 4 for x ∈ D. 

(ii) We have 

. 
1

2
(A + AT ) =

⎛
⎝1 0 0
0 1 + x2

1
1
2 (x1 + x2)

0 1
2 (x1 + x2) 1 + x2

3

⎞
⎠ .

Clearly one of the eigenvalues is equal to 1, while the minimum of the other 
two is given by 

. λ1(x) = 1

2

(
2 + x2

1 + x2
3 −

√
(x2

1 − x2
3)

2 + (x1 + x2)2
)

.

Using again the inequality 
√

a + b ≤ √
a + √

b, we find 

. λ1(x) ≥ 1

2

(
2+x2

1 +x2
3 −|x2

1 −x2
3 |−|x1+x2|

)
≥ 1

2

(
2−|x1+x2|

)
≥ 1−

√
2

2

for x ∈ D. 

Exercise 2.5 Consider D = (0, a)  × (0, b). Determine the eigenvalues and the 
eigenvectors associated to the operator −
 with homogeneous Dirichlet boundary 
condition, and verify that, after a suitable normalization, the eigenvectors are an 
orthonormal system in L2(D). [Hint: use the method of separation of variables.] 

Solution We must find functions ω = ω(x, y) and numbers λ such that −
ω = λω 
in (0, a)  × (0, b)  and ω|∂D = 0. Using the technique of separation of variables we 
look for ω(x, y) = p(x)q(y), with p(0) = p(a) = 0 and q(0) = q(b) = 0. 
Imposing the equation we find 

. − 
ω = −p′′q − pq ′′ = λpq = λω in (0, a) × (0, b) ,

and dividing by pq (this is justified for p �= 0 and q �= 0,  but  let  us  go  on. . . )  we  
obtain 

. − p′′

p
− q ′′

q
= λ .
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Since p′′
p is a function of the variable x only and q ′′

q is a function of the variable 

y only, this equation can be satisfied if and only if p′′
p and 

q ′′
q are both equal to a 

constant. 
Let us write p

′′
p = −μ (thus q

′′
q = μ−λ). The ordinary differential equation p′′+ 

μp = 0 has a general solution given by p(x) = c1 exp(
√−μx) + c2 exp(−√−μx) 

for μ <  0, by p(x) = c1+c2x for μ = 0 and by p(x) = c1 sin(
√

μx)+c2 cos(
√

μx) 
for μ >  0. In the first two cases imposing the boundary conditions p(0) = p(a) = 0 
readily yields c1 = c2 = 0, thus p is vanishing and it is not an eigenvector; in the 
third case from p(0) = 0 it follows c2 = 0, thus we have to impose p(a) = 
c1 sin(

√
μa) = 0 without setting c1 = 0. The condition to be satisfied is therefore 

. sin(
√

μa) = 0 �⇒ √
μa = mπ for m ≥ 1.

We have thus found the sequence μm = m2π2 

a2 
, m ≥ 1, and the corresponding 

functions pm(x) = sin(mπ 
a x). Setting ν = λ − μ, a similar computation for the 

other factor q yields νl = l2π2 

b2 
and ql(y) = sin( lπ 

b y), for  l ≥ 1. 
We have thus determined 

. λml = m2π2

a2
+ l2π2

b2
, ω̂ml(x, y) = sin

(mπ

a
x
)
sin

( lπ

b
y
)

, m ≥ 1 , l ≥ 1 .

From
∫ a 
0 sin(

mπ 
a x) sin(m′π 

a x)dx = 0 for  m �= m′ and
∫ a 
0 sin

2(mπ 
a x)dx = a 

2 it is 
readily seen that ωml = 2√

ab
ω̂ml is an orthonormal system in L2((0, a)  × (0, b)). 

Exercise 2.6 

(i) Find a function K0 = K0(ξ) defined in R2 \ {0} and such that 

. − 
K0 = 0 in R2 \ {0} and −
∫

∂B(0,t)
∇K0 · ndSξ = 1

for any t >  0. [Hint: look for a radial function K0 = K0(|ξ |).] 
(ii) Verify that a function K(x, ξ) satisfying −(
xK)(x, ξ) = −(
ξK)(ξ, x) = 0 

for ξ �= x and − ∫
∂B(x,t) (∇ξK)(ξ, x) · n(ξ)dSξ = 1 for each t >  0 is given by 

K(x, ξ) = K0(|x − ξ |). 
Solution 

(i) Let us write |ξ | =  r and look for K0(r). The Laplace operator in polar 
coordinates is given by 

.
 = ∂2r + 1

r
∂r + 1

r2
∂2θ
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(see Exercise 7.14). Therefore we have to solve, for r >  0, 

. 0 = K ′′
0 (r) + 1

r
K ′

0(r) = 1

r
(rK ′

0(r))
′ ,

thus we have rK ′
0(r) = c0, a constant. Consequently we find K0(r) = c0 log r+ 

c1, and, for simplicity, we can choose c1 = 0. Then let us compute ∇K0. We  
obtain 

. DiK0(r) = c0Di log r = c0
1

r
Di r = c0

1

r

ξi

r
.

On the other hand, on ∂B(0, t)  we have ni = ξi 
t . Thus on ∂B(0, t)  we obtain 

∇K0·n = c0 1 t 
ξ 
t · ξ 

t = c0 1 t3
|ξ |2 = c0 1 t . Let us integrate this function on ∂B(0, t): 

. 

∫
∂B(0,t)

∇K0 · ndSξ = c0
1

t
meas(∂B(0, t)) = c0

1

t
2πt = 2πc0 .

In conclusion we have found c0 = −  1 2π and K0(ξ) = −  1 2π log |ξ |. 
(ii) The result is straightforward as K(x, ξ) given by K0(|x −ξ |) is symmetric with 

respect to x and ξ , and then radial with center at x. 

Exercise 2.7 Let V be a Hilbert space (indeed, a normed space would be enough) 
and F : V �→ R a linear operator. Then F is bounded if and only if it is continuous. 

Solution If F is bounded, namely, |F(v)| ≤  γ ‖v‖V for a suitable γ >  0, from 
linearity we readily obtain that F(vk) → F(v0) if vk → v0 in V . 
Conversely, assume that F is continuous. Since F is linear we have F(0) = 0; then 
there exists δ >  0 such that |F(v)| ≤  1 for ‖v‖V ≤ δ. Take now  v ∈ V , v �= 0. 
Define w = δ v

‖v‖V 
, so that ‖w‖V = δ. We have  |F(w)| ≤  1, hence |F(v)| ≤  

1 
δ
‖v‖V . 

Exercise 2.8 

(i) Consider D = (−1, 1) and for x ∈ D define f (x)  = 1−|x|, g(x) = −sign(x). 
Show that there exists a sequence vk ∈ V = {v ∈ C1(D) | v|∂D = 0} such that 
vk → f in L2(D) and v′

k → g in L2(D). 
(ii) Show that V is not a Hilbert space with respect to the scalar product (v, w)1 

defined in (2.22). 

Solution 

(i) Take vk defined as follows: 

.vk(x) =
⎧⎨
⎩
1 − |x| for − 1 < x < − 1

k

1 − 1
2k − k

2x
2 for − 1

k
≤ x ≤ 1

k

1 − |x| for 1
k

< x < 1 .
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It is easily seen that vk ∈ V and that 

. v′
k(x) =

⎧⎨
⎩
1 for − 1 < x < − 1

k

−kx for − 1
k

≤ x ≤ 1
k

−1 for 1
k

< x < 1 .

Then 

. 

∫ 1

−1
(v′

k(x) + sign(x))2dx =
∫ 0

− 1
k

(−kx − 1)2dx +
∫ 1

k

0
(−kx + 1)2dx

= (kx + 1)3

3k

∣∣0− 1
k

+ (kx − 1)3

3k

∣∣ 1k
0 = 2

3k
.

On the other hand 

. 

∫ 1

−1
(vk(x) − 1 + |x|)2dx =

∫ 0

− 1
k

(1 − 1

2k
− k

2
x2 − 1 + x)2dx

+
∫ 1

k

0
(1 − 1

2k
− k

2
x2 − 1 − x)2dx

= 2
∫ 1

k

0
(
1

2k
+ k

2
x2 + x)2dx ≤ 2

1

k

4

k2
= 8

k3
.

(ii) Part (i) says that vk and v′
k are convergent sequences, therefore Cauchy 

sequences in L2(D). Thus vk is a Cauchy sequence with respect to norm 
induced by the scalar product (·, ·)1. Assume, by contradiction, that vk con-
verges with respect to this norm to a function v0 ∈ V . Since the scalar 
product (·, ·)1 is stronger than the scalar product (·, ·)L2(D , one also has that 
vk converges to v0 in L2(D), therefore v0 = f . Since f �∈ V , a contradiction is 
produced.



Chapter 3 
A Bit of Functional Analysis 

For the ease of the reader, in this chapter we present some results of functional 
analysis: in particular, we show how a finite dimensional normed vector space and a 
infinite dimensional normed vector space enjoy different properties, and which are 
some basic points that make a Hilbert space different from a pre-Hilbertian space. 

3.1 Why Is Life in an Infinite Dimensional Normed Vector 
Space V Harder than in a Finite Dimensional One? 

1. The boundedness (continuity) of a linear functional must be explicitly required. 
In fact: 
If dim V <  +∞ a linear functional is bounded. 
If dim V = +∞  this is not true anymore. 

Example 3.1 Let’s take the space of trigonometric polynomials 

. 

V =
{
v : [0, 2π ] �→ R | ∃ N ≥ 0, ∃ {ak, bk}Nk=0 such that

v =
N∑

k=0

(
ak cos(kx) + bk sin(kx)

)}
,

endowed with the scalar product (v, w)V = ∫ 2π 
0 vwdx. Set Lv = v′ and take 

vm = sin(mx), m ≥ 1, then 

. 

∫ 2π

0
v2mdx =

∫ 2π

0
(sin(mx))2dx = π

∫ 2π

0
(Lvm)2dx =

∫ 2π

0
(m cos(mx))2dx = m2π
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and 

. 
‖Lvm‖V

‖vm‖V

= m
√

π√
π

= m → ∞ .

Hence the functional L is linear but not bounded. 

2. The precompactness of a bounded set must be explicitly proved. In fact: 
If dim V <  +∞ from a bounded sequence you can extract a convergent 
subsequence (Bolzano–Weierstrass Theorem). 
If dim V = +∞ this is not true anymore. 

Example 3.2 Let’s take wm an orthonormal system in L2(0, 2π)  = V (for 
instance wm(x) = 1√

π sin(mx)). Then 

. ‖wm‖V = 1

and, for k 
= m, 

. 

‖wm − wk‖2V = (wm − wk,wm − wk)V

= ‖wm‖2V + ‖wk‖2V − 2(wm,wk)V︸ ︷︷ ︸
=0

= 2 .

Thus any subsequence extracted by wm is not convergent, as it is not a Cauchy 
sequence. 

3. The convergence of Cauchy sequences must be explicitly proved. In fact: 
If dim V <  +∞ any Cauchy sequence in V is convergent to an element in V . 
[Indeed a Cauchy sequence is bounded (see Exercise 3.1 (i)) and from point 2. 
you can extract a convergent subsequence; if a Cauchy sequence has a convergent 
subsequence then the whole sequence is convergent (see Exercise 3.1 (ii)).] 
If dim V = +∞  this is not true anymore. 

Example 3.3 Let us take V = C0([−1, 1]) endowed with the scalar product 
(v, w)V =

∫ 1 
−1 vwdx and consider 

.vm(x) =

⎧
⎪⎪⎨
⎪⎪⎩

0 x ∈ [−1, 0]
mx x ∈ (0, 1/m)

1 x ∈ [1/m, 1]
(3.1) 

(see Fig. 3.1).
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Fig. 3.1 The graph of the function vm in (3.1) for m = 2 (left) and  m = 4 (right) 

Then setting 

. v(x) =
{
0 x ∈ [−1, 0]
1 x ∈ (0, 1] ,

we have that 

. 

∫ 1

−1
|vm − v|2dx =

∫ 1/m

0
(1 − mx)2dx ≤ 1

m
→ 0 .

Therefore vm is a Cauchy sequence in V , but it is not convergent to an element 
in V , as  v /∈ C0([−1, 1]). 

4. The closure of a vector subspace must be explicitly proved. In fact; 
If dim V <  +∞ a subspace is always closed. 
If dim V = +∞ this is not true anymore. 

Example 3.4 Let us take V = L2(−1, 1) with (v, w)V = ∫ 1 
−1 vwdx. As a  

subspace of V take W = C0([−1, 1]) and choose vm as in the previous example. 
Then vm ∈ W , vm → v in V but v /∈ W . 

5. The closure of the range of a linear and bounded operator A : V �→ W , V and 
W Hilbert spaces, must be explicitly proved. In fact; 
If dim W <  +∞ the range of A, being a subspace, is always closed. 
If dim W = +∞  this is not true anymore. 

Example 3.5 Take V = W = L2(−1, 1) and A : v �→ Av where (Av)(x) =∫ x 
−1 v(t)dt . Clearly A is a linear operator, Av ∈ V and finally A is a bounded 
operator, as by Cauchy–Schwarz inequality 

.

∫ 1

−1
(Av)2(x)dx =

∫ 1

−1

(∫ x

−1
v(t)dt

)2

dx ≤
∫ 1

−1
(x + 1)

(∫ x

−1
v(t)2dt

)
dx

≤
(∫ 1

−1
v(t)2dt

)
(x + 1)2

2

∣∣∣
1

−1
= 2

∫ 1

−1
v(t)2dt .
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Indeed, we have a further regularity result, as any Av ∈ R(A) is uniformly 
continuous in [−1, 1]. In fact, for x1, x2 ∈ [−1, 1], x1 < x2 it holds 

. |(Av)(x2) − (Av)(x1)| =
∣∣∣∣
∫ x2

x1

v(t)dt

∣∣∣∣

≤︸︷︷︸
Cauchy–Schwarz

√
x2 − x1

(∫ 1

−1
v(t)2dt

)1/2

.

Choose now ωm ∈ V as follows: 

. ωm(x) =
⎧⎨
⎩
0 for − 1 ≤ x ≤ 0
m for 0 < x < 1/m

0 for 1/m ≤ x ≤ 1 .

As a consequence we have that Aωm is given by 

. (Aωm)(x) =
⎧⎨
⎩
0 for − 1 ≤ x ≤ 0
mx for 0 < x < 1/m

1 for 1/m ≤ x ≤ 1 ,

thus Aωm are equal to the functions vm in Example 3.3, (3.1). There we have 
seen that Aωm = vm converges to 

. v(x) =
{
0 x ∈ [−1, 0]
1 x ∈ (0, 1] .

Since v is discontinuous, it follows that v 
∈ R(A) and therefore the range of A 
is not closed. 

3.2 Why Is Life in a Hilbert Space Better than in a 
Pre-Hilbertian Space? 

Definition 3.1 A pre-Hilbertian space is a space endowed with a scalar product. 

It is clearly difficult to express which is the main basic difference between a 
pre-Hilbertian space and a Hilbert space. A possible answer, the one on which we 
first focus here, is that in a Hilbert space we have the Riesz representation theorem, 
whereas in a pre-Hilbertian space that is not true. We will see later that we can make 
more precise this assertion.
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Theorem 3.1 (Riesz Representation) Let V be a Hilbert space, and let F : V �→ 
R be a linear and bounded functional. Then there exists a unique ω ∈ V such that 
F(v) = (ω, v)V for each v ∈ V . 

Let us give a proof of Riesz theorem. If an element ω ∈ V satisfies F(v) = 
(ω, v)V for all v ∈ V , then ω ∈ N⊥ = {w ∈ V | (w, v)V = 0 ∀ v ∈ N}, where 
N = {v ∈ V |F(v) = 0}. If  F(v) = 0 for all v ∈ V , take  ω = 0. Otherwise 
take ω̂ 
= 0, ω̂ ∈ N⊥, and look for ω in the form ω = α ̂ω for a suitable α ∈ R. 
Imposing that the representation formula is true for v = ω̂, namely, that we have 
F(ω̂) = (α ̂ω, ω̂)V , it follows 

. α = F(ω̂)

‖ω̂‖2V
.

We claim that 

. ω = F(ω̂)

‖ω̂‖2V
ω̂ .

We have to prove that such ω satisfies F(v) = (ω, v)V for each v ∈ V . It holds 

. 

F(v)
?= F(ω̂)

(ω̂, ω̂)V
(ω̂, v)V ⇐⇒ F(v)(ω̂, ω̂)V − F(ω̂)(ω̂, v)V

?= 0

⇐⇒ (F(v)ω̂ − F(ω̂)v, ω̂)V
?= 0 ,

thus it is sufficient to prove that (F(v)ω̂ − F(ω̂)v) ∈ N . Indeed by linearity we have 

. 
F(ω̂F(v) − vF(ω̂)) = F(ω̂F(v)) − F(vF(ω̂))

= F(ω̂)F(v) − F(v)F(ω̂) = 0 .

We have thus completed the proof of the Riesz representation theorem. But where 
did we use the assumption that V is a Hilbert space and not simply a pre-Hilbertian 
space? At a first look it is not so evident. . . 

The point is that we have assumed that there exists ω̂ 
= 0, ω̂ ∈ N⊥. But we only 
know that there exists ω∗ 
= 0 such that F(ω∗) 
= 0, namely, ω∗ 
= 0, ω∗ /∈ N . 
In a pre-Hilbertian space this does not mean that we can find ω̂ 
= 0, ω̂ ∈ N⊥. It  
is possible that N⊥ = {0} even if N 
= V ! On the contrary this is not possible for 
a Hilbert space, as we have the projection theorem (see Yosida [28, Theorem 1, p. 
82]) and therefore if N 
= V we know that N⊥ is not trivial, because we can split 
V = N ⊕ N⊥, writing ω∗ 
= 0 as  

. ω∗ = PNω∗
︸ ︷︷ ︸

∈N

+PN⊥ω∗
︸ ︷︷ ︸

∈N⊥

with PN⊥ω∗ 
= 0 if  ω∗ /∈ N .
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Example 3.6 Let us give an example of N 
= V , N⊥ = {0} for a pre-Hilbertian 
space V . Take  V = C∞

0 (D) with D an open, connected, bounded set, and endow 
V with the scalar product (v, w)V = ∫

D vwdx. Consider F(v) = ∫
D vdx and note 

that F is linear and continuous, as by the Cauchy–Schwarz inequality 

. |F(v)| =
∣∣∣∣
∫

D

vdx

∣∣∣∣ ≤
∫

D

|v|dx ≤ (meas(D))1/2
(∫

D

v2dx

)1/2

∀ v ∈ V .

It is also clear that 

.N =
{
v ∈ C∞

0 (D)

∣∣∣
∫

D

vdx = 0

}
(3.2) 

is a subspace with N 
= V , as there are C∞
0 (D) functions that are positive and 

not identically 0, thus satisfying
∫
D vdx > 0. It is also easy to show that N is a 

closed subspace, namely, if a sequence vm ∈ N converges to v� ∈ V with respect 
to the norm associated to (·, ·)V , then

∫
D v

�dx = 0, thus v� ∈ N . If  ω ∈ N⊥ 

(orthogonality in V , thus ω ∈ C∞
0 (D). . . ),  for  each v ∈ N it follows 

. 0 =
∫

D

ωvdx =
∫

D

(ω − ωD)vdx + ωD

∫

D

vdx

︸ ︷︷ ︸
=0

=
∫

D

(ω − ωD)vdx ,

where 

. ωD = 1

meas(D)

∫

D

ωdx .

If we prove that N is dense in 

. L2∗(D) =
{
v ∈ L2(D)

∣∣∣
∫

D

vdx = 0

}

(see below, Exercise 3.2), then by a density argument we can also write 

. 0 =
∫

D

(ω − ωD)vdx ∀ v ∈ L2∗(D) .

Taking v = ω − ωD , which satisfies v ∈ C∞(D) with
∫
D vdx = 0, therefore 

belongs to L2∗(D), it follows  that  

. 

∫

D

(ω − ωD)2dx = 0 �⇒ ω − ωD = 0 in D .

As a consequence ω is constant in D, and from ω ∈ C∞
0 (D) it follows ω = 0.
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Example 3.7 In particular, we can also see that in V = C∞
0 (D), endowed with the 

scalar product (v, w)V = ∫
D vwdx, the Riesz theorem is false. If we had ω ∈ V 

such that 

. F(v) =
∫

D

vdx = (ω, v)V ∀ v ∈ V ,

then we would have 

. (ω, v)V = 0 ∀ v ∈ N ,

hence ω ∈ N⊥. From what we have seen above we would obtain ω = 0, and this is 
a contradiction as there exists v ∈ V with F(v) = ∫

D vdx 
= 0. 

As a final comment, let us come back to the main basic difference between a 
pre-Hilbertian space and a Hilbert space. We can conclude that, in our context, it is 
the fact that for a Hilbert space the projection theorem holds, and, as a consequence, 
the Riesz theorem is valid. 

3.3 Exercises 

Exercise 3.1 Let V be a normed vector space. 

(i) A Cauchy sequence vk ∈ V is bounded. 
(ii) A Cauchy sequence vk ∈ V with a convergent subsequence is convergent. 

Solution 

(i) Fix ε0 > 0 and consider N∗ ∈ N such that ‖vk − vs‖V ≤ ε0 for k, s ≥ N∗. 
Then for k ≥ N∗ it holds 

. ‖vk‖V ≤ ‖vk − vN∗‖V + ‖vN∗‖V ≤ ε0 + ‖vN∗‖V ,

thus vk is bounded as there are only a finite number of terms vk for k <  N∗. 
(ii) Let vks be a subsequence convergent to v∗ ∈ V . Fix ε >  0: we know that there 

exists Nε ∈ N such that 

. ‖vkm − v∗‖V ≤ ε , ‖vs − vr‖V ≤ ε

for m ≥ Nε and s, r ≥ Nε . Since the sequence of integers km is strictly 
increasing (definition of a subsequence. . . )  it  holds  km ≥ m; thus taking 
m ≥ Nε it follows 

.‖vm − v∗‖V ≤ ‖vm − vkm‖V + ‖vkm − v∗‖V ≤ 2ε .
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Exercise 3.2 N , defined as in (3.2), is dense in L2∗(D). 

Solution Take v ∈ L2∗(D). Since C∞
0 (D) is dense in L2(D), we have  ϕm ∈ C∞

0 (D) 
with ‖ϕm − v‖V → 0 as  m → ∞. Take  ψ ∈ C∞

0 (D) with
∫
D ψdx 
= 0 and define 

. ψ̂ = ψ∫
D

ψdx
;

thus ψ̂ ∈ C∞
0 (D) and

∫
D ψ̂dx  = 1. Define Im =

∫
D ϕmdx and take 

. ϕ̃m = ϕm − Imψ̂ .

We have ϕ̃m ∈ C∞
0 (D) and 

. 

∫

D

ϕ̃mdx =
∫

D

ϕmdx − Im

∫

D

ψ̂dx = 0 ,

thus ϕ̃m ∈ N . Moreover 

. ‖ϕ̃m − v‖V = ‖ϕm − Imψ̂ − v‖V ≤ ‖ϕm − v‖V + |Im| ‖ψ̂‖V .

Since 

. |Im| =
∣∣∣∣
∫

D

ϕmdx

∣∣∣∣ =
∣∣∣∣
∫

D

(ϕm − v)dx

∣∣∣∣ ≤ (meas(D))1/2‖ϕm − v‖V ,

the result follows.



Chapter 4 
Weak Derivatives and Sobolev Spaces 

The functional spaces defined in terms of classical derivatives are unfortunately not 
a suitable setting for a PDEs theory based on weak formulations, as we are not 
usually able to prove that weak solutions actually belong to such spaces. Therefore 
other kind of spaces are needed: we must weaken the requirement of smoothness for 
the functions belonging to them. On the other hand, the bilinear form determined in 
(2.19) contains derivatives. Summing up, we need to speak about derivatives, but
this is not possible in the classical sense: we have to introduce a new concept.

The aim of the next section is to extend the meaning of partial derivative. On the 
basis of this new idea, in Sect. 4.2 we define the functional spaces that will be used 
for the variational formulation of the boundary value problems we are interested in. 

4.1 Weak Derivatives 

Let us start with some preliminaries. 

Remark 4.1 (Motivation for Definition of Weak Derivatives) Assume we are 
given a function .u ∈ C1(D). Then if .ϕ ∈ C∞

0 (D) (we will call a function . ϕ
belonging to .C∞

0 (D) a test function), we see from the integration by parts formula 
(see Theorem C.2) that 

.

∫
D

uDiϕdx = −
∫

D

Diuϕdx ∀ i = 1, . . . , n . (4.1) 

There are no boundary terms, since . ϕ has a compact support in D and thus vanishes 
near . ∂D. More generally, if k is a positive integer, .u ∈ Ck(D) and . α = (α1, . . . , αn)
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is a multi-index of order .|α| = α1 + · · · + αn = k, then 

.

∫
D

uDαϕdx = (−1)|α|
∫

D

Dαuϕdx (4.2) 

This equality holds since

. Dαϕ = ∂α1

∂x
α1
1

. . .
∂αn

∂x
αn
n

ϕ

and we can apply (4.1) . |α| times. 

We next examine if (4.2) can be generalized to functions u that are not k times
continuously differentiable. The left hand side of .(4.2) makes sense if u is only 
locally summable: the problem is rather that if u is not . Ck , then the expression . Dαu

on the right hand side of (4.2) has no obvious meaning. We overcome this difficulty
by asking that there exists a locally summable function . ωα for which formula (4.2) is
valid, with . ωα replacing .Dαu. (We remember that a function v is locally summable, 
written .v ∈ L1

loc(D), if for every measurable subset E that is bounded and satisfies 
.E ⊂ D, written .E ⊂⊂ D, we have that .v ∈ L1(E).) 

Definition 4.1 Let .D ⊂ Rn be an open set. Suppose .u, ωα ∈ L1
loc(D), and . α is a 

multi-index. We say that . ωα is the . αth-weak partial derivative of u, written 

. Dαu = ωα ,

if 

.

∫
D

uDαϕdx = (−1)|α|
∫

D

ωαϕdx (4.3) 

for all test functions .ϕ ∈ C∞
0 (D). 

Remark 4.2 Note that, for the sake of simplicity, we are using the same notation 
.Dαu for weak derivatives and for classical derivatives. However, we believe that in 
the sequel it will be easy to understand from the context which type of derivative we 
refer at. 

Remark 4.3 Let us not that in the classical sense differentiation is a local concept: 
we define the derivative of a function u at a point .x0 ∈ D ⊂ R, and we say that u is 
differentiable in D if its derivative exists at each point .x ∈ D. Here the concept of 
weak derivative is global: the weak derivative is a function defined in D. 

Proposition 4.1 (Uniqueness of Weak Derivatives) A weak . αth-partial deriva-
tives of u, if it exists, is uniquely defined up to a set of measure zero.
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Proof Assume that .ωα, ω̃α ∈ L1
loc(D) satisfy 

. 

∫
D

uDαϕdx = (−1)|α|
∫

D

ωαϕdx = (−1)|α|
∫

D

ω̃αϕdx

for all .ϕ ∈ C∞
0 (D). Then 

. 

∫
D

(ωα − ω̃α)ϕdx = 0

for all .ϕ ∈ C∞
0 (D); whence, since .ωα − ω̃α ∈ L1

loc(D), we have that . ωα − ω̃α = 0
almost everywhere by du Bois-Reymond lemma (see Lemma 6.1). ��
Remark 4.4 Note that if a function u is continuously differentiable in D, then its 
classical derivative .Diu coincides with its weak derivative, as it is a function which 
belongs to .L1

loc(D) and satisfies (4.3) . Hence the concept of weak derivative is a
generalization of the concept of classical derivative.

However, take into account that there are differentiable functions (but not
continuously differentiable) for which the classical derivatives are not the weak
derivatives, as they do not belong to .L1

loc(D) (see Exercise 4.1). 

Exercise 4.1 Find a function .u : (−1, 1) �→ R which is differentiable and whose 
classical derivative . u′ does not belong to .L1

loc(−1, 1) (therefore . u′ is not the weak 
derivative of u). 

Proposition 4.2 The map .u �→ ωα , where . ωα is the . αth-weak partial derivatives of 
u, is linear. 

Proof Straightforward from the definition. ��
Exercise 4.2 Set .Xα = {v ∈ L2(D) |Dαv ∈ L2(D)}, where . α is a multi-index. 
The operator .Dα : u �→ Dαu defined in . Xα is a closed operator from .L2(D) to 
.L2(D), namely, if for .um ∈ Xα one has .um → u in .L2(D) and .Dαum → wα in 
.L2(D) then it follows .wα = Dαu. 

Example 4.1 Let .n = 1, .D = (0, 2), and 

.u(x) =
{
1 − x if 0 < x ≤ 1

x − 1 if 1 < x < 2
(4.4) 

(see Fig. 4.1). 
Define 

.ω(x) =
{

−1 if 0 < x ≤ 1

1 if 1 < x < 2 .
(4.5)
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Fig. 4.1 The graph of the 
function u in (4.4) 
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Let us show that .u′ = ω in the weak sense. To see this, we must prove that 

. 

∫ 2

0
uϕ′dx = −

∫ 2

0
ωϕdx

for each .ϕ ∈ C∞
0 (D). We easily compute, integrating by parts in .(0, 1) and in .(1, 2), 

. 

∫ 2

0
uϕ′dx =

∫ 1

0
(1 − x)ϕ′dx +

∫ 2

1
(x − 1)ϕ′dx

=
∫ 1

0
ϕdx − ϕ(0)︸︷︷︸

=0

−
∫ 2

1
ϕdx + ϕ(2)︸︷︷︸

=0

= −
∫ 2

0
ωϕdx ,

as required. 

Example 4.2 Let .n = 1, .D = (0, 2), and 

.u(x) =
{
1 if 0 < x ≤ 1

2 if 1 < x < 2
(4.6) 

(see Fig. 4.2). We claim that . u′ does not exist in the weak sense. To check this, we 
must show that it is not possible to find any function .ω ∈ L1

loc(D) satisfying 

.

∫ 2

0
uϕ′dx = −

∫ 2

0
ωϕdx (4.7) 

for all .ϕ ∈ C∞
0 (D). Suppose, by contradiction, that (4.7) is valid for some . ω ∈

L1
loc(D) and all .ϕ ∈ C∞

0 (D). Then, taking into account that .ϕ(0) = ϕ(2) = 0, 

.
−

∫ 2

0
ωϕdx =

∫ 2

0
uϕ′dx =

∫ 1

0
ϕ′dx + 2

∫ 2

1
ϕ′dx

= ϕ(1) − 2ϕ(1) = −ϕ(1) .

(4.8)
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Fig. 4.2 The graph of the 
function u in (4.6) 
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Choose in .C∞
0 (D) a sequence .{ϕm}∞m=1 satisfying 

. 0 ≤ ϕm ≤ 1,! ϕm(1) = 1, ϕm(x) → 0 for all x �= 1, suppϕm ⊂ K ⊂⊂ (0, 2) .

Replacing . ϕ by . ϕm in (4.8) and sending .m → ∞, we discover, by the Lebesgue 
dominated convergence theorem, 

. 1 = lim
m→∞ ϕm(1) = lim

m→∞

∫ 2

0
ωϕmdx = 0 ,

a contradiction. Note that we can apply the Lebesgue dominated convergence 
theorem, as .

∫ 2
0 ωϕmdx = ∫

K
ωϕmdx and .|ωϕm| ≤ |ω|, with .ω ∈ L1(K). 

Remark 4.5 The computations in Example 4.2 in particular show that the func-
tional .ϕ �→ ϕ(1), .ϕ ∈ C∞

0 (0, 2), cannot be represented by .
∫ 2
0 ωϕdx for a function 

.ω ∈ L1
loc(0, 2). In other words, the Dirac . δ “function” is not a function. 

An example of sequence .ϕm ∈ C∞
0 (0, 2) with the required properties is given by 

.ϕm(x) =
⎧⎨
⎩

e
1− 1

1−4m2|x−1|2 if |x − 1| < 1
2m

0 if |x − 1| ≥ 1
2m

(4.9) 

(see Fig. 4.3). 

Exercise 4.3 Let . ϕm as in (4.9) and set .ψm(x) = I−1
m ϕm(x), .x ∈ (0, 2), where 

.Im = ∫ 2
0 ϕmdx. Show that .

∫ 2
0 ψmϕdx → ϕ(1) for each .ϕ ∈ C∞

0 (0, 2). Repeat the 
proof for each .ϕ ∈ C0(0, 2).
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Fig. 4.3 The graph of the function . ϕm in (4.9) for .m = 1 (left) and .m = 2 (right) 

4.2 Sobolev Spaces 

In this section we finally introduce the infinite dimensional vector spaces that furnish 
the “right” framework for the weak formulation of partial differential equations. 
In some particular case, these spaces had been considered since the beginning of 
the last century, but their systematic definition and use dates back to the thirties, 
especially in the papers by Sergei L. Sobolev1 2 . 

Take .1 ≤ p ≤ +∞ and let k be a non-negative integer. Now we define certain 
functional spaces, whose elements have weak derivatives of some order lying in . Lp. 

Definition 4.2 Let .D ⊂ Rn be an open set. The Sobolev space 

. Wk,p(D)

consists of all locally summable function .u : D �→ R such that for each multi-index 
. α with .|α| ≤ k the derivative .Dαu exists in the weak sense and belongs to .Lp(D). 

Remark 4.6 

(i) If .p = 2, we usually write 

. Wk,2(D) = Hk(D) .

In particular, .W 0,2(D) = H 0(D) = L2(D). 
(ii) From the definition it is clear that we identify functions in .Wk,p(D) if they 

agree almost everywhere.

1 S.L. Sobolev [26]. 
2 S.L. Sobolev [27]. 
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Definition 4.3 If .v ∈ Wk,p(D), with .1 ≤ p < +∞ we define its norm to be 

. ‖v‖Wk,p(D) :=
( ∑

|a|≤k

∫
D

|Dαv|pdx
)1/p =

( ∑
|a|≤k

‖Dαv‖p

Lp(D)

)1/p
.

If .p = +∞ the norm is defined as 

. ‖v‖Wk,∞(D) := max|α|≤k
‖Dαv‖L∞(D) .

For .1 ≤ p ≤ +∞ we may also use the equivalent norm defined as 

. 
∑
|α|≤k

‖Dαv‖Lp(D) .

Definition 4.4 We denote by 

. W
k,p

0 (D)

the closure of .C∞
0 (D) in .Wk,p(D). 

Thus .v ∈ W
k,p

0 (D) if and only if there exist functions .vm ∈ C∞
0 (D) such 

that .vm → v in .Wk,p(D). We will se later (see Remark 6.5) that we can interpret 
.W

k,p

0 (D) as the space of those functions .v ∈ Wk,p(D) such that 

. “Dαv = 0 on ∂D” for all |α| ≤ k − 1 .

It is customary to write 

. W
k,2
0 (D) = Hk

0 (D) .

Remark 4.7 The norm .‖ · ‖Wk,p(D) is actually a norm. Indeed 

1. .‖v‖Wk,p(D) =
( ∑

|a|≤k ‖Dαv‖p

Lp(D)︸ ︷︷ ︸
≥0

)1/p ≥ 0. 

2. If .v = 0 then trivially .‖v‖Wk,p(D) = 0. On the other hand, if . ‖v‖Wk,p(D) = 0

we have .
( ∑

|a|≤k ‖Dαv‖p

Lp(D)

)1/p = 0, thus in particular .‖v‖Lp(D) = 0 which 

implies .v = 0 a.e. in D.
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3. Take .λ ∈ R: then 

. 

‖λv‖Wk,p(D) =
( ∑

|a|≤k

‖Dα(λv)‖p

Lp(D)

)1/p

= |λ|
( ∑

|a|≤k

‖Dαv‖p

Lp(D)

)1/p = |λ| ‖v‖Wk,p(D) .

4. We have finally to verify that the triangular inequality . ‖w + v‖Wk,p(D) ≤
‖w‖Wk,p(D) + ‖v‖Wk,p(D) holds true. Indeed, if .1 ≤ p < +∞, the discrete 
Minkowski’s inequality implies 

. 

‖w+v‖Wk,p(D) =
( ∑

|a|≤k

‖Dα(w + v)‖p

Lp(D)

)1/p

=
( ∑

|a|≤k

‖Dαw +Dαv‖p

Lp(D)

)1/p

≤
( ∑

|a|≤k

(‖Dαw‖Lp(D) + ‖Dαv‖Lp(D))
p
)1/p

≤
( ∑

|a|≤k

‖Dαw‖p

Lp(D)

)1/p +
( ∑

|a|≤k

‖Dαv‖p

Lp(D)

)1/p

= ‖w‖Wk,p(D) + ‖v‖Wk,p(D) .

The case .p = +∞ is trivial. 

Theorem 4.1 The space .Wk,p(D) is a Banach space. 

Proof We have already proved that .Wk,p(D) is a normed space. It remains to prove 
that each Cauchy sequence .{vn}∞n=1 is convergent in .Wk,p(D). Assume that for each 
.ε > 0 it exists .Mε ∈ N such that for all . n,m > Mε

. ‖vn − vm‖Wk,p(D) =
( ∑

|α|≤k

‖Dα(vn − vm)‖p

Lp(D)

)1/p ≤ ε

for .1 ≤ p < +∞ or 

. ‖vn − vm‖Wk,∞(D) = max|α|≤k
‖Dα(vn − vm)‖L∞(D) ≤ ε .

In particular we have that for all . α with . |α| ≤ k

.‖Dα(vn − vm)‖Lp(D) ≤ ε ,
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i.e., .{Dαvn}∞n=1 is a Cauchy sequence in .Lp(D). Since .Lp(D) is a Banach space, 
for any . α with .|α| ≤ k there exits .vα ∈ Lp(D), such that 

. Dαvn
Lp→ vα as n → ∞ .

In particular with .α = (0, . . . , 0) we have that .vn
Lp→ v(0,...,0) (which we denote by 

. v0). We now claim that 

. v0 ∈ Wk,p(D) andDαv0 = vα .

To verify this assertion, fix .ϕ ∈ C∞
0 (D). Then 

. 

∫
D

v0Dαϕdx = lim
n→∞

∫
D

vnDαϕdx =

= lim
n→∞(−1)|α|

∫
D

Dαvnϕdx =

= (−1)|α|
∫

D

vαϕdx .

Thus we have .Dαv0 = vα and consequently .Dαvn
Lp→ Dαv0 for all .|α| ≤ k, which 

means .vn → v0 in .Wk,p(D), as required. ��
Remark 4.8 The Sobolev space .Wk,2(D) = Hk(D) is a Hilbert space. In fact, it is 
easy to prove that the norm 

. ‖v‖2
Hk(D)

=
∑
|α|≤k

∫
D

|Dαv|2 dx =
∑
|α|≤k

‖Dαv‖2
L2(D)

is induced by the scalar product 

. (w, v)Hk(D) =
∑
|α|≤k

∫
D

DαwDαv dx .

In particular, if .k = 1 we have that 

. (w, v)H 1(D) =
∫

D

wv dx +
∫

D

∇w · ∇v dx

and therefore 

.‖v‖H 1(D) =
( ∫

D

v2dx +
∫

D

|∇v|2dx
)1/2

.
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Fig. 4.4 The graph of the function .|x|−α for .α = 1/2 (left) and .α = 1/4 (right). (The graph is 
drawn for .0.01 ≤ |x| ≤ 1) 

Remark 4.9 It is proved that .Wk,p(D) is a reflexive Banach space when . 1 < p <

+∞ and is a separable Banach space when .1 ≤ p < +∞ (see Adams [1, Theorem 
3.5]). 

Example 4.3 Take .D = B1, the open unit ball in . Rn centered at 0, and 

. u(x) = |x|−α (x ∈ D, x �= 0)

(see Fig. 4.4). We notice that .u /∈ L∞(D) and we want to find for which .α > 0, 
.p ∈ [1,+∞), .n ≥ 1 the function u belongs to .W 1,p(D). 

To answer, note first that u is smooth away from 0, i.e., for x with .|x| > 0 we 
have that .x �→ u(x) ∈ C∞; thus in this set we can compute the derivatives in the 
classical sense. We have 

. 

Diu = (−α) |x|−α−1Di (|x|) = (−α) |x|−α−1Di

(( n∑
j=1

x2
j

)1/2)

= (−α) |x|−α−1 1

2

1

|x| 2xi = −αxi

|x|α+2 ;

therefore for .x �= 0 it holds 

. |∇u(x)| = | − α| |x|
|x|α+2 = α

|x|α+1 .

For .i = 1, . . . , n let us define 

.ωi(x) =
{
Diu(x) for x �= 0
0 for x = 0 .
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Let us determine for which values of . α we have .u ∈ Lp(D) and .ωi ∈ Lp(D). We  
can employ polar coordinates (in dimension n), and we find 

. 

∫
D

|u|pdx = κn

∫ 1

0
ρ−αpρn−1dρ = κn

∫ 1

0
ρ−αp+n−1dρ ,

where . κn is the .(n − 1)-measure of the set .{x ∈ Rn | |x| = 1}. Thus . u ∈ Lp(D)

if and only if .αp < n (in particular, .u ∈ L1(D) if and only if .α < n). A similar 
calculation shows that 

. 

∫
D

( n∑
1=1

ω2
i

)p/2
dx = αpκn

∫ 1

0
ρ−(α+1)p+n−1dρ ,

thus .ωi ∈ Lp(D) if and only if .(α + 1)p < n (and .ωi ∈ L1(D) if and only if 
.α + 1 < n). 

Assume therefore .n ≥ 2 and .α < n − 1, so that .u, ωi ∈ L1(D) and we are 
allowed to consider weak derivatives of u. We want to show that the weak derivative 
.Diu is equal to . ωi . Let  .ϕ ∈ C∞

0 (D) and fix .ε > 0. Then, denoting by . Bε the ball 
centered at 0 with radius .ε > 0, 

. 

∫
D\Bε

uDiϕdx = − ∫
D\Bε

Diuϕdx − ∫
∂Bε

uϕnidSx

= − ∫
D\Bε

ωiϕdx − ∫
∂Bε

uϕnidSx ,

where n denotes the unit normal on . ∂Bε, external to . Bε. It holds 

. 

∣∣∣∣
∫

∂Bε

uϕnidSx

∣∣∣∣ ≤ ‖ϕ‖L∞(D)

∫
∂Bε

ε−αdSx = Cn,ϕεn−1−α → 0 ,

as .α < n − 1. Thus passing to the limit as .ε → 0+ and taking into account that 
.uDiϕ ∈ L1(D) and .ωiϕ ∈ L1(D) one finds 

. 

∫
D

uDiϕdx = −
∫

D

ωiϕdx

for all .ϕ ∈ C∞
0 (D). We have thus proved that .Diu = ωi , and in conclusion . u ∈

W 1,p(D) if and only if .α < (n − p)/p; in particular .u /∈ W 1,p(D) for each .p ≥ n. 
This example seems to show that unbounded functions are not allowed to belong 

to .W 1,p(D) when .p ≥ n: we will see later on that this in fact true, but for the 
stronger restriction .p > n. 

Exercise 4.4 Let .1 ≤ p ≤ +∞, .u ∈ W 1,p(D), .ϕ ∈ C∞
0 (D). Then . uϕ ∈ W 1,p(D)

and .Di (uϕ) = ϕDiu + uDiϕ.
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Exercise 4.5 Let .u ∈ H 1
0 (D) and .v ∈ H 1(D) (or viceversa). Then 

. 

∫
D

vDiudx = −
∫

D

uDivdx .

4.3 Exercises 

Exercise 4.1 Find a function u : (−1, 1) �→ R which is differentiable and whose 
classical derivative u′ does not belong to L1 

loc(−1, 1) (therefore u′ is not the weak 
derivative of u). 

Solution Take 

. u(x) =
{

x2 cos(x−2) for x ∈ (−1, 1), x �= 0
0 for x = 0 .

Clearly we have u′(0) = 0 and u′(x) = 2x cos(x−2) + 2x−1 sin(x−2) for x �= 0. 
Since the first term in u′(x) can be extended to a continuous function in [−1, 1], we  
focus on x−1 sin(x−2). Consider the interval (− 1 

2 , 
1 
2 ) ⊂⊂ (−1, 1): it holds 

. 

∫ 1
2

− 1
2

|x−1| | sin(x−2)|dx = 2
∫ 1

2

0
x−1| sin(x−2)|dx =︸︷︷︸

x= 1√
t

∫ +∞

4

| sin t |
t

dt = +∞ .

Exercise 4.2 Set Xα = {v ∈ L2(D) |Dα v ∈ L2(D)}, where α is a multi-index. 
The operator Dα : u �→ Dα u defined in Xα is a closed operator from L2(D) to 
L2(D), namely, if for um ∈ Xα one has um → u in L2(D) and Dα um → wα in 
L2(D) then it follows wα = Dα u. 

Solution The definition ofDα um reads 

. 

∫
D

umDαϕdx = (−1)|α|
∫

D

Dαum ϕdx

for each ϕ ∈ C∞
0 (D). Then passing to the limit in this equality we find 

. 

∫
D

uDαϕdx = (−1)|α|
∫

D

wα ϕdx ,

hence wα = Dα u.
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Exercise 4.3 Let ϕm as in (4.9) and set ψm(x) = I−1
m ϕm(x), x ∈ (0, 2), where

Im = ∫ 2
0 ϕmdx. Show that

∫ 2
0 ψmϕdx → ϕ(1) for each ϕ ∈ C∞

0 (0, 2). Repeat the
proof for each ϕ ∈ C0(0, 2).

Solution Since
∫ 2 
0 ψm(x)dx = 1, we have 

. 

∣∣∣∣
∫ 2

0
ψm(x)ϕ(x)dx − ϕ(1)

∣∣∣∣ =
∣∣∣∣
∫ 2

0
ψm(x)

(
ϕ(x) − ϕ(1)

)
dx

∣∣∣∣

=
∣∣∣∣∣
∫ 1+ 1

2m

1− 1
2m

ψm(x)
(
ϕ(x) − ϕ(1)

)
dx

∣∣∣∣∣
≤ max

|x−1|≤ 1
2m

|ϕ(x) − ϕ(1)|
∣∣∣∣∣
∫ 1+ 1

2m

1− 1
2m

ψm(x)dx

∣∣∣∣∣
= max

|x−1|≤ 1
2m

|ϕ(x) − ϕ(1)| .

Since in both cases ϕ ∈ C∞
0 (0, 2) and ϕ ∈ C0(0, 2) we have that ϕ is uniformly 

continuous in each compact subset K of (0, 2), the thesis follows with the same 
argument. 

Exercise 4.4 Let 1 ≤ p ≤ +∞, u ∈ W 1,p (D), ϕ ∈ C∞
0 (D). Then uϕ ∈ W 1,p (D) 

and Di (uϕ) = ϕDiu + uDiϕ. 

Solution Clearly uϕ, ϕDiu, uDiϕ ∈ Lp (D) (u and Diu belong to Lp (D), and ϕ is 
smooth. . . ).  Thus  it  is  enough to show thatDi (uϕ) = ϕDiu + uDiϕ. We have,  for  
ψ ∈ C∞

0 (D) 

. 

∫
D

uϕDiψdx =
∫

D

uDi (ϕψ)dx −
∫

D

uψDiϕdx

= −
∫

D

(Diu)ϕψdx −
∫

D

uDiϕψdx

= −
∫

D

[ϕDiu + uDiϕ]ψdx ,

as ϕψ ∈ C∞
0 (D). 

Exercise 4.5 Let u ∈ H 1 
0 (D) and v ∈ H 1(D) (or viceversa). Then 

. 

∫
D

vDiudx = −
∫

D

uDivdx .

Solution Take uk → u in H 1(D) with uk ∈ C∞
0 (D). The result is true for uk, v  and 

then we just pass to the limit to conclude the proof.



Chapter 5 
Weak Formulation of Elliptic PDEs 

In this chapter we want to derive and analyze the weak formulation of the boundary 
value problems associated to the (uniformly) elliptic operator 

.Lw = −
n∑

i,j=1

Di (aijDjw) +
n∑

i=1

biDiw + a0w , (5.1) 

where, as done in Sects. 2.1 and 2.2, we assume that .D ⊂ R
n is a bounded, 

connected, open set, .aij ∈ L∞(D) for .i, j = 1, . . . , n, .bi ∈ L∞(D) for . i =
1, . . . , n, .a0 ∈ L∞(D). When considering the Robin problem, the assumptions on 
the coefficient are .κ ∈ L∞(∂D), .κ ≥ 0 a.e. on .∂D and .

∫
∂D

κdSx �= 0. On the  
data we assume that .f ∈ L2(D) and .g ∈ L2(∂D) (Neumann and Robin problems), 
.g ∈ L2(�N) (mixed problem). 

5.1 Weak Formulation of Boundary Value Problems 

We have seen in Chap. 2 that a standard way for rewriting the boundary value 
problem 

. 

{
Lu = f in D

BC on ∂D

is: 

1. multiply the equation by a test function; 
2. integrate in D; 
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3. reduce the problem to a more suitable form (we could say: a more balanced form) 
by integrating by parts the term stemming from the principal part (using in this 
computation the information given by the boundary condition). 

This typically leads to a problem of the form 

. u ∈ V : B(u, v) = F(v) ∀ v ∈ V

(see (2.23); see also (2.21), which has been specifically obtained taking into account 
the homogeneous Dirichlet boundary condition). In order to analyze this problem by 
means of tools from functional analysis, we have also clarified in Chap. 2 that the 
infinite dimensional vector space V must be a Hilbert space. 

Our aim now is to make precise this procedure for all the boundary value 
problems we are interested in: Dirichlet (homogeneous case), Neumann, mixed 
(homogeneous case on . �D), Robin. 

Dirichlet BC In this case the problem is 

.

{
Lu = f in D

u = 0 on ∂D .
(5.2) 

For the ease of the reader, we repeat here the procedure presented in Chap. 2. 
This procedure is formal, namely, we are implicitly assuming that all the terms 
we are going to write have a meaning. We start choosing a function .v ∈ C∞

0 (D), 
thus satisfying .v|∂D = 0, and we multiply the equation by . v. Integrating over D 
we obtain 

. −
∫

D

n∑

i,j=1

Di (aijDj u)vdx +
∫

D

n∑

i=1

biDiuvdx +
∫

D

a0uvdx =
∫

D

f vdx .

Integrating by parts, we obtain 

.

−
∫

D

n∑

i,j=1

Di (aijDj u)vdx =
∫

D

n∑

i,j=1

aijDj uDivdx

−
∫

∂D

n∑

i,j=1

niaijDj uv|∂DdSx

︸ ︷︷ ︸
= 0, as v|∂D= 0

=
∫

D

n∑

i,j=1

aijDj uDivdx .
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Thus we are left with 

. 

∫

D

n∑

i,j=1

aijDj uDivdx +
∫

D

n∑

i=1

biDiuvdx +
∫

D

a0uvdx =
∫

D

f vdx .

Up to here, as we said, this is just a formal procedure; the aim now is to check 
for which choice of the space V this equation has a meaning for .u, v ∈ V . 
If .u ∈ H 1(D) (thus the derivatives appearing in the equation above have to be 
considered as weak derivatives) all the terms are well-defined. Moreover, since 
the space of test functions .C∞

0 (D) is dense in the Sobolev space . H 1
0 (D), it is  

easy to check that by continuity we can extend this equation to test functions . v ∈
H 1

0 (D). Finally, a reasonable interpretation of the boundary condition . u|∂D = 0
is that u can be approximated by functions vanishing near the boundary: thus we 
can require .u ∈ H 1

0 (D). Our last step now is clear: the Hilbert space we choose 
is .V = H 1

0 (D). 
We observe that the original problem (5.2) has been transformed into a set of 
infinitely many integral equations, or, equivalently, into an equation in the infinite 
dimensional vector space .V = H 1

0 (D). 
We recall the definitions of the bilinear form 

. BL(w, v) =
∫

D

n∑

i,j=1

aijDjwDivdx +
∫

D

n∑

i=1

biDiwvdx +
∫

D

a0wvdx

and the linear functional 

. FD(v) =
∫

D

f vdx

(see (2.19) and (2.20)). Problem (5.2) has been therefore rewritten in the weak 
form: 

.find u ∈ V : B(u, v) = F(v) ∀ v ∈ V , (5.3) 

where 

.B(w, v) = BL(w, v) , F (v) =
∫

D

f vdx , V = H 1
0 (D) . (5.4) 

Neumann BC In this case the problem is 

.

⎧
⎪⎪⎨

⎪⎪⎩

Lu = f in D
n∑

i,j=1

niaijDj u = g on ∂D .
(5.5)
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Besides conditions (2.16) on the coefficients and (2.17) on the right hand side of 
the equation, as already told here we also assume .g ∈ L2(∂D). 
In this case the structure of the boundary condition is qualitatively different from 
that of the Dirichlet problem. In particular, there is no longer reason to impose 
to the test function v to vanish on . ∂D. Thus we choose .v ∈ C∞(D) and we 
multiply the differential equation by v. Proceeding formally, we integrate over D 
and obtain 

. 

∫

D

−
n∑

i,j=1

Di (aijDj u)vdx +
∫

D

n∑

i=1

biDiuvdx +
∫

D

a0uvdx =
∫

D

f vdx .

Integrating by parts the first term, the following boundary integral appears: 

. −
∫

∂D

n∑

i,j=1

niaijDj uv|∂DdSx . (5.6) 

Using the Neumann condition it can be rewritten as .− ∫
∂D

gv|∂DdSx ; thus we 
have finally obtained 

. 

∫

D

n∑

i,j=1

aijDj uDivdx +
∫

D

n∑

i=1

biDiuvdx +
∫

D

a0uvdx

=
∫

D

f vdx +
∫

∂D

gv|∂DdSx .

Proceeding similarly to the Dirichlet case, we can choose V equal to the closure 
of .C∞(D) with respect to the .H 1(D)-norm. We will see in Theorem 6.3 that, 
if D has a Lipschitz continuous boundary . ∂D, the subspace .C∞(D) is dense 
in .H 1(D). Thus we choose .V = H 1(D), and assume that the boundary .∂D is 
Lipschitz continuous (see Appendix B for a precise definition of this regularity 
assumption). 
Let us now give a look at the equation we have obtained. Four of its terms were 
also present in the Dirichlet case, thus we already know that they have a meaning 
for .u ∈ H 1(D). The new one is .

∫
∂D

gv|∂DdSx : this needs some additional 
attention. In fact, first of all we have to show that it is possible to give a meaning 
to .v|∂D for .v ∈ H 1(D) (remember that .∂D is a set whose measure is equal to 
zero. . . ), and moreover show that it belongs to .L2(∂D); secondly, if we want that 
the right hand side of the equation above is bounded for .v ∈ H 1(D), we need 
that the following inequality holds true: 

.

∫

∂D

v2|∂DdSx ≤ C∗
∫

D

(v2 + |∇v|2)dx ∀ v ∈ H 1(D) (5.7)
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for a suitable .C∗ > 0. We will see in Theorem 6.5 that, for .v ∈ H 1(D), both 
these issues have a positive answer: the value .v|∂D will be called the trace of v 
and (5.7) will be called the trace inequality. 
Problem (5.5) has been therefore rewritten in the weak form: 

.find u ∈ V : B(u, v) = F(v) ∀ v ∈ V , (5.8) 

where 

. B(w, v) = BL(w, v) , F (v) =
∫

D

f vdx +
∫

∂D

gv|∂DdSx , V = H 1(D) .

(5.9) 

Remark 5.1 The “thumb rule” for identifying which are the Dirichlet boundary 
condition and the Neumann boundary condition associated to a general second order 
partial differential operator . L (not necessarily the elliptic operator L in (5.1)) is the  
following. Multiply .Lu by v, integrate in D and integrate by parts the principal 
(namely, second order) terms. Some terms given by integrals on the boundary . ∂D

will appear (for the operator L they are shown in (5.6)): they can be canceled either 
by putting to 0 the first order terms related to u or by putting to 0 the zero order 
terms related to v. The Neumann boundary condition is expressed by the first order 
terms related to u, the Dirichlet boundary condition is expressed by the zero order 
terms related to v. For the homogeneous Dirichlet boundary value problem the 
boundary condition is inserted as a constraint in the definition of the variational 
space V , whereas for the (non-homogeneous) Neumann boundary value problem 
the boundary condition is used to give a boundary contribution to the linear and 
bounded functional .F(·) at the right hand side of the variational problem. 

Mixed BC In this case the problem is 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lu = f in D

u = 0 on �D
n∑

i,j=1

niaijDj u = g on �N ,

(5.10) 

where .∂D = �D ∪�N , .�D ∩�N = ∅, and, besides (2.16) and (2.17), we assume 
.g ∈ L2(�N). 
Choose as space of test functions 

.C∞
�D

(D) = {v ∈ C∞(D) | v = 0 in a neighborhood of �D} .
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Multiplying the differential equation by .v ∈ C∞
�D

(D) and integrating over D we 
obtain 

. 

∫

D

−
n∑

i,j=1

Di (aijDj u)vdx +
∫

D

n∑

i=1

biDiuvdx +
∫

D

a0uvdx =
∫

D

f vdx .

By proceeding as in the previous cases, integrating by parts the first term and 
using the boundary conditions we obtain 

. 

∫

D

n∑

i,j=1

aijDj uDivdx +
∫

D

n∑

i=1

biDiuvdx +
∫

D

a0uvdx

=
∫

D

f vdx +
∫

�N

gv|�N
dSx .

We take the space V equal to the closure in .H 1(D) of .C∞
�D

(D). It will be shown 
that, if .∂D (here .�D would be enough. . . )  is  a  Lipschitz  continuous boundary, 
this closed subspace is .H 1

�D
(D) (see Sect. 6.5 for a precise definition and further 

details). Moreover, it will be also possible to define the trace of v on .�D and on 
. �N , to show that .v|�D

= 0, that .v|�N
∈ L2(�N) and finally that the map from 

.v ∈ H 1
�D

(D) to its trace .v|�N
∈ L2(�N) is continuous, namely, that the following 

trace inequality holds: 

.

∫

�N

v2|�N
dSx ≤ C∗

∫

D

(v2 + |∇v|2)dx ∀ v ∈ H 1
�D

(D) (5.11) 

for a suitable .C∗ > 0 (see Remark 6.7). 
Problem (5.10) has been therefore rewritten in the weak form: 

.find u ∈ V : B(u, v) = F(v) ∀ v ∈ V , (5.12) 

where 

. B(w, v) = BL(w, v) , F (v) =
∫

D

f vdx +
∫

�N

gv|�N
dSx , V = H 1

�D
(D) .

(5.13) 

Robin BC In this case the problem is 

.

⎧
⎪⎪⎨

⎪⎪⎩

Lu = f in D
n∑

i,j=1

niaijDj u + κu = g on ∂D ,
(5.14)
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where, besides (2.16) and (2.17), we also assume .g ∈ L2(∂D), .κ ∈ L∞(∂D), 
.κ ≥ 0 a.e. on .∂D and .

∫
∂D

κdSx �= 0. 
We choose .C∞(D) as space of test functions. Multiplying the differential 
equation by .v ∈ C∞(D) and integrating over D we obtain 

. 

∫

D

−
n∑

i,j=1

Di (aijDj u)vdx +
∫

D

n∑

i=1

biDiuvdx +
∫

D

a0uvdx =
∫

D

f vdx .

Integrating by parts the first term, the following boundary integral appears: 

. −
∫

∂D

n∑

i,j=1

niaijDj uv|∂DdSx .

Using the Robin condition it can be written as 

. −
∫

∂D

(g − κu|∂D)v|∂DdSx .

Thus we have obtained 

. 

∫

D

n∑

i,j=1

aijDj uDivdx +
∫

D

n∑

i=1

biDiuvdx+
∫

D

a0uvdx+
∫

∂D

κu|∂Dv|∂DdSx

=
∫

D

f vdx +
∫

∂D

gv|∂DdSx .

The results that have been used for giving a meaning to the Neumann problem 
are employed also here: thus we assume that .∂D is a Lipschitz continuous 
boundary, so that the trace .v|∂D of .v ∈ H 1(D) is defined in .L2(∂D) and depends 
continuously on v. 
Problem (5.14) has been therefore rewritten in the weak form: 

.find u ∈ V : B(u, v) = F(v) ∀ v ∈ V , (5.15) 

where 

.

B(w, v) = BL(w, v) + ∫
∂D

κw|∂Dv|∂DdSx

F (v) = ∫
D

f vdx + ∫
∂D

gv|∂DdSx , V = H 1(D) .
(5.16)
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5.2 Boundedness of the Bilinear Form B(·, ·) and the linear 
functional F(·) 

For the analysis of the boundary value problems we have derived in the previous 
section we want to apply the Lax–Milgram theorem 2.1. Thus, as a first step, 
we have to verify that .B(·, ·) and .F(·) are bounded in .H 1(D). Let us remind 
the assumptions on the coefficients and the right hand side: .aij ∈ L∞(D) for 
.i, j = 1, . . . , n, .bi ∈ L∞(D) for .i = 1, . . . , n, .a0 ∈ L∞(D), .f ∈ L2(D) for 
all the problems, then .g ∈ L2(∂D) (for the Neumann and Robin problems) or 
.g ∈ L2(�N) (for the mixed problem), and finally .κ ∈ L∞(∂D), .κ ≥ 0 a.e. on 
.∂D and .

∫
∂D

κdSx �= 0 (for the Robin problem). Finally, we have assumed that D 
has a Lipschitz continuous boundary . ∂D. 

Let us denote by .A = {aij }ni,j=1 the coefficient matrix of the principal part, by 

.‖A‖ =
√∑n

i,j=1 a2
ij its norm, and by .b = {bi}ni=1 the vector field describing the 

first order part of the operator L. We readily check, using the Cauchy–Schwarz 
inequality in .L2(D), 

. 

|BL(w, v)| =
∣∣∣
∫

D

n∑

i,j=1

aijDjwDivdx +
∫

D

n∑

i=1

biDiwvdx +
∫

D

a0wvdx

∣∣∣

≤ sup
D

‖A‖
∫

D

|∇w||∇v|dx + sup
D

|b|
∫

D

|∇w||v|dx

+ sup
D

|a0|
∫

D

|w||v|dx

≤ γ ‖w‖H 1(D) ‖v‖H 1(D)

for a suitable constant .γ > 0 depending on the .L∞-norms of A, b and . a0. Moreover, 

. 

∣∣∣∣
∫

∂D

κw|∂Dv|∂DdSx

∣∣∣∣ ≤ ‖κ‖L∞(∂D)‖w|∂D‖L2(∂D)‖v|∂D‖L2(∂D) ,

by the Cauchy–Schwarz inequality in .L2(∂D). The trace inequality (5.7) permits 
to estimate .‖w|∂D‖L2(∂D) and .‖v|∂D‖L2(∂D) in terms of .‖w‖H 1(D) and .‖v‖H 1(D), 
respectively, and the boundedness of .B(·, ·) is therefore proved. 

Remark 5.2 Other conditions assuring boundedness of the bilinear form . BL(·, ·)
can be found in Exercise 7.16, (i).  

Let us come to the boundedness of the linear functional F . We have, again by the 
Cauchy–Schwarz inequality, 

.

∣∣∫
D

f vdx
∣∣ ≤ ‖f ‖L2(D)‖v‖L2(D) ,

∣∣∫
∂D

gv|∂DdSx

∣∣ ≤ ‖g‖L2(∂D)‖v|∂D‖L2(∂D)

∣∣∣
∫
�N

gv|�N
dSx

∣∣∣ ≤ ‖g‖L2(�N )‖v|�N
‖L2(�N ) .
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The trace inequalities (5.7) and (5.11) give an estimate of .‖v|∂D‖L2(∂D) and 
.‖v|�N

‖L2(�N ) in terms of .‖v‖H 1(D), and the boundedness of .F(·) thus follows at 
once. 

5.3 Weak Coerciveness of the Bilinear Form B(·, ·) 

First of all we need a new definition. Assume that .V ⊂ H 1(D) is a Hilbert space 
with respect to the .H 1(D)-scalar product. 

Definition 5.1 A bilinear form .B(·, ·) : V × V �→ R is said to be weakly coercive 
in V if there exist two constants .α > 0 and .σ ≥ 0 such that 

. B(v, v) + σ‖v‖2
L2(D)

≥ α‖v‖2
H 1(D)

∀ v ∈ V .

Remark 5.3 It is clearly seen that, if it possible to choose .σ = 0 in this definition, 
then the bilinear form .B(·, ·) is coercive in .H 1(D). 

We consider the bilinear forms .BL(·, ·) and .B(·, ·) defined as 

. BL(w, v) =
∫

D

n∑

i,j=1

aijDjwDivdx +
∫

D

n∑

i=1

biDiwvdx +
∫

D

a0wvdx

and 

. B(w, v) =

⎧
⎪⎪⎨

⎪⎪⎩

BL(w, v) for the Dirichlet, Neumann,
mixed problems

BL(w, v) +
∫

∂D

κw|∂Dv|∂DdSx for the Robin problem ,

under the same assumptions of Sect. 5.2. Having assumed .κ ≥ 0 it follows 
.
∫
∂D

κv2|∂DdSx ≥ 0, thus we can limit our analysis to .BL(v, v). We have  

. BL(v, v) =
∫

D

n∑

i,j=1

aijDj vDivdx

︸ ︷︷ ︸
[1]

+
∫

D

n∑

i=1

biDivvdx

︸ ︷︷ ︸
[2]

+
∫

D

a0v
2dx .

︸ ︷︷ ︸
[3]

. [1] By ellipticity, for almost all .x ∈ D and for all .η ∈ Rn we have that 

.

n∑

i,j=1

aij (x)ηjηi ≥ α0|η|2 for some α0 > 0 .
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Thus, setting .η = ∇v(x) and integrating in D it follows that 

. 

∫

D

n∑

i,j=1

aijDj vDivdx ≥ α0

∫

D

|∇v|2dx .

. [2] Using the Cauchy–Schwarz inequality we find that 

. 

∣∣∣∣∣

∫

D

n∑

i=1

biDivvdx

∣∣∣∣∣ ≤
∫

D

n∑

i=1

|bi | |Div| |v|dx ≤ ‖b‖L∞(D)

∫

D

|∇v||v|dx

≤ ‖b‖L∞(D)

(∫

D

|∇v|2dx

)1/2 (∫

D

v2dx

)1/2

=
(∫

D

|∇v|2dx

)1/2 (
‖b‖2

L∞(D)

∫

D

v2dx

)1/2

.

Consider now the elementary inequality .|2AB| ≤ A2 + B2: from this, replacing 
A by .

√
εA and B by .B/

√
ε, where .ε > 0, we can easily derive the following 

inequality 

. |AB| ≤ ε

2
A2 + B2

2ε
.

Applying this we obtain 

. 

∣∣∣∣∣

∫

D

n∑

i=1

biDivvdx

∣∣∣∣∣ ≤ ε

2

∫

D

|∇v|2dx + 1

2ε
‖b‖2

L∞(D)

∫

D

v2dx

and so 

. 

∫

D

n∑

i=1

biDivvdx ≥ −ε

2

∫

D

|∇v|2dx − 1

2ε
‖b‖2

L∞(D)

∫

D

v2dx .

. [3] We have that 

. 

∫

D

a0v
2dx ≥ inf

D
a0

∫

D

v2dx .

Putting everything together and choosing .ε = α0 we have 

.BL(v, v) ≥ α0

2

∫

D

|∇v|2dx +
(

inf
D

a0 − 1

2α0
‖b‖2

L∞(D)

)∫

D

v2dx .
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Therefore the following inequality holds 

. BL(v, v)+σ

∫

D

v2dx ≥ α0

2

∫

D

|∇v|2dx+
(

σ + inf
D

a0 − 1

2α0
‖b‖2

L∞(D)

) ∫

D

v2dx .

Set .μ = infD a0 − 1
2α0

‖b‖2
L∞(D). Choosing . σ as follows: 

. 

{
σ = 0 if μ > 0
σ > −μ ≥ 0 if μ ≤ 0 ,

and denoting by .ρ = σ + μ > 0 we find the desired result: 

.

BL(v, v) + σ

∫

D

v2dx ≥ α0

2

∫

D

|∇v|2dx + ρ

∫

D

v2dx

≥ min
(α0

2
, ρ

) ∫

D

(
|∇v|2 + v2

)
dx .

(5.17) 

Remark 5.4 Weak coerciveness with .σ > 0 is not enough to apply the Lax– 
Milgram theorem 2.1. Therefore, in this respect the result just proved is satisfactory 
only when we can choose .σ = 0, namely, when .μ = infD a0 − 1

2α0
‖b‖2

L∞(D) > 0. 

This requires .infD a0 > 0 and .‖b‖2
L∞(D) small enough. The following example 

shows that for the “queen” of our operator, the Laplace operator .−�, this is not 
satisfied. 

Example 5.1 Consider the (homogeneous) Dirichlet boundary value problem 

. 

{
−�u = f in D

u = 0 on ∂D .

In this case we have .b = 0 and .a0 = 0, thus the condition . infD a0 − 1
2α0

‖b‖2
L∞(D) >

0 is not satisfied. Since 

. B(v, v) =
∫

D

∇v · ∇vdx =
∫

D

|∇v|2dx ,

to prove coerciveness we have to find a constant . α satisfying .0 < α < 1 such that 

.B(v, v) =
∫

D

|∇v|2dx ≥ α

∫

D

(|∇v|2 + v2)dx ∀ v ∈ H 1
0 (D)
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or, equivalently, we have to prove that 

.

there exists a constant CD > 0 :
∫

D

v2dx ≤ CD

∫

D

|∇v|2dx ∀ v ∈ H 1
0 (D)) .

(5.18) 

Assuming that such a constant exists, we observe that 

. 

B(v, v) =
∫

D

|∇v|2dx = 1

2

∫

D

|∇v|2dx + 1

2

∫

D

|∇v|2dx

≥ 1

2

∫

D

|∇v|2dx + 1

2CD

∫

D

v2dx

≥ min

(
1

2
,

1

2CD

) ∫

D

(v2 + |∇v|2)dx .

Inequality (5.18) is called Poincaré inequality in .H 1
0 (D): we will present its proof 

in Sect. 6.2. For the moment, let us note that this inequality is surely false if we can 
select as function v a non-zero constant. The fact that the only constant in .H 1

0 (D) is 
0 opens the possibility of showing that (5.18) is indeed true. 

5.4 Coerciveness of the Bilinear Form B(·, ·) 

Assuming more regularity on the vector field b and some other qualitative relations, 
we want now to show that the bilinear form .B(·, ·) is coercive for all the boundary 
value problems we have presented. 

The starting point for this analysis is the remark that in some cases we succeed 
in proving the Poincaré inequality 

. 

∫

D

v2dx ≤ C∗
∫

D

|∇v|2dx ;

this tells us that the principal part of the bilinear form can be bounded from below 
by .‖v‖2

H 1(D)
, namely, it is coercive. Thus we have only to be careful that the other 

terms, coming from b and . a0, do not destroy this property. 
Let us consider the term coming from the vector field b. Assume that . b ∈

W 1,∞(D) so that by the Sobolev immersion theorem 7.15 we also have . b|∂D ∈
L∞(∂D) for the Neumann and Robin problems or .b|�N

∈ L∞(�N) for the mixed 
problem (it is possible to require less restrictive assumptions, but the proof would 
become more technical). We proceed by analyzing each boundary condition. 

Dirichlet BC. The choice of the Hilbert space is .V = H 1
0 (D), and in this case 

Poincaré inequality holds (see Theorem 6.4). Since .C∞
0 (D) is dense in .H 1

0 (D)
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we can first suppose that .v ∈ C∞
0 (D). We have, by integrating by parts (see 

Exercise 4.5) 

. 

∫

D

n∑

i=1

biDiv vdx =
n∑

i=1

∫

D

biDi

v2

2
dx

= −
∑

i=1

∫

D

Dibi

v2

2
dx = −

∫

D

1

2
div b v2dx .

By a density argument we see that this relation is also true for .v ∈ H 1
0 (D). Hence 

we have 

. 

B(v, v) =
∫

D

n∑

i,j=1

aijDj v Divdx +
∫

D

n∑

i=1

biDiv vdx +
∫

D

a0v
2dx

≥ α0

∫

D

|∇v|2dx +
∫

D

(
a0 − 1

2
div b

)
v2dx

and coerciveness in .H 1
0 (D) is guaranteed by the Poincaré inequality and 

assuming 

. a0 − 1

2
div b ≥ 0 in D .

Neumann BC The Hilbert space in this case is .V = H 1(D). Since in this space 
Poincaré inequality doesn’t hold (e.g., consider .v = 1), we could be led to modify 
this choice. Let us start, as before, by looking at the term coming from the first 
order part of the operator. We want to perform an integration by parts, which 
will show up an integral on .∂D involving the trace .v|∂D of v on . ∂D. To give a  
meaning at this term we assume that .∂D is a Lipschitz continuous boundary, thus 
the space .C∞(D) is dense in .H 1(D) and the trace is defined (see Theorem 6.5). 
We can first assume that .v ∈ C∞(D). By integration by parts (see Exercise 6.7) 
we have 

.

∫

D

n∑

i=1

biDiv vdx =
n∑

i=1

∫

D

biDi

v2

2
dx

= −
∑

i=1

∫

D

Dibi

v2

2
dx +

n∑

i=1

∫

∂D

bi|∂Dni

1

2
v2|∂DdSx

= −
∫

D

1

2
div b v2dx +

∫

∂D

1

2
b|∂D · nv2|∂DdSx .
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By a density argument this relation is true also for .v ∈ H 1(D). In conclusion, 
we easily see that sufficient conditions for coerciveness are 

. a0 − 1

2
div b ≥ δ > 0 in D , b|∂D · n ≥ 0 on ∂D .

However, these conditions are not satisfactory, as, for instance, the Laplace 
operator .−� does not satisfy them. On the other hand this is not a surprise, 
as for the Neumann problem associated to the Laplace operator we cannot have 
a unique solution, as, if u is a solution, also .u + c with .c ∈ R is a solution, and 
therefore the assumptions in the Lax–Milgram theorem 2.1 cannot be satisfied. 
(Remember that Lax–Milgram theorem guarantees the existence and uniqueness 
of the solution.) 
In order to devise a weak problem for which the associated bilinear form is 
coercive, the idea is to define a new Hilbert space that doesn’t contain constants 
different from 0. A space with this property is given by 

.H 1∗ (D) =
{
v ∈ H 1(D)

∣∣∣
∫

D

vdx = 0

}
. (5.19) 

This is a closed subspace of .H 1(D) (indeed if .vk → v in .H 1(D) and . 
∫
D

vkdx =
0, then .

∫
D

vdx = 0: the quantity .| ∫
D

(vk − v)dx| is estimated by . ‖vk − v‖L2(D)

by the Cauchy–Schwarz inequality), therefore it is a Hilbert space with respect 
to the same scalar product. In this space the Poincaré inequality holds (see 
Theorem 6.10) and therefore we can prove the coerciveness of .B(·, ·) in . H 1∗ (D)

by following the same procedure we have employed in the case of the Dirichlet 
boundary condition. More precisely, sufficient conditions that guarantee the 
coerciveness of .B(·, ·) are 

. a0 − 1

2
div b ≥ 0 in D , b|∂D · n ≥ 0 on ∂D .

Mixed BC The Hilbert space in this case is .V = H 1
�D

(D), and we will see that 
in this space the Poincaré inequality holds (see Theorem 6.11), provided .∂D is a 
Lipschitz continuous boundary. Therefore we can proceed exactly as in the case 
of the Neumann condition with the space .H 1∗ (D) and we conclude that sufficient 
conditions that guarantee the coerciveness of .B(·, ·) are 

. a0 − 1

2
div b ≥ 0 in D , b|�N

· n ≥ 0 on �N .
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Robin BC The Hilbert space in this case is .V = H 1(D), and the bilinear form is 
given by 

. 

B(w, v) =
∫

D

n∑

i,j=1

aijDjwDivdx +
∫

D

n∑

i=1

biDiwvdx

+
∫

D

a0wvdx +
∫

∂D

κw|∂Dv|∂DdSx ,

where . κ is a non-negative function defined on . ∂D. By assuming that .∂D is 
Lipschitz continuous and performing an integration by parts in the first order 
term as in the Neumann case we have that 

. 

B(v, v) ≥ α0

∫

D

|∇v|2dx +
∫

D

(
a0 − 1

2
div b

)
v2dx

+
∫

∂D

(
1

2
b|∂D · n + κ

)
v2|∂DdSx

= α0

(∫

D

|∇v|2dx +
∫

∂D

α−1
0 κv2|∂DdSx

)
+

∫

D

(
a0 − 1

2
div b

)
v2dx

+
∫

∂D

1

2
b|∂D · nv2|∂DdSx .

We assume that 

. a0 − 1

2
div b ≥ 0 in D , b|∂D · n ≥ 0 on ∂D ,

and we note that the function .q = α−1
0 κ satisfies .q ≥ 0 on .∂D and . 

∫
∂D

qdSx �=
0, thus we can apply the Poincaré-type inequality (see Theorem 6.12). In 
conclusion we are left with 

.

B(v, v) ≥ α0

(∫

D

|∇v|2dx +
∫

∂D

α−1
0 κv2|∂DdSx

)

= α0

2

(∫

D

|∇v|2dx +
∫

∂D

α−1
0 κv2|∂DdSx

)

+ α0

2

(∫

D

|∇v|2dx +
∫

∂D

α−1
0 κv2|∂DdSx

)

≥ α0

2

(∫

D

|∇v|2dx +
∫

∂D

α−1
0 κv2|∂DdSx

)
+ α0

2C∗

∫

D

v2dx

≥ α0

2

∫

D

|∇v|2dx + α0

2C∗

∫

D

v2dx

≥ min

(
α0

2
,

α0

2C∗

) (∫

D

v2dx +
∫

D

|∇v|2dx

)
.
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Exercise 5.1 Show that in all cases coerciveness is satisfied even if the assumption 
.a0 − 1

2 div b ≥ 0 in D is weakened to .a0 − 1
2 div b ≥ −ν in D for a constant . ν > 0

small enough. 

Remark 5.5 Other conditions assuring coerciveness of the bilinear form . BL(·, ·)
can be found in Exercise 7.16, (ii). 

5.5 Interpretation of the Weak Problems 

We want to clarify which is the “strong” interpretation of the weak problems we 
have presented up to now. To this aim, we first need a definition. 

Definition 5.2 If we have .qi ∈ L1
loc(D), .i = 1, . . . , n, we say that .w ∈ L1

loc(D) is 
the weak divergence of .q = (q1, . . . , qn) if 

. 

∫

D

n∑

i=1

qiDiϕdx = −
∫

D

wϕdx ∀ ϕ ∈ C∞
0 (D) .

Remark 5.6 If we know that the weak derivatives .Diqi exist, for each . i =
1, . . . , n, then clearly .w = ∑n

i=1Diqi . 

Let us start our discussion from a simple example. 

Example 5.2 Suppose we have found the solution .u ∈ H 1
0 (D) of 

. 

∫

D

∇u · ∇vdx =
∫

D

f vdx ∀ v ∈ H 1
0 (D) ,

where .f ∈ L2(D). What have we solved? 
We can take .ϕ ∈ C∞

0 (D) ⊂ H 1
0 (D) and we get 

. 

∫

D

n∑

i=1

DiuDiϕdx =
∫

D

f ϕdx ,

thus from the definition above, with .qi = Diu ∈ L2(D), we obtain that 

. − div∇u = f in D ,

where .div is the weak divergence and . ∇ is the weak gradient. Thus, in this weak 
sense, .−�u = f in D, where . � is the weak Laplace operator.
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This interpretation is based on the fact that .C∞
0 (D) ⊂ V = H 1

0 (D), the  
variational space where we have solved the problem. When considering the mixed 
problem, we have .V = H 1

�D
(D), and again .C∞

0 (D) ⊂ V . For the Robin problem, 

we have .V = H 1(D), and .C∞
0 (D) ⊂ V . 

A difference comes for the Neumann problem for the Laplace operator, for the 
weak formulation in which we have chosen 

. V = H 1∗ (D) =
{
v ∈ H 1(D)

∣∣∣
∫

D

vdx = 0

}
,

with the aim of obtaining the Poincaré inequality in this space. 
This time .C∞

0 (D) �⊂ V , thus the interpretation in this case needs some care. Let 
us write the weak problem: 

. u ∈ H 1∗ (D) :
∫

D

∇u · ∇vdx =
∫

D

f vdx +
∫

∂D

gv|∂DdSx ∀ v ∈ H 1∗ (D) .

Take a test function .w ∈ H 1(D), namely, without the restriction .
∫
D

wdx = 0. Then 
we define 

. v = w − wD , wD = 1

meas(D)

∫

D

wdx .

Then .v ∈ H 1∗ (D), and we can use it as a test function. We have .∇w = ∇v, thus for 
each .w ∈ H 1(D) we have 

.

∫

D

∇u · ∇wdx =
∫

D

∇u · ∇vdx =
∫

D

f vdx +
∫

∂D

gv|∂DdSx

=
∫

D

f (w − wD)dx +
∫

∂D

g(w|∂D − wD)dSx

=
∫

D

f wdx − wD

∫

D

f dx +
∫

∂D

gw|∂DdSx − wD

∫

∂D

gdSx

=
∫

D

f wdx +
∫

∂D

gw|∂DdSx

−
(∫

D

f dx +
∫

∂D

gdSx

)
1

meas(D)

∫

D

wdx

=
∫

D

[
f − 1

meas(D)

(∫

D

f dx +
∫

∂D

gdSx

)]
wdx

+
∫

∂D

gw|∂DdSx .

(5.20)
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Taking in particular .w ∈ C∞
0 (D), it follows  

. − �u = f − 1

meas(D)

(∫

D

f dx +
∫

∂D

gdSx

)
in D .

If we have .p ∈ H 1(D), .q ∈ H 1(D) with .−�q ∈ L2(D), by approximation we 
have the integration by parts formula 

. 

∫

D

∇q · ∇pdx = −
∫

D

�q pdx +
∫

∂D

(∇q · n)p|∂DdSx .

The last term should be clarified, indeed it is not obvious that there is a trace for 
.∇q · n. However, we do not deal here with this question, and we go on somehow 
formally. Let us come back now to the choice of a generic .w ∈ H 1(D): taking 
.p = w and .q = u in (5.20) we thus find 

. 

∫
∂D

∇u · nw|∂DdSx + ∫
D ����(−�u)wdx = ∫

D
∇u · ∇wdx

= ∫
D

[

���������������
f − 1

meas(D)

(∫
D

f dx + ∫
∂D

gdSx

)]
wdx + ∫

∂D
gw|∂DdSx .

As a consequence 

. 

∫

∂D

(∇u · n − g)w|∂DdSx = 0 ∀ w ∈ H 1(D) ,

which is a weak form of .∇u · n = g on . ∂D. In conclusion, the “strong” form of the 
weak problem we have solved reads 

.

{
−�u = f − 1

meas(D)

(∫
D

f dx + ∫
∂D

gdSx

)
in D

∇u · n = g on ∂D .
(5.21) 

This problem has been solved for any .f ∈ L2(D) and .g ∈ L2(∂D); but it is not the 
Neumann problem we had in mind, namely 

.

{
−�u = f in D

∇u · n = g on ∂D .
(5.22) 

On the other hand, we know by the divergence theorem that this last problem cannot 
be solved unless the following compatibility condition is satisfied: 

.

∫

D

f dx +
∫

∂D

gdSx = 0 .
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In fact 

. 

∫

D

f dx = −
∫

D

�udx = −
∫

D

div∇udx = −
∫

∂D

∇u · ndSx = −
∫

∂D

gdSx .

In conclusion, if .
∫
D

f dx + ∫
∂D

gdSx = 0 problem (5.21) becomes our original 
problem, and we have found a unique solution in .H 1∗ (D), namely, with .

∫
D

udx = 0. 

Remark 5.7 Why is problem (5.21) always solvable? It is a Neumann problem, 
therefore the compatibility condition on the data at the right hand side must be 
satisfied. The new right hand side in D is 

. f̃ = f − 1

meas(D)

(∫

D

f dx +
∫

∂D

gdSx

)
.

Take its integral in D: it holds 

. 

∫

D

[
f − 1

meas(D)

(∫

D

f dx +
∫

∂D

gdSx

)]
dx

=
∫

D

f dx −
[∫

D

f dx +
∫

∂D

gdSx

]
= −

∫

∂D

gdSx .

Thus 

. 

∫

D

f̃ dx +
∫

∂D

gdSx = 0 ,

and the compatibility condition for the Neumann problem (5.21) is satisfied. 

Exercise 5.2 Taking hint from the definition of the weak divergence in Defini-
tion 5.2, give the definition of the weak curl of a vector field .q ∈ (L1

loc(D))3, 
.D ⊂ R3. 

Exercise 5.3 

(i) Show that there exists a unique solution of the weak problem 

. 

find u ∈ H 1∗ (D) :
∫

D

∇u · ∇vdx +
∫

∂D

u|∂Dv|∂DdSx

=
∫

D

f vdx +
∫

∂D

gv|∂DdSx ∀ v ∈ H 1∗ (D) ,

where .H 1∗ (D) is defined in (5.19). 
(ii) Devise the “strong” interpretation of the weak problem above.
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5.6 A Higher Order Example: The Biharmonic Operator 

The biharmonic operator is .�2 = ��, and the associated biharmonic equation is 

. �2u = f in D .

In this section we want to devise and then analyze the variational formulation of 
some “reasonable” boundary value problems associated to this equation. Assuming 
.f ∈ L2(D), multiply this equation by a test function v and integrate in D: 

. 

∫

D

(�2u) v dx =
∫

D

f v dx .

Taking into account that .� = ∑n
i=1DiDi , integrating by parts at the left hand side 

gives 

. 

∫
D

(�2u) v dx = ∫
D

(
∑n

i=1DiDi�u) v dx

= − ∫
D

∑n
i=1(Di�u)Div dx + ∫

∂D

∑n
i=1(niDi�u) v dSx .

We still have a third order operator acting on u and a first order operator acting on 
v. Therefore we proceed with another integration by parts and we find 

. 

∫
D

f v dx = ∫
D

(Δ2u) v dx

= ∫
D

Δu
∑n

i=1Didiv dx

− ∫
∂D

Δu
∑n

i=1 ni Div dSx + ∫
∂D

∑n
i=1(niDiΔu) v dSx

= ∫
D

ΔuΔv dx − ∫
∂D

Δu∇v · n dSx + ∫
∂D

∇Δu · n v dSx .

(5.23) 

Looking at the boundary integrals that appear above it can be asserted that the 
“reasonable” boundary conditions associated to the biharmonic operator stem from 
the choice of a couple of the following ones: 

.u|∂D = 0 on ∂D (5.24) 

.(∇u · n)|∂D = 0 on ∂D (5.25) 

.(�u)|∂D = g on ∂D (5.26) 

.(∇�u · n)|∂D = h on ∂D , (5.27) 

where it is assumed that .g ∈ L2(∂D) and .h ∈ L2(∂D). 
When considering the Dirichlet boundary conditions (5.24) and (5.25) we assume 

that also the test function v satisfies the same conditions, namely, .v|∂D = 0 and 
.(∇v · n)|∂D = 0. Therefore the integrals on the boundary disappear and we are left
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with the bilinear form 

. B(w, v) =
∫

D

�w �v dx .

The variational formulation associated to (5.24) and (5.25) is thus identified with 
the choices: 

. 

V = {v ∈ H 2(D) | v|∂D = 0, (∇v · n)|∂D = 0}
B(w, v) = ∫

D
�w �v dx

F(v) = ∫
D

f v dx .

Since .v ∈ H 2(D) we have in particular .v ∈ H 1(D) and .∇v ∈ (H 1(D))n; therefore 
their values on .∂D have a meaning (by Theorem 6.5 we have that .v|∂D and . (∇v)|∂D

belong to .(L2(∂D))n). 
When considering the so-called Navier boundary conditions (5.24) and (5.26) we  

assume that also the test function v satisfies .v|∂D = 0 and therefore the two integrals 
on the boundary become 

. −
∫

∂D

�u∇v · n dSx +
∫

∂D

∇�u · n v dSx = −
∫

∂D

g ∇v · n dSx .

The variational formulation associated to (5.24) and (5.26) is thus identified with 
the choices: 

. 

V = H 2(D) ∩ H 1
0 (D) = {v ∈ H 2(D) | v|∂D = 0}

B(w, v) = ∫
D

�w �v dx

F(v) = ∫
D

f v dx + ∫
∂D

g ∇v · n dSx .

When considering the boundary conditions (5.24) and (5.27) we assume that also 
the test function v satisfies .v|∂D = 0 and therefore one of the two integrals on the 
boundary vanishes: 

. −
∫

∂D

�u∇v · n dSx +
∫

∂D

∇�u · n v dSx = −
∫

∂D

�u∇v · n dSx .

But the other boundary integral is not treatable, as in this boundary value problem 
we are not assigning .(�u)|∂D nor .(∇u ·n)|∂D = 0 (which would have allowed us to 
impose .(∇v · n)|∂D = 0). Moreover, .�u is only a .L2(D)-function, thus it has not a 
well-defined value on . ∂D. Hence the boundary conditions (5.24) and (5.27) do not 
seem to lead to a good variational problem.
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When considering the boundary conditions (5.25) and (5.26) we assume that also 
the test function v satisfies .(∇v · n)|∂D = 0 and therefore one of the two integrals 
on the boundary vanishes: 

. −
∫

∂D

�u∇v · n dSx +
∫

∂D

∇�u · n v dSx =
∫

∂D

∇�u · n v dSx .

But, similarly to the previous case, the other boundary integral is not treatable, as 
in this boundary value problem we are not assigning .(∇�u · n)|∂D nor . u|∂D = 0
(which would have allowed us to impose .v|∂D = 0). Moreover, .∇�u · n has not 
even a well-defined value on . ∂D. Hence the boundary conditions (5.25) and (5.26) 
do not seem to lead to a good variational problem. 

When considering the boundary conditions (5.25) and (5.27) we assume that also 
the test function v satisfies .(∇v · n)|∂D = 0 and therefore the two integrals on the 
boundary become 

. −
∫

∂D

�u∇v · n dSx +
∫

∂D

∇�u · n v dSx =
∫

∂D

h v dSx .

The variational formulation associated to (5.25) and (5.27) (sometimes called the 
Riquier–Neumann boundary conditions) is thus identified with the choices: 

. 

V = {v ∈ H 2(D) | (∇v · n)|∂D = 0}
B(w, v) = ∫

D
�w �v dx

F(v) = ∫
D

f v dx − ∫
∂D

h v dSx .

However, it is clear that using this variational formulation the problem cannot be 
well-posed (adding a constant to a solution one still finds a solution). Therefore 
the space V should be replaced by a closed subspace of it which does not contain 
non-zero constants, say, 

. V� =
{
v ∈ H 2(D)

∣∣ (∇v · n)|∂D = 0,

∫

D

vdx = 0
}

.

Finally, when considering the Neumann boundary conditions (5.26) and (5.27) 
the two integrals on the boundary become 

. −
∫

∂D

�u∇v · n dSx +
∫

∂D

∇�u · n v dSx = −
∫

∂D

g ∇v · n dSx +
∫

∂D

h v dSx .

Since both boundary conditions are imposed in a weak way (in the sense that they 
give a contribution to the linear functional at the right hand side, while do not appear 
in the definition of the variational space), the solution and the test functions are 
possibly expected to be less regular than in the preceding cases, namely, in general
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they are not foreseen to belong to .H 2(D). Therefore the variational formulation 
associated to (5.26) and (5.27) is at first identified with the choices: 

. 

V = L2(�;D) = {v ∈ L2(D) | �v ∈ L2(D)}
B(w, v) = ∫

D
�w �v dx

F(v) = ∫
D

f v dx + ∫
∂D

g ∇v · n dSx − ∫
∂D

h v dSx .

Here the Laplace operator is intended in the following weak sense: for . v ∈ L1
loc(D)

we say that a function .q ∈ L1
loc(D) is the weak Laplacian of v if 

. 

∫

D

q ϕ dx =
∫

D

v �ϕ dx ∀ ϕ ∈ C∞
0 (D) .

By repeating the proof of Theorem 4.1 it is easily seen that .L2(�;D) is a Hilbert 
space with respect to the natural scalar product .

∫
D

(w v + �w �v) dx. However, 
also in this case it is clear that by this choice of the variational space V the problem 
cannot be well-posed (adding to a solution a harmonic function belonging to . L2(D)

gives another solution). Therefore the space V should be replaced by a closed 
subspace of it which does not contain non-zero harmonic functions, say, 

. V� =
{
v ∈ L2(�;D)

∣∣
∫

D

vηdx = 0 for each η ∈ L2(D) with �η = 0 in D
}

(another example will be proposed below). Note also here that the definition of the 
linear operator .F(·) is not completely clear: having only assumed .g ∈ L2(∂D) and 
.h ∈ L2(∂D), the boundary integrals would require .v|∂D ∈ L2(∂D) and . (∇v·n)|∂D ∈
L2(∂D), and for a function v belonging to .L2(�;D) this is not always the case. 
Higher regularity of g and h could be the cure, but anyway one should also develop 
a suitable trace theory for .v|∂D and .(∇v · n)|∂D; this can be done, but we will not 
insist on it here. Clearly, a drastic answer to this issue is to take .g = 0 and . h = 0; but  
we will see later that a regularity assumption on the boundary .∂D (say, .∂D ∈ C4) 
will be enough for giving a meaning to these boundary integrals (see Lemma 5.1). 

Let us come now to the analysis of the first three boundary value problems we 
have described; we use the regularity results presented in Sect. 7.4. Assume that 
.D ⊂ Rn is a bounded, connected and open set, and that its boundary .∂D is of class 
. C2. In all the considered cases the bilinear form .B(·, ·) is clearly bounded in .H 2(D), 
and the same holds for the linear functional .F(·), provided we assume .f ∈ L2(D), 
.g ∈ L2(∂D), .h ∈ L2(∂D) (the estimates for the boundary integrals come from 
the trace theorem 6.5). Moreover, for the Dirichlet boundary conditions (5.24) and 
(5.25) and for the Navier boundary conditions (5.24) and (5.26) from Theorem 7.12 
and Exercise 7.13 we have that 

.‖u‖H 2(D) ≤ C‖�u‖L2(D) .
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The same is true for the boundary conditions (5.25) and (5.27), just replacing 
in the argument above .L2(D) and .H 1(D) with .L2∗(D) and .H 1∗ (D), namely, the 
corresponding spaces with the additional constraint .

∫
D

v dx = 0. The conclusion 
is that in all these three cases the bilinear form .B(·, ·) is bounded and coercive in 
.H 2(D), and the Lax–Milgram theorem 2.1 can be applied. 

Since for the boundary conditions (5.25) and (5.27) the variational space . V�

does not contain .C∞
0 (D), it is appropriate to verify which problem we have indeed 

solved. Following what we have done in Sect. 5.5 we can easily see that we have 
found a solution of 

. �2u = f − 1

meas(D)

( ∫

D

f dx −
∫

∂D

h dSx

)
.

Since the condition .
∫
D

f dx−∫
∂D

h dSx = 0 is necessary to solve the problem (take 
.v = 1 in (5.23)), the solution of the variational problem is the one we are looking 
for. 

Note also that the solution of the boundary value problems associated to the 
Navier conditions (5.24) and (5.26) and to the Riquier–Neumann conditions (5.25) 
and (5.27) can be also obtained by a two step procedure only involving the Laplace 
operator .−�. In fact, proceeding formally without taking into account the regularity 
of the boundary data, for the Navier conditions we can solve 

. 

{−�w = f in D

w = −g on ∂D
and then

{−�u = w in D

u = 0 on ∂D ,

while for the Riquier–Neumann conditions we can solve 

. 

⎧
⎨

⎩

−�w = f in D

∇w · n = −h on ∂D∫
D

w dx = 0
and then

⎧
⎨

⎩

−�u = w in D

∇u · n = 0 on ∂D∫
D

u dx = 0 .

5.6.1 The Analysis of the Neumann Boundary Value Problem 

The analysis for the Neumann boundary conditions (5.26) and (5.27) is more  
complicated. In order to use the Lax–Milgram theorem 2.1 and thus obtaining well-
posedness we need a Poincaré-type inequality like 

. ‖v‖L2(D) ≤ C‖�v‖L2(D)

for all .v ∈ V�. This inequality would follow if the immersion . L2(�;D) ↪→ L2(D)

was compact, as we could repeat line by line the proof of Theorem 6.10. But from 
Exercise 6.11 we know that this immersion is not compact! Then we could try to
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show that the immersion of .V� ↪→ L2(D) is compact. However, this result is more 
elusive, and for the moment we leave it apart (but see Remark 5.9). 

A different attempt can be done by changing the variational space; it will be 
educational to follow this path as we will see again how a variational space that 
does not contain .C∞

0 (D) can be a delicate choice. We introduce 

. X = {ω = �r | r ∈ H 4(D) ∩ H 2
0 (D)}

(see Definition 4.4). We verify at once that .X ⊂ H 2(D); moreover, assuming that 
the boundary .∂D is smooth, say, of class . C4, we see that X is closed in . H 2(D)

with respect to the .H 2(D)-norm (thus X is a Hilbert space with the .H 2(D)-scalar 
product). In fact, if .ωk = �rk → ω in .H 2(D), we take the solution . r ∈ H 2

0 (D)

of the biharmonic problem .�2r = �ω ∈ L2(D) with the homogeneous Dirichlet 
boundary conditions (5.24) and (5.25), namely, .r|∂D = 0 and .(∇r · n)|∂D = 0 (the 
existence and uniqueness of this solution has been proved above in this section). 
From the regularity results for higher order elliptic equations we obtain 

. ‖rk − r‖H 4(D) ≤ C‖�ωk − �ω‖L2(D)

(see Gazzola et al. [10, Corollary 2.21]). Since .ωk → ω in .H 2(D), it follows . rk → r

in .H 4(D), and consequently .�rk = ωk → �r in .H 2(D), thus .�r = ω and X is 
closed. 

On the other hand, the estimate above also says that for each .ω ∈ X it holds 

. ‖ω‖H 2(D) = ‖�r‖H 2(D) ≤ C‖r‖H 4(D) ≤ C‖�ω‖L2(D) ,

therefore the bilinear form .B(υ, ω) = ∫
D

�υ �ω dx is coercive in X, and we find 
a unique solution of the variational problem 

.
find u ∈ X : ∫

D
�u�ω dx = ∫

D
f ω dx + ∫

∂D
g ∇ω · n dSx

− ∫
∂D

h ω dSx ∀ ω ∈ X .
(5.28) 

Let us also remark that for .ω ∈ X we have 

. 

∫

D

ωη dx =
∫

D

�r η dx =
∫

D

r �η dx = 0

for each .η ∈ L2(D) with .�η = 0 in D, the integration by parts being justified by a 
density argument as .r ∈ H 2

0 (D). Therefore .X ⊂ V�. 
We have thus proved the existence and uniqueness of a weak solution . u ∈ X ⊂

V� of a variational problem related to the same bilinear form and the same linear 
functional which describe the Neumann boundary value problem for the biharmonic 
operator. Moreover, the variational space X does not contain any directly imposed 
boundary condition, as it is usual for “natural” boundary conditions like those of 
Neumann type.
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However, the proof that the solution we have found is the solution of the 
Neumann boundary value problem for the biharmonic operator needs some work: 
as we already underlined, difficulties come from the fact that the variational space 
X does not contain .C∞

0 (D) and it is not straightforward how to trace back it to a 
space containing .C∞

0 (D), thus problems arise when we try to interpret the meaning 
of the weak solution. 

Let us see: we start trying to determine which equation satisfies u when we use 
test functions belonging to .H 2(D) (instead of X; note that .C∞

0 (D) is contained in 
.H 2(D)). Set .H = {η ∈ L2(D) | �η = 0 in D}. This is a closed subspace of .L2(D), 
thus we can use the .L2(D)-orthogonal projection . PH on . H. Take .q ∈ H 2(D) and set 
.ω = q − PHq: clearly, .�ω = �q, thus .

∫
D

�u�q dx = ∫
D

�u�ω dx. Moreover, 
.ω ∈ L2(�;D) and 

. 

∫

D

ωη dx =
∫

D

(q − PHq)η dx = 0 ,

for each .η ∈ H, hence .ω ∈ V�. 
It is now useful the following lemma: 

Lemma 5.1 Assume that .D ⊂ Rn is a bounded, connected, open set, with a smooth 
boundary . ∂D, say,  .∂D ∈ C4. Then .X = V�, and the norms .‖ · ‖X and .‖ · ‖V� are 
equivalent. 

Proof Here above we have verified that .X ⊂ V�. Let us prove the opposite 
inclusion. Take .ω ∈ V� and solve .�2r = �ω ∈ L2(D) with .r|∂D = 0 and 
.(∇r · n)|∂D = 0 (namely, find .r ∈ H 2

0 (D)). We have already seen that this is 
possible and that, by the regularity results for the biharmonic operator and provided 
that .∂D ∈ C4, we obtain a unique solution .r ∈ H 4(D) ∩ H 2

0 (D) with the estimate 
.‖r‖H 4(D) ≤ C‖�ω‖L2(D). Thus we have .(�r−ω) ∈ H. Moreover, for each .η ∈ H, 

. 

∫

D

�r η dx =
∫

D

r �η dx = 0 ,

due to the boundary conditions .r|∂D = 0 and .(∇r · n)|∂D = 0; hence . �r ∈ H⊥
and also .(�r − ω) ∈ H⊥. Having already seen .(�r − ω) ∈ H, we obtain .ω = �r , 
.r ∈ H 4(D) ∩ H 2

0 (D), therefore .ω ∈ X. 
Finally, we have 

. ‖ω‖X = ‖ω‖H 2(D) = ‖�r‖H 2(D) ≤ C‖r‖H 4(D) ≤ C‖�ω‖L2(D) ,

and also 

. ‖ω‖2
V�

= ‖ω‖2
L2(D)

+ ‖�ω‖2
L2(D)

≤ C‖ω‖2
H 2(D)

.

which ends the proof. ��
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Thus we can go on with the interpretation of the weak result, as now we know 
that .ω = (q −PHq) ∈ X. Moreover, we also see that .PHq ∈ H 2(D), as . q ∈ H 2(D)

and .ω ∈ X ⊂ H 2(D). By inserting . ω in the variational problem (5.28) we easily 
find 

. 

∫
D

�u�q dx =∫
D

�u�ω dx =∫
D

f ω dx + ∫
∂D

g ∇ω · n dSx − ∫
∂D

h ω dSx

=∫
D

f q dx + ∫
∂D

g ∇q · n dSx − ∫
∂D

h q dSx

− ∫
D

f PHq dx − ∫
∂D

g ∇PHq · n dSx + ∫
∂D

h PHq dSx .

Since a necessary condition for determining a solution of the Neumann problem is 

. 

∫

D

f η dx +
∫

∂D

g ∇η · n dSx −
∫

∂D

h η dSx = 0

for each .η ∈ H ∩ H 2(D) (take .�v = 0 in (5.23)), by taking .η = PHq we conclude 
that the solution .u ∈ X we have found also solves (5.28) for each .q ∈ H 2(D). 

Now selecting .q ∈ C∞
0 (D) we first obtain .�2u = f in D (in the weak sense). 

Then we take .q ∈ H 2(D) and we integrate by parts (assuming that u is smooth 
enough to give a meaning to the computations): 

. 

∫
D

�u�q dx = − ∫
D

∇�u · ∇q dx + ∫
∂D

�u∇q · n dSx

= ∫
D

�2u q dx − ∫
∂D

∇�u · n q dSx + ∫
∂D

�u∇q · n dSx .

Taking into account that .�2u = f in D, it follows  

. −
∫

∂D

(∇�u · n − h) q dSx +
∫

∂D

(�u − g)∇q · n dSx ∀ q ∈ H 2(D) .

We must now select .q ∈ H 2(D) in a suitable way; precisely, it will be the solution 
.ρ ∈ H 2(D) of the Dirichlet boundary value problem .�2ρ = 0 in D with .ρ|∂D = p1, 
.(∇ρ · n)|∂D = p2, with arbitrary . p1 and . p2 in suitable trace spaces. This solution . ρ
exists and is unique (see Gazzola et al. [10, Theorem 2.16]). Choosing .p2 = 0 we 
obtain .(∇�u · n)|∂D = h; choosing .p1 = 0 it follows .(�u)|∂D = g. 

Remark 5.8 We have thus realized that for the Neumann problem the situation 
is much more delicate than in the other three cases. An additional remark is in 
order: first, let us recall that for the biharmonic operator .�2 the three boundary 
conditions (5.24) and (5.25), (5.24) and (5.26), (5.25) and (5.27) satisfy the so-
called Lopatinskiı̆–Šapiro condition (see Wloka [27, Sect. 11, Example 11.9]) 
or, equivalently, the Agmon–Douglis–Nirenberg complementing condition (see 
Gazzola et al. [10, Definition 2.9]). These conditions are notoriously a crucial tool 
for obtaining a priori estimates for classical solutions, and are often described as 
necessary conditions for well-posedness.
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On the contrary, the Neumann boundary conditions (5.26) and (5.27) do not 
satisfy the Lopatinskiı̆–Šapiro condition (see Wloka [27, Sect. 11, Example 11.9]) 
or the Agmon–Douglis–Nirenberg complementing condition (see Gazzola et al. [10, 
Section 2.3]). Rather surprisingly, in spite of this fact we have proved existence 
and uniqueness of the weak solution for the Neumann problem associated to the 
biharmonic operator. 

Remark 5.9 Looking at the proof just presented, we see that, under the assumption 
.∂D ∈ C4, we have also proved that the continuous immersion 

. V� = L2(�;D) ∩H⊥ ↪→ H 2(D)

holds true. In fact, we have shown .V� = X, with equivalence of the norms, and X is 
a closed subspace of .H 2(D). Therefore, by the Rellich theorem 6.9, the immersion 
.L2(�;D) ∩H⊥ ↪→ L2(D) is compact; let us note again that for .L2(�;D) or for 
.L2(�;D) ∩H this is not true (see Exercise 6.11). 

5.7 Exercises 

Exercise 5.1 Show that in all cases coerciveness is satisfied even if the assumption 
a0 − 1 

2 div b ≥ 0 in  D is weakened to a0 − 1 
2 div b ≥ −ν in D for a constant ν >  0 

small enough. 

Solution Let us consider the case of the Dirichlet boundary condition. We have, by 
using the Poincaré inequality 5.18 and proceeding as before, 

. 

B(v, v) ≥ α0

∫

D

|∇v|2dx +
∫

D

(a0 − 1

2
div b)v2dx

≥ α0

2

∫

D

|∇v|2dx + α0

2CD

∫

D

v2dx − ν

∫

D

v2dx

= α0

2

∫

D

|∇v|2dx +
(

α0

2CD

− ν

) ∫

D

v2dx ,

therefore coerciveness holds provided that ν <  α0 
2CD 

. The proof in the other cases 
is similar, using the result provided by the Poincaré inequality in Theorem 6.10 
(Neumann problem) or in Theorem 6.11 (mixed problem), or the Poincaré-type 
inequality in Theorem 6.12 (Robin problem). 

Exercise 5.2 Taking hint from the definition of the weak divergence in Defini-
tion 5.2, give the definition of the weak curl of a vector field q ∈ (L1 

loc(D))3, 
D ⊂ R3.
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Solution Having in mind the integration-by-parts formula (see Theorem C.7) 

. 

∫

D

curl q · vdx =
∫

D

q · curl vdx

valid for q ∈ (C1(D))3, v ∈ (C∞
0 (D))3, the weak curl of q is a vector field ω ∈ 

(L1 
loc(D))3 such that 

. 

∫

D

ω · vdx =
∫

D

w · curl vdx

for each v ∈ (C∞
0 (D))3. 

Exercise 5.3 

(i) Show that there exists a unique solution of the weak problem 

. 

find u ∈ H 1∗ (D) :
∫

D

∇u · ∇vdx +
∫

∂D

u|∂Dv|∂DdSx

=
∫

D

f vdx +
∫

∂D

gv|∂DdSx ∀ v ∈ H 1∗ (D) ,

where H 1∗ (D) is defined in (5.19). 
(ii) Devise the “strong” interpretation of the weak problem above. 

Solution 

(i) The bilinear form 

. 

∫

D

∇w · ∇vdx

is coercive in H 1∗ (D) (see Theorem 6.10), and
∫
∂D v

2|∂DdSx ≥ 0. Thus Lax– 
Milgram theorem 2.1 guarantees existence and uniqueness of the weak solution. 

(ii) As in Sect. 5.5, take a test function w ∈ H 1(D) and define v = w −wD , where 
wD = 1 

meas(D)

∫
D wdx. Then v ∈ H 1∗ (D), and we can use it as a test function, 

obtaining 

.

∫

D

∇u · ∇wdx +
∫

∂D

u|∂D(w|∂D − wD)dSx

=
∫

D

f (w − wD)dx +
∫

∂D

g(w|∂D − wD)dSx ,
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which can be rewritten as 

. 

∫

D

∇u · ∇wdx − 1

meas(D)

∫

D

(∫

∂D

u|∂DdSx

)
wdx +

∫

∂D

u|∂Dw|∂DdSx

=
∫

D

f wdx +
∫

∂D

gw|∂DdSx

− 1

meas(D)

∫

D

(∫

D

f dx +
∫

∂D

gdSx

)
wdx .

Thus, following the procedure in Sect. 5.5, we obtain the equation 

. −�u− 1

meas(D)

∫

∂D

u|∂DdSx =f − 1

meas(D)

(∫

D

f dx +
∫

∂D

gdSx

)
in D ,

and the boundary condition 

. 
∂u

∂n
+ u|∂D = g on ∂D ;

clearly, the solution u also satisfies the constraint
∫
D udx = 0. 

Exercise 5.4 

(i) Find ω ∈ N⊥, ω �= 0, where N ⊂ V = L2(D) is defined as in (3.2) and ⊥ 
means orthogonality with respect to the scalar product in (w, v)V = ∫

D wvdx. 
Compare with Example 3.6. 

(ii) Find ω ∈ N⊥, ω �= 0, where N ⊂ V = H 1(D) is defined as in (3.2) and ⊥ 
means orthogonality with respect to the scalar product in ((w, v))V =

∫
D (wv + 

∇w · ∇v)dx. Compare with Example 3.6. 

Solution 

(i) We simply take ω = 1. From an abstract point of view, it is the solution ω ∈ 
L2(D) of the problem 

. (ω, v)V =
∫

D

vdx ∀ v ∈ L2(D) ,

whose existence is assured by the Riesz representation theorem . The difference 
with Example 3.6 is that now we are working in the Hilbert space L2(D), so  
that the Riesz representation theorem holds. 

(ii) Similarly to what done in (i), we take the solution ω ∈ H 1(D) of the problem 

.((ω, v))V =
∫

D

vdx ∀ v ∈ H 1(D) .
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The well-posedness follows from the Riesz representation theorem 3.1, and 
ω ∈ N⊥. Again, the difference with Example 3.6 is that H 1(D) is a Hilbert 
space, thus the Riesz representation theorem holds. 

Exercise 5.5 

(i) Devise a variational formulation for the homogeneous Dirichlet boundary 
value problem associated to the operator Lw = −∑n 

i,j=1Di (aijDjw) +∑n 
i=1 biDiw + ∑n 

i=1Di (ciw) + a0w, where ci ∈ L∞(D), i = 1, . . . , n. 
(ii) Determine a sufficient condition on the coefficients ci ensuring existence and 

uniqueness of the solution. 

Solution 

(i) Assuming w, v ∈ H 1 
0 (D), a formal integration by parts yields the bilinear form 

. 

B̂L(w, v) =
∫

D

n∑

i,j=1

aijDjwDivdx +
∫

D

n∑

i=1

biDiw vdx

−
∫

D

n∑

i=1

ciwDivdx +
∫

D

a0wvdx ,

that is defined and bounded in H 1 
0 (D) × H 1 

0 (D) under the sole assumption 
ci ∈ L∞(D), i = 1, . . . , n. The variational formulation is thus 

. u ∈ H 1
0 (D) : B̂L(u, v) =

∫

D

f vdx ∀ v ∈ H 1
0 (D) .

(ii) Taking w = v, the two terms coming from the first order terms of the operator 
become 

. 

∫

D

n∑

i=1

biDiv vdx −
∫

D

n∑

i=1

civDivdx =
∫

D

n∑

i=1

(bi − ci)Div vdx .

Therefore, proceeding as in Sect. 5.4, coerciveness is achieved provided that 
a0 − 1 

2 div(b − c) ≥ 0 in  D. 

Exercise 5.6 The physical conservation principles used to derive the time-indepen-
dent linear Stokes system lead to the problem 

.

{−ν
∑n

i=1Di (Diuj +Dj ui) +Djp = fj in D

div u = 0 in D ,
(5.29) 

for ν >  0 (viscosity).
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(i) Show that for a smooth solution u this problem can be rewritten as 

.

{−ν�u + ∇p = f in D

div u = 0 in D .
(5.30) 

(ii) Devise a variational formulation for the homogeneous Dirichlet boundary 
value problems associated to (5.29) and associated to (5.30), and show that 
these two variational formulations are equivalent. 

(iii) Devise the variational formulation for the Neumann boundary value problem 
associated to (5.29), and determine the strong form of the Neumann boundary 
condition. 

(iv) Devise the variational formulation for the Neumann boundary value problem 
associated to (5.30), and determine the strong form of the Neumann boundary 
condition. 

(v) Compare the two Neumann boundary conditions in (iii) and (iv), and show that 
they are not equivalent. 

Solution 

(i) From the relation DiDj ui = DjDiui (that is valid for smooth functions) it 
follows 

. − ν

n∑

i=1

Di (Diuj +Dj ui) = −ν�uj − νDj div u ,

thus using the second equation in (5.29) the result follows. 
(ii) Taking the scalar product of (5.29) by a vector field v, integrating in D and 

integrating by parts we readily find 

. 

∫

D

n∑

j=1

fjvjdx =
∫

D

n∑

j=1

[ − ν

n∑

i=1

Di (Diuj +Dj ui) +Djp
]
vjdx

= ν

∫

D

n∑

i,j=1

(Diuj +Dj ui)Divj dx −
∫

D

p div vdx

−ν

∫

∂D

n∑

i,j=1

(Diuj +Dj ui)nivj |∂DdSx +
∫

∂D

p v|∂D · ndSx .

(5.31) 

For the homogeneous Dirichlet boundary value problem we assume v ∈ V = 
{v ∈ H 1 

0 (D))n | div v = 0 in D}, thus the term
∫
D p div vdx and the boundary 

terms disappear and we are left with 

.u ∈ V : ν

∫

D

n∑

i,j=1

(Diuj +Dj ui)Divj dx =
∫

D

n∑

j=1

fjvjdx ∀ v ∈ V .
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Repeating the same procedure for problem (5.30) we find 

. 

∫

D

n∑

j=1

fjvjdx =
∫

D

n∑

j=1

[ − ν

n∑

i=1

DiDiuj +Djp
]
vjdx

= ν

∫

D

n∑

i,j=1

DiujDivj dx −
∫

D

p div vdx

−ν

∫

∂D

n∑

i,j=1

Diujnivj |∂DdSx +
∫

∂D

p v|∂D · ndSx ,

(5.32) 

and the variational formulation 

. u ∈ V : ν

∫

D

n∑

i,j=1

DiujDivj dx =
∫

D

n∑

j=1

fjvjdx ∀ v ∈ V .

The two formulations are equivalent as
∫
D

∑n 
i,j=1Dj uiDivj dx =∫

D div u div vdx. In fact, by a density argument we can suppose v ∈ C∞
0 (D): 

thus 

. 

∫

D

n∑

i,j=1

Dj uiDivj dx = −
∫

D

n∑

i,j=1

uiDjDivj dx

= −
∫

D

n∑

i,j=1

uiDiDj vj dx =
∫

D

n∑

i,j=1

DiuiDj vj dx .

(iii) Proceeding as in (ii) we obtain (5.31). The boundary terms 

. − ν

∫

∂D

n∑

i,j=1

(Diuj +Dj ui)nivj |∂DdSx +
∫

∂D

p v|∂D · ndSx

can be rewritten as 

. 

∫

∂D

n∑

i,j=1

[−ν(Diuj +Dj ui) + pδij ]nivj |∂DdSx ,

where δij is the Kronecker symbol, and imposing the condition 

.ν

n∑

i=1

(Diuj +Dj ui)ni − pnj = gj , j = 1, . . . , n , (5.33)



90 5 Weak Formulation of Elliptic PDEs

leads to the variational formulation 

. 

u ∈ W : ν

∫

D

n∑

i,j=1

(Diuj +Dj ui)Divj dx

=
∫

D

n∑

j=1

fjvjdx +
∫

∂D

n∑

j=1

gjvj |∂DdSx ∀ v ∈ W,

where W = {v ∈ (H 1(D))n | div v = 0 in  D}. 
The strong form of the Neumann boundary condition (see Remark 5.1) is  

thus given by (5.33). 
(iv) Proceeding as in (ii) we obtain (5.32). The boundary terms 

. − ν

∫

∂D

n∑

i,j=1

Diujnivj |∂DdSx +
∫

∂D

p v|∂D · ndSx

can be rewritten as 

. 

∫

∂D

n∑

i,j=1

(−νDiuj + pδij )nivj |∂DdSx ,

where δij is the Kronecker symbol, and imposing the condition 

.ν

n∑

i=1

Diujni − pnj = gj , j = 1, . . . , n . (5.34) 

leads to the variational formulation 

. u ∈ W : ν

∫

D

n∑

i,j=1

DiujDivj dx

=
∫

D

n∑

j=1

fjvjdx +
∫

∂D

n∑

j=1

gjvj |∂DdSx ∀ v ∈ W ,

where W = {v ∈ (H 1(D))n | div v = 0 in  D}. 
The strong form of the Neumann boundary condition (see Remark 5.1) is  

thus given by (5.34). 
(v) The two Neumann boundary conditions are different due to the term∑n 

i=1Dj uini , which is not present in (5.34). Anyway, there are divergence 
free vector fields for which this term is not vanishing, as, for instance,



5.7 Exercises 91

v(x1, x2) = (x1,−x2) on the flat boundary {(x1, x2) ∈ R2 | x2 = 0}. In  
this case we have n = (0, 1) and 

. 

n∑

i=1

D1uini = 0 ,

n∑

i=1

D2uini = −1 .

Exercise 5.7 

(i) Devise a variational formulation for the homogeneous Dirichlet boundary value 
problem associated to the linear elasticity operator −μ�−ν∇div, μ >  0, ν >  0 
(Lamé coefficients). 

(ii) Show its well-posedness. 

Solution 

(i) In components, the equation −μ�u − ν∇div u = f can be rewritten as 

. − μ

n∑

i=1

DiDiuj − νDj div u = fj , j = 1, . . . , n ;

thus, multiplying by vj ∈ H 1 
0 (D), adding over j = 1, . . . , n, integrating in D 

and integrating by parts we find: 

. 

∫

D

n∑

j=1

fjvjdx =
∫

D

n∑

j=1

( − μ

n∑

i=1

DiDiuj − νDj div u
)
vjdx

=
∫

D

(
μ

n∑

i,j=1

DiujDivj + ν div u div v
)
dx ,

which leads to the variational formulation 

. 

u ∈ (H 1
0 (D))n :

∫

D

(
μ

n∑

i,j=1

DiujDivj + ν div u div v
)
dx

=
∫

D

n∑

j=1

fjvjdx ∀ v ∈ (H 1
0 (D))n .

(ii) Since
∫
D ν(div v)2dx ≥ 0, well-posedness follows at once by the Poincaré 

inequality in H 1 
0 (D) (see Theorem 6.4)) and Lax–Milgram theorem 2.1. 

Exercise 5.8 

(i) Devise a variational formulation for the homogeneous Dirichlet boundary 
value problem and for the Neumann boundary value problem associated to the 
operator curl curl + αI .
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(ii) Show their well-posedness. 

Solution 

(i) Take the scalar product of the equation curl curl u + αu = f by v, integrate in 
D and integrate by parts: taking into account Theorem C.8 we find 

. 

∫

D

f · vdx =
∫

D

(curl curl u + αu) · vdx

=
∫

D

(curl u · curl v + αu · v)dx +
∫

∂D

n × curl u · vdSx .

Since on the boundary it holds v = (v · n)n + n × v × n, the boundary term∫
∂D n × curl u · vdSx can be rewritten as

∫
∂D n × curl u · (n × v × n)dSx . As  

explained in Remark 5.1, the Neumann boundary condition is thus given by 
curl u × n = g, with g · n = 0, while the homogeneous Dirichlet boundary 
condition is given by n × v × n = 0, or, equivalently, v × n = 0. 
The variational formulations are the following: for the Neumann problem 

. 

u ∈ H(curl;D) :
∫

D

(curl u · curl v + αu · v)dx

=
∫

D

f · vdx +
∫

∂D

g · (n × v × n)dSx ∀ v ∈ H(curl;D) ,

where H(curl;D) = {v ∈ (L2(D))3 | curl v ∈ (L2(D))3}, endowed with the 
scalar product 

. (w, v)curl =
∫

D

(curl w · curl v + w · v)dx

(the curl being intended in the weak sense), and for the homogeneous Dirichlet 
problem 

. u ∈ H0(curl;D) :
∫

D

(curl u · curl v + αu · v)dx =
∫

D

f · vdx ∀ v ∈ H0(curl;D) ,

where H0(curl; D) = {v ∈ H(curl; D) | v × n = 0 on  ∂D}. 
(ii) The well-posedness of the two problems is easily proved, as the bilinear form∫

D (curl u · curl v + αu · v)dx defines a scalar product which is equivalent to 
(w, v)curl. Thus it is enough to apply the Riesz representation theorem 3.1.
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[Indeed, here we are putting under the carpet some technical problems (that have 
a similar structure with those we had to face for the elliptic operator L): 

• Is H(curl; D), endowed with the scalar product (·, ·)curl, a Hilbert space? (The 
positive answer to this question is in Exercise 10.1.) 

• Have the tangential component n×v×n and the tangential trace v×n a meaning 
on ∂D for v ∈ H(curl; D)? 

• Is the linear map v �→ v × n bounded from H(curl; D) to a suitable tangential 
trace space (so that H0(curl; D) is a closed subspace of H(curl; D), therefore a 
Hilbert space)? 

• What is the real meaning of the term
∫
∂D g · (n × v × n)dSx? Namely, is it an 

integral? 
• Which is the required regularity of the Neumann datum g? 

We know all the answers (and for the first three questions they are positive), 
but  it  is  not  completely  straightforward  to  obtain  them. . . for  these  issues,  see,  e.g.,  
Monk [22, Chapters 3 and 5].] 

Exercise 5.9 

(i) Devise a variational formulation for the homogeneous Dirichlet boundary 
value problem and for the Neumann boundary value problem associated to the 
operator −∇ div + αI . 

(ii) Show their well-posedness. 

Solution 

(i) As in the previous exercise, take the scalar product of the equation −∇ div u + 
αu = f by v, integrate in D and integrate by parts: taking into account 
Theorem C.6 we find 

. 

∫

D

f · vdx =
∫

D

(−∇ div u + αu) · vdx

=
∫

D

(div u div v + αu · v)dx −
∫

∂D

div u n · vdSx .

As explained in Remark 5.1, the Neumann boundary condition is thus given by 
div u = g, while the homogeneous Dirichlet boundary condition is given by 
v · n = 0. 
The variational formulations are the following: for the Neumann problem 

.

u ∈ H(div;D) :
∫

D

(div u div v + αu · v)dx

=
∫

D

f · vdx +
∫

∂D

g v · ndSx ∀ v ∈ H(div;D) ,
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where H(div; D) = {v ∈ (L2(D))n | div v ∈ L2(D)}, endowed with the scalar 
product 

. (w, v)div =
∫

D

(div w div v + w · v)dx

(the divergence being intended in the weak sense), and for the homogeneous 
Dirichlet problem 

. u ∈ H0(div;D) :
∫

D

(div u div v+αu·v)dx =
∫

D

f ·vdx ∀ v ∈ H0(div;D) ,

where H0(div; D) = {v ∈ H(div; D) | v · n = 0 on ∂D}. 
(ii) The well-posedness of the two problems is trivial, as the bilinear form∫

D (div u div v + αu · v)dx defines a scalar product which is equivalent to 
(w, v)div. Thus it is enough to apply the Riesz representation theorem 3.1. 

[As in the previous exercise, here there are some technical problems: 

• Is H(div;D), endowed with the scalar product (·, ·)div, a Hilbert space? (The 
positive answer to this question is in Exercise 8.5.) 

• Has the normal component v · n a meaning on ∂D for v ∈ H(div; D)? 
• Is the linear map v �→ v ·n bounded from H(div;D) to a suitable tangential trace 

space (so that H0(div; D) is a closed subspace of H(div;D), therefore a Hilbert 
space)? 

• What is the real meaning of the term
∫
∂D g v  · ndSx? Namely, is it an integral? 

• Which is the required regularity of the Neumann datum g? 

Again, we know all the answers (and for the first three questions they are 
positive): see, e.g., Monk [22, Chapters 3 and 5].]



Chapter 6 
Technical Results 

This chapter contains some technical results that have been frequently used in 
the previous sections: strictly speaking, if we had followed a “chronological” 
presentation, we should have proved these results before. We preferred to adopt 
a description without lateral interruptions, though it is quite clear that without these 
technical results the general ideas behind weak formulations would not have reached 
the desired end. 

The following sections are devoted to approximation in Sobolev spaces, to 
the Poincaré and trace inequalities, to compactness results in .H 1(D) (the Rellich 
theorem), and to the du Bois-Reymond lemma. An “obvious” result assuring that 
if in a connected open set D the weak gradient of a function f vanishes then f is 
constant is also presented. 

6.1 Approximation Results 

Theorem 6.1 Let D ⊂ Rn be an open set and define 

. Dε = {x ∈ D | dist(x, ∂D) > ε} .

Take u ∈ Wk,p (D), where k is a non-negative integer and 1 ≤ p <  +∞. Then 
there exists a sequence uε ∈ C∞(Dε) with uε → u in W k,p 

loc (D) as ε → 0. 

Proof We use the so-called mollifiers, introduced and named by Kurt O. Friedrichs1 

(earlier versions of them can be found in some seminal papers by Jean Leray2 and 

1 Friedrichs [9]. 
2 Leray [18]. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
A. Valli, A Compact Course on Linear PDEs, La Matematica per il 3+2 154, 
https://doi.org/10.1007/978-3-031-35976-7_6

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35976-7protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6
https://doi.org/10.1007/978-3-031-35976-7_6


96 6 Technical Results

Fig. 6.1 The graph of the 
function η in (6.1) 

Sergei L. Sobolev3 ). To define them let us consider the function 

.η(x) =
⎧
⎨

⎩

c0 exp
(
− 1

1−|x|2
)

if |x| < 1

0 if |x| ≥ 1 ,
(6.1) 

where c0 is such that
∫

R
n ηdx = 1. In the one-dimensional case the graph of η is 

drawn in Fig. 6.1. 
For every ε >  0 set  

. ηε(x) = 1

εn
η
(x

ε

)
.

This is called a ε-mollifier. It is known that if u ∈ L p 
loc(D) then the ε-mollified 

version uε defined in Dε as 

. uε(x) = (ηε ∗ u)(x) =
∫

D

ηε(x − y)u(y)dy

belongs to C∞(Dε) and converges to u in L p 
loc(D) (see, e.g., Evans [8, Theorem 6, 

pp. 630–631]). We need to prove that Dα uε → Dα u in L p 
loc(D). To this aim, it is  

sufficient to show that 

. Dαuε = ηε ∗Dαu ,

that is, the ordinary αth-partial derivative of the smooth function uε is the ε-mollified 
version of the αth-weak partial derivative of u. To confirm this, we compute for 
x ∈ Dε 

.Dαuε(x) =
∫

D

Dα
xηε(x − y)u(y)dy = (−1)|α|

∫

D

Dα
yηε(x − y)u(y)dy ,

3 Sobolev [25]. 
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where the results comes from the fact that any derivative with respect to x is the 
opposite of the correspondent derivative with respect to y. For fixed x ∈ Dε, the  
function φ(y)  = ηε(x − y) belongs to C∞

0 (D), because its support is given by 
{y ∈ Rn | |y−x| ≤  ε}. Consequently, the definition of the αth-weak partial derivative 
implies: 

. 

∫

D

Dα
yηε(x − y)u(y)dy = (−1)|α|

∫

D

ηε(x − y)Dαu(y)dy .

The proof is thus complete, as (−1)|α|(−1)|α| = 1. 	

Exercise 6.1 Prove that H 1 

0 (R
n ) = H 1(Rn ). 

We now ask when it is possible to approximate a given function u ∈ Wk,p (D) by 
functions belonging to C∞(D). Such an approximation requires some conditions 
on the regularity of the boundary ∂D. We start with an extension result. 

Theorem 6.2 (Extension Result in Wk,p (D)) Let D be a bounded, connected, 
open subset of Rn with Lipschitz continuous boundary ∂D. Let 1 ≤ p ≤ +∞  
and k ≥ 1, and let Q a bounded, connected, open subset with D ⊂⊂ Q. Then there 
exists a linear and bounded operator 

. E : Wk,p(D) �→ Wk,p(Rn)

such that 

(i) Eu|D = u a.e. in D; 
(ii) supp(Eu) ⊂⊂ Q. 

Proof We only present an idea of the proof, in the case k = 1. As a first step we  
consider a flat boundary. Set BR,+ = {ξ ∈ Rn | |ξ | < R,  ξn > 0} and BR,− = {ξ ∈ 
R

n | |ξ | < R,  ξn < 0}, and consider w ∈ W 1,p (BR,+). We set, by reflection, 

. E−w(x′, xn) =
{

w(x′, xn) if x ∈ BR,+
w(x′,−xn) if x ∈ BR,− ,

having set x = (x′, xn), x′ = (x1, . . . , xn−1). As shown in Exercise 6.8, we see that 
E−w ∈ W 1,p (BR). 

Let us consider now a general domain D and u ∈ W 1,p (D). As in Theorem 6.7 
we can cover the domain D by a finite union of open balls Bs ⊂⊂ Q, s = 1, . . . , M , 
each one centered at a point xs ∈ ∂D, plus an internal open set B0 (say, Dε0 for a 
suitable ε0 > 0; the covering is finite as ∂D is a closed and bounded set, therefore 
a compact set in Rn). Consider a partition of unity ζs associated to the covering Bs 
of D (in particular, the support of ζs is a compact set in Bs : see Appendix A). The 
assumption on the regularity of the boundary tells us that there is a finite set of local 
charts ψs , s = 1, . . . , M , bijective Lipschitz continuous maps from Bs onto BR =
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{ξ ∈ Rn | |ξ | < R}, with the inverse map ψ−1 
s that is Lipschitz continuous, and such 

that Bs ∩ D is mapped onto BR,+. The functions (ζsu) ◦ ψ−1 
s belong W 1,p (BR,+) 

(see, e.g., Ziemer [29, Theor. 2.2.2, p. 52]) and has a compact support in BR,+ ∩BR . 
We can thus apply the reflection result obtained above, and we construct the function 
E−((ζsu) ◦ ψ−1 

s ) belonging to W 1,p (BR) (with compact support in BR). Then we 
have to go back to the domain D by defining in Bs the extension us = E−((ζsu) ◦ 
ψ−1 

s ) ◦ ψs ; since it has a compact support in Bs , we can extend it by 0 outside Bs , 
obtaining Esus ∈ W 1,p (Rn ). It can be noted that (Esus)|D = (ζsu)|D . We finally 
set Eu = ∑M 

s=0 Esus (having simply set E0u0 the extension by 0 outside B0 of 
ζ0u). Now it is not difficult to check that Eu has the property listed in the statement 
of the theorem. 

For more details on this proof see, e.g., Salsa [24, Section 7.8.2]. A similar proof 
for the general case k ≥ 1 would need the introduction of higher order “reflections” 
and, due to the use of local charts, a Ck-regularity of the boundary ∂D. The result  
for a Lipschitz continuous boundary is proved in Stein [26, Section VI.3], by means 
of a different approach. 	

Remark 6.1 It is also easily checked that the “extension-by-reflection” Eu con-
structed in the proof of the theorem satisfies Eu ∈ W 1,p (Rn ) ∩ C0(Rn ) if u ∈ 
W 1,p (D) ∩ C0(D). 

The following approximation result is now an easy consequence. 

Theorem 6.3 Let D be a bounded, connected, open subset of Rn with Lipschitz 
continuous boundary ∂D. Let u ∈ Wk,p (D), 1 ≤ p <  +∞. Then there exists a 
sequence uε ∈ C∞(D) with uε → u in Wk,p (D). 

Proof We consider the extension Eu ∈ Wk,p (Rn ) of u, with supp(Eu) ⊂⊂ Q. 
Then, by Theorem 6.1 we can construct a sequence of ε-mollified versions ũε ∈ 
C∞(Qε) with ũε → Eu in W k,p 

loc (Q) as ε → 0+. Taking uε = ũε|D we have the 
desired result. 	

Remark 6.2 We also obtain that, if u ∈ W 1,p (D) ∩ C0(D), then the sequence 
uε ∈ C∞(D) constructed in Theorem 6.3 converges to u not only in W 1,p (D) but 
also in C0(D). In fact, from Remark 6.1 we know that in this case the extension 
Eu ∈ C0(Q), and it is well-known that the ε-mollified versions of a continuous 
function in Q converge uniformly on compact subsets of Q as ε → 0+, thus 
converge uniformly on D ⊂ Q. 

Exercise 6.2 Let 1 ≤ p ≤ +∞  and let p′ be given by 1 
p + 1 

p′ = 1 (with p′ = +∞  
for p = 1 and viceversa). If fk → f in Lp (D) and gk → g in Lp′

(D), then∫

D fkgkdx → ∫

D fgdx. 

Exercise 6.3 

(i) Let u ∈ H 1(D), v ∈ H 1(D). Then uv ∈ W 1,1(D) and 

.Di (uv) = (Diu)v + u(Div) .
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(ii) The same result holds for u ∈ W 1,p (D), v ∈ W 1,p′
(D), 1  < p  <  +∞, 

1 
p + 1 

p′ = 1. 

6.2 Poincaré Inequality in H 1 
0 (D) 

Theorem 6.4 (Poincaré Inequality in H 1 
0 (D)) Let D be a bounded, connected, 

open subset of Rn. Then there exists a constant CD > 0 such that 

. 

∫

D

v2dx ≤ CD

∫

D

|∇v|2dx ∀ v ∈ H 1
0 (D) .

Proof (1st Way) Since H 1 
0 (D) is the closure of C∞

0 (D), we can proceed by 
approximation. Indeed, if we assume that the inequality holds in C∞

0 (D) it can 
be easily extended to H 1 

0 (D) by the following continuity procedure: consider 
v ∈ H 1 

0 (D), then there exists a sequence {vk} in C∞
0 (D) such that vk → v in 

H 1(D); in particular we have that 

. 

∫

D

v2
kdx →

∫

D

v2dx ,

∫

D

|∇vk|2dx →
∫

D

|∇v|2dx

(see Exercise 6.4), and therefore the inequality holds for v by passing to the limit in 

. 

∫

D

v2
kdx ≤ CD

∫

D

|∇vk|2dx .

We thus need now to prove the inequality in C∞
0 (D); let v ∈ C∞

0 (D), and choose 
a ball large enough to contain the bounded set D, say D ⊂ B(x0, R)  with x0 ∈ D. 
Note that div(x − x0) = n, then integrating by parts and using the Cauchy–Schwarz 
inequality 

.

∫

D

v2dx = n−1
∫

D

nv2dx = n−1
∫

D

div(x − x0)v
2dx

= −n−1
∫

D

(x − x0) · ∇(v2)dx = −n−1
∫

D

(x − x0) · 2v∇vdx

≤ 2n−1 sup
x∈D

|x − x0|
︸ ︷︷ ︸

≤R

(∫

D

v2dx

)1/2 (∫

D

|∇v|2dx

)1/2

.
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We simplify
(∫

D v
2dx

)1/2 
and defining 

. CD =
(

2R

n

)2

= 4R2

n2

we obtain the estimate. 	

Exercise 6.4 Prove that if vk → v in H 1(D) then 

. 

∫

D

v2
kdx →

∫

D

v2dx ,

∫

D

|∇vk|2dx →
∫

D

|∇v|2dx .

Exercise 6.5 Using an approach similar to the one presented in the first proof of 
Theorem 6.4, prove the Poincaré inequality for D bounded in one direction, with 
constant S2 (S being the dimension of the strip containing D). 

Proof of the Poincaré Inequality, 2nd Way We have already noted that, since 
H 1 

0 (D) is the closure of C∞
0 (D), we can proceed by approximation. Take 

v ∈ C∞
0 (D) and extend it by 0 outside D. Since D is bounded, it is bounded 

in all directions; let us say that, having set x = (x′, xn), x′ = (x1, . . . , xn−1), for  
each x ∈ D we have a ≤ xn ≤ b. Thus we have v(x′, a)  = 0 for all x′ such that 
(x′, xn) ∈ D and therefore 

. v(x′, xn) =
∫ xn

a

Dnv(x′, ξ)dξ + v(x′, a)
︸ ︷︷ ︸

=0

=
∫ xn

a

Dnv(x′, ξ)dξ .

Consequently, 

. 

v2(x′, xn) =
(∫ xn

a

1 ·Dnv(x′, ξ)dξ

)2

≤
((∫ xn

a

12dξ

) 1
2
(∫ xn

a

(Dnv(x′, ξ))2dξ

) 1
2
)2

≤ (xn − a)

∫ xn

a

(Dnv(x′, ξ))2dξ .

Integrating in dx′ we obtain 

.

∫

R
n−1

v2(x′, xn)dx′ ≤ (xn − a)

∫

R
n−1

∫ xn

a

(Dnv(x′, ξ))2dξdx′

≤ (xn − a)

∫

R
n
(Dnv(x′, ξ))2dξdx′ .



6.3 Trace Inequality 101

Thus 

. 

∫ b

a

∫

R
n−1

v2(x′, xn)dx′dxn ≤
∫ b

a

(xn − a)

[∫

R
n
(Dnv(x′, ξ))2dξdx′

]

dxn

= 1

2
(b − a)2

∫

R
n
(Dnv(x))2dx

= 1

2
(b − a)2

∫

D

(Dnv(x))2dx (v = 0 outside D)

and 

. 

∫ b

a

∫

R
n−1

v2(x′, xn)dx′dxn =
∫

R
n
v(x)2dx (v = 0 for xn /∈ (a, b))

=
∫

D

v(x)2dx (v = 0 outside D) .

In conclusion 

. 

∫

D

v2dx ≤ 1

2
(b − a)2

∫

D

(Dnv)2dx ≤ 1

2
(b − a)2

∫

D

|∇v|2dx ,

thus the stated estimate with CD = 1 
2 (b − a)2. 	


Exercise 6.6 The Poincaré inequality still holds in W 1,p 
0 (D), 1 ≤ p <  +∞: there 

exists a constant CD > 0 such that 

. 

∫

D

|v|pdx ≤ CD

∫

D

|∇v|pdx ∀ v ∈ W
1,p

0 (D) .

6.3 Trace Inequality 

Next we discuss the possibility of assigning “boundary values” on .∂D to a function 
.v ∈ H 1(D), assuming that .∂D is Lipschitz continuous. When we deal with . v ∈
C(D), clearly it has values on .∂D in the usual sense. The problem is that a typical 
function .v ∈ H 1(D) is not in general continuous and, even worse, is only defined 
almost everywhere in D. Since .∂D can have n-dimensional Lebesgue measure equal 
to zero, it seems that we cannot give a clear meaning to the expression “v restricted 
to . ∂D”. The notion of a trace on the boundary solves this problem.
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Theorem 6.5 (Trace on .∂D and Trace Inequality) Let D be a bounded, con-
nected, open set with a Lipschitz continuous boundary . ∂D. Then for . v ∈ H 1(D)

there is a way to determine a function .γ0v ∈ L2(∂D) such that 

. γ0v = v|∂D for v ∈ C∞(D)

and 

. 

∫

∂D

(γ0v)2dx ≤ C∗
∫

D

(v2 + |∇v|2)dx

for a suitable .C∗ > 0 (independent of v). Moreover, the map .v → γ0v is linear and, 
from the inequality above, continuous from .H 1(D) to .L2(∂D). 

Definition 6.1 We call .γ0v the trace of v on . ∂D, and, even if this can lead to some 
confusion, very often in the sequel we will continue to write .v|∂D instead of . γ0v. 

The proof of this theorem needs some steps. We start by proving it for smooth 
functions defined in a half-space. To clarify this point, we need some notation. 
Suppose we have .v ∈ C1(Rn+), where .Rn+ = {x ∈ Rn | xn > 0}, with . v = 0
out of 

. BR,+ = {x ∈ Rn | xn ≥ 0 , |x| ≤ R} .

Then we have 

Theorem 6.6 (Trace Inequality in .Rn+ for .C1-Functions) For any . v ∈ C1(Rn+)

vanishing outside .BR,+ it holds 

. 

∫

R
n−1

v2(x′, 0)dx′ ≤ R

∫

R
n
+

(Dnv)2dx .

Proof For .(x′, 0) ∈ BR,+ we have 

. v(x′, 0) = −
∫ R

0
Dnv(x′, ξ)dξ + v(x′, R)

︸ ︷︷ ︸
=0

= −
∫ R

0
Dnv(x′, ξ)dξ .

Thus, as in the second proof of the Poincaré inequality: 

. 

∫

R
n−1

v2(x′, 0)dx′ ≤ R

∫

R
n−1

(∫ R

0
(Dnv(x′, ξ))2dξ

)

dx′ = R

∫

R
n
+

(Dnv)2dx ,

where the last equality is justified since .v = 0 outside .BR,+. 	
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Now we can obtain the following theorem: 

Theorem 6.7 (Trace Inequality in D for .C1-Functions) Let D be a bounded, 
connected, open set with a Lipschitz continuous boundary . ∂D. There exists a 
constant .C∗ > 0 such that 

. 

∫

∂D

v2|∂DdSx ≤ C∗
∫

D

(v2 + |∇v|2)dx ∀ v ∈ C1(D) .

Proof The proof is rather technical and we will only enlighten some essential ideas. 
To simplify a little the procedure, let us also suppose that the regularity of the 
boundary is . C1; the proof for the Lipschitz case is just a little bit more complicate, 
as in that case we have to deal with almost everywhere differentiable functions with 
bounded derivatives (this is the case of Lipschitz functions, by the Rademacher 
theorem: see, e.g., Ziemer [29, Theor. 2.2.1, p. 50]). 

We can cover the boundary .∂D by a finite union of open balls . Bs , .s = 1, . . . , M , 
each one centered at a point .xs ∈ ∂D (the covering is finite as .∂D is a closed 
and bounded set, therefore a compact set in . Rn). Consider a sub-covering . ̂Bs , . s =
1, . . . ,M , with .B̂s ⊂⊂ Bs , and a set of cut-off functions . ζs such that .ζs ∈ C∞

0 (Bs), 
.0 ≤ ζs(x) ≤ 1 for .x ∈ Rn and .ζs(x) = 1 for .x ∈ B̂s (in particular, the support of 
. ζs is a compact set in . Bs ; see Corollary A.1). The assumption on the regularity of 
the boundary tells us that there is a finite set of local charts . ψs , bijective .C1-maps 
from . Bs onto .BR = {ξ ∈ Rn | |ξ | < R}, with the inverse map .ψ−1

s that is . C1, 
and such that .Bs ∩ D is mapped onto .BR,+ = {ξ ∈ Rn | |ξ | < R, ξn > 0}. The  
functions .(ζsv) ◦ ψ−1

s are .C1-functions in . Rn+, vanishing outside .BR,+. Therefore 
we can apply to each of them the result of Theorem 6.6, and we get 

. 

∫

R
n−1

((ζsv) ◦ ψ−1
s )2(x′, 0)dx′ ≤ R

∫

R
n
+

(Dn((ζsv) ◦ ψ−1
s ))2dx .

Transforming these integrals into integrals in .Bs ∩ ∂D and .Bs ∩ D we find, by the 
chain rule and some straightforward estimates, 

. 

∫

Bs∩∂D

(ζsv)2dSx ≤ C

∫

Bs∩D

(|∇v|2 + v2)dx .

Now we can add for .s = 1, . . . ,M , and using the fact that . ζs is equal to 1 on . ̂Bs we 
obtain the final result. 	


We can now give the proof of the trace theorem (Theorem 6.5). 

Proof of Theorem 6.5 We proceed by approximation. Consider .vk ∈ C∞(D) such 
that .vk → v in .H 1(D). By the trace theorem for .C1-functions we have that 

.

∫

∂D

v2
k|∂DdSx ≤ C∗

∫

D

(v2
k + |∇vk|2)dx ∀ k ≥ 1 (6.2)
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and 

. 

∫

∂D

(vk|∂D − vs|∂D)2dSx ≤ C∗
∫

D

[(vk − vs)
2 + |∇(vk − vs)|2]dx ∀ k, s ≥ 1 .

(6.3) 

Since . vk is convergent, it is a Cauchy sequence in .H 1(D). Therefore 

. 

∫

∂D

(vk|∂D − vs|∂D)2dSx ≤ C∗
∫

D

[(vk − vs)
2 + |∇(vk − vs)|2]dx ≤ C∗ε

for .k, s large enough, and thus we see that .vk|∂D is a Cauchy sequence in .L2(∂D). 
Since .L2(∂D) is a Hilbert space, we find .q ∈ L2(∂D) such that .vk|∂D → q in 
.L2(∂D). Taking the limit in (6.2) we have 

. 

∫

∂D

q2dSx ≤ C∗
∫

D

(v2 + |∇v|2)dx .

This value q does not depend on the approximating sequence . vk , but only on v. In  
fact, if . wk is another approximating sequence of v, and p is the limit in .L2(∂D) of 
.wk|∂D , it follows 

. 

∫

∂D

|q − p|2dSx =
∫

∂D

|q − vk|∂D + vk|∂D − wk|∂D + wk|∂D − p|2dSx

≤ 3
[ ∫

∂D

(q − vk|∂D)2dSx +
∫

∂D

(p − wk|∂D)2dSx

+
∫

∂D

(vk|∂D − wk|∂D)2dSx

]

≤ 3
[ ∫

∂D

(q − vk|∂D)2dSx +
∫

∂D

(p − wk|∂D)2dSx

+ C∗
∫

D

[
(vk − wk)

2 + |∇(vk − wk)|2
]
dx

]
,

and all the terms go to 0, as .vk → v in .H 1(D) and .wk → v in .H 1(D). 
In conclusion, we define the trace .γ0v as the unique value .q ∈ L2(∂D) obtained 

with the above procedure. Clearly the map .v �→ q is linear; moreover, if . v ∈ C∞(D)

we can choose .vk = v for all .k ≥ 1, therefore 

. vk|∂D = v|∂D → γ0v ,

showing that the trace of a smooth function v (the limit of . vk|∂D . . . )  is  coincident 
with its restriction on the boundary. 	
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Remark 6.3 As we have seen the proof of the trace inequality is based on an 
elementary argument that we have already met many times. Indeed, if we consider 
a continuous function .f : Q �→ R and we want to extend this function to all . R, 
how can we do? Let x be an irrational number; since . Q is dense in . R, we can take a 
sequence .{rk} ⊂ Q such that .rk → x. Then the natural step is to define .f (x) as the 
limit of .f (rk). To led this argument to its end we have to verify that the limit exists, 
proving for example that .{f (rk)} is a Cauchy sequence, and that its limit does not 
depend on the sequence .{rk} we have chosen. 

Remark 6.4 If .v ∈ H 1(D) ∩ C0(D), we know from Remark 6.2 we can find 
a sequence .vk ∈ C∞(D) that converges to v in .H 1(D) and in .C0(D) (namely, 
uniformly in . D). Then on one side 

. vk|∂D → γ0v in L2(∂D) (definition of the trace γ0v)

and on the other side 

. vk|∂D → v|∂D in C0(∂D) (uniform convergence in D) ,

in particular .vk|∂D → v|∂D in .L2(∂D). Thus the trace .γ0v on .∂D is equal to the 
restriction .v|∂D on .∂D for all functions .v ∈ H 1(D) ∩ C0(D). 

Remark 6.5 It can be proved that .H 1
0 (D) is equal to the space . {v ∈

H 1(D) | v|∂D = 0 on ∂D}. The proof of the inclusion . H 1
0 (D) ⊂ {v ∈

H 1(D) | v|∂D = 0 on ∂D} is easy. In fact, an element .v ∈ H 1
0 (D) can be 

approximated by a sequence .vk ∈ C∞
0 (D); since .vk|∂D = 0, it follows that the 

trace .v|∂D satisfies .v|∂D = 0. The opposite inclusion is also true, but the proof is a 
little bit technical, therefore we do not present it here (see Evans [8, Theorem 2, pp. 
259–261]). 

Remark 6.6 Let us note that the trace inequality still holds in .W 1,p(D) . (1 ≤
p < +∞). The proof of the basic estimate for smooth functions in Theorem 6.6 
is essentially the same of the similar estimate for the Poincaré inequality (see 
Exercise 6.6). 

Remark 6.7 A result similar to that presented in Theorem 6.5 can be proved for 
the trace on . �, a (non-empty) open and Lipschitz continuous subset of . ∂D. 

Having defined the trace, we can prove an integration by parts formula. We state 
it as an exercise. 

Exercise 6.7 Let D a bounded, connected, open set with a Lipschitz continuous 
boundary . ∂D, and take .u ∈ H 1(D), .v ∈ H 1(D). Then the integration by parts 
formula 

. 

∫

D

(Diu)vdx = −
∫

D

uDivdx +
∫

∂D

niu|∂Dv|∂DdSx

holds.
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Another couple of exercises are the following: 

Exercise 6.8 Let us assume that D is a bounded, connected, open set with a 
Lipschitz continuous boundary . ∂D, and that .D = D1 ∪ D2, .D1 ∩ D2 = ∅, where 
.D1 and .D2 are (non-empty) open sets with a Lipschitz continuous boundary. Set 
.� = ∂D1 ∩ ∂D2 and take .v ∈ Lp(D), .1 ≤ p < +∞. Then .v ∈ W 1,p(D) if and 
only if .v|D1 ∈ W 1,p(D1), .v|D2 ∈ W 1,p(D2) and the trace of .v|D1 and .v|D2 on . � is 
the same. 

Exercise 6.9 Let D a bounded, connected, open set with a Lipschitz continuous 
boundary . ∂D. The statement “there exists a constant .C > 0 such that 

. 

∫

∂D

|v|pdSx ≤ C

∫

D

|v|pdx ∀ v ∈ C0(D)”

is false for .1 ≤ p < +∞. 

6.4 Compactness and Rellich Theorem 

First of all, we see a compactness criterion (similar to Ascoli-Arzelà theorem, and 
due to Kolmogorov and M. Riesz). 

Theorem 6.8 (Precompactness) Let .D ⊂ Rn be a bounded, connected, open set. 
Consider .1 ≤ p < +∞ and .X ⊂ Lp(D). Then X is precompact if and only if 

(i) there exists .M > 0 such that 

. ‖v‖Lp(D) ≤ M ∀ v ∈ X ;

(ii) extending v by 0 outside D, it holds 

. lim
h→0

‖v(· + h) − v(·)‖Lp(D) = 0 ,

uniformly with respect to .v ∈ X. 

Remark 6.8 Remember that a subset X of a Banach space Y is said to be 
precompact if its closure is compact, i.e., from any sequence in X we can extract a 
subsequence convergent in Y to an element that does not necessarily belong to X. 

The principal compactness result in Sobolev spaces is the following: 

Theorem 6.9 (Rellich Theorem) Let D a bounded, connected, open subset of . Rn, 
with a Lipschitz continuous boundary . ∂D, and let .1 ≤ p < +∞. Then . W 1,p(D)

is compactly immersed in .Lp(D): from any bounded sequence .vk ∈ W 1,p(D) it is 
possible to extract a subsequence . vks that converges in .Lp(D) to a limit .v ∈ Lp(D).
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Proof We use the precompactness theorem, and we limit ourselves to the case 
.p = 2. Let us start with an estimate that is valid for smooth functions. Taking 
.v ∈ C∞

0 (Rn) it follows 

. v(x + h) − v(x) =
∫ 1

0

d

dt
[v(x + th)]dt =

∫ 1

0
∇v(x + th) · hdt ,

hence 

. 

|v(x + h) − v(x)|2 =
∣
∣
∣
∣

∫ 1

0
∇v(x + th) · hdt

∣
∣
∣
∣

2

≤ |h|2
∣
∣
∣
∣

∫ 1

0
∇v(x + th)dt

∣
∣
∣
∣

2

≤ |h|2
∫ 1

0
|∇v(x + th)|2dt

by the Cauchy–Schwarz inequality. Integrating in . Rn

. 

∫

R
n
|v(x + h) − v(x)|2dx ≤ |h|2

∫

R
n

(∫ 1

0
|∇v(x + th)|2dt

)

dx

= |h|2
∫ 1

0

(∫

R
n
|∇v(x + th)|2dx

)

dt

= |h|2
∫

R
n
|∇v|2dx ,

having performed the change of variable .x + th = y (and then replaced dy with 
dx. . . ).  By  approximation, since .C∞

0 (Rn) is dense in .H 1
0 (Rn), we have that this 

inequality is true for .v ∈ H 1
0 (Rn): 

.

∫

R
n
|v(x + h) − v(x)|2dx ≤ |h|2

∫

R
n
|∇v|2dx . (6.4) 

Now we want to prove that a bounded set .X ⊂ H 1(D) is precompact in .L2(D). 
Consider 

. X ⊂ {v ∈ H 1(D) | ‖v‖H 1(D) ≤ M} .

By the extension theorem (Theorem 6.2) we know that, for .v ∈ X, .Ev ∈ H 1
0 (Rn), 

.supp(Ev) ⊂⊂ Q. Thus .Ev ∈ H 1
0 (Q) and is vanishing outside Q; moreover, from 

the continuity of the extension operator we have 

.‖Ev‖H 1(Q) = ‖Ev‖H 1(R
n
) ≤ C∗‖v‖H 1(D) ≤ C∗M ∀ v ∈ X .
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Let us denote by EX the set of the extensions of elements of X 

. EX = {w ∈ H 1
0 (Q) | ∃ v ∈ X such that w = Ev} .

We have just shown that EX is bounded in .L2(Q). Furthermore we know that (6.4) 
is satisfied for all .w ∈ EX, thus 

. 

∫

Q

|(Ev)(x + h) − (Ev)(x)|2dx ≤
∫

R
n
|(Ev)(x + h) − (Ev)(x)|2dx

≤
(6.4) 

|h|2
∫

R
n 
|∇Ev|2dx ≤C2∗M2|h|2 ∀ v ∈ X .  

Applying Theorem 6.7 we obtain that EX is precompact in . L2(Q). Take now a  
sequence .vk ∈ X: since EX is precompact in .L2(Q), we can select a subsequence 
.Evks convergent to . w0 in .L2(Q). Then .vks = Evks |D converges to .w0|D in .L2(D), 
and the proof is complete. 	

Exercise 6.10 Let D a bounded, connected, open set with a Lipschitz continuous 
boundary . ∂D. Let . vk be a bounded sequence in .W 1,p(D), .1 < p < +∞, and 
consider a subsequence . vks which converges to v in .Lp(D) by the Rellich theorem. 
Prove that the limit v indeed belongs to .W 1,p(D). 

6.5 Other Poincaré Inequalities 

We are now in a condition to prove other Poincaré inequalities that are useful in 
the proof of the coerciveness of the bilinear form .BL(·, ·) introduced in (2.19) (see 
Sect. 5.4 for these coerciveness results). 

Theorem 6.10 Let D be bounded, connected, open subset of . Rn with a Lipschitz 
continuous boundary . ∂D. Denote by 

. H 1∗ (D) =
{

v ∈ H 1(D)

∣
∣
∣

∫

D

vdx = 0

}

.

Then there exists .C∗ > 0 such that 

. 

∫

D

v2dx ≤ C∗
∫

D

|∇v|2dx ∀ v ∈ H 1∗ (D) .

Proof Assume, by contradiction, that for each .k ∈ N, .k �= 0, we can find . vk ∈
H 1∗ (D) such that 

.

∫

D

v2
kdx > k

∫

D

|∇vk|2dx .



6.5 Other Poincaré Inequalities 109

Thus .
∫

D
v2
kdx > 0, and we can consider 

. wk = vk
(∫

D
v2
kdx

)1/2 ∈ H 1∗ (D) ,

which satisfies .
∫

D
w2

kdx = 1. We clearly have that 

.1 =
∫

D

w2
kdx > k

∫

D

|∇wk|2dx �⇒
∫

D

|∇wk|2dx <
1

k
, (6.5) 

in particular 

. ‖wk‖H 1(D) =
(∫

D

w2
kdx +

∫

D

|∇wk|2dx

)1/2

≤ √
2 .

From Rellich theorem we can extract a subsequence .wks which converges to . w0 in 
.L2(D), therefore 

. 

∫

D

w2
0dx = lim

s→∞

∫

D

w2
ks

dx = 1 .

From (6.5) we have .∇wks → 0 in .(L2(D))n; therefore for each .ϕ ∈ C∞
0 (D) and 

for each .i = 1, . . . , n it holds 

. 

∫

D

w0Diϕdx = lim
s→∞

∫

D

wksDiϕdx = − lim
s→∞

∫

D

(Diwks )ϕdx = 0 .

As a consequence .∇w0 = 0 and .w0 ∈ H 1(D). From .wks → w0 in .L2(D) we also 
have that 

. 

∫

D

w0dx = lim
s→∞

∫

D

wks dx = 0 ,

thus .w0 ∈ H 1∗ (D). From .Diw0 = 0 for each .i = 1, . . . , n we can infer . w0 = const
(see Sect. 6.7) and thus we have a contradiction, as the only constant belonging to 
.H 1∗ (D) is the null constant, but then .

∫

D
w2

0dx = 1 is impossible. 	

Let us continue by presenting other similar results. We start with this remark: 

Remark 6.9 Let D be bounded, connected, open subset of .Rn with a Lipschitz 
continuous boundary . ∂D, and let .�D ⊂ ∂D be a non-empty, open Lipschitz 
continuous subset. It can be proved that .H 1

�D
(D), the closure of .C∞

�D
(D) in .H 1(D), 

is equal to the space .
{
v ∈ H 1(D) | v|�D

= 0
}
, where .v|�D

is the trace on . �D

(see Remark 6.7). As already seen in Remark 6.5, the easy part is the inclusion 
.H 1

�D
(D) ⊂ {v ∈ H 1(D) | v|�D

= 0}; the inverse inclusion is more technical.
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Theorem 6.11 Let D be bounded, connected, open subset of . Rn with a Lipschitz 
continuous boundary . ∂D. Denote by 

. H 1
�D

(D) =
{
v ∈ H 1(D) | v|�D

= 0
}

,

where .�D ⊂ ∂D is a non-empty, open Lipschitz continuous subset. Then there exists 
.C∗ > 0 such that 

. 

∫

D

v2dx ≤ C∗
∫

D

|∇v|2dx ∀ v ∈ H 1
�D

(D) .

Proof It is essentially the same as before. The only change is a consequence of 
the remark that, having found .wks → w0 in .L2(D) with .∇wks → 0 = ∇w0 in 
.(L2(D))n, we have indeed obtained .wks → w0 in .H 1(D). Thus by the continuity of 
the trace operator we find .0 = wks |�D

→ w0|�D
in .L2(�D), hence .w0 ∈ H 1

�D
(D). 

Since we also know that .w0 = const and that the only constant belonging to . H 1
�D

(D)

is the null constant, again we obtain a contradiction from .
∫

D
w2

0dx = 1. 	

For the Robin problem this Poincaré-type inequality is important. 

Theorem 6.12 Let D be bounded, connected, open subset of . Rn with a Lipschitz 
continuous boundary . ∂D. Let .q : ∂D �→ R be a non-negative and bounded function, 
not identically vanishing, namely, such that .

∫

∂D
qdSx > 0. Then there exists . C∗ > 0

such that 

.

∫

D

v2dx ≤ C∗
(∫

D

|∇v|2dx +
∫

∂D

qv2dSx

)

∀ v ∈ H 1(D) . (6.6) 

Proof The result is proved as before. We arrive at .wks → w0 in .H 1(D), with 
.
∫

D
w2

0dx = 1 and .w0 = const. By the continuity of the trace operator we obtain 
that .wks |∂D → w0|∂D in .L2(∂D), thus also .

√
qwks |∂D → √

qw0|∂D in .L2(∂D). As  
a consequence, 

. 

∫

∂D

qw2
ks

dSx →
∫

∂D

qw2
0dSx ,

by applying Exercise 6.2 in .L2(∂D). On the other hand, from the assumption that 
inequality (6.6) does not hold we have 

. 

∫

D

|∇wks |2dx +
∫

∂D

qw2
ks

dSx <
1

ks

,

hence .
∫

∂D
qw2

ks
dSx→0. The contradiction comes from the fact that . 

∫

∂D
qw2

0dSx =
0 implies . w0 = 0, as . w0 is constant and .

∫

∂D
qdSx > 0. 	
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We conclude with the following theorem: 

Theorem 6.13 Let D be bounded, connected, open subset of . Rn with a Lipschitz 
continuous boundary . ∂D. Then there exists .C∗ > 0 such that 

. 

∫

D

(v − vD)2dx ≤ C∗
∫

D

|∇v|2dx ∀ v ∈ H 1(D) ,

where .vD = 1
meas(D)

∫

D
vdx. 

Proof The proof is trivial. Indeed it is sufficient to consider .w = v − vD , which is 
average free and satisfies .∇w = ∇v. Thus we can apply Theorem 6.10. 	


6.6 du Bois-Reymond Lemma 

Lemma 6.1 Let D be an open set in Rn. If  f ∈ L1 
loc(D) satisfies 

.

∫

D

f ϕdx = 0 ∀ ϕ ∈ C∞
0 (D) (6.7) 

then f = 0 a.e. in D. 

Proof For r >  0 and ε >  0 denote by Br = {x ∈ Rn | |x| < r} and by Dε = {x ∈ 
D | dist(x, ∂D) > ε}. Take  k0 large enough to have D1/k0 ∩ Bk0 �= ∅. For a fixed  
k ∈ N, k ≥ k0 and for 0 < δ  <  1/k  consider the δ-mollified version fδ = ηδ ∗ f 
defined in Dδ ⊃ D1/k . 

For any fixed x ∈ D1/k  the map y �→ ηδ(x − y) ∈ C∞
0 (D), thus by (6.7) we 

obtain 

. fδ(x) =
∫

D

f (y)ηδ(x − y)dy = 0 .

We also know that fδ → f in L1 
loc(D), in particular fδ → f in L1(D1/k  ∩ Bk). 

Therefore, for a suitable subsequence we find fδs → f a.e. in D1/k  ∩ Bk . 
Putting together the two results it follows f (x)  = 0 a.e. in  D1/k  ∩ Bk . Since 

D = ∪∞
k=k0 

(D1/k  ∩ Bk), the thesis is proved. 	


6.7 ∇f = 0 implies f = const 

Proposition 6.1 Let D be an open and connected set in Rn. Suppose that f ∈ 
L1 
loc(D) satisfiesDif = 0 for each i = 1, . . . , n. Then f = const a.e. in D.
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Proof It is enough to prove that there exists c0 ∈ R such that 

. 

∫

D

f ϕdx = c0

∫

D

ϕdx ∀ ϕ ∈ C∞
0 (D) .

In fact, from this it follows
∫

D (f − c0)ϕdx = 0 for each ϕ ∈ C∞
0 (D), thus from du 

Bois-Reymond Lemma 6.1 we obtain f = c0 a.e. in D. Consider now ϕ ∈ C∞
0 (D): 

the assumption says that the weak gradient of f is vanishing, namely, 

. 0 =
∫

D

fDiϕdx for each i = 1, . . . , n .

Take Q ⊂⊂ D, Q open and connected. Consider the ε-mollified version fε = 
ηε ∗ f , defined in Q for ε <  εQ. We already know that 

. Difε = ηε ∗Dif

(see the proof of Theorem 6.1), thus 

. Difε = 0 in Q.

Therefore we have 

. fε = cε,Q in Q,

and for any ϕ ∈ C∞
0 (Q) it follows, for ε <  εQ, 

.

∫

Q

fεϕdx = cε,Q

∫

Q

ϕdx . (6.8) 

Selecting ϕ̂Q ∈ C∞
0 (Q) such that

∫

Q ϕ̂Qdx �= 0, for ε <  εQ we have from (6.8) 

. cε,Q =
∫

Q
fεϕ̂Qdx

∫

Q
ϕ̂Qdx

.

Since fε → f in L1 
loc(D), we get

∫

Q fε ϕ̂Qdx → ∫

Q f ϕ̂Qdx, hence 

.cε,Q →
∫

Q
f ϕ̂Qdx

∫

Q
ϕ̂Qdx

= c0,Q .
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On the other hand, we also have
∫

Q fεϕdx → ∫

Q f ϕdx  for any ϕ ∈ C∞
0 (Q), thus 

from (6.8) we obtain 

. 

∫

Q

f ϕdx = c0,Q

∫

Q

ϕdx ∀ ϕ ∈ C∞
0 (Q) .

In conclusion, we have f = c0,Q a.e. in Q. Since when Q1 ∩ Q2 �= ∅ it follows 
c0,Q1 = c0,Q2 , the proof is completed by “invading” D by a sequence of open and 
connected sets Qm ⊂⊂ D. 	


6.8 Exercises 

Exercise 6.1 Prove that H 1 
0 (R

n ) = H 1(Rn ). 

Solution We only need to show that a function v ∈ H 1(Rn ) can be approximated 
in H 1(Rn ) by functions belonging to C∞

0 (Rn ). For this aim, the keywords are: 
“truncate” and “mollify”. In fact, adapting the proof of Theorem 6.1, one sees that 
the ε-mollified versions vε ∈ C∞(Rn ) converge to v in H 1(Rn ), but  vε have not a 
compact support, unless v itself has a compact support. 

Then let us first suppose that v ∈ H 1(Rn ) and has a compact support. We 
take vε = ηε ∗ v, where ηε is the Friedrichs ε-mollifier introduced in the proof 
of Theorem 6.1. It is known that vε ∈ C∞

0 (Rn ) (here it is used that v has a 
compact support) and that vε → v in L2(Rn ) (here it is used that v ∈ L2(Rn )). 
Moreover, adapting the proof of Theorem 6.1 to the whole space Rn, we see that 
Divε = (Div)ε in Rn, thus Divε → Div in L2(Rn ). 

Now we have to show that each function v ∈ H 1(Rn ) can be approximated by 
a function belonging to H 1(Rn ) with compact support. It is enough to “truncate” 
v out of a compact set. Precisely, we take a function ζ ∈ C∞

0 (Rn ) such that 0 ≤ 
ζ(x)  ≤ 1, ζ(x)  = 1 for |x| ≤  1 and ζ(x)  = 0 for |x| ≥  2 and for t >  0 we define 
vt (x) = v(x)ζ(x/t). Clearly vt ∈ H 1(Rn ) and has a compact support. Then 

. ∇vt (x) = ∇v(x)ζ(x/t) + 1

t
v(x)∇ζ(x/t) .

We have 

.

∫

R
n
(v(x) − vt (x))2dx =

∫

R
n
v2(x)(1 − ζ(x/t))2dx ≤

∫

|x|≥t

v2(x)dx
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and 

. 

∫

R
n |∇v(x) − ∇vt (x)|2dx = ∫

R
n

∣
∣∇v(x)(1 − ζ(x/t)) − 1

t
v(x)∇ζ(x/t)

∣
∣2dx

≤ 2
∫

R
n |∇v(x)|2(1 − ζ(x/t))2dx + 2

t2

∫

R
n v2(x)|∇ζ(x/t)|2dx

≤ 2
∫

|x|≥t
|∇v(x)|2dx + 2M2

t2

∫

R
n v2(x)dx ,

where M = sup 
x∈Rn 

|∇ζ(x)|. Taking the limit for t → +∞ we obtain the result. 

Exercise 6.2 Let 1 ≤ p ≤ +∞  and let p′ be given by 1 
p + 1 

p′ = 1 (with p′ = +∞  
for p = 1 and viceversa). If fk → f in Lp (D) and gk → g in Lp′

(D), then∫

D fkgkdx → ∫

D fgdx. 

Solution Indeed, by Hölder inequality, 

. 

∣
∣
∣
∣

∫

D

(fkgk − fg)dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

D

(fkgk − fkg + fkg − fg)dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

D

fk(gk − g)dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫

D

g(fk − f )dx

∣
∣
∣
∣

≤ ‖fk‖Lp(D)‖gk−g‖
Lp′

(D)
+ ‖g‖

Lp′
(D)

‖fk−f ‖Lp(D) → 0 ,

as ‖fk‖Lp(D) → ‖f ‖Lp(D) (by the triangular inequality). 

Exercise 6.3 

(i) Let u ∈ H 1(D), v ∈ H 1(D). Then uv ∈ W 1,1(D) and 

. Di (uv) = (Diu)v + u(Div) .

(ii) The same result holds for u ∈ W 1,p (D), v ∈ W 1,p′
(D), 1  < p  <  +∞, 

1 
p + 1 

p′ = 1. 

Solution 

(i) The proof is similar to that of Exercise 4.4. First of all, we know that 
uv ∈ L1(D). Moreover (Diu)v and u(Div) belong to L1(D), as products of 
functions in L2(D). Thus it is enough to proveDi (uv) = (Diu)v+u(Div). We  
choose ϕ ∈ C∞

0 (D) and we set Q = supp(ϕ). Then we take an open set Q̂ such 

that Q ⊂⊂ Q̂ ⊂⊂ D. By Theorem 6.1 we find uk ∈ C∞(Q̂), vk ∈ C∞(Q̂) 
such that uk → u in H 1(Q̂), vk → v in H 1(Q̂). Since ϕ ∈ C∞

0 (Q̂) we have 

.

∫

Q̂

ukvkDiϕdx = −
∫

Q̂

Di (ukvk)ϕdx

= −
∫

Q̂

[(Diuk)vk + uk(Divk)] ϕdx .
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Taking into account Exercise 6.2, the result follows passing to the limit for 
k → ∞, as we obtain 

. 

∫

D

uvDiϕdx = ∫

Q̂
uvDiϕdx

= −
∫

Q̂

[(Diu)v + u(Div)]ϕ dx

= −
∫

D

[(Diu)v + u(Div)]ϕ dx .

(ii) The proof is the same, just noting that uv, (Diu)v and u(Div) belong to 
L1(D), as products of functions in Lp (D) and Lp′

(D), and using the approxi-
mation results given by Theorem 6.1 for functions belonging to W 1,p (D) and 
W 1,p′

(D). 

Exercise 6.4 Prove that if vk → v in H 1(D) then 

. 

∫

D

v2
kdx →

∫

D

v2dx ,

∫

D

|∇vk|2dx →
∫

D

|∇v|2dx .

Solution It is enough to apply Exercise 6.2, since from vk → v in H 1(D) we have 
in particular that vk → v in L2(D) and ∇vk → ∇v in L2(D). An alternative proof 
is simply based on the triangular inequality: 

. 

∣
∣
∣
∣
∣

(∫

D

v2
kdx

)1/2

−
(∫

D

v2dx

)1/2
∣
∣
∣
∣
∣
= ∣
∣‖vk‖L2(D)−‖v‖L2(D)

∣
∣ ≤ ‖vk−v‖L2(D) → 0 .

Similarly we prove that
∫

D |∇vk|2dx → ∫

D |∇v|2dx. 

Exercise 6.5 Using an approach similar to the one presented in the first proof of 
Theorem 6.4, prove the Poincaré inequality for D bounded in one direction, with 
constant S2 (S being the dimension of the strip containing D). 

Solution By proceeding as in Theorem 6.4 it is enough to prove the inequality for 
v ∈ C∞

0 (D). Suppose that D is contained in the strip {x ∈ Rn | |xn − x0 
n| ≤  S/2}. 

Since Dnxn = 1, we have 

. 

∫

D

v2dx =
∫

D

Dn(xn − x0
n)v2dx

= −
∫

D

(xn − x0
n)Dn(v

2)dx = −
∫

D

(xn − x0
n) 2vDnvdx

≤ 2
S

2

(∫

D

v2dx

)1/2 (∫

D

|Dnv|2dx

)1/2

,

thus the Poincaré inequality holds with CD = S2.
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Exercise 6.6 The Poincaré inequality still holds in W 1,p 
0 (D), 1 ≤ p <  +∞: there 

exists a constant CD > 0 such that 

. 

∫

D

|v|pdx ≤ CD

∫

D

|∇v|pdx ∀ v ∈ W
1,p

0 (D) .

Solution As in the proof of Theorem 6.4, 2nd way, we assume that a ≤ xn ≤ b and 
we start writing, for v ∈ C∞

0 (D), 

. v(x′, xn) =
∫ xn

a

Dnv(x′, ξ)dξ .

For 1 ≤ p <  +∞ it follows 

. |v(x′, xn)|p =
∣
∣
∣
∣

∫ xn

a

Dnv(x′, ξ)dξ

∣
∣
∣
∣

p

≤
(∫ xn

a

1 · |Dnv(x′, ξ)|dξ

)p

.

By Hölder inequality, for 1 < p  <  +∞ and 1 
p + 1 

p′ = 1 (for p = 1 you do not even 
need the Hölder inequality. . . ) it follows  

. 

(∫ xn

a

1 · |Dnv(x′, ξ)|dξ

)p

≤
((∫ xn

a

1p′
dξ

) 1
p′ (∫ xn

a

|Dnv(x′, ξ)|pdξ

) 1
p

)p

≤ (xn − a)p/p′
∫ xn

a

|Dnv(x′, ξ)|pdξ .

Since p 
p′ = p − 1, integrating in dx′ we obtain 

. 

∫

R
n−1

|v(x′, xn)|pdx′ ≤ (xn − a)p−1
∫

R
n−1

∫ xn

a

|Dnv(x′, ξ)|pdξdx′

≤ (xn − a)p−1
∫

R
n
|Dnv(x′, ξ)|pdξdx′ .

Thus 

. 

∫ b

a

∫

R
n−1

|v(x′, xn)|pdx′dxn ≤
∫ b

a

(xn − a)p−1
[∫

R
n
|Dnv(x′, ξ)|pdξdx′

]

dxn

= 1

p
(b − a)p

∫

R
n
|Dnv(x)|pdx .

In conclusion, taking into account that v = 0 outside D, 

.

∫

D

|v|pdx ≤ 1

p
(b − a)p

∫

D

|∇v|pdx .
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Exercise 6.7 Let D a bounded, connected, open set with a Lipschitz continuous 
boundary ∂D, and take u ∈ H 1(D), v ∈ H 1(D). Then the integration by parts 
formula 

. 

∫

D

(Diu)vdx = −
∫

D

uDivdx +
∫

∂D

niu|∂Dv|∂DdSx

holds. 

Solution We proceed by approximation. We have uk ∈ C∞(D), uk → u in H 1(D), 
vk ∈ C∞(D), vk → v in H 1(D). Then 

. 

∫

D

(Diuk)vkdx

︸ ︷︷ ︸
[1]

= −
∫

D

ukDivkdx

︸ ︷︷ ︸
[2]

+
∫

∂D

niuk|∂Dvk|∂DdSx

︸ ︷︷ ︸
[3]

.

By Exercise 6.2 we have these first two results: 

[1] As k → ∞  we have 

. 

∫

D

(Diuk)vkdx →
∫

D

(Diu)vdx .

[2] As k → ∞  we have 

. 

∫

D

ukDivkdx →
∫

D

uDivdx .

[3] The final step is to check that 

. 

∫

∂D

niukvkdSx →
∫

∂D

niu|∂Dv|∂DdSx .

We know that the map v → v|∂D is continuous from H 1(D) to L2(∂D), thus 

. uk|∂D → u|∂D in L2(∂D)

and 

. vk|∂D → v|∂D in L2(∂D) .

Since n is a bounded vector field, 

. niuk|∂D → niu|∂D in L2(∂D) ,

which ends the proof, applying the result of Exercise 6.2 in L2(∂D).
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Exercise 6.8 Let us assume that D is a bounded, connected, open set with a 
Lipschitz continuous boundary ∂D, and that D = D1 ∪ D2, D1 ∩ D2 = ∅, where 
D1 and D2 are (non-empty) open sets with a Lipschitz continuous boundary. Set
� = ∂D1 ∩ ∂D2 and take v ∈ Lp (D), 1  ≤ p <  +∞. Then v ∈ W 1,p (D) if and 
only if v|D1 ∈ W 1,p (D1), v|D2 ∈ W 1,p (D2) and the trace of v|D1 and v|D2 on � is 
the same. 

Solution (⇒) The proof that v|D1 ∈ W 1,p (D1) and v|D2 ∈ W 1,p (D2) is 
straightforward. Then consider a sequence vk ∈ C∞(D) which converges to v in 
W 1,p (D) (see Theorem 6.3); in particular, w1,k = vk|D1 ∈ C∞(D1) converges to 
v|D1 in W 1,p (D1) and w2,k = vk|D2 ∈ C∞(D2) converges to v|D2 in W 1,p (D2). 
Hence w1,k|� converges in Lp (�) to the trace of v|D1 on � and w2,k|� converges in 
Lp (�) to the trace of v|D2 on �. Since w1,k|� = w2,k|� , the thesis follows. 

(⇐) For the sake of simplicity, let us write v1 and v2 for v|D1 and v|D2 . Take a  
test function ϕ ∈ C∞

0 (D) (and thus not necessarily vanishing on the interface �) 
and define ωi ∈ Lp (D) by setting ωi|D1 = Div1 and ωi|D2 = Div2, i = 1, . . . , n. 
We find, by integration by parts as in Exercise 6.7, 

. 

∫

D
ωiϕdx = ∫

D1
Div1ϕdx + ∫

D2
Div2ϕdx

= − ∫

D1
v1Diϕdx + ∫

�
n1,iv1|�ϕ|�dSx

− ∫

D2
v2Diϕdx + ∫

�
n2,iv2|�ϕ|�dSx ,

where nj is the unit normal vector on � directed outside Dj , j = 1, 2. Since v1|� = 
v2|� and n1,i = −n2,i , it follows 

. 

∫

D

ωiϕdx = −
∫

D1

v1Diϕdx −
∫

D2

v2Diϕdx = −
∫

D

vDiϕdx ,

hence Div = ωi ∈ Lp (D). 

Exercise 6.9 Let D a bounded, connected, open set with a Lipschitz continuous 
boundary ∂D. The statement “there exists a constant C >  0 such that 

.

∫

∂D

|v|pdSx ≤ C

∫

D

|v|pdx ∀ v ∈ C0(D)” (6.9) 

is false for 1 ≤ p <  +∞. 

Solution Consider the sequence vk ∈ C0(D) satisfying 0 ≤ vk(x) ≤ 1 and defined 
as follows: 

.vk(x) =
⎧
⎨

⎩

1 for x ∈ D \ D1/k

continuous for x ∈ D1/k \ D2/k

0 for x ∈ D2/k ,
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where Dε is as in Theorem 6.1. Then 

. 

∫

∂D

|vk|pdSx = meas(∂D) > 0

and 

. 

∫

D

|vk|pdx ≤ meas(D \ D2/k) ≤ C
1

k
,

thus (6.9) cannot hold. 

Exercise 6.10 Let D a bounded, connected, open set with a Lipschitz continuous 
boundary ∂D. Let  vk be a bounded sequence in W 1,p (D), 1  < p  <  +∞, and 
consider a subsequence vks which converges to v in Lp (D) by the Rellich theorem. 
Prove that the limit v indeed belongs to W 1,p (D). 

Solution Since W 1,p (D) is a reflexive Banach space (see Remark 4.9), from the 
bounded sequence vks we can extract a subsequence, still denoted by vks , which 
converges weakly to w ∈ W 1,p (D). In particular, vks converges weakly to w in 
Lp (D), and since it converges to v in Lp (D), it follows  v = w by the uniqueness 
of the weak limit and thus v ∈ W 1,p (D). 

Exercise 6.11 Let D = BR ⊂ R2 be the disc of radius R centered at 0 and consider 
the Hilbert space L2(�; D) = {v ∈ L2(D) | �v ∈ L2(D)}, endowed with the 
natural scalar product

∫

D (w v+�w �v) dx. Show that the immersion L2(�; D) ↪→ 
L2(D) is not compact. 

Solution In polar coordinates, for k ≥ 1 take  vk(r, θ) = ck 
rk 

Rk sin(kθ), where ck =√
2 

R
√

π 
√

k + 1 is chosen so that ‖vk‖L2(D) = 1. Clearly we have �vk = 0 in  D, 
therefore ‖vk‖L2(�;D) = 1. If we had a subsequence vks of vk which converges to v 
in L2(D), then we would also have a subsequence of vks which pointwise converges 
to v almost everywhere in D. Therefore we would obtain v = 0 almost everywhere 
(for r <  R  we easily see that vk → 0 pointwise) and ‖v‖L2(D) = 1, a contradiction.



Chapter 7 
Additional Results 

In this chapter a series of additional results are described and analyzed: the 
Fredholm alternative theory applied to second order elliptic problems; the spectral 
theory for an elliptic operator (in the general case and in the symmetric case); 
the maximum principle for weak subsolution of elliptic equations; some results 
concerning further regularity of weak solutions, together with higher summability 
or regularity results in the classical sense for functions belonging to Sobolev spaces; 
and finally the Galerkin approximation method. 

7.1 Fredholm Alternative 

We can employ the Fredholm theory for a compact perturbation of the identity 
operator to glean more detailed information regarding the solvability of second order 
elliptic PDE. 

We start by briefly analyzing the finite dimensional case. Let A be a .n×mmatrix, 
associated to the linear map .v �→ Av, .v ∈ Rm, .Av ∈ Rn. From linear algebra it is 
known that .dimN(A) + dimR(A) = m, where .N(A) = {v ∈ Rm | Av = 0} is the 
kernel of A and .R(A) = {Av ∈ Rn | v ∈ Rm} its range. Therefore, if .n = m it 
follows that .N(A) = {0} implies .R(A) = Rn and viceversa: in other words, from 
uniqueness one obtains existence and viceversa. 

Another interesting and well-known result is a characterization of the range of 
A, given by .R(A) = N(AT )⊥ (see Exercise 7.2). 

We want to understand if something of this type is also true in a Hilbert space 
V whose dimension is infinite. The answer is provided by the Fredholm alternative. 
Before stating the result, we need a definition. 

Definition 7.1 A linear operator .K : X �→ Y , X and Y Banach spaces, is said to 
be compact if it is bounded and it maps bounded sets into precompact sets (namely, 
sets whose topological closure is a compact set). 
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The following result is the core of Fredholm theory (see, e.g., Evans [8, Theorem 5, 
pp. 641–643]). 

Theorem 7.1 (Fredholm Alternative) Let V be a Hilbert space and . K : V �→ V

be a compact linear operator. Then: 

1. .N(I − K) = {0} if and only if .R(I − K) = V ; 
2. .N(I − K) is a finite dimensional subspace; 
3. .dimN(I − K) = dimN(I − KT ); 
4. .R(I − K) is closed and therefore .R(I − K) = N(I − KT )⊥ (see Exercise 7.3). 

Let us recall that, if .A : X �→ Y is a bounded linear operator, X and Y being Hilbert 
spaces, its adjoint operator .AT : Y �→ X is defined as 

. (AT y, x)X = (y,Ax)Y ∀ y ∈ Y, x ∈ X .

Let us consider the elliptic operator 

. Lw = −
n∑

i,j=1

Di (aijDjw) +
n∑

i=1

biDiw + a0w ,

with .aij ∈ L∞(D) for .i, j = 1, . . . , n, .bi ∈ L∞(D) for .i = 1, . . . , n, .a0 ∈ L∞(D). 
The formal adjoint . LT is defined by 

. LT w = −
n∑

i,j=1

Di (ajiDjw) −
n∑

i=1

Di (biw) + a0w .

The bilinear form .BL(·, ·) is defined as 

. BL(w, v) =
∫

D

n∑

i,j=1

aijDjwDivdx +
∫

D

n∑

i=1

biDiwvdx +
∫

D

a0wvdx ,

while the adjoint bilinear form is defined by 

. BLT (w, v) =
∫

D

n∑

i,j=1

ajiDjwDivdx +
∫

D

n∑

i=1

biwDivdx +
∫

D

a0wvdx ,

where integration by parts has been applied not only to the second order term but 
also to .− ∫

D
Di (biw)vdx. Consequently, 

. BLT (w, v) = BL(v,w) ∀ v,w ∈ H 1(D) .

Let us start focusing on the homogeneous Dirichlet boundary condition. As usual, 
we will say that u is a weak solution of .Lu = f with homogeneous Dirichlet
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boundary value if .u ∈ H 1
0 (D) is a solution of 

. BL(u, v) =
∫

D

f vdx ∀ v ∈ H 1
0 (D) .

Similarly, we will say that w is a weak solution of .LT w = p with homogeneous 
Dirichlet boundary value if .w ∈ H 1

0 (D) is a solution of 

. BLT (w, v) =
∫

D

pvdx ∀ v ∈ H 1
0 (D) .

Theorem 7.2 (Existence and Uniqueness Theorem Based on Fredholm Alterna-
tive) Let .D ⊂ Rn be a bounded, connected, open set. 

(i) Precisely one of the following statements holds: 

(. α) either for each .f ∈ L2(D) there exists a unique solution .u ∈ H 1
0 (D) of 

.BL(u, v) =
∫

D

f vdx ∀ v ∈ H 1
0 (D) , (7.1) 

(. β) or else there exists a solution .w ∈ H 1
0 (D), .w 	= 0, of  

.BL(w, v) = 0 ∀ v ∈ H 1
0 (D) . (7.2) 

The dichotomy . (α), . (β) is called the Fredholm alternative. 
(ii) Furthermore, when assertion .(β) holds, the dimension of .N(L), the space of 

the solutions of problem (7.2), is finite, and it is equal to the dimension of 
.N(LT ), the space of the solutions of the problem 

. BLT (w, v) = 0 ∀ v ∈ H 1
0 (D) .

(iii) Finally, when assertion . (β) holds, problem (7.1) has a solution if and only if 

. 

∫

D

f v∗dx = 0 ∀ v∗ ∈ N(LT ) .

Proof 

(i) Choose .τ > 0 in a such a way that 

.Bτ (w, v) = BL(w, v) + τ

∫

D

wvdx
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is coercive in .H 1
0 (D). We have seen in Sect. 5.3 that this is possible choosing 

. τ > max(0,−μ) ,

where .μ = infD a0 − 1
2α0

‖b‖2L∞(D). Then for each .q ∈ L2(D) there exists a 

unique solution .u� ∈ H 1
0 (D) of 

.Bτ (u�, v) =
∫

D

qvdx ∀ v ∈ H 1
0 (D) . (7.3) 

Let us write .u� = (L + τI )−1q whenever (7.3) holds. Indeed (7.3) is the weak 
form of .Lu� + τu� = q. 

Now observe that .u ∈ H 1
0 (D) is a solution of (7.1) if and only if 

. Bτ (u, v) =
∫

D

(τu + f )vdx ∀ v ∈ H 1
0 (D) ,

namely, if and only if 

. u = (L + τI )−1(τu + f ) = τ(L + τI )−1u + (L + τI )−1f .

Let us write this as 

. u − Ku = (L + τI )−1f ,

where .K = τ(L + τI )−1. We have thus found that a solution . u ∈ H 1
0 (D) ⊂

L2(D) to (7.1) is a solution of .u − Ku = h, with a right hand side . h =
(L + τI )−1f ∈ H 1

0 (D) ⊂ L2(D). 
On the other hand, let us take a solution .û ∈ L2(D) of .û − Kû = h with 

.h ∈ L2(D), namely, we have 

. ̂u − τ(L + τI )−1û = h .

If we know the additional information that .h ∈ H 1
0 (D), then . ̂u = τ(L +

τI )−1û + h ∈ H 1
0 (D). Moreover, we can rewrite the problem as . (L + τI )û −

τ û = (L + τI )h or simply .Lû = (L + τI )h. Therefore, choosing . h = (L +
τI )−1f = 1

τ
Kf with .f ∈ L2(D), the two problems .Lu = f with . u ∈ H 1

0 (D)

and .(I − K)u = h with .u ∈ L2(D) are equivalent. 
We claim that .K : L2(D) �→ L2(D) is a linear and compact operator. In 

fact, from the coerciveness of .Bτ (·, ·) for the solution . u� of (7.3) we have 

.
α‖u�‖2H 1(D)

≤ Bτ (u�, u�) = ∫
D

qu�dx

≤ ‖q‖L2(D)‖u�‖L2(D) ≤ ‖q‖L2(D)‖u�‖H 1(D) ,



7.1 Fredholm Alternative 125

hence, being .u� = (L + τI )−1q, .K = τ(L + τI )−1 and .Kq = τu�, 

.‖Kq‖H 1(D) ≤ τ

α
‖q‖L2(D) . (7.4) 

In particular we have 

. ‖Kq‖L2(D) ≤ ‖Kq‖H 1(D) ≤ τ

α
‖q‖L2(D) ,

that proves the boundedness of K . Moreover estimate (7.4) and Rellich 
Theorem 6.9, (that in .H 1

0 (D) is valid without assumptions on . ∂D, as we can 
freely use the trivial extension by 0 outside D) tell us that K is compact. 

We now apply the Fredholm alternative that states that 

. N(I − K) = {0} if and only if R(I − K) = L2(D) .

In other words 

.(α) we always find .u ∈ L2(D), solution of .u − Ku = h ∈ L2(D), and u is 
unique 
or 

.(β) .N(I − K) is not trivial and has finite positive dimension. 

We have already seen that case . (α) can be rephrased as follows: choosing . h =
(L + τI )−1f , .f ∈ L2(D), we always find .u ∈ H 1

0 (D) solution of .Lu = f . 
In case .(β) we have that there exists .w ∈ N(I − K), .w 	= 0; this means 

.w = Kw, namely, 

. w = τ(L + τI )−1w ⇐⇒ (L + τI )w = τw ⇐⇒ Lw = 0 ,

thus .w ∈ N(L). 
(ii) In case .(β) we know that .dimN(I − K) = dimN(I − KT ) and also that 

.dimN(I−K) is finite; since we have just seen that .dimN(I−K) = dimN(L), 
we obtain that .dimN(L) is finite. Moreover, it is easy to check that . KT =
τ(LT + τI )−1 (see Exercise 7.1). Thus, similarly to what proved for the 
operator L, we deduce that .v ∈ N(I − KT ) is equivalent to .v ∈ N(LT ), and 
consequently .dimN(LT ) = dimN(I − KT ) = dimN(I − K) = dimN(L). 

(iii) Finally, we know that .R(I − K) = N(I − KT )⊥. Thus .u − Ku = h has a 
solution if and only if .h ∈ N(I − KT )⊥. Let us make explicit this condition: 
take .v∗ ∈ N(I − KT ), i.e., .v∗ = KT v∗, and remember that we are interested 
in solving the problem for .h = 1

τ
Kf . Then we can solve the problem if and 

only if h satisfies 

.0 =
∫

D

hv∗dx =
∫

D

1

τ
Kf v∗dx =

∫

D

1

τ
f KT v∗dx =

∫

D

1

τ
f v∗dx .
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Thus .h = 1
τ
Kf ∈ N(I − KT )⊥ is equivalent to .f ∈ N(I − KT )⊥, which 

means .f ∈ N(LT )⊥ or, explicitly, .
∫
D

f v∗dx = 0 for all .v∗ ∈ N(LT ). 
��

Exercise 7.1 Prove that in Theorem 7.2 one has .KT = τ(LT + τI )−1. 

Similar arguments can be used for other boundary value problems. Let us present 
how the result can be adapted to the Neumann problem for Laplace operator . −�. 
Let us restrict our attention to the homogeneous case .∇u · n = 0, namely, .g = 0. 
The weak problem reads: 

.find u ∈ H 1(D) :
∫

D

∇u · ∇vdx =
∫

D

f vdx ∀ v ∈ H 1(D) . (7.5) 

Theorem 7.3 (Existence and Uniqueness Theory for the Neumann Problem) 
Assume that .D ⊂ R

n is a bounded, connected and open set, with a Lipschitz 
continuous boundary . ∂D. There exists a weak solution .w ∈ H 1(D), .w 	= 0, of  

.

∫

D

∇w · ∇vdx = 0 ∀ v ∈ H 1(D) . (7.6) 

The dimension of the space of such solutions is 1, and problem (7.5) has a solution 
if and only if 

. 

∫

D

f dx = 0 .

Proof We can repeat the procedure used for the homogeneous Dirichlet boundary 
value problem. We can introduce the operator .K = τ(L + τI )−1, from  . L2(D)

to .H 1(D), and prove that K is compact from .L2(D) into itself (the regularity 
of the boundary .∂D assures that the Rellich theorem is valid in .H 1(D)). Then 
Fredholm alternative can be applied, and in this case we see that there are non-
trivial solutions of the homogeneous problem. In fact, a weak solution w of (7.6) 
must satisfy .

∫
D

|∇w|2dx = 0, hence w is a constant. Note now that the bilinear 
form .

∫
D

∇w ·∇vdx is symmetric, thus the adjoint problem coincides with the given 
problem, and therefore the solutions of the homogeneous adjoint problem are only 
constants. Then from the Fredholm alternative theorem applied to this problem we 
have that (7.5) has a solution if and only if 

. 

∫

D

f ωdx = 0

for all the solutions . ω of the homogeneous adjoint problem, thus for all the constants 
.ω ∈ R. This is equivalent to .

∫
D

f dx = 0. ��
As final remark, let us note that for a weak solution w of (7.6) the conclusion . w =

0 follows if we require .
∫
D

wdx = 0; thus with this additional condition the solution
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of problem (7.5) is unique. We have already proved this result: if .
∫
D

f dx = 0 there 
is a solution of (7.5) and it is unique in .H 1∗ (D) = {v ∈ H 1(D) | ∫

D
vdx = 0} (see 

Sect. 5.4). 

Exercise 7.2 Let A be a .n × m matrix, associated to the linear map .v �→ Av, 
.v ∈ Rm, .Av ∈ Rn. Prove that .R(A) = N(AT )⊥. 

Exercise 7.3 Let .A : X �→ Y be a linear and bounded operator, X and Y Hilbert 
spaces. Define the adjoint operator .AT : Y �→ X as .(AT y, x)X = (y,Ax)Y for all 
.y ∈ Y , .x ∈ X. Prove that 

(i) . R(A) = N(AT )⊥
(ii) .R(A)⊥ = N(AT ). 

7.2 Spectral Theory 

Definition 7.2 Let V be a Banach space and A : V �→ V a bounded linear 
operator. 

(i) The resolvent set of A is 

. ρ(A) = {η ∈ R | A − ηI is one-to-one and onto} .

(ii) The spectrum of A is 

. σ(A) = R \ ρ(A) .

(iii) η ∈ σ(A)  is an eigenvalue of A if N(A − ηI) 	= {0}. 
(iv) If η is an eigenvalue of A, any  w ∈ V , w 	= 0, satisfying 

. Aw = ηw

is an associated eigenvector. 

Theorem 7.4 (Spectrum of a Compact Operator) Let V be a Hilbert space and 
assume that dimV = +∞. Let K : V �→ V be a linear and compact operator. 
Then 

(i) 0 ∈ σ(K). 
(ii) If η 	= 0 belongs to σ(K), then η is an eigenvalue of K . 
(iii) The eigenvalues η 	= 0 are either the empty set, or a finite set, or a sequence 

tending to 0. 
(iv) If η 	= 0 is an eigenvalue, then dim N(K  − ηI) < +∞.
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We now apply this general theorem to a boundary value problem. We focus on 
the elliptic operator L (with bounded coefficients) and the homogeneous Dirichlet 
boundary condition. 

Theorem 7.5 Let D be a bounded, connected and open set in Rn. There exists an 
at most countable set � ⊂ R such that the problem 

.u ∈ H 1
0 (D) : BL(u, v) = λ

∫

D

uvdx +
∫

D

f vdx ∀ v ∈ H 1
0 (D) (7.7) 

has a unique solution for each f ∈ L2(D) if and only if λ /∈ �. Moreover, if � is 
infinite, then � = {λk}∞k=1 with λk → +∞. In particular, λk can be reordered in a 
non-decreasing way, with λ1 ≤ λ2 ≤ λ3 ≤ . . . . 

Proof Choose τ >  0 in such a way that 

. Bτ (w, v) = BL(w, v) + τ

∫

D

wvdx

is coercive in H 1 
0 (D). We have seen in Sect. 5.3 that this is possible choosing 

. τ > max(0,−μ) ,

where μ = infD a0 − 1 
2α0

‖b‖2 L∞(D) (let us note that there we wrote σ instead of τ , 
but now σ denotes the spectrum. . . ).  

For λ = −τ we know that (7.7) has a unique solution, as Bτ is coercive. Thus 
let us assume from now on that λ 	= −τ . According to the Fredholm alternative 
(applied to the bilinear form BL(w, v) − λ

∫
D wv. . . ),  we  know  that  problem  (7.7) 

has a unique solution for each f ∈ L2(D) if and only if the only solution of 

. BL(u, v) = λ

∫

D

uvdx ∀ v ∈ H 1
0 (D)

is u = 0 (see Theorem 7.2). This means that u = 0 is the only solution to 

. BL(u, v) + τ

∫

D

uvdx = (τ + λ)

∫

D

uvdx ∀ v ∈ H 1
0 (D) .

We can rewrite this relation as 

. u = (L + τI )−1(τ + λ)u = τ + λ

τ
Ku ,

having set K = τ(L  + τI )−1. We have already proved that K : L2(D) �→ L2(D) 
is linear and compact. Thus its spectrum is given by 0 (in fact K is not onto form 
L2(D) to L2(D): H 1 

0 (D) is a subspace of L2(D), strictly contained in it) and by
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eigenvalues. Thus u = 0 is the only solution to Ku = τ 
τ+λ u if and only if τ 

τ+λ is 
not an eigenvalue of K . The eigenvalues ηk 	= 0 of  K are either the empty set, or a 
finite set or a sequence convergent to 0. In the last case, from 

. ηk = τ

τ + λk

we get 

. λk = τ
1 − ηk

ηk

.

We want now to show that ηk > 0. Being ηk an eigenvalue of K , we have  

. Kwk = ηkwk , wk 	= 0 ,

which is equivalent to 

. τ(L + τI )−1wk = ηkwk ⇐⇒ τwk = ηk(L + τI )wk ⇐⇒ (L + τI )wk = τ

ηk

wk .

This means 

. Bτ (wk, v) = τ

ηk

∫

D

wkvdx

and from the coerciveness of Bτ (· , ·) we get 

. α‖wk‖2H 1(D)
≤ Bτ (wk,wk) = τ

ηk

∫

D

w2
kdx ≤ τ

ηk

‖wk‖2H 1(D)
.

Thus τ 
ηk 

≥ α >  0, hence ηk > 0 (and consequently λk > −τ ). In conclusion 

. ηk → 0+ and λk = τ
1 − ηk

ηk

→ +∞ ,

which is the stated result. ��
Exercise 7.4 Under the assumptions of Theorem 7.5, take  λ 	∈ � and for each 
f ∈ L2(D) let u ∈ H 1 

0 (D) be the unique solution of (7.7). Prove that the solution 
operator Sλ : f �→ u is a bounded operator in L2(D), namely, there exists a constant 
C >  0 such that 

. ‖u‖L2(D) ≤ C‖f ‖L2(D) .

Exercise 7.5 Under the assumptions of Theorem 7.5, take  λ 	∈ � and for each 
f ∈ L2(D) let u ∈ H 1 

0 (D) be the unique solution of (7.7). Prove that the solution
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operator Sλ : f �→ u is a bounded operator from L2(D) to H 1 
0 (D), namely, there 

exists a constant C >  0 such that 

. ‖u‖H 1(D) ≤ C‖f ‖L2(D) .

Another important result is the following. 

Theorem 7.6 (Spectrum of a Compact and Self-Adjoint Operator) Let V be a 
separable Hilbert space and let K : V �→ V be a linear, compact and self-adjoint 
operator. Then there exists an (at most) countable orthonormal Hilbertian basis of 
V consisting of eigenvectors of K; in particular, if dim V = +∞  the eigenvectors 
of K are an infinite sequence, and if moreover dim N(K)  <  +∞ the eigenvalues of 
K are an infinite sequence. 

As a consequence, it holds: 

Theorem 7.7 (Spectrum of a Symmetric Elliptic Operator) Let D be a bounded, 
connected and open subset of Rn. Let the coefficients of the operator L be bounded 
and satisfy aij = aji  for i, j = 1, . . . , n, bi = 0 for i = 1, . . . , n. Then there 
exist an infinite sequence {λk}∞k=1 of eigenvalues of L and a countable L2(D)-
orthonormal Hilbertian basis {wk}∞k=1 given by eigenvectors of L with homogeneous 
Dirichlet boundary condition, namely, solutions wk ∈ H 1 

0 (D) of 

. BL(wk, v) = λk

∫

D

wkvdx ∀ v ∈ H 1
0 (D) .

The eigenvectors 

. ωk = wk√
λk + τ

are an orthonormal Hilbertian basis of H 1 
0 (D) with respect to the scalar product 

given by 

. Bτ (w, v) = BL(w, v) + τ

∫

D

wvdx ,

where τ ≥ 0 is such that Bτ (w, v) is coercive in H 1 
0 (D). 

Proof Let us first consider the case τ >  0 (namely, BL(·, ·) is not coercive H 1 
0 (D)). 

We know that L2(D) is a separable Hilbert space; furthermore, we have already 
seen that the operator K = τ(L + τI )−1 is compact in L2(D), whose dimension is 
infinite, and we trivially see that N(K)  = {0}. Moreover, from aij = aji  and bi = 0
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we see that K is also self-adjoint. Indeed we have that 

. 

Lv = −
n∑

i,j=1

Di (aijDj v) +
n∑

i=1

biDiv + a0v

LT v = −
n∑

i,j=1

Di (ajiDj v) −
n∑

i=1

Di (biv) + a0v

and so L = LT . Thus there exists a sequence of eigenvalues ηk and eigenfunctions 
wk of K such that wk are an orthonormal Hilbertian basis in L2(D). Let us see 
what is the meaning of this statement. We have wk ∈ L2(D), wk 	= 0, such that 
Kwk = ηkwk; this is equivalent to 

. 

τ(L + τI )−1wk = ηkwk ⇐⇒ τwk = ηk(L + τI )wk

⇐⇒ (L + τI )wk = τ

ηk

wk ⇐⇒ Lwk = τ
1 − ηk

ηk

wk ,

thus wk are the eigenvectors of L corresponding to the eigenvalues λk = τ 1−ηk 
ηk 

> 
−τ . Coming back to the bilinear forms, we see that 

. Bτ (wk, v) = BL(wk, v) + τ

∫

D

wkvdx = (λk + τ)

∫

D

wkvdx ∀ v ∈ H 1
0 (D) .

Thus 

. Bτ (wk,wj ) = (λk + τ)

∫

D

wkwjdx = (λk + τ)δkj .

In conclusion, 

. ωk = wk√
λk + τ

is an orthonormal system with respect to the scalar product Bτ (· , ·) in H 1 
0 (D). For  

verifying that it is a Hilbertian basis, it is sufficient to see that if v ∈ H 1 
0 (D) satisfies 

Bτ (v, ωk) = 0 for every k ≥ 1, then it follows v = 0. This is true as 

. 0 = Bτ (v, ωk) = BL(v, ωk) + τ

∫

D

vωkdx = (λk + τ)

∫

D

vωkdx ,

thus
∫
D vwkdx = 0 for every k ≥ 1. Since wk is an orthonormal Hilbertian basis in 

L2(D) it follows that v = 0. 
The proof for the case τ = 0 (namely, BL(·, ·) is coercive H 1 

0 (D)) is essentially 
the same, just replacing the compact operator K by L−1. This leads to a sequence
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of eigenvalues λk = 1 
ηk 

> 0, ηk being the eigenvalues of L−1, of eigenvectors wk 

orthonormal in L2(D), and of eigenvectors ωk = wk√
λk 

orthonormal in H 1 
0 (D) with 

respect to the scalar product given by BL(w, v). ��
Exercise 7.6 Prove that the minimum eigenvalue λ1 of the Laplace operator −�

associated to the homogeneous Dirichlet boundary condition is equal to 1 
CD 

, where 

. CD = sup
v∈H 1

0 (D),v 	=0

∫
D

v2dx∫
D

|∇v|2dx

is the “best” Poincaré constant (see Sect. 6.2). 

Exercise 7.7 

(i) Consider the elliptic operator 

. Lw = −
n∑

i,j=1

Di (aijDjw) + a0w ,

with aij = aji  and a0 ≥ 0. If λ� is an eigenvalue of L associated to anyone 
of the boundary conditions of Dirichlet, Neumann, mixed or Robin type, then 
λ� ≥ 0. 

(ii) The case λ� = 0 is possible if and only if the boundary condition is of Neumann 
type and a0 = 0. In that case the corresponding eigenvector w� is a constant 
(different from 0). 

7.3 Maximum Principle 

A peculiar property of a solution of an elliptic boundary value problem is that, under 
suitable assumptions, its values on the boundary . ∂D are a bound for its values in the 
interior D. Just to propose a simple physical example, one can think to an elastic 
membrane fixed on the boundary: looking for the position u in the vertical direction, 
the simplest model is given by the solution of the Poisson equation .−�u = f , 
where f is the external force. When the membrane is charged by a load (thus . f ≤
0), the values of u on the boundary are higher than its values inside (or viceversa, if 
you pushes it from below, with .f ≥ 0). 

We start by underlying a clear fact: for a function .v ∈ H 1(D) the meaning of 
.v ≥ 0 on .∂D is that its trace .v|∂D ∈ L2(∂D) satisfies .v|∂D ≥ 0 (since we are 
considering the trace .v|∂D , we have to assume that the boundary .∂D is Lipschitz 
continuous). 

Another remark is that it is possible to see that .v+ = max(v, 0) and . v− =
max(−v, 0) belong to .H 1(D) for .v ∈ H 1(D) (see Exercise 7.8); moreover, .v ≤ v+
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and .v ≥ −v− a.e. in D. A consequence is the fact that the statement .v ≥ 0 on . ∂D

can to be interpreted as .v− ∈ H 1
0 (D); similarly .v ≤ 0 on . ∂D means .v+ ∈ H 1

0 (D). 

Exercise 7.8 Let .D ⊂ Rn an open set. Prove that .v+ = max(v, 0) and . v− =
max(−v, 0) belong to .W 1,p(D) for .v ∈ W 1,p(D), .1 ≤ p ≤ +∞. More precisely, 
defining 

. w+
i =

{
Div where v > 0

0 where v ≤ 0
, w−

i =
{

−Div where v < 0

0 where v ≥ 0
,

one has .Div
+ = w+

i and .Div
− = w−

i , .i = 1, . . . , n. 

We need now a definition. We say that .u ∈ H 1(D) satisfies .Lu ≤ 0 on D if 

. BL(u, v) ≤ 0 ∀ v ∈ H 1
0 (D) , v ≥ 0 a.e. in D .

Definition 7.3 If .u ∈ H 1(D) satisfies .Lu ≤ 0 in D, then it is called subsolution of 
L. A function .u ∈ H 1(D) is called supersolution of L if . −u is a subsolution of L 
(namely, if .BL(u, v) ≥ 0 for all .v ∈ H 1

0 (D), .v ≥ 0 a.e. in D). 

Theorem 7.8 Let .D ⊂ Rn be a bounded, connected and open set with a Lipschitz 
continuous boundary . ∂D. Let L be the elliptic operator 

. Lv = −
n∑

i,j=1

Di (aijDj v) +
n∑

i=1

biDiv + a0v ,

with bounded coefficients . aij , . bi and . a0. Assume that .a0 ≥ 0 a.e. in D. Then: 

(i) if u is a subsolution of L we have 

. sup
D

u ≤ sup
∂D

u+ ;

in particular, if .u ≤ 0 on . ∂D (thus .u+ ∈ H 1
0 (D)) it follows .u ≤ 0 a.e. in D; 

(ii) if u is a supersolution of L we have 

. inf
D

u ≥ inf
∂D

(−u−) ;

in particular, if .u ≥ 0 on . ∂D (thus .u− ∈ H 1
0 (D)) it follows .u ≥ 0 a.e. in D. 

Proof Let us give the proof under the assumption that the weak divergence . div b

exists and satisfies .div b ≤ 0 a.e. in D. The proof for the general case can be found 
in Gilbarg and Trudinger [11, Theorem 8.1, p. 168].
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(i) Let u be a subsolution of L. Then 

. 

∫

D

n∑

i,j=1

aijDj uDivdx ≤ −
∫

D

n∑

i=1

biDiu vdx −
∫

D

a0uvdx

for each .v ∈ H 1
0 (D), .v ≥ 0 a.e. in D. Set .M = sup∂D u+, which clearly 

is .≥ 0 (this is an important point in the proof). We can suppose .M < +∞, 
otherwise we would have .sup∂D u+ = +∞ and nothing has to be proved. Take 
.v = max(u − M, 0); clearly .v ≥ 0 a.e. in D and from .u ≤ M on . ∂D we have 
.v ∈ H 1

0 (D). Moreover, note that in the set .{u > M} we have .v = u − M , thus 
.∇v = ∇u; instead, where .{u ≤ M} one has .v = 0 and .∇v = 0. Then we have 

. 

∫

D

n∑

i,j=1

aijDj uDivdx =
∫

{u>M}

n∑

i,j=1

aijDj uDivdx

+
∫

{u≤M}

n∑

i,j=1

aijDj uDivdx

=
∫

{u>M}

n∑

i,j=1

aijDj vDivdx

=
∫

D

n∑

i,j=1

aijDj vDivdx

≥ α0

∫

D

|∇v|2dx ,

where .α0 > 0 is the ellipticity constant. Moreover 

. 

−
∫

D

n∑

i=1

biDiu vdx = −
∫

{u>M}

n∑

i=1

biDiv vdx = −
∫

D

n∑

i=1

1

2
bi Di (v

2)dx

=
∫

D

1

2
div b︸︷︷︸
≤0

v2dx ≤ 0

and 

.

−
∫

D

a0uvdx = −
∫

{u>M}
a0uvdx −

∫

{u≤M}
a0uvdx = −

∫

{u>M}
a0uvdx

= −
∫

{u>M}
a0︸︷︷︸
≥0

u︸︷︷︸
≥M≥0

(u − M)︸ ︷︷ ︸
≥0

dx ≤ 0 .
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Thus 

. 

∫

D

|∇v|2dx ≤ 0 ,

hence .∇v = 0 in D. Since .v ∈ H 1
0 (D), it follows .v = 0 a.e. in D, hence . u ≤ M

a.e. in D. 
(ii) The proof in the case of u supersolution comes from the fact that .−u is a 

subsolution and .(−u)+ = u−. 
��

Exercise 7.9 Prove that 

. sup
∂D

u+ = max(sup
∂D

u, 0) and inf
∂D

(−u−) = min(inf
∂D

u, 0)

(so that the conclusion of Theorem 7.8 can be written as . supD u ≤ max(sup∂D u, 0)
for a subsolution and .infD u ≥ min(inf∂D u, 0) for a supersolution). 

Remark 7.1 Note that in the Theorem 7.8 we cannot substitute .sup∂D u+ with 
.sup∂D u or .inf∂D u+ with .inf∂D u. The following example can clarify the point: 
consider the one dimensional elliptic problem 

.

{
−u′′ + u = 0

u(−1) = 1 , u(1) = 1 .
(7.8) 

To find the solution, consider the associated polynomial .−r2 + 1, whose roots are 
.r = 1, .r = −1. The general solution of .−u′′ + u = 0 is thus given by 

. u(x) = c1e
x + c2e

−x .

Imposing the boundary conditions, it follows 

. c1e
−1 + c2e = 1 , c1e + c2e

−1 = 1 ,

thus .c1 = c2 = 1
e+e−1 , and we finally obtain 

. u(x) = 1

e + e−1 (ex + e−x)

(see Fig. 7.1). 
Taking the derivative we see that .u′(x) = 1

e+e−1 (e
x −e−x), which satisfies . u′ > 0

for .x > 0 and .u′ < 0 for .x < 0, therefore u has its minimum for .x = 0 (as it is 
also clear from Fig. 7.1). This minimum value is . 2

e+e−1 , which is larger than 0 and
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Fig. 7.1 The graph of the 
solution 
.u(x) = 1

e+e−1 (ex + e−x) of 
problem (7.8) 
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smaller than 1. Thus 

. inf
(−1,1)

u = 2

e + e−1 < 1 = inf
∂(−1,1)

u ,

but, as the theorem says, 

. inf
(−1,1)

u = 2

e + e−1 > 0 = inf
∂(−1,1)

(−u−) .

One can revisit this example noting that the solution u satisfies .u ≥ 0. Therefore 
.−u′′ = −u ≤ 0, and u is a subsolution of the elliptic operator .Lv = −v′′. 
Therefore the theorem assures that the (positive) maximum is on the boundary, as it 
is reasonable for a charged elastic membrane. 

Remark 7.2 Instead, if .a0 = 0 we can substitute .sup∂D u+ with .sup∂D u and 
.inf∂D u+ with .inf∂D u. In fact, in this case one can repeat the same proof (again, 
for simplicity, with .div b ≤ 0), but now setting .M = sup∂D u (which is no longer 
assured to be non-negative). Choosing .v = max(u − M, 0), the assumptions that u 
is a subsolution, that .div b ≤ 0 and that .a0 = 0 still yield 

. 

∫

D

n∑

i,j=1

aijDj uDivdx ≤ 0 ,

and everything goes on as in the previous case. 

An interesting consequence is the following result. 

Theorem 7.9 (Existence Theorem via Fredholm Alternative) Let .D ⊂ Rn be a 
bounded, connected and open set, with a Lipschitz continuous boundary . ∂D. Let L 
be an elliptic operator with bounded coefficients . aij , . bi , . a0. Assume that .a0 ≥ 0 a.e. 
in D. Then there exists a unique solution .u ∈ H 1

0 (D) of the homogeneous Dirichlet 
boundary value problem 

.BL(u, v) =
∫

D

f vdx ∀ v ∈ H 1
0 (D) .
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Proof Let .w ∈ H 1
0 (D) be a solution with .f = 0. Then it is both a subsolution and 

a supersolution, thus 

. 0 = inf
∂D

(−w−) ≤ inf
D

w ≤ sup
D

w ≤ sup
∂D

w+ = 0 ,

hence .w = 0 in D. Thus the thesis follows from the Fredholm alternative, see 
Theorem 7.2. ��
Remark 7.3 The existence and uniqueness of a solution for the homogeneous 
Dirichlet boundary value problem has been proved, via coerciveness, if . b ∈
W 1,∞(D) and .a0 − 1

2divb ≥ −ν, with .ν > 0 and small enough (precisely, such 
that .α0 − 2CDν > 0, with .α0 > 0 the ellipticity constant and .CD > 0 the Poincaré 
constant; see Exercise 5.1). Therefore the two results are not comparable. In one 
case b is only assumed to be bounded, but one needs .a0 ≥ 0 in D. In the other 
case b is assumed to belong to .W 1,∞(D) and to satisfy .div b ≤ 2(a0 + ν), but no 
assumption on the sign of . a0 in D is required. 

7.4 Regularity Issues and Sobolev Embedding Theorems 

7.4.1 Regularity Issues 

Let us look back at the existence theorems for the four boundary value problems we 
have considered. In all cases, we have found a weak solution .u ∈ V of 

. B(u, v) =
∫

D

f vdx ∀ v ∈ V ,

where V is a infinite dimensional, closed subspace of .H 1(D). 
Since this is the weak form of the second order elliptic equation 

. Lu = −
n∑

i,j=1

Di (aijDj u) +
n∑

i=1

biDiu + a0u = f ,

and the right hand side f belongs to .L2(D), we could expect .u ∈ H 2(D). 
Let us show with a formal example that this is reasonable. Suppose that u is a 

solution to .−�u = f in D, and assume that .u ∈ C∞
0 (D). Then we have 

.

∫

D

(−�u)2dx =
∫

D

f 2dx .
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Integrating by parts we obtain 

. 

∫

D

f 2dx =
∫

D

(−�u)2dx =
∫

D

n∑

i,j

DiDiuDjDj udx

= −
∫

D

n∑

i,j=1

=DiDj︷ ︸︸ ︷
DjDi DiuDj udx =

∫

D

n∑

i,j=1

DjDiuDiDj udx

=
n∑

i,j=1

∫

D

(DiDj u)2dx ≥
∫

D

(DkDlu)2dx ,

(7.9) 

for any fixed couple of indices .k, l = 1, . . . , n. Hence the .L2(D)-norm of all the 
second order derivatives is bounded by the .L2(D)-norm of the right-hand side f . 

For a general operator L it is necessary to take into account the regularity of the 
coefficients. Rewriting the second order term we have 

. −
n∑

i,j=1

Di (aijDj u) = −
n∑

i,j=1

aijDiDj u −
n∑

i,j=1

(Diaij )Dj u ,

thus 

. −
n∑

i,j=1

aijDiDj u =
n∑

i,j=1

(Diaij )Dj u −
n∑

i=1

biDiu − a0u + f . (7.10) 

Already knowing that .u ∈ H 1(D), this suggests that we have to assume 

. aij ∈ C1(D) for i, j = 1, . . . , n

(or simply .aij ∈ W 1,∞(D)). With this choice the right-hand side in (7.10) belongs 
to .L2(D), because only products between .L∞(D)-functions and .L2(D)-functions 
appear. 

Theorem 7.10 (Interior Regularity) Assume that .D ⊂ R
n is a bounded, con-

nected and open set. Let .u ∈ H 1(D) be a weak solution of .Lu = f in D, 
with .f ∈ L2(D). Assume that .aij ∈ C1(D), .bi ∈ L∞(D), .a0 ∈ L∞(D) for 
.i, j = 1, . . . , n. Then .u ∈ H 2

loc(D) and for each subset .Q ⊂⊂ D it holds 

. ‖u‖H 2(Q) ≤ C(‖f ‖L2(D) + ‖u‖L2(D)) ,

where the constant .C > 0 only depends on D, Q and . aij , . bi , . a0.
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Proof We only give a brief description of the ideas. There are some steps: 

1. To localize the problem into Q use a cut-off function . ζ , namely, a .C∞-function 
with .ζ(x) = 1 in Q, .ζ(x) = 0 on .Rn \ T , .0 ≤ ζ(x) ≤ 1 in D, where . Q ⊂⊂
T ⊂⊂ D (see Corollary A.1). 

2. For .w ∈ L2(D), .k = 1, . . . , n and .h 	= 0 consider the difference quotients 

.Dh
kw(x) = w(x + hek) − w(x)

h
, (7.11) 

defined in .Q ⊂⊂ D for .0 < |h| < dist(Q, ∂D). 
3. Take as test function in the weak formulation 

. v = −D−h
k (ζ 2Dh

ku)

and proceed to estimate all the terms. 
4. This leads to the estimate 

. ‖u‖H 2(Q) ≤ C(‖f ‖L2(D) + ‖u‖H 1(T )) ;

with a similar procedure one finds 

. ‖u‖H 1(T ) ≤ C(‖f ‖L2(D) + ‖u‖L2(D)) ,

thus the stated result. 

Two important properties of difference quotients are used: see Exercises 7.10 and 
7.11. ��
Exercise 7.10 Take .v ∈ L2(D), .ϕ ∈ L2(D) with .� = suppϕ ⊂ D, and consider 
the difference quotients defined in (7.11). Then we have the integration by parts 
formula 

. 

∫

D

vDh
kϕdx = −

∫

D

D−h
k v ϕdx ,

for all h with .0 < |h| < dist(�, ∂D), .k = 1, . . . , n. 

Exercise 7.11 

(i) Take .v ∈ H 1(D) and consider .Q ⊂⊂ D. Then the difference quotient . Dhv =
(Dh

1v, . . . ,Dh
nv) defined in (7.11) satisfies 

. ‖Dhv‖L2(Q) ≤ ‖∇v‖L2(D)

for each h with .0 < |h| < dist(Q, ∂D).
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(ii) Take k with .1 ≤ k ≤ n, .v ∈ L2(D) and .Q ⊂⊂ D. Suppose that there exists a 
constant .C∗ > 0 such that 

. ‖Dh
kv‖L2(Q) ≤ C∗

for each h with .0 < |h| < dist(Q, ∂D). Then .Dkv ∈ L2(Q). 
(iii) Take k with .1 ≤ k ≤ n, .v ∈ L2(D) and suppose there exists a constant . C� > 0

such that 

. ‖Dh
kv‖L2(D|h|) ≤ C�

for each .h 	= 0, where .D|h| = {x ∈ D | dist(x, ∂D) > |h|}. Then . Dkv ∈
L2(D) and .‖Dkv‖L2(D) ≤ C�. 

An inductive argument gives: 

Theorem 7.11 (Higher Interior Regularity) Assume that .D ⊂ Rn is a bounded, 
connected and open set. Let .u ∈ H 1(D) be a weak solution of .Lu = f in D, with 
.f ∈ Hm(D), .m ≥ 1. Assume that .aij ∈ Cm+1(D), .bi ∈ Cm(D), .a0 ∈ Cm(D) for 
.i, j = 1, . . . , n. Then .u ∈ Hm+2

loc (D), and for each .Q ⊂⊂ D we have the estimate 

. ‖u‖Hm+2(Q) ≤ C
(‖f ‖Hm(D) + ‖u‖L2(D)

)
,

where the constant .C > 0 only depends on m, D, Q and . aij , . bi , . a0. 

These regularity results can be extended up to the boundary . ∂D. For simplicity, 
let us focus on the homogeneous Dirichlet boundary value problem; however, the 
results are also true for the homogeneous Neumann and Robin problems. 

Theorem 7.12 (Regularity Up to the Boundary) Let the assumptions of the 
interior regularity Theorem 7.10 be satisfied. Assume moreover that . aij ∈ C1(D)

and that . ∂D is of class . C2. Assume that .u ∈ H 1
0 (D) is a weak solution of .Lu = f , 

.u|∂D = 0. Then .u ∈ H 2(D) and it holds 

. ‖u‖H 2(D) ≤ C
(‖f ‖L2(D) + ‖u‖L2(D)

)
,

where the constant .C > 0 only depends on D and . aij , . bi , . a0. 

Proof As for the interior regularity result, there are some steps. 

1. Since it is assumed that .u ∈ H 1
0 (D), the lower order terms of the operator L 

belong to .L2(D) and thus can be put at the right hand side, focusing only on the 
principal part of L. 

2. Reduce the problem to a flat boundary by local charts (here the fact that the 
boundary .∂D is of class . C2 is used). Note that the transformed differential 
operator remains uniformly elliptic.
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3. To localize the problem into .BR,+ = {x ∈ Rn | |x| < R, xn > 0} use a cut-off 
function .ζ ∈ C∞

0 (BR), namely, a function with .ζ(x) = 1 in . Br , .ζ(x) = 0 on 
.R

n \ Bρ , .0 ≤ ζ(x) ≤ 1 in . Rn, where .Br ⊂⊂ Bρ ⊂⊂ BR (see Corollary A.1). 
4. Rewrite the elliptic problem in the half-ball .BR,+ and use as test function v the 

difference quotient 

. v = −D−h
k (ζ 2Dh

ku) , k = 1, . . . , n − 1 ,

namely, only acting in the directions tangential to the boundary .{xn = 0} (this 
will give a control on all the second order derivatives in which at least one is 
tangential). 

5. Use the ellipticity of the transformed operator for estimating the second order 
normal derivative .DnDnu in terms of the other derivatives (see also Exer-
cise 7.12). 

6. Use the fact that .ζ = 1 in . Br and put together all the estimates. 
7. This gives the estimate 

. ‖u‖H 2(D) ≤ C
(‖f ‖L2(D) + ‖u‖H 1(D)

)
.

By using the weak coerciveness of the bilinear form .BL(·, ·) (see Sect. 5.3) it  
follows at once 

. ‖u‖H 1(D) ≤ C
(‖f ‖L2(D) + ‖u‖L2(D)

)
,

thus the stated result. 
��

Exercise 7.12 Prove that all the terms .aii(x) on the diagonal of a uniformly positive 
definite matrix in D (namely, a matrix .{aij (x)} such that . ∑ij aij (x)ηjηi ≥ α0|η|2
for all .η ∈ Rn and almost every .x ∈ D) satisfy .aii(x) ≥ α0 for almost every in 
.x ∈ D. 

Exercise 7.13 Under the assumptions of Theorem 7.12, the stronger estimate 

. ‖u‖H 2(D) ≤ C‖f ‖L2(D)

holds, provided that we know that for each .f ∈ L2(D) there exists a unique weak 
solution .u ∈ H 1

0 (D). 

By induction, we obtain: 

Theorem 7.13 (Higher Regularity Up to the Boundary) Let the assumption of 
Theorem 7.11 be satisfied. Assume moreover that .aij ∈ Cm+1(D), .bi ∈ Cm(D),
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Fig. 7.2 The sectors . Sα for .α = 2π
3 (left) and .α = 5π

3 (right) 

.a0 ∈ Cm(D) for .i, j = 1, . . . , n and that .∂D is of class .Cm+2. Assume that . u ∈
H 1

0 (D) is a weak solution of .Lu = f , .u|∂D = 0. Then .u ∈ Hm+2(D) and it holds 

. ‖u‖Hm+2(D) ≤ C
(‖f ‖Hm(D) + ‖u‖L2(D)

)
,

where the constant .C > 0 only depends on m, D and . aij , . bi , . a0. 

Remark 7.4 Similar results hold for the Neumann and Robin problems, having 
assumed a boundary datum .g = 0. In the case .g 	= 0 the trace theory for the 
derivatives of u and for higher order Sobolev spaces is needed. 

As we have seen, the regularity results require some assumptions on the 
smoothness of the boundary and have been stated for Dirichlet, Neumann and Robin 
problems. It is interesting to give a couple of examples on the regularity of the 
solution in domains with corners and for the mixed problem. 

Example 7.1 (Domains with Corners) Consider . Sα = {(r, θ) | 0 < r < 1, −
α/2 < θ < α/2} with .0 < α < 2π and .α 	= π (for .α = π there are no corners; see 
Fig. 7.2 for the cases .α = 2π

3 and .α = 5π
3 ). 

Consider 

. u(r, θ) = r
π
α cos

(π

α
θ
)

.

Remember that the Laplace operator in polar coordinates is given by 

. � = ∂2r + 1

r
∂r + 1

r2
∂2θ

and that the length of the gradient is given by 

.|∇v|2 = (∂rv)2 + 1

r2
(∂θv)2
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(see Exercise 7.14). Thus it is easy to check that 

. 

{
�u = 0 in Sα

|∇u|2 = π2

α2 r2(
π
α

−1) in Sα .

Moreover for .θ = −α/2 and .θ = α/2 we have .u = 0, and for .r = 1 we have . u =
cos(π

α
θ). Thus u is the solution in . Sα of a (non-homogeneous) Dirichlet boundary 

value problem for the Laplace operator, and the boundary datum is a continuous 
function on the boundary. Moreover, 

. 

∫

Sα

|∇u|2dx =
∫ α/2

−α/2
dθ

∫ 1

0

π2

α2 r2(
π
α

−1)rdr = α
π2

α2

α

2π
= π

2
,

thus .u ∈ H 1(Sα). On the other hand .|D2u| ∼ r
π
α

−2 as .r ∼ 0, therefore 

. 

∫

Sα

|D2u|2dx ∼
∫ 1

0
r2(

π
α

−2)rdr =
∫ 1

0
r2

π
α

−3dr ,

and this integral is convergent if and only if .3 − 2π/α < 1, namely if .α < π . 
In conclusion, if . Sα is convex we have .u ∈ H 2(Sα); if  . Sα is not convex we have 
.u /∈ H 2(Sα). Re-entrant corners are a threshold for regularity. 

Exercise 7.14 Prove that the Laplace operator in polar is given by 

. � = ∂2r + 1

r
∂r + 1

r2
∂2θ ,

and that the gradient is given by 

. Dx1 = cos θ∂r − 1

r
sin θ∂θ , Dx2 = sin θ∂r + 1

r
cos θ∂θ .

Example 7.2 (The Mixed Problem) Consider .u = r1/2 sin(θ/2) in . S =
{(r, θ) | 0 < r < 1, 0 < θ < π} (see Fig. 7.3). As before, we have .�u = 0 in 
S, .u|r=1 = sin(θ/2), .u|θ=0 = 0. We have seen in Exercise 7.14 that .Dx2u is given 
by .Dx2 = sin θ∂r + 1

r
cos θ∂θ , thus 

. 

Dx2u = sin θ
1

2r1/2
sin

(
θ

2

)
+ 1

r
cos θ r1/2

1

2
cos

(
θ

2

)
=

= 1

2r1/2

(
sin θ sin

θ

2
+ cos θ cos

θ

2

)
,

which vanishes for .θ = π . Therefore u is the solution in S of the mixed problem 
for the Laplace operator, with homogeneous Neumann boundary datum on .θ = π ,
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Fig. 7.3 The domain S: the  
homogeneous Neumann 
condition is imposed on the 
part of the boundary 
represented by a thicker line, 
while the Dirichlet condition 
is imposed on the remaining 
part of the boundary 

homogeneous Dirichlet boundary datum on .θ = 0 and non-homogeneous Dirichlet 
boundary datum for .r = 1 (note however that the Dirichlet boundary datum is 
continuous on the boundary). 

We have .|∇u|2 = (∂ru)2 + 1/r2(∂θu)2 = 1
4r , thus 

. 

∫

S

|∇u|2dx =
∫ π

0
dθ

∫ 1

0

1

4r
rdr = π

4

and .u ∈ H 1(S). On the other hand, we have 

. |D2u| ∼ r−3/2 as r ∼ 0 ,

thus 

. 

∫

S

|D2u|2dx ∼
∫ 1

0
r−3rdr =

∫ 1

0
r−2dr = +∞

and .u /∈ H 2(S). 
In conclusion, the mixed boundary value problem can have solutions that are 

not regular. Note that the singularity has nothing to do with the corners at the points 
.(1, 0) and .(−1, 0). In fact, we can modify S in such a way that it becomes as smooth 
as we want at those points, and we can then reconsider this same example in that 
smooth domain. 

7.4.2 Sobolev Embedding Theorems 

An element in the Sobolev space .W 1,p(D) has additional “summability” or 
“regularity” properties. These properties are usually stated as “Sobolev embedding 
theorems”. We will not present here the proofs (for that, see Evans [8, Section 5.6]), 
which are not so difficult but present some technicalities: we only underline that the 
idea is to prove suitable inequalities for smooth functions, and then use the fact that
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smooth functions are dense in .W 1,p(D). We divide the final statement in two cases: 
.1 ≤ p < n and .n < p < +∞. 

Theorem 7.14 Let .D ⊂ Rn be a bounded, connected and open set. Suppose that 
.∂D is Lipschitz continuous. Assume .1 ≤ p < n. Then if .u ∈ W 1,p(D) it follows 
.u ∈ Lp∗

(D), where 

. 
1

p∗ = 1

p
− 1

n

and the estimate 

. ‖u‖Lp∗(D) ≤ C‖u‖W 1,p(D)

holds with a constant .C > 0 only depending on p, n and D. 

Note that .p∗ > p and .p∗ < +∞ (with .p∗ → +∞ for .p → n−). 

Example 7.3 Take .n = 2 and .u ∈ W 1,2(D): then .u ∈ Lq(D) for all .q < +∞. 
Indeed .u ∈ W 1,p(D) for an arbitrary .p < 2 = n, so that .u ∈ Lp∗

(D) for . p∗
converging to .+∞ as .p → 2−. 

Example 7.4 Take .n = 3 and .u ∈ W 1,2(D): then .u ∈ L6(D), as  

. 
1

p∗ = 1

2
− 1

3
= 1

6
.

Remark 7.5 We have already seen that .|x|−α belongs to .W 1,p(B1) (. B1 being the 
ball centered at 0 with radius 1), provided that .p < n and .0 < α <

n−p
p

. Thus for 

.p < n, unbounded functions are admitted in .W 1,p(D). This is also true for . p = n >

1. Consider in fact .u(x) = (− log |x|)α for .α > 0 and .B1/2 = {x ∈ Rn | |x| < 1/2}. 
We have, writing .|x| = r: 

. |∇u| = α(− log r)α−1|∇ log r| = α(− log r)α−1 1

r
,

thus 

.

∫

B1/2

|∇u|ndx ∼
∫ 1/2

0
αn(− log r)(α−1)n 1

rn
rn−1dr

= αn

∫ 1/2

0
(− log r)(α−1)n 1

r
dr .
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Changing variable with .t = − log r , .dt = − 1
r
dr , we have  

. 

∫

B1/2

|∇u|ndx ∼ αn

∫ +∞

log 2
t (α−1)ndt ,

which is convergent for .(α − 1)n < −1, namely .0 < α < n−1
n

. For these values of 
. α the unbounded function .u(x) = (− log |x|)α belongs to .W 1,n(B1/2). 

Let us come now to the second result we want to present. We first introduce the 
Hölder space .Cm,λ(D), with .m ≥ 0, .0 < λ < 1. This is given by the functions 
.u ∈ Cm(D) such that 

. max|α|=m
|Dαu(x1) −Dαu(x2)| ≤ K|x1 − x2|λ ∀ x1, x2 ∈ D ,

where the constant K does not depend on . x1 and . x2. 

Theorem 7.15 Let .D ⊂ Rn be a bounded, connected and open set. Suppose that 
. ∂D is Lipschitz continuous. Assume .n < p < +∞. Then if .u ∈ W 1,p(D), possibly 
modifying it on a set of measure equal to 0, we have .u ∈ C0,λ(D) with . λ = 1 − n

p

and the estimate 

. ‖u‖C0,λ(D) ≤ C‖u‖W 1,p(D)

holds with a constant .C > 0 only depending on p, n and D. 

The norm .‖u‖Cm,λ(D) is given by the sum of .‖u‖Cm(D) and 

. [u]Cm,λ(D) =
∑

|α|=m

sup
x1,x2∈D, x1 	=x2

|Dαu(x1) −Dαu(x2)|
|x1 − x2|λ .

Example 7.5 Take .n = 2 and .u ∈ W 1,3(D): then .u ∈ C0,λ(D)with .λ = 1− 2
3 = 1

3 . 

Example 7.6 Take .n = 3 and .u ∈ W 1,6(D): then .u ∈ C0,λ(D)with .λ = 1− 3
6 = 1

2 . 

The following characterization of Lipschitz continuous functions .Lip(D) (see 
Appendix B, Definition B.1) is also interesting: 

Theorem 7.16 Let .D ⊂ Rn be a bounded, connected and open set and suppose 
that . ∂D is Lipschitz continuous. If .u ∈ W 1,∞(D) then .u ∈ Lip(D) (possibly having 
modified it on a set of measure equal to 0). Vice versa, if .u ∈ Lip(D) then . u ∈
W 1,∞(D). 

Proof This proof is essentially taken from Evans [8, Theor. 4, p. 279]. Let . u ∈
W 1,∞(D); from Theorem 6.2 we know that there exists an extension Eu, in the  
following denoted . u, that has a compact support in . Rn and belongs to . W 1,∞(Rn)

(thus, possibly having modified it on a set of measure equal to 0, is continuous in
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. Rn by Theorem 7.15). Taking the .ε-mollified version . uε we know that . uε uniformly 
converges to . u and that 

. ‖∇uε‖L∞(R
n
) = ‖(∇u)ε‖L∞(R

n
) ≤ ‖∇u‖L∞(R

n
)

(for the first equality see Theorem 6.1). Then, for . x, y ∈ Rn

. 

|uε(x) − uε(y)| = ∣∣ ∫ 1
0

d
dt

[uε(y + t (x − y)]dt
∣∣

= ∣∣ ∫ 1
0 ∇uε(y + t (x − y)) · (x − y) dt

∣∣ ≤ |x − y| ‖∇uε‖L∞(R
n
)

≤ |x − y| ‖∇u‖L∞(R
n
) .

By passing to the limit for .ε → 0+ we see that . u is a Lipschitz function in . Rn, with 
Lipschitz constant .‖∇u‖L∞(R

n
), and therefore u a Lipschitz function in . D. 

Assume now that .u ∈ Lip(D), with L as Lipschitz constant; in particular, u is 
continuous in . D and therefore bounded. The function 

. ̂u(x) = inf
w∈D

(
u(w) + L|x − w|)

is defined for each .x ∈ Rn (as .u(·) + L|x − ·| is bounded from below) and is an 
extension of u. In fact, first of all for a fixed .x ∈ D and for any .w ∈ D we have 

. u(x) − u(w) ≤ |u(x) − u(w)| ≤ L|x − w| ,

thus .u(x) ≤ u(w) + L|x − w| and .u(x) ≤ infw∈D

(
u(w) + L|x − w|) = û(x). 

Secondly, taking into account that .x ∈ D, 

. ̂u(x) = inf
w∈D

(
u(w) + L|x − w|) ≤ u(x) + L|x − x| = u(x) .

Note now that the function . ̂u belongs to .Lip(Rn) with Lipschitz constant L. In fact, 
for each fixed .x ∈ Rn the function .w → u(w) + L|x − w| is continuous in . D, thus 
.̂u(x) = infw∈D

(
u(w)+L|x −w|) = u(wx)+L|x −wx | for a some .wx ∈ D. Take  

now .x, y ∈ Rn and assume that .̂u(y) ≥ û(x) (the opposite case is treated similarly); 
it follows 

. 
|̂u(x) − û(y)| = û(y) − û(x) = infw∈D

(
u(w) + L|y − w|) − u(wx) − L|x − wx |

≤ u(wx) + L|y − wx | − u(wx) − L|x − wx | ≤ L|x − y| .

For each fixed .i = 1, . . . , n and each .h ∈ R, .h 	= 0, the difference quotient . D−h
i û

satisfies .‖D−h
i û‖L∞(R

n
) ≤ L; since .L∞(Rn) is the dual space of .L1(Rn), we can 

find a sequence .hm → 0 and a function .ωi ∈ L∞(Rn) such that .D−hm

i û converges 
to . ωi with respect to the weak. ∗ convergence in .L∞(Rn) (see, e.g., Yosida [28,



148 7 Additional Results

Corollary to Theor. 1, p. 137]). Therefore, for each .ϕ ∈ C∞
0 (Rn) and taking into 

account Exercise 7.10 we have 

. 

∫
R

n ûDiϕ dx = lim
m→∞

∫

R
n
ûDhm

i ϕ dx

= − lim
m→∞

∫

R
n
ϕD−hm

i û dx = −
∫

R
n
ϕ ωi dx ,

thus, in the weak sense, .Di û = ωi ∈ L∞(Rn) and .Diu = ωi|D ∈ L∞(D). ��
Clearly, by a simple induction argument one can also obtain immersion theorems 

for higher order Sobolev spaces. 

Theorem 7.17 Let .D ⊂ Rn be a bounded, connected and open set. Suppose that 
. ∂D is Lipschitz continuous. Assume .u ∈ Wk,p(D), .k ≥ 2, .1 ≤ p < +∞. 

1. If .pk < n, then .u ∈ Lq(D), where 

. 
1

q
= 1

p
− k

n

and 

. ‖u‖Lq(D) ≤ C‖u‖Wk,p(D) ,

with a constant .C > 0 only depending on k, p, n and D. 
2. If .pk > n, then .u ∈ Ck−[n/p]−1,λ(D), where 

. λ =
{
[n/p] + 1 − n/p if n/p is not an integer

any positive number < 1 if n/p is an integer

and 

. ‖u‖Ck−[n/p]−1,λ(D) ≤ C‖u‖Wk,p(D) ,

with a constant .C > 0 only depending on k, p, n and D. 

Example 7.7 Take .n = 3 and .u ∈ H 2(D) = W 2,2(D): then .u ∈ C0,λ(D), with 
.λ = [3/2] + 1 − 3/2 = 1/2. 

Exercise 7.15 Let .D ⊂ R3 be a bounded, connected and open set, with a Lipschitz 
continuous boundary . ∂D. Show that the immersion .W 2,2(D) ↪→ C0,1/2(D) holds, 
using Theorems 7.14 and 7.15.
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Remark 7.6 (About Compactness) 

(i) Let .p < n. We have seen that 

. W 1,p(D) ↪→ Lp∗
(D)

for .p∗ = np
n−p

; thus, since D is bounded, we also have 

. W 1,p(D) ↪→ Lq(D)

for q satisfying .p ≤ q ≤ p∗. It can be proved that this immersion is compact 
for .p ≤ q < p∗ (note the strict inequality between q and . p∗). 

(ii) Let .p > n. We have seen that 

. W 1,p(D) ↪→ C0,λ(D)

for .λ = 1 − n/p; thus, since D is bounded, we also have 

. W 1,p(D) ↪→ C0,μ(D)

for . μ satisfying .0 < μ ≤ λ. It can be proved that this immersion is compact for 
.0 < μ < λ (note the strict inequality between . μ and . λ). 

Exercise 7.16 

(i) Let .D ⊂ R3 be a bounded, connected and open set, with a Lipschitz continuous 
boundary . ∂D. Show that the bilinear form 

. BL(w, v) =
∫

D

n∑

i,j=1

aijDjwDivdx +
∫

D

n∑

i=1

biDiwvdx +
∫

D

a0wvdx

is bounded provided that the coefficients satisfy .aij ∈ L∞(D), .bi ∈ L3(D) and 
.a0 ∈ L3/2(D). 

(ii) Prove that .BL(w, v) is coercive in .H 1
0 (D), .H 1∗ (D) and .H 1

�D
(D), provided that 

.‖bi‖L3(D), .i = 1, . . . , n, and .‖a0‖L3/2(D) are small enough. 

Exercise 7.17 Show that the solution u of the homogeneous Dirichlet boundary 
value problem 

. 

{−�u = 1 in D

u|∂D = 0 on ∂D ,

where .D = {x ∈ Rn | |x| < 1}, belongs to .C∞(D).
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Exercise 7.18 Show that the eigenvectors . wk of the homogeneous Dirichlet bound-
ary value problem 

. 

{−�wk = λkwk in D

wk|∂D = 0 on ∂D ,

where .D = {x ∈ Rn | |x| < 1}, belong to .C∞(D). 

7.5 Galerkin Numerical Approximation 

The general form of the variational problem we have dealt with is: 

.find u ∈ V : B(u, v) = F(v) ∀ v ∈ V , (7.12) 

where V is an infinite dimensional Hilbert space. 
This is a problem with infinitely many “degrees of freedom” (as we need 

infinitely many informations for determining a function in an infinite dimensional 
Hilbert space). Moreover, very often we have not an explicit formula for represent-
ing the solution. Therefore, in concrete applications it is important to devise an 
approximation method to compute a suitable approximate solution. 

To this aim, a very popular and efficient idea is to discretize the problem by 
projecting it onto a finite dimensional subspace of V , say  .VN ⊂ V , such that 
.dimVN = N < +∞. Notice that .VN is a Hilbert space because it is a finite 
dimensional subspace. 

The approximate problem in . VN can be simply formulated as follows: 

.find uN ∈ VN : B(uN, vN) = F(vN) ∀ vN ∈ VN . (7.13) 

Let us assume that .ψ1, . . . , ψN is basis of . VN : as a consequence of the linearity of 
.B(·, ·) and .F(·) this problem is equivalent to 

. find uN ∈ VN : B(uN,ψj ) = F(ψj ) ∀ j = 1, . . . , N .

This is the so-called Galerkin method. Note that it corresponds to the solution of the 
linear system 

. AU = F ,

with .uN = ∑N
j=1 Ujψj , .Uj ∈ R, .U = (U1, . . . , UN), .A = {Ajl} with . Ajl =

B(ψl, ψj ) and .F = (F (ψ1), . . . , F (ψN)). 
The convergence analysis is very easy, and it is based on the following important 

result.
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Theorem 7.18 (Céa Theorem) Assume that bilinear form B and the linear func-
tional F satisfy to hypotheses of the Lax-Milgram theorem, i.e., that the following 
conditions hold 

(i) .|B(w, v)| ≤ γ ‖w‖V ‖v‖V for .γ > 0 [boundedness of .B(·, ·)] 
(ii) .B(v, v) ≥ α‖v‖2V for .α > 0 [coerciveness of .B(·, ·)] 
(iii) .|F(v)| ≤ M‖v‖V for .M > 0 [boundedness of .F(·)]. 
Then by Lax-Milgram theorem in V there exists a unique .u ∈ V , solution of the 
infinite dimensional problem (7.12), and by Lax-Milgram theorem in . VN there exists 
a unique .uN ∈ VN , solution of the approximated problem (7.13). Moreover, the 
following error estimate holds 

. ‖u − uN‖V ≤ γ

α
inf

vN∈VN

‖u − vN‖V = γ

α
dist (u, VN) .

Therefore, the convergence of the Galerkin method follows at once, provided that 
for all .w ∈ V we have that .dist (w, VN) → 0 as .N → ∞. 

Proof Since .B(u, v) = F(v) for all .v ∈ V , in particular we have that . B(u, vN) =
F(vN) for all .vN ∈ VN ⊂ V . Moreover .B(uN, vN) = F(vN) for all .vN ∈ VN . 
Therefore .B(u−uN, vN) = 0 for all .vN ∈ VN . Employing this consistency property, 
we easily have that 

. 
α‖u − uN‖2V ≤ B(u − uN, u − uN) =

asB(u−uN ,uN )=0︷ ︸︸ ︷
B(u − uN, u)

=
asB(u−uN ,vN )=0︷ ︸︸ ︷

B(u − uN, u − vN) ≤ γ ‖u − uN‖V ‖u − vN‖V ∀ vN ∈ VN ,

and so we have obtained that 

. ‖u − uN‖V ≤ γ

α
inf

vN∈VN

‖u − vN‖V ,

the desired estimate. ��
Exercise 7.19 Let .D ⊂ R3 be a bounded, connected and open set, with a Lipschitz 
continuous boundary . ∂D. Let  V be a closed subspace of .H 1(D), and let the 
assumptions of Theorem 7.18 be satisfied. Suppose moreover that for each . w ∈
C0(D) one can find .πN(w) ∈ VN such that .‖w − πN(w)‖V → 0 as .N → ∞. Then 
show that the Galerkin method is convergent. 

Remark 7.7 One of the most important examples of Galerkin approximation is that 
based on finite elements. For the variational problems described in Chap. 5 the finite 
dimensional subspace . VN is given by piecewise-polynomial and globally continuous 
functions (see Exercise 6.8 for the proof that this is indeed a subspace of .H 1(D)). 
Here it is assumed that the domain D is the union of (non-overlapping) subsets of
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simple shape T , the elements: say, for .n = 3, tetrahedra or hexahedra. Denoting by 
h the maximum diameter of the elements, let . Nh be the dimension of the space 

. VNh
= {v : D �→ R | v ∈ C0(D), v|T ∈ Pr ∀ T } ,

where . Pr is the space of polynomials of degree less than or equal to r , .r ≥ 1. 
Thus when .h → 0 the number of elements T goes to infinity, and therefore one has 
.Nh → +∞. 

For this type of finite elements one has an error estimate between the exact 
solution u and the approximate solution . uh that satisfies . ‖u − uh‖H 1(D) = O(hr)

(having assumed that the hypotheses of Theorem 7.18 are satisfied and provided that 
the solution u is smooth enough). 

7.6 Exercises 

Exercise 7.1 Prove that in Theorem 7.2 one has KT = τ(LT + τI )−1. 

Solution Let us first observe that this result is clearly reasonable, as this would be 
the case for a matrix K = τ(L + τI )−1. 

Let us write for simplicity (·, ·) instead of (·, ·)L2(D), and for w, v ∈ L2(D) 
compute (Kw, v): defining by q ∈ H 1 

0 (D) the solution of (L + τI )q  = w (in the 
weak sense, Bτ (q, ψ) = (w, ψ) for each ψ ∈ H 1 

0 (D)), we have 

. (Kw, v) = (τ (L + τI )−1w, v) = (τq, v) = τ(q, v) .

Then define by p ∈ H 1 
0 (D) the solution of (LT + τI )p  = v (namely, BLT (p, ψ) + 

τ(p,  ψ)  = (v, ψ) for each ψ ∈ H 1 
0 (D)) and compute (τ (LT +τI )−1v, w): it holds 

. (τ (LT + τI )−1v,w) = (τp,w) = τ(p,w) .

Thus we must prove that (q, v) = (p, w). We have  

. (q, v) =
B

LT (p,q)+τ(p,q)
︷ ︸︸ ︷
(q, (LT + τI )p) = τ(q, p) +

B
LT (p,q)

︷ ︸︸ ︷
(q, LT p) = τ(p, q) +

B(q,p)︷ ︸︸ ︷
(p, Lq)

and 

.(p,w) = (p, (L + τI )q)︸ ︷︷ ︸
Bτ (q,p)

= τ(p, q) + (p, Lq)︸ ︷︷ ︸
B(q,p)

,
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thus the result 

. (Kw, v) = (τ (LT + τI )−1v,w)

is proved. 

Exercise 7.2 Let A be a n × m matrix, associated to the linear map v �→ Av, 
v ∈ Rm, Av ∈ Rn. Prove that R(A) = N(AT )⊥. 

Solution 

(⊂) y ∈ R(A) means that exists x ∈ Rm such that Ax = y. Taking now 
w ∈ N(AT ), namely, AT w = 0, it is easily checked that (y, w) = (Ax, w) = 
(x, AT w) = 0. 

(⊃) y ∈ N(AT )⊥ can be written (as any vector in Rn) as  

. y = ŷ + Ax, ŷ ∈ R(A)⊥, x ∈ Rm .

Since we already know that Ax ∈ N(AT )⊥, it follows at once ŷ ∈ N(AT ). Also  

. (AT ŷ, x) = (ŷ, Ax) = 0 ∀ x ∈ Rm �⇒ AT ŷ = 0 �⇒ ŷ ∈ N(AT ) .

Since ŷ ∈ N(AT ) ∩ N(AT )⊥, it follows ŷ = 0 and y = Ax ∈ R(A). 

Exercise 7.3 Let A : X �→ Y be a linear and bounded operator, X and Y Hilbert 
spaces. Define the adjoint operator AT : Y �→ X as (AT y, x)X = (y, Ax)Y for all 
y ∈ Y , x ∈ X. Prove that 

(i) R(A) = N(AT )⊥ 

(ii) R(A)⊥ = N(AT ). 

Solution 

(i) The proof that R(A) ⊂ N(AT )⊥ is as in Exercise 7.2; since N(AT )⊥ is closed, 
we have R(A) ⊂ N(AT )⊥. On the other hand, let us first verify that for a 
subspace W ⊂ Y it holds W⊥ = W⊥

. In fact, a vector v orthogonal to all the 
elements of W is clearly orthogonal to all the elements of W ; viceversa, suppose 
we have (v, w)Y = 0 for all w ∈ W and take w∗ ∈ W : then w∗ = limk wk , 
wk ∈ W , and therefore (v, w∗)Y = limk(v, wk)Y = 0. As a second step, 
consider the orthogonal decomposition given by Y = R(A) ⊕ R(A)

⊥ 
and take 

y ∈ N(AT )⊥. We can write y = ŷ + q, where ŷ ∈ R(A)
⊥ = R(A)⊥ and 

q ∈ R(A). Now the proof is as that of Exercise 7.2: since we already know that 
q ∈ R(A) ⊂ N(AT )⊥, it follows ŷ ∈ N(AT )⊥; moreover 

. (AT ŷ, x)X = (ŷ, Ax)Y = 0 ∀ x ∈ X ,

thus ŷ ∈ N(AT ) and therefore ŷ = 0. In conclusion, y = q ∈ R(A). 
(ii) Follows at once from (i) by passing to the orthogonal.
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Exercise 7.4 Under the assumptions of Theorem 7.5, take  λ 	∈ � and for each 
f ∈ L2(D) let u ∈ H 1 

0 (D) be the unique solution of (7.7). Prove that the solution 
operator Sλ : f �→ u is a bounded operator in L2(D), namely, there exists a constant 
C >  0 such that 

. ‖u‖L2(D) ≤ C‖f ‖L2(D) .

Solution We prove that the operator Sλ is closed, thus, being defined on the whole 
space L2(D), it is bounded as a consequence of the closed graph theorem (see 
Yosida [28, Theorem 1, p. 79]). Take fk → f in L2(D) and uk = Sλfk → q 
in L2(D). For a suitable τ >  0 we know that uk is the solution of the coercive 
problem 

. BL(uk, v) + τ

∫

D

ukvdx = (τ + λ)

∫

D

ukvdx +
∫

D

fkvdx ∀ v ∈ H 1
0 (D) .

(7.14) 

Thus by Lax–Milgram theorem we have the estimate 

. ‖uk‖H 1(D) ≤ C(‖uk‖L2(D) + ‖fk‖L2(D)) .

Therefore uk is bounded in H 1(D), and since H 1(D) is a Hilbert space we 
can extract a subsequence uks which is weakly convergent to w ∈ H 1(D) (see 
Yosida [28, Theorem 1, p. 126, and Theorem of Eberlein–Shmulyan, p. 141]), in 
particular is weakly convergent to w in L2(D). As a consequence of the uniqueness 
of the weak limit we obtain q = w, and passing to the limit in (7.14) we find 

. BL(q, v) + τ

∫

D

qvdx = (τ + λ)

∫

D

qvdx +
∫

D

f vdx ∀ v ∈ H 1
0 (D) .

This shows that q = Sλf , thus Sλ is closed. 

Exercise 7.5 Under the assumptions of Theorem 7.5, take  λ 	∈ � and for each 
f ∈ L2(D) let u ∈ H 1 

0 (D) be the unique solution of (7.7). Prove that the solution 
operator Sλ : f �→ u is a bounded operator from L2(D) to H 1 

0 (D), namely, there 
exists a constant C >  0 such that 

. ‖u‖H 1(D) ≤ C‖f ‖L2(D) .

Solution In Exercise 7.4 we have seen that u is the solution of the coercive problem 

.BL(u, v) + τ

∫

D

uvdx = (τ + λ)

∫

D

uvdx +
∫

D

f vdx ∀ v ∈ H 1
0 (D) ,
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τ >  0 being a suitable constant, and that by Lax–Milgram theorem u satisfies the 
estimate 

. ‖u‖H 1(D) ≤ C(‖u‖L2(D) + ‖f ‖L2(D)) .

Thus the result follows from Exercise 7.4. 

Exercise 7.6 Prove that the minimum eigenvalue λ1 of the Laplace operator −�

associated to the homogeneous Dirichlet boundary condition is equal to 1 
CD 

, where 

. CD = sup
v∈H 1

0 (D),v 	=0

∫
D

v2dx∫
D

|∇v|2dx

is the “best” Poincaré constant (see Sect. 6.2). 

Solution The eigenvalues λk and their related eigenvectors wk ∈ H 1 
0 (D), wk 	= 0, 

k = 1, 2, . . ., satisfy 

.

∫

D

∇wk · ∇vdx = λk

∫

D

wkvdx ∀ v ∈ H 1
0 (D) , (7.15) 

thus λ1 can be represented by the Rayleigh quotient 

. λ1 =
∫
D

|∇w1|2dx
∫
D

w2
1dx

and we have at once 

. λ1 ≥ inf
v∈H 1

0 (D),v 	=0

∫
D

|∇v|2dx∫
D

v2dx
= 1

CD

.

On the other hand, knowing that the sequence of eigenvectors wk is an L2(D)-
orthonormal Hilbertian basis (see Theorem 7.7), we can write v = ∑∞ 

k=1 vkwk , 
where vk =

∫
D vwkdx, so that 

.

∫

D

v2dx =
∫

D

( ∞∑

k=1

vkwk

) ( ∞∑

j=1

vjwj

)
dx =

∞∑

k=1

v2k
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and, using (7.15), 

. 

∫

D

|∇v|2dx =
∫

D

( ∞∑

k=1

vk∇wk

)
·
( ∞∑

j=1

vj∇wj

)
dx

=
∞∑

k,j=1

vkvj

∫

D

∇wk · ∇wjdx

=
∞∑

k,j=1

vkvjλk

∫

D

wk wjdx =
∞∑

k=1

v2kλk

≥ λ1

∞∑

k=1

v2k .

In conclusion, for any v ∈ H 1 
0 (D), v 	= 0, 

. 

∫

D

|∇v|2dx

∫

D

v2dx

≥
λ1

∞∑

k=1

v2k

∞∑

k=1

v2k

= λ1

thus 

. 
1

CD

= inf
v∈H 1

0 (D),v 	=0

∫
D

|∇v|2dx∫
D

v2dx
≥ λ1 ,

and the thesis is proved. 

Exercise 7.7 

(i) Consider the elliptic operator 

. Lw = −
n∑

i,j=1

Di (aijDjw) + a0w ,

with aij = aji  and a0 ≥ 0. If λ� is an eigenvalue of L associated to anyone 
of the boundary conditions of Dirichlet, Neumann, mixed or Robin type, then 
λ� ≥ 0. 

(ii) The case λ� = 0 is possible if and only if the boundary condition is of Neumann 
type and a0 = 0. In that case the corresponding eigenvector w� is a constant 
(different from 0).
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Solution 

(i) The eigenvalue λ� and the correspondent eigenvector w� ∈ V , w� 	= 0, satisfy 

. B(w�, v) = λ�

∫

D

w�vdx ∀ v ∈ V ,

where V and B(·, ·) are the Hilbert space and the bilinear form associated to 
the different boundary value problems (see Sect. 5.1). In particular, we have 

. λ� = B(w�,w�)∫
D

w2
�dx

and, by the ellipticity assumption (and the assumption that the coefficient κ for 
the Robin problem is non-negative) we obtain 

. 
B(w�,w�) ≥ BL(w�,w�) = ∫

D

∑n
i,j=1 aijDjw�Diw�dx + ∫

D
a0w

2
�dx

≥ α0
∫
D

|∇w�|2dx + ∫
D

a0w
2
�dx ≥ 0 .

(ii) When we have λ� = 0, from the arguments in (i) we deduce B(w�,w�) = 0. 
Therefore coerciveness and the assumption a0 ≥ 0 imply  w� = const. For the 
Dirichlet, mixed and Robin boundary value problems this would give w� = 0, 
a contradiction. (Note that for the Robin problem this follows from the fact that 

. 0 = B(w�,w�) = BL(w�,w�) +
∫

∂D

κw2
�dSx ,

thus
∫
∂D κw2

�dSx = w2
�

∫
∂D κdSx = 0, only possible for w� = 0.) For the 

Neumann boundary condition knowing that w� = const has as a consequence∫
D a0dx = 0, which gives a0 = 0. Finally, it is trivial to show that the Neumann 
problem with a0 = 0 has a vanishing eigenvalue correspondent to a constant 
eigenvector (different from 0). 

Exercise 7.8 Let D ⊂ Rn an open set. Prove that v+ = max(v, 0) and v− = 
max(−v, 0) belong to W 1,p (D) for v ∈ W 1,p (D), 1  ≤ p ≤ +∞. More precisely, 
defining 

. w+
i =

{
Div where v > 0

0 where v ≤ 0
, w−

i =
{

−Div where v < 0

0 where v ≥ 0
,

one hasDiv
+ = w+ 

i and Div
− = w− 

i , i = 1, . . . , n. 

Solution Since |v+| ≤ |v|, |v−| ≤ |v|, |w+ 
i | ≤ |Div| and |w− 

i | ≤ |Div| it is clear 
that v+, v−, w+ 

i and w
− 
i belong to L

p (D); therefore the only things to be proved are 
the differentiation formulas. Let us first make some naive considerations. Nothing
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has to be proved if either v >  0 a.e. in  D or v ≤ 0 a.e. in  D. Thus we can consider 
the case in which both sets {v >  0} and {v ≤ 0} have positive measure. Let us 
focus on v+. Defining w+ 

i as above and taking ϕ ∈ C∞
0 (D) we formally have, by 

integration by parts, 

. 

∫

D

w+
i ϕdx =

∫

{v>0}
w+

i ϕdx +
∫

{v≤0}
w+

i ϕdx =
∫

{v>0}
Divϕdx

= −
∫

{v>0}
vDiϕdx +

∫

∂{v>0}
nivϕdSx = −

∫

D

v+Diϕdx ,

where we have deduced that
∫
∂{v>0} nivϕdSx = 0 as  ∂{v >  0} =  (∂{v >  0} ∩  

D) ∪ (∂{v >  0} ∩  ∂D), ϕ = 0 on  ∂D and we expect that v = 0 on  ∂{v >  0} ∩  D. 
However, this formal proof is not rigorous, as when v ∈ W 1,p (D) is not smooth the 
set {v >  0} is only a measurable set, and an integration by parts formula like the one 
here above is not necessarily valid. Moreover, even the additional information that 
v is smooth would not solve the problem, as in that situation it would be true that 
the set {v >  0} is an open set and that v = 0 on  ∂{v >  0}, but still this boundary 
∂{v >  0} could be as wild as you (do not) like. 

Thus we have to adopt a different strategy, that we essentially borrow from 
Gilbarg and Trudinger [11, Lemma 7.6, p. 145]. First of all let us prove the following 
“chain rule”: if v ∈ L1 

loc(D)withDiv ∈ L1 
loc(D) and F ∈ C1(R)with F ′ ∈ L∞(R), 

then Di[F(v)] =  F ′(v) Div in D, i = 1, . . . , n. In fact, take ϕ ∈ C∞
0 (D), set

� = supp ϕ and take an open set Q with a Lipschitz continuous boundary ∂Q and 
such that � ⊂ Q ⊂⊂ D. From Theorem 6.1 there exists a sequence vm ∈ C∞(Q) 
such that vm → v and Divm → Div in L1(Q); for these smooth functions (and 
knowing that ∂Q is Lipschitz continuous) by integration by parts we clearly have 

. 

∫

Q

F(vm)Diϕ = −
∫

Q

F ′(vm)Divm ϕ .

The “chain rule”
∫
D F(v)  Diϕ = − ∫

D F
′(v)Div ϕ  thus follows as 

. 

∫

Q

|F(vm) − F(v)| ≤ sup |F ′|
∫

Q

|vm − v| → 0

and 

.

∫
Q

|F ′(vm)Divm − F ′(v)Div|
≤ ∫

Q
|F ′(vm)||Divm −Div| + ∫

Q
|F ′(vm) − F ′(v)||Div|

≤ sup |F ′| ∫
Q

|Divm −Div| + ∫
Q

|F ′(vm) − F ′(v)||Div| → 0 .
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This last result holds true since (for a subsequence. . . )  vm → v a.e. in Q, F ′(vm) → 
F ′(v) a.e. in Q (here the continuity of F ′ has been used) and thus 

. 

∫

Q

|F ′(vm) − F ′(v)||Div| → 0

by the Lebesgue dominated convergence theorem. 
Take now v ∈ W 1,p (D), 1  ≤ p ≤ +∞, and consider the approximation of the 

function s �→ max(s, 0) given by 

. Fε(s) =
⎧
⎨

⎩

0 for s ≤ 0
1
2ε s2 for 0 < s < ε

s − ε
2 for s ≥ ε ,

which clearly satisfies Fε ∈ C1(R), F ′
ε ∈ L∞(R), Fε(s) → max(s, 0) and F ′

ε(s) → 
χ+(s) for s ∈ R, where χ+(s) is the characteristic function of {s >  0}. Thus we 
have 

. 

∫

D

Fε(v)Diϕ = −
∫

D

F ′
ε(v)Div ϕ ,

and by the Lebesgue dominated convergence theorem we find 

. 

∫

D

v+Diϕ = −
∫

D

χ+(v)Div ϕ = −
∫

{v>0}
Div ϕ = −

∫

D

w+
i ϕ .

For another proof of this exercise and other related results we refer to the classical 
book by Kinderlehrer and Stampacchia [15, Theorem A.1, p. 50]. 

As a final remark, take into account that it is not even trivial to prove the 
following “trivial” result: for v ∈ W 1,p (D) it holds ∇v = 0 a.e. in  E = {x ∈ 
D | v(x) = 0}. Its proof is indeed a consequence of the results provided by this 
exercise, as v = v+ − v−. 

Exercise 7.9 Prove that 

. sup
∂D

u+ = max(sup
∂D

u, 0) and inf
∂D

(−u−) = min(inf
∂D

u, 0)

(so that the conclusion of Theorem 7.8 can be written as supD u ≤ max(sup∂D u, 0) 
for a subsolution and infD u ≥ min(inf∂D u, 0) for a supersolution). 

Solution For the sake of simplicity let us write B = sup∂D u
+ and A = 

max(sup∂D u, 0). Suppose that sup∂D u >  0 and define Q = {x ∈ ∂D | u(x) > 0}: 
we have u+ = u in Q and u+ = 0 in  ∂D \ Q, thus B = sup∂D u

+ = supQ u
+ = 

supQ u = sup∂D u = A. On the other hand, if sup∂D u ≤ 0 we have  A = 0
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and u ≤ 0 on  ∂D, thus u+ = 0 on  ∂D and finally B = 0 = A. The proof of 
inf∂D(−u−) = min(inf∂D u, 0) is similar. 

Exercise 7.10 Take v ∈ L2(D), ϕ ∈ L2(D) with � = supp ϕ ⊂ D, and consider 
the difference quotients defined in (7.11). Then we have the integration by parts 
formula 

. 

∫

D

vDh
kϕdx = −

∫

D

D−h
k v ϕdx ,

for each h with 0 < |h| < dist(�, ∂D), k = 1, . . . , n. 

Solution Set � = supp ϕ and define �k 
h = {y ∈ D | y = x − hek, x  ∈ �}. Then we 

have 

. 

∫

D

v(x − hek)ϕ(x)dx =
∫

�

v(x − hek)ϕ(x)dx

=
∫

�k
h

v(y)ϕ(y + hek)dy =
∫

D

v(y)ϕ(y + hek)dy ,

having used the change of variable y = x − hek . Then it easily follows 

. 

∫

D

v(x)
ϕ(x + hek) − ϕ(x)

h
dx = −

∫

D

v(x − hek) − v(x)

−h
ϕ(x)dx ,

which is the stated result. 

Exercise 7.11 

(i) Take v ∈ H 1(D) and consider Q ⊂⊂ D. Then the difference quotient Dh v = 
(Dh 

1v, . . . ,Dh 
nv) defined in (7.11) satisfies 

. ‖Dhv‖L2(Q) ≤ ‖∇v‖L2(D)

for each h with 0 < |h| < dist(Q, ∂D). 
(ii) Take k with 1 ≤ k ≤ n, v ∈ L2(D) and Q ⊂⊂ D. Suppose that there exists a 

constant C∗ > 0 such that 

. ‖Dh
kv‖L2(Q) ≤ C∗

for each h with 0 < |h| < dist(Q, ∂D). ThenDkv ∈ L2(Q). 
(iii) Take k with 1 ≤ k ≤ n, v ∈ L2(D) and suppose there exists a constant C� > 0 

such that 

.‖Dh
kv‖L2(D|h|) ≤ C�
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for each h 	= 0, where D|h| = {x ∈ D | dist(x, ∂D) > |h|}. Then Dkv ∈ 
L2(D) and ‖Dkv‖L2(D) ≤ C�. 

Solution 

(i) By approximation, we can assume that v is smooth. Take x ∈ Q and let ek the 
unit vector in the k-th direction. Since 

. 
d

dt
v(x + thek) =

n∑

j=1

(Dj v)(x + thek)
d

dt
(xj + thδkj ) = h (Dkv)(x + thek) ,

we have 

. v(x + hek) − v(x) = h

∫ 1

0
(Dkv)(x + thek)dt

and consequently 

. 

∫

Q

(Dh
kv)2(x)dx =

∫

Q

|v(x + hek) − v(x)|2
h2

dx

=
∫

Q

(∫ 1

0
(Dkv)(x + thek)dt

)2

dx

≤
∫

Q

(∫ 1

0
(Dkv)2(x + thek)dt

)
dx

=
∫ 1

0

(∫

Q

(Dkv)2(x + thek)dx

)
dt

≤
∫ 1

0

(∫

D

(Dkv)2(y)dy

)
dt =

∫

D

(Dkv)2(x)dx ,

having used the change of variable x + thek = y. 
(ii) The idea is to pass to the limit in the integration by parts formula in 

Exercise 7.10: 

.

∫

Q

D−1/m
k v ϕdx = −

∫

Q

vD1/m
k ϕdx , (7.16) 

where ϕ ∈ C∞
0 (Q) and m is such that 1/m < dist(supp ϕ, ∂Q). Since L2(Q) 

is a Hilbert space, the estimate ‖Dh v‖L2(Q) ≤ C∗ for h = −1/m (and m 
large enough to have 1/m < dist(Q, ∂D)) has as a consequence that from 
the sequence D−1/m 

k v we can extract a subsequence, still denote by D−1/m 
k v, 

which converges weakly to wk in L2(Q) (see Yosida [28, Theorem 1, p. 126, 
and Theorem of Eberlein–Shmulyan, p. 141]). On the other hand, it is easily
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seen that D1/m 
k ϕ converges to Dkϕ in L2(Q): in fact, by Taylor expansion 

. 
ϕ(x + hek) − ϕ(x)

h
−Dkϕ(x) = h

2
D2

kϕ(x̂) ,

where x̂ is between x and x + hek . Thus 

. 

∫

Q

∣∣∣∣
ϕ(x + hek) − ϕ(x)

h
−Dkϕ(x)

∣∣∣∣
2

dx ≤ (max
D

|D2
kϕ|)2 meas(Q)

h2

4
.

Passing to the limit in (7.16) we obtain 

. 

∫

Q

wk ϕdx = −
∫

Q

vDkϕdx ,

namely,Dkv = wk ∈ L2(Q). 
(iii) From part (ii) we know that the weak derivative Dkv exists in each subset Q 

with Q ⊂⊂ D and thatD−1/m 
k v converges weakly toDkv in L2(Q). Since the 

weak derivatives are unique, by the arbitrariness of Q we deduce that the weak 
derivative Dkv exists in D and moreover it satisfies 

. ‖Dkv‖L2(Q) ≤ lim inf
m→+∞ ‖D−1/m

k v‖L2(Q) ≤ C� ,

(see Yosida [28, Theorem 1, p. 120]). If we define 

. qk,m =
{

(Dkv)|D1/m
in D1/m

0 in D \ D1/m ,

we readily see that q2 
k,m → (Dkv)2 pointwise in D as m goes to +∞ and q2 

k,m 
is an increasing sequence with respect to m. Then by the Beppo Levi monotone 
convergence theorem it follows that

∫
D1/m 

(Dkv)2dx = ∫
D q

2 
k,mdx →

∫
D (Dkv)2dx, thusDkv ∈ L2(D) and ‖Dkv‖L2(D) ≤ C�. 

Exercise 7.12 Prove that all the terms aii(x) on the diagonal of a uniformly positive 
definite matrix in D (namely, a matrix {aij (x)} such that ∑

ij aij (x)ηjηi ≥ α0|η|2 
for all η ∈ Rn and almost every x ∈ D) satisfy aii(x) ≥ α0 for almost every in 
x ∈ D. 

Solution Take η = e(k), the  k-th element of the Euclidean basis, k = 1, . . . , n. Then 

.α0 = α0|e(k)|2 ≤
∑

ij

aij (x)e
(k)
j e

(k)
i = akk(x) .
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Exercise 7.13 Under the assumptions of Theorem 7.12, the stronger estimate 

. ‖u‖H 2(D) ≤ C‖f ‖L2(D)

holds, provided that we know that for each f ∈ L2(D) there exists a unique weak 
solution u ∈ H 1 

0 (D). 

Solution Knowing that for each f ∈ L2(D) there exists a unique weak solution 
u ∈ H 1 

0 (D) means that the solution operator S0 : f �→ u is well-defined and thus 
0 is not an eigenvalue. Then, looking at Exercise 7.4, we know that ‖u‖L2(D) ≤ 
C‖f ‖L2(D) and therefore from Theorem 7.12 we find 

. ‖u‖H 2(D) ≤ C‖f ‖L2(D) .

Exercise 7.14 Prove that the Laplace operator in polar coordinates is given by 

. � = ∂2r + 1

r
∂r + 1

r2
∂2θ ,

and that the gradient is given by 

. Dx1 = cos θ∂r − 1

r
sin θ∂θ , Dx2 = sin θ∂r + 1

r
cos θ∂θ .

Solution Polar coordinates are given by x1 = r cos θ , x2 = r sin θ . Setting
f̂ (r,  θ)  = f (r  cos θ,  r  sin θ), we have  

. 

∂f̂

∂r
= ∂f

∂x1
cos θ + ∂f

∂x2
sin θ

1

r

∂f̂

∂θ
= − ∂f

∂x1
sin θ + ∂f

∂x2
cos θ

(here and in the sequel, for the sake of simplicity and with abuse of notation, 
we are not writing that the derivatives of f have to be computed at (x, y) = 
(r cos θ,  r  sin θ)). For determining ∂f 

∂x1 
, multiply the first equation by cos θ and the 

second one by − sin θ , and add the equations; for determining ∂f 
∂x2 

, multiply the first 
equation by sin θ and the second one by cos θ , and add the equations. The final result 
is 

.

∂f

∂x1
= cos θ

∂f̂

∂r
− sin θ

r

∂f̂

∂θ
∂f

∂x2
= sin θ

∂f̂

∂r
+ cos θ

r

∂f̂

∂θ
,
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henceD1 = cos θ ∂r − sin θ 
r ∂θ andD2 = sin θ ∂r + cos θ 

r ∂θ . This permits to compute 
the second order derivatives, yielding 

. 

∂2f

∂x2
1

= cos θ
∂

∂r

(
cos θ

∂f̂

∂r
− sin θ

r

∂f̂

∂θ

)
− sin θ

r

∂

∂θ

(
cos θ

∂f̂

∂r
− sin θ

r

∂f̂

∂θ

)

∂2f

∂x2
2

= sin θ
∂

∂r

(
sin θ

∂f̂

∂r
+ cos θ

r

∂f̂

∂θ

)
+ cos θ

r

∂

∂θ

(
sin θ

∂f̂

∂r
+ cos θ

r

∂f̂

∂θ

)
.

By straightforward computations we obtain the representation of the Laplace 
operator in polar coordinates: 

. �f = ∂2f̂

∂r2
+ 1

r

∂f̂

∂r
+ 1

r2

∂2f̂

∂θ2
.

Exercise 7.15 Let D ⊂ R3 be a bounded, connected and open set, with a Lipschitz 
continuous boundary ∂D. Show that the immersion W 2,2(D) ↪→ C0,1/2(D) holds, 
using Theorems 7.14 and 7.15. 

Solution We have that ∇u ∈ W 1,2(D), thus, by Theorem 7.14, ∇u ∈ L6(D). The  
same holds for u, therefore we have u ∈ W 1,6(D). Since p = 6 > 3 = n, from 
Theorem 7.15 it follows that the Hölder exponent is λ = 1 − 3 6 = 1 

2 , thus u ∈ 
C0,1/2(D). 

Exercise 7.16 

(i) Let D ⊂ R3 be a bounded, connected and open set, with a Lipschitz continuous 
boundary ∂D. Show that the bilinear form 

. BL(w, v) =
∫

D

n∑

i,j=1

aijDjwDivdx +
∫

D

n∑

i=1

biDiwvdx +
∫

D

a0wvdx

is bounded provided that the coefficients satisfy aij ∈ L∞(D), bi ∈ L3(D) and 
a0 ∈ L3/2(D). 

(ii) Prove that BL(w, v) is coercive in H 1 
0 (D), H 1∗ (D) and H 1

�D 
(D), provided that

‖bi‖L3(D), i = 1, . . . , n, and ‖a0‖L3/2(D) are small enough. 

Solution 

(i) We have, using Hölder inequality, 

.

∣∣∣∣∣

∫

D

n∑

i=1

biDiwvdx

∣∣∣∣∣ ≤
n∑

i=1

∫

D

|bi ||Diw||v|dx

≤
n∑

i=1

‖bi‖L3(D)‖Diw‖L2(D)‖v‖L6(D)
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and 

. 

∣∣∣∣
∫

D

a0wvdx

∣∣∣∣ ≤
∫

D

|a0||w||v|dx ≤ ‖a0‖L3/2(D)‖w‖L6(D)‖v‖L6(D) .

The result follows from the Sobolev embedding Theorem 7.14. 
(ii) From the Sobolev embedding Theorem 7.14 we have ‖v‖L6(D) ≤ C‖v‖H 1(D); 

from the Poincaré inequality, that holds in all the spaces H 1 
0 (D), H 1∗ (D) and 

H 1
�D 

(D), we have ‖v‖L2(D) ≤
√

CD‖∇v‖L2(D). Therefore it holds ‖v‖L6(D) ≤ 
C∗‖∇v‖L2(D). Then we have found 

. BL(v, v) ≥
[
α0 − C∗

( n∑

i=1

‖bi‖2L3(D)

)1/2 − C2∗‖a0‖L3/2(D)

]
‖∇v‖2

L2(D)
,

and the result follows. 

Exercise 7.17 Show that the solution u of the homogeneous Dirichlet boundary 
value problem 

. 

{−�u = 1 in D

u|∂D = 0 on ∂D ,

where D = {x ∈ Rn | |x| < 1}, belongs to C∞(D). 

Solution The coefficients of the operator and the right hand side are constant and 
the boundary is a C∞-manifold, thus by the regularity result in Theorem 7.13 we 
see that u ∈ Hm+2(D) for any m ≥ 0. Therefore by the Sobolev embedding 
Theorem 7.17 we deduce u ∈ Cm+1−[n/2](D) for any m ≥ [n/2] − 1, hence 
u ∈ C∞(D). 

Exercise 7.18 Show that the eigenvectors wk of the homogeneous Dirichlet bound-
ary value problem 

. 

{−�wk = λkwk in D

wk|∂D = 0 on ∂D ,

where D = {x ∈ Rn | |x| < 1}, belong to C∞(D). 

Solution The coefficients of the operator are constant and the boundary is a C∞-
manifold; moreover, we can consider λkwk as a right hand side for the Laplace 
operator. Since the variational solution wk belongs to H 1(D), by the regularity 
result in Theorem 7.13 we see that wk ∈ H 3(D). Now we can apply a bootstrap 
argument: from what we have just proved, the right hand side λkwk belongs to 
H 3(D). Therefore we apply once again Theorem 7.13 and we find wk ∈ H 5(D). 
By iterating this procedure, we see that wk ∈ Hm (D) for any m ≥ 0. Therefore
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by the Sobolev embedding Theorem 7.17 we deduce u ∈ Cm−1−[n/2](D) for any 
m ≥ [n/2] + 1, hence u ∈ C∞(D). 

Exercise 7.19 Let D ⊂ R3 be a bounded, connected and open set, with a Lipschitz 
continuous boundary ∂D. Let  V be a closed subspace of H 1(D), and let the 
assumptions of Theorem 7.18 be satisfied. Suppose moreover that for each w ∈ 
C0(D) one can find πN(w) ∈ VN such that ‖w − πN(w)‖V → 0 as  N → ∞. Then 
show that the Galerkin method is convergent. 

Solution Let u ∈ V be the exact solution of the problem. By the approximation 
Theorem 6.3 for each ε >  0 we can find u∗ ∈ C∞(D) such that ‖u − u∗‖V ≤ ε. 
Thus, using Theorem 7.18, we have  

. 

‖u − uN‖V ≤ γ

α
inf

vN∈VN

‖u − vN‖V ≤ γ

α
‖u − πN(u∗)‖V

≤ γ

α
(‖u − u∗‖V + ‖u∗ − πN(u∗)‖V ) ≤ 2

γ

α
ε

for N large enough. 

Exercise 7.20 Let X be a Hilbert space with scalar product (·, ·)X and let {ϕm}, 
m ≥ 1, be an orthonormal Hilbertian basis of X. Prove that ϕm → 0 weakly in X, 
thus furnishing an example of a sequence which is weakly convergent in X but not 
convergent in X. 

Solution Since {ϕm} is an orthonormal Hilbertian basis of X, for each v ∈ X we 
have the Fourier expansion 

. v =
∞∑

m=1

(v, ϕm)Xϕm , ‖v‖2X =
∞∑

m=1

(v, ϕm)2X .

Being the series
∑∞ 

m=1(v, ϕm)2 X convergent, we have at once (v, ϕm)X → 0. 

Exercise 7.21 Let X be a Hilbert space with scalar product (·, ·)X. Prove that vm → 
v in X if and only if vm → v weakly in X and ‖vm‖X → ‖v‖X. 

Solution Suppose that vm → v in X: then for any w ∈ X we have (vm,w)X → 
(v, w)X by the Cauchy–Schwarz inequality: moreover, ‖vm‖X → ‖v‖X by the 
triangular inequality. 

Vice versa, it holds 

. ‖vm − v‖2X = (vm − v, vm − v)X = ‖vm‖2X − 2(vm, v)X + ‖v‖2X ;

since (vm,w)X → (v, w)X for each w ∈ X, it follows (vm, v)X → ‖v‖2 X and thus
‖vm − v‖2 X → 0. 

Exercise 7.22 Let X and Y be Hilbert spaces and K : X �→ Y a linear and compact 
operator. Prove that if uj → u weakly in X then Kuj → Ku in Y .



7.6 Exercises 167

Solution Being weakly convergent, the sequence uj is bounded in X (see, e.g., 
Yosida [28, Theorem 1, p. 120]). Therefore, due to the compactness of K , from  
each subsequence ujs of uj we can extract another subsequence, denoted by ujsm , 
such that Kujsm converges to an element ω� ∈ Y . Then for each v ∈ Y we have 

. (ω� − Ku, v)Y = lim
m

(Kujsm
− Ku, v)Y = lim

m
(ujsm

− u,KT v)X = 0 ,

where KT is the adjoint operator of K , and thus Ku = ω�. Hence from any 
subsequence Kujs we have extracted another subsequence Kujsm which converges 
to Ku, and this limit is the same for all the possible choices of the subsequence 
Kujs . This implies that the whole sequence Kuj converges to Ku in Y .



Chapter 8 
Saddle Points Problems 

This chapter is devoted to the solution of saddle point problems that can be written 
in the abstract form 

. 

{
Au + BT λ = F

Bu = G

for some linear operators A and B, . λ having the role of a Lagrangian multiplier 
associated to the constraint .Bu = G. 

The first section, concerned with constrained minimization, is divided into two 
parts: the finite dimensional case and the infinite dimensional case. Then we 
describe and analyze the Galerkin approximation method for saddle point problems, 
and finally we present some issues of the Galerkin method based on finite elements. 

8.1 Constrained Minimization 

This section is divided into two parts, regarding the finite dimensional and the 
infinite dimensional case, respectively. We chose this approach as we believe that 
the leading ideas are more easily caught when dealing with vectors. In this way we 
hope that the process of extending known results of finite dimensional linear algebra 
to the infinite dimensional case can become an easier task. 

8.1.1 The Finite Dimensional Case 

Let us start from a problem in . Rn. We have a function .f : Rn �→ R and we want to 
minimize it subject to a set of constraints, expressed by .g(x) = 0, with . g : Rn �→
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R
m, with .m < n. If .m = 1 and .∇g �= 0 on .{g(x) = 0}, we know that at a minimum 

point . x̂ we must have 

. ∇f (x̂) = λ∇g(x̂) ,

where .λ ∈ R is a Lagrange multiplier. If .1 < m < n and .∇gk are linearly 
independent on .{g(x) = 0}, we know that at a minimum point . x̂ we must have 

. ∇f (x̂) =
m∑

k=1

λk∇gk(x̂) ,

where .λk ∈ R, .k = 1, . . . , m, are Lagrange multipliers. 
In other words, we can look for the stationary points (i.e., the points where the 

gradient vanishes) of the Lagrangian 

. L(w,μ) = f (w) +
m∑

k=1

μkgk(w) ;

clearly, we mean stationary points related to derivatives with respect to all the 
components of w and . μ. 

Suppose now we have a quadratic function 

. f (w) = 1

2
(Aw,w) − (F,w) ,

where A is a .n × n matrix and .F ∈ Rn and we denote by .(·, ·) the scalar product in 
. Rn. Let us also consider linear (indeed, affine) constraints 

. g(w) = Bw − G,

where B is an .m × n full-rank matrix and .G ∈ Rm. Assuming that A is symmetric, 
it is well-known that the problem 

. min
w∈Rn

, g(w)=0
f (w) (8.1) 

can be interpreted in a suitable matrix form. 

Theorem 8.1 Suppose that A is a symmetric matrix. Let .u ∈ Rn be a solution of 
problem (8.1). Then there exists .λ ∈ Rm such that the couple .(u, λ) is a solution to 

.

{
Au − F + BT λ = 0

Bu − G = 0 .
(8.2)
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Proof As explained above, it is enough to take the derivatives of the Lagrangian 

. L(w,μ) = 1

2
(Aw,w) − (F,w) +

m∑
k=1

μk(Bw − G)k .

Taking the derivative with respect to . wj we obtain 

. 

∂

∂wj

⎡
⎣1

2

n∑
i,s=1

Aiswswi −
n∑

s=1

Fsws

⎤
⎦ = 1

2

n∑
i,s=1

Ais

∂

∂wj

(wswi) −
n∑

s=1

Fs

∂ws

∂wj

= 1

2

n∑
i,s=1

Ais(δsjwi + wsδij ) −
n∑

s=1

Fsδsj

= 1

2

( n∑
i=1

Aij︸︷︷︸
=AT

ji

wi +
n∑

s=1

Ajsws

)
− Fj =

(AT + A

2
w − F

)
j

and 

. 

∂

∂wj

[
m∑

k=1

μk(Bw − G)k

]
= ∂

∂wj

[
m∑

k=1

μk

(
n∑

s=1

Bksws − Gk

)]

=
m∑

k=1

μk

n∑
s=1

Bks

∂ws

∂wj

=
m∑

k=1

μkBkj = (BT μ)j .

Differentiating with respect to . μl , .l = 1, . . . , m, it easily follows 

. 
∂L
∂μl

(w,μ) = ∂

∂μl

(
m∑

k=1

μk(Bw − G)k

)
= (Bw − G)l .

Therefore the Euler equations of the Lagrangian . L are 

.

{
AT +A

2 w − F + BT μ = 0

Bw − G = 0 ,
(8.3) 

and, having assumed that the matrix A is symmetric, a stationary point .(u, λ) of . L
satisfies problem (8.2). ��

We can also show that problems (8.2) and (8.1) are indeed equivalent (provided 
that A is not only symmetric but also non-negative definite). In fact, it holds: 

Theorem 8.2 Suppose that A is a symmetric and non-negative definite matrix. A 
solution .(u, λ) to (8.2) furnishes a solution u of the minimization problem (8.1).
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Proof Take v such that .g(v) = 0, namely .Bv = G. Then it can be written as 
.v = u + w, with .Bw = 0. We have  

. 

1

2
(Av, v) − (F, v) = 1

2
(A(u + w), u + w) − (F, u + w)

= 1

2
(Au, u) + (Au,w) + 1

2
(Aw,w) − (F, u) − (F,w) (A is symmetric)

= 1

2
(Au, u) − (F, u) − ( BT λ︸︷︷︸

=F−Au

,w) + 1

2
(Aw,w)

= 1

2
(Au, u) − (F, u) − (λ, Bw︸︷︷︸

=0

) + 1

2
(Aw,w)︸ ︷︷ ︸

≥0

≥ 1

2
(Au, u) − (F, u) ,

thus u solves the minimization problem (8.1). ��
We can give some additional information on the stationary point .(u, λ) of the 

Lagrangian . L. In fact we have: 

Proposition 8.1 Suppose that A is a symmetric and non-negative definite matrix. A 
solution .(u, λ) of (8.2) is a saddle point of the Lagrangian 

. L(w,μ) = 1

2
(Aw,w) − (F,w) +

m∑
k=1

μk(Bw − G)k ,

i.e., it satisfies 

.L(u, η) ≤ L(u, λ) ≤ L(v, λ) (8.4) 

for each .v ∈ Rn and .η ∈ Rm. 

Proof Writing .v = u + w, we have for each .w ∈ Rn, 

.L(u + w, λ) = 1

2
(A(u + w), u + w) − (F, u + w) +

m∑
k=1

λk(B(u + w) − G)k

= 1

2
(Au, u)︸ ︷︷ ︸

�

+ (Au,w) + 1

2
(Aw,w) − (F, u)︸ ︷︷ ︸

�

− (F,w)

+
m∑

k=1

λk(Bu − G)k

︸ ︷︷ ︸
�

+
m∑

k=1

λk(Bw)k (A is symmetric)

= L(u, λ)︸ ︷︷ ︸
�

+(Au − F,w) + 1

2
(Aw,w) +

m∑
k=1

λk

n∑
s=1

Bksws
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= L(u, λ) + (Au − F,  w) + 
1 

2 
(Aw, w) + 

n∑
s=1 

ws 

m∑
k=1 

Bks︸︷︷︸
=BT 

sk 

λk 

= L(u, λ) + (Au − F + BT λ︸ ︷︷ ︸
=0 

, w) + 
1 

2 
(Aw, w)︸ ︷︷ ︸

≥0 

≥ L(u, λ) . 

Moreover, for each . η ∈ Rm

. 

L(u, η) = 1

2
(Au, u) − (F, u) +

m∑
k=1

ηk (Bu − G)k︸ ︷︷ ︸
=0

= 1

2
(Au, u) − (F, u) = L(u, λ) ,

and (8.4) is completely proved. ��
Example 8.1 In order to show, by means of a figure, the saddle point structure of a 
constrained minimization problem like those we are considering, let us take .n = 1, 
.m = 1, .A = 1, .B = 2, .F = 3 and .G = 4. This leads to the Lagrangian . L(w,μ) =
1
2w

2−3w+μ(2w−4). The graph of this function is drawn in Fig. 8.1, where it can 
be possible to recognize that .(2, 1

2 ) is a saddle point, and that .w → L(w, 1
2 ) has a 

minimum at .w = 2, while .μ → L(2, μ) is constant. 

We are now in a position to prove the well-posedness of problem (8.2). 

Theorem 8.3 Suppose that A is a positive definite matrix and that .N(BT ) = {0}. 
Then (8.2) has a unique solution. 

Fig. 8.1 The graph of the 
Lagrangian . L(w,μ) =
1
2w2 − 3w + μ(2w − 4)

0 1 2 3 4 0 

0.5 

1 

−6  

−4  

−2  

0
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Proof For a finite dimensional linear problem existence and uniqueness are equiv-
alent. Let us prove the uniqueness, namely, let us show that if .F = 0 and .G = 0 in 
(8.2) we obtain .u = 0 and .λ = 0. Take the scalar product of the first equation by u: 

. 

0 = (Au, u) + (BT λ, u) = (Au, u) + (λ, Bu︸︷︷︸
=0

)

= (Au, u) �⇒ u = 0 (as A is positive definite).

Since .u = 0, we have .BT λ = 0, then the assumption .N(BT ) = {0} gives .λ = 0. ��
Remark 8.1 The condition .N(BT ) = {0} is necessary for uniqueness. If we had 
.BT η∗ = 0 for .η∗ �= 0, from a solution .(u, λ) of (8.2) we could construct another 
solution .(u, λ + η∗). 

Remark 8.2 The symmetry of A is not needed in this theorem. On the other hand, 
it has been used to show that the solution of the minimization problem (8.1) is a 
solution to (8.2) and viceversa (see Theorems 8.1 and 8.2). 

Remark 8.3 Giving a deeper look at the proof, we see that it is possible to weaken 
a little bit the assumption on A. In fact, the proof of the theorem also works if we 
only assume that 

. (Aw,w) = 0 for w with Bw = 0 implies w = 0 .

8.1.2 The Infinite Dimensional Case 

Before entering the problem of how we can extend Theorem 8.3 to Hilbert 
spaces having infinite dimension, let pose the following question: in the infinite 
dimensional case, do we encounter problems with a structure like (8.2)? 

Example 8.2 Consider the Stokes problem 

.

⎧⎪⎪⎨
⎪⎪⎩

−ν�u + ∇p = f in D

div u = 0 in D

u = 0 on ∂D ,

(8.5) 

where u is the velocity of a fluid, p is the pressure (indeed, the pressure divided by 
the density), .ν > 0 a constant (the kinematic viscosity) and f is the acceleration of 
the external forces. The constraint .div u = 0 represents the incompressibility of the 
fluid.
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We know that formally . ∇ is the adjoint operator of .−div: 

. 

∫
D

∇ϕ · vdx = −
∫

D

ϕ div vdx for ϕ ∈ C∞
0 (D) , v ∈ C∞

0 (D) .

Then if we call .A = −ν� (. � being the Laplace operator acting on vector functions, 
associated with the homogeneous Dirichlet boundary condition) and .B = −div (so 
that .BT = ∇), we rewrite the Stokes problem as 

. 

{
Au + BT p = f

Bu = 0 .

Example 8.3 Consider the elliptic operator (without the first order and zero order 
terms) 

. Lϕ = −
n∑

i,j=1

Di (aijDj ϕ)

and define 

. qi = −
n∑

j=1

aijDjϕ , i = 1, . . . , n .

Then the problem 

. 

{
Lϕ = g in D

ϕ = 0 on ∂D

can be rewritten 

. 

⎧⎪⎪⎨
⎪⎪⎩

qi + ∑n
j=1 aijDjϕ = 0 in D , i = 1, . . . , n∑n

i=1Diqi = g in D

ϕ = 0 on ∂D .

Due to the ellipticity assumption we know that the matrix .{aij } is (uniformly) 
positive definite, hence non-singular. If we define .Z = {zij } its inverse matrix, 
which is also positive definite, we have, since .

∑n
j=1 zij ajs = δis , 

.

n∑
j=1

zij qj +Diϕ = 0 in D , i = 1, . . . , n .



176 8 Saddle Points Problems

Thus we have finally rewritten the problem as a first order elliptic system: 

.

⎧⎪⎪⎨
⎪⎪⎩

Z q + ∇ϕ = 0 in D

−div q = −g in D

ϕ = 0 on ∂D .

(8.6) 

In this case the operator A is not a differential operator, but simply .Aq = Zq, 
where the matrix Z has entries .{zij }. Instead, as before, the operator B is .−div and 
.BT = ∇. 

We want to extend to infinite dimensional Hilbert spaces the results in Theo-
rem 8.3; in particular we want to devise which sufficient conditions will take the 
place of those appearing there. 

Let us present the abstract theory that covers both cases (8.5) and (8.6). It can be 
described in two equivalent ways. In the first one we are given with two bounded 
bilinear forms .a : V × V �→ R and .b : V × M �→ R, where V and M are two 
Hilbert spaces. Clearly, these two forms define two linear and bounded operators 
.A : V �→ V ′, .B : V �→ M ′, where . V ′ and . M ′ are the dual spaces of V and M , 
respectively, namely, the space of linear and bounded operators from V to . R and 
from M to . R, respectively. This is done as follows: for each .w ∈ V we define 

. 
Aw is the map v �→ a(w, v) ∀ v ∈ V

Bw is the map ψ �→ b(w,ψ) ∀ ψ ∈ M ;

in this way .BT : M �→ V ′ is defined by saying that, for each .μ ∈ M , .BT μ is the 
map .v �→ b(v, μ) for all .v ∈ V . 

The other way around is described by starting from two linear and bounded 
operators .A : V �→ V ′ and .B : V �→ M ′, and introducing two bilinear and bounded 
forms .a : V × V �→ R and .b : V × M �→ R by setting 

. 
a(w, v) = 〈Aw, v〉 ∀ w, v ∈ V

b(w,ψ) = 〈Bw,ψ〉 ∀ w ∈ V, ψ ∈ M ,

where .〈·, ·〉 are the duality pairings between V and . V ′ and M and . M ′ (we use the 
same notation for both of them, and the specific context will permit to identify which 
duality pairing is considered). As a consequence, one can also see that . BT : M �→
V ′ is defined as 

. 〈BT μ, v〉 = b(v, μ) = 〈Bv,μ〉 ∀ μ ∈ M, v ∈ V .

We will present and analyze the problem in terms of the operators A, B and . BT .
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Before going on, a clearer picture of the situation in the infinite dimensional case 
can come from a more direct proof of the existence of a solution to problem (8.2). 
We can devise a procedure that have three steps, as described here below. 

1. Find a solution .uG ∈ Rn of .BuG = G: this requires that the range of B, namely, 
the space .R(B) = {μ ∈ Rm | ∃ v ∈ Rn such that μ = Bv}, satisfies .R(B) = Rm. 

2. Find .û ∈ Rn solution to 

. 

{
Aû = −BT λ + F − AuG

Bû = 0 .

This would require the knowledge of . λ. However, if we project the first equation 
on the kernel .N(B) we find that 

. ̂u ∈ N(B) : (Aû, v) = −(BT λ, v)︸ ︷︷ ︸
=−(λ,Bv)=0

+(F − AuG, v) ∀ v ∈ N(B) ,

a problem where . λ is no longer present. For solvability, here a sufficient 
assumption is that A is positive definite on .N(B). 

3. Find a solution .λ ∈ Rm to 

. BT λ = F − AuG − Aû .

Here we have, by the second step, .(F − AuG − Aû, v) = 0 for all .v ∈ N(B), 
therefore the needed property is that .R(BT ) = N(B)⊥. 

In the finite dimensional case we know that the property .R(BT ) = N(B)⊥ is 
always satisfied, as well as .R(B) = N(BT )⊥ (see Exercise 7.2). Thus the existence 
of a solution to problem (8.2) follows by assuming that A is positive definite on 
.N(B) and that .N(BT ) = {0}, so that .R(B) = N(BT )⊥ = Rm. 

In this respect, the situation at the infinite dimensional level is somehow different. 
First, for a linear and bounded operator .K : X �→ Y , X and Y Hilbert spaces, it is 
no longer true that .R(K) = N(KT )⊥, as in general the range .R(K) is not a closed 
subspace in Y (see Sect. 3.1, item 5, and Exercise 7.3; in particular, in the latter it is 
proved that .R(K)⊥ = N(KT ) and .R(K) ⊂ R(K) = (R(K)⊥)⊥ = N(KT )⊥, thus 
the equality in this last relation is true if and only if .R(K) is closed in Y ). Moreover, 
here we have to deal with operators .B : V �→ M ′ and .BT : M �→ V ′, . V ′ and . M ′
being the dual spaces of V and M , respectively, and it is more suitable to focus in a 
more precise way on this specific situation. 

Thus we start with a definition. 

Definition 8.1 The polar set of .N(B) is 

. N(B)� = {g ∈ V ′ | 〈g, v〉 = 0 ∀ v ∈ N(B)} .

As seen in Exercise 8.1, .N(B)� can be identified with a suitable dual space.
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Exercise 8.1 .N(B)� can be isometrically identified with the dual of .N(B)⊥. 

We are now in a position to “translate” conditions 1, 2 and 3 for the infinite 
dimensional case. With respect to condition 2, when considering the Lax–Milgram 
theorem 2.1 we have already seen that a natural extension of the assumption that the 
matrix A is positive definite is that the operator .A : V �→ V ′ is coercive, namely, 
there exists .α > 0 such that .〈Av, v〉 ≥ α‖v‖2V for all .v ∈ V . However, we have 
seen in Remark 8.3 that in the present case it could be sufficient to assume that 
coerciveness is satisfied only in the kernel of B, namely, it holds . 〈Av, v〉 ≥ α‖v‖2V
for all .v ∈ N(B) = {v ∈ V | Bv = 0}. 

A remark is in order about condition 3: since the operator A takes values in 
the dual space . V ′, the relation .R(BT ) = N(B)⊥ clearly has to be replaced by 
.R(BT ) = N(B)�. 

Conditions 1 and 3 are strictly related. In fact, by a suitable version of the closed 
range theorem (see Yosida [28, Theorem 1, p. 205]) we know that 

Theorem 8.4 (Closed Range) Let .B : V �→ M ′ be a linear and bounded operator, 
where V and M are Hilbert spaces and . M ′ is the dual space of M . Denote by 
.BT : M �→ V ′ the adjoint operator of B, . V ′ being the dual space of V . Then 

(i) The range .R(B) is closed in . M ′ if and only if the range .R(BT ) is closed in . V ′. 
(ii) The range .R(B) is closed in . M ′ if and only if .R(B) = N(BT )�. 
(iii) The range .R(BT ) is closed in . V ′ if and only if .R(BT ) = N(B)�. 

It is now easy to see that, for repeating the finite dimensional existence procedure, 
it is sufficient to assume that A is coercive on .N(B), .N(BT ) = {0} and . R(BT )

is closed in . V ′. In fact, in this case from (i) we have that .R(B) is closed in . M ′, 
hence from (ii) we see that .R(B) = N(BT )� = M ′ and finally from (iii) we obtain 
.R(BT ) = N(B)�. Moreover, from the coerciveness of A in .N(B) and . N(BT ) = {0}
it follows that the solution is unique. 

To this end, the key point is the following result. 

Proposition 8.2 Suppose that there exists .β > 0 such that 

.∀ μ ∈ M ∃ vμ ∈ V, vμ �= 0 : 〈BT μ, vμ〉 ≥ β‖μ‖M‖vμ‖V . (8.7) 

Then .N(BT ) = {0} and .R(BT ) is closed in . V ′. 

Proof Condition (8.7) clearly says that .N(BT ) = {0}. Moreover, in Theorem 2.1 
we have already presented an argument that shows that .R(BT ) is closed in . V ′. Let  
us repeat it here for the ease of the reader. From (8.7) we see that for all .μ ∈ M it 
holds 

.‖BT μ‖V ′ = sup
v∈V,v �=0

〈BT μ, v〉
‖v‖V

≥ 〈BT μ, vμ〉
‖vμ‖V

≥ β‖μ‖M . (8.8)
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Suppose that .BT μk → ϕ in . V ′, thus .BT μk is a Cauchy sequence in . V ′ and by 
condition (8.8) . μk is a Cauchy sequence in M . Since M is a Hilbert space we find 
.μk → μ0 in M and by the continuity of .BT it follows .BT μk → BT μ0, hence 
.ϕ = BT μ0. ��
Remark 8.4 Condition (8.7) is called inf–sup condition since it can be rewritten as 

. inf
μ∈M,μ�=0

(
1

‖μ‖M

sup
v∈V,v �=0

〈BT μ, v〉
‖v‖V

)
= inf

μ∈M,μ�=0
sup

v∈V,v �=0

〈BT μ, v〉
‖μ‖M‖v‖V

≥ β > 0 .

Exercise 8.2 The inf–sup condition (8.7) is equivalent to each one of the following 
conditions: 

(a) The operator . BT is an isomorphism from M onto .N(B)� and 

. ∃ β > 0 : ‖BT μ‖V ′ ≥ β‖μ‖M ∀ μ ∈ M .

(b) The operator B is an isomorphism from .N(B)⊥ onto . M ′ and 

. ∃ β > 0 : ‖Bv‖M ′ ≥ β‖v‖V ∀ v ∈ N(B)⊥ .

For the solution of Exercise 8.2 it is useful to use the following result: 

Exercise 8.3 Let V be a Hilbert space and .F ∈ V ′. Show that the norm . ‖F‖V ′
defined as 

. ‖F‖V ′ = sup
v∈V,v �=0

〈F, v〉
‖v‖V

is indeed equal to 

. ‖F‖V ′ = max
v∈V,v �=0

〈F, v〉
‖v‖V

,

namely, there is .vF ∈ V , .vF �= 0, such that 

. ‖F‖V ′ = 〈F, vF 〉
‖vF ‖V

.

We are now in a position to prove the existence and uniqueness theorem we are 
interested in. The problem reads: for each .F ∈ V ′, .G ∈ M ′, find a unique solution 
.(u, ϕ) ∈ V × M of 

.

{
Au + BT ϕ = F

Bu = G .
(8.9)
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Theorem 8.5 Let A be a linear and bounded operator from V to . V ′, with .‖A‖ = γ . 
Let B be a linear and bounded operator from V in . M ′. Assume that the operator A 
is coercive over the kernel of the operator B, namely, 

.∃ α > 0 such that 〈Av, v〉 ≥ α‖v‖2V ∀ v ∈ N(B) , (8.10) 

and that the inf–sup condition (8.7) is satisfied, namely, 

. ∃ β > 0 such that ∀ μ ∈ M ∃ vμ ∈ V, vμ �= 0 : 〈BT μ, vμ〉 ≥ β‖μ‖M‖vμ‖V .

(8.11) 

Then there exists a unique solution .(u, ϕ) to (8.9). Moreover 

. ‖u‖V ≤ 1

α
‖F‖V ′ + 1

β

(
1 + γ

α

)
‖G‖M ′

. ‖ϕ‖M ≤ 1

β

(
1 + γ

α

)
‖F‖V ′ + γ

β2

(
1 + γ

α

)
‖G‖M ′ .

Proof Uniqueness is easy: from .F = 0 and .G = 0 it follows .Bu = 0 and from the 
first equation we get 

. 0 = 〈Au, u〉 + 〈BT ϕ, u〉 = 〈Au, u〉 + 〈ϕ, Bu︸︷︷︸
=0

〉 ,

thus .u = 0 from condition (8.10), as  .u ∈ N(B). Hence it follows .BT ϕ = 0 and, 
taking .μ = ϕ in condition (8.11), we obtain .‖ϕ‖M‖vϕ‖V = 0 for .vϕ �= 0, thus 
.ϕ = 0. 

Now, from Proposition 8.2 and Theorem 8.4 we know that .R(B) = M ′, thus we 
find .uG ∈ N(B)⊥ such that .BuG = G and moreover 

. ‖uG‖V ≤ 1

β
‖G‖M ′

(see Exercise 8.2 (b)). Then we rewrite problem (8.9) as 

.

{
Aû + BT ϕ = F − AuG

Bû = 0 ,
(8.12) 

with .û = u − uG. Taking the pairing with .v ∈ N(B), we can eliminate . ϕ: we find 

.
〈F − AuG, v〉 = 〈Aû, v〉 + 〈BT ϕ, v〉 = 〈Aû, v〉 + 〈ϕ, Bv︸︷︷︸

= 0

〉 = 〈Aû, v〉 .
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Since we look for .û ∈ N(B), we can apply the Lax–Milgram theorem 2.1 in .N(B), 
where A is coercive by condition (8.10). Then we have a unique solution . ̂u ∈ N(B)

of 

. 〈Aû + AuG − F, v〉 = 0 ∀ v ∈ N(B) ,

satisfying 

. ‖û‖V ≤ 1

α
‖F − AuG‖V ′ .

Setting .u = û + uG, we have that 

. 〈Au − F, v〉 = 0 ∀ v ∈ N(B) ,

thus .(Au − F) ∈ N(B)�. From Proposition 8.2 and Theorem 8.4 there exists a 
unique .ϕ ∈ M such that 

. BT ϕ = F − Au ,

and estimate (8.8) holds, i.e., 

. 

‖ϕ‖M ≤ 1

β
‖BT ϕ‖V ′ = 1

β
‖Au − F‖V ′ ≤ 1

β
(‖Au‖V ′ + ‖F‖V ′)

≤ γ

β
‖u‖V + 1

β
‖F‖V ′ .

Thus .(u, ϕ) is a solution to problem (8.9). Moreover we have 

. 

‖u‖V ≤ ‖û‖V + ‖uG‖V ≤ 1

α
‖F − AuG‖V ′ + ‖uG‖V

≤ 1

α
‖F‖V ′ +

(
1 + γ

α

)
‖uG‖V ≤ 1

α
‖F‖V ′ + 1

β

(
1 + γ

α

)
‖G‖M ′ .

Concerning . ϕ, we easily obtain 

. ‖ϕ‖M ≤ 1

β
‖F‖V ′ + γ

β
‖u‖V ≤ 1

β

(
1 + γ

α

)
‖F‖V ′ + γ

β2

(
1 + γ

α

)
‖G‖M ′ ,

which ends the proof. ��
Exercise 8.4 Give a proof of the Lax–Milgram theorem 2.1 based on the closed 
range theorem 8.4. 

Let us come back now to our Examples 8.2 and 8.3. We want to show that they 
can be written in the general form we have described in Theorem 8.5. The first
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step is the identification of the variational spaces: in case (8.5) we take . u ∈ V =
(H 1

0 (D))n, so that each component of the velocity vector u belongs to .H 1
0 (D), and 

.p ∈ M ⊂ L2(D) (M yet to be determined). The reason of this choice is that 
integrating by parts we obtain 

. 

∫
D

(−ν�u) · vdx =
∫

D

−ν

n∑
k,s=1

(DsDsuk)vkdx

=
∫

D

ν

n∑
k,s=1

DsukDsvkdx −
∫

∂D

ν

n∑
k,s=1

Dsukns vk︸︷︷︸
=0

dSx ,

and the last integral vanishes if .v ∈ (H 1
0 (D))n. Moreover 

. 

∫
D

∇p · vdx = −
∫

D

p div vdx +
∫

∂D

pn · v︸︷︷︸
=0

dSx ,

and again the last integral vanishes if .v ∈ (H 1
0 (D))n, while the first integral has a 

meaning for .p ∈ L2(D). 
Concerning the second equation .div u = 0 in D, it is easily seen that it can be 

simply written in weak form as 

. 

∫
D

(div u) rdx = 0 for each r ∈ L2(D) .

However, here it is worthy to note that, by the divergence theorem C.3, . 
∫
D
div vdx =∫

∂D
v · ndSx = 0 for each .v ∈ (H 1

0 (D))n; namely, .div v is orthogonal to the 
constants. Therefore, it is sufficient to require that the equation above is satisfied 
for each .r ∈ L2∗(D) = {

r ∈ L2(D) | ∫
D

rdx = 0
}
. In conclusion, the right choice 

of the pressure space is .M = L2∗(D). Let us note that in (8.5) the pressure p is 
determined up to an additive constant: thus this choice permits to select a unique 
pressure. 

Let us see now which are the variational spaces in case (8.6). Take the scalar 
product of the first equation in (8.6) by m: integrating in D and integrating by parts 
we obtain 

.

0 =
∫

D

Zq · mdx +
∫

D

∇ϕ · mdx

=
∫

D

Zq · mdx −
∫

D

ϕ divmdx +
∫

∂D

ϕ︸︷︷︸
=0

n · mdSx

=
∫

D

Zq · mdx −
∫

D

ϕ divmdx .
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From the second equation in (8.6) we get, for any . ψ , 

. 

∫
D

(−div q)ψdx = −
∫

D

gψdx .

Thus we need .q,m ∈ (L2(D))n with .div q, .divm ∈ L2(D), and .ϕ,ψ ∈ L2(D). 
Summing up, in this second case (8.6) we have 

. V = H(div;D) = {m ∈ (L2(D))n | divm ∈ L2(D)}

and .M = L2(D). It is easy to see that .H(div;D) is a Hilbert space with respect to 
the scalar product 

.(q,m)H(div;D) =
∫

D

(q · m + div q divm)dx . (8.13) 

Exercise 8.5 Prove that .H(div;D) is a Hilbert space with respect to the scalar 
product (8.13). 

In order to apply Theorem 8.5, let us check if the operator A is coercive over the 
kernel of the operator B. In the first case (8.5) we have .V = (H 1

0 (D))n and 

. 

〈Av, v〉 = ν

∫
D

n∑
k=1

∇vk · ∇vkdx = ν

n∑
k=1

∫
D

|∇vk|2dx

= ν

2

n∑
k=1

∫
D

|∇vk|2dx + ν

2

n∑
k=1

∫
D

|∇vk|2dx

≥ ν

2

n∑
k=1

∫
D

|∇vk|2dx + ν

2CD

n∑
k=1

∫
D

v2kdx

(Poincaré inequality in H 1
0 (D))

≥ α‖v‖2
H 1(D)

where .α = min
(

ν
2 , ν

2CD

)
, and . CD is the Poincaré constant in .H 1

0 (D). 

We have thus seen that for problem (8.5) the operator A is indeed coercive in V , 
and not only on the kernel of B. A natural question then arises: are there interesting 
cases for which the “strong” assumption 

. (Av, v) ≥ α‖v‖2V , α > 0

is not satisfied and we really need a weaker assumption? The answer is yes, as the 
second Example 8.3 shows.
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In fact, in case (8.6) we have .V = H(div;D) and 

. 

〈Am,m〉 =
∫

D

Zm · mdx

≥ α‖m‖2
L2(D)

(Z is positive definite, uniformly in x ∈ D) ,

(8.14) 

but this is not enough as the control on .
∫
D

(divm)2dx is missing. However, we note 
that in this case .Bm = 0 means 

. 

∫
D

divm ψdx = 0

for each .ψ ∈ L2(D); thus it follows at once .divm = 0 in D. Summing up, for m 
satisfying .divm = 0 in D we can rewrite (8.14) as 

. 〈Am,m〉 ≥ α‖m‖2V = α
(
‖m‖2

L2(D)
+ ‖divm‖2

L2(D)︸ ︷︷ ︸
=0

)
,

and we have a control from below in terms of the norm of the space V , namely, 
coerciveness is restored in the closed subspace of V given by .N(B). 

Let us now verify that the condition (8.11) is fulfilled for the Stokes problem (8.5) 
and the first order elliptic system (8.6). Let us start from problem (8.5). We have to  
check that for each .q ∈ L2∗(D), .q �= 0 , we can find .vq ∈ (H 1

0 (D))n, .vq �= 0, such 
that 

. 〈BT q, vq〉 = −
∫

D

q div vq dx ≥ β‖q‖L2(D)‖vq‖H 1(D) ,

with a positive constant . β not depending on q. Since q is average-free, i.e., 
.
∫
D

qdx = 0, it is known that there exists .vq ∈ (H 1
0 (D))n such that .div vq = −q in 

D (with .vq �= 0, as .q �= 0) and 

. ‖vq‖H 1(D) ≤ c∗‖q‖L2(D)

(see Remark 8.5 here below). 

Remark 8.5 There are many ways to prove the result here above, and all of them 
require some work. Just to quote a classical result, it is possible to furnish an explicit 
formula, at least for a (connected) bounded open set that is star-shaped with respect 
to all the points of a ball .B0 = B(x0, r0) ⊂⊂ D, .x0 ∈ D, .r0 > 0. In this geometrical
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case, take .w ∈ C∞
0 (B0) with .

∫
B0 w dx = 1. For  .q ∈ C∞

0 (D) with .
∫
D

q dx = 0, 
define for . i = 1, . . . , n

. (vq)i(x)=−
∫

D

q(y)

[
xi − yi

|x − y|n
∫ +∞

0
w

(
x + t

x − y

|x − y|
)

(|x − y| + t)n−1 dt

]
dy .

In 1979 Mikhail E. Bogovskii1 has proved that .vq ∈ (H 1
0 (D))n and . div vq = −q

in D, with .‖vq‖H 1(D) ≤ c∗‖q‖L2(D). Since a bounded, connected, open set D with 
Lipschitz continuous boundary . ∂D is the finite union of domains that are star-shaped 
with respect to all the points of a ball, the result for this general geometrical situation 
is obtained by localization. Then by a density argument the result is also extended 
to all .q ∈ L2(D) with .

∫
D

q dx = 0. 

Let us use the function . vq thus determined for checking condition (8.11). We  
have 

. −
∫

D

q div vqdx =
∫

D

q2dx = ‖q‖L2(D)‖q‖L2(D) ≥ ‖q‖L2(D)

1

c∗
‖vq‖H 1(D) ,

thus we get .β = 1/c∗, independent of q. 
Let us come now to problem (8.6). For any .q ∈ L2(D), take the solution . ϕq ∈

H 1
0 (D) of the weak form of the homogeneous Dirichlet problem 

. 

{
−�ϕq = q in D

ϕq = 0 on ∂D ,

and set .vq = ∇ϕq . We have  

. − div vq = −�ϕq = q in D

and 

. ‖ϕq‖H 1(D) ≤ c∗‖q‖L2(D)

by the Lax–Milgram theorem 2.1. Thus 

.‖vq‖2H(div;D) = ‖vq‖2
L2(D)

+ ‖ div vq︸ ︷︷ ︸
−q

‖2
L2(D)

≤ c2∗‖q‖2
L2(D)

+ ‖q‖2
L2(D)

.

1 Bogovskii [3]. 
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Hence 

. ‖vq‖H(div;D) ≤
√

c2∗ + 1 ‖q‖L2(D) ,

and the thesis now follows as in the previous case. 

8.2 Galerkin Numerical Approximation 

Let us now give a look at the Galerkin numerical approximation. In the present case 
we change the notation used in Sect. 7.5, and we take .Vh ⊂ V , .Mh ⊂ M , two finite 
dimensional subspaces of dimension .NV

h and . NM
h , respectively, where .h > 0 is a 

parameter; for .h → 0+ one has .NV
h → +∞ and .NM

h → +∞. 
Writing the saddle point problem in terms of the bilinear forms, we want to solve 

the finite dimensional problem 

. uh ∈ Vh , ϕh ∈ Mh :
{

a(uh, vh) + b(vh, ϕh) = 〈F, vh〉 ∀ vh ∈ Vh

b(uh, ψh) = 〈G,ψh〉 ∀ ψh ∈ Mh .

(8.15) 

The assumptions assuring well-posedness are: 

.∃ αh > 0 : a(vh, vh) ≥ αh‖vh‖2V ∀ vh ∈ Nh (8.16) 

where .Nh = {vh ∈ Vh | b(vh, ψh) = 0 ∀ ψh ∈ Mh} (coerciveness of .a(·, ·) on the 
discrete kernel of .b(·, ·)) and 

. ∃ βh > 0 : ∀ μh ∈ Mh, ∃ v̂h ∈ Vh , v̂h �= 0 : b(v̂h, μh) ≥ βh‖μh‖M‖v̂h‖V

(8.17) 

(discrete inf–sup condition for .b(·, ·)). In this case, in fact, we can repeat the 
procedure that has led to determine the solution .(u, ϕ) to problem (8.9). 

Note that these two assumptions are not a consequence of conditions (8.10) and 
(8.11). Indeed in general .Nh �⊂ N(B) (as .Mh is a proper closed subspace of M). 
Moreover, from condition (8.11) we know that for each .μh ∈ Mh ⊂ M we can find 
.v̂ ∈ V , .v̂ �= 0, satisfying the desired estimate, but not .v̂h ∈ Vh, .v̂h �= 0. 

8.2.1 Error Estimates 

Under assumptions (8.16) and (8.17) it is possible to prove the convergence of the 
Galerkin approximation method. This can be done as follows. The first step is a
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consistency property: since .Vh ⊂ V , we can take a test function .vh ∈ Vh in (8.9). 
Thus the first equations in (8.15) and (8.9) give 

.a(uh, vh) + b(vh, ϕh) = 〈F, vh〉 = a(u, vh) + b(vh, ϕ) . (8.18) 

Now we want to make appearing a difference between the approximate solution . ϕh

and a test function .μh ∈ Mh: subtracting from (8.18) .b(vh, μh) we find 

.a(uh, vh) + b(vh, ϕh − μh) = a(u, vh) + b(vh, ϕ − μh) . (8.19) 

A similar procedure is in order for the approximate solution . uh: take  .v∗
h ∈ Vh such 

that .b(v∗
h, ψh) = 〈G,ψh〉 for each .ψh ∈ Mh. Note that any element of the form 

.uh + wh, .wh ∈ Nh, has this property. We will denote by .NG
h the affine subspace 

.{ω∗
h ∈ Vh | ω∗

h = uh + wh,wh ∈ Nh}: we have thus selected .v∗
h ∈ NG

h . Subtracting 
.a(v∗

h, vh) we get 

.a(uh − v∗
h, vh) + b(vh, ϕh − μh) = a(u − v∗

h, vh) + b(vh, ϕ − μh) . (8.20) 

Taking now .vh = uh − v∗
h, it follows  

. 

αh‖uh − v∗
h‖2V ≤ a(uh − v∗

h, uh − v∗
h)

= −b(uh − v∗
h, ϕh − μh) + a(u − v∗

h, uh − v∗
h)

+ b(uh − v∗
h, ϕ − μh) .

Since 

. b(uh − v∗
h, ψh) = 〈G,ψh〉 − 〈G,ψh〉 = 0 ∀ ψh ∈ Mh ,

the term .b(uh − v∗
h, ϕh − μh) vanishes. Therefore we have found 

. ‖uh − v∗
h‖�2V ≤ 1

αh

(
γ ‖u − v∗

h‖V������‖uh − v∗
h‖V + ‖b‖������‖uh − v∗

h‖V ‖ϕ − μh‖M

)
.

Thus 

.

‖u − uh‖V ≤ ‖u − v∗
h‖V + ‖uh − v∗

h‖V

≤ ‖u − v∗
h‖V + γ

αh

‖u − v∗
h‖V + ‖b‖

αh

‖ϕ − μh‖M

≤
(
1 + γ

αh

)
‖u − v∗

h‖V + ‖b‖
αh

‖ϕ − μh‖M ,

(8.21) 

for each .v∗
h ∈ NG

h and for each .μh ∈ Mh.
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For a fixed .vh ∈ Vh consider now the linear functional .ψh �→ b(u − vh, ψh), 
.ψh ∈ Mh . From condition (8.17) we know that there exists a unique .zh ∈ N⊥

h such 
that 

. b(zh, ψh) = b(u − vh, ψh) ∀ ψh ∈ Mh ,

with 

. ‖zh‖V ≤ 1

βh

sup
ψh∈Mh,ψh �=0

b(u − vh, ψh)

‖ψh‖M

≤ ‖b‖
βh

‖u − vh‖V .

Setting .w∗
h = zh + vh, we see that 

. b(w∗
h, ψh) = b(zh + vh, ψh) = b(u,ψh) = 〈G,ψh〉 ∀ ψh ∈ Mh .

Thus .w∗
h ∈ NG

h and 

. 

inf
ω∗

h∈NG
h

‖u − ω∗
h‖V ≤ ‖u − w∗

h‖V ≤ ‖u − vh‖V + ‖zh‖V

≤
(
1 + ‖b‖

βh

)
‖u − vh‖V ∀ vh ∈ Vh .

In conclusion, inserting this estimate in (8.21) we have found the error estimate 

. ‖u − uh‖V ≤
(
1 + γ

αh

)(
1 + ‖b‖

βh

)
inf

vh∈Vh

‖u − vh‖V + ‖b‖
αh

inf
μh∈Mh

‖ϕ − μh‖M .

(8.22) 

The estimate of the error .‖ϕ − ϕh‖M is obtained as follows: by condition (8.17), 
in correspondence with .ϕh − μh we can find .vh ∈ Vh, .vh �= 0, such that 

.b(vh, ϕh − μh) ≥ βh‖vh‖V ‖ϕh − μh‖M, . (8.23) 

On the other hand from (8.18) we have .a(u − uh, vh) + b(vh, ϕ − ϕh) = 0 for each 
.vh ∈ Vh, hence 

.

b(vh, ϕh − μh) = b(vh, ϕh − ϕ) + b(vh, ϕ − μh)

= a(u − uh, vh) + b(vh, ϕ − μh) .



8.2 Galerkin Numerical Approximation 189

Thuse from condition (8.23) we have 

. 

‖ϕh − μh‖M ≤ 1

βh

a(u − uh, vh) + b(vh, ϕ − μh)

‖vh‖V

≤ γ

βh

‖u − uh‖V + ‖b‖
βh

‖ϕ − μh‖M .

Finally, we have found 

. 

‖ϕ − ϕh‖M ≤ ‖ϕ − μh‖M + ‖ϕh − μh‖M

≤
(
1 + ‖b‖

βh

)
‖ϕ − μh‖M + γ

βh

‖u − uh‖V ∀ μh ∈ Mh ,

hence 

.‖ϕ − ϕh‖M ≤
(
1 + ‖b‖

βh

)
inf

μh∈Mh

‖ϕ − μh‖M + γ

βh

‖u − uh‖V , (8.24) 

which, together with (8.22), is the error estimate we wanted to prove. 

Remark 8.6 It is evident that a speed of convergence that only depends on the 
approximation properties of . Vh in V and of .Mh in M is achieved if . αh ≥ α > 0
and .βh ≥ β > 0, uniformly with respect to the parameter h. Thus the art of the 
approximation here is to find finite dimensional subspaces . Vh and .Mh such that 
conditions (8.16) and (8.17) are satisfied uniformly with respect to h. 

8.2.2 Finite Element Approximation 

The uniform approximation of V and M by . Vh and .Mh is possible for many 
interesting cases, for instance for .V = (H 1

0 (D))n and .M = L2∗(D) or . V =
H(div;D) and .M = L2(D), the spaces related to Examples 8.2 and 8.3 that we 
have considered here. To illustrate this fact, let us focus on a very important type of 
Galerkin approximation: the finite element method. 

As already noted in Remark 7.7, the main ingredients of a finite element 
approximation are the facts that the domain D is the union of a finite number of 
non-overlapping subsets T of simple shape (say, triangles or tetrahedra) and that the 
finite dimensional spaces . Vh and .Mh are given by functions whose restrictions to 
the elements T are polynomials. The parameter h represents the mesh size, namely, 
the maximum diameter of the elements T . 

Let us show some examples of finite elements that satisfy the two conditions 
(8.16) and (8.17), focusing on the two-dimensional case. A first example for the 
Stokes problem described in Example 8.2 is the .P2-. P0 element, in which the two 
components of the velocity are piecewise-quadratic polynomials and the pressure
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Fig. 8.2 The degrees of freedom of the .P2-. P0 element (left) and of the “mini-element” .(P1⊕B)-. P1
(right): point values for the velocity and for the pressure 

Fig. 8.3 The degrees of freedom of the Raviart–Thomas element: fluxes for the vector . uh and 
point values for scalar . ϕh

is a piecewise-constant, therefore a discontinuous function; its degrees of freedom 
are point values, at the nodes drawn in Fig. 8.2, left. A second example is the 
“mini-element” .(P1 ⊕ B)-. P1, in which the two components of the velocity . uh are 
linear combination of first order polynomials and of a fixed third order polynomial 
vanishing on the sides (this is called “a bubble”), and the pressure . ϕh is a continuous 
piecewise-linear polynomial; its degrees of freedom are point values, at the nodes 
drawn in Fig. 8.2, right. 

For the first order elliptic system presented in Example 8.3 a classical instance is 
the Raviart–Thomas element, for which in each element T the vector field . uh is of 
the form .a+bx, with .a ∈ R2 and .b ∈ R, and the scalar . ϕh is a piecewise constant; its 
degrees of freedom are point values of the scalar . ϕh, at the node drawn in Fig. 8.3, 
and fluxes of the vector . uh across the sides of T , i.e., integrals of .uh · n on the sides. 

For all these elements it is proved that the convergence in .V × M of the 
approximate solutions to the exact solution is linear with respect to the mesh size h. 

8.3 Exercises 

Exercise 8.1 N(B)� can be isometrically identified with the dual of N(B)⊥. 

Solution Take g ∈ (N(B)⊥)′, we define ĝ ∈ V ′ by setting 

.〈ĝ, v〉 = 〈g, P⊥v〉 ∀ v ∈ V,
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where P⊥v is the orthogonal projection on N(B)⊥. Clearly ĝ ∈ N(B)�, as  P⊥v = 
0 for  v ∈ N(B). The  map  g �→ ĝ from (N(B)⊥)′ to N(B)� is clearly one-to-one, as 
ĝ = g on N(B)⊥. It is also onto: in fact, taking g̃ ∈ N(B)�, we need to verify that 
there exists g∗ ∈ (N(B)⊥)′ such that ĝ∗ = g̃. Let us define g∗ ∈ (N(B)⊥)′ by 

. 〈g∗, w〉 = 〈g̃, w〉 ∀ w ∈ N(B)⊥ .

Thus we have g∗ = g̃ on N(B)⊥, and also ĝ∗ = g∗ on N(B)⊥, thus ĝ∗ = g̃ on 
N(B)⊥. On the other hand, ĝ∗ = 0 and g̃ = 0 on  N(B), as both of them belong to 
N(B)�, thus ĝ∗ = g̃ on V . 

Finally, for each v ∈ V , v �= 0, one has 〈ĝ, v〉 =  0 if  v ∈ N(B), while for 
v ∈ N(B)⊥ 

. 
〈ĝ, v〉
‖v‖ = 〈g, v〉

‖v‖ ≤ sup
w∈N(B)⊥,w �=0

〈g,w〉
‖w‖ = ‖g‖ ,

thus ‖ĝ‖ ≤ ‖g‖. Moreover, for w ∈ N(B)⊥, w �= 0, it holds 

. 
〈g,w〉
‖w‖ = 〈ĝ, w〉

‖w‖ ≤ sup
v∈V,v �=0

〈ĝ, v〉
‖v‖ = ‖ĝ‖ .

Exercise 8.2 The inf–sup condition (8.7) is equivalent to each one of the following 
conditions: 

(a) The operator BT is an isomorphism from M onto N(B)� and 

. ∃ β > 0 : ‖BT μ‖V ′ ≥ β‖μ‖M ∀ μ ∈ M .

(b) The operator B is an isomorphism from N(B)⊥ onto M ′ and 

. ∃ β > 0 : ‖Bv‖M ′ ≥ β‖v‖V ∀ v ∈ N(B)⊥ .

Solution (b) ⇒ (a). From (b) we know that R(B) = M ′ is closed, so that by the 
closed range theorem 8.4 R(BT ) is closed in V ′ and R(BT ) = N(B)�, R(B) = 
N(BT )� = M ′, thus N(BT ) = {0}. In conclusion, BT is an isomorphism from 
M onto N(B)�. The estimate in (b) says that ‖B−1‖L(M ′;N(B)⊥) ≤ 1/β, while the 
estimate in (a) says that ‖(BT )−1‖L(N(B)�;M) ≤ 1/β. Thus they are equivalent, 
since 

. ‖B−1‖L(M ′;N(B)⊥) = ‖(BT )−1‖L(N(B)�;M) ,

as it can be easily verified by looking at the definition of adjoint operator and taking 
into account that (B−1)T = (BT )−1 and the identification N(B)� = (N(B)⊥)′.



192 8 Saddle Points Problems

(a) ⇒ (8.7). It is enough to note that 

. ‖BT μ‖V ′ = max
v∈V,v �=0

〈BT μ, v〉
‖v‖V

(see Exercise 8.3). 
(8.7) ⇒ (b). By Proposition 8.2 we know that (8.8) is satisfied, R(BT ) is closed 

in V ′ and N(BT ) = {0}, so that, by the closed range theorem 8.4, R(B) = M ′. 
By decomposing V into the two ortoghonal subspaces N(B)  and N(B)⊥, it is easy  
to check that also the restriction of B to N(B)⊥ is onto M ′. Therefore B is an 
isomorphism from N(B)⊥ onto M ′. Finally, (8.8) is equivalent to the estimate in 
(a), which, as already seen, is equivalent to the estimate in (b). 

Exercise 8.3 Let V be a Hilbert space and F ∈ V ′. Show that the norm ‖F‖V ′
defined as 

. ‖F‖V ′ = sup
v∈V,v �=0

〈F, v〉
‖v‖V

is indeed equal to 

. ‖F‖V ′ = max
v∈V,v �=0

〈F, v〉
‖v‖V

,

namely, there is vF ∈ V , vF �= 0, such that 

. ‖F‖V ′ = 〈F, vF 〉
‖vF ‖V

.

Solution We can assume that F �= 0, otherwise the result is trivial. By the Riesz 
representation theorem 3.1 we know that there exists a unique vF ∈ V such that
〈F,  v〉 =  (vF , v)V for any v ∈ V . Moreover, ‖F‖V ′ = ‖vF ‖V : in fact 

. 〈F, v〉 = (vF , v)V ≤ ‖vF ‖V ‖v‖V ∀ v ∈ V ,

which implies ‖F‖V ′ ≤ ‖vF ‖V . On the other hand 

. 
〈F, vF 〉
‖vF ‖V

= ‖vF ‖2V
‖vF ‖V

= ‖vF ‖V ≤ ‖F‖V ′ .

Thus ‖F‖V ′ = ‖vF ‖V = 〈F,vF 〉
‖vF ‖V 

. 

Exercise 8.4 Give a proof of the Lax–Milgram theorem 2.1 based on the closed 
range theorem 8.4.
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Solution For any w ∈ V define the linear and bounded operator Q : V �→ V ′ as 

. 〈Qw, v〉 = B(w, v) ∀ v ∈ V .

As a consequence we have that QT : V �→ V ′ is defined as 〈QT w, v〉 =  B(v, w) for 
all v ∈ V . The existence and uniqueness result in the Lax–Milgram theorem 2.1 has 
been thus transformed into the existence of a unique u ∈ V such that Qu = F ∈ V ′, 
namely, in showing that Q is one-to-one and onto, or, equivalently, in showing that 
N(Q)  = {0} and R(Q) = V ′. The coerciveness assumption on the bilinear form 
B(·, ·) straightforwardly shows that N(Q)  = {0} and N(QT ) = {0}. Moreover, by 
proceeding as in step 4 of the proof of the Lax–Milgram theorem 2.1, we obtain 
that the range of Q is closed. Therefore the closed range theorem 8.4 gives that 
R(Q) = N(QT )� = V ′ and the proof is completed. 

Exercise 8.5 Prove that H(div;D) is a Hilbert space with respect to the scalar 
product (8.13). 

Solution Take a Cauchy sequence qk in H(div; D): in particular qk and div qk are 
Cauchy sequences in (L2(D))n and L2(D), respectively, thus we have that qk → q 
and div qk → w in (L2(D))n and in L2(D), respectively. From the definition of 
weak divergence we know that div qk satisfies 

. 

∫
D

div qk ϕdx = −
∫

D

qk · ∇ϕdx ∀ ϕ ∈ C∞
0 (D) .

Passing to the limit we find 

. 

∫
D

w ϕdx = −
∫

D

q · ∇ϕdx ∀ ϕ ∈ C∞
0 (D) ,

which means that w ∈ L2(D) is the weak divergence of q. As a consequence we 
have proved that the sequence qk converges to q in H(div; D).



Chapter 9 
Parabolic PDEs 

Parabolic equations are equations of the form 

. 
∂u

∂t
+ Lu = f in D × (0, T ) ,

where L is an elliptic operator, whose coefficients can depend on t . The “prototype” 
is the heat equation 

. 
∂u

∂t
− �u = f in D × (0, T ) .

Since with respect to the space derivative the operator . ∂
∂t

+ L is associated to an 
elliptic operator, it is necessary to add boundary conditions (for instance, one of the 
four types we have considered before: Dirichlet, Neumann, mixed, Robin). Since 
with respect to the time derivative the operator . ∂

∂t
+ L is a first order operator, it is 

necessary to add one initial condition on u, the value of  u in D at .t = 0. 
In the first two sections of this chapter we present the abstract variational 

theory related to parabolic equations and its application to various examples of 
initial-boundary value problems, including linear Navier–Stokes equations. The last 
section is devoted to an important property of the solutions: the maximum principle. 

9.1 Variational Theory 

Before considering some specific problems, let us present an abstract theory for 
first order evolution equations in Hilbert spaces. First of all we need to clarify 
some theoretical results concerning functions with values in an infinite dimensional 
Hilbert space. We will not enter in depth this topic, limiting ourselves to give some 
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general ideas. A complete description of the functional analysis framework can be 
found in Dautray and Lions [6, Chapter XVIII, §1]. 

We start with some definitions. Let X be an Hilbert space: we set, for . 1 ≤ p ≤
+∞, 

. 
Lp(0, T ;X) = {v : (0, T ) �→ X | t �→ v(t) is measurable in (0, T )

and t �→ ‖v(t)‖X is a Lp- function in (0, T )}

. C0([0, T ];X) = {v : [0, T ] �→ X | t �→ v(t) is a C0- function in [0, T ]} .

The norms in these spaces are, respectively, 

. ‖v‖Lp(0,T ;X) =
( ∫ T

0
‖v(t)‖p

Xdt
)1/p

, ‖v‖C0([0,T ];X) = max
t∈[0,T ] ‖v(t)‖X .

For .p = 2 the scalar product of the Hilbert space .L2(0, T ;X) is defined as 

. (v,w)L2(0,T ;X) =
∫ T

0
(v(t), w(t))Xdt ,

having as usual denoted by .(·, ·)X the scalar product in X. 
Then we define the weak derivative with respect to .t ∈ [0, T ]. 

Definition 9.1 We say that .q ∈ L1
loc(0, T ;X) is the weak derivative of . u ∈

L1
loc(0, T ;X) if, as elements of the space X, 

. 

∫ T

0
�(t)q(t)dt = −

∫ T

0
�′(t)u(t)dt

for each .� ∈ C∞
0 (0, T ), or, equivalently, if 

. 

∫ T

0
�(t)(q(t), v)Xdt = −

∫ T

0
�′(t)(u(t), v)Xdt

for each .v ∈ X and .� ∈ C∞
0 (0, T ). In this case we write .u′ = q, as an element of 

.L1
loc(0, T ;X). 

Now it is a standard task to define the Sobolev spaces .W 1,p(0, T ;X). We write, as 
usual, .H 1(0, T ;X) = W 1,2(0, T ;X). 

An important theorem is the following: 

Theorem 9.1 If .u ∈ H 1(0, T ;X), then .u ∈ C0([0, T ];X) and 

.‖u‖C0([0,T ];X) ≤ CT ‖u‖H 1(0,T ;X) .
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This is not enough for our needs, and we are going to present a similar 
theorem which is even more important. Before giving its statement, we need some 
preliminary considerations. First of all the following result holds: 

Exercise 9.1 Suppose that V and H are two Hilbert spaces, that V is immersed 
in H with continuity and that V is dense in H . Then . H ′, the dual space of H , is  
immersed with continuity in . V ′, the dual space of V . Moreover, . H ′ is dense in . V ′. 

Identifying H with . H ′ we can thus write 

. V ↪→ H ≈ H ′ ↪→ V ′ ,

or simply .V ⊂ H ⊂ V ′. 
We can now furnish a definition of the derivative of u with respect to t which is 

weaker than that given in 9.1. Suppose that .u ∈ L1
loc(0, T ;H); we say that there 

exists the derivative .u′ ∈ L1
loc(0, T ;V ′) if there exists .q ∈ L1

loc(0, T ;V ′) such that 

. 

∫ T

0
q(t)�(t)dt = −

∫ T

0
u(t)�′(t)dt

for each .� ∈ C∞
0 (0, T ). This equality has an element of . V ′ at the left-hand side 

and an element of H at the right-hand side; it can be more explicitly specified by 
writing 

. 

〈 ∫ T

0
q(t)�(t)dt, v

〉
= −

〈 ∫ T

0
u(t)�′(t)dt, v

〉

= −
∫ T

0
〈u(t), v〉�′(t)dt

(•)= −
∫ T

0
(u(t), v)H �′(t)dt ∀ v ∈ V ,

where .〈·, ·〉 denotes the duality pairing between V and . V ′ and .(·, ·)H the scalar 
product in H . Thus 

. 

∫ T

0
〈q(t), v〉�(t)dt = −

∫ T

0
(u(t), v)H �′(t)dt ∀ v ∈ V .

Therefore, if for .u ∈ L1
loc(0, T ;H) we know that .u′ ∈ L1

loc(0, T ;V ′), we have  

.

∫ T

0
〈u′(t), v〉�(t)dt = −

∫ T

0
(u(t), v)H �′(t)dt ∀ v ∈ V ,
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which can be also rewritten as 

.
d

dt
(u(t), v)H = 〈u′(t), v〉 (9.1) 

for almost all .t ∈ [0, T ] and all .v ∈ V , where .
d
dt

(u(t), v)H has to be intended as the 
weak derivative with respect to t of the real valued function .t �→ (u(t), v)H . From  
now on the notation . u′ will always refer to the weak derivative of u with respect to t . 

Remark 9.1 A remark on . (•). Due to the identification of . H ′ with H , we have that 
.ω ∈ H implies .ω ∈ V ′ and in particular 

. 〈ω, v〉V ′,V = 〈ω, v〉H ′,H = (ω, v)H ∀ v ∈ V .

We are now ready to state the theorem we will often use in the sequel. 

Theorem 9.2 Let H be a separable Hilbert space, V a separable Hilbert space 
immersed with continuity and dense in H . Let .u ∈ L2(0, T ;V ) with . u′ ∈
L2(0, T ;V ′). Then .u ∈ C0([0, T ];H) and 

. ‖u‖C0([0,T ];H) ≤ CT

(‖u‖L2(0,T ;V ) + ‖u′‖L2(0,T ;V ′)
)

.

Moreover, if .v ∈ L2(0, T ;V ) with .v′ ∈ L2(0, T ;V ′) for each .t, s ∈ [0, T ] the 
integration by parts formula holds 

. 

∫ t

s

〈u′(τ ), v(τ )〉dτ = −
∫ t

s

〈v′(τ ), u(τ )〉dτ + (u(t), v(t))H − (u(s), v(s))H .

Also, for almost all . t ∈ [0, T ]

. 
d

dt
(u(t), v(t))H = 〈u′(t), v(t)〉 + 〈v′(t), u(t)〉

and 

. 
1

2

d

dt
‖u(t)‖2

H = 〈u′(t), u(t)〉 .

9.2 Abstract Problem 

Let us formulate now the abstract problem we want to solve. Suppose we have a 
separable Hilbert space H , a separable Hilbert space V such that .V ↪→ H with 
continuous and dense immersion. Assume that we are given with .u0 ∈ H and .F ∈



9.2 Abstract Problem 199

L2(0, T ; V ′) and with a family of bilinear forms .a(t; · , ·), defined in .V × V and 
valued in . R for almost each .t ∈ [0, T ]. 

We want to find .u ∈ L2(0, T ;V ) with .u′ ∈ L2(0, T ;V ′) such that . u(0) = u0
(note that from Theorem 9.2 we know that .u ∈ C0([0, T ];H), thus this equality has 
a meaning) and 

.〈u′(t), v〉 + a(t; u(t), v) = 〈F(t), v〉 (9.2) 

for almost all .t ∈ [0, T ] and for each .v ∈ V . Let us remind that this can be 
equivalently rewritten as 

. −
∫ T

0
(u(t), v)H �′(t)dt = −

∫ T

0
a(t; u(t), v)�(t)dt +

∫ T

0
〈F(t), v〉�(t)dt

for all .� ∈ C∞
0 (0, T ) and for each .v ∈ V . 

For showing the existence and uniqueness of such a solution we need some 
assumptions on the family of bilinear forms .a(t; ·, ·). We suppose that: 

(i) .a(t; ·, ·) is uniformly weakly coercive in .V × V , namely, there exist a constant 
.α > 0 and a constant .σ ≥ 0 (both not depending on .t ∈ [0, T ]) such that 

. a(t; v, v) + σ(v, v)H ≥ α‖v‖2
V ∀ v ∈ V and almost all t ∈ [0, T ]

(ii) .a(t; ·, ·) is uniformly bounded in .V ×V , namely, there exists a constant . γ > 0
(not depending on .t ∈ [0, T ]) such that 

. |a(t;w, v)| ≤ γ ‖w‖V ‖v‖V ∀ w, v ∈ V and almost all t ∈ [0, T ]

(iii) the map .t �→ a(t;w, v) is measurable in .(0, T ) for every .w, v ∈ V . 

The existence and uniqueness theorem reads as follows: 

Theorem 9.3 (Existence and Uniqueness) Let H and V be two separable Hilbert 
spaces, with .V ↪→ H with continuous and dense immersion. Assume . u0 ∈ H

and .F ∈ L2(0, T ;V ′). Assume that the family of bilinear forms .a(t; ·, ·) is defined 
in .V × V and valued in . R for almost each .t ∈ [0, T ] and satisfies (i), (ii) and 
(iii). Then there exists a unique solution .u ∈ L2(0, T ;V ) of Eq. (9.2), satisfying 
.u′ ∈ L2(0, T ;V ′) and .u(0) = u0. Moreover, for each .τ ∈ [0, T ] the stability 
estimate 

. ‖u(τ)‖2
H + α

∫ τ

0
e2σ(τ−t)‖u(t)‖2

V dt ≤ e2στ‖u0‖2
H + 1

α

∫ τ

0
e2σ(τ−t)‖F(t)‖2

V ′dt

(9.3) 

holds.
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Remark 9.2 In (i) we can always assume that .σ = 0, namely, that .a(t; ·, ·) is 
uniformly coercive in .V × V . In fact, if we set .û = e−σ tu, we see that . ̂u is a 
solution to 

. 〈û′(t), v〉 + a(t; û(t), v) + σ(û(t), v)H = 〈e−σ tF (t), v〉 ,

and now the bilinear forms .a(t; ·, ·) + σ(·, ·)H are uniformly coercive in .V × V . 

Proof The proof of the theorem requires several steps. For the proof of uniqueness 
and existence we assume .σ = 0 in (i) (see Remark 9.2). 

First Step Let us start from the uniqueness. It is enough to show that the only 
solution for .F = 0 and .u0 = 0 is . u = 0. Let .t ∈ [0, T ] be a value for which 
Eq. (9.2) is satisfied. Take .v = u(t). Then 

. 〈u′(t), u(t)〉 + a(t; u(t), u(t)) = 0 .

On the other hand we have 

. 
d

dt
‖u(t)‖2

H = 2〈u′(t), u(t)〉

and 

. a(t; u(t), u(t)) ≥ α‖u(t)‖2
V ,

thus 

. 
1

2

d

dt
‖u(t)‖2

H + α‖u(t)‖2
V ≤ 0 for almost all t ∈ [0, T ] .

As a consequence, integrating in .[0, τ ] we find 

. ‖u(τ)‖H ≤ ‖u(0)‖H = ‖u0‖H = 0 for all τ ∈ [0, T ] .

Second Step The proof of the existence of a solution is based on an approxi-
mation procedure (Galerkin method for a time-dependent problem). Since V is 
separable, we have a countable orthonormal Hilbertian basis .{ϕm} ⊂ V (see, e.g., 
Brezis [4, Théor. V.10, p. 86]). Define .VN = span{ϕ1, . . . , ϕN } ⊂ V . We want 
to find an approximate solution .uN in . VN . Since V is dense in H , we can find a 
sequence .u0,N ∈ VN such that .u0,N converges to . u0 in H . Then we look for an 
approximate solution .uN of the form 

.uN(t) =
N∑

j=1

uN
j (t)ϕj
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that has to satisfy .uN(0) = u0,N (this means .uN
j (0) = (u0,N , ϕj )V ) and 

. 〈(uN)′(t), ϕl〉 + a(t; uN(t), ϕl) = 〈F(t), ϕl〉

for almost all .t ∈ [0, T ] and for all .l = 1, . . . , N . Inserting the expression of . uN , 
we find 

.

N∑
j=1

〈ϕj , ϕl〉(uN
j )′(t) +

N∑
j=1

a(t;ϕj , ϕl)u
N
j (t) = 〈F(t), ϕl〉 (9.4) 

for each .l = 1, . . . , N and almost all .t ∈ [0, T ]. 
Setting .Mlj = 〈ϕj , ϕl〉, .Alj (t) = a(t;ϕj , ϕl), .UN(t) = (uN

1 (t), . . . , uN
N(t)), 

.U0,N = ((u0,N , ϕ1)V , . . . , (u0,N , ϕN)V ) and . b(t)= (〈F(t), ϕ1〉, . . . , 〈F(t), ϕN 〉)
we have obtained the linear system of ordinary differential equations 

.

{
M(UN)′(t) + A(t)UN(t) = b(t)

UN(0) = U0,N .
(9.5) 

The matrix .Mlj = 〈ϕj , ϕl〉 can be rewritten as .(ϕj , ϕl)H (take into account that 
.ϕj ∈ V and see Remark 9.1); it is clearly symmetric and moreover it is positive 
definite. In fact, taking .η ∈ RN one has 

. 

N∑
j,l=1

(ϕj , ϕl)H ηjηl =
( N∑

j=1

ηjϕj ,

N∑
l=1

ηlϕl

)
H

=
∥∥∥

N∑
j=1

ηjϕj

∥∥∥
2

H
≥ 0

and the equality gives .
∑N

j=1 ηjϕj = 0 in H and thus in V , since V is immersed 
in H . Since . ϕj are linearly independent in V , it follows .ηj = 0 for .j = 1, . . . , N . 
Thus the matrix .Mlj = 〈ϕj , ϕl〉 is non-singular, therefore there exists a unique 
solution .(uN

1 (t), . . . , uN
N(t)) of the linear system (9.5) and .uN

j ∈ C0([0, T ]) with 

.(uN
j )′ ∈ L2(0, T ). 

Third Step Now we want to pass to the limit in Eq. (9.4) as .N → ∞. We need 
suitable a-priori estimates, in such a way that we can apply some known results 
of functional analysis. Precisely, we want to find a subsequence .uNk such that 
.uNk converges weakly to u in .L2(0, T ;V ). For this purpose, we need to find 
uniform estimates for . uN in .L2(0, T ;V ). Multiplying expression (9.4) by . uN

l (t)

and adding over l we get 

.((uN)′(t), uN(t))H + a(t; uN(t), uN(t)) = 〈F(t), uN(t)〉 .
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Since 

. 
1

2

d

dt
‖uN(t)‖2

H = ((uN)′(t), uN(t))H ,

integrating on .(0, τ ), we have for each . τ ∈ [0, T ]

. 
1

2
‖uN(τ)‖2

H +
∫ τ

0
a(t; uN(t), uN(t))dt = 1

2
‖u0,N‖2

H +
∫ τ

0
〈F(t), uN(t)〉dt .

By coerciveness we have 

. 

∫ τ

0
a(t; uN(t), uN(t))dt ≥ α

∫ τ

0
‖uN(t)‖2

V dt ;

moreover, from the inequality .ab ≤ ε
2a2 + 1

2ε
b2, valid for any .a ∈ R, .b ∈ R and 

.ε > 0, we obtain, with .ε = α, 

. 

∫ τ

0
〈F(t), uN(t)〉dt ≤

∫ τ

0
‖F(t)‖V ′ ‖uN(t)‖V dt

≤ α

2

∫ τ

0
‖uN(t)‖2

V dt + 1

2α

∫ τ

0
‖F(t)‖2

V ′dt ,

and consequently 

. 
1

2
‖uN(τ)‖2

H + α

2

∫ τ

0
‖uN(t)‖2

V dt ≤ 1

2
‖u0,N‖2

H + 1

2α

∫ τ

0
‖F(t)‖2

V ′dt .

Since .u0,N converges to . u0 in H , we have obtained a uniform bound for .uN in 
.L2(0, T ;V ). Since .L2(0, T ;V ) is a Hilbert space, it exists a subsequence . uNk

(still denoted . uN ) that converges weakly to an element .u ∈ L2(0, T ;V ) (see 
Yosida [28, Theorem 1, p. 126, and Theorem of Eberlein–Shmulyan, p. 141]). 
Take now .� ∈ C∞

0 (0, T ) and .v ∈ V . We have a sequence .vN ∈ VN such that 
.vN → v in V . If we define .ψN : [0, T ] �→ V and .ψ : [0, T ] �→ V by setting 

. ψN(t) = �(t)vN , ψ(t) = �(t)v ,

we have at once .ψN → ψ in .L2(0, T ;V ) and .(ψN)′ → ψ ′ in .L2(0, T ;V ). 
Rewriting Eq. (9.4) as 

.〈(uN)′(t), wN 〉 + a(t; uN(t), wN) = 〈F(t), wN 〉 ∀ wN ∈ VN (9.6)
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and taking .wN = ψN(t), by integrating by parts in .(0, T ) it follows 

. −
∫ T

0
(uN(t), (ψN)′(t))H dt +

∫ T

0
a(t; uN(t), ψN(t))dt

=
∫ T

0
〈F(t), ψN(t)〉dt .

Since .uN converges weakly to .u ∈ L2(0, T ;V ), .ψN converges to . ψ in 
.L2(0, T ;V ) and .(ψN)′ converges to . ψ ′ in .L2(0, T ;V ), we can pass to the limit 
(see Exercise 9.2) and obtain 

. −
∫ T

0
(u(t), v)H �′(t)dt +

∫ T

0
a(t; u(t), v)�(t)dt =

∫ T

0
〈F(t), v〉�(t)dt ,

hence .u′ ∈ L2(0, T ;V ′) and u satisfies Eq. (9.2), namely, 

. 〈u′(t), v〉 + a(t; u(t), v) = 〈F(t), v〉 ∀ v ∈ V

for almost all .t ∈ [0, T ]. 
Fourth Step It remains to show that .u(0) = u0. Let .� ∈ C∞([0, T ]), with 

.�(T ) = 0 and .�(0) �= 0. First of all, by integration on .(0, T ) from Eq. (9.2) 
it follows 

. 

∫ T

0
〈u′(t), v〉�(t)dt = −

∫ T

0
a(t; u(t), v)�(t)dt +

∫ T

0
〈F(t), v〉�(t)dt .

The integration by parts formula in Theorem 9.2 yields 

. 

∫ T

0
〈u′(t), v〉�(t)dt = −

∫ T

0
(u(t), v)H �′(t)dt − (u(0), v)H �(0) ,

thus 

.

−
∫ T

0
(u(t), v)H �′(t)dt − (u(0), v)H �(0)

= −
∫ T

0
a(t; u(t), v)�(t)dt +

∫ T

0
〈F(t), v〉�(t)dt .
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Now define as before .ψN(t) = �(t)vN , .ψ(t) = �(t)v, where .v ∈ V and 
.vN ∈ VN with .vN → v in V. Taking .wN = ψN(t) in .(9.6), integration by parts 
gives 

. 

−
∫ T

0
(uN(t), (ψN)′(t))H dt − (uN(0)︸ ︷︷ ︸

=u0,N

, ψN(0))H +
∫ T

0
a(t; uN(t), ψN(t))dt

=
∫ T

0
〈F(t), ψN(t)〉dt ,

and passing to the limit as .N → ∞ one gets 

. 

−
∫ T

0
(u(t), v)H �′(t)dt − (u0, v)H �(0)

= −
∫ T

0
a(t; u(t), v)�(t)dt +

∫ T

0
〈F(t), v〉�(t)dt .

Hence for each .v ∈ V we have obtained 

. (u0, v)H �(0) = (u(0), v)H �(0) .

Since we have assumed .�(0) �= 0 and V is dense in H , it follows .u(0) = u0. 
Fifth Step The last step is related to the stability result (9.3). For a while let us 

assume again that .σ = 0 in (i). Taking .v = u(t) in Eq. (9.2) (we have . u(t) ∈ V

for almost all .t ∈ [0, T ]), it follows 

. 〈u′(t), u(t)〉 + a(t; u(t), u(t)) = 〈F(t), u(t)〉 ,

thus proceeding as in the third step 

. 
1

2

d

dt
‖u(t)‖2

H + α‖u(t)‖2
V ≤ ‖F(t)‖V ′ ‖u(t)‖V ≤ 1

2α
‖F(t)‖2

V ′ + α

2
‖u(t)‖2

V .

In conclusion, for each .τ ∈ [0, T ] an integration on .(0, τ ) gives 

. ‖u(τ)‖2
H + α

∫ τ

0
‖u(t)‖2

V dt ≤ ‖u0‖2
H + 1

α

∫ τ

0
‖F(t)‖2

V ′dt ,

and when .σ = 0 the proof is complete. For the case .σ > 0 it is enough to replace 
.u(t) with .e−σ tu(t) and .F(t) with .e−σ tF (t) and then (9.3) follows easily. 

��
Exercise 9.2 Let V be a Hilbert space, and suppose that .vk ∈ V converges to v in 
V and that . wk converges weakly to w in V . Then .(vk, wk)V → (v,w)V .



9.2 Abstract Problem 205

9.2.1 Application to Parabolic PDEs 

We are now in a position to present some examples that are covered by this abstract 
theory. Let .D ⊂ Rn be a bounded, connected, open set with a Lipschitz continuous 
boundary . ∂D. For the operator 

. Lv = −
n∑

i,j=1

Di (aijDj v) +
n∑

i=1

biDiv + a0v

in the elliptic case we have considered four boundary value problems: Dirichlet, 
Neumann, mixed, Robin. The related variational spaces and bilinear forms are: 

Dirichlet .V = H 1
0 (D), .H = L2(D), 

. a(w, v) =
∫

D

n∑
i,j=1

aijDjwDivdx +
∫

D

n∑
i=1

biDiwvdx +
∫

D

a0wvdx .

Neumann .V = H 1(D), .H = L2(D), .a(w, v) as in the Dirichlet case. 
Mixed .V = H 1

�D
(D) = {v ∈ H 1(D) | v|�D

= 0}, .H = L2(D), .a(w, v) as in the 
Dirichlet case. 

Robin .V = H 1(D), .H = L2(D), 

. 

a(w, v) =
∫

D

n∑
i,j=1

aijDjwDivdx +
∫

D

n∑
i=1

biDiwvdx

+
∫

D

a0wvdx +
∫

∂D

κwvdSx .

In the present situation, we have also time dependence; therefore the bilinear forms 
are more generally given by 

. a(t;w, v) =
∫

D

n∑
i,j

aij (t)DjwDivdx +
∫

D

n∑
i=1

bi(t)Diwvdx +
∫

D

a0(t)wvdx

and similarly for the Robin problem. 
We assume that . aij , . bi , . a0 belong to .L∞(D×(0, T )) and . κ belongs to . L∞(∂D×

(0, T )) (with .κ(x, t) ≥ 0 for almost all .(x, t) ∈ ∂D × (0, T ) and . 
∫
∂D

κ(t)dSx �= 0
for almost all .t ∈ [0, T ]), so that conditions (ii) and (iii) in Theorem 9.3 are satisfied. 
Moreover we also assume that there exists a constant .α0 > 0 such that 

.

n∑
i,j=1

aij (x, t)ηjηi ≥ α0|η|2 ∀ η ∈ Rn
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for almost all .(x, t) ∈ D × (0, T ), i.e., on the operator L we assume ellipticity, 
uniformly with respect to x and t . 

Under these assumptions we have already seen in Sect. 5.3 that condition (i) in 
the existence and uniqueness theorem is satisfied, with 

. σ > max(0,−μ) ,

where .μ = infD×(0,T ) a0 − 1
2α0

‖b‖2
L∞(D×(0,T )) and 

. α = min
(α0

2
, σ + μ

)
.

Thus .a(t;w, v) is uniformly weakly coercive in .H 1(D). 
Then we have to check that V and H satisfy the required properties. First of all, 

it is well-known that .L2(D) is a separable Hilbert space. Moreover, .H 1
0 (D) and 

.H 1
�D

(D) are closed subspaces of .H 1(D), which is a separable Hilbert space (see 
Remark 4.9); thus they are separable Hilbert spaces (if M is a closed subspace of 
a separable Hilbert space X and S is a countable set dense in X, the orthogonal 
projection .PMS ⊂ M is a countable set dense in M). We also have that 

. C∞
0 (D) ↪→ H 1

0 (D) ↪→ H 1
�D

(D) ↪→ H 1(D) ↪→ L2(D)

and we know that .C∞
0 (D) is dense in .L2(D); therefore for all the boundary value 

problems we have .V ↪→ H with continuous and dense immersion. 
On the data, we assume that .u0 ∈ L2(D) and we remember that in the four cases 

the linear and continuous functional F is defined as follows: 

Dirichlet .F(t) ∈ V ′ is given by .v → 〈F(t), v〉 =
∫

D

f (t)vdx. 

Neumann .F(t) ∈ V ′ is given by .v → 〈F(t), v〉 =
∫

D

f (t)vdx +
∫

∂D

g(t)vdSx . 

Mixed .F(t) ∈ V ′ is given by .v → 〈F(t), v〉 =
∫

D

f (t)vdx +
∫

�N

g(t)vdSx . 

Robin .F(t) ∈ V ′ is given by .v → 〈F(t), v〉 =
∫

D

f (t)vdx +
∫

∂D

g(t)vdSx . 

Thus we assume that .f ∈ L2(D × (0, T )), .g ∈ L2(∂D × (0, T )) (for the Neumann 
and Robin cases) or .g ∈ L2(�N × (0, T )) (for the mixed case), and we conclude 
that Theorem 9.3 can be applied. 

As a final remark, one easily sees that in some case weaker assumptions would 
be sufficient, for instance .f ∈ L2(0, T ; (H 1

0 (D))′) for the Dirichlet boundary value 
problem.
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9.2.2 Application to Linear Navier–Stokes Equations 
for Incompressible Fluids 

The abstract theory we have presented can also be used for the analysis of the 
incompressible linear Navier–Stokes equations. They read as follows: 

.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u
∂t

− ν�u + ∇p = f in D × (0, T )

div u = 0 in D × (0, T )

u|∂D = 0 on ∂D × (0, T )

u|t=0 = u0 in D ,

(9.7) 

where u is the velocity of the fluid, p the pressure (per unit density), f the 
(acceleration of the) external force field, . u0 the initial velocity and .ν > 0 the 
kinematic viscosity. As usual, .D ⊂ Rn is assumed to be a bounded, connected, 
open set with a Lipschitz continuous boundary . ∂D. 

Multiplying for a test function .w = w(x) satisfying .div w = 0 in D and . w = 0
on .∂D and integrating by parts we obtain 

. 

∫

D

f · wdx

=
∫

D

∂u

∂t
· wdx − ν

∫

D

n∑
i,j=1

DiDiuj wjdx +
∫

D

∇p · wdx

= d

dt

∫

D

u · wdx + ν

∫

D

n∑
i,j=1

Diuj Diwjdx − ν

∫

∂D

n∑
i,j=1

niDiuj wjdSx

−
∫

D

p div wdx +
∫

∂D

p w · ndSx

= d

dt

∫

D

u · wdx + ν

∫

D

n∑
i,j=1

Diuj Diwjdx .

Thus the term related to the pressure disappears, and we are left with the variational 
problem 

.
d

dt

∫

D

u · wdx + ν

∫

D

n∑
i,j=1

Diuj Diwjdx =
∫

D

f · wdx ∀w ∈ V , (9.8) 

set in 

.V = {w ∈ (H 1
0 (D))n | div w = 0 in D}
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for the only unknown u. Concerning the space H we set 

. H = {w ∈ (L2(D))n | div w = 0 in D,w · n = 0 on ∂D} ,

with the .L2(D)-norm. 
It is known that for .w ∈ H the normal trace .(w · n)|∂D has a meaning on . ∂D, 

and that the map .w �→ (w · n)|∂D is bounded from H to a suitable trace space 
(see Exercise 5.9). Thus V and H are closed subspaces of .(H 1

0 (D))n and .(L2(D))n, 
respectively, and therefore they are separable Hilbert spaces. Clearly we have . V ↪→
H , with continuous immersion; moreover, it is known that the space . V = {w ∈
(C∞

0 (D))n | div w = 0 in D} is dense in H (see, e.g., Girault and Raviart [12, 
Theor. 2.8, p. 30]), thus V is dense in H . 

The bilinear form 

. a(υ,w) = ν

∫

D

n∑
i,j=1

Diυj Diwj

is clearly bounded in .V × V and also weakly coercive in .V × V , for any constant 
.σ > 0 (and .α = min(ν, σ )). If we assume .u0 ∈ H and consider the functional 

. w → 〈F,w〉 =
∫

D

f · wdx

for .f ∈ L2(0, T ; (L2(D))n), we easily check that all the assumptions of The-
orem 9.3 are satisfied, and we conclude that there exists a unique solution . u ∈
L2(0, T ;V ) of Eq. (9.8), satisfying .u′ ∈ L2(0, T ;V ′) and .u(0) = u0. 

Recovering the pressure needs some additional work. For that, we refer to the 
results of Chap. 8. The couple of Hilbert spaces V and M that appear in Sect. 8.1.2 
will be denoted here by X and M (the notation V in this section is always used 
for .{w ∈ (H 1

0 (D))n | div w = 0 in D}), and are given by .X = (H 1
0 (D))n and 

.M = L2∗(D). The bilinear form .b(·, ·) is given by .b(v, r) = ∫
D

div v r dx, and 
the operators .B : X �→ M ′, .BT : M �→ X′ are defined by . 〈Bv, r〉 = b(v, r) =
〈BT r, v〉 for .v ∈ X and .r ∈ M . In particular, it is easily checked that the kernel of 
the operator B is .N(B) = V . 

We have seen in Sect. 8.1.2 that with these choices the inf–sup condition 8.7 is 
satisfied. Thus from Proposition 8.2 and Theorem 8.4 we have that .N(BT ) = {0}, 
.R(BT ) is closed in . X′ and .R(BT ) = N(B)� = V�. 

We have just proved that there exists .u ∈ L2(0, T ;V ) ∩ C0([0, T ];H) with 
.u′ ∈ L2(0, T ;V ′) satisfying .u(0) = u0 and (9.8), namely, 

.
d

dt
(u(t), w)L2(D) + a(u(t), w) = (f (t), w)L2(D) ∀w ∈ V . (9.9)
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Defining for . t ∈ [0, T ]

. U(t) =
∫ t

0
u(s) ds , F (t) =

∫ t

0
f (s) ds ,

we have .U ∈ C0([0, T ];V ) and .F ∈ C0([0, T ]; (L2(D))n); thus integrating (9.9) 
from 0 to t we find 

. (u(t), w)L2(D) − (u0, w)L2(D) + a(U(t), w) − (F (t), w)L2(D) = 0 ∀w ∈ V .

For each .t ∈ [0, T ] the functional 

. v �→ (u(t), v)L2(D) − (u0, v)L2(D) + a(U(t), v) − (F (t), v)L2(D) , v ∈ X ,

belongs to . X′ and vanishes on .V = N(B), namely, it belongs to .N(B)�. Therefore 
it belongs to .R(BT ), so that for each .t ∈ [0, T ] there exists a unique .P(t) ∈ M such 
that 

. (u(t), v)L2(D)−(u0, v)L2(D)+a(U(t), v)−(F (t), v)L2(D) =b(v, P (t)) ∀ v ∈ X ,

(and moreover it is easily shown that .P ∈ C0([0, T ];M)). Taking the (weak) time 
derivative we obtain 

.
d

dt
[(u(t), v)L2(D) − b(v, P (t))] = −a(u(t), v) + (f (t), v)L2(D) (9.10) 

for all .v ∈ X and almost all .t ∈ [0, T ]. 
A stronger form of this equation can be derived having additional information on 

the smoothness of u and P (see, e.g., Dautray and Lions [7, Chap. XIX, §2.3]). At 
a formal level, the pressure p appearing in the Navier–Stokes equations is given by 
.p(t) = ∂

∂t
P (t). 

Remark 9.3 It is not difficult to check that a similar analysis can be performed 
assuming .f ∈ L2(0, T ; ((H 1

0 (D))n)′) instead of .f ∈ L2(0, T ; (L2(D))n). This is  
not the case if one assumes .f ∈ L2(0, T ;V ′), as the space V does not contain 
.(C∞

0 (D))n, therefore the use of weak derivatives is not always justified and the 
interpretation of the variational problem does not necessarily lead to the partial 
differential equations at hand. 

9.3 Maximum Principle for Parabolic Problems 

The maximum principle also holds in the case of parabolic problems. Let us start 
with some definitions, that are similar to those given for elliptic problems.
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Definition 9.2 We say that .u ∈ L2(0, T ;V ) with .u′ ∈ L2(0, T ;V ′) is a subsolution 
for the operator 

. 
∂u

∂t
+ Lu

if the inequality 

.〈u′(t), v〉 + a(t; u(t), v) ≤ 0 (9.11) 

holds for almost all .t ∈ [0, T ] and for all .v ∈ H 1
0 (D) such that .v ≥ 0 a.e. in D. 

A similar definition is given for a supersolution: it is enough to say that .−u is a 
subsolution. 

Theorem 9.4 Let .D ⊂ Rn be a bounded, connected, open set with a Lipschitz 
continuous boundary . ∂D. Let L be the elliptic operator 

. Lw = −
n∑

i,j=1

Di (aijDjw) +
n∑

i=1

biDiw + a0w ,

with bounded coefficients .aij = aij (x, t), .bi = bi(x, t), .a0 = a0(x, t). Assume that 
.a0(x, t) ≥ 0 a.e. in .D × (0, T ). Then if u is a subsolution for L we have 

. sup
D×[0,T ]

u ≤ sup
ST

u+ = max

(
sup
ST

u, 0

)
,

where .ST = (∂D × [0, T ]) ∪ (D × {0}). Similarly, if u is a supersolution for L we 
have 

. inf
D×[0,T ] u ≥ inf

ST

(−u−) = min

(
inf
ST

u, 0

)
.

Proof For the sake of simplicity, the proof we present is somehow formal. The 
lines of a rigorous proof can be found in Dautray and Lions [5, Theorem 1, 
p. 252] (indeed, under someway different assumptions on the regularity of u and the 
coefficients; there a good exercise is also to find out and correct some misprints. . . );  
a complete presentation is in Ladyžhenskaja, Solonnikov and Ural’ceva [17, Chapter 
III, §7]. 

Let us start from the case of the subsolution. Set .M = supST
u+; we can assume 

M to be finite, otherwise we have nothing to prove, and clearly .M ≥ 0. Choose 
.v(t) = max(u(t) − M, 0), so that .v(t) ∈ H 1

0 (D) and .v(t) ≥ 0 for almost all 
.t ∈ [0, T ]. When considering the maximum principle for the elliptic case, we have
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already noted that .∇v(t) = ∇u(t) in .{u(t) > M}, while .v(t) = 0 and .∇v(t) = 0 in 
.{u(t) ≤ M}. Thus 

. 

∫

D

n∑
i,j=1

aij (t)Dj u(t)Div(t)dx =
∫

D

n∑
i,j=1

aij (t)Dj v(t)Div(t)dx

≥ α0

∫

D

|∇v(t)|2dx .

Moreover, and similarly to what we have just seen 

. 〈u′(t), v(t)〉 = 〈v′(t), v(t)〉 = 1

2

d

dt

∫

D

v(t)2dx ,

as in .{u(t) > M} we have .v(t) = u(t) − M , while in .{u(t) ≤ M} it holds . v(t) = 0
(here the argument is a little bit formal, but let us go on. . . ; for a detailed proof see  
Ladyžhenskaja, Solonnikov and Ural’ceva [17, Theorem 7.2, p. 188]). 

Finally 

. 

−
∫

D

n∑
i=1

bi(t)Diu(t) v(t)dx =−
∫

{u(t)>M}

n∑
i=1

bi(t)Div(t) v(t)dx

≤‖b‖L∞(D×(0,T ))

∫

D

|∇v(t)| |v(t)|dx

≤ α0

2

∫

D

|∇v(t)|2dx + ‖b‖2
L∞(D×(0,T ))

2α0

∫

D

|v(t)|2dx

and 

. −
∫

D

a0(t)u(t)v(t)dx = −
∫

{u(t)>M}

≥0︷︸︸︷
a0(t)

≥M≥0︷︸︸︷
u(t)

≥0︷ ︸︸ ︷
(u(t) − M)dx ≤ 0 .

From (9.11) we have thus obtained the following inequality 

. 
1

2

d

dt

∫

D

v(t)2dx + α0

2

∫

D

|∇v(t)|2dx ≤ ‖b‖2
L∞(D×(0,T ))

2α0

∫

D

|v(t)|2dx

for almost all .t ∈ [0, T ]. Integrating in .[0, τ ], .τ ∈ [0, T ], it follows 

.

‖v(τ)‖2
L2(D)

+ α0

∫ τ

0
‖∇v(t)‖2

L2(D)
dt

≤ ‖v(0)‖2
L2(D)

+ ‖b‖2
L∞(D×(0,T ))

α0

∫ τ

0
‖v(t)‖2

L2(D)
dt .

(9.12)



212 9 Parabolic PDEs

Since .v(0) = max(u(0)−M, 0) = 0, from Gronwall lemma E.2 it follows . v(τ) = 0
and therefore .u(τ) ≤ M for .τ ∈ [0, T ]. 

For the supersolution, just note that if u is a supersolution, then .−u is a 
subsolution, and .(−u)+ = u−. ��
Remark 9.4 If we have . ∂u

∂t
+ Lu = f ≥ 0 in .D × (0, T ), .u(t)|∂D ≥ 0, .u|t=0 ≥ 0, 

by the change of variable .û(t) = e−ktu(t), .k ≥ − infD×(0,T ) a0, we can easily prove 
that .u(t) ≥ 0 for all .t ∈ [0, T ]. In fact, with respect to . ̂u the problem is related to a 
bilinear form with the coefficient of the zero order term, say . ̂a0, that satisfies .â0 ≥ 0. 
Since .û(t)|∂D ≥ 0, .û|t=0 ≥ 0 and .f̂ (t) = e−ktf (t) ≥ 0, it follows .û(t) ≥ 0 and 
consequently .u(t) ≥ 0. 

In other words, if you maintain a positive temperature on the walls of a room in 
which the temperature was positive at the initial time and in which you are injecting 
heat, then the temperature in the room will remain positive for all the subsequent 
time. Do you see the power of mathematics? 

Remark 9.5 If .a0 = 0, one can substitute .supST
u+ with .supST

u (and . infST
(−u−)

with .infST
u). In fact, the same proof applies choosing .M = supST

u (which now is 
no longer non-negative) and .v = max(u − M, 0). This yields inequality (9.12) and 
the thesis follows. 

9.4 Exercises 

Exercise 9.1 Suppose that V and H are two Hilbert spaces, that V is immersed 
in H with continuity and that V is dense in H . Then H ′, the dual space of H , is  
immersed with continuity in V ′, the dual space of V . Moreover, H ′ is dense in V ′. 

Solution Take an element � ∈ H ′, which by the Riesz representation theorem 3.1 
can be written as �(h) = (ω�, h)H for each h ∈ H , with ω� ∈ H . To this  
functional we can associate the element � ∈ V ′ given by �(v) = (ω�, v)H for 
each v ∈ V . We want to show that the map from � ∈ H ′ to � ∈ V ′, which 
is clearly continuous, is one-to-one. Thus suppose that there exists � ∈ H ′ given 
by (ω�, v)H and such that (ω�, v)H = (ω�, v)H for each v ∈ V . Take h ∈ H : 
since V is dense in H there exists a sequence vk ∈ V such that vk → h in H . 
Therefore (ω�, vk)H → (ω�, h)H and (ω�, vk)H → (ω�, h)H , and consequently 
(ω�, h)H = (ω�, h)H for each h ∈ H , namely, � = � in H ′. 

Concerning the density result, by the projection theorem (see, e.g., Yosida [28, 
Theorem 1, p. 82]) it is enough to show that in V ′ it holds (H ′)⊥ = {0} (or, 
equivalently, (H ′)⊥ = {0}). Take � ∈ V ′ that satisfies (�,�)V ′ = 0 for each
� ∈ H ′. By the Riesz representation theorem in V we have �(v) = (ω�, v)V 
and �(v) = (ω�, v)V for ω� ∈ V , ω� ∈ V and for each v ∈ V , and finally 
(�,�)V ′ = (ω�, ω�)V ; moreover, by the same theorem in H we know that
�(h) = (ω̂�, h)H for ω̂� ∈ H and for each h ∈ H , then �(v) = (ω̂�, v)H
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for each v ∈ V . Thus we can write 

. 0 = (�,�)V ′ = (ω�, ω�)V = �(ω�) = (ω̂�, ω�)H .

This is true for each � ∈ H ′, in particular, fixed any q ∈ H , for the functional
�� given by h �→ (q, h)H = ��(h). Therefore ω̂�� = q, and we conclude that 
(q, ω�)H = 0 for each q ∈ H . Thus ω� = 0 in  H and also ω� = 0 in  V , as  V is 
immersed in H . In conclusion � = 0, and the result is proved. 

[Here it could be interesting to open a parenthesis: making the identification of 
H with H ′, we obtain the chain V ↪→ H ≈ H ′ ↪→ V ′; with a further step, the 
identification of V with V ′ seems to imply that all the four spaces V , H , H ′ and V ′
are the same. This is clearly too much for the educated reader: thus, what is wrong? 

What we have surely seen is that, if V ↪→ H with continuous and dense 
immersion, then H ′ ↪→ V ′ with continuous and dense immersion. The situation 
is completely symmetric, thus we can now decide to identify, by means of the 
Riesz representation theorem in H , the dual H ′ with H , obtaining the chain V ↪→ 
H ≈ H ′ ↪→ V ′, or, alternatively, to identify, by means of the Riesz representation 
theorem in V , the dual V ′ with V , obtaining the other chain H ′ ↪→ V ′ ≈ V ↪→ H . 
We can make only one of these identifications: the “glue” can be used only once, 
and everything depends on the choice of the “pivot” space: either H or V . 

The most typical example we have in mind is V = H 1 
0 (D), H = L2(D) and 

V ′ = H−1(D) = (H 1 
0 (D))′. Everything should be clear when we think at the 

identification of L2(D) with its dual, obtaining the chain 

. H 1
0 (D) ↪→ L2(D) ≈ (L2(D))′ ↪→ H−1(D) .

But what happens when we decide to identify H 1 
0 (D) with its dual H−1(D)? Then 

the chain becomes 

. (L2(D))′ ↪→ H−1(D) ≈ H 1
0 (D) ↪→ L2(D) ,

and again it seems that everything collapses on a single space, as we are used to 
think that (L2(D))′, the dual of L2(D), is equal to L2(D). 

Keep calm and carry on: the identification of H 1 
0 (D) with its dual H−1(D) has 

been done by means of the Riesz representation theorem in H 1 
0 (D). This signifies 

that any element � ∈ H−1(D) has been represented by means of the scalar product 
in H 1 

0 (D) in the following way: � is identified to the element ω� ∈ H 1 
0 (D) that 

satisfies 

. 

∫

D

ω�v +
∫

D

∇ω� · ∇v = �(v) ∀ v ∈ H 1
0 (D) .

On its side, an element � ∈ (L2(D))′, our old nice dual space, is a functional 
q �→ �(q) = ∫

D
ω̂�q with ω� ∈ L2(D) and q ∈ L2(D). In particular, it is also an
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element of H−1(D), and thus can be identified with the solution ω� ∈ H 1 
0 (D) of 

. 

∫

D

ω�v +
∫

D

∇ω� · ∇v = �(v) =
∫

D

ω̂�v ∀ v ∈ H 1
0 (D) ,

namely, the solution ω� of −�ω� + ω� = ω̂� in D, with homogeneous Dirichlet 
boundary condition. In conclusion, if we are using the identification H 1 

0 (D) ≈ 
H−1(D), an element � ∈ (L2(D))′ is (identified to) an element of the space 

. Q = {v ∈ H 1
0 (D) | �v ∈ L2(D)}

(which, if the boundary ∂D is of class C2, by Theorem 7.12 coincides with H 2(D)∩ 
H 1 

0 (D)), and we can rewrite the chain above as 

. Q ↪→ H 1
0 (D) ↪→ L2(D) .

Do you feel this digression too long and impenetrable? In case, just skip it. . . ]  

Exercise 9.2 Let V be a Hilbert space, and suppose that vk ∈ V converges to v in 
V and that wk converges weakly to w in V . Then (vk, wk)V → (v, w)V . 

Solution First of all, let us note that a weakly convergent sequence in a Hilbert 
space is bounded (see Yosida [28, Theorem 1, p. 120]) ). Then we have 

. 

|(vk, wk)V − (v,w)V | = |(vk − v,wk)V + (v,wk − w)V |
≤ |(vk − v,wk)V | + |(v,wk − w)V |
≤ ‖vk − v‖V ‖wk‖V + |(v,wk − w)V | .

Being wk bounded, the first term goes to 0; since for any v ∈ V the linear functional 
ψ �→ (v, ψ)V = Fv(ψ) is bounded, from the weak convergence of wk to w it 
follows Fv(wk − w) → 0, and the result is proved. 

Exercise 9.3 Let V be a separable Hilbert space. Then V ′ is a separable Hilbert 
space, too. 

Solution From Remark 2.6 we already know that V ′ is a Hilbert space. Since V is 
separable, we have a countable set {vk}∞k=1 that is dense in V . Consider the countable 
set of linear and bounded functionals given by �k(v) = (vk, v)V and take now
� ∈ V ′; by the Riesz representation theorem it can be written as �(v) = (ω�, v)V 
for a suitable ω� ∈ V and for each v ∈ V . For each ε >  0 there exists an element 
vk� such that ‖ω� − vk�‖V < ε. For �k� we have 

. ‖� − �k�‖V ′ = sup
v∈V,v �=0

|�(v) − �k�(v)|
‖v‖V

= sup
v∈V,v �=0

|(ω� − vk�, v)V |
‖v‖V

< ε

by the Cauchy–Schwarz inequality, and thus the proof is complete.
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Exercise 9.4 Let D ⊂ Rn be a bounded, connected, open set with a Lipschitz 
continuous boundary ∂D. Consider the problem 

. 

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t

− �u = 0 in D × (0,+∞)

u|∂D = 0 on ∂D × (0,+∞)

u|t=0 = u0 in D ,

where u0 ∈ L2(D). Show that: 

(i) there exists a unique solution u ∈ L2(0,+∞;H 1 
0 (D)) ∩ C0([0,+∞); L2(D)) 

with u′ ∈ L2(0,+∞; L2(D)); 
(ii) lim 

t→+∞ ‖u(t)‖L2(D) = 0. 

Solution 

(i) Looking at the proof of Theorem 9.3 we easily see that, for a right hand side 
f = 0, it is possible to prove the existence of a solution u(t) for t ∈ [0,+∞), 
and moreover the estimate 

.‖u(τ)‖2
L2(D)

+
∫ τ

0
‖∇u(t)‖2

L2(D)
dt ≤ ‖u0‖2

L2(D)
(9.13) 

holds for each τ ∈ [0,+∞). 
(ii) Using the Poincaré inequality (6.2) in (9.13) we find 

.‖u(τ)‖2
L2(D)

+ σ

∫ τ

0
‖u(t)‖2

L2(D)
dt ≤ ‖u0‖2

L2(D)
(9.14) 

for each τ ∈ [0,+∞), where σ = 1 
CD 

. Now set  w(t) = eσ t  u(t). We obtain at 
once w′(t) = eσ t  u′(t) + σeσt  u(t), thus 

.〈w′(t), v〉 + a(t;w(t), v) − σ(w(t), v)L2(D) = 0 ∀ v ∈ H 1
0 (D) . (9.15) 

Since 

. a(t;w(t), w(t))−σ(w(t), w(t))L2(D) =
∫

D

|∇w(t)|2dx−σ

∫

D

w(t)2dx ≥ 0 ,

Eq. (9.15) and the relation w(0) = u0 lead to the estimate 

.
1

2

d

dt
‖w(t)‖2

L2(D)
≤ 0
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for almost all t ∈ [0, T ] and thus 

. ‖w(τ)‖2
L2(D)

≤ ‖u0‖2
L2(D)

for each τ ∈ [0,+∞). In conclusion ‖u(τ)‖L2(D) ≤ e−στ‖u0‖L2(D) → 0 as  
τ → +∞. 

[From the physical point of view this result says that, if no heat is furnished and 
the boundary temperature is kept to 0, then the internal temperature goes to 0 as 
time becomes larger and larger: a well-known situation in our real life experience.] 

Exercise 9.5 Let D ⊂ Rn be a bounded, connected, open set with a Lipschitz 
continuous boundary ∂D. For  u0 ∈ L2(D), f ∈ L2(D × (0, T  ))  and g ∈ 
L2(∂D × (0, T  ))  consider the Neumann problem for the heat equation 

. 

⎧
⎪⎪⎨
⎪⎪⎩

∂u
∂t

− �u = f in D × (0, T )

∇u · n = g on ∂D × (0, T )

u|t=0 = u0 in D ,

whose solution u ∈ L2(0, T ; H 1(D)) with u′ ∈ L2(0, T ; (H 1(D))′) exists and is 
unique by Theorem 9.3. Under the assumption

∫
D f (x,  t)  dx  + ∫

∂D g(x, t) dSx = 0 
for almost all t ∈ [0, T ] show that

∫
D u(x, t) dx = ∫

D u0(x) dx for each t ∈ [0, T  ]. 
Solution The solution u satisfies the weak problem 

. 〈u′(t), v〉 +
∫

D

∇u(t) · ∇v dx =
∫

D

f (t) v dx +
∫

∂D

g(t) v dSx

for each v ∈ H 1(D) and for almost all t ∈ [0, T ]. Choosing v = 1 it follows 

. 〈u′(t), 1〉 =
∫

D

f (t) dx +
∫

∂D

g(t) dSx

for almost all t ∈ [0, T ]. By the integration by parts formula in Theorem 9.2 we find 
for all τ ∈ [0, T ] 

. 

∫ τ

0

( ∫
D

f (t) dx + ∫
∂D

g(t) dSx

)
dt = ∫ τ

0 〈u′(t), 1〉dt

= ∫
D

u(τ) dx − ∫
D

u(0) dx = ∫
D

u(τ) dx − ∫
D

u0 dx .

Hence we have obtained the balance equation 

.

∫

D

u(τ) dx =
∫

D

u0 dx +
∫ τ

0

( ∫

D

f (t) dx +
∫

∂D

g(t) dSx

)
dt ,
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and the condition
∫
D f (x,  t)  dx  + ∫

∂D g(x, t) dSx = 0 for almost all t ∈ [0, T ] 
yields

∫
D u(τ) dx = ∫

D u0 dx for all τ ∈ [0, T ]. 
Exercise 9.6 Propose a numerical scheme for finding the approximate solution 
of a parabolic problem which is based on the Galerkin approximation and on the 
backward Euler method for discretizing ∂u 

∂t . 

Solution Let VM be a finite dimensional subspace of V (not necessarily the space 
generated by the first M elements of an orthonormal basis of V ), whose basis is 
denoted by {φ1, . . . , φM }. Choose a time-step τ = T/K  >  0, define tk = kτ , 
k = 0, 1, . . .  ,K , and consider the backward Euler approximation of the first order 
derivative: 

. 
uk+1 − uk

τ
≈ u′(tk+1) , k = 0, 1, . . . , K .

Then the parabolic equation 

. 〈u′(t), v〉 + a(t; u(t), v) = 〈F(t), v〉

can be approximated by means of the following numerical scheme: being given 
u0 

M ∈ VM , a suitable approximation of the initial datum u0, for each k = 
0, 1, . . .  ,K  − 1 find uk+1 

M ∈ VM , solution of the problem 

. 

(
uk+1

M − uk
M

τ
, φi

)

H

+ a(tk+1; uk+1
M , φi) = 〈F(tk+1), φi〉 , i = 1, . . . ,M .

More explicitly, at each time step tk+1, k = 0, 1, . . . , K  − 1, one has to solve the 
discretized elliptic problem 

. 
1

τ
(uk+1

M , φi)H +a(tk+1; uk+1
M , φi) = 1

τ
(uk

M, φi)H +〈F(tk+1), φi〉 , i = 1, . . . ,M .

This linear system is associated to the matrix Ak+1 
ij = 1 

τ (φj , φi)H +a(tk+1; φj , φi). 
Note that if a(t; ·, ·) is uniformly weakly coercive in V ×V , then for τ small enough 
the bilinear form 1 

τ (·, ·)H +a(t; ·, ·) is uniformly coercive in V ×V , hence the matrix 
Ak+1 is uniformly positive definite for k = 0, 1, . . . , K  − 1.



Chapter 10 
Hyperbolic PDEs 

Hyperbolic equations have the form 

. 
∂2u

∂t2 + Lu = f in D × (0, T ) ,

where L is an elliptic operator, whose coefficients can depend on t . The “prototype” 
is the wave equation 

. 
∂2u

∂t2 − c2�u = f in D × (0, T ) ,

with speed .c > 0. 
As for the parabolic equations, we have to add a boundary condition (one of 

those we have considered for elliptic problems: Dirichlet, Neumann, mixed, Robin). 
Since with respect to time we have a second order derivative, we also need to add 
two initial conditions, namely .u|t=0 and . ∂u

∂t |t=0 have to be assigned in D. 
In the first section of the chapter we present the abstract variational theory for 

second order evolution equations in Hilbert spaces; then the application of this 
theory to hyperbolic equations and to the Maxwell equations is described. The 
second section is concerned with an important property of the solutions: the finite 
propagation speed. 

10.1 Abstract Problem 

We again assume that we are given with a separable Hilbert space H and a separable 
Hilbert space V , with .V ↪→ H with continuous and dense immersion. Assume that 
.u0 ∈ V , .u1 ∈ H and .F ∈ L2(0, T ;H). We look for a solution .u ∈ L2(0, T ;V ), 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
A. Valli, A Compact Course on Linear PDEs, La Matematica per il 3+2 154, 
https://doi.org/10.1007/978-3-031-35976-7_10

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-35976-7protect T1	extunderscore 10&domain=pdf
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10
https://doi.org/10.1007/978-3-031-35976-7_10


220 10 Hyperbolic PDEs

with .u′ ∈ L2(0, T ;H) and .u′′ ∈ L2(0, T ;V ′) of the problem 

.〈u′′(t), v〉 + a(t; u(t), v) = (F (t), v)H (10.1) 

for each .v ∈ V and almost all .t ∈ [0, T ], with .u(0) = u0 and . u′(0) =
u1. Let us remind that the derivatives have to be intended in the weak sense. 
Since .u ∈ L2(0, T ;V ) ⊂ L2(0, T ;H) and .u′ ∈ L2(0, T ;H), it follows 
that .u ∈ C0([0, T ];H), thus the value .u(0) has a meaning; similarly, since 
.u′ ∈ L2(0, T ;H) ⊂ L2(0, T ;V ′) and .u′′ ∈ L2(0, T ;V ′), it follows that . u′ ∈
C0([0, T ];V ′), thus .u′(0) has a meaning. Note that, similarly to relation (9.1) valid 
for the parabolic case, if .u′ ∈ L2(0, T ;H) and .u′′ ∈ L2(0, T ;V ′) it holds 

.
d

dt
(u′(t), v)H = 〈u′′(t), v〉 (10.2) 

for almost all .t ∈ [0, T ] and each .v ∈ V , where . d
dt

has to be intended as the weak 
time derivative of the real valued function .t �→ (u′(t), v)H . Therefore (10.1) can be 
equivalently rewritten as 

. −
∫ T

0
(u′(t), v)H �′(t)dt +

∫ T

0
a(t; u(t), v)�(t)dt =

∫ T

0
(F (t), v)H �(t)dt

for all .� ∈ C∞
0 (0, T ) and each .v ∈ V . Since under the present assumptions (9.1) 

can be written as 

.
d

dt
(u(t), v)H = 〈u′(t), v〉 = (u′(t), v)H , (10.3) 

we also have 

.
d2

dt2 (u(t), v)H = d

dt
(u′(t), v)H = 〈u′′(t), v〉 , (10.4) 

where . d
2

dt2 has to be intended as the second order weak time derivative of the real 
valued function .t �→ (u(t), v)H . 

Let us now clarify the assumptions on the family of bilinear forms .t �→ a(t; ·, ·). 
We assume that 

. a(t;w, v) = â(t;w, v) + a1(t;w, v) ,

where .a1(t;w, v), the “lower order part”, satisfies 

(i) .t �→ a1(t;w, v) is measurable in .(0, T ) for all . w, v ∈ V

(ii) .|a1(t;w, v)| ≤ C1‖w‖V ‖v‖H for all .w, v ∈ V and almost all .t ∈ [0, T ], with 
.C1 > 0 independent of .t ∈ [0, T ], 
whereas .̂a(t;w, v), in some sense the “principal part”, satisfies
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(iii) .t �→ â(t;w, v) is differentiable for .t ∈ [0, T ] and for all .w, v ∈ V (the 
derivative of thus map will be denoted by .̂a′(t;w, v)) 

(iv) .|̂a′(t;w, v)| ≤ Ĉ1‖w‖V ‖v‖V for all .w, v ∈ V and almost all .t ∈ [0, T ], with 
.Ĉ1 > 0 independent of . t ∈ [0, T ]

(v) .|̂a(t;w, v)| ≤ Ĉ0‖w‖V ‖v‖V for all .w, v ∈ V and almost all .t ∈ [0, T ], with 
.Ĉ0 > 0 independent of . t ∈ [0, T ]

(vi) .̂a(t; v, v) + σ(v, v)H ≥ α‖v‖2
V for all .v ∈ V and all .t ∈ [0, T ], where . α > 0

and .σ ≥ 0 are independent of . t ∈ [0, T ]
(vii) .̂a(t;w, v) = â(t; v,w) for all .w, v ∈ V and all .t ∈ [0, T ] (symmetry of the 

principal part). 

Let us underline from the very beginning that the symmetry of the principal part 
is a crucial point. The abstract theorem reads as follows. 

Theorem 10.1 (Existence and Uniqueness) Let H and V be two separable 
Hilbert spaces, with .V ↪→ H with continuous and dense immersion. Assume . u0 ∈
V , .u1 ∈ H and .F ∈ L2(0, T ;H). Assume that the family of bilinear forms . a(t; ·, ·)
satisfies the hypothesis (i)–(vii) listed here above. Then there exists a solution 
.u ∈ L2(0, T ;V ) of Eq. (10.1), with .u′ ∈ L2(0, T ;H), .u′′ ∈ L2(0, T ;V ′) and 
.u(0) = u0, .u′(0) = u1. Uniqueness also holds, under the additional assumption 

(viii) .|a1(t;w, v)| ≤ C2‖w‖H ‖v‖V for all .w, v ∈ V and almost all .t ∈ [0, T ], 
with .C2 > 0 independent of .t ∈ [0, T ]. 

Remark 10.1 Note that one can obtain a better result, as it is true that . u ∈
C0([0, T ];V ) and .u′ ∈ C0([0, T ];H). For this result see, e.g., Dautray and 
Lions [6, Chapter XVIII, §5.5]. 

Proof The proof is obtained by approximation, by proceeding as in the parabolic 
case. 

First Step Since V is separable, we have a countable orthonormal Hilbertian 
basis .{ϕm} ⊂ V (see, e.g., Brezis [4, Théor. V.10, p. 86]). Define . VN =
span{ϕ1 . . . ϕN } ⊂ V . Since V is dense in H , we can select a sequence . u1,N ∈
VN such that .u1,N → u1 in H . Moreover, we also have .u0,N ∈ VN such that 
.u0,N → u0 in V . We look for 

. uN(t) =
N∑

j=1

uN
j (t)ϕj

such that .uN(0) = u0,N (this means .uN
j (0) = (u0,N , ϕj )V ), . (uN)′(0) = u1,N

(this means .(uN
j )′(0) = (u1,N , ϕj )V ) and moreover 

.〈(uN)′′(t), ϕl〉 + a(t; uN(t), ϕl) = (F (t), ϕl)H



222 10 Hyperbolic PDEs

for almost all .t ∈ [0, T ] and for all .l = 1, . . . , N . Inserting the expression of 
.uN(t), we find 

.

N∑
j=1

〈ϕj , ϕl〉(uN
j )′′(t) +

N∑
j=1

a(t;ϕj , ϕl)u
N
j (t) = (F (t), ϕl)H . (10.5) 

We have already verified in Theorem 9.3 that the matrix .〈ϕj , ϕl〉 is non-singular 
(it is symmetric and positive definite), thus this is a linear system of second order 
ordinary differential equations. Setting .qj (t) = (uN

j )′(t), it can be rewritten as a 
standard linear system of first order ordinary differential equations, thus we know 
that there exists a unique solution .(uN

1 (t), . . . , uN
N(t)), with .uN

j ∈ C1([0, T ]) and 

.(uN
j )′′ ∈ L2(0, T ). 

Second Step We must now find suitable a-priori estimates for passing to the limit. 
Multiply Eq. (10.5) by .(uN

l )′(t) and add over l. It holds 

. 
((uN)′′(t), (uN)′(t))H + â(t; uN(t), (uN)′(t))

= −a1(t; uN(t), (uN)′(t)) + (F (t), (uN)′(t))H .

We know that 

. ((uN)′′(t), (uN)′(t))H = 1

2

d

dt
‖(uN)′(t)‖2

H .

Moreover 

. ̂a(t; uN(t), (uN)′(t)) = 1

2

d

dt
â(t; uN(t), uN(t)) − 1

2
â′(t; uN(t), uN(t)) ,

due to the symmetry of .̂a(t; ·, ·). Finally, from assumption (ii), 

. | − a1(t; uN(t), (uN)′(t))| ≤ C1‖uN(t)‖V ‖(uN)′(t)‖H

and moreover 

. |(F (t), (uN)′(t))H | ≤ ‖F(t)‖H ‖(uN)′(t)‖H .

Summarizing, for almost all .t ∈ [0, T ] we have 

.

1

2

d

dt
‖(uN)′(t)‖2

H + 1

2

d

dt
â(t; uN(t), uN(t)) ≤

≤ 1

2
|̂a′(t; uN(t), uN(t))| + C1‖uN(t)‖V ‖(uN)′(t)‖H + ‖F(t)‖H ‖(uN)′(t)‖H

≤ 1

2
Ĉ1‖uN(t)‖2

V + C1‖uN(t)‖V ‖(uN)′(t)‖H + ‖F(t)‖H ‖(uN)′(t)‖H ,
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having used assumption (iv). Integrating with respect to t on .[0, τ ] we have 

. 

1

2
‖(uN)′(τ )‖2

H + 1

2
â(τ ; uN(τ), uN(τ))

≤ 1

2
‖(uN)′(0)‖2

H + 1

2
â(0; uN(0), uN(0)) + 1

2
Ĉ1

∫ τ

0
‖uN(t)‖2

V dt

+ C1

∫ τ

0
‖uN(t)‖V ‖(uN)′(t)‖H dt +

∫ τ

0
‖F(t)‖H ‖(uN)′(t)‖H dt .

Using the weak coerciveness of .̂a(t; ·, ·) we find 

. ̂a(τ, uN(τ), uN(τ)) ≥ α‖uN(τ)‖2
V − σ‖uN(τ)‖2

H .

From the inequality .ab ≤ 1
2a2 + 1

2b2 and using assumption (v) we get 

. 

α‖uN(τ)‖2
V + ‖(uN)′(τ )‖2

H

≤ σ‖uN(τ)‖2
H + ‖u1,N‖2

H + Ĉ0‖u0,N‖2
V

+ C∗
[ ∫ T

0
‖F(t)‖2

H dt +
∫ τ

0

(
‖uN(t)‖2

V + ‖(uN)′(t)‖2
H

)
dt

]
.

Since .u0,N → u0 in V and .u1,N → u1 in H , we have . ‖u0,N‖2
V + ‖u1,N‖2

H ≤
const. Moreover, we have 

. uN(τ) =
∫ τ

0
(uN)′(t)dt + uN(0)︸ ︷︷ ︸

=u0,N

,

thus, noting that .(a+b)2 ≤ 2(a2+b2) and using the Cauchy–Schwarz inequality, 
we obtain 

. 

‖uN(τ)‖2
H ≤

(∥∥∥∥
∫ τ

0
(uN)′(t)dt

∥∥∥∥
H

+ ‖u0,N‖H

)2

≤ 2

((∫ τ

0
‖(uN)′(t)‖H dt

)2

+ ‖u0,N‖2
H

)

≤︸︷︷︸
Cauchy–Schwarz

2

(
τ

∫ τ

0
‖(uN)′(t)‖2

H dt + ‖u0,N‖2
H

)
.

Note that this last series of inequalities is not needed if .σ = 0, namely, if the 
bilinear form .̂a(t; ·, ·) is coercive and not only weakly coercive.
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In conclusion, setting .Q(τ) = ‖uN(τ)‖2
V + ‖(uN)′(τ )‖2

H , we have found 

. Q(τ) ≤ K1 + K2

∫ τ

0
Q(t)dt for all τ ∈ [0, T ] .

From Gronwall lemma E.2 we have 

. Q(τ) ≤ K1e
K2τ for all τ ∈ [0, T ] ,

therefore .uN is bounded in .L2(0, T ;V ) and .(uN)′ is bounded in .L2(0, T ;H), 
respectively (more precisely, in .L∞(0, T ;V ) and .L∞(0, T ;H)). Since 
.L2(0, T ;V ) and .L2(0, T ;H) are Hilbert spaces, by known results in functional 
analysis we can select a subsequence (still denoted by . uN ) such that . uN → u

weakly in .L2(0, T ;V ) and .(uN)′ → w weakly in .L2(0, T ;H) (see Yosida [28, 
Theorem 1, p. 126, and Theorem of Eberlein–Shmulyan, p. 141]). It is an easy 
task to show that .w = u′; in fact, for each .h ∈ H and .η ∈ C∞

0 (0, T ) by 
integration by parts we have 

. 

∫ T

0
((uN)′(t), h)H η(t)dt = −

∫ T

0
(uN(t), h)H η′(t)dt ,

and passing to the limit, using the weak convergence of .uN and .(uN)′ in 
.L2(0, T ;H), we obtain 

. 

∫ T

0
(w(t), h)H η(t)dt = −

∫ T

0
(u(t), h)H η′(t)dt ,

namely, . u′ = w. Take now .� ∈ C∞
0 (0, T ), .v ∈ V and .vN ∈ VN such that . vN →

v in V (remember that .VN = span{ϕ1, . . . , ϕN }, where . ϕj is an orthonormal 
Hilbertian basis of V ). Set 

. ψN(t) = �(t)vN , ψ(t) = �(t)v .

It is clear that .ψN → ψ in .L2(0, T ;V ) and .(ψN)′ = �′vN converges to . ψ ′ =
�′v in .L2(0, T ;V ). 
Equation (10.5) can be rewritten as 

.〈(uN)′′(t), wN 〉 + a(t; uN(t), wN) = (F (t), wN)H (10.6)
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for each .wN ∈ VN and almost all .t ∈ [0, T ]; choosing .wN = ψN(t) and 
integrating by parts in . (0, T ), it follows  

. −
∫ T

0

(
(uN)′(t), (ψN)′(t)

)
H

dt +
∫ T

0
a(t; uN(t), ψN(t))dt

=
∫ T

0
(F (t), ψN(t))H dt .

Passing to the limit we find 

. −
∫ T

0
(u′(t), v)H �′(t)dt +

∫ T

0
a(t; u(t), v)�(t)dt =

∫ T

0
(F (t), v)H �(t)dt ,

thus .u′′(t) ∈ L2(0, T ;V ′) and Eq. (10.1) is satisfied. 
Third Step The proof of the existence of a solution is completed if we show that 

.u(0) = u0 and .u′(0) = u1. Take .� ∈ C∞([0, T ]) with .�(T ) = 0 and . �′(T ) =
0, and define as before .ψN(t) = �(t)vN , .ψ(t) = �(t)v, with .vN ∈ VN and 
.vN → v in V . Integrating Eq. (10.1) on .(0, T ) we find 

. 

∫ T

0
〈u′′(t), v〉�(t)dt = −

∫ T

0
a(t; u(t), v)�(t)dt +

∫ T

0
(F (t), v)H �(t)dt .

On the other hand, integrating by parts twice on .(0, T ) we obtain 

. 

∫ T

0
〈u′′(t), v〉�(t)dt

=
∫ T

0
(u(t), v)H �′′(t)dt − 〈u′(0), v〉�(0) + (u(0), v)H �′(0)

(for a similar computation see (10.8), where some additional explanations on the 
functional framework are also added). Thus 

.

∫ T

0
(u(t), v)H �′′(t)dt − 〈u′(0), v〉�(0) + (u(0), v)H �′(0)

= −
∫ T

0
a(t; u(t), v)�(t)dt +

∫ T

0
(F (t), v)H �(t)dt .
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Inserting .wN = ψN(t) in Eq. (10.6), it follows, by integration by parts on .(0, T ), 

. 

∫ T

0
(uN(t), (ψN)′′(t))H dt − ((uN)′(0)︸ ︷︷ ︸

=u1,N

, ψN(0))H + ((uN)(0)︸ ︷︷ ︸
=u0,N

, (ψN)′(0))H

= −
∫ T

0
a(t; uN(t), ψN(t))dt +

∫ T

0
(F (t), ψN(t))H dt

Then passing to the limit as .N → +∞, we obtain 

. 

∫ T

0
(u(t), v)H �′′(t)dt − (u1, v)H �(0) + (u0, v)H �′(0)

= −
∫ T

0
a(t; u(t), v)�(t)dt +

∫ T

0
(F (t), v)H �(t)dt ,

and in conclusion 

. − 〈u′(0), v〉�(0) + (u(0), v)H �′(0) = −(u1, v)H �(0) + (u0, v)H �′(0) .

Due to the arbitrariness of .�(0) and .�′(0) and v we conclude .u′(0) = u1 and 
.u(0) = u0. 

Fourth Step Let us come to the proof of the uniqueness of the solution. It is better 
to divide the proof in two parts, and consider later the general case. In this step 
we thus make two additional assumptions: firstly that .a1(t; ·, ·) = 0 and secondly 
that .̂a(·, ·) does not depend on .t ∈ [0, T ]. 
Let us assume .F = 0, .u0 = 0, .u1 = 0; thus Eq. (10.1) reads 

.〈u′′(t), v〉 + â(u(t), v) = 0 (10.7) 

for all .v ∈ V and for almost all .t ∈ [0, T ]. Here one would like to follow the same 
idea employed for the finite dimensional approximation: select a value t among 
those for which (10.7) is satisfied, and choose .v = u′(t). However, this cannot 
be done since . u′ does not belong to .L2(0, T ;V ) but only to .L2(0, T ;H). Thus 
we adopt a classical procedure proposed by Olga A. Ladyženskaya1 (see also 
Dautray and Lions [6, p. 572]), and we choose as a test function an antiderivative 
of u: precisely, for a fixed .s ∈ [0, T ] set 

.v(t) =
{∫ s

t
u(τ )dτ if 0 ≤ t ≤ s

0 if s ≤ t ≤ T .

1 Ladyženskaya [16]. 
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We have .v(t) ∈ V for every .t ∈ [0, T ], .v ∈ L2(0, T ;V ) and .v′(t) = −u(t) for 
.0 ≤ t ≤ s, thus .v′ ∈ L2(0, s;V ). Let us choose this .v = v(t) in Eq. (10.7); using  
the density of .C∞([0, s];H) in the space 

. W(0, s;H ;V ′) = {w ∈ L2(0, s;H) | w′ ∈ L2(0, s;V ′)}

and the density of .C∞([0, s];V ) in the space 

. H 1(0, s;V ) = {w ∈ L2(0, s;V ) | w′ ∈ L2(0, s;V )}

(the proof of these density results can be done as in Dautray and Lions [6, Lemma 
1, p. 473]), due to the fact that .u′ ∈ W(0, s;H ;V ′) and .v ∈ H 1(0, s;V ) we have 

. 

∫ s

0 〈u′′(t), v(t)〉 dt = − ∫ s

0 (u′(t), v′(t))H dt

+〈u′(s), v(s)〉 − 〈u′(0), v(0)〉
= ∫ s

0 (u′(t), u(t))H dt (since u′(0) = 0 and v(s) = 0)

= ∫ s

0
1
2

d
dt

‖u(t)‖2
H dt = 1

2‖u(s)‖2
H (since u(0) = 0) .

(10.8) 

Moreover, for .0 ≤ t ≤ s it holds 

.̂a(u(t), v(t)) = −â(v′(t), v(t)) = −1

2

d

dt
[̂a(v(t), v(t))] , (10.9) 

where the last equality holds as .̂a(·, ·) is symmetric and not depending on t . Thus 
integrating (10.7) over .(0, s) it follows 

.

0 = 1
2‖u(s)‖2

H − ∫ s

0
1
2

d
dt

â(v(t), v(t))dt

= 1
2

(‖u(s)‖2
H + â(v(0), v(0))

)
(since v(s) = 0)

≥ 1
2

(‖u(s)‖2
H + α‖v(0)‖2

V − σ‖v(0)‖2
H

)

(since â(· , ·) is weakly coercive) .

(10.10) 

We have .v(0) = ∫ s

0 u(τ)dτ , thus 

.‖v(0)‖2
H ≤

(∫ s

0
‖u(τ)‖H dτ

)2

≤︸︷︷︸
Cauchy–Schwarz

s

∫ s

0
‖u(τ)‖2

H dτ , (10.11)
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and then 

. 

‖u(s)‖2
H + α‖v(0)‖2

V ≤ σs

∫ s

0
‖u(τ)‖2

H dτ

≤ σT

∫ s

0
‖u(τ)‖2

H dτ ∀ s ∈ [0, T ] .

From Gronwall lemma E.2 it follows .‖u(s)‖H = 0 for .s ∈ [0, T ] and uniqueness 
is proved. 

Fifth Step Repeat now the uniqueness result without assuming that . a1(t; ·, ·) = 0
and .̂a(t; ·, ·) is independent of .t ∈ [0, T ]. Instead of (10.7) we have the equation 

.〈u′′(t), v(t)〉 + â(t; u(t), v(t)) = −a1(t; u(t), v(t)) , (10.12) 

and instead of (10.9) we have 

.

â(t; u(t), v(t)) = −â(t; v′(t), v(t))

= −1

2

d

dt
[̂a(t; v(t), v(t))] + 1

2
â′(t; v(t), v(t)) ,

(10.13) 

thus 

.
〈u′′(t), v(t)〉 − 1

2

d

dt
[̂a(t; v(t), v(t))]

= −a1(t; u(t), v(t)) − 1
2 â′(t; v(t), v(t)) .

(10.14) 

Therefore integrating (10.14) over .(0, s) and proceeding as in (10.8) and (10.10) 
(where one has to replace .̂a(·, ·) by .̂a(0; ·, ·)) it follows 

. 

−
∫ s

0
a1(t; u(t), v(t))dt − 1

2

∫ s

0
â′(t; v(t), v(t))dt

≥ 1

2

(
‖u(s)‖2

H + α‖v(0)‖2
V − σ‖v(0)‖2

H

)
.

Using the boundedness of .̂a′(t; ·, ·) in .V × V and of .a1(t; ·, ·) in .H × V (see 
assumptions (iv) and (viii)), we obtain 

.

‖u(s)‖2
H + α‖v(0)‖2

V

≤ σ‖v(0)‖2
H + 2C2

∫ s

0
‖u(t)‖H ‖v(t)‖V dt + Ĉ1

∫ s

0
‖v(t)‖2

V dt

≤︸︷︷︸
2ab≤a2+b2

σ‖v(0)‖2
H + C2

∫ s

0
‖u(t)‖2

H dt + (Ĉ1 + C2)

∫ s

0
‖v(t)‖2

V dt .
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For .0 ≤ t ≤ T set now .w(t) = ∫ t

0 u(τ)dτ . It holds .v(0) = w(s) and . v(t) =
w(s) − w(t), for .0 ≤ t ≤ s. Thus, using that .(a + b)2 ≤ 2a2 + 2b2, we can 
rewrite the last equation as 

. ‖u(s)‖2
H + α‖w(s)‖2

V

≤ σ‖w(s)‖2
H + C∗( ∫ s

0
‖u(t)‖2

H dt +
∫ s

0
‖w(s) − w(t)‖2

V dt
)

≤ σ‖w(s)‖2
H + C∗( ∫ s

0
‖u(t)‖2

H dt + 2
∫ s

0
‖w(t)‖2

V dt + 2s‖w(s)‖2
V

)
,

where .C∗ = Ĉ1 + C2. Since .w(s) = v(0), we have already seen in (10.11) that 

. ‖w(s)‖2
H ≤ s

∫ s

0
‖u(τ‖2

H dτ ,

therefore for . 0 ≤ s ≤ T1 ≤ T

. ‖w(s)‖2
H ≤ T1

∫ s

0
‖u(τ‖2

H dτ ,

and consequently 

. 

‖u(s)‖2
H + (α − 2T1C

∗)‖w(s)‖2
V

≤ (σT1 + C∗)
∫ s

0
‖u(t)‖2

H dt + 2C∗
∫ s

0
‖w(t)‖2

V dt .

Choosing .T1 > 0 so small that .α − 2T1C
∗ ≥ α

2 , we can apply Gronwall 
lemma E.2 on the interval .[0, T1] to the function .η(s) = ‖u(s)‖2

H + α
2 ‖w(s)‖2

V , 
thus obtaining .η(s) = 0 for .s ∈ [0, T1]. Since . T1 only depends on the data of the 
problem through . C∗ and . α, we can repeat the same argument on .[T1, 2T1] and so 
on. ��

10.1.1 Application to Hyperbolic PDEs 

Let us show some examples of hyperbolic problems that are covered by this abstract 
theory. Let .D ⊂ Rn be a bounded, connected open set with a Lipschitz continuous 
boundary . ∂D. The operator L will be as usual 

.Lw = −
n∑

i,j=1

Di (aij (t)Djw) +
n∑

i=1

bi(t)Diw + a0(t)w ,
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that we assume to be elliptic uniformly in space and time, namely, there exists . α0 >

0 such that 

. 

n∑
i,j=1

aij (x, t)ηjηi ≥ α0|η|2

for all .η ∈ Rn, almost all .x ∈ D and all .t ∈ [0, T ]. The associated bilinear form, 
depending on the boundary conditions we have to consider, is 

. 

a(t;w, v) =
∫

D

n∑
i,j=1

aij (t)DjwDivdx +
∫

D

n∑
i=1

bi(t)Diwvdx

+
∫

D

a0(t)wvdx

[
+

∫
∂D

κ(t)wvdSx

]
,

where the integral inside the square brackets is present only in the case of the Robin 
boundary condition. We define 

. ̂a(t;w, v) =
∫

D

n∑
i,j=1

ai,j (t)DjwDivdx

[
+

∫
∂D

κ(t)wvdSx

]
,

which is the bilinear form associated to the principal part. 
We assume that . aij , . bi , . a0 belong to .L∞(D × (0, T )), and that . κ belongs to 

.L∞(∂D × (0, T )), with .κ(x, t) ≥ 0 for almost all .x ∈ D and all .t ∈ [0, T ] and 

.
∫
∂D

κ(t)dSx �= 0 for all .t ∈ [0, T ]. We also assume that .aij (x, t) is differentiable 

with respect to t in .[0, T ] for almost all .x ∈ D, and that .
∂aij

∂t
belongs to . L∞(D ×

(0, T )). Similarly we assume that .κ(x, t) is differentiable with respect to t in . [0, T ]
for almost all .x ∈ ∂D, and that . ∂κ

∂t
belongs to .L∞(∂D× (0, T )). Finally, we assume 

that the coefficient matrix of the principal part of the operator L is symmetric, i.e., 
that 

. aij (x, t) = aji(x, t) for almost all x ∈ D and all t ∈ [0, T ] .

With these hypotheses it is an easy task to verify that all the assumptions of the 
abstract Theorem 10.1 are satisfied, choosing H and V as in the parabolic case: in 
conclusion, the existence of a solution is assured. 

Remark 10.2 Let us note that in the hyperbolic case, due to the presence of the 
second order time derivative, it is not possible to rewrite the given problem as 
a hyperbolic problem associated to a coercive bilinear form, by using a suitable 
change of variable (see Remark 9.2 and Exercise 10.5). However, it is possible to 
choose .σ = 0 in the weak coerciveness assumption provided that the Poincaré 
inequality is satisfied (or the generalized Poincaré inequality in the case of the Robin
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problem); in other words, only in the case of the Neumann problem the principal part 
of the bilinear form is weakly coercive and not coercive. 

Concerning uniqueness, we need to check that there exists .C2 > 0 such that 

.|a1(t;w, v)| ≤ C2‖w‖H ‖v‖V (10.15) 

for all .w, v ∈ V and almost all .t ∈ [0, T ], where .‖·‖H = ‖·‖L2(D), . ‖·‖V = ‖·‖H 1(D)

and 

. a1(t;w, v) =
∫

D

n∑
i=1

bi(t)Diwvdx +
∫

D

a0(t)wvdx .

The second term satisfies (10.15), thus we only have to verify (10.15) for the 
first term. Let us integrate by parts formally (we will see here below when this 
is possible): 

. 

∫
D

n∑
i=1

bi(t)Diwvdx = −
∫

D

w

n∑
i=1

Di (bi(t)v)dx +
∫

∂D

w b(t) · n vdSx

= −
∫

D

w div b(t) vdx −
∫

D

w b(t) · ∇vdx +
∫

∂D

w b(t) · n vdSx .

Therefore we can easily verify that estimate (10.15) holds if for example: 

(i) .div b ∈ L∞(D × (0, T )), .V = H 1
0 (D) (Dirichlet problem) 

(ii) .div b ∈ L∞(D×(0, T )), .b ·n = 0 a.e. on .∂D×(0, T ), .V = H 1(D) (Neumann 
or Robin problem) 

(iii) .div b ∈ L∞(D × (0, T )), .b · n = 0 a.e. on .
N × (0, T ), .V = H 1

D

(D) (mixed 
problem). 

Thus, concerning the regularity of b, we can simply assume . b ∈ L∞(0, T ;W 1,∞
(D)) (so that, by the Sobolev immersion theorem 7.15, .b(t)|∂D and .b(t)|
N

have a 
meaning). Clearly, all these conditions are satisfied if .bi = 0 for .i = 1, . . . , n. 

10.1.2 Application to Maxwell Equations 

The Maxwell equations describe the propagation of electromagnetic waves. In terms 
of the electric induction D, the electric field E, the magnetic induction B and the
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magnetic field H they read 

. 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂B
∂t

+ curl E = 0 [Faraday]
∂D
∂t

− curl H = −Je [Maxwell–Ampère]
div B = 0 [Gauss magnetic]
div D = ρ [Gauss electric]
B = μH

D = εE ,

where . Je is the applied current density, . ρ is the electric charge density, .μ > 0 is 
the magnetic permeability, .ε > 0 is the electric permittivity, and the operator curl is 
defined as 

. curl Q = ∇ × Q = det

⎡
⎣ i j k

D1 D2 D3

Q1 Q2 Q3

⎤
⎦ .

Two initial conditions must be added: .E|t=0 = E0 and .H|t=0 = H0. Instead, the 
two Gauss equations can be left apart; the second one can be seen as a definition 
of the charge density, and gives as a consequence . ∂ρ

∂t
+ div Je = 0, the equation of 

conservation of the total electric charge (just take the divergence of the Maxwell– 
Ampère equation); the first one is always satisfied if it is satisfied at the initial time 
(just take the divergence of the Faraday equation). 

Taking the curl of the first equation and the time derivative of the second one 
easily leads to 

. 
∂2E

∂t2
+ c2curl curl E = −1

ε

∂Je

∂t
.

where .c2 = 1
με

. Similarly, differentiating in time the first equation and taking the 
curl of the second one gives 

. 
∂2H

∂t2
+ c2curl curl H = c2curl Je .

The two equations have the same structure, and from now on we will focus on the 
first one. 

When the boundary of the physical domain .D ⊂ R3 is a perfect conductor, the 
boundary condition for the electric field is .E × n = 0 on . ∂D. We have therefore to
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solve the following problem: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2E

∂t2 + c2curl curl E = −1

ε

∂Je

∂t
in D × (0, T )

E × n = 0 on ∂D × (0, T )

E|t=0 = E0 in D

∂E

∂t |t=0
= E1 in D ,

(10.16) 

where .E1 = 1
ε
(curl H0 − Je|t=0). 

Let .D ⊂ R
3 be a bounded, connected open set with a Lipschitz continuous 

boundary . ∂D. A variational formulation is easily devised. Multiply the first equation 
by v, integrate in D and integrate by parts: using Theorem C.8 gives 

. 

∫
D

∂2E

∂t2 · v dx +c2
∫

D

curl E · curl v dx + c2
∫

∂D

n × curl E · v dSx

= −
∫

D

1

ε

∂Je

∂t
· v dx .

The boundary integral can be rewritten as 

. 

∫
∂D

(v × n) · curl E dSx ,

therefore it vanishes if we assume that the test function v satisfies .v × n = 0 on . ∂D

(as it is assumed for the electric field E). 
In Exercise 5.8 we have introduced the space 

. H(curl;D) = {v ∈ (L2(D))3 | curl v ∈ (L2(D))3}

(the curl being intended in the weak sense), endowed with the scalar product 

.(w, v)curl =
∫

D

(curl w · curl v + w · v)dx , (10.17) 

and its closed subspace 

. H0(curl;D) = {v ∈ H(curl;D) | v × n = 0 on ∂D} .

Both .H(curl;D) and .H0(curl;D) are Hilbert spaces (see Exercise 10.1). We set 
.V = H0(curl;D) and .H = (L2(D)3. Clearly, the immersion .V ↪→ H is 
continuous; moreover, .(C∞

0 (D))3 is dense in .H0(curl;D) (see, e.g., Monk [22, 
Theor. 3.33, p. 61]). By adapting the proof given in Adams [1, Theor. 3.5, p. 47],
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it is also easily verified that .H(curl;D) is separable, thus .H0(curl;D) is separable, 
too. 

Finally, we define the bilinear form 

. a(υ, v) = c2
∫

D

curl υ · curl v dx ,

which clearly is symmetric, bounded and weakly coercive in .V × V . 
The Maxwell equations have therefore the following variational formulation: 

.
d2

dt2

∫
D

E(t) · v dx + a(E(t), v) = −
∫

D

1

ε

∂Je

∂t
(t) · v dx (10.18) 

for all .v ∈ V and almost all .t ∈ [0, T ]. Assuming that .E0 ∈ H0(curl;D), 
.E1 ∈ (L2(D))3 and .∂tJe ∈ L2(0, T ; (L2(D))3) we can apply Theorem 10.1 
and obtain for this problem a unique solution .E ∈ L2(0, T ;H0(curl;D)), with 
.∂tE ∈ L2(0, T ; (L2(D))3), .∂ttE ∈ L2(0, T ; (H0(curl;D))′) and .E(0) = E0 in D, 
.∂tE(0) = E1 in D. 

Remark 10.3 When considering as unknown the magnetic field H the formulation 
of the problem is 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2H

∂t2 + c2curl curl H = c2curl Je in D × (0, T )

(curl H − Je) × n = 0 on ∂D × (0, T )

H|t=0 = H0 in D

∂H

∂t |t=0
= H1 in D ,

(10.19) 

with .H1 = − 1
μ

curl E0. The corresponding variational formulation is given by 

.
d2

dt2

∫
D

H(t) · w dx + a(H(t), w) = c2
∫

D

Je(t) · curl w dx (10.20) 

for all .w ∈ V and almost all .t ∈ [0, T ], where .V = H(curl;D). For devising this 
formulation one has taken into account that the boundary integral 

. c2
∫

∂D

[n × (curl H − Je)] · w dSx

vanishes due to the boundary condition in (10.19). 
Note that, proceeding formally, the boundary condition . (curl H(t)−Je(t))×n =

0 says that .
∂E
∂t

(t) × n = 0 for each .t ∈ [0, T ], therefore assuming .E0 × n = 0 gives 
.E(t) × n = 0 for each .t ∈ [0, T ].
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Remark 10.4 Sufficient assumptions for applying both existence theorems are 
.E0 ∈ H0(curl;D), .H0 ∈ H(curl;D), .Je ∈ L2(0, T ; (L2(D))3) and . ∂tJe ∈
L2(0, T ; (L2(D))3). 

Exercise 10.1 Prove that .H(curl;D) is a Hilbert space with respect to the scalar 
product (10.17). 

10.2 Finite Propagation Speed 

The hyperbolic equations have the property of finite propagation speed . This is a  
general property, but we will give a proof of it only for the wave equation, with 
velocity .c > 0. 

Consider a point .(x0, t0), with .x0 ∈ Rn and .t0 > 0, and for .0 ≤ t < t0 define the 
sets 

. 
Dt = {x ∈ Rn | |x − x0| < c(t0 − t)}
W = {(x, t) ∈ Rn × [0, t0) | x ∈ Dt } .

Let us write for simplicity .ut = ∂u
∂t

and .utt = ∂2u
∂t2 . The following result holds true: 

Theorem 10.2 Suppose that u is a (smooth enough) solution of . utt − c2�u = 0
and that .u = 0, .ut = 0 on . D0. Then .u = 0 in W . 

Proof Define 

. e(t) = 1

2

∫
Dt

(u2
t + c2|∇u|2)dx .

We want to compute .e′(t). We have, by the Reynolds transport theorem D.1, 

. e′(t) = 1

2

∫
Dt

(u2
t + c2|∇u|2)tdx + 1

2

∫
∂Dt

(u2
t + c2|∇u|2)V · ndSx ,

where V is the velocity of .∂Dt and n is the external unit normal on .∂Dt . Since . ∂Dt

is the zero level-set of 

. Q(x, t) = |x − x0| − c(t0 − t)

and .Dt = {x ∈ Rn | Q(x, t) < 0}, we have  

.n = ∇Q

|∇Q| = x − x0

|x − x0| .
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For a particle .x = x(t) belonging to .∂Dt we have .|x(t) − x0| = c(t0 − t); thus 
differentiating with respect to t we have 

. − c = d

dt
|x(t) − x0| = x(t) − x0

|x(t) − x0| · x′(t) = n · V .

Summing up, using the Cauchy–Schwarz inequality and the fact that for any . a, b ∈
R it holds .2ab ≤ a2 + b2, we obtain 

. 

e′(t) = 1

2

∫
Dt

(2ut utt + 2c2 ∇u · ∇ut︸ ︷︷ ︸
integrate by parts

)dx + 1

2

∫
∂Dt

(u2
t + c2|∇u|2)(−c)dSx

=
∫

Dt

ut utt dx − c2
∫

Dt

�uutdx

+ c2
∫

∂Dt

∇u · n ut︸ ︷︷ ︸
Cauchy–Schwarz

dSx − c

2

∫
∂Dt

(u2
t + c2|∇u|2)dSx

≤
∫

Dt

ut (utt − c2�u)︸ ︷︷ ︸
=0

dx + c

2

∫
∂Dt

2c|∇u||ut |︸ ︷︷ ︸
2ab≤a2+b2

dSx

− c

2

∫
∂Dt

(u2
t + c2|∇u|2)dSx

≤ c

2

∫
∂Dt

(
c2|∇u|2 + u2

t

)
dSx − c

2

∫
∂Dt

(u2
t + c2|∇u|2)dSx = 0 ,

so that .e(t) ≤ e(0) = 0 for each .t ∈ [0, t0]. Since .e(t) ≥ 0, it follows .e(t) = 0 for 
each .t ∈ [0, t0]. In particular this gives .ut = 0 in W and, since .u = 0 on the basis 
. D0, it follows .u = 0 in W . ��
Remark 10.5 The real-life interpretation of this result looks clear: if you throw a 
stone in a pond, the generated wave reaches the other side not immediately but after 
a little time. Do you see how mathematics is powerful? 

10.3 Exercises 

Exercise 10.1 Prove that H(curl; D) is a Hilbert space with respect to the scalar 
product (10.17). 

Solution Take a Cauchy sequence qk in H(curl; D): in particular qk and curl qk are 
Cauchy sequences in (L2(D))3, thus we have that qk → q and curl qk → w in 
(L2(D))3. From the definition of weak curl (see Exercise 5.2) we know that curl qk
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satisfies 

. 

∫
D

curl qk · vdx =
∫

D

qk · curl vdx ∀ v ∈ (C∞
0 (D))3 .

Passing to the limit we find 

. 

∫
D

w · vdx =
∫

D

q · curl vdx ∀ v ∈ (C∞
0 (D))3 ,

which means that w ∈ (L2(D))3 is the weak curl of q. As a consequence we have 
proved that the sequence qk converges to q in H(curl; D). 

Exercise 10.2 Suppose that u is a smooth solution in D × (0, T  )  of the homoge-
neous Dirichlet boundary value problem associated to the wave equation 

. 
∂2u

∂t2
− c2�u = 0 in D × (0, T ) .

Show that E(t) = ‖u′(t)‖2 
L2(D) + c2‖∇u(t)‖2 

L2(D) is constant for each t ∈ [0, T ]. 
Solution Fix t ∈ (0, T  ), and choose v = u′(t) as test function in the weak 
formulation of the wave equation. We obtain 

. 〈u′′(t), u′(t)〉 + c2
∫

D

∇u(t) · ∇u′(t)dx = 0 .

This can be rewritten as 

. 
1

2

d

dt

∫
D

u′(t)2dx + c2

2

d

dt

∫
D

|∇u(t)|2dx = 0 ,

therefore
∫
D u

′(t)2dx + c2
∫
D |∇u(t)|2dx is constant for each t ∈ [0, T ]. 

[The physical meaning of this equality is that for an event steered by the wave 
equation the total energy (kinetic plus potential energy) is conserved.] 

Exercise 10.3 Devise a variational formulation for the homogeneous Dirichlet 
boundary value problem associated to the damped wave equation 

. 
∂2u

∂t2
+ β

∂u

∂t
− c2�u = f in D × (0, T ) ,

where β >  0 is a given parameter.
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Solution The result is quite simple: by proceeding as for the wave equation, 
we look for u ∈ L2(0, T  ; H 1 

0 (D)), with u′ ∈ L2(0, T  ; L2(D)) and u′′ ∈ 
L2(0, T ; (H 1 

0 (D))′), solution of 

. 〈u′′(t), v〉 + β(u′(t), v)L2(D) + c2(∇u(t),∇v)L2(D)

= (f (t), v)L2(D) ∀ v ∈ H 1
0 (D) .

Exercise 10.4 Suppose that u is a smooth solution in D × (0,+∞) of the 
homogeneous Dirichlet boundary value problem associated to the damped wave 
equation described in the previous exercise, with f = 0. Show that the total energy 
E(t) = ‖u′(t)‖2 

L2(D) + c2‖∇u(t)‖2 
L2(D) is decreasing. 

Solution First of all, let us note that by proceeding as in Theorem 10.1 one could 
prove the existence and uniqueness of a solution u ∈ L2(0, T ; H 1 

0 (D)) of the 
damped wave equation, with u′ ∈ L2(0, T  ; L2(D)) and u′′ ∈ L2(0, T ; (H 1 

0 (D))′). 
However, this would not permit us to use u′(t) as a test function in the weak 
formulation, as it does not belong to H 1 

0 (D) but only to L2(D). Thus let us proceed 
formally and assume that u is a smooth solution and set u(0) = u0 and u′(0) = u1. 
Fix t ∈ (0,+∞), and choose v = u′(t) as test function in the weak formulation of 
the damped wave equation. We have 

. 〈u′′(t), u′(t)〉 + β

∫
D

u′(t)2dx + c2
∫

D

∇u(t) · ∇u′(t)dx = 0 .

This can be rewritten as 

. 
1

2

d

dt

∫
D

u′(t)2dx + c2

2

d

dt

∫
D

|∇u(t)|2dx + β

∫
D

u′(t)2dx = 0 .

Therefore we have 

. E′(t) = −2β

∫
D

u′(t)2dx ≤ 0 .

[The physical meaning of this equality is that for an event steered by the damped 
wave equation the total energy (kinetic plus potential energy) is dissipated as time 
increases.] 

Exercise 10.5 Show that a suitable change of variable transforms the hyperbolic 
problem 

.
∂2u

∂t2 + Lu = f in D × (0, T )
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associated to a weakly coercive bilinear form BL(·, ·) into a damped hyperbolic 
problem 

. 
∂2u

∂t2 + β
∂u

∂t
+ L�u = f̂ in D × (0, T )

associated to a coercive bilinear form BL�(·, ·). 
Solution Set w(t) = e−ηt u(t) where η = √

σ >  0 and σ is the constant related to 
weak coerciveness. Then 

. 

w′(t) = −ηe−ηtu(t) + e−ηtu′(t) = −ηw(t) + e−ηtu′(t)

w′′(t) = η2e−ηtu(t) − 2ηe−ηtu′(t) + e−ηtu′′(t)

= η2w(t) − 2η(w′(t) + ηw(t)) + e−ηtu′′(t)

= −η2w(t) − 2ηw′(t) + e−ηtu′′(t) .

Thus from u′′ = f − Lu it follows 

. w′′(t) + 2
√

σw′(t) + Lw(t) + σw(t) = e−√
σ tf (t) ,

thus the desired result with L� = L + σI , β = 2
√

σ and f̂ (t)  = e−√
σ t  f (t). 

Exercise 10.6 Propose a numerical scheme for finding the approximate solution 
of a hyperbolic problem which is based on the Galerkin approximation and on a 

suitable finite difference scheme for discretizing ∂
2u 

∂t2 . 

Solution As in Exercise 9.6, let  VM be a finite dimensional subspace of V (not 
necessarily the space generated by the first M element of an orthonormal basis of 
V ), whose basis is denoted by {φ1, . . . , φM }. Choose a time-step τ = T/K  >  0, 
define tk = kτ , k = 0, 1, . . . , K , and consider the (second order) centered 
approximation of the second order derivative: 

. 
uk+1 − 2uk + uk−1

τ 2
≈ u′′(tk) , k = 1, . . . , K − 1 .

Then the hyperbolic equation 

. 〈u′′(t), v〉 + a(t; u(t), v) = 〈F(t), v〉

can be approximated by means of the following numerical scheme: being given 
u0 

M ∈ VM , a suitable approximation of the initial datum u0, and u1 
M ∈ VM , a  

suitable approximation of u(t1) constructed in terms of u0 
M and of an approximation 

u1,M of the initial datum u1 (for instance, u1 
M = u0 

M + τ u1,M , or, better, a higher
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order approximation), for each k = 1, . . . , K  − 1 find uk+1 
M ∈ VM , solution of the 

problem 

. 

(
uk+1

M − 2uk
M + uk−1

M

τ 2 , φi

)

H

+ a(tk; uk
M, φi) = 〈F(tk), φi〉 , i = 1, . . . ,M .

In the literature, this is often called the (second order) “explicit” Newmark method 
(see, e.g., Raviart and Thomas [23, Sections 8.5 and 8.6]). Here the term “explicit” 
is used though at each time step tk+1, k = 1, . . . , K  − 1, one has indeed to solve the 
discretized linear problem 

. 
(uk+1

M , φi)H = −τ 2a(tk; uk
M, φi) + (2uk

M − uk−1
M , φi)H

+τ 2〈F(tk), φi〉 , i = 1, . . . ,M ;

this linear system is associated to the so-called mass matrix Mij = (φj , φi)H , where 
the contribution of the bilinear form a(t; ·, ·) is not present, thus the operator L is 
not playing any role.



Appendix A 
Partition of Unity 

A technical result that have been used in the previous chapters is that of partition of 
unity. Let us explain which is its meaning. 

Let K be a compact set in . Rn, covered by a finite union of open sets, . K ⊂⋃M
i=1 Vi . Define 

. Vi,ε = {x ∈ Vi | dist(x, ∂Vi) > ε} .

The first result that we want to prove is the following one: we can find other open 
coverings .

⋃M
i=1 Vi,ε0 , .

⋃M
i=1 Vi,2ε0 , for a suitable . ε0. Let us prove this assertion. 

Proposition A.1 If a compact set .K ⊂ Rn is covered by a finite union of open sets, 
.K ⊂ ⋃M

i=1 Vi , then there exists .ε0 > 0 such that .K ⊂ ⋃M
i=1 Vi,ε0 . 

Proof We proceed by contradiction, and suppose that the statement is not true. 
Then for each .ε > 0 we can find .xε ∈ K , .xε /∈ ⋃M

i=1 Vi,ε. Since K is compact, 
we can select a subsequence .xεk

→ x0 ∈ K , with .εk → 0. Then there exists 
.i0 ∈ {1, . . . ,M} such that .x0 ∈ Vi0 . On the other hand, since .xεk

/∈ ⋃M
i=1 Vi,εk

, in  
particular .xεk

/∈ Vi0,εk
, and consequently we know that 

. dist(xεk
, ∂Vi0) ≤ εk −→ 0 .

Thus .dist(x0, ∂Vi0) = 0, a contradiction as . Vi0 is an open set. ��
Now we can state the result concerning the partition of unity. 

Proposition A.2 Let K be a compact set in . Rn, covered by a finite union of open 
sets, .K ⊂ ⋃M

i=1 Vi . Then there exist functions .ωi : Rn �→ R, .i = 1, . . . ,M , with 
the following properties: 

(i) .ωi ∈ C∞
0 (Vi) for each .i = 1, . . . , M; 

(ii) .0 ≤ ωi(x) ≤ 1 for each .i = 1, . . . , M and for each .x ∈ Rn; 
(iii) .

∑M
i=1 ωi(x) = 1 for each .x ∈ K . 
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Proof Take the characteristic function . χi of .Vi,2ε0 and for some fixed . ε < ε0
consider its mollified version .ζi = ηε ∗ χi defined as 

. ζi(x) =
∫

R
n
χi(y)ηε(x − y)dy , x ∈ Rn

(see Theorem 6.1). We know that .ζi ∈ C∞(Rn) and that .ζi(x) ≥ 0 for all .x ∈ Rn, 
as both . χi and . ηε are non-negative functions. Since the integral is indeed computed 
on .Vi,2ε0 ∩ B(x, ε), where .B(x, ε) = {y ∈ Rn | |y − x| < ε}, we have . ζi(x) = 0
for .x /∈ Vi,ε0 , as in this case .Vi,2ε0 ∩ B(x, ε) = ∅; therefore .ζi ∈ C∞

0 (Vi). More  
precisely, we can see that .ζi(x) > 0 for .x ∈ Vi,2ε0−ε, .ζi(x) = 0 for .x /∈ Vi,2ε0−ε, 
namely .supp ζi = Vi,2ε0−ε. We now define 

. ωi(x) =
⎧
⎨

⎩

ζi (x)
∑M

j=1 ζj (x)
if x ∈ Vi,2ε0−ε

0 if x ∈ Rn \ Vi,2ε0−ε .

Therefore .ωi ∈ C∞
0 (Rn), .supp ωi = Vi,2ε0−ε ⊂ Vi,ε0 ⊂⊂ Vi , .ωi(x) ≥ 0 for all . x ∈

R
n and .ωi(x) ≤ 1 for all .x ∈ Rn. Finally, for . x ∈ K ⊂ ⋃M

i=1 Vi,2ε0 ⊂ ⋃M
i=1 Vi,2ε0−ε

let us define 

. Ix = {i = 1, . . . ,M | x ∈ Vi,2ε0−ε} ;

then we have 

. 

M∑

i=1

ωi(x) =
∑

s∈Ix

ωs(x) =
∑

s∈Ix

( ζs(x)
∑

s∈Ix
ζs(x)

)
= 1 ,

and the proof is complete. ��
An immediate consequence of this result is the construction of a cut-off function: 

Corollary A.1 Let .D ⊂ Rn be a bounded, connected, open set. Let Q be an open 
subset with .Q ⊂⊂ D. Then there exists a cut-off function .ζ ∈ C∞

0 (D) satisfying 
.0 ≤ ζ(x) ≤ 1 for .x ∈ D and .ζ(x) = 1 for .x ∈ Q. 

Proof It is enough to apply Proposition A.2 with .K = Q and with a covering . Vi

satisfying .∪M
i=1Vi ⊂⊂ D. For .x ∈ D the cut-off function is then given by . ζ(x) =

∑M
i=1 ωi(x), and the property .ζ(x) ≤ 1 in D follows by the definition of . ωi . ��



Appendix B 
Lipschitz Continuous Domains 
and Smooth Domains 

In this appendix we clarify the meaning we give to the concept of “regularity” of 
the boundary of a domain. 

First of all we have: 

Definition B.1 Let .O ⊂ Rn be an open set. We say that a function .q : O �→ R
n is a 

Lipschitz function in . O, and we write .q ∈ Lip(O), if there exists a constant . L > 0
such that 

. |q(x) − q(y)| ≤ L|x − y|

for every .x, y ∈ O. 

To give an example, it is easily verified that, if . O is a bounded open set, then 
a function .q ∈ C1(O) (namely, the restriction to . O of a .C1(Rn)-function) is a 
Lipschitz function in . O. 

Consider now a bounded, connected, open set .D ⊂ R
n. Then the Lipschitz 

continuous regularity of its boundary .∂D is defined as follows: 

Definition B.2 We say that D is a Lipschitz domain, or equivalently a domain with 
a Lipschitz continuous boundary, if for every point .p ∈ ∂D there exist an open ball 
. Bp centered at p, an open ball . ̂B0 centered at 0, a rigid body motion . Rp : Bp �→ B̂0
given by .Rpx = Apx+bp, with .Rpp = 0, . Ap an orthogonal .n×n-matrix, .bp ∈ Rn, 
and a map .ϕ : Q �→ R, where .Q = {ξ ∈ B̂0 | ξn = 0}, such that 

1. .ϕ ∈ Lip(Q) and . ϕ(0) = 0
2. . Rp(Bp ∩ ∂D) = {(ξ ′, ξn) ∈ B̂0 | ξn = ϕ(ξ ′), ξ ′ ∈ Q}
3. . Rp(Bp ∩ D) = {(ξ ′, ξn) ∈ B̂0 | ξn > ϕ(ξ ′), ξ ′ ∈ Q} .

The meaning of the second condition is that .∂D coincides locally with the graph of 
a Lipschitz function; the third condition asserts that D is locally situated on one part 
of its boundary . ∂D. 
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Fig. B.1 A (polyhedral) domain whose boundary is a Lipschitz manifold but it is not locally the 
graph of a Lipschitz function. The “bad” points are the four vertices of the square that is the 
interface between the two bricks (Courtesy of Jarno and Beatrice) 

In particular, this definition says that a Lipschitz domain is a domain whose 
boundary is a manifold with a system of local charts that are invertible Lipschitz 
functions, namely, a Lipschitz manifold. 

It can be interesting to note the opposite is not true: if you have a good 
geometrical intuition you can verify that the boundary of the two-brick set described 
in Fig. B.1 is an example of a surface that is not locally the graph of a Lipschitz 
function. On the other hand, it is a Lipschitz manifold (for complete description of 
this situation, see for instance a recent paper by Licht1 ). 

For a Lipschitz domain at almost every point .x ∈ ∂D a tangent (hyper)plane is 
well defined, together with the unit outward normal vector n. 

Definition B.3 We say that D is a domain of class . Ck , or equivalently a domain 
with a .Ck-boundary, .k ≥ 1, and we write .∂D ∈ Ck , if the function . ϕ in 
Definition B.2 belongs to . Ck .

1 Licht [19]. 



Appendix C 
Integration by Parts for Smooth 
Functions and Vector Fields 

This appendix is devoted to various “integration by parts” formulas that have been 
used several times in the previous chapters. 

Let us start from the “fundamental theorem of calculus” (whose proof can be 
found in any Calculus textbook): the integral of a derivative of a function f can be 
explicitly expressed by an integral of f over a lower dimensional set. 

Theorem C.1 (Fundamental Theorem of Calculus) Let .D ⊂ Rn be a bounded, 
connected, open set with a Lipschitz continuous boundary, and let .f : D �→ R be a 
function of class .C1(D). Then 

.

∫

D

Dif dx =
∫

∂D

f nidSx , (C.1) 

where n is the unit outward normal vector, defined on . ∂D for almost every .x ∈ ∂D. 

From this theorem we easily obtain many well-known results: 

Theorem C.2 (Integration by Parts) Let .D ⊂ Rn be a bounded, connected, open 
set with a Lipschitz continuous boundary, and let .f, g : D �→ R be two functions of 
class .C1(D). Then 

.

∫

D

Dif gdx = −
∫

D

f Digdx +
∫

∂D

fgnidSx . (C.2) 

Proof It is enough to remember that .Di (fg) = Difg + fDig and to apply 
Theorem C.1. ��
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Theorem C.3 (Divergence or Gauss Theorem) Let .D ⊂ R
n be a bounded, 

connected, open set with a Lipschitz continuous boundary, and let . F : D �→ R
n

be a vector field of class .C1(D). Then 

.

∫

D

divFdx =
∫

∂D

F · n dSx . (C.3) 

Proof Since .div F = ∑n
i=1DiFi , one has only to apply Theorem C.2 for .f = Fi , 

.g = 1 and to add over .i = 1, . . . , n. ��
Theorem C.4 Let .D ⊂ Rn be a bounded, connected, open set with a Lipschitz 
continuous boundary, and let .F : D �→ R

n be a vector field of class .C1(D), . g :
D �→ R be a function of class .C1(D). Then 

.

∫

D

divF gdx = −
∫

D

F · ∇gdx +
∫

∂D

F · n g dSx . (C.4) 

In particular, taking .F ∈ C∞
0 (D) and .g ∈ C∞

0 (D) one verifies that .−∇ is the 
(formal) transpose operator of . div. 

Proof It is enough to apply Theorem C.2 to .f = Fi and to add over .i = 1, . . . , n.
��

Theorem C.5 Let .D ⊂ Rn be a bounded, connected, open set with a Lipschitz 
continuous boundary, and let .f : D �→ R be a function of class .C2(D), . g : D �→ R

be a function of class .C1(D). Then 

.

∫

D

(−
f ) gdx =
∫

D

∇f · ∇gdx −
∫

∂D

∇f · n g dSx . (C.5) 

In particular, taking .g = 1 it follows 

.

∫

D


f dx =
∫

∂D

∇f · n dSx . (C.6) 

Proof Recalling that .−
f = −div∇f , it is enough to apply Theorem C.4 to . F =
−∇f . ��
Theorem C.6 Let .D ⊂ Rn be a bounded, connected, open set with a Lipschitz 
continuous boundary, and let .F : D �→ R

n be a vector field of class .C1(D), . G :
D �→ R

n be a vector field of class .C2(D). Then 

.

∫

D

(−∇divG) · Fdx =
∫

D

divG divFdx −
∫

∂D

divGF · n dSx . (C.7) 

Proof It is enough to apply Theorem C.4 to .g = divG. ��
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Theorem C.7 Let .D ⊂ Rn be a bounded, connected, open set with a Lipschitz 
continuous boundary, and let .F,G : D �→ R

n be two vector fields of class .C1(D). 
Then 

.

∫

D

curlF · Gdx =
∫

D

F · curlGdx +
∫

∂D

n × F · GdSx . (C.8) 

In particular, taking .F ∈ C∞
0 (D) and .G ∈ C∞

0 (D) one verifies that .curl is 
(formally) equal to its transpose operator. 

Proof Recalling that .curlF can be formally computed as the vector product .∇ ×F , 
one has only to apply Theorem C.2 to all the terms of the scalar product . curlF · G

and to check that the result follows. ��
Theorem C.8 Let .D ⊂ Rn be a bounded, connected, open set with a Lipschitz 
continuous boundary, and let .M : D �→ R

n be a vector field of class .C2(D), 
.G : D �→ R

n be a vector field of class .C1(D). Then 

.

∫

D

curlcurlM · Gdx =
∫

D

curl M · curlGdx +
∫

∂D

n × curlM · GdSx . (C.9) 

Proof Just take .F = curlM in Theorem C.7. ��



Appendix D 
Reynolds Transport Theorem 

In this appendix we are concerned with a well-known result of differential calculus, 
which is often useful in continuum mechanics. In the literature we are not aware of 
a reference presenting its proof in a detailed way (but surely it exists!). Anyway, for 
the ease of the reader we decided to present the proof here. 

We need a preliminary result. Let us denote by .Lip(Rn) the space of Lipschitz 
functions on . Rn. 

Lemma D.1 Consider .v = v(t, X) ∈ L1(0,+∞;Lip(Rn)), .x ∈ Rn, and let . � =
�(t, x) be the solution of the Cauchy problem 

.

⎧
⎪⎨

⎪⎩

d

dt
�(t, x) = v(t,�(t, x)) , t > 0

�(0, x) = x .

(D.1) 

Defining .j (t, x) = det Jacx�(t, x), it holds 

.
dj

dt
(t, x) = [(divXv) ◦ �](t, x)j (t, x) . (D.2) 

Remark D.1 In fluid dynamics one says that v is the velocity of the flow . �: in  
other words, the position .�(t, x) is determined by integrating the velocity v along 
the trajectories of the fluid particles. This means that .�(t, x) is the position at time t 
of a particle that at time 0 was at x: then .X = �(t, x) is the Lagrangian coordinate, 
whereas x is the Eulerian coordinate. 

Proof Being j a determinant, its derivative is given by 

. 
dj

dt
=

n∑

k=1

det Mk ,
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where, for .k = 2, . . . , n − 1, the matrix .Mk is given by 

. Mk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Dx1�1 . . . Dxn�1
...

...
...

DtDx1�k . . . DtDxn�k

...
...

...

Dx1�n . . . Dxn�n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with obvious modification for the cases .k = 1 and . k = n. For . k, j = 1, . . . , n

from (D.1) we have

. DtDxj
�k = Dxj

Dt�k = Dxj
(vk ◦ �) ,

where we have denoted by .g ◦ � the function .(t, x) �→ g(t,�(t, x)). Moreover, by 
means of the chain rule we also find, for .k, j = 1, . . . , n, 

. Dxj
(vk ◦ �) =

n∑

s=1

(
∂vk

∂Xs

◦ �

)

Dxj
�s .

Take for a while .k = 2, . . . , n − 1. Using the two last results we obtain 

. Mk =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Dx1�1 . . . Dxn�1
...

...
...

n∑

s=1

(
∂vk

∂Xs

◦ �

)

Dx1�s . . .

n∑

s=1

(
∂vk

∂Xs

◦ �

)

Dxn�s

...
...

...

Dx1�n . . . Dxn�n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

← k-th row .

Since the determinant is linear with respect to the rows we find 

. det Mk =
n∑

s=1

(
∂vk

∂Xs

◦ �

)

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Dx1�1 . . . Dxn�1
...

...
...

Dx1�s . . . Dxn�s

...
...

...

Dx1�n . . . Dxn�n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

← k-th row .
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When .s �= k the matrix has two rows that are equal, thus its determinant vanishes; 
therefore 

. det Mk =
(

∂vk

∂Xk

◦ �

)

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Dx1�1 . . . Dxn�1
...

...
...

Dx1�k . . . Dxn�k

...
...

...

Dx1�n . . . Dxn�n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(

∂vk

∂Xk

◦ �

)

j .

For .k = 1 and .k = n we have the same result, with straightforward modification. 
Adding over k form 1 to n we find (D.2) . ��

We are now ready for the main result. Let .D0 ⊂ Rn be a bounded, connected, 
open set with a Lipschitz continuous boundary. For .t > 0 define 

. Dt = {X ∈ Rn | X = �(t, x) for some x ∈ D0}

and 

. W = {(t, X) ∈ (0,+∞) × Rn | X ∈ Dt } .

Theorem D.1 (Reynolds Transport Theorem) Let .f : W �→ R be a (smooth 
enough) scalar function. Then 

. 
d

dt

(∫

Dt

f dX

)

=
∫

Dt

∂f

∂t
dX +

∫

∂Dt

v · n f dSX ,

where v is the velocity of the boundary .∂Dt and n is the unit outward normal vector 
on .∂Dt . 

Proof For any fixed t consider the change of variables .X = �(t, x), which yields 

.

∫

Dt

f (t, X) dX =
∫

D0

f (t,�(t, x))| det Jacx�(t, x)| dx . (D.3) 

Since .j (0, x) = det Jacx�(0, x) = det JacId = 1, from  (D.2) we find

.j (t, x) = exp

(∫ t

0
(divXv)(s,�(s, x)) ds

)

> 0 .
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Thus in (D.3) we can drop the absolute value of the determinant. Let us now
differentiate with respect to t . Since the integral in .D0 is on a fixed set, we can 
differentiate inside the integral and we find 

.

d

dt

∫

Dt

f dX = d

dt

∫

D0

f (t,�(t, x)) det Jacx�(t, x) dx

=
∫

D0

d

dt
[f (t,�(t, x))] det Jacx�(t, x) dx

+
∫

D0

f (t,�(t, x))
d

dt
[det Jacx�(t, x)] dx .

(D.4) 

By the chain rule, and taking (D.1) into account, the first factor in the first term
of (D.4) can be rewritten as

. 

d

dt
[f (t,�(t, x))] = ∂f

∂t
(t,�(t, x)) +

n∑

i=1

∂f

∂Xi

(t,�(t, x))
d�i

dt
(t, x)

= ∂f

∂t
(t,�(t, x)) +

n∑

i=1

∂f

∂Xi

(t,�(t, x))vi(t,�(t, x))

=
(

∂f

∂t
+ v · ∇Xf

)

(t,�(t, x)) .

Using (D.2) in the second term of (D.4) we obtain

. f (t,�(t, x))
d

dt
[det Jacx�(t, x)] = (f divXv)(t,�(t, x)) det Jacx�(t, x) .

In conclusion, we have seen that 

. 

d

dt

∫
Dt

f (t, X) dX

=
∫

D0

(
∂f

∂t
+ v · ∇Xf + f divX v

)

(t, Φ(t, x)) det JacxΦ(t, x) dx

=
∫

D0

(
∂f

∂t
+ divX(f v)

)

(t, Φ(t, x)) det JacxΦ(t, x) dx .

Rewriting the integral at the right hand side by means of the change of variable 
.X = �(t, x) we have 

. 
d

dt

∫

Dt

f (t, X) dX =
∫

Dt

(
∂f

∂t
+ divX(f v)

)

(t, X) dX ,

hence the thesis by using the divergence theorem C.3. ��



Appendix E 
Gronwall Lemma 

The Gronwall lemma is an useful tool in the analysis of evolution equations. Its 
statement is the following. 

Lemma E.1 (Gronwall Lemma) Let .f ∈ L1(0, T ) be a non-negative function, g 
and . ϕ be continuous functions in .[0, T ]. If . ϕ satisfies 

. ϕ(t) ≤ g(t) +
∫ t

0
f (τ)ϕ(τ)dτ ∀ t ∈ [0, T ] ,

then 

.ϕ(t) ≤ g(t) +
∫ t

0
f (s)g(s) exp

(∫ t

s

f (τ )dτ

)

ds ∀ t ∈ [0, T ] . (E.1) 

The proof of this lemma will be given below. For the moment let us show some 
consequences of it. 

Corollary E.1 If g is a non-decreasing function, then 

. ϕ(t) ≤ g(t) exp

(∫ t

0
f (τ)dτ

)

∀ t ∈ [0, T ] .

Proof If g is non-decreasing, we have .g(s) ≤ g(t) for .0 ≤ s ≤ t , thus from 
Eq. (E.1) 

. ϕ(t) ≤ g(t)

[

1 +
∫ t

0
f (s) exp

(∫ t

s

f (τ )dτ

)

ds

]

.
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Since 

. 
d

ds

(

exp

(∫ t

s

f (τ )dτ

))

= − exp

(∫ t

s

f (τ )dτ

)

f (s) ,

we have that 

. 

∫ t

0
f (s) exp

(∫ t

s

f (τ )dτ

)

ds = −
∫ t

0

d

ds

(

exp

(∫ t

s

f (τ )dτ

))

ds

= −
(

1 − exp

(∫ t

0
f (τ)dτ

))

,

hence the result. ��
Corollary E.2 If .g(t) = k1 and .f (t) = k2, then 

. ϕ(t) ≤ k1e
k2t ∀ t ∈ [0, T ] .

Proof Just apply Corollary E.1. ��
Proof (of Lemma E.1) For .s ∈ [0, T ] set .R(s) = ∫ s

0 f (τ)ϕ(τ)dτ . The assumption 
yields 

. R′(s) = f (s)ϕ(s) ≤ f (s)[g(s) + R(s)] .

Then 

. 

d

ds

[

R(s) exp

(

−
∫ s

0
f (τ)dτ

)]

= R′(s) exp

(

−
∫ s

0
f (τ)dτ

)

− R(s)f (s) exp

(

−
∫ s

0
f (τ)dτ

)

= [R′(s) − R(s)f (s)] exp

(

−
∫ s

0
f (τ)dτ

)

≤ f (s)g(s) exp

(

−
∫ s

0
f (τ)dτ

)

.

Integrating over .[0, t], we find, as .R(0) = 0, 

.R(t) exp

(

−
∫ t

0
f (τ)dτ

)

≤
∫ t

0
f (s)g(s) exp

(

−
∫ s

0
f (τ)dτ

)

ds ,
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thus 

. R(t) ≤
∫ t

0
f (s)g(s) exp

(∫ t

s

f (τ )dτ

)

ds ,

which gives the stated result as a consequence of the assumption .ϕ(t) ≤ g(t)+R(t).
��



Appendix F 
Necessary and Sufficient Conditions 
for the Well-Posedness of the Variational 
Problem 

We present here the well-posedness result for a general variational problem of the 
form 

.find u ∈ V : B(u, v) = F(v) ∀ v ∈ V , (F.1) 

where V is a Hilbert space, .B(·, ·) : V × V �→ R is a bounded bilinear form and 
.F(·) : V �→ R is a bounded linear functional. 

Theorem F.1 Problem (F.1) is well-posed (namely, it has one and only one solution
u for each bounded and linear functional F , and the solution map .F �→ u is 
bounded) if and only if the following conditions are satisfied: 

(i) there exists . α > 0 : inf
w∈V,w �=0

sup
v∈V,v �=0

B(w, v)

‖w‖V ‖v‖V

≥ α

(ii) if . B(w, v) = 0 for all w ∈ V then v = 0 .

Proof We introduce the linear and bounded functionals .Q : V �→ V ′ and . QT :
V �→ V ′ defined as 

. 〈Qw, v〉 = B(w, v) ∀ v ∈ V , 〈QT v,w〉 = B(w, v) ∀ w ∈ V .

The well-posedness statement is thus reformulated as: Q is an isomorphism from V 
onto . V ′. 

.(⇒) Suppose that Q is an isomorphism from V onto . V ′. Then .N(Q) = {0} and 
.R(Q) = V ′, thus in particular .R(Q) is closed. From the closed range theorem 
(see Yosida [30, Theorem 1, p. 205]) .R(Q) = N(QT )�, thus . N(QT )� = V ′
and .N(QT ) = {0}. This means that .QT v = 0 implies .v = 0, namely, that 
.〈QT v,w〉 = B(w, v) = 0 for each .w ∈ V implies .v = 0. This is condition (ii). 
Moreover, since Q is an isomorphism from V onto . V ′, its inverse is bounded, 
namely, there exists .α > 0 such that .‖Qw‖V ′ ≥ α‖w‖V for each . w ∈ V . This  
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means 

. sup
v∈V,v �=0

〈Qw, v〉
‖v‖V

= sup
v∈V,v �=0

B(w, v)

‖v‖V

≥ α‖w‖V ∀ w ∈ V ,

thus condition (i). 
.(⇐) Let us assume now that (i) and (ii) are satisfied. We can follow the lines of the 

proof of the Lax–Milgram theorem 2.1. From condition (i) it follows 

.‖Qw‖V ′ = sup
v∈V,v �=0

〈Qw, v〉
‖v‖V

≥ α‖w‖V ; (F.2) 

as a consequence we derive that Q is one-to-one, as from .Qw = 0 it follows 
at once .w = 0, and that .Q−1 is bounded (at the moment, from .R(Q) to V ). 
Moreover, we can also prove that .R(Q) is closed. In fact, consider a sequence 
.Qvk ∈ R(Q) such that .Qvk → ω ∈ V ′. In particular, .Qvk is a Cauchy sequence 
in . V ′, and from (F.2) we have that . vk is a Cauchy sequence in V . Therefore we 
find .v0 ∈ V such that .vk → v0 in V , thus .Qvk → Qv0 in . V ′, which gives 
.Qv0 = ω. 
Since .R(Q) is closed, the closed range theorem gives that .R(Q) = N(QT )� (see 
Yosida [30, Theorem 1, p. 205]). Thus for proving that .R(Q) = V ′ it is enough 
to show that .N(QT ) = {0}, namely, that .〈QT v,w〉 = 0 for all .w ∈ V implies 
.v = 0: since .〈QT v,w〉 = B(w, v), this is exactly condition (ii). ��

Remark F.1 It is straightforward to verify that the coerciveness of .B(·, ·) implies 
both (i) and (ii).
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