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The rapid development of new imaging hardware, the advance in medical imaging,
the advent of multi-sensor data fusion and multimodal imaging, as well as the
advances in computer vision have sparked numerous research endeavours leading
to highly sophisticated and rigorous mathematical models and theories. Motivated
by the increasing use of variational models, shapes and flows, differential geome-
try, optimisation theory, numerical analysis, statistical/Bayesian graphical models,
machine learning, and deep learning, we have invited contributions from leading
researchers and publish this handbook to review and capture the state of the art of
research in Computer Vision and Imaging.

This constantly improving technology that generates new demands not readily
met by existing mathematical concepts and algorithms provides a compelling
justification for such a book to meet the ever-growing challenges in applications
and to drive future development. As a consequence, new mathematical models
have to be found, analysed and realised in practice. Knowing the precise state-of-
the-art developments is key, and hence this book will serve the large community
of mathematics, imaging, computer vision, computer sciences, statistics, and, in
general, imaging and vision research. Our primary audience are

* Graduate students

» Researchers

¢ Imaging and vision practitioners
¢ Applied mathematicians

e Medical imagers

* Engineers

¢ Computer scientists

Viewing discrete images as data sampled from functional surfaces enables the use of
advanced tools from calculus, functions and calculus of variations, and optimisation
and provides the basis of high-resolution imaging through variational models. No
other framework can provide the comparable accuracy and precision to imaging and
vision.



Vi Preface

Although our initial emphasis is on the variational methods, which represent
the optimal solutions to class of imaging and vision problems, and on effective
algorithms, which are necessary for the methods to be translated to practical use in
various applications, the editors recognise that the range of effective and efficient
methods for solving problems from computer vision and imaging go beyond
variational methods and have enlarged our coverage to include mathematical models
and algorithms. So, the book title reflects this viewpoint and a big vision for the
reference book.

All chapters will have introductions so that the book is readily accessible to
graduate students. We have divided the 53 chapters of this book into 3 sections,
namely

(a) Convex and Non-convex Large-Scale Optimisation in Imaging
(b) Model- and Data-Driven Variational Imaging Approaches
(c) Shape Spaces and Geometric Flows

to facilitate browsing the content list. However, such a division is artificial because,
these days, research becomes increasingly intra-disciplinary as well as inter-
disciplinary, and ideas from one topic often directly or indirectly inspire or transpire
another topic. This is very exciting.

For newcomers to the field, the book provides a comprehensive and fast track
introduction to the core research problems, to save time and get on with tackling new
and emerging challenges, rather than running the risk of reproducing/comparing to
some old works already done or reinventing same results. For researchers, exposure
to the state of the art of research works leads to an overall view of the entire field
so as to guide new research directions and avoid pitfalls in moving the field forward
and looking into the next 25 years of imaging and information sciences.

The dreadful Covid-19 pandemic starting from 2020 has affected lives of
everyone, of course including all researchers. We are still not out of the woods.
The editors are very much grateful to the book authors who have endured much
hardship during the last 3 years and overcome many difficulties to have completed
their chapters on time. We are also indebted to many anonymous reviewers who
provided valuable reviews and helpful criticism to improve presentations of our
chapters.

The original gathering of all editors was in 2017 when the first three editors
co-organised the prestigious Isaac Newton Institute programme titled “Variational
methods and effective algorithms for imaging and vision” (https://www.newton.
ac.uk/event/vmv/), partially supported by UK EPSRC GR/EP F005431 and Isaac
Newton Institute for Mathematical Sciences. During the programme, Mr Jan
Holland from Springer-Nature kindly suggested the idea of a book. We are grateful
to his suggestion which sparked the editors’ fruitful collaboration in the last few


https://www.newton.ac.uk/event/vmv/
https://www.newton.ac.uk/event/vmv/

Preface vii

years. The large team of publishers who have offered immense help to us include
Michael Hermann (Springer), Allan Cohen (Palgrave) and Salmanul Faris Nedum
Palli (Springer). We thank them all.

Finally, we wish all readers a happy reading.

The editorial team:

Liverpool, UK Ke Chen (Lead)
Cambridge, UK Carola-Bibiane Schonlieb
Shatin, Hong Kong Xue-Cheng Tai
Baltimore, USA Laurent Younes

February 2023
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the data-fidelity term, and the regularization term. Much research has focused
on models where both terms are convex, which leads to convex optimization
problems. However, there is evidence that non-convex regularization can improve
significantly the output quality for images characterized by some sparsity
property. This fostered recent research toward the investigation of optimization
problems with non-convex terms. Non-convex models are notoriously difficult
to handle as classical optimization algorithms can get trapped at unwanted local
minimizers. To avoid the intrinsic difficulties related to non-convex optimization,
the convex non-convex (CNC) strategy has been proposed, which allows the
use of non-convex regularization while maintaining convexity of the total cost
function. This work focuses on a general class of parameterized non-convex
sparsity-inducing separable and non-separable regularizers and their associated
CNC variational models. Convexity conditions for the total cost functions and
related theoretical properties are discussed, together with suitable algorithms for
their minimization based on a general forward-backward (FB) splitting strategy.
Experiments on the two classes of considered separable and non-separable CNC
variational models show their superior performance than the purely convex
counterparts when applied to the discrete inverse problem of restoring sparsity-
characterized images corrupted by blur and noise.

Keywords

Convex non-convex optimization - Sparsity regularization - Image restoration -
Alternating direction method of multipliers - Forward backward algorithm

Introduction

A wide class of linear systems derived from the discretization of linear ill-posed
inverse problems in data processing is characterized by high dimensionality, ill-
conditioned matrices, and noise-corrupted data. In this class of discrete inverse
problems, a noisy indirect observation b € R™ of an original unknown image
x € R" is modeled as

b = Ax, (1)

where A € R"™*" accounts for the data-acquisition system. For instance, A can be a
convolution matrix modeling optical blurring, a wavelet or Fourier transform matrix
in image synthesis, a radon transform matrix in X-ray computerized tomography,
a sampling matrix in compressed sensing, a binary selection matrix in image
inpainting, or the identity matrix in image denoising and segmentation.

When m < n, the linear system (1) is underdetermined and among the infinity of
solutions, it is common to seek an approximate solution with minimal norm, that is,
one solves the constrained optimization problem
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min [x|3 subjectto b= Ax, )
xeR®

where ||v]|2 denotes the £> norm of vector v.

On the other hand, when m > n, the linear system (1) is overdetermined; in
general there is no solution, and it is common to seek for the least squares solution,
that is, the solution which minimizes the residual norm; in formula,

min |6 — Ax|3. 3)
xeR®

Even in the most favorable case that m = n, so that the linear system (1) can
admit a unique solution, ill-conditioning of matrix A typically makes the problem
very difficult from a numerical point of view.

Indeed, for many image processing applications of practical interest, problems in
form (1) are ill-posed linear inverse problems. The term ill-posed was coined in the
early twentieth century by Hadamard who defined a linear problem to be well-posed
if it satisfies the following three requirements:

* Existence: The problem must have a solution.
* Uniqueness: The problem must have only one solution.
* Stability: The solution must depend continuously on the data.

If the problem violates one or more of these requirements, it is said to be ill-posed
(Hansen 1997).

A violation of the stability condition implies that arbitrarily small perturbations
of the data can produce arbitrarily large perturbations in the solution. Noise is a
typical unavoidable perturbation component in the digital data acquisition process
which, coupled with ill-conditioning of matrix A, makes inverse problems in
imaging typically ill-posed.

In this work, we assume that the noise is additive white Gaussian (AWGQG), so that
the observed noisy image b € R™ is related to the underlying true image x € R” by
means of the following degradation model

b= Ax+n, @

with n € R™ the realization of an m-dimensional random vector having Gaussian
distribution with zero mean and scalar covariance matrix. In many practical cases,
the matrix A is so ill-conditioned (if not numerically singular) that recovering x
given b and A by means of a naive (not regularized) least-squares procedure leads
to meaningless results. Some sort of regularization is required. The key aspect is to
reformulate the problem such that the solution to the new problem is less sensitive
to the perturbations. We say that we stabilize or regularize the problem.
Regularization strategies in traditional variational methods are usually problem-
dependent and take advantage of a priori information specific to any particular
imaging application. In this paper, we focus on those applications which involve
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sparsity in the solution, or in its representation, or in a function of the solution. For
instance, images of stars from a telescope are sparse themselves, while images of
humans are sparse under the wavelet transform. Sparsity plays an important role
in image processing and machine learning. How to build appropriate sparse-based
models, how to numerically find solutions of the sparse-based models, and how to
derive theoretical guarantees of the correctness of the solutions are essential for the
success of sparsity in a wide range of applications (Bruckstein et al. 2009).

We focus on regularized variational methods where an approximate solution
x* € R" of the inverse problem (4) is sought among the (global) minimizers of
a cost function J : R" — R which takes the following form

1
e arg min J(0), I = 2 I1Ax = bll5 + ¥ (). (5)

The quadratic term in (5) is the so-called L, fidelity term, which forces closeness
of solution(s) x* to data b according to the linear acquisition model (4) and to the
assumed noise Gaussian distribution. The term W (x) in (5) represents the sparsity-
inducing regularization term and encodes some sparsity priors on the unknown
sought image. Finally, the positive scalar u, referred to as the regularization
parameter of variational model (5), is a free parameter which allows to control the
trade-off between data fidelity and regularization.

In this work, we are particularly interested in sparsity-promoting regularization
terms W : R" — R having the following general form

Y(x):= ®&(x,y), y:=G() z:=1Lx, (6)
with

e L € R"™" the regularization matrix

e G:R" — R* apossibly nonlinear vector-valued function with g;: R” — R,
i =1,...,s, representing its scalar-valued components

* y e R’ the features vector to be sparsified

e &: R" xR’ — R asparsity-promoting penalty function (Selesnick and Bayram
2014; Selesnick et al. 2015; Lanza et al. 2016a)

It is important for the purposes of this work to introduce a partition of the class
of sparsity-promoting regularizers W defined in (6) into two sub-classes based on
separable and non-separable penalty functions ®.

Definition 1 (Separable and non-separable sparsity-promoting regularizers).
A sparsity-inducing regularizer W of the form in (6) is referred to as separable
(with respect to the feature vector y to be sparsified) if the penalty function &
only depends on y and is additively separable with respect to the y components;
in formula,
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0.5 0.5 0.5

0 100 200 0 100 200 0 100 200
|l (Va)ill, (Hz)ill

Fig. 1 Prototypical example images characterized by different sparse feature vectors (first row)
and their associated normalized histograms (second row)

O(y) =Y ¢i(v), withgi:R—>R, (7)

i=1

otherwise, it is named non-separable.

Examples of image feature vectors y = G(Lx) which can be characterized by
a sparsity property in typical application scenarios are, e.g., the vectorized image
itself (for predominantly zero images), the vector of image gradient magnitudes
(for piecewise constant images), the vector of image Hessian Frobenious norms (for
piecewise affine images), and the vector of coefficients of the image in a transformed
domain (e.g., Fourier, wavelet,. . . ).

Examples of predominantly zero, piecewise constant, and piecewise affine
images are depicted in the first row of Fig. 1. They are characterized, from left
to right, by a sparse vector y of components y; = [x;|, yi = || (Vx); ||2 and
yi = [(Hx)i||F,i = 1,...,n, respectively, where (Vx); € R? and (Hx); € R**?
represent the gradient and the Hessian matrix of image x at pixel i, respectively. In
the second row of Fig. 1, the reported normalized histograms of the corresponding
y vector values clearly highlight their sparsity.

Although the three images above represent almost ideal prototypes, also many
images from real-life applications commonly exhibit sparsity features. In Fig.2,
we show three realistic images characterized by increasing level of sparsity of
the gradient magnitudes, together with their associated histograms. This indicates
the practical importance of sparse-regularized variational models which, in many
application scenarios, hold the potential for very high quality results.
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Inverse problems in imaging
sparse-based reconstructior
convex or non-convex mode
existence of local minimizer

uniqueness of global minim
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(V)i (V)i (V)i

Fig. 2 Realistic images characterized, from left to right, by increasing level of sparsity of the
gradient magnitudes (first row) and their associated normalized histograms (second row)

Some interesting models of the form (5)—(6) are characterized by the following

well-known matrices A and L:

TV-L, Restoration: In image restoration, the popular Total Variation (TV)-
L (Rudin et al. 1992) calls for a matrix A characterizing the image blur, or
A = I, for image denoising. For what concerns the linear operator L, it is defined

as L := (DT, DUT )T € R2™n with D;y,D, € R" finite difference matrices
discretizing the first-order horizontal and vertical partial derivatives, respectively,
8i(2) = N(zi: zign)ll2 or gi(z) = lI(is zitn)ll1, i = 1,...,n, for isotropic

and anisotropic TV regularization, respectively, and @ the £; norm function; in
formulas

n Z \/(th)iz + (Dyx)?  (isotropic)
TV)=IIG(Lx) = Z lgi (Lx)| =1 3!
=1 Z (I(Dpx)i| + 1(Dyx);l)  (anisotropic)
i=1

®)

Sparse Reconstruction (Analysis): A full rank, L := W with W an orthogonal
basis or an overcomplete dictionary, which satisfies the tight frame condition,
ie,LTL =451, &> 0,Parekh and Selesnick (2015).
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¢ Sparse Reconstruction (Synthesis): A := W-L L = I,, and G the identity
operator.

The main difficulties in solving variational models of the considered form in
(5)-(6) stems from the facts that the involved optimization domain is typically of
very high dimension (the number of pixels in the image), the linear operator A
can be ill-conditioned or even singular, and, more importantly, the regularization
term W is preferably a non-convex non-smooth function in order to effectively
promote sparsity of vector y. Summarizing, (5)—(6) is a very challenging large-
scale optimization problem. The real challenge comes from possible non-convexity
of the problem, which yields all the well-known associated intricacies, namely, the
existence of local minimizers and the problematic convergence of minimization
algorithms.

A very interesting approach proposed in literature to address this issue is the so-
called CNC strategy. It consists in constructing and then minimizing convex cost
functions containing non-convex (sparsity-promoting) regularization terms. This
can be obtained by using regularizers parameterized such that their degree of non-
convexity can be tuned. By suitably setting the parameters of the regularizer, one
can thus obtain a convex variational model containing a non-convex regularizer
which holds the potential to induce sparsity of the solution more effectively than
any convex regularizer. As it will be shown in this work, suitably parameterized
non-separable regularizers of the form in (6) allow to apply the CNC strategy to
the solution of any linear inverse problem in imaging, thus overcoming the intrinsic
limitations of separable regularizers.

The chapter contents will be organized as follows. In section “Convex or
Non-convex: Main Idea and Related Works,” we outline the main ideas at the
basis of the CNC strategy and shortly review the most related approaches. In sec-
tion “Sparsity-Inducing Separable Regularizers,” we present separable non-convex
parameterized regularizers, and then in section “CNC Models with Sparsity-In-
ducing Separable Regularizers,” we illustrate the associated CNC models and the
related convexity condition results. In section “Sparsity-Inducing Non-separable
Regularizers,” we present non-separable non-convex parameterized regularizers,
while their integration into suitable CNC models is described in section “CNC
Models with Sparsity-Inducing Non-separable Regularizers,” together with the
construction of the related matrix B which leads to convexity of the total cost
function. An illustrative example of CNC separable and non-separable models
is given in section “A Simple CNC Example.” In section “Forward-Backward
Minimization Algorithms,” we outline the optimization algorithms for solving the
illustrated classes of CNC variational models, based on the FB splitting strategy
and the Alternating Direction Method of Multipliers (ADMM) for the related
subproblems. Finally, in section “Numerical Examples,” we evaluate experimentally
the performance of the two CNC classes when applied to the linear ill-posed inverse
problem of restoring images corrupted by blur and noise.
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Convex or Non-convex: Main Idea and Related Works

Convexity is a sufficient condition for all local minima to be global minima. If
is non-convex, it may have many local minima which are not global minima. This
means that classical convex optimization algorithms applied to a non-convex cost
function J will almost certainly get trapped at a local minimimum that is of higher
cost than the global minimum. Moreover, which local minimum is reached will
depend strongly on the starting point of the algorithm.

However, non-convex non-smooth optimization problems arise more and more
frequently in image processing, neural network training, and machine learning,
where suitable non-convex regularizers have shown superior performance with
respect to their convex counterparts (Nikolova 2011; Bruckstein et al. 2009). In the
literature, for example, the most natural sparsity-inducing penalty is the £y pseudo-
norm, which, however, leads to NP-hard and non-convex optimization problems.

Literature on non-convex optimization dates back to the 1950s. An important
class of non-convex optimization problems that has been extensively studied in the
past is related to the specific set of non-convex cost functions that can be defined
as the difference of convex functions, or DC functions for short; we refer to the
seminal papers Tuy (1995) and Hartman (1959) and the more recent work Yuille
and Rangarajan (2003) for more details on DC functions and optimization. Other
important approaches to optimization in the non-convex regime are represented,
e.g., by simulated annealing, see Geman and Geman (1984); genetic algorithms,
see Jensen and Nielsen (1992); the Mean Field Annealing by Geiger and Girosi,
which provides a deterministic version of simulated annealing (Geiger and Girosi
1991); and the Graduated Non-Convexity (GNC) strategy introduced in Blake and
Zisserman (1987) by Blake and Zisserman.

The basic idea of the popular GNC algorithmic strategy is to construct a
modified, parameterized cost function .J,, governed by a control parameter A €
[0, 1], chosen so that Jy = 7, the true cost function, and J; = J., a convex
approximation to . Then GNC computes a solution to the non-convex problem
by starting from its convex approximation J., which must have a global minimum,
and gradually changing A (i.e., gradually increasing the amount of non-convexity)
until the original non-convex function 7 is recovered. The solution obtained at each
iteration is used as initial guess for the subsequent iteration. In the construction of
a suitable convex surrogate function J, the authors in Blake and Zisserman (1987)
introduced the concept of “balancing” the positive second derivatives in the first
term (fidelity) against the negative second derivatives in the regularization term.
This represents the seminal idea behind the CNC strategy, namely, designing non-
convex parameterized penalty terms which allow to maintain convexity of the total
cost function.

This simple concept, later called the CNC strategy (Lanza et al. 2015), has
been applied by Nikolova (1998) in the context of denoising of binary images
and then extended to many other sparse-regularized variational problems (Bayram



1 Convex Non-convex Variational Models 1

2016; Selesnick and Bayram 2014; Lanza et al. 2017), including 1D and 2D total
variation denoising (Lanza et al. 2016a; Malek-Mohammadi et al. 2016; Zou et al.
2019; Du and Liu 2018), transform-based denoising (Parekh and Selesnick 2015;
Ding and Selesnick 2015), low-rank matrix estimation (Parekh and Selesnick 2016),
decomposition and segmentation of images and scalar fields over surfaces (Chan
et al. 2017; Huska et al. 2019a,b), as well as machine fault detection (Cai et al.
2018; Wang et al. 2019).

The flexibility and effectiveness of the CNC approach depends on the con-
struction of non-trivial separable and non-separable convex functions. It turns
out that Moreau envelopes and infimal convolutions are useful for this purpose
(Selesnick 2017a,b; Carlsson 2016; Soubies et al. 2015). Based on convex analysis,
families of non-convex non-separable penalty functions have been proposed in
Selesnick (2017a) that do maintain convexity of the cost functional J for any
matrix A, but only in the special case where both G and L in (6) are identity
operators. More recently, a convex approach was applied in Lanza et al. (2019)
where a general CNC framework is proposed for constructing non-separable non-
convex regularizers starting from any convex regularizer, any matrix A and L,
and quite general functions G. In particular, an infimal convolution is subtracted
from a convex regularizer, such as the £;-norm, leading to a resulting non-convex
regularizer.

Non-convex penalties of various functional forms have been proposed too for
overcoming limitations of the £ norm by using penalties that promote sparsity more
strongly (Castella and Pesquet 2015; Candés et al. 2008; Nikolova 2011; Nikolova
et al. 2010; Chartrand 2014; Chouzenoux et al. 2013; Portilla and Mancera 2007;
Shen et al. 2016). However, these methods do not aim to maintain convexity of the
cost function to be minimized. Moreover, for what concerns non-separable sparsity-
inducing penalties in (6), pioneering work has been conducted in Tipping (2001)
and Wipf et al. (2011); however, also such penalties were not designed to maintain
cost function convexity.

We finally note that infimal convolution (related to the Moreau envelope) has
been used to define generalized TV regularizers (Setzer et al. 2011; Chambolle and
Lions 1997; Burger et al. 2016; Becker and Combettes 2014). However, the aims
and methodologies of these past works are quite different from those considered
here. In fact, in these works, the £; norm is replaced by an infimal convolution; the
resulting regularizer is convex.

Sparsity-Inducing Separable Regularizers

In this section, we first recall some definitions which will be useful for the rest
of the work, and, in particular, we report some results from convex analysis. We
then review some popular sparsity-inducing separable regularizers and discuss their
properties.
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In this work, we denote by R4 and R the sets of nonnegative and positive real
numbers, respectively, by [, the identity matrix of order n, by 0, the n-dimensional
null vector, by null(M) the null space of matrix M, and by IH(R") the set of proper
lower semicontinuous convex functions from R” to R := R U {+o0}.

Definition 2 (infimal convolution). Let f, g : R” — R. The infimal convolution
of f and g is defined by

(f0g) 0= inf {f@) +gkx—v)}. ©)

and it is said to be exact and denoted by f [ g if the infimum above is attained for
any x € R”, namely, (f @ g) (x) = minyer { f(v) + g(x — v)}, for any x € R,

Definition 3 (Moreau envelope). Let f € IH(R") and let a € R4 . The Moreau
envelope of f with parameter a is defined by

env's (x) = (f kg ||§) (x) = min {f(v) +3 lx - v||%} . (10)

Definition 4 (proximity operator). Let f € IH(R") and let ¢ € Ri;. The
proximity operator of f with parameter a is defined by

. a
prox‘ (x) = arg min {f(v) + 5l = vll%} . an

We notice that, for any f € IH(R"), a € R4, the cost function f(v) + % lx — vII%
in (10)—(11) is strongly convex in v; hence it admits a unique (global) minimizer.

Definition 5 (Huber function). The Huber function %, : R — R, with parameter
a € R4y is defined by

. %ﬂ for |7| € [0, 1/a],
ha(t) = envi' (1) = min{|v| +=( —v)z} = 1
veR 2 1] = - for |t €]1/a, +ool .

a

(12)

Definition 6 (minimax concave penalty function). The minimax concave (MC)
penalty function ¢mc : R — Ry with parameter a € R is defined by

an
=51+l for t] €10, 1/al,

dmc(t;a) = t| —ha(t) = | (13)
% for |t| €]1/a, +oo[.
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Proposition 1 (Moreau envelope gradient). Ler f € IH(R") and let a € R, .
Then, the Moreau envelope of f with parameter a is a differentiable function with
gradient given by

v (env‘}) x) = a (x — prox‘}(x)) . (14)

Proposition 2. Let h, : R — R be the Huber function defined in (12). Then, for
any value of the parameter a € R, the function

fa@ = ha (Ixl2), xeR", 5)

is continuously differentiable and its gradient is given by

V fa(x) = min {a, L} X. (16)
llx1l2

Proof. Recalling the Huber function definition in (12), the function f, in (15) takes
the explicit form

a n 2

= 2ot X for ||x]l, € [0, 1/a],

fax)y = { 2 1 (17)
VEio 5} = o for lxla€ 11/a, +ool.

The two pieces of function f, in (17) are clearly both continuously differentiable on
their domain with gradients given by

ax for |x|p € [0,1/a],

Vfalx) = (18)

—x  for |Ix|l, € 11/a, 400l
llx 1l

It follows easily from (18) that, for any a € R, the gradient function V f,(x)
is continuous also at points x on the spherical surface |x|» = 1/a separating its
two pieces. Finally, the compact form of V f, given in (16) comes straightforwardly
from (18). |

Among separable sparsity-promoting regularizers (see Definition 1), the most
natural choice is represented by the £ pseudo-norm of the features vector y to
sparsify, namely, ®(y) = |yllo = #{i : y; # 0}, as it directly measures the
sparsity of y by counting the number of non-zero elements in it (see the dashed
magenta line in Fig. 3a). However, £ regularization leads to non-convex NP-hard
optimization problems. Intrinsic difficulties involved in using the £y pseudo-norm
can be overcome by using the ¢; norm, namely, ®(y) = |lylli = >_i_; lyil (see
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Fig. 3 Sparsity-inducing scalar penalties: (a) £, penalty for some different p values, (b) some
parameterized non-convex penalties satisfying assumptions 1-5 (see Table 1) and the MC penalty
(see definition in (13)) all with concavity parameter a = 1, and (¢) MC penalty for some different
values of the concavity parameter a

the solid red curve in Fig.3a). In fact, this choice very likely leads to a convex
sparsity-inducing regularizer and, hence, to a convex variational model which can
be solved numerically by standard convex optimization algorithms. However, it is
well known that the £; norm penalty function tends to underestimate high-amplitude
components of the vector to which it is applied, in our case y = G(Lx). More
generally, it is well known that non-convex penalty functions hold the potential for
inducing sparsity more effectively than convex penalty functions. A natural non-
convex separable alternative to the £; norm is the £, quasi-norm penalty (Sidky
et al. 2014), ®(y) = %||y||§ = % Yoo 1yil?, 0 < p < 1; see the solid blue
and black curves in Fig. 3a, corresponding to p = 0.5 and p = 0.1, respectively.
However, such a non-convex family of penalties can not be used to the purpose
of constructing CNC variational models. In fact, since the infimum of the second-
order derivative of the £, penalty is equal to —oo for any p €]0, 1[, itis not possible
to obtain a total convex model even when coupling the regularizer with a strongly
convex quadratic fidelity term.
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To the aim of constructing CNC models with separable sparsity-promoting
regularizers characterized by tunable degree of non-convexity, one can usefully
consider the class of parameterized scalar penalty functions ¢ (¢; @) : R — R which,
for any value of the parameter a € R, satisfy the following assumptions:

¢(t;a) € C°(R) N (R \ {0})

¢(t;a) =¢(—t;a) Vit e Ryy

¢ (t;a) >0 Vi e Ry

¢"(t;a) <0 Vi e R4y

¢0;a) =0, inf ¢"(t;a) =—a
teRyy

Nk

We denoted by ¢'(¢; a) and ¢”(t; a) the first-order and second-order derivatives
of ¢ with respect to the variable 7, respectively. Assumptions 1-5 above are quite
standard and encompass a wide class of continuous but non-smooth non-convex
sparsity-promoting penalty functions (Geman and Geman 1984). The parameter a,
referred to as the penalty concavity parameter, is directly related to the degree of
non-convexity of the penalty function, as defined in assumption 5.

In Table 1, we report the definitions of four widely used sparsity-promoting
parameterized scalar penalty functions, referred to as @rog, Prat, Patan, and Gexp,
which satisfy all the assumptions 1-5 and have been considered, e.g., in Selesnick
and Bayram (2014), Chen and Selesnick (2014), and Lanza et al. (2015, 2016a). In
particular, the penalty ¢,ian has been proposed in Selesnick and Bayram (2014) as
the maximally sparsity-inducing function among those characterized by a first-order
derivative of inverse quadratic polynomial type.

In order to mimic in a more faithful manner not only the asymptotically constant
behavior of the £( pseudo-norm, a class of piecewise defined truncated penalties has
been introduced in literature. One of the most popular and effective representatives
of this class is the so-called minimax concave (MC) penalty function, formally
defined in (13) and also reported in the last row of Table 1. In the rest of this work,
we will use the MC penalty within all the illustrated separable CNC variational
models.

Table 1 Four popular log(1 + at)
non-convex, Plog(t;a) = 4
sparsity-promoting, ;
parameterized scalar penalty Prat(t;0) = ———
functions ¢ (t; a): R — R 1 +at/2
satisfying assumptions 1-5 atan ( l+2at> _x
and, in the last row, the MC . _ V3 6
. Qatan(t;0) =
penalty function a/3/2
1— e—at
¢exp (tya) =

a

a.n
—3 17+l for |t] € [0, 1/a]
dMmc(t;a) = 1

— for |t| €]1/a, +oo[
2a
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To give a visual insight of the considered parameterized penalty functions, in
Fig. 3b we depict the graphs of some of the penalties in Table 1, all with concavity
parameter a = 1, whereas in Fig. 3c we illustrate the MC penalty for some different
values of the concavity parameter a.

CNC Models with Sparsity-Inducing Separable Regularizers
This section is concerned with the formulation of CNC variational models with

separable sparsity-promoting regularization terms; see Definition 1. The general
form of such models reads

x* € arg min Jg(x; a), (19)
xeR?

1 S
Ts(xia) = I Ax = bl + u¥s(xia), Ws(ria) = Y uc (si(Lx):ay).

i=1

(20)
where, we recall, A € R™*" and L € R"*" are the coefficient matrices of two
bounded linear operators, g; : R" — R, i = 1,...,s are the components of

a possibly nonlinear vector-valued function G : R” — R*, u € Ry, is the
regularization parameter, ¢pc : R — Ry is the non-convex MC penalty function
defined in (13), and where we introduced the vector a = (ay,...,a5)" € RS |
containing the concavity parameters of all the s instances of the MC penalty in the
regularizer Wg. We refer to (19)—(20) as the class of CNC separable (least-squares)
models, abbreviated CNC-S-L, models.

In order to refer to models (19)—(20) as CNC, we clearly need to derive and then
impose convexity conditions for the objective function J5. More precisely, we seek
sufficient conditions on the operators A, L, and G and on the parameters u and a;,
i =1,...,s, to ensure that the function J in (20) is convex (strongly convex) on
its entire domain x € R". It is worth noting that, in practice, the operators A, L, and
G are commonly prescribed by the specific application at hand. In fact, operator A
typically comes from a (more or less accurate) modeling of the image acquisition
process, whereas operators L and G are related to the expected properties of sparsity
of the sought solution. This implies that the derived convexity conditions can be
regarded as constraints on the free parameters x and a; of model (19)—(20).

In Lemma 1, we give some useful reformulations of the separable regularizer Wg
defined in (20); then in Theorem 1, we derive conditions for convexity of Js.

Lemma 1. The separable regularizer Ws in (20) can be rewritten as
Us(x;a) = |G(Lx)|, — Hs(x; a), (1)

where the function ‘Hs in (21) takes the following equivalent forms:
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Hs(x;a) = Y hg (g (L)) (22)
1

= (||~||1 o5 ||W-||%) (G(Lx)) (23)

= envﬁw,l_”l (WG(Lx)), (24)

with hg, the Huber function defined in (12) and W € R*** the matrix defined by

W := diag (Vai, ..., as) . (25)
In the special case that a; = a Yi = 1,...,s, a € Ry4, then (23) and (24)
reduce to

Hs(x; a) = envi, ), (G(L)). (26)

Proof. First, recalling the MC penalty definition in (13), Wg in (20) can be
rewritten as

N

Ws(ria) = Y (|gi(Lx)| = ha; (8i(L0))) = |GAD)|, = D ha; (8i(Lx)),

i=1 i=1

Hs (x;a)
(27)

which proves (21)—(22). Then, based on the Huber function definition in (12), the
function Hs(x; @) in (27) can be manipulated as follows:

Hs(x;a) = Z env gl (Lx)

me{|vl|+ (gi<Lx>—v,~)2}

min (Ivil + % (gi(Lx) — v,')z)

veERS 4
i=1
s K

= min 1 > o] + % > (var (g - vz-))2

veRS | 4 £
i=1 i=1

min {||v||1 +%HW(G(“)—”)”2} (28)
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1
= (u lESIwe ||%> (G(Lx)), (29)

with matrix W defined in (25). The last equality (29), which proves (23), comes
straightforwardly from the definition of infimal convolution in (9).

Starting from (28), and noting that by assumption the square diagonal matrix W
in (25) is invertible (in fact, a; € R4y Vi = 1,...,s), we can write

1
Hs(x; @) = min {||v||1 +5 [WG@Lx) - Wvlli}

m
veRS

(|-, + 5 v 1)

zeRs
_ 1
= enV”W,L I, (WG(Lx)) ,
which completes the proof of (24). Statement (26) follows easily. |

In the following result, we define the set of sub-vecors {z(i)}le, 7 ¢ R as
a partition of vector z € R” if z) = PWz, with P e R"*" binary selection

T T T\T
matrices satisfying ((P(l)) , (P(Q)) e (P(S)) ) = P, with P € R"™*" a

. _ T T ™T
permutation matrix, so that (z(l)) s (z(2)> e (z(s)) ) = Pz, a permuted

version of z.

Theorem 1. If the components g; : R — R of function G are all lower
semicontinuous functions, then for any matrices A, L and any value of parameters
we Ry, aeR, the objective function Jg : R" — R defined in (20) is lower
semicontinuous and bounded from below by zero.

Moreover, if any g; is either linear or a lower semicontinuous convex and
nonnegative function, then a sufficient condition for Js to be convex (strongly
convex) is that the function

Ji1x) = ||Ax||% — ”WG(Lx)Hi is convex (strongly convex), (30)

with matrix W defined in (25).
In particular, in the special cases that G is the identity operator or a function
defined by

6@ = (|20 [29],) - with {20, partition of z € B, (3

then it follows from (30) that [Jg is convex (strongly convex) if
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Q0 =ATA—uL™W?L = 0 (> 0). (32)
Finally, in case thata; = a Vi =1, ...,s, (32) reduces to
Q=ATA—palL’L >0 (> 0), (33)
that is,
PA,L Ui i
a=t—=, tel01] (rce[O,l[), pAL = —5, (34)
H L,max

With 6 A min and oy, max denoting the minimum singular value of matrix A and the
maximum singular value of matrix L, respectively.

Proof. Since the MC penalty function defined in (13) is continuous and bounded
from below by zero, if functions g; are all lower semicontinuous, then the regularizer
Ws and, hence, the total objective function 7 in (20) are both lower semicontinuous
and bounded from below by zero.

In order to derive convexity conditions for Jg, we first introduce the function
qq : R — Ry defined by

a , 2] for |¢| €10, 1/a],

G0 = 5 b = Yap L e 39
2 2a
where the second equality in (35) comes from the Huber function definition in (12).
It is easy to prove that, for any value of the parameter a € Ry, the function g,
in (35) is convex on R, continuously differentiable on R \ {0}, and monotonically
increasing on Ry.

Based on results in Lemma 1, in particular (21)—(22), and on definition of the
Huber function in (12), the expression of function Jg in (20) can be manipulated
and equivalently rewritten as follows:

1 N
Ts(s: =7 I Ax = bli3 +pu | [G(LD)], - glh (8i (L))

1 S
= NAx = bl3 4+ Y [[s (Lo)] = ho (g1 (L)) |

i=1

1 S
=3 NAx = bl3 + 1 Y [[as (L] = ha (g1 (L)

i=1
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a; a;
+3 (8 (Lx))” — 5 (s (Lx))z}

1 S N
=3 NAx =3 = 5 Y ai (8 (Lo) + 1Y g (si(LD)

i=1 i=1

1 N
=3 (IAx =613 = [WGn)|3) + 1Y du (8:(LD)

i=1

1 s
=3 J10) + (/21613 = bTAx + 1Y au (i (L), (36)
To(x) =

J3(x)

with function J; (x) defined in (30). Function 9, (x) in (36) is affine; hence it clearly
does not affect convexity of the total objective function Jg. Recalling that, given
two convex functions f; : R* — Rand f, : R — R, if f] is linear or f; is
monotonically increasing, then the composite function f> o fj : R, — R is convex,
function J3(x) in (36) is convex. In fact, since the functions g, are all convex on R
and monotonically increasing on R and, by assumption in the theorem statement,
all functions g; are either linear or lower semicontinuous, convex, and nonnegative,
each term of the summation defining 3 in (36) is a convex function of x. Finally,
since u € R4, it follows that a sufficient condition for Jg to be convex (strongly
convex) is that the term J; in (30) is convex (strongly convex). This proves (30).
If G is the identity operator or G has the form in (31), then we have

Tix) = «7 (ATA —u LTWZL) x, (37)

from which convexity condition (32) follows easily.

Finally, condition (33) comes straightforwardly from (32) after recalling the
definition of matrix W in (25) and the equivalent condition (34) on a has been
proved in Lanza et al. (2017). |

In order to apply in practice the CNC strategy with separable regularizers, one
has to compute the value of the scalar p4 ; defined in (34), depending on the
minimum singular value of the measurement matrix A, 0’4 min, and on the maximum
singular value of the regularization matrix L, o7, max. In many important imaging
applications, the values of 04 min and o7 max can be obtained by explicit formulas.
In a general case where no explicit expressions for 04 min and o7, max are available,
efficient numerical procedures can be used for their accurate estimation.

The parameter 7, in (34) is referred to as the convexity coefficient of the
separable CNC variational model in (19)—(20), as it allows to tune the degree
of convexity of the model cost function Jg. In particular, we notice that for 7,
approaching O from above, the separable regularizer Wg tends toward the standard
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convex ¢1 norm-based sparsity-promoting regularizer ||G(Lx)|;, whereas for t.
approaching 1 from below, the regularizer Wg tends to be maximally non-convex
(hence, potentially, maximally sparsity-promoting) under the CNC constraint that
the total cost function Jg must be convex.

In Corollary 1 below, we highlight some important properties of the introduced
class of separable CNC variational models which hold when the null spaces of the
measurement matrix A and the regularization matrix L have trivial intersection. In
fact, this is an important case, as it almost always occurs in practical applications.

Corollary 1. Under the same settings of Theorem 1 with G the identity operator or
a function of the form in (31), in case that null(A) N null(L) = {0,} we have:

Cl. Convexity condition (32) can be satisfied (with strict or weak inequality) only
if matrix A has full column rank.

C2.  If A has full column rank, and condition (32) is satisfied with strict inequality,
then the function Js in (20) is strongly convex; hence it admits a unique
global minimizer.

C3.  If A has full column rank, and condition (32) is satisfied with weak inequality,
then the function Js in (20) is convex and coercive; hence it admits a compact
convex set of global minimizers.

Proof. We prove C1 by contradiction. Let us assume that A has not full column
rank, such that AT A has at least one null eigenvalue. Let v be an eigenvector
associated with a null eigenvalue of AT A, and let us consider the restriction Z(¢) of
the quadratic function x” Qx — with Q the matrix defined in (32) — to the line tv,
teR:

Z(t) = v Qv = I A A1y — pvT LTWIWLtv = — 2 [WLvl3.
(38)

Under the considered assumption that null(A) Nnull(L) = {0,}, Lv is different from
the null vector. Then, recalling that W is a positive definite diagonal matrix and that
uw € Ry, we have u ||WLv||% > 0; hence Z(¢) is a quadratic concave function.
This proves C1. C2 does not need a proof. For what concerns C3, first we notice
that when A has full column rank, the quadratic fidelity term in (20) is coercive.
Moreover, since the MC penalty defined in (13) is bounded below (by zero) for any
a € R4, then the regularizer Ws in (20) is also bounded below (by zero). This
implies that the total function g in (20) is coercive and C3 follows easily. O

It is an important consequence of statement Cl in Corollary 1 that if the
measurement matrix A € R7*" in the considered imaging application is wide,
namely, m < n (this is the case of many important applications, ranging from image
inpainting to compressed sensing), then the CNC strategy with separable sparsity-
inducing regularizers can not be used. This strongly motivated the introduction of
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CNC models with non-separable regularizers, which will be illustrated in the next
two sections.

Sparsity-Inducing Non-separable Regularizers

As pointed out in previous section, when the measurement matrix A is not full
column rank, then a CNC formulation is not possible using a separable sparsity-
promoting regularizer. However, in Lanza et al. (2019) and Selesnick et al. (2020),
a general strategy to construct parameterized sparsity-promoting non-convex non-
separable regularizers has been proposed which allows to tackle also the case of A
not being full column rank. This is of great importance, as it enables us to apply the
CNC approach to practically any linear inverse problem in imaging.

In accordance with Lanza et al. (2019) and Selesnick et al. (2020), we present
a general strategy for constructing non-separable sparsity-promoting regularizers
Wns starting from any convex sparsity-promoting regularizer R and then subtracting
its generalized Moreau envelope. In particular, we consider regularizers R of the
form

R(x) = Oy), y=G(Lx), (39)

where, coherently with the definitions given in previous sections, L € R™™", G :
R" — R’ is a possibly nonlinear function, y € R® represents the image features
vector to be sparsified, and ® : R® — R is some function promoting sparsity of its
argument. Following Lanza et al. (2019), the introduced regularizer and the matrix
B € R7*" — the meaning of which will be clarified later — must satisfy the following
assumptions:

Bl. R e IH(R"), bounded below by 0 with R(0) = 0.
B2. ©®(G()) is proper, lower semicontinuous, and coercive.

B3. B has full row rank and satisfies null(B) N null(L) = {0,}.

The non-separable sparsity-promoting regularizer Wns is defined as follows:
Uns(x; B) := R(x) — Hns(x; B), (40)
with

Hs(e: B) = (R JIB-13) (s B) = min {R@w) + 518G = w3}, @D

where B is a matrix-valued parameter which plays the same role of the parameter
vector a in the class of separable regularizers illustrated in section “CNC Models
with Sparsity-Inducing Separable Regularizers”. Indeed, the introduced class of
non-separable regularizers in (40)—(41) can be regarded as a sort of generalization
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of the class of separable regularizers defined in (20) and equivalently reformulated
in (21), (22), (23), (24). The square diagonal matrix W in (25), containing the
square root of the parameter vector a on the main diagonal, is replaced in (40)—
(41) by a more general (not necessarily square and diagonal) parameter matrix B,
and the term ||G(Lx)|; in (21) is substituted by a more general convex function
R(x) = O(G(Lx)), according to definitions (39)—(40).

We notice that the introduced regularizer in (40)—(41) can not be written as a
function of only the vector to be sparsified y = G(Lx), hence, coherently with
Definition 1, is non-separable and takes the general form Wns(x; B) = P (x, y).

We also note that if CTC = BTB, then Hys(x; B) = Hyns(x; C) for all x € R”.
That is, the function Hys(x; B) depends only on BTB and not B itself. Therefore,
without loss of generality, we may assume B has full row rank. In fact, if a given
matrix B does not have full row rank, then there is another matrix C with full row
rank such that CTC = BTB which yields the same function Hys (x; B).

In the sequel, we outline some properties of function Hns (x; B), proved in Lanza
et al. (2019).

Proposition 3. The function Hns(x; B) in (41) exhibits the following properties:
1. For any matrix B, Hys(x; B) is proper, continuous, and convex and satisfies

0 < Hns(x; B) <R(x), VxeR", (42)

Hns(x; B) < Hns(x; aly), Vx € R", Yo > ||B]2. (43)

2. For any full row rank matrix B, Hys(x; B) is a differentiable function, with
gradient given by

1
VHys(x: B) = B'B (x — arg min {§||B(x — 03+ ‘R(v)}). (44)
veR"?
Moreover, Hys (x; B) can be expressed in terms of a Moreau envelope as
His(x: B) = (envl, e 0 B) (1), (45)

where d: R" — R is the convex function

dix) = min R(x—w). (46)
wenull(B)

By the way of illustration, in Fig. 4 we show a simple example of non-separable
non-convex regularizer Wns (x; B) (third column) obtained — in accordance with the
definition in (40)—(41) — by subtracting from the convex regularizer R(x) = |[|x]||;
(first column) its generalized Moreau envelope Hns(x; B) (second column), for a
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Fig. 4 Example of construction of a non-separable regularizer of the form in (40)—(41) with
parameter matrix B defined in (47): R(x) = |lx|; (first column), Hns(x; B) (second column),
and Wns (x; B) = R(x) — Hns (x; B) (third column); the associated contour plots are shown in the
bottom row

vector x € R?, and a (rectangular) parameter matrix B € R3>*? defined as

10
B=|11]. 47
01

CNC Models with Sparsity-Inducing Non-separable Regularizers

This section is concerned with the formulation of CNC variational models con-
taining non-separable sparsity-promoting regularizers (see Definition 1) having the
form introduced in (40)—(41). The considered non-separable CNC models thus read

x* € arg min Jns(x; B), (48)
xeR”

1
Ins@iB) i= Sl Ax— bl +pUns(x:B),  Wns(x;B) := R(x) — Hns(x;B),
(49)
with function Hyg defined in (41) and the matrix B and the regularizer R satisfying

assumptions B1-B3 outlined in the previous section. We refer to (48)—(49) as the
class of CNC non-separable (least-squares) models, abbreviated CNC-NS-L;.
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In Theorem 2, we give conditions on the parameter matrix B of the regularizer
Wys in order to guarantee convexity (strong convexity) of the total cost function
Ins in (48)—(49); then in Corollary 2 we discuss existence and uniqueness of its
minimizer(s), that is, of the solution(s) x* of the introduced class of CNC-NS-L;
variational models.

Theorem 2. Let R and B satisfy assumptions BI-B3, and let VNs be the function
defined in (49) with Hns given in (41). Then, the function Jys in (49) is proper,
lower semicontinuous, and bounded below by zero. Moreover, a sufficient condition
for Jns to be convex (strongly convex) is that the matrix of parameters B satisfies

0:=ATA—uB™B >0 (> 0). (50)

Corollary 2. Under the same assumptions of Theorem 2, if function Jns in (49) is
strongly convex, then it admits a unique global minimizer. If, instead, Jns is only
convex, with Q weakly satisfying (50), and null(A) N null(L) = {0,}, then JNs is
coercive; hence it admits compact convex set of global minimizers.

The proofs of Theorem 2 and Corollary 2 are reported in Lanza et al. (2019).

Remark 1. All the previous derivations are valid for any function ® : R” — R in
the definition of the convex regularizer R in (39), provided that assumptions B1-B3
are satisfied. However, since R = & (G (L -)) must be a convex regularizer inducing
(as effectively as possible) sparsity of the features vector y = G(Lx), then it is very
reasonable to consider convex, sparsity-promoting, additively separable functions
©® of the form

O =Y 0(m, (51)
i=1

with 6 : R — R, even, continuous, convex, monotonically increasing on R
and such that 6(0) = 0. In particular, one of the best (and most natural) choices
is to consider ® = || - ||, corresponding to 6 = | - |. If one aims at avoiding non-
differentiability (which is not the case in this work), a good alternative is to consider
as 6 the Huber function in place of the absolute value function.

Construction of Matrix B

Convexity condition (50) for the cost function Jys in (49) sets an inequal-
ity constraint on BTB, hence on the matrix B of free parameters in the non-
separable regularizer Wns. In the sequel, we illustrate a few simple strategies for
choosing B.
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The first and simplest strategy consists in setting B = /y /i A, that is,

BB = %ATA, y €0, 1], (52)

which clearly fulfills condition (50). We notice that, analogously to 7. in (34) for
the CNC separable models, the scalar parameter y in (52) controls the degree of
non-convexity of the non-separable regularization term Wys, hence the degree of
convexity of the total objective Jng: the greater the y, the more non-convex the Wng
and, hence, the less convex the Jys. In particular, for y approaching 0 from above,
B tends to the null matrix, and hence, the non-separable regularizer Wng tends to
the convex regularizer R. On the other side, for y approaching 1 from below, the
regularizer Wngs tends to be maximally non-convex (hence, potentially, maximally
sparsity-promoting) under the CNC constraint that the total cost function Jng must
be convex.

A more sophisticated and flexible strategy for constructing a matrix BTB
satisfying convexity condition (50) can be derived by considering the eigenvalue
decomposition of the symmetric, positive semidefinite matrix ATA,

ATA=VEVY E,VeR™™, E=diag,...,e,), VWV=vvieyp,
(53)

withe;, i = 1, ..., n, indicating the real non-negative eigenvalues of ATA. We set

1
B'™B=—VIrEVY, I :=diagyi,....y), viel0,11Vie{l, ..., n},

u
(54)

so that, replacing (54) into convexity condition (50), we have
OQ=V(E-TE)VI =0 (>0) < E(,—T) =0 (= 0, (55)

which is clearly satisfied given the definition of matrix I" in (54). We notice that
when one chooses y| = y» = --- =y, = y € [0, 1], then (54) reduces to (52), that
is, strategy (52) is included in the more general strategy (54).

Finally, in Park and Burrus (1987) another method for prescribing the matrix
BTB, hence B, for the specific purpose of image processing with TV regularization
has been proposed. In particular, the diagonal matrix I” in (54) is set to represent a
two-dimensional dc-notch filter (a type of band stop filter) defined by I" :=1 — H,
where H is a two-dimensional low-pass filter with a dc-gain of unity and H =<
I. A simple choice for H is H = HOTH() with Hy a moving-average filter having
square support. Hence, H is a row-column separable two-dimensional filter given
by convolution with a triangle sequence (Park and Burrus 1987).
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A Simple CNC Example

In this section, we provide some visual insights on the properties of the considered
non-convex separable and non-separable sparsity-promoting regularizers, Ws and
Wns, respectively defined in (20) and (40). To this aim, we consider the three two-
dimensional variational models defined by minimizing the cost functions

1
JR(x):=§|IAx—bII§+M7?(x), R(x) = |ILx]l1, (56)

1
Js(xza)IZEIIAx—bII%JrM‘I’s(X:a), Ws(x;a) = R(x) — Hs(x; a),
(57)

1
jNS(X;B)3=§||Ax_b”%‘f‘ﬂ\yNS(X;B)’ Wns (x5 B)=R(x)—Hns(x; B),  (58)

where (56) represents the model containing the baseline convex ¢; norm-based
sparsity-inducing regularizer, the functions Hs in (57) and Hys in (58) are defined
in (24) and (41), respectively, and we set

0 04 1.5 —-2.0-1.0
=15 b= , A= , L= . 59
’ [o} {—1.0 o.s} [ 0.5 —2.5} (59)
Moreover, according to the convexity conditions in (34) and (52), for the CNC
separable and non-separable models in (57) and (58), we choose

al= a = a = t.PAL 1. =099, (60)

N

\/ZA, y = 0.99, (61)
"

respectively, so that both the CNC models are pushed toward their convexity limit.

In Fig. 5, we show the regularizer R and total cost function [z of the baseline
convex model (56), in Fig. 6 the regularizer Wg and total cost function Jg of the
separable CNC model (57), and in Fig. 7 the regularizer Wng and total cost function
Jns of the non-separable CNC model (58). All function graphs are accompanied,
in the bottom row, by their associated contour plots. The solid red and blue lines
in the contour plot figures represent the hyperplanes Y| and Y», respectively, with
Yi :={x e R%: Liyx =0}, i € {1,2}, and L; the i-th row of matrix L.

From the left columns of Figs.5, 6, and 7, it can be noticed that the baseline
regularizer R(x) is clearly convex, but not strictly convex, whereas the separable
and non-separable regularizers Ws(x; @) and Wns(x; B) are non-convex. In fact,
according to their definitions in (57) and (58), they are obtained by subtracting

B
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Fig. 5 Graphs of functions R(x) and J(x) in (56) with associated contour plots

from R(x) the convex terms Hs(x; a) and Hys (x; B), respectively. The non-convex
regularizers Ws(x; a) and Wns(x; B) thus hold the potential for promoting sparsity
of the vector Lx = (L;x, Lox)T more effectively than the convex regularizer R(x).

The plots in the right columns of Figs.5, 6, and 7 confirm, first, that the total
cost function J(x) is clearly convex and then, more interestingly, that the cost
functions Js(x; a) and Jns(x; B) of the separable and non-separable CNC models
in (57) and (58) are also both convex, as prescribed by the CNC rationale and as
expected due to our settings 7, = y = 0.99 < 1.

As a final interesting experiment, we push both the separable and non-separable
CNC models in (57), (58) outside their guaranteed convexity regimes, as defined
by sufficient conditions (34), (52), respectively. More precisely, we set 7., y > 1
in (60), (61), thus obtaining the total cost functions Js(x; a), Ins(x; B) depicted
in Fig. 8. It can be noticed from the graphs in the top row and, more clearly, from
the associated contour plots in the bottom row that both the cost functions are non-
convex, as expected from theory.
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Fig. 6 Graphs of functions Ws(x; a) and Js(x; @) in (57) with associated contour plots

Path of Solution Components

The different behavior of standard £; norm convex regularization versus its asso-
ciated non-convex non-separable regularization can be illustrated by observing the
solution path as the regularization parameter p varies. In particular, we denote by
xr, the solution of the minimization problem (56) with L = [ and by xns the
solution of its associated non-separable CNC model (58). When u is sufficiently
large, both the solutions x;, and xns will be the all-zero vector. When u is
sufficiently close to zero, the solution using either regularizations will approximate
the unconstrained least-squares solution. However, as p varies between these two
extremes, the solutions obtained using the two regularization methods will sweep
different paths. This is illustrated in Fig. 2.1 in Hastie et al. (2015) which concerns
an example of least-squares problem with £; norm regularization where matrix A is
of size 50 x 5. This example is reproduced in Fig. 9. As in Hastie et al. (2015), the
solution path is shown as a function of the fraction: the £; norm of x;, divided
by the £; norm of the unconstrained (unregularized) least-squares solution xr s;
this fraction varies between zero and one. Repeating the same example using non-
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Fig. 7 Graphs of functions Wns (x; B) and Jns(x; B) in (58) with associated contour plots

separable non-convex regularization in (58) instead of £; norm regularization, we
obtain a different solution path for xns, as shown in Fig.9. It can be seen that
the xns solution is more sparse than the £; norm solution x;, for most of the
solution component path. The xng solution starts to have two non-zero components
when the x;, solution already has three non-zero components. It can also be seen
that along most of the solution path, non-zero components of the xys solution are
greater in absolute value than those of the x;, solution. The solution paths show
that components of the xns solution become non-zero later (along this axis) than
components of the xz,, solution.

Forward-Backward Minimization Algorithms

In this section, we introduce optimization algorithms for the numerical solution
of the illustrated separable and non-separable CNC variational models, based on
the iterative FB strategy within the general framework of splitting, commonly
used when the objective function is the sum of two convex but not necessarily
differentiable functions. This iterative method, proposed in Beck and Teboulle
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Fig. 8 Graphs of the total cost functions Js(x; a), Ins (x; B) and associated contour plots for the
separable and non-separable variational models in (57), (58) pushed beyond their convexity limit,
that is, for .,y > 1

& \ ™
08F N \
f \\\ b \‘ W
% S .

(2009), has attracted extensive interests due to its simplicity and several important
advantages. It is well-known that this method uses little storage, readily exploits
the separable structure of the minimization problem, and is easily implemented to
practical applications. It relies on a forward gradient step (an explicit step) followed
by a backward proximal step (an implicit step).

In the separable case (section “FB Strategy for Separable CNC Models™), it
reduces to a standard proximal gradient or subgradient splitting minimization
algorithm. In the non-separable case (section “FB Strategy for Non-separable CNC
Models”), a more general form of the FB algorithm aimed to solve monotone
inclusion problems is used. The solution of the minimization problems in the
backward steps of the FB applied to both the separable and non-separable cases
relies on a very efficient ADMM strategy (section “Efficient Solution of the
Backward Steps by ADMM”).
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Fig. 9 Path of the five solution components for the regularized least squares example in Hastie
et al. (2015); |Ix,.|I/llxLs is the red colored path for x, = x;, and the black colored path for
X, = XNs, for increasing values of the regularization parameter u

FB Strategy for Separable CNC Models

Based on Lemma 1, in particular expression (21) for the separable sparsity-
promoting regularizer Wg, with function Hs in the forms (22) and (24), the
class of considered separable CNC variational models defined in (19)—(20) can be
equivalently rewritten in the following equivalent form:

x* € arg m]ié}l Js(x; a), (62)
1 N
Ts;a) = S I1Ax = blI5 — 1 Y hay (g (L)) + i |G(L0], (63)

i=1

1 2 1
= — ||Ax — — penv
2 |Ax — bll5 I

w-t.| (WGILx)) + n||G(Lx)],. (64)
I

Ji(x;a) J2(x)

Based on results in Theorem 1, first we notice that if convexity condition (30)
is satisfied — which is the case of interest for us — both the total objective Jg and
the two terms J; and J, in (64) are proper, lower semicontinuous, and convex
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functions. Then, the term 7 is in general — i.e., for the great majority of reasonable
functions G — a non-differentiable function, whereas 77 can be differentiable or
non-differentiable depending on G. Indeed, some popular regularizers are defined
in terms of G functions yielding differentiability of 7, as it will be illustrated in
Proposition 4.

Hence, we propose to compute approximate solutions x* of the CNC separable
model in (62), (63), and (64) by means of the FB iterative scheme outlined in
Proposition 5. The forward step consists of a subgradient — or gradient, depending
on G — descent step of the term 7, whereas the backward step is a proximal step
of J,. In Proposition 4, we preliminarily derive the expression of the subgradient —
or gradient — of the function 7.

Proposition4. Let J; : R" — R be the function defined in (64), and let the
convexity conditions (30) for Js be satisfied. Then, in the general case of a possibly
non-differentiable function G, the subdifferential 3., : R" = R" takes the form

30J1(x1a) = AT (Ax — b)
—uLTaG(Lx) W (WG(Lx) — proX|y-1.|, (WG(Lx))) . (65)

with 091 and 0G replaced by V1 and VG if G is differentiable.
In the special case that G is a non-differentiable function of the form in (31)
with the partition of vector z = Lx defined by a permutation matrix P =

T .
((P(l))T, L (P(S))T) e R, PO ¢ RiX" i = 1,...,s, then the function
J1 in (64) is differentiable with gradient Vg1 : R" — R" given by

VI (x;a) = ANAx —b) — w L'PTC(Lx)PLx, C = diag (C(l), e, C<S>> ,
(66)

where C : R” — R™" is a block-diagonal matrix-valued function with scalar
diagonal blocks defined by

; 1
C(l)(z)zmin{ai,w—)zh} Irl-, i:l,...,S. (67)

Proof. The quadratic term in J; — namely, the data fidelity term — is clearly
differentiable with gradient given by AT (Ax — b). Recalling that the Moreau
envelope is a differentiable function (see Proposition 1), the second term in 7 is
differentiable if the function G is differentiable. In fact, in this case the term is
composition of differentiable functions. If G is non-differentiable, then the term can
be non-differentiable or, for some special G, also differentiable.

In the general case of a possibly non-differentiable function G, expression (65)
for the subdifferential of J; comes from applying the chain rule of differentiation to
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the calculus of the subdifferential of function 7 in the form (64) and from recalling
the expression of the gradient of the Moreau envelope function given in (14).

To demonstrate (66)—(67), first we notice that if G has the form in (31), we can
write:

Hs(x;a) = D h (g (LX) = ) hai(
i=1 i=1

N
V1) = X fu(PV2), 2= Lx,
i=1

with f, the function defined in (17). Hence, we have

S
Hs(x;a) = H (Lx;a), with H(zia):= Y _ fu(PVz). (68)
i=1
It follows from Proposition 2 that the function H (z; a) above is differentiable (sum
of differentiable functions) with gradient given by

s

[P Vet (PO)]

i=1

V. H(z)

N

= Z((P(i))Tmin[ai, 1/||P<i>z||2] P<">z>

i=1

3 ((P(i))Tmin{ai, 1] Pz, p<i>> :

i=1

= Plcr Pz,

with C the diagonal matrix-valued function defined in (66)—(67). The function
Hs(x; a) in (68) is thus differentiable with gradient given by

ViHs(x;a) = LTV.H(Lx;a) = LT PTC(Lx) P Lx.

Recalling the definition of function J; in (63), it is thus clear that it is a
differentiable function with gradient given in (66)—(67). |

Proposition 5. Let Js(x;a) : R" — R be the function defined in (62), (63),
and (64), with parameters a € R’ satisfying convexity condition in (30). Then,
a global minimizer x* of Js can be obtained as the limit point of the sequence of
iterates {x(k) }zi | generated by the following FB iterative scheme:

for k=0,1,2,...
o® e a7, (x(k))

w® = 0 5k ®
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1700

) 2
A0 = pro ™ () = arg min {[ G0, + e - w3}

1
2)»(/{)“ ||

end

where the variable stepsizes A\ are chosen according to the strategy in Bello Cruz
(2017) if J, is non-differentiable, or A = ) €10,2/p[ with p the Lipschitz
constant of the gradient of 1, if J is differentiable.

For a generic non-differentiable G function, (62), (63), and (64) is a non-
smooth convex optimization problem with an objective function which is the sum
of two non-differentiable convex functions, 7 and . In this case, the proximal
FB splitting iteration in Proposition 5 — in particular, the computation of »® in
the forward step — relies on the subdifferential (65). For the convergence of this
particular FB case, we refer the reader to Bello Cruz (2017).

In case that G is a differentiable function (e.g., G is the identity function) or
a non-differentiable function of the special form in (31), the proximal FB splitting
iteration in Proposition 5 uses the gradient given in (66). Therefore, the convergence
follows the classical results in Beck and Teboulle (2009).

FB Strategy for Non-separable CNC Models

Even though the proposed class of non-separable regularization functions Wng in
(49) does not have a simple explicit formula, a global minimizer of the total sparse-
regularized cost function Jns in (49) can be readily calculated using proximal
algorithms.

As described in Lanza et al. (2019), in order to compute the solution x* of the
minimization problem in (48)—(49) by using proximal algorithms, it is useful to
rewrite it as an equivalent saddle-point problem:

{x*, v*} = arg min max F(x, v; B), (69)
xeR" yeR"
1 2
Flx,v; B) = 3 |Ax — b||% + uR(x) — uR@) — EHB(X - U)||%, (70)

where, we recall, the regularization function R(x) = ©(G(Lx)) and the parameter
matrix B satisfy assumptions B1-B3 outlined at the beginning of section “Sparsi-
ty-Inducing Non-separable Regularizers”.

The solution of the saddle-point problem above can be calculated using a general
form of the FB algorithm (Theorem 25.8 in Bauschke and Combettes 2011). This
form of the FB algorithm is formulated to solve the general class of monotone
inclusion problems, of which the saddle-point problem (69)—(70) is a special case.
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The algorithm, which we will refer to as Primal-Dual FB (PDFB) (as in Lanza
et al. (2019)), is outlined in Proposition 6. It involves operators A, AT, B, and BT
and the proximity operator of the regularization term R.

Proposition 6. Ler 7(x, v; B) : R2" — R be the function defined in (70) with the
parameters matrix B set as in (53)—(54). Then, a saddle-point {x*, v*} of F can be
obtained as the limit point of the sequence of iterates {x(k), v® }1(:11 generated by
the following PDFB iterative scheme:

1 —2y; +2y?
e
1 -y l

set p = max{
l

set A€ ]0,2/p(

for k=0,1,2,...
w® = x® [AT(Ax(k) - b) +uwB'B (v(") - x(k)>i|
u® = y® _  BTB® — x®)
1
"D = ar m'n{R —x —w® 2]
X g min | Rx) + G e —w™ I3

1
(k+1) _ ; {ﬂ (k) 2}
v = arg ggm'll v) + 7 lv—u™l;5

end

where e; and y; are defined in (53)—(54) and k is the iteration counter.

Efficient Solution of the Backward Steps by ADMM

The backward steps in the FB and PDFB algorithms outlined in Propositions
5 and 6 for the numerical solution of the separable and non-separable CNC
variational models illustrated in sections “CNC Models with Sparsity-Inducing
Separable Regularizers” and “CNC Models with Sparsity-Inducing Non-separable
Regularizers”, respectively, all consist of solving the same class of minimization
problems, which, in the general case, does not admit a closed-form solution. More
precisely, the computations of x**1 in the FB algorithm in Proposition 5 and
of x**1 and v*+D in the PDFB algorithm in Proposition 6 all correspond to
calculating the proximal operator of a regularization function R : R* — R of the
form R = T (G(L -)) with proximity parameter o := 1/(Au) € R4 at a point
p € R” (equal to w® for x**D and to u® for v*+1). We have thus to solve the
following minimization problem:
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1" = proxg(p) = argtnellg {R(t) + % |t — p||§}
. o 2
=argtrg]}§{T(G(Lt))JrEHt—sz}. (71)

For both the FB and PDFB cases, the matrix L and the function G — hence,
the image features vector y = G(L-) to be sparsified — are defined as in
section “Introduction”, whereas the function 7" : R®* — R is to the £; norm function
I - |I1 for FB and the function ® for PDFB. In both cases, it follows from the
considered convexity assumptions/conditions that the regularizer R = 7 (G(L -))
is convex; hence the cost function in (71) is strongly convex and admits a unique
(global) minimizer ¢*.

As it will be later discussed, in most cases of practical interest the function
T (G(-)) is easily proximable, that is, its proximity operator admits a closed form
expression or can be calculated very efficiently. Hence, we suggest to solve the
minimization problem in (71) by means of the following ADMM-based approach.

First, we rewrite (71) in the equivalent linearly constrained form:

{t*. 2"} = argntlizn { T (G({) + % |t — p||§ } st.: z=1Lt, (72)

where z € R” is an auxiliary variable (the notation has been chosen for coherence
with definition in (6)). Then, we introduce the augmented Lagrangian function,

L(t,z,p) = T(G(z))+%||t—p||§—<p,z—Lt> + gIIZ—LIII%, (73)

where 8 > 0 is a scalar penalty parameter and p € R" is the dual variable, i.e., the
vector of Lagrange multipliers associated with the set of r linear constraints in (72).
Solving (72) is tantamount to seek for the saddle point of the augmented Lagrangian
function in (73). The saddle-point problem reads as follows:

{t*,2"} = argminmax £(,z, p). (74)
tz p

Upon suitable initialization, and for any j = 0, 1,2, ..., the j-th iteration of
the ADMM applied to solving the saddle-point problem (74) with the augmented
Lagrangian function £ defined in (73) reads as follows:

tU+D = arg min L(z, 2, pV)
teR?

—1 . .
— (e I, + LTL) (e p+ LT (z(f) - %,0(’)>> , €= % (75)
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. . . 12
20D = arg min LYV, 7, pV) = arg mﬁ{n {T(G(z)) + g HZ —q" Hz}
zZeR"

zeR"
. . . | B
= proxy ., (q(’)), gV = L1UtD 4 Ep(”, (76)
pUth = p0) _ g (Z(f“) - Lt(j“)) ) (77)

The ADMM scheme outlined above has guaranteed convergence and, in most cases
of practical interest, allows to compute very efficiently the solution #* of (71).

In the general case, the computational cost of the ADMM iteration (75), (76),
and (77) is dominated by the solution of the two subproblems for the primal
variables 7 and z, as the cost for updating the dual variable p € R" by (77) is linear
in 7, hence in the number of pixels n (we do not consider the cost of multiplication
by matrix L since the term L U%D in (77) must have been previously computed for
solving (76)).

The subproblem for ¢ in (75) consists in solving an n x n linear system with
symmetric positive definite (hence, invertible) coefficient matrix eI, + LTL.
For ADMM implementations with iteration-independent penalty parameter 8, the
matrix is constant along the ADMM iterations, and for FB (or PDFB) implemen-
tations with iteration-independent stepsize A, it is also constant along the (outer)
FB (or PDFB) iterations. The linear system can thus be solved by direct methods,
namely, Cholesky factorization carried out once for all before starting iterations
and solution of (75) by forward and backward substitution, or by iterative methods.
In particular, when L is a sparse matrix, the (suitably preconditioned) conjugate
gradient method equipped with some variable stopping tolerance strategy represents
a good (i.e., efficient) choice. If L is a diagonal matrix, or some unitary matrix (e.g.,
the 2D discrete Fourier or cosine transform matrix, so as to sparsify the sought image
coefficients in the Fourier or cosine basis), or the matrix of some overcomplete
dictionary satisfying the tight frame condition LTL = 61,, 8§ € R, y, then the
coefficient matrix is diagonal and (75) can be solved very efficiently. Finally, in

T
the special but practically very important case where L = (LIT, ceeh LI) with

L; € R™" convolution matrices, i = 1, ..., ¢, the linear system can also be solved
very efficiently by fast 2D discrete transforms. In particular, by assuming periodic,
symmetric, or anti-symmetric boundary conditions for the unknown image #, the
linear system in (75) can be solved by using the fast 2D discrete Fourier, cosine,
or sine transforms, respectively, all characterized by O(n logx(n)) computational
complexity. This is the case of the TV regularizer (isotropic and anisotropic), the
Hessian-based regularizers and, more in general, of the whole important class of
widely used regularizers aimed to sparsify some (discretized) differential quantity
of the sought image.

Based on Remark 1 in section “CNC Models with Sparsity-Inducing Non-sepa-
rable Regularizers”, for both the FB and PDFB cases the subproblem for z in (76)
can be written as
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s

¢ = arg min Zv(gf<z>)+§|lz—q}|§ , (78)

z i=1

where, to simplify notations, we dropped the iteration index superscripts (namely,
2 = zUtD and ¢ = ¢) and where the function v : R — R, is defined by
v = | - | for FB and by v = 6 for PDFB. Then, for the important case of sparsified
image feature vectors y = G (Lx) characterized by the function G being the identity
operator or a function of the form in (31), the r-dimensional minimization problem
in (78) is separable into the following s independent (and lower-dimensional) sub-
problems:

2() — : @) B o _ o2
0= a_min o (J201,) + 5 127 - 2] (79
- proxi(”.nz) (q(i)) , i=1,...,s, (80)

where, in accordance with (31), the set of (sub-)vectors {z(i)}f:l, 7D e R,
> i_i ri = r,represents a partition of vector z € R”, i.e., ( (z(l))T, . (z(”)T)T =

Pz, with P € R"™*" a permutation matrix. Clearly, the (sub-)vectors 2@, q(i ) e R
in (79)-(80) are defined according to an analogous partition of vectors Z, g € R” in
(78). The s minimization problems in (79) may have different dimensionality — in
fact, in the considered general case, the integers r; are not assumed to be equal —
but they all have the same structure corresponding to the proximal map of the
composite function v (|| - ||2), as outlined in (80). Based on results in Proposition 7
below, under quite general and very reasonable, i.e., very likely to be satisfied in
practice, assumptions on function v, each sub-problem in (79)-(80) reduces to a
1-d strongly convex box-constrained (well-posed) minimization problem which, for
most popular v functions, admits a closed-form solution. In particular, based on
(83)-(84), if v is the absolute value function, then (79)—(80) reduces to

0 it g9, = 0.

2 = l | o i=1,2,...,5. (81
1——L 0 flqg®|, >0, TS
il B v S R e

Recalling that, based on definition (31), the vectors ¢ form a partition of ¢ €
R" and, hence, s < r, the computation in (81) — including calculation of all the ¢,
norm terms ||q(i ) ||2 — has linear complexity in the dimension r of the codomain of
matrix L € R"*", hence in the number of pixels n.

Proposition 7. For any proper, lower semicontinuous, convex, and monotonically
increasing function v : Ry — R, the composite function v(] - ||2) : R" — R
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is proper, lower semicontinuous, and convex and its proximal map with proximity
parameter B € Ry evaluated at point g € R" is given by

proxf(u.nz)(CI) = argg}é} {U (”ZHZ) + g ”Z - 61||§} (82)

0, if [lgll2 =0,

= 16-L g >o, ézargmin{v<s)+ﬁ(s—nqnz)2}. 83)
ligll2 £€l0.l1g1l2] 2

In particular, if v is the identity function, then é in (83) is given by

é=max{||q||z—1,0}. (84)
B
Proof. First, all the stated properties of composite function v(] - ||2) come easily
from the assumed properties of functions v and from the ¢, norm function || - ||2
being continuous and convex on the entire domain R”.

Then, convexity of v(]| - ||2) yields strong convexity of the cost function in

(82) which, hence, admits a unique (global) minimizer 7 € R". If |g|l, = O
or, equivalently, ¢ is the null vector, then the cost function in (82) reduces to
v(llzll2) + (ﬂ/Z)Ilzllg, which is a monotonically increasing function of ||z||2. The
solution of (82) in this case is thus Z = 0,. If ¢ is not the null vector, i.e., ||g[2 > O,
then it is easy to prove (see the initial part of the proof of Proposition 1 in Sidky
et al. 2014) that, under the considered assumptions on function v, the solution of
(82) must belong to the closed segment of extremes 0, and g. By thus considering
the restriction of the cost function in (82) to that segment, parameterized by
z2=£&q/lqll2, & € [0, llgll2], one easily obtains the 1-D constrained minimization
problem in (83). Finally, the closed-form solution in (84) obtained when v is the
identity function represents the quite popular multidimensional soft-thresholding
operator. Its derivation can be found, e.g., in the proof of Proposition 1 in Sidky
et al. (2014). ]

It is worth noticing that in the special case where the regularization matrix L
is the identity matrix (e.g., when one wants to sparsify the image itself as it is
expected to be predominantly zero-valued, or in general in the synthesis-based
sparse reconstruction framework), then the backward step in (71) reduces to

. o 2 o
= argtnelﬁlz {T(G(l)) + > ||t - p||2} = ProxXy(g(.y(p)- (85)

Hence, ADMM is not required since problem (85) consists in computing only one
proximal map of the same type as in the ADMM sub-problem for z in (76), which
in its turn reduces to solving the s lower-dimensional problems in (79)—(80) by, e.g.,
(81).
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Finally, we notice that a suitable warm-start strategy can be used in both the FB
and PDFB approaches in order to further speedup the backward step computation by
ADMM. More precisely, at each (outer) iteration of the FB and PDFB algorithms,
the (inner) iterative ADMM scheme in (75), (76), and (77) is initialized with the
results of previous (outer) iteration, in terms of both the primal variables ¢, z and
the dual variable p. This allows to significantly decrease the number of ADMM
iterations.

Numerical Examples

In this section, we test the non-convex separable and non-separable sparsity-
promoting regularization terms introduced in sections “Sparsity-Inducing Separable
Regularizers” and “Sparsity-Inducing Non-separable Regularizers”, respectively.
More precisely, we are interested in evaluating experimentally the performance of
the two classes of separable CNC-S-L; and non-separable CNC-NS-L; variational
models illustrated in sections “CNC Models with Sparsity-Inducing Separable
Regularizers” and “CNC Models with Sparsity-Inducing Non-separable Regular-
izers”, respectively, when applied to the linear discrete inverse problem of restoring
images corrupted by blur and AWG noise. More broadly, the goal of this numerical
session is to investigate experimentally if and how convex variational models
containing non-convex sparsity-inducing regularizers, i.e., the class of CNC models,
can improve upon standard convex models containing convex sparsity-promoting
regularizers in case the sought solution really exhibits some sparsity property.

At this aim, we consider the three gray-scale test images SPD0, SPD1, SPD2
shown in Fig. 1 and reported again in the first row of Fig. 10. They all have resolution
256 x 256 pixels and, we recall, they are characterized, from left to right, by strong
sparsity of the three feature vectors

Y eRr, with 3O =lxl, vy = [(Voil,. v = |Hl (86)

; P
i = 1,...,n, respectively, where (Vx); € R2 and (Hx); € R%**2 denote the
discrete gradient and Hessian matrix of image x at pixel i. In a nutshell, the
SPDO, SPD1, and SPD2 images are representatives of the three important classes of
predominantly zero, piecewise constant, and piecewise affine images, respectively.
For each test image, in the second, third, and fourth row of Fig. 11 we also show the
three associated binary sparsity masks M@, MM, M@ | respectively, with 0-value
pixels in black and 1-value pixels in yellow. Such masks, defined by

0 if y' =0

)
M = . i
i 1if y #£0

j=01,2, i=1,...,n, (87)

provide an immediate idea of the level of sparsity of each image in terms of the
three feature vectors considered in (86). In Table 2, we report, for each image, the
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M

Fig. 10 The three test images SPDO, SPD1, SPD2 (first row) and their associated binary sparsity
masks M), Jj = 0,1, 2 (second-fourth rows) defined in (87) in terms of the feature vectors y(f),
j=0,1,2, given in (86)

total number of pixels n and the three total numbers of 0-value pixels of the binary
sparsity masks defined by ¢) 1= n — Y1, Ml.(j )i =0,1,2. As expected, the
SPDO, SPD1, and SPD2 images exhibit the highest level of sparsity, i.e., the largest
number of 0-value pixels, for the features vectors y(o), y(]), and y(z), respectively.
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Fig. 11 The three test images SPD0, SPD1, SPD2 corrupted by AWG noise of standard deviation
o yielding BSNR(b, x) = 15 (first row) and the associated ISNR graphs for the three purely
convex baseline models L;-L;, TV-L,, S;H-L; defined in (89), (90), and (91) (second row)

Table 2 Sparsity levels of SPDO SPD1 SPD2

the three test images SPDO,
SPDI1, SPD2 shown in the " 65536 65536 65536
¢© 62255 |35178 | 4096

first row of Fig. 10 in terms of
the features vectors y(O), y(l), ¢ 56172 58367 128

y® defined in (86) ¢@ 48144 51463 | 55680

In accordance with the sparsity properties of the three considered test images,
to evaluate the performance of the proposed CNC separable and non-separable
models, we will compare them with the corresponding purely convex (i.e., with
convex regularizers) models, namely, the minimal L.; norm model (89), referred
to as L-Ly model, the isotropic TV-L; model (90), and the S;H-L; model (91)
containing the Sy H regularizer which induces sparsity of the image Hessian Shatten
2-norm (Lefkimmiatis et al. 2013). More precisely, we consider the following three
variational models:

x* = arg min TP (x), j=0,1,2, (88)
xeR?

with cost functions defined by

1 n
Li—L: JOx) = 3 lAx —bl3 + n 2|x,~|, (89)
1=
N’
Li(x)
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l n
TV -1L; : TV = 5 lAx = bl5 + u ;n(w),-nz, (90)
1=
TV(x)
n
S;H-L, : JP) = 5 1Ax =bl3 + o Y |Hx) . O
i=1
S>H(x)

We thus assume that the above three models are representative of the class of purely
convex models, and we compare their performance with those of the proposed
associated separable CNC-S-L, and non-separable CNC-NS-L; models which, we
recall, are also convex but contain non-convex regularizers.

It is worth to point out that the three models in (89), (90), and (91) can be
represented in a unified form according to definition (6) of the considered class
of sparsity-promoting regularizers:

. 1 . . . .
T (x) = 5 lAx —bl3 + [y, y? =6V (me)’ i=0,1,2.
92)

In particular, the nonlinear vector-valued functions GY RV — R”" read

. ; ; T
V@ = (g @.....8 @), 2RV r=(+Dn j=012

93)
with components defined by
0 1 2
2@ =lul, " @ = H(Ziazi—i-n) . g7 () = H (zis Zigns Zidon) | »
94)
i =1,...,n, whereas the linear operators LU) € R"i*" are
© M T T\ o) r pr JapT )
L =1, 0= (p[.0]) . L®= (D, DL.V2DL) . ©9)

with Dy, Dy, Dpjy, Dy, Dpyy € R™" finite difference operators discretizing the
first-order horizontal and vertical and the second-order horizontal, vertical, and
mixed horizontal-vertical partial derivatives, respectively. The discrete gradient and
Hessian operators in (90) and (91) are thus defined in terms of these matrices as
follows:
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| (Dax); | (Dunx)i (Diyx); .
(Vx); = |:(Dvx)ji| , (Hx); = |:(th?€)1 (Dvux)ii| , i=1,...,n.

(96)

Finally, for what concerns the actual discretization of the gradient and Hessian
operators, in all the experiments matrices Dy, Dy, Dy, Dyy, Dpy are the 2-D
convolution matrices (with periodic boundary conditions) associated with the
following point-spread functions:

Dy — (+1,-1), D, — (fi)
+1
D= (+1.-2.41), Dy — | =2|. Du— <+1 _1>,

with boldface cells indicating the center of application of the PSF.

For all numerical examples, the experimental setting is as follows. The original
test image x is synthetically degraded according to the measurement model (4).
First, x is corrupted by space-invariant Gaussian blur under the assumption of peri-
odic boundary conditions. The acquisition matrix A € R"*", referred to as blurring
matrix in this case, is thus block-circulant with circulant blocks and is constructed
starting from the Gaussian convolution kernel, or point-spread function, generated
by the Matlab command fspecial(‘gaussian’,band,sigma). The parameters
band and sigma determine the bandwidth and the values of each circulant block
in A, respectively. In particular, band represents the side length (in pixels) of
the square support of the kernel, whereas sigma is the standard deviation of the
circular, zero-mean, bivariate Gaussian probability density function representing
the Gaussian point-spread function in the continuous setting. The blurred image
Ax € R" is then corrupted by AWG noise with standard deviation ¢ to obtain the
observed image b € R”". Given A and b, the goal is to determine as accurately
as possible estimates x* of the original uncorrupted image x by using variational
models containing sparsity-promoting separable and non-separable regularization
terms.

Regarding the optimization algorithms, the considered models are numerically
solved by using the FB and PDFB splitting algorithms described in section “For-
ward-Backward Minimization Algorithms” and applying the illustrated ADMM
strategy for the efficient computation of the backward steps. In all the experiments
and for all the models, we use the observed corrupted image as the initial iterate, i.e.,
x© = b, and we terminate the iterations as soon as two successive iterates satisfy

-0
_ 2

O s
5 = [, <1077, 97)
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The quality of the observed degraded images b and of the restored images x*
(in comparison with the original uncorrupted image x) are measured by means of
the Blurred Signal-to-Noise Ratio (BSNR) and the Improved Signal-to-Noise Ratio
(ISNR), respectively. They are defined by

BSNR (b, X) = SNR (b, AX), ISNR (x* b, x) = SNR (x* x) — SNR (b, X),
(98)

with the Signal-to-Noise Ratio (SNR) quality measure of an image / versus a
reference image / given by

2 | 4By, (99)

where E[I] denotes the image with constant intensity equal to the mean value of
I.The larger the BSNR value, the lower is the intensity, i.e., the standard deviation
o, of the AWG noise corrupting the observation b (hence, the easier is the image
restoration problem); the larger the ISNR value, the higher the quality of the restored
image x* obtained by the considered variational model. In all the experiments, after
choosing the blurring operator A and computing the blurred image Ax, we set the
desired BSNR value of the observation b and then exploit the BSNR definition
in (98)—(99) in order to determine the (unique) value of the AWG noise standard
deviation o yielding the selected BSNR value:

0= BSNR

J/n10 20

Examples Using CNC Separable Models

We consider the problem of denoising the three considered test images SPDO,
SPD1, SPD2 corrupted only by AWG noise (no blur, i.e. A = [, in the acquisition
model (4) as well as in the baseline convex variational models (89), (90), and (91))
with standard deviation o yielding BSNR(b, x) = 15, as shown in the first row
of Fig. 11. The three separable CNC variational models, referred to as CNC-S-L;-
Ly, CNC-S-TV-L;,, and CNC-S-S,;H-L,, to be compared with the baseline purely
convex models L;-L,, TV-L; and S;H-L, defined in (89), (90), and (91), read as
follows:

x* =argmin 7Y (x;0), j=0,1,2, (101)
xeR?
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with cost functions defined by

CNC-S-L1-L;,:

1 n
IS ia) = 5 1Ay =bl3 + Y- duc (llia)., (102)

i=1
S—Li(x;a)
CNC-S-TV-1L,:

1 n
I (sa) = 5 1Ax = bl + _X;¢Mc(||<w)i|2;a), (103)
1=
S—TV(x;a)
CNC-S-S5H-1,:
1 n
I a) = 5 NAx bl + w Y guc ([ pia). 104
i=1
S—S>H(x;a)

where ¢nic is the scalar MC penalty function defined in (13) and where we are
assuming a space-invariant, i.e., constant for all pixel locations, concavity parameter
a € Ry; for ¢ypc. It follows from Theorem 1, in particular, condition (33),
that sufficient conditions for the three cost functions above to be convex (strongly
convex) are the following:

. N\T .
oW = I, _M(Lm) LY = 0 (-0, j=01,2 (105)

where we used the fact that A = I, for the considered case of image denoising
and where the regularization matrices L) are defined in (95). According to the
statement of Theorem 1, the sufficient conditions in (105) can be equivalently and
usefully rewritten as follows:

=T mv Tc € [Oa 1] (TC € [09 1[)5 .] = 0’ 1927 (106)

with the scalar coefficients k) given by

KD =02 (L), j=012 = kO=1, kD=5 k=64
(107)

As a preliminary experiment, we evaluate the performance of the three baseline
convex models Lj-Lp, TV-L;, and SpoH-L, defined in (89), (90), and (91) when
applied to the three corrupted images illustrated in the first row of Fig. 11. The plots
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(c) Results of model CNC-S-S,H-L, applied to the noise-corrupted test image SPD2

Fig. 12 ISNR results of separable CNC models CNC-S-L-Ly, CNC-S-TV-L,, and CNC-S-S,H-
L, defined in (102), (103), and (104) when applied to the noise-corrupted images SPD0, SPD1,
and SPD2, respectively. First column: ISNR values as a function of the regularization parameter
w for some different t. values. Second column: highest achieved ISNR values as a function of
the convexity coefficient t.. The dashed vertical red lines, corresponding to 7. = 1, separate, for
each model, the pure convex and CNC regimes (t. € [0, 1]) from the pure non-convex regime
(tc €]1, +o0[).
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in Fig. 11 (second row) represent the ISNR values achieved by the three models
as a function of the regularization parameter p for the three corresponding noise-
corrupted test images SPD0O, SPD1, and SPD2 illustrated in the first row. From a
visual inspection, column by column, of Fig. 11 (second row), we observe that, as
expected, the best ISNR values are obtained by models L;-L;, TV-L;, and SoH-L,
on images SPDO, SPD1 and SPD2, respectively. This is completely in accordance
with the sparsity properties of the three images. The regularizers of models L;-L,
TV-L,, and SpH-L, are in fact suitable for predominantly zero, piecewise constant,
and piecewise affine images, respectively, as they promote sparsity of the intensities
and of the first- and second-order intensity derivatives of the restored image.

In the next experiment, we compare the best assessed regularization models in
the three convexity regimes: pure convex (t, = 0), CNC (z. € (0, 1]), and pure
non-convex regime (7. > 1). In other words, we now test the three separable CNC
models CNC-S-Li-L,, CNC-S-TV-L;,, and CNC-S-S,;H-L, defined in (102), (103),
and (104) on the corresponding test images for different r. values. In Fig. 12, for
each test image SPDO (first row), SPD1 (second row), and SPD2 (third row), we
report some interesting ISNR curves for the associated best-performing models
CNC-S-Li-Lp, CNC-S-TV-L;, and CNC-S-S;H-L,, respectively. In particular, the
plots in the first column represent, for some different 7. values, the achieved ISNR
values as a function of the regularization parameter . The curves in the second
column depict, for a fine grid of t. values, the highest ISNR values achieved by
letting p vary in its entire domain.

In Figs. 13, 14, and 15, we report the best (i.e., with highest associated ISNR
value) denoising results obtained by applying models CNC-S-L;-L,, CNC-S-TV-
Ly, and CNC-S-S,H-L,; to the noise-corrupted test images SPD0, SPD1, and SPD2,
respectively, with different 7. values. In particular, in the first column of Figs. 13,
14, and 15, we show the denoised images, whereas in the second column we report
the associated absolute error images.

From ISNR plots reported in the second column of Fig. 12, we can first observe
that usefulness of using high 7, values becomes larger as the order of image
derivatives sparsified by the regularizer increases. For model CNC-S-L;-L,, the
best results are obtained in the CNC regime, i.e., for t. €]0, 1]. We recall that in
this case the upper limit of the CNC regime (7. = 1) corresponds to using ||x||o as
the regularizer, such that the solution is obtained by a pixel-wise hard thresholding
of the noisy observation b. For the CNC-S-TV-L, model, the ISNR gain obtained by
the CNC regime is remarkable, whereas for the CNC-S-S>H-L; model, such gain
is smaller. In other words, pushing the model in pure non-convex regime (. > 1) is
much more appealing for CNC-S-S;H-L, than for CNC-S-TV-L;.

Examples Using CNC Non-separable Models
In this section, we test the performance of the proposed non-separable CNC

variational models when applied to image denoising and deblurring problems. In
fact, unlike the separable CNC strategy, the non-separable CNC approach can be
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) (c) (. = 0.9
Fig. 13 Separable CNC models. Best denoising results obtained by CNC-S-L1-L; on image SPDO
for different 7. values (left column) and associated absolute error images (right column)



1 Convex Non-convex Variational Models 51

(@7 =10

Fig. 14 Separable CNC models. Best denoising results obtained by CNC-S-TV-L; on image
SPD1 for different 7. values (left column) and associated absolute error images (right column)
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© 7e=10

Fig. 15 Separable CNC models. Best denoising results obtained by CNC-S-S;H-L, on image
SPD2 for different 7, values (left column) and associated absolute error images (right column)
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usefully applied for any acquisition matrix A, also when A is very ill-conditioned
or even numerically singular like it is often the case in deblurring problems. More
precisely, we consider the restoration of the piecewise constant image SPD1 and the
piecewise affine image SPD2 depicted in the first row of Fig. 10 which, we recall,
are characterized by sparse first- and second-order derivatives, respectively.

In accordance with the considered degradation model in (4), the two test images
SPD1 and SPD2 have been synthetically corrupted by space-invariant Gaussian blur
and AWG noise, as described at the beginning of section “Numerical Examples”. In
particular, for the denoising experiment, clearly A is the identity operator, and no
synthetic blur is applied, whereas for the deblurring experiment, the Gaussian point-
spread function is generated with parameters band =7, sigma = 1.5. We then add
AWG noise corruptions of standard deviations o yielding BSNR(b, x) = 15 for
the denoising case and BSNR(b, x) = 7.6 for the deblurring case.

For the restoration, i.e., denoising and/or deblurring, of the degraded SPD1 and
SPD2 test images, we consider the non-separable CNC versions, referred to as
CNC-NS-TV-L, and CNC-NS-S,H-L,, of the two separable CNC models CNC-
S-TV-L, and CNC-S-S;H-L;, defined in (103) and (104), respectively. We also
consider a slightly different but interesting version of the CNC-NS-S>H-L;, model,
referred to as CNC-NS-S|H-L,, where the Shatten 2-norm (Frobenious norm) has
been replaced by the Shatten 1-norm (nuclear norm).

The three considered non-separable CNC models thus read

x* = arg min TR (x; B), j=1,2,3, (108)
xeR”
with cost functions defined by

CNC-NS-TV-1L,:

1
Ns(iB) = o lAx —bI3 + u (Tvm— (TVB%IIB-II§>()C)), (109)

NS—TV(x; B)
CNC-NS-SH-L, :

1
Qe B) = 5 1Ax = bl + u (&H(x)— (Ssz%nB-n%)m), (110)

NS—S,H(x; B)
CNC—-NS-S1H-1L, :

1
B0 B) = 5 Ax = I3 + p <81H(x)—(SlHE%IIB-H%)(x)>. (111)

NS—S1H(x;B)
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Table 3 ISNR values obtained by restoring the test images SPD1 and SPD2 corrupted by zero-
mean AWG noise (Denoise) and space-invariant Gaussian blur (Deblur)

Image | Model Denoise | Deblur | Image | Model Denoise | Deblur

SPD1 | TV-L, 8.84 6.64 SPD2 | TV-L, 7.21 3.00
S1H-L, 5.56 2.00 S1H-L, 7.67 2.50
S>H-Lo 4.54 1.90 S>H-Ls 6.65 2.73
CNC-NS-TV-L, |20.35 6.72 CNC-NS-TV-L, |4.11 3.20
CNC-NS-S1H-L, | 11.34 2.11 CNC-NS-S1H-L, | 12.33 2.83
CNC-NS-S;H-L, |9.13 2.00 CNC-NS-S;H-L, | 10.57 2.73

The parameter matrix B has been constructed using dc-notch filters as described at
the end of section “Construction of Matrix B”, so that the three total cost functions
above are all convex, and hence, the three models are CNC.

Quantitative and qualitative (visual) results have been produced. In Table 3,
we report the ISNR values obtained by the three considered non-separable CNC
models on the two test images for both the denoising and deblurring experiments.
For comparison, we also report the ISNR values achieved by using the associated
purely convex baseline models. For each experiment, the best ISNR results within
each class of models are marked in boldface. Figures 16 and 17 show the corrupted
images (top rows) and the best restored images computed by the two classes of
purely convex models (center rows) and non-separable CNC models (bottom rows),
in case of denoising and deblurring, respectively, see the associated ISNR values
marked in boldface in Table 3.

From the ISNR values in Table 3 and the visual inspection of the restored
images in Figs. 16 and 17, the improvement in accuracy provided by the considered
non-convex non-separable regularizers versus the corresponding convex separable
baseline regularizers is evident, particularly for the denoising case, and in agreement
with the sparsity characteristics of the two images. It is worth remarking that such
improvement is obtained without renouncing any of the well-known advantages
of (strongly) convex optimization, namely, the existence of a unique (global)
minimizer and of numerical algorithms with proved convergence toward such
minimizer.

Furthermore, for the denoising results we could also extend the comparison
to the CNC models with separable regularizers, which were demonstrated in
section “Examples Using CNC Separable Models” to outperform the baseline purely
convex models in inducing sparsity of the gradient magnitudes or the Hessian
Shatten 2-norms in the denoised images.

To conclude, we notice that for both the separable and non-separable CNC
considered models, the regularization parameter  has been set manually so as to
achieve the best accuracy results in terms of ISNR. In practical applications, clearly
this procedure can not be used (the true image x is unknown), and also manually
tuning p by visually inspecting the attained results is not practical. Hence, some
sort of automatic parameter selection strategy is always highly desirable. Actually,



1 Convex Non-convex Variational Models 55

Fig. 16 Non-separable CNC models. Denoising results on SPD1 (left column) and SPD2
(right column) corrupted by AWG noise. First row: degraded images (BSNR = 15). Second
row: restorations by TV-L, (ISNR=8.84), left, and by S;H-L, (ISNR=7.67), right. Third row:
restorations by CNC-NS-TV-L, (ISNR=20.35), left, and by CNC-NS-S1H-L, (ISNR=12.33), right
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Fig. 17 Non-separable CNC models. Deblurring results on SPD1 (left column) and SPD2 (right
column) corrupted by blur and AWG noise. First row: degraded images (BSNR = 7.6). Second
row: restorations by TV-L; (ISNR=6.64), left, and by S;H-L, (ISNR=3.00), right. Third row:
restorations by CNC-NS-TV-L; (ISNR=6.72), left, CNC-NS-S;H-L, (ISNR=3.20), right
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the proposed FB and PDFB numerical solution algorithms can be quite easily
equipped with such an automatic strategy. In particular, if one wants to select
according to the very popular discrepancy principle or to the less popular but very
effective residual whiteness principle, the ADMM approach proposed for solving
the backward denoising step can benefit from the adaptive strategies proposed in
Lanza et al. Lanza et al. (2016b, 2021, 2020) for the more general class of deblurring
problems.

Conclusion

We discussed a CNC strategy for sparsity-inducing regularization of linear least-
squares inverse problems. To avoid the intrinsic difficulties related to non-convex
optimization, the CNC strategy allows the use of non-convex regularization while
maintaining convexity of the total cost function. In this work we analyzed a
general class of parameterized non-convex sparsity-promoting separable and non-
separable regularizers and their associated CNC variational models. We derived
convexity conditions for the total cost functions and we discussed related theoretical
properties. A general forward-backward splitting strategy has been presented and
applied for the numerical solution of the CNC models considered and a theoretical
proof of convergence has been given. A series of numerical experiments related
to image denoising and deblurring have been carried out, and the reported results
strongly indicate that the considered non-convex regularizers hold the potential for
achieving high quality results while remaining in a convex, safe regime.
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Abstract

This work presents and discusses optimization methods for solving finite-sum
minimization problems which are pervasive in applications, including image
processing. The procedures analyzed employ first-order models for the objective
function and stochastic gradient approximations based on subsampling. Among
the variety of methods in the literature, the focus is on selected algorithms which
can be cast into two groups: algorithms using gradient estimates evaluated on
samples of very small size and algorithms relying on gradient estimates and
machinery from standard globally convergent optimization procedures. Neural
networks and convolutional neural networks widely used for image processing
tasks are considered, and a classification problem of images is solved with some
of the methods presented.

Keywords

Finite-sum minimization - First-order methods - Stochastic gradient - Neural
networks - Convolutional neural networks - Image classification

Introduction

The focus of this paper is on finite-sum minimization

min f(x), ey

xeR

where f : R" — R is a Lipschitz smooth function of the form

N
fo) = %Zﬁm, )

i=1

and each f; is such that f; : R” — R. We assume that f is bounded from below in
R”™.

The case of interest here is when problem dimension #» and N are large num-
bers. Such finite-sum minimization comprises a variety of applications including
problems from machine learning Bottou et al. (2018) and plays an important role in
image processing, e.g., in tasks such as image classification, object detection, and
image segmentation (Aggarwal 2018; Chollet 2017; Forsyth et al. 2002; Goodfellow
et al. 2016; Patterson et al. 2017; Shanmugamani 2018).

In a large-scale regime, working with the objective function f and its gradient
in first-order methods, or even Hessian in the second-order methods, may be
prohibitively expensive. In order to reduce the computational cost, typically f and
its derivatives are approximated using a subset of the summation terms. In particular,
such approximation is carried out by subsampling, i.e., considering summation
terms corresponding to a random sample of indices & C {1, ..., N}. The random
sample set & is also called mini-batch if it is a small subset of {1, ..., N}.
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Considering first-order methods, let k be the iteration index and f,? and g be
subsampled approximation of f(xx) and V f (x¢), respectively, i.e.,

1
;= o > fiw. 3)
ok, i€S8k, £
ge=—— Y. Vfilw), )
|kl icS
(\k,g
where 8% s and & o are random subsets of {1, ..., N} and |8k 7|, |Sk | denote

their cardinality. Then, the kth iteration of the stochastic gradient procedures we are
dealing with has the form

Xk+1 = Xk — Qk&k» )

where o is a positive steplength. By construction, {x} is a stochastic process whose
behavior depends on the randomly selected samples.

Choosing the size of the sample set and the steplength along the iterations
clearly represents the main issue in the realization of subsampled first-order methods
and characterizes the procedures. Since there is a large variety of approaches,
classifying the large number of methods in the literature on the basis of their
features is not a trivial task. In this work, we cast renowned stochastic first-order
procedures into two groups along the following arguments. Methods in the first
group employ subsampled gradient estimates on very small batch sizes (in some
approaches full gradient evaluations are occasionally performed) and do not perform
checks for acceptance of the new iterate xiy1, i.e., the computed step is accepted
in every iteration. Consequently, the computational cost per iteration is low, and
their implementation is simple. The original idea can be traced back to Robbins and
Monro (Robbins et al. 1951), who proposed the famous Stochastic Approximation
method. With careful and problem-dependent choices of the steplength sequence
{or}, theoretical results establish the behavior of the expected function values
and gradient norm values. Methods (Andradottir 1996; Delyon and Juditsky 1993;
Kesten 1958; Kiefer 1952; Krejié et al. 2013, 2015; Nemirovski et al. 2009; Robbins
et al. 1951; Spall 2003; Tan et al. 2016; Yousefian et al. 2012; Xu et al. 2012)
belong to such class. The performance of these methods is sensitive to the steplength
selection and to stochastic variance reduction techniques (Defazio et al. 2014;
Johnson et al. 2013; Kingma and Ba 2015; Nguyen et al. 2017; Schmidt et al. 2017).

Methods in the second class rely on machinery from standard globally convergent
optimization procedures such as line search, trust-region, or adaptive overestimation
strategies (Bellavia et al. 2019, 2020c; Birgin et al. 2018; Blanchet et al. 2019; Cartis
et al. 2018; Chen et al. 2018; Curtis et al. 2019; Kreji¢ et al. 2016; Kreji¢ N et al.
2013; Krejic et al. 2015; Paquette et al. 2020; Tripuraneni et al. 2018) and have been
proposed with the aim of overcoming the need of problem-dependent steplengths.
In fact, by using subsampled function and gradient estimates, steplength selection
is adaptive and made on the basis of some globalization strategy and knowable
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quantities. The choice of the sample size can vary from simple heuristics to
sophisticated schemes that take into account the progress made by the optimization
process itself. A further relevant distinction from the methods in the first group
is that, except for Curtis et al. (2019), the accuracy of the function and gradient
estimates is controlled adaptively along the iterations and plays a central role in the
convergence analysis. Assuming that the variance of random functions and gradients
is bounded, specific accuracy requirements can be fulfilled by means of a sufficiently
large sample size estimated using probabilistic arguments (Bellavia et al. 2019;
Tripuraneni et al. 2018; Tropp 2015). Some approaches Bellavia et al. (2020c),
Birgin et al. (2018), Kreji¢ N et al. (2013); Kreji¢ et al. (2015); Kreji¢ et al. (2016)
reach eventually full precision functions and gradients, and thus the convergence
results are deterministic; in the remaining methods, convergence is stated in terms
of probability statements, either in mean square or almost sure.

The work is organized as follows. In section “Convolutional Neural Networks”,
we briefly introduce neural networks and convolutional neural networks which
are widely used for image processing tasks. In section “Stochastic Gradient and
Variance Reduction Methods”, we describe subsampled first-order methods in the
first group, while in section “Gradient Methods with Adaptive Steplength Selection
Based on Globalization Strategies” we present methods belonging to the second
group. Finally, in section “Numerical Experiments”, we solve a classification
problem of images, discussing the neural network used, implementation issues, and
results obtained with some of the methods presented. All norms in the paper are
Euclidean || - || def Il - ]l2 and given a random variable A; the symbols Pr(A) and
E[A] denote the probability and expected value of A, respectively.

Convolutional Neural Networks

Neural networks (NNs) have become a state-of-the-art methodology for classifica-
tion and regression tasks in artificial intelligence field (Bishop 2006; Hastie et al.
2001). NN are used to approximate functions ¢ : R* — R’ whose value is known
only at a given set of points d; € R%,i = 1,..., N. Letting §; = ¢ (di) for
i =1,...,N, the pairs { (d;, ¥;) }i:1 .... v € R® x R, are available and can be
used to train the neural network that is supposed to approximate values of ¢ (d) for
d#d;,i=1,...,N.

A neural network is a model which is typically represented by a network diagram
as the one in Fig. 1. It consists of layers L, ..., L,,, m > 2; L is called input layer,
Ly, is the output layer, and, when m > 2, L, ..., L, are called hidden layers.
Each layer L; contains a finite number n; of neurons, subject to the constraints
ny = s, n, = t. Given an input data d € R, the neural network returns an output
vector in R,

Given an input data d € R®, a neuron of a NN is modeled as shown in

Fig.2. Let v; = (vi,l, ...,v,-,,,[.)T € R™ be the output of layer L; and o; =
(O’i,l, e ai,,,,.)T € R contain the activation functions o; ; : R — R. Thus,
the output of the jth neuron of the layer L;, fori =2, ..., m is the scalar
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Input Hidden Hidden Output
layer layer layer layer

Fig. 1 An example of neural network with two hidden layers, s=4, t=3

ni—1

Vi =0 in,j,kvifl,k +bij|. (6)
k=1

where b; ; € R is called bias and the parameters x;, ; x are called weights. Vector vy
coincides with the input data d. Letting X; € R" x R"-1 be the matrix with (j, k)-
entry given by x; j i, for 1 < j <n;, 1 <k <ni_yandb; = (bi1,....bin) €
R, the output of the whole layer L; is

Vi =0; (XiV,'_l +b,') . @)

In fact, the output of each layer is defined recursively by (7) and depends on the
output of the previous layer.

Common examples of activation functions are (Bishop 2006; Goodfellow et al.
2016):

e Linear: o(z) =z

e Sigmoid or logistic: 0(z) = 1/(1 +e7%)

e Tanh: 0 (z) = tanh(z)

* Relu: 0(z) = max(0, z)

* Elu:o(z) =z X0+ (e = 1) - X[y <0

where X; : R — R is the indicator function, defined by

1 xelICR
Xi(x) = T 3
0 otherwise
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Inputs from
layer L;_;

Weighted Activation

Weights 3
sum function

Fig. 2 Mathematical model of jth neuron of layer L;

The procedure for choosing the parameters { (Xi, bi) }l.: L

training phase. Let x be the vectorization of { (Xi, bi) }l.:l ’’’’’
known data { (di, §f,) }[.:1 ’’’’’ N (training set), the aim is to choose the parameters so
that the output v, (x; d;) of the neural network corresponding to the input d; is as
close as possible to the value y; foreveryi = 1,..., N.

In order to do that, it is necessary to select a function E : R’ x R’ — R for
measuring the error made by the network on the prediction of each given data and
minimize the so-called loss function:

N
1 N
5 2 Evn(x; di), §). ©)
i=1
Since d; and y; are known, the loss function is a special case of (2) where
fix) =E(vpy(x;d;),y;), fori=1,...,N.
We underline that the minimization of suitable loss functions gives rise to

prediction functions that generalize information from the available data and avoid
overfitting of the training set (Bottou et al. 2018, §2).
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Convolutional neural networks (CNNs) are a specialized kind of neural network
for processing data with a grid-like topology, such as images represented as a two-
or three-dimensional grid of pixels. CNNs extract features from the input image
which are in some way representative of local neighboring portions of the image.
This choice is motivated by the fact that important connections in an image are
local (Strang 2019) and that reducing the dimension of weight matrices speeds up
the process. This task is achieved exploiting filters commonly used in the computer
vision context, such as convolution filter, which are able to extract low level features
such as edges, color, and gradient orientation (Forsyth et al. 2002, Chap. 4). These
filters are combined with standard neural network layers, so that all the low-level
features are combined together. In the following, we give an overview on the main
layers used in CNNs and refer the interested reader to Goodfellow et al. (2016,
Chap. 9) and (Chollet 2017; Patterson et al. 2017) for additional details.

Convolutional Layer

We consider an image [ as a three-dimensional w x h X ¢ array, where w is the
image width, % is the image height, and c is the number of channels.

Discrete convolution aims to reduce the noise of a signal by applying a weighted
average of each entry of the signal and its neighbors. Given an image [/ sized w X
h x c, an integer k > 1, a three-dimensional (2k 4+ 1) x (2k + 1) x ¢ array W
called kernel, and a scalar b called bias, the discrete convolution between [ and W,
denoted by I * W, is the two-dimensional array defined by

TxW)G ) =D D 3 I, tou)-W(s—i+k+1,t—j+k+1,u)+b,  (10)

Ky t u=1

fori = 1,...,w—2kand j = 1,...,h — 2k, where s and ¢ range over all
allowed subscripts for / and W, namely, s = max{l,i — k}, ..., min{i + k, w},
t = max{l, j —k},...,min{j + k, h}.

The application of a filter to the input yields a two-dimensional array instead
of a three-dimensional; see index u in (10). Typically, convolutional layers apply m
different filters of the same dimension to the input. Consider m kernels {We}o—1 .,
each one sized (2k + 1) x (2k + 1) x c. The output of the convolutional layer is the
3D array defined by

(I W), j, €) = (I W) (i, j),

wherei = 1,...,w—2k,j=1,...,h—2kand £ = 1, ..., m; thus, every filter
adds a channel to the output array. Hence, the output of convolutional layers with m
kernels is given by an array of width and length w — 2k and h — 2k, respectively,
while the new number of channels is equal to the number of filters which have been
applied.



68 S. Bellavia et al.

— W(1,1)
---->W(1,2)
> W(2,1)

- = W(2,2)

13,2) | /./;@

13,3)

Fig. 3 An example of convolutional layer acting on a 3 x 3 x 1 array /. The kernel W dimension
is 2 x 2 x 1. Weights W are shared among different neurons. In this example, the output of the
convolutional layer consists of four neurons. Biases and activation functions have been omitted

CNNs are networks composed by at least one convolutional layer and standard
layers. In convolutional layers, the entries of the filters are the parameters which are
updated during the training. Hence, a convolutional layer consists of m - ((2k + 1) -
(2k 4+ 1) - ¢ + 1) trainable parameters, (2k + 1) - (2k + 1) - ¢ 4+ 1 for each filter,
bias term included. Each element of the array resulting from a convolution can be
viewed as a neuron of the type shown in Fig. 2, where some of the connections,
corresponding to the indices falling outside the ranges defined in (10), have been
dropped (i.e., the corresponding weights are set to 0). In contrast with standard
NN layers, convolutional layers share weights among different neurons. The kernel
weights are in fact the same in each output neuron, as shown in Fig. 3.

Max Pooling Layer

In order to speed up the training phase by reducing the dimension of the object
involved, the max pooling strategy is commonly used in CNN architectures for
imaging (Strang 2019). It consists in replacing, for every channel, a square
neighborhood with its maximum. More formally, given an image /, max pooling
process MP acts as follows:
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MP(D)(, j, k) = max I(s,t, k), 1D
(s.)€SG, )

where S(i, j) is a neighborhood of (i, j).

The square neighborhood is defined by mean of two hyperparameters xs; > xss,
which are the spatial extent, the length of the square edge, and the stride, the step
which is used to move the square around the image, respectively. When xs > xss,
we talk about overlapping pooling. By construction, the max pooling layer does not
call for parameters to be trained, and the dimension of the output of MP is smaller
than that of the input and given by

((w— xst)/xst +1) x ((h — xs1) /x5t + 1) X c,

where w x h x c is the input dimension. This strategy can be viewed also as a
downsampling in order to mitigate overfitting during the training.

Stochastic Gradient and Variance Reduction Methods

In this section, we present the widely used stochastic gradient descent (SGD)
method (Robbins et al. 1951) and incremental gradient algorithms based on variance
reduction such as stochastic variance reduction gradient (SVRG) method (Johnson
et al. 2013), SVRG method with Barzilai-Borwein steplengths (SVRG - BB)
(Tan et al. 2016), StochAstic Recursive grAdient algoritHm (SARAH) method
(Nguyen et al. 2017), stochastic average gradient (SAG) method (Schmidt et al.
2017), and SAGA (Defazio et al. 2014). In the presentation of the convergence
properties of these methods, we will make use of the specific form (2) of the problem
and of following assumptions.

Assumption 1. Each function f; : R" — R has Lipschitz continuous gradient, i.e.,
there exists a constant L > 0 such that

Vi) = Vil < Lllx =yl x, y € R".

This assumption clearly implies that the gradient of objective function is also L-
Lipschitz continuous:

IVF) =V I =Llx—ylx,yeR"

Assumption 2. The function f : R” — R is u strongly convex, i.e., there exists a
constant ¢ > 0 such that

fx) = f(y)+(Vf(y))T(x—y)+%IIX—yII2 forall (x,y) e R"xR".  (12)



70 S. Bellavia et al.

In case of convex (strongly convex) problems, we denote x,. an (the unique) optimal
solution.

The standard gradient descent GD method employing the full (true) gradient (FG)
is defined by the following iterative formula:

X1 = Xk — oV f (xXg).

The steplength ¢ can be fixed in a number of ways, for example, one can apply a
line search procedure based on specific requirements on f or take a constant value,
ar = o, Vk > 0. If f is convex and Assumption 1 holds, method FG with fixed
steplength « converges sublinearly and satisfies the following error bound:

) — fxe) = O/ k),

provided that 0 < o < 2/L (Nesterov 1998, Th. 2.1.13). If additionally f is strongly
convex and 0 < @ < 2/(u + L), then FG achieves linear convergence:

F) — fx) = O(p"),

with p depending on the condition number L/u (Nesterov 1998, Th. 2.1.14).

In the case where the number of component functions f; is large, such as in
machine learning applications, the computation of the full gradient is very expen-
sive, and SGD (stochastic gradient descent) appears as an appealing alternative.
The method was first proposed in the seminal paper of Robbins and Monro as SA
(stochastic approximation) method (Robbins et al. 1951). The main idea of SGD
is to replace the expensive gradient V f(x;) with a significantly cheaper stochastic
vector gx. Here we focus on the case where g is an unbiased approximation to
V f(xi), ie., Elgi] = V f(xx), built via (4) with & ¢ chosen uniformly at random
from {1, ..., N}.

Intuition for using subsampled functions evaluated on random small size sample
sets comes from the fact that the training set is often highly redundant, see, e.g.,
(Bottou et al. 2018). Sample sets Sy , with small cardinality |$k ¢, in the limit equal
to one, are generally used. Whenever ]8/(, g| > 1, the stochastic approximation of the
full gradient is denoted as mini-batch; on the other hand, if the sample set reduces
to a single element, the stochastic approximation is called simple or basic. In the
following algorithm, without loss of generality, we present SGD referring to the
latter case.

ALGORITHM SGD

Step 0: Initialization. Choose an initial point xo and a sequence of strictly
positive steplengths {ox}. Set k = 0.

Step 1. Stochastic gradient computation. Choose randomly and uniformly
ir €{1,..., N}. Set g =V fi, (xx).

(continued)
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Step 2. Iterate computation. Set x| = x; — oy gx. Increment k by one and
go to Step 1.

Since {x;} is a stochastic process whose behavior depends on the random
variables {i;}, convergence analysis has to be carried out in expectation. Given that
one iteration of SGD requires a single gradient V f;, (x), each iteration of the SGD
method is significantly cheaper than FG method. Due to the variance introduced
by the approximations g, in case of fixed steplength, it is not possible to prove
convergence of the method to the solution even in the strongly convex case. On the
other hand, it can be proved that if there exist positive scalars M| and M3 such that
at each iteration of SGD

ElllgklI?1 < My + Ma||V £ (x0)|I%, (13)

and if o < /(L M3), then the expected optimality gap f(xx) — f(x4) falls below a
problem-dependent value (Bottou et al. 2018, Th. 4.6).

Convergence in expectation can be proved assuming to employ diminishing
steplengths, i.e., the sequence {ay} satisfies Y po; ax = 00, Y oo, @? < oo. It can
be shown (see Nemirovski et al. (2009, p. 1578)) that for strongly convex functions,
properly chosen steplengths such as oy = 6/k with 8 > 1/(2u), and random
gradient approximations having bounded variance, one can get

Elllxx — x:/11 = O(1/vk).

A further result on expected optimality gap for strongly convex functions is given
below.

Theorem 1 (Bottou et al. 2018, Th. 4.7). Suppose that Assumptions 1 and 2 hold
and let x be the minimizer of f. Assume that (13) holds at each iteration. Then, if

SGD is run with oy = % B > l% and y > 0 such that o1 < L[lwz, there exists a
scalar v > 0 such that

ELf(x)] = f(xs) <

. 14
y +k (19

The theorem above shows that, in the case of strongly convex problems, SGD
converges slower (sublinearly) than FG method and this depends on the variance
of the random sampling. Note that the larger M> is, the smaller the steplength is,
and this implies slow convergence.

Theoretical results for SGD applied to nonconvex optimization problems are
available (Bottou et al. 2018, §4.3). In particular, if f is bounded, in expectation — gy
is a direction of sufficient descent for f at x; and SGD is applied with diminishing
steplengths {oy} satisfying > po; ax = 00, > jo, @ < 0o, then it can be shown
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that the expected gradient norms cannot stay bounded away from zero (Bottou et al.
2018, Th. 4.9).

If the approximate gradient g; has a large variance, SGD may show slow
convergence and bad performance. Taking a larger sample size for & ¢ could help to
reduce gradient variance, but large sample may deteriorate the overall computational
efficiency of stochastic gradient optimization. In order to improve convergence with
respect to SGD, stochastic variance reduction methods have been proposed, see,
e.g., Defazio et al. (2014), Johnson et al. (2013), Nguyen et al. (2017), Tan et al.
(2016), Schmidt et al. (2017), Wang et al. (2013). In particular, in Wang et al.
(2013), a variance reduction technique is proposed by making use of control variates
(Ross 2006) to augment the gradient approximation and consequently reduce its
variance.

Variance reduction is the core of SVRG (stochastic variance reduction gradient)
method presented in Johnson et al. (2013); the algorithm is given below.

ALGORITHM SVRG
Step 0: Initialization. Choose an initial point xg € R”, an inner loop size
m > 0, a steplength o > 0, and the option for the iterate update. Set k = 1.
Step 1: Outer iteration, full gradient evaluation.
Set xo = xx—1. Compute V f (o).
Step 2: Inner iterations
Fort =0,...,m—1
Uniformly and randomly choose i; € {1, ..., N}.
Set Fr41 = % — a(V fi, (1) — V f;, (Ro) + V f (Fo)).
Step 3: Outer iteration, iterate update.
Set xx = X, (Option I). Increment k by one and go to Step 1.
Set x; = x; for randomly chosen ¢ € {0, ..., m — 1} (Option II). Increment k
by one and go to Step 1.

SVRG consists of outer and inner iterations. At each outer iteration k, the
full gradient at x; is computed. Then a prefixed number m of inner iterations is
performed using stochastic gradients and fixed steplength «; the internal iterates are
X0, X1, - - ., Xy. At the tth inner iteration, the stochastic gradient used has the form

V fi, (%) — V fi, (X0) + V f (X0),

with i; chosen uniformly and randomly in {1, ..., N}. This quantity is an unbiased
estimation of the gradient. Finally, the new iterate is either the last computed iterate
Xm (Option 1) or one of the vectors Xo, ..., X,—1 (Option II). Although Option I,
taking the new iterate as the last outcome of inner loop, is intuitively more appealing,
the convergence results from Johnson et al. (2013) are valid for Option II only. The
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results presented in Johnson et al. (2013) cover both the convex and nonconvex
cases. For the sake of simplicity, here, we consider the strongly convex case.

Theorem 2 (Johnson et al. 2013, Th 1). Suppose that Assumptions 1 and 2 hold
and that all f; are convex, and let x,. be the minimizer of f. If m and « satisfy

1 2La
0 = + <
ua(l —2La)ym 1 —2La

1, (15)

then Algorithm SVRG with Option II generates a sequence such that

ELf(x)] — f(xs) < 05(f(x0) = £ (x)).

The above statement clearly demonstrates that convergence in expectation
depends on m and « and it is guaranteed taking both a sufficiently large loop size m
and a sufficiently small steplength «. Note that 6 in (15) depends on the scalars L
and p and condition (15) imposes the following restrictions to ¢ and m: o < 1/(4L)
and m > 2/(ua).

The linear convergence in expectation of the sequence of the iterates generated
by the same algorithm with Option I has been proved later in Tan et al. (2016), and
it is given below.

Theorem 3 (Tan et al. 2016, Corollary 1). Suppose that Assumptions 1 and 2 hold
and let x, be the minimizer of f. If m and a satisfy

6= —2au(l —al)™) + dal?
- a w(l —aL)

then Algorithm SVRG with Option I generates a sequence which converges linearly
in expectation

2 k 2
Elllxr — x«[I7] < 6% [lxo — x4]I”.

The value of m is most often of order ©O(n); in Johnson et al. (2013), it is
suggested to take m = 2n for convex problems and m = 5n for nonconvex
problems. Numerical studies that concentrate on the influence of m and « are
available in Tan et al. (2016) as well as the comparison with the method of
SVRG type employing adaptive steplengths. Further, in practical applications, it
can be convenient to replace the full gradient at outer iterations with a mini-batch
stochastic gradient. Application of SVRG to nonconvex problems is briefly discussed
in Johnson et al. (2013, §3). Notice that SVRG requires the full gradient which
is stored in memory during the whole inner loop execution. Instead of storing all
gradients V f; (Xo) separately, at each inner iteration V f;, (Xo) is evaluated along with
V fi, (X;); this increases the computational cost but reduces the memory requirement
drastically. In applications where gradient evaluation is very expensive, the full
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gradient is typically replaced with a mini-batch stochastic gradient (Lei et al. 2017).
Further, we mention a limited memory approach which gives rise to k-SVRG (Raj
et al. 2018).

A variant of SVRG borrows ideas from the spectral gradient method (Barzilai
et al. 1988; Raydan et al. 1997) which is very popular modification of the classical
FG. The spectral gradient method is based on the idea of approximating the Hessian
matrix in each iteration with a multiple of the identity matrix which minimizes the
discrepancy from the secant equation and yields an adaptive steplength in each
iteration of the gradient method. This steplength is known as Barzilai-Borwein
steplength or the spectral coefficient. The adaptive steplengths overcome hand-
tuning and do not need to be small, i.e., of order 1/L when the Lipschitz constant
is large. Therefore, it is reasonable to expect that some advantages of similar type
might be expected in the framework of SGD and SVRG methods. The following
algorithm is developed in Tan et al. (2016), introducing the Barzilai-Borwein
steplengths in the SVRG framework.

ALGORITHM SVRG - BB
Step 0: Initialization. Choose an initial point xo € R”, an inner loop size
m > 0, an initial steplength op > 0. Set k = 1.
Step 1: Outer iteration, full gradient evaluation.
Set X9 = xx—1. Compute V f (xp).
1 [k — xk—11I?
m (xx = xk—)T(V f () = V f (ex—1))
Step 2: Inner iterations
Fort =0,...,m—1
Uniformly and randomly choose i; € {1, ..., N}.
Set Fr41 = % — ar(V fi, (B) — V f;, (o) + V f (F0))
Step 3: Outer iteration, iterate update. Set x; = X,,. Increment k by one
and go to Step 1.

If kK > 0, then set o =

Note that at the first outer iteration, the steplength is the input data o, while at
the successive outer iterations, the steplengths o are adaptively chosen and used
within inner iterations. The following results are established for strongly convex
functions.

Theorem 4 (Tan et al. 2016, Th. 3.8). Suppose that Assumptions 1 and 2 hold and
let x4, be the minimizer of f. Define 6 = (1 — e=2*/L) /2. If m is chosen such that

{ 2 412 L}
m > max

log(1 —26) 120/ 012 " 10

then SVRG-BB converges linearly in expectation
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Elllxi — xlI”1 < (1 = 0)* 150 — xall*.

A number of practical issues regarding the application of variance reduction
gradient methods is considered in the literature. All of these methods compute
the full gradient at each outer iteration, and this represents the main cost of these
algorithms. Results presented in Babanezhad et al. (2015) show that it is possible
to perform the outer iterations with increasing batch size for the gradient approxi-
mation without compromising the linear convergence rate. Mini-batch methods in
inner loop iterations are also considered in Babanezhad et al. (2015).

SAG (Schmidt et al. 2017) method is based on average gradient approximation,
which represent an alternative to the gradient estimators previously described. The
main idea is to accumulate previously computed stochastic gradient values. The
basic version of SAG method Schmidt et al. (2017) is presented in the algorithm
below.

ALGORITHM SAG

Step 0: Initialization. Choose an initial point xo € R”, positive steplengths
{ak}, yi =0,fori =1,...,N.Setk =0.

Step 1: Stochastic gradient update. Uniformly and randomly choose iy €
{L,..., N} Sety;, =V fi, (xk).

Step 2: Iterate update. Set x;1| = x; — "‘W" Z,N=1 vi. Increment k by one
and go to Step 1.

SAG method uses a gradient estimation for V f (x;) composed of the sum along
all terms in the gradient, in the spirit of FG, but the cost of each iteration is the same
as SDG. Remarkably, at the price of keeping track of a N x n matrix containing
the gradient values computed through the iterations, SAG achieves almost the same
convergence rate than FG. In fact, unlike SDG, convergence of SAG can be achieved
taking constant steplength oy = 1/(16L), Yk > 0 and the optimality gap on
average iterates achieve the same error bound ©(1/k) as FG for convex function and
linear convergence for strongly convex functions (Schmidt et al. 2017, Th. 1). If the
Lipschitz constant is not available, a strategy for its estimation is given in Schmidt
etal. (2017, §4.6). The following result concerns strongly convex problems.

Theorem 5 (Schmidt et al. 2017, Th. 1). Suppose that Assumptions 1 and 2 hold.
Let x be the minimizer of f. If« = 1/(16L), then

k
ELF ()] — f (k) < (1—min{ po 1 }) Co,

where Co > 0 depends on x, xg, f, L, N.
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Note that for ill-conditioned problems where N < (2L)/u, N does not play
a role in the convergence rate, and the SAG algorithm has nearly the same
convergence rate as the FG method with a step size of 1/(16L), even though it uses
iterations which are N times cheaper. This indicates that in case of ill-conditioned
problems, the convergence rate is not affected by the use of out-of-date gradient
values. A SAG extension, called SAGA, has been also proposed in Defazio et al.
(2014). SAGA exploits SVRG-like unbiased approximations of the gradient and
combines ideas of SAG and SVRG algorithms; a fixed steplength is employed. The
interested reader can find additional details about SAGA in Defazio et al. (2014).

SARAH method Nguyen et al. (2017) is a further variant of SGD based on
accumulated stochastic information. Unlike SAGA, SARAH is based on the idea of
variance reduction and biased estimations of the gradient; the algorithm is sketched
below.

ALGORITHM SARAH
Step 0: Initialization. Choose an initial point xo € R”, an inner loop size
m > 0, a steplength @ > 0. Set k = 1.
Step 1: Outer iteration, full gradient evaluation.
Set xo = xx—1. Compute yg = V f(Xp). Set x| = X9 — @yp.
Step 2: Inner iterations.
Fort=1,...,m—1
Uniformly and randomly choose i; € {1, ..., N}.
Compute y, = V f;, (X)) — V fi, (&;—1) + yr—1.
Set i;+] = it — OYy;.
Step 3: Outer iteration, iterate update. Set x; = X; for randomly chosen
t € {0, ..., m}. Increment k by one and go to Step 1.

As already mentioned, y; is a biased estimator of the gradient as

Ely: ] =V f(&x) =V f(&-1)+yi1 # Vf(X0).

The convergence results presented in Nguyen et al. (2017) cover both the convex
and strongly convex cases, as well as address complexity analysis; the result for the
strongly convex case is given below.

Theorem 6 (Nguyen et al. 2017, Th. 4). Suppose that Assumptions 1 and 2 hold
and that each function f;, 1 <i < N is convex. If « and m are such that

1 ol
o= + <
ua(m—+1) 2 —al

1, (16)

then the sequence {||V f (xi)||} generated by Algorithm SARAH satisfies
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E[IVfxl*1 < o* IV f(xo)lI.

We observe that condition (16) imposes the upper bound 1/L on the steplength «,
while the analogous condition (15) governing the convergence of SVRG imposes the
tighter bound o < 1/(4L); further, for any « and m, it holds o < 6. An additional
advantage of SARAH is that if « is small enough, then the stochastic steps computed
converge linearly in the inner loop in expectation.

Theorem 7 (Nguyen et al. 2017, Th. 1b). Suppose that Assumption 1 holds and
each function fi, 1 <i < N is u-strongly convex with i > 0. If &« < 2/(u + L),
then for any t > 1

2ulL 2uLla\’
Elly 4] < (1 - M‘:i) Ellly—111 < (1 - M‘lz) EIIV £ Go)I121.

Gradient Methods with Adaptive Steplength Selection Based on
Globalization Strategies

Gradient methods discussed in the previous section employ stochastic (possibly and
occasionally full) gradient estimates and do not rely on any machinery from standard
globally convergent optimization procedures such as line search, trust-region, or
adaptive overestimation strategies. On the other hand, a few and recent papers
(Bellavia et al. 2019, 2020c; Blanchet et al. 2019; Cartis et al. 2018; Chen et al.
2018; Curtis et al. 2019; Paquette et al. 2020) rely on such strategies for selecting the
steplength and part of them mimic traditional step acceptance rules using stochastic
estimates of functions and gradients. The purpose of these methods is to partially
overcome the dependence of the steplengths from the Lipschitz constant of the
gradient, i.e., lack of natural scaling, which appears in the convergence results of
SGD and its variants given in section “Stochastic Gradient and Variance Reduction
Methods”; see Curtis et al. (2019, §1).

One relevant proposal in the field of stochastic trust-region methods is TRish
(Trust-Region-ish) algorithm (Curtis et al. 2019). TRish uses a stochastic gradient
estimate gx of V f(xx) and a careful steplength selection which, to a certain extent,
mimics a trust-region strategy. TRIsh algorithm is sketched below.

ALGORITHM TRISH

Step 0: Initialization. Choose an initial point xg € R", positive steplengths
{ak}, positive {y «} and {y> «} such that y1 ¢ > y2.«, Yk > 0. Set k = 0.
Step 1: Step computation. Compute a gradient estimate gx € R”.

(continued)
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Step 2: Steplength selection. Set

—y1xekgi if Nl € [0. VL)

Sk = — kﬂ ”gk” € I:Vllk’ yzl’kil (17)

—yaxengr i lgell € (55, 00)

Set xx4+1 = xx + Sk, increment k by one, and go to Step 1.

The relationship between the norms of sy = xj4+1 — x¢ and gg is shown in

Fig.4. The norm of the step, as function of the norm of the stochastic gradient,
1

YLk’ Y2k

step since it solves the trust-region problem:

is continuous. When || gk || € [ ] the step s can be viewed as a trust-region

min () +g's. (18)

If the norm of the stochastic gradient is below 1/y1 , then the steplength is y1 o,
while if the norm is larger than 1/y i, then the steplength is y» rox with vk <
1 k- Note that the trust-region machinery is used for building the step, but unlike
standard trust-region strategies, it does not employ step acceptance conditions and
therefore it does not affect the choice of the steplengths {oy}. Examples in Curtis
et al. (2019, §2) show that a pure trust-region algorithm, taking steps from (18)
independently of the norm of the stochastic gradient, is not guaranteed to converge;
this would be the case if y; x > 0 and y»x = 0. Hence, the convergence theory
of TRish is based on an appropriate upper bound for y; x/y2.x. The theoretical
results for TRish are similar to those of SGD since both methods take steps along
the stochastic gradient; on the other hand, SGD possesses no natural scaling, while

lTic+1 — ziell2

Fig. 4 Relationship between |xx4+1 — xx|| and || gk ||
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TRish exploits normalized steps whenever || gx|| € [ﬁ, #] This issue can be

interpreted as an adaptive choice of the steplength which is oy /| gk || instead of o
itself; it is expected to improve numerical performance upon traditional SGD, and
this is confirmed by the numerical results provided in Curtis et al. (2019, §2) and in
the subsequent section “Numerical Experiments”.

We summarize some results from the convergence analysis presented in Curtis
et al. (2019). Let us assume that Assumption 1 holds, g is an unbiased estimator
of V f(xy) satisfying inequality (13) for any £k > 0, f is bounded below by f, =
infycre f(x) € R, and the Polyak-Lojasiewicz condition holds at any x € R" with
u>0,1ie.,

2

2u(f) = f) < [VFO|, VxeR" (19)

Note that (19) holds if f is u-strongly convex.

The first convergence result of TRish deals with constant choices for the
parameters Y1 x = 1, 2.k = Y2, and ox = « for all k& > 0 (Curtis et al. 2019,
Theorem 1). Provided that y;/y> and « are bounded from above by quantities
involving u, L, and M, M5 in (13), then TRish has expected optimality gap:

E[f0] = fx <c1 +E2(F(x0) = fo — 1),

where ¢; > 0 and ¢, € (0, 1) are scalars depending on «, y1, . In fact, using a
constant steplength depending on the Lipschitz constant L, the expected optimality
gap is guaranteed to be reduced below a given threshold as in SGD. A comparison of
the steplength bound in TRish with that in the classical SGD method can be found
in Curtis et al. (2019, p.207).

Convergence can be proved to be linear if the variance of the stochastic gradient
decreases linearly (Curtis et al. 2019, Theorem 4). Specifically, if additionally the
stochastic gradient satisfies

E [||8k ||2] < | vrow|?, (20)
for all k > 0 and some ¢ > 0, ¢ € (0, 1), then

E[fGx0)] = fi < op,

where w > 0 and p € (0, 1). Assumption (20) on gradients can be satisfied if gi is
computed by subsampling with increasing sample size.

A further convergence result covers the cases of sublinearly diminishing
steplengths Curtis et al. (2019, Theorem 2) and resembles the corresponding
result for SGD method. If the steplengths oy are sublinearly diminishing, i.e.,
ar = B/(v + k) for some positive  and v properly chosen, y1x = y1 > 0,
y1 — V2.k = Nk, Yk and some n € (0, 1), then
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®
v+k

E[f0] - fi <

’

for all k, with ¢ positive. We refer to Curtis et al. (2019) for more conver-
gence results, including the case where the Polyak-Lojasiewicz condition is not
satisfied.

Other approaches exploit globalization procedures more closely than TRish,
with the aim of computing the steplength adaptively and testing, at each iteration,
some verifiable criterion on progress toward optimality. To establish such control,
they need stochastic estimates of functions, in addition to gradient estimates
required in all the approaches described so far, and impose dynamic accuracy
in stochastic function and gradient approximations. The general scheme for such
procedures is given below. We will say that iteration k is successful whenever the
acceptance criterion tested in Step 2 is fulfilled, unsuccessful otherwise. Acceptance
criteria employed in literature will be presented in the sections “Stochastic Line
Search” and “Adaptive Regularization and Trust-Region”.

ALGORITHM LSANDTR

Step 0: Initialization. Choose an initial point xg € R"”, «p > 0, parameters
governing the steplength selection, and the accuracy requirement in gradient
and function. Set k = 0.

Step 1: Step computation. Compute a gradient estimate gx € R” and form a
step Sk = — ok 8k

Step 2: Step acceptance. Compute estimates f,? and f; of f(x;) and
f (xx + sr) and test for acceptance of x; + sx. If the iteration is successful,
set Xk4+1 = Xk + Sk; otherwise, set xg4+1 = Xk.

Step 3: Parameters’ update. Compute o4 and update parameters govern-
ing the accuracy requirements in the computation of functions and gradients.
Increment & by one and go to Step 1.

The above scheme includes the stochastic line search method proposed in
Paquette et al. (2020), the stochastic trust-region method proposed in Blanchet et al.
(2019) and Chen et al. (2018), and the adaptive overestimation method proposed
in Bellavia et al. (2019). Accuracy in function and gradient approximations is
controlled acknowledging that f has a central role since it is the quantity we
ultimately wish to decrease. Specifically, it is assumed that f,?, fi, and g are
sufficiently accurate in probability, conditioned on the past, and an adaptive absolute
accuracy for the objective function and an adaptive relative accuracy for the gradient
are imposed. These requirements are supposed to be satisfied probabilistically.
The method given in Cartis et al. (2018) belongs to the previous framework but
uses the exact function in Step 2. Thus, it only imposes adaptive relative accuracy
on the gradient.
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Accuracy Requirements

As a general setting, let g; be an estimate of V f(x;), €, > 0 be the accuracy
requirement, and / be the event defined as

le={llgk = V(I = g}, € > 0. ey

A gradient estimate g is said to be pg-probabilistically sufficiently accurate
whenever

Pr(ly, =1) > p, with p, € 0,1), (22)

with 17, = 11if g is such that the event [ holds, 1;, = 0 otherwise.
In a similar way, let fk0 and f;} be estimates of f (xx) and f (xx + sx), € > 0 be the
accuracy requirement, and Jj be the event defined as

== fal <er and |ff — fu+s0)| <€r}, € >0. (23)

Estimates fko and f; are said to be py-probabilistically sufficiently accurate
whenever the event J; in (23) satisfies the condition

Pr(ly,, =1) > py, with py € (0, 1). 24)

As for problem (2), the computation of fko, fi and g can be performed by
averaging functions f; and gradients V f; in uniformly and randomly selected
subsamples of the set {1, ..., N}. In order to satisfy (22) and (24) probabilistically,
the size of uniform sampling |S% ¢| and |8k 4| can be bounded below via the
Bernstein inequality (Tropp 2015). In particular, in Bellavia et al. (2019, Theorem
6.2) it is shown that given €, > 0, gx is p,-probabilistically sufficiently accurate if
the cardinality |S% .| of the set 8 , in (4) satisfies

2 (V, 20, 1
|Sk.gl = min { N, —<—g+M) log(n+ ) , (25)

€ \ € 3 1—pg

where E(||V fi(x) = Vf(0)II*) < V, and max;eqi, .. v} |V £i (0)] < @ (x), or

4 2 1 1
|Sk,g| > min § N, g (%) < g (X&) + —) log(n+ ) . (26)

€g €g 3 1 —pg

Similarly, given €7 > 0, f,? is ps-probabilistically sufficiently accurate if the
cardinality |Sk, ¢| of the set 8¢,  in (3) satisfies
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2 [V 2 2
Sepl = min | N, | 2 (V2 20 ) o : 27)
e€r \€f 3 I—py

where E(| f;(x) — f(0)|*) < Vy and maxjeq1,.. ny | fi ()] < @y (x), or

|Sk, 7| = min § N, door (o) <2wf(xk) + l) log< " ) ) (28)

ef Ef 3 1-— pf

It is worth noting that in (25)—(28) failure probabilities 1 — p ¢, 1 — p, appear in the
logarithmic terms and therefore their contribution is damped even if they are very
small. Specific accuracy requirements made will be specialized in the following
subsections.

Stochastic Line Search

A stochastic line search method, which falls into the general scheme LSandTR, is
given in Paquette et al. (2020). At iteration k, the computation of the step sx and
the stochastic line search are performed using a constant 8 € (0, 1) and a positive
parameter d;. Given ay, a probability p, € (0, 1), a constant « > 0, and letting
€g = kol gkll, the gradient estimate g; formed in Step 1 is supposed to be p,-
probabilistically sufficiently accurate, i.e., to satisfy (22) with €, = ko || gk|l-

With g at hand, the step si in Step 1 takes the form s = —ak gk, and in Step 2
the Armijo condition

< 2 — Oarllgell, (29)

is tested for acceptance. This condition is a stochastic variant of Armijo condition
(Armijo et al. 1966) as fko and fks are stochastic estimates of f(xx) and f (xx + sk).
Values f,? and f;} are supposed to meet two requirements. First, given a probability
pr € (0,1) and letting ey = K(x,%”gkllz, f,? and f; are required to satisfy
(24), namely, to be p s-probabilistically sufficiently accurate with €y = KO[]% llgxll?.
Second, given a constant x > 0, the sequence of estimates { fko, /i }is supposed to
satisfy the following variance conditions for all k¥ > O:

E[ £ — fo)?] < max{e paf ||V f (x)I*, 62811,
E[fS — x4+ s0)1*] < max{e paf |V f (x)|I*, 6282}

Note that both accuracy requirements on functions and gradients are adaptive
and the function has to be approximated with higher accuracy than the gradient.
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Moreover, observe that the variance condition depends on the parameter Jy, the
steplength ay, and the norm of the true gradient.

The kth iteration is successful if (29) is met, unsuccessful otherwise. Whenever
the iteration is successful, parameters are updated in Step 3 as follows:

Q1 = max{y o, Cmax}

52, = | Yo i s’ = 8

y~ 8, otherwise

for some fixed y > 1 and amax > 0. On the other hand, when the iteration is
unsuccessful, Step 3 consists in updating

-1 2 152
Ap+1 =Y, a1 =v 6.

The rules for choosing o and §; either enlarge or reduce accuracy in stochastic
estimates based on fulfillment of the decrease condition (29) and the magnitude
of the expected improvement of f;’ over f,? . In fact, the parameter oy affects the
accuracy of gradient and function estimates and is enlarged when the iteration
is successful, diminished otherwise. On the other hand, the parameter §; affects
the variance of function estimates and is intended to guess how much the true
function decreases. In fact, the decrease obtained in (29) does not guarantee a
similar reduction in the true function as well. Hence, 8,% is enlarged only in the
case where the iteration is successful, and x|/ gx||* is not smaller than 8,%, that is,
when the variance of function values is not larger than the square of the decrease in
the approximate function. Interestingly, ok || g« || may not diminish as || gx|| decreases
and consequently accuracy requirements do not necessarily become more stringent
along iterations.

In Paquette et al. (2020) stochastic complexity results have been established
for convex, strongly convex, and general nonconvex, smooth problems; they
imply convergence results. In case of p-strongly convex problems, under suitable
assumptions on the stochastic process, Paquette et al. (2020, Th. 4.18) shows that
there exist probabilities pg, p s sufficiently close to one and satisfying pgp s > %
and a constant v € (0, 1) such that the expected number 7¢ of iterations needed to
satisfy

S) — f(xe) <€
is such that

PgPf (LKOlmax)3
2pgpy — 1

E[T.] < O(1) (log(®g) + log(e 1))

where x, is the minimizer of f and @ is a problem-dependent positive scalar. We
refer to Paquette et al. (2020) for the complete set of results. As a final comment, the
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implementation of the above stochastic line search method encounters the problem
that €, = «ay||gkll depends on the norm of the vector g; that has to be computed.
Following Cartis et al. (2018), the computation of the approximated gradient gi by
subsampling can be performed via an inner iterative process. The approximated
gradient g; is computed via (25) or (26) using a predicted sample size. Then,
if the predicted accuracy is larger than the required accuracy, the sample size is
progressively increased until the accuracy requirement is satisfied.

Adaptive Regularization and Trust-Region

Trust-region and adaptive regularization methods are classes of optimization meth-
ods based on a nonlinear steplength control and can be cast into a unifying
framework as shown in Toint (2013). Variants of these methods based on estimates
for functions and derivatives are proposed in Bellavia et al. (2019), Blanchet et al.
(2019), Chen et al. (2018), Wang and Yuan (2019). Here we focus on the case where
first-order models are used at each iterations and discuss the adaptive regularization
method named AR1DA (Adaptive Regularization with Dynamic Accuracy and first-
order model) developed in Bellavia et al. (2019). It shares similarities with STORM,
and we refer to Blanchet et al. (2019, §3) for details on this latter algorithm and its
stochastic properties. The AR1DA method employs first-order random models with
adaptive regularization of order two. The regularization parameter o; > 0 controls
the steplength, and a parameter w; € (0, 1) controls the level of accuracy required
in the estimate fko, f» and g. In fact, the gradient estimate g formed in Step 1 is
supposed to be p,-probabilistically sufficiently accurate, with €, = wi||gkll. Once
gk has been computed, the step si in Step 1 is found by minimizing a regularized
first-order random model model my (s) for f(x; + s) around xj:

) 1
min my(s) = fko + ngS + = lIsl?,
seR? 2

with fko being an approximation to f(xx). Trivially the step takes the form
= —J]—kgk, ie., af = % in Step 1 of the general scheme LSandTR.

Acceptance of the step is tested using the rules employed in trust-region and reg-
ularization methods, but different from the standard approaches, here the function
values and the gradient involved are approximated. Using function estimates f,? and
f,j' for f(xx) and f(xx + si), the test for acceptance is

=1
FO— 0+ gl sp)

Pk = >n, me01). (30)

Values f,? and f;’ are supposed to be p r-probabilistically sufficiently accurate with
€ = (g si).
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Summarizing, the iteration is successful, i.e., the trial point x; + s is accepted
as the new iterate, if px > 71, unsuccessful otherwise. The updating rule for o} and
wg 1S

S max{y ~lox, omin} if ok =M
* Y Ok otherwise

and

. 1
W1 = TN (K(m _Uk : s
+

for some fixed y > 1, omin > 0, and «, € (0, 1/(2n1)). Specifically, in case of
successful iterations, the regularization parameter is decreased, and the parameter
that rules the accuracy requirements is increased. On the other hand, in case
of unsuccessful iterations, oy is increased and tighter accuracy requirements are
imposed on function and gradient approximations.

In Bellavia et al. (2019), complexity analysis in high probability for AR1DA
is carried out. Assume for sake of simplicity p, = py and let p € (0,1) be a
prescribed probability for meeting the approximate first-order optimality condition:

IVfl < e, €29

with € > 0. In Bellavia et al. (2019, Th. 7.1), it is shown that if 1 — p, =

© ((1 —p)e?/ 3), then AR1DA needs at most (9(6’2) iterations and approximate

evaluations of the objective function to satisfy (31) with probability at least p.

From a practical point of view, the approximated gradient gi is computed via
(25) or (26) using a predicted accuracy requirement, say, €,. Then, with g at hand,
if €, > wxllgkll, then €, is progressively decreased and g; recomputed until €, <
willgk|l or €, < €. We finally mention that the algorithm is stopped whenever the
condition

<

gkl = .

holds. Remarkably, the accuracy requirement €, = wi||gk|l guarantees that (31)
holds with probability at least py.

Numerical Experiments

In this section, we show the performance of three methods previously discussed:
SG, SVRG, and TRish applied in the training phase of a CNN. We train a neural
network on cifar-10 (Krizhevsky 2009), a classical image recognition dataset. This
dataset contains 60000 colored images with a resolution of 32 x 32 pixels divided
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Fig. 5 Some random images from each class of cifar-10 dataset (Image taken from https://www.
cs.toronto.edu/~kriz/cifar.html)

into a training set (5/6 of the images) and a testing set (1/6 of the images). The
images are classified into ten homogeneously distributed classes: airplanes, cars,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. In Fig.5, we show some
images from the dataset. The color model of cifar-10 images is RGB, i.e., each
pixel of an image is represented by three numbers (typically integers) which vary
between 0 and 255 and represent the intensity of each channel; hence, the image can
be viewed as a 32 x 32 x 3 matrix. It is common to normalize the intensity of each
channel between 0 and 1.

The training set is constituted by N = 50000 data { (d;, §;) },_,

d; € R3972 is the vector containing the ith image stacked by columns and §; € R'°
contains value 1 for the actual category of the ith image and O for any other category.

N where

The Neural Network in Action

We describe the NN used in our experiments which consists of 14 layers and is
displayed in Fig. 6.

The first layer of our network is convolutional (see section “Convolutional
Layer”) with 32 filters and a 3 x 3 kernel; the activation function is elu. The number
of filters reshapes the tensor so that the number of channels becomes equal to the
number of filters in the convolutional layer. The width and the height of the image
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Fig. 6 Architecture of the neural network used for cifar-10. Four convolutional layers mixed with
max pooling layers are followed by two dense layers

are changed too, accordingly to section “Convolutional Layer”, and become both
equal to 30. Summarizing, the output of the first layer has size 30 x 30 x 32 and
is received by the second layer which is again a convolutional layer with 64 filters,
a 3 x 3 kernel, and elu as the activation function. After the second layer, the tensor
shape becomes 28 x 28 x 64. The third layer is a max pooling layer (see section “Max
Pooling Layer”), which applies a 2 x 2 max filter on every channel; this halves the
dimension of every slice of the tensor. The fourth layer is a Dropout layer with rate
0.25 which does not alter the shape of the tensor but randomly selects 25% of the
values of the tensor and sets them to 0; this phase is commonly performed to avoid
overfitting. Next, we apply two times a convolutional layer with 128 filters and a
3 x 3 kernel followed by a max pooling. After such four layers, a further Dropout
layer with rate 0.25 is used; the resulting tensor shape is 2 x 2 x 128. At this stage,
the process for transforming the tensor into an array of probabilities is started. First,
a Flatten layer vectorizes the 2 x 2 x 128 tensor and returns a one-dimensional
array with 512 values. Second, a Dense layer with 1024 neurons is used; the input
array with 512 entries is transformed using the elu activation function. Third, a
Dropout layer with rate 0.5 is used, and, finally, a Dense layer with ten neurons
returns an array with 10 entries. Since the network output is expected to be a vector
Vm = (Um.15 .- vm,lo)T such that v,, ; represents the probability of an input image
of being part of the jth category for j = 1, ..., 10, in the last layer, we use the
softmax function defined as

SM(z) = (32)

le=1 e’

where z € R'. This function resembles all the outputs of the neurons within the very
last layer and produces positive estimates that sum up to 1.

Every layer of the network, except the last, can be viewed as a step forward
in generating information to be used for classification. The vector of dimension
1024 built at the penultimate layer is essentially a set of features which have been
extracted from the original image. More insight into the outputs of intermediate
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Fig. 7 An image of a frog
from cifar-10 dataset

layers, after training out network, we fed it with the image of the frog in Fig. 7 and
analyzed the output of the four convolutional layers. These outputs are displayed in
Fig. 8; the channels are plotted side by side for a total of 16 channels per row. In
the first plot, we display the 32 channels of the tensor built at the first convolutional
layer; the shape of the frog is pretty recognizable in all channels. After the second
and the third layer, the image of the frog is no longer recognizable. Even if, after
the fourth convolutional layer, the 4 x 4 pixels of each channel have not apparent
connection with the original image, they still contain enough information. The
dimension of the input has been reduced, and the condensed information contained
in the array is used to generate the 1024 entries which provide the features needed
for the final classification. As we will see in the numerical results subsection,
the information spread by the network allows, after network training, to correctly
classify new entries with satisfactory accuracy.

Training the Neural Network

In the training phase, in order to measure the error made by the network on the
prediction of each data, we used the loss function (9) where E is categorical cross-
entropy function defined as

10
E(Wn(x: ), 9;) = =Y $ijlog (v, (x; di)) .
j=1

In the training phase, the weights of each layer of the network are updated via
the minimization of the loss function; any of the methods previously described can
be applied.

The training procedure consists in shuffling the training dataset and splitting
it into mini-batches. The neural network is fed with each of such mini-batches in
order to compute the approximated value of the gradient and to update the network
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Fig. 8 Intermediate activation: output of intermediate convolutional layers. The network is fed
with the image of a frog in Fig. 7. The color gradient we used for the intensity spans from yellow
(lowest intensity) to blue (highest)
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weights using any of the methods described in previous sections. Once the whole
dataset has been used, the procedure is repeated. In machine learning terminology,
the number of iterations needed to the neural network to handle each entry of the
dataset is called an epoch of the training.

Implementation Details

We implemented the neural network and the training routine using the Python
library Keras (https://keras.io/) and Tensorflow (https://www.tensorflow.org/) for
handling the backend on the GPU, a NVIDIA Quadro M1000M. Keras comes with
an utility to get the cifar-10 dataset split in training and test. We adapted one of the
examples contained into Keras library (https://www.tensorflow.org/tutorials/images/
cnn) to develop the network architecture previously described.

The SGD optimizer, presented in section “Stochastic Gradient and Variance
Reduction Methods”, is included in Keras. After fine-tuning, we ran it using
steplength oy = 1072, Yk > 0. SVRG, presented in section “Stochastic Gradient
and Variance Reduction Methods”, was run using an available implementation
(https://github.com/idiap/importance-sampling); in such implementation, the SVRG
gradient update rules are wrapped around the Keras framework. The full gradient
on the outer iteration of SVRG was replaced by a SG computed on a mini-batch of
1000 training samples; the outer iteration was scheduled to be performed 32 times
per epoch. The steplength for the inner iteration was set to 1072, TRish optimizer
presented in section “Gradient Methods with Adaptive Steplength Selection Based
on Globalization Strategies” has been implemented from scratch. After fine-tuning,
the hyperparameters were set as follows: oy = 1071, vk > 0, Vik =1,Vk >0, and
Yok = 1073, Vk > 0.

All the three methods have been implemented in a mini-batch manner as
described at the end of the previous section. The batch size used for all training
runs is 32, i.e., gx was computed through (4) with |8y ¢| = 32. The methods under
comparison do not use the objective function at all; then its approximation is not
needed.

Results

SGD, SVRG, and TRish were run imposing a number of 25 epochs. At the
end of each epoch, the accuracy on both training and testing sets was measured. The
accuracy is defined as the percentage of samples for which the classifier assigned
the highest probability to the actual class. In Fig. 9, we report the accuracy achieved
by each method both on the training and on the testing set during the training. The
accuracy is evaluated at the end of each epoch.

TRish method appears to be the most effective in classification. Our experience
showed that in the large majority of TRish iterations, the normalized step arising
from the minimization of the trust-region subproblem (18) is selected. We recall
that the key difference in the gradient methods under investigation is that TRish
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Fig. 9 The trend of training and test accuracy during the epochs

can take normalized steps and this can be viewed as an adaptive steplength selection
as the step taken is sy = —”Z—I’EH gk instead of —aygx. The adaptive approach used
in TR1ish clearly improves classification on the testing set with respect to SGD and
SVRG run with prefixed steplength. In fact, after only two epochs, TRish is already
more accurate than SGD and SVRG and gives approximately 74% of accuracy on the
test set after 12 epoch.

Conclusion

Optimization methods play a key role in machine learning applications. In this work,
several subsampled first-order optimization methods suited for machine learning
applications have been revised both from a theoretical and algorithmic point of
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view. Stochastic procedures for solving convex and nonconvex problems applicable
to neural networks and convolutional neural networks have been discussed, and
numerical experience on a convolutional neural network designed for classifying
images has been presented. Our presentation aims to show how the specific features
of the optimization problems arising in the training phase of neural networks give
rise to stochastic procedures which can address the numerical solution of convex
and nonconvex problems.

The presented procedures are recent and part of the state of the art in optimization
for machine learning. The literature on this topic is immense and steadily increasing,
and this presentation is not comprehensive of the variety of existing first-order meth-
ods. We focused on methods with well-assessed convergence analysis. However we
are aware of widely adopted methods which are less theoretically well founded
than the procedures presented but are successful in machine learning. At this
regard, we would like to mention SGD with momentum (Rumelhart et al. 1986;
Loizou 2017) and ADAM (Kingma and Ba 2015; Sashank 2018). Both methods
aim to speed the convergence rate of SGD method in the solution of ill-conditioned
problems where the surface in a neighborhood of local optima curves more steeply
in one direction than in another. In fact, in such cases a common drawback of
steepest descent methods is that iterates zigzag toward the solution (Nocedal et al.
1999; Sutton 1986). To avoid that, SGD with momentum makes use of a search
direction which is a combination of the current gradient approximation and the step
(first-order momentum of the stochastic gradient) used at the previous iteration.
ADAM method computes individual adaptive steplengths for updating the iterate
component-wise on the basis of the current first- and second-order momentum of
the stochastic gradient.

We conclude underling a current growing interest in second-order methods for
nonconvex finite-sum optimization problems; see, e.g., Aggarwal (2018), Bellavia
et al. (2020, 2021, 2019, 2020a,b), Berahas et al. (2020), Bollapragada et al. (2019),
Bottou et al. (2018), Byrd et al. (2016), Byrd et al. (2012), Erdogdu et al. (2015),
Liu et al. (2018), Roosta-Khorasani et al. (2019), Strang (2019), Xu et al. (2016,
2019).
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Abstract

In this chapter we review recent developments in the research of Bregman
methods, with particular focus on their potential use for large-scale applications.
We give an overview on several families of Bregman algorithms and discuss
modifications such as accelerated Bregman methods, incremental and stochastic
variants, and coordinate descent-type methods. We conclude this chapter with
numerical examples in image and video decomposition, image denoising, and
dimensionality reduction with auto-encoders.

Keywords

Optimization - Bregman proximal methods - Bregman iterations - Inverse
problems - Nesterov acceleration - Mirror descent - Kaczmarz method -
Coordinate descent - Itoh-Abe method - Alternating direction method of
multipliers - Primal-dual hybrid gradient - Robust principal components
analysis - Deep learning - Image denoising

Introduction

Bregman methods have a long history in mathematical research areas such as opti-
mization, inverse and ill-posed problems, statistical learning theory, and machine
learning. In this review, we mainly focus on the areas of optimization and inverse
and ill-posed problems and the application of popular Bregman methods to poten-
tially large-scale problems. Following Lev Bregman’s seminal work in 1967
(Bregman 1967), it was not before the work of Censor and Lent (1981) in 1981 that
the use of Bregman methods has slowly but steadily been popularized in the area
of mathematical optimization, shortly followed by the advent of the mirror descent
algorithm (Nemirovsky and Yudin 1983). Bregman proximal methods, which we
discuss in greater detail in the following section, were first introduced by Censor and
Zenios in their seminal work in 1992 (Censor and Zenios 1992), shortly followed
by Teboulle (1992), Teboulle and Chen (1993), and Eckstein (1993). Bregman
methods have been extensively studied since, see, for example, Bauschke et al.
(2003) and references therein, and many notable extensions were developed, with
one of the most popular ones in the context of inverse and ill-posed problems
being the so-called Bregman iteration (Osher et al. 2005), which is based on a
generalized Bregman distance notion (Kiwiel 1997b). Bregman iterations have been
shown to possess favorable regularization properties over traditional linear iterative
regularization methods, especially in the context of imaging and image processing
applications, and therefore gained a lot of attention in those research fields. We
refer to Osher et al. (2005), Burger (2016), and Benning and Burger (2018) for an
overview on Bregman iterations.

The goal of this chapter is to provide a non-exhaustive overview over some
recent developments in the adaptation of Bregman methods to handle potentially
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large-scale problems. These extensions range from simple linearizations to accel-
erated versions of Bregman methods, incremental and stochastic adaptations,
and coordinate descent variants to Bregman extensions of popular primal-dual
frameworks. The chapter is therefore structured as follows. In section “Bregman
Proximal Methods” we give an overview over Bregman proximal methods and
some notable extensions. In section “Accelerated Bregman Methods” we discuss
accelerations of the linearized Bregman iteration, before we focus on incremental
and stochastic variants in section “Incremental and Stochastic Bregman Proximal
Methods.” Subsequently, we discuss coordinate descent-type Bregman methods
in section “Bregman Coordinate Descent Methods” and saddle-point formulations
of Bregman algorithms in section “Saddle-Point Methods.” We present several
application examples in section “Applications” before concluding this chapter with
section “Conclusions and Outlook.”

Bregman Proximal Methods

The Bregman proximal method or Bregman proximal algorithm is defined as the
following iterative procedure. Starting with an initial value x° € R”, we compute

XM = arg min,, {F(x) + Dg(x, xk)} , (D

for k € N. Here F : R" — R is a function that we wish to minimize via (1). We
assume that F is bounded from below and that both F' and R satisfy conditions that
guarantee existence and uniqueness of the solution of (1), without discussing them
in greater detail. The term Dg(x, y) denotes the Bregman distance w.r.t. a convex
and continuously differentiable function R : R" — R, which is defined as

DRr(x,y) = R(x) = R(y) = (VR(y), x — y), 2

forall x, y € R", see Bregman (1967) and Censor and Lent (1981). In the following
example, we recall a few relevant examples of Bregman distances.

Example 1 (Bregman distances). For a symmetric, positive semi-definite matrix
0 € R™" and the function R(x) := %(Qx, x), we observe

1
Drlx,y) = 2{Q(x = y), x — y).

Special cases include the squared Euclidean distance if Q is the identity matrix
and the squared Mahalanobis distance (cf. Mahalanobis 1936) if Q is a covariance
matrix.
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The generalized Kullback-Leibler divergence, i.e.,

n
X
Dgr(x,y) = Z xjlog (y—]> +yi—x; |,
J

j=1

can be obtained by choosing R as the (shifted, negative) Boltzmann-Shannon
entropy, i.e., R(x) := Y_}_; [x;log(x;) — x;]. Other notable examples include the
Itakura—Saito distance (cf. Itakura 1968) and the Hellinger distance (cf. Hellinger
1909).

Note that Dg(x, y) > 0is guaranteed for all x, y € R" due to the convexity of R.
Before we are briefly going to discuss how this Bregman framework unifies implicit
and explicit gradient methods in the following section, we want to recall some basic
and well-known properties of (1).

Corollary 1. Let F : R" — R and R : R" — R be continuously differentiable
functions, where R is also convex, and suppose for some x € R" that x* is defined
as

*

X" 1= argmin, cpn {F(x) + DR(x,)_c)} . 3)
Then, the following identity holds:
F(x*) + Dp(x,x*) + Dg(x, x*) + DRr(x*,X) = F(x) + Dgr(x, X). )

Corollary 1 can easily be verified by computing the optimality condition of (3),
subsequent computation of the inner product of the optimality condition with
x* — x, and the use of the three-point identity for Bregman distances, first proven in
Chen and Teboulle (1993, Lemma 3.1). Corollary 1 allows us to verify the following
convergence result of the Bregman method with convergence rate 1/k for convex
functions F.

Theorem 1. Let F : R" — R and R : R" — R be continuously differentiable and
convex functions. Suppose % is a global minimizer of F that exists. Then, for any x°,
the iterates (1) satisfy

Dg(%, x%) — Dr(x, x%)

F(x*y - F®) < - ,

fork e N.
Proof. Applying Corollary 1 for x* = x¥*1, ¥ = x*, and x = % yields

FOMYY 4 D@, Y + D&, x4 4+ Dr(* 3% = F(R) 4+ Dr(E, x5),
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which implies

F(x*h — F(}) < DR, x) — DR(&, xF),

due to the convexity of F and R. Summing up this inequality fromk =0, ..., K —1
leads to

K-1

Y PG — K F(®) < Dr(3.x°%) — Dr(d. x5).

k=0

k+1 k

Applying Corollary 1 again — but this time for x* = x**!, ¥ = xK and x = x* —

leaves us with

FOD4Dp @ D+ Dr (e, D+ DR (I 1) = )+ Dr(, a5,
e —
=0

which in return implies F (xk‘H) <F (xk) due to the convexity of F and R (which
is also an immediate consequence of the variational formulation of the Bregman
method). Hence, we observe K F(xX) < Z/f;ol F (xk+1), which concludes the
proof.

Remark 1. Note that the conditions on F and R in Theorem 1 alone do not
necessarily guarantee uniqueness or even existence of x**1 in (1). However, if the
solution exists and is unique and computable, then Theorem 1 applies.

Let us now turn our attention to implicit and explicit gradient methods and how they
can both be formulated as special cases of (1).

A Unified Framework for Implicit and Explicit Gradient Methods
While it is common in numerical analysis to distinguish between implicit and

explicit methods, a feature of the Bregman framework is that it covers both types of
methods. This can be seen by considering (1), i.e.,

X = arg min, cgn {F(x) + Dy(x, xk)} , ®)

for the special choice of J : R” — R with

R(x) implicit

J = .
0 %R(x) — F(x) explicit

(6)
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Evaluating the Bregman distance w.r.t. J turns (5) into

F(x) + Dg(x, x5 implicit |
F(x*) + (VF(x%), x — x%) + LDg(x, x*) explicit |’

X = arg min cgn !

Hence, we can construct Bregman methods that are either implicit or explicit w.r.t.
V F. Whenever we use J as the notation of our function throughout this manuscript,
we implicitly refer to J as defined in (6). Whenever we use R, we refer to a function
R that is not of the form %R — F. Note that we rediscover the traditional gradient
descent algorithm for the choice R(x) = %llx”2 as a special case of the explicit
formulation. Furthermore, note that the explicit formulation

1
= argmin, o {F(xk) + (VF(x5), x = x*) + = Dg(x, xk)} (7
T

is also known as mirror descent (Ben-Tal et al. 2001; Beck and Teboulle 2003;
Juditsky et al. 2011), Bregman gradient method (Teboulle 2018), or recently also
as NoLips (Bauschke et al. 2017). In order to guarantee convergence of (5), one
usually has to guarantee convexity of J. In the explicit setting, this implies that T
and R have to be chosen to ensure convexity of %R — F or equivalently that F is
1/t-smooth if R is also a quadratic function. The latter condition has basically been
proposed in Bauschke et al. (2017) and further discussed in Benning et al. (2017a,b)
and Bolte et al. (2018). It has also been shown that if the step size 7 is chosen such
that ¢ R - F is convex, for a some constant ¢ > 0 and a function F, the estimate

0<rt< ((1 + y(R)) - 8) /c is sufficient to guarantee convergence under mild

assumptions that are outlined in detail in Bauschke et al. (2017). Here y (R) denotes
the symmetry coefficient defined as

y(R) = inf{DR(x, v)/Dr(y, x) ‘(x, y) € (int dom R)*\{x, y IX=y}} € [0, 1],

and § is a constant that satisfies § € (0, 1+ y (R)). In the following section, we want
to review the special case of Bregman gradient methods where F is the sum of two
functions.

Bregman Proximal Gradient Method

An interesting, special case frequently considered in the literature is the case where
F is a sum of two functions L and S, i.e., the Bregman method reads

! = arg min, cgn {L(x) + S) + Dy(x, xk)} ; ®)
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where we assume that L : R” — R is a continuously differentiable function. The
function S : R” — R on the other hand is proper, lower semi-continuous (l.s.c.)
and convex, for R := R U {oo}. If we choose J (x) := 2lr||x||2 — L(x) in the spirit
of (6), then (8) reads

) 1
X" = arg min, cgn {E

X — (xk -1 VL(xk)>

2
—|—TS(x)},
= I+197! (xk -7 VL(xk)) )

where (I + t5)~! : R” — R” is known as the proximal map or resolvent, see,
for instance, (Parikh et al. 2014). This is the classical proximal gradient method,
also known as forward backward splitting (Lions and Mercier 1979). More general
proximal gradient methods can be derived for different choices of J and S, for
example, the entropic mirror descent algorithm (Nemirovsky and Yudin 1983; Beck
and Teboulle 2003; Beck 2017; Doan et al. 2018), i.e.,

kel _ xf exp (—r(VL(xk))j)

x 9

J P xj? exp (—T(VL(xk));)

for j € {1,...,n}, the difference of the negative Boltzmann Shannon entropy as
defined in Example 1 and the function L, i.e., J(x) := % Z?:l [xj log(x;) — xj] —
L(x) with the convention 0log(0) = 0, and the characteristic function

0 xeX

S(x) = ,
400 x¢gXx

over the simplex constraint
n
Ti=qxeR"|x;20,Vje{l,....n}, Y x;=1
j=1

We also mention variable metric proximal gradient methods, an important
class of algorithms which may be viewed as an instance of Bregman proximal
gradient methods where the Bregman function Ji is iteration-dependent. Denoting
by (Ax)ken a sequence of symmetric 1positive definite matrices, which act as

preconditioners, we define Jy(x) := H(x, Arx) — L(x). Note that if § = 0,

Ap = VZL(xk ), and 1 = 1, then one recovers the Newton method for L

A= Xk (V2L T VL ().
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More generally when S £ 0, one may choose Ay to be an approximation to the
Hessian of L at x¥, so as to incorporate elements of quasi-Newton methods to the
proximal gradient scheme. These schemes were studied by Bonnans et al. (1995)
and later studied for non-convex objective functions (Chouzenoux et al. 2014;
Frankel et al. 2015), Hilbert spaces (Combettes and Vii 2014), and extensions to
inertial methods (Bonettini et al. 2018), to mention a few examples.

In the next section, we focus on extensions of the Bregman proximal methods to
convex but nonsmooth functions.

Bregman Iteration

A very important generalization of (1), first proposed in Osher et al. (2005), allows
us to also use convex but nonsmooth functions J as defined in (6) instead of convex
and continuously differentiable functions J. Suppose we are given a proper, l.s.c.
and convex function J : R” — R. Then its subdifferential, defined as

0J( = {p eR" [J() = () = (p,x = y), Vx e R" |,

is non-empty. It therefore makes sense to extend the definition (2) to a generalized
Bregman distance (Kiwiel 1997a) for subdifferentiable functions, i.e.,

DY(x,y)=Jx)—J() —(p.x —y),

for p € 3J(y). A generalization of (1), commonly known as Bregman iteration, can
then be defined as

.Xk+l = arg mian]Rﬂ {F(}C) + D‘I;k (.x, xk)} , (93)
P = pk — V), (9b)

for initial values x° € R” and p° € 8J(x?). Note that Corollary 1 and Theorem 1
also apply to Bregman iterations (cf. Benning and Burger 2018, Corollary 6.5), as
those statements did not utilize any potential differentiability of J. Furthermore,
note that the explicit variant of the Bregman iteration is known as the linearized
Bregman iteration and has extensively been studied in Yin et al. (2008), Cai et al.
(2009a,b,c), and Yin (2010).

Linearized Bregman Iteration as Gradient Descent

With the particular choice J(x) = % llx )1 + %R(x) — F(x), the Bregman iteration
(9) turns into the linearized Bregman iteration, which reads
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. 1 1k
1 = argmin, _ga {F(xk)+(VF(xk),x—xk)—i—ZHx—kaz—}—;D% (x,xk)},
= (I+3R)~! (xk+qk—rVF(xk)> , (10a)

g = gk <xk+1—xk + rVF(xk)) , (10b)
where (I + dR)™! denotes the proximal mapping w.r.t. the function R and ¢* €
JR (xk ) the subgradient of R at x¥ that is iteratively defined via (10b) and some
initial value qo € dR(xY). Suppose we assume that (xk + qk)/r — VF(xk) is in

the range of some matrix A € R”>" and that we therefore can substitute TA ' b :=
xk 4+ qk — rVF(xk). Then (10) can be written as

= 1+ Rz ATHY, (11a)

ATY = ATpY — VF (A, (11b)

In the following, we want to focus on the special case F(x) = %||Ax — b3 with
VF(x) = AT (Ax — b%) for a matrix A € R™*"_ for which (11) simplifies to

F = +aR) "z ATHY, (12a)

bk+1 — bk _ (Axk+l _ ba) , (12b)

with initial value b° = b%, given the assumption that the initial values of the original
formulation were x° = 0 and p® = 0. Note that we can also write (12) as

prFl = pk — (A(I +9R)"! (rATbk) — b5> . (13)
Hence, if we can identify an energy G, for which we can associate its gradient VG,

with A( + 9R)™! (r AT~> — b%, we can consider the linearized Bregman iteration

a gradient descent method applied to this specific energy. In Yin (2010) and Huang
et al. (2013), this energy has been identified as

T 1 -~
G.(b) = 5||ATb||2 — (b, b%) — ;R(rATbx

where R denotes the Moreau-Yosida regularization of R (cf. Moreau 1965; Yosida
1964), i.e.,

~ . l 2
R(z) := x1énﬂ£n {R(x) + 2||)c Z|| } .
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Since the gradient of the Moreau-Yosida regularization of R reads VR(z) = z —
(I +9R)~(2) (see, for instance, Attouch et al. 2014, Proposition 17.2.1), we easily
verify

VG (b) = A(I +3R) "' (zATh) - b°.
As a consequence, (13) is equivalent to
bk+1 — bk _ VG-L—(bk),

and the linearized Bregman iteration for F(x) = %||Ax — b%)|? reduces to a gra-
dient descent method. This equivalence will be useful when studying acceleration
methods.

Bregman Iterations as Iterative Regularization Methods

Bregman iterations are not only useful for solving optimization problems but are
also extremely important in the context of solving inverse and ill-posed problems.
The reason for this is that Bregman iterations can be used as iterative regularization
methods. If we consider the deterministic linear inverse problem

Axt =T, (14)

for a given matrix A € R™*", the aim of solving this inverse problem is to
approximate x' in (14), for given A and data b® with |bT — b®|| < §. Here, § is
a known, positive bound on the error of the measured data b® and the data b7 that
satisfies (14).

Suppose we consider a convex function F that depends on A and b°, which we
will denote as Fjs. It then can easily be shown that the iterates of (9) satisfy

k+1 k .
DY (T XM < DI (T, by,

for all indices k < k*(8) that satisfy Morozov’s discrepancy principle (Morozov
1966), i.e.,

Fs (X @) < ps < Fi (x5,
for a parameter n > 1, see Osher et al. (2005) and Burger et al. (2007). Note that
for n > 1 it can be guaranteed that k*(§) is finite. With the additional regularity
assumption that x7 satisfies the so-called range condition (Benning and Burger

2018, Definition 5.8), i.e.,

xf e argmin, cpn {Fg(x) + R(x)} s
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for some data g € R™, one can prove the error estimate

2
k
DY (f, ) < %Hnwu + 6%,

for the special case Fs(x) = %||Ax —-b ||2, see Burger et al. (2007, Theorem 4.3).
Here, w is defined as w := g — AxT € R™, which satisfies the source condition
A*w € 3J(x"), cf. (Chavent and Kunisch 1997; Burger and Osher 2004). If k*(§)
is of order 1/6, we therefore observe

K*(3) *
DY (" XKDy = 6(8);

Hence, x¥*® converges to x' in terms of the Bregman distances if § converges to
zero.

For more details on how to use Bregman iterations in the context of (linear)
inverse problems, we refer the reader to Osher et al. (2005), Resmerita and Scherzer
(2006), Schuster et al. (2012), Burger (2016), and Benning and Burger (2018). For
the remainder of this paper, we want to discuss modifications of Bregman iterations
and Bregman proximal methods that are suitable to large-scale optimization and
inverse problems.

Inverse Scale Space Flows

In what follows, we describe the inverse scale space (ISS) flow, a system of
differential equations which can be derived as the continuous time limit of the
Bregman iterations. For a Bregman function J : R” — R and objective function
F : R" — R, this flow is given by

p(t)y =—-VFx@), p@)edl(x@). 5)

It is straightforward to verify that Bregman iterations (9b) and linearized Bregman
iterations (10) can be derived, respectively, as the forward and backward Euler
discretization of (15).

The term inverse scale space flow was coined by Scherzer and Groetsch (2001)
in 2001. In addition to its connection to Bregman schemes, the ISS flow itself is an
active topic of research. Initially studied by Burger et al. (2006, 2007, 2013), and
Burger (2016), it has found applications in nonlinear spectral analysis by Burger et
al. (2016), Gilboa et al. (2016), and Schmidt et al. (2018).

The ISS flow itself has largely been studied in the context of scale space methods
and data filtering, where the objective functions generally take the more specific
forms || x—b"||2/2 or || Ax—b"||> /2. We mention some papers that address questions
regarding the existence and uniqueness results for solutions to (15). Burger et al.
(2007) proved existence, uniqueness, and certain regularity properties of the solution
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to the flow when J is the total variation seminorm. These results were extended by
Frick and Scherzer (2007) to all convex, proper, lower semicontinuous functions
J, while in Burger et al. (2013), Burger et al. characterize the solution to the flow
explicitly for the case J = || - ||;. We note that while these studies do not assume
strict convexity of J, strong convexity is ensured for F by the || - ||* term in F
(restricted to the range of the linear operator A), so that the iterations (and flow) are
still well-defined.

By supposing that J were twice continuously differentiable and p-convex for
some u > 0 (i.e., strongly convex with parameter n, see Hiriart-Urruty and
Lemaréchal 1993), we can provide an additional interpretation of the ISS flow,
rewriting (15) as

X(1) = —(V2I(x () ' VEx(@)). (16)

With this formulation, one can interpret the Hessian of J(x(¢)) as a preconditioner
for the flow. Furthermore, by using the chain rule, we derive an energy dissipation
law for the system

9 F@) = (#0), VFGO) = = [£0), VI 6020 < —alle @)
dt B ' B ' =H '

where the final inequality follows from p-convexity of J. Furthermore, observe that
if J = F, (16) reduces to a continuous-time variant of Newton’s method. One may
tie this back to the variable metric proximal gradient methods, which were designed
to incorporate quasi-Newton preconditioning to proximal gradient methods.

In section “The Bregman Itoh—Abe Method,” we describe the Bregman Itoh—
Abe (BIA) method (Benning et al. 2020), an iterative system derived by applying
structure-preserving methods from numerical integration to the flow. Thus the ISS
flow provides an alternative way to consider variational formulations for formulating
Bregman schemes.

Accelerated Bregman Methods

Not only when dealing with large-scale problems, reducing the number of iterations
is an important goal to achieve when designing an algorithm. In Theorem 1 we have
seen that the Bregman proximal method (1) has a convergence rate of order 1/k.
In the wake of Nesterov (1983), many acceleration strategies have been developed
for first-order optimization methods that aim at minimizing convex functions. As
we focus on Bregman methods, we want to highlight the following adaptation of
Nesterov (1983), first developed in Huang et al. (2013) for quadratic functions F'.
There, the authors consider the linearized Bregman iteration, i.e., (9) for the choice
J(x) = 2Lr||)c||2 + %R(x) — F(x), as shown in (10). We have seen that (10) can be
formulated as the gradient descent (13) for the special case F(x) = %||Ax — b2
The authors in Huang et al. (2013) have applied the idea of Nesterov acceleration to
formulation (13), which reads
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P = (14 Bbk — Beb ! — VG (1 + Bb* — b, (17)

where {8 }ren is a sequence of positive scalars. Applying TA T to both sides of the
equation and substituting TATb¥ = x¥ 4+ g% — TAT(Ax* + b%) then yields the
equivalent formulation

ok = arg min, c» {F(x) +(1 +,3k)D5’k(x,xk) _ ﬁkkal(x,xk_l)} ’
(18a)
P =+ Bopt - Bt = VEGET, (18b)

for J(x) = 3 [x|? + $R(x) — F(x), F(x) = 3| Ax = b*|%, p* = L(xk 4 ¢*) —
VF(x¥) € 8J(x¥), and g € 9R(x¥) for all k € N.

Remark 2. We want to emphasize that the equivalence between (17) and (18) does
not hold for arbitrary functions F as we have exploited the linearity of VF by

making use of VF((1 + Bi)x* — Bix*=1) = (1 + B VF (x*) — B VF (x*~1).

Note that (17) can also be written in less compact form as

= +aR) 71, (19a)
yk+] — Zk _ .L,VF(karl)’ (lgb)
T = (14 Bra1) Y = By, (19¢)

if we substitute y* = tATb*. Following the same approach as in Chambolle and
Dossal (2015), (19) can also be written as

=T +0R) (D, (20a)
yk+1 — Zk _ TvF(.xk+1), (20b)
k1 1 1, e
Tk+1 Tk+1
W =y R =56, (20d)

for By := (t — 1)/tx+1 and a sequence {#}xenN Of positive parameters.

An open problem which has attracted interest in recent years concerns whether
accelerated versions of Bregman (proximal) gradient methods with generic, strongly
convex Bregman distances are possible (Teboulle 2018). In a recent work by
Dragomir et al. (2019), this question is partly answered in the negative, concluding
that for Bregman distances, based on smooth functions R or functions R that satisfy
that %R — F is convex, the &(1/k) convergence rate is optimal for first-order
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methods that use previous gradient and Bregman proximal evaluations. However,
for more restrictive function classes, faster convergence rates can be achieved, as
has been shown in Hanzely et al. (2018) and Gutman and Pefia (2018).

Acceleration strategies such as Nesterov acceleration have also been analyzed
in the context of iterative regularization strategies (e.g., (9) combined with early
stopping as described in section “Bregman Iterations as Iterative Regularization
Methods™), see, for instance, Matet et al. (2017), Neubauer (2017), Garrigos et al.
(2018), and Calatroni et al. (2019).

Incremental and Stochastic Bregman Proximal Methods

Many large-scale problems, in particular in machine learning, involve the minimiza-
tion of functions of the form

1 m
FOo=—3 fix). 1)
i=1

In other words, the objective function is a sum of m individual functions. If m
happens to be extremely large, computing the gradient of F' can be computationally
extremely expensive, rendering the application of traditional methods such as (1)
or (18) computationally infeasible. Feasible alternatives are methods that make
use of gradients that are only based on a subset B C {1,...,m} of all indices.
Such methods include incremental gradient methods (Bertsekas et al. 2011a) and
stochastic gradient methods (Robbins and Monro 1951). If we assume that F in
(21) is of the form

1 — 1 —
F) =L +S0) =— 3 600+~ si(x), (22)
i=1 i=1

an incremental version of the Bregman proximal gradient as in (8) can be formulated
as

xk = arg min cgn {Ei(k)(x) + 8iy (x) + Dy, (x, xk_l)} . 23)

Herei : N — {1, ..., m} denotes the index function i (x) := x modulo m, although
other cycle orderings are certainly possible as well. A special case of (23) is the
classical incremental proximal gradient method (Bertsekas et al. 2011b)

—1 _ _
x* = (I + ‘L’kas,'(k)) (xk - rkw,-(k)(xk 1))

for the choice of Jy(x) = 217k ||x||2 — £i k) (x). If we further pick s; = 0 for all i, we
obtain the classical incremental gradient descent (Widrow and Hoff 1960; Bertsekas
etal. 2011a), i.e.,
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XK= xkt = ‘L'kVE,'(k)(xk_l),
k—1 k—1 (24)
=x" = Vi),

as a special case.

In the following sections, we discuss extensions of stochastic gradient descent
(SGD) and Kaczmarz methods in the Bregman framework, before highlighting the
connection between single cycles of incremental Bregman proximal methods and
deep neural network architectures.

Stochastic Mirror Descent

Stochastic gradient descent generalizes naturally to the Bregman proximal setting
with the stochastic mirror descent (SMD) method (recall that mirror descent is
equivalent to the Bregman gradient or linearized Bregman iteration). SMD is one
of the most popular families of methods for stochastic optimization, and the method
is defined as Nemirovski et al. (2009)

k
k= argminxeRn{rk(Vfi(k)(xk), x)+ Df (x, xk)}. 25)

As in the setting of incremental descent methods, i(k) € {1, ..., n} represents a
sequence of indices, which in the setting of SMD are typically randomized.

SMD was originally introduced by Nemirovsky and Yudin (1983), while subse-
quent, significant contributions include Nemirovski et al. (2009), Nesterov (2009),
and Xiao (2010). The framework and its convergence analysis were further extended
by Duchi et al. (2012) to cases where the samples from the distribution are not
assumed to be independent.

Similar to SGD, the SMD algorithms are suitable for large-scale optimization
and online learning settings, yet furthermore they come with the added benefits of
Bregman iterations of exploiting structures in the data. Because of this, SMD is one
of the most widely used family of methods for large-scale stochastic optimization
(Azizan and Hassibi 2018; Zhou et al. 2017).

In the aforementioned works on SMD, the Bregman function J is assumed to
be differentiable. In contrast, the use of nonsmooth Bregman functions, e.g., that
invoke the £'-norm, is significant in the context of Bregman iterations and sparse
signal processing. In the following section, we cover a Bregman method for sparse
reconstruction of linear systems which can be seen as an instance of SMD, using
the nonsmooth Bregman function J(x) = ||x 12/2 + Allx ]l

The Sparse Kaczmarz Method

The Kaczmarz method is a scheme for solving quadratic problems of the form
miny (x, Ax)/2 — (b, x). The method was originally introduced by Kaczmarz
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(1937) and later by Gordon et al. (1970) under the name algebraic reconstruction
technique. In this section, we review the extension of Kaczmarz methods to sparse
Kaczmarz methods (Lorenz et al. 2014b) and their block variants. The motivation
for sparse Kaczmarz methods is to find sparse solutions to linear problems Ax = b
via the problem formulation

1
min{-||x||2+,\||x||1 :Ax:b}. (26)
xeRn | 2

We first briefly review the original Kaczmarz method. For x* = 0, time steps
7 > 0, and a sequence of indices (i (k))xenN, the (randomized) Kaczmarz method is
given by

=K — @i, ¥°) — big)ai.- @7

Here a; ) denotes the i th row vector of A. If i (k) comprise a subset of indices, then
the block-variant of the Kaczmarz method is given by

R Tka;(k)(ai(k)xk —biw).

where a; (i) denotes the submatrix formed by the row vectors of A indexed by i (k)
and a;(k) denotes the Moore-Penrose pseudo-inverse of a;). The iterates of the
randomized Kaczmarz methods converge linearly to a solution of Ax = b (Gower
and Richtarik 2015).

Lorenz et al. (2014b) proposed a sparse Kaczmarz method as follows. Given
starting points x? = z = 0, the updates are given by

k+ k

1 k
=z —wuaiw, X)) — big)aig,
i i i 28)

k= g, (.

Here S; denotes the soft-thresholding operator with threshold A. The iterates
(x%)en converge linearly to a solution of (26) (Schépfer and Lorenz 2019, Theorem
3.2).

A block variant of the sparse Kaczmarz method was proposed in Lorenz et al.
(2014b). For blocks of rows of A denoted by sets of indices i (k), it consists of the
updates

= 2F — mayy @i x* — big)
(29)
=5 .

Note that this uses the transpose al.—'(—k), unlike the standard block Kaczmarz method

which uses the pseudo-inverse a;(k). This too converges to a solution of (26) (Lorenz
et al. 2014a, Corollary 2.9).
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The sparse (block-)Kaczmarz method (29) has connections to two aforemen-
tioned Bregman schemes. First, one may verify that it corresponds to the SMD
method (25) for J (x) = ||x||1>/2+A|lx|l1 and F(x) = Yo Kai, x) — b;|*. Second,
if one takes the entire matrix A as each block, then one recovers the linearized
Bregman method for the same J (Lorenz et al. 2014b).

As with the general SMD method, the sparse Kaczmarz method is particularly
suitable in online reconstruction settings, where the rows of the linear system
A and/or data entries b are not all available instantly but successively are made
available over time. We refer the reader to Lorenz et al. (2014b) for numerical
examples which include the application of online compressed sensing.

Deep Neural Networks

We can generalize the incremental Bregman proximal gradient (23) by including an
additional, potentially nonlinear projection Hy : R"-1 — R"*to obtain

xk = arg min, cpmy {Zk(x) + sk (x) + Dy (x, Hk(xk_l))] , (30)

for a sequence of dimensions {nk}i:1 with ny € N forall k = 1,...,l. We
are interested in a single cycle of this incremental Bregman proximal method
only, which is why we have simplified the indexing notation from i(k) to k
throughout this subsection. In the following, we want to demonstrate how certain
deep neural network architectures are special cases of (30). This connection was
first investigated in the context of variational networks by Kobler et al. (2017), in
the context of Bregman methods by Benning and Burger (2018), and in the context
of proximal gradient methods by Frerix et al. (2017), Combettes and Pesquet (2018),
and Bertocchi et al. (2019). Gradient-based learning with Bregman algorithms has
also been studied in the context of image segmentation by Ochs et al. in (2015),
and Bregman distances are used to analyze regularization strategies based on neural
networks (Li et al. 2020). With the following example, we want to demonstrate how
a class of feedforward neural networks coincides with (30).

Example 2 (Feedforward neural network with ReLU activation function). In this
example we want to demonstrate how basic feedforward neural networks can be
interpreted as variants of Algorithm (30). If we, for instance, choose {Ek}i: | to be
of the form

((I = M)x — 2By, x),

| =

O (x) =

for quadratic matrices {Mk}i: , and vectors {bk}i:1 with M € R and by, €
R, which has the gradient
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1 T
Ve (x) = I—E(Mk+Mk) X — by,
and if we choose {sk}i=1 of the form

Vj:x; >0
Sk(x) 1= x=0(x) = Y
oo Fj:x;<0

for all k € {1, ...,1}, then we easily verify that for the choice Jy(x) = Ix12/2 —
£x (x) the update

xF = max (O, A + bk> ;

with Ay = %(Mk + MkT) o Hy is the unique solution of (30). Hence, we can
consider this /-layer feedforward neural network with rectified linear units (ReLU)
as activation functions (Nair and Hinton 2010) as a special case of the modified
incremental Bregman gradient method (30) if we further guarantee that x° is chosen
to be the input of the network.

Many other neural network architectures can be recovered in similar fashion to
Example 2, where different activation functions can be recovered as proximal
mappings for different choices of functions s, such as in Combettes and Pesquet
(2018), and Bertocchi et al. (2019). For a recent overview of machine learning
algorithms in the context of inverse problems, we refer to Arridge et al. (2019).

Bregman Incremental Aggregated Gradient

Two particularly interesting instances of incremental Bregman proximal methods
are the incremental aggregated gradient (IAG) method (Blatt et al. 2007) and its
stochastic counterpart stochastic averaged gradient (SAG) (Schmidt et al. 2017).
For the sake of brevity, we focus on the incremental version in this paper. The IAG
method reads

T
K=k — —kgk, (31a)
m
g = " = V figrn &I £V figrn K. (31b)
Here {tx}xen is a sequence of positive scalars and i : N — {1, ..., m} is defined
as in section “A Unified Framework for Implicit and Explicit Gradient Methods.”
Please also note that m arbitrary points xl=m x2=m_ 0 have to be chosen as

initialization. It is easy to see and has also been pointed out in Blatt et al. (2007) that
(31) can be rewritten as
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m—1
Tk _
A=k == OV fiaen 657, (32)

=0

for k > m. Note that this is equivalent to the following characterization in terms of
Bregman distances, in analogy to the explicit gradient descent characterization in
section “A Unified Framework for Implicit and Explicit Gradient Methods”: if we
rewrite (21) to F(x) = Z}":B] fitk—p(x) for any k € N and suppose we consider a
Bregman method of the form

m—1

. 1 1 _
A = argming gy § FOO 45—l =3P =030 D et T
=0
(33a)
. 1= B B B
= argmin, gn . [ﬁ(k_l)(xk l) + (Vﬁ(k_l)(xk l), x — x¥ l)]
[=0
1
ol - xk||2} : (33b)
Tk

then it becomes evident from computing the optimality condition of (33a) that the
update (33b) is equivalent to (32) and hence (31) for k > m. Note that we can
rewrite (33a) to

. 1= .
! = argming e § F(x) — — > Dy + Dy Y. (34
=1
for Jr(x) := Zer||)c||2 — % fit(x). The notable difference to the conventional
IAG method is that we can replace the Bregman distance Dy, (x, xk) in (34) with
more generic Bregman distances. As in section “A Unified Framework for Implicit
1

and Explicit Gradient Methods,” we can for example choose Ji(x) = 7w Ix]1? +

% R(x)— % fik(x) and therefore derive incremental Bregman iterations of the form
T
=1 +oR)™! <xk +4q" - Zkgk)

T
qk+1 — qk _ (xk-i-l — Xk _kgk>’
m
& = g8 — V fierny KT £V fgepny FTD),

k k P k _ Lk k k i
whe.re q" € OR(x ) for all k. Hence, substituting y* = x* + ¢* — fn—k g~ yields the
equivalent formulation
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= (1 +oR)! (yk) 7

T = &5 — V iy KT £ V figeny FTD,

Tk+1
yhFL =k sy
m
If F is of the form (22), where s; = s for some (convex) function s : R” — R
for all indices i € {1, ..., m} and if we choose Ji(x) = ml—TkR(x) — 10w (x) for

continuously differentiable R, we recover the proximal-like incremental aggregated
gradient (PLIAG) method, recently proposed in Zhang et al. (2017), which reads

m—1

k= arg min, s § S(x) + Z [ﬂi(k_l)(xk_l) + (Vﬂi(k_l)(xk_l), X — xk_l)]
=0

1 k
+—Dpg(x,x") .
Tk

Needless to say, many different IAG or SAG methods can be derived for different
choices of {Ji}} ;. Choosing Ji such that convergence of the above algorithms is
guaranteed is a delicate issue and involves carefully chosen assumptions, cf. Zhang
et al. (2017, Section 2.3). Convergence guarantees for J; as defined above with an
arbitrary (proper, convex, and 1.s.c.) function R which is an open problem. Having
considered incremental variants of Bregman proximal algorithms, we now want to
review coordinate descent adaptations of this algorithm in the following section.

Bregman Coordinate Descent Methods

In the previous section, we have reviewed Bregman adaptations of popular algo-
rithms for minimizing objective functions that are sums of individual objective
functions that occur in numerous large-scale applications, such as empirical risk
minimization in machine learning.

In this section, we want to focus on Bregman adaptations of algorithms that aim
to minimize multi-variable functions F : R" — R by minimizing the objective with
respect to one variable at a time. If we consider (1) for example, a simple coordinate
descent adaption is

xl{chl

= argmin, g {F(xlfH, x’zcﬂ, AU xffll, X, fo, . ,xs) + Dy, (x, xf)] ,

See, for example, Hua and Yamashita (2016), Corona et al. (2019a,b), Ahookhosh
et al. (2019), Benning et al. (2020), and Gao et al. (2020). In the following,
we want to give a brief overview on Bregman coordinate descent-type methods,
with particular emphasis on an Itoh-Abe discrete gradient-based method, and also
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highlight their connections to traditional coordinate descent algorithms (and their
Bregman adaptations) such as successive over-relaxation (SOR).

The Bregman Itoh-Abe Method

The Bregman Itoh—Abe (BIA) method (Benning et al. 2020) is a particular form
for coordinate descent, derived by applying the discrete gradient method to the ISS
flow (15). Discrete gradients are methods from geometric numerical integration for
solving differential equations while preserving geometric structures — for details on
geometric numerical integration, see, e.g., Hairer et al. (2006) and McLachlan and
Quispel (2001) — and have found several applications to optimization, e.g., Benning
et al. (2020), Grimm et al. (2017), Ehrhardt et al. (2018), Riis et al. (2018), and
Ringholm et al. (2018) due to their ability to preserve energy dissipation laws.

A discrete gradient is an approximation to a gradient that must satisfy two
properties as follows.

Definition (Discrete gradient). Let F' be_ a continuously differentiable function.
A discrete gradient is a continuous map VF : R" x R" — R" such that for all
x,y € R,

(VF(x,y),y —x) = F(y) — F(x) (Mean value), (35)
lim VF(x,y) = VF(x) (Consistency). (36)
y—=>x

Given a choice of VF, starting points x0, pO e€adJ (xo), and time steps (Tx)keN, the
Bregman discrete gradient scheme is defined as

pk+1 — pk _ ‘Ek§F(xk,xk+l), pk+1 c 8J(xk+1). (37)

As with the other Bregman schemes, this is a discretization of (15). Furthermore,
the following dissipation property is an immediate consequence of the definition of
discrete gradients.

Remark 3. When J(x) = |x||?>/2, then the ISS flow reduces to the Euclidean
gradient flow, and we refer to the corresponding BIA method simply as the Itoh—
Abe (IA) method.

Proposition. Suppose J is p-convex and that (x*t1, p**1) solves the update (35)
given (x*, p*) and time step t;, > 0. Then

L symm

FOM) = Fby = —— DMk it < Sk 2 )
Tk Tk

where Diy e (x, y) is the symmetrized Bregman distance defined as
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DY (x, y) := DP(x, y)+DI(y, x)=(p—q, y—x) for p € dJ(y), q € 3J (x).

Proof. By (35) and (37) respectively, we have

— 1

The result then follows from monotonicity of convex functions, see, e.g., Hiriart-
Urruty and Lemaréchal (1993, Theorem 6.1.2).

While there are various discrete gradients (see, e.g., McLachlan et al. 1999), the
Itoh—Abe discrete gradient (Itoh and Abe 1988) (also known as the coordinate incre-
ment discrete gradient) is of particular interest in optimization as it is derivative-free
and can be implemented for nonsmooth functions. It is defined as

F(y1,x0,....Xn) = F (x)
yi—X1
F(y1,Y2,X3,05Xn) = F (¥1,%2,-.,Xn)

VF(x,y) = e : (39)

F)— F(Yly..-,yn 1,Xn)
Yn—2Xn

where 0/0 is interpreted as 9; F'(x).

The BIA method is derived by plugging in the Itoh—Abe discrete gradient for VF
in (37). Provided that J is separable in the coordinates, i.e., J(x) = Z?:l Ji(x;), for
J; : R — R, then this method reduces to sequential updates along the coordinates.
Specifically, it can be written as

F(y*) — F(yRi=1) :
k+1 k k+1 k,
Py = = T P lednih,
X X (40)
yk [xk'H,...,xf+1,xf+1,...,x,]:] i=1,...,n.

In addition to having a derivative-free formulation, the BIA method has con-
vergence guarantees for a large group of objective functions. In particular, if the
Bregman function J is nonsmooth and strongly convex, and if F is locally Lipschitz
continuous with a regularity assumption (see Benning et al. 2020 for details), the
BIA scheme converges to a set of Clarke stationary points (Benning et al. 2020,
Theorem 4.5). Clarke stationarity refers to the optimality criteria 0 € € F (x),
where 9€ F(x) denotes the Clarke subdifferential of F at x (Clarke 1990).

This scheme comes with the cost that the updates (40) are in general implicit.
However, for the cases
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Lo LA
Jx) = S lxl, J@) = S Ixl” + Allxl,

_l 102 _l _ 102
Fx) = SllAx = b7I1%, Fx) = Z1Ax =0%I" + v lixli.

the updates are explicit (Benning et al. 2020).

In section “Student-t Regularized Image Denoising,” we present an example of a
nonsmooth, nonconvex image denoising model, previously considered in Benning
et al. (2020), for which one can significantly speed up convergence by exploiting

sparsity in the residual x* — x°.

Equivalencies of Certain Bregman Coordinate Descent Methods

In what follows, we briefly discuss and draw connections between various
approaches to coordinate descent methods using Bregman distances. This builds
on the observation by Miyatake et al. (2018) that the Itoh—Abe method applied to
quadratic functions F(x) = (x, Ax)/2 — (b, x) is equivalent to the Gauss—Seidel
and successive-over-relaxation (SOR) methods (Young 1971).

The explicit coordinate descent method (Beck and Tetruashvili 2013; Wright
2015) for minimizing F is given by

yhO — &
yoi = yki=l g vFuR e, (41)
xk+1 — yk,n’

where T; > 0 is the time step and ¢’ denotes the i™ basis vector. As mentioned in
Wright (2015), the SOR method is also equivalent to the coordinate descent method
with F' as above and the time steps scaled coordinate-wise by 1/A4; ;. Hence, in
this setting, the Itoh—Abe discrete gradient method is equivalent not only to SOR
methods but to explicit coordinate descent.

Furthermore, these equivalencies extend to discretizations of the inverse scale
space flow for certain quadratic objective functions and certain forms of Bregman
functions J. Consider a quadratic function F(x) = (x, Ax)/2 — (b, x) where A
is symmetric and positive definite, and denote by B the diagonal matrix for which
A;i = B;; for each i. Given a scaling parameter @ > 0 and the Bregman function

1
Jx) = 5= {x, Bx) + Allxlh, (42)
w

The Itoh—Abe method yields a sparse SOR scheme as detailed in Benning et al.
(2020). We may compare this to a Bregman linearized coordinate descent scheme
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YO =xk ke arh,
P k .
zi = argmin [VF(y* 1] -y + DI (R0 yRi=1 4 yel),
N e T
T =y,

where J is given by (42) for some w = wg € (0,2). One can verify that these
schemes are equivalent if one sets wg = m We furthermore mention that
these equivalencies also hold if we were to consider (implicit) Bregman iterations
rather than linearized ones.

Remark 4. Tt is worth noting at this stage that while the Kaczmarz method (27) is
closely related to SOR (Oswald and Zhou 2015), this connection does not carry over
to the BIA method versus the sparse Kaczmarz method.

Saddle-Point Methods

Many problems in imaging (Chambolle and Pock 2016a) and machine learning
(Goldstein et al. 2015; Adler and Oktem 2018) can be formulated as minimization
problems of the form

minlR G(x)+ F(z) subjectto K(x,z)=c. (43)

xeR", ze

Here G : R" — R and F : R” — R are proper and lower semi-continuous and
usually also convex functions, the operator K : R” x R”™ — RY is a bounded, and
usually linear operator and ¢ € R® are a vector. A classical linear example for K is

K(x,z) = Ax + Bz,
where A € R**" and B € R¥*™ are matrices (Boyd et al. 2011).
In terms of optimization, the equality constraint can be incorporated with the help

of a Lagrange multiplier y € R®. We can then re-formulate (43) as finding a saddle
point of an augmented Lagrange function, i.e., we solve

min_ max %5(x, z; y)
xeR”, zeR™ yeRS

for the augmented Lagrangian

1
Ls(x,z;y) = Gx) + F@) + (y, K(x,2) —c) + %HK(X, 2) —cl?, (44)

where § > 0 is a positive scalar. For the special case K(x,z) = Ax —z and ¢ =
0, one can replace F(Ax) with its convex conjugate and formulate the alternative
saddle-point problem
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min max G(x) 4+ (Ax, y) — F*(y), (45)

xeR" yeR™
where the convex conjugate or Fenchel conjugate F* of F is defined as

F*(y) := sup (x, y) — F(x).

xeR”

We want to emphasize that extensions for nonconvex functions (Li and Pong 2015;
Moeller et al. 2015; Mollenhoff et al. 2015) and extensions for nonlinear operators
A (Valkonen 2014; Benning et al. 2015; Clason and Valkonen 2017) or nonlinear
replacements of the dual product (Clason et al. 2019) exist. In the following, we
review Bregman algorithms for the numerical computation of solutions of those
saddle-point formulations.

Alternating Direction Method of Multipliers

The alternating direction method of multipliers (ADMM), (Gabay 1983), is a
coordinate descent method applied to the augmented Lagrangian functional (44).
The augmented Lagrangian is furthermore modified to also include appropriate
penalization terms, so that we compute

= argmin, cge Z(x, 255 15) + Dy, (x, x5), (46a)
! = argmin, cgn % (F T, 23 V) + DL (2, 25, (46b)
Yy = arg max L (! KL y) — Dy, (y, . (46¢)

yeRm

in an alternating fashion. To our knowledge, the first adaptation of ADMM to more
general Bregman functions was proposed in Wang and Banerjee (2014). In the
setting discussed here, the functions Jy, J;, and J, are convex and continuously
differentiable functions. In the most basic scenario, we choose K (x, z) = Ax + Bz,
Jy, and J, as the zero functions, i.e., Jx(x) = 0 and J;(z) = O for all x € R"
z € R™, while J, is chosen to be a positive multiple of the squared Euclidean norm
Jy(y) = % ||y||2. Then (46) reduces to the classical ADMM setting (cf. Boyd et al.
2011)

—1
Xk = (ATA +5 aG) (AT (c — (Bz* + Syk))) ,
—1
= (BTB +6 aF) (BT (c — (Ax*H 4 Sy"))) ,
yk+] _ yk +7 (Akarl + Bzt _c)'

Depending on the choices of Jy, J;, and Jy, many other useful variants are possible,
such as
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K = (1 +1,80G)! (xk AT (Axk 4 BZF 4 8yk — c)) ,

= (I+ 88F)_1 (zk —.BT (Akarl + BZF + 8y% — c)) ,

Y =k (Akarl 4 Bkt _c)’

for the choices Jy(x) = gz [IX[1* = g5l Ax%, J.(2) = g llz* — 251IBz]*, and
JLy(y) = %Hy”z, which is fully explicit with respect to the operators A and B.

Moreover, J, is convex for 0 < 7, < ||A||2, while J; is convex for 0 < 7, < ||B||2.
A unified Bregman framework for primal-dual algorithms is discussed in greater
detail in Zhang et al. (2011).

Primal-Dual Hybrid Gradient Method

In this section we focus on the special saddle-point formulation (45). It is straight-
forward to verify that for convex G and F a saddle point (X, $) | is characterized by
the optimality system
0€dGER)+A"S, (47a)
0€dF*(y) — Ax. (47b)

It is sensible and has indeed been suggested in Chambolle and Pock (2016b), and

Hohage and Homann (2014) to solve this nonlinear inclusion problem with a fixed
point algorithm of the form

0 3G xk—i—l +AT k+1
<0> ) (aFS‘@k*)l)—Aka TS —ad (N @)

Here 0J denotes the subdifferential of some convex function J : R” x R"™ — R.
For the choice

2

M M
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and to || A||? < 1, we obtain the conventional primal-dual hybrid gradient (PDHG)
method (with relaxation parameter set to one) as proposed and discussed in Zhu and
Chan (2008), Pock et al. (2009), Esser et al. (2010), and Chambolle and Pock (2011,
2016a), which reads

= (1 +706) ! (xk — tATyk) , (492)
Y = (I +09F)™ (y" + o AQxH! —xk)). (49b)
Note that we can reformulate (48) to

0) AG(x ) — 3G (E) + AT (YK — §)
0 AF*(y*1)y — dF* () — A(x**! — %)

G — 00 ) - (065D — 0 R D), 60)

if we add the optimality system (47) to (48), for a saddle point (x, &)T. Taking a
dual product of

AG(M) —aGR) + ATOM! - §)
8F*(yk+1) . aF*()'}) . A(xk+1 _)’5)

k1 $)T therefore yields

IG(KH) —aG(R) + AT —3) ke
IFF(MHD —aF*G) — AGKH — %) |\ — 5

= D™ (K £ + DEIMMGHL ) > 0.

with (X1 — %,y

Here D;ymm(x, y) denotes the symmetric Bregman distance D;ymm(x, y) =
DY (x,y) + D}(y,x) = (p — gq,x — y), for subgradients p € 9J(x) and
q € 9J(y), which is also known as Jeffreys—Bregman divergence and closely
related to other symmetrizations such as Jensen—Bregman divergences (Nielsen and
Boltz 2011) and Burbea Rao distances (Burbea and Rao 1982a,b). As an immediate
consequence, we observe

k+1 k
X X X
, + Dy , )

k+1 k1 _ k _k xkrl
02 a‘](x ay ) a‘l(x ay )7 yk+1

o)) o

<> =

=~

<> =
<> =
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where we have made use of the three-point identity for Bregman distances (Chen
and Teboulle 1993). Thus, we can conclude

A k+1 k+1 k a k
X X X X X X

Dy ~ | + Dy , <Dy ~ |
<y) (yk+1) (yk+1) (yk> % yk

for all iterates. Consequently, the iterates are bounded in the Bregman distance
setting with respect to J. Summing up the dual product of (48) with (xF*! —

£, Y*T1 —$) T therefore yields
o
’ yk

M=

N k+1
[ttt oot o]+ o (111
k=0

k=0
N . k . k+1 p 0
X X X X X X
= Z DJ A ) k _DJ A ’ k+1 SD] A ) 0
~ v) v\ v)
< +00.

Hence, we can conclude ngm(xN, x) — 0, D;y*mm(yN, y) — 0, and
T T
Dy <<xN yN) , (xk yk> > — O0for N — oo.If G and F* are at least convex

and if J is strongly convex with respect to some norm, one can further guarantee
convergence of the corresponding iterates in norm to a saddle-point (x, y) solution
of (45) with standard arguments. For more details, analysis, and extensions of
PDHG methods, we refer the reader to Chambolle and Pock (2016a).

Applications

In the following we want to show applications for some of the Bregman algorithms
discussed in this review chapter. We want to emphasize that none of the applications
shown are really large-scale applications. The idea of this section is rather to
demonstrate that the algorithms are applicable to a wide range of different problems,
offering the potential to enhance actual large-scale problems. We focus on three
combinations of applications and algorithms: robust principal component analysis
via the accelerated linearized Bregman iteration, deep learning with an incremental
proximal Bregman architecture, and image denoising via the Bregman Itoh—Abe
method.



3 Bregman Methods for Large-Scale Optimization with Applications in Imaging 125

Robust Principal Component Analysis

Robust principal component analysis is an extension of principal component
analysis first proposed in Candes et al. (2011). The key idea is to decompose a
matrix X € R™>" into a low-rank matrix L € R”™*" and a sparse matrix S € R"*"
by solving the optimization problem

r{li? at||L]ls + azl|S]h subject to X=L+S. (51)

Here ||S||1 is the one norm of the matrix S, i.e., S| = Y/, Z;f:l Isij|, while
|IL]l« denotes the nuclear norm of L, which is the one norm of the singular values
O'j i = ]
0 i#j
and U and V being orthogonal. There are numerous strategies for solving (51)
numerically (Bouwmans et al. 2018); we focus on using the accelerated linearized

Bregman iteration as discussed in section “Accelerated Bregman Methods.” For this
we use formulation (12) of the linearized Bregman iteration, respectively (19), in

-
the accelerated case. We choose A = (I I) =X, and R = oy - I« + 2|l - 1
and therefore obtain

of L,ie., |Lllx = Zj.‘iﬂ("”” oj, for L = UXV* with %;; =

L = (1 and) - 1) (xF),

S = (1 + a2l - 1) (exH)

xk+l — xk _ (Lk+l e X)
in the case of (12), respectively

L = (T4 ayd]| - [1)”" (f Yk) ,

S = (1 +a2d)l - 1) (2 vY),

Xkl — yk _ (Lk+1 4 gk+l X)

YR = (14 o) X5 = B x5
in the case of (17), for X° := X. We choose the parameters to be T = 1/|A||> =
1/2, a1 = 104/max(m, n), ar = 10, and B = (k — 1)/(k + 3) for k > 1. Note that
the latter automatically implies ¥* = X. We run the algorithm on two test datasets;

inspired by Brunton and Kutz (2019), the first one is the Yale Faces B dataset (Lee
et al. 2005), and the second one is a video sequence of a Cornell box with a moving
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(d)

Fig. 1 From left to right: the first image of the Yale B faces database, its approximation which is
the sum of a low-rank and a sparse matrix, the low-rank matrix, and the sparse matrix. (a) Original
(b) Approximation (c¢) Low-rank part (d) Sparse part
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Fig. 2 This is an empirical validation of the different convergence rates of the linearized Bregman
iteration and its accelerated counterpart (with regular scaling of the iterations on the left-hand side
and a logarithmic scaling on the right-hand side)

shadow, from Benning et al. (2007). Figure 1 shows the first image of the Yale
B faces database, its approximation, and its decomposition into a low-rank and a
sparse part.

The more important aspect in terms of this review paper is certainly the com-
parison between the linearized Bregman iteration and its accelerated counterpart. A
log-scale plot of the decrease of the loss function %HL +S5S-X ||12;, where || - ||r
denotes the Frobenius norm, over the course of the iterations of the two algorithms
is visualized in Fig. 2. The plot is an empirical validation that (18) converges at rate
0(1/k?) as opposed to the €(1/k) rate of its non-accelerated counterpart.
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NN
ENNE

Fig. 3 First row: the 1st, 50th, 100th, and 150th frame of the original video sequence from
Benning et al. (2007). Second row: the same frames of the computed low-rank part. Third row:
the same frames of the computed sparse part

In Fig.3 we see the 1st, 50th, 100th, and 150th frame of the original Cornell
box video sequence from Benning et al. (2007), together with a low-rank approxi-
mation and a sparse component computed with the accelerated linearized Bregman
iteration.

Deep Learning

Ever since Alexnet entered the scene in 2012 (Krizhevsky et al. 2012), thwarting
then state-of-the-art image classification approaches in terms of accuracy in the
process, deep neural networks (DNNs) have been central to research in computer
vision and imaging. In this section, we merely want to support the analogy between
incremental Bregman proximal methods and DNNs as shown in section “Deep
Neural Networks” with a practical example, rather than engaging in a discussion
of when and why DNNs based on (30) should be used or what advantages or
shortcomings they possess compared to other neural network architectures. For a
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comprehensive overview over developments in deep learning, we refer the reader to
Goodfellow et al. (2016).

In this example, we set up a DNN-based auto-encoder for dimensionality
reduction and compare it to classical dimensionality reduction via singular value
decomposition. The auto-encoder is of the form

= (1ol 1) 7 (At )

=51 (Akxk_l + bk) ,

for k € {1,2,3,4} and x% = x, where x denotes the input of the network,
Ay = %(Mk + M,;r) o Hj for matrices M; € R™>™k dimensions m; = 196,
my = 49, m3 = 196, and my4 = 784, and where H; and H; are two-dimensional
average pooling operators with window size 2 x 2 and H3 and Hy are nearest-
neighbor interpolation operators that upscale by a factor of two. The vectors {by };{‘:1
are bias vectors of dimensions {mk}izl, and the operator S is the soft-shrinkage
operator as described in section “The Sparse Kaczmarz Method.” Please note that
this auto-encoder architecture is of the form (30) and represents a parametrized
mapping g from R78 to R784, where ® = ({Mk};{‘zl, {bk}izl) denotes the
collection of parameters. We train the auto-encoder by minimizing the empirical
risk based on the mean-squared error for a set of samples {xi}le, s = 60000,
via stochastic gradient descent (which is the randomized version of (24)), i.e., we
approximately estimate optimal parameters 6 via

N

A 1
0= argmin@g Z (Po(xi) — Xi)z-

i=

We emphasize that the soft-thresholding activation function S; leaves @ as not
differentiable, which is why the application of (24) is technically a stochastic
subgradient method. We train the auto-encoder with the help of PyTorch for a
fixed number of epochs (500) and fixed step size T = 2 with batch size 100 on
the MNIST training dataset (LeCun et al. 1998). In Fig.4, we visualized several
samples and the corresponding transformed outputs of the auto-encoder. In Fig. 5,
we have visualized random images from the same dataset in comparison to their
truncated singular value decomposition reconstructions where all but the first 49
singular values are cut off. As to be expected, nonlinear dimensionality reduction
can outperform linear dimensionality reduction, achieving visually superior results
for the same subspace dimensionality.
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Fig. 4 Top row: random samples from the MNIST dataset. Bottom row: the corresponding
approximations with the trained auto-encoder

Fig. 5 Top row: random samples from the MNIST dataset. Bottom row: the corresponding
approximations with the first 49 singular vectors

Student-t Regularized Image Denoising

In what follows, we apply BIA methods for solving a nonsmooth, nonconvex
image denoising model, previously presented in Ochs et al. (2014). A priori
knowledge of the noise distribution allows the use of Bregman functions J (x) that
exploit sparsity structures of the problem. As we will see, this yields significantly
improved convergence rates in comparison with the default Itoh—Abe scheme
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(.e., J(x)* = |x||>/2). The application of the BIA method for this example was
previously presented in Benning et al. (2020).
The objective function is given by

N
F:R" >R, F() ::Zgoid5(K,~x)+||x—x‘S||1. (52)

i=1

Here {Ki}fv= | is a collection of linear filters, (¢; ,N= 1 C [0, 00) are coefficients,

@ : R" — R is the nonconvex function based on the student-t distribution, defined
as

D(x) =Y Y(x), Y :=log(l+x),

j=1

and x° is an image corrupted by impulse noise (salt and pepper noise).

101 - BIA 10°
—A— 1A €
g g
g £10 —-e— BIA
©
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o >
> 5
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0 50 100 150 200 250 0 50 100 150 200 250 300
iterates iterates

Fig. 6 Comparison of BIA and IA methods, for student-t regularized image denoising. First:
convergence rate for relative objective. Second: convergence rate for relative gradient norm. Third:
input data. Fourth: reconstruction
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As impulse noise only affects a fraction of pixels, we use the data fidelity term
x> |lx —x%)|; to promote sparsity of x* — x% for x* € argminF (x). As linear
filters, we consider the simple case of finite difference approximations to first-order
derivatives of x. We note that by applying a gradient flow to this regularization
function, we observe a similarity to Perona—Malik diffusion (Perona and Malik
1990).

For the BIA method, we consider the Bregman function

R s
J(x) ._2||x|| +ylx —x°1,

to account for the sparsity of the residual x* — x® and compare the method to the
regular Itoh—Abe discrete gradient method (abbreviated to 1A).

We set the starting point x* = x% and the parameters to 7y = 1 forall k, y = 0.5,
and ¢; = 2,i = 1, 2. For the impulse noise, we use a noise density of 10%. In the
case where xf“ is not set to xf, we use the scalar root solver scipy.optimize.brenth
on Python. Otherwise, the updates are in closed form.

See Fig. 6 for numerical results. By gradient norm, we mean dist(3€ F (x5), 0).

Conclusions and Outlook

In this review paper, we gave a selective overview on a range of topics concerning
adaptations of Bregman algorithms suited for large-scale problems in imaging. In
particular, we discussed Nesterov accelerations of the Bregman (proximal) gradient
or linearized Bregman iteration, incremental variants of Bregman methods, and
coordinate descent-type Bregman algorithms with a particular focus on a Bregman
Itoh—Abe scheme.

Despite the variety of numerous adaptations, a lot of research on Bregman
algorithms is yet to be done. We conclude this chapter by discussing some open
problems as well as ongoing directions of research.

Examples of open problems are adaptations for nonconvex objectives (following
recent advances in papers such as Ahookhosh et al. 2019), extensions to nonlinear
inverse problems (Bachmayr and Burger 2009) or inverse problems with non-
quadratic data fidelity terms (Benning and Burger 2011) and the closer analysis
and numerical realization of neural network architectures inspired by Bregman
algorithms. We also want to emphasize that Bregman variants of incremental or
stochastic variants of ADMM or the PDHG method in the spirit of Ouyang et al.
(2013) and Chambolle et al. (2018) are still open problems.

Another important topic of ongoing research is to understand the scope for and
limitations of accelerated Bregman methods, as stated by Teboulle (2018). Dragomir
et al. (2019) point out the open problem of whether accelerated Bregman methods
are possible if one makes further assumptions on the objective and Bregman
functions or by allowing access to second-order information. Another interesting
approach is to consider ODEs —see, e.g., Krichene et al. (2015) in which Krichene et
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al. investigate accelerating mirror descent via the ODE interpretation of Nesterov’s
acceleration (Su et al. 2016).

Going from optimization to sampling, some recent papers consider methods
for sampling of distributions which incorporate elements of mirror descent in the
underlying dynamics. Hsieh et al. (2018) propose a framework for sampling from
constrained distributions, termed mirrored Langevin dynamics. In a similar vein,
Zhang et al. (2020) propose a Mirror Langevin Monte Carlo algorithm, to improve
the smoothness and convexity properties for the distribution.

Acknowledgments MB thanks Queen Mary University of London for their support. ESR
acknowledges support from the London Mathematical Society.
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Abstract

In nanoscale imaging technique and ultrafast laser, the reconstruction procedure
is normally formulated as a blind phase retrieval (BPR) problem, where one has
to recover both the sample and the probe (pupil) jointly from phaseless data. This
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survey first presents the mathematical formula of BPR and related nonlinear opti-
mization problems and then gives a brief review of the recent iterative algorithms.
It mainly consists of three types of algorithms, including the operator-splitting-
based first-order optimization methods, second-order algorithm with Hessian,
and subspace methods. The future research directions for experimental issues
and theoretical analysis are further discussed.

Introduction

Phase retrieval (PR) plays a key role in nanoscale imaging technique (Pfeiffer
2018; Elser et al. 2018; Zheng et al. 2021; Giirsoy et al. 2022) and ultrafast
laser (Trebino et al. 1997). Retrieving the images of the sample from phaseless
data is a long-standing problem. Generally speaking, designing fast and reliable
algorithms is challenging since directly solving the quadratic polynomials of PR
is NP hard and the involved optimization problem is nonconvex and possibly
nonsmooth. Thus, it has drawn the attentions of researchers for several decades
(Luke 2005; Shechtman et al. 2015; Grohs et al. 2020; Fannjiang and Strohmer
2020). Among the general PR problems, besides the recovery of the sample, it is also
of great importance to reconstruct the probes. The motivation of blind recovery is
twofold: (1) characteristics of the probe (wave front sensing) and (2) improving the
reconstruction quality of the sample. Essentially in practice, as the probe is almost
never completely known, one has to solve such blind phase retrieval (BPR) problem,
e.g., in coherent diffractive imaging (CDI) (Thibault and Guizar-Sicairos 2012),
convention ptychography imaging (Thibault et al. 2009; Maiden and Rodenburg
2009), Fourier ptychography (Zheng et al. 2013; Ou et al. 2014), convolutional
PR(Ahmed et al. 2018), frequency-resolved optical gating (Trebino et al. 1997),
and others.

An early work by Chapman (1996) to solve the blind problem used the Wigner-
distribution deconvolution method to retrieve the probe. In the optics community,
alternating projection (AP) algorithms are very popular for nonblind PR prob-
lems (Marchesini 2007; Elser et al. 2018). Some AP algorithms have also been
applied to BPR problems, e.g., Douglas-Rachford (DR)-based algorithm (Thibault
et al. 2009), extended ptychographic engine (ePIE) and variants (Maiden and
Rodenburg 2009; Maiden et al. 2017), and relaxed averaged alternating reflection
(Luke 2005)-based projection algorithm (Marchesini et al. 2016). More advanced
first-order optimization method includes proximal algorithms, Hesse et al. (2015),
Yan (2020), and Huang et al. (2021), alternating direction of multiplier methods
(ADMMs) (Chang et al. 2019a; Fannjiang and Zhang 2020), and convex program-
ming method (Ahmed et al. 2018). To further accelerate the first-order optimization,
several second-order algorithms utilizing the Hessian have also been developed
(Qian et al. 2014; Yeh et al. 2015; Ma et al. 2018; Gao and Xu 2017; Kandel et al.
2021). Moreover, the subspace methods (Xin et al. 2021) were successfully applied
to the BPR as Thibault and Guizar-Sicairos (2012), Chang et al. (2019a), and Fung
and Wendy (2020).
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The purpose of the survey is to give a brief review of the recent iterative
algorithms for BPR problem, so as to provide instructions for practical use and
draw attentions of applied mathematician for further improvement. The remainder
of the survey is organized as follows: Section “Mathematical Formula and Nonlinear
Optimization Model for BPR” gives the mathematical formula for BPR and
related nonlinear optimization models, as well as the closed-form expression of the
proximal mapping. Fast iterative algorithms are reviewed in Section “Fast Iterative
Algorithms”. Section “Discussions” further discusses the experimental issues and
theoretical analysis. Section “Conclusions” summarizes this survey.

Mathematical Formula and Nonlinear Optimization Model for
BPR

First, introduce the general nonblind PR problem in the discrete setting. By
introducing a linear operator A € C™7", for the sample of interest u € C",
experimental instruments usually collect the quadratic phaseless data f € R™ as
below:

f=lAul?, (1)

in the ideal situation. However, noise contamination is evitable in practice (Chang
et al. 2018b) as

Fnoise = Poi(|Aul?), )

where Poi denotes the random variable following i.i.d Poisson distribution. See
more advanced models for practical noise as outliers and structured and randomly
distributed uncorrelated noise sources in Godard et al. (2012), Reinhardt et al.
(2017), Wang et al. (2017), Odstrcil et al. (2018), Chang et al. (2019b), and
references therein.

Mathematical Formula

State the BPR problem starting from convention ptychography (Rodenburg 2008),
since the principle of other BPR problems can be explained in a similar manner, all
of which can be unified as the blind recovery problem.

As shown in Fig. 1, a detector in the far field measures a series of phaseless
intensities, by letting a localized coherent X-ray probe w scan through the sa