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Preface

Most students who have entered the physics Master’s curriculum will have some
familiarity with condensed matter physics. But what of “condensed matter field
theory,” the subject of this text? Fields are effective continuum degrees of free-
dom describing macroscopically large numbers of “atomistic” objects. Mundane
examples of fields include water waves formed from the interaction of molecules
or currents inside a conductor describing the collective motion of electrons. The
language of fields reduces the complexity of many-particle systems to a manageable
level, the natural degrees of freedom of condensed matter systems.

In condensed matter physics, we neither can, nor want to, trace the dynamics of
individual atomistic constituents. Instead, we aim to understand the observable col-
lective properties of matter, their thermal excitations, transport properties, phase
behavior and transitions, etc. The art of condensed matter theory is to identify the
nature and dynamics of the low-energy degrees of freedom — articulated as fields,
and formulated with the framework of effective theories encapsulating universal
properties of matter. This program has a long history, and it unfolded in a succes-
sion of epochs: in the 1950s and 1960s, the development of high-order perturbation
theory; in the 1970s, the advent of renormalization group method; in the 1980s,
the development of powerful non-perturbative methods; and, up to the present day,
advances in topological field theories. These developments often paralleled, and
drew inspiration from, particle physics, where quantum field theory was just as
important, if from a slightly different perspective. In the course of its development,
field theory has become a lingua franca, providing a unifying framework for the
exploration of core concepts of condensed matter physics, as follows.

> Universality: A comparatively small number of “effective theories” suffices to
describe the physics of myriads of different forms of matter. For example, the
quantum field theory of vortices in superfluid helium films is the same as that
of a plasma of dipoles. Despite different microscopic realizations, these systems
fall into the same universality class.

> Emergence: In condensed matter physics, the conspiracy of large numbers of
fundamental degrees of freedom often leads to the emergence of a smaller number
of effective ones. For example, in two-dimensional electron systems subject to
magnetic fields the emergent degrees of freedom may be effectively pointlike
objects carrying fractional charge. These quasi-particles are responsible for the
observable physics of the system. If one did not know their emergent nature, one
might consider them as fractionally charged fermions.
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> Broken symmetries and collective fluctuations: States of matter often
show lower symmetry than that of the underlying microscopic theory. For ex-
ample, a ferromagnetic substance may be magnetized along a specific direction
while its Hamiltonian is invariant under global spin rotations. Under such con-
ditions, large collective fluctuations, representing continuous changes between
states of different local symmetry, are prevalent. In the vicinity of transition
points between different phases, they can induce criticality.

> Criticality: Fluctuation-induced phenomena are characterized uniquely by just
a few dimensionless parameters known as critical exponents. A relatively small
number of different critical theories suffices to explain and describe the critical
scaling properties of the majority of condensed matter systems close to phase
transitions. Yet, the critical theories for some of the most well-known transitions
(including, for example, the integer quantum Hall transition) remain unknown,
presenting open challenges to future generations of field theorists.

In this third edition, we have separated the text into two major components. In the
first part, we introduce core concepts of condensed matter quantum field theory.
These chapters will furnish readers with fluency in the language and methodolo-
gies of modern condensed matter theory research. No prior knowledge is assumed
beyond familiarity with quantum mechanics, statistical mechanics and solid state
physics at bachelor’s level. We aim to introduce the subject gently, in a language
that changes gradually from being prosaic in the beginning to more scientific in
later chapters. The subjects covered in the first part reflect developments in con-
densed matter theory that took place in the second half of the last century. How-
ever, in contrast with traditional approaches, the text does not recount these ad-
vances in chronological order. Instead, it emphasizes the comparatively modern
methods of functional field integration — the generalization of the Feynman path
integral of quantum point particles to continuum degrees of freedom. We introduce
this concept early on and rely on it as an organizational principle throughout the
text.

The second part of the text addresses more advanced developments, most of which
have come to the fore over the past 30 years. During this period, developments in
quantum field theory have proceeded in concert with revolutionary progress in
experiment, both in solid state physics and in the neighboring fields of ultracold
atom and optical physics. For example, while previous generations of experiments in
condensed matter were conducted under close to thermal equilibrium conditions, the
micro-fabrication of devices has reached levels such that nonequilibrium phenomena
can be accessed and controlled. At the same time, we are seeing the advent and
impact of topological forms of matter, whose physical properties are governed by the
mathematical principles of topological order and long-range quantum entanglement.
Combined with advances in the ability to manipulate and control quantum states,
these developments are beginning to open a window on computational matter, i.e.,
realizations of condensed matter systems capable of storing and processing quantum
information. Indeed, although separate, these new developments are surprisingly
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interrelated: quantum information may be protected by principles of topology, while
nonequilibrium phases of quantum matter may be characterized by principles of
topological gauge theory, etc. While it is too early to say where the field may
evolve in the next 30 years, concepts from condensed matter field theory will play
a key role in shaping new directions of research and in exposing their common
themes. The contents and style of this more advanced part of the text reflect these
structures.

While the first, introductory, component of the text is arranged in a structured
manner, with each new chapter building upon previous chapters, the chapters of
the second part of the text can be read independently. Moreover, the writing style
of the more advanced chapters is often more succinct, drawing attention to primary,
and often contemporary, literature. Perhaps most importantly, a key objective of
the second part of the text is to draw readers into modern areas of condensed
matter research. Alongside the core material we have also included several forms of
supplementary material:

> Info sections place methodological developments into a given context, contain
details on specific applications, or simply provide auxiliary “information” that
may enrich the narrative. For example, in chapter 1, an info section is used to
describe the concrete realization of “vacuum fluctuations” of fields in condensed
matter systems, in the context of Casimir or van der Waals forces.

> Example sections are used to develop general concepts. For example, the two-
sphere is used as an example to illustrate the general concept of differentiable
manifolds.

> Remarks appear as preambles of some sections. They may indicate, for example,
whether a section may require knowledge of previous material; this is particularly
valuable in the second part of the text, where the chapters are non-sequentially
ordered or interlinked. The text also includes sections that, while important, may
be safely skipped at a first reading. In such cases, the remarks section provide
advice and guidance.

b In-text exercises (some answered,! and some not) provide opportunities for
the reader to test their methodological understanding. Alongside these small
exercises, each chapter closes with a problem set.

> Problem set: These problems differ from the in-text exercises both in depth
and level, and are chosen to mirror as much as possible the solution of “real-
istic” condensed matter problems by field-theoretical methods. Their solution
requires not just methodological but also conceptual thinking. Many of them
reflect the narrative of research papers, some of which are of historical signifi-
cance. For example, a problem of chapter 2 reviews the construction of the Kondo
Hamiltonian as an illustration of the utility of second quantization. Answers are
provided for all questions in the problem sets.

1 The reader should not be surprised to find that some of the answers to in-text questions are
given apisdn umop in footnotes!
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> Lastly, four short appendices introduce or review background material referred
to in parts of the main text. They include a review of elements of probability
theory, a summary of the Fourier transform conventions used in the text, an
introduction to modern concepts of differential geometry, and a concise intro-
duction to conformal symmetry.

This third edition of the text responds in part to the changes that have taken place
in the research landscape and emphasis since the first edition was published more
than a decade ago. Among these changes, the first and foremost reflects revolu-
tionary developments in topological condensed matter physics. The core chapter on
topological field theory has been completely rewritten, and two accompanying chap-
ters — one on gauge theory, and another on relativistic quantum matter — have been
added. All other chapters have been substantially revised and brought up to date.
In particular, we have taken this opportunity to prune material whose prominence
and value to future research may have diminished. At the same time, we have elim-
inated many “typos” and the occasional embarrassing error, many of which have
been drawn to our attention by our friends and colleagues in the community (see
below)! We fear that the addition of fresh material will have introduced new errors
and will do our best to correct them when notified.

Over the years, many people have contributed to this text, either through con-
structive remarks and insights, or by spotting typos and errors. In this context, it is a
great pleasure to acknowledge with gratitude the substantial input of Sasha Abanov,
Piet Brouwer, Christoph Bruder, Chung-Pin Chou, Karin Everschor, Andrej Fis-
cher, Sven Gnutzmann, Colin Kiegel, Jian-Lin Li, Tobias Liick, Jakob Miiller-Hill,
Julia Meyer, Tobias Micklitz, Jan Miiller, Patrick Neven, Sid Parameswaran, Achim
Rosch, Max Schéfer, Matthias Sitte, Rodrigo Soto-Garrido, Natalja Strelkova,
Nobuhiko Taniguchi, Franjo-Frankopan Velic, Matthias Vojta, Jan von Delft, An-
drea Wolff, and Markus Zowislok. We finally thank Martina Markus for contribut-
ing hand-drawn portraits of some of the great scientists who pioneered the physics
discussed in this book.
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On a fundamental level, all forms of quantum matter can be formulated
in terms of a many-body Hamiltonian for a macroscopically large number
of constituent particles. However, in contrast with many other areas
of physics, the structure of this operator conveys as much information
about the properties of the system as, say, the knowledge of the basic
chemical constituents tells us about the behavior of a living organism.
Rather, it has been a long-standing tenet that the degrees of freedom
relevant to the low-energy properties of a system usually are not the
microscopic ones. It is a hallmark of many “deep” problems of modern
condensed matter physics that the passage between the microscopic and
the effective degrees of freedom involves complex and, at times, even
controversial mappings. To understand why, it is helpful to review the
process of theory building in this field of physics.

The development of early condensed matter physics often hinged on
the “unreasonable” success of non-interacting theories. The impotency
of interactions observed in a wide range of physical systems reflects a
principle known as adiabatic continuity: the quantum numbers char-
acterizing an (interacting) many-body system are determined by funda-
mental symmetries — translational, rotational, particle exchange, etc. As
long as these symmetries are maintained, the system’s elementary exci-
tations, or quasi-particles, can usually be traced back “adiabatically” to
the bare particles of the non-interacting limit. This principle, embodied
in Landau’s Fermi-liquid theory, has provided a platform for the investi-
gation of a wide range of systems, from conventional metals to *helium
fluids and cold atomic Fermi gases.

However, being contingent on symmetry, it must be abandoned at phase
transitions, where interactions effect a rearrangement of the many-body
ground state into a state of different, or “broken” symmetry. Symmetry-
broken phases generically show excitations different from those of the
parent non-interacting phase. They either require classification in terms
of new species of quasi-particles, or they may be collective modes engag-
ing the cooperative motion of many bare particles. For example, when
atoms condense from a liquid into a solid phase, translational symmetry



is broken and the elementary excitations (phonons) involve the motion
of many individual bare particles.

In this way, each phase of matter is associated with a unique “non-
interacting” reference state with its own characteristic quasi-particle ex-
citations — a product of only the relevant symmetries. Within each in-
dividual phase, a continuity principle keeps the effects of interactions at
bay. This hierarchical picture delivers two profound implications. First,
within the quasi-particle framework, the underlying “bare” or elemen-
tary particles remain invisible. (To quote from P. W. Anderson’s famous
article More is different, Science 177, 393 (1972), “The ability to re-
duce everything to simple fundamental laws does not imply the ability
to start from those laws and reconstruct the universe.”) Second, while
one may conceive an almost unlimited spectrum of interactions, there
are comparatively few non-interacting or free theories, constrained by
the set of fundamental symmetries. These arguments go a long way in
explaining the principle of “universality” observed in condensed matter.

How can these concepts be embedded into a concrete theoretical frame-
work? At first sight, problems with macroscopically many particles seem
overwhelmingly daunting. However, our discussion above indicates that
representations of manageable complexity may be obtained by focusing
on symmetries and restricted sets of excitations. Quantum field theory
provides the keys to making this reduction concrete. Starting from an ef-
ficient microscopic formulation of the many-body problem, it allows one
to systematically develop effective theories for collective degrees of free-
dom. Such representations afford a classification of interacting systems
into a small number of universality classes defined by their fundamen-
tal symmetries. This form of complexity reduction has become a potent
source of unification in modern theoretical physics. Indeed, several sub-
fields of theoretical physics (such as conformal field theory, random ma-
trix theory, etc.) now define themselves not so much through any specific
application as by a certain conceptual or methodological framework.

As mentioned in the preface, the first part of this text is a primer
aimed at elevating graduate students to a level where they can engage in
independent research. While the discussion of conceptual aspects stands
in the foreground, we have endeavored to keep the text firmly rooted
in experimental application. As well as routine exercises, it includes
extended problems meant to train research-oriented thinking. Some of
these answered problems are deliberately designed to challenge. (We all
know from experience that the intuitive understanding of formal struc-
tures can be acquired only by persistent, and at times even frustrating
training.)
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From Particles to Fields

SYNOPSIS To introduce some basic concepts of field theory, we begin by considering two
simple model systems — a one-dimensional “caricature” of a solid and a freely propagating
electromagnetic wave. As well as exemplifying the transition from discrete to continuous
degrees of freedom, these examples introduce the basic formalism of classical and quantum
field theory as well as the notions of elementary excitations, collective modes, symmetries
and universality — concepts that will pervade the rest of the text.

One of the appealing facets of condensed matter physics is that phenomenology of
remarkable complexity can emerge from a Hamiltonian of comparative simplicity.
Indeed, microscopic “condensed matter Hamiltonians” of high generality can be
constructed straightforwardly. For example, a prototypical metal or insulator may
be described by the many-particle Hamiltonian, H = H. + H; + H.;, where

2
He=)" DL Y Vel ),

<y
~ P2 1.1)
I.2M+I<J (R 7);

He = Z Vei(Rr — ).
i

Here, r; (R;) denotes the coordinates of va-

lence electrons (ion cores), while H., H;, and R;
H._; describe the dynamics of electrons, ions and < ® *—
the interaction of electrons and ions, respec-

=
&

tively (see the figure). Of course, the Hamilto-
nian (1.1) can be made more realistic by, for
example, remembering that electrons and ions
carry spin, adding potential disorder, or intro-
ducing host lattices with multi-atomic unit cells. However, for developing our
present line of thought, the prototype Hamiltonian H will suffice.

The fact that a seemingly innocuous Hamiltonian like Eq. (1.1) is capable of
generating a plethora of phenomenology can be read in reverse: normally, one
will not be able to make progress theoretically by approaching the problem in an
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“ab initio” manner, i.e., by an approach that treats all microscopic constituents as
equally relevant degrees of freedom. How, then, can successful analytical approaches
be developed? The answer lies in several basic principles inherent in generic con-
densed matter systems.

1. Structural reducibility: Not all components of the Hamiltonian (1.1) need
to be treated simultaneously. For example, when our interest is in the vibra-
tional motion of the ion lattice, the dynamics of the electron system can often
be neglected or, at least, treated in an “effective” manner. Similarly, the dy-
namics of the electron system can often be considered independent of the ions,
ete.

2. In the majority of condensed matter applications, one is interested not so much
in the full profile of a given system but, rather, in its energetically low-lying
dynamics. This is motivated partly by practical aspects (in daily life, iron
is normally encountered at room temperature and not at its melting point),
and partly by the tendency of large systems to behave in a “universal” man-
ner at low temperatures. Here, universality implies that systems differing
in microscopic detail (i.e., with different types of interaction potentials, ion
species, etc.) exhibit common collective behavior at low energy or long length
scales. As a physicist, one will normally seek for unifying principles in collec-
tive phenomena rather than to describe the peculiarities of individual elements
or compounds. However, universality is equally important in the practice of
condensed matter theory. In particular, it implies that, at low temperatures,
system-specific details of microscopic interaction potentials are often of sec-
ondary importarnce, i.e., one may employ simple model Hamiltonians.

3. For most systems of interest, the number of degrees of freedom N = O(10?3)
is formidably large. However, contrary to first impressions, the magnitude of
this figure is rather an advantage: in addressing condensed matter problems,
the principles of statistics imply that statistical errors tend to be negligibly
simall. !

4. Finally, condensed matter systerns typically possess intrinsic symmetries. For
example, the Hamiltonian (1.1) is invariant under the simultaneous translation
and/or rotation of all coordinates, which expresses the global Galilean invari-
ance of the system (these are continuous symmetries). Invariance under spin
rotation (continuous) or time reversal (discrete) are other examples of common
symimetries. The general importance of symmetries cannot be overemphasized:
symmetries support the conservation laws that simplify any problem. Yet, in

1 The importance of this point is illustrated by the empirical observation that the most chal-
lenging systems in physical sciences are of medium, and not large, scale, e.g., metallic clusters,
medium-sized nuclei or large atoms consisting of some O(101-10%) fundamental constituents.
Such systems are beyond the reach of few-body quantum mechanics while not yet accessible to
reliable statistical modeling. The only viable path to approaching systems of this type is often
through numerical simulation or the use of phenomenology.



1.1 Classical Harmonic Chain: Phonons

condensed matter, symmetries are even more important. A conserved observ-
able is generally tied to an energetically low-lying excitation. In the universal,
low-temperature, regime in which we will typically be interested, it is precisely
the dynamics of these excitations that govern the gross behavior of the sys-
tem. Generally, the identification of fundamental symmetries is the first step
in the sequence “symmetry — conservation law — low-lying excitations” and
one that we will encounter time and again.

To understand how these basic principles can be used to formulate and explore
effective low-energy field theories of solid state systems, we will begin by focusing
on the harmonic chain, a collection of atoms bound by a harmonic potential.
In doing so, we will observe that the universal characteristics encapsulated by the
low-energy dynamics? of large systems relate naturally to concepts of field theory.

1.1 Classical Harmonic Chain: Phonons

[Classical Harmonic Chain: Phonons]

Returning to the prototype Hamiltonian (1.1), let us focus on the dynamical
properties of the positively charged core ions that constitute the host lattice of a
crystal. For the moment, we will neglect the fact that atoms are quantum objects
and treat the ions as classical entities. To further simplify the problem, let us
consider a one-dimensional atomic chain rather than a generic d-dimensional solid.
In this case, the positions of the ions can be specified by a sequence of coordinates
with average lattice spacing a. Relying on the structural reducibility principle 1, we
will first argue that, to understand the behavior of the ions, the dynamics of the
conduction electrons are of secondary importance, i.e., we will set H, = He; = 0.

At zero temperature, the sys-
tem freezes into a regularly spaced
array of ion cores at coordinates
R; = R; = Ia. Any deviation ks
from a perfectly regular configu- i i i i
ration incurs a potential energy (I-1)a Ta (I+1)a
cost. For low enough temperatures
(principle 2), this energy will be
approximately quadratic in the small deviation of the ion from its equilibrium po-
sition. The “reduced” low-energy Hamiltonian of the system then reads

R o

Pk .
L+ Z(Rri—Rr—a)?|, (1.2)
2m 2 _

N
iy
I=1"

2 In this text, we will focus on the dynamical behavior of large systeimns, as opposed to their static
structural properties. In particular, we will not address questions related to the formation of
definite crystallographic structures in solid state systems.
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where the coefficient ky determines the steepness of the lattice potential. Note that
H can be interpreted as the Hamiltonian of N point-like particles of mass m con-
nected by elastic springs with spring constant kg (see the figure).

1.1.1 Lagrangian formulation and equations of motion

What are the elementary low-energy .

Fom . . Joseph-Louis Lagrange
excitations of the classical harmonic 1736-1813
chain? To answer this question we was a French mathematician

might, in principle, attempt to solve | and astronomer (though born A7
in Turin) who excelled in all AN UT
fields of analysis, number the- by
deed, since H is quadratic in all coordi- ory and celestial mechanics. In
nates, such a program is feasible. How- 1788, he published Mécanique
ever, few of the problems encountered Analytique, which summarized the field of me-

. . . . . chanics since the time of Newton, and is no-
in solid state physics enjoy this prop- table for its use of the theory of differential

erty. Further, it seems unlikely that the equations. In this text, he transformed mechan-

Hamilton’s equations of motion. In-

low-energy dynamics of a macroscopi- ics into a branch of mathematical analysis.
cally large chain — which we know from our experience will be governed by large-
scale wave-like excitations — is adequately described in terms of an “atomistic”
language; the relevant degrees of freedom will be of a different type. We should,
rather, draw on the basic principles 1-4 set out above. Notably, so far, we have
paid attention to neither the intrinsic symmetry of the problem nor the fact that
the number of ions, /V, is large.

To reduce a microscopic model to an effective low-energy theory, often the Hamil-
tonian is not a very convenient starting point. Usually, it is more efficient to start
from the classical action, S. In the present case, S = [ dt L(R, R)7 where
(R, R) = {Ry, R;} represent the coordinates and their time derivatives. The corre-
sponding classical Lagrangian L related to the Hamiltonian (1.2) is given by

N - .
L=T-U=Y %R%-%(RM—R[—W , (1.3)
=1t :
where T" and U denote, respectively, the kinetic and potential energy.

Since we are interested in the properties of the large-N system, we can expect
boundary effects to be negligible. In this case, we may impose periodic boundary
conditions, making the identification Ry, = R,. Further, anticipating that the
effect of lattice vibrations on the solid is weak (i.e., long-range atomic order is
maintained), we may assume that the deviation of ions from their equilibrium po-
sition is small (i.e., |R;(t) — R;| < a). For Ry(t) = Ry + ¢;(t), with on 1 — o1,
the Lagrangian (1.3) assumes the simplified form

N -
L=3"
I=1 *

To make further progress, we will now make use of the fact that we are not
concerned with behavior on “atomic” scales. For such purposes, our model would,

m . ke N
§¢% 5 (Pr+1 — G"")Z :
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Lagrangian
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classical
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in any case, be much too primitive! Rather, we are interested in experimentally
observable behavior that becomes manifest on macroscopic length scales (principle
2). For example, one might wish to study the specific heat of the solid in the limit
of infinitely many atoms (or at least a macroscopically large number, O(10%3)).
Under these conditions, microscopic models can usually be simplified substantially
(principle 3). In particular, it is often permissible to subject a discrete lattice model
to a continuum limit, i.e., to neglect the discreteness of the microscopic entities
and to describe the system in terms of effective continuum degrees of freedom.

x
amounts to describing the lattice fluctuations ¢; in %

terms of smooth functions of a continuous variable z.

(See the figure, where the [horizontal] displacement of B

the point particles is plotted along the vertical axis.)

Clearly such a description makes sense only if the relative fluctuations on atomic
scales are weak (for otherwise the smoothness condition would be violated). How-
ever, if this condition is met — as it will be for sufficiently large values of the stiffness
constant ks — the continuum description is much more powerful than the discrete
encoding in terms of the “vector” {¢;}. The steps that we will need to take to go
from the Lagrangian to concrete physical predictions will then be much easier to
formulate.

In the present case, taking a continuum limit

Introducing continuum degrees of freedom ¢(z), and applying a first-order Taylor
expansion,® let us define

N 1 [k
dr — a'?¢(x) o (fre1—¢r1) = a3/23m¢($)’_r o > = E/o da,

x=la Ft

where L = Na. Note that, as defined, the functions ¢(x,t) have dimensionality
length|'/2. Expressed in terms of the new degrees of freedom, the continuum limit
of the Lagrangian then reads

2

L m . was
R R i CO NI CE

where the Lagrangian density £ has dimensionality [energy]/[length]. Similarly,
the classical action assumes the continuum form

S[e] X dt L|¢] = /r.'ff. ;CL dx L{0y9, ¢I>) (1.5)

We have thus succeeded in abandoning the N point-particle description in favor of
one involving conlinuous degrees of freedom, a (classical) field. The dynamics of
the latter are specified by the functionals I and S, which represent the continuum
generalizations of the discrete classical Lagrangian and action, respectively.

3 Indeed, for reasons that will become clear, higher-order contributions to the Taylor expansion
are immaterial in the long-range continuum limit.
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INFO The continuum variable ¢ is our first encounter with a field. Before proceeding
with our example, let us pause to make some preliminary remarks on the general definition
of these objects. This will help to place the subsequent discussion of the atomic chain in
a broader context. Formally, a field is a smooth mapping

¢ M—=T
z = 9(2)

from a certain manifold 3/, often called the “base
manifold,” into a “target” or “field manifold”
T (see the figure)” In our present example, 3 —
[0, T) x [0, 1] € R? is the product of intervals in space
and time, and 7" = R. In fact, the factorization M C
R x T into a space-like manifold R multiplied by a
one-dimensional time-like manifold 7 is inherent in
most applications of condensed matter physics.®

However, the individual factors R and 7 may,
of course, be more complex than in our prototypical problem above. As for the target
manifold, not much can be said in general; depending on the application, the realizations
of T' range from real or complex numbers over vector spaces and groups to the “fanciest
objects” of mathematical physics.

In applied field theory, fields appear not as final objects, but rather as input to func-
tionals. Mathematically, a functional S : ¢ — S[¢] € R is a mapping that takes a field
as its argument and maps it into the real numbers. The functional profile S[¢] essentially
determines the character of a field theory. Notice that the argument of a functional is
commonly indicated in square brackets | |.

While these formulations may appear unnecessarily abstract, remembering the mathe-
matical backbone of the theory often helps to avoid confusion. At any rate, it takes some
time and practice to get used to the concept of fields and functionals. Conceptual difficul-
ties in handling these objects can be overcome by remembering that any field in condensed
matter physics arises as the limit of a discrete mapping. In the present example, the field
#(x) is obtained as a continuum limit of the discrete vector {¢;} € R"; the functional
L[¢] is the continuum limit of the function L : RY — R, etc. While, in practice, fields
are usually easier to handle than their discrete analogs, it is sometimes helpful to think
about problems of field theory in a discrete language. Within the discrete picture, the
mathematical apparatus of field theory reduces to finite-dimensional calculus.

Although the Lagrangian (1.4) contains the full information about the model, we
have not yet learned much about its actual behavior. To extract concrete physical
information from the Lagrangian, we need to derive equations of motion. At first
sight, it may not be entirely clear what is meant by the term “equations of motion”
in the context of an infinite-dimensional model: the equations of motion relevant for

4 If you are unfamiliar with the notion of manifolds (for a crash course, see appendix section

A.1), think of M and 1" as subsets of some vector space. For the moment, this limitation won’t
do any harm.

In some (rare) cases it becomes necessary to define fields in a more general sense (e.g., as
sections of mathematical objects known as fiber bundles). However, in practically all condensed
matter applications, the more restrictive definition above will suffice.

By contrast, the condition of Lorentz invariance implies the absence of such factorizations in
relativistic field theory. In classical statistical field theories, i.e., theories probing the thermo-
dynamic behavior of large systems, M is just space-like.
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the present problem are obtained as the generalization of the conventional Lagrange
equations of N point-particle classical mechanics to a model with infinitely many
degrees of freedom. To derive these equations, we need to generalize Hamilton’s
extremal principle (i.e.; the route from an action to the associated equations of
motion) to infinite dimensions. As a warm-up, let us briefly recapitulate how the
extremal principle works for a system with one degree of freedom.

Suppose the dynamics of a classical point particle with coordinate z(t) is de-
scribed by the classical Lagrangian L(z, ) and action S|z| = [ dt L(z, ). Hamil-
ton’s extremal principle states that the configurations x(¢) that are realized are
those that extremize the action, §S[z] = 0, i.e., for any smooth curve ¢ — y(t),

1
lim‘—_(S[erey} — Sfz]) = 0. (1.6)
(For a more rigorous discussion, see section 1.2 below.) To first order in ¢, the action
has to remain invariant. Applying this condition, one finds that it is fulfilled if and
only if x satisfies Lagrange’s equation of motion

%(ai,L) —9,L =0 (1.7)

EXERCISE Recapitulate the derivation of (1.7) from the classical action.

In Eq. (1.5) we are dealing with a system of ¢

infinitely many degrees of freedom, ¢(z,t). JeR))

Yet Hamilton’s principle is general and we :

[
jected to an extremal principle analogous £n(x.t) :__’x,
to Eq. (1.6). In this case, we require the ac- 5 o ; 7T
tion (1.5) to be invariant under variations 2 S i

b(x,t) = oz, t) + en(z, t), to first order ~ 7 7

in €. Note that field variations must respect boundary conditions, if present. For
example, if @lboundary = const., then 7|boundary = 0 (see the figure). When applied
to the specific Lagrangian (1.4), substituting the “varied” field leads to

may see what happens if Eq. (1.5) is sub-

B L . ) )
S[¢p +en] = S[¢] +e/dt/0 dz (mon — ksa® 9,0 ,n) + O(c?).

Integrating by parts and requiring the contribution linear in e to vanish, one obtains

L .
lim 1 (S]d + en] — S[p]) = — /dt/ dx (m¢ — ksa%ﬁ@) n=0"
0

e—0 €

(Notice that the boundary terms vanish identically.) Now, since n was defined to
be an arbitrary smooth function, the integral above can vanish only if the factor in

7 Here and throughout a = b means “we require a to be equal to b.”
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parentheses is globally vanishing. Thus the equation of motion takes the form of a
classical classical wave equation
wave
equation
(maf — ksazaz,) =0 (1.8)
The solutions of (1.8) have the form 0. —
by (z—vt)+¢ (ztot), where v = a\/ky/m, XV g
and ¢. are arbitrary smooth functions of
the argument. From this we can deduce that the low-energy elementary excita-
ij;v‘: tions of our model are lattice vibrations propagating as classical sound waves
to the left or right at a constant velocity v (see figure).® The trivial behavior of the
model is, of course, a direct consequence of its simplistic definition — no dissipa-
tion, dispersion, or other nontrivial ingredients. Adding these refinements leads to
the general classical theory of lattice vibrations (see, e.g., Ashcroft and Mermin®).
Finally, notice that the elementary excitations of the chain have little in common
with its “microscopic” constituents (the atoms). Rather they are collective exci-
e:‘gltlz:(::’l‘z tations, i.e., elementary excitations comprising a macroscopically large number of

microscopic degrees of freedom.

INFO The “relevant” excitations of a condensed matter systern can, but need not,
be of collective type. For example, the interacting electron gas (a system to be discussed
in detail below) supports microscopic excitations — charged quasi-particles standing in 1:1
correspondence with the electrons of the original microscopic system — while the collective
excitations are plasmon modes of large wavelength that involve many electrons. Typically,
the nature of the fundamental excitations cannot be straightforwardly inferred from the
microscopic definition of a model. Indeed, the mere identification of the relevant excitations
often represents the most important step in the solution of a condensed matter problem.

1.1.2 Hamiltonian formulation

An important characteristic of any ex- - .
ati s it H I Sir William Rowan Hamil-

citation is its emergy. How much en- ton 1805-1865 i

ergy is stored in the sound waves of | was an Irish mathematician U

the harmonic chain? To address this | credited with the discovery N
. . f quaterni the first non- Wi A

question, we need to switch back to a of quaternions, the Trst non e =
) ) ) ) commutative algebra to be \ i

Hamiltonian formulation. Once again, studied. He also made seminal

this is achieved by generalizing stan- contributions to the study of

dard manipulations from point-particle geometric optics and classical mechanics.

mechanics to the continuum. Remembering that, in the Lagrangian formulation of

8 Strictly speaking, the modeling of our system enforces a periodicity constraint ¢ (x + L) =
¢+ (). However, in the limit of large system sizes, this aspect becomes inessential.
9 N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders International, 1983).
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point particle mechanics, p = J; L is the momentum conjugate to the coordinate z,
let us consider the Lagrangian density and define the field'"

_oc

w(x) = %

(1.9)

as the canonical momentum associated with ¢. In common with ¢(z), the mo-
mentum w(z) is a continuum degree of freedom. At each point in space, it may
take an independent value. Notice that w(z) is nothing but the continuum gener-
alization of the lattice momentum P of Eq. (1.2). (Applied to P;, a continuum
approximation like ¢y — ¢(z) would produce 7(x).) The Hamiltonian density is
then defined as usual through the Legendre transformation,

H(bpd.n) = (Tr(/ — ﬁ) (1.10)

’(i&:.l.a(r;'). )

from which the full Hamiltonian is obtained as H = ij dxzH.

EXERCISE Verify that the transition L — H is a straightforward continuum general-
ization of the Legendre transformation of the N-particle Lagrangian L({¢1}, {¢1}).

Having introduced a Hamiltonian, we are in a position to determine the energy
of the sound waves. Application of Eqs. (1.9) and (1.10) to the Lagrangian of the
atomic chain yields w(x) = m¢(x) and

K& ksa”® . |
Hlr, ¢ = /dx =t 5 (620)| . (1.11)

Considering, say, a right-moving sound-wave excitation, ¢(x,t) = ¢ (x — vt), we
find that m(z,t) = —mvdy¢.(z — vt) and H|rm, ¢| = kea? [ dz[d,0- (2 — vt)]? =
ksa? [ dx [0,.4.(x)]?, ie., a positive-definite time-independent expression, as one
would expect.

INFO For completeness, we mention that the Hamiltonian representation of the
action (1.5) is given by S[¢, 7] = [ dt fOL dz(w¢—H). From here, the Hamiltonian version
of the equations of motion can be derived by independent variations in ¢ and =, just as
in classical mechanics. As an exercise, carry out this variation for the harmonic chain and
verify that you obtain equations equivalent to the wave equation (1.8).!'1 Whether one
prefers to work in a Hamiltonian or Lagrangian formulation of a field theory depends on
the context and is often decided on a case-by-case basis.

Before proceeding further, let us note an interesting feature of the energy functional:
in the limit of an infinitely shallow excitation, d,¢. — 0, the energy vanishes. This
sets the stage for principles 4, hitherto unconsidered, symmetry. The Hamiltonian

10 In field theory literature, it is traditional to denote the momentum by a Greek letter.

11 Variation of the action in ¢ and 7 leads to (invert this to check the result) ¢ g vy = 1 ‘% = ¢.
Differentiation of the first equation in time followed by substitution into the second equatioh
yields the wave equation.
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of an atomic chain is invariant under simultaneous translation of all atom coordi-
nates by a fixed increment: ¢; — ¢5+4, where ¢ is constant. This expresses the fact
that a global translation of the solid as a whole does not affect the internal energy.
Now, the ground state of any specific realization of the solid is defined through a
static array of atoms, each located at a fixed coordinate By = Ia = ¢; = 0. We
say that the above translational symmetry is “spontaneously broken,” i.e.; the solid
has to decide where exactly it wants to rest. However, spontaneous breakdown of
a symmetry does not imply that the symmetry has disappeared. On the contrary,
infinite-wavelength deviations from the pre-assigned ground state come close to
global translations of (macroscopically large portions of) the solid and, therefore,
cost a vanishingly small amount of energy. This is the reason for the vanishing of
the sound-wave energy in the limit d,¢ — 0. It is also our first encounter with
the aforementioned phenomenon that continuous symmetries lead to the formation
of soft, i.e., low-energy, excitations. A much more systematic exposition of these
connections will be given in chapter 5.

To conclude our discussion of the classical harmonic chain, let us consider the
specific heat, a quantity directly accessible in experiment. A rough estimate of
this quantity can be obtained from the microscopic Hamiltonian (1.2). According to
the principles of statistical mechanics, the thermodynamic energy density is given
by

—BH
iifdre fg a —laﬁlnz7
L [dI' e BH L

where g = 1/kgT, Z = [dl'e BH js the Boltzmann partition function, and
the phase space volume element dI' = H?]:1 dRpdPr. (Hereafter, for simplicity,
we set kg = 1.) The specific heat is then obtained as ¢ = dpu. To determine
the temperature dependence of ¢, we can make use of the fact that, upon rescal-
ing of the integration variables, Ry — S~ Y2X;, Pr — B~ '/2Y;, the exponent
BH(R,P) — H(X,Y) becomes independent of temperature (a property that relies
on the quadratic dependence of H on both R and P). The integration measure
transforms as dI' — 5~V H?]:1 dX; dY; = g NdlV. Expressed in terms of the
rescaled variables, one obtains the energy density as w = —L 1z In(3 N K) = o7,
where p = N/L is the density of the atoms and we have made use of the fact that
the constant K = [ dI” e H(X.Y) s independent of temperature. We thus find a
temperature independent specific heat ¢ = p. Notice that ¢ is fully universal, i.e.,
independent of the material constants m and ks determining H. (In fact, we could
have anticipated this result from the equipartition theorem of classical mechan-
ics, i.e., the law that in a system with N degrees of freedom, the energy scales as
U=NT.)

How do these findings compare with experiment? Figure 1.1 shows the specific
heat of the insulating compound EuCoO3.'? At large temperatures, the specific
heat approaches a constant, which is consistent with our analysis. However, at

12 Note that, in metals, the specific heat due to lattice vibrations exceeds the specific heat of the
free conduction electrons for temperatures larger than a few degrees kelvin.
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Fig. 1.1
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Specific heat ¢, of the insulator EuCoO3. At large temperatures, c, approaches a constant
value, as predicted by analysis of the classical harmonic chain. However, for small temper-
atures, deviations from ¢, — const. are substantial. Such deviations can be ascribed to
quantum effects. (Courtesy of M. Kriener, A. Reichl, T. Lorenz and, A. Freimuth.)

lower temperatures, the specific heat shows deviations from ¢ = const. Yet, this
temperature dependence does not reflect a failure of the simplistic microscopic
modeling. Rather, the deviation is indicative of a quantum phenomenon. Indeed,
so far, we have neglected the quantum nature of the atomic variables. In the next
chapter we will discuss how an effective low-energy theory of the harmonic chain
can be promoted to a quantum field theory. However, before doing so, let us pause
to introduce several mathematical concepts that surfaced above, in a way that
survives generalization to richer problems.

1.2 Functional Analysis and Variational Principles

Let us revisit the derivation of the equations of motion associated with the harmonic
chain, Eq. (1.8). Although straightforward, the calculation was neither efficient,
nor did it reveal general structures. In fact, what we did — expanding explicitly
to first order in the variational parameter ¢ — has the same status as evaluating
derivatives by explicitly taking limits: f/(x) = lime_.o 2(f(2 +¢) — f(x)). Moreover,
the derivation made explicit use of the particular form of the Lagrangian, thereby
being of limited use with regard to a general understanding of the construction
scheme. Given the importance attached to extremal principles in the whole of field
theory, it is worthwhile investing some effort in constructing a more efficient scheme
for the general variational analysis of continuum theories. To carry out this program,
we first need to introduce the mathematical tool of functional analysis — the concept
of functional differentiation.

In working with functionals, one is often concerned with how a given functional
behaves under (small) variations of its argument function. In particular, given a
certain function f that we suspect would make a functional F[f] stationary, one
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differential

would like to find out whether the functional remains invariant under variations
f — f+ h, where h is an infinitely small increment function. In ordinary analysis,
questions of this type are commonly addressed by exploring derivatives, i.e., we
need to generalize the concept of a derivative to functionals. This is achieved by
the following definition: a functional F' is called differentiable if

Ff + gl = FIf] = ¢ DFylg] + O(¢*)

where the differential DFY is a linear functional (i.e., one with DF (g1 + go] =
DFylg1] + DFy[go]), € is a small parameter, and g is an arbitrary function. The
subscript indicates that the differential depends generally on the “base argument,”
f. A functional I is said to be stationary on f if, and only if, DF; = 0.

In principle, the definition above answers our question concerning a stationarity
condition. However, to make use of the definition, we still need to know how to
compute the differential DF', and how to relate the differentiability criterion to the
concepts of ordinary calculus. To understand how these questions can be systemati-
cally addressed, it is helpful to return temporarily to a discrete way of thinking, i.e.,
to interpret the argument f of a functional F[f] as the limit N — o~ of a discrete
vector £ = {f,, = f(an),n =1,..., N}, where {x,,} denotes a discretization of the
support of f (cf. the harmonic chain, ¢ <> f). Prior to taking the continuum limit,
N — oo, f has the status of an N-dimensional vector and F'(f) is a function de-
fined over N-dimensional space. After taking the continuum limit, f — f becomes
a function itself and F'(f) — I[f] becomes a functional.

Now, within the discrete picture, it is clear how the variational behavior of func-
tions is to be analyzed. For example, the condition that, for all € and all vectors g,
the linear expansion of F'(f + eg) ought to vanish is simply to say that the ordinary
differential, dF¢, defined through F(f + eg) — F(f) = ¢ - dFe(g) + O(¢?), must be
zero. In practice, one often expresses conditions of this type in terms of a certain
basis. In a Cartesian basis of N unit vectors, e,, n = 1,..., N, dF¢(g) = (VI g),
where ({f, g) = Z:Zl fngn denotes the standard scalar product, and VFy = {d, F'}
represents the gradient, with the partial derivative defined as
F(f) = hml[F(ereen)—F(fﬂ. (1.12)

e—0 ¢

o5

n

From these identities, the differential is identified as
ALe(g) = Y 05, F(£)gn. (1.13)

The vanishing of the differential amounts to the vanishing of all partial derivatives,
dr, F' = 0.

Equations (1.12) and (1.13) can now be straightforwardly generalized to the
continuum limit, whereupon the summation defining the finite-dimensional scalar
product translates to an integral,

N :
€.8) =Y fogn = {f0) = [ do fia)gle).
n=1 3
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chain rule

The analog of the nth unit vector is a d-distribution, e, — ., where §,(2) =
§(z — z'), as can be seen from the following correspondence:

H(F en) me o = Fa)H{f80) = [ flaia (),

Here (€,)m = dpm denotes the mth component of the nth unit vector. The corre-
spondence (unit vector <> d-distribution) is easy to memorize: while components
of e,, vanish, save for the nth component, which equals unity, J, is a function that
vanishes everywhere, save for x where it is énfinite. That a unit component is re-
placed by infinity reflects the fact that the support of the J-distribution is infinitely
narrow; to obtain a unit-normalized integral [ d, the function must be singular.
As a result of these identities, (1.13) translates to the continuum differential,

oF
DFylgl = [ d S Lgta), (1.14)
where the generalization of the partial derivative,
S = lim (Pl + ] = FlA) (1.15)

is commonly denoted by ¢ instead of 0. Equations (1.14) and (1.15) establish the
connection between ordinary and functional differentiation. Notice that we have not
yet learned how to calculate the differential practically, i.e., to evaluate expressions
like Eq. (1.15) for concrete functionals. Nevertheless, the identities above are very
useful, enabling us to generalize more complex derivative operations of ordinary
calculus by straightforward extrapolation. For example, the generalization of the
standard chain rule, d; F(g(f))=>", 0d, F(g) ’g:g(f) Ot gm (f) reads

5P gl )l
gt =[5 9|y @)

Here g[f] is the continuum generalization of an R"™-valued function, g : R® — R™,
a function whose components ¢(y)[f] are functionals by themselves. Furthermore,
given some functional F'[f], we can construct its Taylor expansion as

" zq dx 2
pipi=p0 fan o] oo [T it s
where (exercise)
P |f]
6 f(w2)d f (1)
= lim — (PUf o+ adey + da) = FIf 4 1de] = FIf 4 cadiy] 4 FLJ)

generalizes a two-fold partial derivative. The validity of these identities can be
made plausible by applying the prescription given in table 1.1 to the corresponding
relations of standard calculus. To actually verify the formulae, one has to find the
continuum limit of each step taken in the discrete variant of the corresponding
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local
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Table 1.1 Summary of basic definitions of discrete and continuum calculus.

Entity Discrete Continuum

Argument vector f function f
Function(al) multidimensional function F'(f) | functional F'[f]
Differential dFe(g) DFylg]
Cartesian basis e, S

Scalar product {, ) | > fngn [dx f(x)g(x)
“Partial derivative” | 9y, F'(f) SE[f]/0f(x)

proofs. Experience shows that it takes some time to get used to the concept of
functional differentiation. However, after some practice, it will become clear that
this operation is not only useful but is as easy to handle as conventional partial
differentiation.

We finally address the question how to compute functional derivatives in practice.
In doing so, we will make use of the fact that, in all but a few cases, the functionals
encountered in field theory are of the structure

Si¢) = / drL(6',0,0) (1.16)

Here, we assume the base manifold M to be parameterized by an m-dimensional
coordinate vector z = {x,}. (In most practical applications m = d + 1 and
x = (zg,21,...,24) contains one time-like component z;, = ¢ and d space-like
components zy, k = 1,...,d.*3) We further assume that the field manifold has di-
mensionality n and that ¢?, i = 1,...,n, are the coordinates of the field. Functionals
of this type are called local functionals.

What makes the functional S[¢] easy to handle is that all of its information is
stored in the function £. Owing to this simplification, the functional derivative can
be related to an ordinary derivative of £. To see this, all we have to do is to evaluate
the general definition (1.14) on the functional S:

Sl + e — Slg) — / A £(6 + 0,3+ <0,0) = £(6.900)
AL ar

de | —60" 7.8 9:I e+ O(e?
[ 557 + agaynt| <+ 0
- dx 8_{: ( oL >‘ G + O(€?
[ 2= 55 =0 (g )| 9+ o

where in the last line we have assumed that the field variation vanishes on the
boundary of the base manifold, #|sn = 0. Comparison with Eq. (1.14) identifies
the functional derivative as

St 8£ oc
5i(z)  Ooia \aaw )

13 Following standard convention, we denote space-like components by small Latin indices k =

1,...,d. By contrast, space—time indices are denoted by Greek indices y =0,...,d.
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We conclude that the stationarity of the functional (1.16) is equivalent to the

condition

oL : oL

Ve, ——— =, | ———— ] =0 1.17
wi g (EaE) (L.17)

Equation (1.17) is known as the Euler—Lagrange equation of field theory. In fact,
for d = 0 and xq = ¢, Eq. (1.17) reduces to the familiar Euler—Lagrange equation
for a point particle in n-dimensional space. For d = 1 and (zg,z1) = ({, 2), we get
back to the stationarity equations discussed in the previous section. In the next
section we will apply the formalism to a higher-dimensional problem.

1.3 Maxwell's Equations as a Variational Principle

REMARK This section requires familiarity with the basic notions of special relativity

: : 14
such as the concepts of 4-vectors, Lorents transformations, and covariant notation.

As a second example, let us consider | Clerk M ’

. ames Clerk Maxwell 1831
the archetype of classical field theory, 1879
classical electrodynamics. As well was a Scottish theoretical
as exemplifying the application of con- physicist and mathematician
. . L who made seminal contribu-
tinuum variational principles for a fa-

. ) ) tions to the study of electricity,
miliar problem, this example illustrates magnetism, optics, and the

the unifying potential of the approach: kinetic theory of gases. In par-
That problems as different as the low- ticular, he is credited with the formulation of

. . . . the theory of electromagnetism, synthesizing
lying vibrational modes of a crystalline seemingly unrelated experiments and equations
solid and electrodynamics can be de- of electricity, magnetism and optics into a con-
scribed by almost identical language sistent theory. He is also known for creating the
L . . first true color photograph in 1861!
indicates that we are dealing with a photograp

useful formalism. Specifically, our aim will be to explore how the equations of mo-

tion of electrodynamics, the inhomogeneous Maxwell’s equations,
V-E=p, V xB-oE=j, (1.18)

can be obtained from variational principles. For simplicity, we restrict ourselves to
a vacuum theory, i.e., E = D and B = H. Further, we have set the velocity of light
to unity, ¢ = 1. Within the framework of the variational principle, the homogeneous
equations,

VxE+dB=0, V-B=0, (1.19)

are regarded as ab initio constraints imposed on the degrees of freedom E and B.

INFO As preparation for the following discussion, let us briefly recapitulate the notion
of Lorentz invariance. In this text, we will work mostly in non-relativistic contexts

14 For a summary of the covariant notation used in this text, see the Info block on 524.
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where the time coordinate t and the d space coordinates z; are bundled into a (d + 1)-
dimensional vector @ = o* =z, = (t,2;) and 4 = 0,...,d. In this case, t and x; may be
considered as coordinates of a FEuclidean space. Field theories defined in such spaces are
called Euclidean field theories. By contrast, in relativistic theories we are working in
a space—time continuum with a Minkowski metric

== | (1:20)

\ +1/

Here, too, we denote space-time coordinate vectors by © = 2* = (t, z;). However, now the
— contravariant or “upstairs” — positioning of the index becomes an essential part of the
notation; see Info block on 524 for a summary of the notation conventions of relativity.

Field theories in space—times with a -
Minkowski metric are called Lorentzian Hendrik Antoon Lorentz
field theories. Recall that a linear coor- 1853-1928 .
dinate transformation z* — z'* = A*, 2" was a Dutch physicist who
. . P hared the 1902 Nobel Pri
is a Lorentz transformation if it leaves the shared the obel rze

Minkowski metric invariant: z*n,,xz" = ) Physics -leth Pieter Zeeman
: Nuv in recognition of the extraor-

e n2™ . In the covariant notation of | dinary service they rendered by

relativity, covariant components, x,, are their researches into the influ-

obtained from contravariant components, ence of magnetism upon radiation phenomena.”
2", by index lowering via the Minkowski Lorentz derived the transformation equations
metric, , = 7,7 (this is why the po- subsequently used by Albert Einstein to describe
sitioning is relevant) and the invariance space and time.

condition assumes the form z,2" = 2),2'". Expressed as a condition for the Lorentz

transformations, this reads 7, A" /AY , =5,/

In cases where we are discussiﬁg material which does not depend on the realization of
the metric, covariant notation will be used. The Euclidean field theory is then represented
by the unit metric 1,, = d,..

The representation of Maxwell’s theory as a variational principle is best formulated
in the language of relativistically invariant electrodynamics. As a starting
point, we require (1) a field formulated in a set of suitably generalized coordinates
and (2) its action. Regarding coordinates, the natural choice will be the coefficients
of the electromagnetic (EM) 4-potential, A* = (¢, A), where ¢ is the scalar poten-
tial and A is the vector potential. The 4-potential A is unconstrained and uniquely
determines the fields E and B through the standard equations E = —V¢ — d;A
and B = V x A. (In fact, the set of coordinates A, is “overly free” in the sense
that gauge transformations 4, — A, +3,[', where [ is an arbitrary function, leave
the physical fields invariant. Later we will comment explicitly on this point.) The
connection between A and the physical fields can be expressed in a more symmetric
way by introducing the EM field tensor,'®

15 Notice that the field tensor (1.21) differs from that in many textbooks on electromagnetism
by a sign change, E; <+ —F,;. The reason is that in this text we work with a different sign
convention for the Minkovski metric, <+ —n; see p.524 for a discussion of this point.
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r0 —E —FEy —Ij
Ey 0 —Bs By
Es Bs 0 - By

\E3 —By B 0y

F={Fu}= (1.21)

The relation between fields and potential now reads F,, = d,A, — 8, A,, where
14

xz, = (—t,x) and 9, = (0, V).

EXERCISE Confirm that this relation follows from the definition of the vector potential.
To verify that the constraint (1.19) is automatically included in the definition (1.21), com-
pute the construct 9y F, + 8, Fux + 8, Fu, where (Avp) represent arbitrary but different
indices. This produces four different terms, identified as the left-hand side of Eq. (1.19).
Evaluation of the same construct on F),, = 9,4, — 9, A,, produces zero, by the symmetry
of the right-hand side.

To obtain the structure of the action S[A], we can proceed in different ways. One
option would be to regard Maxwell’s equations as fundamental, i.e., to construct an
action that produces these equations upon variation (by analogy with the situation
in classical mechanics where the action functional is designed to reproduce Newton'’s
equations). However, we can also be a little bit more ambitious and ask whether
the structure of the action can be motivated independently of Maxwell’s equations.
In fact, there is just one principle in electrodynamics that is as fundamental as
Maxwell’s equations: symmetry. A theory of electromagnetism must be Lorentz
invariant, i.e., invariant under relativistic coordinate transformations.

Aided by the symunetry criterion, we can try to conjecture the structure of the
action from three basic assumptions, all independent of Maxwell’s equations. The
action should be invariant under (i) Lorentz transformations, (ii) gauge transfor-
mations, and (iii) it should be simple! The most elementary choice compatible with
these conditions is

S[A] = / d*z (¢ Fuu F* + c3 Aug*), (1.22)

where d*z = dtdzq dzy dzs denotes the measure, 3% = (p,j) the 4-current, and ¢ o
are undetermined constants. Indeed, up to quadratic order in A, (1.22) defines the
only possible structure consistent with gauge and Lorentz invariance.

EXERCISE Using the continuity equation &, j* = 0, verify that the Aj-coupling is gauge
invariant. (Hint: Integrate by parts.) Verify that a contribution like [ A, A* would not be
gauge Invariant.

Having defined a trial action, we can apply the variational principle (1.17) to com-
pute equations of motion. In the present context, the role of the field ¢ is taken
by the four components of A. Variation of the action with respect to A, gives four
equations of motion,

oL oL
2= o (== V=0, p—o0,. .3 1.23
i~ (i) = * e
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where the Lagrangian density is defined by S = [ d*z £. With the specific form of
L, it is straightforward to verify that Ja, £ = co3" and 9,4, )L = —dcy F*Y. We
substitute these building blocks into the equations of motion to obtain 4¢d, F*#* =
cog*. Comparing this with the definition of the field tensor (1.21), and setting
c1/co = —1/4, we arrive at Maxwell’s equations (1.18). The overall multiplicative
constant ¢y (= ¢3/4) can be fixed by requiring that the Hamiltonian density asso-
ciated with the Lagrangian density £ reproduce the known energy density of the
EM field (see problem 1.8.2). This leads to ¢; = —1/4, so that we have identified

1
LA 0, A) = =7 PP + A" (1.24)

as the Lagrangian density of the electromagnetic field. The corresponding
action is given by S[A] = [d'z L(A,,0,4,).

At first sight, this result does not look surprising. After all, Maxwell’s equations
can be found on the first page of most textbooks on electrodynamics. However, our
achievement is actually quite remarkable. By invoking only symmetry, the algebraic
structure of Maxwell’s equations has been established unambiguously. We have thus
proven that Maxwell’s equations are relativistically invariant, a fact not obvious
from the equations themselves. Further, we have shown that Eqs. (1.18) are the
only equations of motion linear in the current-density distribution and consistent
with the invariance principle. One might object that, in addition to symmetry, we
have also imposed an ad hoc “simplicity” criterion on the action S[A]. However,
later we will see that this was motivated by more than mere aesthetics.

Finally, we note that the symmetry-oriented modeling that led to Eq. (1.22) is
illustrative of a popular construction scheme in modern field theory. The symmetry-
oriented approach stands as complementary to the “microscopic” formulation ex-
emplified in section 1.1. Broadly speaking, these are the two principal approaches
to constructing effective low-energy field theories.

> Microscopic analysis: Starting from a microscopically defined system, one
projects onto those degrees of freedom that one believes are relevant for the
low-energy dynamics. Ideally, this “belief” is backed up by a small expansion
parameter stabilizing the mathematical parts of the analysis. Advantages: The
method is rigorous and fixes the resulting field theory completely. Disadvantages:
The method is time consuming and, for complex systems, not even viable.

> Symmetry considerations: One infers an effective low-energy theory on the
basis of only fundamental symmetries of the physical system. Advantages: The
method is fast and elegant. Disadvantages: It is less explicit than the microscopic
approach. Most importantly, it does not fix the coefficients of the different con-
tributions to the action.

Thus far, we have introduced some basic concepts of field-theoretical modeling in
condensed matter physics. Starting from a microscopic model Hamiltonian, we have
illustrated how principles of universality and symmetry can be applied to distill
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effective continuum field theories, capturing the low-energy content of the system.
We have formulated such theories in the language of Lagrangian and Hamiltonian
continuum mechanics, and shown how variational principles can be applied to ex-
tract concrete physical information. Finally, we have seen that field theory provides
a unifying framework whereby analogies between seemingly different physical sys-
tems can be uncovered. In the next section we discuss how the formalism of classical
field theory can be elevated to the quantum level.

1.4 Quantum Chain

Previously, from measurements of the specific heat, we have seen that at low tem-
peratures the excitation profile of the classical atomic chain differs drastically from
that observed experimentally. Generally, in condensed matter physics, low-energy
phenomena with pronounced temperature sensitivity are indicative of a quantum
mechanism at work. To introduce and exemplify a general procedure whereby quan-
tum mechanics can be incorporated into continuum models, we next consider the
low-energy physics of the quantum atoric chain.

The first question to ask is conceptual: how can a model like (1.4) be quantized
in general? Indeed, there exists a standard procedure for quantizing continuum
theories, which closely resembles the quantization of Hamiltonian point mechanics.
Consider the defining equations (1.9) and (1.10) for the canonical momentum and
the Hamiltonian, respectively. Classically, the momentum =(z) and the coordinate
¢(x) are canonically conjugate variables: {w(x), ¢(2')} = —d(x — z’), where {, } is
the Poisson bracket and the d-function arises through continuum generalization of
the discrete identity {Pr, Ry} = =7, I, I' = 1,..., N.'® The theory is quantized
by generalization of the canonical quantization procedure for the discrete pair of
conjugate coordinates (Ry, Py) to the continuum: (i) promote ¢(z) and w(z) to
operators, ¢ — ¢37 7w +— 7, and (ii) generalize the canonical commutation relation
[PLR[/} = —ihé[[/ tO17

#(x), d(z)] = —ihd(z — 2) (1.25)

16 Recall that for conjugate coordinates (R;, P;) the Poisson bracket is defined by

N
NN (PF 99 9F B9 N
IL‘ \OR; 0P; o Py aR]/
=1

{f, 9}

17 Note that the dimensionalities of both the quantum and the classical continuum field are
compatible with the dimensionality of the Dirac é-function, [§(x — 2')] = [length] ™1, i.e.,
[¢(x)] = [¢7] x [length] /2 and similarly for 7.
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Table 1.2 Relations between discrete and continuum canonically
conjugate variables or operators.
| Classical | Quantum
Discrete {P]7RI/} = —4rp [pbl%l/} = —iRdrp
Continuum | {7 (x), ¢(z)} = —d(z — z') | [#(x), d(z')] = —ikd(z — =)
q“a“;‘;g Operator-valued functions like ¢ and # are generally referred to as quantum fields.

For clarity, the relevant relations between canonically conjugate classical and quan-
tum fields are summarized in Table 1.2.

INFO By introducing quantum fields, we have departed from the conceptual framework
laid out on page 8: being operator-valued, the quantized field no longer represents a
mapping into an ordinary differentiable manifold ¥ It is thus legitimate to ask why we
bothered to give a lengthy exposition of fields as “ordinary” functions. The reason is that,
in the not too distant future, after the framework of functional field integration has been
introduced, we will return to the comfortable ground of the definition on page 8.

Employing these definitions, the classical Hamiltonian density (1.10) becomes the
quantum operator

P 1 kga? .,
B, 7) = 5 + ;;—(f.i_,.q_-'})‘. (1.26)

The Hamiltonian above represents a quantum field-theoretical formulation of the
problem, but not yet a solution. In fact, the development of a spectrum of methods
for the analysis of quantum field-theoretical models will represent a major part of
this text. At this point our objective is merely to exemplify the way in which physical
information can be extracted from models like (1.26). As a word of caution, let us
mention that the following manipulations, while mathematically straightforward,
are conceptually deep. To disentangle different aspects of the problem, we will first
concentrate on the plain operational aspects. Later in this section, we will reflect
on “what has really happened.”

As with any function, operator-valued functions can be represented in a variety
of ways. In particular, they can be subjected to Fourier transformation,

do _ 1t ) [d@) 1 i |
{ﬁ: =i J, doe & {ﬁ(x)7 17?(@ :mzk:e{ik {ﬁ:7 (1.27)

where Y, represents the sum over all Fourier coefficients indexed by the quantized
momenta k = 2xm/L, m € Z (not to be confused with the operator momentum
7). Note that the real classical field ¢(z) quantizes to a hermilian quantum field
&(x), implying that o, = éik (and similarly for 7;). The corresponding Fourier
representation of the canonical commutation relations reads (exercise)

[ i) = Ok (1.28)

18 At least if we ignore the mathematical subtlety that a linear operator can also be interpreted
as an element of a certain manifold.
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When expressed in the Fourier representation, making use of the identity,

6k+k/,0

rL

oL
Jr/ dx (8I¢5)2 = yj(_zk$k)(_zk¢?k/) % / dxe...i(?-;+k').i
(3] J-J“ Ja

Z:. kz&k&*]ﬁ
I

together with a similar relation for [ OL dz #?, the Hamiltonian

H= j;)L dz H($, %) assumes the near diagonal form,

T,

) S W
H—= Z ‘%Wkwk + 5 “ORP—k|
o :

(1.29)

where wy, = v|k| and v = a+/ks/m denotes the classical sound

wave velocity. In this form, the Hamiltonian can be identi-

fied as nothing but a superposition of independent quantum

harmonic oscillators.'® This result is easy to understand

(see the figure). Classically, the system supports a discrete

set of wave excitations, each indexed by a wave number &k = 27m/L. (In fact, we
could have performed a Fourier transformation of the classical fields ¢(z) and = ()
to represent the Hamiltonian function as a superposition of classical harmonic os-
cillators.) Within the quantum picture, each of these excitations is described by
an oscillator Hamiltonian with a k-dependent frequency. However, it is important
not to confuse the atomic constituents, also oscillators (albeit coupled), with the
independent collective oscillator modes described by H.

The description above, albeit perfectly valid, still suffers from a deficiency: the
analysis amounts to explicitly describing the effective low-energy excitations of the
system (the waves) in terms of their microscopic constituents (the atoms). Indeed
the different contributions to H correspond to details of the microscopic oscillator
dynamics of individual k-modes. However, it would be much more desirable to de-
velop a picture where the relevant excitations of the system, the waves, appear as
fundamental units without an explicit account of the underlying microscopic de-
tails. (As with hydrodynamics, information is encoded in terms of collective density
variables rather than through individual atoms.) As preparation for the construc-
tion of this improved formulation, let us temporarily focus on a single oscillator
mode.

1.4.1 Revision of the quantum harmonic oscillator

Consider a standard harmonic oscillator (HO) Hamiltonian

82 2
~ P mwe o
H=—+ z°.

2m 2

19 The only difference between Eq. (1.29) and the canonical form of an oscillator Hamiltonian
H = p?/2m + mw?2?/2 is the presence of the subindices k and —k (a consequence of the
relation, qZ;T = gf),k) As we will show shortly, this difference is inessential.
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The first few energy levels ¢, = w(n + 1/2) and the associated Hermite polynomial
eigenfunctions are displayed schematically in the figure. (To simplify the notation we
henceforth set i = 1.) The HO has the status of a single-particle problem. However,
the equidistance of its energy levels suggests an alternative interpretation: a given
state €, may be thought of as an accumulation of n

quasi- " el . . ”\%\L e

particles elementary entities, or quasi-particles, each hav- \ / .

ing energy w. What can be said about the features /\ \7/ 00
of these new objects? First, they are structureless, - O -0-0-0-

e., the only “quantum number” identifying the
quasi-particles is their energy w (since otherwise n-particle states formed of the
quasi-particles would not be equidistant in energy). This implies that the quasi-
particles must be bosons. (The same state w can be occupied by more than one
particle.)

This idea can be formulated in quantitative terms by employing the formalism of
ladder operators, in which the operators p and & are traded for the pair of hermitian
adjoint operators & = \/mw/2(2+ (i/mw)p) and &' = \/mw/2(& — (i/mw)p). Up to
a factor of 4, the transformation (%, p) — (4, ‘L) is canonical, i.e., the new operators
obey the canonical commutation relation

a,a'] = 1. (1.30)
More importantly, the a-representation of the Hamiltonian is very simple, viz.
O =w(@a+1/2), (1.31)

as can be checked by direct substitution. Suppose, now, that we had been given
a zero-eigenvalue state |0) of the operator a: 4|0) = 0. As a consequence, H|0) =
(w/2)|0), i.e., |0} is identified as the ground state of the oscillator.?® The hierarchy
of higher-energy states can then be generated by setting |n) = (1/v/n!) (a1)?|0).

EXERCISE Using the canonical commutation relation (1.30), verify that H|n) = w(n +
1/2)|n) and {n|n) = 1.

Formally, the construction above represents yet another way of constructing eigen-
states of the quantum HO. However, its real advantage is that it naturally affords a
many-particle interpretation. To this end, let us declare that |0) represents a “vac-
uum” state, i.e., a state with zero particles. Next, imagine that 4'|0) is a state with
a single featureless particle (the operator &' does not carry any quantum number
labels) of energy w. Similarly, (47)"|0) is considered as a many-body state with n
particles; i.e., within the new picture, 4’ is an operator that “creates” particles.
The total energy of these states is given by w x (occupation number). Indeed, it is

20 Switching to a real space representation of the ground state equation, verify that its solution

is the familiar ground state wave function (2|0) = \/mw/2we*mwwg/2. can be verified by
explicit construction. As an exercise, switching to a real space representation of the ground
state equation, () = {n|x}|(mue)/“o + x| and verify that its solution is the familiar ground state
wave function Z/mew,aiz/mw/\ = {0|x).
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straightforward to verify (see the exercise above) that aa|n) — n|n), i.e., the Hamil-
tonian effectively counts the number of particles in the state. While at first sight,
this may look unfamiliar, the new interpretation is internally consistent. Moreover,
it achieves what we asked for above: it allows an interpretation of the HO states as
a superposition of independent structureless entities.

INFO The representation above shows that we can think about individual quantum
problems in complementary pictures. This principle finds innumerable applications in
modern condensed matter physics. The existence of different interpretations of a given
system is by no means heterodox but, rather, reflects a principle of quantum mechanics:
there is no “absolute” system that underpins the phenomenology. The only thing that
matters is observable phenomena. For example, we will see later that the “fictitious” quasi-
particle states of oscillator systems behave as “real” particles, i.e., they have dynamics,
can interact, can be detected experimentally, etc. From a quantum point of view, these
objects can be considered as “real” particles.

1.4.2 Quasiparticle interpretation of the quantum chain

Returning to the oscillator chain, one can transform the Hamiltonian (1.29) to a
form analogous to (1.31) by defining the ladder operators?!

. e (o i it xfm—wk T T, o
ag 5 <¢k+mw 7Tk>, ak_\a. 5 (¢k 7rk>. (1.32)

k mwi

With this definition, applying the commutation relations (1.28), one finds that the
ladder operators obey commutation relations generalizing Eq. (1.30):

[ag, al,] = Grr, 4y, 4] = [a},4],] = 0. (1.33)

Expressing the operators (o?;c7 71) in terms of  {e
(dk75l;)7 it is now straightforward to bring
the Hamiltonian into the quasi-particle os-
cillator form (exercise)

0= welafa +1/2). (1.34)
k

0008 wuwy
wli I

1 Y
T T

k1 ko ks k

Equations (1.34) and (1.33) represent the final result of our analysis. The Hamilto-
nian A takes the form of a sum of harmonic oscillators with characteristic frequen-
cies wy. In the limit & — 0 (i.e., long wavelengths), we have w, — 0; excitations
with this property are said to be massless.

An excited state of the system is indexed by a set {n;} = (n1,n.,...) of quasi-
particles with energy {w;} (see the figure). Physically, the quasi-particles of the
21 As to the consistency of these definitions, recall that Qf;;i = Qf;—k and ﬁ';i = _;. Under these

conditions, the second of the definitions in Eq. (1.32) follows from the first upon taking the
hermitian adjoint.
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Fig. 1.2

phonon
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Phonon spectra of the transition metal oxide SroRuO, along different axes in momentum
space. Notice the approximate linearity of the low-energy branches (acoustic phonons)
at small momenta ¢g. Superimposed at high frequencies are various branches of optical
phonons. (Source: Courtesy of M. Braden, University of Cologne.)

harmonic chain are identified with the phonon modes of the solid. A comparison
with measured phonon spectra (fig. 1.2) reveals that, at low momenta, we have
wp ~ |k| in agreement with our simplistic model (in spite of the fact that the
spectrum was recorded for a three-dimensional solid with a nontrivial unit cell —
universality!). While the linear dispersion was already a feature of the classical
sound wave spectrum, the low-temperature specific heat reflected non-classical be-
havior. 1t is left as an exercise (problem 1.8.3) to verify that the quantum nature of
the phonons resolves the problem with the low-temperature specific heat discussed
in section 1.1.2. (For further discussion of phonon modes in atomic lattices we refer
to chapter 2 of the text by Kittel.??)

EXERCISE Classically, the ground state of the atomic chain comprises a regular array of
ions. In the quantum chain, the distance between neighboring ions fluctuates even in the
ground state, |0). Using the results above, show that

(Ollo() — 9(0)7]0) = - 3 =<eth)

In the limit, || 3> a, show that (0][¢(x) — $(0)]?|0} ~ (1/av/E.m)1n|z/a|. What does this
imply for the stability of crystalline order in the one-dimensional chain?

1.5 Quantum Electrodynamics

The generality of the procedure outlined above suggests that the quantization of the EM
field (1.24) proceeds in a manner analogous to the phonon system. However, there are a
number of practical differences that make this task harder (but also more interesting!).
First, the vectorial character of the potential, in combination with the condition of rela-
tivistic covariance, gives the problem a nontrivial internal geometry. Closely related, the
gauge freedom of the vector potential introduces redundant degrees of freedom whose re-
moval on the quantum level is not easily achieved. For example, quantization in a setting
where only physical degrees of freedom are kept — i.e., the two polarization directions of
the transverse photon field — is technically cumbersome, the reason being that the rele-
vant gauge condition is not relativistically covariant. In contrast, a manifestly covariant

22 C. Kittel, Quantum Theory of Solids, 2nd edition (Wiley, 1987).
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scheme, while technically more convenient, introduces spurious “ghost degrees of freedom”
that are difficult to remove. To circumvent a discussion of these issues, we will not discuss
the problem of EM field quantization in detail.?® On the other hand, the photon field
plays a much too important role in condensed matter physics for us to drop the problem
altogether. We will therefore aim at an intermediate exposition, largely insensitive to the
problems outlined above, but sufficiently general to illustrate the main principles.

1.5.1 Field quantization

Consider the Lagrangian of the matter-free EM field, . = —li fdsm Fo, F77 . As a first
step towards quantization of this system, a gauge choice must be made. In the absence of
charge, a particularly convenient choice is the Coulomb gauge V - A = 0, with scalar
component ¢ = 0. (Keep in mind that, once a gauge has been set, we cannot expect
further results to display “gauge invariance”) Using the gauge conditions, one may verify
that the Lagrangian assumes the form

I %/d% [(0:A) — (v x A)"]. (1.35)
By analogy with the atomic chain, we would now proceed to “decouple” the theory by
expanding the action in terms of eigenfunctions of the Laplace operator. The difference to
our previous discussion is that we are dealing (i) with the full three-dimensional Laplacian
(instead of a simple second derivative) acting on (ii) the vector quantity A that is (iii)
subject to the constraint V - A = 0. It is these aspects that lead to the complications
outlined above.

We can circumvent these difficulties by considering cases where the geometry of the
system reduces the complexity of the eigenvalue problem. This restriction is less artifi-
cial than it might appear. For example, in anisotropic electromagnetic waveguides, the
solutions of the eigenvalue equation can be formulated as?*

— V'R (x) = MR (x), (1.36)

where k£ € R is a one-dimensional index and the vector-valued functions Ry are real and
orthonormalized: f Ri Ry = 4.1 . The dependence of the eigenvalues Ay on k is governed
by details of the geometry (see Eq. (1.38) below) and need not be specified for the moment.

INFO An electromagnetic waveguide is a quasi-one-dimensional cavity with metallic
boundaries (see fig. 1.3). The practical use of waveguides is that they are good at con-
fining EM waves. At large frequencies, where the wavelengths are of order meters or less,
radiation loss in conventional conductors is high. In this frequency domain, hollow con-
ductors provide the only practical way of transmitting radiation. Field propagation inside
a waveguide is constrained by boundary conditions. Assuming the walls of the system to
be perfectly conducting,

EH (Xb) — 07 BL(Xb) = 07 (1.37)

where X, is a point at the system boundary and E| (B1) is the parallel (perpendicular)
component of the electric (magnetic) field.

23 Readers interested in learning more about EM field quantization are referred to, e.g., L. H.
Ryder, Quantum Field Theory (Cambridge University Press, 1996).

4 More precisely, one should say that Eq. (1.36) defines the set of eigenfunctions relevant for the
low-energy dynamics of the waveguide. More-complex eigenfunctions of the Laplace operator
exist, but they carry much higher energy.

2
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Fig. 1.3

field modes

EM waveguide with rectangular cross-section. The structure of the eigenmodes of the field
is determined by the boundary conditions at the walls of the cavity.

Regarding the problem of field quantization, let us for concreteness consider a cavity
with uniform rectangular cross-section L, X L.. To conveniently represent the Lagrangian
of the system, we need to express the vector potential in terms of eigenfunctions Ry that
are consistent with the boundary conditions (1.37). A complete set of functions fulfilling
this condition is given by

c1 cos(kyx) sin(ky,
Ri = N | e2sin(k
cgsin(k

y)sin(k.2)\
zx) cos(kyy)sin(k.z) | .
»x) sin(k,y) cos(k. z)

Here, k; = n;m/L; with positive integer n;, Ay is a factor normalizing Ry to unit mod-
ulus, and the coefficients ¢; are subject to the condition cik, + ezk, + c3k. = 0. In-
deed, it is straightforward to verify that a general superposition of the type A(x.t) =
> (R (x), with o () € R, is divergenceless and generates an EM field compat-
ible with (1.37). Substitution of Ry into Eq. (1.36) identifies the eigenvalues as A\ =
k2 + kfj + k2. In the physics and electronic engineering literature, eigenfunctions of the
Laplace operator in a quasi-one-dimensional geometry are commonly described as modes.
As we will see shortly, the energy of a mode (i.e., the Hamiltonian evaluated on a specific
mode configuration) grows with |Ak|. In cases where one is interested in the low-energy
dynamics of the EM field, only configurations with small |\ | are relevant. If we consider
a massively anisotropic waveguide with L. < L, < L., the modes with smallest || are
those with k. =0, k, = 7/L,, and k, = k < L. },. (Consider why it is not possible to set
both k, and k. to zero.) With this choice,

e = k2 + (n/Ly)? (1.38)

and a scalar index k suffices to label both eigenvalues and eigenfunctions Rx. A schematic
of the spatial structure of the functions R is shown in fig. 1.3. The dynamical properties
of these configurations will be discussed in the text.

Returning to the problem posed by Eq. (1.35) and (1.36), one can expand the vector
potential in terms of eigenfunctions Ry as A(x,t) =3, ax(t)Ri(x), where the sum runs
over all allowed values of the index parameter k. (In a waveguide, k = wn/L where n € IN
and L is the length of the guide.) Substituting this expansion into FEq. (1.35) and using
the normalization properties of Ry, we obtain L = %Zk (ai — A;mzi), i.e., a decoupled
representation where the system is described in terms of independent dynamical systems
with coordinates «x. From this point on, quantization proceeds along the lines of the
standard algorithm, as follows.

First, define momenta through the relation 7, = 04, L = &x. This yields the Hamil-
tonian H = %Zk(ﬂ'kﬂ'k + Aragag). Next, quantize the theory by promoting fields to
operators, ay — &y and T, — 7g, and declare that [y, &p/] = —idgrs. The quantum
Hamiltonian operator, again of harmonic oscillator type, then reads
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= %Z(ﬁkm +wf@k07k>7

k

where w? = A\ Following the same logic as that marshaled in section 1.4.2, we then define
ladder operators

ap = A_V_/%_k (élk + ;ﬁ'k\ s al = 4__/%7 (OAlk — —Lﬁk\

wr / v

whereupon the Hamiltonian assumes the now familiar form
= wi(afa, +1/2). (1.39)
k

For the specific problem of the first excited mode in a waveguide of width L,, w, =
(k2 + (7/ L)Y % Equation (1.39) represents our final result for the quantum Hamiltonian
of the EM waveguide. Before concluding this section let us make a few comments on the
structure of the result.

> The construction above parallels almost perfectly our previous discussion of the har-
monic chain.?® The structural similarity between the two systems finds its origin in the
fact that the free field Lagrangian (1.35) is quadratic and, therefore, bound to map onto
an oscillator-type Hamiltonian. That we obtained a simple one-dimensional superpo-
sition of oscillators is due to the boundary conditions specific to a narrow waveguide.
For less restrictive geometries, e.g., free space, a more complex superposition of vecto-
rial degrees of freedom in three-dimensional space would have been obtained. However,
the principle that the free EM field is mapped onto a superposition of oscillators is
independent of geometry.

> Physically, the quantum excitations described by Eq. (1.39) are, of course, the photons
of the EM field. The unfamiliar appearance of the dispersion relation wy, is, again, a
peculiarity of the waveguide geometry. However, in the limit of large longitudinal wave
numbers, k = L;l, the dispersion approaches the form wy ~ |k|, i.e., the relativistic
dispersion of the photon field. Also, notice that, owing to the equality of the Hamilto-
nians (1.34) and (1.39), all that has been said about the behavior of the phonon modes
of the atomic chain carries over to the photon modes of the waveguide.

> As with their phononic analog, the oscillators described by Eq. (1.39) exhibit zero-
point fluctuations. It is a fascinating aspect of quantum electrodynamics that these
oscillations, caused by quantization of the ultra-relativistic photon field, have various
manifestations in non-relativistic physics:

INFO Without going into detail, let us mention some manifestations of vacuum fluc-
tuations in the phenomenology of condensed matter systems. One of the most
important phenomena induced by vacuum fluctuations is the Casimir effect.?® Two par-
allel conducting plates embedded into the vacuum exert an attractive force on each other.
This phenomenon is not only of conceptual importance — it demonstrates that the vacuum
is “alive” — but also of practical relevance. For example, the force balance of hydrophobic

25 Technically, the only difference is that, instead of index pairs (k,—k), all indices (k, k) are
equal and positive. This can be traced to the fact that we have expanded in terms of the real
eigenfunctions of the closed waveguide instead of the complex eigenfunctions of the circular
oscillator chain.

26 H. B. G. Casimir and D. Polder, The influence of retardation on the London—van der Waals
forces, Phys. Rev. 73, 360 (1948); H. B. G. Casimir, On the attraction between two perfectly
conducting plates, Proc. Kon. Nederland. Akad. Wetensch. 51, 793 (194%).
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forces

suspensions of particles of size 0.1 — 1 um in electrolytes is believed to be strongly influ-
enced by Casimir forces. Qualitatively, the origin of the Casimir force is readily understood.
In common with their classical analog, quantum photons exert a certain radiation pres-
sure on macroscopic media. The difference to the classical case is that, due to zero-point
oscillations, even the quantum vacuum is capable of creating radiation pressure. For a
single conducting body embedded into the infinite vacuum, the net pressure vanishes by
symmetry. However, for two parallel plates, the situation is different. Mode quantization
arguments similar to those used in the previous section show that the density of quantum
modes between the plates is lower than in the semi-infinite outer spaces. Hence, the force
(density) created by outer space exceeds the counter-pressure from the inside; the plates
“attract” each other.

A second context where vacuum fluctuations play a role is the physics of van der Waals
forces. Atoms or molecules attract each other by a potential that, at small separation 7,
scales as 7~ 9. While a detailed discussion of the unusually high power at which this force
decays would lead us too far astray, the essence of the argument is as follows. The zero-
point fluctuations of the EM field may induce a dipole moment in atoms, which in turn
generate a dipole—dipole interaction between close-by atoms, whose detailed evaluation®”
leads to the ® power—law dependence. Seen in this way, geckos and spiders owe their
ability to climb walls to a deeply microscopic principle of quantum field theory.?®

1.6 Noether's Theorem

1t is a basic paradigm of physics that every continuous symmetry entails a conservation
law.?? Conservation laws, in turn, simplify greatly the solution of any problem, which is
why one gets acquainted with the correspondence (symmetry <> conservation law) at a
very early stage of the physics curriculum, e.g., the connection between rotational symme-
try and the conservation of angular momentum. However, it is not trivial to see (at least
within the framework of Newtonian mechanics) that the former entails the latter. One
needs to know what to look for (viz. angular momentum) to identify the corresponding
conserved quantity (rotational invariance). A major advantage of Lagrangian over Newto-
nian mechanics is that it provides a tool — Noether’s theorem — to automatically identify
the conservation laws generated by the symmetries of classical mechanics.

What happens when one advances from point to continuum mechanics? Clearly, multi-
dimensional continuum theories leave more room for the emergence of complex symmetries
but, even more so than in classical mechanics, we are in need of a tool to identify the
corresponding conservation laws.

27 P. W. Milonni, The Quantum Vacuwm (Academic Press, 1994).

2% The feet of geckos and spiders are covered with bushels of ultra-fine hair (about three orders of
magnitude thinner than human hair). The tips of these hairs come close enough to the atoms
of the substrate material to make the van der Waals force sizable. lmpressively, this mechanismn
provides a force of about two orders of magnitude larger than that required to support a spider’s
full body weight. Both spiders and geckos have to “roll” their feet off the surface to prevent
getting stuck by the enormous power of the forces acting on their many body hairs!

29 Before exploring the ramifications of symmetries and conservation laws for fields, it may be

instructive to recapitulate Noether’s theorem in the context of classical point-particle mechanics

— see, e.g., L. D. Landau and E. M. Lifshitz, Classical Mechanics (Pergamon, 1960).
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Fortunately, it turns out that Noether’s
theorem of point mechanics affords a more Amalie E. Noether 1882-1035

or less straightforward generalization to was a German mathematician
higher dimensions. Starting from the gen- known for her ground-breaking
eral form of the action of a continuum contributions to abstract al-
system, Eq. (1.16), the continuum version gebra and theoretical physics.

of Noether’s theorem will be derived be- Alive at a time when women
low. In that we do not refer to a specific were not supposed to attend
physical problem, our discussion will be college preparator}{ schools, )
somewhat dry. This lack of physical con- she was often forbldc.ien from lecturing under

fext is, however, more than outweighed by her own name. Despite these obstacles, Noether

S became one of the greatest algebraists of the
the general applicability of the result. The century. Described by Albert Einstein as the

generalized form of Noether’s theorem can most significant creative mathematical genius
be — without much further thought — ap- thus far produced since the higher education of
plied to generate the conservation laws of women began, she revolutionized the theories of
practically any physical symmetry. In this rings, fields and algebras. In physics, Noether's
section, we will illustrate the application theorem explains the fundamental connection

between symmetry and conservation laws. In
1933, she lost her teaching position owing to
her being a Jew and a woman, and was forced
out of Germany by the Nazis.

of the formalism on the simple (yet impor-
tant) example of space-time translational
invariance. A much more intriguing case
study will be presented in section 3.6 af-
ter some further background of quantum field theory has been introduced.

1.6.1 Symmetry transformations

The symmetries of a physical system are manifest in the invariance of its action un-
der certain transformations. Mathematically, symmetry transformations are described by
two pieces of input data: first, a mapping f : M — M, z — f(z) = 2'(z) that

assigns to any point of the base manifold some
“transformed” point; second, the field configura-
tions themselves may undergo some change, i.e.,
there may be a mapping (¢ : M — T) — (¢ :
M — T) that defines a transformed “new field” ¢’
in terms of the “old” ¢. In principle, there is unlim-
ited freedom in defining such transformations. How-
ever, for most applications it is sufficient to consider

F(p(x)), (1.40)

where [ is a function: the new field in the trans-
formed space—time coordinates is obtained as a
function of the old field at the original coordinates.
With " = f(x), this correspondence may be equiv-
alently represented as ¢'(z) = F(¢(f (x))). How-
ever, irrespective of the representation, it is important to understand that the two opera-
tions, o + 2’ and ¢ — ¢’ may, in general, be independent of each other. The working of
such transformations is best illustrated on a few examples:

The invariance properties of a theory under translations in space—time are probed by
the mapping ©' = = + a, a = const., ¢'(x') = ¢(z). This describes the translation of
a field by a fixed offset a in space-time (see the figure). The system is translationally
invariant if S[¢] = S[¢’] for all fields ¢. As a second example, let us probe the rotational
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symmetry, ' = Rx, where R € O(m) is a rotation of Euclidean space-time. In this
case it would, in general, be unphysical to define ¢'(z') = ¢(z). To illustrate this point,
consider the example of a vector field in two dimensions n = m = 2 (see the figure). A
properly rotated field configuration is defined by ¢'(z') = R¢(z), i.e., the field amplitude
actively participates in the operation. In fact, one does often consider symmetry operations
where only the fields are transformed while the base manifold is left untouched.® For
example, the intrinsic®! rotational invariance of a magnet is revealed by setting ' = =,
m/'(z) = R-m(z), where the vector field m describes the local magnetization. Conversely,
a scalar field ¢ € R will transform as ¢(z') = ¢(x). These examples show how the extrinsic
effects of rotation, =z — Rz, and the intrinsic effects, ¢ — R¢, may appear in all sorts of
combinations.

To understand the consequences of a symmetry transformation, it is sufficient to con-
sider its infinitesimal version. (Note that any finite transformation can be generated by
successive application of infinitesimal transformations.) Consider the two mappings

- =z" + d,, 2" |w=owa(z),
¢'(x) = ¢"(2) = ¢"(z) + wa(2) Fi(¢(2)), (1.41)

expressing the change of fields and coordinates to first order in a set of parameter functions
wq characterizing the transformation. (For a three-dimensional rotation, (w1, ws,ws) =
(¢,0,1) would be the rotation angles, ete.) The functions I/ — which need not depend lin-
early on the field ¢, and may explicitly depend on the coordinate = — define the incremental
change ¢'(z') — ¢(x).

We now ask how the action (1.16) changes under the transformation (1.41), i.e., we
wish to compute the difference

A8 = [ da' £ @), (@) = [ dn £06°(2), 01 (),

where dz is a shorthand for the integration measure over m coordinates z. Inserting
Eq. (1.41), using the identity d,vx'" = &%, + Oy (wedh,, o), together with®? the Jacobian
matrix det(dz'/9r) = 1 + Dy (Wabur, 2*) + O(w?), one obtains

AS ;*Xclas (1 4+ Fpi (Wa B " NL(($" + w)aFi, (6,7 = Fore(Wa By @)D, (¢ + waF2))

/ di £(¢' (), 0, 6 (2)).

So far, we did not use the fact that the transformation was actually meant to be a sym-
metry transformation. By definition, we are dealing with a symmetry if, for constant
parameters w, — a uniform rotation or global translation, etc. — the action difference AS
vanishes. In other words, we may ignore terms in the expansion of AS which do not contain
derivatives acting on w,, as they will not be present in the case where w, parameterizes a
symmetry. The straightforward expansion of AS to leading order in d,w, then leads to

AS T _ / dz §**(2)0,wa(z), (1.42)

30 For example, the standard symmetry transformations of classical mechanics, ¢(t) — ¢'(¢),
belong to this class: the coordinate vector of a point particle, ¢ (a “field” in 0 + 1 space-time
dimensions) changes while the “base” (time t) does not.

31 “Intrinsic” means that we rotate just the spins but not the entire system (as we did in our
second example, rotational symmetry).

32 Note that det(dz'/8z) = exp trIn(dz’ /8x) ~ exp|Bun(waBu, 7)] 2 1+ Opu(we b, 2#). (Exer-
cise: Show that det A = exptrln A, where A is a linear operator.)
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where the components of the so-called Noether currents j° are given by

oL
S @) (1.43)

4 oL i A
s —— ¢ — L, | —
7= s )~

For a general field configuration, not much can be said about the Noether current (no
matter whether or not the theory possesses a symmetry). However, if the field ¢ obeys the
classical equations of motion and the theory is symmetric, the Noether current is locally
conserved,

w=0

8,7 =0 (1.44)

This follows from the fact that, for a solution ¢ of the Euler-Lagrange equations, the
linear variation of the action in any parameter must vanish. Specifically, integration by
parts in Eq. (1.42) leads to AS = AS[¢] = [(9,7"")w,. The vanishing of this expression
for arbitrary solutions ¢ and arbitrary w requires FEq. (1.44). (As an exercise in partial
differentiation, try to derive this identity directly from Eq. (1.43). You will need to use
the Euler-Lagrange equations Eq. (1.17).) It is very important to keep in mind that
the conservation law holds only for solutions of the equations of motion. Therefore, in
summary, we have Noether’s theorem:

A continuous symmetry entails a classically conserved current.

We call the current “classically conserved” because, as we will discuss later, in section 9.2,
quantum fluctuations around classical solutions may spoil the conservation of currents via
the so-called quantum anomaly.

The local conservation of a current entails the existence of a globally conserved “charge.”
For a theory with d + 1 space-time coordinates = = (x° x*) = (t,z'), integration over
the space-like directions, and application of Stokes’ theorem (exercise), gives d:Q° = 0,
where??

Q1) = /dda: 30, ") (1.45)

is the conserved charge and we have assumed that the current density vanishes at spatial
infinity.

Notice that nowhere in the discussion above have we made any assumption about
the internal structure of the Lagrangian. In particular, all results apply equally to the
Minkowskian and the Euclidean formulations of the theory.

1.6.2 Examples of symmetries

Condensed matter systems are often translationally invariant, in space and/or in time.
Translational invariance may hold down to the microscopic level, where it assumes the
form of a discrete symmetry under translation by multiples of the lattice spacing, or it may
be emergent only at larger length scales. For example, the fluctuating spin configurations of
a paramagnet look locally random, however the system becomes translationally invariant
on average over mesoscopic volumes containing many spins. In either case, translational
invariance appears as a continuous symmetry of the effective theories relevant to the low-
energy physics.

The corresponding symmetry transformation is defined by % = x* +a*, ¢'(z') = ¢(z).
The infinitesimal version of this transformation reads z'# = x* + w", where we have

33 Notice that the integral involved in the definition of Q runs only over spatial coordinates.
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identified the parameter index a with the space—time index . Noether’s current, which in
the case of translational invariance is called the energy—momentum tensor or stress—
energy tensor, is given by 7%, :

ar
99,97

The conserved “charges” corresponding to this quantity are
oL ;
P, = / ( a o' —3" L),
\ 9(90¢")

where P, is the energy and P;, 2 = 1....,d, the total momentum carried by the system.

TE, = S0 — 5", L (1.46)

EXAMPLE FEvaluation of the zeroth component T% for the Lagrangian (1.4) of the
harmonic chain yields

TO:

(3 9)°,

which is identical to the Hamiltonian density of Eq. (1.11), with 7 = m¢. For a discus-
sion of the momentum density of the chain and of the energy—momentum tensor of the
electromagnetic field we refer to problem 1.8.4.

Systems positioned at the critical point of a second-order
phase transition are scale invariant. Here, the system
looks the same at all length scales, a feature formally
expressed as symmetry under dilatation, x — Ax. The
ramifications of this symmetry in field theories will be
the central theme of chapter 6. However, at the critical
point, systems generally show an even larger set of sym-
metries, known as conformal symmetries. By definition, conformal transformations
of space—time are angle-preserving in that they map curves intersecting at a certain
angle onto image curves intersecting at the same angle. For example, the figure shows
the conformal image of a rectangular grid. Besides dilatations, translations and rotations
have this feature. The final, and less obviously angle-preserving, representatives of con-
formal transformations in general dimensions are the special conformal transformations
rH (2 — b 2?) /(1 — 20,b" + b?2?). Geometrically, these are a composition of inver-
sion ¥ — " /22 followed by translation by b and then by another inversion. The set of
all these transformations defines the conformal group, a finite-dimensional symmetry
group. (Exercise: How many parameters define the group??*)

Where they exist, conformal symmetries have far-reaching consequences for the physical
properties of a theory. This principle is driven to an extreme in the special and important
case of two-dimensional conformal invariance (i.e., the physics of critical two-dimensional
systems). The reason is that the two-dimensional conformal group is actually infinite
dimensional. Referring to appendix section A.3 for a discussion of two-dimensional confor-
mal invariance, here we note only that the existence of infinitely many symmetries, and as
many conserved currents, suffices to almost fully characterize two-dimensional conformal
theories. The mechanisms by which this happens are discussed in the appendix, which is
perhaps best read at a later stage after more concepts of field theory have been introduced.

Translational and conformal symmetry are examples of space—time symmetries. Later,

34 g1 +pile+pl=p+z/(1=plp+p-+1 for dilation, translation, rotations, and special
transformation, respectively.
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Lorentz
gauge

when we have introduced field manifolds of richer geometric structure, we will encounter
numerous realizations of internal symmetries.

1.7 Summary and Outlook

In this chapter we have introduced the general procedure whereby classical continuum
theories are quantized. Employing the elementary harmonic oscillator as a example, we
have seen that the Hilbert spaces of these theories afford different interpretations. Of par-
ticular use is a quasi-particle picture in which the collective excitations of the continuum
theories acquired the status of elementary particles. Both examples discussed in this text,
the quantum harmonic chain and free quantum electrodynamics, lead to exactly solvable
free field theories. However, it takes little imagination to foresee that few continuum
theories will be as simple. Indeed, the exact solvability of the atomic chain would have
been lost had we included higher-order contributions in the expansion in powers of the lat-
tice displacement. Such terms would hinder the free wave-like propagation of the phonon
modes. Put differently, phonons would begin to scatter, i.e., interact. Similarly, the free
status of electrodynamics is lost once the EM field interacts with a matter field. Needless
to say, interacting field theories are much more complex, but also more interesting,
than the systems considered so far.

Technically, we have seen that the phonon or photon interpretation of the field theories
discussed in this chapter could be conveniently formulated in terms of ladder operators.
However, the applications discussed so far provide only a glimpse of the advantages of
this language. In fact, the formalism of ladder operators, commonly described as “second
quantization,” represents a central, and historically the oldest, element of quantum field
theory. The next chapter is devoted to a more comprehensive discussion of both the formal
aspects and applications of this formulation.

1.8 Problems

1.8.1 Electrodynamics from a variational principle

Choosing the Lorentz-gauged components of the vector potential as generalized coordinates,
the aim of this problem is to show how the wave equations of electrodynamics can be obtained

as a variational principle.

Electrodynamics can be described by Maxwell’s equations or, equivalently, by wave-like
equations for the vector potential. Working in the Lorentz gauge, d:¢ = —V - A these
equations read (87 — V)¢ = p, (87 — V?)A = j. Using relativistically covariant notation,
the form of the equations can be compressed further to o,0" A” = ;7. Starting from
the action, S[A] = — [d'z(3F,.F* + A, j*), obtain these equations by applying the
variational principle. Compare the Lorentz gauge representation of the action with that
of the elastic chain. What are the differences and parallels?

Answer:

Substituting the EM field tensor F,, = J, A4, — 0, A, and integrating by parts, the action
assumes the form

2

S[A] = —/d49: (-114” 0,0" A" — 8,0" A" +jMA“) ,
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Owing to the Lorentz gauge condition, the second contribution within the square brack-
ets vanishes, and we obtain S[A] = — [ d*z($0,A,0"A” + j, A*), where we have again
integrated by parts. Applying the general variational equation (1.17), one obtains the wave
equation.

1.8.2 Hamiltonian of electromagnetic field

Here, it is shown that the Hamiltonian canonically conjugate to the Lagrangian of the EM

field does indeed coincide with the energy density familiar from elementary electrodynamics.

Consider the EM field in the absence of matter, j = 0. Verify that the total energy stored
in the field is given by H = [ d*zH(x) where H(x) = E*(x) + B?(x) is the familiar
expression for the EM energy density. (Hint: Use the vacuum form of Maxwell’s equations
and the fact that, for an infinite system, the energy is defined only up to surface terms.)

Answer:

Following the canonical prescription, let us first consider the Lagrangian density

3 3
— 1 ot 1 . . 2 1 . . 3 3 2
L=—JEaF" =2 N (80A; — 8,40)% — ; D (945 - 9,40,
i=1 i4=1
We next determine the components of the canonical momentum through the relation
Ty — 8@0_.1_;.5 I Ty = 0, Wy = 80A1 — &AO — —EI Using the fact that &Aj . 81A1 is a
component of the magnetic field, the Hamiltonian density can now be written as
_ S A 1 2 2y (0 1 2 2

H=m0A" =L =5(-2E-00A-E" +B") = S(2E- V¢ + E” + B)
2y 1
= =2V - (Be) + E? + BY),

where equality (1) is based on addition and subtraction of a term 2E- V¢ and equality (2)
on the relation V - E = 0 combined with the identity V- (af) =V -af +a- Vf (valid for
general vector [scalar| functions a [f]). Substitution of this expression into the definition
of the Hamiltonian yields

[ &z (E* + B?),

J

H:%/dsx(2V~(E¢)+E2+B2):%

where we have used the fact that the contribution V- (E¢) is a surface term that vanishes
upon integration by parts.

1.8.3 Phonon specific heat

Previously, we stated that the mode quantization of elastic media manifests itself in low-
temperature anomalies of the specific heat. In this problem, concepts of elementary quantum

statistical mechanics are applied to determine the temperature profile of the specific heat.

Compute the energy density u = —L '35 In Z of one-dimensional longitudinal phonons

with dispersion w, = v|k|, where Z = tr e P denotes the quantum partition function.
First show that the thermal expectation value of the energy density can be represented as

1
L ; {% +wins(wr) |, (1.47)
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where ng(¢) = (¢ —1)7' is the Bose Einstein distribution. Approximate the sum over
k by an integral and show that the specific heat ¢, = dru ~ T. At what temperature
To1 does the specific heat cross over to the classical result, ¢, = const? (Remember that
the linear dispersion wy = v|k| is based on a quadratic approximation to the Hamiltonian
and, therefore, holds only for |k| < A, where A is some cutoff momentum.) Recalling
the discussion in section 1.4, for a d-dimensional isotropic solid of volume L9 (with the
atomic exchange constants remaining the same in all directions), show that the dispersion
generalizes to wyx = v|k|, where k = 27(n1,...,n4)/L and n; € Z. Show that the specific
heat shows the temperature dependence ¢, ~ T%.

Answer:

As discussed in the text, the eigenstates of the system are given by |n1, ng, ...}, where n,, is
the number of phonons of wavenumber ky, =27/ L, Ejny py, 0y = 9. Wiy (P +1/2) =
Y_‘ er™ the eigenenergy, and w,, = v|k,,|. In the energy representation, the quantum
partition function then takes the form

.r_.iﬁw”‘/z

Z—tre M= 3 PP — ] Z e Pt =TT T —
- i m

states m=1,2,... tm=0

where n,, is the occupation number of the state with wavenumber k,,. Hence, In Z =
— > [Bwm/2 4 In(1 — e~ 7+m)| Differentiation with respect to g yields Eq. (1.47) and,

making the replacement Zm — % [dk, we arrive at u = C’ﬁr% f\k\<A dk ‘B:f“—,:‘l =1+
£ 2C%, where O is the temperature-independent constant accounting for the “zero-point
energies” w,, /2. In the second equality, we have scaled k — (k. This produces a prefactor
572 multiplied by a temperature-independent (up to the temperature dependence of the
boundaries A — [A) integral that we denoted by Cs. Differentiation with respect to T’
then leads to the relation ¢, = dru ~ T. However, for temperatures 7" > vA higher
than the highest frequencies stored in the phonon modes, the procedure above no longer
makes sense (formally, owing to the now non-negligible temperature dependence of the
boundaries). Yet, in this regime, we may expand ¢”“I*l —1 ~ gv|k|, which brings us back
to the classical result ¢, = const.

Consider now a d-dimensional solid with isotropic coupling, = Zd |(¢R+ez’ — ¢R)2
with e; a unit vector in the direction 4. Taking the continuum limit leads to a contribution
k; (V¢(x))?. Proceeding as in the one-dimensional system, the relevant excitations are
now waves with wavevector k = 27(n1,...,n4)/L and energy wi = v|k|. Setting )"~

fddk and scaling k;, — Bk, then generates a prefactor 57D and we arrive at the
relation ¢, ~ T<.

1.8.4 Energy—-momentum tensor of the harmonic chain

In this problem we analyze the energy—-momentum (EM) tensor of the harmonic chain. We

discuss its computation and how to make sense of its components.

(a) Show that the two independent components 7% and T, of the EM tensor of the
harmonic chain defined via the Lagrangian (1.4) are given by

0 m 9 ksGQ 2 0
TOZE(ZS +T(3x¢) ; T =mdi ..

(b) In section 1.6.2 we identified 7 as the energy density of the system. But what is
the meaning of the second component? Turning back to the discrete representation of the
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chain, compute the total momentum carried by weak dynamical fluctuations ¢;(t) of the
mass center coordinates and show that it turns into an integral over 1" in the continuum
limit. This construction identifies 7% as the momentum density of the chain.

Answer:

(a) This part involves a straightforward application of Eq. (1.46). (b) We can consider the
total momentum of the chain as P =%, a x §(mass density) x é1, where §(mass density)
are the fluctuations in mass density associated with a deviation profile ¢;. The local
particle density at site [ is given by (one particle) / (distorted particle distance), i.e.,
1/(a—dre1+¢r) a71+a72(¢1+1 —¢r) a71+a71/28x¢, where we used the definition of
the contimmum variable ¢(z) = a~/2¢; This leads to §(mass density) =~ ma /28,4 With
the particle velocity ¢7 = a'/28:¢(x, t), we obtain P = Yoamdi¢did e [drmd,ddig.

1.8.5 Stress—energy tensor from variation in metric

This problem is for advanced readers. It requires familiarity with integration over manifolds
of nontrivial geometry, as reviewed in section A.1, and fluency in variational calculus. Other
readers should not tackle this problem just yet. We offer an interpretation of the stress—energy
tensor generalizing that given in section 1.6.2: the stress tensor describing how a field theory

responds to variations in the underlying geometry.

In section 1.6.2 we derived the stress—energy tensor by investigating how a theory changes
under variations z* — z* + w"(z), where the infinitesimal shift may be coordinate de-
pendent. Such deviations describe a local distortion in the geometry of the base manifold.
To substantiate this view, consider a situation where the base manifold has a nontrivial
geometry, described by a metric tensor ¢ = {g.. }. For example, in the field theories of
gravity, the base manifold is the universe, and g,,.. is its space—time metric. A more mun-
dane example would be a field theory formulated in curvilinear coordinates, where g, is
the (square of the) Jacobian describing the transformation from Cartesian coordinates.
The generalization of the Lagrangian Eq. (1.16) to this case is given by

Sl6) = [ doyTL(6.0,.0"0)

where g = |det(gq,.})|, and the notation emphasizes that derivatives in the Lagrangian
appear in invariant combinations such as 9"¢d,¢. Their dependence on the metric is
hidden in 0" ¢ = ¢"* 3, ¢, where g"” are the coefficients of the inverse of the metric tensor,
9" gux = §”,. (We have omitted the internal field index ¢" to lighten the notation.)

(a) Prove the auxiliary relations 9¢”7 /0g,. = —67#6"7, 0y, /G = 5/Gg"", and OF /3(0,¢) =

(OF/5(8"¢))g™".
(b) Show that the stress tensor is obtained by variation of the action in the metric:
T () e 40 (1.48)
r)— = .
VG g (2)

(¢) As an example, consider the theory of a free scalar field, £ = —%aﬁqﬁa“qi Compute the
stress tensor via FEq. (1.48) and convince yourself that the result is compatible with that
of the example below Eq. (1.46) for the harmonic chain Eq. (1.4) in the case where the
differentiation is carried out on the two-dimensional Minkowski metric, ¢ = diag(—1,1),
and the constants are scaled as m — k.a? — 1.

Conceptually, Eq. (1.48) demonstrates that the stress tensor answers the question how
a theory responds to variations in the geometry of its base manifold. (The terminology
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1.8 Problems

stress tensor underpins this interpretation.) Methodologically, it is often convenient to
compute the stress tensor via Eq. (1.48), including in cases where the theory is varied at
a trivial metric g, = d,..

Answer:

(a) Using that 9g,, /9, = 6",67,,%° the first identity is obtained from the matrix relation
0= 094,,(99 ") = (84,,9)g " + g8,,9 . Written in components, it yields the desired
relation. With g = Fdet(g),* the second follows from 8, /7 = 1/(2,/9)0s,,, (£ det(g)).
Using detg = exptring, and 9, ,.trlng = (g71y"" = ¢, we obtain the relation. The
final relation follows from the chain rule applied to 0,0 = ¢,..0"¢.

(b) The metric enters the action in two places, the first being the factor ,/g, the second
the derivatives ¢* = ¢"”¢"”. We thus have

2 48 2 / NG iy oL a(aw)\

THEY o

A agw V559 By )

2 / NG Hg°° ey L,
75 \“Bg, VO a(@ws) (agw> a”¢> L 5.

where in the final step we used the three relations in (a). Lowering the right index, 1, =
T g.0, we get back to Eq. (1.46).

Now considering the relation det g = exp trln g, it is varied as 0;,,,, /7 = %\/gagwtr Ing =
\/g(gfl)w = /99", where we have used the symmetry g,. = g, of the metric tensor,
and the notation g"" = (971)_” for its inverse.

The differentiation in the second occurrence of the metric, d.¢ = ¢.., 0" ¢, is done as

follows: 9y, L = a(g,i@) o O = 50, ¢)8”<;5 Adding the two terms we get

fkg“”£+ a¢)3”¢>

{(c) For the free field theory in Minkowski space we have /g = 1 and J5,,L = —3"¢.
This gives 1% — 4(0,69"¢) — 8°906 — 1(=0°6dod + 0'6019) — 1((909)” + (216)?)).
Identifying the zero-coordinate with time, and the one-coordinate w1th space, this equals
the Hamiltonian density (kinetic energy+potential energy density) of the harmonic chain.

35 All derivatives are carried out for a general matrix, and then evaluated at the symmetric

configuration g, = gop. We are not differentiating within the class of symmetric matrices.
Think about this difference.

% It is common practice to denote the modulus determinant g = +det({g.» }), and the matrix

g = {gur } by the same symbol g. Which is which should always be clear from the context.
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Second Quantization

SYNOPSIS The aim of this chapter is to introduce and apply the method of second quan-
tization, a technique that underpins the formulation of quantum many-particle theories.
The first part of the chapter focuses on the development of methodology and notation,
while the remainder is devoted to applications designed to engender familiarity with, and
fluency in, the approach. Indeed, many of these examples will subsequently reappear as
applications in our discussion of the methods of quantum field theory.

In the previous chapter, we encountered two field theories that could conveniently
be represented in the language of second quantization, i.e., a formulation based
on the algebra of ladder operators d;.! There are two remarkable facts about this
formulation. First, second quantization provides a compact way of representing the
many-body space of excitations; second, the properties of the ladder operators are
encoded in a simple set of commutation relations (cf. Eq. (1.33)) rather than in
some explicit Hilbert space representation.

Apart from its aesthetic appeal, these observations would not be of much rel-
evance if it were not for the fact that the formulation can be generalized to a
comprehensive and highly efficient formulation of many-body quantum mechanics
in general. In fact, second quantization can be considered as the first major cor-
nerstone on which the theoretical framework of quantum field theory was built.
This being so, extensive introductions to the concept can be found throughout the
literature. We will therefore not develop the formalism in full mathematical rigor
but rather will proceed pragmatically by first motivating and introducing its basic
elements, followed by a discussion of the second quantized version of standard oper-
ations of quantum mechanics (taking matrix elements, changing bases, representing
operators, etc.). The second part of the chapter is concerned with developing flu-
ency in the method by addressing several applications. Readers familiar with the
formalism may therefore proceed directly to these sections.

1 The term “second quantization” is unfortunate. Historically, this terminology was motivated by
the observation that the ladder operator algebra fosters an interpretation of quantum excitations
as discrete “quantized” units. However, fundamentally, there is nothing like two superimposed
quantization steps in single- or many-particle quantum mechanics. Rather, there is only a
particular representation of the “first and only” quantized theory tailored to the problem at
hand.
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2.1 Introduction to Second Quantization
We begin by recapitulating some basic €x
notions of many-body quantum mechan- 0 B 0 ______ 0
ics, as formulated in the traditional lan- ezl _ - . ¢ L ______ i
guage of symmetrized/antisymmetrized
. . - 62__ — — — ——— _1 _______ _1_ -
wave functions. Consider the normalized ; )
set of wave functions |A) of some single- €177~~~ —®$e— = - - T
particle Hamiltonian H: H|A\) = ex[\), €l - _ _ eodee - — - — - - - 1
where ¢, are the eigenvalues. With this bosons fermions
definition, the normalized two-particle
wave function ¥p(yp) of two fermions (bosons) populating levels Ay and Ay is
given by the anti-symmetrized (symmetrized) product
1
Pr(@y, w2) = —= (@A) (@2 A2) — (@1]A2) (@2[ A1),
V2
1 .
P21, 22) = —= ((z1| A1) (@2|A2) + (@1 A2) (w2 A1) -
V2
In Dirac notation, the two-body . .
SV di " Enrico Fermi 1901-1954
states |Aq, 2>F(B) corresponding 1o was the recipient of the Nobel
wF(B)(xh $2) = (<$1|®<$2|) |/\17 /\2>F(B) Prize in Physics in 1938 for
above can be represented as “his demonstrations of the
existence of new radioactive
P, Aoy = eadtion, and for b relted
1 . . ' ;
— (A b b b discovery of nuclear reactions
V2 (| 1> ® | 2) C| 2> ¥ | 1>)7 brought about by slow neutrons.” Born in Rome,
) Fermi left Italy in 1938 to escape Mussolini's
where ¢ = —1 for fermions and { = +1 regime. In Chicago, Fermi led the team that
for bosons. Symmetrizatjon is neces- designed and built th.e first nu.clear reactor, and
sitated by quantum particle indis- he l_)ecome .centrally involved in the Manhattan
particle . K e . Project during World War 1.
D i tinguishability: for fermions (bosons)
guishability the wave function must be antisym-

metric (symmetric) under particle exchange.? Generally, a symmetrized N-particle

wave function can be expressed as

AL, Aoy AN

1
\/N! Hiozon)\! P

Zf(l B2\ p1) @ [Apy) @ [Ap )

2.1)

where n) denotes the number of particles in state A (for fermions, Pauli exclusion
enforces the constraint ny < 1) — see the schematic figure above. The summation

runs over all N! permutations of the quantum numbers {Aq,..., Ax}, and sgnP

2 Note, however, that in two dimensions, the standard doctrine of fully symmetric/antisymmetric
many-particle wave functions is too narrow, and more general types of exchange statistics can
be realized (cf. our discussion on page 42).
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Slater
determinant

permutation
group

group rep-
resentation

denotes the sign of the permutation P. (Note that sgnP = +1[—1] if the number
of transpositions of two elements that brings the permutation (Py,Pa,...,Pn)
back to its original form (1,2,...,N) is even |odd].) The prefactor 1/\/N!T[, na!
normalizes the wave function. In the fermionic case, the wave functions are known
as Slater determinants.

Finally, it will be useful to assume David Hilb
avi ilbert 1862-1943
that the quantum numbers {\;} defin- | """~ 0L T ted
ing the state |A1, Ag,..., Ay) are or- to many branches of mathe-
dered according to some convention; matics including the theory of
. . algebraic number fields, func-

e.g., for A, = x;, a one-dimensional co- i o

’ ) ; tional analysis, integral equa-
ordinate representation, we might or- tions, mathematical physics
der according to the rule z; < zo < and the calculus of variations.
... < 2. Once an ordered sequence of His work in geometry had the greatest influence

after Euclid. A systematic study of the axioms
states has been fixed we may — for no- of Euclidean geometry led Hilbert to propose 21

tational convenience — label our quan- such axioms and he analyzed their significance.
tum states by integers, A; = 1,2, ... Any initially non-ordered state (e.g., |2, 1, 3})
can be brought to an ordered form (|1,2,3)) at the cost of, at most, a change of
sign.

INFO For the sake of completeness, let us spell out the connection between the permuta-
tion group and many-body quantum mechanics in a more mathematical language.
The basic arena wherein N-body quantum mechanics takes place is the product space,

HY =He - oH
d ;
N copies
of N single-particle Hilbert spaces. In this space, we have a linear representation of the
permutation group, gn s assigning to each P € S N the permutation (with no ordering of
the As implied at this stage),

PoHY s HY, D)@ @A) = A1) ®- - @ [Apw).

The identification of all irreducible subspaces of this representation is a formidable task,
which, thanks to a fundamental axiom of quantum mechanics, we need not address in full.
All we need to know is that SV has two particularly simple one-dimensional irreducible

3 Recall that a linear representation of a group G is a mapping that assigns to each g € &
a linear mapping pg, : V — V for some vector space V. For notational convenience, one usually
writes g : V. — V instead of p; : V — V. Conceptually, however, it is often important to
distinguish carefully between the abstract group elements g and the matrices (also g) assigned
to them by a given representation. (Consider, for example, the symmetry group G = SU(2)
of quantum mechanical spin. SU(2) is the two-dimensional group of unitary matrices with
determinant unity. However, when acting in the Hilbert space of a quantum spin S = 5, say, the
elements of SU(2) are represented by (25 + 1 = 11)-dimensional matrices.) Two representations
pand p’ that differ only by a unitary transformation, Vg € G : pg = U,oéUfl7 are called unitary
equivalent. If a transformation U can be found such that all representation matrices p; assume a
block structure, the representation is called reducible, otherwise irreducible. Notice that the
different sub-blocks of a reducible representation by themselves form irreducible representation
spaces. The identification of all distinct irreducible representations of a given group is one of
the most important objectives of group theory.
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braid
group

anyons

representations: one wherein each P € S acts as the identity transform P(¥) = ¥ and
another, the alternating representation P(W) = sgn P ¥. According to a basic postulate of
quantum mechanics, the state vectors ¥ € HY describing bosons/fermions must transform
according to the identity/alternating representation. The subset FN ¢ HY of all
states showing this transformation behavior defines the physical N-body Hilbert space.
To construct a basis of FV, one may apply the symmetrization operator P® = 27) P
(antisymmetrization operator P* =%, (sgnP)P) to the basis vectors [A1) ®---  [Ay) of
HY . Up to normalization, this operation obtains the states (2.1).

Readers may wonder why we mention these representation-theoretic aspects, since, be-
ing pragmatic, all we really need to know is the symmetrization/antisymmetrization postu-
late and its implementation through Eq. (2.1). Note, however, that one may question what
we actually mean when we talk about the permutation exchange of quantum numbers. For
example, when we compare wave functions that differ by an exchange of coordinates we
should be able to tell by what physical operation we effect this exchange (for, otherwise,
we cannot really compare them other than in a formal and in fact ambiguous manner).

Surprisingly, decades passed before this crucial issue in quantum mechanics was crit-
ically addressed. In a seminal work by Leinaas and Myrheim,!“ it was shown that the
standard paradigm of permutation exchange is far from innocuous. Indeed, its applicabil-
ity is tied to the dimensionality of space! In two dimensions, a more elaborate scheme is
needed. (Nevertheless, one may use representation-theoretic concepts to describe particle
exchange. However, the relevant group — the braid group — now differs from the permu-
tation group.) Physically, these requirements are manifest in the emergence of quantum
particles different from either bosons or fermions. For a further discussion of these so-
called anyons, we refer to section 8.6.1. (In spite of being included in a later chapter, this
section is not difficult to read!)

While representations like (2.1) can be used to represent the full Hilbert space of
many-body quantum mechanics, a moment’s thought shows that this formulation
is not at all convenient.

> It takes little imagination to anticipate that practical computation in the lan-
guage of Eq. (2.1) will be cumbersome. For example, to compute the overlap of
two wave functions, one needs to form no less than (N!)? different products.

> The representation is tailor-made for problems with fixed particle number N.
However, we know from statistical mechanics that, for N = O(10%3), it is more
convenient to work in a grand canonical formulation, where N is allowed to vary.

> Similarly, in applications one will often ask the question “what is the amplitude
for the injection of a particle into a system at a certain space—time coordinate
(x1,ty) followed by annihilation at some later time (xzo,%5)7” Ideally, one would
work with a representation that supports the intuition afforded by thinking in
terms of such processes, i.e., a representation where the quantum numbers of
individual quasi-particles, rather than the entangled set of quantum numbers of
all constituents, are fundamental.

The second-quantized formulation of many-body quantum mechanics, as introduced
below, will remove all these difficulties in an elegant and efficient manner.
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2.1.1 The apparatus of second quantization
Some of the disadvantages of the representation (2.1) can be avoided with relatively
little effort. Specifically, it pays to label many-body states in a more efficient manner
than Eq. (2.1), and to define a subset of the many-body Hilbert space just large
enough to accommodate all states of definite exchange statistics.
Occupation number representation and Fock space
In our present notation, quantum states are represented by “N-letter words” of the
form [1,1,1,1,2,2,3,3,3,4,6,6,...). Obviously, this notation contains a lot of re-
dundancy. A more efficient encoding of the state above might read [4,2,3,1,0,2,...),
where the ¢th number signals how many particles occupy state number ¢; no more
information is needed to characterize a symmetrized state. (For fermions, these oc-
cupation numbers take a value of either zero or one.) This defines the occupation
OCCL‘E:;(:; number representation. In the new representation, the basis states of FV are
specified by |n1,na,...), where >, n; = N. Any state |¥) in Y can be obtained
as a linear superposition,
| W) = Z Cnyma... N1, M2, ).
R
As pointed out above, eventually we will want to emancipate ourselves from the
condition of a fixed particle number N. A Hilbert space large enough to accommo-
date a state with an undetermined number of particles is given by
[ele]
F=p F". (2.2)
N=0
Notice that the direct sum contains . :
. o 0 Vladimir Aleksandrovich
a curious contribution F°, the vac- Fock 1808-1974
uum space. This is a one-dimensional was a Soviet physicist who
Hilbert space which describes the sec- played a key role in the devel-
tor of the theory with no particles Z?r:j:ttlvoliyﬂ;i fi:::;l:;j;ry
present. Its single normalized basis theory. His ground-breaking
vac;;zz state, the vacuum state, is denoted contributions include the intro-
by |0). We will soon see why it is con- duction of the Fock space and the develo;?ment
. . of perhaps the most important many-particle
venient to add this space to our fam- approximation scheme, the Hartree—Fock
ily of basis states. The spaces F are approximation.
S:;‘;Z: called Fock spaces and they define

the principal arenas of quantum many-body theory. Note that the construction of
a Fock space builds on a given single-particle basis defining the number of different
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creation
operators

labels i.* Note that we also need to distinguish between fermionic and bosonic Fock
spaces, depending on the exchange symmetry of their states.

To obtain a basis of F, we need only take the totality of our previous basis
states {|n1,n2,...)}, and drop the condition ), n; =N on the occupation num-
bers. A general many-body state |¥) can then be represented by a linear superposi-
tion [W) = > Cnyma. |n1,7m2,...). Notice that states with a different particle
numbers may contribute to the linear superposition forming |W). We shall see that
such mixtures play an important role in, for example, the theory of superconduc-
tivity.

Foundations of second quantization

The occupation number representation introduced above provides a step in the
right direction, but it does not yet solve our main problem: the need for explicit
symmetrization or antisymmetrization of a large number of states in each quantum
operation. As a first step towards the construction of a more powerful representa-
tion, let us recall an elementary fact of linear algebra: a linear map A : V — V of
a vector space into itself is fully determined by defining the images w; = Av; of
the action of A on a basis {v;}. Now let us use this scheme to introduce a set
of linear operators acting in Fock space. For every ¢+ = 1,2, ..., we define operators
af : F — F through

a“nh ce My = (g + 1)1/2C5i

ny,..ong 100, (2.3)

i—1 o .
where s, = 22:1 nj. In the fermionic case, the occupation numbers n; have to be

understood mod 2, so that (1 + 1) = 0 mod2, i.e., the application of aj to a state
with n; = 1 leads to its annihilation.

Notice that, by virtue of this definition, we are able to generate every basis state of
F by repeated application of ajs to the vacuum state. (From a formal point of view,
this fact alone gives sufficient motivation to add the vacuum space to the definition
of Fock space.) Indeed, repeated application of (2.3) leads to the important relation

1 N
Ini,ng,...) = HW(C‘D ‘

i

0) (2.4)

Notice that Eq. (2.4) constitutes a strong statement: the complicated permutation
“entanglement” implied by the definition (2.1) of the Fock states can be generated
by straightforward application of a set of linear operators to a single reference
state. Physically, the N-fold application of operators a' to an empty vacuum state
generates an N-particle state, which is why the a's are commonly called creation
operators. Of course, the introduction of creation operators might still turn out to
be useless, i.e., the requirement of consistency with the properties of the Fock states

4 Depending on the application, we use more complex labels than integers ¢ to denote states
in occupation number representation. For example, working with spinful fermions on a lattice
with sites x;, ¢ — (I, 0) would be an appropriate notation.
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Fig. 2.1

annihilation
operators

a a a
]—“2 — T fl e _FO )
i o~ o
aT O,T

Visualization of the generation of the Fock subspaces FV by repeated action of creation
operators al on the vacuum space FO.

(such as the fact that, in the fermionic case, the numbers n; = 0,1 are defined only
mod 2) might invalidate the simple relation (2.3) with its (n,;-independent!) operator
aj. However, as we shall demonstrate below, this is not the case.

i/

Consider two operators aj and a;- for i = j. From the definition (2.3), one may
readily verify that (a_ja;- — Ca;- aj)|n17 ng, ...y = 0. As it holds for every basis vector,
this relation implies that

Vij:  [alal] =0, (2.5)
where [A, B}C = AB —(BA, ie., [, le=1 =1, ] is the commutator and [, Jc(——1 =
{,} =1, ]+ is the anticommutator. Turning to the case ¢ = j, we note that, for
fermions, the two-fold application of aj to any state leads to its annihilation. Thus,

(a])? = 0 is nilpotent, a fact that can be formulated as [aj7 ajh = 0. For bosons

?
we have, of course, [aj7 aﬂ = 0 (identical operators commute!).

Now, quantum mechanics is a unitary theory so, whenever one meets a new
operator A, one should determine its hermitian adjoint At. To understand the
action of the hermitian adjoints (aj)f = a; of the creation operators, we may take
the complex conjugates of all basis matrix elements of Eq. (2.3):

1/2

<n17 sy Mgy |aj|n/17 ...77’L:;7 > - (nﬁ + 1) Cséénl,n/l o '6ni,n/r.+1 Co

' ; : T as
= (ny,. g agng g ) =0 T g Ot

As it holds for every bra (nf,...,n] |, the last line tells us that

TR

ailng, ... ,ng .. = n}/zcsi ny,..o,ng— 1.0, (2.6)

a relation that identifies a; as an operator that “annihilates” particles. The action
of creation and annihilation operators in Fock space is illustrated in fig. 2.1.
Creation operators a' : FN — FN*1 increase the particle number by one, while
annihilation operators a : F¥ — FN=! lower it by one. The application of an
annihilation operator to the vacuum state, a;|0) = 0, annihilates it. (Do not confuse
|0} with the zero vector.)

Taking the hermitian adjoint of Eq. (2.5), we obtain [a;,a;]c = 0. Further, a
straightforward calculation based on the definitions (2.3) and (2.6) shows that
[a“a;k = dy;. Altogether, we have shown that the creation and annihilation
operators satisfy the algebraic closure relations,

[a“a;k = dij, |ai, a5 =0, {%ﬂ a;k =0 (2.7)
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Stone—von
Neumann
theorem

Given that the full complexity of Fock space is generated by application of a_js to
a single reference state, the simplicity of the relations obeyed by these operators
seems remarkable and surprising.

INFO Perhaps less surprising is that, behind this phenomenon, there lingers some math-
ematical structure. Suppose that we are given an abstract algebra A of objects a;, a:.[ sat-
isfying (2.7). (Recall that an algebra is a vector space whose elements can be multiplied
by each other.) Further, suppose that A is irreducibly represented in some vector space V,
i.e., that there is a mapping assigning to each a; € A a linear mapping a; : V — V such
that every vector |v) € V' can be reached from any other |w) € V by (possibly iterated)
application of operators a; and a:.[ (due to irreducibihty).5 According to the Stone—von
Neumann theorem, (i) such a representation is unique (up to unitary equivalence) and
(ii) there is a unique state |0) € V' that is annihilated by every a;. All other states can then
be reached by repeated application of a:.[s. The precise formulation of this theorem and its
proof — a good practical exercise in working with creation and annihilation operators — is
left to problem 2.4.1. From the Stone-von Neumann theorem, we can infer that the Fock
space basis could have been constructed in reverse. Not knowing the basis {|n1,n2,...)},
we could have started from a set of operators obeying the commutation relations (2.7) act-
ing in some o priori unknown space F. Starting from the unique state |0), the prescription
(2.4) would then have yielded an equally unique basis of the entire space F (up to unitary
transformations). In other words, the algebra (2.7) fully characterizes the operator action
and provides information equivalent to the definitions (2.3) and (2.6).

Practical aspects of the second quantization

Our next task will be to promote the characterization of Fock space bases to a full
reformulation of many-body quantum mechanics. To this end, we need to estab-
lish how changes from one single-particle basis {|\)} to another, {|A)}, affect the
operator algebra {a,}. (In this section, we shall no longer use integers to identify
different elements of a given single-particle basis. Rather, we use Greek labels X;
ie., a; creates a particle in the state A.) We also need to understand in what way
generic operators acting in many-particle Hilbert spaces can be represented in terms

of creation and annihilation operators.

> Change of basis: Using the resolution of identity id = Yoao AV (A, the rela-
tions |[A) = 3, [AVAIA), [A) = a}]0), and |A) = a;|0> immediately give rise to
the transformation law,

a; = z:{/\|;\}a;7 as = Z(/-\|/\>a>\ (2.8)
Iy A

5 To characterize this representation, we need to be a bit more precise. Within A4, a; and a;[ are

independent objects, i.e., in general, there exists no notion of hermitian adjointness in A. We
require, though, that the representation assigns to a;[ the hermitian adjoint (in V') of the image

of a;. Also, we have to require that [a;, at] € A be mapped onto [a;, ai[;] : V' — V where, in the

latter expression, the commutator involves the ordinary product of the matrices a;, a;[. V=V
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occupation
number

In many applications, we will be dealing with continuous sets of quantum num-
bers (such as position coordinates). In such cases the quantum numbers are
commonly denoted as a(z) = 3", (z|\)ay and the summations appearing in the
transformation formula above translate to integrals: ay = [ dz(A|z)a(z). For ex-
ample, the transformation from the coordinate represetation to the momentum
representation in a system of length L. would read

L .
o= [ drhate),  ale) = Y (el (2.9)
0 I

where (k|z) = (z|k)* = L™Y2e7%*% and k = 2am/L, m € Z.

Representation of operators (one-body): Single-particle or one-body op-
erators O, acting in the N-particle Hilbert space FV generally take the form
Oy = 22[:1 On, Where 6, is an ordinary single-particle operator acting on the
nth particle. A typical example is the kinetic energy operator T = ¥, P2 /(2m),
where p, is the momentum operator acting on the nth particle. Other exam-
ples include the one-particle potential operator V = >, VEn), where V(z) is a
scalar potential, and the total spin operator ), S,.. Since we have seen that, by
applying field operators to the vacuum space, we can generate the Fock space
in general and any N-particle Hilbert space in particular, it must be possible to
represent any operator @1 in an a-representation.

Although the representation of n-body operators is straightforward in principle,
it can, at first sight, seem daunting. A convenient way of finding it is to express
the operator in terms of the basis in which it is diagonal, and only later transform
to an arbitrary basis. For this purpose it is useful to define the occupation
number operator

fix = alax (2.10)

with the property that, for bosons or fermions, 7 (a;)n|0> = n(a;)n|0> (exer-
cise). Since 7 commutes with all a;/#w Eq. (2.4) implies that fiy,[nx,,...) =
nx; My, - - ). 1.e., fiy simply counts the number of particles in state A. Let us

now consider a one-body operator ©; which is diagonal in the basis |A), with
6 =73 0x] A (Nl ox, = (As]6]A:). With this definition, one finds that

(n/>\17n/>\27...|(?)1|n>\17n>\27...> = ZoAznAz<n/>\17n/>\27...|n>\17n>\27...>
i

- <n/>\1 ) n/>\27 . E: Ox T,

(3

n>\17n>\27...>.

Since this equality holds for any set of states, one can infer the second-quantized
representation of the operator,

o0 [2"u
O1 = oxia = Y _(Ao|Aafan.
A=0 A=0

The result is straightforward: a one-body operator engages a single particle at a
time — the others are just spectators. In the diagonal representation, one simply
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counts the number of particles in a state A and multiplies by the corresponding
eigenvalue of the one-body operator. By transforming from the diagonal repre-
sentation to some arbitrary basis, one obtains the general result,
O1 =Y (plolv)alan (2.11)
e
To consolidate these ideas, let us consider some specific examples. Representing
the matrix elements of the single-particle spin operator as {(«|S;|a’} = (S;)aar =
%(Ui)aa/7 where o, a’ is a two-component spin index and the o; are Pauli spin
matrices,
0 1 0 —i 1 0
= = . 03 - , 2.12
a (Vo) (V7)) m(o ) ew
spin the spin operator of a many-body :
operator Wolfgang Ernst Pauli 1900-
system assumes the form 1058
& } was an Austrian physicist who
S= Z et Sa’alira- (2'13) received the Nobel Prize in
Asan’ Physics in 1945 for the all-
Here, A denotes a set of additional important Pa.”" Prmc'ple. 2
cording to which two fermions
quantum numbers, such as a lattice site cannot occupy the same quan-
index. When second-quantized in the tum state. Pauli also was the first to recognize
position representation, one can show L_the existence of the neutrino.
0“‘;;:;‘?13: that the one-body Hamiltonian for a free particle is given as the sum of kinetic
tonian and potential energy:
n" 9 \
H - /ddr al(r) (3— +V(r)) a(r) (2.14)
2m
EXERCISE Starting with the momentum representation (in which the kinetic energy is
diagonal), transform to the position representation and thereby establish Eq. (2.14).
de::i:ta; The local density operator j(r), measuring the particle density at coordinate r,
operator is given by
p(r) = al(r)a(r). (2.15)
number Finally, the total occupation number operator, obtained by integrating over

the particle density, is defined by N = [d% af(r)a(r). In a theory with discrete
quantum numbers, this operator assumes the form N = Doy Gy

> Representation of operators (two-body): Two-body operators O, are needed
to describe pairwise interactions between particles. Although pair-interaction
potentials can be included straightforwardly in classical many-body theories,
their embedding into conventional many-body quantum mechanics is made cum-
bersome by particle indistinguishability. The formulation of interaction processes
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two-body
operator

within the language of second quantization is considerably more straightforward.
Initially, let us consider a symmetric two-body potential V(r,,,r,) = V(r,,rm)

between two particles at position r,, and r,,. Our aim is to find an operator V'
in second-quantized form whose action on a many-body state gives

!'\I-
Viry, ..., ry) = Z Vitm, tp)lre,....tN) =

n<m m=n

1 N
9 Vi(tm, tn)lre, ..., rN).

Here, it is more convenient to use the original representation (2.1) rather than
the occupation number representation. When this is compared with the one-
point function, one might guess that

V= _]E/ddr/ddr’cﬁ(r)a’L(r’)V(r7 ra(r')a(r).

That this is the correct answer can be confirmed by applying the operator to a
many-body state (exercise):

a'(t)a! (a(@)a@)|re, .. ry) = al (©)al @ )a(ralr)al (1) - al(xy)]0)

N
- Z 5(r—rm)6(r/—rn)|r17...7rN>.

Multiplying by V (r,r’)/2, and integrating over r and r’, one confirms the validity
of the expression. It is left as an exercise to confirm that the naive expression
%f dr [ d%'V(r,r")p(r)p(r") does not reproduce the two-body operator. More
generally, turning to a non-diagonal basis, it is straightforward to confirm that
a general two-body operator can be expressed in the form

a1 = ,
02 - 5 }_‘/ (’)MW’A,A/aLaL/a)\/a)\ (2.16)
AN !

where O,.r‘ﬂ/)\)\/ = <M7 [L/|(;)2|/\7 /\f}

Besides the Coulomb interaction to be discussed shortly, another important
interaction is that between spins. From our discussion of the second-quantized
representation of spin S, we infer that the general spin-spin interaction affords
the representation

N 1 —
V= E/ddr/ddr’ L J(r,1')Sup - Swp al(t)al, (t)ag (r)ag(r),

aa'3s’

where J(r,r’) denotes the exchange interaction.

In principle, one may proceed in the same manner and represent general n-body
interactions in terms of second-quantized operators. However, as n > 2 interactions
appear infrequently, we refer to the literature for further discussion.
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This completes our formal introduction to the method of second quantization.
To develop fluency in the operation of the method, we will continue by addressing
several problems chosen from the realm of condensed matter. In doing so, we will see
that second quantization often leads to considerable simplification of the analysis of
many-particle systems. The effective model Hamiltonians that appear below provide
the input for subsequent applications considered in this text. Readers not wishing
to become distracted from our main focus — the development of modern methods
of quantum field theory in the condensed matter setting — may safely skip the next
sections and turn directly to chapter 3. It is worthwhile keeping in mind, however,
that the physical motivation for the study of various prototypical model systems
considered later in the text is given in section 2.2.

2.2 Applications of Second Quantization

Starting from the prototype Hamiltonian (1.1), we have already explored aspects of
lattice dynamics in condensed matter. In much of the remaining text, we will focus
on the complementary system, the electron degrees of freedom. Drawing on the first
of the principles articulated in chapter 1, we begin our discussion by reducing the
Hamiltonian to a form that contains the essential elements of the electron dynamics.
As well as the pure electron sub-Hamiltonian H., the reduced Hamiltonian involves
the interaction between electrons and the ionic background lattice. However, typ-
ically lattice distortions due to the motion of the ions and the ion—ion interaction
couple only indirectly. (Exercise: Think of a prominent example where the electron
sector is strongly influenced by the dynamics of the lattice.) To a first approxi-
mation, we may therefore describe the electron system through the Hamiltonian
H=H,+ Vee7 where

s - / a'r Y af (x)

Ve = % / dr / Ay " Vie(r = 1) al (v)al, (r')ag (¥')as ().

aa’

. ,
P v

2m Cl,,(l‘%

(2.17)

Here, V(r) = 3>, Vi(R; — r) denotes the lattice potential experienced by the
electrons, and the coordinates of the lattice ions R are assumed fixed. For com-
pleteness, we have also endowed the electrons with a spin index, o =1/ |.
Despite its seemingly innocuous structure, the interacting-electron Hamiltonian
(2.17) accommodates a wide variety of electron phases, from metals and magnets
to insulators. To classify the phase behavior of the model, it is helpful to divide our
considerations, focusing first on the properties of the non-interacting single-particle
system Hy and then, later, exploring the influence of the electron interaction V..
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2.2.1 Electrons in a periodic potential
Bloch’s From Bloch’s theorem, the eigen- i
theorem Felix Bloch 1905-1983

states of a periodic Hamiltonian can be . . i
was a Swiss-American physi-

presented in the form of Bloch waves® cist who, in 1952, shared the
Prn (T) = eik'rukn(r)7 where the com- Nobel Prize in Physics with LR
. . Edward M. Purcell “for the s
ponents of the crystal momentum k T /
. ) ) development of new methods iy
take values inside the Brillouin zone, for nuclear magnetic precision A
k; € [—w/a,w/a]. Here, for simplicity, measurements and discoveries

in connection therewith.” Bloch served as the

the periodicity of the lattice potential ' i
first Director-General of CERN.

is assumed to be the same in all direc-
tions, i.e., V(r + ae;) = V(r). The index n labels the separate energy bands of
the solid, and the functions wuy,(r + ae;) = uk,(r) are periodic on the lattice.
Now, depending on the nature of the bonding, there are two complementary classes
of materials where the general structure of the Bloch functions can be simplified

significantly.

Nearly free electron systems

For certain materials, notably the elemental metals drawn from groups [-1V of the
periodic table, the outermost itinerant conduction electrons behave as if they were
“nearly free,” i.e., their dynamics is largely oblivious to both the Coulomb potential
created by the positively charged ion background and their mutual interaction.

INFO Loosely speaking, Pauli blocking by the bound state inner core electrons prevents
the conduction electrons from exploring the region close to the ion core, thereby screen-
ing the nuclear charge. In practice, the conduction electrons experience a renormalized
pseudopotential, which accommodates the effect of the lattice ions and core electrons.
Moreover, the high mobility of the conduction electrons provides an efficient method of
screening their own mutual Coulomb interaction. In nearly free electron compounds, com-
plete neglect of the lattice potential is usually a good approximation (as long as one
considers crystal momenta remote from the boundaries of the Brillouin zone, k; = +7/a).

In practice, this means that we may set the Bloch function to unity, uk, = 1, and
regard the eigenstates of the non-interacting Hamiltonian as plane waves. This moti-
vates the representation of the field operators in momentum space (2.9), whereupon
the non-interacting part of the Hamiltonian assumes the free particle form

A k?
H, Z 3 e (2.18)
ko
where the sum runs over wave vectors k (and, once again, we have set 1 = 1). In

the Fourier representation, the two-body Coulomb interaction takes the form

6 For a further discussion, we refer to one of the many texts on the elements of solid state physics,
e.g., N.D. Ashcroft and N. Mermin, Solid State Physics (Holt-Saunders International, 1995).
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jellium
model

Bohr
radius

Fermi
energy

N 1 w— + T
Vee = ﬁ Loz Vee(q) aquaakurqg/akg/ak/‘” (2 f9)
k.k’,q,00’

where (choosing units such that 4me = 1), Vie(q) = €?/¢? represents the Fourier
transform of the potential V..(r) = €2/|r|. Now, as written, this expression neglects
the fact that in ionized solids the negative charge density of the electron cloud
will be compensated by the charge density of the positively ionized background.

The latter can be incorporated into (2.19)
by placing on the sum over q the re-
striction that q # 0 (exercise). Taken
together, the free electron Hamiltonian
H, and the Coulomb interaction poten- k,o K, o'

tial Vee are known as the jellium model.

k—q,o ’ ’
“ Veo(@) I Fapi

The interaction described by Kq. (2.19) can be illustrated graphically, as shown
in the figure (for a more elaborate discussion of such diagrams, see chapter 4):
an electron of momentum k is scattered into a new momentumn state k — q while
another electron is scattered from k" — k' + q.

In concrete applications of con- . . .
d d tt hvsi tvpicall Niels Henrik David Bohr
ensed matter physics, one typically 18851062
considers low excitation energies. The was a Danish physicist and
analysis of such systems is naturally or- philosopher who, in 1922, was
. awarded the Nobel Prize in
ganized around the zero-temperature o . o
Physics “for his services in the
ground state as a reference platform. investigation of the structure

However, the accurate calculation of of atoms and of the radiation
the ground state energy of the system | emanating from them”

is a complicated problem of many-body physics that cannot be solved in closed
form. Therefore, assuming that interactions will not substantially alter the ground
state of the free particle problem (2.18) — which is often not the case! — one uses
the ground state of the latter as a reference state.

INFO Deferring a more qualified discussion to later, a preliminary justification for this
assumption can be given as follows: suppose that the density of an electron gas is such
that each of its NV constituent particles occupies an average volume of O(ad). The average
kinetic energy per particle is then estimated to be 7'~ 1/ma?, while the Coulomb inter-
action potential will scale as V' ~ ez/a. Thus, for a much smaller than the Bohr radius
ag = 1/¢*m, the interaction contribution is much smaller than the average kinetic energy.
In other words, for the dense electron gas, the interaction energy can indeed be treated as
a perturbation. Unfortunately, for most metals, one finds that a ~ ap and neither high-
nor low-density approximations are strictly justified.

The ground state of the system occupied by N non-interacting electrons can be
readily inferred from Eq. (2.18). The Pauli principle implies that all energy states
ex = k?/2m will be uniformly occupied up to a cutoff Fermi energy, Er. For a
system of size L, the allowed momentum states k have components k; = 27n;/L,
n; € Z. The summation extends up to momenta with |k| < kp, where the Fermi
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momentum kp is defined through the relation k%/Qm — F'r. The relation between
the Fermi momentum and the occupation number can be established by dividing
the volume of the Fermi sphere ~ k% by the momentum space volume per mode
(2n/L)?, viz. N = C(kpL)?, where C denotes a dimensionless geometry-dependent
constant (see the figure).

In the language of second quantization, the ground )
state is represented as / By v u\
N d 1 4 | L 1
|Q> EN H alig|0>7 (220) / Iy ) v l¥ 19
k| < ke | (ST I B r |

T [ ¥ [ | v [

&
=

=
=

where |0) denotes the state with zero electrons present. | i
When the interaction is weak, one may anticipate that \{
low-temperature properties will be governed by en-

e >
-
Yo
-
TR N
S
\_..

ergetically low-lying excitations superimposed upon
the state |Q). Therefore, remembering the philosophy
whereby excitations rather than microscopic constituents play a prime role, one
would like to declare the filled Fermi sea, |2) (rather than the empty state |0}), to
be the “physical vacuum” of the theory. To make this compatible with the language
of second quantization, we need to identify a new operator algebra such that the

operators ci, annihilate the Fermi sea. This is easily engineered by defining

i
i e, k> ke _ | oo K>k 221
ko {akg k<ky ¥ G ol k<hp (2:21)

It is then straightforward to verify that ck,|€2) = 0 and that the canonical commu-
tation relations are preserved.

The Hamiltonian defined through Eqgs. (2.18) and (2.19), represented in terms of
the operator algebra (2.21) and the vacuum (2.20), forms the basis of the theory
of interactions in highly mobile electron compounds. The investigation of the role
of Coulomb interactions in such systems will provide a useful arena in which to
apply the methods of quantum field theory formulated in subsequent chapters.
Following our classification of electron systems, let us now turn our attention to
a complementary class of materials where the lattice potential presents a strong
perturbation to the conduction electrons. In such situations realized, for example,
in transition metal oxides, a description based on “almost localized” electron states
will be used to represent the Hamiltonian (2.17).

Tight-binding systems

Let us consider a “rarefied” lattice in which the constituent ion cores are separated
by a distance in excess of the typical Bohr radius ag of the valence-band electrons.
In this “atomic limit,” the electron wave functions are tightly bound to the lattice
sites. Here, to formulate a microscopic theory of interactions, it is convenient to
expand the Hamiltonian in a local basis that reflects the atomic orbital states of
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‘Wannier
states

band
insulator
metal

the isolated ion. Such a representation is presented by the basis of Wannier states,
defined by

B.Z.

1 Ze' ik'R|¢kn>7 n) = %Zeik'RhﬁRn% (2.22)
= LA

|¢Rn> = \W
where R denotes the coordinates of the lattice centers, and ZE'Z' represents a
summation over all momenta k in the first Brillouin zone. For a system with a
vanishingly weak interatomic overlap, i.e., a lattice where V' approaches a super-
position of independent atomic potentials, the Wannier function ¥R, (r) = (r|¢rn)
converges on the nth orbital of an isolated atom centered at coordinate R. However,
when the interatomic coupling is non-zero, i.e., in a “real” solid, the N formerly
degenerate states, labeled by n, split to form an energy band (see the figure below).
Here, the Wannier functions (which are not eigenfunctions of the Hamiltonian) dif-
fer from those of the atomic orbitals through residual oscillations in the region of
overlap, to ensure orthogonality of the basis. Significantly, in cases where the Fermi
energy lies between two energetically separated bands, the system presents insu-
lating behavior. Conversely, when the Fermi energy is located within a band, one
may expect metallic behavior. lgnoring the complications that arise when bands
begin to overlap, we will henceforth focus on metallic systems where the Fermi
energy is located within a definite band, ny.

How can the Wannier basis A\ E
be exploited to obtain a simpli-
fied representation of the gen-
eral Hamiltonian (2.17)? The first n=1
thing to notice is that the Wannier
states {|¢Ymy)} form an orthonor- \
mal basis of the single-particle >
Hilbert space, i.e., the transforma- atomic limit | insulator | metal V-Vatom
tion between the real space and
Wannier representation is unitary, [r) = > g [Yr){(¢r[r) = Y. Y& (T)|YR).” Being
unitary, it induces a transformation

ab(r) =Y gh(r)ak, =3 vy, (r)a), (2.23)
R i

between the real- and Wannier-space operator bases, respectively. In the second
representation, following a convention commonly used in the literature, we have
labeled the lattice center coordinates R = R; using a counting index + =1, ...  N.
Similarly, the unitary transformation between Bloch and Wannier states (2.22)
induces an operator transformation

7 Here, since we are interested only in contributions arising from the particular “metallic” band
ng in which the Fermi energy lies, we have dropped the remaining set of bands n = ng and,
with them, reference to the specific band index. Exercise: By focusing on just a single band ng,
in what sense is the Wannier basis now complete?
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graphene

B.Z.

1 ) . 1 )
al, = > e Rl al, = ~ Y e kRig] (2.24)
v - \ .

K

=]

We can now use the transformation formulae (2.23) and (2.24) to formulate a Wan-
nier representation of the Hamiltonian (2.17). Using the fact that the Bloch states
diagonalize the single-particle component H,, we obtain

. ) (2.24) 1 K(R,—R.
Hy = 2 ekalgakg e TZ Z ck(Rs z/)ekajgai/g = E t”/a;ai/m
k Tk !

where we have set t;;; — % Zk ek Ri—Ri)e The new representation of Ho de-
scribes electrons hopping from one lattice center i’ to another, 4. The strength of
the hopping matrix element ¢,/ is controlled by the effective overlap of neighboring
atoms. In the extreme atomic limit, where the levels ¢, = const. are degenerate,
tiir o &4 and no interatomic transport is possible. The tight-binding representation
becomes useful when 2,4, is non-vanishing, but the orbital overlap is so weak that
only nearest-neighbor hopping effectively contributes.

EXERCISE Taking a square lattice geometry and setting t; — —t when 7,7 are nearest
neighbors and zero otherwise, diagonalize the two-dimensional tight-binding Hamiltonian
Hy. Show that the eigenvalues are given by e = —2t(cos(k,a)+cos(kya)). Sketch contours
of constant energy in the Brillouin zone and note the geometry at half-filling.

To assess the utility of the tight-binding approximation, let us consider its applica-
tion to graphene, a prominent carbon-based lattice system.

INFO Graphene is a single layer of graphite, a planar hexagonal lattice of sp?-hybridized
carbon atoms connected by strong covalent bonds of their three planar o-orbitals (see
fig. 2.2 and the schematic overleaf). The remaining p. orbitals — oriented perpendicular to
the lattice plane — overlap weakly to form a band of mobile m-electrons. For a long time, it
was thought that graphene sheets in isolation would inevitably be destabilized by thermal
fluctuations; only layered stacks of graphene would form a stable compound — graphite. It
thus came as a surprise when, in 2004, a team of researchers® succeeded in the isolation
of large (micron-sized) graphene flakes on an SiO substrate. (Since then, the isolation of
even free standing graphene layers has become possible. In fact, our whole conception of
the stability of the compound has changed. It is now believed that whenever you draw a
line in pencil, a trail of graphene flakes will be left behind!)

Soon after its discovery, it became clear that graphene possesses unconventional con-
duction properties. Nominally a gapless semiconductor, it has an electron mobility ~
2 x 10°em?® /Vs, far higher than that of even the purest silicon-based semiconductors; it
shows manifestations of the integer quantum Hall effect qualitatively different from those
of conventional two-dimensional electron compounds (cf. chapter 8 for a general discussion
of the quantum Hall effect); etc. Although an in-depth discussion of graphene is beyond
the scope of this text, we note that most of its fascinating properties are due to its band
structure: electrons in graphene show a linear dispersion and behave like two-dimensional
relativistic (Dirac) fermions! By way of an illustration of the concepts discussed above,
here we derive this unconventional band dispersion from a tight-binding formulation.

8 K. S. Novoselov, et al., Electric field effect in atomically thin carbon films, Science 306, 666
(2004).
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Fig. 2.2 Left: Optical microscopy image of graphene flakes. Regions labeled by 'I" define monolayer

graphene sheets of size ca. 10 um. Right: STM image of the graphene samples shown in
the left part. Images taken from E. Stolyarova et al., High-resolution scanning tunneling
microscopy imaging of mesoscopic graphene sheets on an insulating surface, PNAS 104,
9209 (2007). Copyright (2007) National Academy of Sciences.

To a first approximation, graphene’s mw-electron sys-
tem can be modeled as a tight-binding Hamiltonian
characterized by a single hopping matrix element be-
tween neighboring atoms, —t (with ¢ real and posi-
tive), and the energy off-set ¢ of the w-electron states.
To determine the spectrum of the system, a system of
bi-atomic unit cells can be introduced (see the ovals
in the schematic) and two (non-orthogonal) unit vec-
tors of the hexagonal lattice, a; — (v/3,1)a/2 and
a; = (v/3,—1)a/2, where a = |a;| = |as| =~ 2.46 A denotes the lattice constant. The
tight-binding Hamiltonian is then represented as H = —t I (a{ (r)as(r') +h.c.),
where h.c. denotes the Hermitian conjugate, the sum runs over all nearest-neighbor
pairs of sites and ai(z)(r) creates a state in the first (second) atom of the cell at
position vector r. Switching to a Fourier representation, the Hamiltonian takes the

form
A% (e ob ) w9 (07) e

ko

where f(k) =1+ ¢ e | gil-ftha)ae

EXERCISE Revise the concept of the reciprocal lattice in solid state theory. To derive
the Fourier representation above, show that a system of two reciprocal lattice vectors
conjugate to the unit vectors above is given by Gy, = 27/(v/3a)(1,£+/3). Next, show
that the Fourier decomposition of a field operator reads

1 o
Qg (r) = —\/_]\7 Z e taw (F1G1 +k2G2).rU/a,k_\
k
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Fig. 2.3

Dirac
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tonian

7
oy - T o
o i
i
1

@ ' z

(a) Spectrum of the tight-binding Hamiltonian (2.24) showing the point-like structure of
the Fermi surface when £p = 0. (b) A contour plot of the same.

where k; € [0,27/a] is quantized in units 27/ L;. (L; is the extension of the system in the
direction of a; and N its total number of unit cells.) Substitute this decomposition into
the real space representation of the Hamiltonian to arrive at the Fourier representation.

Diagonalizing the Hamiltonian (2.25), one obtains the dispersion®

ex — 2t [3 4+ 2cos(kya) + 2cos((ky — ka)a) + 2 cos(kpa)]/? . (2.26)

Here, in contrast with the square-lattice tight-binding Hamiltonian, the half-filled
system is characterized by a point-like Fermi surface (fig. 2.3). When lightly doped
away from half-filling, the spectrum divides into Dirac-like spectra with a linear
dispersion. Notice that, of the six Dirac points (fig. 2.3), only two are independent.
The complementary four can be reached from those two points by the addition of
a reciprocal lattice vector and, therefore, do not represent independent states.

EXERCISE Derive an explicit representation of the Dirac Hamiltonian describing the
low-energy physics of the system. To this end, choose two inequivalent (i.e., not connected
by reciprocal lattice vectors) zero-energy points ki 2 in the Brillouin zone. Expand the
Hamiltonian (2.25) around these two points in small momentum deviations q = k — k12
up to linear order. Show that, in this approximation,  reduces to the sum of two two-
dimensional Dirac Hamiltonians.

The physics of low-energy Dirac Hamiltonians in condensed matter physics is the
subject of chapter 9. There, we will discuss numerous phenomena that owe their
existence to the “relativistic invariance” emerging in graphene and related systems
at low energy scales.

2.2.2 Interaction effects in the tight-binding system

Although the pseudopotential of the nearly free electron system accommodates the
effects of Coulomb interactions between the conduction and valence band electrons,
the mutual Coulomb interaction between the conduction electrons themselves may
lead to new physical phenomena. These effects can alter substantially the material
parameters (e.g., the effective conduction electron mass). However, they change

? P. R. Wallace, The band theory of graphite, Phys. Rev. T1, 622 (1947).
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Fig. 2.4 Different types of interaction mechanism induced by the tight-binding interaction V... The

curves symbolically indicate wave function envelopes. (a) Direct Coulomb interaction be-
tween neighboring sites. Taking account of the exchange interaction, parallel alignment of
spins (b) is preferred since it enforces antisymmetry of the spatial wave function, lowering
the electron presence between sites. By contrast, for anti-parallel spin configurations (c), the
wave function amplitude in the repulsion zone is enhanced. (d) The Coulomb interaction
between electrons of opposite spin occupying the same site.

the nature of the neither ground state nor that of the elementary quasi-particle
excitations in any fundamental way; this is the basis of Fermi-liquid theory and a
matter to which we will return. By contrast, interactions influence significantly the
physics of the tight-binding system: at “half-filling,” even weak interactions may
drive the system into a correlated magnetic state or insulating phase.

To understand why, let us re-express the interaction in the field operators as-
sociated with the Wannier states. Once again, to keep our discussion simple (yet
generic in scope), let us focus on a single sub-band and drop any reference to the
band index. Then, applied to the Coulomb interaction, the transformation (2.23)
leads to the expansion Ve = Z_”./jj/ U”-/jj/aT af/ /sy s, Where

10 VT

1
Uiy =5 [ ' [ v (wm, 0V (e =0, )i, (). (227)
Taken together, the combination of the contributions,

H - Ztii/rl,jﬁai/g -+ Z Uii/jj/ajga;/g/aj/g/ajm
o ' jjloa’

defines the tight-binding representation of the interaction Hamiltonian. Apart from
neglect of the neighboring sub-bands, the Hamiltonian is exact. Yet, to assimilate
the effects of the interaction, it is useful to assess the relative importance of the
different matrix elements, drawing on the nature of the atomic limit that justi-
fied the tight-binding description. We will thus focus on contributions to Us:j;/,
where the indices are either equal or, at most, those of nearest neighbors. Focusing
on the most relevant of these matrix elements, a number of physically different
contributions can be identified.

> The direct terms U,;,;» =V}, involve integrals over square moduli of Wannier
functions and couple density fluctuations at neighboring sites, >". il Vi figfige
where 7,; — ZU ajgaw. This contribution accounts for the — essentially clas-
sical — interaction between charges localized at neighboring sites (see fig. 2.4).
In certain materials, interactions of this type may induce charge-density wave
instabilities.
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> A second important contribution derives from the exchange coupling, which

induces magnetic correlations among the electron spins. Setting JFJI = U, and

[XNEE
making use of the Pauli matrix identities (see below), one obtains

Z_ Ul-“lawa]g/aw/aw —ZLJE [\S S -+ lnm]>
itj,00 i

Such contributions tend to induce weak ferromagnetic coupling of neighbor-
ing spins (i.e., JE > 0). The fact that an effective magnetic coupling is born out
of the electrostatic interaction between quantum particles is easily understood.
Consider two electrons inhabiting neighboring sites. The Coulomb repulsion be-
tween the particles is minimized if the orbital two-particle wave function is an-
tisymmetric and, therefore, has low amplitude in the interaction zone between
the particles. Since the overall wave function must be antisymmetric, the en-
ergetically favored real space configuration enforces a symmetric alignment of
the spins (fig. 2.4). Such a mechanism is familiar from atomic physics where it
manifests as Hund’s rule. In general, magnetic interactions in solids are usually
generated as an indirect manifestation of the stronger Coulomb interaction.

EXERCISE Makmg use of the Pauli matrix identity oag - 65 = 200508y — 6apdys,
show that S; S 1 Za@ ajaa;[ﬁalﬁam - inmj, where SI = 1, > anl oepais
denotes the operator for spin 1/2, and the lattice sites i and j are assumed distinct.

Finally, deep in the atomic limit, where the atoms are well separated and the
overlap between neighboring orbitals is weak, the matrix elements ¢;; and JE-
are exponentially small in the interatomic separation variables. In this limit,
the “on-site” Coulomb or Hubbard interaction, . . U““ajgajg/aw/aw =
>, Uiy, where Uy, = U/2, dominates (fig. 2.4). Taking only the nearest-
neighbor contribution to the hopping matrix elements, and neglecting the energy
offset due to the diagonal term, the effective Hamiltonian takes a simplified form
known as the Hubbard model,

H=—t Z @), 0o + Uannw (2.28)

JJ-’T

where (i) denotes neighboring lattice sites. In hindsight, a model of this struc-
ture could have been proposed from the outset on purely phenomenological
grounds: electrons tunnel between atomic orbitals localized on individual lat-
tice sites, while the double occupancy of a lattice site incurs an energy penalty
associated with the mutual Coulomb interaction.

2.2.3 Mott—Hubbard transition and the magnetic state

REMARK In this section we discuss condensed matter phases deriving from those of
the Hubbard Hamiltonian Eq. (2.28) at low energies, and their description in terms of
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super-
exchange

effective Hamiltonians. The section illustrates the application of second quantization in
condensed matter contexts, and puts some of the effective models discussed later into a
wider physical context. However, readers wishing to progress as quickly as possible to the
introduction of quantum field-theoretical concepts may skip it at first reading.

Deceptive in its simplicity, the Hubbard model is acknowledged as a paradigm of
strong-electron physics. Yet, after more than half a century of intense investigation,
the properties of this seemingly simple model are still the subject of debate (at least
in dimensions higher than one — see below). Thus, given the importance attached
to this system, we will close this section with a brief discussion of some of the
remarkable phenomenology that characterizes the Hubbard model.

As well as dimensionality, the phase behavior of the Hubbard Hamiltonian is
characterized by three dimensionless parameters: the ratio of the Coulomb inter-
action scale to the bandwidth U/¢, the particle density or filling fraction n (i.e.,
the average number of electrons per site), and the (dimensionless) temperature,
T'/t. The symmetry of the Hamiltonian under particle-hole interchange (exercise)
allows one to limit consideration to densities in the range 0 < n < 1, while densities
1 < n <2 can be inferred by “reflection.”

Focusing first on the low-temperature : : : —

. . o _ Sir Neville Francis Mott 23
system, in the dilute limit n < 1, the 1005-1006 feamni
typical electron wavelength is greatly was a British physicist who,

in excess of the site separation and in 1977, shared with Philip
W. Anderson and John H.

.the dyn.amlcs are free. Here the local van Vieck the Nobel Prize in
interaction presents only a weak per- Physics for their “fundamental
turbation and one can expect the prop- theoretical investigations of the

electronic structure of magnetic and disordered

systems.” Amongst his contributions to science,
Mott provided a theoretical basis to understand
free electron system. While the interac- the transition of materials from metallic to non-

erties of the Hubbard system to mirror
those of the weakly interacting nearly

tion remains weak, one expects metal- metallic states (the Mott transition).

lic behavior to prevail. By contrast, in the half-filled system, where the average site
occupancy is unity, if the interaction is weak, U/t < 1, one may again expect prop-
erties reminiscent of a weakly interacting electron system. If, on the other hand,
the interaction is strong, U/t > 1, site double occupancy is inhibited and electrons
in the half-filled system become “jammed”: migration of an electron to a neighbor-
ing lattice site would necessitate site double occupancy, incurring an energy cost U.
Here, in this strongly correlated state, the mutual Coulomb interaction between the
electrons drives the system from a metallic to an insulating phase with properties
very different from those of a conventional band insulator.

Experimentally, it is often found that the low-temperature phase of the Mott
insulator is accompanied by antiferromagnetic ordering of the local moments.
The origin of these magnetic correlations can be traced to a mechanism known as
super-exchange'” and can be understood straightforwardly within the framework

10 P W. Anderson, Antiferromagnetism. Theory of superezchange interaction, Phys. Rev. 79, 350
(1950).
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of the Hubbard model. To this end, one may consider a simple “two-site” system
from which the characteristics of the lattice system can be inferred. At half-filling
(i.e., with just two electrons to share between the two sites), one can identify a
total of six basis states: two spin polarized states a;,a%m% aha; |2}, and four
states with SZ,, = 0: [s1) = al,ab ), [s2) = alia] ), |di) = alal |Q) and
|do) = a%a; 11€2). Recalling the constraints imposed by the Pauli principle, it is
evident that the fully spin polarized states are eigenstates of the Hubbard Hamil-
tonian with zero energy, while the remaining eigenstates involve superpositions of
the basis states |s;) and |d;). In the strong-coupling limit U/t > 1, the ground
state will be composed predominantly of states with no double occupancy, |s;). To
determine the precise structure of the ground state, we could simply diagonalize
the 4 x 4 Hamiltonian — a procedure evidently infeasible in the lattice system. In-
stead, to gain some intuition for the extended system, we will use a perturbation
theory which projects the insulating system onto a low-energy effective spin Hamil-
tonian. Specifically, we will treat the hopping part of the Hamiltonian H, as a weak
perturbation of the Hubbard interaction Hy.

To implement the perturbation theory, it is helpful to invoke a canonical trans-
formation of the Hamiltonian,

. . A AL A . . on 2 . .
A H =e R = "0 =H - 10,0 + = [0,[0, 0]+, (229)

where the exponentiated commutator is defined by the series expansion on the right.

EXERCISE Considering the derivative of H' with respect to ¢, prove the second equality.

By choosing the operator ¢ such that H, + t[Hw (3} = 0, all terms of first order
in t can be eliminated from the transformed Hamiltonian. As a result, the effective
Hamiltonian is brought to the form

H — Hy + L;[Ht? O] + O(t?). (2.30)

Applying the ansatz tO — [Psﬁtpd — Pdﬁtlj’s}/ U, where P, and P; are operators
that project onto the singly and doubly occupied subspaces respectively, the first-
order cancellation is assured.

EXERCISE To verify this statement, take the matrix elements of the first-order equation
with respect to the basis states. Alternatively, it can be confirmed by inspection, noting
that PsFPa = 0, Hy P. = 0 and, in the present case, P.H.,P.— P,H.P; = 0.

Substituting tO into Eq. (2.30) and projecting onto the singly occupied subspace
one obtains
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Fig. 2.5
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Top: The hybridization of parallel spin polarized states is forbidden by Pauli exclusion.
Bottom: The superexchange mechanism by which two antiparallel spins can lower their
energy by a virtual process in which the upper Hubbard band is occupied.

A a A 1A o o o A2 . - A fon  » 1

PSH PS — _UPSHthHtPS = —FPS i\i Jraigaég/alg/agg) Ps = J ( Sl . SQ — Z) P
\

where J — 442/U denotes the strength of the antiferromagnetic exchange

interaction coupling the spins on neighboring sites.

EXERCISE Noting the anticommutation relations of the electron operators, find the
matrix elements of the Hubbard Hamiltonian with respect to the four basis states |s;) and
|d:). Diagonalizing the 4 X 4 matrix Hamiltonian, obtain the eigenstates of the system. In
the strong-coupling system U/t = 1, determine the spin and energy dependences of the
ground state.

The perturbation theory above shows that electrons subject to a strong local repul-
sive Coulomb interaction have a tendency to adopt an antiparallel spin configuration
between neighboring sites. This has a simple physical interpretation: electrons
with antiparallel spins can take ad- _

e Philip Warren Anderson
vantage of the hybridization (however 1023-2020
small) and reduce their kinetic energy was an American physicist
by hopping to a neighboring site (see | who, in 1977, shared with

. Sir Neville Mott and John H.
fig. 2.5). Parallel spins, on the other

o ) ] van Vleck the Nobel Prize in
hand, are unable to participate in this Physics for their “fundamental

virtual process due to Pauli exclusion. theoretical investigations of the

electronic structure of magnetic and disordered
systems.” Anderson made numerous contribu-
tions to theoretical physics, from theories of
tice system. Once again, projecting localization and antiferromagnetism to super-
onto a basis in which all sites are conductivity and particle physics. He is also
credited with promoting the term “condensed
matter” in the 1960s as the field expanded
cesses favor an antiferromagnetic ar- beyond studies of the solid state.

The calculation presented above is
easily generalized to an extended lat-

singly occupied, virtual exchange pro-

rangernent of neighboring spins. Such
a correlated magnetic insulator is described by the quantum spin-1/2 Heisenberg
Hamiltonian

H=1J Z S,.-S, (2.31)
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where, as usual, {mn) denotes a sum over nearest neighbors and the positive ex-
change constant J ~ ¢2/U. While, in the insulating magnetic phase, the charge
degrees of freedom remain “quenched,” spin fluctuations can freely propagate.

When doped away from half-filling, the behavior of the Hubbard model is no-
toriously difficult to resolve. The removal of electrons from a half-filled system
introduces vacancies into the lower Hubbard band that may propagate through the
lattice. For a low concentration of holes, the strong-coupling Hubbard system may
be described effectively by the t—J Hamiltonian

By —tY PalyanePrt 7Y 8,8,

(mn)o (mn)

However, the passage of vacancies is frustrated by the antiferromagnetic spin cor-
relations of the background. Here, transport depends sensitively on the competi-
tion between the exchange and kinetic energy of the holes. Oddly, at J = 0 (i.e.,
U = o0), the ground state spin configuration is driven ferromagnetic by a single
hole (exercise: consider why!) while, for J > 0, it is generally accepted that a critical
concentration of holes is required to destabilize antiferromagnetic order.

INFO The rich behavior of the Mott—Hubbard system is nowhere more exemplified than
in the ceramic cuprate compounds — the class of materials that comprise the high-
temperature superconductors. Cuprates are built of layers of CuO» separated by heavy
rare earth ions such as lanthanum. According to band theory, the half-filled system (one
electron per Cu site) should be metallic. However, strong electron interactions drive the
cuprate system into an insulating antiferromagnetic Mott—Hubbard phase. When doped
away from half-filling, charge carriers are intro- T

duced into the lower Hubbard band. In this case,
the collapse of the Hubbard gap and the loss of an-

A

tiferromagnetic (AF) order is accompanied by the 20
development of a high-temperature unconventional
superconducting (SC) phase, whose mechanism is —
believed to be rooted in the exchange of antiferro-
magnetic spin fluctuations. Whether the rich phe-
nomenology of the cuprate system is captured by 100

the Hubbard model remains a subject of great in-
terest and debate. At increasing temperatures, the
cuprates pass through a “pseudogap” phase with
a partially gapped Fermi surface into that of con-
ventional metallic behavior. (See the figure, where
the phase diagram of Lay_.Sr,CuQOy4 is shown as a
function of temperature and the concentration = of Sr atoms replacing La atoms.)

This concludes our preliminary survey of the rich phenomenology of the interact-
ing electron system. Notice that, so far, we have merely discussed ways to distill a
reduced model from the original microscopic many-body Hamiltonian (2.17). How-
ever, save for the two examples of free field theories analyzed in chapter 1, we have
not yet learned how methods of second quantization can be applied to actually solve



6b

2.2 Applications of Second Quantization

free theory

carbon
nanotube

organic
conductor

quantum
wire

problems. To this end, in the following section, we will illustrate the application of
the method on a prominent strongly interacting problem.

2.2.4 Interacting fermions in one dimension

Within the context of many-body physics, a theory is termed free if the Hamil-
tonian is bilinear in creation and annihilation operators, i.e., H ~ > v az H,.a,,
where H may be a finite- or infinite-dimensional matrix.'* Such models are “solv-
able” in the sense that the solution of the problem simply amounts to a diagonal-
ization of the matrix H . (subject to the preservation of the commutation relations
of the operators a and a'). However, only a few models of interest belong to this
category. In general, interaction contributions that are typically quartic in the field
operators are present, and complete analytical solutions are out of reach.

Yet there are a few precious examples of genuinely interacting systems that are
amenable to (nearly) exact solution. In this section, we address an important rep-
resentative of this class, the one-dimensional interacting electron gas. Not only is
its analysis physically interesting but, in addition, it provides an opportunity to
practice working with the second-quantized operator formalism on a deeper level.
To this end, consider the electron Hamiltonian (2.18) and (2.19) in one dimension.
Including the chemical potential Er into the free part, and neglecting spin degrees
of freedom (e.g., one might consider a fully spin-polarized band) we have

N . [ K2 1
H = E a, (2— — EF\ ap + — E V(q)azfqaz%qak/ak. (2.32)
Y m Vi 2L
k Kk g0

INFO At first sight, the treatment of a one-dimensional electron
system may seem academic. However, effective one-dimensional
interacting fermion systems are realized in a surprisingly rich spec-
trum of materials. For example, a carbon nanotube is formed
from a graphene layer rolled into a cylindrical geometry. The car-
bon lattice is surrounded by clouds of mobile (itinerant) electrons
(see the upper panel of the figure). Confinement in the circumfer-
ential direction divides the system into a series of one-dimensional
bands, each classified by a sub-band index and wave number k.
At low temperatures, the Fermi surface typically intersects a sin-
gle sub-band, allowing attention to be concentrated on a strictly one-dimensional systerm.
A similar mechanism renders certain organic molecules (such as the Bechgaard salt
(TMTSF)2PFg, where TMTSFE stands for tetramethyl-tetraselenafulvalene) one dimen-
sional.

A third realization is presented by artificial low-dimensional structures fabricated from
semiconducting devices. The redistribution of charge at the interface of a GaAs/AlGaAs
heterostructure results in the formation of a two-dimensional electron gas. By applying
external gates, it is possible to fabricate quasi-one-dimensional semiconductor quantum
wires, in which electron motion in the transverse direction is impeded by a large potential
gradient. At sufficiently low Fermi energies, only the lowest eigenstate of the transverse

11 More generally, a free Hamiltonian may also contain contributions ~ a,ay and aL al.
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Schrédinger equation (the lowest “quantum mode”) is populated and one is left with a
strictly one-dimensional electron system (lower panel). There are other realizations, such
as the edge modes in quantum Hall systems, “stripe phases” in high-temperature
superconductors or certain inorganic crystals; but we shall not discuss these here.

The one-dimensional fermion system exhibits a number of features not shared by
higher-dimensional systems. The origin of these peculiarities can be understood
using a simple qualitative picture. Consider an array of interacting fermions confined
to a line. To optimize their energy, the electrons can merely “push” each other
around, thereby creating density fluctuations. By contrast, in higher-dimensional
systems, electrons are free to avoid contact by moving around each other.

A slightly different formulation of the E

same picture can be given in momenturm l
space. The Fermi “sphere” of the one-

dimensional system is defined through Ep quI_ .
the interval [—kp,kp] of filled momen- q!
tum states. The Fermi “surface” con-
sists of two isolated points, {kp, —kp}
(see the figure). By contrast, higher-
dimensional systems typically exhibit ex- — ----------sesesessssresiimpafiocesescasnad oo -
tended Fermi surfaces, thus providing

more phase space for two-particle interaction processes. The one-dimensional elec-

tron system represents a rare exception of an interacting system that can be solved
under few, physically weak, simplifying assumptions. This makes it an important
test system on which non-perturbative manifestations of many-body interactions
can be explored.

We now proceed to develop a quantitative picture of the charge
density excitations of the one-dimensional electron system. An-
ticipating that, at low temperatures, the relevant dynarmics takes

place in the vicinity of the two Fermi points {kp, —kp}, we will
reduce the Hamiltonian (2.32) to an effective model describing
the propagation of left- and right-moving excitations. To this

end, we first introduce subscripts R/L to indicate that an oper- !
ator a('+/7)kF+q creates an electron that moves to the right/left 5
with velocity ~ vg = kp/m. We next note (see the figure) that,
in the vicinity of the Fermi points, the dispersion relation is approximately linear,

implying that the non-interacting part of the Hamiltonian assumes the approximate
form (exercise)

Hy ~ Z] Zaiqa;_xﬂpq Qsq, (2.33)
s=R,L

q

where o4 = (+/—) for s = R/L, and the summation over ¢ is restricted by some
momentum cutoffl |¢| < T beyond which the linearization of the dispersion is invalid.
(Throughout this section, all momentum summations are subject to this constraint.)
Turning to the interacting part of the Hamiltonian, let us first define the operator
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commutator

fsqg = Dl ask. (2.34)
&

These operators afford two interpretations. Application of gs4 to the ground state
creates superpositions of particles (aik +q) with momentum k + ¢ and energy e;.q
and holes (asq) with momentum % and €. This may be interpreted as the excitation
of a particle from a filled state k to an empty state k + ¢g. Such particle-hole
excitations cost energy e, — € = vrg, independent of k (see the upper panel of
the figure). Alternatively, thinking of js, as the Fourier transform of the real space
density operator ps(z) (exercise), the particle-hole excitation can be interpreted as
a density modulation of characteristic wavelength ~ ¢~ '. Since both, particles and
holes travel with the same velocity, vp, these excitations do not disperse and are
expected to show a high level of stability. On this basis, we expect the operators
fsq to Tepresent the central degrees of freedom of the theory.

Represented in terms of density operators, the interaction contribution to the
Hamiltonian may be recast as

1

, 1 ft FA .
Ve = E Z ‘/ee(Q) ak,qallgurqak/ak = éz [94/05q/057q + g?psqufq} ) (235)

kk'q qs

where s = L/R denotes the complement of s = R/L, and the constants g, and
g4 measure the strength of the interaction in the vicinity of the Fermi points, i.e.,
where ¢ ~ 0 and ¢ ~ 2kp. (The notation g, 4 follows a common nomenclature.)

EXERCISE Explore the relation between the coupling constants gs.4 and the Fourier
transform of Vee. Show that, to the summation Zkk/q, not only terms with (k, k', q) ~

quately ordered (check it!), these contributions can be arranged into the form of the right-
hand side of Eq. (2.35). (For a detailed discussion see, e.g., the books by Giamarchi'? and
Mahan'?). The only point that matters for our present discussion is that the interaction
can be represented through density operators with positive constants ¢z 4 determined by
the interaction strength.

INFO Working with second-quantized theories, one frequently needs to compute commu-
tators of operators A(a7 aT) that are polynomial in the elementary boson/fermion operators
of the theory (e.g., A=uaa", A= aaatal, ete., where we have omitted the quantum num-
ber subscripts carried by a and aT). Such types of operation are made easier by elementary
commutator algebra. The most basic identity, from which many other formulae can be
derived, reads

A BCL. — (A, Bl.C 7 BIA, Ol (2.36)

Tteration of this equation for boson operators a,a’ shows that

al a"] = —na" L. (2.37)

12 T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, 2004).
13 G. Mahan, Many Particle Physics (Plenum Press, 1981).
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(Owing to the fact that a? = 0 in the fermionic case, there is no fermion analog of this
equation.) Taylor expansion then shows that, for any analytic function F(a), [af, F(a)] =
—F"(a). Another useful formula is afF'(aa’) = F'(afa)a’, which is also verified by series
expansion.

So far, we have merely rewritten parts of the Hamiltonian in terms of density
operators. Ultimately, however, we wish to arrive at a representation whereby these
operators, instead of the original electron operators, represent the fundamental
degrees of freedom of the theory. Since the definition of the operators g involves
the squares of two Fermi operators, we expect the density operators to resemble
bosonic excitations. As a first step towards the construction of the new picture, we
therefore explore the commutation relations between the operators fgq.

From the definition (2.34), and the auxiliary identity (2.36), it is straightforward
to verify the commutation relation [jsq, fsrq’] = dss’ Zk(ask{»qa’Sk*q/ _aik+q+q/a5k)'
As it stands, this relation is not of much practical use. To make further progress, we
must resort to a mild approximation. Ultimately we will want to compute observ-
ables as expectation values taken in the zero-temperature ground state of the theory,
(Q]...]Q). To simplify the structure of the theory, we may thus replace the right-
hand side of the commutation relation by its ground state expectation: [fsq, fsrq’] &

zkmmsmask 2= O s g skl ) = Oas0g g S0 (U Pk g — sk )|€2), Where,
as usual, figp = al, as, and we have made use of the fact that (Q|askask/ |2 = dpeper.
Although this is an uncontrolled approximation, it is expected to become better at
low excitation energies.

EXERCISE Critically assess the Vahdlty of the above approximation. (For a comprehen-
sive discussion, see Giamarchi’s text. )

At first sight, it would seem that the right-hand side of our simplified commuta-
tor relation vanishes. A simple shift of the summation index, >, (Qfisr1q|Q) -
>R (Qsx|€Y), indicates that the two terms contributing to the sum cancel. How-
ever, this argument is naive: it ignores the fact that our summation is limited by a
cutoff momentum I'. Since the shift & — k& — g changes the cutoff, the interpretation
above is invalid. To obtain a more accurate result, let us consider the case s = R
and ¢ > 0. We know that, in the ground state, all states with momentum & < 0 are
occupied, while all states with & > 0 are empty. This imphes that

S Qg g — Ar)|Q) = Z Y ) QPR q — )|

& M<k<—q —g<k=0 |\<J<]/
qlL
o’

= Y (QPrrig —ArE)IQ) = —
Ay
—q<k<0
where, in the last equality, we have used the fact that a momentum interval of size ¢
contains ¢/(27/L) quantized momentum states. Similar reasoning for s = L shows
that the effective form of the commutator relation reads
qL

5 (2.38)

[ﬁsmﬁs/q/} = _655/6q,7q/as
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If it were not for the ¢g-dependence of the right hand side (r.h.s. throughout), we
would indeed have found bosonic commutation relations. To make the connection
to bosons explicit, let us define
bq = nq,o“Lm b:; = nq,éL,(p
(2.39)
bog=ngpr—q, b, =ngire,
where ¢ > 0 and n, = (27/Lg)"/2. The operators {b,, b];} do indeed obey canonical
commutation relations (check this). We conclude that, apart from the scaling fac-
tors ng, the quantum density excitations of the system indeed behave as bosonic
“particles.”
Expressed in terms of the b-operators, the interaction part of the Hamiltonian
takes the form (exercise)

1 t g4 g2 bl
Y %;q <bq biq) ( 92 g4 ) (bqq> '

Notice that we have succeeded in representing a genuine two-body interaction, a
contribution that usually renders a model unsolvable, in terms of a quadratic repre-
sentation. However, this representation of the interaction term is of little use until
the kinetic part of the Hamiltonian Hy is represented in terms of the b operators.

It turns out that the direct construction of a representation of Hy in b’s, is cun-
bersome in practice. However, there exists a more efficient alternative: As follows
from the discussion of section 2.1.1, the properties of second quantized operators
are fixed by their commutation relations.'® If we manage to identify an operator
H/(b,b!) having the same commutation relations with the b-operators as the kinetic
energy operator Ho(cua"')7 we know that Hy = H{), up to an undetermined (and
inessential) constant.

Using Eq. (2.33), the definition (2.34), and the auxiliary identity (2.36), it is
straightforward to verify that [Hmp“sq} = qUrOsfsq- On the other hand, using

Eq. (2.38), one finds that the same commutation relations, [H(’% fsq) = qQUROTsfsq;
hold for
. 2mup A
H(/) = T PsqPs—q-
qs

On this basis, we may substitute H } for the non-interacting Hamiltonian.

EXERCISE To gain some confidence in the identification Ho = H)+const., and to estab-
lish that the undetermined constant actually equals zero, show that the energy expectation
values of the state |W¥,,) = p.,|Q2) for both (¥, |Ho|V,,) and (¥, |H|W.,) coincide.

™ This argument can be made quantitative by group-theoretic reasoning: Eqs. (2.4) and (2.7)
define the irreducible representation of an operator algebra — an algebra because | , | defines
a product in the space of generators {ay, aJ;}; a representation because the operators act in a
vector space (namely Fock space F) which is irreducible because all states [X\1,...,Ay) € F
can be reached by the iterative application of operators to a unique reference state (e.g., |Q2)).
Under these conditions, Schur’s lemma — to be discussed in more detail in section 3.4.1 — states
that two operators Ay and Az, having identical commutation relations with all {ax, aJ;} are
equal up to a constant.
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Finally, using Eq. (2.39), and adding the interaction contribution V.., we arrive at
the effective Hamiltonian

. i e N/ 2mop + g4 g2 hq
H= o ng (bq b*q) K g2 2nvp + g4 bg)’ (2.40)

At this point, we have succeeded in mapping the full interacting problem onto
a free bosonic theory. The mapping a« — p — b is our first example of a concept
known as bosonization. This technique plays an important role in 2(= 1 space +
1 time)-dimensional field theory in general, and more sophisticated schemes will
be discussed in section 3.6. Conversely, it is sometimes useful to represent a boson
problem in terms of fermions, via fermionization. One may wonder why it is
possible to represent the low-lying excitations of a gas of fermions in terms of
bosons. Fermi-Bose transmutability is indeed a peculiarity of one-dimensional
quantum systems. Particles confined to a line cannot pass “around” each other.
That means that the whole issue of sign factors arising from the interchange of
particle coordinates does not arise, and much of the exclusion-type characteristics
of the Fermi system are inactivated.

Now, there is one last problem that needs to be overcome to solve the interacting
problem. In chapter 1, we learned how to interpret Hamiltonians with the structure
> q b];bq as superpositions of harmonic oscillators. However, in our present problem,

terms of the type byb_q and biqb]; appear. To return to familiar terrain, we need
to eliminate these terms. Before doing so, it is instructive to discuss their physical
meaning.

Recall that the number operator of a theory described by operators {b;7b>\}
is given by N — > b;b;v If the Hamiltonian has the form H — ZWIJZHWIJV7
this number operator commutes with H, i.e., [N7 H} = 0 (exercise), meaning that
the dynamics conserves the total number of particles. Formally, particle number
conservation implies that H and N can be simultaneously diagonalized. More
generally, any Hamiltonian containing only operators with as many &s as b's (e.g.,
bIbibD, bTLTBTBbD, ete.) creates and annihilates particles in equal numbers and hence
is number conserving. Conversely, in situations where the number of particles is not
fixed (e.g., a theory of photons or phonons), terms like bb or bb! can appear. Such
a situation is realized in the present problem: the number of density excitations
in an electron system is certainly not a conserved quantity, which explains why
contributions like byb_, appear in H.

To finally solve the problem, we must find a way to diagonalize the matrix

_ L [ 2mvp +gu 92
T o 92 2mvp + g4 )

To this end, let us introduce the shorthand notation ¥, = (b];7 b,q)T7 and rewrite
the Hamiltonian as H = Zq>0 q\I/];K\I/q. If we now define W = T, where T
is a 2 X 2 matrix acting on \I/q715 the Hamiltonian transforms as follows:

15 Since K does not depend on ¢, T can be chosen to be likewise g-independent.
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H=> qUlKb, =Y qU]ITKTV, (2.41)
q=0 g0 K
with a new matrix K’ = TTKT. We will seek a transformation T’ that makes K’
diagonal. Crucially, however, not all 2 x 2 matrices T' qualify as legitimate trans-
formations. We must ensure that the transformed “vector” again has the structure
v, = (bfj7 b q)T7 with a boson creation/annihilation operator in the first/second
component; the bosonic commutation relations of the representation must be con-
served by the transformation (think about this point). This invariance condition is
. . ! / . .

expressed in mathematical form as [V, \Ifz;j} = (=03)ij = (Vi \Ifq];}. Substitution
of W' = T~ 1, yields the pseudo-unitarity condition 7737 = o5.

With this background, we may identify the transformation bringing K to a di-
agonal form. To this end, we multiply the definition 7T K7T = K’ by o3 to obtain
(JSTTJS)JSKT — JSK/.

T
This equation states that the diagonal matrix o3 K’ = diag(+v,, —v,) = v,03 is
obtained by a similarity transformation T—'(--- )T from o3K. The diagonal o3 K’
contains the eigenvalues +v, of 03K, which sum to zero since tr(c3K) = 0. These
eigenvalues are readily computed as
I 9 o1l/2
Up = 5 (27 + g4)° — 3] . (2.42)
Thus, with 03K’ = o3v,, we ar- T : :
. ¢ K — id h id d Nicolai Nikolaevich Bogoli-
rive a = vp x id., where id. de- ubov 1909-1002
notes the unit matrix.'® Substitution was a Soviet mathematician
of this result into Eq. (2.41) finally | and theoretical physicist ac-
leads to the diagonal Hamiltonian A= claimed for his works in non-
. ) linear mechanics, statistical
Vp Zq>o q \Ijq \Ijq or, equivalently, mak- physics, the theory of super-
ing use of the identity \I/g\llg —= b:;bq + fluidity and superconductivity,
bf b1 quantum field theory, renormalization group
—q 49 ’ theory, the proof of dispersion relations, and
N elementary particle theory.
A =0, lalblb,. (2.43)
q
Here we have ignored an overall constant and omitted the prime on the new Bose
operators.
In the literature, the transformation procedure outlined above is known as a
Botg:::;?oor‘f Bogoliubov transformation. Transformations of this type are frequently applied
mation

16 pxplicit knowledge of the transformation matrix ', i.e., knowledge of the relation between the
operators b and b, is not needed for our construction. However, for the sake of completeness,
we mention that

/lcoshek sinh 0y,
'\\sinhek coshéy |’

with tanh(26) = —ga/(2mvE + g4), represents a suitable parameterization.
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charge
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in quantum magnetism (see below), superconductivity or, more generally, all prob-
lems where the particle number is not conserved. Notice that the possibility of
transforming to a representation ~ b'b does not imply that, miraculously, the the-
ory has become particle number conserving. The new “quasi-particle” operators b
are related to the original Bose operators through a transformation that mixes b
and b'. While the quasi-particle number is conserved, the number of original density
excitations is not.

Equations (2.42) and (2.43) represent our final solution of the problem of spin-
less interacting fermions in one dimension. We have succeeded in mapping the
problem onto a form analogous to our previous results (1.34) and (1.39) for the
phonon and the photon system, respectively. Indeed, all that has been said about
those Hamiltonians applies equally to Eq. (2.43): the basic elementary excitations
of the one-dimensional fermion system are waves, i.e., excitations with linear dis-
persion w = v,|q|. In the present context, they are termed charge density waves
(CDW). The Bose creation operators describing these excitations are, up to the
Bogoliubov transformation, and a momentum-dependent scaling factor (27 / Lq)l/ 2,
equivalent to the density operators of the electron gas. For a non-interacting system,
g2 = g4 = 0, and the CDW propagates with the velocity of the free Fermi particles,
vp. A fictitious interaction that does not couple particles of opposite Fermi momen-
tum, go = 0, g4 # 0, speeds up the CDW. Heuristically, this can be interpreted as
an “acceleration process” whereby a CDW pushes its own charge front. By contrast,
interactions between left and right movers, g, # 0, diminish the velocity, i.e., owing
to the Coulomb interaction it is difficult for distortions of opposite velocities to
penetrate each other. (Notice that for a theory with go = 0, no Bogoliubov trans-
formation is needed to diagonalize the Hamiltonian. In this case, undisturbed left-
and right-moving waves are the basic excitations of the theory.)

Our discussion above neglected the spin carried by conduction electrons. Had
we included spin, the following picture would have emerged (see problem 2.4.6).
The long-range dynamics of the electron gas is governed by two independently
propagating wave modes, the charge density wave discussed above, and a spin
density wave (SDW).!” The SDW carries a spin current, but is electrically
neutral. As with the CDW, its dispersion is linear, with an interaction-renormalized
velocity, v (which, however, is generally larger than the velocity v, of the CDW). To
understand the consequences of this phenomenon, imagine that an electron has been
thrown into the system (e.g., by attaching a tunnel contact somewhere along the
wire). As discussed above, a single electron does not represent a stable excitation of
the one-dimensional electron gas. What will happen is that the spectral weight of the
particle!® disintegrates into a collective charge excitation and a spin excitation. The

17 The charge density of the electron gas p = p1 + py is the sum of the densities of the spin-up and
spin-down populations, respectively. The local spin density is given by ps = p — p . After what
has been said above, it is perhaps not too surprising that fluctuations of these two quantities
represent the dominant excitations of the electron gas. What 4s surprising, though, is that these
two excitations do not interact with each other.

18 For a precise definition of this term, see chapter 7.
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newly excited waves then freely propagate into the bulk of the system at different
velocities v, and fvs. The collective quantum state defined by the independent
and free propagation of CDWs and SDWs is called the Tomonaga-Luttinger
liquid'® or just the Luttinger liquid. We will return to the discussion of of this
phase of quantum matter in chapter 3, from a field-theoretical perspective.

INFO The “disintegration” of electrons into collective spin and charge excitations is
a phenomenon known as spin—charge separation. Such types of effective “fractional-
izations” of elementary guantum particles into collective excitations are ubiquitous in
modern condensed matter physics. In fractionalization, the quantum numbers carried by
elementary particles become absorbed by different excitation channels. One of the most
prominent manifestations of this effect is the appearance of fractionally charged excitations
in quantum Hall systems, to be discussed in more detail in chapter 8.

Although the theory of spin and charge density waves in one-dimensional conductors
has a long history spanning many decades, its experimental verification proved
challenging but was eventually achieved.?”

2.2.5 Quantum spin chains

In section 2.2.1, we discussed how W Heisenb
. . erner Heisenberg 1901-
Coulomb interactions may lead to the 1076 &
indirect generation of magnetic inter- was a German theoretical
actions. We saw in the previous section | physicist who, in 1932, received
. . . . L the Nobel Prize in Physics
how in one dimension this principle

) ) ] ) “for the creation of quantum
manifests itself via the generation of mechanics, the application

(magnetic) spin density wave excita- | of which has, inter alia, led

tions. However, to introduce the phe- to the c,i,lscovery of the aIIotrop.lc forr'r.'ns (?f hy-
drogen.” As well as his uncertainty principle,
nomena brought about by quantum Heisenberg made important contributions to
magnetic correlations, it is best to first the theories of turbulence, ferromagnetism,
consider systems where the charge de- cosmic rays, and subatomic particles, and was
instrumental in planning the first West German
grees of freedom are frozen and only
nuclear reactor at Karlsruhe.
spin excitations remain. Such systems
are realized, for example, in Mott insulators, where the interaction between the spins
of localized electrons is mediated by virtual exchange processes between neighboring

electrons. One can describe these correlations through models of localized quantum

19 J. M. Luttinger, An ezactly soluble model of a many-fermion system, J. Math. Phys. 4, 1154
(1963); S. Tomonaga, Remarks on Bloch’s method of sound waves applied to many—fermion
problems, Prog. Theor. Phys. 5, 544 (1950).

C. Kim et al., Observation of spin-sharge separation in one-dimenstonal SrCuOq, Phys. Rev.
Lett. 77,4054 (1996); B. J. Kim et al., Distinct spinon and holon dispersions in photoemission
spectral functions from one-dirmensional SrCuOy, Nature Phys. 2, 397 (2006); J. N. Fuchs et
al., Spin waves in a one-dimensional spinor bose gas, Phys. Rev. Lett. 95, 150402 (2005); J.
Vijayan et al., Time-resolved observation of spin—charge deconfinement in fermionic Hubbard
chains, Science 367, 168 (2020).

20



74 2 Second Quantization
spins — either in chains or, more generally, in higher-dimensional quantum spin
lattices. We begin our discussion with the ferromagnetic spin chain.
Quantum ferromagnet
Heise?;‘if The quantum Heisenberg ferromagnet is specified by the Hamiltonian
magnet

spin waves

H——J Z S,.-S, (2.44)

where J > 0, S represents the quantum mechanical spin operator at lattice site m
and {mn) denotes summation over neighboring sites. In section 2.1.1 (see Eq. (2.13))
the quantum mechanical spin was represented through an electron basis. However,
one can conceive of situations where the spin sitting at site m is carried by a different
object (e.g., an atom with non-vanishing magnetic moment). For the purposes of
our present discussion, we need not specify the microscopic origin of the spin. All
we need to know is that (i) the lattice operators S obey the SU(2) commutator
algebra (h = 1),

1

(81, 83] = imne9* 5k (2.45)

17

characteristic of quantum spins, and (ii) the total spin at each lattice site is S.!
Now, owing to the positivity of the coupling con- s s s )

stant ./, the Hamiltonian favors configurations where <7 /‘ T \ i) T

the spins at neighboring sites are aligned in the same

direction (see the figure). A ground state of the system GW)

is given by |Q) = Q),,, |Sm), where |S,,) represents a

state with maximal z-component: SZ|S,,) = S|Sn.).

We have written “a” ground state instead of “the” ground state because the sys-

tem is highly degenerate: a simultaneous change in the orientation of all spins does

not change the ground state energy, i.e., the system possesses a global rotation
symmetry.

EXERCISE Compute the energy expectation value of the state |Q2). Defining global spin
operators through §° = ¥ S% ., consider the state |a) = exp(ia - S)|Q). Verify that the
state « is degenerate with |€2). Explicitly compute the state |(7/2,0,0)). Convince yourself
that, for general a, |a) can be interpreted as a state with rotated quantization axis.

As with our previous examples, we expect that a global continuous symmetry entails
the presence of energetically low-lying excitations. Indeed, it is obvious that, in the
limit of long wavelength A, a weak distortion of a ground state configuration will
cost vanishingly small energy. To explore the physics of these excitations or spin
waves quantitatively, we adopt a “semiclassical” picture, where the spin S > 1 is

21 Remember that the finite-dimensional representations of the spin operator are of dimension
2S5 + 1, where S may be integer or half integer. While a single electron has spin S = 1/2, the
total magnetic moment of electrons bound to an atom may be much larger.
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semiclassical
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imation

Holstein—
Primakoff
transfor-
mation

taken to be large. In this limit, the rotation of the spins around the ground state
configuration becomes similar to the rotation of a classical magnetic moment.

INFO To better understand the mechanism behind the semiclassical approximation,
consider the Heisenberg uncertainty relation AS'AS7T ~ |([87, 87y = €*|(S%}|, where
AS* is the root mean square of the quantum uncertainty of spin component 7. Using the
fact that [(S*)| < 5, we obtain for the relative uncertainty, AS°/S, the relation

ASTAS? S s>
s 8 S2 ’

i.e., for § = 1, quantum fluctuations of the spin become increasingly less important.

In the limit of large spin S, and at low excitation energies, it is natural to de-
scribe the ordered phase in terms of small fluctuations of the spins around their
expectation values (cf. the description of the ordered phase of a crystal in terms of
small fluctuations of the atoms around the ordered lattice sites). These fluctuations
are conveniently represented in terms of spin raising and lowering operators. With
St =51 4482 it is straightforward to verify that

bz GE1 _ L [&+ &
(82, 85] = +6,,55,  [84,9

a8, (2.46)

Application of S*m(ﬂ lowers (raises) the z-component of the spin at site m by one.
To make use of the fact that deviations around |} are small, it is convenient to
represent spins in terms of bosonic creation and annihilation operators a' and a

through the HolsteinPrimakoff transformation:??

~

S —a

} 1/2
m m

)

(QS — ainam) A:,CL = (23 — ainam) G, 82— 5 — ainam

EXERCISE Confirm that the spin operators satisfy the commutation relations (2.46).

The utility of this representation is clear. When the spin is large, S = 1, an expan-

~

sion in powers of 1/ gives 52, = S—al a,,, S, =~ (25)/2a}  and S ~ (25)"2a,),.

m
In this approximation, the one-dimensional Heisenberg Hamiltonian takes the form

N a oA 1 /40 4 A A ]
H=-J) <5551+ 5 (S;@S;@Jrl + SerZH)}

= —JNS?+ 78 (al, ;1 — af ) (am1 — am) + O(S°).

Ly

Keeping fluctuations at leading order in S, the quadratic Hamiltonian can be
diagonalized by Fourier transformation. Imposing periodic boundary conditions,

22 T Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a
ferromagnet, Phys. Rev. 58, 1098 (1940).
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Fig. 2.6

magnons

Heisenberg
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magnet
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Spin-wave spectrum of EuO as measured by inelastic neutron scattering at a reference
temperature of 5.5 K. Note that, at low values of momentum ¢, the dispersion is quadratic,
in agreement with the low-energy theory. (Exercise: Close inspection of the data shows the
existence of a small gap in the spectrum at @ = 0. To what may this gap be attributed?)
Figure reprinted with permission from L. Passell, O. W. Dietrich and J. Als-Nielser, Neutron
scattering from the Heisenberg ferromagnets EuO and EuS I: the exchange interaction,
Phys. Rev. B 14, 4897 (1976). Copyright (1976) by the American Physical Society.

Smi+N = S”m and a4+ N = ay, where N denotes the total number of lattice sites,
and setting a,, = W ZE'Z' e~ q;, the Hamiltonian takes the form (exercise)

B.Z.
H = —JNS? + % wiabar + O(S”) (2.47)
k

where w;, = 2JS(1 — cosk) — 4JSsin?(k/2). In the limit k& — 0, the excitation
energy vanishes as w;, — JSk?. These massless low-energy excitations, known
as magnons, represent the elementary spin-wave excitations of the ferromagnet.
At higher order in S, interactions between the magnon excitations emerge, which
broaden and renormalize the dispersion. Nevertheless, comparison with experiment
(fig. 2.6) confirms that the low-energy spin-wave excitations are quadratic in k.

Quantum antiferromagnet

Having explored the elementary excitation spectrum of the ferromagnet, we now
turn to the spin § Heisenberg antiferromagnet

H=17Y 8. 8,

[ )




77 2.2 Applications of Second Quantization
where J > 0. As we have seen, such antiferromagnetic sys-
tems occur in the arena of correlated electron compounds.
Although the Hamiltonian differs from the ferromagnet
“only” by a change of sign, the differences in the physics
are drastic. First, the phenomenology displayed by the
antiferromagnetic Hamiltonian H depends sensitively on
the geometry of the lattice.
b";:::zz For a bipartite lattice, i.e., one in which the neigh-
bors of one sublattice A also belong to the other sublattice B (see upper panel of
figure), the ground states of the antiferromagnet are close?® to a staggered spin con-
ST::; figuration, known as a Néel state, in which all neighboring spins are anti-parallel.
Again the ground state is degenerate, i.e., a global rotation of all spins by the same
amount does not change the energy. By contrast, on non-bipartite lattices, such as
the triangular one shown in the lower panel, there exists no spin configuration
wherein each bond is assigned the full exchange energy J. Spin models of this kind
frustrated are said to be frustrated.
magnet

EXERCISE Employing only symmetry considerations, identify a
possible classical ground state of the triangular lattice Heisenberg
antiferromagnet. (Hint: construct the classical ground state of a three-
site plaquette and then develop the periodic continuation.) Show that
the classical antiferromagnetic ground state of the Kagomé lattice —
a periodic array of corner-sharing Stars of David — has a continuous
spin degeneracy generated by local spin rotations. How might the degeneracy affect the
transition to an ordered phase?

Returning to the one-dimensional sys- T
o . Louis Néel 19042000
tem, we first note that a chain is triv- o
’ was a French physicist who,
ially bipartite. As before, our strategy with Hannes Alfvén shared the

will be to expand the Hamiltonian in | 1970 Nobel Prize in Physics for
his “fundamental work and dis-

. o ; coveries concerning antiferro-
before doing so, it is convenient to ap- magnetism and ferrimagnetism

terms of bosonic operators. However,

ply a canonical transformation to the that have led to important
applications in solid state physics.”

Hamiltonian in which the spins on one
sublattice, say B, are rotated through 180° about the z-axis, i.e., S5 — gg = 5%,
SY — 8% — —5Y% and §% — S% — —S8%. When represented in terms of the new
operators, the Néel ground state looks like a ferromagnetic state, with all spins
aligned. We expect that a gradual distortion of this state will produce the anti-
ferromagnetic analog of the spin waves discussed in the previous section (see the
figure).

23 Tt is straightforward to verify that the classical ground state — the Néel state — is not an exact
eigenstate of the quantum Hamiltonian. The true ground state exhibits zero-point fluctuations
reminiscent of the quantum harmonic oscillator or atomic chain. However, when S 3 1, the
Néel state serves as a useful reference state from which fluctuations can be examined.
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In terms of the transformed operators, the Hamiltonian takes the form

A PSR D s\
=03 |88 - 550800+ 58

Once again, using the Holstein—Primakoff representation S, =~ (25)1/2@,17 ete.,
H=_-NJS? + JSZ {ajnam + aInJrlaerl + AmGmi1 + ainaInJrl] + O(SO).

At first sight, the structure of this Hamiltonian, albeit quadratic in the Bose
operators, looks awkward. However, after applying the Fourier transformation

Uy, = \% Zk e*”‘“ma;67 it assumes a more symmetric form:
H=-NJS(S+1)+JS) (a; a k) ( L ) (“f )\ +0(8%),
i Vi 1 \afk/’

where v, = cos k. Apart from the definition of the matrix kernel between the Bose
operators, H is equivalent to the Hamiltonian (2.40) discussed in connection with
the charge density wave. Performing the same steps as before, the non-particle-
number-conserving contributions a'a’ can be removed by Bogoliubov transforma-
tion. As a result, the transformed Hamiltonian assumes the diagonal form

H=—-NJS(S+1)+2J8Y |sink|(ajor +1/2) (2.48)
If\'

Thus, in contrast with the ferromagnet, the spin-wave T
excitations of the antiferromagnet (fig. 2.7) display a T J T L T t

linear dispersion in the limit & — 0. Surprisingly, al- : - -
though developed in the limit of large spin, experiment | i | i ,
shows that even for S = 1/2 spin chains, this linear <7 7 T T ip T
dispersion is maintained (see fig. 2.7). @W
More generally, it turns out that, for chains of arbi-
trary half-integer spin S = 1/2,3/2,5/2, ..., the low-
energy spectrum is linear, in agreement with the results of the harmonic approxima-

tion. In contrast, for chains of integer spin S = 1,2,3 ..., the low-energy spectrum
contains a gap, i.e., these systems do not support long-range excitations. As a rule,

the sensitivity of a physical phenomenon to the characteristics of a sequence of num-
bers — such as half integer versus integer — signals the presence of a mechanism of
topological origin.?* At the same time, the formation of a gap (observed for integer
chains) represents an interaction effect; at orders beyond the harmonic approxima-
tion, spin waves begin to interact nonlinearly with each other, a mechanism that
may (for S integer) but need not (for S half integer) destroy the wave-like nature
of the low-energy excitations. In section 8.4.6 — in a chapter devoted to a discussion
24 Specifically, the topological signature of a spin field configuration will turn out to be the number

of times the classical analog of a spin (a vector on the unit sphere) will wrap around the sphere
in (1+ 1)-dimensional space-time.
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Fig. 2.7 Experimental spin-wave dispersion of the high-T, parent compound LaCuQO,4 — a prominent

spin-1/2 antiferromagnet. The x-axis denotes individual trajectories between distinct points
of the two-dimensional Brillouin zone, I': (0,0), M: (1/2,1/2), and X: (1/2,0). Reprinted
with permission from R. Coldea et al., Spin waves and electronic excitations in LasCuQOy,
Phys. Rev. Lett. 86, 5377—(2001). Copyright (2001) by the American Physical Society.

of the intriguing phenomena generated by the conspiracy of global (topological)
structures with local interaction mechanisms — we will discuss these phenomena at
a deeper level.

2.3 Summary and Outlook

This concludes our discussion of second quantization and some of its applications.
Additional examples can be found in the problems below. In this chapter, we have
introduced second quantization as a tool whereby problems of many-body quantum
mechanics can be cast and addressed more efficiently than by the traditional lan-
guage of symmetrized many-body wave functions. We have discussed how the two
approaches are related to each other, and how the standard operations of quantum
mechanics can be performed by second-quantized methods.

Beyond qualitative discussions, the list of concrete applications encountered in
this chapter involved problems that either were non-interacting from the outset,
or could be reduced to a quadratic operator form by a number of suitable manip-
ulations. However, we carefully avoided dealing with interacting problems where
no such reductions are possible — the vast majority of problems encountered in
condensed matter physics. What can be done in situations where interactions,
i.e., operator contributions of fourth or higher order, are present and no tricks
such as bosonization can be performed? Generically, either interacting problems
of many-body physics are fundamentally inaccessible to perturbation theory, or
they necessitate perturbative analyses of infinite order in the interaction contri-
bution. Situations where a satisfactory result can be obtained by first- or second-
order perturbation theory are exceptional. Within second quantization, large-order
perturbative expansions in interaction operators lead to complex polynomials of
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Stone—von
Neumann
theorem

creation and annihilation operators. Quantum expectation values taken over such
structures can be computed by a reductive algorithm, known as Wick’s theorem.
However, from a modern perspective, the formulation of perturbation theory in this
way is not very efficient. More importantly, problems of particular interest are more
often non-perturbative in character.

To understand the language of modern condensed matter physics, we need to
develop another layer of theory, known as field integration. In essence, the latter is a
concept generalizing the effective action approach of chapter 1 to the quantum level.
However, before discussing quantum field theory, we should understand how the
concept works in principle, i.e., on the level of single-particle quantum mechanics.
This will be the subject of the next chapter.

2.4 Problems

2.4.1 Stone—von Neumann theorem

In the main text, we introduced creation and annihilation operators in a constructive manner,
i.e., by specifying their action on a fixed Fock space state. We saw that this definition implied
remarkably simple algebraic relations between the newly-introduced operators — the Heisenberg
algebra (2.7). In this problem we explore the mathematical structure behind this observation.
(The problem is included for the benefit of the mathematically inclined. Readers primarily

interested in practical aspects of second quantization may safely skip it!)
Let us define an abstract algebra of objects ax and ay by

[a)n auk - 6)\;1,7 [Cl)\7 Cl“k“ - [d>w au}( =0.

Further, let us assume that this algebra is unitarily represented in some vector space
F. This means that (i) to every ay and ay we assign a linear map 1,, : F — F such
that (ii) Tla, a,). = [Tar:Ta,lc, and (iii) Ts, = T, . To keep the notation simple,
we will denote 15, by ax (now regarded as a linear map F — F) and 15, by a;.
The Stone—von Neumann theorem states that the representation above is
unique, i.e., that, up to unitary basis transformations, there is only one such rep-
resentation. The statement is proven by explicit construction of a basis on which
the operators act in a specific and well-defined way. We will see that this action is
given by Eq. (2.6), i.e., the reference basis is simply the Fock space basis used in the
text. This proves that the Heisenberg algebra encapsulates the full mathematical
structure of the formalism of second quantization.
(a) We begin by noting that the operators 7y = a;aA are hermitian and com-
mute with each other, i.e., they are simultaneously diagonalizable. Let |nx,, na,, .. .)
be an orthonormalized eigenbasis of the operators {fy}, i.e., fiy,|[nx,; ry, .. ) =
nx, Ay, Doy, - - - Show that, up to unit-modular factors, this basis is unique. (Hint:
Use the irreducibility of the transformation.) (b) Show that ay,

Nxy, Mrg, - - -} IS AN
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eigenstate of 7, with eigenvalue ny, — 1. Use this information to show that all
eigenvalues ny, are positive integers. (Hint: Note the positivity of the scalar norm.)
Show that the explicit representation of the basis is given by

(a},) ™

s, ) =[] ——=10), (2.49)
7; vV Ty, !

where |0} is the unique state which has eigenvalue 0 for all 7,. Comparison with
Eq. (2.4) shows that the basis constructed above indeed coincides with the Fock
space basis considered in the text.

Answer:

(a) Suppose we have identified two bases {|nx,, nx,, .. .0} and {|nx,, nxy,...) } on
which all operators 7, assume equal eigenvalues. The irreducibility of the represen-
tation implies the existence of a polynomial P({a,,, “L; +) such that |ny,,nx,,...) =
P({a,,, aLi})|n>\17n>\27 ...y, Now, the action of P must not change any of the eigen-
values of n,;, which means that P contains the operators a, and aL in equal pumbers.
Reordering operators, we may thus bring P into the form P({«,,, aj'r‘ B =P{n,1}).
However, the action of this latter expression on |ny,,na,, ...}’ just produces a num-
ber, i.e., the bases are equivalent.

(b) For a given state |n) (concentrating on a fixed element of the single-particle
basis, we suppress the subscript A; throughout), let us choose an integer ¢ such that
nad tn) = (n —q+ 1)a? t|n) with n —q + 1 > 0 while n — g < 0. We then obtain

0> (n—q)(n|(a’)?aln) = (n|(a’)?ha|n) = (n|(a’)? " a?"Hn) > 0.

The only way to satisfy these inequalities is to require that (n|(a’)? a2 !n) =0
and n — ¢ = 0. The last equation implies the integer-valuedness of n. (In principle,
we ought to prove that a zero-eigenvalue state |0) exists. To show this, take any
reference state |ny,,ny,,...) and apply operators ay, until all eigenvalues ny, are
lowered to zero.) Using the commutation relations, it is then straightforward to
verify that the right hand side of Eq. (2.49) is (a) unit-normalized and (b) has
eigenvalue ny, for each 7y,.

2.4.2 Semiclassical spin waves

In chapter 1, the development of a theory of lattice vibrations in the harmonic atom chain was
motivated by the quantization of the continuum classical theory. The latter provided insight
into the nature of the elementary collective excitations. Here we will employ the semiclassical

theory of spin dynamics to explore the nature of elementary spin-wave excitations.

(a) Making use of the spin commutation relation, [S%, Sjﬂ} = iéijeaﬂ7§?7 apply
the operator identity iS; = [S“ H} to express the equation of motion of a spin in
a nearest-neighbor spin-S one-dimensional Heisenberg ferromagnet as a difference
equation. (b) Interpreting the spins as classical vectors, and taking the continuum
limit, show that the equation of motion takes the form S = JS x 8?8, where we
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Fig. 2.8

Peierls
instability

(b)/\/\/\/\
(a) An sp?-hybridized polymer chain. (b) One of the configurations of the Peierls distorted

chain. The double bonds represent the short links of the lattice. (c) A topological defect
separating two domains of the ordered phase.

have assurned a unit lattice spacing. Find and sketch a wave-like solution describing
small-angle precession around a globally magnetized state S; = Se,.

Answer:

(a) Making use of the equation of motion, and the commutation relation, substi-
tution of the Heisenberg ferromagnetic Hamiltonian gives the difference equation
S, = JS; x (Siﬂ + Si,l). (b) Interpreting the spins as classical vectors, and
applying the Taylor expansion S; 1 +— S(z +1) =S +dS +d28/2 + ---, one ob-
tains the classical equation of motion shown. Making the ansatsz S = (ccos(kx —
wt), esin(kz — wt), /52 — ¢2) one may confirm that the equation of motion is sat-
isfied if w = Jk?v/ 82 — 2.

2.4.3 Su-Shrieffer—Heeger model of a conducting polymer chain

Polyacetylene consists of bonded CH groups forming an isomeric long-chain polymer. According
to molecular orbital theory, the carbon atoms are sp-hybridized, suggesting a planar config-
uration of the molecule. An unpaired electron is expected to occupy a single m-orbital that is
oriented perpendicular to the plane. The weak overlap of the m-orbitals delocalizes the elec-
trons into a narrow conduction band. According to the nearly-free electron theory, one might
expect the half-filled conduction band of a polyacetylene chain to be metallic. However, the
energy of a half-filled band of a one-dimensional system can always be lowered by imposing a
periodic lattice distortion known as a Peierls instability (see fig. 2.8). The aim of this problem

is to explore this instability.

(a) At its simplest level, the conduction band of polyacetylene can be modeled as
a simple (arguably over-simplified) microscopic Hamiltonian, due to Su, Shrieffer
and Heeger,?® in which the hopping matrix elements of the electrons are modulated
by the lattice distortion of the atoms. By taking the displacement of the atomic
sites to be wu,, and treating their dynamics as classical, the effective Hamiltonian
assumes the form

) N N .
H=—t Z (1 + wy) [cjmcmrlg + h.c.] + Z —; (i1 — Un)27
n=1,r n=1 "

25 W. P. Su, J. R. Schrieffer and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42,
1698 (1979).
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where, for simplicity, the boundary conditions are taken to be periodic. The first
term describes the hopping of electrons between neighboring sites in terms of a
matrix element modulated by the periodic distortion of the bond-length, while the
second term represents the associated increase in the elastic energy. Taking the
lattice distortion to be periodic, u,, = (—1)"«, and the number of sites to be even,
bring the Hamiltonian to diagonal form. (Hint: Note that the lattice distortion
lowers the symmetry of the lattice. The Hamiltonian is most easily diagonalized
by distinguishing the two sites of the sublattice — i.e., doubling the size of the
elementary unit cell.) Show that the Peierls distortion of the lattice opens a gap in
the spectrum at the Fermi level of the half-filled system.

(b) By estimating the total electronic and elastic energy of the half-filled band (i.e.,
it has an average of one electron per lattice site), show that the one-dimensional
system is always unstable towards the Peierls distortion. To complete this calcu-
lation, you will need the approximate formula fwfriz dk (1 — (1 — a2> sin? k) vz
2 + (a1 — by Ina?)a? + O(a?Ina?), where a; and by are (unspecified) numerical
constants.

(c¢) For an even number of sites, the Peierls instability has two degenerate configu-
rations (for one of these, see fig. 2.8 (a)), ABABAB. .. and BABABA... Comment
on the qualitative form of the ground state lattice configuration if the number of
sites is odd (see fig. 2.8 (b)). Explain why such configurations give rise to mid-gap
states.

Answer:

(a) Since each unit cell has twice the dimension of the original lattice, we begin by
recasting the Hamiltonian in a sublattice form,

H:—tZ{ +a) [a)gbme +he] + (1 =) [Bgamrio +he]} +2Nksa?,

where the creation operators af and b act on the two sites of the elemental unit
cell of the distorted lattice. Switching to the Fourier basis, a,, = 1/2/N 3, e?#™a,
(similarly for b,,), where k takes N/2 values uniformly on the interval [—x /2, 7 /2]
and the lattice spacing of the undistorted system is taken to be unity, the Hamil-
tonian takes the form

H = 2Nk.o?
0 (14 )+ (1 —a)e® \ [ap, )
_tZ( Uy ka) ( (1+a) + (1 —a)e 2k 0 )kb:a

Diagonalizing the 2 x 2 matrix, one obtains (k) = £2¢ [1 + (a® — 1) sin? k] Y2
the limit o — 0, one recovers the cosine spectrum characteristic of the undistorted
tight-binding problem, while, when o — 1, pairs of monomers become decoupled
and we obtain a massively degenerate bonding and antibonding spectrum.
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excitons

Schwinger
boson

(b) According to the formula given, the total shift in energy is given by 4: =
—4t(a; — by Ina?)a? + 2k,0?. Maximizing the energy gain with respect to «, a
stable configuration is found when a? = exp ((a;/by) — 1 — kg/(2thy)).

(¢) If the number of sites is odd, the Peierls distortion is inevitably frustrated. The
result is that the polymer chain must accommodate a topological excitation. The
excitation is said to be topological since the defect cannot be removed by a smooth
continuous deformation. lts effect on the spectrum of the model is to introduce a
state that lies within the band gap of the material. (We will return to the discussion
of the topology of this system later, in section 8.1.1.) The consideration of an odd
number of sites forces a topological defect into the system. However, even if the
number of sites is even, one can create low-energy topological excitations of the
system either by doping (see fig. 2.8(b)) or by the creation of excitons, particle—
hole excitations. Indeed, such topological excitations can dominate the transport
properties of the system.

2.4.4 Schwinger boson representation

As with the Holstein—Primakoff representation, the Schwinger boson provides another repre-
sentation of quantum spin. The aim here is to confirm the validity of this representation. For

practical purposes, the value of the particular representation depends on its application.

In the Schwinger boson representation, the quantum mechanical spin is ex-
pressed in terms of two bosonic operators « and b:

St=dlb, S =8N, 5=

»
>
>
o] —

(aTa — bTb) .

(a) Show that this definition is consistent with the commutation relations for spin:
5+, 87] =28%. (b) Using the bosonic commutation relations, show that

@y s
(S +m) /(S —m)!

|‘_._, \

S,m) =
\v

is compatible with the definition of an eigenstate of the total spin operator S? and
S#. Here |©2) denotes the vacuum of the Schwinger bosons, and the total spin §
defines the physical subspace {|ng, np)|n, + ny = 25}.

Answer:

(a) Using the commutation relation for bosons, one finds [S*, 5] = afb bla —
bia a'b = afa — bTb = 287, as required. (b) Using the identity $2 = (§2)% +
(8T8 + 8787) = L(ha — fp)? + fafiy + 3(fa + 7p) one finds that S?|S,m) =
[m? + (S +m)(S —m) + 5] |S,m) = S(S + 1)|8,m), as required. Similarly, one
finds $7|S, m) = L(ng —np)|ng = S+ m,ny = § —m) = m|S, m), showing |5, m)
to be an eigenstate of the operator S* with eigenvalue m.



8b

2.4 Problems

Jordan—
Wigner
transfor-
mation

Jordan—
Wigner
string

2.4.5 Jordan—Wigner transformation

So far we have shown how the algebra of quantum mechanical spin can be expressed using
boson operators — cf. the Holstein—Primakoff transformation and the Schwinger boson rep-
resentation. Here, we show that a representation for spin 1/2 can be obtained in terms of

fermion operators.

In the Jordan—Wigner transformation, spin-1/2 degrees of freedom are repre-
sented in terms of a single structureless fermion. Consider an up spin as a particle
and a down spin as the vacuum, ie., [1) = |[1) = f7]0),[L) = [0) = f|1). In this
representation the spin raising and lowering operators are expressed in the form
St — ffand § = f, while 8% — fTf —1/2.

(a) With this definition, confirm that the spins obey the algebra [S*, S| = 257,
However, there is a problem: spin operators on different sites commute, while
fermion operators anticommute, e.g., ‘«j Hj = %;r .‘nj7 but fj f; = — f; f;. To obtain
a faithful spin representation, it is necessary to cancel this unwanted sign. Although
a general procedure is hard to formulate, in one dimension this can be achieved by
a nonlinear transformation,

§F = flf exp (mZ ﬁ]) §! = exp <— inﬁj) fi, Sf = f;fl - l}
i<l j<l

Operationally, this seemingly complicated transformation is straightforward: in
one dimension, the particles can be ordered on the line. By counting the num-
ber of particles “to the left,” we assign an overall sign of +1 or —1 to a given
configuration and thereby “transmute” the particles into fermions. (Put differ-
ently, the exchange of two fermions induces a sign change that is compensated
by a factor arising from the phase — the Jordan—Wigner string.) (b) Using the
Jordan-Wigner representation, show that S S 1= f} fms1. () For the spin-1/2
anisotropic quantum Heisenberg spin chain, the spin Hamiltonian assumes the form
H=-3 (J.828% , + 2 (Sjgnﬂ + S*,jg;“)). Turning to the Jordan-Wigner
representation, show that the Hamiltonian can be cast in the form

L(_-_ fnfn+1+hc> <__fnfn+fnfnfn+1fn+1>)

(d) The construction shows the equivalence between the one-dimensional spin-1/2
XY-model, defined as the spin chain with one coupling absent, J, = 0, and a
non-interacting theory of spinless fermions. In this case, show that the spectrum
assumes the form e(k) = —J| coska.

Answer:

(a) From the fermionic anticommutation relations, [S”ﬁ s - =1Ifff- = fif-
ffi=2fTf—1 =254 (b) Using the commutativity of number operators on differ-

ent sites, we obtain §$§m+1 = fl exp(in D jem M) EXP(—IT 20 g ) a1 =
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fhesimm o — fI f..1 where we have used the relation f) e "™m — fI (c)
The fermion representation is simply obtained by substitution of the above rela-
tions into the spin Hamiltonian. (d) With J, = 0, the spin Hamiltonian assumes the
form of a non-interacting tight-binding Hamiltonian H — ‘% S fst + hie).
This Hamiltonian, which has been encountered previously, is diagonalized in Fourier
space, after which one obtains the cosine band dispersion.

2.4.6 Spin—charge separation in one-dimension

In section 2.2.4, a free theory of interacting spinless fermions was developed in one dimension
making use of the bosonization formalism. This analysis showed that the low-energy degrees of
freedom were described by hydrodynamic charge (i.e., density) fluctuations propagating with
a linear dispersion. However, as well as charge, the electron degrees of freedom carry spin. The
aim of this problem is to explore the fate of the spin degrees of freedom in a one-dimensional

environment.

As a first step, we introduce operators (cf. Eq. (2.34)) fsqga = >_p “i(mq)aaskw
a =7, ], generalizing the previously introduced density operators for the presence
of spin. Similarly, the bosonic degrees of freedom of the theory (cf. Eq. (2.39))
now carry a spin index, so that b, — b,,. One aspect that makes the problem
more difficult to tackle than the previously explored spinless case is that the 2kp-
momentum transfer interaction |kp + ¢ + q1, T3 kr + 9 —q1,4) = | — ke + g+ ¢2, T
i —kp + ¢ — g2, 1), in which a right-moving spin-up electron is scattered to a left-
moving spin-up electron, cannot be expressed in terms of slowly fluctuating density
operators. (1f you don’t believe this, try!) However, using the renormalization group
methods to be introduced in chapter 6, it can be shown that this type of interaction
is largely irrelevant physically and can be neglected from the outset.

Concentrating on the low-momentum-transfer interaction, the effective bosonic
Hamiltonian assumes the form (verify)

i _ i B2 (i gt G4y
=3 vegtlpabsga Y. ldl {zn (\bsqabgqa/ +h.c.) b b

g>0,s,a q>0,s,aa’

Introducing operators that create charge (p) and spin (o) fluctuations, by, =
%(bs(ﬁ + bsgl), bsge = %(bs(ﬁ — bsq|), rearrange the Hamiltonian, and thereby
show that it assumes a diagonal form with the spin and charge degrees of freedom
exhibiting different velocities. This is a manifestation of spin—charge separation:
even without the introduction of spin-dependent forces, the spin and charge de-
grees of freedom of the electron in the metallic conductor separate and propagate
at different velocities. In this sense, there is no way to adiabatically continue from

non-interacting electrons to the collective charge and spin excitations of the system.
Answer:

Motivated by the separation into spin and charge degrees of freedom, a rearrange-
ment of the Hamiltonian gives
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Anderson
impurity
Hamiltonian

a —, g4, 4+
H = L {UFC] (biqpbsqp + biqg—bsqo’> + |q| [% (biqpbgqp + hC) + -;'b;qpbsqp}} .

q>0,s

Applying a Bogoliubov transformation, the Hamiltonian is brought to the diagonal
form

jige= Z {|q| vV (vF + ga/7)% — (92.!"'")2aiqpasqﬂ + |q|vpaiqgozsqg} + const.
q>0,s

2.4.7 The Kondo problem

Historically, the Kondo problem has assumed great significance in the field of strongly correlated
quantum systems. It represents perhaps the simplest example of a phenomenon driven by strong
electron interaction and, unusually for this arena of physics, admits a detailed theoretical
understanding. Further, in respect of the principles established in chapter 1, it exemplifies a
number of important ideas from the concept of reducibility — the collective properties of the
system may be captured by a simplified effective Hamiltonian that includes only the relevant
low-energy degrees of freedom — and the renormalization group. In the following problem,
we will seek to develop the low-energy theory of the “Kondo impurity” system, leaving the

discussion of its phenomenology to problems 4.6.3 and 6.7.3 in subsequent chapters.

The Kondo effect is rooted in the observation that, when small amounts of magnetic
ion impurities are embedded in a metallic host (such as manganese in copper or iron
in CuAu alloys), a pronounced minimum develops in the temperature dependence of
the resistivity. Although the phenomenon was discovered experimentally in 19342
it was not until 1964 that it was understood by Kondo.?” Historically, the first step
towards the solution of the problem came with a suggestion by Anderson that the
system could be modeled as an itinerant band of electron states interacting with
dilute magnetic morments associated with the ion impurities.?® Anderson proposed
that the integrity of the local moment was protected by a large local Coulomb
repulsion which inhibited multiple occupancy of the orbital state — a relative of the
Hubbard U-interaction. Such a system is described by the Anderson impurity
Hamiltonian,

H Z ({k CLngU -+ (Vk dlckg -+ hC)) -+ z €qNdas + Undﬂzd%
ko

a

where the operators clg create an itinerant electron of spin ¢ and energy ex in the

metallic host while d. creates an electron of spin ¢ on the local impurity at position
d. Here, Vi = ™ (¢4|H|1pq) denotes the coupling between these states, where ¢4
is the atomic d level and ¢4 is the Wannier state of the conduction electrons at site

26 'W.J. de Haas et al., The electrical resistance of gold, copper, and lead at low temperatures,
Physica 1, 1115 (1934).

27 J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32, 37 (1964).

2% P.W. Anderson, Localized magnetic states in metals, Phys. Rev. 124, 41 (1961).
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d. Here, we have used ng4, = d};dg to denote the number operator. While electrons
in the band are described as free fermions, those associated with the impurity state
experience an on-site Coulomb interaction of strength U. In the Kondo regime, the
Fermi level ep lies between the impurity level ¢; and ¢; + U, so that the average
impurity site occupancy is unity. Nevertheless, the coupling of the impurity to the
itinerant electron states admits virtual processes in which the site occupancy can
fluctuate between zero and two. These virtual fluctuations allow the spin on the
impurity site to flip through exchange.

On the basis of our discussion of the half-filled Hubbard model in section 2.2.2
it makes sense to transform the Anderson impurity Hamiltonian into an effective
low-energy theory. To this end, we can express the total wave function of the Hamil-
tonian |¢) as the sum of terms |¢g), |1}, and |9}, where the subscript denotes the
occupancy of the impurity site. With this decomposition, the Schrédinger equation
for the Hamiltonian can be cast in matrix form, Zizo Hynlton) = El|ty,), where
H,., = P, HP, and the operators P, project onto the subspace with m electrons
on the impurity (i.e., Py = [L (1 — rgo), p = (1 + ngr + ng, — 2ngyng)) and
b= NgpNg)))- ; ; ;

(a) Construct the operators H,,,, explicitly and explain why Hyy = Hgy = 0. Since
we are interested in the effect of virtual excitations from the |¢/1) subspace, we may
proceed by formally eliminating |¢0) and |i9) from the Schréodinger equation. By
doing so, show that the equation for |¢) can be written as
A 1 . . . 1 G
Hiyg————Ho1 + Hi1 + Hio——=—Ha1 | [¢¥1) = El¢n).
: — Hoo FE—Hy

(b) At this stage, the equation for |¢1) is exact. Show that an expansion to leading
order in 1/U and 1/¢,4 leads to the expression

R |
Hiyy————Ho1 + Ho———Hu

FE— Hyy FE—FHy

~— 3 W (Ckgcwa/dad;/ | Ko Oy do

- ; Uteg—ar €k — ¢ '
kk'oe’ o k k e

To obtain the first term in the expression, consider the commutation of (¥ —E'22)71
with H>; and make use of the fact that the total operator acts upon the singly
occupied subspace. A similar line of reasoning will lead to the second term in the
expression. Here, U + ¢; — e and €5 — e denote the respective excitation energies
of the virtual states.

Making use of the Pauli matrix identity, oag 05 = 200503y — dagds, it follows
that (exercise)

. & 1
E :clack/a/dl/da = 28y - Sq + 5 E Clack/ondau
aa’ = gat

where S; — > oas A, oasds/2 denotes the spin-1/2 degree of freedom associated

with the impurity and 8y = >, 3 c};aaagck/ 3/2. Combining this result with that
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obtained above, up to an irrelevant constant the total effective Hamiltonian (in-
cluding H11) acting in the projected subspace |¢1) is given by
Haa = Z Ekclgcko— + Z: 2Dk S - Sa + Ko z C;,,Ck/a
ko kk' L o
where
B} 1 1
s = Ve Ve (U +eg — e - fx — ed) !
K Vo W I 1 \
' 2 \ek—eg UJFEd—Ek//I
With both U + ¢; and ¢4 greatly in excess of the typical excitation energy scales,
one may safely neglect the particular energy dependence of the parameters Jy w
and Ky . In this case, the exchange interaction Jy x/ can be treated as local, the
scattering term Ky can be absorbed into a shift of the single-particle energy of
the itinerant band, and the positive (i.e., antiferromagnetic) exchange coupling can
Hamilto;‘i‘ﬂ be accommodated through the effective sd-Hamiltonian

Hy = Z ekcfwckg +2J84-8(0) (2.50)
ko

where §(0) = 3",/ o cfwaw/ck/g//Q denotes the local spin density of the itinerant
electron band at the impurity site, d = 0. To understand how the magnetic impurity
affects the low-temperature transport, we refer to problem 4.6.3, where the sd—
Hamiltonian is explored in the framework of a diagrammatic perturbation theory
in the spin interaction.

Answer:

(a) Since the diagonal elements H,,,, leave the occupation number fixed, they may
be identified with the diagonal elements of the Hamiltonian,

Hoo = L GkCL,Ckm Hy = Z Ekclgcka +eq, Hoy = L GkaWCkg +2e4 + U
k k k
The off-diagonal terms arise from the hybridization between the free electron states

and the impurity. Since the coupling involves only the transfer of single electrons,
HOQ = HQO = 0 and

Oy = Z Vid! (1 = nag ) ko = Z Vid| s cico,
ko ko
where o =1 for ¢ = | and vice versa, Hyy = HIO and Hy, = H%l. Since Hoplto) +
H01|¢,1\> = E/|\¢o>7 one may set |vo) = (E — Hoo) "Hoi|e1) and, similarly, |¢9) =
(E — Hoy) ' Hy1|v1). Then, substituting into the equation for |1}, one obtains the
given expression.
(b) Making use of the expressions from part (a), we obtain

A I a v e 1 i t
ng - H HQl /. Vk‘/k/ ckgnd&dgﬁdg/nd,.-/ck/g/
L= 22 kk'co’ L= 22
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p [ i i
H1 7.H01 = Z Vka, di(l — ndg)ckgﬁcl/g/(l — ndﬁ/)dg/.

0=
E — Hoo Moot — Hoo

Then, substituting for Hyy and Hoyo from (a), and commuting operators, we have
il

#d? e _d;ndg/ck/g/ _E—Ed—HOO_
E_[\{QQ o de' Ck’/ o UJrEd—Ek/ U+6d—6k/
s 71
l 5 c'//l___n./d/ E— —H
%CL/U/(I_ndd’/)dU/ i . ko’( do’) o | _ €d 00
F— HOO €k — €4 k' — €4
Expanding in large U and ¢4, to leading order we obtain

. 1. ) )
Ho—oHy + Ho————Hy,

E_H22 E_ ;LH]
= - Z Vkv*/ cll(gndﬁd”d;/ "ds Ck'o i d(TT(l - nd,é’)ckgcl‘;/g/(l = nd,,‘)dg/ .

k UJrEd—Ek/ K — €4
kk'co’

Finally, noting that this operator acts upon the singly occupied subspace spanned
by |41), we see that the factors involving ng, are redundant and can be dropped.
As a result, swapping the momentum and spin indices in the second part of the
expression, we obtain the required expression.
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SYNOPSIS The aim of this chapter is to introduce the concept and methodology of
the path integral, starting with single-particle quantum mechanics and then generalizing
the approach to many-particle systems. Emphasis is placed on establishing the intercon-
nections between the quantum mechanical path integral, classical Hamiltonian mechanics,
and statistical mechanics. The practice of Feynman path integration is discussed in the
context of several pedagogical applications. As well as the canonical examples of a quan-
tum particle in a single- or double-well potential, we discuss the generalization of the path
integral scheme to the tunneling of extended objects (quantum fields), and dissipative and
thermally assisted quantum tunneling. In the final part of the chapter, the concept of path
integration is extended to that of field integration for many-body systems.

To introduce the path integral formalism, we leave temporarily the arena of many-
body physics and return to single-particle quantum mechanics. By establishing the
path integral approach for ordinary quantum mechanics, we set the stage for the
introduction of field integral methods for many-body theories. We will see that the
path integral not only represents a gateway to higher-dimensional functional inte-
gral methods but, when viewed from an appropriate perspective, already represents
a field-theoretical approach in its own right. Exploiting this connection, various con-
cepts of field theory, including stationary phase analysis, the Euclidean formulation
of field theory, and instanton techniques will be introduced.

3.1 The Path Integral: General Formalism

Broadly speaking, there are two approaches to the formulation of quantum mechan-
ics: the “operator approach,” based on the canonical quantization of physical observ-
ables and the associated operator algebra and the Feynman path integral.! While
canonical quantization is usually encountered first in elementary courses on quan-

1 For a more extensive introduction to the Feynman path integral, we refer to one of the many
standard texts including R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Puath
Integrals (McGraw-Hill, 1965); J. W. Negele and H. Orland, Quantum Many Particle Systems
(Addison-Wesley, 1988); and L. S. Schulman, Techniques and Applications of Path Integration
(Wiley, 1981). Alternatively, one may turn to the original literature, R. P. Feynman, Space-time
approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 362 (1948). Historically,
Feynman’s development of the path integral was motivated by earlier work by Dirac on the
connection between classical and quantum mechanics, P. A. M. Dirac, On the analogy between
classical and quantum mechanics, Rev. Mod. Phys. 17, 195 (1945).
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tum mechanics, path integrals have acquired the reputation of being a sophisticated

concept that is better reserved for ad- .
. L Richard P. Feynman 1918-
vanced courses. Yet this reputation is

1988
ha[‘dly JUStlﬁed' In faCt7 the path in- was an American physicist
tegral formulation has many advan- | who, with Sin-Itiro Tomon-
tages, most of which explicitly support aga, and Julian Schwinger, #
? shared the 1965 Nobel Prize in
an intuitive understanding of quantum Physics for “fundamental work
mechanics. Moreover, integrals — even in quantum electrodynamics,

the infinite-dimensional ones encourn- with far-reaching consequences for the physics
of elementary particles.” He was well known

tered below —are hardly more abstract for his unusual life-style, as well as his popular
than infinite-dimensional linear opera- books and lectures on mathematics and physics.
tors. Further merits of the path inte-
gral include the following.

> Although the classical limit is not always easy to retrieve within the canoni-
cal formulation of quantum mechanics, it constantly remains visible in the path
integral approach. The latter makes explicit use of classical mechanics as a “plat-
form” on which to build a theory of quantum fluctuations. The classical solutions
of Hamilton’s equation of motion always remain central to the formalism.

> Path integrals allow for an efficient formulation of non-perturbative approaches in
quantum mechanics. Examples include the “instanton” formulation of quantum
tunneling, discussed below. The extension of such methods to continuum theories
has led to some of the most powerful concepts of quantum field theory.

> The Feynman path integral represents a prototype of higher-dimensional field
integrals. Yet, even the “zero-dimensional” path integral is of relevance to appli-
cations in many-body physics. Very often, one encounters environments, such as
the superconductor or correlated electron devices. where a macroscopically large
number of degrees of freedom “lock” to form a single collective variable. (For
example, to a first approximation, the phase information carried by the order
parameter in moderately large superconducting grains can often be described
by a single phase degree of freedom, i.e., a “quantum particle” on a unit circle.)
ideally suited to the analysis of such systems.

What then is the basic idea of the path integral approach? More than any other
formulation of quantum mechanics, the path integral formalism is based on connec-
tions to classical mechanics. The variational approach employed in chapter 1 relied
on the fact that classically allowed trajectories in configuration space extremize
an action functional. A principal constraint to be imposed on any such trajectory
is energy conservation. By contrast, quantum particles have a little more freedom
than their classical counterparts. In particular, by the uncertainty principle, energy
conservation can be violated by an amount AFE over a time ~ A/AFE (here, and
throughout this chapter, we will make h explicit for clarity). The connection to
the action principles of classical mechanics becomes particularly apparent in prob-
lems of quantum tunneling: a particle of energy F may tunnel through a potential
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3.2 Construction of the Path Integral

time
evolution
operator

barrier of height V' > FE. However, this process is penalized by a damping factor
~ exp(i [, i, dzp/h), where p = V2m(E — V), i.e., the exponent of the (imagi-
nary) action associated with the classically forbidden path.

These observations motivate a new formulation of quantum propagation. Could
it be that, as in classical mechanics, the quantum amplitude A for propagation
between any two points in coordinate space is again controlled by the action
functional— controlled in a relaxed sense, where not just a single extremal path
z.1(t) but an entire manifold of neighboring paths contribute? More specifically, one
might speculate that the quantum amplitude is obtained as A ~ -y exp(:5[a]/h),
where ) #(t) symbolically stands for a summation over all paths compatible with
the initial conditions of the problem, and S denotes the classical action. Although
at this stage no formal justification for the path integral has been presented, with
this ansatz some features of quantum mechanics would obviously be borne out
correctly. Specifically, in the classical limit (A — 0), the quantum mechanical am-
plitude would become increasingly dominated by the contribution to the sum from
the classical path w(¢). This is so because non-extremal configurations would be
weighted by a rapidly oscillating amplitude associated with the large phase S/h and
would, therefore, average to zero.? Second, quantum mechanical tunneling would
be a natural element of the theory; non-classical paths do contribute to the net
amplitude, but at the cost of a damping factor specified by the imaginary action
(as in the traditional formulation).

Fortunately, no fundamentally novel picture of quantum mechanics needs to be
declared in order to promote the idea of the path “integral” }_ ) exp(iS(z|/h) to
a working theory. As we will see in the next section, the new formulation can be
developed from the established principles of canonical quantization.

3.2 Construction of the Path Integral

All information about an autonomous® quantum system is contained in its time
evolution operator. A formal integration of the time-dependent Schrodinger
equation ihd,|¥) — H|¥) gives the time evolution operator

W) = U, 0)|L@)), U, t)—e #HEDo@ —¢). (3.1)

The operator U(t',t) describes dynamical evolution under the influence of the
Hamiltonian from a time ¢ to time ¢'. Causality implies that ¢’ > ¢, as indicated by
the step or Heaviside ©-function. In the real space representation, we can write

2 More precisely, in the limit of small %, the path sum can be evaluated by saddle-point methods,
as detailed below.

3 A system is classified as autonomous if its Hamiltonian does not explicitly depend on time.
Actually, the construction of the path integral can be straightforwardly extended to include
time-dependent problems. However, in order to keep the introductory discussion as simple as
possible, here we assume time independence.



94 3 Path Integral
(g, t) = (@) = (¢ U, )P()) = / dq Uq',t';4,4)%(q, 1),
where U(q', t';q,1) = {¢'|e %H(t/*t)|q>@(t’ — 1) defines the (¢, ¢)-component of the
time evolution operator. As the matrix element expresses the probability amplitude
for a particle to propagate between points ¢ and ¢’ in a time ¢’ — ¢, it is known as
propagator the pI‘Op'dg'dt()I‘ Of the theory.

The idea behind Feynman’s approach is easy to formulate. Rather than taking
on the Schrédinger equation for general times ¢, one may first solve the simpler
problem of time evolution for infinitesimally small times At. We thus divide the
time evolution into N > 1 time steps,

ot (et 32

where At = t/N. Although nothing more than a formal rewriting of (3.1), the
representation (3.2) has the advantage that the factors e *7At/7
unit operator. (More precisely, if At is much smaller than the [reciprocal of the]
eigenvalues of the Hamiltonian in the regime of physical interest, the exponents are
small in comparison with unity and, as such, can be treated perturbatively.) A first
simplification arising from this fact is that the exponentials can be factorized into

are close to the

two pieces, each of which can be readily diagonalized. To achieve this factorization,
we make use of the identity*

e HAYN _ —ITAYR—iVAYR | O(A2),

where the Hamiltonian H = 7'+ V is the sum of the kinetic energy T = p? /2m
and potential energy v (The following analysis, restricted for simplicity to a
one-dimensional Hamiltonian, is easily generalized to arbitrary spatial dimension.)
The advantage of this factorization is that the eigenstates of each factor e~ ITAL/R
and e—iVAt/R

evolution operator factorized as

{ —iHAt/R N N —iTAt/R_—iVAL/R —iTAt/R_—iVAL/R 33
gel{ e lgi) = (ge|n e e Ao Ne e lgi) (3.3)

are known independently. To exploit this fact we consider the time

and insert at positions indicated by “A” the resolution of identity

Here |g,) and |p,) represent complete sets of position and momentum eigenstates
respectively, and n = 1,..., N serves as an index keeping track of the time steps at
which the unit operator is inserted. The rationale behind the particular choice (3.4)
is clear. The unit operator is arranged in such a way that both T and V act on

4 Note that, by the Baker—Campbell-Hausdorff formula, for operators A and B, we have eA+B
edeB(1— %[A) Bl +---).

Although this ansatz covers a wide class of quantum problems, many applications (e.g., Hamilto-
nians involving spin or magnetic fields) do not fit into this framework. For a detailed exposition

1
covering its realm of applicability, we refer to the specialist literature.
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Fig. 3.1 (a) Visualization of a set of phase space points contributing to the discrete-time config-
uration integral (3.5). (b) In the continuum limit, the set of points becomes a smooth
curve.
the corresponding eigenstates. Inserting Eq. (3.4) into (3.3), and making use of the
identity (q|p) = (plg)* = ¢'®/" /(2rk)'/? one obtains
R N1 N i
—iHt/Ay N\ P
(e 8 gy = [ [T an ] 322
n=1 n=1
AN =a,90=9i
N it — i\ )
X exp | —: Vign) +T(pni1) — pnoi——"7]. (3.5)
Thus, the matrix element of the time evolution operator has been expressed as a
(2N — 1)-dimensional integral over eigenvalues. Up to corrections of higher order
in VAt/h and TA#/h, the expression (3.5) is exact. At each “time step” #, =
nAt, n = 1,..., N, we are integrating over a pair of coordinates z,, = (¢n,Pn)
Cla;:::‘; parameterizing the classical phase space. Taken together, the points {x,} form
space an N-point discretization of a path in this space (see fig. 3.1).

To make further progress, we need to develop intuition for the behavior of the in-
tegral (3.5). We first notice that rapid fluctuations of the integration arguments x,,
as a function of the index n are inhibited by the structure of the integrand. When
taken together, contributions for which (g,11 — ¢n)pni1 > O(h) (i.e., when the
phase of the exponential exceeds 27) lead to “random phase cancellations.” In the
language of wave mechanics, the superposition of partial waves of erratically differ-
ent phases leads to destructive interference. The smooth variation of the paths that
contribute significantly motivates the application of a continuum limit analogous
to that employed in chapter 1.

Therefore, sending N — o~ at fixed t = NAG¢, the formerly discrete set ¢, =
nAt,n = 1,..., N, becomes dense on the time interval [0, 4] and the set of phase
space points {x,, } becomes a continuous curve z(t). In the same limit,

N—-1

t

n+1 — 4 ;

At Z — / dt/7 % — at/q |t/:tn = q|t/:tn7
O

n=0
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while [V (¢n) + T (pn1)] = [T (ple=t,,) + V{gly=,)] = H(z|p—y, ) denotes the clas-
sical Hamiltonian. In the limit N — oo, the fact that kinetic and potential energies
are evaluated at neighboring time slices n and n + 1, becomes irrelevant.® Finally,

lim. / H day, H "f* L= / o Da,

q{V)=g4

‘If ;ro 9

where Dz = D(q,p) defines the integration measure.

INFO Integrals extending over infinite-dimensional measures, such as [}(g, p), are gener-
ally called functional integrals (recall our discussion of functionals in chapter 1). The
question how functional integration can be defined rigorously is not altogether straitght-
forward and represents a subject of ongoing mathematical research. However, in this
book — as in most applications in physics — we take a pragmatic view and deal with the
infinite-dimensional integration naively unless mathematical problems arise (which actu-
ally will not be the casel!).

Then, applying these conventions to Eq. (3.5), one finally obtains

e ® ) = [ peene (3 [t i-twa)| @
2t)=ag \ JlO

q(0)=a4

Equation (3.6) represents the Hamiltonian formulation of the path integral.
The integration extends over all possible paths through the classical phase space,
which begin and end at the same configuralion points ¢; and g respectively (cf.
fig. 3.1). The contribution of each path is weighted by its Hamiltonian action.

INFO Remembering the connection of the Hamiltonian to the Lagrangian through the
Legendre transform, H(p,q) = pg — L(p, q¢), the classical action of a trajectory t — ¢(t)

is given by S[p, q] fo dt’ L(q, §) fot dt’ [pg — H(p,q)].

Before we turn to the discussion of the path integral (3.6), it is useful to recast the
integral in an alternative form which will be both convenient and instructive. The
search for an alternative formulation is motivated by the resemblance of Eq. (3.6)
to the Hamiltonian formulation of classical mechanics. Given that Hamiltonian and
Lagrangian mechanics can be equally employed to describe dynamical evolution, it

6 To see this formally, one may Taylor expand T(pn+1) = T(p(t' + At))|¢—pa¢ around p(t'). For
smooth p(t'), all but the zeroth-order contribution T'(p(t')) scale with powers of At, thereby
becoming irrelevant. Note, however, that all such arguments are based on the assertion that
the dominant contributions to the path integral are smooth in the sense ¢, +1 — gn ~ O(At). A
closer inspection, however, shows that in fact g, 41 — gn ~ O(At)l/z.I In some cases, the most
prominent one being the quantum mechanics of a particle in a magnetic field, the lowered power
of At spoils the naive form of the continuity argument above and so more care must be applied
in taking the continuum limit. In cases where a “new” path integral description of a quantum
mechanical problem is developed, it is imperative to delay taking the continuum limit until the
fluctuation behavior of the discrete integral across individual time slices has been thoroughly
examined.
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Gaussian
integration

is natural to seek a Lagrangian analog of Eq. (3.6). Focusing on Hamiltonians for
which the kinetic energy T'(p) is quadratic in p, the Lagrangian form of the path
integral can indeed be inferred from (3.6) by straightforward Gaussian integration.
To make this point clear, let us rewrite the integral in a way that emphasizes its
dependence on the momentum variable p:
(arle /" gp) = J/f o Dge Flaatv [ Dp et 15 Ev, (3.7)
q(t)=qp of

q(M)=gqj

The exponent is quadratic in p, a continuum generalization of a Gaussian integral.
Carrying out the integration (for the details, see Eq. (3.13) below), one obtains

.- i [ )
{gele """ qi) = /W):qf Dyg exp (ﬁ /O dt’L(M)) (3.8)
J A

T a(n)=gq

where Dqg = limp .. (;X—%;/)N/Q Hﬁfzf dg, denotes the functional measure of the
remaining g-integration, and L(q,qd) = mg?/2 — V(q) represents the classical La-
grangian. Strictly speaking, the finite-dimensional Gaussian integral (see the Info
section below) is not directly applicable to the infinite-dimensional integral (3.7).
This, however, does not represent a substantial problem as we can always re-
discretize the integral (3.7), and reinstate the continuum limit after integration
(exercise).

Together, Egs. (3.6) and (3.8) rep-
resent the central results of this sec-

Johann Carl Friedrich Gauss
1777-1855

tion. A quantum mechanical transi- was a German mathematician
tion amplitude has been expressed in | and physicist who worked in

a wide variety of fields includ-

) ing number theory, analysis,
tegral extending over paths through differential geometry, geodesy,

terms of an infinite-dimensional in-

phase space (3.6) or coordinate space magnetism, astronomy and op-
(3.8). All paths begin (end) at the tics. As well as several books, Gauss published a

o : number of memoirs (reports of his experiences),
initial (.ﬁnal) coordinate of the ma- mainly in the journal of the Royal Society of

trix element. Each path is weighted by Géttingen. However, in general, he was unwilling]
its classical action. Notice in particu- to publish anything that could be regarded as

lar that th ¢ ¢ iti li controversial and, as a result, some of his most
ar tha ¢ quantum transition ampl- brilliant work was found only after his death.
tude is represented without reference

to Hilbert-space operators. Nonetheless, quantum mechanics is still fully present!
The point is that the integration extends over all paths and not just the subset of
solutions of the classical equations of motion. (The distinct role played by classical
paths in the path integral will be discussed below in section 3.2.2.) The two forms
of the path integral, (3.6) and (3.8), represent the formal implementation of the “al-
ternative picture” of quantum mechanics proposed heuristically at the beginning of
the chapter.

INFO Gaussian integration: With a few exceptions, all integrals encountered in this
book are of Gaussian form. In most cases, the dimension of the integrals will be large, if



98

3 Path Integral

not infinite. Yet, after some practice, it will become clear that high-dimensional Gaussian
integrals are no more difficult to handle than their one-dimensional counterparts. There-
fore, considering the important role played by Gaussian integration in field theory, here we
derive the principal formulae once and for all. Our starting point is the one-dimensional
integral. The proofs of the one-dimensional formulae provide the key to more complex
functional identities that will be used throughout the text.

Gaussian integration: The ancestor of all Gaussian integrals is the identity

/ dr e %7 = %ﬂ Rea > 0 (3.9)

—oQ

In the following we will need various generalizations of Eq. (3.9). First, ffooo do e=9%% /232 —

(27 /a®)}/?, a result established by differentiating (3.9). Often one encounters integrals
where the exponent is not purely quadratic from the outset but rather contains both
quadratic and linear components. The generalization of Eq. (3.9) to this case reads

[ et \/Ee% (3.10)
— fa
To prove this identity, one simply eliminates the linear term by the change of variables
o — ¢+ b/a, which transforms the exponent —az?/2 1 be — —ax?/2+b?/2a. The constant
factor scales out and we are left with Eq. (3.9). Note that Eq. (3.10) holds even for complex
b. The reason is that, as a result of shifting the integration contour into the complex plane,
no singularities are encountered, i.e.; the integral remains invariant.

Later, we will be concerned with the generalization of the Gaussian integral to complex
arguments. The extension of Eq. (3.9) to this case reads

/ d(z,2z) e "% = 17 Re w > 0,

; w

where Z denotes the complex conjugate of z. Here, [d(z,z) = ffO\ dz dy represents the
independent integration over the real and imaginary parts of z = = + 1y. The identity is
easy to prove: owing to the fact that zz = z° 4+ 32, the integral factorizes into two pieces,
each of which is equivalent to Eq. (3.9) with ¢ = w. Similarly, it may be checked that the
complex generalization of Eq. (3.10) is given by

™

/ d(z,2) e 7t et Lo Rew > 0. (3.11)

w

More importantly @ and v may be independent complex numbers; they need not be related
to each other by complex conjugation (exercise).

Gaussian integration in more than one dimension: All the integrals above have

higher-dimensional counterparts. Although the real and complex versions of the N-dimensional

integral formulae can be derived in a perfectly analogous manner, it is better to discuss
them separately in order not to confuse the notation.

(a) Real case: The multi-dimensional generalization of the prototype integral (3.9) reads

[ av e TV 9m) N2 (det A) 2, (3.12)

where A is a positive-definite real symmetric N-dimensional matrix and v is an /N-
component real vector. The proof makes use of the fact that A (by virtue of being
symmetric) can be diagonalized by orthogonal transformation, A = O DO, where
the matrix O is orthogonal and all elements of the diagonal matrix D are positive.
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Wick’s
theorem

The matrix O can be absorbed into the integration vector by means of the variable
transformation v — Ov, which has unit Jacobian, |det O] = 1. As a result, we are
left with a Gaussian integral with exponent —v' Dv/2 Owing to the diagonality
of D, the integral factorizes into N independent Gaussian integrals, each of which
contributes a factor \/27T/di, where d;,» = 1,..., N, is the ith entry of the matrix
D. Noting that Hivzl d; = detD = det A, Eq. (3.12) is obtained.

The multi-dimensional generalization of FEq. (3.10) reads

;/ dv e 2¥ AVHTY 2m)V/?(det A)fl/ze%jTA' g (3.13)

where j is an arbitrary N-component vector. Equation (3.13) is proven by analogy
with (3.10), ie., by shifting the integration vector according to v.— v + A™'j,
which does not change the Value of the integral but removes the linear term from the
exponent: ——,vTAv +iT —1yTAv + 3 13T A1y, The resulting integral is of the
type (3.12), and we arrive at Eq (3 13).
The integral (3.13) is not only of importance in its own right, but also serves as a
“generator” of other useful integral identities. Applying the differentiation operation
3 i li= 0 to the left- and the right-hand side of Eq. (3.13), one obtains the identity”

[dv eIV AYY b, = (27)"/?(det A)"Y2 AL This result can be formulated as
(V) = Amp, (3.14)

where we have introduced the shorthand notation
()= @n et AV [av e BT, (3.15)

suggesting an interpretation of the Gaussian weight as a probability distribution.

Indeed, the differentiation operation leading to Eq. (3.14) can be iterated. Dif-
ferentiating four times, one obtains {Um vnvgup) = 1'17711 };pl + “mzn';pl -+ “;éA;:
One way of memorizing the structure of this important identity is that the Gaussian
“expectation” value (v, v, v,v,) is given by all “pairings” of the type (3.14) that can
be forimed from the four cornponents v,,. This rule generalizes to expectation values
of arbitrary order: 2n-fold differentiation of Eq. (3.13) yields

(ViyVig -+ Vi, ) = Z A;cllikz...Afl . (3.16)

“kan—1"k2n
pairings of
{15 i2n f

This result is the inatheinatical identity underlying Wick’s theorem (for real bosonic
fields), to be discussed in more physical teris below.

Complex case: The results above can be extended straightforwardly to rulti-
dimensional cowmplex Gaussian integrals. The cowplex version of Eq. (3.12) is given
by

/ dvh,v) e A — 2V (det A) Y, (3.17)

where v is a complex N-component vector, d( v ,V) lI . 1 d(Rewv;)d(Imwv;), and
A is a complex matrix with positive deﬁmte henultlan part. (Remember that every
matrix can be decorposed into a hermitian and an anti-hermitian cornponent, A =
1(A+ A"+ L(A - AT")) For hermitian A, the proof of Eq. (3.17) is analogous to

7 Note that the notation A;ﬁ1 refers to the mmn-element of the matrix A1,
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integration

propagator

that of Eq. (3.12), ie, A is unitarily diagonalizable, A = UTAU, the matrices U
can be transformed into v, the resulting integral factorizes, etc. For non-hermitian A
the proof is more elaborate, if unedifying, and we refer to the literature for details.
The generalization of Eq. (3.17) to exponents with linear contributions reads

{

/ d(v' v) exp (—vI AV + wiv + VTW/) = 7V (det A) T exp (WTAAW') (3.18)

Note that w and w' may be independent complex vectors. The proof of this identity
mirrors that of Eq. (3.13), i.e., by first effecting the shift vi — vi + wiA 1 v =
v+ AW 8 As with (3.13), Eq. (3.18) may also serve as a generator of integral
identities. Differentiating the integral twice according to 83%@” |wew’—0 gives

<".lmvn> = A'r'rlr 3

where (---) =7 " (det A) [d(v', V) eiV*A"(~ -+ ). Tteration to more than two deriva-

tives gives (T, U, Vp0q) = AgnllA;nl + A;,}A;nll and, eventually,

= o 1 a—1
(Vi1 Diy - Vi Ujy Vig -+ Vi) = E Afip AL we,
=

where Z p Tepresents a sum over all permutations of n integers.

Gaussian functional integration: With this preparation, we are in a position to define
the main practice of field theory — the method of Gaussian functional integration. Turning
to Eq. (3.13), let us suppose that the components of the vector v parameterize the weight
of a real scalar field on the sites of a one-dimensional lattice. In the continuum limit, the
set {v;} translates to a function v(x), and the matrix A;; is replaced by an operator kernel
A(z,2). In applications, this kernel often assumes the role of the inverse of the effective
propagator of a theory, and we will use this denotation. The generalization of Eq. (3.13)
to the infinite-dimensional case reads

/Dv(az) exp (—%/daz de’ v(x)Alz, 2 Yv(z') + /da: 7(9:)11(9:))

\ (3.19)
—1/2 ’ . —1 N - /
o (det A) exp (E/das dz’ j(z)A  (z,2")j(z )/I .
where the inverse kernel A~ !(x, ') satisfies the equation
/ dz' Az, 2 YA (o 2") = 6(x — ") (3.20)

The notation Duv(z) is used to denote the measure of the functional integral. Although
the constant of proportionality, (27)Y, left out of Eq. (3.19), is formally divergent in
the thermodynamic limit N — oo, it does not affect averages that are obtained from
derivatives of such integrals. For example, for Gaussian-distributed functions, Eq. (3.14)
has the generalization

(v(x)v(@)) = A (z,2)

8 For an explanation of why v and v may be shifted independently of each other, cf. the
analyticity remarks made in connection with Eq. (3.11).
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where the r.h.s. features the propagator. Accordingly, Eq. (3.16) assumes the form

(W(r)o(ma) - v(man)) = > A N oay,wag) o A (B g ) | (321)

pairings of
{zy,.-s Ton t

The generalizations of the other Gaussian averaging formulae above should be obvious.
To make sense of Eq. (3.19), one must interpret the meaning of the determinant, det A.
When the variables entering the Gaussian integral are discrete, the integral simply rep-
resents the determinant of the (real symmetric) matrix. In the present case, however,
one must interpret A as a hermitian operator having an infinite set of eigenvalues. The
determinant simply represents the product over this infinite set (see, e.g., section 3.2.4).

Before turning to specific applications of the Feynman path integral, let us stay with

the general structure of the formalism and identify two fundamental connections,
to classical point mechanics and to classical and quantum statistical mechanics.

3.2.1 Path integral and statistical mechanics

The path integral reveals a connection between quantum mechanics and statisti-
cal mechanics whose importance can hardly be exaggerated. To reveal this link,
let us for a moment forget about quantum me-
chanics and consider, by way of an example, a
classical one-dimensional model of a “flexible
string” held under constant tension and con-
fined to a “gutter-like” potential (see the fig-
ure). For simplicity, let us assume that the mass density of the string is high,
so that its fluctuations are “asymptotically slow” (i.e., the kinetic contribution to
its energy is negligible). Transverse fluctuations of the string are then penalized
by its line tension and the external potential. Assuming that the transverse dis-
placement w(z) is small, the potential energy stored in the string separates into
two parts: the first arises from the line tension and the second from the exter-
nal potential. Starting with the former, a transverse fluctuation of a line seg-
ment of length dz by an amount du leads to a potential energy of magnitude
dViension = o((dz? + duz)l/2 —dx) >~ odx (0,u)?/2, where o denotes the tension.
Integrating over the length of the string, one obtains Viepgion|Fau] = f AViension —

% fOL dz o(d,u)?. The second contribution, arising from the external potential, is
given by Vexternal[t] = _['OL dx V(u). Adding the two contributions, the total energy
is given by V' = Viension + Vexternal = fOL dx [%(al’u)Q + V(u)}

EXERCISE Find an expression for the kinetic energy contribution assuming that the
string has mass per unit length m. How does this model compare with the continuum
model of lattice vibrations discussed in chapter 17 Convince yourself that, in the limit
m — 0o, the kinetic contribution to the partition function Z = tr(e ##) is negligible.
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According to the general principles of statistical mechanics, the equilibrium prop-
erties of a system are encoded in the partition function Z = trle *V], where “tr”
denotes a summation over all possible configurations of the system and V is the to-
tal potential energy functional. Applied to the present case, tr — [ Du, where [ Du
stands for functional integration over all configurations of the string u(z), « € [0, L].
Thus, the partition function of the string is given by

Z= /Du exp (—ﬁ/f’ dx (%(8Iu)2 + V(u))) . (3.22)

A comparison of this result with Eq. (3.8) shows that the partition function of the
classical system coincides with the quantum mechanical amplitude

A=1/4,
t=—il

Z= /dq (ale "1/ q)

evaluated at an imaginary “time” t — —irt = —iL, where H = §?/20 + V(g), and
Planck’s constant is identified with the “temperature” h = 1/3. (Here, we have
assumed that our string is subject to periodic boundary conditions.)

To see this explicitly, let us consider quantum mechanics in a time formally
made imaginary as e H/N o TH/M or t 5 —ir. Assuming convergence (i.e.,
positivity of the eigenvalues of f_r')7 a construction scheme perfectly analogous to
the one outlined in section 3.1 would lead to a path integral of the structure (3.8).
Formally, the only differences would be (i) that the Lagrangian would be integrated
along the imaginary time axis t' — —i7’ € [0, —i7] and (ii) that there would be
a change of the sign of the kinetic energy term, i.e., (9yq)? — —(8,1q)?. After a
suitable exchange of variables, = — L, — 1/, the coincidence of the resulting
expression with the partition function (3.22) is clear.

The connection between quantum mechanics and classical statistical mechanics
outlined above generalizes to higher dimensions. There are close analogies between
quantum field theories in d dimensions and classical statistical mechanics in d + 1
dimensions. (The equality of the path integral above with the one-dimensional sta-
tistical model is merely the d = 0 version of this connection.) In fact, the connection
turned out to be one of the major driving forces behind the success of path inte-
gral techniques in modern field theory and statistical mechanics. 1t offered, for the
first time, the possibility of drawing connections between systems that had seemed
unrelated.

However, the concept of imaginary time not only provides a bridge between quan-
tum and classical statistical mechanics but also plays a role within a purely quantum
mechanical context. Consider the partition function of a single-particle quantum
system,

Z=1tt{e F) [dq (ale "7 |q)
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Wick
rotation

Euclidean
action

The partition function can be interpreted as a trace over the transition amplitude
(q|eiim/h|q> evaluated at an imaginary time ¢t = —ih 3. Thus, real-time dynamics
and quantum statistical mechanics can be treated on the same footing, provided
that we allow for the appearance of imaginary times.

Later we will see that the concept of imaginary, or even generalized complex, time
plays an important role in field theory. There is even some nomenclature regarding
imaginary times. The transformation ¢ — —u7 is described as a Wick rotation
(alluding to the fact that multiplication by ¢ can be interpreted as a (w/2)-rotation
in the complex plane). Imaginary-time representations of Lagrangian actions are
termed Euclidean, whereas the real-time forms are called Lorentzian.

INFO The origin of this terminology can be understood by considering the structure of the
action of, say, the phonon model (1.4). Forgetting for a moment about the magnitude of the
coupling constants, we see that the action has the bilinear structure ~ x, ¢""z,, where y1 =
0,1, the vector z,, = J,,¢, and the diagonal matrix g = diag(—1,1) is the two-dimensional
version of a Minkowski metric. (In three spatial dimensions g would take the form of the
standard Minkowski metric of special relativity; see the discussion in section 9.1.) On
Wick rotation of the time variable, the factor —1 in the metric changes sign to +1, and g
becomes a positive definite Fuclidean metric. The nature of this transformation motivates
the notation above.

Once one has grown accustomed to the idea that the interpretation of time as
an imaginary quantity can be useful, yet more general concepts can be conceived.
For example, one may contemplate propagation along temporal contours that are
neither purely real nor purely imaginary but are generally complex. Indeed, it turns
out that path integrals with curvilinear integration contours in the complex time
plane find numerous applications in statistical and quantum field theory.

3.2.2 Semiclassical analysis of the path integral

In deriving the two path integral representations (3.6) and (3.8), no approxima-
tions were made. Yet the majority of quantum mechanical problems are unsolvable
in closed form, and the situation regarding the path integral approach is no differ-
ent. In fact, only the path integrals of problems with a quadratic Hamiltonian —
corresponding to the quantum mechanical harmonic oscillator and generalizations
thereof — can be carried out in closed form. Yet, what counts more than the avail-
ability of exact solutions is the flexibility with which approximation schemes can
be developed. As to the path integral formulation, it is particularly strong in cases
where semiclassical limits of quantum theories are explored. Here, by “semiclas-
sical” we mean the limit 7 — 0, i.e., the case where the theory is governed by
classical structures with small quantum fluctuations superimposed.

To see how classical structures enter the path integral, consider Eqgs. (3.6) and
(3.8) at small 7. In this case, the path integrals are dominated by configurations
with stationary action. (Nonstationary contributions to the integral imply phase
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stationary
phase
approx-
imation

fluctuations which largely average to zero.) Since the exponents of the two path
integrals (3.6) and (3.8) involve the Hamiltonian or Lagrangian action, the extremal
path configurations are just the solutions of the corresponding equations of motion,

Hamiltonian :  §S[z] = =  dyx = {H, 2} =0,H dqx — O,H Op,

0
0 = (dtaq — 8q) L=0.

Lagrangian :  45[q]

These equations must be solved subject to the boundary conditions ¢(0) = ¢ and
q(t) = q¢. (Note that these boundary conditions do not uniquely specify a solution,
i.e., in general there may be many solutions — try to invent examples!)

Now, although the stationary phase configurations are classical, quantum me-
chanics is still present. Technically, we are evaluating an integral in a stationary
phase approximation. In such cases, fluctuations around stationary points are an
essential part of the integral. At the very least it is necessary to integrate out
Gaussian (quadratic) fluctuations around the stationary point. In the case of the
path integral, fluctuations of the action around the stationary phase configurations
involve non-classical (in that they do not solve the classical equations of motion)
trajectories through phase or coordinate space. Before exploring how this mecha-
nism works, let us consider the stationary phase analysis of functional integrals in
general.

INFO Consider a functional integral fDx e 77l where D — limpy oo I'L]Ll dx,, rep-
resents a functional measure resulting from taking the continuum limit of some finite-
dimensional integration space, and the “action” F' [x] may be an arbitrary complex func-
tional of z (leading to convergence of the integral). The function resulting from the limit
of infinitely many discretization points, {z,}, is denoted by z : ¢t — x(t) (where t plays the
role of the discrete index n). Evaluating the integral above within a stationary phase
approximation amounts to performing the following steps:

1. Find the “points” of stationary phase, i.e., configurations # qualified by the condition
of vanishing functional derivative (see section 1.2),

DF, =0 <+ Vt:é.F—m

oz(1) =0

Although there may be more than one solution, we first discuss the case in which the
configuration  is unique.

2. Taylor expand the functional to second order around 7, i.e.,

Fle] =F|z+y]=F|z] + l} / dedt’ y(t VA y(t) + - (3.23)

2
where A(f,t) = J%(% - denotes the second functional derivative. Owing to

the stationarity of z, no first-order contribution can appear.

3. Check that the operator A = {A(t,t)} is positive definite If it is not, there is a
problem — the integration over Gaussian fluctuations y diverges. (In practice, where
the analysis is rooted in a physical context, such eventualities arise only rarely. The
resolution can usually be found in a judicious rotation of the integration contour.)
For positive definite A, the functional integral over y is doable and one obtains
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[ Dz el o Tl det(%)' 12 (see the above discussion of Gaussian integrals
and, in particular, (3.19)).

4. Finally, if there are many stationary phase configurations, z;, the individual contri-
butions must be added:

1/2

Pl N o FlE] g [
/Da: e o Ze det \277) . (3.24)

Equation (3.24) represents the most general form of the stationary phase evaluation of a
(real) functional integral.

EXERCISE As applied to the Gamma function I'(z + 1) = fooo drx®e *, with z complex,
show that the stationary phase approximation is consistent with Stirling’s approximation,

(s +1) = 2msesneb

When applied to the Lagrangian form of the
Feynman path integral, this programme can
be implemented directly. In this case, the ex-
tremal field configuration ¢(¢) is identified as
the classical solution, ¢(t) = ¢ (t). Defining
r(t) = q(t) — ga(t) as the deviation of a general
path ¢(t) from a nearby classical path g.(t) (see
the figure), and assuming that there exists only one classical solution connecting ¢;
with ¢y in time ¢, a stationary phase analysis yields the approximation

7”(’52)) ;

d=9ecl

(3.25)

£ s

¥ : ‘ 528
(ke gy 50007 [ Drexpl o [ty r(en)
2/, 3q(

q(t1) dq(ta)

r(0)=r(t)=0

cf. Eq. (3.23). For free Lagrangians of the form L = 242 — V(g), the second func-
tional derivative of the action can be computed by rules of functional differentiation
formulated in chapter 1. Alternatively, one can obtain this result by expanding the
action to second order in fluctuations r(t) (exercise):

I 528
- / dtdt’ r(t) 4/
0

2 EQEEGTWF*é/ﬁNﬂW%+Wwamww7@%)

7=qel

where V" (g1(t)) = 02V (q)|q—q,, represents an ordinary derivative of the potential.
Thus, the Gaussian integration over r yields the square root of the determinant
of the operator md? + V" (qu(t)) — interpreted as an operator acting in the space
of functions r(t) with boundary conditions r(0) = r(¢) = 0. (Note that, as we are
dealing with a differential operator, the issue of boundary conditions is crucial.)

This concludes our conceptual discussion of the path integral. Before turning to
its applications, let us briefly summarize the main steps in its construction.



106 3 Path Integral
3.2.3 Construction recipe for the path integral
Consider a general quantum transition amplitude (ile “H%/7|44'), where t may be
real, purely imaginary, or in general complex. To construct a functional integral
representation of the amplitude:
1. Partition the time interval into N > 1 steps, e “Ht/f — [ tHAY/RN Ay —
t/N.
2. Regroup the operator content appearing in the expansion of each factor e SHAL/R
according to the relation
eTHALR 1 Atz emn AT B + O(A?),
mat
where the eigenstates |a), |b) of A, B are known and the coefficients c,,,, are c-
numbers. (In the quantum mechanical application above, A=p B= g.) This
“normal ordering” procedure emphasizes that distinct quantum mechanical
systems may be associated with the same classical action.
3. Insert resolutions of identity as follows:
e AR =N 4 (al (1 +ALY cmnATB + O(At2)> |b) (8]
a,b mn
=Y la){ale HEDAE ) (] + O(AF),
a,b
where H (a, b) is the Hamiltonian evaluated at the eigenvalues of A and B.
4. Regroup terms in the exponent: owing to the “mismatch” of the eigenstates at
neighboring time slices, n and n + 1, not only the Hamiltonians H (a, b), but
also sums over differences of eigenvalues appear (the last factor in (3.5)).
5. Take the continuum limit.
3.2.4 Example: quantum particle in a well
parf;rjz The simplest example of a quantum mechanical problem is a free particle,
propagator = $2/2m. The corresponding free propagator is given by

i P2
exp | ——=—|
\ n2m )

Crree(qt, qi51) = <Qf

(3.27)

where the Heaviside ©-function is a reflection of causality.®

9 Motivated by its interpretation as a Green function, in the following we refer to the quantum
transition probability amplitude by the symbol G (as opposed to the symbol U used above).
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EXERCISE Verify this result by the standard methodology of quantum mechanics. (Hint:
Insert a resolution of identity and perform a Gaussian integral.)

Lrritatingly, the derivation of Eq. (3.27) by the methods of path integration is not
trivial; in a way, the problem is “too free” In the path integral construction, the
absence of a confining potential shows up as divergences that must be regularized
by re-discretization. Instead of discussing such regularization methods in detail, we
proceed pragmatically and simply postulate that whenever a path integral over a
gero-potential action is encountered, it may be formally replaced by the propagator
Eq. (3.27). This substitution will be applied in the discussion of various physically
more interesting path integrals below.

EXERCISE Starting from a formal path integral representation, obtain a perturbative
expansion of the amplitude {p’|U(t — co,t’ — —oc)|p) for the scattering of a free particle
from a short-range central potential V (). In particular, show that application of the above
substitution rule to the first-order term in the expansion recovers the Born scattering
amplitude, —ife O ER/ A5 (B(p) — E@)(p'|V|p).

As a first application of the path integral, let us considera o
quantum particle in a one-dimensional potential well (see \ ‘,_:‘, — //
the figure), A= $2/2m + V(§). A discussion of this ex- \_+_— /V
ample illustrates how the semiclassical evaluation scheme \——/
discussed above works in practice. For simplicity we as- N q

sume the potential to be symmetric, V (¢) = V(—¢q), with

V(0) = 0. Consider then the amplitude for a particle initialized at g1 — 0 to return
after a time t, G(0,0;t) = (gt = Ole *1¥/"|g = 0YO(t). Drawing on our previous
discussion, the path integral representation of the transition amplitude for positive
time ¢ > 0 is given by

G(0,0;1) = / Dgq exp (;T [{ dt’ L{q, q))

q(t)=q(0)=0

with Lagrangian L = m¢?/2 — V(q).

Now, for a generic potential V(q), the path integral cannot be evaluated exactly.
Instead, we wish to invoke the semiclassical analysis outlined above. Accordingly,
we must first find solutions to the classical equation of motion. Minimizing the
action with respect to variations of ¢(t), one obtains the Euler-Lagrange equation
of motion m§ = —V’(q). This equation must be solved subject to the boundary
conditions ¢(t) = ¢(0) = 0. One solution is obvious: ¢.(t) = 0. Assuming that this
is the only solution,'” we obtain (cf. Eqs. (3.25) and (3.26))

10 1 general, this assumption is wrong. For smooth potentials V(g), a Taylor expansion of V

at small ¢ gives the harmonic oscillator potential, V(q) = Vi + mw?¢?/2 + ---. For times ¢
commensurate with 7/w, one has multiple periodic solutions, gq(t) o sin(wt), starting out
from the origin at time ¢ = 0 and returning to it at time ¢, as required by the boundary

conditions. In the next section, we will see why the restriction to the trivial solution was
nonetheless legitimate.
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. + ot .
G(0,0:1) ~ / Dr exp (—; / dt’r(t’)% (97 +w?) r(t’)) ;
i t Jo Z
r(0)=r(t)=0

where mw? = V"/(0) is the second derivative of the potential at the origin.!! Note
that, in this case, the contribution to the action from the stationary phase field
configuration vanishes: S[g.| = 0. Following the discussion in section 3.2, Gaussian
functional integration over r then leads to the semiclassical expansion

G(0,0;8) = J det (—m(8? +w?)/2) "7, (3.28)

where J absorbs various constant prefactors.

It is often most convenient to represent operator determinants such as Eq. (3.28)
as infinite products over eigenvalues. In the present case, the eigenvalues ¢, are
determined by the equation —(m/2) (67 +w?)r, = e,ryn, which must be solved
subject to the boundary condition r,,(t) = r,(0) = 0. A complete set of solutions
to this equation is given by'? r,(¢') = sin(n7t'/t), n = 1,2, ..., with eigenvalues
en = m|(nm/t)? — w?]/2. Applied to the determinant,

_ o0 9 \ 1/2
dot (<22 +o) =T (2 ((E) -02))
5 (0 ) 3:11 \z (% ),
To interpret this result, one must make sense of the infinite product (which even
seems divergent for times commensurate with 7/w). Moreover the value of the
constant J has yet to be determined.

To resolve these difficulties, one may exploit the fact that (i) we know the transi-
tion amplitude (3.27) of the free particle system, and (ii) the latter coincides with
the transition amplitude GG in the special case where the potential V' = 0. In other
words, had we computed Gy via the path integral, we would have obtained the
same constant J and the same infinite product, but with w = 0. This allows the
transition amplitude to be “regularized” as

—1/2

0 f 27
G(0,0;¢ £\ 1/2
G(0707t) = 4( il ) Gfree(070;t) - H ( 1- |/w_ } \! E/. m ) @(t)
Giree(0,0;1) i & \nw /) J \ 2t/
Then, with the identity [],—,(1 — (z/n7)?) ! = 2/sinz, one obtains
w  \M?
GO0~ [ —" N o), (3.29)
\ 2mehsin(wt) /

In the case of the harmonic oscillator, the expansion of the potential truncates at
quadratic order and our result is exact. (For a more wide-ranging discussion of the
path integral for the quantum harmonic oscillator, see problem 3.8.1.) For a general

11 Those who are uncomfortable with functional differentiation can arrive at the same expression
by substituting ¢(t) = gqi(t) + 7(¢) into the action and expanding in r(¢).

12 To find the solutions of this equation, recall the structure of the Schrédinger equation for a
particle in a one-dimensional box of width L = ¢.



109

3.3 Advanced Applications of the Feynman Path Integral

Poisson
summation
formula

quantum
tunneling

potential, the semiclassical approximation involves the replacement of V(gq) by a
quadratic potential with the same curvature. The calculation above also illustrates
how coordinate-space fluctuations around a completely static solution may reinstate
the zero-point fluctuations characteristic of quantum mechanical bound states.

EXERCISE Using the expression for the free particle propagator, use the Feynman path
integral to show that, in an infinite square well potential between ¢ = 0 and ¢ = L,
{gr|exp —%%tﬂql) =2 ,Z;le*%E"tsm(kan) sin(k,qr), where E, = (hk,)?/2m and
kn, =7n/L. (Hint: When considering contributions from different paths, note that each
reflection from an infinite potential barrier imparts an additional phase factor of —1. Note
also the Poisson summation formula, " f(m) =3  [% d¢ f(¢)e*™ %)

Compare the result with that for a quantum particle on a ring of circumference ..

3.3 Advanced Applications of the Feynman Path Integral

SYNOPSIS In this section we discuss applications of path integration in the description
of quantum mechanical tunneling, decay and dissipation. Readers on a fast track may skip
this section at first reading and return to it at a later stage when reference to concepts
introduced in this section is made.

The path integral was introduced roughly half a century after the advent of quan-
tum mechanics. Since then it has not replaced the operator formalism but developed
into an alternative formulation of quantum mechanics. Depending on the context,
operator or path integral techniques may be superior in the description of quan-
tum mechanical problems. Here, we discuss the application of the path integral in
fields where it is particularly strong (or even indispensable): quantum mechanical
tunneling, decay, and dissipation.

3.3.1 Double well potential: tunneling and instantons

Consider a quantum particle confined to a double well
potential (see figure). Our aim will be to estimate the
quantum probability amplitude for the particle either
to stay at the bottom of one of the local minima or
to go from one minimum to the other. In doing so, it R
is understood that the energy range accessible to the ' |
particle (AE ~ h/t) is well below the potential bar-
rier height, i.e., quantum mechanical transfer between
minima is by tunneling. Here, in contrast with the
single well, it is far from clear what kind of classical stationary-phase solutions may
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glasses

serve as a basis for a description of the quantum dynamics; there appear to be no
classical paths connecting the two minima! Of course one may think of particles
“rolling” over the potential hill. Yet, these are singular and energetically inaccessible
by assumption.

The key to resolving these difficulties is an observation already made above,
that the time argument appearing in the path integral should be considered as a
general complex quantity that can (according to convenience) be set to any value
in the complex plane. In the present case, a Wick rotation to imaginary times will
reveal a stationary point of the action. At the end of the calculation, the real-time
amplitudes that we seek can be obtained by analytic continuation.

INFO The mechanism of quantum tunneling plays a role in a number of problems of con-
densed matter. A prominent example is the physics of amorphous solids such as glasses.

A schematic of a glass is shown in the figure. The 14
absence of long-range order implies that individual
chemical bonds cannot assume their optimal bind-
ing lengths. For under-stretched bonds, this leads
to the formation of two metastable minima around
the ideal binding axis (see inset). The energetically
lowest excitations of the system are transitions of
individual atoms between nearly degenerate minima
of this type, i.e., flips of atoms around the binding axis. A prominent phenomenological
model' describes the system by an ensemble of quantum double wells of random center
height and width. This model explains the existence of a vast system of metastable points
in the landscape of low-energy configurations of glassy systems.

Consider the imaginary-time transition amplitudes

Gpla,+a;7) = (ale F7| £ a) = Gp(—a, Fa;7) (3.30)
for the double well, where the coordinates 4+a coincide with the two minima of the
potential. From Eq. (3.30), the real-time amplitudes G(a, +a;t) = Gg(a, fa;7 —
it) can be recovered by the analytic continuation, 7 — it. According to section 3.2.1,
the Euclidean-time path integral of the transition amplitudes is given by

Grla,£a;7) - / Dyq exp (—lh /OT dr (%q’z + V(q))> (3.31)

g(0)=+a,q(r)=a

where the function ¢ now depends on imaginary time. From Eq. (3.31) we obtain
the stationary-phase (or saddle-point) equations

—mi+V'(q) = 0. (3.32)

This result indicates that the Wick rotation amounts to an effective inversion of the
potential, V' — —V (shown in the figure above ). Crucially, in the inverted potential,

13 P. W. Anderson, B. 1. Halperin and C. M. Varma, Anomalous low-temperature thermal
properties of glasses and spin glasses, Phil. Mag. 25, 1 (1972).
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instanton

the barrier has become a trough. Within this new formulation, there are classical
solutions connecting the two points, +£a. More precisely, there are three different
types of classical solution fulfilling the condition for the particle to be at coordinates
+a at times 0 and 7: (a) a solution where the particle rests permanently at a;'*
(b) a corresponding solution where the particle stays at —a; and, most importantly,
(c) a solution in which the particle leaves its initial position at 4a, accelerates
through the minimum at ¢ = 0, and reaches the final position Fa at time 7. In
computing the transition amplitudes, all three types of path must be taken into
account. As to (a) and (b), by computing quantum fluctuations around these solu-
tions, one can recover the physics of the zero-point motion described in section 3.2.4
for each well individually. (Exercise: Convince yourself that this is true!) Now let
us see what happens if the paths connecting the two coordinates are added to this
picture.

The instanton gas

The classical solution of the Euclidean

i ¢ tion that ts th Gerardus 't Hooft 1946-
equation of motion that connects the is a Dutch theoretical physi-
two potential maxima is called an in- cist who, with Martinus J. G.
stanton, while a solution traversing | Veltman, received the 1999
the same path but in the opposite di- Nobel Prize in Physics *for elu-

) ) o cidating the quantum structure o
rection is called an anti-instanton. The of electroweak interactions in

name was conceived by 't Hooft with physics.” Together, they were
the idea that these objects are sim- able to identify the properties of the W and Z

. . . ‘. 1. N particles. The 't Hooft—Veltman model allowed
ilar in their structure to “solitons, scientists to calculate the physical properties of

particle-like solutions of classical field other particles, including the mass of the top
theories. However, unlike solitons, they quark, which was directly observed in 1995.

are structures in (Euclidean) time; hence the term “instant-.” Moreover, the syllable
“-on” hints at a particle-like interpretation of the solution. The reasoning is that,

as a function of time, instantons are almost everywhere stationary save for a short
region of variation (see below). Considering time as akin to a spatial dimension,
these states can be interpreted as a localized excitation or, according to standard
field-theoretical practice, a particle.'®

14 Note that the potential inversion answers a question that arose above, i.e., whether or not
the classical solution staying at the bottom of the single well was actually the only one that
could be counsidered. As with the double well, we could have treated the single well within
an imaginary time representation, whereupon the well would have become a hill. Clearly, the
boundary coundition requires the particle to start and finish at the top of the hill, i.e., the
solution that stays there for ever. By formulating the semiclassical expansion around that path,
we would have obtained Eq. (3.29) with ¢ — —ir which, upon analytic continuation, would
have led back to the real-time result.

The instanton method has inspired a variety of excellent and pedagogical reviews including A.
M. Polyakov, Quark confinement and topology of gauge theories, Nucl. Phys. B120, 429 (1977).
See also A. M. Polyakov, Gauge Fields and Strings (Harwood, 1987); S. Coleman, Aspects of
Symmetry — Selected Erice Lectures (Cambridge University Press, 1985), chapter 7; and A. 1.
Vainshtein et al., ABC of instantons, Sov. Phys. Usp. 25, 195 (1982).

15
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instanton

To proceed, we must first compute the action of TV
the instanton solution. Multiplying (3.32) by ¢q, in-
tegrating over time (i.e., performing the first integral

of the equation of motion), and using the fact that, at
Go = *a, ;g =V = 0, one finds

m,
5 da = V(ga)- (3.33)

2 e T

With this result, one obtains the instanton action f
T m T g _J q
Sinst :A dr' (7921 + V(QCI)) :/O dr’ — C, (mger) O

aT o
= jl dg (2mV (g)"/2. (3.34)

—a

Note that S, is determined solely by the functional profile of the potential V'
(i.e., it does not depend on the structure of the solution ¢.). Second, let us explore
the structure of the instanton as a function of time. Defining the second derivative
of the potential at +a by V' (£a) = mw?, Eq. (3.33) implies that, for large times
(when the particle is close to the right-hand maximum), g, = —w(ga — a), which
integrates to g.i(7) — a — e 7. Thus the temporal extension of the instanton is
set by the oscillator frequencies of the local potential minima (the maxima of the
inverted potential) and, in cases where tunneling takes place on time scales much
larger than that, it can be regarded as short (see the figure).

The confinement of the instanton to a narrow interval of time has an important
implication — there must exist approzimate solutions of the stationary equation
involving further anti-instanton—instanton pairs (physically, solutions with the par-
ticle repeatedly bouncing to-and-fro in the inverted potential). According to the
general philosophy of the saddle-point scheme, the path integral is obtained by
summing over all solutions of the saddle-point equations and hence over all instan-
ton configurations. The summation over multi-instanton configurations — termed
the instanton gas — is simplified by the fact that individual instantons have short
temporal support (events of overlapping configurations are rare) and that not too
many instantons can be accommodated in a finite time interval (the instanton gas
is dilute). The actual density is dictated by the competition between the config-
urational “entropy” (favoring high density) and the “energetics,” the exponential
weight implied by the action (favoring low density) — see the estimate below.

In practice, multi-instanton configurations imply a transition amplitude

T T
Gla,xa;7) = Z K"/O dﬁ./o dry - /0
o

n even/odd

o

dTn An(Th T 77—n)7 (335)

where A,, denotes the amplitude as- q

sociated with n instantons, and we oy I S R S
have noted that, in order to connect I T2 T3 T4 T8 T
a with Za, the number of instantons —&—" St

must be even or odd. The n instantons
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contributing to each A,, can take place at arbitrary times 7, € [0,7],4 = 1,...,n,
and all these possibilities have to be summed (i.e., integrated). Here, K de-
notes a constant absorbing the temporal dimension [time|” introduced by the
time integrations, and A, (7y,...,7,) is the transition amplitude, evaluated within
the semiclassical approximation around a configuration of n instantons at times
0 <7, <71 < -+ <7 <7 (see the figure). In the following, we first focus
on the transition amplitude A,,, which controls the exponential dependence of the
tunneling amplitude, and will return later to consider the prefactor K.

According to the general semiclassical principle, each amplitude A,, = A, o X
Ay qu factorizes into two parts: a classical contribution A, . accounting for the
action of the instanton configuration; and a quantum contribution A, 4, resulting
from quadratic fluctuations around the classical path. Focusing initially on A,, q
we note that, at intermediate times, 7; < 7’ < 7,41, where the particle rests on top
of either of the maxima at +a, no action accumulates (see the previous section).
However, each instanton has a finite action Sins (3.34), and these contributions
sum to give the full classical action,

An,cl(Th M 77—71) - einSinSt/h7 (336)

which is independent of the time coordinates 7;,i.e., instantons are “non-interacting.”

Regarding A,, qu, there are two contributions. First, while the particle rests on
either of the hills (corresponding to the straight segments in the figure above),
quadratic fluctuations around the classical (i.e., spatially constant) configuration
play the same role as the quantum fluctuations considered in the previous section,
the only difference being that we are working in a Wick-rotated picture. There, it
was found that quantum fluctuations around a classical configuration, which stays
for a (real) time ¢ at the bottom of a well, result in a factor \/1/sin(wt) (the
remaining constants being absorbed into the prefactor K™). Rotating to imaginary
time, ¢t — —ir, it follows that the quantum fluctuation accumulated during the
stationary time 7,41 — 7; is given by

/ 1 \ /2

~ e*w("'z#l*‘l'z')/?__

(\sin(—iw(nﬂ — Tl)))
where we have used the fact that the typical separation times between instantons are
much larger than the inverse of the characteristic oscillator scales of each minimum.
(It takes the particle much longer to tunnel through a high barrier than to oscillate
in either of the wells of the real potential.)

Second, there are also fluctuations around the instanton segments of the path.
However, owing to the fact that an instanton takes a time O(w ') < A7, where A7
represents the typical time between instantons, one can neglect these contributions
(which is to say that they can be absorbed into the prefactor K without explicit cal-
culation). Within this approximation, setting 7o = 0, 7,41 = 7, the overall quantum
fluctuation correction is given by

mn

Anqu(riy ooy ) = [[ @ on—m/2 = e7/2, (3.37)
i=0
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which again is independent of the particular spacing configuration {7;}. Combining
Eq. (3.36) and (3.37), one finds that

7" /n!
0 T [ '/‘Tnfl\
Gla,xa;7) = Z Ke nSmet/he—wr/2 [ dle d7'2~~~/ dr, (3.38)
Jli‘l ] i

neven /odd

!
w2 N L (TKefsinst/h .
ey n! A\
neven/odd

Finally, performing the sum, one obtains the transition amplitude

cosh (7K e Simste /),

Sinh(7’[(6*Sinst//"b)7 (3.39)

G(a, ®a;7) ~ Ce “7/? {
where the factor €' depends in a non-exponential way on the transition time.
Before we turn to a discussion of the physical content of this result, let us check
the self-consistency of our central working hypothesis — the diluteness of the in-
stanton gas. To this end, consider the representation of G in terms of the partial
amplitudes (3.38). To determine the typical number of instantons contributing to
the sum, note that for a general sum »° ¢, of positive quantities ¢, > 0, the “typi-
cal” value of the summation index can be estimated as (n) =Y, c,n/Y . ¢,. With
the abbreviation X = 7Ke St/ it follows that

S nX™/n!

(ny= =22 My,
Do, Xm/nl
where, as long as (n) 3 1, the even/odd distinction in the sum is irrelevant. Thus,
we can infer that the average instanton density, (n)/7 = Ke nt/" is both expo-
nentially small in the instanton action S, and also independent of 7, confirming
the validity of our diluteness assumptions above.

Finally, let us consider how the form of the
transition amplitude (3.39) is understood in
physical terms. To this end, consider the ba-
sic quantum mechanics of the problem (see the
figure). Provided that there is no coupling
across the barrier, the Hamiltonian has two
independent, oscillator-like, sets of low-lying ~
eigenstates sitting in the two local minima. Al- —q
lowing for a weak inter-barrier coupling, these S
states individually split into a doublet of sym-
metric and antisymmetric eigenstates, |S) and |A), with energies ¢4 and eg, respec-
tively. Focusing on the low-energy sector formed by the ground state doublet, the
transition amplitudes (3.30) can be expressed as

|4

G(a, £a;7) ~ {a (|s>e*657/h<5| + |A>e*6A7/h<A|) | £a).

Setting € 4,5 = (fiw £ Ae)/2, the symmetry properties |(alS)|* = [(—a|S)|* = C/2
and {(a|A)(A| —a) = —|{a]A)|> = —C/2 imply
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Gla, £a;7) =~ Q) (ef(h;:fAe)‘r/Qﬁ + ef(h-,.-+Ae;.r;-zﬁ-) — Ce—wT/2 ‘f C?Sh(AGT/h)7
2 | sinh(Aer/h),
Comparing this expression with Eq. (3.39), the interpretation of the instanton cal-
culation becomes clear: at long times, the transition amplitude is obtained from
the two lowest states — the symmetric and anti-symmetric combinations of the two
oscillator ground states. The energy splitting Ae accommodates the energy shift
due to the tunneling between the two wells. Remarkably, the effect of tunneling has
been obtained from a purely classical picture formulated in imaginary time! The
instanton calculation also produces a prediction for the splitting of the energies due
to tunneling,

Ac = hK exp(—Sing /D),

which, up to the prefactor, agrees with the result of a WKB-type analysis.
Before leaving this section, some general remarks on instantons are in order:

> In hindsight, was the approximation scheme used above consistent? In particu-
lar, terms at second order in i were neglected while terms non-perturbative in A
(the instanton) were kept. Yet the former typically give rise to a larger correc-
tion to the energy than the latter. However, the large perturbative shift affects
the energies of the symmetric and antisymmetric states equally. The instanton
contribution gives the leading correction to the splitting of the levels. It is the
latter that is likely to be of more physical significance.

> Second, it may appear that the machinery above was a bit of an “overkill” for
describing a simple tunneling process. Indeed, the basic result (3.39) could have
been obtained by more elementary means such as the WKB method. Why then
have we discussed instantons at such length? One reason is that, even within
a purely quantum mechanical framework, the instanton formulation is much
stronger than WKB. The latter represents, by and large, an uncontrolled ap-
proximation: in general it is hard to tell whether WKB results are accurate or
not. In contrast, the instanton approximation is controlled by well-defined expan-
sion parameters. For example, by going beyond the semiclassical approximation
and/or softening the diluteness assumption, the calculation of the transition
amplitudes can, in principle, be driven to arbitrary accuracy.

> A second and, for our purposes, more important motivation is that instanton
techniques are of crucial importance within higher-dimensional field theories
(here we regard the path integral formulation of quantum mechanics as a (0
space + 1 time) one-dimensional field theory). The reason is that instantons
are intrinsically non-perturbative, i.e., instanton solutions to stationary-phase
equations describe physics inaccessible to perturbative expansions around a non-
instanton sector of the theory. (For example, the instanton orbits in the example
are not reachable by perturbative expansion around a trivial orbit.)

> A related feature of the instanton analysis above is that the number of instantons
involved is a stable quantity; “stable” in the sense that, by including perturbative
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fluctuations around the n-instanton sector, say, one does not connect with the n+
2 sector. Although no rigorous proof of this statement has been given, it should
be clear heuristically: a trajectory involving n instantons between the hills of the
inverted potential cannot be smoothly connected with one of a different number.
Attempts to perturbatively interpolate between such configurations inevitably
“cost” large action, greatly exceeding any stationary phase-like value. In this
way, the individual instanton sectors are stabilized by large intermediate energy
barriers.

INFO The analysis above provides a method to extract the tunneling rate between the
quantum wells to a level of exponential accuracy. However, it is sometimes necessary to
compute the exponential prefactor K. Although such a computation follows the general
principles outlined for the single well, there are some idiosyncrasies in the tunneling system
that warrant discussion. According to the general principles outlined in section 3.2.2, after
integrating over Gaussian fluctuations around the saddle-point field configurations, the
contribution to the transition amplitude from the n-instanton sector is given by

G = Jdet (—m@?_ + V//(QCl,n)> efnsinst7

where g.1,(7) represents an n-instanton configuration and J the normalization. In the
zero-instanton sector, the evaluation of the functional determinant recovers the famil-
iar harmonic oscillator result, G(a,a, 7) = (mw/mh)Y? exp|—wr/2|. Let us now consider
the one-instanton sector of the theory. To evaluate the fluctuation determinant, one
must consider the spectrum of the operator —mao?2 + V' (ge1,1). Differentiating the defining
equation for go1,1 (3.32), one may confirm that

(—maZ + V//(QC1,1)> O0rqel,1 =0,

i.e., the function 9-qq,1 presents a “zero mode” of the operator! The origin of the zero
mode is elucidated by noting that a translation of the instanton along the time axis,
go1,1(T) = ge1,1 (7 + 67), leaves the action approximately invariant. However, for small §7,
we have qol,1(T+07) 2 ge1,1(7) + 478-¢e1,1, showing that, to linear order in é7, the function
07qc1,1 describes a zero action shift. For the same reason, 67 is a “zero-mode coordinate”

With this interpretation, it becomes clear how to repair the formula for the fluctuation
determinant. While the Gaussian integral over fluctuations is controlled for the non-zero
eigenvalues, its execution for the zero mode must be rethought. Indeed, by integrating
over the coordinate of the instanton, _jg dto = 7, one finds that the contribution to the
transition amplitude in the one-instanton sector is given by

Dinst / 2 2 —1/2 S
JTy/ %det (—m@T +V (%1,1)) e t

where the prime indicates the exclusion of the zero mode from the determinant and the
factor V"'Sinst/27rh reflects the Jacobian associated with the change to a new set of integra-
tion variables which contains the zero-mode coordinate 7 as one of its elements.*® To fix
the overall constant J, we normalize by the fluctuation determinant of the imaginary-time
harmonic oscillator, i.e., we use the fact that (see section 3.2.4) the return amplitude of the
latter evaluates to G(a,a,7) = Jdet(m(—82 + w?)/2)"Y? = (mw/mh)"/? ¢=7/% where
the first /second representation is the imaginary time variant of Eq. (3.28)/FEq.(3.29). Using

16 See, e.g., J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University
Press, 1993) for an explicit calculation of this Jacobian.
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Fig. 3.2
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Effective potential showing a metastable minimum together with the inverted potential and
a sketch of a bounce solution. To obtain the tunneling rate, it is necessary to sum over a
dilute gas of bounce trajectories.

this result, and noting that the zero-mode analysis above generalizes to the n-instanton
sector, we find that the pre-exponential constant K used in our analysis of the double well
affords the explicit representation

—1/2
o Sinet (mwzdet/ (—m@% + V”(qcu)) )
= w .

2mh det (—md2 + mw?)

Note that the instanton determinant depends sensitively on the particular nature of
the potential V' (g). For the quartic potential, V(¢) = mw?(z? — a*)?/8a?, the term in
parentheses above is given by 1/12 while Sinse = 2mwu2/3. For further details, we refer
to, e.g., Zinn-Justin (1993).16

EXERCISE A quantum particle moves in a periodic potential V' with period a. Taking

the FEuclidean action for the instanton connecting two neighboring minima to be Sinst,

express the propagator G(ma,na; T), with m and n integer, as a sum over instantons and

anti-instantons. Using the identity §(q — q') = 'OZW & 979" "show that G(ma,na; ) ~
—wr /2 27 4§ _—i(n—m)H

0o =° _

that, in the periodic system, the eigenfunctions are Bloch states vpa (¢) = eF%upa(q), the

Bloch function, show that the propagator is consistent with the spectrum e, = w/2 —
2Aecos(pa).

e exp[2Ac¢ T cosf], where the notation follows section 3.3.1. Noting

Escape from a metastable minimum: "bounces”

The instanton gas formulation can be adapted easily to describe quantum tunneling
from a metastable state, such as that of an unstable nucleus. Consider the “survival
probability” |G(qm, gm; t)|? of a particle captured in a metastable minimum g, of a
one-dimensional potential, such as that shown in fig. 3.2. As with the double well,
in the Euclidean-time formulation of the path integral, the dominant contribution
to G(gm, qm; 7) arises from the classical paths minimizing the action corresponding
to the inverted potential (see fig. 3.2). However, in contrast with the double well,
the classical solution takes the form of a “bounce,” i.e., the particle spends only a
short time away from the potential minimum as there is only a single (metastable)
minimum. As with the double well, one can expect multiple bounce trajectories
to present a significant contribution. Summing over all bounce trajectories (note
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that, in this case, we have an exponential series and no even—odd parity effect), one
obtains the survival probability

G(qm7 dm; 7—) — C@iw‘r/z exp <7K6 7Sb0unce/h) .

Analytically continuing to real time, G(gm,qm;t) = Ce 2 T2 swhere the
decay rate is given by I'/2 = |K|e Sbeunce/™  (Note that, on physical grounds, K
must be imaginary.'”).

EXERCISE Consider a heavy nucleus having a finite rate of a-decay. The nuclear forces
are short range so that the rate of a-emission is controlled by the tunneling of a-particles
under a Coulomb barrier. Taking the effective potential to be spherically symmetric, with
a deep well of radius ro beyond which it decays as U(r) = 2(Z — 1)e?/r, where Z is the
nuclear charge, find the temperature 7' of the nuclei above which a-decay is thermally
assisted if the energy of the emitted particles is £y. Estimate the mean energy of the «
particles as a function of 7"

EXERCISE A uniform electric field I is applied perpendicularly to the surface of a
metal with work function W. Assuming that the electrons in the metal describe a Fermi
gas of density n, with exponential accuracy, find the tunneling current at zero temperature
(“cold emission”). Show that, effectively, only electrons with energy near the Fermi level
are able to tunnel. With the same accuracy, find the current at non-zero temperature
(“hot emission”). What is the most probable energy of tunneling electrons as a function
of temperature?

3.3.2 Tunneling of quantum fields: “fate of the false vacuum”

Hitherto, we have focused on applications of the path integral to the quantum
mechanics of point-like particles. However, the formalism can be straightforwardly
extended to richer physical contexts. As an illustration, here we consider a setting
where the tunneling object is not a point particle but an elastic continuum with
infinitely many degrees of freedom.

Consider a situation where a continuous clas-
sical field can assume two equilibrium states
with different energy densities. To be concrete,
one may consider a harmonic chain confined to
one or other minimum of an asymmetric quasi-
one-dimensional “gutter-like” double well po-
tential defined on an interval of length L (see the figure). When quantized, the
state of higher energy density becomes unstable through barrier penetration — it is
said to be a false vacuum.'® Specifically, drawing on our discussion of the harmonic

17 In fact, a more careful analysis shows that this estimate of the decay rate is too large by a
factor 2 (for further details see, e.g., the discussion in Cole111a11|5).

18 For a detailed discussion of the history and ramifications of this idea, we refer to the original
insightful paper by S. Coleman, Fate of the false vacuum: Semiclassical theory, Phys. Rev.
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chain in chapter 1, let us consider a quantum system specified by the Hamiltonian
density

% #2 kyn? £ i -
H=oet+5 (9:0)% + V(4), (3.40)

where [#(z), d(z')] = —ihid(z —2') and V (¢) represents a double well potential. The
inclusion of a weak bias — f¢ in V(¢) identifies a stable and a metastable potential
minimum. Previously, we have seen that, in the absence of a confining potential, the
quantum string exhibits low-energy collective wave-like excitations — phonons. In
a confining potential, these harmonic fluctuations are rendered massive. However,
drawing on the quantum mechanical principles established in the single-particle
system, one might assume that the string tunnels freely between the two minima.
To explore the capacity of the system to tunnel, let us suppose that, at time ¢t = 0,
the string is located in the (metastable) minimum of the potential at ¢ = —a.
What is the probability that the entire string will tunnel across the barrier into the
potential minimum at ¢ = a in time ¢7

INFO The tunneling of fields between nearly degenerate ground states plays a role in
numerous physical contexts. By way of example, consider a superheated liquid. In
this context, the “false” vacuum is the liquid state, the true one the gaseous phase. The
role of the field is taken by the local density distribution in the liquid. Thermodynamic
fluctuations trigger the continuous appearance of vapor bubbles in the liquid. For small
bubbles, the gain in volume energy is outweighed by the surface energy cost — the bubble
will collapse. However, for bubbles beyond a certain critical size the energy balance is
positive. The bubble will grow and, eventually, swallow the entire mass density of the
system; the liquid has vaporized or, more formally, the density field has tunneled'® from
the false ground state into the true ground state.

More speculative (but more dramatic) manifestations of the phenomenon have been
suggested in the context of cosmology: what if the Big Bang released our universe not
into its true vacuum configuration, but into a state separated by a huge barrier from
a more favorable sector of the energy landscape? In this case, the fate depends on the
tunneling rate:

If this time scale is of the order of milliseconds, the universe is still hot when the
false vacuum decays. .. if this time is of the order of years, the decay will lead to
a sort of secondary Big Bang with interesting cosmological consequences. [f this
time is of the order of 10° years, we have occasion for anziety. (S. Coleman)

Previously, for the point-particle system, we saw that the transition probability
between the minima of the double well is most easily accessed in the Euclidean-
time framework. In the present case, anticipating our discussion of the quantum

D 15, 2929 (1977). lu fact, many ideas developed in this work were anticipated in an earlier
analysis of metastability in the context of classical field theories by J. S. Langer, Theory of the
condensation point, Ann. Phys. (NY) 41, 108 (1967).

At this point, readers should no longer be confused regarding the concept of “tunneling” in the
context of a classical system. Within the framework of the path integral, the classical partition
sum maps onto the path integral of a fictitious quantum system. It is this tunneling that we
have in mind.

19
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field integral later in the chapter, the Euclidean-time action associated with the
Hamiltonian density (3.40) assumes the form?"

s01= [ ar [ 4o (B 002 + 2@ < Vi),

where the time integral runs over the interval [0,1" = it]. Here, for simplicity,
let us assume that the string obeys periodic boundary conditions in space, ¢(z +
L,7) = ¢(x, 7). To estimate the tunneling amplitude, we will explore the survival
probability of the metastable state, imposing the boundary conditions ¢(x, 7 = 0) =
¢(x,7 = T) = —a on the path integral. Once again, when the potential barrier is
high, and the time 7' is long, one may assume that the path integral is dominated
by the saddle-point field configuration of the Euclidean action. In this case, varying
the action with respect to the field ¢(x,7), one obtains the classical equation of
motion

md7e + ksa’9ih = 05V (9),

with the boundary conditions above.

Motivated by our consideration of the point-
particle problem, we might seek a solution in
which the string tunnels as a single rigid entity
without “flexing.” However, it is evident from
the spatial translational invariance of the sys-
tem that the instanton action would scale with
the system size L. In the infinite system L — oo,
such field configurations cannot contribute to
the tunneling amplitude. Instead, one must con- o
sider different ones, in which the transfer of the
chain occurs by degree. In this case, elements
of the string cross the barrier in a consecutive
sequence as two outwardly propagating “domain walls” (see the figure, where the
emergence of such a “double-kink” configuration is shown as a function of space
and time). Such a field configuration is motivated by symmetry. After the rescaling
z > vgx, where v, = \/ kya?/m denotes the classical sound wave velocity, the saddle-
point equation assumes the isotropic form md?¢ = 9,V (¢), where 9% = 92 + 92.
Then, setting r = \/z? + (7 — T/2)?, and sending (7, L) — oo, the space-time
rotational symmetry suggests a solution of the form ¢ = ¢(r), where ¢(r) obeys
the radial diffusion equation

mdZg 1+ %arqb — 9,V

29 Those readers who wish to verify this formula right away may (re-)discretize the harmonic chain,
present the transition amplitude as a product of Feynman path integrals for each element of
the string and, finally, take the contimuum limit.
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with the boundary condition lim, ... ¢(r) = —a. This equation describes the one-
dimensional motion of a particle in a potential —V and subject to an apparent
“friction force” —mr~'d,¢ whose strength is inversely proportional to “time” 7.

To understand the profile of the bounce solution suppose that, at time r = 0,
the particle has been released from rest at a position slightly to the left of the
(inverted) potential maximum at a. After rolling through the potential minimum
it will climb the potential hill at —a. Now, the initial position may be fine-tuned
in such a way that the viscous damping of the particle compensates for the excess
potential energy (which would otherwise make the particle overshoot and disappear
to infinity): there exists a solution where the particle starts close to ¢ = a and
eventually ends up at ¢ = —a, in accord with the imposed boundary conditions. In
general, the analytical solution for the bounce depends sensitively on the form of
the confining potential. However, if we assume that the well asymmetry imposed by
external potential — f¢ is small, the radial equation may be considerably simplified.
In this limit, we may invoke a “thin-wall” approximation in which we assume that
the bounce configuration is described by a domain wall of thickness Ar, at a radius
ro 3> Ar, separating an inner region where ¢(r < r9) = a from the outer region
where ¢(r > ro) = —a. In this case, and to lowest order in an expansion in f, the
action of the friction force is immaterial, i.e., we may set md2¢ = dsV — the very
instanton equation formulated earlier for the point-particle system!

Substituting the solution back into S, one finds that the bounce (or kink-like)
solution is characterized by the Euclidean action

S = vy (27T7”051nst - 7T7”82“f> )

where S, denotes the action of the instanton of the point-particle system (3.34),
and the second term accommodates the effect of the potential bias on the field
configuration. Crucially, the instanton contribution to the action scales with the
circumference of the domain wall in space—time, while the contribution of the po-
tential bias scales with the area of the domain. From this scaling dependence it is
evident that, however small the external force f, at large enough ry the contribu-
tion of the second term will always outweigh the first and the string will tunnel
from the metastable to the global minimum. More precisely, the optimal size of
domain is found by minimizing the action with respect to rg. In doing so, one finds
that ro = Sinst/2af. Substituting back into the action, one obtains the tunneling
rate

l T0s St

I~ eXp('h 2 f

It follows that, in the absence of an external force f, tunneling of the string across
the barrier is completely inhibited! In the zero-temperature unbiased system, the
symmetry of the quantum Hamiltonian is spontaneously broken: the ground state
exhibits a two-fold degeneracy in which the string is confined to one potential
minimum or another.
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3.3.3 Tunneling in a dissipative environment

In the condensed matter context, it is infeasible to completely divorce a system
from its environment. For example, the tunneling of an atom from one interstitial
site in a crystal to another is influenced by its coupling to the phonon degrees
of freedom that characterize the crystal lattice. By exchanging energy with the
phonons, which act in the system as an external bath, a quantum particle can lose
its phase coherence and, with it, its quantum mechanical character. Beginning with
the seminal work of Caldeira and Leggett,?' there have been numerous theoretical
investigations of the effect of its environment on the quantum properties of a system.
Such effects are particularly acute in systems where the quantum mechanical degree
of freedom is macroscopic, such as the magnetic flux trapped in a superconducting
quantum interference device (SQUILD). In the following, we show that the Feynman
path integral provides a natural (and almost unique) setting in which the effects of
the environment on a microscopic or macroscopic quantum degree of freedom can
be explored. For further discussion of the response of quantum wave coherence to
environmental coupling, we refer to chapter 12.

Before we begin, let us note that the phenomenon of macroscopic quantum
tunneling is an active area of research with applications in atomic, molecular
and optical (AMO) physics, and other fields. By contrast, our discussion here will
target a particular illustrative application, and highlight only the guiding principles.
For an in-depth discussion, we refer the reader to one of the many comprehensive

reviews.??

Caldeira—Leggett model

Previously, we applied the path integral to study quantum tunneling of a particle
g across a potential barrier V(q). Here, we consider the influence of an external
environment on tunneling. Following Caldeira and Leggett, we represent the envi-
ronment by a “bath” of N quantum harmonic oscillators characterized by a
set of frequencies {wy, },

& 2! :ﬁ:’{ Ma 9 9
Hbath[qa}:z 5 +7waqa :

&

For simplicity, let us suppose that the particle-bath coupling is linear in the bath

coordinates, [:]C[q7 da] = —Ziv falq)gn, where f,[q] represents some function of

the particle coordinate g. Expressed as a path integral, the survival probability

of a particle confined to a metastable minimum at a position ¢ = & can then be

expressed as (taking i = 1)

21 A, O. Caldeira and A. J. Leggett, Influence of dissipation on quantum tunneling in macroscopic
systems, Phys. Rev. Lett. 46, 211 (1981).

22 See, e.g., A. J. Leggett et al., Dynamics of the dissipative two-state system, Rev. Mod. Phys.
59, 1 (1976), U. Weiss, Quantum Dissipative Systems (World Scientific Publishing, 1993).
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<a|e*iﬁt/ﬁ|a> — I Dyg & Fpart [d] }’Iqu._l eiSbath[quiSc[q,qa]}
4(0)=g(t)=a ’

where H = Hpart + Hbath + I:IC denotes the total Hamiltonian of the system,
t ¢
m My .
Spart|q] - / dt/ (5612 - V(Q)) ,  Sbathlda) = ﬁ ar'y = (dh —wial)
1] { o

denote, respectively, the actions of the particle and bath, while

scaanl = [ 4 S (Rl + 2L

Ao

represents their coupling.?® Here, we assume that the functional integral over g, (¢)
is taken over all field configurations of the bath, while the path integral over ¢(t)
is subject to the boundary conditions ¢(0) = ¢(t) = a. Since we are addressing a
tunneling problem, it will again be useful to transfer to the Euclidean-time repre-
sentation. For convenience, we assume the boundary conditions on the fields ¢, (7)
to be periodic on the interval [0,T~ = j3].24
To reveal the effect of the bath, we can integrate out the fluctuations g, and
thereby obtain an effective action for g. Being Gaussian in the coordinates g,
the integration can be performed straightforwardly, and it induces a time-non-
local interaction of the particle (exercise) (ale /7 |q) = [ Dq e=Sldlwhere the
constant of integration has been absorbed into the measure and
2
Serld] = Spartla] + g 3 fm[qg;’g{f; —

wn & !

Here, the sum th runs over the discrete set of Fourier frequencies w,, = 2anT
with n integer.?> Then, if the coupling to the bath is linear, f,[q(7)] = caq(7), the
effective action assumes the form (exercise)

Serlq) = Spartlgl =T /o drdr’ q(T)K(t — 7")q(7)

where the kernel K(7) = [, %] (w)D,,(7), with

2 2

) = T3 ), D“(T):_Zw(winew”-

2 2
2 T~ mawa w? +w2)

Wn

23 The second term in the action of the coupling has been introduced to keep the effect of the
environment minimally invasive (purely dissipative). If it were not present, the coupling to
the oscillator degrees of freedom would effectively shift the extremum of the particle potential,
i.e., change its potential landscape. (Exercise: Substitute the solutions of the Euler-Lagrange
equations 44, 5S¢, g«] = 0, computed for a fixed realization of ¢, into the action to obtain the
said shift.)

24 In section 3.4, we will see that these boundary conditions emerge naturally in the derivation of
the integral from a many-body Hamiltonian.

25 More precisely, anticipating our discussion of the Matsubara frequency representation below,
we have defined the Fourier decomposition on the Euclidean-time interval 8, setting ¢(7) =
Zm Gme mT g — Tf(; dr q(7)e* ™7 where wy, = 2nm/ S with m integer.
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Physically, the time non-locality of the action is easily understood. Taken as a
whole, the particle and the bath maintain quantum phase coherence. However,
by exchanging fluctuations with the external bath, the particle experiences a self-
interaction, retarded in time. The integration over the bath degrees of freedom
involved in the generation of this interaction implies a “loss of information,” which
we expect to generate quantum mechanical phase decoherence. However, before
developing this point, we first need to take a closer look at the dissipation kernel
K itself.

In the representation above, which is standard in the field, the kernel K separates
into a bath spectral function J(w) and a time-dependent factor D, (7). While
the latter describes the temporal retardation, the former describes the bath. Its job
is to bundle the information contained in the oscillator masses, frequencies, and
coupling constants into a single frequency-dependent function J(w). For the small
frequencies relevant to the description of the macroscopic degree of freedom, ¢, we
expect the “density of bath modes” (i.e., the number of oscillators per frequency
interval) to be a power law, implying that J(w) ~ w® will be a power law too. In
principle, & may take an arbitrary value. However, the most frequently encountered
and physically important is the case o = 1.

INFO Consider, the coupling of a particle to a continuum of bosonic modes whose spectral
density J(w) = nw grows linearly with frequency. In this case of ohmic dissipation,
w? [ J
K(wn) = = / dw 72(“) — =T,
T Jo ww?+ws) 2

Fourier transforming this expression, we obtain

7l 1 T 1
o

o _+r _n
)= 2 sin?(xT7) ~— 27T

(3.41)
i.e., a strongly time-non-local “self-interaction” of the particle. To understand why J(w) ~
w is termed ohmic, note that the induced linearity K(w) ~ w corresponds to a single
derivative in the time representation.?® Thinking of ¢ as a mechanical degree of freedom,
this time derivative represents a friction term in the equations of motion. If ¢ assumes the
role of a fluctuating charge, the time derivative describes the presence of a resistor, hence
the denotation “ohmic”.

To explore the properties of the dissipative action, it is helpful to separate the non-
local interaction according to the identity ¢(7)q(7') = 1(q(7)? + q(7')?) — (q(7) —
q(7'))?/2. The first contribution effectively renormalizes the potential V(g) and
presents an inessential perturbation, which can be absorbed in a redefined V(g). By
contrast, the remaining contribution, which is always positive, plays an important

role.

26 Here, we are sweeping the modulus in |wy,| under the rug. The proper formulation of the argu-
ment requires the techniques of non equilibrium path integration to be introduced in chapter
12. However, the conclusion remains the same.
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Dissipative quantum tunneling

Previously we have seen that the tunneling rate of a particle from a metastable
potential minimum can be inferred from the extremal field configurations of the
Euclidean action: the bounce trajectory. To explore the effect of dissipative cou-
pling, it is necessary to understand how it revises the structure of the bounce
solution. Now, in general, the non-local character of the interaction prohibits an
exact solution of the classical equation of motion. In such cases, the effect of the
dissipative coupling can be explored perturbatively or with the assistance of the
renormalization group (see the discussion in section 6.1.2). However, by tailoring
our choice of potential V (g), we can gain some intuition about the more general
situation.
To this end, let us consider a particle of mass m con- v

fined in a metastable minimum by a (semi-infinite) har-
monic potential trap (see the figure),

{%mw2q27 0 <lg| <a, |

—0, |!J'| > a.

Vig) =

Further, let us assume that the environment imparts an ohmic dissipation with
damping or “viscosity” 1. To keep our discussion general, let us consider the com-
bined impact of dissipation and temperature on the rate of tunneling from the
potential trap. To do so, following Langer,?" it is natural to investigate the “quasi-
equilibrium” quantum partition function Z of the combined system. In this case, the
tunneling rate appears as an imaginary contribution to the free energy F' = —T'In Z,
ie, I'=—-2ImF.

Expressed as a path integral, the quantum partition function of the system takes
the form Z = fq(ﬁ):q(o) Dgq e 5a/T where the ohmic dissipation kernel (3.41) enters
the effective action via the contribution —zL [ drdr’ q(7)K(m — 7/)q(7’). Setting
q(T)q(7") = (q(7)? + q(7))?) /2 — (q(7) — q(7"))? /2, and absorbing the first term into
the potential V (¢), the Euclidean action assumes the form

Seg[q]/OBdT(Qq + Vg ) A /rf. d7’ (;q()\z

An Jq T—7 )
Once again, to estimate the tunneling rate, we will suppose that the barrier is high
and the temperature is low, so that the path integral is dominated by stationary
configurations of the action. In this case, one may identify three distinct solutions.
First, the particle may remain at ¢ = 0, poised precariously on the maximum of the
inverted harmonic potential. Contributions from this solution and the associated
harmonic fluctuations reproduce terms in the quantum partition function associated
with states of the infintely extended harmonic potential trap. Second, there exists
a singular solution in which the particle remains at the minimum of the inverted
potential, i.e., perched on the potential barrier. The latter provides a negligible
contribution to the quantum partition function and can be neglected. Finally, there

27 J. 8. Langer, Theory of the condensation point, Ann. Phys. (NY) 41, 108 (1967).
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exists a bounce solution in which a particle injected at a position ¢ inside the well
accelerates down the inverted potential gradient, is reflected from the potential
barrier, and returns to the initial position ¢ in a time 5. While, in the limit 3 — oo,
the path integral singles out the boundary condition ¢(0) = ¢(8) — 0, at finite 3
the boundary condition will depart from 0 in a manner that depends nontrivially
on the temperature. It is this general bounce solution that governs the decay rate.

Since, in the inverted potential, the classical bounce trajectory stays within the
interval over which the potential is quadratic, a variation of the FEuclidean action
with respect to ¢(7) vields the classical equation of motion

(1) —ql7’)

&}
—mng + mwly + 1 / dr' L1 = Ad(T — 38/2),
T Jo (T —177)?

where the term on the right-hand side of the equation imparts an impulse that
changes the velocity of the particle discontinuously, while the coefficient A is chosen
to ensure symmetry of the bounce solution on the Euclidean-time interval. Turning
to the Fourier representation, the solution of the saddle-point equation then assumes
the form

p = AT 82000, glwn) = [m(W? +w2) Falenl) ™" (342)

Imposing the condition that ¢(v = £/2) = a, one finds that A = a/f where
f=T5_,, g(wn). Finally, the action of the bounce is given by

2
) 2 (L
Sbounce — 2,.. Z‘ w er +77|wm|> |qn| 2f (343)
In the following, we discuss the meaning of this expression in a number of limiting
cases.

1. Let us first determine the zero-temperature tunneling rate in the ab-
sence of dissipation as a point of reference:  — 0 and 3 — oo. In this case,
the frequency summation translates to a continuous integral, f = f - g‘w glw) =
(2rrm,c) . Using this result, the bounce action (3.43) takes the form Shounce =
mwea’. As one would expect, the tunneling rate I' ~ e~ beunce is controlled by
the ratio of the potential barrier height mw?2a?/2 to the attempt frequency we.

Also notice that the bounce trajectory is given by

e /OO b =8/ () = qewelT—8/21
7)o

i.e., as expected from our discussion in section 3.3.1, the particle spends only
a time 1/w. in the under-barrier region.

2. Staying at zero temperature, we next consider the influence of dissipation
on the capacity for tunneling. We focus on the limit Where the dynamics of the
particle is overdamped, 7 > mw., with f = [ £ g(w) =~ (2/7n) In (n/mw.),
which implies that Spounce = ma?/(4In(n/mw.)). This result shows that, the
coupling of the particle to the ohmic bath leads to an exponential suppression

of the tunneling rate, while only a weak dependence on the jump frequency
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persists. Physically, this result is easy to rationalize: under-barrier tunneling
is a feature of the quantum mechanical system. In the transfer of energy to
and from the external bath, the phase coherence of the particle is lost. At zero
temperature, the tunneling rate becomes suppressed and the particle becomes
confined.

3. Let us now consider the influence of temperature on the tunneling rate
when the dissipative coupling is inactive, 7 — 0. In this case, the discrete
frequency summation takes the form?® f = T3 g(w,.) = coth(Bw./2)/2w.m
Using this result, one obtains Spounce = mwcra2 tanh(5w./2). In the low-
temperature limit 5 — oc. we have Spounce = Mwea?, as discussed above.
At high temperatures 3 — 0, one recovers a classical thermal dependence of
the escape rate, Spounce = Frnw? 2a?/2, as expected from statistical mechanics.

4. We conclude with a brief remark on the interplay of thermal activa-
tion with ohmic dissipation. Applying the the Euler-Maclaurin formula
S o fim) = fooo dz f(x) + f(o) Ll(zg)* SSRRE
Matsubara frequencies to their zero-temperature integral limits, one finds that
Spounce(T) = Spounce(T = 0) o T2, This shows that, in the dissipative regime,
an increase in temperature diminishes the tunneling rate with a scale propor-
tion to the damping.

to relate discrete sums over

This concludes our introductory discussion of the application of path integration
methods to dissipative quantum tunneling. Thanks to recent progress in atomic,
molecular, and optical physics, large varieties of quantum mechanical few-body
systems in and out of equilibrium have come under experimental control. In this
line of research the concepts of path integration introduced in this chapter (and
further advanced in chapter 12 to the many-body context) are crucially 1mportant
Readers interested in learning more are encouraged to study the classic references’
and stay tuned to ongoing developments!

3.4 Construction of the Many-Body Field Integral

Having developed the single-particle path integral, we now consider its extension
to many-particle systems: quantum field theory. Our starting point is analogous
to that outlined at the beginning of the chapter. Just as there are two different
approaches to quantum mechanics, quantum field theory can also be formulated
in two different ways: the formalism of canonically quantized field operators and
functional integration. As to the former, although much of the technology needed
to implement this framework — essentially Feynman diagrams — originated in high-
energy physics, it was with the development of condensed matter physics through

28 For details on how to implement the discrete frequency summation, see the Info block on
page 141.
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the 1950s to 1970s that this approach was driven to unprecedented sophistication.
The reason is that, almost as a rule, problems in condensed matter investigated at
that time necessitated perturbative summations to infinite order in the nontrivial
content of the theory (typically interactions). This requirement led to the develop-
ment of advanced techniques to sum perturbation series in many-body interaction
operators.

However, in the 1970s, non-perturbative problems began to attract increasing
attention — a still prevailing trend — and it turned out that the formalism of canon-
ically quantized operators was not tailored to this type of physics. By contrast,
the alternative approach to many-body problems, functional integration, is ideally
suited to it! The situation is similar to the one described earlier, where we saw
that the Feynman path integral provided a spectrum of novel routes to approach-
ing quantum mechanical problems (parametrically controlled semiclassical limits,
analogies to classical mechanics, statistical mechanics, etc.). Similarly, the intro-
duction of field integration in many-body physics spawned new theoretical develop-
ments. In fact, the advantage of the path integral approach in many-body physics is
more pronounced than in single-particle quantum mechanics: higher dimensionality
introduces more complex fields, and along with them concepts of geometry and
topology enter the stage. The ensuing structures are conveniently exposed within
the field integral framework. Moreover, the connections to classical statistical me-
chanics play a more important role than in single-particle quantum mechanics.
These concepts will be addressed in subsequent chapters when applications of the
field integral are discussed.

Before turning to the quantitative construction of the field integral, it is instruc-
tive to anticipate the structures we should expect to be emerging. In quantum me-
chanics, we were starting from a point particle characterized by a coordinate ¢ (or
other quantum numbers for that matter). Path integration then meant integration
over all time-dependent configurations ¢(t), i.e., a set of curves ¢t — ¢(t) (see fig. 3.3,
upper panel). By contrast, the degrees of freedom of field theory are continuous ob-
jects ¢(x) in themselves: 2 parameterizes a d-dimensional base manifold and ¢ takes
values in some target manifold (fig. 3.3, lower panel). The natural generalization of a
“path” integral then implies integration over a single copy of these objects at each
instant of time, i.e., we must integrate over generalized surfaces, mappings from
(d + 1)-dimensional space—time into the field manifold, (z, ) — ¢(x,t). While this
notion may sound daunting, it is important to realize that, conceptually, nothing
much changes in comparison with the path integral: instead of a one-dimensional
manifold — a curve — our object of integration will be a (d+1)-dimensional manifold.

3.4.1 Construction of the field integral

The construction of the many-body path integral (henceforth field integral for
brevity) follows the general scheme outlined at the end of section 3.2.3. As before,
we start with the segmentation of the time evolution of a quantum many-body
Hamiltonian into infinitesimal time slices. The goal then is to absorb as much as
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