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Preface

[T]he task of physics as of all science is found in the coherent description of experience. Robert
Bruce Lindsay & Henry Margenau (1936)

(Foundations of Physics, p. 2, Dover Publications, Inc., New York (1963)).

Readers are presented information about the authors’ experience in the developing field of
quantum crystallography (QCr). Their inspiration which underlies the subject is the fundamental
idea of N-representability and its implementation by derivation of the Clinton equations. The
purpose of the discussion includes a reference to the historical context in which QCr was
developed.

This monograph introduces the reader to the core ideas that led to the development
of quantum crystallography (QCr). This field of science lies at the intersection of
crystallography, as commonly known, and quantum mechanics. In this monograph,
some aspects of this exciting field are reviewed with special focus on the contribu-
tions and interests of the writers. It is made clear from the outset that this is not a
textbook on crystallography or quantum mechanics, nor on QCr, rather it is a topical
review focused on the authors’ interests and contributions. This means that several
important topics are omitted or alluded to in passing.

Crystallography is very old. But, modern crystallography begins when X-rays
were discovered by Wilhelm C. Röntgen in 1895, and their wave nature was ex-
ploited by Max von Laue and the Braggs (William and Laurance) in 1912 and 1913,
respectively. Quantum mechanics begins in the latter half of the 1920s with Werner
Heisenberg, Erwin Schrödinger, and Paul A. M. Dirac.

Soon after the discovery of quantum mechanics, its application to crystallogra-
phy came about in increments. It was implemented in the solution of crystal struc-
tures by using as a model the sum of the spherical atoms that occupy the crystal
unit cell. Of course, the overlap of orbitals associated with chemical bonding is not
well represented in that way. This led to a representation of directional bonding
and lone pair density achieved by placing multipoles at atomic centers. The extraor-
dinary success of such multipole representation placed ever-increasing emphasis
upon electron density as the source of scattering. At the same time, it led to looking
away from the density matrix, whose diagonal elements are the electron density.
And, the density matrix is required to be N-representable in order that it, and the
electron density corresponding to it, can both be quantum mechanically valid. For
a density matrix to be N-representable simply means it can be derived from an anti-
symmetric N-body wave function.

What occurred at about the same time as the ever-increasing prominence of multi-
pole representations was the invention of a fully quantum mechanical X-ray formalism.
Its goal was that of extracting from the X-ray scattering experiment of the crystallized
molecule a representation of exactly the same formalism as would be obtained by
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solving the Schrödinger equation within a single determinant approximation. Such sin-
gle determinants underlie the Hartree–Fock approximation and the Kohn–Sham equa-
tions of density functional theory. For the first time the density matrix of theory and
experimental crystallography would have exactly the same parameters and physical in-
terpretation. They could therefore be compared one to another in the same way.

It was the N-representable density matrix X-ray formalism that came to be called
quantum crystallography. It is perhaps a subtle point that an “accurate” electron den-
sity can, at the same time, be not quantum-mechanically valid. As discussed in a recent
paper [1], a leader in the field of experimental X-ray density opined that to be accu-
rate is to be quantum mechanical. But that misses the point that accuracy in the den-
sity does not mean the same as quantum mechanical validity of the density matrix.
Fortunately, something is known about the quantum mechanical validity of the den-
sity matrix. In particular, the mathematical requirements for N-representability by a
single determinant are exactly known. There is another factor sometimes not suffi-
ciently appreciated regarding the difference between having an accurate electron
density and a quantum mechanically valid density matrix. The difference is that all
quantum properties can be calculated from N-representable density matrices, but
only some properties follow from the electron density, no matter how accurate that
density may be.

Having “grown up” in the field of quantum mechanics, as it were, it would be
natural to look for N-representability of the density matrix in an attempt to extract its
elements from the X-ray scattering data. The emphasized N-representability is after all
just an acknowledgment of the experimental indistinguishability of the electrons
which scatter X-rays. Thus, it was natural evolution that we would introduce
N-representability into the formalism of QCr. On the other hand, a crystallographer
searching for a representation of chemical bonding might be drawn to increas-
ingly accurate densities represented by, say, multipoles. As it happens, both “N-
representability” and accuracy are important.

C. F. Matta, Halifax, NS
L. Huang, Alexandria, VA

L. Massa, New York City, NY
July 2022
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[1] Massa L. A zigzag path through quantum crystallography. Struct. Chem. 28, 1293–1296
(2017).
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Foreword

Quantum crystallography, the field of this book, aims at expanding crystallography
by combining scattering experiments with quantum mechanics. The field has been
launched more than 50 years ago and is now a fast-developing area of research to
which dozens of research groups around the world are contributing. The authors,
Chérif F. Matta, Lulu Huang, and Lou Massa, are well known among these scientists.
They are known to me through their meaningful contributions to understanding ribo-
some’s function and origin through crystallography, documented in a small number
of papers we published together. Perhaps of more importance to the reader, the au-
thors have published a great number of papers reaching back to what they call the
start of quantum crystallography. It may be worth something to know of the authors’
description of that start to understand better the present state of the field. They follow
a line of progress which begins with extraction of quantum information from X-ray
scattering of small systems and follow it through to what they refer to as injecting
quantum information into the classical structure of large systems.

Molecules, small or large, need validity in their quantum mechanical representa-
tion. This book claims to find it in the universal requirement of N-representability, a
term whose definition and enlightenments I leave to the book itself. Importantly,
those electron density matrices, which have the required validity, provide exactly the
underpinning needed to understand the system in accordance with the theory cre-
ated by Richard F. W. Bader and his school, namely the Quantum Theory of Atoms in
Molecules (QTAIM). In this respect, this book also contains an excellent review of
QTAIM in the context of quantum crystallography.

I can recommend this book to those readers interested in the union of two
fields, experimental crystallography and the theory of quantum mechanics, that de-
veloped separately for a time and now can be seen coming together as quantum
crystallography.

Ada Yonath
Professor

Weizmann Institute of Science
Nobel Laureate in Chemistry (2009)
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Introduction

There is no more basic enterprise in chemistry than the determination of the geometrical struc-
ture of a molecule. Such a determination, when it is well done, ends all speculation as to the
structure and provides us with the starting point for the understanding of every physical, chemi-
cal and biological property of the molecule. Roald Hoffmann (1981)

(Foreword of L. V. Vilkov, V. S. Mastryukov, N. I. Sadova, Determination of the Geometrical
Structure of Free Molecules (English Translation), p. 5, Mir Publishers, Moscow (1981))

The problem which this book presents for the reader is how to understand the creation of a (rel-
atively) new borderline field of scientific importance, namely, quantum crystallography (QCr).
The solution resides in the idea of N-representability. Imposing it upon the analysis of experi-
mental X-ray scattering data follows from the Clinton equations. Various applications using ex-
perimental crystallography, for example, the X-ray scattering data of the beryllium crystal,
prove the point. The reader of these chapters will understand the origin of the field and its re-
cent expansion and possible paths forward into the future.

Experimental crystallography is important because in the briefest of words structure
implies function. And quantum mechanics is regarded as the most important theo-
retical conception of the chemical material world. Were it possible to join these two
studies, experimental and theoretical, within a common formalism, would not that
advance the understanding to flow from the exercise of both? To visualize the crea-
tion of that field of adjoining scientific borders, quantum crystallography is the
challenge and reward a reader may anticipate in consideration of the pages which
herein follow.

A logical course of action is to recollect for starters a few fundamentals of crystal-
lography. In particular, the measured intensities of the scattered X-rays determine
the structure factors. These are related to the electron density from which the scatter-
ing occurs. The structure factors and the electron density are Fourier transforms of
one another, and as such are information equivalents, in principle. To know one is to
know the other. Crystal structures are determined by placing atoms at such positions
with assigned vibrational motions to minimize the difference between measured and
calculated structure factors as judged by the crystallographic R-factor. For in-depth
elaboration of these points and more, the reader can consult standard textbooks such
as Refs. [1–6] or introductory expositions such as Refs. [7–12].

In a similar way, one is motivated to recollect the main points of quantum me-
chanics intended to calculate the properties, particularly the energetics, of crystalline
materials. The crux of the matter is that the fundamental equation of motion for most
of chemistry is the nonrelativistic time-independent Schrödinger equation whose sol-
utions are antisymmetric N-body wave functions. The antisymmetry expresses the ex-
perimental indistinguishability of the electrons and their Pauli correlation. The one-
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and two-particle density matrices are obtained by successive integrations over
the square of the wave function until all coordinates are “averaged out,” except
for those of particle one, or particles one and two, respectively. That the density
matrices are descendants of antisymmetric wave functions is the property called
N-representability. To be fully quantum mechanical is to be N-representable. The
density matrices are simpler than the wave function and still allow for the calculation
of all one- and two-electron properties including the molecular energy. For a general
introduction to quantum mechanics, there exists an abundance of excellent texts in-
cluding Refs. [13–18], while for a specialized discussion about the density matrix for-
malism within quantum chemistry we direct the reader to Refs. [19–24].

The energy variational principle will hold so long as the density matrices are
N-representable. Importantly, the Clinton equations have been derived for the
purpose of imposing N-representability upon the density matrix while simulta-
neously ensuring the accuracy of the electron density [25–28]. The Clinton equa-
tions, at first, were explored with simple cases involving theoretically produced
X-ray structure factors [29]. In one case, based on an approximate sum of spherical
atomic densities to represent the H2 molecule due to Stewart, Davidson, and Simpson
(SDS) [30], the data was fit by least squares to a density matrix in two different ways.
First, the Clinton equations were used to find a best single determinant N-representable
density fit to the SDS data. Second, using the same atomic orbital basis as before, but
without imposition of any forced relation to N-representability, an optimum least
squares fit to the data was obtained. The result indicated that in the first case, the den-
sity matrix was quantum mechanically valid, but not so in the second case. Coleman’s
theorem that N-representability can be judged by an inequality condition satisfied
by the eigenvalues of the density matrix [23] was used to reach that conclusion.
The meaning of that application of the Clinton equations is that best least squares
fit to X-ray data leads toward density accuracy without, at the same time, guaran-
teeing quantum validity of the density matrix. The density and the density matrix
are related, but different.

Our first application of the Clinton equations using real experimental X-ray
scattering data occurred with the beryllium crystal [31] using the highly accurate
data of Larsen and Hansen [32]. This was perhaps the most accurate diffraction data
of that time. How we rather accidentally came upon these data has been discussed
elsewhere [33].

The density matrix was framed in the context of a ligand field model [34]. Each
Be atom was given a fixed Hartree–Fock inner shell orbital. The valence orbital was a
sum of two atomic orbitals: one attached to the Be nucleus and one allowed to “float”
to a position minimizing the R-factor. The resulting idempotent density matrix pro-
duced by solution of the Clinton equations was highly accurate as judged by the cal-
culated structure factors. Our experimental density contours were compared to highly
accurate theoretical contours which were available for the Be crystal and displayed
impressive similarity. We understood the publication of these Be results to be a strong
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indication of the quantum mechanical importance of both N-representability and the
Clinton equation as a method for its imposition utilizing X-ray scattering data.

Now clearly Be forms a small “molecular” crystal, with only a few electrons per
unit cell. Several other papers investigated the use of projector density matrices for
description of small-molecule X-ray scattering. In our view, there is no doubt a pro-
jector density matrix is adequate to represent X-ray scattering of a molecule suffi-
ciently small, that is to say, the number of X-ray data must be considerably larger
than the number of elements in the projector matrix they are meant to determine.
But actually as the size of a molecule grows, there comes a point at which the num-
ber of X-ray data is insufficient to determine every element of the density matrix.
Our experimental investigation of the maleic anhydride crystal was the occasion for
realizing a way to circumvent the problem of too few scattering data for the system
under consideration [35].

Maleic anhydride is a small flat molecule composed of nine atoms. Its structure
was determined by Louis Todaro, the crystallographer in charge of the Laboratory for
Quantum Crystallography at Hunter College (City University of New York, CUNY) at
the time (ca. 1999). The scattering data were fit to a density matrix corresponding to a
full molecular orbital model accounting, in that way, for both the core and valence
contributions. The R-factor associated with the N-representable density matrix was
about 1%. We calculated a density difference map based upon using multipoles at
atomic positions. The result was striking in the sense that it showed quite beautifully
a flow of electrons consistent with the formation of chemical bonds and lone pairs
consistent with chemical knowledge of the molecule.

Indeed, multipoles are conveniently useful in achieving accuracy of a molecu-
lar density. What they miss is N-representability. This led to the idea applicable to
very large molecules that the quantum crystallography can be broken into two
parts: (1) the classical structure of a crystalline molecule, that is, the Cartesian coor-
dinates of the atoms can be determined with high accuracy based upon a multipole
representation of atomic densities; and (2) the N-representability, that is, the quan-
tum validity of the density matrix can be ensured by its quantum chemical calcula-
tion using the classical structure. In the case of very large structures, one would be
injecting quantum mechanics into the crystallography, whereas for small structures
one speaks of extracting quantum mechanics from the scattering data.

Calculating the ab initio wave function or the density matrix of a very large mol-
ecule is not easy. The computational difficulty to do so rises as a high power of the
number of atoms in the system. Surmounting this difficulty, in order to “inject”
quantum mechanics into the crystallography of large molecules required us to in-
vent a time-saving – but still accurate – method of ab initio calculation which came
to be called the kernel energy method (KEM) [36–46].

KEM makes ab initio calculations on very large molecules practicable by the sim-
ple device of breaking such molecules into small pieces (so-called kernels). The
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kernels are chosen to be small enough to calculate quickly. The sum of kernels would
not accurately replicate the entire whole molecule. But the KEM includes the interac-
tion between kernels by including all possible double kernels in the final summation
(see Chapter 5, or any of the following Refs. [36–46]). The KEM has been tested on a
variety of large biological molecules, including proteins, DNA, and RNA examples. It is
accurate. Interestingly, “accurate” KEM is notmandated to be “N-representable”. How-
ever, if the kernels, like puzzle pieces, are used to build up the full molecule puzzle,
that is, the density matrix of the full system, N-representability can be restored by
using the Clinton equations [47]. The result is a density matrix projector of a size
corresponding to the full system. However, to make energy calculations practica-
ble, that full projector can be decomposed into subspace projectors corresponding
again to the size of the smaller kernels.

Topology and its underlying topography play an important role in the analy-
sis of both classical and quantum crystallography, as shall be seen in this book.
Rickard F. W. Bader and his school introduced topological analysis into the study
of electron density [48–50] as presented in the results of crystallography [3–6].
Thus, the importance of critical points, bond paths, and Bader partitioning be-
came much discussed in papers displaying highly accurate experimental densi-
ties. Bader was also convinced that his zero flux condition for defining individual
atoms or functional groups of atoms could be related to kernels of the KEM (pri-
vate communication to the present authors, ca. 2007).

Finally, we come to a discussion of the calculation of the energy associated
with an experimentally derived electron density matrix. The energy cannot be ob-
tained from an electron density alone. Some portions of the energy are given up by
the density, that is, the classical electrostatic part, but not its entirety which in-
cludes quantum terms. For example, an energy quantity much calculated in crystal-
lography papers is the classical potential energy of repulsion between two electron
clouds. This is possible because, in this case, the energy operator is purely multipli-
cative, simply involving multiplication by the inverse distance between points.
However, the kinetic energy cannot be obtained from the density alone. Its quan-
tum operator is not purely multiplicative as it requires a second derivative sand-
wiched between coordinates arriving from wave functions on the left and right. The
density matrix or the wave function is required for the kinetic energy expectation
values.

Importantly, the variational theorem, which is crucial in calculations of the en-
ergy, only holds true if the density matrix is N-representable. In the case of single
determinants, the two-body density matrix is a known functional of the one-body
density matrix. Therefore the N-representability of ρ1 determines that of ρ2 and guar-
antees the variational theorem. We used the functional relation between ρ2 and ρ1 to
derive the variational energy associated with N-representable ρ1 in KEM form (see
Chapter 9). The formalism for calculation of energy is one example of the general case
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that every quantum operator, including the operators representing the momentum and
the energy, flow from the density matrix, but not generally from the density alone.

It may interest readers to realize that there has been a recent expansion in under-
standing and practicing of quantum crystallography. Perhaps the demarcation of this
change was the publication of a paper in 2017 by Grabowsky, Genoni, and Burgi
(GGB) [51]. The paper outlines the nature of the original ideas in quantum crystallog-
raphy and an indication of their path forward. The paper must be considered the
ground for discussion at the contemporaneous meeting held in Nancy (France).1 A
result of that conference was an agreement to suggest the renaming of one of the per-
manent commissions of the International Union of Crystallography (IUCr) from its old
name (Commission on Charge, Spin and Momentum Densities) to its new and current
name (Commission on Quantum Crystallography), a name change approved at
IUCr’s General Assembly held in Hyderabad (India) in August 2017. This Commis-
sion is highly active and has provided the overarching umbrella under which several
international conferences and journal special issues on the topic have already been or-
ganized indicating the influential presence of quantum crystallography on the interna-
tional scene. The importance of the GGB paper is recognized by discussing of some of
its aspects in Appendix 2 of this book. Along similar lines, namely, an expanded view
of quantum crystallography, we also suggest that the reader may consult Simon Gra-
bowsky and Alessandro Genoni’s paper [52] and Piero Macchi’s paper [53].

Chapters 3 and 4 of this monograph emphasize the importance of N-representability
as a foundation of the field of quantum crystallography. Appendix 1 reviews the
historical development of the concept of N-representability and provides impor-
tant references for that history of ideas [54]. Also, an indication of a possible gen-
eralization of density matrices beyond single determinants is considered [55–57],
a topic of interest which we have not been able to consider within the scope of
these chapters.

Appendix 3 is a list of papers related to development of quantum crystallogra-
phy, all by the authors of this monograph. These references may be used to pursue
in further detail the ideas of quantum crystallography presented in the chapters of
this monograph. As authors of this book we are not simply describing the field of
quantum crystallography so much as reviewing our participation in its development
as we have experienced it. Needless to say, our collaborations with many others
have been important. These include Professors William Clinton, William Lipscomb,
Jerome Karle, and Richard F. W. Bader. Students who have worked the field include
Carol Frishberg, Pat Oldfield, Maria Flocco, Arnaud Soirat, Sonjae Wallace, and
Walter Polkosnik.

 Centre Européen de Calcul Atomique et Moléculaire (CECAM) Discussion Meeting – Quantum Crys-
tallography: Current Developments and Future Perspectives, Nancy, France (19–20 June 2017).
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Chapter 1
Some basic concepts of crystallography

The examination of crystal structure, with the aid of X-rays has given us for the first time an
insight into the actual arrangement of the atoms in solid bodies. The study of structure by
means of a microscope is limited by the coarseness of the light which illuminates the object, for
we can never hope to see details smaller than the wavelength of the light. By using X-rays with
their very short wavelengths, this limit of minuteness has at one step been decreased ten thou-
sand times, for the wavelength of the X-rays is of a smaller order than the dimensions of the
atomic structure. We are actually looking into the interior of the molecule and the atom with this
fine-grained form of light. William Lawrence Bragg (1922)

(Nobel Lecture, delivered at the Technical University of Stockholm on 6 September 1922. Note
that the Nobel Prize has been awarded in 1915)

Classical crystallography concerns atomic structure, that is, specifying the position of atoms in
a crystal. This is usually achieved by minimization of the R-factor, which is a numerical measure
of the accuracy of atomic positions. The basic data of the X-ray scattering experiment is the col-
lection of experimental structure factors which are the square roots of the measured intensities.
The structure factors F(K) are Fourier transforms of the electron density ρ(r) in the crystal. The
essential crystalline structure can be obtained assuming that the electron density can be mod-
eled as a sum of spherical atoms in the unit cell. But, as noted by Robert Stewart, Philip Cop-
pens, Claude Lecomte, and others, a realistic model of the bonding electron density can be
obtained by modeling the atomic density contributions as multipoles. This is a great advance in
electron density accuracy but it is not mandated to be N-representable.

1.1 Introductory remarks

Crystallography is a science of structure. At first it is concerned with structure at
the macroscopic level. Using X-ray diffraction, crystallography provides a tool for
exposing the structure at the atomic level. Macroscopic chemical, physical, and bio-
logical properties of the material under study can then be understood in terms of
the underlying structural regularity associated with atoms. This atomic structure is
revealed by X-ray diffraction crystallography, which will be referred to as simply
“classical crystallography” in this monograph – which is concerned with single-
crystal crystallography.

At a deeper level than the atomic geometrical arrangement, the structure of
electronic orbitals underlies that of the atoms. X-ray experiments provide the scat-
tering data, and quantum theory the language, ideas, and mathematics required to
expose the detailed structure associated with a density matrix of electronic orbitals
[1]. We refer to this approach as “quantum crystallography,” QCr for short [2–18], the
topic of this monograph.
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Before engaging into a description of QCr, it is important to contextualize the
work: What subbranch of crystallography encompasses this new development?
What are the basic assumptions? And what are the approximations and levels of
theoretical treatments used? Hence, in the next two sections, some aspects of elas-
tic scattering, within single-crystal X-ray diffraction experiments, are briefly re-
viewed first. This is followed by a discussion on the nature and origin of structure
factors. These two sections are a prelude to the description of QCr, the subject of
subsequent chapters.

1.2 Elastic scattering and Bragg’s law

In the following development, we will rely on a semiclassical description of radiation–
matter interaction in which matter is treated quantum mechanically and the electro-
magnetic radiation field classically. In contrast to spectroscopy, where absorption or
emission is recorded as a function of wavelength/frequency, in the type of crystallo-
graphic experiments referred to in this book, the wavelength/frequency is fixed (in
fact, it is, ideally, monochromatic) and it is the scattering intensity as a function of the
angle, or as a function of position in reciprocal space, that is being recorded.

Thus, only coherent elastic scattering is considered and not Compton scattering
in which the incident and the scattered radiation have slightly different frequencies.
In the case of Compton scattering, it is the sum of the intensities rather than the sum
of the amplitudes which determines the scattered intensity. The sum of intensities
does not generate relative information about atomic positions in the unit cell since
intensities, as opposed to amplitudes, do not give rise to phase-dependent interfer-
ence effects.

Bragg’s law of X-ray diffraction itself is based on such interference effects among
beams reflected from a set of atomic planes defined by the Miller indices (h, k, l):

2dhkl sin θ= nλ, (1:1)

where dhkl is the distance between pairs of atomic planes, θ is the angle of incidence
and of reflection, n is an integer, and λ is the wavelength of the radiation. Reflec-
tions are observed only when the condition in eq. (1.1) is satisfied. This is precisely
the condition of maximally constructive interference of the amplitudes of the scat-
tered waves. Given that the source of X-rays is infinitely far from the atomic planes,
the X-ray electromagnetic waves are considered as plane waves, as is implicitly as-
sumed in deriving Bragg’s law.

According to electromagnetic theory, the intensity of radiation is proportional
to the square of the amplitude of the electromagnetic wave. The relative amplitude,
in this case, along with an unknown phase, is called a “structure factor.” Because
QCr extracts quantum mechanical information from X-ray structure factors, it is fit-
ting to start this book with a brief review of their origin and nature.
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1.3 Structure factors

The problem in contemporary crystallography is that of determining the Cartesian
coordinates of the atoms in the unit cell [19, 20]. Consider the X-ray scattering by
the electron density of a single crystal followed by the detection of the reflection
using a photon detector. The main steps of this type of diffraction experiments are
summarized in Fig. 1.1 and its caption.

An ideal crystal is made up of a repetition of the unit cell in three dimensions. The
periodicity is, hence, manifested along each of the three spatial axes of the crystal.
The periodicity of the arrangement of the nuclei gives rise to a periodic external

Fig. 1.1: The essentials of an X-ray diffraction experiment. (Left) A collimated X-ray beam is
generated whether from a traditional single-element X-ray tube or a bright coherent light source
such as a contemporary fourth-generation synchrotron. (Middle) The beam is diffracted from a
crystal mounted on a goniometer rotating in the three spatial directions. The “reflections” are
detected for each combination of three goniometer angles to swipe the accessible region of the
reciprocal space, sampled at the positions of the reflections. In the past, the detection of the
intensities was made using a photographic emulsion, but nowadays, it is almost exclusively
performed using a charged coupled device (CCD) detector. The indexed intensities, each labeled
with a unique (K≡ (h, k, l )) index that specifies its “address” in reciprocal space, are then
channeled to a computer for an iterative refinement comparing the experimental and calculated
structure factors (after solving the phase problem). The result is an electron density map, with a
resolution that depends on the reach of the data in the reciprocal space. (Right) A “fleshed-out”
ribbon representation of the geometry based on the electron density map of a small peptide
consisting of four domains depicted in the traditional ribbon representation after guessing the
missing residues, atoms, and so on from the knowledge of the peptide’s primary structure.
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potential which, in its turn, is reflected in the three-dimensional periodicity of the
electron density. Thus, the electron density in the crystal must satisfy [21]

ρðx+ p, y+ q, z + rÞ = ρðx, y, zÞ, (1:2)

where p, q, and r are arbitrary integer multiples of the dimensions of the unit cell,
and x, y, and z are fractional coordinates.

One can regard the crystal as exhibiting three independent periodicities, one
along each of the three Cartesian axes. The Miller indices (h, k, and l) are effectively
the frequencies by which the periodic electron density function oscillates along
each of the principal Cartesian axes [22], and also correspond to the coordinates of
a given reflection in reciprocal space.

Any periodic function can be expanded in terms of a Fourier series [23–25].
Such an expansion of the electron density in a crystal can be written as [20]

ρðxyzÞ= 1
V

X
h

X
k

X
l

FðhklÞ exp − 2πiðhx+ ky+ lzÞ½ �, (1:3)

where V is the volume of the unit cell and F(hkl) are the Fourier expansion coeffi-
cients. These dimensionless coefficients are the structure factors that must be ob-
tained from the experiment.

The X-ray diffraction experiment measures the indexed intensities of the vari-
ous reflections. These intensities are proportional to the square of the magnitude of
the structure factors, that is:

IðhklÞ∝ FðhklÞj j2. (1:4)

The squaring in eq. (1.4) results in the loss of phase information since the structure
factors are, in general, complex numbers. This is the crux of the well-known phase
problem of crystallography. That problem has several solutions (reviewed, e.g., in
Ref. [19]). At this point in the discussion, for simplicity, we will defer the effects of
thermal vibrations on the scattering.

The triple sum (rather than an integral) in eq. (1.3) (over h, k, l) reflects the real-
ity that the reciprocal space is only sampled at the observed reflections, which is a
direct result of Bragg’s condition. The equation represents a discrete Fourier trans-
form of F(hkl). To invert this procedure and obtain an expression for a general structure
factor given an electron density, one has to resort to the inverse Fourier transform. The
inverse transform of the electron density, as it has been expressed in eq. (1.3), is [21]

FðhklÞ =
ð1
0

ð1
0

ð1
0

ρðxyzÞ exp 2πiðhx+ ky+ lzÞ½ �dx dy dz, (1:5)

where each integral spans one of the three principal axes of the unit cell, and the
sign of the exponential factor has been inverted. In this reverse Fourier transform,
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the (continuous) electron density within the unit cell plays the role of the Fourier
expansion coefficients. Written in this manner (eq. (1.5)), the electron density in
the unit cell, in its entirety, contributes to every observed structure factor in the
set {F(hkl)}.

The quality of a crystallographic refinement is gauged by the agreement of the
observed and calculated structure factors (Fobs and Fcalc), which is improved in an
iterative procedure. Structure factors are calculated from a model of the electron den-
sity (eq. (1.5)) obtained by superposing spherical atomic densities (or in more ac-
curate modeling, aspherical/multipolar atomic densities, vide infra). These atomic
densities are predetermined from theory and placed in assumed geometrical posi-
tions in the unit cell that are systematically varied during the refinement until the
agreement is maximized.

“Solving a structure” is achieved when the difference between the observed
and the calculated structure factors is minimized. This minimum is reached, in a
least-square sense, in what came to be known as the residual factor (R-factor) de-
fined as

R-factor =
P jFobsj − jFcalcjj jP jFobsj . (1:6)

In a typical crystallographic refinement, the electron density in the studied crystal
is guessed on the basis of external information that may be available such as the
unit cell composition.

In the spherical atom approximation the atoms are placed in their assumed
positions in the unit cell. The densities of these atoms are allowed to overlap in a
promolecule in accordance with the assumptions of an independent atom model
[26, 27]. In this approximation [26],

ρpro =
XM
i= 1

ρi, (1:7)

where ρi is a spherically symmetrical atomic electron density of the ith atom placed
at its position in the target molecule to obtain the approximate promolecular den-
sity ρpro.

The promolecule has proven time and again to be extremely useful in providing
good geometries for thousands of molecular structures. A structure factor based on
the superposition of spherical atoms, a promolecular density, can be written as a
sum of j atomic densities as follows [21]:

FðhklÞ=
X
j

ð1
0

ð1
0

ð1
0

ρjðxyzÞ exp 2πiðhx+ ky+ lzÞ½ �dx dy dz, (1:8)
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where j runs over the atoms in the unit cell, each placed at its relative position
within the cell, and the integral is over the volume of the unit cell. A coordinate
transformation for atom j, centered at xj, yj, zj, is introduced such that:

x′= x− xj

y′= y− yj

z′= z − zj

)
, (1:9)

where the primed coordinates move the origin to the position of the jth nucleus.
Applying this coordinate transformation, we get

FðhklÞ =
X
j

ð1
0

ð1
0

ð1
0

ρjðx′y′z′Þ exp 2πiðhx′+ ky′+ lz′Þ� �
dx′dy′dz′

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fjðhklÞ

exp 2πi hxj + kyj + lzj
� �� �

,

(1:10)

where

fjðhklÞ =
ð ð ð

ρjðx′y′z′Þ exp 2πiðhx′+ ky′+ lz′Þ� �
dx′dy′ dz′ (1:11)

is the atomic scattering factor, that is, atom j’s contribution to the structure factor.
Equations (1.10) and (1.11) can then be combined into

FðhklÞ =
X
j

fi exp 2πiðhxj + kyj + lzjÞ
� �

. (1:12)

The vibrational motion of nuclei, which is a function of temperature, diminishes the
scattering power of a given atom by smearing its density over the amplitude of the
vibrational motion. This effect can be accounted for by introducing the Debye–Waller
factor, also known as the temperature factor, the displacement parameter, or the
B-factor, Bj. This temperature factor, for a given atom, is proportional to the squared
average displacement of that atom from its equilibrium position. Such a temperature
factor modifies the structure factor expression (eq. (1.10)) to read as follows [21]:

FðhklÞ =
X
j

fjðhklÞ exp 2πiðhxj + kyj + lzjÞ
� �

exp −Bj
sin θ
λ

� �2
" #

, (1:13)

where θ and λ are, respectively, the scattering angle and the wavelength of the
X-ray radiation, respectively, and the B-factor is defined as follows:

Bj = 8π2 u2
	 


, (1:14)
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where the angular brackets indicate the temporal and spatial averaging, and u2
	 


is
the mean square isotropic (i.e., averaged over all directions) displacement of the
given atomic position.

The temperature factor is determined from the difference between calculated
and observed intensities. The B-factor is isotropic (i.e., is not directionally sensi-
tive), but in more accurate work, the temperature factor is anisotropic and captures,
simultaneously, the directionality and the amplitudes of atomic vibrations. The lat-
ter anisotropic temperature factor is graphically displayed in the familiar thermal
ellipsoids around atomic positions in ORTEP (Oak Ridge Thermal-Ellipsoid Plot Pro-
gram) diagrams of crystallographic structures.

The atomic scattering factor, also known as the atomic form factor, fi, defined
in eq. (1.11), appears in eq. (1.10) as the pre-exponential factor. The atomic scatter-
ing factor is assumed completely transferable for any given atom regardless of its
electronic environment in the crystal. The value of this factor is a function of the
Bragg angle θ, scaled to yield the number of electrons in the neutral atom for θ = 0.
The scattering factors of all atoms, obtained from quantum chemical calculations,
are available in the International Tables for X-Ray Crystallography [28].

The spherical atom approximation underlying the promolecular modeling is
less severe, the heavier the atom of interest. As a corollary, this approximation can
introduce errors that are reflected in inaccurate bond lengths, especially involving
hydrogen atoms. As a result, promolecular models often yield X–H bonds (X = sec-
ond row atom) that are systematically shorter than measured by neutron diffraction
[29, 30]. Other than this shortcoming, this modeling yields reasonable molecular ge-
ometries and is, and has been, used routinely to solve the structures of thousands
of molecules. However, this promolecular modeling is inherently inadequate if an
analysis of the electron density at the bonding regions is of interest [29–35].

In 1967, Philip Coppens, with the molecule s-triazine, showed that spherical
atomic modeling misses the details of the electron density in the chemical bonding
region [29] (Fig. 1.2). The sum of spherical atoms does not flow as much charge into
the bonding region as actually occurs. To compensate for that, the temperature fac-
tors can drive the hydrogen atoms into the bonding region.

Since the neutron scattering is independent of the bonding electron density, it
determines more accurate hydrogen positions. Coppens used the atomic positions
delivered from neutron diffraction to build a “neutron-based promolecule” and
then subtracted its electron density from that obtained from the traditional X-ray
promolecule [29]. The electron density difference map showed regions that are con-
sistent with the expected positions of the lone electron pairs at the back of the nitro-
gen atoms and bonding density within the C–N bonding region [29] (Fig. 1.2). This
early work underscores the importance of going beyond the spherical atom approxi-
mation as Coppens himself reminisces in a memoir published in 2015 [36]:
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The work helped to silence the skeptics who consistently described the small band of upstarts
active in X-ray Electron Density Analysis somewhat derisively as ‘electron seers’.

To remedy for the limitations of the promolecular modeling, several workers, in-
cluding prominently Robert Stewart, and Coppens and Niels Hansen, introduced
the multipolar (nonspherical) modeling of the electron density on the crystallo-
graphic scene [30–37]. Among the popular aspherical modeling algorithms is Han-
sen and Coppens’ MOLLY [33] and Lecomte et al.’s MOPRO [30, 35, 41]. In the
Hansen–Coppens formalism, an atomic electron density is expressed in terms of the
polar coordinates r, θ, and φ [33]:

ρatom = Pcore ρcore +Pvalence κ
3 ρvalenceðκrÞ+

Xlmax

l=0
κ′3Rlðκ′rÞ

Xl
m=0

Plm± dlm± ðθ,φÞ, (1:15)

NITROGEN
CARBON
HYDROGEN

Fig. 1.2: An early difference map of s-triazine obtained between the X-ray electron density and that
of a spherical model centered at atomic positions determined with neutron diffraction, including
the experimental temperature factors. The difference map shows distinct regions ascribable to the
nitrogen atom’s lone pairs and to the chemical bonding between carbon and nitrogen atoms
(reproduced from Ref. [29] with permission of the copyright holder. © 1967 American Association
for the Advancement of Science).

16 Chapter 1 Some basic concepts of crystallography



where

NðΩÞ=Pcore + Pvalence +
Xl
m=0

Plm± , (1:16)

where P is a population coefficient, NðΩÞ is the total number of electrons associated
with the atom or ion Ω, ρcore and ρvalence are probability densities of the free atom or
ion, and Rl is an exponential radial function.

In expression (1.15), the spherical core and valence densities, represented by
the first two terms, are followed by the third term that enables the deformation of
the valence electron density from its spherical symmetry. The electron density of the
atomic core is left unchanged during the refinement, while the κ and κ′ parameters
are adjustable to allow for the radial flexibility of the valence electron density. The
latter is included in the first summation of the third term to improve the description
of outer s-electrons of transition metal atoms since these are often more diffuse than
the valence d-electrons. Finally, dlm± ðθ,φÞ are the usual spherical harmonics which
are introduced to capture the nonspherical features of the atomic electron density.

Inserting eq. (1.15) into eq. (1.11) gives an expression for the nonspherical (mul-
tipolar) atomic form factor. The nonspherical form factor can then be placed within
the structure factor expression (eq. (1.10)) to obtain the multipolar structure factor
[30, 33, 35]:

FðhklÞ =
X
j

h
Pj, core fj, coreðHÞ+ Pj, valence fj, valenceðH=κÞ

+ 4π
Xlmax

l=0

Xl
m=0

Plm± il jlh idlm± ðβ, γÞ
i
exp ½2πiðhxj + kyj + lzjÞ� TjðhklÞ,

(1:17)

where fj,core and fj,valence are the Fourier transforms of ρj,core and ρj,valence, respectively, jlh i
is the lth-order Fourier–Bessel transform of the radial part of Rl, dlm± ðβ, γÞ are spherical
harmonics in reciprocal space polar coordinates, and Tj(hkl) are anisotropic temperature
factors which quantify the jth atom’s thermal vibration around its equilibrium position.

Atomic coordinates, temperature factors, and Pj,valence, Plm, κ, and κ′ are all opti-
mized during the multipolar refinement. The multipolar model yields accurate electron
densities that agree well with those calculated at high level of quantum chemical the-
ory especially when the modeling is performed on data collected from good quality
crystals at low-to-very low temperatures (N2 or He gas temperatures) [35].

1.4 The electron density

Quantum crystallography is a phrase made up by borrowing the word “quantum”
from quantum mechanics and the word “crystallography” from the field of single-
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crystal X-ray diffraction crystallography.1 This phrase has been coined in a 1995 arti-
cle [3] and the theory developed in a series of subsequent papers and book chapters
(see, e.g., early developments of the field in Refs. [4–6, 8]). Figure 1.3 is a display of
the title page of the paper that introduced the term in 1995 [3] scanned from a hard
copy reprint sent to the then graduate student of Professor Richard F. W. Bader,
Chérif F. Matta, by Dr. Jerome Karle with his signed dedication (also see brief histori-
cal notes in Ref. [42]).

The merging of the terms “quantum” and “crystallography” is not coincidental. The
object being determined in crystallography is the electron density, ρ(r). This quantity
is also accessible from theory through applied quantum mechanics. By virtue of the
first Hohenberg–Kohn theorem (HK-1 theorem) [43], the nondegenerate ground-state
electron density carries all the information about the electronic system whether in
the ground or in excited states. This theorem is the foundation of modern density
functional theory (DFT) [44].

The HK-1 theorem states that the nondegenerate ground-state electron density,
ρ(r), determines the external potential (V) uniquely [43]. The term “external potential”

Fig. 1.3: Title page of the paper that introduced the term “quantum crystallography” in 1995 (Int.
J. Quantum. Chem. 56, 371–384) [3] with Dr. Jerome’s Karle’s signed dedication.

 The term “crystallography” is used in this book to imply single-crystal X-ray diffraction crystal-
lography unless otherwise explicitly stated.
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means the potential external to the system of electrons, namely, the bare nuclear po-
tential and any potential associated with an externally applied field.

The electron density also determines the total number of electrons (N) in the sys-
tem, which, along with V, completely specifies the system’s Hamiltonian. The Hamil-
tonian then fixes all the system’s eigenfunctions (e.g., the set of wave functions in
position space) and eigenvalues, that is, the energies of the different states. Specify-
ing the eigenfunctions uniquely fixes all the properties of the system, ground and ex-
cited, since these are obtained through the averaging of linear Hermitian operators
on the eigenstates. These arguments retrace the E. Bright Wilson justification of the
HK-1 theorem (see Refs. [45–47] and the literature cited therein). Thus,

ρðrÞ ! V½ ρðrÞ�
N½ ρðrÞ�

( )
! Ĥ ! Ψif g, (1:18)

where i = 0, 1, 2, . . ., ∞, and the square brackets indicate a functional dependence
on the electron density. While a function f(x, y, z, . . .) delivers a scalar or a vector
when fed with one or more variables (x, y, z, . . .), a functional F[ f(x, y, z, . . .)] de-
livers a number when fed with a given function f(x, y, z, . . .) as its argument. An
important example of a functional is the action integral, S[L], the time integral of
the Lagrangian (the kinetic energy minus the potential energy), which delivers a
specific value for the action of each chosen spatiotemporal trajectory. The motion
of the particle always follows the path that extremizes (here minimizes) the action
integral.

While the energy of any electronic state, ground or excited, is a functional of
the nondegenerate ground-state density, the same cannot be said about an excited-
state density as has been shown by Gaudoin and Burke [48]. In other words, the
energy of any state is not a functional of the excited-state density, that is, it is possi-
ble to have more than one external potential consistent with one and the same ex-
cited-state density [48].

Importantly, we note that the arrows in the mapping expressed in (1.18) are in-
vertible, through the following equation, which we also use to provide the defini-
tion of the term “electron density”:

ρðrÞ = N
X
ωi

ð
� � �
ð
Ψ✶ ðx1, � � �,xNÞΨðx1, � � �,xNÞdr2, � � �, drN , (1:19)

where

xi ≡ ðxi, yi, zi,ωiÞ, (1:20)

in which Ψ is an antisymmetric many-electron wave function and where the first three
variables (xi, yi, zi) refer to the Cartesian space coordinates of the ith electron and the
spin of which is specified by a “spin coordinate” ωi which is the argument of either an
α or β spin function, and where the superscripted (✶) implies complex conjugation.
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Given eq. (1.19), clearly the arrows of relation (1.18) are invertible, that is, given
the many-electron wave function we can obtain the electron density. This elec-
tron density is indirectly determined by solving the phase problem using the set
of experimental X-ray diffraction structure factors collectively referred to as the
set {F(H)}. Hence, the electron density, the principal object studied by the field of
crystallography, is accessible from both ends:

theory

ðquantum mechanicsÞ

" #
Ψ ! ρðrÞ  FðHÞf g experiment

ðcrystallographyÞ

" #
. (1:21)

Relation (1.21) embodies the spirit of the emerging field of QCr as the intersection of
quantum mechanics (theory) and crystallography (experiment).

On a final note, it is important to recall that the (total) charge density, ρtotal(r),
that is, the sum of a negative term due to the distribution of the electronic charge
density and a positive term reflecting the nuclear charge density, is given in atomic
units (where e = 1) by

ρtotalðrÞ= − ρðrÞ+ ZAδðRA − rÞ, (1:22)

where ZA and RA are the charge and position of the Ath nucleus, and δ(RA−r) is a
Dirac delta function that represents the discrete distribution of point nuclear charges.

The total charge density and the electron density are interdetermined. They
provide two equivalent descriptions of the same physical situation. This is due to
the well-known Kato cusp condition [49]. Kato has shown that the derivative of the
spherically averaged charge density with respect to the radial distance from a
point-like nucleus and the atomic number ZA are related by [49]

ZA = −
1

2nðrA =0Þ
dnðrAÞ
drA

����
rA =0

, (1:23)

where n is the spherically averaged electron density around the nuclear cusp of the
Ath nucleus. Eq. 1.23 is also given in atomic units (see pages 28–29).

In closing this chapter, it is important to mention another approach to recover the
electron density within a crystal by maximizing the entropy of the electron density dis-
tribution in the unit cell over voxels subject to the constraint of reproducing the exper-
imentally derived structure factors. This method is termed the maximum entropy
method (MEM) of crystallography (see review [50] and literature cited therein). While it
appears to be less generally used, this method has the advantage of not being biased
by an underlying assumed atom centered model (whether spherical or multipolar).
Hence, at times, MEM refinement can yield accurate representations of regions with
small changes in the electron density as, for example, occurs in nonnuclear attractors,
which are also known as nonnuclear maxima [51]. MEM is particularly suited for
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highly disordered systems, which makes it an ideal choice to obtain electron densities
from powder diffraction experiments [50].

1.5 Conclusion

Crystallography is a science of structure. It started with the study of the macro-
scopic structures and symmetries of crystals. With the discovery of X-rays, the
meaning of the term crystallography has been extended to include the determina-
tion of the structure, that is, the atomic arrangement within the unit cell of the crys-
tal, by X-ray diffraction experiments. Importantly, one of crystallography’s end
goals is relating macroscopic properties of matter with its underlying atomic struc-
ture. One can take this line of attack one step further by inquiring whether one can
make a statement about the electronic structure of the atoms composing the crys-
tals. In this sense [1],

X-Ray experiments provide the data, and quantum theory the language, ideas and mathematics
required to expose the detailed structure associated with electronic orbitals.

The electron density filling the crystal’s space is accessible from theory and experi-
ment. By virtue of the HK-1 theorem, the ground-state electron density determines
all the properties of matter in its ground and excited states. The development of
DFT in the 1960–1980s coincided with the advent of multipolar methods of refining
of high-quality X-ray diffraction experimental data.

Of course what is missed in the classical crystallography, which in its own right
is of profound scientific importance, is one thing. That is the quantum mechanics
of the molecular electron density and that can be extracted from exactly the same
data as used classically, so long as the formalism for interpretation of the data is
inherently quantum mechanical.
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Chapter 2
Some basic concepts of quantum chemistry

Quantum theory has had a two-fold impact on chemistry. The first is conceptual, for there is now
hardly an area of chemistry left in which we do not use language and ideas that come from quan-
tum mechanics, ideas which must in large part be formulated in later chapters. The second has
to do with the possibility, which with present-day computers is fast becoming a reality, of actu-
ally calculating from first principles many of the things we wish to know about molecules. Roy
McWeeny (1979)

(Coulson’s Valence. The English Language Book Society and Oxford University Press, Oxford,
(1979), p. 9).

The fundamental equation of motion describing the quantum properties of a molecule is the Schrö-
dinger equation. We are concerned here with the time-independent Schrödinger equation as it ap-
plies to many-electron systems. The solution of this equation for fermions is an antisymmetric
many-particle function of the coordinates of all N particles that make up the system. An obviously
complicated function, its essentials can be extracted from it by integration over all particles’ coordi-
nates except those for either one particle or two particles resulting, respectively, in the one- or
two-particle density matrix. These are sufficient to calculate all one- and two-particle position and
momentum properties of a molecular system. Thus, the complicated N-particle wave function may
be eschewed in favor of the simpler density matrices with no loss of one- and two-particle informa-
tion. The one-particle density matrix is single determinant N-representable on condition that it is
represented as a Hermitian normalized projector. The corresponding two-particle density matrix is
a known functional of the one-particle case. Both Hartree–Fock and density functional theory (DFT)
Kohn–Sham “wave functions” are single determinants and encompass the Pauli principle.

2.1 Introduction

Quantum mechanics is the fundamental theory describing the microworld, a world
that includes atoms, molecules, and elementary particles. It describes the interac-
tions of microscopic particles and gives expression to the quantum ideas of parti-
cle/wave duality, discrete energy levels, and the Heisenberg uncertainty principle.
The science of crystallography has been moving from a classical study of the rela-
tive atomic geometrical structure toward the quantum study of the electronic struc-
ture of the components of the unit cell. To grasp this movement, we discuss, here,
the basic ideas of quantum mechanics which apply to atoms and molecules and
which will be related to interpretation of the X-ray coherent scattering experiment.

We concluded the previous chapter by underscoring that the missing element
of classical crystallography is quantum mechanics of the molecular electron den-
sity. This chapter attempts to provide the basics of quantum mechanics necessary
to follow the remainder of the chapters of this book. This chapter is not a review or
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even an introduction to the topic, just a highlight of the key concepts used in later
chapters. The focus is primarily on molecular quantum mechanics. What will be
briefly touched upon is nonrelativistic molecular quantum mechanics within the
Born–Oppenheimer approximation (BO approximation). The latter approximation sep-
arates the motion of the electrons from the much slower motion of the nuclei. No at-
tempt will be made to cover any advanced features of quantum chemistry since this is
well covered in the standard literature [1–8]. In this book, the state is expressed as an
analytical “wave function” in direct space, where the operators are algebraic operators
on the wave function space. In latter chapters, use will also be made of the abstract
vector formulation of quantum mechanics, where the quantum state is represented by
a vector in a dual Hilbert space and the operators by matrices. The state vector, repre-
sented by the ket ψj i, is related to the wave function representation (in one direct
space dimension) through

ψj i=
ðx= +∞

x= −∞

ψðxÞ xj idx, (2:1)

where ψðxÞ is the projection of ψ along the basis vector xj i, and the complex conju-
gate transpose of ψj i is the bra ψh j in the well-known Dirac bra–ket notation.

2.2 The Schrödinger equation

The equation of motion describing a quantum system is the time-dependent Schrö-
dinger equation:

ĤΨðr, tÞ= i�h
∂Ψðr, tÞ

∂t
: (2:2)

If the Hamiltonian, Ĥ, is time-independent, and if the wave function Ψðr, tÞ can be
factorized as a product of a time-dependent and a time-independent functions, that
is, Ψðr, tÞ= θðtÞψðrÞ, then one can separate out the time-independent Schrödinger
equation:

ĤψðrÞ=EψðrÞ, (2:3)

where the time-independent Hamiltonian Ĥ is an operator that represents the en-
ergy of the system, ψ is the wave function of the system, E is an eigenvalue of the
system (energy), and �h= h/2π is the reduced Planck’s constant.

The electronic structure of crystallography is most obviously related to solu-
tions of the time-independent eigenvalue equation, that is, eq. (2.3), which is the
case often relevant to the coherent X-ray scattering experiments.

The wave function of a single particle in the direct space representation is a
probability amplitude for particle’s position. The wave function must conform to
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certain mathematical conditions in order to apply to physical reality. According to
Max Born’s interpretation, given the wave function for a particle, the probability P(r)
for finding the particle at position r≡ x, y, xð Þ is proportional to the square of the
wave function, that is:

PðrÞ∝ψ✶ψ dx dy dz. (2:4)

In order for the particle to be found somewhere in space, and to maintain the prob-
abilistic interpretation, the wave function must be normalizable, that is, one must
be able to ensure that:

ð+∞

−∞

ð+∞

−∞

ð+∞

−∞

ψ✶ψ dx dy dz = 1. (2:5)

Every observable, as in classical mechanics, is a function of position (r = xex + yey +
zez≡ {x, y, z}, where ex, ey, and ez are the unit vectors in the Cartesian representa-
tion) and momentum (p). In quantum mechanics, these variables become mathe-
matical operators, defined according to the correspondence rules of Paul Ehrenfest,
namely, r is replaced by the quantum operator r̂, which operates on a wave func-
tion as in r̂ψ, and p becomes a quantum operator p̂, which applies a derivative op-
eration to a wave function, as in

p̂≡ − i�h ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

� �
≡ − i�h∇. (2:6)

In addition, physical reality requires of the wave function that it be single-valued,
continuous, and finite. The expectation value of an observable A is determined by
the wave function, in accordance with its probability interpretation by evaluation
of the integral:

Ah i=
ð+∞

−∞

ð+∞

−∞

ð+∞

−∞

ψ✶ Âψdx dy dz, (2:7)

where the angular brackets in Ah i indicate averaging, and the wave function is
(from now on) assumed normalized.

A measurement of an observable represented by a linear Hermitian operator Â
yields an experimental result that is one of the real eigenvalues of that operator ai
that corresponds to the eigenfunction ψi:

Âψi = aiψi. (2:8)

Any arbitrary quantum state in the space of Â spanned by its complete set of eigen-
functions can be expanded as a linear combination of these eigenfunctions:
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ψ=
Xn
i= 1

ciψi, (2:9)

where ci are the expansion coefficients, and the square of which represents the prob-
ability of observing the eigenvalue ai associated with the corresponding state ψi.

2.3 Atomic units (au)

In this book, results are often quoted in the conventional Système International (SI)
units and sometimes in other convenient units such as kcal/mol or ångström (Å). In
addition to these systems, frequently, the equations and the results are in a dimen-
sionless (relative) system of units used in atomic and quantum physics called the
system of atomic units (abbreviated as “au”) [1].

The system of au takes as its measuring gauge several of the fundamental proper-
ties of the electron. Thus, the electron’s rest mass me is taken as the unit of mass (in-
stead of the kilogram), the Bohr radius a0 is taken as the unit of length (instead of the
meter), the elementary charge (the magnitude of the charge of one electron, e) as the
unit of charge (instead of the coulomb), and the reduced Planck’s constant (�h= h=2π)
as the unit of action or angular momentum (instead of the joule.second). Note that the
au of mass, that is, the mass of an electron, is different from, and not to be confused
with, the “atomic mass unit” (amu), also known as “the dalton.” One dalton is 1 12= Þð th
of the mass of an atom of the carbon 12 isotope (12C), and 1 amu ≈ 1,822.9 au.

In this system of units, the energy is expressed in hartrees, the energy of an
electron in the first Bohr orbit, Ehartree, or Eh for short, instead of the joule. The time
in this system is measured in units of �h=Eh. Finally, the speed of light (c = 1/α ≈ 137)
is the reciprocal of the fine structure constant in this system of units. The latter is a
dimensionless constant with the approximate value α ≈ 1/137.036 – to three deci-
mals, which is often taken approximately as 1/137.1 In the au system, the electric
constant k= 1 4πε0ð Þ= Þð is set equal to 1.

1 It is interesting that Feynmanium 137Fy (element 137) is a hypothetical element that cannot exist
even in principle. Fy sets the limit on the periodic table as the first impossible element, since with

an atomic number of 137, the classical speed of the electron becomes v= Zc
n

e2
2ε0hc

h i
|fflfflffl{zfflfflffl}
α≈ 1

137.036

≡ Zc
n α≈

Zc
137n

(within the simple Bohr atomic model). In this case, for element Z = 137, the speed of an electron in
the first shell (n = 1) reaches the speed of light. This limits the periodic table due to the impossibility
of the motion of the electrons and has nothing to do with the structure of the nucleus or with the
fast decay of the strong nuclear force (visit https://www.chemedx.org/blog/search-final-element
for further elaboration).
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The adoption of the au system simplifies and compactifies the appearance of
the equations at the cost of hiding several of the fundamental constants. For exam-
ple, the Schrödinger equation for the hydrogen atom is written explicitly as follows:

−
�h2

2me
∇2 −

e2

4πε0r

" #
Ψ = EΨ. (2:10)

When this is transformed to the au system, the coordinates are scaled by a0, the
electric constant is set to 1, the wave function is expressed in terms of the scaled
coordinates, and E is now given relative to Eh; hence, the same symbols used fur-
ther have different meanings than in eq. (2.10), which now becomes [1]

−
1
2
∇2 −

1
r

� 
Ψ = EΨ. (2:11)

Some common conversion factors include 1 au of length = a0 ≈ 5.29 × 10−9 cm= 0.529 Å;
1 au of charge = e ≈ 1.602 × 10−19 C = 4.803 × 10−10 esu (electrostatic units); 1 au of
charge density = e/a0

3 ≈ 6.748 eÅ−3 = 1.081 × 1012 Cm−3; 1 au of Laplacian of the
electron density = e/a0

5 ≈ 24.099 eÅ−5; 1 au of dipole moment = ea0 ≈ 2.5418 de-
byes; 1 au of energy = e2/a0 ≈ 627.51 kcal/mol ≈ 2.6255 × 103 kJ/mol ≈ 27.212 eV.

2.4 The molecular Hamiltonian

Most of the applications in this monograph are concerned with crystals made up of
ground-state closed-shell (large biological) molecules. The following discussion will
hence be focused on closed-shell molecular – rather than periodic – calculations.

The Hamiltonian operator of a molecule as expressed in au:

Ĥ ≡ −
1
2

XN
i= 1

∇2
i −
XM
A= 1

1
2mA

∇2
A −

XN
i= 1

XM
A= 1

ZA
riA

+
XN
i= 1

XN
j> i

1
rij

+
XM
A= 1

XM
B>A

ZAZB
RAB

, (2:12)

where N andM are the numbers of electrons and nuclei in the system, respectively; mA

is the mass of the Ath nucleus; ZA is the atomic number (which equals the nuclear
charge in au) of the Ath nucleus; riA = ri −RAj j, rij = ri − rj

�� ��, and RAB = RA −RBj j, where
the capitalized “R” refers to the position vectors of the nuclei and the lowercase “r”
refers to electronic coordinates.

The above Hamiltonian does not include spin–orbit effects nor other relativistic
corrections which are important mainly in systems with heavy atoms [9]. It also
does not take the finite size of the nucleus into consideration, and the nuclei are
considered as mathematical points. Since the Hamiltonian considers nuclei as point
charges without a finite size or internal structure, the potential, the wave function,
and the electron density all exhibit cusps (singularities) at the positions of the
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nuclei [10, 11]. Further, this Hamiltonian – as written earlier – is insensitive to spin
which must be injected “by hand” into the wave function itself according to Pauli’s
antisymmetry principle for Fermionic particles such as a system of electrons.

Hamiltonian (2.12) contains both nuclear and electronic coordinates. The quan-
tum mechanical operator for the kinetic energy of a particle, written explicitly as
T̂ ≡ − ð�h2=2mÞ∇2, has mass of the particle m in its denominator. Hence, the contribu-
tion of this term due to nuclear motion is negligible compared to the analogous contri-
bution of the electrons. This allows one to omit, in a first (but good) approximation,
the second term in the Hamiltonian written in eq. (2.12). In fact, electronic motion oc-
curs at an attosecond timescale (1 as = 10−18 s) compared to a nanosecond (1 ns =
10−9 s) timescale of the nuclear motion [12, 13]. This approximation enables to decou-
ple the electronic and nuclear motion which can, thus, be separated into two Hamilto-
nians accounting for the two motion: one electronic and one nuclear. This separation
of motions based on their respective timescales allows one to approximately factorize
the total wave function as a product of a purely electronic wave function and a purely
nuclear one (Ψtotalðr,RÞ=Ψeðr;RÞΨnðRÞ). This is the essence of the so-called BO ap-
proximation [14]. This timescale difference allows us to ignore the kinetic energy of
the nuclei when examining the motion of the electrons, that is, the nuclei are
“clamped” or “frozen” in their positions in the three-dimensional space. One can then
solve an electronic Schrödinger equation in which the nuclear positions are frozen.
The splitting of the problem into two separate Schrödinger equations yields one for
the electrons with electronic coordinates treated as variables but the nuclear coordi-
nates are constant parameters. Once this is solved, the nuclear coordinates may then
be altered and, with this new set of parameters, the electronic Schrödinger equation
solved anew, and so on. What results is a “potential energy (hyper)surface (PES),”
a term that dates back to Henry Eyring and Michael Polanyi [15], as the geometry of
this (semiclassical) system is varied.

There are of course situations where this approximation is invalid and the con-
cept of a PES breaks down [16, 17]. Examples of these situations include conical in-
tersections, whereby a low-lying excited state surface is close to a point on the
ground state surface, or in the cases where we have exotic systems such as muonic
atoms and the like [18].

Thus, within the BO approximation, the electronic Schrödinger equation for a
set of fixed nuclei, in standard notation and in au (the convention adopted hence-
forth unless otherwise stated), is

ĤeΨeðr;RÞ≡ −
1
2

XN
i= 1
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i −
XN
i= 1
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+
XN
i= 1

XN
j> i

1
rij

 !
Ψeðr;RÞ= EeðRÞΨeðr;RÞ, (2:13)

where the semicolon indicates parametric dependence, N is the total number of
electrons in the system, and Ee(R) is the purely electronic energy that includes the
kinetic energies of all electrons (first term in Ĥe), their total attraction to all nuclei
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in the system (second term), and their total mutual repulsion (the last term). Note
that Eq. (2.13) does not include the nuclear–nuclear repulsion term. The total elec-
tronic energy Etotal(R) is then obtained by adding the nuclear–nuclear repulsion
(last term in the Hamiltonian given by eq. (2.12)), a classical term which is constant
for a given nuclear skeleton geometry, to Ee(R) after solving the electronic problem.
Thus, Etotal(R) is defined as follows:

ĤtotalΨeðr;RÞ≡ EeðRÞ+
XM
A= 1

XM
B>A

ZAZB
RAB

� �
Ψeðr;RÞ=EtotalðRÞΨeðr;RÞ. (2:14)

The Hamiltonian appearing in eq. (2.14) is identical to Hamiltonian expressed
in eq. (2.13) except that it includes the addition of the nuclear–nuclear repulsion en-
ergy. The addition of the constant nuclear–nuclear repulsion does not alter the eigen-
functions of the ground and excited states and only adds a constant to the eigenvalues
(the energies). From here on, the subscript “total” will be dropped if it is clear from the
context that Etotal(R)≡ E(R).

The nuclear Schrödinger equation is written as follows:

Ĥnuc.Ψnuc.ðRÞ≡ −
XM
A= 1

1
2mA

∇2
A +

XM
A= 1

XM
B>A

ZAZB
RAB

+EeðRÞ
� �

Ψnuc.ðRÞ= Enuc.Ψnuc.ðRÞ,

(2:15)

where M is the total number of nuclei, mA is the mass of the Ath nucleus, and Enuc.
is the total energy of the nuclei in the potential created by the electronic system Ee
(R). This energy, Enuc., includes contributions from the kinetic energies of all nuclei
(first term in Ĥn), the total nuclear–nuclear repulsion of all nuclei in the system (sec-
ond term), and the electronic energy Ee(R) defined in eq. (2.13). Notice that, as men-
tioned already, the nuclei move in an electronic potential. We shall see in later
chapters the importance attached to the BO approximation in the quantum crystallo-
graphic treatment of large molecules.

2.5 The variational principle

The search for an optimal approximate wave function includes (i) variational meth-
ods epitomized by the Hartree–Fock method and post-Hartree–Fock methods that
build on it, and (ii) perturbational methods such as any one of the nth-order
Møller–Plesset perturbation theoretic methods named MPn, with n = 2, 4 typically.

Variational methods get their name from the underlying mathematical appa-
ratus rooted in the calculus of variations. The result in this case is that the energy
is a functional of the wave function, and this functional dependence is symbolized
by square brackets. This principle states that the ground state energy E0 obtained
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from the exact wave function Ψ0 is always lower than that obtained using an approxi-
mate wave function Ψapprox. A straightforward mathematical proof of this theorem
can be found in Ref. [19], while the final result is expressed as follows:

E½Ψapprox.� =
Ð
Ψ✶

approx.ĤΨapprox. dτÐ
Ψ✶

approx.Ψapprox.dτ
≥ E0½Ψ0�, (2:16)

where dτ is a volume element that has, in general, 3N space and N spin coordinates.
The theorem prescribes a definitive pathway to improve the wave function, that

is, through the systematic minimization of the energy functional with respect to all
parameters in the wave function while maintaining the normalization condition. In
the variational method, a trial function is first employed and is subsequently im-
proved systematically through an iterative procedure until no further minimization
of the energy is possible. The latter point is when the calculation is stopped, no fur-
ther improvement is possible, and it is considered to have converged.

2.6 The Pauli exclusion principle

Variational solutions to the electronic problem without any arbitrary parameters
(save the fundamental constants and the core approximations outlined at the begin-
ning of this chapter) are known as ab initio methods. The Hartree–Fock theory is
the foundation of all such ab initio methods for many-electron systems.

A crucial approximation central to all these methods of solution is the well-
known “orbital approximation.” According to this approximation, the many-electron
wave function Ψ(x1, x2, . . ., xN) is factorized into a product of one-electron functions
known as “orbitals” (ψi(xi), i = 1, 2, . . ., N). This factorization, in essence, reduces an
insolvable many-body N-electron problem into N-tractable one-electron problems.

Douglas Hartree has first proposed a simple product of one-electron functions,
ψ1(x1)ψ2(x2). . .ψN(xN), now known as the “Hartree product.” The Hartree product,
however, turned out not to be satisfactory in describing fermionic systems since it
ignores electron indistinguishability (it assigns specific electrons to specific orbi-
tals) and violates the Pauli principle [20]. This latter principle states that for fer-
mions (particles with the magnitude of the spin angular momentum (in units of �h)
S = i + ½, i = 0, 1, 2, 3, . . .) such as electrons, the many-particle wave function of an
ensemble of strongly interacting indistinguishable fermions must be antisymmetric to
the interchange of the spatial and spin coordinates, x≡ x, y, z,ωf g, of any pair of
particles:

Ψðx1, . . .,xi, . . .,xj, . . .,xNÞ = −Ψðx1, . . .,xj, . . .,xi, . . .,xNÞ, (2:17)

where the coordinates of the ith and jth particles have been interchanged. For bo-
sons (particles with the magnitude of the spin angular momentum (in units of �h)
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S = i, where i = 0, 1, 2, 3, . . .) such as photons or α-particles, the Pauli exclusion
principle does not apply since now the many-particle wave function is symmetric
with respect to the exchange of particles. In other words, in the latter case, the
wave function does not change its sign upon the interchange of two identical par-
ticles, manifested, for example, in Einstein–Bose condensation. This symmetry/
antisymmetry principle has been introduced in the theory as a postulate that cor-
rectly predicts corresponding statistics of the two families of particles.

A direct consequence of the Pauli principle is what is known in chemistry as
the “exclusion principle,” that is, the impossibility of electrons to be described by
the same four quantum numbers in isolated atoms, for example. This principle, is
what allows elements to exist and form the system in the periodic table, prevents
material objects from occupying the same space at the same time, and is the physi-
cal mechanism preventing neutron stars from collapsing under their own enormous
gravitational central pull. A many-boson system such as photons, in contrast to one
made of fermions, tends to populate the same quantum state as occurs, for exam-
ple, in the generation of lasers. Reviews of the origin and meaning of the principle
can be found in Massimi’s book [20] and in chapter 20 (pp. 427–447) of Henry Mar-
genau’s book [21].

The incorporation of both indistinguishability and the Pauli principle into non-
relativistic ab initio calculations is done “by hand,” since the symmetry properties of
the wave function emerge naturally only through a relativistic treatment [9]. To si-
multaneously incorporate indistinguishability and antisymmetry into the N-electron
wave function, one can form the so-called antisymmetrized product of spin orbitals.
A “spin orbital,” χi, is defined as the product of a spatial orbital and a spin function:

χiðxÞ = ϕiðrÞσiðωÞ=ϕiðx, y, zÞσiðωÞ, (2:18)

where ϕi is the spatial one-electron function factor of χi, and σi refers to either α or
β and each of which is a function of the spin coordinate ω such that

Ŝα= + 1
2
�hα, (2:19)

and that

Ŝβ= −
1
2
�hβ, (2:20)

where Ŝ is the spin angular momentum operator and α and β are the eigenfunctions
of this operator with eigenvalues of ± ð1=2Þ�h. These eigenfunctions are orthonor-
mal, that is:

σh jσ ′i=
ð
dωσ✶ ðωÞσ ′ðωÞ= δσσ ′ =

1 if σ = σ ′
0 if σ ≠σ ′

,
(

(2:21)
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where δσσ ′ is the so-called Kronecker delta function that equals 1 or 0 depending on
whether its indices are equal or not.

John C. Slater proposed to satisfy the Pauli principle within the orbital model
by expressing the many-electron wave function as an antisymmetrized sum of prod-
ucts named after him as the “Slater determinant” (det) [22]:

Ψ0 ≈Ψdet ≡
1ffiffiffiffiffi
N!
p

χ1ðx1Þ χ2ðx1Þ � � � χNðx1Þ
χ1ðx2Þ χ2ðx2Þ � � � χNðx2Þ
..
. ..

. ..
.

χ1ðxNÞ χ2ðxNÞ � � � χNðxNÞ

�����������

�����������
, (2:22)

where the factor before the determinant ensures the normalization of the N-electron
wave function, and the spin orbitals are usually chosen to be orthonormal:

h χi j χji=
ð
χ✶i χjdx= δij, (2:23)

and the space orbitals are also chosen to be orthonormal, that is,

hϕi jϕji=
ð
ϕ✶
i ϕjdr= δij, (2:24)

where in both eqs. (2.23) and (2.24), δij is a Kronecker delta function.
It is common to refer to this determinant in quantum chemistry textbooks in an

abbreviated form listing only this determinant’s diagonal elements as follows:

Ψdet = χ1ðx1Þ χ2ðx2Þ � � � χNðxNÞj j. (2:25)

A Slater determinant, by construction, allows every electron to occupy every spin or-
bital. In this manner, the electrons are made indistinguishable. Furthermore, from
the elementary properties of determinants, the interchange of any pair of rows or any
pair of columns changes the sign of the determinant. This interchange is equivalent to
interchanging the labels in eq. (2.17). Thus, in one stroke, the Slater determinant has
lifted the artificial distinguishability of a strongly interacting system of electrons and
satisfied the Pauli antisymmetry principle for this ensemble of fermions. It is impor-
tant to note that the Pauli antisymmetry principle is physically manifested as the
“Pauli exclusion principle.” In this sense, the Slater determinant correlates the motion
of same-spin electrons, a correlation that tends to keep same-spin electrons apart.

Slater determinants enjoy a special role within quantum crystallography. One of
the driving motivations of quantum crystallography is to extract from X-ray scattering
the full quantum mechanics in a way that allows calculation of all quantum properties.
That is not doable with the information obtained from classical crystallography, no mat-
ter how accurate may be the electron density so measured. For example, any property
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which depends upon momentum is inherently not obtainable from classical crystallo-
graphic electron density determinations because the momentum operator contains a de-
rivative which requires the wave function or an N-representable antisymmetric density
matrix to evaluate its expectation value. Thus, to extract quantum properties from
the X-ray scattering experiment, a procedure to obtain antisymmetric wave func-
tions, or N-representable density matrices, is required to describe the scattering.

As mentioned earlier, the Hartree–Fock theory is the point of departure to all
electronic structure methods. To keep this monograph self-contained, it is useful,
hence, to review very briefly the formalism of this theory, that of post-Hartree–Fock
methods, and of density functional theory (DFT).

2.7 The Hartree–Fock method

The so-called linear combination of atomic orbitals (LCAO) has long been the basis of
an efficient variational approach for an approximate solution of the Schrödinger
equation. Naturally, the larger the set of “atomic orbitals (AOs)” (the number of basis
functions, b) used to expand the ith molecular spin orbital χi, the better its descrip-
tion and the better the solution of the Schrödinger equation (the lower the energy).
Naturally, the best possible description is when the number of basis functions is infi-
nite, a clearly unachievable ideal limit. The LCAO formalism is

ϕi =
Xb
μ= 1

ciμψμ, (2:26)

where ciμ are the expansion coefficients and the ψμ are the atomic-centered basis
functions (AOs). There is no requirement for centering the basis functions (the AOs)
at the positions of the nuclei, since they are strictly not AOs but just a convenient
set of functions used to expand the MOs. Centering the AOs at the position of the
respective nuclei is, however, a common choice in computational chemistry.

Written as an expectation value of the Hamiltonian in eq. (2.14), whereby we
change the notation from here on for simplicity Ĥtotal ! Ĥ, the Hartree–Fock en-
ergy is given by

EHF = hΨdetjĤjΨdeti (2:27)

For a closed-shell system with N electrons occupying N/2 space orbitals, and upon
writing the explicit form of the Hamiltonian operator, and inserting the Slater deter-
minant form of the total wave function (eq. (2.22)), we get [1]
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which is written in atomic units, and where the integrals are over space coordinates
(spin coordinates are already integrated out since the Hamiltonian is spinless), and
Vnn represents the nuclear-nuclear repulsion energy. Note the simplification of the
notation that is used subsequently whereby a functional dependence on “(1), (2),
etc.” is to be read as on the coordinates of electron 1, that is, as equivalent to a
functional dependence on “(r1), (r2), . . .”. is The latter equation can be expressed
in a more compact notation as:

EHF = 2
XN=2
i= 1

Hi +
XN=2
i= 1

XN=2
j= 1

ð2Jij −KijÞ+Vnn. (2:29)

In this expression, Jij and Kij are known as the Coulomb and exchange integrals, re-
spectively, and both involve averaging over two electron operators. The average over
one-electron operators (Hi) yields the energy of an electron in orbital i in the bare nu-
clear potential of all nuclei. It is the average of the kinetic energy of a single electron
in addition to its interaction with the nuclear potential (the external potential).2

The lead factor of 2 in the first summation is necessary to account for the dou-
ble occupation of any given occupied space orbital for a closed-shell system. The
average energy of electrostatic repulsion between the electron density in two orbi-
tals ϕi and ϕj is then given by the corresponding Coulomb integral. In this manner,
the instantaneous electron–electron repulsion experienced by every electron due to
the motion of every other electron is hugely simplified by considering only the mo-
tion of a given electron in the average field of the remaining electrons. Meanwhile,
the exchange integrals (Kij) account for the correlation of the motions of electrons
of parallel spins and account for the exchange part of the total correlation of elec-
tronic motion. An elaboration on the physical meaning of this energy term can be
found in the third volume of Richard Feynman’s classic [23] (Chapter 4, pp. 4–1 to
4–15) and in Henry Margenau’s book (chapter 20, pp. 427–447) [21].

 The word “external” in “external potential” indicates a potential associated with any source ex-
cept that of the system of electrons itself. The bare nuclear potential is an example of an external
potential. The potential associated with an externally imposed electromagnetic field is another ex-
ample of an external potential.
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Exchange energy between same-spin electrons is a quantum mechanical energy
term that has no classical analogues. Since Jij and Kij appear in eq. (2.29) with opposite
signs, exchange energy corrects for the nonphysical self-repulsion (Jkk = J(self) =
−Kkk = −K(self)).

According to Margenau’s interpretation, the negative gradient of this “ex-
change energy” behaves as a pseudo-force. This pseudo-force has all the hallmarks
of a repulsive force between same-spin electrons except that it is not mediated by
the exchange of bosons as “normal” field-mediated forces, but it rather originates
from the antisymmetry of the wave function. As a result, this pseudo-force, by tend-
ing to keep same-spin electrons apart, lowers the energy of the system and leads,
for instance, to the first Hund’s rule. This rule states that the electronic configura-
tion with the highest possible multiplicity is the most stable when everything else is
equal. The highest multiplicity maximizes the number of same-spin electrons while
this exchange pseudo-force keeps them apart, hence reducing the energy of the sys-
tem compared to configurations with lower multiplicities.

The Hartree–Fock theory determines the set of molecular orbitals (MOs) that min-
imize the energy subject to the constraint that they are orthonormal. These orbitals
are eigenfunctions of the so-called Fock operator F̂. The eigenvalues of this operator,
εi, are the energies of these orbitals. The corresponding one-electron eigenvalue
equation is [1]

F̂ð1Þϕið1Þ= εi ϕið1Þ, (2:30)

where, in the case of a closed-shell system,
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� 
ϕjð1Þ, (2:34)

where all integrations are carried out over all space, and operators Ĵj and K̂j are
called the “Coulomb” and the “exchange” operators, respectively. It is worth noting
here that the exchange operator is a nonlocal operator rendering the entire Fock op-
erator to be nonlocal. This is to be contrasted with the Kohn–Sham (KS) operator of
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DFT (vide infra). A “local” operator is one which operates on a function at a point
entirely independent of other point(s) of space. In this sense, the Coulomb operator
is local because the result of its operation on the ith orbital, Ĵjð1Þϕið1Þ, only depends
on the value of this orbital at the point of evaluation. The exchange operator, how-
ever, when it operates on the ith orbital, K̂jð1Þϕið1Þ, requires the knowledge of this
orbital at all other points in three-dimensional space. This is manifested by the ap-
pearance of ϕi within the integral in eq. (2.34).

If we now substitute eq. (2.26) into eq. (2.30) we get

Xb
μ= 1

ciμ F̂ψμ = εi
Xb
μ= 1

ciμψμ. (2:35)

Pre-multiplication of this last equation by ψν followed by integration over all space
gives

Xb
μ= 1

ciμðFνμ − εiSνμÞ=0, (2:36)

where ν= 1, 2, . . ., b

Fνμ ≡ hψνjF̂jψμi, (2:37)

and

Sνμ ≡ hψνjψμi. (2:38)

Equation (2.36) is known as the Roothaan equation [1, 24].
A nontrivial solution of these b simultaneous linear homogeneous equations

with b unknowns ciμ
� �

is found by setting the secular determinant equal to zero,
that is:

det ðFνμ − εiSνμÞ=0, (2:39)

which yields b orbital energies (εi) as its roots.
By inspection, one realizes that the Hartree–Fock equations are coupled inte-

grodifferential equations. The coupling arises because the potential in the Fock op-
erator depends on the very orbitals we are trying to determine. Such a system does
not have an analytical solution and must instead be solved iteratively starting from
a guessed solution (a set of guessed MOs). These guessed orbitals are then used to
construct the operators to obtain a new set of improved orbitals, and the process is
repeated until convergence. The procedure is said to have converged when a set of
orbitals generate a field that, when inserted in the operators, regenerates the same
orbitals within a given precision. Since the field is, in a sense, self-regenerating, this
procedure is also known in the literature as the self-consistent field (SCF) approach.
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A set of guessed occupied MOs is first expanded according to the LCAO model in
the chosen set of basis functions (basis set). The choice of a basis set is particularly
adapted to the operation of digital computers since it transforms an analytical prob-
lem (that of optimizing the form of a three-dimensional function) into a linear algebra
problem (optimizing a set of coefficients that change the relative weights of a set of
given functions). As mentioned earlier, usually these basis functions (AOs) are cen-
tered on the atomic nuclei, but this is by no means a fundamental requirement. One
can place these basis functions anywhere or even use plane wave functions, the latter
choice being particularly common in periodic solid-state calculations.

In molecular-type SCF calculations, each (ith) MO of the set of occupied MOs is
guessed by specifying the initial expansion coefficients {ciμ}. With this initial guessed
set of occupied MOs, the algorithm constructs the Fock operator which is used to
evaluate the matrix elements (eqs. (2.37) and (2.38)). The matrix elements are then
inserted into the secular determinant (eq. (2.39)) which yields the first set of eigen-
values (the set of orbital energies εif g). This set of eigenvalues are then inserted
into eq. (2.36) to get the next improved set of coefficients. The new coefficients are
used to construct the next set of improved occupied MOs and Fock operator. The
same procedure is repeated until the set of occupied MOs within the Fock operator
yields the same ones as a solution of the secular equations. This is when the calcu-
lation has reached self-consistency and we now have the “best” possible set of MOs
that yield the minimum energy within the chosen basis set as required by the varia-
tional principle. A final Slater determinant can then be constructed using the SCF
MOs.

With the orbitals that result from the SCF procedure, one can then calculate
any of the desired properties of the system. An important example is the electron
density, which is defined as follows:

ρðrÞ=N
X
ω

ð
� � �
ð
Ψ✶ ðx1, . . .,xNÞΨðx1, . . .,xNÞ dr2, . . .,drN , (2:40)

where

xi ≡ ðxi, yi, zi,ωiÞ, (2:41)

in which Ψ is the antisymmetric many-electron wave function and xi, yi, zi are the
space coordinates of electron i with spin coordinate ωi which is the argument of ei-
ther an α or a β spin function. The mode of integration in eq. (2.40), whereby the
space integration is effected over the three-dimensional coordinates of all electrons
in the system except one followed by the discrete summation over both spins, is
often written in short-hand notation as the integral:ð

dτ′≡
X
ω

ð
� � �
ð
dr2, . . ., drN . (2:42)

In this manner, the electron density expression (eq. (2.40)) is written as follows:
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ρðrÞ=N
ð
Ψ✶Ψdτ′. (2:43)

The electron density written in an abstract manner in eq. (2.40) can be calculated
from the sum of the square of all doubly occupied MOs (in a closed-shell system),
which in the single determinant scheme is expressed as follows:

ρðrÞ=N
ð
dτ′ Ψ✶

detΨdet (2:44)

= 2
XN=2
j= 1

ϕ✶
j ϕj (2:45)

= 2
Xb
ν= 1

Xb
μ= 1

XN=2
j= 1

cνjcμj ψ✶
ν ψμ (2:46)

= 2
Xb
ν= 1

Xb
μ= 1

Pνμψ✶
ν ψμ, (2:47)

where the coefficients are taken to be real and where

Pνμ =
XN=2
j= 1

cνjcμj (2:48)

are the elements of the density matrix (P) for a closed-shell molecule. Since P deter-
mines the MOs in the chosen basis set, it determines the (reduced) one- and two-
electron density matrices (1-RDM, 2-RDM) and every other property of the system
within the Hartree–Fock theory.

In matrix notation, and for a single determinantal wave function, one can ex-
press eq. (2.48) as

P=C† C, (2:49)

where P is a b × b matrix, b is the number of basis functions in the chosen basis set,
C is a matrix of row vectors of b coefficients, and the superscripted dagger “†” im-
plies complex conjugate transposition. (In general, the coefficients are complex,
but can always be chosen to be real in the absence of external magnetic fields.)

It is worth noting at this point a type of shortage of nomenclature by virtue of
which the terms “density matrix” are used to indicate the matrix of the coefficients,
while the 1- and 2-RDMs are defined, respectively, as follows:

ρ1ðr1, r1′Þ=N
X
ω

ð
� � �
ð
Ψ✶ ðr1ω1, . . ., rNωNÞΨðr1′ω1, . . ., rNωNÞdr2, . . ., drN , (2:50a)

≡N
ð
Ψ✶ ðr1ω1, . . ., rNωNÞΨðr1′ω1, . . ., rNωNÞdτ′ (2:50b)

40 Chapter 2 Some basic concepts of quantum chemistry



and

ρ2ðr1, r2jr1′, r2′Þ =
NðN − 1Þ

2

X
ωi

ð
� � �
ð
Ψ✶ ðr1ω1, r2ω2, . . ., rNωNÞ

Ψðr1′ω1, r2′ω2, . . ., rNωNÞ dr3, . . ., drN : (2:51)

For a single determinantal wave function, these reduced density matrices can be ex-
pressed in linear algebraic form (where ψ is a column vector of basis functions) as:

ρ1ðr1, r1′Þ= 2 trPψðr1Þ#ψ†ðr1′Þ, (2:52)

ρ2ðr1, r2jr1′, r2′Þ=
ρ1ðr1, r1′Þ 1

2 ρ1ðr1, r2′Þ
ρ1ðr2, r1′Þ ρ1ðr2, r2′Þ

�����
�����: (2:53)

In this notation, the electron density is itself obtained by dropping the distinction
(primed vs. unprimed) between the coordinates in the arguments, including the
omission of the subscript “1,” of the basis functions whereby eq. (2.52) becomes

ρðrÞ= 2trPψðrÞ#ψ†ðrÞ: (2:54)

Thus, the diagonal elements of the 1-RDM are obtained if we remove the prime,
which yields the electron density as defined in eq. (2.40). Meanwhile, if we remove
the primes from the 2-RDM we obtain the electron pair density, a function of six spa-
tial coordinates of a pair of electrons, which is written as follows

ρðr1, r2Þ= NðN − 1Þ
2

X
ωi

ð
� � �
ð
Ψ✶ ðr1ω1, r2ω2, . . ., rNωNÞ

Ψðr1ω1, r2ω2, . . ., rNωNÞdr3, . . ., drN .
(2:55)

The pair density is the conditional probability to find an electron in volume element
dr1 centered at r1 while another one is located in volume element dr2 centered at r2
weighted by the total number of distinct pairs (the factor N(N – 1)/2). While the elec-
tron density is accessible via crystallography, the pair density can be obtained from
inelastic scattering experiment whether using X-ray or electron beams [25–27].

We now return to the “density matrix” defined above. This matrix, P, has the im-
portant mathematical properties of idempotency and hermiticity, which are expressed,

Pn =P and P=P†, (2:56)

respectively, and where n is any nonzero integer and P† is the complex conjugate
transpose of P [28, 29]. A special case of idempotency is

P2 =P. (2:57)
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Those functions ρ1(r1,r1ʹ ) which are idempotent (also known as projectors) map back
to antisymmetric N-body wave functions. It is that property of idempotency which
defines the N-representability of the one-body density matrix [30].

An N-representable one-body reduced density matrix has restrictions on its ei-
genvalues, that is, the orbitals’ occupation numbers. By virtue of the Pauli principle,
no spin orbital can be the locus of more than one electron. When these occupation
numbers (eigenvalues) are either 0 or 1, the one-body RDM maps into a single Slater
determinant. In this case, the corresponding P matrix represents an idempotent Her-
mitian operator (Eq. (2.56)) which is also normalized, that is,

trP=N. (2:58)

A single determinant accounts for Fermi correlation that governs the motion of
same-spin electrons but fails to account for the Coulombic correlation between all
electrons [31]. As for any approximate wave function, the Hartree–Fock energy
(EHF) is greater than the exact energy (E0) of the ground state. The difference be-
tween the exact nonrelativistic energy and the Hartree–Fock limit (i.e., the SCF en-
ergy that would be obtained with an infinitely large basis set) has been termed by
Per-Olov Löwdin as the “correlation energy” (EHF

C ) [32]:

EHF
C =E0 −EHF. (2:59)

How to account for this Coulombic correlation energy has been, and continues to
be, a central problem of computational quantum chemistry. It provided a main im-
petus to develop DFT as well as post-Hartree–Fock methods such as configuration
interaction (CI) methods and perturbational approaches such as Møller–Plesset’s.

In a typical (single reference) CI calculation, a set of MOs (occupied and virtual)
is obtained from an initial SCF calculation. The SCF MOs are then used to construct
sets of different electronic configurations, ground and excited (0Ψdet (ground state),
{1Ψdet} (a set of singly excited configurations), {2Ψdet} (a set of doubly excited con-
figurations), etc.). Each configuration in every set is represented by a single Slater
determinant, and the many-electron wave function representing the state is ex-
pressed as a linear combination of configurations [1]:

ΨCI =C0
0Ψdet + C1

1Ψdet
� �

+ C2
2Ψdet

� �
+ � � � (2:60)

where the unknown expansion coefficients {Ci} are obtained variationally.
In general, there exists more than one configuration of each type except for the

ground state, which is why we have written {Ci
iΨdet} as a set (indicated by the braces).

An example in use is the CI with single and double excitations (CISD). This CISD ap-
proximation expands the state in terms of all the configurations differing from the
ground state by one- and two-electronic excitations. Clearly, the CISD is a truncated CI
since, in principle, the calculation can include all possible configurations of proper
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symmetry within the set of available MOs. In this latter case, the calculation is known
as “full-CI,” highly accurate but highly expensive as well.

According to the theorem known as “Brillouin’s theorem” [33], the matrix ele-
ments of the ground electronic state’s SCF determinant with any of the determi-
nants produced by a single excitation vanish. This is expressed, as in the following
example, between the ground state and one of the singly excited states as follows:

	0Ψdet

��Ĥ��1Ψdet


=0. (2:61)

Since the first-order corrections vanish as a consequence of Brillouin’s theorem,
Hartree–Fock calculations deliver all one-electron properties (e.g., electron density,
dipole moment, and higher electric multipoles) that are correct to second-order.
This theorem implies that any single determinant calculation of the ground state is
already equivalent to the one that includes configuration with all singly excited
states. CI calculations, to differ from SCF, must include higher orders in the expan-
sion given by eq. (2.60).

2.8 Some essentials of density functional theory (DFT)

An elegant approach to incorporate Coulombic correlation effects within a single
determinant scheme is DFT which is faster than CI calculations given the same sys-
tem and basis set [30, 34, 35]. Resting on the first Hohenberg–Kohn theorem (HK-1
theorem) [36], discussed in Chapter 1 of this book, DFT was soon thereafter con-
verted from an abstract “existence” theorem into a practical computational scheme
by Kohn and Sham [37].

To briefly recap, the HK-1 theorem says that the external potential (V) is fixed
by the nondegenerate ground-state electron density (ρ(r)), and so is the total num-
ber of electrons (N). These two determinations completely specify the system’s
Hamiltonian. It follows that the electron density determines all of the system’s
wave functions and energies of ground and excited states. Since all of the system’s
wave functions are fixed, the ground-state electron density also fixes all properties
of the system, ground and excited. This is expressed symbolically:

ρðrÞ ! V½ ρðrÞ�
N½ ρðrÞ�

( )
! Ĥ ! Ψig,f (2:62)

where i = 0, 1, 2, . . ., ∞, and the square brackets indicate a functional dependence
on the ground-state electron density.

The external potential operator acting on electron i, where the caret above V̂
(informally referred to as “hat”) which has been added to emphasize its role as a
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quantum mechanical operator, is defined (in au – as is the remainder of this chap-
ter) as follows:

V̂ðriÞ= −
XM
A= 1

ZA
riA

. (2:63)

The electronic Hamiltonian, eq. (2.13), expresses the total electronic energy of
the ground electronic state as the sum of the electronic kinetic energy, the
nuclear–electronic potential energy, and the electron–electron repulsion energy.
These three energy terms can be written as

E0½ ρ0�= Te½ ρ0�
	 


+ Vne½ ρ0�
	 


+ Vee½ ρ0�
	 


, (2:64)

where averaging is symbolized by the angular brackets, functional dependence by
the square brackets, T refers to kinetic energy, V refers to a potential energy, and
the subscripts “e” and “n” refer to electrons and nuclei, and ρ0 is the electron den-
sity of the ground electronic state.

From eqs. (2.63) and (2.64), we have

V̂ne =
XN
i= 1

V̂ðriÞ= −
XN
i= 1

XM
A= 1

ZA
riA

. (2:65)

The average of nuclear–electron attraction energy is obtained from

Vneh i= 	Ψ0
��XN
i= 1

V̂ðriÞ
��Ψ0


, (2:66a)

where Ψ0 is the many-electron ground-state wave function, thus:

Vneh i=
ð ð

Ψ✶
0

XN
i= 1

V̂ðriÞ
� 

Ψ0dτ0 dr=
ð ð

Ψ✶
0 NV̂ðrÞ
h i

Ψ0 dτ0dr (2:66b)

=
ð
N
ð
Ψ✶

0 Ψ0 dτ
0

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ρ0ðrÞ

V̂ðrÞdr=
ð
ρ0ðrÞVðrÞdr (2:66c)

= Vne½ρ0�
	 


, (2:66d)

where V(r) represents the nuclear attraction potential acting on an electron, any
electron, at a point given by the position vector r, and the final result of eq. (2.66) is
the only explicitly known functional ( Vne½ρ0�

	 

) that appears in eq. (2.64). The two

other functionals in eq. (2.64) are unknown.
If we now include the explicit form of the only known functional (of the

nuclear–electronic potential energy) into eq. (2.64) followed by combining the re-
maining two other unknown functionals into one functional (F[ρ0]), we get:
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E0½ρ0�=
ð
ρ0ðrÞ VðrÞ dr+ Te½ρ0�

	 

+ Vee½ρ0�
	 


(2:67a)

=
ð
ρ0ðrÞ VðrÞ dr+ F½ρ0�, (2:67b)

where

F½ρ0�≡ Te½ρ0�
	 


+ Vee½ρ0�
	 


. (2:68)

This result, eq. (2.68), is not actionable because it contains the unknown functional
F[ρ0].

A second Hohenberg and Kohn theorem (HK-2 theorem) states that the true
ground-state density is the one that minimizes the energy [36]:

E0½ρtrial�≥ E0½ρ0�. (2:69)

We would have, hence, a variational theorem that affords a clear path in search for
an optimal ground-state electron density. The computational implementation of the
HK-2 theorem has been introduced in a 1965 paper by Kohn and Sham (KS) [37].
This DFT variational theorem holds only if the exact energy functional F[ρ0] is
known, in which case one could start with an approximate density and iterate vari-
ationally to improve it by lowering the energy. The exact functional is, however,
unknown and is approximated by the plethora of existing functionals in the litera-
ture [2, 34, 35, 38, 39]. For any approximation to F[ρ0], the method is nonvariational
and one may obtain energies that are lower than the true ground-state energy, un-
like in the (post) Hartree-Fock methods where the true ground state energy is a
lower bound to the energy.

In DFT, one examines a fictitious noninteracting (NI) N-electron system that de-
fines an electron density ρNI which is identical to the exact fully interacting real sys-
tem ρ0. The NI fictitious system of electrons is governed by ĤNI, a Hamiltonian
operator consisting of a sum of one-electron KS Hamiltonians ĥKSi :

ĤNI =
XN
i= 1

−
1
2
∇2
i +VNIðriÞ

� 
≡
XN
i= 1

ĥ
KS
i . (2:70)

where the one-electron NI Hamiltonian is defined as follows:

ĥKS ≡ −
1
2
∇2 +VNIðrÞ. (2:71)

The ground-state wave function describing a system of NI electrons (fermions) can
be exactly written as a Slater determinant (eq. (2.22)) constructed from occupied KS
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spin orbitals uKSi . The spatial parts of these KS orbitals, θKSi , are eigenfunctions of
ĥKS, that is:

ĥKSθKSi = εKSi θKSi , (2:72)

where εKSi are known as the KS orbital energies, and eq. (2.72) are the KS equation.
The following substitutions are now introduced to render eq. (2.64) calculable:

ΔT½ρ�h i≡ T½ρ�h i− TNI½ρ�h i, (2:73)

and

ΔVee½ρ�h i≡ Vee½ρ�h i− 1
2

ð ð
ρðr1Þρðr2Þ

r12
dr1dr2, (2:74)

where the naught has been dropped from the symbol of the ground-state electron
density, the difference between the expectation value of the kinetic energy of
the real and the NI system is ΔT½ρ�h i, and the separation between r1 and r2 is r12.
In eq. (2.74), the double integral on the right-hand side is the Hartree potential
giving the classical energy of repulsion between two charge clouds, while Vee½ρ�h i is
the average energy of repulsion in the real interacting density. The Hartree potential
represents the average electrostatic repulsion between the electrons in a classical sys-
tem that neither exhibits Coulombic correlation nor exchange-symmetry correlation. Fi-
nally, ΔVee½ρ�h i is the potential energy portion to the correlation energy. The factor (½)
in front of the Hartree potential ensures counting every interaction only once.

Now as we have all the explicitly known terms well-defined, the two unknown
functionals, ΔT½ρ�h i and ΔVee½ρ�h i, are collected into the so-called exchange–correlation
functional, defined as

Exc½ρ�≡ ΔT½ρ�h i+ ΔVee½ρ�h i. (2:75)

From eqs. (2.73)–(2.75), and (2.67) and (2.68), one can write:

E0½ρ�=
ð
ρðrÞ VðrÞ dr+ TNI½ρ�h i+ 1

2

ð ð
ρðr1Þρðr2Þ

r12
dr1dr2 + Exc½ρ�, (2:76)

which upon substitution of the explicit forms of the operators and quantum me-
chanical averaging yields:

E0 = −
XM
A= 1

ZA

ð
ρðr1Þ
r1A

dr1 − 2
XN=2
i= 1

	
θKSi ð1Þ

�� 1
2
∇2
1

��θKSi ð1Þ

+ 1
2

ð ð
ρðr1Þρðr2Þ

r12
dr1dr2 + Exc½ρðrÞ�,

(2:77)

where the “(1)” in θKSi ð1Þ as well as the subscripted “1” in ∇2
1 refer to electron 1, any

single electron in the system. This leaves KS orbitals (θKSi ) and the exchange–correla-
tion functional as the remaining unknowns to be determined.
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The electron density of the ground state can be expressed in terms of the KS
orbitals, again for a closed-shell system where all space orbitals are doubly occu-
pied, as follows:

ρ= 2
XN=2
i= 1

θKSi
��� ���2, (2:78)

the integration of which satisfies the normalization condition:ð
ρðrÞdr=N. (2:79)

The minimization of the energy expression (eq. (2.77)) subject to the normalization
constraint, along with imposing the constraints of orthonormality on KS orbitals, is
achieved by the Lagrange undetermined multiplier technique. This yields a set of
Fock-like one-electron, but local, equations known as KS equations [30]:

−
1
2
∇2
1 −
XM
A= 1

ZA
r1A

+
ð
ρðr2Þ
r12

dr2 + vxcð1Þ
� 

θKSi ð1Þ= εKSi θKSi ð1Þ, (2:80)

where the effective (one-electron) KS Hamiltonian, the lead square bracket (̂hKS), in-
cludes an “exchange–correlation potential,” vxc(r). The KS equations, eq. (2.80), can be
written in a short-hand form as in eq. (2.72) above.

The exchange–correlation potential in the KS equations is taken as the func-
tional derivative of the exchange–correlation energy Exc:

vxcðrÞ= δExc½ρðrÞ�
δρðrÞ . (2:81)

Given an explicit form of functional Exc[ρ(r)], the exchange–correlation potential is
obtained (eq. (2.81)) which, when inserted into the KS equations, would be what is
needed for an iterative solution. The functional is, however, unknown and remains
one of the principal frontier problems of modern DFT.

While formally and superficially similar, Hartree–Fock and KS theories differ in
significant ways. First, and as emphasized already, the ĥKS is a local operator, as can
be seen from eqs. (2.71) and (2.80) since the result of its operation on a function de-
pends on that function’s value only at the point of evaluation. Further, Coulombic
correlation, unaccounted for in Hartree–Fock theory, is accounted for by ĥKS via vxc.
Hartree–Fock theory, on the other hand, incorporates exchange (Fermi) correlation
between same-spin electrons (eq. (2.34)) but ignores Coulombic correlation between
all electrons. Finally, the exchange and correlation contributions to the energy, both
quantum mechanical in nature, are merged into Exc. KS exchange–correlation energy
implicitly incorporates also a kinetic energy contribution to the correlation. At the
present, the exchange–correlation potential is only known approximately.

2.8 Some essentials of density functional theory (DFT) 47



The quality of a DFT calculation rests in large part on how well the exchange–
correlation functional is approximated. An exact vxc would deliver the exact fully
correlated ground-state electron density, but this requires knowing the exact Exc.
There appears to be no systematic way to approach the exact Exc. In practice, empir-
icism is adopted through comparison of the results obtained from educated guesses
at the form of Exc with experimentally known thermodynamic, kinetic, and geomet-
ric results.

An approximation to the form of Exc[ρ(r)] functional is the so-called local den-
sity approximation (LDA) [37]:

ELDA
xc ½ρðrÞ�=

ð
ρðrÞ εxc½ ρðrÞ� dr. (2:82)

The symbol εxc stands for the sum of the exchange and correlation energies per
electron in a uniform electron gas that has the same electron density, locally, as the
density of interest. This approximation assumes that the electron density in the sys-
tem of interest changes slowly with position and hence does not depend on the gra-
dient of the electron density. The assumption of slow-changing density renders
LDA generally inaccurate when it exhibits large gradients as typically encountered
in molecular calculations.

A more accurate class of approximations than LDA constitute what is known as
“gradient corrected” functionals. These functionals are developed within the scheme
commonly known as the “generalized gradient approximation” or GGA. The GGA in-
cludes terms that depend explicitly on the gradient of the electron density of each
spin:

EGGA
xc ½ραðrÞ, ρβðrÞ�=

ð
f ραðrÞ, ρβðrÞ,∇ραðrÞ,∇ρβðrÞ� �

dr, (2:83)

where the energy functional is partitioned into separate exchange and correlation
contributions:

EGGA
xc = EGGA

x +EGGA
c , (2:84)

and each of the two contributions is modeled independently.
According to this scheme, one can mix any desired exchange functional with any

correlation functional. An example of this mixing is that of Becke 1988 exchange
functional with Lee–Yang–Parr correlation functional denoted as BLYP [40]. Finally,
a hybrid functional is one in which the proportions of exchange functional and corre-
lation functional in the mix are empirically adjusted to fit experimental data such as
atomization energies. A well-known and popular hybrid functional is B3LYP [40–42].

A Hartree–Fock SCF calculation requires an initial guess of the orbitals because
they are used to construct the Fock operator; hence, this problem must be solved
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iteratively. Not dissimilarly, the operator in the KS equations (eq. (2.80)) is con-
structed using the very unknown to be sought, that is, the electron density. Thus, in
this case as well, an iterative solution and an initial guess of the electron density is
required.

The initial guess of the electron density used to start the iterative solution of the
KS equations is often the promolecule. The promolecular density is defined as a su-
perposition of spherical atomic densities centered at the assumed initial positions of
the nuclei. To obtain this guess, spherically averaged precalculated atomic densities
are placed at their respective initial guessed positions and are allowed to overlap:

ρpro =
XM
i= 1

ρi, (2:85)

where ρi is the isolated atomic electron densities and ρpro is the initial promolecular
guessed density.

The promolecular density is then used to obtain Exc from the explicit functional
form assumed within the given approximation. The functional derivative of this en-
ergy with respect to the density (eq. (2.81)) then delivers an initial guess for vxc.
With the promolecular density and the initial vxc, the KS equations can now be con-
structed since the KS Hamiltonian is fully specified (eq. (2.80)). The iterative proce-
dure starts by delivering the initial set of KS orbitals expressed in terms of the
chosen basis set:

θKSi =
Xb
μ= 1

ciμ ψμ. (2:86)

The reader is to note the formal identity of eqs. (2.26) and (2.86). This identity sug-
gests the adoption by DFT of the same solution algorithm, from this point onward,
as the one used to solve the Hartree–Fock–Roothaan equations (eqs. (2.36)–(2.39)),
hence: Xb

μ= 1

ciμðhKSνμ − εKSi SνμÞ=0, (2:87)

where ν= 1, 2, . . ., b,

hKSνμ ≡
	
ψνj ĥKSjψμ



, (2:88)

and

Sνμ ≡
	
ψνjψμ



. (2:89)

Solving the KS equations using the promolecular density as an initial guess to de-
termine the KS Hamiltonian yields an initial set of KS orbitals. These orbitals are
then used to construct an improved electron density which, in turn, is used to
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obtain a correspondingly improved KS Hamiltonian, and the process is repeated
until convergence.

In closing this section, it is important to note that, while the KS equations de-
liver orbitals that can be used to form a Slater determinant (eq. (2.22)), this is not
the “many-electron wave function” of the real interacting system. This determinant
is the wave function of the non-interacting (fictitious) system of N-electrons. This,
however, does not prevent the “practical” utilization of the Slater determinant
made up of KS orbitals. This is justified since occupied KS orbitals usually exhibit
shapes that closely resemble Hartree–Fock orbitals [2].

2.9 Level of theory in molecular calculations

A level of theory of an ab initio quantum chemical calculation is the conjunction of
a type of underlying electronic structure theory and a given basis set. In periodic
solid-state calculations, for example those implemented in programs such as VASP
(Vienna Ab initio Simulation Package), one uses plain-wave basis sets, while in pro-
grams such as CRYSTAL or in GAUSSIAN (which is mainly used for isolated molecu-
lar system but has also capabilities to run periodic calculations), an atom-centered
basis set is used. In software such as ADF (Amsterdam Density Functional), atom-
centered Slater basis sets are used.

Since here we are focused primarily on molecular systems, the atom-centered
bases will briefly be reviewed along with the notation convention commonly used
in quantum chemistry to denote the level of theory of a given calculation with a
focus on the popular Pople basis set notation (more comprehensive discussions on
basis stets can be found elsewhere [5–8]).

A given level of theory is denoted as follows:

Theory ==Basis Set 1ð Þ =Basis Set 2ð Þ,
or

Theory 1==Basis Set 1ð Þ = Theory 2==Basis Set 2ð Þ
where “Theory” is the theoretical method such as DFT-B3LYP or Hartree–Fock. Prefix
R, U, or RO before the “Theory” designation indicates, respectively, that the calcula-
tion is a restricted (all MOs are doubly occupied), unrestricted open-shell where the
space parts of MOs for α- and β-electrons are optimized separately (generally used for
systems with unpaired electrons), and restricted open-shell where the MOs are ob-
tained as in R calculations except that some levels may be singly occupied as re-
quired for open-shell systems. As an example, B3LYP//6-311++G✶✶/6-31+G✶ indicates
a DFT-B3LYP single-point calculation using a 6-311++G✶✶ basis set at the geometry
optimized with the smaller basis set 6-31+G✶. (Lack of prefix usually implies “R”).
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In denoting atom-centered basis sets, a “G” signifies that Gaussian basis func-
tions are used. Such a basis set has an artificial maximum at the position of the
nuclei, which – in the zero-finite size of the atomic nucleus approximation – should
exhibit cusps, that is, singularities, rather than true maxima given the singularity of
the Coulomb potential in this case. In contrast with Gaussian basis functions,
Slater-type orbitals (STOs) exhibit cusps at nuclear positions. STOs have the form
exp − ξr a0= Þ�ð½ , where a0 is the Bohr radius, r is the distance from the nucleus, and
ξ is the orbital exponent. The STOs are computationally expensive in general. The
cusp behavior (as well as the long-range behavior) of the electron density exhibited
by STOs can be approached using a linear combinations of Gaussian-type orbitals
(GTOs). GTOs have the form exp − αr2 a02

� ����
where α is referred to as the Gaussian

exponent of the GTO. GTOs are more expedient computationally than STOs since
the product of two Gaussian functions is another Gaussian. This mathematical fact
simplifies many-center integrals (e.g., two-center overlap integrals) leading to con-
siderable reduction of computational time compared with the STO counterparts.

Basis sets are denoted with the Pople notation such as n1-n2n3n4++G
✶✶. This im-

plies that what comes after the dash and before the pluses (or the G, depending on
the case) is a “split valence” basis set. In the given example, the basis set flexibility
has been enhanced by augmenting it with diffuse functions (plus signs) and polari-
zation functions (here denoted by the stars). Finally, the lead digit (n1) is the number
of Gaussian primitive functions used to construct the atomic cores in linear combina-
tion. A 3-21G basis set, thus, uses three Gaussians to represent the 1s orbital. One, in
this case, says that the 1s basis function is contracted from three primitive Gaussians.
Following the dash, the digits n2n3n4 denote the particular split of the valence shell.
If there are three digits, this means that the valence shell is triply split, while the
presence of only two digits as in 3-21G indicates that the valence shell is doubly split.
The splitting of the valence basis means that more than one size of contracted func-
tions for each orbital type is used to represent the valence shell.

Let us look at a concrete example in some detail, say the case of the 6-31G basis
set. In this case, the core is contracted from six Gaussian primitives. Meanwhile, the
valence shell is split into two differently sized basis functions: One with a smaller
size is contracted from three primitive Gaussians and an outer larger one consists of
a single Gaussian primitive in this example. The basis functions centered on a hy-
drogen and on a carbon atom are

H: 1s|{z}
3GTO

, 1s′|{z}
1 GTO

C: 1s|{z}
6GTO

, 2s, 2px, 2py, 2pz,|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
3GTO

2s′, 2px′, 2py′, 2pz′|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1 GTO

The splitting of the valence basis functions allows more radial flexibility but does
not have any effect on improving the angular flexibility of a given basis set. To also
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allow for angular flexibility, the basis set is enlarged by the addition of basis functions
with angular momenta that exceed the minimum required for a given atom in its
isolated ground state. These added functions are known as “polarization functions”
and are indicated by a bracket after the G (or in their simplest cases by stars after
the G). A first star refers to polarization function added to non-hydrogen atoms
while a second star (or a basis function placed after a comma) indicates that polariza-
tion functions were also added to hydrogens. For example, the basis set 6-311G(2df,2p)
indicates that the 6-311G basis set has been augmented with 2d functions and 1f func-
tion on non-hydrogen atoms (before the comma) and with two sets of p functions on
the hydrogens (after the comma). Since the stars (✶✶) denote one set of d function on
heavy atoms and one set of p functions on hydrogens, this augmentation scheme
may equally be denoted by (d,p), for example, 6-31G✶✶ = 6-31G(d,p).

Anions, hydrogen-bonded systems, π-stacked system, weakly bonded van der
Waals complexes, and the like have electron densities that extend further from nu-
clei than usual. This necessitates the use of augmented basis sets with s and p basis
functions that have particularly larger radial extensions. These “diffuse functions”
are indicated by “+” signs immediately before G. A 6-31+G✶ basis set, for instance,
is a 6-31G(d) basis set augmented with diffuse function centered on non-hydrogen
atoms. Meanwhile, a 6-31++G(d) basis set includes diffuse functions on all atoms
including the hydrogens (the second plus).

Dunning et al. have developed widely the used “correlation-consistent basis sets”
[43–46] which have the virtue of converging to the limit of “complete basis set” in ab
initio calculations that account for Coulombic correlation. The notation for these basis
sets start with either “cc-p” meaning “correlation-consistent polarized” or “aug-cc-p”
which means “augmented correlation-consistent polarized” basis set. The second part
of the designation, VNZ (where N = D, T, Q, S, . . .), implies that the valence is split
into double (D), triple (T), quadruple (Q), quintuple (5), sextuple (6), . . ., zeta. The
reader is referred to the original papers for an in-depth discussion of these basis func-
tions [43–46].

For large systems, it is more and more common nowadays to use a multilayered
approach, whereby the center of interest is treated at the highest level of theory and
the surroundings at lower levels. This approach incorporates the effect of the elec-
tronic environment in an approximate way with a corresponding payoff in the form
of a considerable speeding up of the calculations. A comprehensive review of multi-
layered approach can be found elsewhere [47].
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Chapter 3
Quantum crystallography: an introduction

The obvious is that which is never seen until someone expresses it simply. Khalil Gibran (1927)

(Sand and Foam. William Heinemann, Ltd., Melbourne, (1954)).

N-representability, a concept that is fundamental and defining the nature of quantum crystal-
lography, is defined and discussed. A numerical methodology for the implementation of
N-representability in connection to extraction of quantum mechanical information from X-ray
scattering data is required. This is the purpose for derivation of the Clinton equations. Using
theoretical data of Stewart, Davidson, and Simpson, it is shown that an accurate least squares
fit to data is not mandated to be N-representable, whereas the analogous fit to the same data
using the Clinton equations is N-representable.

3.1 N-representability

The idea of N-representability as foundation of what we named quantum crystallog-
raphy goes back to the laboratory of Professor William Clinton of Georgetown univer-
sity [1–7]. N-representability (Fig. 3.1) had been much discussed [8–16] independently
of crystallography. The physical indistinguishability of electrons requires that valid
solutions of the Schrödinger equation must be antisymmetric. The definition of quan-
tum mechanically valid reduced density matrices [8] follows from such antisymmetric
wave functions Ψ:

ρpðr1 . . . rp j r1′ . . . rp′Þ=
NðN − 1Þ . . . ðN − p+ 1Þ

p!

X
ω

ð
. . .

ð
Ψ✶Ψdrp+ 1 . . .drN : (3:1)

N-representability is the problem of stating those conditions which allow recogni-
tion of such functions as can be mapped back to valid wave functions Ψ consistent
with eq. (3.1).

The most important density matrices occur for p = 2 or p = 1, that is, the 2-reduced
density matrix and 1-reduced density matrix, because most physical properties are de-
termined by them. They are expressed, respectively as (see Chapter 2):

ρ2ðr1, r2 j r1′, r2′Þ =
NðN − 1Þ

2

X
ω

ð
. . .

ð
Ψ✶ðr1ω1, r2ω2, . . . , rNωNÞ

Ψðr1′ω1, r2′ω2, . . . , rNωNÞ dr3, . . . , drN
(3:2)
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and

ρ1ðr1 j r1′Þ = N
X
ω

ð
. . .

ð
Ψ✶ðr1ω1, . . . , rNωNÞΨðr1′ω1, . . . , rNωNÞdr2, . . . , drN . (3:3)

It is helpful to simplify the notation. Hence, the above two expressions are re-
written in a more compact form, where summation over spins is implied:

ρ2ð12, 1′2′Þ=
NðN − 1Þ

2

ð
Ψ✶Ψd3 . . .dN (3:4)

and

ρ1ð1, 1′Þ=N
ð
Ψ✶Ψd2 . . .dN: (3:5)

A comparison of the corresponding pairs of equations (eqs. (3.2) and (3.4), and (3.3)
and (3.5)) gives the new symbols their meaning.

One may notice immediately that the reduced density matrices are simpler than the
wave functions from which they derive. Knowledge of N-representable density matrices
would allow dispensing with the use of the more complicated wave functions. In partic-
ular, calculation of the energy using N-representable ρ2 would satisfy the variational
principle guaranteeing an upper bound to the exact ground-state energy. In fact, the
entire molecular quantum mechanics can be framed in terms of N-representable
density matrices free of their more complicated corresponding wave functions.

Importantly, the N-representability of ρ1, useful to describe X-ray scattering, is
defined by its properties of idempotency, Hermiticity, and normalization. Moreover,
ρ2 is a known functional of ρ1 in the case of a single determinant [8]. Independent
particle models, such as Hartree–Fock and density functional theory, are character-
ized by their normalized projector density matrix ρ1 [13]. Gilbert [14] has shown that

f(1,1’)
Ψ(1 ... N)ρ1(1,1’)

Fig. 3.1: An illustration of the concept of N-representability: the map between density matrices and
wave functions. Given a wave function, through integration of its modulus squared over of the
space coordinates of all particles but one (maintaining the distinction between the coordinates 1
and 1’) followed by summation over all spin variables, one obtains the one-particle density matrix
ρ1(1,1’). Only these density matrices which are N-representable are guaranteed to map back to an
antisymmetric wave function Ψ. In general a function f of the coordinates of one electron does not
map to an antisymmetric wavefunction and therefore is not N-representable.
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every well-behaved density is single determinant N-representable. Many numerical
examples [17] have shown the plausibility of representing an exact density with a
single determinant of realistic molecular orbitals.

A single Slater determinant, which is antisymmetric with respect to the inter-
change of particles and which represents electron indistinguishability, may be con-
structed from a set of singly occupied spin orbitals {χi} as,

Ψdet 1 . . .Nð Þ= 1ffiffiffiffiffi
N!
p

χ1ð1Þ χ2ð1Þ � � � χNð1Þ
χ1ð2Þ χ2ð2Þ � � � χNð2Þ
..
. ..

. ..
.

χ1ðNÞ χ2ðNÞ � � � χNðNÞ

�����������

�����������
(3:6)

where

χið1Þ=ϕiðr1Þσiðω1Þ=ϕiðx1, y1, z1Þσiðω1Þ. (3:7)

The Slater determinant has already been introduced in Chapter 2 (eq. (2.22)) and is
now re-written in a more compact notation adopted here.

The normalization condition imposed on the Slater determinantal wave func-
tion introduced above is, in the new notation:ð

Ψ✶
detΨdetd1 . . . dN = 1. (3:8)

Expressed in terms of a Slater determinental wave function, the reduced spinless den-
sity matrices of arbitrary, second, and first orders are written as follows, respectively:

ρN det =N! Ψ✶
detΨdet =

ρ1 1, 1′
� �

· · · ρ1 1,N′
� �

..

. ..
.

ρ1 N, 1′
� �

· · · ρ1 N,N′
� �

���������

���������
, (3:9)

ρ2 det =
N N − 1ð Þ

2

ð
Ψ✶

detΨdetd3. . . dN =
ρ1 1, 1′
� �

ρ1 1, 2′
� �

ρ1 2, 1′
� �

ρ1 2, 2′
� �

�����
�����, (3:10)

and

ρ1 det =N
ð
Ψ✶

detΨdetd2 . . . dN = ρ1 1, 1′
� �

, (3:11)

where the numerical labels refer to spatial coordinates since the spins have been
integrated out.

The conditions necessary and sufficient for N-representability of ρ1 det are [8]
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ρ21 = ρ1,
ð
ρ1d1=N, ρ†1 = ρ1, (3:12)

that is, the one-body density matrix is idempotent, normalized, and Hermitian.
McWeeny [12] discusses the properties of ρ1 displaying iterative equations satis-

fying the conditions given by eq. (3.12), and indicating that idempotency allows ρ1
to be factored into a sum of squares of orbitals.

The full two-body Hamiltonian, which contains one- and two-body terms, is
written in its general form as follows:

Ĥ =
X

ĥi +
X

ĥij, (3:13)

an example of which is written explicitly in atomic units as

Ĥ ≡−
1
2

XN
i= 1

∇2
i −
XN
i= 1

XM
A= 1

ZA
riA|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

One-body ðĥiÞ

+
XN
i= 1

XN
j> i

1
rij|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Two-body ðĥijÞ

. (3:14)

Using such a generalized Hamiltonian, the energy is expressed as

E =
ð
ĥ1 ρ1 det 1, 1′

� �
1′!1d1+

ð
ĥ12 ρ2 det 1, 2ð Þd1d2≥E0,

���� (3:15)

which satisfies the variational theorem. In eq. (3.15), the Löwdin notation,
Ð
ĥ1 ρ1 det

1, 1′
� �

1′!1d1
�� has been adopted, and this implies that the operator operates first on the

density matrix coordinate 1′ and then coordinate 1′ is set equal to 1 before integrating.
Clinton’s equations [1–7] are a modification of McWeeny’s purification to idem-

potency [12] in order to include constraints such as satisfaction of X-ray scattering,
thus,

Pn+ 1 = 3P2
n − 2P3

n +
X

k
λðnÞk Ok + λðnÞN 1. (3:16)

where P is the representative of the density matrix in an orthonormal basis ψ, n is
an index indicating the value obtained at the nth iteration, λk is a Lagrangian multi-
plier to enforce the kth constraint (e.g., constraints to reproduce the X-ray data), λN
is a Lagrangian multiplier to enforce the normalization constraint, Ok is the matrix
representative of an operator of the kth constraint, and 1 is the unit (identity) ma-
trix. The equations of constraint are

hÔki= trPOk, (3:17)

and

N = trP1. (3:18)

The conditions of constraint in such case are
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FðKÞ=
ð
eiK.rρðrÞd3r (3:19)

Where K= ð2π=λÞk̂ is the wave vector in the direction of the unit vector k̂, and where

ρðrÞ= ρ1ðr, r′Þjr′!r. (3:20)

Thus, the satisfaction of the experimental constraint equations allows the extrac-
tion of an N-representable density matrix from an X-ray scattering experiment. This
is the heart of quantum crystallography. The Clinton equations allow this and are
discussed next. Applied to the X-ray scattering experiment, the Clinton equations
can deliver the“exact” density.

3.2 Derivation of the Clinton equations

We call the representative of ρ1 in the basis ψ by the name P so that for the case of
doubly occupied orbitals,

ρ1ð1, 1′Þ= 2 tr Pψð1Þ#ψ†ð1′Þ, (3:21)

where ψ is a column vector, ψ† is its complex conjugate transpose, and⊗ indicates
a direct product.

Following McWeeny’s procedure [12], we can purify P to idempotency by

δ tr ðP2 −PÞ2 = 2 tr ðP2 −PÞ δðP2 −PÞ=0, (3:22)

where δ is the symbol for variation.
As the variation in eq. (3.22) is arbitrary, this implies [1]

P2 −P=0. (3:23)

To enforce this last property of P, we impose the condition that

δtr ðP2 −PÞ2 = 2 tr ð2P3 − 3P2 +PÞ δP=0. (3:24)

Again, as δP is arbitrary, it must be that

2P3 − 3P2 +P=0. (3:25)

Rearrangement to solve this last equation iteratively gives us

Pn+ 1 = 3P2
n − 2P3

n, (3:26)

which is the result of McWeeny [12].
Proceeding toward the Clinton equations, we require P to satisfy the constraints
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trPOk = Ôk
	 


, (3:27)

with hÔki a general expectation value and Ok the matrix representative of the opera-
tor Ôk. In our case, hÔkiwill be an experimentally derived structure factor.

The requirements of eqs. (3.24) and (3.27) can be imposed by using Lagrangian
multipliers 2λk. In that way, the problem may be re-formulated as:

δ tr ðP2 −PÞ2−
X

k
2 λkPOk

h i
=0, (3:28)

in which the summation runs over all experimental constraints.
Imposing the variation of P, we have

tr ð2P3 − 3P2 +P−
X

k
λkOkÞ δP=0, (3:29)

and recognizing, again, the arbitrariness of δP yields,

2P3 − 3P2 +P−
X

k
λkOk =0. (3:30)

Solving for P iteratively gives us the Clinton equations (eq. (3.16)), rewritten further
with the normalization constraint absorbed within the last summation for conciseness,

Pn+ 1 = 3P2
n − 2P3

n +
X

k
λðnÞk Ok. (3:31)

The Lagrangian multipliers λðnÞk for the nth iteration are determined from the equa-
tions of constraint trPn+ 1Ok = hÔki yielding a set of linear equations,

trO2
1 · · · trO1 Ok
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. ..
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. (3:32)

The appearance of these last equations is simplified if we define the matrix of traces
on the left as τ and the column matrix from the right side as Δ(n), obtaining

λðnÞ =τ− 1 ΔðnÞ. (3:33)

The importance of the Clinton equations is that they define a density matrix P
which is guaranteed to be both N-representable and satisfying equations of con-
straint, for example, X-ray scattering and normalization constraints.

Given the form of the Clinton equations which deliver projector matrices P, a
question arises regarding how many constraints are required to fix the elements of P.
With too few constraints, there will occur an infinite number of projectors which sat-
isfy these constraints. To calculate the number of independent complex elements in
a projector, one may recall that it may be factored into its orbital LCAO coefficients
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P = C†C. The matrix C is of dimension m ×N (where m is the number of basis func-
tions and N is the number of molecular orbitals) and C†C = 1N.

The number of elements in C defining the orbitals is [18,19]

κðm,NÞ=m×N −N2 =Nðm−NÞ, (3:34)

which accounts for the number of elements defining the N orbitals reduced by the
number of their normalization and orthogonality requirements [1]. A detailed and clar-
ifying exposition of all considerations that have been proposed relating to the number
of constraints needed to fix the elements of the density matrix has been led by Arnaud
Soirat [18,19]. The previous equation implies that κ(m,N) X-ray density constraints will
determine the projector matrix consistent with that density via the Clinton equations.
One obtains thereby from the X-ray scattering data, an N-representable one-body den-
sity matrix, its corresponding electron density, and molecular orbitals.

A simple example from the literature [3] illustrates the importance ofN-representability,
which is always guaranteed by using the Clinton equations to satisfy X-ray scatter-
ing constraints. Stewart, Davidson, and Simpson (SDS) [20] present a sum of two
spherical atomic densities as a best fit to the electron density of H2 obtained from
highly accurate wave functions calculated by Kolos–Roothaan [21,22]. Using a basis
of 1s and 2s orbitals, one may represent the electron density matrix in the usual way
as in eq. (3.21). The P matrix in eq. (3.21) was fit by a least squares procedure to the
density of SDS in two different ways: either imposing idempotency, PIdem., or not,
PNot Idem. The results are listed in Tab 3.1.

Table 3.1 lists the changes of the eigenvalues of the density matrix as a function of
changes in the basis orbitals’ exponent (ξ). What results is as follows. The idempotent
matrices (projectors) have the constant eigenvalues of 1 and 0. But the non-idempotent
matrices have varying eigenvalues, and in every case the values lie outside the strict
Coleman requirement that for N-representability to be possible they must lie in the
range bounded by 1 and 0. It can be concluded from this example that a least squares
fit to X-ray data is insufficient to ensure N-representability of a density matrix. Of

Tab. 3.1: Eigenvalues N1 and N2 of PNot Idem. and PIdem., respectively,
for various values of basis orbital exponents, ξ (after Ref. [3]).

PNot Idem. PIdem.

ξ N N N N

. . −. . .
. . −. . .
. . −. . .
. . . . .
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course, any quantum mechanical density matrix is valid only on condition of its N-
representability, and that is guaranteed by the projector property of P.

3.3 Conclusion

Because electrons are physically indistinguishable fermions, the N-particle wave
function which represents them must be antisymmetric with respect to the inter-
change of spin and spatial coordinates of any pair of electrons in the system. Sla-
ter’s determinant representation of the orbitals implements automatically the Pauli
principle through the properties of determinants, that is, the interchange of any
pair of rows or columns changes the sign of the determinant and the presence of
any two equal rows or columns result in that the determinant vanishes.

For each single-determinant of doubly-occupied orbitals there exists a corre-
sponding set of one- and two-electron density matrices as emphasized in Chapter 2.
The existence of a mapping between the density matrices mathematical space and
that of antisymmetric wave functions is termed “N-representability”. In other words,
not every mathematical function of the same variables as those of the reduced den-
sity matrices can be derived from an antisymmetric wave function, and the subset
that does includes what are referred to as N-representable density matrices.

Within the single determinant approximation, the one-electron density matrix,
which is a projector, contains the information that needs to be extracted from the
wave function. Crystallographic X-ray scattering data may be used to define the ele-
ments of such a one-electron density matrix. The mathematical procedure to fit the
projector density matrix to the experimental data is that expressed by the Clinton
matrix equations. Here they have been derived and used to show that their numeri-
cal solutions are indeed N-representable. The energy calculated from such density
matrices obey the variational principle.
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Chapter 4
Example applications of the Clinton equations

To have applied science we must have science to apply. John C. Polanyi (ca. 2003)

(C. F. Matta, personal verbal communication recalled from memory (2022)).

At a time when a beryllium crystal experiment of Larsen and Hansen produced the most accurate
X-ray diffractometer data in the crystallographic literature, these data were used to test the util-
ity of extracting quantum information from X-ray scattering. The results, a proof of the value of
the Clinton equations for imposing N-representability upon the fit to X-ray scattering data, ap-
peared in Phys. Rev. Lett. in 1985. The experimental electron density closely matched the best
available theoretical densities. The structure factor errors were distributed randomly over the
entire range of scattering angle, yielding an R-factor of small magnitude, R = 0.0018.

In a subsequent work the Clinton equations were applied to a typical small organic molecule,
that is, maleic anhydride. In this work, X-ray data obtained by Louis Todaro in the Laboratory for
Quantum Crystallography at Hunter College (City University of New York) was used to fit a projec-
tor density matrix to the scattering structure factors resulting in an R-factor of about 1%. Subse-
quently the computer program XD was used to represent the data with multipoles, which resulted
in a chemically pleasing representation of the bonding density and lone pairs, very much in accor-
dance with the previous experience of Philip Coppens alluded to in Chapter 1. But how about
large organic molecules? The use of multipoles in the case of maleic anhydride gave rise to the
idea that the problem of quantum crystallography for large molecules can be broken into two
parts. (1) The classical geometrical structure can be determined with accuracy using multipolar
refinement. Then, (2) the quantum electronic structure is obtained using quantum chemical calcu-
lations based upon the determined classical structure. In this way the problem of data, too few in
numbers to fix the elements of the density matrix for a large molecule, may be overcome.

4.1 First application: the beryllium crystal

Clinton’s equations were tested against theoretically simulated X-ray data. Examples
of this include H (atomic hydrogen), H2, N2, and CH4 [1]. However, in this section the
focus will be on experimentally derived data for a metallic crystal (beryllium) and, in
the following section, on a small organic molecule (maleic anhydride).

The first example of the use of the Clinton equations with real experimental data
occurs with beryllium crystal data, as reported in [2, 3]. The data used is the highly
accurate single crystal diffraction results of Larsen and Hansen [2]. The experimental
constraints within the Clinton equations use all the experimental data and yields a
small R-factor = 0.0018 [3]. The experimental density matrix corresponds to a
charge redistribution due to crystal bonding in agreement with Hartree–Fock cal-
culations of Dovesi et al. [4] and local density functional DFT calculations by Cohen
et al. [5].

https://doi.org/10.1515/9783110566673-005

https://doi.org/10.1515/9783110566673-005


Importantly, the experimental density matrix projector ρ1det allows, within the
single determinant approximation, the quantum mechanical calculation of all phys-
ical properties (see Chapter 3). This includes such properties that are described by
operators that include derivatives of the wave function (or density matrices) such
as the kinetic energy or the Compton momentum profile. The significance of this is
underlined by noting that such calculations are not obtainable from the density
alone, no matter how accurately obtained by methods of classical crystallography.
The orbital expansion of ρ1det gives the electron density matrix in a form represent-
ing the components which are responsible for bonding. These ideas are illustrated
with an early example of application of quantum crystallography using the X-ray
scattering data of Larsen and Hansen – see Fig. 4.1.

The Clinton equations formalism can be applied to X-ray scattering data to ex-
tract therefrom an N-representable density matrix ρ1det and a corresponding Slater
determinant characteristic of the molecular density. Here, the Clinton equations are
applied to obtain a density matrix and a Slater determinant characteristic of D3h-
hybridized Be atoms placed at experimental lattice positions delivering the electron
density of the Be crystal. This is a model of a crystal-field sort representing the crys-
tal but not the Bloch-wave vector-dependent extended system [6].

The population matrix P has elements determined by a fit to the X-ray scattering
factors in a least-squares sense. To ensure N-representability, as mentioned in Chapter 2,
it is required that the P2 =P, P=P†, and tr P =N. The X-ray atomic scattering (form) fac-
tor of Be is taken from the International Tables of Crystallography [7], but after ridding it
from its spherical symmetry in favor of 2trPfBe. The matrix fBe is constructed from the
Fourier transforms of products of basis functions, each having core and valence parts.

Huzinaga has calculated a Be 1s core for the free Be atom [8]. These were adopted in
the calculation and held fixed on the assumption that they are unperturbed by the crystal
field. A 2s orbital augmented with one floating spherical Gaussian orbital were taken to
represent the valence shell. (A floating orbital is one whose center is not constrained to be

a b

2.285

2.225

o

c

Fig. 4.1: Two adjacent unit cells of metallic beryllium crystal (space group: P63/mmc), showing two
characteristic interatomic distances, with one cell labeled with the conventional crystallographic
axes, where a = b = 2.2853(2) Å, c = 3.5842(3) Å, the cell volume = 16.211 Å3, and Z = 2. (The display
has been generated with the Mercury Programme using the crystallographic information file (cif)
deposited by Larsen and Hansen [2]).
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coinciding with the position of the nucleus.) The valence basis functions were then made
orthogonal with respect to the core bases and then constrained to be normalized. A 2 × 2
density matrix P results from these two valence basis functions.

The P matrix is determined by imposing normalization and hermiticity, as
required for a proper quantum projector, by a least-squares minimization of the
R-factor with respect to its elements. Thus, experimental parameters include, in ad-
dition to the traditional overall X-ray scale factor, the maximum extinction correc-
tion, thermal parameters, the elements of the P matrix, the position of the floating
spherical Gaussian orbital, and the exponent of that Gaussian. The latter three are,
thus, added parameters that emerge from the refinement and are responsible for con-
necting the experiment with the underlying electronic structure theory. In this work,
all the experimental scattering data have been used for determination of all of the
parameters of the quantum model. The experimental magnitude of these parameters
and the technical details can be found in the original report [3].

Figure 4.2(a) displays the quantum crystallographic contours of the Be valence or-
bital in the 110 plane, while Fig. 4.2(b) shows a deformation density on the same
plane and for the same field of view. The deformation density is defined as the dif-
ference between the quantum crystallographic model and that of a promolecular
model. Notice that the quantum model projector matrix allows for the orbitals to be
recovered from the X-ray scattering data. Of course, the electron density of the pro-
jector P cannot be negative since it equals a sum of squares of such orbitals.

Fig. 4.2: (a) A contour representation of the valence wave function of the Be atom with contours
separated by 0.01 Å−3/2. (b) The corresponding deformation density with contours separated by
0.01 e/Å3 and where solid and dashed contours represent, respectively, positive and negative
values of the deformation density. Both plots are in the crystallographic (110) plane where
distances along the x- and y-axes are in Å units. Reproduced with permission from Ref. [3] © 1985
American Physical Society.
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Figure 4.2 indicates that the valence orbital peaks at the beryllium nucleus and
that the vertical direction in the plot exhibits the expected aspherical aspects of the
valence orbital due to the formation of chemical bonding interaction between
neighboring Be atoms. Quantum expectation values of the nonspherical atom frag-
ments, within a crystal field approximation, were calculated from their orbitals
within a single determinant wave function approximation [3]. Stated differently, given
the set of orbitals describing a Be atom in its crystalline environment, all of its expec-
tation values are calculable, in contrast with the density alone. Even an accurate dif-
fraction experiment that delivers the density alone, as is commonly practiced, cannot
deliver the entire set of quantum properties of the system. The latter goal is the raison
d’être of quantum crystallography developed in this monograph. Consider, for exam-
ple, the kinetic energy represented by a quantum mechanical operator containing de-
rivatives and, hence, is not simply multiplicative. A general diagonal matrix element
representative of this operator, in atomic units (as in all subsequent equations), is:
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written in Löwdin’s notation [9] implying the operation of ∇2 on the primed coordi-
nates, then the primes are eliminated before integration. In contrast, the density ρ(r)
alone cannot be used to deliver the expectation value of the kinetic energy operator
appearing in in eq. (4.1) above. Only multiplicative operators’ expectation values can
be evaluated with the electron density alone. Hence, the general form of operators
that can be used to extract an expectation value from the density alone is exemplified
when it is multiplied by the position operator, r̂= r× , to obtain the expectation value
of the magnitude of the electronic contribution to the dipole moment:

rh i=
ð
rρðrÞdr. (4:2)

From the valence orbital (displayed in Fig. 4.2(a)) and the 1s core of the Be atom, the
density matrix consistent with the structure factors is determined. This density matrix
is then used to calculate expectation values of (a) the electron–nuclear attraction en-
ergy, (b) the average distance of electrons from the nucleus, (c) the average squared
electron–nuclear distance, and (d) the electronic kinetic energy. In atomic units, the
calculated expectation values within the crystal contrasted with those calculated for
the free Be atom – the latter in brackets, are, respectively [3]:

(a). −
Z
r

� �
= − 31.6608 ð− 33.2340Þ,
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(b). rh i = 7.8409 ð6.1259Þ,
(c). r2

	 

= 19.1857 ð17.2820Þ,

(d). −
1
2
∇2

� �
= 13.6911 ð14.5720Þ.

The key point in listing the above experimentally-derived expectation values is to
illustrate numerically how quantum crystallography allows one to evaluate the ex-
pectation values of nonmultiplicative operators, including, say, the kinetic energy.
This is so since this procedure delivers a density matrix, in contrast with traditional
diffraction analysis designed to deliver the electron density alone.

These results follow chemical intuition. For example, the electronic cloud
stretched into the bonding regions between the Be atoms in the crystal would be
expected to have a lesser kinetic energy than their counterpart in the free atom,
which is what is observed in point (d) above [3]. This appears to be the first experi-
mental verification of Ruedenberg’s theoretical conclusion that bonding lowers the
kinetic energy of the electronic system [10].

The deformation density, Fig. 4.2(b), visualizes the nonsphericity of the Be
atom in its crystal environment due to the flow of electronic charge accompanying
chemical bonding. Electronic charge is redistributed to impoverish the region near
the nucleus of the Be atom (at the center of the plot) in favor of the bonding region
at the top and bottom extremities of the plot. The increase in the density accompa-
nying the bond formation along the crystallographic c-axis is further reflected in
the contraction of the c/a ratio from the ideal value of a perfect hexagonal close
packing of spheres to the actual value in this crystal which is 1.568, 3% lower than
the ideal value of 1.633 [11].

The deformation density of the crystal can be obtained from the superposition of
its composing atomic deformation densities of Be atoms in the crystal field. This su-
perposition has been implemented for a crystal fragment consisting of 125 orthohex-
agonal unit cells (hexagonal orthorhombic C-centered unit cells) made up of 500
atoms. The resulting deformation map is in close agreement with those determined
by Larsen and Hansen [2]. The deformation maps all exhibit a depletion of electron
density at the vicinity of the nuclei and octahedral channels while exhibiting a build-
up in the tetrahedral hole regions – along which the bonding is directed.

Figure 4.3 displays the quantum crystallographic hybrid model valence-density
map in the (x, y, ¼) crystal plane (middle panel). The figure also displays maps ob-
tained from two sets of ab initio theoretical calculations: those of Dovesi et al. [4]
(left panel) and those of Cohen et al. [5] (right panel). The first set of calculations,
displayed in the left panel of the figure, are obtained at the Hartee–Fock level,
while those appearing in the right panel are the result of local density DFT calcula-
tions. In the three maps appearing in the figure, the essential features are reproduced
across the board. The visual resemblance between the map of Dovesi et al. bears
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particularly striking resemblance to the quantum crystallographic map. Further, the
quantum crystallographic map is in agreement with the experimental deformation
map of Larsen and Hansen [2] qualitatively, where there is a perfect mapping of the
regions that are depleted and those that are enriched in electron density upon crystal
formation [3]. The best quantitative agreement occurs between the quantum crystallo-
graphic map and the experimental map of Larsen and Hansen, both of which fall nu-
merically mid-way between the calculated maps of Dovesi et al. and Cohen et al.

Figure 4.4 is a plot of the relative error (in units of standard deviation σ) in the quan-
tum crystallographic prediction of the structure factors as a function of (sin θ)/λ. An
error analysis readily demonstrates that the errors as a function of the scattering
angle are normally distributed indicating no systematic error introduced by the
model. The weighted R-factor (wR-factor) using the quantum crystallographic struc-
ture factors is 0.0018 with a goodness of fit of 1.33 indicating good agreement with
experiment.

The main result of the application of the Clinton equations to the Be data is that
it shows that valid quantum mechanical information can be extracted from highly ac-
curate X-ray scattering data. This argument is illustrated graphically in Figs. 4.2–4.4.
In this case, the quantum model is restricted to a hybrid orbital representation on the
Be atom. But the accuracy of the quantum representation is guaranteed by the small
magnitude of the wR-factor, and by the similarity of its electron density maps to the
ab initio calculated maps, which are considered to be accurate, and to the experimen-
tally determined maps of Larsen and Hansen.

Fig. 4.3: The valence electron density calculated theoretically by (left) Dovesi et al. [4], (middle) the
quantum crystallographic map obtained by Massa et al. [3], and, finally (right) the map calculated by
Cohen et al. [5]. The adjacent contours differ by 0.01 e/Å3, where solid and dashed contours
represent, respectively, positive and negative values of the deformation density. The beryllium nuclei
are the darker features with a depleted density, the tetrahedral holes are the features showing
positive buildup are the features appearing at the the centroid of the three beryllium nuclei triangle
to the left of the plots, and finally the electron-depleted octahedral holes (at the centroid of the three
beryllium nuclei triangle to the right of the plots). The three maps are qualitatively consistent in the
relative disposition of these features. Reproduced with permission from Ref. [3] © 1985 American
Physical Society.
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4.2 Second application: maleic anhydride crystal

In the previous section we have seen how a projector matrix of size 2 × 2 with two
independent matrix elements can be extracted from experimental structure factors
and deliver the entire panoply of desired quantum mechanical properties. That was
the case of a metallic system, that is, beryllium. In this section we move to a small
organic molecule (maleic anhydride) for which the same ideas are extended to a
system whereby the projector matrix has, not two independent elements, but 2,250
independent elements. Therefore, it will be of interest to see that the Clinton equa-
tions work perfectly well to extract the quantum mechanics from the crystallogra-
phy scattering data even with so many unknown matrix elements.

The experience to be described here with maleic anhydride [12], and with many
others, for example see Refs. [13–17], make clear that the Clinton equations are use-
ful to determine the N-representable single-determinant density matrix of small or-
ganic molecules. Considerations of this molecule also led to a new idea for how one
could approach the problem of large molecules in which inevitably there would
exist too few X-ray data to determine all the elements of the N-representable single-
determinant density matrix for the problem. These considerations are taken up in
sequence.

Maleic anhydride (cis-butenedioc anhydride, molecular formula: C4H2O3) is a
widely used chemical in the polymer industry. This molecule has been chosen as a
typical small organic molecule with well-formed crystals that can be used as a test
case for quantum crystallography. Scheme 4.1 displays the chemical structure of
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Fig. 4.4: The distribution of errors (in units of standard deviation) in predicted versus experimentally
derived structure factors as a function of (sin θ)/λ. The scatter of the errors follows approximately a
normal distribution indicating no systematic error inherent in the quantum crystallographic method.
Reproduced with permission from Ref. [3] © 1985 American Physical Society.
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the maleic anhydride molecule along with the numbering scheme adopted in the
crystallographic determination discussed below.

In this discussion, the quantum mechanics associated with the structure of maleic
anhydride is extracted from the X-ray scattering data of this crystal which was ob-
tained by Dr. Louis Todaro [18] in 1999 in the Laboratory for Quantum Crystallogra-
phy at Hunter College [12]. The crystal structure re-determined in 1999 is similar in
all respects to the one obtained in 1962 by Marsh et al. [19]. Maleic anhydride crys-
tallizes in the space group P21P21P21 with four molecules per unit cell (two displays
of the unit cell can be seen in Fig. 4.5). The crystal structure of maleic anhydride
was solved using a spherical atom model to obtain the atomic coordinates and the
thermal parameters [17,18]. The procedure followed to obtain the projector density
matrix from the experimental scattering was similar to that discussed earlier in the
case of the beryllium crystal (discussed in detail in refs. [12,20]).

Our primary interest in the present discussion concerning maleic anhydride is the
question of whether or not the Clinton equations are suitable for determining a large
number of projector matrix elements. In other words, are the Clinton equations suit-
able for the quantum crystallography of organic molecules, in general? Another way
of asking this is as follows: Given suitable experimental scattering data for an organic
molecule, do the Clinton equations converge and deliver thereby a good quantum
crystallographic result?

Fig. 4.5: Two views of a ball and stick model of the unit cell of the maleic anhydride crystal. The
space group is P21P21P21 with Z = 4, and a = 5.322(3) Å, b = 7.009(1) Å, and c = 10.987(1) Å [12,18].
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Scheme 4.1: Chemical structural formula of maleic anhydride
(C4H2O3 ).
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The procedure of putting the experimental structure factor data into a useful
form for Clinton equation application requires several modifications. For the details
of these experimental adjustments to the measured structure factors, the reader is
referred to the original paper [12]. A summary of these steps is sketched in the flow-
chart displayed in Fig. 4.6.

The collection of structure factors is corrected for thermal motion and for systematic
errors. Subsequently the data is subjected to a minimization of the crystallographic
R-factor by variation of the parameters affecting the quantum mechanical results.
These include the atomic coordinates, exponents of the Gaussian basis functions,
and the elements of the density matrix, which is the great concern of the Clinton
equations which renders it N-representable.

It occurs that in the case of maleic anhydride, the number of curated structure
factors (507 symmetry-unique structure factors), when all eight scattering octants
are accounted for, is 4,056. Using the cc-pVTZ Gaussian basis set (which stands for
correlation-consistent polarized basis set with valence triple zeta split [21]) for the
expansion of the density matrix, the number of independent elements to be deter-
mined are 2,250. Thus, the ratio of data/unknowns is ~1.8.

As shown in Fig. 4.6, directly-obtained experimentally-derived structure factors are
readied for analysis by the parameters’ adjustment alluded to above. The procedure is

Experimental intensities {I(K)}
→ curated set of structure
factors {F(K)} which are also
corrected for thermal
parameters, extinction,
disorder, systematic errors, and
scale factors.

Conventional structure
determined from spherical
atom refinement.

PARAMETERS’ VARIATION:
Least square fitting of
calculated vs experimental data
of:
–   Atomic coordinates
–   Gaussian exponents of the
      basis functions.
–   Elements of the P matrix
      (not yet a projector).

Principal quantum crystallographic steps
applied to the maleic anhydride crystal.

Adjusting the positions of the
hydrogen atoms →
experimental geometry

Single point quantum chemical
calculation at experimental
geometry → obtain an initial
projector matrix

Application of the Clinton eqs.

STOP

YES

NO

DATA CURATION:

Ʃ|  Fobs   –   Fcalc  | 
Ʃ|  Fobs 

ρ1(1,1') = 2 tr  P Ψ(1) ⊗ Ψ
† (1')

Pn+1 = 3Pn – 2Pn + Ʃk 
λk

(n)Ok
32

 = min(R-factor) ?

Fig. 4.6: A flowchart describing the principal steps taken in the quantum crystallographic study of
maleic anhydride.
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an iterative one. In this procedure, the variation of the different types of parame-
ters follows one another until self-consistency is reached. In this particular case, it
was found convenient to apply a least squares minimization – first – to only the
diagonal elements of the projector P matrix. Then iterations of the Clinton equa-
tions generated the corresponding off-diagonal elements. Importantly, the procedure
converged to a minimized R-factor. At this point, an experimental N-representable
quantum crystallographic representation of the electronic structure of the maleic an-
hydride molecule has been obtained [12]. The best R-factor achieved within this study
obtained from the quantum crystallographic refinement is R = 1.14% whereas the
best R-factor obtained from a simple spherical atom refinement at the same ge-
ometry is R = 3.22%.

An additional result of this calculation was that it gave rise to a new idea for an
efficient way to treat quantum crystallography of large molecules. Using the program
XD [22] we calculated the deformation density of maleic anhydride placing multipoles
at the atomic positions obtained from experimental structure factors. The deforma-
tion density is displayed in Fig. 4.7. The deformation density suggests that the crystal
has rearranged the spherical density of the free atoms so that it flows into the bonding
regions between atoms and into the lone pairs of the oxygen atoms. This suggested a
solution to the problem which arises in the application of quantum crystallography to
biological molecules of large size as measured in numbers of atoms. For such mole-
cules, one can have fewer experimental data than independent elements in the projec-
tor matrix P to be determined. But the accuracy of multipole representations of the
structure, as suggested by the deformation density map (Fig. 4.7), implies that one
may break the quantum crystallography problem into two parts: (1) the multipole re-
presentation to solve for an accurate structure and (2) a quantum chemical calculation
of the density matrix using that structure as input data.

O3 C2
O1

C6 O7

C5C4

Fig. 4.7: Maleic anhydride’s electron density difference map (deformation map). Positive regions
(of electron density buildup) are represented by continuous lines, those with electron
impoverishment are dashed, and the nodal surface’s intersection with the plane of the figure are
indicated by dotted lines. Neighboring contours are in steps of 0.1 e/Å3. Adapted with modification
with permission from Ref. [12] © 1999 Wiley Periodicals, LLC.
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As explicitly stated in the original paper on maleic anhydride [12]: “This experi-
ence led us to conclude that the objectives of quantum crystallography could per-
haps be best fulfilled [for very large molecules] by using the coordinates obtained
from crystal structure determination”.

4.3 Conclusion

It is clear from the contrast of the beryllium and the maleic anhydride examples
that the number of independent elements grow very fast with the size of the em-
ployed basis set. The growth of these independent elements will cross and super-
sede, at a given point, the number of experimental data-points and hence leads to
an under-determined system of equations. In these cases, these results suggest to
use the experimentally determined structure as a skeleton upon which the quantum
mechanics is to be applied. That is what led to the idea that quantum crystallogra-
phy, for very large molecules, could be broken into two problems: (1) classical crys-
tallography to determine structure based on multipolar refinement, and (2) the
quantum chemical calculation of the density matrices (and hence of all one- and
two-particle properties). The adequacy of this approach is judged by the magnitude
of the R-factor obtained from the comparison of the experimental structure factors
with those obtained from the electron density that ensues from the theoretical cal-
culations. In order to perform the quantum chemistry on the envisaged large sys-
tems one has to simplify these calculations to avoid the notorious scaling with the
size of the calculation. A method that proved capable of achieving soft-scaling with
size while preserving accuracy is termed the kernel energy method (KEM) which is
the subject of the next chapter.
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Chapter 5
The kernel energy method: a computational
approach to large systems

From what has already been demonstrated, you can plainly see the impossibility of increasing
the size of structures to vast dimensions either in art or in nature; likewise the impossibility of
building ships, palaces, or temples of enormous size in such a way that their oars, yards, beams,
iron bolts, and, in short, all their other parts will hold together; nor can nature produce trees of
extraordinary size because the branches would break down under their own weight, so also it
would be impossible to build up the bony structures of men, horses, or other animals so as to
hold together and perform their normal functions if these animals were to be increased enor-
mously in height; for this increase in height can be accomplished only by employing a material
which is harder and stronger than usual, or by enlarging the size of the bones, thus changing
their shape until the form and appearance of the animals suggest a monstrosity. This is perhaps
what our wise Poet had in mind, when he says, in describing a huge giant:

Impossible it is to reckon his height
So beyond measure is his size
Galileo Galilei (b. 1564 – d. 1642)

(Quoted through: J. B. S. Haldane, in: The World of Mathematics, Vol 2 – J. R. Newman (Ed.),
Simon & Schuster, New York 1956, p. 952).

This chapter briefly reviews a workaround the computational size bottleneck of ab initio compu-
tational methods. This solution is in fragmenting the system in single and double kernel frag-
ments, possibly capped with hydrogen atoms when necessary if covalent bonds are severed in
the fragmentation, followed by the reconstruction of the full system from these fragments. The
method reviewed is termed the “kernel energy method” with an emphasis on its theoretical
foundations in physics. The temporal scaling of CPU utilization compared to direct calculation is
explored and shown to decrease dramatically with molecular size and with the scaling coeffi-
cient of the electronic structure method (the model chemistry) itself.

5.1 The computational scaling bottleneck of quantum
calculations

In this chapter, we are concerned with molecular calculations and no attempt will be
made to discuss periodic systems. This emphasis is so since most of the examples we

Note: This chapter is reproduced with modification and adaptation with permission from: Massa,
L., Fahimi, P., Castanedo, L. A. M., Matta, C. F. (2023) “In silico approaches and challenges for
quantum chemical calculations on macromolecules”, Chapter 6 in: In-silico Approaches to Macromolec-
ular Chemistry, Thomas, J., Thomas, S.; Kornweitz, H., Thomas, M. (Eds.), Elsevier, The Netherlands
(pp. 185–197). © 2023 Elsevier.
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will explore in the next chapter (Chapter 6) are on calculations performed on isolated
molecules such as peptides, proteins, and nucleic acids.

In this context, large molecular size is a well-known limitation when it comes
to performing quantum chemical calculations especially at the ab initio (non-
semiempirical) level. The cost of solving the molecular Schrödinger equation in-
creases fast with the number of atoms or basis functions. The approximate scaling
of calculation with N (the number of atoms) is N4 for single determinant methods
such as Hartree–Fock or density functional theory calculations, N5 for second-order
perturbational approaches such as Møller–Plesset (MP2) which reaches N7 if this
approximation is taken to the fourth order (MP4), N6 for configuration interaction
(CI) involving single and double excitations, etc. This long-standing scaling prob-
lem has numerous solutions, one of which will be briefly reviewed in this chapter, a
solution that is particularly tuned to biological macromolecules.

5.2 The KEM method as a solution to the computational
scaling bottleneck

There are several approaches described in the literature to bypass the above-
mentioned computational bottleneck [1–46], a review of which is beyond the scope
of this chapter. Instead, this chapter is focused on a method developed by the au-
thors and Jerome Karle (Chemistry Nobel Laureate, 1985) and which is termed the
kernel energy method (KEM). The method has been shown to deliver excellent
approximations for many properties of large systems in record times. A built-in
advantage of KEM is the availability of a clear pathway to constrain it to be N-
representable to deliver variational energies as we shall see later in this chapter.

KEM shares the philosophy of splitting a large system into manageable parts
with several other methods, but differs from these methods in significant ways. The
driving concept is to reassemble the small fragments to reconstruct the large target
system. The divide and conquer approach [1–3], the fragment molecular orbitals ap-
proach [4, 5], and the adjustable density matrix assembler [31] are of particular
note. A difference with the previously mentioned methods is that, in KEM, use is
made of hydrogen atoms to saturate dangling bonds that result from the splitting of
the large target system, and N-representability is imposed.

5.3 The lead-up to the KEM formalism

The electron density obtained from a quantum mechanical calculation can be ob-
tained from the antisymmetrized many electron wave fuction, Ψðx1, � � �,xNÞ, as usual:
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ρðrÞ = N
X
ω

ð
� � �
ð
Ψ✶ðx1, � � �,xNÞΨðx1, � � �,xNÞ dx2, � � �, dxN , (5:1)

where

xi ≡ ðxi, yi, zi,ωiÞ, (5:2)

is the set of space coordinates ðxi, yi, ziÞ and spin coordinate ωi of electron i. In
eq. (5.1) the star refers to complex conjugation as customary.1

An operational expression of eq. (5.1) in terms of the (squared) doubly occupied
MOs (ϕj), assuming a closed-shell system of electrons, and assuming – for simplic-
ity – a single determinant many electron wave fuction, is written:

ρðrÞ=N
ð
dτ′ Ψ✶

detΨdet, (5:3)

where
ð
dτ′ denotes the mode of integration explicitly shown in eq. (5.1), that is, the

integration over the space coordinates of all electrons but one followed by summa-
tion over spins. The density can be expressed in terms of the MOs as:

ρðrÞ= 2
XN=2
j= 1

ϕ✶
j ϕj, (5:4)

which in terms of atomic orbitals (atomic-centered basis functions) becomes:

ρðrÞ= 2
Xb
ν= 1

Xb
μ= 1

XN=2
j= 1

cνjcμj χ✶ν χμ (5:5)

= 2
Xb
ν= 1

Xb
μ= 1

Rνμχ✶ν χμ. (5:6)

In eq. (5.6), the elements of the density matrix (P) are expressed as:

Rνμ ≡
XN=2
j= 1

cνjcμj, (5:7)

which in matrix notation, and again in the single determinantal case, is written
compactly as a b × b matrix (b is the number of orthonormal basis functions (the set
χf g) composing the basis set of the selected chemical model):

1 Bold typeface is reserved to indicate vectors and matrices, a direct (tensor) product is indicated
by the symbol #, while regular inner or matrix product is understood when two such quantities
are written in immediate succession (e.g. ab). A star indicates complex conjugation of a generally
complex quantity and a superscripted dagger symbol “†” denotes complex conjugate transposition
of a vector or a matrix.
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R=C†C, (5:8)

where C† and C are, respectively, column and row vectors listing the coefficients of
the b basis functions that enter in the expansion of each MO.

There is a basis set transformation which connects the density matrices written
in terms of an orthonormal basis ψf g and an atomic orbital basis χf g. This transfor-
mation in matrix notation [47]:

ψ= S− 1=2χ, (5:9)

where

S=
ð
χ†# χ dr, (5:10)

in which χ†is a column whose elements are the original (nonorthonormalized)
atomic-centered basis functions.

Given the transformation between basis functions (eq. (5.9)), the corresponding
relationship between the density matrix R written in terms of the χf g set and P writ-
ten in terms of the ψf g set becomes:

R=S− 1=2PS− 1=2. (5:11)

R is essentially a matrix of the linear combination of atomic orbitals coefficient
products which weight the relative importance of atomic basis functions products.

The matrix P is endowed with what is known as “idempotency”, meaning [48]:

Pn =P, (5:12)

where n = 1, 2, 3, . . ., of which a particularly important special case is:

P2 =P. (5:13)

There is a sort of overbooking of terms in this domain. This is so since the phrase
“density matrix” which above was used to mean the matrix of the coefficients is also
used to designate different mathematical objects, namely, 1- and 2-“reduced density
matrices” (1- and 2-RDMs).

Either the P or the R matrix determines the 1-RDM in the basis set to which they
correspond. Furthermore, in the single determinant case, the 1-RDM determines the
2-RDM. These two RDMs in terms of the molecular wave function are defined as:

ρ1ðr1, r1′Þ=N
X
ω

ð
� � �
ð
Ψ✶ðr1ω1, � � �, rNωNÞΨðr1′ω1, � � �, rNωNÞ dr2, � � �, drN ,

(5:14)
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and

ρ2ðr1, r2, r1′, r2′Þ=
NðN − 1Þ

2

X
ω

ð
� � �
ð
Ψ✶ðr1ω1, r2ω2, � � �, rNωNÞ

Ψðr1′ω1, r2′ω2, � � �, rNωNÞ dr3, � � �, drN ,
(5:15)

which can be expressed in matrix format in terms of the basis functions, respec-
tively, as:

ρ1ðr1, r1′Þ= 2 trPψðr1Þ#ψ†ðr1′Þ, (5:16)

and within the single determinant representation, the 2-RDM can be obtained from
the 1-RDM as follows:

ρ2ðr1, r2, r1′, r2′Þ=
ρ1ðr1, r1′Þ 1

2 ρ1ðr1, r2′Þ
ρ1ðr2, r1′Þ ρ1ðr2, r2′Þ

�����
�����

= ρ1ðr1, r1′Þρ1ðr2, r2′Þ− 1
2 ρ1ðr1, r2′Þρ1ðr2, r1′Þ. (5:17)

If now we rid eq. (5.16) of the distinction between the two sets of coordinates by
setting r′= r, this leads to the diagonal element of this expression which is the elec-
tron density:

ρ1ðr, rÞ= 2 trPψðrÞ#ψ†ðrÞ. (5:18)

Correspondingly, the omission of the prime in eq. (5.14) is tantamount to preserving
only the diagonal elements of the 1-RDM, that is, the electron density. A similar re-
moval of the coordinates’ distinction in eq. (5.15) yields the electron pair density:

ρðr1, r2Þ= NðN − 1Þ
2

X
ω

ð
� � �
ð
Ψ✶ðr1ω1, r2ω2, � � �, rNωNÞ

Ψðr1ω1, r2ω2, � � �, rNωNÞdr3, � � �, drN . (5:19)

This pair density is the conditional probability of the presence of one electron in an
infinitesimal volume element at r1 while a second electron is present in an infinitesi-
mal volume element at r2, multiplied by the number of distinct pairs (N(N – 1)/2).
Since Ψ is assumed to be normalized, an integral of this pair density over the remain-
ing two coordinates gives the total number of distinct electron pairs in the system.

Although all double kernels may be included in KEM calculations, Huang,
Massa, and Karle have reasoned that one can speedup calculations on large sys-
tems by setting to zero all the elements of the R matrix that represent the weights of
products of basis functions centered on distant atoms [34, 35, 41]. This idea is con-
sistent with the known “short sightedness” of the density matrix [49, 50].
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As an illustration of implementation of these ideas, take a tri-hydrated cyclic
hexapeptide, c[Gly-Gly-D-Ala-D-Ala-Gly-Gly].3H2O [51], that can be conceptually
broken down into, say, six amino acid residues “fragments” whereby the two flank-
ing amino acids and any water of hydration represent the “neighborhood” [34, 41].
From the known atomic coordinates, the threshold is set beyond which the atoms
are considered not to interact.

The shortsightedness is implemented by calculating the overlap matrix of the
atomic orbitals. Where the overlap is small enough according to a preset threshold
the element of the overlap matrix is set to exactly zero. The pattern of zeros in the
overlap matrix is then superimposed in the same way within the density matrix R.
In this way, a density matrix is constructed for each of the kernels. Then these ker-
nel density matrices are summed (as a direct sum ⊕) to reconstruct an approximate
representation of the density matrix of the full system,

Rð0Þ= ¯
6

j= 1
Rjð0Þ, (5:20)

where the “(0)” indicates the patterns of zeros imposed upon the R matrix as ex-
plained above. Equation (5.20) can be expressed more explicitly as:

Rð0Þ=

R11 R12 0 0 0 R16

R21 R22 R23 0 0 0

0 R32 R33 R34 0 0

0 0 R43 R44 R45 0

0 0 0 R54 R55 R56

R61 0 0 0 R65 R66

0
BBBBBBBBB@

1
CCCCCCCCCA
. (5:21)

An approximate one-body reduced electron density matrix (1-RDM) of the full sys-
tem can, thus, be written as:

ρ1ðr1, r1′Þð0Þ= 2 trRð0Þ ψðr1Þ#ψ†ðr1′Þ
� �

ð0Þ, (5:22)

with a corresponding electron density of the form:

ρðrÞð0Þ= 2 trRð0Þ ψðrÞ#ψ†ðrÞ
� �

ð0Þ. (5:23)

In eq. (5.22), the pattern of zeros in ψ#ψ†
� �

ð0Þ is the same as in S(0) and R(0).
This is an elegant and fast approach to reconstruct a good approximation to the
density matrices of a large system from the corresponding smaller kernel matrices.
Such density matrices would have N-representability imposed by their insertion
into the Clinton equations [52]:
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Ri+ 1 = 3 RiSRið Þ2 − 2 RiSRiSRið Þ3 + λðiÞ1, (5:24)

and purifying it iteratively (where i, here, is the index of iteration) and subject to
the normalization constraint, that is:

trRS= N
2
, (5:25)

the number of doubly occupied molecular orbitals.
Electron density maps calculated from this approximation and those calculated

directly at the Hartree–Fock level using the same basis set are visually indistin-
guishable (see Refs. [34, 41]).

To sum-up the philosophy of this approach, the interaction between distant
kernels is completely neglected (equated to zero) which leads to a great simplifica-
tion of the formalism. That simplification is what has come to be called the KEM,
which we describe next.

KEM is a simpler implementation of this strategy, without the burden of having
to keep track of what atoms belong to what kernel. Furthermore, KEM also has the
advantage of taking account of the interactions between different kernels explicitly
and is inherently parallelizable. These are some of the motivations that led to the
development of the KEM. In this sense, KEM can be thought of as extending the con-
cept of the near sightedness of the density matrix to its limit.

5.4 The kernel energy method

In the KEM, a large molecule, which contains so many atoms that it cannot be eas-
ily subjected to ab initio calculations as a whole molecule, is simply cut into entirely
separate fragments called kernels (Fig. 5.1). Such a severance into parts will leave
dangling bonds which are healed by the attachment of capping hydrogen atoms in
the place previously occupied by heavier atoms. The kernels are chosen small
enough that they can be calculated by ab initio methods. Experience shows that the
results of this approximation are quite accurate which is a consequence of the
shortsightedness of the density matrix alluded to above. In what follows the KEM
formalism is briefly reviewed and justified.

The philosophy of KEM is to break the large target molecule into computation-
ally manageable small pieces (the kernels). The choice of kernels is not unique, but
experience has been accumulating that provide guidelines as to how they are cho-
sen [41]. Importantly, the quality of the results does not, in general, depend on the
particular choice of kernels. Any dangling bond resulting from the fragmentation is
then capped with hydrogen atoms. Such capping is not always required, an exam-
ple being when a kernel is, itself, a closed-shell molecule. Thus, only if covalent
bonds are cut one has to cap with hydrogens. As can be inferred from the formulas
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described next, it can be inferred that the contributions of the capping hydrogens
cancel (to near perfection).

A general expression for the energy of interaction (Eint) of an n-body system is
expressed as:

Etotal ≈
Xn
c= 1

Ec +
Xn− 1

a= 1

Xn
b=a+ 1

ðEab −Ea −EbÞ≡
Xn
c= 1

Ec +
Xn− 1

a= 1

Xn
b= a+ 1

ΔEab (5:26)

where Etotal refers to the total energy of the fully-interacting system, Ei (where i =a,
b, c) refers to the energy of the ith body in isolation, and Eij is a two-body energy.
Clearly, the two-body interaction energy is, then, the difference between Eij and the
sum (Ei + Ej). Eq. (5.26) implicitly involves the approximation of neglecting higher-order
interactions. This is justified in the observation that perturbations of higher orders, that
is, third, fourth, etc., are negligible compared to the pair-wise interactions. With this
understanding, from now on, the approximate symbol will be converted to an equality
symbol.

If we now gather the terms in an alternative manner, Eq. (5.26) simplifies to:

Etotal
ðKEMÞ

=
Xn− 1

a= 1

Xn
b=a+ 1

Eab − ðn− 2Þ
Xn
c= 1

Ec (5:27)

where the first term on the right-hand-side, the double sum, is the total energy of
all double kernels (ab) in the system. This total energy includes all pair energies
(Eab) and, in addition, the sum of all single kernels (Ec) counted (n – 2) times. This
inclusion of (over-counted) self-energies is corrected by the factor (n – 2) in front
of the second summation. This factor when multiplied by the sum over all single

1 3

2

1 3

2

1 3

2
1

1
–           

+
E1

E12 E13 E23

E2 E3

+

++

2 3

3

2

E

≈

Fig. 5.1: A conceptual diagram illustrating the kernel energy method (KEM). The many- (here three-)
body energy is approximated as the sum of the individual pair-wise interacting subsystems (gray)
energies minus the overcounted single subsystems’ “self” energies. In this manner, a large
molecule is mathematically cut into kernels with the dangling bonds saturated with hydrogen
atoms as needed.
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kernels self-energies reduces the pair energy term by the number of times the self-
energies of single kernels are over-counted in the pair energy terms.

As a simple example, consider a system broken into n = 4 single kernels: A, B, C,
and D. In this case, the double sum of Eq. (5.27), written explicitly, reads:

Xn− 1

a= 1

Xn
b=a+ 1

Eab =EAB +EAC +EAD +EBC + EBD +ECD, (5:28)

which counts each single kernel “A, …, D” three times, that is, (n – 1) times, notic-
ing that the special way the sums are defined avoid counting the same interaction
twice since, for example, EAB = EBA. From this sum (Eq. 5.28), one must subtract the
weighted sum of the one-body term in Eq. (5.27), a correction that reads explicitly:

ðn− 2Þ
Xn
c= 1

Ec = ð4− 2ÞðEA +EB +EC +EDÞ (5:29)

which, when subtracted from the sum of the doubles energies as specified in Eq.
(5.27) yields the KEM approximation to the total energy of this four-kernel system.
(For an illustration of the simpler 3 kernels example, please see Fig. 5.1).

If we rearrange and group terms, and solve for the approximate (KEM) total en-
ergy, we get:

Etotal
ðKEMÞ

= EAB +EAC + EAD +EBC + EBD +ECD − 2EA − 2EB − 2EC − 2ED (5:30)

which is an explicit expansion of Eq. (5.27) for this particular example with n = 4.
As noted earlier, from eq. (5.30) it should be clear that, if hydrogen caps are

used to satisfy any dangling bonds that result from the fragmentation, the number
of hydrogen caps on double kernels is equal to the number of such caps on single
kernels. Since these two sets of hydrogen cap contributions appear in eq. (5.30)
with opposite signs, they essentially cancel save for the small error introduced by
the slightly different electronic environments of these sets of caps. This cancellation
of the caps’ contribution renders KEM a method of general utility whether kernels
are obtained by severing chemical covalent bonds, fissioning aromatic bonds, split-
ting hydrogen bonds, or by choosing separate closed-shell molecular entities within
a molecular complex as kernels.

5.5 The scaling of the KEM

The whole point of KEM is to avoid the computational scaling bottleneck that
plagues ab initio quantum chemical calculations. The scaling exponent α, to which
the size of the atomic basis set is to be raised, is generally greater than 3 or 4. In
order to give the reader some sense of how much computational resources savings
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can be affected by the use of the KEM approach, we can consider an ideal back-of-
an-envelope calculation that can give an order of magnitude estimate.

Say that we have a macromolecule described by M basis functions and that we
can split it into m kernels of equal size. Suppose each of these kernels is described by
a basis set made up of μ atomic-like functions. In this case, the relative time (trel)
taken by a KEM calculation with respect to the intact/full molecular calculation fol-
lows from the KEM partitioning that splits the system into m single kernels and m2 −m

2

double kernels. The relative CPU/GPU time is then:

trel =
tKEM
tdirect

= mμα + m2 −m
2 ð2μÞα

Mα (5:31)

This equation can be further simplified by realizing that M =mμ, then we have:

trel =
mμα + ðm2 −mÞð2α− 1μαÞ

ðmμÞα , (5:32)

trel =
2α− 1ðm− 1Þ+ 1

mα− 1 . (5:33)

As can be seen from eq. (5.33), the relative time is independent of the size of the
basis set. The equation shows that one must break the system into at least three
kernels to affect CPU (and/or GPU) time-saving – anything less is meaningless
(which is also reflected in the equation). In fact, it can be shown that, for the ideal-
ized system for which eq. (5.33) has been derived, to achieve saving, the conditions
are that m > 3 kernels and α > 3.

Equation (5.33) has been used to generate the entries in Tab. 5.1 showing that
within a model chemistry that scales cubically, and if the system is broken into 10
kernels, one saves less than an order of magnitude in time. However, with a split-
ting into 1,000 kernels, the saving in time jumps to O(103). The savings are magni-
fied dramatically with steeper scalings as can be gleaned from the table. For α = 5, a
split into 1,000 kernels speeds up the calculation by 100 million times compared to
a full molecular calculation.

Finally and importantly, KEM can be further sped-up by several orders of mag-
nitude by heavily parallelized computations. A 1,000 core cluster, commonly avail-
able nowadays, would speed the calculation by O(103) over an above the savings
outlined above. Specific examples of such savings will be revisited in the next chap-
ter of this book.

On the top of the considerable scaling economies inherent in the KEM itself due to
the conversion of the power of a large number to the sum of smaller numbers raised to
the same power, an added advantage of the method is that it is ideally suited for mas-
sively parallel computing. As a graphical illustration of this parallelization, Fig. 5.3
shows how this concept may be implemented in practice using a tripeptide as an
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example. Such parallel implementation of the KEM algorithm may further enhance the
savings in computing times by a further two to four orders of magnitudes.

5.6 Closing remarks

We have briefly outlined the context, history, and intellectual antecedents of the
KEM. This chapter is concerned with the theoretical foundations of the method and
its context within the larger scheme of computational quantum chemistry, while
the next chapter reviews some examples of its applications.

The KEM method takes advantage of nature’s short-sightedness reflected in its
representation by density matrices. The method takes this shortsightedness to its
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Fig. 5.2: Relative times according to eq. (5.33) as a function of the number of single
kernels and scaling exponents.

Tab. 5.1: Relative times (trel) of KEM relative to full molecular
calculations as a function of the number of single kernels (m)
and the scaling parameter (α) predicted from eq. (5.33).
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limits. Simple considerations show the CPU (and/or GPU) time savings that this
method can bring to ab initio calculations. As the scaling factor gets bigger the
computational advantage of KEM gets magnified. Given the result indicated in
Fig. 5.2, we may conclude that a molecular system of practically any size including
even, perhaps, millions of atoms can be described by accurate ab initio-quality cal-
culations using KEM.
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Chapter 6
The kernel energy method: accurate and fast
calculations on large systems by example

The proof of the pudding is in the eating. Proverb

(E. M. Knowles, Little Oxford Dictionary of Proverbs, Oxford University Press, Oxford, 2016)

The kernel energy method (KEM) is a fragmentation method applicable to very large molecular
systems, for example, large protein and nucleic acid molecules. The previous chapter describes
the manner in which fragmentation may be realized and how the full molecular system is recon-
structed from the fragments in such fashion that it is reasonable to expect that accurate ab ini-
tio accuracy is to be maintained. It has been emphasized that dealing with fragments allows
overcoming the computational difficulty which grows with a high power of the number of atoms
(and therefore of the number of basis functions) involved in the calculation. Moreover, fragmen-
tation can be accompanied by an inherent parallel implementation of the calculations which is
an important factor in the possible speed-up of calculations above and beyond that brought up
by the reduction in the size of quantum calculations.

This chapter is concerned with examples of KEM calculations related to its accuracy and
speed of calculation. Illustrations of KEM calculations considered here include biological mole-
cules and materials of technological importance. KEM, in N-representable form, can deliver all
one- and two-body properties in a quantum mechanically valid form. These would include ener-
gies, response properties, and the electron density. KEM reconstruction of some of the Bader’s
quantum theory of atoms in molecules (QTAIM) properties is also discussed which showcases
how KEM recovers one-electron and two-electron properties accurately and fast.

6.1 An approach to quantum calculations on large systems:
the kernel energy method

The theoretical underpinnings of the kernel energy method (KEM) has been intro-
duced in the previous chapter (Chapter 5). The present chapter switches the focus to
applications. In terms of types of systems used here to illustrate how KEM can deliver
useful information, these systems span biological macromolecules and technologi-
cally promising materials such as graphene nanoribbons. Perhaps more importantly
is the type of information that can be delivered by the method. In principle, quantum

Note: This chapter is reproduced with modification and adaptation with permission from: Massa,
L., Castanedo, L. A. M., Fahimi, P., and Matta, C. F. (2023) “Applications of in-silico quantum chemi-
cal calculations to large systems: The kernel energy method”, Chapter 7 in: In-silico Approaches to
Macromolecular Chemistry, Thomas, J., Thomas, S., Kornweitz, H., and Thomas, M. (Eds.), Elsevier,
The Netherlands (pp. 199–215), © 2023 Elsevier.
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mechanical properties can be predicted from KEM since it can deliver approximate N-
representable density matrices of the full system. In practice, we will show the viabil-
ity of this approach to deliver, not only energies, but, equally importantly, other
properties such as those defined within the quantum theory of atoms in molecules
(QTAIM) including two-electron properties such as the localization and delocalization
indices (LIs and DIs). Moreover, the ability of the method to predict field-induced re-
sponse quantities will also be briefly reviewed. It may be helpful to first summarize
the principal points and tenets of the KEM approach (details can be found in Chap-
ter 5 and the references therein).

As mentioned in the previous chapter, the cost of quantum chemical computa-
tions grows quickly as Mα where M is the number of basis functions necessary to
describe the system and α is the scaling of the given chemical model. There exists a
panoply of methods to attack this problem (see literature cited in Chapter 5). KEM is
one of these approaches.

KEM involves the fragmentation of the large system into smaller parts satu-
rated, if necessary, with hydrogen atoms to saturate dangling bonds that may result
from this partitioning. Given the general expression for the energy of interaction of
n-bodies [1]:

Etotal =
Xn− 1

a= 1

Xn
b=a+ 1

ΔEab +
Xn
c= 1

Ec (6:1)

where Etotal is the total energy of the system, ΔEab is the interaction energy of a dou-
ble kernel (the abth), and Ec is the energy of the cth isolated body ignoring all per-
turbations of higher orders than the second [2] where the interaction energy is
defined:

ΔEab ≡ Eab −Ea −Eb (6:2)

which upon simplification and rearranging leads to

E total
ðKEMÞ

=
Xn− 1

a= 1

Xn
b=a+ 1

Eab − ðn− 2Þ
Xn
c= 1

Ec. (6:3)

As was shown in Chapter 5, to get an order-of-magnitude sense of the time savings
of the KEM method, suppose a macromolecule described by a basis set of size M is
broken into m equal kernels each described by a basis set of size μ. The ratio of the
time of a KEM calculation with respect to that of the direct (full molecule) calcula-
tion, trel, is:

trel =
tKEM
tdirect

= mμα + m2 −m
2 ð2μÞα

Mα . (6:4)
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Remembering that M =mμ, one can simplify this equation to:

trel =
2α− 1ðm− 1Þ+ 1

mα− 1 . (6:5)

Equation (6.5) shows that the relative time savings of KEM increases quickly with the
number of kernels and with the scaling of the method (α), but is quite independent of
the size of the basis set itself (see Tab. 5.1 and Fig. 5.2 of Chapter 5). To illustrate, split-
ting a 200 amino acid peptide into single amino acid residue kernels, the saving for a
single determinant method is O(102), but for a more accurate method with α = 5 the sav-
ing is of the order of a million. So, the time savings of KEM are more important for
larger system that could be broken into more fragments but also for the more accurate
methods, for example configuration interaction or Møller–Plesset (MPn) perturbation
method at various orders (n). Parallelization can multiply these time savings by the
number of available cores, each devoted to a single or double kernel calculation sepa-
rately. (The reader may also refer to Fig. 5.3 of Chapter 5 for an illustration).

6.2 The kernel energy method applied to large biomolecules

The first introduction of KEM was accompanied by testing how fast it could recover the
energies of 16 different oligopeptides of known X-ray crystallographic structures. The
studied oligopeptides range from 5 amino acid residues (80 atoms) to 19 amino acids
(327 atoms) [3]. In this paper, Lulu Huang, Lou Massa, and Jerome Karle (HMK) com-
pare the savings in time brought about by the KEM calculations. These savings are sub-
stantial and in line with the order of magnitudes predicted by eq. (6.5). Further, since
this 2005 paper is the first wherein the KEM approach is introduced [3], the authors
have tried to increase the time saving by retaining in the calculations only those dou-
ble kernels that are chemically bonded to one another and ignoring the contributions
of all other double kernels. This last approximation did not turn out to be very accurate
though, hence it is concluded that, for high accuracy work, all double kernels must be
retained into the calculation [3]. For very large systems, a distance criterion cutoff can
eliminate the contribution of any double kernel in which its single kernels are sepa-
rated by a very large distance, but this is to be explored in the future. Jerome Karle
gave a lecture in 2006 at the 56th Lindau Nobel Laureate Meeting concerning the topic
of Ref. [3]; the lecture is available online [4].

Soon after the appearance of this 2005 paper [3], the accuracy and speed of the
KEM approximation has been vetted by its application to biological macromolecules.
This vetting begins with relatively small peptides such as insulin [5] made-up of two
peptide chains (A and B), altogether made-up of 51 amino acids and 777 atoms, and
ending up with a calculation on an entire asymmetric unit of a virus capsid (vesicular
stomatitis virus) [6].
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With regards to insulin, HMK calculated the Hartree–Fock energies for each of
the two chains separately and combined [5]. The KEM single-point energies of the
gas-phase calculations differ by ca. 0.3 kcal/mol from the full calculation [5]. If now
we take the solvent molecules as an additional kernel, the calculated KEM total en-
ergy of the fully solvated insulin differs from the energy obtained directly for the
full insulin-solvent system by ca. 3.8 kcal/mol [5]. Given the size of the system, it is
clear that the KEM approximation delivers energies within the order of magnitude
of chemical accuracy.

Turning to nucleic acids, HMK showed that KEM, when applied to the three
forms of DNA (B, A, and Z), yields results of similar accuracy [7]. In these calcula-
tions, a kernel is taken as a nucleotide. The KEM approximation has also proved
accurate when applied to RNA, specifically to a tRNA with known X-ray crystallo-
graphic structure, that of tRNA of methionine in yeast (yeast initiator tRNA, Protein
Databank Code: 1YFG). This tRNA consists of 2,565 atoms (Fig. 6.1) within 75 nucleo-
tides [8]. Except for one trinucleotide single kernel, all single kernels in this KEM cal-
culation consist of 4 nucleotides giving a total of 19 single kernels. The total energy
of the full molecule differs from the KEM approximate energy by 4.6 kcal/mol [8].
Moreover, KEM has also been shown to deliver good estimates of interaction energies
associated with hydrogen-bonding pairs. These interaction energies were obtained by
calculating the energies of a hydrogen-bonded double kernel minus the sum of the
energies of the two (separate) single kernels defining the double kernel [8].

Fig. 6.1: Ball-and-stick representation of the crystallographic structure yeast initiator tRNA, Protein
Databank Code 1YFG. The molecule, consisting of 2,565 atoms and 75 nucleotides, is broken into
18 single kernels made of 4 nucleotides and one kernel made of 3 nucleotides [8].
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The KEM approximation has also been used to elucidate the electronic structure
of the so-called proto-ribosome [9, 10]. As is well-known, the ribosome is the pro-
tein manufacturing plant of all living cells where the genetic code is translated into
proteins. The protoribosome, in its turn, is believed to be the prebiotic ancestor of
present-day ribosome – in line with what is known as the RNA-World hypothesis
[11, 12]. The protoribosome, in order to exercise its function, must possess the ability
to catalyze the formation of peptide bonds – just as contemporary ribosomes do,
and is believed to be the active center of the modern ribosome without most of its
present-day surroundings. In fact, the protoribosome is a miniscule part of the con-
temporary ribosome. Crystal coordinates taken from the modern ribosome were
used to build a model of the protoribosome [9, 10]. KEM in conjunction with density
functional theory DFT–B3LYP/3–21G✶ has been used to demonstrate the structural
stability and the favorable attachment of the protoribosome to its substrates. These
findings reinforce the idea that certain necessary conditions for the formation of the
peptide bond are satisfied by the protoribosome [9, 10].

This section is concluded with a quantum mechanical study of the vesicular sto-
matitis virus capsid asymmetric unit [6], shown in Fig. 6.2. The asymmetric unit of
this viral protein is composed of 5 peptide chains, each of which consists of 421
amino acid residues made-up of 6,635 atoms. This brings the total number of atoms
to 5 × 6,635 = 33,175 atoms. HMK, have obtained an estimate of this protein’s total
energy at an ab initio level of theory. The authors could not compare this case with
the full molecule calculation due to the size of the system. However, a comparison
has been done between KEM calculations at the Hartree–Fock level (that does not
account for dynamic electron correlation) with calculations that take this correla-
tion into account (at the MP2 level of theory) [6]. HMK conclude that dynamic corre-
lation is crucial in understanding how the different peptide chains bind to one
another through interchain hydrogen bonding [6].

6.3 The kernel energy method and the calculation of response
properties

Graphene’s technological promise was such that, only a few years after its discovery
by Andre Geim and Konstantin Novoselov [13, 14] these workers were awarded the
Nobel Prize in Physics in 2010. Graphene is an infinite two-dimensional system of
fused benzene rings with extraordinary optical, electrical, and mechanical proper-
ties. Such infinite systems are tackled by either periodic calculations or finite clus-
ter calculations in quantum chemistry [15]. Usually finite cluster representations of
infinite systems are used to represent nonperiodic features and/or defects. However,
here, the KEM method is tested on a finite pristine graphene cluster to establish its
applicability to a delocalized electronic system which is subjected to the imposition
of external intense electric fields.
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The first problem in the application of KEM to this type of system is in the man-
ner in which the system is split into kernels, since in this case there are no clear
single bonds that represent a natural choice where the system is to be fragmented.
Sivaramakrishnan et al. devised a DFT-based fissioning scheme of polycyclic aro-
matic hydrocarbons (PAHs) that proved accurate in empirically predicting their
heats of formation [16]. The work of these authors shows that it is important not to
sever aromatic rings but rather to fission the extended system in a zigzag fashion
along the chosen fragmentation lines followed by the saturation of the created dan-
gling bonds as needed [16].

The energy of a finite hydrogen-terminated graphene nanoribbon (C78H26) con-
sisting of 27 benzenoid rings and 104 atoms was calculated directly, and also using
the KEM approximation at the Hartree–Fock/3-21G and at the MP2/3-21G levels of
theory [17]. The KEM total energies of the nanoribbon at the two levels of theory are
in both cases within ca. 1 kcal/mol – that is, of chemical accuracy – with a relative
error O(10−5%) [17].

Taking this work one more step, a question is now whether the response of this
graphene nanoribbon to an external electric field is itself recoverable from the KEM
approximation? This is an important question for two reasons: (i) Technological and
nanoscience experimental procedures are expected to have situations in which the
nanoribbon is exposed to strong external fields (as for example in the gap of a scan-
ning tunneling microscope (STM) or nanoelectrical junctions), and (ii) if the field is
imposed within the aromatic plane, this will be a challenging case for the KEM ap-
proximation since there will be a field-induced polarization of the electron density
within each fragment as well as a net charge transfer between the fragments.

Fig. 6.2: Two views of a ribbon representation of the crystallographic structure of vesicular
stomatitis virus nucleoprotein, Protein Databank Code 2QVJ. The molecule is a dimer of 2
symmetry-related halves, each made up of 33,175 atoms in 5 × 421 = 2,105 amino acid residues.
In the KEM, each one of the 5 chains is divided into 66 single kernels [6].
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To test KEM against these challenges, the response of the total energy and of
the molecular dipole moment of a finite hydrogen-terminated zigzag graphene flake
(C46H20), in 2 × 7 benzenoid rings, has been investigated with a variety of imposed
external fields [18]. The study involves comparing the response to the field calcu-
lated with KEM against the response calculated exactly (directly). Uniform parallel-
plate capacitor electric fields were applied along the long molecular axis (Fig. 6.3),
reaching a maximum strength of 5 × 109 V/m [= 0.01 atomic units (au)]. This field
strength is commonplace in nanoelectronics and in, say, the gap of an STM [19, 20].

When one imposes strong external fields on molecular or atomic systems, the
precaution of not inducing tunnel ionization must be observed. This is done by in-
serting the ionization potential in the Keldysh equation [21, 22] to determine the
rate of tunnel ionization (see Ref. [23] for an example of how this is done). The Kel-
dysh equation predicts a characteristic time of tunneling ionization for this nanorib-
bon of the order of a millisecond at the strongest studied field which can be
neglected since the timescale of a C–C bending, the vibration with the smallest fre-
quency occurs at the picosecond timescale [24].

+ +

K12

K2

K13

K1

K3

K23

– – –

=

E

Fig. 6.3: The KEM fissioning of the hydrogen saturated zigzag armchair graphene nanoribbon
(C46H20 in 14 (2 × 7) rings with C2v symmetry, far-right) into double kernels (top row before the
equal sign) and single kernels (bottom row before the equal sign). The arrow at the far left depicts
the direction of the external electric field. The diagram mimics eq. (6.3) as it applies to the
fissioning of this nanoribbon [18]. The arrows on the molecular structures indicate the direction of
the field-induced dipole moment, while an arrow length is proportional to the total dipole moment
magnitude [18]. The convention used in depicting the dipoles is the “physicist” convention,
meaning that the head of the arrow points to the positive pole of the dipole [25, 26].

6.3 The kernel energy method and the calculation of response properties 99



The dipole moment (a vector quantity) is reconstructed within the KEM approxi-
mation in an analogous manner as the total energy (eq. (6.3)), where every compo-
nent of the dipole moment vector is treated with a separate equation just as a scalar.
Hence, the ith component (x, y, or z) of the dipole moment is approximated as [18]:

μi
ðKEMÞ

=
Xn− 1

a= 1

Xn
b=a+ 1

μab − ðn− 2Þ
Xn
c= 1

μc. (6:6)

The field-induced responses of the total energy ΔE(eV) and of the dipole moment
μ(debye) are displayed in Fig. 6.4. Calculations at three different model chemistries
MP2/6-311G(2d,2p), DFT-B3LYP/6-311G(2d,2p), and Hartree–Fock/6-311G(2d,2p), all
yield similar field responses, both in absolute values and in trends and for both the
KEM and the direct calculations (see also Supplementary Information that accom-
pany Ref. [18]). These two sets of calculations (KEM and full-molecular direct calcu-
lations), agree remarkably at all field strengths, for all studied properties, and with
all three model chemistries tested (Fig. 6.4).

6.4 The kernel energy method and the calculation of properties
of atoms in molecules

Richard F. W. Bader developed a theory of chemistry on the basis of a topological
and topographical analysis of electron density known as the quantum theory of
atoms in molecules (QTAIM) [27–31]. This theory starts by analyzing the gradient
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Fig. 6.4: A graphical comparison of the change in the total energy (ΔE) and the dominant (induced)
dipole moment component μy as a function of the field strength along the y-direction (the long axis
of the graphene nanoribbon) calculated directly versus those calculated from KEM. The changes in
the KEM energies are obtained from differences between eq. (6.3) obtained from the field-free case
and that in a given field, while a similar procedure has been implemented to compute the values in
the plot for the dipole moment, this time using eq. (6.6) (results of calculations at the MP2/6-311G
(2d, 2p) level of theory). See Ref. [18] for details.
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vector field associated with the electron density (∇ρ) and, in doing so, the various
critical points are located (where the gradient of the density vanishes, ∇ρ = 0) as
well as the separatrices that split the molecular density into mono-nuclear atomic
regions. Stable critical points that can be found in an isolated molecule must satisfy
the Poincaré–Hopf relation (an adaptation of Euler’s topological identity) [27]:

nNCP − nBCP + nRCP − nCCP = 1, (6:7)

where, n refers to the “number” of a given type of critical point and where NCP
refers to nuclear critical points (local maxima in the electron density, each NCP
exhibits three negative curvatures), BCP refers to bond critical points (a maxi-
mum in two orthogonal directions but a minimum along the third, two negative
curvatures); RCP refers to ring critical points (a minimum in two orthogonal di-
rections but a maximum along the third, two positive curvatures), and finally
CCP which refers to cage critical points (local minimum, exhibiting three positive
curvatures).

It is noteworthy that the pair of NCPs of two chemically bonded atoms exhibits
a bond path linking them, that is, a line of locally maximal electron density linking
these two nuclei [32, 33]. The bond path usually corresponds to the known “chemi-
cal bond”, however, it exhibits no bond multiplicity per se save for the values deter-
mined at the associated bond critical point which numerically give away the nature
and strength of the chemical bonding.

The separatrices between the bonded atoms are surfaces of local zero-flux in
the gradient of the electron density, that is, satisfying the following boundary con-
dition at every point belonging to the surface [27]:

∇ρðrÞ ·nðrÞ=0, (6:8)

where nðrÞ is the normal unit vector on the surface at the point specified by the
position vector r which is, in Cartesian coordinates, r≡ êxx+ êyy+ êzz. The union of
several of these surfaces is usually bounding an atom in a molecule, in addition to
an external isodensity envelope (for atoms exposed to the exterior) [29]. As for that
isodensity, the envelope with ρ = 0.001 au usually encloses >99% of the molecular
electron population in the vacuum phase and, because of that, it is taken as the
outer molecular surface up to which numerical integrals are evaluated [27]. In the
condensed or solvated phase, this isodensity is higher and equals 0.002 au.

Mononuclear regions surrounded by zero-flux surfaces are identified as the
atoms-in-the-molecule (AIMs) and they have been shown to behave as open quantum
sub-systems with well-defined properties including at least two forms of the kinetic
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energy.1 Since the average electronic kinetic energy is well-defined for an AIM (in at
least two of its most used forms), and by virtue of an atomic expression of the virial
theorem, postulated [34] and then demonstrated [27, 35–37], any region bounded by
a zero-flux surface has a well-defined (atomic) energy. These atomic energies have
the desirable property of being additive yielding the total molecular energy when
summed over all the atoms composing the molecule.

Furthermore, once the atomic basins are defined on the basis of the electron
density, any property density can be integrated over these spatial domains to obtain
the corresponding quantum average over the atom of interest. This is no longer lim-
ited to one-electron properties even though the electron density that led to the spa-
tial partitioning is itself a one-electron property. Hence, one can obtain energies
(which include electron–electron terms) and electron localization and delocaliza-
tion indices (LIs and DIs) which involve integrals of the Fermi (and Coulomb) holes
over one or a pair of atomic basins, respectively.

The DIs, δ(Ωi,Ωj), count the number of electrons delocalized (or shared) be-
tween pairs of basins (Ωi and Ωj) which, for a closed-shell molecule at a single de-
terminant level, is written [38]:

δðΩi,ΩjÞ= 2 FαðΩi,ΩjÞ
�� ��+ 2 FβðΩi,ΩjÞ

�� ��, (6:9)

in which the Fermi correlation is obtained by integrating the product φ✶
k ðr1Þφlðr1Þ

φ✶
l ðr2Þφkðr2Þ sweeping r1 over the volume of Ωi and r2 over the volume of Ωj and

summing over all occupied spin orbitals φk and φl:

FσðΩi,ΩjÞ= −
Xocc
k

Xocc
l

ð
Ωi

ð
Ωj

φ�kðr1Þφlðr1Þφ�l ðr2Þφkðr2Þdr1dr2 (6:10)

= −
Xocc
k

Xocc
l

SklðΩiÞ SlkðΩjÞ, (6:11)

where Skl(Ωi) = Slk(Ωi) represents the overlap integral of the given pair of spin orbi-
tals over basin Ωi. In the above equations, σ refers to a given spin, α or β.

For methods of calculation involving a single determinant, the first order re-
duced density matrix determines all the properties of the system. Except when dy-
namical correlation is important, the Müller approximation [39] has been shown to

 Occasionally one encounters maxima in the electron density at positions other than at the nuclei.
These maxima are termed nonnuclear attractors (NNAs) or nonnuclear maxima (NNM). They be-
have as pseudo-atoms in a molecule and can be characterized with all the properties normally as-
signed to atoms except the nuclear charge/mass since there are no nuclei. These entities define a
pseudo-atomic basin surrounded by zero-flux surface(s) as any “real” atom. See Ref. [51] and litera-
ture cited within.
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be relatively accurate in obtaining a second-order density matrix from the first
order density matrix [40].

Setting i = j in eqs. (6.10) and (6.11), that is, when the two integrals are over one
and the same basin, the product Skl(Ωi)Slk(Ωj) collapses to [Skl(Ωi)]

2 which measures
the Fermi correlation of the electrons in that basin. In this case, we have defined
the localization index (LI) written as [38]:

ΛðΩi,ΩiÞ= FαðΩi,ΩiÞj j+ FβðΩi,ΩiÞ
�� ��. (6:12)

The LIs and DIs are not independent since an atom’s electron population is, in part, resid-
ing within that atom and, in part, shared with every other atom in the molecule. The popu-
lation of atom i can be written in terms of the following bookkeeping formula [38]:

NðΩiÞ=ΛðΩiÞ+ 1
2

Xn
j≠i

δ ðΩi,ΩjÞ=
ð
Ωi

ρðrÞdr. (6:13)

In this manner, the population of Ωi can be obtained either from the middle equality
(which we call the “Bader summation”) given the LI and all the DIs involving that
atom. The population can also be accessed from the last equality by integration of
the electron density over the ith atomic basin. With the atomic population N(Ωi)
and the atomic number ZΩi, one finds the net atomic charge (qðΩiÞ in au) from:

qðΩiÞ=ZΩi −NðΩiÞ. (6:14)

Finally, given the Bader summation relating the LI and the DIs of a given atom to its
total electron population, the full set of LIs and DIs characterizing a molecule can be
cast in an electron localization–delocalization matrix (LDM) [41–46]:X

row

LDM≡

"
ΛðΩ1Þ δ ðΩ1,Ω2Þ=2 � � � δ ðΩ1,ΩnÞ=2
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The sum over the matrix elements in any row or column of an LDM is, by Bader
summation, the population N(Ωi) of the atom represented by that row or column.
The sum of all atomic populations is the total molecular electron population N. Fi-
nally, the trace of the LDM represents the number of all electrons that are localized
within basins over the entire molecule (Nloc) and, by difference; the delocalized
population can be obtained.

In the work about to be described, formulae analogous to eq. (6.3) were used to
predict the localization and delocalization indices, and have been shown to work
with high accuracy. The formula for the DIs is [43]:

δKEMðΩi,ΩjÞ=
Xn− 1

a= 1

Xn
b= a+ 1

δabðΩi,ΩjÞ
� �

Ωi^Ωj2Kab
− ðn− 2Þ

Xn
c= 1

δcðΩi,ΩjÞ
� �

Ωi^Ωj2Kc , (6:16)

while the LIs are approximated as:

ΛKEMðΩiÞ=
Xn− 1

a= 1

Xn
b=a+ 1

ΛabðΩiÞ½ �Ωi2Kab − ðn− 2Þ
Xn
c= 1

ΛabðΩiÞ½ �Ωi2Kc . (6:17)

Finally, a similar equation has been used to approximate the value of the electron
density at the various critical points [43]:

ρKEMðrBCPðΩijΩjÞÞ=
Xn− 1

a= 1

Xn
b=a+ 1

ρabðrBCPðΩijΩjÞÞ
h i

Ωi^Ωj2Kab

− ðn− 2Þ
Xn
c= 1

ρcðrBCPðΩijΩjÞÞ
h i

Ωi^Ωj2Kc
,

(6:18)

where ρKEMðrBCPðΩijΩjÞÞ is the KEM approximation to density at a bond critical point
between the nuclei of the ith and jth atoms, and where the vertical bar “|” symbolizes
the separatrix separating these two basins. The same form of eq. (6.18) is also used to
estimate the densities at the ring critical points. In eq. (6.18) and in analogy with eq.
(6.3), ρab and ρc are the densities at the BCPs of the abth (double) and the cth (single)
kernel. An additional condition for the inclusion of a kernel’s contributions into the
sum is the existence of the BCP in the kernel in question (which contrasts such a
local property at a specific point in space with a global property such as the energy to
which all of the kernels do contribute.

Figure 6.5 (top) provides an example of how well electron densities at bond and
ring critical points are recovered (all values in the figure are identical, up to the
adopted precision, whether calculated directly or approximated from KEM). This
shows that the electron density is well reproduced on a point-by-point basis from
the KEM approximation.

These latter findings amplify earlier work where KEM has been shown to ap-
proximate QTAIM charges to a similar accuracy on a number of small peptides [47].
If one can recover the electron density on a point-by-point basis, it is perhaps not

104 Chapter 6 The kernel energy method



0.294
0.322

0.326
0.293 0.019

0.018

0.293 0.297 0.293
0.308

0.304
0.307

0.293
0.338

0.310
0.0190.018

0.019

0.018

0.012 0.012

0.019

0.019

0.318 0.316 0.315 0.315

0.311
0.303

0.309

0.3050.3050.305
0.306

0.3090.311

0.3050.310
0.306 0.303

0.309 0.311 0.309 0.309
0.293

0.307

0.338
0.308

0.293

0.293 0.296

–0.027

+0.042

–0.026 –0.010 –0.008

+0.002 –0.002 –0.002 –0.002 –0.002 +0.002

+0.035+0.038+0.041+0.041+0.038

–0.034 –0.034 –0.034 –0.034 –0.029

+0.035

+0.032

–0.026

–0.007 –0.008 –0.010 +0.032 –0.026–0.007+0.032

+0.032

–0.026

–0.029

–0.029+0.029

+0.002 –0.012 –0.008 –0.007 –0.007 –0.008 –0.012 +0.002

–0.002 –0.003 –0.001 –0.001 –0.003 –0.002 +0.029 –0.029

+0.034 +0.043 +0.041 +0.041 +0.043 +0.034 +0.042

–0.036 –0.033 –0.035 –0.035 –0.033 –0.036 –0.027

0.015 0.0150.296 0.296 0.296

0.318 0.308 0.309
0.303

0.311
0.304

0.293
0.332

0.316 0.311
0.332

0.315
0.332

0.315 0.311 0.316 0.293

0.296 0.296 0.308

0.316 0.318

0.318

0.326
0.293

0.332
0.295 0.014

0.012
0.332

0.012
0.322

0.012

0.0190.019

0.019

0.019

0.018 0.018

0.296 0.296 0.296 0.296 0.295 0.294
0.015 0.014

Fig. 6.5: Top: A contour map representation of the electron density in the σv′ symmetry plane of a
C46H20 hydrogen-terminated graphene nanoribbon. The contours from the outside inward are in au:
0.001, 0.002, 0.004, 0.008, 0.02, 0.04, 0.08, 0.2, 0.4, and 0.8. Superimposed on the figure is the
molecular graph, that is, the lines of maximal electron density linking bonded nuclei. The bond
paths include those between van der Waals bonded neighboring hydrogen atoms in “bay” regions
(known as H . . . H bonding [48–50]) – represented by broken lines. The dots on the bond paths
represent the bond critical points while those within rings are the ring critical points. The label
near a critical point is the magnitude of the electron density at this point (in au). Bottom: The
molecular graph with the superimposition of the gradient vector field of the electron density. The
interatomic surfaces of zero-flux (separatrices) between bonded atoms delimit them from one
another as nonoverlapping regions of space [29]. Each basin is labeled by its QTAIM atomic charge
q(Ω) (eq. (6.14)). All quoted values are identical whether from the direct calculation or from the
KEM reconstruction up to and including the given decimal precision. The calculations were
performed at the HF/6−31+G(d,p) level of theory. (Reprinted from Ref. [43] with permission of the
copyright holder © 2014 The American Chemical Society).
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totally surprising that the integral of the density is also recovered accurately. The
novelty in the case of the graphene nanoribbon is the added challenge of represent-
ing this delocalized fused benzenoid ring system within the KEM approximation,
including but not limited to challenges as to how to split the system into kernels
[43].

Using 14-aromatic ring/66 atom hydrogen-terminated graphene nanoribbon
(C46H20), depicted in Fig. 6.3 along with the KEM fragmentation, Timm et al. have
shown that its 66 × 66 LDM can be reconstructed from eqs. (6.16) and (6.17) with ac-
curacy [43]. The LDM of C46H20 consists of 66 LIs along its diagonal and 4,290 DIs/2
(only half of which are unique since δij = δji).

The overall average % error in the LIs and the DIs/2 introduced by the KEM ap-
proximation in the case of a carbon atom is 0.02 ± 0.03%, and 0.01 ± 0.01% for an
average hydrogen atom. Meanwhile, the cumulative integration errors in the total
electron population of this 296-electron molecule are +0.0003 e− for the direct cal-
culation (+0.0001%) and +0.0022 e− for the KEM (+0.0007%). Finally, the full sets
of electron densities at the 84 bond critical points and 19 ring critical points calcu-
lated from the KEM approach are identical, within and including three decimals (in
au), to the directly calculated results.

6.5 Closing remarks

In Chapter 5, we outlined the foundation and formalism of the KEM. The present
chapter illustrates some of its applications. These start with the accurate and fast esti-
mation of the total and interaction energies of a variety of large biological macromo-
lecules from insulin to an entire viral capsid protein with more than 33,000 atoms.
The versatility of KEM is also demonstrated in that it can be applied to virtually any
large system including nucleic acids such as double stranded DNA and RNA whether
in the protoribosome or in tRNA.

The next leap is in the application of KEM to nanotechnological materials. A
relevant example of the latter class is graphene especially under the perturbation of
a relatively intense external electric field. The problem is challenging since (i) the
system is delocalized with an infinity of fused benzenoid rings in a planar arrange-
ment raising the question as to how to fragment this system into kernels, and (ii)
the imposed field induces charge transfers across the boundaries of neighboring
kernels in the intact molecule, so how can this flow of charge be represented in the
fragmented system? It is shown that KEM can be used to predict the global/molecu-
lar-field-induced response properties.

Another question is whether KEM can recover properties such as the electron
density at specified points and properties of atoms-in-molecules (AIMs) - as defined
within QTAIM - including two-electron properties such as the complete set of LIs
and DIs? The answer appears to be “yes,” at least for the studied graphene system.
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KEM-like formulae have been used to predict the electron density and electron
pair density-derived properties. Nevertheless, a more fundamentally founded ap-
proach would be to, first, calculate the one-body and two-body reduced density ma-
trices, and then use these density matrices to compute two electron properties. This
is work relegated to the future. Here, the postulate that the form of eq. (6.3), when
applied to other properties, is empirically demonstrated to work.

Many problems remain to be solved for a universal applicability of the KEM ap-
proach. Among them is the inclusion in KEM’s formulation the ability to treat sys-
tems carrying net charges, open-shell systems, excited electronic states, crystal unit
cells including the adaptation to periodic calculations. Also, remaining to be solved
is the calculation of vibrational frequencies, geometry optimizations, and the esti-
mation of UV/Vis spectra within this approximation.
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Chapter 7
The quantum theory of atoms in molecules

Like all other stars, the Sun is believed to have condensed from a large diffuse gas cloud. . . . [I]t
can be easily shown that there is a balance between the total gravitational energy V, which is
negative, and the kinetic energy T of the stellar material, such that

2T +V =0.
This is the virial theorem of Poincaré and Eddington and is valid provided no other forces, such
as electromagnetic forces, play a significant role in the hydrostatic balance. . . . The total energy
of the star is

E =T +V

which, by the virial theorem, is simply –T. As energy is radiated from the surface of a star, E
decreases and, consequently, T rises. This is perhaps the most important property of a self-
gravitating body, and leads to a natural accentuation of the temperature difference between the
body and its surroundings.1 Douglas Gough (1977)

(In: The Encyclopaedia of Ignorance: Everything you ever wanted to Know about the Unknown,
Ronald Duncan and Miranda Weston-Smith (Editors), Pergamon Press, Oxford, 1977)

The electron density determined by crystallography and its associated density matrices (or the cor-
responding wave functions) are frequently analyzed in the crystallographic literature using Richard
F. W. Bader’s quantum theory of atoms in molecules (QTAIM). The physical foundations of the theory
are best described in Bader’s 1990 book on the subject. In this chapter, a short summary distilled
from that book is presented aiming at showing the founding of QTAIM in the physics of open sys-
tems. The chapter starts by reviewing the observational bases of QTAIM, in particular, the definition
of the bonded topology through an examination of the topography of the entire scalar field of the
electron density. Concepts such as Bader’s zero-flux boundary between chemically bonded atoms
and its associated bond path are reviewed. The development of the quantum mechanics for such
open subsystems as atoms-within-a-molecule is shown to coincide with the partitioning suggested
by the shape of the gradient vector field associated with the electron density.

7.1 From topography to topology

Boundaries are inextricably associated with form and with the idea of space filling
matter. Atoms and groups of atoms, whether in a molecule or in a crystal, are real
space-filling objects endowed with a form dictated by their bounding surfaces.
Bounded atoms contrast with the widely shared view that atoms overlap. A common-
sense argument that appears in one of Bertrand Russell books states:

 In the original text, the symbol for the potential energy is Ω, but was replaced here with V to
align the symbols with their counterparts in this chapter.
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Or, to take Aristotle’s examples, if a man makes a bronze sphere, bronze is the matter, and
sphericity is the form; while in the case of a calm sea, water is the matter and smoothness is
the form. So far, all is simple.

He goes on to say that it is in virtue of the form that the matter is some one definite thing, and
this is the substance of the thing. What Aristotle means seems to be plain common sense: a
“thing” must be bounded, and the boundary constitutes its form. . . . We should not naturally say
that it is the form that confers substantiality, but that is because the atomic hypothesis is in-
grained in our imagination. Each atom, however, if it is a “thing,” is so in virtue of its being delim-
ited from other atoms, and so having, in some sense, a “form.”2 Bertrand Russell [[1], p.165]

The quantum theory of atoms in molecules (QTAIM) developed by Richard F. W. Bader
[2–7] defines atoms in real space by specifying their bounding surface and hence deter-
mines their form. From this idea, the theory follows taking the electron density as its
object of analysis. A year before the birth of modern density functional theory with the
appearance in 1964 of the well-known paper of Pierre Hohenberg and Walter Kohn [8],
Bader and Glenys A. Jones make, in 1963, the following remark [9]:

The manner in which the electron density is disposed in a molecule has not received the attention
its importance would seem to merit. Unlike the energy of a molecular system which requires a
knowledge of the second-order density matrix for its evaluation [10] many of the observable proper-
ties of a molecule are determined in whole or in part by the simple three-dimensional electron-
density distribution. In fact, these properties provide a direct measure of a wide spectrum of different
moments averaged directly over the density distribution. Thus the diamagnetic susceptibility, the
dipole moment, the diamagnetic contribution to the nuclear screening constant, the electric field,
and the electric field gradient (as obtained from nuclear quadrupole coupling constants) provide a
measure of (aside from any angular dependencies) r2i

	 

, ri
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The electric field at a nucleus due to the electron density distribution is of particular interest due to
the theorem derived by Hellmann [11] and Feynman [12]. They have demonstrated that the force act-
ing on a nucleus in a molecule is determined by the electric field at that nucleus due to the other
nuclei and to the electron-density distribution. Richard F. W. Bader and Glenys A. Jones (1963).

The electron density, as it turns out, determines all the properties of the system’s
ground and excited states by virtue of the first Hohenberg–Kohn (HK-1) theorem [8]
discussed in Chapter 2. Restated symbolically here, the HK-1 theorem implies the
following relations:

ρðrÞ ! V½ρðrÞ�
N½ρðrÞ�

( )
! Ĥ ! fΨig, (7:1)

where i = 0, 1, 2 . . . ∞ refers to the electronic states, which tells us that ρ(r), the
nondegenerate ground-state electron density, fixes the external potential (V) and
the total number of electrons (N), and hence determines the Hamiltonian uniquely.
Given a particular Hamiltonian, dictated by ρ(x, y, z), all the eigenfunctions and ei-
genvalues of the ground- and excited states are fixed. As remarked by Bader and
Jones [9], the electron density determines many of the observable properties of a

 Second and last sentences of the second paragraph are italicized by the present authors.
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molecule. We now know, by virtue of HK-1 theorem, that the electron density deter-
mines all the properties of the system despite that the exact mapping relation of the
density to some of these properties remains unknown.

The electron density is defined as [2]:

ρðrÞ = N
X
ωi

ð
. . .

ð
Ψ✶ðx1, . . .,xNÞΨðx1, . . .,xNÞ dx2, . . ., dxN , (7:2)

where

xi � ðxi, yi, zi,ωiÞ, r � ðx, y, zÞ, (7:3)

and where Ψ is an antisymmetric many-electron wave function, r is a position vector
specifying a point in three-dimensional space (r = xex + yey + zez≡ {x, y, z}, where ex,
ey, and ez are the unit vectors in the Cartesian representation), and xi is the set of four
space and spin coordinates of electron i. This mode of integration, that is, integrating
over the coordinates of all electrons except one followed by summation over both
spins, is often replaced by the following shorthand notation in the QTAIM literature:

X
ωi

ð
. . .

ð
f ðx1, . . .,xNÞ dx2, . . ., dxN �

ð
f dτ′. (7:4)

In this notation, the electron density is expressed as:

ρðrÞ = N
ð
Ψ✶Ψdτ′. (7:5)

As discussed in Chapter 1, the electron density, being a periodic function in the
space of the crystal, can be expressed as a Fourier series [13–16]:

ρðx, y, zÞ= 1
V

X
h

X
k

X
l

FðhklÞ exp − 2πiðhx+ ky+ lzÞ½ �, (7:6)

where V is the volume of the unit cell and F(hkl) ≡ F(H) are the Fourier coefficients
(the structure factors) determined from the experimental data after the resolution of
the phase problem.

Equations (7.2), (7.5), and (7.6) deliver the same object, that is, ρðx, y, zÞ. Thus,
the electron density can be approached from two directions: Experiment – using the
set of phased experimental structure factors {F(H)}, and theory – using a properly
antisymmetrized many-electron wave function Ψðx1, . . .,xNÞ. Symbolically, recalling
relation (1.21) from Chapter 1, we may express these relations as:

theory

ðquantummechanicsÞ

" #
Ψðx1, . . .,xNÞ ! ρðrÞ  FðHÞf g experiment

ðcrystallographyÞ

" #
.

(7:7)
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The electron density, hence, plays the dual role as (a) an intermediary between theory
and experiment, and (b) as a carrier of all the quantum mechanical information that
can be known about the system (in principle). Further, the electron density is the em-
bodiment of the form of matter itself as introduced above. In recent decades, the
QTAIM has been developed on the foundation of this scalar field, the electron den-
sity, taking it as its point of departure for a complete theory of matter in its common
physical states. QTAIM then analyzes either the density itself in terms of atomic or
atom–atom interaction terms and/or analyzes the wave function over atoms or group-
ings of atoms to extract chemical information, as we shall see later in this chapter.
QTAIM is not meant to replace or compete with molecular orbital theory (MO theory)
[17–22] or valence bond theory (VB theory) [23–25], it complements both. This is so
since at a final analysis, both MO or VB theories deliver the many-electron wave func-
tion of the system which can then be used to obtain the density (eq. (7.5)) after which
the density and/or the wave function may be analyzed with QTAIM. Of course MO
and VB models offer many useful ways to interpret and predict chemistry, one ana-
lyzes orbitals and their contributions (MO-models) while the latter analyzes VB struc-
tures and their contributions (VB-models). QTAIM offers an alternative approach,
that is, it can analyze the density (accessible from both theory and experiment) and
also wave functions/density matrices (which are normally accessible only from the-
ory). In this manner, and since quantum crystallography offers an orbital description
consistent with the experimental data, it may be followed by any one of these forms
of analysis: QTAIM, MO models, or VB models.

The QTAIM, which has been reviewed extensively [2–7, 26–29], starts by defin-
ing atoms in real (direct) space as separate nonoverlapping three-dimensional
blocks of electron density with a form dictated by an atom’s electronic environment.
The disjoint and exhaustive partitioning of space leads to: (i) The ability to define the
interactions of this atomic space (an atom-in-a-molecule (AIM)) with other AIMs in
the system, and (ii) allowing one to integrate property densities over that volume.

But how do we define the boundary of an AIM? To answer this question, we exam-
ine the topography and the topology of the electron density in three-dimensional
space. The attractive force exerted by the positively charged nuclei on the electron den-
sity stamps it with its principal feature, that is, the presence of cusps at the positions of
the nuclei. These cusps are singularities that reflect the neglect of the finite nuclear
size in molecular Hamiltonians which are in common use (see Chapter 2). To incorpo-
rate the nuclear size would be complicated as it requires an explicit form of the poten-
tial seen by the electrons inside the nuclei and match the value of this potential at the
surface of the nucleus, whether sharp or diffuse, with the potential seen by the electron
beyond the nuclear radius. This is not done in the grand majority of cases, and hence
we have nuclear cusps.

The Kato cusp condition provides a relation between the nuclear charge of nu-
cleus α (which is equal to the atomic number Zα times the elementary charge |e|)
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and (i) the spherically averaged electron density n rð Þ around the position Rα of that
nucleus and (ii) the derivative of the spherically-averaged electron density with re-
spect to the radial distance, as stipulated by the Kato cusp condition [30–32]:

Zαjej= −
a0

2n rð Þ
dn rð Þ
dr

� 
r!0

, (7:8)

where a0 is the Bohr radius. (For a derivation of this condition, see Ref. [32].) The
cusp condition delivers the atomic number directly from the properties of the elec-
tron density as eq. (7.8) specifies. Hence, the elemental identity of the atom is
coded within the electron density itself.

An example of a calculated electron density distribution is displayed in Fig. 7.1. The
figure depicts a relief map of the electron density in the plane of a guanine–cytosine
Watson–Crick DNA base pair [33]. The dominance of the maxima of the electron density
at the positions of the nuclei is clear from the figure. All cusps, except those at the posi-
tions of the hydrogen nuclei, are truncated being too high at the scale of the figure.

Fig. 7.1: The chemical structure of a guanine cytosine Watson–Crick (triply hydrogen bonded) base–pair
and a relief representation of its electron density in the nuclear plane. All nuclear cusps are truncated
except those associated with the hydrogen nuclei. Hence, the only cusps seen are those at the positions
of the hydrogen nuclei. The ridges of density linking pairs of bonded nuclei trace the bond paths. These
ridges in the topography of the density determine the topology of the density, that is, the connectivity of
the various atoms (see also Figs. 7.2 and 7.3). Reproduced from Ref. [33] © 2002 C. F. Matta.
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One can also realize from an examination of Fig. 7.1 that chemically bonded nuclei
share a ridge along a line of locally maximum electron density linking them. This line
is termed the bond path (BP) [34–37]. The BP is the observable counterpart of the more
abstract notion of “chemical bond,” as emphasized by Bader [34]. BPs are now routinely
determined in electron densities obtained from experiment and from theory. The first
report on the BP appeared in a 1977 paper by Runtz, Bader, and Messer [34].

The BP is a single line (irrespective of the multiplicity of the bonding), traced in
real space, of locally maximum electron density linking the pair of bonded nuclei.
The BP detects chemical bonding whether weak, strong, closed-shell, open-shell,
ionic, metallic, covalent, dative, hydrogen, and so on. The lowest point along a
given BP in the relief representation (Fig. 7.1), the point with lowest density, is
called the bond critical point (BCP).

A BCP is “critical” because all three derivatives of the electron density there are
zero. The set of BPs characterizing a molecule or a unit cell constitutes its molecular
graph which defines its structure unambiguously by defining the topology, in other
words, the atoms’ connectivity. In this manner, the topography of the density leads
to the topology in a one-directional mapping. The topology then leads to the molec-
ular graph, and the graph to the chemical structure, but these latter mappings are
bijective. Hence, we may write:

topography! topology$ graph$ structure. (7:9)

The topography of the density can be analyzed by the application of the gradient op-
erator, which converts the scalar field ρðrÞ to a vector field (∇ρðrÞ), the gradient vec-
tor field of the electron density. The gradient field is “attracted” by the positively
charged nuclei with each field line crossing the isodensity contour lines perpendicu-
larly at all points until they reach the nucleus that dominates the region. Each atomic
nucleus, and sometimes also certain points other than nuclei known as nonnuclear
attractors (NNAs) (or non-nuclear maxima (NNM)), attract a bundle of gradient vector
field lines. There is an entire physics of these bundles that relates them, and the prop-
erties integrated within volumes bounded by a subset of them, to material properties
of the solid state (see, e.g., the work of Eberhart et al. [38–40]).

The gradient of the electron density vanishes at critical points (CPs) and is ill-
defined at nuclear cusps (for Hamiltonians with point nuclei) since the value of the
derivative, in this case, depends on the direction of approach. This is why the Kato
condition takes the spherical average of this derivative (vide supra, and eq. (7.8)).
In contrast, molecular and crystal electron densities occasionally exhibit maxima at
positions not coinciding with any nucleus. These NNM and nuclear cusps are topo-
logically indistinguishable, but in contrast with nuclear cusps, the gradient at an
NNM is well-defined and is zero. They are true maxima and not cusps as sometimes
described [41]. Clearly, NNM also constitute CPs in the electron density (see Ref. [31]
and the literature cited therein).
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Building on the example displayed in Fig. 7.1, the reader is referred to Fig. 7.2
where the relief map is converted to a contour map color-coded by element and also,
simultaneously, by the values of the contours (given in the figure caption). The map
shows a delineation of each atomic region by surfaces surrounding monoatomic re-
gions in which the contained gradient vector field converges on one nucleus. The mo-
lecular graph also emerges from this map as can be seen when the background of the
image is faded sufficiently to distinguish the BPs (Fig. 7.3).

Bond paths have been found to favor electron exchange and were termed “exchange
channels” [43], that is, a sort of intermolecular electronic highway system. Further-
more, to every BP graph, there exist a “shadow” graph, a doppelgänger graph, which
is not necessarily coinciding spatially with the BP graph but which links the same
nuclei. This shadow graph is that of a maximally stabilizing (maximally negative) po-
tential energy density lines [44]. Stated differently, a line exists in space exhibiting
maximally negative potential energy density that connects the very same nuclei
bonded with a BP [44]. This line is the virial path, and the set of all virial paths define
the virial graph, a graph shown to be homeomorphic with (i.e., exhibits the same to-
pology as) the molecular graph [44]. On one hand, the BP as an exchange channel
associates electron sharing with chemical bonding and, on the other hand, the exis-
tence of the virial path associates chemical bonding with energetic stability.
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Fig. 7.2: An overlay of the electron density contour map and a representative sample of the
gradient vector field lines of the density of a guanine–cytosine (GC) Watson–Crick triply hydrogen
bonded base–pair corresponding to Fig. 7.1. The shape of the gradient vector field of the electron
density suggests a partitioning of this density into distinct atomic basins. Each basin is dominated
by one nucleus. Superimposed on the electron density map is the molecular graph consisting of
the entire collection of bond paths defining the connectivity of this system (also see Fig. 7.3). The
outermost contour has the isodensity value of 0.001 atomic unit (au) followed inwards by 2×10n,
4×10n and 8×10n au with n starting at −3 and increasing in steps of unity. Reproduced from
Refs. [33, 42] © 2002 C. F. Matta.
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In most cases, the molecular graph is identical to the chemical structure graph
based on the chemistry of the compound. The caveat in the last statement is that a
single BP connects atoms bonded by any type of chemical bonding: Triple, double,
single, ionic, hydrogen, and so on. The type and strength of the chemical bonding
is reflected in locally determined properties at the BCP, or in those properties inte-
grated over the BP, the inter-atomic surface, or the volume of the two atoms sharing
a BP (as detailed later in this chapter).

Occasionally, however, BPs are found in unexpected positions or are absent
where they would have been predicted based on chemical intuition. These “(un)ex-
pected” BPs are of much interest. It is occasionally stated that BPs are an artifact
reflecting crowding and/or spatial proximity of pairs of atoms. While this is not an
unreasonable working assumption, especially if calculations are to be undertaken
on very large systems [45], BPs are not an automatic result of space proximity of
atoms. To illustrate this point, an important example of the lack of a BP despite un-
usual geometric proximity will briefly be reviewed next [46].

An intriguing suggestion by Ernest et al. appeared in 1998 [47] claiming to report
a first example in the literature of an agostic bond between saturated sp3 carbon
atoms to a transition metal atom. This suggestion has been made on the basis of the
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Fig. 7.3: The molecular graph of a guanine–cytosine base–pair corresponding to Figs. 7.1 and 7.2 as it
emerges from the lines of gradients connecting the atomic nuclei. The lines connecting chemically
bonded nuclei are the “bond paths” (BP). The background has been faded to bring-out the set of BPs
that emerge from the electron density and which define the structure. The saddle point on each BP is
where it crosses the the inter-atomic surface delimiting one atom from its bonded neighbor, these points
are the bond critical points (BCPs). This set of BPs maps to the usual chemical structure (Fig. 7.1 (top)),
but without visual distinction between covalent bonds of different bond orders or between covalent and
hydrogen bonds, all bonds of all types being mapped to one corresponding BP. (The distinction between
the type and strength of chemical bonding emerges from the “bond properties” obtained locally at the
BCP, or through integration along the BP, or integration over the inter-atomic surface or over the volumes
of the two atoms sharing the BP). Adopted from Refs. [33, 42] © 2002 C. F. Matta.
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unusually close proximity of two symmetry-unrelated carbon atoms to a titanium
atom in an organo-titanium complex.

The organometallic complex in question along with the numbering scheme
adopted in the experimental paper appears in Fig. 7.4. In the figure, and remark-
ably, atom C7 is slightly closer to the Ti than C4 which is formally bonded to the
central transition metal atom (d(Ti–C4) = 2.299(6) Å), d(Ti–C7) = 2.293(7) Å). This
Ti–C7 distance is even shorter (considerably) than the fluxional distance to any of
the cyclopentadienyl ring carbons (a Ti–C distance averaging 2.333 Å). The latter
value is well aligned with an average over 832 structures placing the Ti–C (of
η5-cyclopentadienyl) at 2.374 ± 0.031 Å [48]. The Ti–C2 distance of 2.579(7) Å is
considerably smaller than the sum of the van der Waals radii of Ti (ca. 2.2 Å)
and of C (ca. 1.7 Å) [49] which sum is commonly taken as an upper threshold indica-
tor of bonding. Hence, both C2 and C7 appear to be bonded agostically to the central
Ti atom, an extraordinary bonding situation that calls for a closer look at the electron
density distribution and the underlying electronic structure [46].

Bader and Matta performed Hartree–Fock and BLYP-DFT quasi-single point calcula-
tions (after optimizing only the positions of the hydrogen atoms but leaving all
other geometrical parameters at their experimentally-derived values) [46]. The au-
thors used a polarized basis set augmented with the necessary diffuse function for a
proper description of long-range agostic interactions. The basis set used was a
Pople 6–31+G✶ basis for the carbons and the hydrogens while the titanium atom was
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Fig. 7.4: (Left) The chemical structure deduced from X-ray crystallography by Ernst et al. [47]
showing the numbering scheme adopted by these authors. (Right) A ball and stick representation
of the Ti atom (grey sphere) surrounded by the carbon atoms (blue spheres) that can possibly be
bonded according to a distance criterion at the experimental geometry (hydrogen atoms are omitted
for clarity). Beside each carbon atom is its X-ray crystallographic distance from the central titanium
in ångströms. The Ti–C2 and Ti–C7 distances have uncertainties of 0.007 Å while the remaining
quoted Ti–C distances all have an experimental uncertainty of 0.006 Å. The two highlighted atoms
(C2 and C7) are saturated sp3 carbons with distances from the central Ti atom that are suggestive of
a fifth (agostic) carbon-transition metal atom bond for each of these two carbons.
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described by a 14s 11p 6d contracted to [10s 8p 3d] triple-ζ valence basis set. The ensu-
ing density and wave functions were analyzed within the framework of QTAIM.

The analysis produced a set of consistent results indicating the absence of
bonding (or even incipient bonding) between C2 or C7 and the Ti atom. There are no
BPs linking these two proximal carbons to the central Ti. Further, the delocalization
indices (discussed below) indicate an almost complete absence of any electron
sharing between these two particular carbon atoms and the Ti. Thus, for compari-
son, C3, 4, 5, 6, and 8 have delocalization indices (DIs) with Ti of 0.14, 0.14, 0.11,
0.24, and 0.33 electrons, respectively. Meanwhile, C2 and C7 exhibit DIs of 0.03 and
0.06 electrons. It is particularly striking to compare Ti–C4 (d = 2.299(6) Å, and a DI
of 0.14 e-) and the slightly shorter (!) distanced Ti–C7 (d = 2.293(7) Å, and a DI of
0.06 e-). An analysis of the Laplacian of the electron density also shows no indica-
tion of distortion diagnostic of an incipient bonding interaction. There are more de-
tails skipped here for brevity, but the interested reader may consult Ref. [46].

The point of mentioning the example just discussed is that QTAIM is occasion-
ally accused to place bonding where it “should not.” QTAIM shows that, in this
case, there is no unusual agostic bonding despite of the proximity of certain pairs
of atoms. This negative result falsifies claims that whenever atoms within a mole-
cule or a complex are sufficiently close a BP arises and that, because of that, the
promolecule should have the same bonded structure as the full density.

Now, we turn to a counter example: That of a BP appearing where chemical in-
tuition assumes a repulsive interaction. This is the case of the hydrogen–hydrogen
(H . . . H) BP [50]. This BP appears between atoms that are “supposed to” experi-
ence a mutual “steric repulsion” such as pairs of closed-shell hydrogen atoms in a
congested molecular system. These BPs were reported by Cioslowski and Mixon in
1992 and were considered by these authors as an indication of the existence of
“non-bonded repulsive interactions” [51]. The evidence for the stabilizing nature of
this closed-shell interaction has been reported in 2003 [50].

On closer inspection of these H . . . H BPs, it is found that the atomic (virial)
energies of hydrogen atoms that participate in this interaction, which occur fre-
quently in crowded systems, are found to be more negative (more stable) than com-
parable hydrogen atoms that are not linked by such H . . . H interactions. (Vide
infra for the definition of “atomic virial energies.”)

Figure 7.5 provides an example of such systems where an H . . . H BP is ob-
served, which – in this case – occurs in the bay region of phenanthrene. The top
panel of the figure displays the chemical structure, the molecular graph based on
the BPs, and the virial graph. The bottom panel shows a contour map representa-
tion of the electron density (left) and the associated gradient vector field (right),
with the molecular graph superimposed on both.

The gradient vector field suggests a partitioning of the electron density into
atomic basins that span the entire space and which represent the atoms in the mol-
ecules. In the example displayed in Fig. 7.5, the molecular graph, the virial graph,
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and the gradient vector field reproduce the chemical structure phenanthrene (top
left). The figure also exhibits a BP between the crowded hydrogen atoms in the bay
region. This BP reflects a hydrogen–hydrogen bonding interaction which stabilizes
(locally) the system in which it exists.

The discovery of the hydrogen–hydrogen bonding sparked a debate about whether the
H . . . H interaction stabilizes or destabilizes the system [52–56]. One often reads in the
literature that this interaction is “repulsive,” a relic of the concept of steric repulsion, but
it is not clear how a fully optimized equilibrium geometry (with zero forces on the nuclei)
exhibits any net repulsive or attractive interaction. In an optimized geometry, that is, at a
critical point on the potential energy hyper-surface, the energy derivatives with respect
to geometrical changes (the forces) vanish by definition. Thus, the discussion in such
systems can be meaningfully couched in energy terms (stabilities) but not in terms of
energy derivatives (repulsive or attractive forces) as we often see in the literature.

This is a good place to suggest the proper use of language in this context, since
language is important in science. One can, by all means, talk about a locally stabilized
region in a molecule at an optimized geometry (compared to other regions within the
molecule or compared to the same region in a different geometry, say). However, at an
optimized geometry, whether a local/global minimum or a transition state structure, it is

Fig. 7.5: (Top-left): The chemical structure of phenanthrene with the hydrogen–hydrogen
interaction singled out as dotted line. (Top-middle): The molecular graph showing the bond paths
defining the structure and which corresponds to the chemical structure to the left. The red dots on
the bond paths indicate the positions of the bond critical points. (Top-right): The virial graph with
identical topology as the molecular graph. (Bottom-left): A contour representation of the electron
density in the plane of the molecule along with a superimposition of the molecular graph and the
interatomic surfaces of zero flux (see below). (Bottom-right): The gradient vector field associated
with the electron density showing the nuclei as attractors of the gradient field lines and suggesting
a partitioning of the physical space into atoms-in-molecules.

7.1 From topography to topology 121



not meaningful to talk about attractive and/or net repulsive atom–atom interactions
since the energy is stationary with respect to all geometric changes including atom–atom
distances. Several authors refer to the H . . . H interaction as repulsive while others
refer to it as attractive, that is, the interaction is described in terms of forces (i.e., imply-
ing an energy derivative). It seems more appropriate to recast such discussion in terms
of stabilization or destabilization, that is, in energetic terms. Another point worth em-
phasizing is the petitio principii fallacy, more commonly known as the chicken-and-egg
fallacy. We often read/hear about the presence of such and such interaction is the
cause of stability or instability of a system. But the Hamiltonian recognizes no such
“cause-and-effect” relation, they simply coexist: The system is at a minimum and at
that minimum the wave function delivers a density such that a bonding interaction
connects given atomic pairs. Chemical bonding is associated with the particular state of
the system and neither is the cause nor the effect of the other. With these ideas in mind,
we now proceed in the discussion about the H . . . H bonding interaction.

The debate sparked by the discovery of the H . . . H bonding appears to have now
generally subsided in favor of the locally stabilizing nature of this interaction [57–68].
This debate may be rooted in the difficulty that some have in accepting that a locally sta-
bilizing interaction may or may not be associated with a global stabilization of the system
as a whole. Sometimes, the local stabilizing effect of H . . . H bonding is overwhelmed
by the destabilization of other atoms in the molecule, and this is what occurs in planar
biphenyl, for example. In that system, the four ortho-hydrogen atoms are bonded with
BPs and have a considerably lower energy (more stable), by ~8 kcal/mol per atom, than
the average energy of the remaining six hydrogen atoms. The total “local stabilizing” con-
tribution of these ortho-hydrogen atoms is, hence, to the tune of 32 kcal/mol.

Further, in the planar (transition state) structure, the two para-carbon atoms
are also more stable than their counterparts in the twisted geometry, each by
~3 kcal/mol. Hence, the main atoms that stabilize the planar transition state, that is,
the four ortho-hydrogens and the two para-carbons, together lower the total energy
of the system by ~38 kcal/mol compared to the twisted global minimum structure.
Meanwhile, to accommodate the H . . . H bonded atoms in planar biphenyl, the bond
between the two ipso-carbon atoms linking the two phenyl rings elongates. As a re-
sult of this elongation, the different contributions to the atomic energies are altered
with respect to their corresponding values in the minimum twisted structure.

In the planar structure, there is a considerable loss of stabilizing interaction be-
tween the electrons in the basin of one ipso-carbon and the nucleus of the symme-
try equivalent counterpart on the other ring (and vice versa). As a result, the virial
energies of each of these two carbon atoms increases by 22 kcal/mol, leading to a
total of 44 kcal/mol of energetic destabilization in the planar structure with respect
to the twisted one. Ignoring the smaller changes in the virial energies of the rest of
the atoms in biphenyl as it twists (differences that are all are less than 1 kcal/mol)
and if we now account for the dominant stabilizing and destabilizing contributions
we have –38 + 44 ≈ 6 kcal/mol (the actual energy barrier is approximately 3 kcal/mol).
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Thus the four ortho-hydrogens and the two ipso-carbons are the main contributor to
the energy barrier of rotation in biphenyl, and – to a lesser extent – the two para-
carbons atoms [50, 60, 61–62].

It may be simpler to teach freshmen students that biphenyl twists because of a re-
pulsive steric interaction between two pairs of “sterically clashing” ortho-hydrogens in
the planar transition state. An atom-by-atom energy analysis does not support this
view. Instead the twisting of biphenyl is associated with the insufficiency of the local
stability imparted by the two H . . . H bonding interactions in the planar structure to
compensate the destabilization associated with the two ispo-carbon [50, 60, 61–69]. Al-
bert Einstein is credited to have said [70]:

It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic ele-
ments as simple and as few as possible without having to surrender the adequate representation
of a single datum of experience. Albert Einstein (date unknown)

This quotation is sometimes simplified as [e]verything should be made as simple as
possible, but not simpler, and the H . . . H bonding is a case in point.

If the interaction of two-closed-shell hydrogen atoms can be placed on a linear
scale, then the hydrogen . . . hydrogen bonding falls at one end opposite to the di-
hydrogen bonding [66, 71–76]: In the former, the pair of hydrogens involved in the
bonding bear identical (or similar) net electrical charges – and could be close to
electrical neutrality, while in the latter the bonding is between an acidic (positively
charged) hydrogen atom and a hydridic (negatively charged) one.

7.2 Critical points in the electron density

The previous section reviews how the topography of the electron density scalar
field dictates a bonded topology. The gradient vector field associated with the elec-
tron density can be used as a basis to delimit mono-atomic regions that can be asso-
ciated with atoms-in-molecules (AIMs). The various AIMs are delimited from one
another and do not overlap and they leave no gaps in the molecule that are unac-
counted for. Their volumes cover all space, with the exception of systems with
NNAs/NNMs in which case all space is covered upon taking the volumes of the
NNAs’ basins into account as well.

The three first derivatives of the electron density scalar field vanish at CPs.
Thus, by definition, a CP is one where:

∇ρ= ex
dρ
dx

+ ey
dρ
dy

+ ez
dρ
dz

=~0, (7:10)

where the zero vector implies that every one of the three separate derivatives in the
above Cartesian expression of the gradient is identically zero and not just the sum of
the three terms.
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Local minima, local maxima, and saddle points can be distinguished by
the second derivative. The nine second derivatives of the electron density, when
cast into a matrix format, constitute the so-called the Hessian matrix (A(rc)). At a
CP (rc), the Hessian is:

AðrcÞ=
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@2ρ
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. (7:11)

Since the Hessian matrix is real and symmetric, it is diagonalizable. Such diagonaliza-
tion is equivalent to a coordinate rotation (in Cartesian expression: from r = (x, y, z) to
r’ = (x’, y’, z’)). The rotation is chosen to align x’, y’, z’ with the three principal curva-
tures at the point of evaluation. The diagonalized Hessian (Λ) is written (in Cartesian
coordinates) as:

Λ=
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0 0
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0

0 0
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, (7:12)

where the diagonal elements represent the three pure second derivatives, each with
respect one of the principal axes. These curvatures are given the symbol λ (with nu-
merical subscripts defined below). In this way, the diagonalized Hessian can be ex-
pressed as:

Λ �
λ1 0 0

0 λ2 0

0 0 λ3

0
B@

1
CA. (7:13)

The trace of Hermitian matrices is invariant to rotations of coordinates, and so is
the trace of the Hessian introduced above. This trace coincides with the Laplacian
of the electron density, which is written in its general form as:

∇2ρðrÞ=∇ ·∇ ρðrÞ, (7:14)

or in Cartesian coordinates form as:

∇2ρðrÞ= @2ρðrÞ
@x2

+ @2ρðrÞ
@y2

+ @2ρðrÞ
@z2

. (7:15)
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CPs can be classified using the three curvatures of the density. A CP is assigned a
rank (ω) and a signature (σ). The number of nonzero curvatures of a given CP is its
rank. CPs of lower rank than the dimensionality of space (ω < 3) are unstable and
are rarely seen in electron density maps of equilibrium molecular structures. If
present, such lower rank CPs are indicative of an imminent change in topology. In
the majority of cases, thus, ω = 3. The signature counts the number of positive cur-
vatures minus the number of negative ones. Given that the signature of a stable
CP can only take the values −3, −1, +1, +3; we are left with four types of CPs:
– (3, –3): A local maximum (three negative curvatures).
– (3, –1): A saddle point (two negative curvatures and a positive one).
– (3, +1) A minimum in a given plane (two positive curvatures and a negative one).
– (3, +3) A local minimum (three positive curvatures).

Each type of critical point is identified with an element of chemical structure: (3,‒3)
nuclear critical point (NCP) (also non-nuclear attractors critical point (NNACP));3 (3,–1)
bond critical point (BCP); (3,+1) ring critical point (RCP); and (3,+3) cage critical point
(CCP). The number n and type of critical points that can coexist in a molecule follow
a topological relationship known as the Poincaré-Hopf relationship (PH) which states
that [2]:

nNCP + nNNACP − nBCP + nRCP − nCCP = 1: (7:16)

For an infinite crystalline lattice, the above equation is replaced by the Morse equa-
tion in which the equality is changed so that the right hand side is equal to zero, i.e.
[77]:

nNCP + nNNACP − nBCP + nRCP − nCCP =0: (7:17)

The satisfaction the PH or the Morse relation is a necessary condition to ensure that
no critical points in the system have been overlooked. The satisfaction of the rele-
vant relation is, however, an insufficient condition since, in principle, one can add
or omit the same number of oppositely-signed critical points and this would leave
eqs. (7.16) or (7.17) unchanged [6]. For example, if a bond critical point and a ring
critical point have both been missed, the Poincaré-Hopf relationship would still be
valid, as in Eq. (7.18):

nNCP + nNNACP − ðnBCP − 1Þ+ ðnRCP − 1Þ− nCCP = 1: (7:18)

 A nuclear critical point is not really a maximum since it is a cusp under the zero-nuclear size
approximation. The derivative of the electron density at these cusps is, technically, ill-defined.
However, the nuclear cusps are equivalent topologically and topographically to true maxima
(where the derivative vanishes), and hence are treated as such. In contrast, a non-nuclear attractor
critical point is a true maximum where the derivative vanishes.
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Missing two CPs is unlikely with today’s available software.
Normally, a CCP is enclosed by a polyhedron of ring surfaces from all sides,

being literally located in a cage of ring surfaces. But this is not mathematically re-
quired as stated by Bader [2]: while it is mathematically possible for a cage to be
bounded by only two ring surfaces, the minimum number found in an actual molecule
so far is three, as in bicyclo [1.1.1] pentane, for example. This remained merely a math-
ematical possibility with a few exceptions as in the case of the derivative of the heli-
cal difluorinated polycyclic aromatic hydrocarbon 1,12-difluorobenzo[c]phenanthrene
[78] and in the case of cyclooctatetraene [79] where, in both cases, a CCP is bounded
by only two ring surfaces (instead of the minimum of three for a normal cage).

7.3 The zero-flux surface bounding proper open quantum
systems

In the previous section, the zero-flux surface partitioning of the molecular space
was introduced pictorially. The separatrix between an atom and its bonded neigh-
bor is expressed as the so-called Bader zero-flux condition:

∇ρðrÞ ·nðrÞ=0, 8 r 2 SðΩ, rÞ, (7:19)

where n(r) is the normal vector to the surface and Ω is an atomic basin bounded by
the surface S. The condition expressed in eq. (7.19) is to be understood as a condi-
tion of local zero-flux. Generally, an atomic surface is the union of a number of
zero-flux interatomic surfaces:

SðΩÞ=
[
i

SðΩjΩiÞ, (7:20)

where the symbol Ωi refers to the ith bonded neighbor of Ω and where the vertical
bar denotes the zero-flux surface between atom Ω and Ωi. We now turn to the ques-
tion of the fundamental nature of the Bader condition as a prerequisite to define
proper open quantum systems or, as more commonly known, AIMs.

An open quantum system is defined as a bounded volume contained within a
total system such as an atom in a molecule or in a crystal. The total system, in this
case, the molecule or the crystal in question, is the analogue of the thermodynamic
“closed system” while the open quantum system is the analogue of the thermody-
namic “open subsystem” within a larger closed system.

Suppose we mentally isolate a region within a total system, that is, a subsystem
without any restriction on the choice of the form of its bounding surface. In this
case, the kinetic energy due to the electronic motion cannot be defined uniquely as
can be seen from what follows. We first start by applying the Leibniz identity for the
divergence of a product of a vector function and a scalar function (where the vector
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function is the gradient of an arbitrary but otherwise well-behaved complex scalar
function of three-dimensional space ψ taken here to be a one-particle wave function):

∇2ðψ✶ψÞ=∇ · ð∇ψ✶Þψ+ψ✶ð∇ψÞ½ �
= ð∇2ψ✶Þψ+ψ✶ð∇2ψÞ+ 2∇ψ✶∇ψ, (7:21)

where the star denotes complex conjugation.
Rearranging eq. (7.21), and realizing that for a one particle system ψ✶ψ= ρ, this

equation can be rewritten:

− ψ∇2ψ✶ +ψ✶∇2ψ
� �

= 2∇ψ✶ ·∇ψ−∇2ðψ✶ψÞ: (7:22)

Multiplying the above expression by constants that convert its dimensions to those
of an energy density, and generalizing to an N-electron system described by an anti-
symmetrized many-electron wavefunction Ψ through the repeated action of a given
operator with respect to the coordinates of each of the N-electrons, we get:
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where m is the rest mass of an electron.
Since electrons are indistinguishable and Ψ is antisymmetric, one can replace a

given sum of N identical one-electron operators by N times the result of the corre-
sponding operation in eq. (7.23) which gives:
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In eq. (7.24), the lead N has not been cancelled out in preparation for the following
step. That step, which follows in eq. (7.25), converts the dimensions of three quantities
in eq. (7.24) into those of one-electron energy densities. Thus, integrating the former
expression over all space using the mode of integration introduced in eq. (7.4) leads to:

−
�h2

4m
N
ð
dτ0 Ψ∇2Ψ✶ +Ψ✶∇2 Ψ
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kðrÞ

= �h2

2m
N
ð
dτ0∇Ψ✶ ·∇Ψ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gðrÞ

−
�h2

4m
∇2ρ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

lðrÞ

, (7:25)

where k(r) is termed the “Schrödinger kinetic energy density”, g(r) is known as the
“gradient kinetic energy density”, and l(r) is the Laplacian distribution function of
the electron density. The integration of the above terms over the remaining coordi-
nate r, together with their respective lead constants, yields the corresponding ener-
gies denoted as K, G, and L.
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Because the gradient of the electron density vanishes at infinity (∇ρ → 0, at
r → ∞), the last term in eq. (7.25) also vanishes when integrated over all space
(since ∇2ρ=∇.∇ρ). Thus, if the limits of the integration cover all space we have,

K =G=T, (7:26)

where T is a well defined kinetic energy since now the integrals of the two distinct
expressions of the kinetic energy density (k and g) converge to the same result
when the integral is taken over all space.

In contrast, if the integral of eq. (7.25) over the remaining space coordinate r is
taken over an arbitrary (open) subsystem Ω, the last integral will generally not van-
ish. This leads to the non-physical result whereby the two correct expressions of the
kinetic energy density give different values for the kinetic energy of that subsystem.
Stated differently, in general, the kinetic energy of an arbitrary subsystem is ill-
defined.

To emphasize the inequality of K and G when evaluated over an arbitrary piece
Ω of a total system, we rewrite eq. (7.25) after performing the integral over a sub-
space Ω (instead of over all space) and after using the identity∇2ρ=∇.∇ρ:

KðΩÞ=GðΩÞ− �h2

4m

ð
Ω

dr ∇ ·∇ρ, (7:27)

where the last term (Laplacian function) is saved since it is generally non-vanishing
in this case.

We next apply Gauss’ divergence theorem to convert the volume integral of the
divergence of the gradient of the electron density into a surface integral to obtain
an expression for the net (total) flux of the gradient vector field of the density
through the bounding surface. This procedure leads to:

KðΩÞ=GðΩÞ − �h2

4m

þ
dSðΩ; rÞ∇ρ ·nðrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

LðΩÞ
,

(7:28)

where n(r) is the normal vector to the closed surface S.
Equation (7.28) limits the equality expressed in eq. (7.26) to only those cases

where the Laplacian function integral is zero when integrated over the surface S
bounding Ω. Those cases where the Laplacian function integral vanishes when inte-
grated over S (S not at infinity) are those in which S satisfies Bader’s boundary con-
dition (eq. (7.19)). Only then will the kinetic energy be well-defined and equality
(7.26), K = G = T, is recovered this time for a part of the total system.

When used in conjunction with an atomic statement of the virial theorem, the
kinetic energy of an atom-in-a-molecule is sufficient to determine the contribution
of that atom to the total energy (a contribution that contains all the (intractable)
atomic contributions to the potential energy terms). Thus, provided a virial theorem
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(which will be proven later) can be stated for an atom-in-a-molecule Ω, that is, that
the energy of that atom satisfies:

TðΩÞ= −
1
2
VðΩÞ, (7:29)

then the total energy of that atom-in-a-molecule is:

EðΩÞ= TðΩÞ+VðΩÞ= −TðΩÞ · (7:30)

The result expressed in eq. (7.30) is quite striking as it implies that the energy of
atom Ω is simply the negative of its readily computable average kinetic energy (T
(Ω)). As a consequence of this result, the total energy of a molecule (which includes
the nuclear-nuclear repulsion energy) can be expressed as the sum of the energy
contributions of its composing atoms, thus:

E =
X
Ω

EðΩÞ: (7:31)

Bader often emphasized the observational basis of his theory and, that is, when the
electron density is transferable the kinetic energy density is also transferable and, by
virtue of eqs. (7.30) and (7.31), so is the total energy of the molecule. In this context,
Bader used to say (as recalled by one of the authors (C.F.M.)) that the form of an
atom in a molecule determines that atom’s contribution to the total energy and that
atoms that “look” the same contribute equal amounts to the total energy.

There exists families of functional forms that represent an infinity of valid ex-
pressions for the kinetic energy density such that their integrals over all space
deliver the correct (unique) total kinetic energy of the system [80–82]. However,
there appears to be a special role for the Schrödinger (k) and the gradient (g) kinetic
energy densities as they are related, locally, by a term proportional to the Laplacian
of the electron density as can be seen from eqs. (7.25) – (7.28).

7.4 Coincidence of the topological atom and the quantum atom

Quantum mechanical operators are Hermitian4 when used in obtaining the corre-
sponding quantum mechanical average over all space. In other words, Hermiticity is
a property of operators averaged over the entire closed system and not over an open
subsystem such that the same quantum mechanical operator when integrated over a
subspace is no longer Hermitian. This is a consequence of, unlike the closed total

4 Hermiticity ensures that the eigenvalues of Ô are real as required for observables. An operator Ô is
termed Hermitian if it is self-adjoint, that is, Ô= Ô†. The matrix representation of a Hermitian operator
satisfies hajÔjbi= hajÔ†jbi= hbjÔjai✶ where in this case the adjoint indicated by the superscripted
dagger (†) implies complex conjugation and transposition of the matrix.
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system, an open system experiences fluxes in property currents across its bounding
surface. The development of the remainder of this (and the next) section(s) follows
closely Bader’s book [2].

The temporal evolution of an operator average hÂi is expressed by the Heisen-
berg equation of motion. This equation, written within the Schrödinger representa-
tion reads:

d
	
Â



dt
= i

�h

	
Ψ
���Ĥ, Â���Ψ
, (7:32)

where
�
Ĥ, Â

�
is the commutator of the operator Â with the Hamiltonian of the system,

and the angular bracket (in Dirac notation) indicate quantum averaging such that:	
Ψ
�
Ĥ, Â

���Ψ
 = 	Ψ ĤÂ
�� ��Ψ
− 	Ψ ÂĤ

�� ��Ψ
.�� (7:33)

Recalling Schrödinger equation written in Dirac notation:

Ĥ Ψ


=E Ψ



,

���� (7:34)

and because of the Hermiticity of Â, eq. (7.33) yields:

	
Ψ
���Ĥ, Â�jΨ
= 	ĤΨ��ÂΨ
− 	Ψ��Â E

��Ψ

=E
	
Ψ
��Â��Ψ
−E

	
Ψ
��Â��Ψ
=0, (7:35)

where Ψ is not necessarily an eigenfunction of Â, in other words:

	
Ψ
�
Ĥ, Â

��� ��Ψ
 = 0, (7:36)

that is, the commutator of a Hermitian operator with the Hamiltonian vanishes.
This is the well-known hypervirial theorem of quantum mechanics.

For an open system Ω, however, the Hermiticity of an otherwise Hermitian op-
erator is no longer guaranteed. The averaging over the subsystem involves a special
mode of integration whereby the integral is first taken over all space with respect to
the coordinates of all electrons except one followed, as usual, by summation over
all spins, and then a space integration over the remaining coordinates only over the
open system’s volume Ω. The non-Hermiticity is expressed symbolically as,	

Ψ ĤÂΨ


Ω≠
	
ĤΨ ÂΨ



Ω,

���� (7:37)

in general, and, in this case:	
Ψ
�
Ĥ, Â

��� ��Ψ
Ω = 	Ψ ĤÂΨ


Ω −

	
Ψ ÂĤΨ



Ω ≠ 0.

���� (7:38)

Let us manipulate this result by adding and subtracting
	
ĤΨ ÂΨ



Ω

�� and using
Schrödinger equation:
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=
	
Ψ ĤÂΨ



Ω −

	
ĤΨ ÂΨ
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Ψ ÂΨ
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Ψ ÂΨ



Ω

�������� (7:39b)

=
	
Ψ ĤÂΨ



Ω −

	
ĤΨ ÂΨ



Ω.

���� (7:39c)

In what follows, we consider the case of a single electron which can then be general-
ized to the many-electron system by the integral

Ð
dτ′ followed by multiplication by

the total number of electrons N (as in eq. (7.5)).
The Hamiltonian of a single-electron atom is expressed as:

−
�h2

2m
∇2 −

e2

4πε0r

" #
Ψ=EΨ. (7:40)

Now, since the potential energy operator in this Hamiltonian is additive, it will
cancel if the explicit Hamiltonian is inserted into eq. (7.39c). With this cancella-
tion, one gets:

	
Ψ
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Ĥ, Â��� ��Ψ
Ω = �h2

2m

ð
Ω
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�
∇2Ψ✶� �

Â Ψ − Ψ✶ ∇2 �ÂΨ�� (7:41a)

= �h2

2m
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dr ∇ ·
�
∇Ψ✶ð Þ Â Ψ − Ψ✶ ∇

�
ÂΨ
��

. (7:41b)

Converting the volume integral in eq. (7.41b) into a surface integral using Gauss’
theorem, we obtain:
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���Ĥ, Â���Ψ
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þ
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2m
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·nðrÞ,|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
i�ðnegative of the current density of propertyAÞ

(7:42)

where the integrand is i times minus the current density vector of A through the
surface, –jA(r), where this current is expressed as:

jAðrÞ �
�h
2mi

�
Ψ✶∇ðÂΨÞ− ð∇Ψ✶Þ ðÂΨÞ�. (7:43)

Equation (7.42) brings to the fore the difference between an open and a closed sys-
tem. In the former, the commutator average of property A, hΨj½Ĥ, Â�jΨi Ω is equal to
the flux in the density of A across the surface bounding the subsystem.

In order to guarantee that the result of the averaging is a “real” quantity, as
required for an observable, one averages each term and its complex conjugate (cc)
so that the imaginary part cancels in the process. Applying this averaging to eq.
(7.42) along with the definition of the quantum mechanical current (eq. (7.43)) yields:
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þ
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. (7:44)

In short, there exists a net flux in the density of A through the bounding surface of
the subsystem if Ĥ and Â do not commute. That flux is given by the surface integral
of this property current density through S given in the right-hand side of eq. (7.44).

To derive his famous equation, ĤΨ=EΨ, Schrödinger imposed a stationarity
condition on the energy functional J[Ψ] with respect to first-order variations in the
wave function (δJ[Ψ] = 0) along with a normalization constraint [83]. The Schrö-
dinger energy functional is:

J½Ψ�=
ð
dτ

�h2

2m

 !
∇Ψ✶ · ∇Ψ + ðV̂ + λÞΨ✶Ψ

" #
, (7:45)

where λ, the Lagrange multiplier for the constraint, is the negative of the total en-
ergy, that is, E = −λ), where the unprimed integration runs over the coordinates of
all the electrons (without exception) followed by summation over all spins.

Following a similar line of development, Serbrenik and Bader applied Schrö-
dinger’s steps to a subsystem [84]. They proposed an analogue of the Schrödinger’s
energy functional expressed above but for an (open) subsystem, the constrained
atomic energy functional (G) [84]:

G½Ψ,Ω�=
ð
Ω

dτ
�h2

2m

 !
∇Ψ✶ ·∇Ψ+ ðV̂ − EÞΨ✶Ψ

" #
�
ð
Ω

dτ f ðΨ,∇ΨÞ , (7:46)

where f, the integrand, is a function of both Ψ and ∇Ψ.
The variation of G over the subspace Ω, that is, δG[Ψ,Ω], consists of two contri-

butions: One from the variation of the integrand while the surface is held constant
and the second from the variation of the surface while the integrand is held con-
stant. Further, if one considers Ψ and Ψ✶ as two symmetric but independent varia-
bles, we get:

δG½Ψ,Ω�=
ð
Ω

dτ
@f
@Ψ

� �
δΨ+ @f

@∇Ψ

� �
δ∇Ψ

� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variation of f while the surface is constant

+
þ
dSðΩ, rÞ f � δSðΩ, rÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

variation of the surface while f is constant

+ cc

(7:47)

where the cc results from the variation of Ψ✶. This result yields (see [85]):
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(7:48)

If the system extends to infinity, that is, when Ω = ℝ3 and coincides with the total
closed system, its bounding system is, by definition, at infinity. Since the wave func-
tion vanishes when r =∞, hence, in this case δΨ = 0 and the surface term also van-
ishes as a consequence. Alternatively, the surface term can be made to vanish
through the imposition of what is known as the natural boundary conditions, that is:

∇Ψ ·nðrÞ=0 and ∇Ψ✶·nðrÞ=0 8 r=1. (7:49)

The cancellation of the surface term when Ω =ℝ3 simplifies eq. (7.48) to:

δG½Ψ,Ω�=
ð
Ω

dτ ½ĤΨ− EΨ�δΨ+ cc =0. (7:50)

However, eq. (7.50) is true for arbitrary variations in Ψ which can only be true if the
integrand itself vanishes leading us to Schrödinger equation and its complex conjugate:

ĤΨ=EΨ and ĤΨ✶ =EΨ✶. (7:51)

Thus, Schrödinger’s equation applies at the point of variation of Ψ. Since this is the
case, the first term in eq. (7.48) vanishes for a subsystem and for the total system.
Ridding this equation from this term, we obtain:

δG½Ψ,Ω�=
þ
dSðΩ, rÞ �h2

2m

 !
∇Ψ✶ ·nðrÞδΨ+ f ðΨ,∇ΨÞ δSðΩ, rÞ

" #
+ cc. (7:52)

Since the surface term vanishes for the total system, we write:

δG½Ψ, ðΩ=ℝ3Þ�=0. (7:53)

In contrast, for a subsystem, δG[Ψ,Ω] ≠ 0 in general. In this latter case, and as men-
tioned explicitly with regard to the second term of eq. (7.48), δG[Ψ,Ω] as it appears
in eq. (7.52) consists of a term proportional to the variation of Ψ at the surface of the
subsystem in addition to another term proportional to the variation of the surface.
The latter surface term in eq. (7.52) renders this equation nonoperational. To get rid
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of this system, one may restrict the subsystem to a particular subclass of all possi-
ble open system.

To pursue this restriction, let’s first write the integrand f(Ψ,∇Ψ), defined in
eq. (7.46) which incorporates the Hamiltonian operator, with its complex conjugate.
Since f = f✶, including the complex conjugate effectively doubles f and we obtain:

2f ðΨ,∇ΨÞ= ðĤΨÞ✶Ψ+Ψ✶ĤΨ
h i

− 2EΨ✶Ψ+ 2
�h2

4m

 !
∇2ðΨ✶ΨÞ. (7:54)

Since Schrödinger equation and its complex conjugate are assumed to apply, all
but the last term in eq. (7.54) vanish and we are left with:

f ðΨ,∇ΨÞ= �h2

4m

 !
∇2ρðrÞ. (7:55)

This result implies that when Schrödinger equation applies the Schrödinger en-
ergy functional is proportional to the Laplacian of the electron density. Inserting
eq. (7.55) into the expression for δG[Ψ,Ω], that is, eq. (7.52), we get:

δG½Ψ,Ω�=
þ
dSðΩ, rÞ �h2

4m

 !
2∇Ψ✶ ·nðrÞδΨ+ δSðΩ, rÞ ∇2ρ
� �" #

+ cc. (7:56)

This last result leads to an “atomic statement” of the hypervirial theorem upon re-
stricting the subsystem to one satisfying a variational constraint on its form im-
posed through a trial function Φ. We define subsystem Ω =Ω(Φ) delimited from the
full system by a zero-flux surface (eq. (7.19)) that partitions the trial electron density
corresponding to Φ, where this density is defined:

ρΦðrÞ=
ð
dτ′ Φ✶Φ. (7:57)

As Φ→Ψ, the region of space bounded by the zero-flux surface (that we will call an
atom-in-a-molecule or a crystal (an AIM for short), henceforth) is continuously ap-
proaching the true AIM Ω(Ψ) as we impose the following variational constraint at
all stages of the variation for an admissible trial function Φ:ð

ΩðΦ!ΨÞ

dr∇ · ∇ρΦ½ �=
ð

ΩðΦ!ΨÞ

dr∇2ρΦ =0, (7:58)

which implies:

δ
ð
Ω

dr∇2ρΦðrÞ
" #

= 0. (7:59)
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The variation in eq. (7.59) is, once again, a sum of a variation of the surface and the
variation of the integrand. Written explicitly, we have:

�h2
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4m
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or
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= −
�h2

4m

ð
Ω

dr ∇ · ∇Ψ✶δΨ+Ψ✶∇δΨ½ �, (7:62)

and upon applying Gauss’ theorem to convert the volume integral to a surface inte-
gral, we obtain:

�h2
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Inserting this last result into eq. (7.56), we obtain Schrödinger’s energy functional
for the subsystem expressed as a surface integral of electron current density:

δG½Ψ,Ω�= �h2

4m

þ
dSðΩ, rÞ ð∇Ψ✶Þ δΨ−Ψ✶δð∇ΨÞ½ � ·nðrÞ + cc, (7:64)

by varying the expression for the current density (eq. (7.43)) after substituting Â= 1̂,
we obtain:

δjðrÞ= �h
2mi

Ψ✶δð∇ΨÞ− ð∇Ψ✶ÞδΨ½ �, (7:65)

which upon inserting into eq. (7.64) gives:

δG½Ψ,Ω�= −
i�h
2

þ
dSðΩ, rÞ δjðrÞ ·nðrÞ + cc. (7:66)

At this point, Bader applies Schwinger’s infinitesimal unitary transformations [86]
acting on the state function or observables. An infinitesimal unitary transformation
is represented by the operator:

Û = 1̂−
iε
�h
Ĝ (7:67)
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and its Hermitian conjugate (which is also its inverse):

Û
− 1 = 1̂+ iε

�h
Ĝ (7:68)

where ε is an infinitesimal and Ĝ is a linear Hermitian operator that generates the
transformation. To first order, the variations in Ψ and in Ψ✶ are expressed in terms
of the generator Ĝ:

δΨ= −
iε
�h
ĜΨ (7:69)

and

δΨ✶ = iε
�h
ĜΨ✶: (7:70)

If we now substitute δΨ and δΨ✶ in eqs. (7.65) and (7.66) by their infinitesimal gen-
erators, we obtain [87]:

δG½Ψ,Ω�= −
ε
2

þ
dSðΩ, rÞ jGðrÞ ·nðrÞ+ cc

� 
, (7:71)

which is identical to the right-hand side of eq. (7.44) up to a sign and ε. Hence, we
may write:

δG½Ψ,Ω�= −
ε
2

i
�h

	
Ψ
���Ĥ, Ĝ���Ψ
Ω + cc

� �
, (7:72)

which is a mathematical expression for the principle of stationary action for a sta-
tionary state, whether for the total closed system when Ω = ℝ3 or for a subsystem
when Ω <ℝ3.

The above development brings about the following important conclusion: The
topological and the quantum mechanical AIM are coinciding if the AIM is bounded by
a zero-flux surface (eq. (7.19)).

7.5 The atomic statement of the virial theorem

The atomic virial theorem expressed for an open system is central to QTAIM since it
allows one to define the atomic contribution to the total energy uniquely and rigor-
ously. It is also an excellent example of application of the generalized statement of
the stationary action, developed in the previous section (expressed in eq. (7.72)), to
an open subsystem.

If we now replace the generator Ĝ in eq. (7.72) by the virial operator r̂ · p̂, where
r̂ and p̂ are the position and momentum operators, equating the right-hand side of
both eqs. (7.72) and (7.71), and generalizing to an N-electron system, we have:
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Evaluating the explicit form of the commutator in the last equation, the L.H.S.
gives:

N
2

i
�h

	
Ψ
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which defines the two resulting terms on the right side of eq. (7.74) by re-writing it
in a condensed and more suggestive form as:
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= 2TðΩÞ+VbðΩÞ , (7:75)

where Vb(Ω) is the volume integral of the virial of the Ehrenfest force acting on an
electron over the basin of atom Ω, and where T(Ω) is the volume integral of the
kinetic energy density over the same AIM. The virial has dimensions of energy and
Vb(Ω) represents the contribution of the virial of the Ehrenfest force integrated over
the volume of the subsystem’s basin to the potential energy of that atom in the mol-
ecule or crystal.

Turning to the right-hand side of eq. (7.73), if we substitute eq. (7.43), we obtain:
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which is a result that, using the vector calculus identity

∇ðr ·∇ΨÞ=∇Ψ+ r ·∇∇Ψ, (7:77)

can be written more compactly as:
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7.5 The atomic statement of the virial theorem 137



where the last term is nothing but the atomic integral of the Laplacian function as it
appears in eq. (7.28), and where the one-electron quantum stress tensor σ$ðrÞ is de-
fined as:

σ$ðrÞ= −
�h2

4m
Ψ✶∇ð∇ΨÞ+∇ð∇Ψ✶ÞΨ−∇Ψ✶∇Ψ−∇Ψ∇Ψ✶½ �. (7:79)

The first term on the right-hand side of eq. (7.78) is the negative of the virial of the
Ehrenfest forces acting on the surface of the atom (r · σ$ðrÞ ·nðrÞ), where σ$ðrÞ ·nðrÞ
has the dimension of force per unit area and is pointing to the outside of the subsys-
tem. The virial itself has the dimension of energy. The contribution of the surface vi-
rial to the energy of an AIM is, thus, written as:

V SðΩÞ=
þ
dSðΩ, rÞ r · σ$ðrÞ ·nðrÞ. (7:80)

A comparison of eqs. (7.75) and (7.78) allows us to write:

2TðΩÞ+V bðΩÞ = −V SðΩÞ+ LðΩÞ, (7:81)

which, upon realizing that the integral of the Laplacian function over an AIM (also
known as the atomic Lagrangian) vanishes, that is, that:ð

Ω

dr∇2ρ=0, (7:82)

simplifies to:

V ðΩÞ= − 2TðΩÞ, (7:83)

where

V ðΩÞ � V bðΩÞ + V SðΩÞ, (7:84)

is the total atomic virial stemming from two contributions: a basin and a surface
term. The result in eq. (7.83) is Bader’s expression of the virial theorem for an atom
in a molecule.

Thus, in analogy to the molecular total energy, an AIM’s energy is the sum of
its virial and kinetic energy contributions. If there are no net forces exerted on the
nuclei (i.e., in an optimized geometry) there are no additional terms due to the virial
of these forces, and in this case the atom’s electronic virial expressed in eq. (7.84) is
identified as its potential energy V (Ω) = V(Ω). We have now proved the important
result expressed above in eqs. (7.29) and (7.30).

Given the atomic statement of the virial theorem for an equilibrium geometry,
whether a local or global minimum or a transition state on the potential energy sur-
face, the total energy of the system can now be written as a sum of virial atomic ener-
gies (eq. (7.31)). This remarkable result is a quantum mechanical partitioning of all
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the complicated interactions within a molecule into additive atomic energies each
of which includes in it contributions from electron–nuclear, electron–electron,
and nuclear–nuclear interactions that are difficult or impossible to split on an
atom-by-atom basis individually otherwise.

7.6 The Laplacian of the electron density

From eqs. (7.14) and (7.15), the Laplacian can be either positive or negative in its
overall sign and can be zero. If ∇2ρðrÞ>0, this indicates a local depletion of elec-
tronic charge density relative to its average surroundings while if ∇2ρðrÞ<0 then
the density is locally concentrated. Such local charge concentrations and depletions
have been found to play the role of Lewis basic/acidic centers, respectively. Gener-
ally (at least for the 3–4 first rows of the Periodic Table), the Laplacian reflects well
the atomic shell structure in isolated atoms. In this sense, and unlike the monotoni-
cally declining electron density as a function of the distance from a give nucleus,
the Laplacian captures the alternation of charge concentration and charge deple-
tion that characterize an atomic shell [88, 89]. The outermost charge concentration
shell, the so-called valence shell charge concentration (VSCC), is surrounded from
the exterior by a sphere of charge depletion that goes to infinity. In a molecule or a
crystal, the spherical symmetry of the VSCC can be broken and it can also be punc-
tured. In these cases, and quoting Bader, a “lump” in the VSCC represents an elec-
tron donating region (a Lewis basic center) while a “hole” in the Laplacian plays
the role of a Lewis acid center. In view of its depiction of regions of electronic
charge concentration and depletion, the Laplacian has been shown to provide the
physical basis for the Gillespie–Nyholm valence shell electron pair repulsion model
(more commonly referred to in literature as the VSEPR model) of molecular geome-
try [90–97].

7.7 Examples of bond properties

This and the next section are far from a complete survey of all the bond properties.
Only a few commonly used ones are cited briefly to keep this work self-contained.

7.7.1 The electron density at the BCP (ρb)

The electron density at the BCP provides a measure of the strength of the chemical
bond especially in predominantly covalent type of bonding (with small or no charge
transfer).
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7.7.2 The Laplacian of the electron density at the BCP (∇2ρb)

From eqs. (7.14) and (7.15), the Laplacian, evaluated at the BCP, is the sum of the
three curvatures. By definition, the two curvatures that are perpendicular to the BP
are listed first in decreasing order of their magnitudes (|λ1| > |λ2|) and both are nega-
tive, while the curvature parallel to the BP, the only positive one, is λ3.

The magnitudes of the two negative curvatures quantify the degree to which
density is concentrated along the bond path. The magnitude of the positive curva-
ture measures the extent to which the electron density it is depleted at the point of
intersection of the bond path and the interatomic surface and concentrated in the
direction of the bonded atoms’ nuclei.

In a primarily covalent interaction with significant electron sharing, the density
is accumulated between the nuclei such that such bonding is characterized by a rela-
tively large magnitude of ρb and by a negative Laplacian, an example is a C–H bond
with ρb = 0.29 au and ∇2ρb = –1.1 au. Closed-shell interactions, on the other hand, are
characterized by a removal of electron density from the contact region of the two
bonded atoms and hence the magnitude of ρb is relatively small and the Laplacian is
positive. An example of the latter is a typical hydrogen bond such as >C=O. . .H–N<
with ρb = 0.01 au and ∇2ρb = +0.03 au. Finally, for significantly polar interactions, as
in C=O, charge still accumulates between the nuclei as in shared interactions but the
dominance of charge transfer is such that the BCP occurs where the valence density
borders the core of the electropositive atom. In this case, the Laplacian rises steeply
then changes sign and, hence, ∇2ρb can be of either sign for such polar bonding.

7.7.3 The bond ellipticity (ε)

This is a gauge of the preferential accumulation of the electronic charge density
within a given plane and is defined as:

ε= λ1
λ2

− 1 ðwhere λ1j j≥ λ2j jÞ. (7:85)

For cylindrically-symmetric bonds, for example, the carbon–carbon bond in ethane
or the triple bond in acetylene, λ1 = λ2 and ε = 0. Contrast this with a π-bonding situ-
ation in ethylene where ε ≈ 0.45 or with an aromatic ring such as benzene where
ε ≈ 0.23.

7.7.4 Energy densities at the BCP

The potential energy density (the virial field density), V(r), is always negative. The
integral of this density over all space delivers the potential energy of the molecule.
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Bader has derived a local statement of the virial theorem which, for a stationary
state, is [29, 87]:

�h2

4m

 !
∇2ρðrÞ= 2GðrÞ+VðrÞ, (7:86)

where the gradient kinetic energy density (which is always a positive quantity) is
defined as:

GðrÞ= �h2

2m
N
ð
dτ′ ∇Ψ✶ ·∇Ψ. (7:87)

Since G(r) > 0 and V(r) < 0, and the sum is a term proportional to the Laplacian of
the electron density, a bonding interaction where ∇2ρb < 0 is driven by a local low-
ering of the potential energy, while when ∇2ρb > 0 the bonding is driven by a local
kinetic energy excess.

Cremer and Kraka proposed to evaluate the total energy density [H(r) = G(r) +
V(r)] at the BCP [98]. From its name, the total energy density delivers the total en-
ergy of the system when integrated over all space. This density, H(r), places the ki-
netic and potential energy densities on an equal footing (no factor 2 in front of
G(r)). Generally, when Hb < 0, this indicates that the interaction is driven by elec-
tron sharing (i.e., can be described as predominantly covalent) while |Hb| reflects
the degree of “covalency” of the interaction [98].

7.8 Atomic contributions to molecular properties

The molecular expectation value of an operator, hÔimolecule, can be written as a sum
of the corresponding expectation values averaged over the M atoms (or atoms and
NNAs if these exist in the system) in the molecule:

Ô
D E

molecule
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N
ð
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A, (7:88)

=
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i= 1

ð
Ωi

ρOdr

0
@

1
A=

XM
i= 1

OðΩiÞ, (7:89)

where OðΩiÞ is the operator averaged over the ith atom Ωi. In this manner, as long
as a physical quantity O is expressible as a real space density, ρOðrÞ, then it can be
expressed in the form of a sum of atomic contributions.
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7.9 Examples of atomic properties

Averaging an operator Ô over an AIM delivers that atom’s contribution to the molec-
ular counterpart of this property. Hence:

OðΩÞ= Ô
D E

Ω
= N

2

ð
Ω

dr
ð
dτ′ Ψ✶ÔΨ+ ðÔΨÞ✶Ψ
h i

. (7:90)

A few examples of explicit atomic properties commonly discussed in the literature
are briefly outlined below.

7.9.1 Atomic population [N(Ω)] and charge [q(Ω)]

Setting Ô= 1̂ in eq. (7.90) converts it into an equation to compute the electronic pop-
ulation of an atom as:

NðΩÞ=
ð
Ω

ρðrÞdr, (7:91)

which upon subtraction from the atomic number gives the QTAIM atomic charge (in
atomic units):

qðΩÞ= ZΩ −NðΩÞ, (7:92)

7.9.2 Kinetic energy [T(Ω)]

From eq. (7.25) we have the Schrödinger kinetic energy:

KðΩÞ= −
�h2

4m
N
ð
Ω

dr
ð
dτ′ Ψ∇2Ψ✶ + Ψ✶∇2Ψ

� �
, (7:93)

while the gradient kinetic energy is expressed as:

GðΩÞ= �h2

2m
N
ð
Ω

dr
ð
dτ′ ∇Ψ✶ ·∇Ψ. (7:94)

For a subsystem bounded by a zero-flux surface, we have the analogue of the total
system’s eq. (7.26):

KðΩÞ=GðΩÞ=TðΩÞ. (7:95)
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In practical calculations, the (small) deviations from this equality measured by the
integral of the atomic Laplacian function is often taken as a measure of the accu-
racy of the numerical integration.

7.9.3 The atomic integrated Laplacian [L(Ω)]

The Laplacian function (of dimensions of electrons × (length)−5) vanishes when inte-
grated over the total system or over the basin of an AIM:

LðΩÞ=KðΩÞ−GðΩÞ= −
�h2

4m

ð
Ω

dr ∇2ρðrÞ� �
= −

�h
4m

ð
dSðΩ, rÞ∇ρðrÞ ·nðrÞ=0. (7:96)

7.9.4 The (virial) atomic energy [E(Ω)]

As already mentioned above, for a subsystem bounded by a zero-flux surface, eqs. (7.95)
and (7.30) apply and the atomic energy E(Ω) is simply the negative of the unique kinetic
energy T(Ω).

7.10 Back to experiment

The exposition in this chapter has, so far, briefly outlined some of the common tenets
of QTAIM and some of its theoretical underpinnings. As explained earlier in this
chapter, QTAIM starts from the topography of the electron density, using its associ-
ated gradient vector field to partition the system into separate atomic basins and to
define bond paths and the separatrices (the zero-flux surfaces) between bonded
atoms. The exposition outlined above should have demonstrated to the reader that
the partitioning of the electron density space at the zero-flux surfaces has deep roots
in quantum mechanical theory.

The electron density could be calculated from theory or derived from experi-
ment as discussed in several parts of this book. Relation (7.7) summarizes conceptu-
ally the position of the electron density at the junction of theory and experiment.
From this electron density one can get several, but – importantly – not all, the in-
formation that could be known about the system, the first Hohenberg–Kohn theo-
rem notwithstanding. The analysis of experimentally-derived electron densities by
QTAIM routinely includes discussions and displays of electron density maps, elec-
tron density deformation (difference) maps, atomic charges and higher electric mul-
tipoles, bond paths, bond ellipticities, and so on.
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As seen above, QTAIM, however, does not stop at the analysis of the electron
density alone. Rather it takes it as its starting point and once the system is divided
into separate atoms in a molecule or a crystal, the wave function can then be ana-
lyzed and averaged over parts of the system as outlined above. This is how one ob-
tains, for example, energy or electron pairing and/or (de)localization information.
There are approximations that are widely used to obtain energy information from
only the electron density. We cite two examples of particular importance.

The first is due to Abramov, who approximates the kinetic energy density G(r)
where both the electron density and its Laplacian have relatively small magnitudes
[99]. This last requirement limits the validity of this approximation to within ca.
0.5–2.1 Å from an atomic nucleus. In atomic units (au) – as originally and often
quoted – the Abramov expression reads [99]:

G rð Þ= 3
10

� �
3π2� �2=3ρ rð Þ5=3 + 1

72

� �
∇ρ rð Þj j
ρ rð Þ + 1

6

� �
∇2ρ rð Þ. (7:97)

By the use of the local virial theorem, written again in au [100]:

1
4
∇2ρ rð Þ= 2G rð Þ+V rð Þ, (7:98)

to obtain V(r), one can also obtain an approximation to the total energy density
H(r) = G(r) + V(r) within the region of applicability of the Abramov expression from
the electron density alone.

The second example is a study that examines the behavior of a large number of
observed hydrogen bonding interactions in the crystallographic databases by Espi-
nosa, Molins, and Lecomte [101]. These authors propose an empirical relation be-
tween a given hydrogen bond dissociation energy (De) in dimers and the potential
energy density evaluated using Abramov’s relation [101]:

E = −De =
1
2
V rbð Þ. (7:99)

The limitations of this relation have been discussed in a paper by Spackman [102].
The energy densities are recognizably of great interest but the use of expressions

such as the ones quoted above have limitations of their applicability. The construc-
tion of experiment-consistent density matrices that are N-representable opens the
door for the application of the full quantum mechanical mathematical apparatus of
QTAIM starting from experimental diffraction data. For further discussion see Refs.
[103, 104].
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7.11 Conclusion

In this chapter, we have seen the central role of Bader’s zero-flux condition which,
when used in conjunction with the atomic statement of the virial theorem, provides a
quantum mechanical partitioning of the real three-dimensional space into atomic ba-
sins. Each atomic basin contains one nucleus (or in less frequent cases a NNA). In all
cases, a nucleus or an NNA is bonded to its neighbors via bond paths and virial paths.
This is how the entire three-dimensional topography delivers the bonded topology
of the system. Shahbazian and Goli have generalized QTAIM whereby protons are
taken as quantum particles (and where the total wave function is expressed as a
product of electronic and protonic wave functions) [105]. In doing so, the hydro-
gen atom basin splits and the highest density of the proton is split between the
extremes of what would be classically the vibration amplitude about the equilib-
rium bond length [105]. Anderson and Ayers have shown that the zero-flux condi-
tion survives upon a scalar relativistic treatment [106], which is another important
generalization of QTAIM.

The atomic virial theorem allows one to define additive atomic contributions to
the total energy. This contribution is simply –T(Ω), an enormous simplification
since it avoids the (impossible) explicit evaluation of the potential terms since the
potential energy contribution of an atom in molecule must contain contributions
from the nuclear-electronic attraction between the electron of the basin and all nu-
clei in the molecule, the electron–electron repulsion between the electrons in the
basin and themselves and between them and the rest of the electrons in the mole-
cules, and also a term due to the contribution of the nucleus of the atom in question
to the overall nuclear–nuclear repulsion energy whereby we write:

VðΩÞ=VneðΩÞ+VeeðΩÞ+VnnðΩÞ. (7:100)

Equations (7.29) and (7.30) allow us to bypass the necessity for the explicit evalua-
tion of the terms in eq. (7.100) and jump right to the final answer by averaging only
a one-electron operator over the volume of the atom (or the pseudo-atom in case of
an NNA), that is, the kinetic energy operator. Therein lies the importance of QTAIM
in that it provides a coherent and complete decomposition of molecular properties
into corresponding additive atomic properties. Such properties include one- and
two-electron atomic contributions whether scalar, vector, or a higher-order tensor
in nature.
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Chapter 8
The quantum theory of atoms in molecules and
quantum crystallography: a symbiosis

If it is not measurable or not defined from physics I do not want to discuss it. Richard F. W. Bader
(ca. 1995–2001)

(C. F. Matta, personal verbal communication recalled from memory (2022))1

The kernel energy method (KEM) is shown as an efficient and accurate approximation for the
fast evaluation of the quantum theory of atoms in molecules (QTAIM) atomic charges, and also
of the interacting quantum atoms (IQA) energy components. A computational investigation
using IQA energies reveals that the high accuracy of KEM stems from a cancellation of errors
over groupings of several atoms, rather than from its ability to reproduce individual IQA compo-
nents at an atomic resolution. One of the well-known characteristics of atoms-in-molecules de-
fined within the QTAIM framework is their high degree of transferability. This transferability has
provided the impetus for Hernández-Trujillo and Bader to use the Clinton equations to merge
electron densities fragments obtained from computational “molds” at their interatomic surfa-
ces. Hernández-Trujillo and Bader obtain excellent approximations to the electron density but
the energies are not performing as well as the density. In contrast, Polkosnik and Massa, using
an alternative approach (KEM), have recently shown that the imposition of the idempotency on
the density matrix obtained from KEM (variational-KEM) is well-behaved physically. The chapter
then discusses briefly a few examples of important properties that are not available from tradi-
tional X-ray diffraction crystallography. Such properties include (but are not limited to) density
(matrices) in momentum space, total energies, QTAIM atomic virial energies and IQA energy
components, and corresponding properties in excited states obtained by laser pump-probe X-
ray diffraction experiments.

8.1 QTAIM charges for large molecules from KEM

The theoretical underpinnings of the kernel energy method (KEM) of quantum crys-
tallography have been outlined in Chapter 5 followed by examples of application in
Chapter 6. The examples discussed in Chapter 6 demonstrate how KEM is able to
reproduce field-induced molecular properties [1] and also one- and two-electron
properties obtained within the framework of the quantum theory of atoms (QTAIM)
in molecules [2]. Here, a particularly useful QTAIM atomic property is shown to be
reproduced accurately, that is, the atomic charge q(Ω).

 Allegedly, there was also a sign on the door of Richard Bader’s office at McMaster University
with such a statement in the late 1980’s.
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Recalling that in QTAIM an atomic property is obtained by integrating a property
density over the atomic basin (eq. (7.90)), it follows that upon setting Ô ¼ 1̂, the num-
ber operator, we get the electron population of an atom, N(Ω), (as given by eq. (7.91)).
The subtraction from the atomic number ZΩ of this electron population yields the
QTAIM atomic charge which, expressed in atomic units (au), is given by q(Ω) = ZΩ ‒
N(Ω) – which we have seen in Chapter 7 (eq. (7.92)).

Since QTAIM atomic charges are expressed as quantum mechanical expectation
values of a linear Hermitian operator (in this case 1̂) averaged over bounded atomic re-
gions they are Dirac observables [3, 4]. From a utilitarian standpoint, these atomic
charges have proven useful in the empirical modeling of physicochemical and biological
properties of series of molecules [5–8] and, hence, are an important atomically-resolved
molecular descriptor [9]. The calculation of QTAIM electron populations/atomic charges
is an expensive procedure since it involves numerical integrations that also scale with
the size of the basis set. This computational cost in term of CPU/GPU time is on the top
of the rapid scaling with size of the underlying electronic structure calculation itself. In
what follows, we will show how to cut such CPU time by the application of the KEM
procedure to speed-up the calculation of QTAIM charges.

The CPU (and/or GPU) time savings are discussed in Chapter 5. To keep this
chapter self-contained, we recap some salient points from Chapter 5.

The general expression for the energy of interaction (Eint) of an n-body system:

Eint = Etotal −
Xn
c= 1

Ec, (8:1)

where Etotal is the total energy and Ec is the energy of the isolated cth body. It is
shown in Chapter 5 that starting from this expression, and ignoring interaction of
orders higher than two, eq. (8.1) leads to:

E total
ðKEMÞ

≈
Xn− 1

a= 1

Xn
b=a+ 1

Eab − ðn− 2Þ
Xn
c= 1

Ec, (8:2)

where the double sum is the energy contributions of all double (pairwise) kernels
ab, Eab, and where Ec is the set of intrinsic energies of single kernels.

It is also shown in Chapter 5 that the time of a KEM calculation relative to the
direct calculation is drastically reduced, an effect which is amplified the higher the
scaling exponent of the model chemistry utilized and the larger the number of ker-
nel fragments into which the system is broken. Thus, for a calculation using a basis
set consisting of M basis functions split into m equal kernels, the relative CPU (and/
or GPU) time is:

trel ≈
2α− 1ðm− 1Þ+ 1

mα− 1 , (8:3)
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which embodies a substantial reduction in CPU (and/or GPU) time as long as we
break the molecule into three or more kernels. As an example, if one uses a model
chemistry that scales as α = 5 and by splitting the macromolecule into 1,000 kernels
the saving in computational time is of the order of 100 million times, without con-
sidering parallelization on 1,000 CPUs (and/or GPUs).

In this section, the accuracy of QTAIM charges predicted from the much faster
KEM approximation is gauged by numerical comparisons with full molecular calcu-
lations on three systems of increasing size and complexity of bonding environments
[10]: (a) The explosive N,N’-dinitrourea (C3H6N4O5) a system with a total electron
population N = 92 electrons (e-), (b) the chelating agent pyridine-2-azo-p-phenylte-
tramethylguanidine (PAPT) (C16H20N6, N = 158 e-, and (c) acetyl-Cα,α-dipropylgly-
cine (Ac-Dpg-7), a conformationally constrained synthetic heptapeptide (C39H71N7O9,
N = 426 e-). In all three examples, the KEM approximation approaches the directly cal-
culated QTAIM charges with a minimum accuracy of 99.99% to two decimals, where
%error≡

P
qðΩÞ=Nð Þ× 100. The three studied systems are displayed in Fig. 8.1, while

Fig. 8.1: The three molecules of increasing complexity used as test systems for the accuracy of
KEM-QTAIM charges (clockwise from top-left corner): N,N’-dinitrourea (C3H6N4O5, N = 92 e-),
pyridine-2-azo-p-phenyltetramethylguanidine (PAPT) (C16H20N6, N = 158 e-), and acetyl-Cα,α-
dipropylglycine (Ac-Dpg-7) (C39H71N7O9, N = 426 e-).
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Figs. 8.2–8.4 display the splitting into kernel fragments along with the QTAIM atomic
charges calculated for the given kernels.

To compute the QTAIM charges, the following conjecture is made: Atomic charges
can be reconstructed from an analogous expression as eq. (8.2). Hence, we write the
QTAIM atomic charges in terms of the KEM contributions as [10]:

qðΩkÞ=
Xn− 1

i= 1

Xn
j= i+ 1

qðΩkÞij − ðn - 2Þ
Xn
i= 1

qðΩkÞi, (8:4)

where Ωk is the kth atom in a molecule, 3 ≤ k ≤ K (total number of atoms), and n is
number of single kernels. Then, the following algorithm is applied before insertion
into eq. (8.4):

Fig. 8.4: (a) Single kernel-1, (b) single kernel-2, (c) single kernel-3, (d) double kernel-12, (e) double
kernel-23, and (f) double kernel-13 for acetyl-Cα,α-dipropylglycine (Ac-Dpg-7) along with the QTAIM
charges (the charges are identical whether from the direct QTAIM calculation or the KEM-QTAIM
approximation to the three decimals quoted in the figure).
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− if Ωk 2 kernelij or kerneli, then calculate qðΩkÞij& qðΩkÞi, (8:5)

− if Ωk ∉ kernelij or kerneli, qðΩkÞij& qðΩkÞi =0. (8:6)

Calculations were conducted at the B3LYP/6-31+G(d) level of theory using the X-ray crys-
tallographic geometries obtained from the Cambridge Structural Database (CSD) [10].

In the case of N,N ’-dinitrourea, broken into three kernels, the average absolute de-
viations between the direct QTAIM calculation and the KEM-QTAIM approximation is
0.0022 ± 0.0013 e- with a maximum unsigned error of 0.0037 e-; that for PAPT, also bro-
ken into three kernels, is 0.0017 ± 0.0020 e- and a maximum absolute deviation of
0.0068 e-; and, finally, that of the largest system acetyl-Cα,α-dipropylglycine heptapep-
tide consisting of 126 atoms and 426 e- and broken once into three kernels as in Fig. 8.4
and once into four kernels (not shown) and for which the average absolute deviation is
0.0013 ± 0.0019 e- with a maximum deviation of magnitude 0.0160 e- [10].

8.2 Interacting quantum atoms energy components
from from KEM

The molecular virial theorem states that, within the Born–Oppenheimer approxima-
tion, we have [11–14]:

2T +V = −
X
α< β

Rαβ
∂E
∂Rαβ

� �
Rγδ

(8:7)

= −
X
α

Xα ·∇αE (8:8)

where T is the kinetic energy, V is the potential energy, E (= T + V) is the total en-
ergy, Rαβ is the distance between the αth and the βth nucleus, the symbol sub-
scripted at the right of the bracket involving the partial derivative means that this
derivative is computed while keeping all other nuclear positions constant, and
where Xα is the position vector of the αth nucleus.

In eq. (8.7), the sum runs over all the elements of the inter-nuclear distance ma-
trix while in eq. (8.8) the sum is over all nuclei, since a nucleus at Xα is subjected to
a force Fα = −∇αE. The virial of this force is Xα ·Fα = −Xα ·∇αE.

Since at any stationary point on the potential energy surface (PES) there are zero
forces on the nuclei then, in this case, the right-hand sides of eqs. (8.7) and (8.8) van-
ish. These points include minima (stable equilibrium structure) and saddle points
(unstable equilibrium transition state structures) since, at these critical points, every
member of the set of the energy derivatives vanishes identically, that is:

∂E
∂Rαβ

� �
= Xα ·∇αEf g=0, ∀ α, β. (8:9)
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When this condition is satisfied, which occurs for geometry-optimized structures,
eqs. (8.7) and (8.8) reduce to the familiar form of the virial theorem, that is:

2T +V =0. (8:10)

The virial theorem, in its simple form (eq. (8.10)) can, hence, only be applied to min-
ima or transition state structures on the PES. For any other structure at an arbitrary
point on the PES the sum (2T +V) will equal to the sum of the virial of the forces on
the nuclei. While the sum of these virials is unique, the individual contributions are
origin dependent. Hence, that creates an ambiguity in the definition of the (virial)
atomic energy except when the virial of the forces on all nuclei vanish (see Ref. [15]).

A solution to the non-uniqueness of atomic energies at arbitrary points on the
PES (except for stationary points) has been proposed by the group at Oviedo led by
Martín-Pendás [16]. This approach partitions the energy contributions (as defined in
the molecular Hamiltonian) atomically and does not suffer from the limitation of a
non-vanishing virial contributions from the nuclear forces at other than stationary
points on the PES. Interacting quantum atoms (IQAs) energy components are,
hence, well defined at any point of the PES which allows one to trace the changes
in these components, say, along a reaction path.

The IQA approach starts from QTAIM which it uses to define the atoms in the
molecule then splits the total energy E into atomic self- and interaction pairwise
energies. Thus, the total energy E is written as:

E =
X
A

EA
self +

1
2

X
A

X
A≠B

EAB
int , (8:11)

where

EA
self =TA +VAA

en +VAA
ee , (8:12)

and

EAB
int =VAB

nn +VAB
en +VAB

ne +VAB
ee , A≠B, (8:13)

and where the type of interaction potential energy is indicated by the subscript and
the corresponding superscript denotes the atom contributing to that. Thus, for ex-
ample, the second term in eq. (8.13) expresses the energy of attraction between the
electrons in basin A and the nucleus in basin B.

From the above definitions, an additive atomic energy is defined as the sum of
the self-energy and half of all of that atom’s interaction terms (in complete analogy
with the atomic populations and delocalization indices (the reader is invited to ex-
amine the first equality in eq. 6.13 of Chapter 6 which, if summed over all atoms in
the molecule, yields the total number of electrons N and assumes a mathematical
form identical to eq. (8.11) which yields the total energy of the molecule E). Thus,
the additive energy of an atom in a molecule is defined as:
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EA
add = EA

self +
1
2

X
A≠B

EAB
int . (8:14)

A triglycine molecule (Gly1-Gly2-Gly3) has been chosen to trace how KEM achieves
the accuracy in energy prediction by tracing the individual atomic and atom–atom
energy terms as defined within the IQA approach [17].

Hartree–Fock (HF)//6-311G(d,p) level calculations delivered the wave functions
for the full molecule and for the kernels which were analyzed to obtain their IQA
energy contributions using the AIMAll package [18]. The KEM error is defined:

ΔP ≡PðexactÞ− PðKEMÞ, (8:15)

which measures the discrepancy of property P calculated directly and its approxi-
mate value obtained from KEM.

Figure 8.5 shows the kernel split along with the errors in the additive energies
in kcal/mol. Skipping the details that can be found in the original reference [17],
here a few key findings are highlighted:
(a) The error in the total energy is 0.89 kcal/mol, that is, KEM total energy is within

conventional chemical accuracy.
(b) The error in the additive atomic IQA energies sum to 0.06 kcal/mol which is

remarkable given the wider range of errors displayed in Fig. 8.5 and which
fetch +5.39 kcal/mol for N6 and −2.64 kcal/mol for C9. However, the sum of the
additive energies exhibits an error of only 0.89 kcal/mol (point (a)).

(c) The sum of all self-energy errors (ΔEA
self) is −6.16 kcal/mol while that of all the

interaction errors (ΔEA
int) is +7.05 kcal/mol. These two summed and oppositely

signed errors compensate to a large extent and yield a total error of +0.89 kcal/
mol KEM. Note that this KEM energy is lower than the exact energy since KEM
as such is not variational). However, it has been shown recently how KEM can
be made variational [19]. Variational-KEM delivers smaller overall errors than
“raw/uncorrected” KEM and these errors always go in the correct direction, that
is, the variational-KEM energies are always higher than the corresponding
exact energies as a case study on a number of water clusters demonstrates [19].

From the above remarks, individual additive atomic energies can be in error by an
order of magnitude larger than the error in the total KEM energy. There appears,
thus, to be a cancellation of errors underpinning the accuracy of the KEM [17].
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8.3 The Clinton iterative melding of assembled electron
densities and of molecular aggregates

The idea of the reconstruction of the electron density maps from fragments is not
new. Matta, for example, uses a reconstruction scheme whereby properties are directly
summed to obtain the full-molecular properties from those of fragments [20]. If one is to
reconstruct the full electron density scalar field from fragments calculated in molds
using atoms-in-molecules extracted at their zero-flux surfaces, one is faced with the ques-
tion as to how to meld these slightly mismatched zero-flux interatomic surfaces? One ap-
proach is to use a “pressure” applied on the interatomic surface from both sides as if it
were an “elastic membrane,” an approach led by Brenemann et al. [21–23]. An alterna-
tive and elegant approach has been proposed by Hernández-Trujillo and Bader [24] who
use the properties of quantum projectors to enforce N-representability (by imposing
idempotency of the density matrix, P2 =P) and, in doing so, assemble large molecules
from QTAIM fragments melding them at their zero-flux interatomic surfaces. The inter-
atomic surfaces are “melded” through the application of Clinton iterative equations [24]
(Fig. 8.6).

In another study, Polkosnik and Massa (P&M) use kernel recombination into an
augmented density matrix of full systems consisting of a number of differently
sized water clusters [19] instead of extracting density fragments and sticking them
together at their nearly matching zero-flux interatomic surfaces (as done by Her-
nández-Trujillo and Bader). The clusters studied by P&M have the general formula
(H2O)n, n = 3–20, and which were obtained from the earlier work of Gadre et al. [25].
Figure 8.7 displays one of the larger water clusters considered in that study.
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Fig. 8.5: The molecular graph of triglycine obtained from a HF/6-311G(d,p)//6-311G(d,p) calculation.
The kernel splitting is indicated by the green dashed vertical lines and the numbers displayed are
the errors in additive atomic IQA energies relative to the full system calculation rounded to two
decimals in kcal/mol.
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Since each water molecule was taken as a single kernel and all pairs of water
molecules were taken as double kernels, there is no need – in this case – to include
any capping hydrogen atoms since there are no severed covalent bonds. Three sets of
calculations were done on these clusters: Set (I) which consists of direct calculations

Fig. 8.6: Assembled versus direct Hartree–Fock electron densities contour representation with the
zero-flux interatomic surfaces intersections with the planes of the drawings for an ionic system
(LiH, left) and an organic polar system (ethanol, right). Assembled densities contours are the solid
lines while the dashed contours are those obtained from the direct calculation. The two sets of
contours and interatomic surfaces are hardly distinguishable. Distances are in atomic units (au)
(Adapted with permission from Ref. [24], © 2001 American Physical Society).

Fig. 8.7: An example of the water clusters with the formula (H2O)15 used to test the effect of
imposing idempotency on the density matrix on the KEM error.
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on the full system, set (II) of traditional KEM calculations, and set (III) in which
the KEM calculations were performed with the imposition of the idempotency con-
straint on the density matrix. This last set, III, can be termed “variationally con-
strained KEM” or simply “variational KEM.”

Water clusters with n = 10, 12, 14, 15, 16, and 20 are of particular interest. This is
so since only clusters with n = 10, 12, 14, and 15 were found to violate the variational
principle and clusters with n = 16 and 20, while not violating the variational princi-
ple (their energies are higher than the corresponding exact energies) they, never-
theless, exhibited the highest magnitudes of errors [19]. To keep the discussion
focused, it will be centered on those clusters to underscore the rectifying effect of
the imposition of the idempotency on the density matrix.

Table 8.1 lists the errors in type II calculations (EKEM −Efull) and contrasts it
with the results of type III calculations on the same cluster (E½Pprojector� − Efull). As al-
ready mentioned, the values listed in the table show four cases where EKEM −Efull is
negative, violating the variational principle. The last two entries in the table exhibit
the largest magnitudes of the errors in the uncorrected KEM (calculations II).

A comparison of the error in set II and set III calculations, tabulated in Tab. 8.1,
reveals that, in contrast with set II (the second column of the table), the entries in
the last column representing set III are all positive as required. It is further re-
marked that the errors in set III are smaller, in general, those of set II. Hence, the
average absolute errors for set II is 2.8 ± 2.5 and is reduced to 1.2 ± 0.5 kcal/mol for
set III. In conclusion, the imposition of N-representability has, as a consequence,
the satisfaction of the variational theorem and a decrease in the magnitude of the
errors inherent in the KEM approximation [19].

Tab. 8.1: Error in the KEM total energies without the imposition of
N-representability (EKEM − Efull, set II) and with the imposition of this
quantum constraint (E½Pprojector � − Efull, set III) in kcal/mol (Data
obtained from Ref. [19] based on RHF/6-31G calculations).

HOn EKEM − Efull E½Pprojector � − Efull

n =  −. .
n =  −. .
n =  −. .
n =  −. .
n =  . .
n =  . .
A.a.e.✶ . ± . . ± .

✶A.a.e. = average absolute error (±standard deviation)
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8.4 The density (matrix) in momentum space

Momentum density is unattainable from the electron density in position space
alone, that is, ρðrÞ != ρðpÞ. The position space one-matrix ρ1ðr, r′Þ, however, can be
readily converted into a momentum one-matrix ρ1ðp,p′Þ through a six-dimensional
Fourier transform:

ρ1ðp,p′Þ=
ðð

ρ1ðr, r′Þe− 2πiðp · r+p′ · r′Þdr dr′, (8:16)

the diagonal elements of which represents the density in momentum space, that is

ρðpÞ= ρ1ðp,p′Þjp′!p. (8:17)

8.5 The total energy

A most important quantum mechanical property is the total energy. It is expressed
as an expectation value:

E =
	
Ĥ


=
ð
Ψ✶ĤΨdτ, (8:18)

where Ψ is an antisymmetric and normalized many-electron wave function.
The expectation value of the Hamiltonian hĤi is expressible in terms of the one-

and two-electron density matrices as:

E =
	
T̂ρ1


+
	
V̂ext ρ



+
	
V̂ee ρ2



, (8:19)

which underscores the necessity of the three different density matrices to evaluate
the total energy. The first term, the kinetic energy, is obtained from averaging a
one-particle operator acting on the one-body density matrix. The second term, the
external potential, is represented by a multiplicative operator acting on the electron
density. The third and last term, the average of the electron-electron potential, is
obtained from the action of a two-body nonlocal operator on two-body density
matrix.

From these considerations, clearly, the electron density alone that one typically
gets from the X-ray diffraction experiment cannot deliver the total energy. This is
where the advantage of quantum crystallography is brought to the fore. By applying
Clinton’s iterative procedure, with an adopted basis set, one can construct experi-
mentally consistent density matrices ρ, ρ1, and ρ2 from the scattering data. With
these at hand, all properties follow, including the total energy.
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8.6 Atomic virial energies

The following integral delivers the kinetic energy of an atom in a molecule T(Ω) (in
au):

TðΩÞ= −
1
2

ð
Ω

∇2ρ1ðr, r′Þjr′!r dr. (8:20)

As discussed in Chapter 7, Bader postulated [26] and later proved [13, 27–29] the
atomic statement of the virial theorem. As mentioned above, when the virial of all
the forces on the nuclei vanish, the virial theorem assumes its simple form in eq.
(8.10) and, correspondingly, the atomic virial theorem discussed in Chapter 7 also
assumes the analogous simple form:

VðΩÞ= − 2 TðΩÞ, (8:21)

which, as we have seen earlier in this monograph, leads to the important result
which states that for a system in equilibrium the atomic energy is simply the nega-
tive of the kinetic energy, that is:

EðΩÞ=TðΩÞ+VðΩÞ= − TðΩÞ, (8:22)

a result that, by necessity, leads to additivity, that is:

E =
X
Ω

EðΩÞ. (8:23)

Here again, and since the kinetic energy cannot be extracted from the density alone
(eq. (8.20)), clearly one would need quantum crystallography to obtain the virial
energies of QTAIM from the scattering data. The same can be said about the IQA
energy components discussed earlier.

8.7 Excited-state electron densities from X-ray diffraction
experiments

Philip Coppens pioneered time-resolved X-ray diffraction following a short excita-
tion pulse in what came to be also known as photocrystallography [30–33]. In this
approach, bright synchrotron X-ray sources are used to probe the crystal at several
short time intervals immediately after an ultra-short exciting laser pulse. This pro-
cedure has delivered excited state densities, so now the question is how to best rep-
resent such excited states quantum mechanically?

Coppens has shown that one can collect scattering data immediately following
laser pumping to an excited state. The Clinton equations can then be used to obtain
a representation of excited state orbitals. The ground state orbitals can be obtained
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in the usual way. The scattering experiment determines only occupied orbitals (vir-
tual orbitals do not scatter X-rays). Meanwhile, occupied excited state orbitals are
constrained to be orthogonal to those of the ground state. The constraints on the
density matrix in this case would include the normalization and the orthogonality
to the ground-state orbitals. The forms of the constraints:

trPO= Ô
D E

, (8:24)

to which an additional constraint of orthogonality is added, that is:

trPexitedPground =0, (8:25)

where Pexited and Pground are the excited- and ground-state density matrices, re-
spectively. In this scheme, each density matrix would be obtained from the corre-
sponding scattering data emanating from the electronic state in question. The
representation of the excited state appears to fall naturally within the framework
of the Clinton equations.

8.8 Conclusions

The long argument of this monograph is that the complete quantum mechanics can be
extracted from, or injected into, the X-ray scattering data in the form of ρ, ρ1, and ρ2.
This goal of quantum crystallography achieves two further objectives: (1) It allows for
the extraction, from the X-ray scattering data, of properties that are impossible to deter-
mine from classical crystallography alone. Such properties include the momentum
density, and the energies (total, virial, IQAs, etc.) (2) The imposition of quantum me-
chanical constraints during the crystallographic refinements delivers electron density
matrices that are N-representable (and hence quantum mechanically valid) which is
otherwise not guaranteed no matter how flexible the refinement and/or accurate is the
experimental procedure. Nonspherical refinement has been and still delivers su-
premely important electron density maps and properties, what is being proposed here
is to go one step further and extract more information from the same X-ray scattering
data.
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Chapter 9
The calculation of the energy

The late Charles Coulson, Professor of Mathematics at Oxford who because of his pioneering calcula-
tions on benzene may well be regarded as the father of theoretical chemistry, entertained the hope of
replacing the wave function in quantum mechanics by the two-matrix as the basic tool. In June, 1959,
at a conference in Boulder, Colorado about “Molecular Structure Calculations” he stated

There is an instinctive feeling that matters such as electron correlation should show up in
the two-particle density matrix . . . . but we still do not know the conditions that must be
satisfied by Γ(12;1ʹ2’). Until these conditions have been elucidated, it is going to be very diffi-
cult to make much progress along these lines.

The “conditions” to which Coulson alluded are the restrictions imposed on the 2-matrix by the
requirement that it is associated with a system of N identical fermions or bosons. In other words,
what are necessary and sufficient conditions that a reduced density matrix can be represented as
the contraction of the von Neumann density matrix of a system of N identical fermions or bosons.
A. J. Coleman & V. I Yukalov (2000)

(Reduced Density Matrices – Coulson’s Challenge, Springer-Verlag, Berlin, 2000).

The point of N-representability is to ensure that a density matrix descends from, and therefore, is
mappable back into an N-body antisymmetric wave function. The antisymmetry is the theoretical re-
presentation equivalent of the experimental indistinguishability of the electrons. Thus, for every quan-
tum property calculated from density matrices, their N-representability is desirable. For no calculated
property is this truer than in the case of the energy. In particular, the variational theorem which is so
important in energy optimization can only be mandated to hold true on condition that the density
matrices used for such purpose are guaranteed to be N-representable. In the case of very large mole-
cules, it is computationally an advantage to have the one-body density matrix in a kernel energy sin-
gle-determinant N-representable form. In such a case the two-body density matrix is a known
functional of the one-body case. Here we display the explicit form of such a two-body density matrix
and state how it is used to calculate a molecular energy. An additional consideration is presented
which converts an X-ray projector density matrix indirectly into a molecular energy.

9.1 The case of N-representable ρ2-det extracted from KEM ρ1-det

As discussed in Chapter 1, the coherent X-ray scattering from a crystal gives experi-
mental structure factors which are Fourier transforms of the electron density, that is:

FðKÞ=
ð
eiK · rρðrÞdr (9:1)

where ρ(r) is the electron density at position r and K, the wave vector, is fixed by
the direction of scattering.
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The single determinant representation of the density matrix, as discussed in
Chapter 3, is then:

ρ1ðr, r′Þ= 2 tr PψðrÞ#ψ†ðr′Þ, (9:2)

where factor 2 indicates a double occupancy of orbitals and P is the matrix repre-
sentative of the density in the basis of orthonormal atomic orbitals ψ(r).

As discussed in Chapter 3, the projector matrix P requires that [1]:

P2 =P, (9:3)

trP=N, (9:4)

and

P=P†, (9:5)

that is, the satisfaction of the idempotency, normalization, and Hermiticity condi-
tions, respectively. The particular projector P which satisfies the experimental X-ray
scattering data is delivered by the Clinton equations [1]:

Pn+ 1 = 3P2
n − 2P3

n +
X
k

λðnÞk Ok, (9:6)

where the Lagrangian multipliers λk are used to enforce the conditions of constraint
including normalization and X-ray scattering (see Chapter 3), and matrix represen-
tatives of the constraints are the elements of the matrix Ok.

If the single determinant one-body density matrix ρ1-det(r,r′) is obtained from
the X-ray experiment, the corresponding diagonal elements of the two body spin-
dependent density matrix ρ2-det(r,r′) are given by the following expression:

ρ2-detðr, r′Þ=
ρ1-detðrÞ ρ1-detðr, r′Þ

ρ1-detðr′, rÞ ρ1-detðr′Þ

�����
�����. (9:7)

In this chapter we are concerned with this last equation expressing the relation of
ρ2-det(r,r′) and ρ1-det(r,r′) for the case of very large molecules. In that case we suggest
that ρ1-det(r,r′) may be expressed in KEM form as:

ρ1-det
ðKEMÞ

=
Xn− 1

a= 1

Xn
b=a+ 1

ρ1 ða, bÞ|fflffl{zfflffl}
Double
kernels

− ðn− 2Þ
Xn
c= 1

ρ1 c|{z}
Single
kernels

, (9:8)

where the full molecule ρ1 has been represented in a summation of fragment ker-
nels, whether single kernels ρ1-single or double kernels ρ1-double (see Chapter 5 and Ref.
[2–15]). The question arises given ρ1-det as in eq. (9.8), what is the corresponding ρ2-det?
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To answer the previous question, consider, for simplicity and without loss of
generality, a single-determinant one-body density matrix ρ1 that consists of two
parts (as the many-particle ρ1 reconstructed from the KEM procedure described by
eq. (9.8)). In this case we write:

ρ1 = a1 + a2 (9:9)

Since the corresponding spinless two-body density matrix is:

ρ2-detðr, r′Þ=
ρ1ðrÞ 1

2 ρ1ðr, r′Þ
ρ1ðr′, rÞ ρ1ðr′Þ

�����
�����, (9:10)

and expanding ρ1 into its parts we have:

ρ2-detðr, r′Þ=
a1ðrÞ 1

2 a1ðr, r′Þ
a1ðr′, rÞ a1ðr′Þ

�����
�����+ a2ðrÞ 1

2 a2ðr, r′Þ
a2ðr′, rÞ a2ðr′Þ

�����
�����

+
a1ðrÞ 1

2 a1ðr, r′Þ
a2ðr′, rÞ a2ðr′Þ

�����
�����+ a2ðrÞ 1

2 a2ðr, r′Þ
a1ðr′, rÞ a1ðr′Þ

�����
�����.

(9:11)

Now generalizing ρ1 to that sum of parts characteristic of the KEM form, we have:

ρ1ðKEMÞ=
X

ρ1D|fflfflffl{zfflfflffl}
a1

− ðn− 2Þ
X

ρ1S|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
a2

, (9:12)

where the summation indices were dropped for simplicity and the notation simpli-
fied, as described above, with reference to the single (S) and double (D) kernels.
Now, calling a1 the double-kernel term and a2 the single-kernel term, eq. (9.11)
becomes:

ρ2-detðr, r′Þ=
P

ρ1DðrÞ 1
2

P
ρ1Dðr, r′ÞP

ρ1Dðr′, rÞ
P

ρDðr′Þ

������
������+

− ðn− 2ÞP ρ1SðrÞ − ðn− 2Þ
2

P
ρ1Sðr, r′Þ

− ðn− 2ÞP ρ1Sðr′, rÞ − ðn− 2ÞP ρ1Sðr′Þ

������
������

+
P

ρ1DðrÞ 1
2

P
ρ1Dðr, r′Þ

− ðn− 2ÞP ρ1Sðr′, rÞ − ðn− 2ÞP ρ1Sðr′Þ

������
������

+
− ðn− 2ÞP ρ1SðrÞ − ðn− 2Þ

2

P
ρ1Sðr, r′ÞP

ρ1Dðr′, rÞ
P

ρ1Dðr′Þ

������
������, ð9:13Þ

where the subscripts “S” and “D” refer to single and double kernels, respectively.
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If the summations are moved outside the determinant symbols we obtain:

ρ2 detðr, r′Þ=
X
D,D′

ρ1DðrÞ 1
2 ρ1Dðr, r′Þ

ρ1D′ðr′, rÞ ρD′ðr′Þ

�����
�����+ ðn− 2Þ2

X
S, S′

ρ1SðrÞ 1
2 ρ1Sðr, r′Þ

ρ1S′ðr′, rÞ ρ1S′ðr′Þ

�����
�����

− ðn− 2Þ
X
D, S

ρ1DðrÞ 1
2 ρ1Dðr, r′Þ

ρ1Sðr′, rÞ ρ1Sðr′Þ

�����
�����− ðn− 2Þ

X
D, S

ρ1SðrÞ 1
2 ρ1Sðr, r′Þ

ρ1Dðr′, rÞ ρDðr′Þ

�����
�����.

(9:14)

This last equation, eq. (9.14), is the main result of this section. Given the KEM repre-
sentation of the one-body density matrix eq. (9.8), then eq. (9.14) is an exact repre-
sentation of the corresponding two-body density matrix.

Having this last equation (eq. (9.14)), giving ρ2 broken into explicit kernel con-
tributions, in addition to ρ1 similarly expressed in terms of kernels, the total energy
becomes:

E = ĥ1
X

ρ1DðrÞ− ðn− 2Þ
X

ρ1SðrÞ
� �D E

+ ĥ12
X
D,D′

ρ1DðrÞ 1
2 ρ1Dðr, r′Þ

ρ1D′ðr′, rÞ ρD′ðr′Þ

�����
�����+ ðn− 2Þ2

X
S, S′

ρ1SðrÞ 1
2 ρ1Sðr, r′Þ

ρ1S′ðr′, rÞ ρ1S′ðr′Þ

�����
�����

"*

− ðn− 2Þ
X
D, S

ρ1DðrÞ 1
2 ρ1Dðr, r′Þ

ρ1Sðr′, rÞ ρ1Sðr′Þ

�����
�����− ðn− 2Þ

X
D, S

ρ1SðrÞ 1
2 ρ1Sðr, r′Þ

ρ1Dðr′, rÞ ρDðr′Þ

�����
�����
#+

.

(9:15)

The advantage of this expression is, of course, that no energy calculation is more
complicated than that corresponding to kernels which may be chosen to be dramati-
cally smaller than for the molecule as a whole (see Chapter 5 where the time-saving
aspects of KEM are discussed in some length). And if the KEM form of ρ1 is chosen to
be single-determinant N-representable then so too is ρ2 exactly N-representable. In
this case, the energy delivered by the last equation (eq. (9.15)) is mandated to satisfy
the variational theorem.

As usual, the X-ray structure factors are fixed by the crystal’s electron density.
Now if that density is expressed in terms of kernels, then we have:

FðKÞ= 2 tr
X

PD − n− 2ð Þ
X

PS

h i
fðKÞ, (9:16)

in which each kernel contributes to a given structure factor:

F′ðKÞ= 2 trP′fðKÞ, (9:17)
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where P′ is the population matrix of a kernel, whether a single or a double kernel.
The accuracy of the KEM calculated density can then be gauged by the magni-
tude of the R-factor:

R-factor =
P�� jFobsj− jFcalcj ��P jFobsj . (9:18)

The energy represented in this section is based upon a single determinant expres-
sion of the experimental density. A single determinant of orbitals is sufficient to
represent the exact density, as in DFT, although of course it is not an exact wave
function. The energy is not exact, but importantly it obeys the variational theorem
because the KEM density matrix is N-representable.

9.2 The energy from X-ray quantum crystallographic density?

The fundamental equation of X-ray crystallography allowing solution of molecular
structure is eq. (9.1) where in the spherical atoms approximation, as discussed in
Chapter 1, a promolecular electron density is expressed [16,17]:

ρpro =
XM
i= 1

ρi, (9:19)

where the ρi is a spherical atomic density of atom i at its position in the modeled
molecule which is typically obtained from Hartree–Fock calculations on free atoms
in their ground electronic states. In more sophisticated treatments, the density is
represented as a sum of radial and multipolar functions for a more accurate model-
ing [18] – as explained in Chapter 1.

The above expression of the density, whether expressed in terms of spherical
atoms or multipoles, is not generally N-representable. For an electron density to be
N-representable this means that it is mapable bijectively to an N-body antisymmet-
ric wave function (see Chapter 3). The case of single-determinant N-representability
is ensured by the conditions expressed in eqs. (9.3)–(9.5) with ρ1(r, r′) expressed as
in eq. (9.2).

The Clinton equations, expressed in eq. (9.6) above, are used to find projectors
P2 = P which simultaneously satisfy the constraints of X-ray scattering and normali-
zation. The projector P has the property of being factorizable [1,19], that is, P = C†C,
and φ = Cψ, so that ρ1, ρ, and φ may all be obtained by measurements of the X-ray
structure factors {F(K)}. (The atomic orbitals (AOs) basis, ψ(r), can be chosen to be
orthonormal).
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Density functional theory allows the information captured by the density matrix
projector from X-ray scattering data to be transformed into a corresponding Kohn-
Sham energy. The first Hohenberg-Kohn Theorem asserts that the density, were the
Hohenberg-Kohn functional known, determines the exact energy. But the Hohen-
berg-Kohn functional is not known. However, the Kohn-Sham equations provide an
approximate way to calculate the energy as a functional of the electron density,
that is, E = E[ρ]. The Kohn-Sham functional can be expressed as:

EKS½ρ�=Ts½ρ�+Eext½ρ�+EH½ρ�+Exc½ρ�, (9:20)

where the first terms on the right-hand-side TS[ρ] is the Kohn-Sham kinetic energy
followed, in order, by energy terms stemming from density-weighted 3D space inte-
grals of the external potential (giving Eext[ρ]), of the Hartree (Coulombic) classical
potential (giving EH[ρ]), and of the exchange-correlation potential (giving Exc[ρ]).

The Kohn-Sham kinetic energy (TS) is the “exact” kinetic energy of the true
density but made-up of non-interacting (independent) particles. The dependence of
all the terms on the right-hand-side of eq. (9.20) on the ground-state electron den-
sity are known exactly except Exc[ρ] which is famously an unknown functional of
the density. Nevertheless, a great many Exc[ρ] functionals have been suggested as
reasonable approximations. Such approximations can be used to obtain an approxi-
mate Kohn-Sham energy by substitution of the X-ray crystallographic electron den-
sity information ρ(r) directly into the Kohn-Sham expression given above (eq. 9.20).
Thus that density matrix obtained by approximate representation of the X-ray scat-
tering provides all information needed for the Kohn-Sham energy of the experimen-
tal density.

9.3 Discussion and conclusion

In the first section of this chapter, it is emphasized that when the system becomes
sufficiently large it becomes advantageous, computationally, to represent the mole-
cule as a sum of kernel fragments as in eq. (9.8). Since the kernels may be taken to be
much smaller than the full molecule, the computations using the kernels become
much simpler. It has been shown in Chapter 5 how the KEM summation defining ρ1-det
can be enforced to be N-representable by a single determinant. Of course, given such
an N-representable ρ1-det(r,r′) which is a sum of kernels the question arises what is the
corresponding N-representable single determinant for ρ2-det(r,r′). The answer must
arise from eq. (9.10). In the last part of the first section that answer has been elabo-
rated and results in eq. (9.14).

In closing this chapter and this book, the Clinton equations are shown to provide
a pathway to extract from the X-ray scattering experiment an N-representable single-
determinant density matrix which contains the experimental (& therefore “exact”)
density. The experimental projector density matrix P is factorizable, P = C†C, and
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therefore delivers orbitals giving the “exact” density, which is also characteristic of
the KS orbitals. As long as the number of linearly independent X-ray constraints ex-
ceeds the number of independent elements of P, that is, κ(m,N) =N(m – N),1 the X-ray
data fixes the electron density ρ(r), the density matrix ρ1(r,r′), and the set of orbitals
{φ(r)}. The experimental {φ(r)} may therefore be considered an approximation within
the basis used to the KS orbitals. Therefore they may be used to calculate an X-ray-
derived molecular energy.
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Epilogue

For Aristotle, reality was a cosmos, an ordered universe where two regions of differ-
ent nature could be distinguished: the supra-lunar world, which is the domain of
the stars, composed of ether, perfect and immutable, and the sub-lunar world, com-
posed of the four elements, air, water, earth, and fire, corruptible and in permanent
change. Each of these two regions was ruled by its own laws. This ontological divi-
sion lasted until the times of Galileo and Kepler, manifesting itself in the difference
between physics, devoted to explaining what had been the Aristotelian sub-lunar
world, and astronomy, devoted to the description of heavens. It was not until New-
ton, with his Mathematical Principles of Natural Philosophy of 1687, that the unifica-
tion between the laws of Earth and the laws of heavens was achieved. From then
on, physics acquired a single face, that of Newtonian mechanics.

Chemistry followed a completely different historical path. Its origins go back to
alchemy during the Middle Ages, with its interest in the composition and properties
of matter. It was with Boyle, in the 17th century, that the gradual separation of
chemistry from alchemy started, and chemistry began to acquire an independent
status. In turn, with Lavoisier in the 18th century, chemistry acquired a strict quan-
titative nature, allowing reliable predictions on the basis of precise measurements.
Nevertheless, far from the theoretical character of physics, until the 18th century
chemistry remained an eminently practical discipline, with its interest in obtaining
medicines, food, pigments, among many other resources.

The first half of the 19th century found a scenario in which science has already
completely branched off from philosophy and the different scientific disciplines
have acquired their own identity. It is in this environment that Comte presented his
famous hierarchy of sciences: mathematics, astronomy, physics, chemistry, biol-
ogy, and sociology. The scale goes from the general to the particular, and from the
simple to the complex: moving from mathematics to sociology, generality decreases
and complexity increases. The influence of Comte’s positivism was so strong that
even today many still distinguish between fundamental and phenomenological dis-
ciplines, between primary and secondary sciences.

But already in the second half of the 19th century, the apparent simplicity of the
hierarchy of the sciences began to fade out. In fact, different theoretical fields with
their own epistemic and experimental strategies soon began to appear within each
discipline. As a result, in the 20th century one can no longer speak of physics, but
rather of classical mechanics, thermodynamics, quantum mechanics, electromagne-
tism, general relativity, etc. Nor can one speak simply of chemistry, but of organic
chemistry, biochemistry, inorganic chemistry, analytical chemistry, physical chemis-
try. And although some are still anchored to the nineteenth-century hierarchy, it is
now clear that the relationships between theoretical domains do not necessarily lead
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to a “chain” where each “link” connects only two immediately adjacent ones. On
the contrary, the different domains of science form a “network”, where each node
can be connected to two or more others in a different way in each case. For exam-
ple, classical mechanics is connected by completely different links with classical
statistical mechanics, with special relativity and with quantum mechanics. In this
reticular structure, traditional disciplinary boundaries become unimportant, as
the links cross them in many different ways.

At present, as we have fully entered the 21st century, even the network picture
goes into crisis. In fact, in that picture knowledge still seems to be mainly concen-
trated in the well-defined nodes, and the relationships between them only aim at
unification. By contrast, the current panorama of science shows that, although the
theoretical nodes survive, the largest production of knowledge takes place in the
spaces between them. The boundaries between different theories and scientific dis-
ciplines become blurred and fluid, and it is precisely in these places of fluidity that
present-day science is finding its greatest achievements. The case of quantum
chemistry is a paradigmatic example: it is neither chemistry nor quantum physics,
but it integrates elements of both disciplines, as well as new mathematical and
computational resources. It is a discipline that grows by itself, delineated on the
basis of a certain shared working methodology. However, in the general map of sci-
ence it has diffuse borders and very diverse relationships with the different knowl-
edges it incorporates. It makes no sense to ask a quantum chemist whether she is a
physicist or a chemist: these categories are no longer valid for this new approach to
the scientific practice.

The present book is framed precisely in this context: here classical crystallogra-
phy merges with the theoretical resources of quantum mechanics. Thus, concepts
such as atom, interatomic distance, chemical structure, electronic density, wave
function, and Hamiltonian, among many others, coexist peacefully, regardless of
the discipline in which they were originally proposed. From this fruitful combina-
tion, new explanations stem out, which are not available in traditional X-ray dif-
fraction crystallography, but which quantum mechanics cannot provide in isolation
either. In addition to the relevant scientific results this book offers, it is a perfect
example of the scientific knowledge that is produced in the regions of fluidity and,
as a consequence, points to a new way of conceiving the scientific enterprise, no
longer constrained by the boundaries of traditional disciplines.

Olimpia Lombardi
Senior Researcher

University of Buenos Aires - CONICET

176 Epilogue



Appendix 1
Historical note: N-representability

The history of the exclusion principle is thus already an old one, but its conclusion has not yet
been written. The essential advance of physics rests on the creative imagination of the experi-
mental as well as the theoretical investigator, and, contrary to expensive applications of known
principles, cannot be forced by planning on a grand scale. Therefore it is not possible to say be-
forehand where and when one can expect the further development of the basic principles of pres-
ent-day physics, of which the problem of the exclusion principle is a part.

Wolfgang Pauli (1946)
(“Remarks on the History of the Exclusion Principle,” Science 103, 213–215, 1946)

The idea of N-representability was invented within the theory of quantum mechan-
ics. It was at the time very far from the practice of X-ray crystallography. Elementary
particles such as fermions exhibit experimental indistinguishability that requires
theoretical expression. For this class of particles, to which electrons belong, N-body
solutions of the Schrödinger equation must be antisymmetric in the exchange of
particle pairs. The wave function is a probability amplitude but density matrices are
formulated directly as probability quantities. John von Neumann [1] and Paul
A. M. Dirac [2, 3] were among the first to recognize and use density matrices. Their
invention of the concept is independent of one another.

Given the N-body density matrix, which emanates from the square of the full N-
body Schrödinger wave function, one has a probability object which contains vastly
more information than is required in order to calculate the expectation values of
one- and two-electron quantum mechanical properties. These are, after all, those of
maximal physical interest, including all powers of particle position and momentum
coordinates. K. Husimi [4] was the first to realize, at least a decade before the intro-
duction of the direct methods of crystal structure determination by H. Hauptman
and J. Karle [5] were realized, that N-particle density matrices can be simplified
without loss of their essential one-body and two-body information. Husimi invented
one- and two-body reduced density matrices obtained by integration over all par-
ticles in the N-particle density matrix except for either one or two of the particles,
respectively. It is the reduced density matrices that are those of greatest interest.
Although the simplest density matrices of an N-particle system, no matter what the
magnitude of N may be, they are yet sufficient to deliver all one- and two-particle
expectation values of the system. That of course underlies their great interest.

The importance of the N-representability property of reduced density matrices was
uncovered almost by accident. It was realized that the two-particle density matrix was
all that is needed to calculate the molecular energy expectation value. Of course, the
best energy would be expected to follow from miminization of that energy with respect
to variation of the two-particle density matrix. Surprisingly, such a numerical optimi-
zation carried out by the noted statistical mechanician Joseph E. Mayer yielded, in one
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case, a molecular energy that violated the variational principle of quantum mechan-
ics [6]. The optimized molecular energy was well below the known “exact” value for
the ground-state energy. But of course as touted in quantum mechanics textbooks,
it is simply mathematically impossible. A short time later, R. H. Tredgold was able
to trace the difficulty with the violation of the hard-and-fast rule of the variational
theorem to the use of an expansion of the two-particle density matrix that was not
N-representable [7]. However, the vocabulary term “N-representable” was not used
by Tredgold as it has not yet been launched into the lexicon of quantum mechan-
ics. That term was first used, as is to be mentioned, years later. But contemporane-
ously with the numerical difficulty associated with the variation of the variational
principle, Per-Olov Löwdin began an influential study of density matrix formalism
[8], which has contributed greatly to the formalism and understanding of reduced
density matrices. Löwdin organized a famous series of annual Sanibel theoretical
symposia during which many of his ideas related to the reduced density matrices
were disseminated and have had a lasting impact in the field. These include the
idea of natural orbitals whose occupation numbers fall in the range between 0 and
1. He pushed the idea that finding those conditions relating the two-particle den-
sity matrix to an antisymmetric N-particle wave function would ensure the satisfac-
tion of the variational theorem. John Coleman [9, 10] participated in some of the
Sanibel Symposia and enunciated what came to be called the “Coleman Theorem”
regarding the one-particle density matrix. That is to say, those one-particle density
matrices, which are N-representable, must have eigenvalues which fall in the
range between 0 and 1. The extreme values of that range correspond to single de-
terminant N-representability. Coleman, for may years, organized annual meetings
held at Queen’s University (Kingston, ON) whose purpose was to discuss the gen-
eral problem of N-representability, especially as regards the case of the two-particle
density matrix. In the same period, many important general and expansive views of
the subject have entered the literature. Here, only a few of the most important cases
are mentioned, which include the works of Ugo Fano [11], Dirk ter Haar [12], and
Ernst R. Davidson [13].

Roy McWeeny published important reviews concerning density matrices [14, 15].
He also invented iterative equations whose purpose is to purify a matrix to idempo-
tency. The McWeeny matrix equations may be considered a precursor to the equa-
tions named after William L. Clinton [16–22]. The purpose of Clinton’s equations is to
convert an initial guessed matrix to one which is, both, a normalized projector and
also satisfies conditions of constraints, such as experimentally derived X-ray struc-
ture factors.

Derivation of the Clinton equations and their application to crystallography in-
troduced the concomitant idea of N-representability into the literature of crystallog-
raphy. The term “quantum crystallography” logically follows [23–28].
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Appendix 2
Comments regarding new discussions of quantum
crystallography

On admire près de soi. L’admiration des médiocres caractérise les envieux. L’admiration des
grands poètes est le signe des grands critiques. Pour découvrir au-delà de tous les horizons les
hauteurs absolues, il faut être soi-même sur une hauteur.

Ce que nous disons là est tellement vrai qu’il est impossible d’admirer un chef-d’œuvre sans éprou-
ver en même temps une certaine estime de soi. On se sait gré de comprendre cela. Il y a dans l’ad-
miration on ne sait quoi de fortifiant qui dignifie et grandit l’intelligence. Victor Hugo (1860)

[Engl. trans.:
One admires close to oneself. The admiration of the mediocre characterizes the envious. The ad-
miration of great poets is the mark of great critics. To discover beyond all horizons the absolute
heights, one must be, oneself, standing high.

What we are saying here is so true that it is impossible to admire a masterpiece without at the
same time feeling a certain self-esteem. We are grateful to understand that. There is in admira-
tion something fortifying, who knows what, that dignifies and expands intelligence.]. Victor
Hugo (1860)

(Utilité du beau, et autres textes [Engl. trans.: The Utility of the Beautiful, and other texts], Lit-
téra, Éditions Manucius, Paris, 2018, p. 39)

A small but influential meeting occurred in 2017 at the Université de Lorraine in
Nancy (France). The conference, named CECAM Discussion Meeting – Quantum Crys-
tallography: Current Developments and Future Perspectives, was organized under
the auspices of the Centre Européen de Calcul Atomique et Moléculaire in the period
19–20 June 2017. Perhaps two dozen scientists, widely ranged from around the globe,
among those most interested in quantum crystallography were called together to dis-
cuss the status of the subject. Much of the discussion was predicated upon knowl-
edge of the contemporaneous paper by Grabowsky, Genoni, and Bürgi (GGB) [1].

The paper by GGB so influenced the conference where it was under discussion,
and the subsequent progress of the field subsequently seems relevant to refer for
the readers of this monograph a bit of the paper’s contents, with the hope that the
paper itself will be consulted for its full impact.

This important paper reviews the history of quantum crystallography development
and then goes on to point to the directions in which it may be expected to develop. Central
to the paper’s message regarding what is it that defines the workings of quantum crystal-
lography are two figures that summarize the authors’ view as presented and discussed in
some detail in the paper. One of the figures in this paper (reproduced here as Fig. A2.1)
points to a pair of different ways to encapsulate the field of quantum crystallography.

Our own view of alternative attack on quantum crystallography may be ex-
pressed as depending on whether quantum mechanics, as a formalism, is used to ex-
tract information from or to inject information into the X-ray scattering experiment.
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Single-Determinant WF

– Henderson & Zimmermann’s technique46 
– Jayatilaka’s XCW approaches54–60, 62, 63, 66–69

– Weyrich’s strategies40

– Gillet’s techniques41
– Clinton-like strategies16–21, 27–32

– Tanaka’s XAO method34–38

Cassam-Chenai’s method43

XC-ELMO Valence Bond84

MOON approach39

Energy Minimisation

Compton Scattering Data

CRYSTALLOGRAPHY

QUANTUM CHEMISTRY

Polarised Neutron Diffraction DataX-ray Diffraction Data

Many-Determinant WF

Fig. A2.1: A hierarchically organized flow chart where the lower the position of a box indicates lesser input from quantum
chemistry and vice versa. Red and blue frames denote, respectively, the features and principal methodologies as stipulated
from the “first definition of quantum crystallography” (reproduced from Ref. [1] with permission of the copyright holder
© 2017 The Royal Society of Chemistry).

182
A
ppendix

2
C
om

m
ents

regarding
new

discussions
ofquantum

crystallography



These ideas have been presented in this monograph, in particular in Chapters 3 and
4, wherein the discussion was one of extracting the quantum mechanics from the X-
ray scattering experiment. The emphasis in Chapters 5 and 6 is especially concerned
with injecting the quantum mechanics into the crystallography by using the nuclear
coordinates of a classical structure determination and calculating the ab initio density
matrix via quantum chemical calculations.

In addition to the paper by GGB, the reader is strongly encouraged to consult
the additional publications which are representative of the current trend in this
evolving field of research [2–5]. These references (and the literature cited therein)
capture much of the current mood of the direction in which the new field of quan-
tum crystallography is moving.
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