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Preface

Most students who have entered the physics Master’s curriculum will have some 
familiarity with condensed matter physics. But what of “condensed matter field 
theory,” the subject of this text? Fields are effective continuum degrees of free­
dom describing macroscopically large numbers of “atomistic” objects. Mundane 
examples of fields include water waves formed from the interaction of molecules 
or currents inside a conductor describing the collective motion of electrons. The 
language of fields reduces the complexity of many-particle systems to a manageable 
level, the natural degrees of freedom of condensed matter systems.

In condensed matter physics, we neither can, nor want to, trace the dynamics of 
individual atomistic constituents. Instead, we aim to understand the observable col­
lective properties of matter, their thermal excitations, transport properties, phase 
behavior and transitions, etc. The art of condensed matter theory is to identify the 
nature and dynamics of the low-energy degrees of freedom - articulated as fields, 
and formulated with the framework of effective theories encapsulating universal 
properties of matter. This program has a long history, and it unfolded in a succes­
sion of epochs: in the 1950s and 1960s, the development of high-order perturbation 
theory; in the 1970s, the advent of renormalization group method; in the 1980s, 
the development of powerful non-perturbative methods; and, up to the present day, 
advances in topological field theories. These developments often paralleled, and 
drew inspiration from, particle physics, where quantum field theory was just as 
important, if from a slightly different perspective. In the course of its development, 
field theory has become a lingua franca, providing a unifying framework for the 
exploration of core concepts of condensed matter physics, as follows.

> Universality: A comparatively small number of “effective theories” suffices to 
describe the physics of myriads of different forms of matter. For example, the 
quantum field theory of vortices in superfluid helium films is the same as that 
of a plasma of dipoles. Despite different microscopic realizations, these systems 
fall into the same universality class.

> Emergence: In condensed matter physics, the conspiracy of large numbers of 
fundamental degrees of freedom often leads to the emergence of a smaller number 
of effective ones. For example, in two-dimensional electron systems subject to 
magnetic fields the emergent degrees of freedom may be effectively pointlike 
objects carrying fractional charge. These quasi-particles are responsible for the 
observable physics of the system. If one did not know their emergent nature, one 
might consider them as fractionally charged fermions.

ix
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> Broken symmetries and collective fluctuations: States of matter often 
show lower symmetry than that of the underlying microscopic theory. For ex­
ample, a ferromagnetic substance may be magnetized along a specific direction 
while its Hamiltonian is invariant under global spin rotations. Under such con­
ditions, large collective fluctuations, representing continuous changes between 
states of different local symmetry, are prevalent. In the vicinity of transition 
points between different phases, they can induce criticality.

> Criticality: Fluctuation-induced phenomena are characterized uniquely by just 
a few dimensionless parameters known as critical exponents. A relatively small 
number of different critical theories suffices to explain and describe the critical 
scaling properties of the majority of condensed matter systems close to phase 
transitions. Yet, the critical theories for some of the most well-known transitions 
(including, for example, the integer quantum Hall transition) remain unknown, 
presenting open challenges to future generations of field theorists.

In this third edition, we have separated the text into two major components. In the 
first part, we introduce core concepts of condensed matter quantum field theory. 
These chapters will furnish readers with fluency in the language and methodolo­
gies of modern condensed matter theory research. No prior knowledge is assumed 
beyond familiarity with quantum mechanics, statistical mechanics and solid state 
physics at bachelor’s level. We aim to introduce the subject gently, in a language 
that changes gradually from being prosaic in the beginning to more scientific in 
later chapters. The subjects covered in the first part reflect developments in con­
densed matter theory that took place in the second half of the last century. How­
ever, in contrast with traditional approaches, the text does not recount these ad­
vances in chronological order. Instead, it emphasizes the comparatively modern 
methods of functional field integration - the generalization of the Feynman path 
integral of quantum point particles to continuum degrees of freedom. We introduce 
this concept early on and rely on it as an organizational principle throughout the 
text.

The second part of the text addresses more advanced developments, most of which 
have come to the fore over the past 30 years. During this period, developments in 
quantum field theory have proceeded in concert with revolutionary progress in 
experiment, both in solid state physics and in the neighboring fields of ultracold 
atom and optical physics. For example, while previous generations of experiments in 
condensed matter were conducted under close to thermal equilibrium conditions, the 
micro-fabrication of devices has reached levels such that nonequilibrium phenomena 
can be accessed and controlled. At the same time, we are seeing the advent and 
impact of topological forms of matter, whose physical properties are governed by the 
mathematical principles of topological order and long-range quantum entanglement. 
Combined with advances in the ability to manipulate and control quantum states, 
these developments are beginning to open a window on computational matter, i.e., 
realizations of condensed matter systems capable of storing and processing quantum 
information. Indeed, although separate, these new developments are surprisingly 
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interrelated: quantum information may be protected by principles of topology, while 
nonequilibrium phases of quantum matter may be characterized by principles of 
topological gauge theory, etc. While it is too early to say where the field may 
evolve in the next 30 years, concepts from condensed matter field theory will play 
a key role in shaping new directions of research and in exposing their common 
themes. The contents and style of this more advanced part of the text reflect these 
structures.

While the first, introductory, component of the text is arranged in a structured 
manner, with each new chapter building upon previous chapters, the chapters of 
the second part of the text can be read independently. Moreover, the writing style 
of the more advanced chapters is often more succinct, drawing attention to primary, 
and often contemporary, literature. Perhaps most importantly, a key objective of 
the second part of the text is to draw readers into modern areas of condensed 
matter research. Alongside the core material we have also included several forms of 
supplementary material:

> Info sections place methodological developments into a given context, contain 
details on specific applications, or simply provide auxiliary “information” that 
may enrich the narrative. For example, in chapter 1, an info section is used to 
describe the concrete realization of “vacuum fluctuations” of fields in condensed 
matter systems, in the context of Casimir or van der Waals forces.

> Example sections are used to develop general concepts. For example, the two- 
sphere is used as an example to illustrate the general concept of differentiable 
manifolds.

> Remarks appear as preambles of some sections. They may indicate, for example, 
whether a section may require knowledge of previous material; this is particularly 
valuable in the second part of the text, where the chapters are non-sequentially 
ordered or interlinked. The text also includes sections that, while important, may 
be safely skipped at a first reading. In such cases, the remarks section provide 
advice and guidance.

> In-text exercises (some answered,  and some not) provide opportunities for 
the reader to test their methodological understanding. Alongside these small 
exercises, each chapter closes with a problem set.

1

> Problem set: These problems differ from the in-text exercises both in depth 
and level, and are chosen to mirror as much as possible the solution of “real­
istic” condensed matter problems by field-theoretical methods. Their solution 
requires not just methodological but also conceptual thinking. Many of them 
reflect the narrative of research papers, some of which are of historical signifi­
cance. For example, a problem of chapter 2 reviews the construction of the Kondo 
Hamiltonian as an illustration of the utility of second quantization. Answers are 
provided for all questions in the problem sets.

1 The reader should not be surprised to find that some of the answers to in-text questions are 
given in footnotes!
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> Lastly, four short appendices introduce or review background material referred 
to in parts of the main text. They include a review of elements of probability 
theory, a summary of the Fourier transform conventions used in the text, an 
introduction to modern concepts of differential geometry, and a concise intro­
duction to conformal symmetry.

This third edition of the text responds in part to the changes that have taken place 
in the research landscape and emphasis since the first edition was published more 
than a decade ago. Among these changes, the first and foremost reflects revolu­
tionary developments in topological condensed matter physics. The core chapter on 
topological field theory has been completely rewritten, and two accompanying chap­
ters - one on gauge theory, and another on relativistic quantum matter - have been 
added. All other chapters have been substantially revised and brought up to date. 
In particular, we have taken this opportunity to prune material whose prominence 
and value to future research may have diminished. At the same time, we have elim­
inated many “typos” and the occasional embarrassing error, many of which have 
been drawn to our attention by our friends and colleagues in the community (see 
below)! We fear that the addition of fresh material will have introduced new errors 
and will do our best to correct them when notified.

Over the years, many people have contributed to this text, either through con­
structive remarks and insights, or by spotting typos and errors. In this context, it is a 
great pleasure to acknowledge with gratitude the substantial input of Sasha Abanov, 
Piet Brouwer, Christoph Bruder, Chung-Pin Chou, Karin Everschor, Andrej Fis­
cher, Sven Gnutzmann, Colin Kiegel, Jian-Lin Li, Tobias Luck, Jakob Muller-Hill, 
Julia Meyer, Tobias Micklitz, Jan Muller, Patrick Neven, Sid Parameswaran, Achim 
Rosch, Max Schuafer, Matthias Sitte, Rodrigo Soto-Garrido, Natalja Strelkova, 
Nobuhiko Taniguchi, Franjo-Frankopan Velic, Matthias Vojta, Jan von Delft, An­
drea Wolff, and Markus Zowislok. We finally thank Martina Markus for contribut­
ing hand-drawn portraits of some of the great scientists who pioneered the physics 
discussed in this book.



PART I

adiabatic 
continuity

On a fundamental level, all forms of quantum matter can be formulated 
in terms of a many-body Hamiltonian for a macroscopically large number 
of constituent particles. However, in contrast with many other areas 
of physics, the structure of this operator conveys as much information 
about the properties of the system as, say, the knowledge of the basic 
chemical constituents tells us about the behavior of a living organism. 
Rather, it has been a long-standing tenet that the degrees of freedom 
relevant to the low-energy properties of a system usually are not the 
microscopic ones. It is a hallmark of many “deep” problems of modern 
condensed matter physics that the passage between the microscopic and 
the effective degrees of freedom involves complex and, at times, even 
controversial mappings. To understand why, it is helpful to review the 
process of theory building in this field of physics.

The development of early condensed matter physics often hinged on 
the “unreasonable” success of non-interacting theories. The impotency 
of interactions observed in a wide range of physical systems reflects a 
principle known as adiabatic continuity: the quantum numbers char­
acterizing an (interacting) many-body system are determined by funda­
mental symmetries - translational, rotational, particle exchange, etc. As 
long as these symmetries are maintained, the system’s elementary exci­
tations, or quasi-particles, can usually be traced back “adiabatically” to 
the bare particles of the non-interacting limit. This principle, embodied 
in Landau’s Fermi-liquid theory, has provided a platform for the investi­
gation of a wide range of systems, from conventional metals to 3helium 
fluids and cold atomic Fermi gases.

However, being contingent on symmetry, it must be abandoned at phase 
transitions, where interactions effect a rearrangement of the many-body 
ground state into a state of different, or “broken” symmetry. Symmetry- 
broken phases generically show excitations different from those of the 
parent non-interacting phase. They either require classification in terms 
of new species of quasi-particles, or they may be col lective modes engag­
ing the cooperative motion of many bare particles. For example, when 
atoms condense from a liquid into a solid phase, translational symmetry 
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is broken and the elementary excitations (phonons) involve the motion 
of many individual bare particles.

In this way, each phase of matter is associated with a unique “non­
interacting” reference state with its own characteristic quasi-particle ex­
citations - a product of only the relevant symmetries. Within each in­
dividual phase, a continuity principle keeps the effects of interactions at 
bay. This hierarchical picture delivers two profound implications. First, 
within the quasi-particle framework, the underlying “bare” or elemen­
tary particles remain invisible. (To quote from P. W. Anderson’s famous 
article More is different, Science 177, 393 (1972), “The ability to re­
duce everything to simple fundamental laws does not imply the ability 
to start from those laws and reconstruct the universe.”) Second, while 
one may conceive an almost unlimited spectrum of interactions, there 
are comparatively few non-interacting or free theories, constrained by 
the set of fundamental symmetries. These arguments go a long way in 
explaining the principle of “universality” observed in condensed matter.

How can these concepts be embedded into a concrete theoretical frame­
work? At first sight, problems with macroscopically many particles seem 
overwhelmingly daunting. However, our discussion above indicates that 
representations of manageable complexity may be obtained by focusing 
on symmetries and restricted sets of excitations. Quantum field theory 
provides the keys to making this reduction concrete. Starting from an ef­
ficient microscopic formulation of the many-body problem, it allows one 
to systematically develop effective theories for collective degrees of free­
dom. Such representations afford a classification of interacting systems 
into a small number of universality classes defined by their fundamen­
tal symmetries. This form of complexity reduction has become a potent 
source of unification in modern theoretical physics. Indeed, several sub­
fields of theoretical physics (such as conformal field theory, random ma­
trix theory, etc.) now define themselves not so much through any specific 
application as by a certain conceptual or methodological framework.

As mentioned in the preface, the first part of this text is a primer 
aimed at elevating graduate students to a level where they can engage in 
independent research. While the discussion of conceptual aspects stands 
in the foreground, we have endeavored to keep the text firmly rooted 
in experimental application. As well as routine exercises, it includes 
extended problems meant to train research-oriented thinking. Some of 
these answered problems are deliberately designed to challenge. (We all 
know from experience that the intuitive understanding of formal struc­
tures can be acquired only by persistent, and at times even frustrating 
training.)

2



1 From Particles to Fields

many­
particle 
Hamil­
tonian

SYNOPSIS To introduce some basic concepts of field theory, we begin by considering two 
simple model systems - a one-dimensional “caricature” of a solid and a freely propagating 
electromagnetic wave. As well as exemplifying the transition from discrete to continuous 
degrees of freedom, these examples introduce the basic formalism of classical and quantum 
field theory as well as the notions of elementary excitations, collective modes, symmetries 
and universality - concepts that will pervade the rest of the text.

One of the appealing facets of condensed matter physics is that phenomenology of 
remarkable complexity can emerge from a Hamiltonian of comparative simplicity. 
Indeed, microscopic “condensed matter Hamiltonians” of high generality can be 
constructed straightforwardly. For example, a prototypical metal or insulator may 
be described by the many-particle Hamiltonian, H = He + Hi + Hei , where

He = E 2m + E Ve(ri - rj), 
i i<j

Hi = 2M + Vii(RI - RJ),
I I<J

Hei = Vei(RI - ri).

lence electrons (ion cores), while He, Hi,
Here, ri (RI ) denotes the coordinates of va- 

and
Hei describe the dynamics of electrons, ions and 
the interaction of electrons and ions, respec­
tively (see the figure). Of course, the Hamilto­
nian (1.1) can be made more realistic by, for 
example, remembering that electrons and ions 
carry spin, adding potential disorder, or intro­
ducing host lattices with multi-atomic unit cells. However, for developing our 
present line of thought, the prototype Hamiltonian H will suffice.

The fact that a seemingly innocuous Hamiltonian like Eq. (1.1) is capable of 
generating a plethora of phenomenology can be read in reverse: normally, one 
will not be able to make progress theoretically by approaching the problem in an

3



4 1 From Particles to Fields

ab initio 
approach

reduction 
principle

universality 
principle

statistical
principles

symmetries

“ab initio” manner, i.e., by an approach that treats all microscopic constituents as 
equally relevant degrees of freedom. How, then, can successful analytical approaches 
be developed? The answer lies in several basic principles inherent in generic con­
densed matter systems.

1. Structural reducibility: Not all components of the Hamiltonian (1.1) need 
to be treated simultaneously. For example, when our interest is in the vibra­
tional motion of the ion lattice, the dynamics of the electron system can often 
be neglected or, at least, treated in an “effective” manner. Similarly, the dy­
namics of the electron system can often be considered independent of the ions, 
etc.

2. In the majority of condensed matter applications, one is interested not so much 
in the full profile of a given system but, rather, in its energetically low-lying 
dynamics. This is motivated partly by practical aspects (in daily life, iron 
is normally encountered at room temperature and not at its melting point), 
and partly by the tendency of large systems to behave in a “universal” man­
ner at low temperatures. Here, universality implies that systems differing 
in microscopic detail (i.e., with different types of interaction potentials, ion 
species, etc.) exhibit common collective behavior at low energy or long length 
scales. As a physicist, one will normally seek for unifying principles in collec­
tive phenomena rather than to describe the peculiarities of individual elements 
or compounds. However, universality is equally important in the practice of 
condensed matter theory. In particular, it implies that, at low temperatures, 
system-specific details of microscopic interaction potentials are often of sec­
ondary importance, i.e., one may employ simple model Hamiltonians.

3. For most systems of interest, the number of degrees of freedom N = O(10 ) 
is formidably large. However, contrary to first impressions, the magnitude of 
this figure is rather an advantage: in addressing condensed matter problems, 
the principles of statistics imply that statistical errors tend to be negligibly 
small.

23

1

4. Finally, condensed matter systems typically possess intrinsic symmetries. For 
example, the Hamiltonian (1.1) is invariant under the simultaneous translation 
and/or rotation of all coordinates, which expresses the global Galilean invari­
ance of the system (these are continuous symmetries). Invariance under spin 
rotation (continuous) or time reversal (discrete) are other examples of common 
symmetries. The general importance of symmetries cannot be overemphasized: 
symmetries support the conservation laws that simplify any problem. Yet, in 

1 The importance of this point is illustrated by the empirical observation that the most chal­
lenging systems in physical sciences are of medium, and not large, scale, e.g., metallic clusters, 
medium-sized nuclei or large atoms consisting of some 0(101—102) fundamental constituents. 
Such systems are beyond the reach of few-body quantum mechanics while not yet accessible to 
reliable statistical modeling. The only viable path to approaching systems of this type is often 
through numerical simulation or the use of phenomenology.



5 1.1 Classical Harmonic Chain: Phonons

condensed matter, symmetries are even more important. A conserved observ­
able is generally tied to an energetically low-lying excitation. In the universal, 
low-temperature, regime in which we will typically be interested, it is precisely 
the dynamics of these excitations that govern the gross behavior of the sys­
tem. Generally, the identification of fundamental symmetries is the first step 
in the sequence “symmetry ^ conservation law ^ low-lying excitations” and 
one that we will encounter time and again.

To understand how these basic principles can be used to formulate and explore 
effective low-energy field theories of solid state systems, we will begin by focusing 
on the harmonic chain, a collection of atoms bound by a harmonic potential. 
In doing so, we will observe that the universal characteristics encapsulated by the 
low-energy dynamics2 of large systems relate naturally to concepts of field theory.

2 In this text, we will focus on the dynamical behavior of large systems, as opposed to their static 
structural properties. In particular, we will not address questions related to the formation of 
definite crystallographic structures in solid state systems.

1.1 Classical Harmonic Chain: Phonons

[Classical Harmonic Chain: Phonons]
Returning to the prototype Hamiltonian (1.1), let us focus on the dynamical 

properties of the positively charged core ions that constitute the host lattice of a 
crystal. For the moment, we will neglect the fact that atoms are quantum objects 
and treat the ions as classical entities. To further simplify the problem, let us 
consider a one-dimensional atomic chain rather than a generic d-dimensional solid. 
In this case, the positions of the ions can be specified by a sequence of coordinates 
with average lattice spacing a. Relying on the structural reducibility principle 1, we 
will first argue that, to understand the behavior of the ions, the dynamics of the 
conduction electrons are of secondary importance, i.e., we will set He = Hei = 0.

At zero temperature, the sys­
tem freezes into a regularly spaced 
array of ion cores at coordinates 
RI = RI = la. Any deviation 
from a perfectly regular configu­
ration incurs a potential energy 
cost. For low enough temperatures 
(principle 2), this energy will be 
approximately quadratic in the small deviation of the ion from its equilibrium po­
sition. The “reduced” low-energy Hamiltonian of the system then reads 

N

H = E
I=1

P2 + ks (RI +1 - RI - a)2 

2 m + 2 ( I+1 I ) (1.2)
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where the coefficient ks determines the steepness of the lattice potential. Note that 
H can be interpreted as the Hamiltonian of N point-like particles of mass m con­
nected by elastic springs with spring constant ks (see the figure).

1.1.1 Lagrangian formulation and equations of motion

classical 
harmonic 

chain

Joseph-Louis Lagrange 
1736-1813 
was a French mathematician 
and astronomer (though born 
in Turin) who excelled in all 
fields of analysis, number the­
ory and celestial mechanics. In 
1788, he published Mecanique
Analytique, which summarized the field of me­
chanics since the time of Newton, and is no­
table for its use of the theory of differential 
equations. In this text, he transformed mechan­
ics into a branch of mathematical analysis.

classical 
action

classical
Lagrangian

What are the elementary low-energy 
excitations of the classical harmonic 
chain? To answer this question we 
might, in principle, attempt to solve 
Hamilton’s equations of motion. In­
deed, since H is quadratic in all coordi­
nates, such a program is feasible. How­
ever, few of the problems encountered 
in solid state physics enjoy this prop­
erty. Further, it seems unlikely that the 
low-energy dynamics of a macroscopi­
cally large chain - which we know from our experience will be governed by large- 
scale wave-like excitations - is adequately described in terms of an “atomistic” 
language; the relevant degrees of freedom will be of a different type. We should, 
rather, draw on the basic principles 1-4 set out above. Notably, so far, we have 
paid attention to neither the intrinsic symmetry of the problem nor the fact that 
the number of ions, N , is large.

To reduce a microscopic model to an effective low-energy theory, often the Hamil­
tonian is not a very convenient starting point. Usually, it is more efficient to start 
from the classical action, S. In the present case, S = f dt L(R, R), where 
(R, it) = {RI, RI} represent the coordinates and their time derivatives. The corre­
sponding classical Lagrangian L related to the Hamiltonian (1.2) is given by

N

L = T - U = E
I=1

mR2 - £ (RI +1 - RI - a)2 (1.3)

where T and U denote, respectively, the kinetic and potential energy.
Since we are interested in the properties of the large-N system, we can expect 

boundary effects to be negligible. In this case, we may impose periodic boundary 
conditions, making the identification RN +1 = R1 . Further, anticipating that the 
effect of lattice vibrations on the solid is weak (i.e., long-range atomic order is 
maintained), we may assume that the deviation of ions from their equilibrium po­
sition is small (i.e., |RI(t) - RI| a). For RI(t) = RI + VI(t), with VN +1 = 4 1,
the Lagrangian (1.3) assumes the simplified form

N

I=1

m d 224 2 - y (Vl +1 - 41)2

To make further progress, we will now make use of the fact that we are not 
concerned with behavior on “atomic” scales. For such purposes, our model would,
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continuum 
limit

in any case, be much too primitive! Rather, we are interested in experimentally 
observable behavior that becomes manifest on macroscopic length scales (principle 
2). For example, one might wish to study the specific heat of the solid in the limit 
of infinitely many atoms (or at least a macroscopically large number, O(1023)). 
Under these conditions, microscopic models can usually be simplified substantially 
(principle 3). In particular, it is often permissible to subject a discrete lattice model 
to a continuum limit, i.e., to neglect the discreteness of the microscopic entities 
and to describe the system in terms of effective continuum degrees of freedom.

In the present case, taking a continuum limit 
amounts to describing the lattice fluctuations fa in 
terms of smooth functions of a continuous variable x. 
(See the figure, where the [horizontal] displacement of 
the point particles is plotted along the vertical axis.)
Clearly such a description makes sense only if the relative fluctuations on atomic 
scales are weak (for otherwise the smoothness condition would be violated). How­
ever, if this condition is met - as it will be for sufficiently large values of the stiffness 
constant ks - the continuum description is much more powerful than the discrete 
encoding in terms of the “vector” {fa}. The steps that we will need to take to go 
from the Lagrangian to concrete physical predictions will then be much easier to 
formulate.

Introducing continuum degrees of freedom ((x), and applying a first-order Taylor 
expansion,3 let us define

3 Indeed, for reasons that will become clear, higher-order contributions to the Taylor expansion 
are immaterial in the long-range continuum limit.

Ri

fa ^ a1 /2 ( (x) | , (^I +1 — fa) ^ a3/2dx^(x)| [ ,

where L = Na. Note that, as defined, the functions ((x, t) have dimensionality 
[length]1/2 . Expressed in terms of the new degrees of freedom, the continuum limit 
of the Lagrangian then reads

L[$]= [ dx L(dxfafa, L(dx<hfa = m(j)2 - ksa(dx.)2, (1.4)
0 22

Lagrangian 
density

where the Lagrangian density L has dimensionality [energy]/[length]. Similarly, 
the classical action assumes the continuum form

d dx L(dx$, </>) 
0

(1.5)

classical 
field

We have thus succeeded in abandoning the N point-particle description in favor of 
one involving continuous degrees of freedom, a (classical) field. The dynamics of 
the latter are specified by the functionals L and S, which represent the continuum 
generalizations of the discrete classical Lagrangian and action, respectively.
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field INFO The continuum variable $ is our first encounter with a field. Before proceeding 
with our example, let us pause to make some preliminary remarks on the general definition 
of these objects. This will help to place the subsequent discussion of the atomic chain in 
a broader context. Formally, a field is a smooth mapping

$ : M ^ T
z m- $ (z)

field 
manifold

functionals

equations 
of motion

from a certain manifold M,4 often called the “base 
manifold,” into a “target” or “field manifold” 
T (see the figure).5 In our present example, M = 
[0,L] x [0 ,t] C R2 is the product of intervals in space 
and time, and T = R. In fact, the factorization M C 
R x T into a space-like manifold R multiplied by a 
one-dimensional time-like manifold T is inherent in 
most applications of condensed matter physics.6

However, the individual factors R and T may, 
of course, be more complex than in our prototypical problem above. As for the target 
manifold, not much can be said in general; depending on the application, the realizations 
of T range from real or complex numbers over vector spaces and groups to the “fanciest 
objects” of mathematical physics.

In applied field theory, fields appear not as final objects, but rather as input to func­
tionals. Mathematically, a functional S : $ n- S[$] 6 R is a mapping that takes a field 
as its argument and maps it into the real numbers. The functional profile S[$] essentially 
determines the character of a field theory. Notice that the argument of a functional is 
commonly indicated in square brackets [ ].

While these formulations may appear unnecessarily abstract, remembering the mathe­
matical backbone of the theory often helps to avoid confusion. At any rate, it takes some 
time and practice to get used to the concept of fields and functionals. Conceptual difficul­
ties in handling these objects can be overcome by remembering that any field in condensed 
matter physics arises as the limit of a discrete mapping. In the present example, the field 
<p(x) is obtained as a continuum limit of the discrete vector {$I} 6 RN; the functional 
L[0] is the continuum limit of the function L : RN ^ R, etc. While, in practice, fields 
are usually easier to handle than their discrete analogs, it is sometimes helpful to think 
about problems of field theory in a discrete language. Within the discrete picture, the 
mathematical apparatus of field theory reduces to finite-dimensional calculus.

Although the Lagrangian (1.4) contains the full information about the model, we 
have not yet learned much about its actual behavior. To extract concrete physical 
information from the Lagrangian, we need to derive equations of motion. At first 
sight, it may not be entirely clear what is meant by the term “equations of motion” 
in the context of an infinite-dimensional model: the equations of motion relevant for 

4 If you are unfamiliar with the notion of manifolds (for a crash course, see appendix section 
A.1), think of M and T as subsets of some vector space. For the moment, this limitation won’t 
do any harm.

5 In some (rare) cases it becomes necessary to define fields in a more general sense (e.g., as 
sections of mathematical objects known as fiber bundles). However, in practically all condensed 
matter applications, the more restrictive definition above will suffice.

6 By contrast, the condition of Lorentz invariance implies the absence of such factorizations in 
relativistic field theory. In classical statistical field theories, i.e., theories probing the thermo­
dynamic behavior of large systems, M is just space-like.
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Hamilton’s 
extremal 
principle

Lagrange’s

the present problem are obtained as the generalization of the conventional Lagrange 
equations of N point-particle classical mechanics to a model with infinitely many 
degrees of freedom. To derive these equations, we need to generalize Hamilton’s 
extremal principle (i.e., the route from an action to the associated equations of 
motion) to infinite dimensions. As a warm-up, let us briefly recapitulate how the 
extremal principle works for a system with one degree of freedom.

Suppose the dynamics of a classical point particle with coordinate x(t) is de­
scribed by the classical Lagrangian L(x, x) and action S [x] = f dt L(x, x). Hamil­
ton’s extremal principle states that the configurations x(t) that are realized are 
those that extremize the action, 8S[x] = 0, i.e., for any smooth curve t ^ y(t),

lim -(S[x + ey] — S[x]) = 0. (1.6)

(For a more rigorous discussion, see section 1.2 below.) To first order in e, the action 
has to remain invariant. Applying this condition, one finds that it is fulfilled if and 
only if x satisfies Lagrange’s equation of motion

d (dx L) — dxL = 0 (1.7)
dt

EXERCISE Recapitulate the derivation of (1.7) from the classical action.

In Eq. (1.5) we are dealing with a system of 
infinitely many degrees of freedom, 6 (x, t). 
Yet Hamilton’s principle is general and we 
may see what happens if Eq. (1.5) is sub­
jected to an extremal principle analogous 
to Eq. (1.6). In this case, we require the ac­
tion (1.5) to be invariant under variations 
6(x,t) ^ 6(x, t) + en(x,t), to first order 
in e. Note that field variations must respect boundary conditions, if present. For 
example, if 6|boundary = const., then n|boundary = 0 (see the figure). When applied 
to the specific Lagrangian (1.4), substituting the “varied” field leads to

S[6 + en] = S[6]+ e ! dt f dx (m<j> n — ksa2dx^dxn) + O(e2).

Integrating by parts and requiring the contribution linear in e to vanish, one obtains

lim - (S [6 + en] — S [6]) = - [ dt / dx (m</5 — ks a2 d2 6) i = 0■7 
e^0 e ' 7 70 V

(Notice that the boundary terms vanish identically.) Now, since n was defined to 
be an arbitrary smooth function, the integral ab ove can vanish only if the factor in

7 Here and throughout a = b means “we require a to be equal to b.”
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classical
wave 

equation

parentheses is globally vanishing. Thus the equation of motion takes the form of a 
classical wave equation

(md2 — ksa2 dX) ^ = 0 (1.8)

sound 
waves

collective 
excitations

The solutions of (1.8) have the form
<p + (x—vt)+<fi-(x+vt), where v = ay/ks/m, 
and ^± are arbitrary smooth functions of
the argument. From this we can deduce that the low-energy elementary excita­
tions of our model are lattice vibrations propagating as classical sound waves 
to the left or right at a constant velocity v (see figure).8 The trivial behavior of the 
model is, of course, a direct consequence of its simplistic definition - no dissipa­
tion, dispersion, or other nontrivial ingredients. Adding these refinements leads to 
the general classical theory of lattice vibrations (see, e.g., Ashcroft and Mermin9). 
Finally, notice that the elementary excitations of the chain have little in common 
with its “microscopic” constituents (the atoms). Rather they are collective exci­
tations, i.e., elementary excitations comprising a macroscopically large number of 
microscopic degrees of freedom.

INFO The “relevant” excitations of a condensed matter system can, but need not, 
be of collective type. For example, the interacting electron gas (a system to be discussed 
in detail below) supports microscopic excitations - charged quasi-particles standing in 1:1 
correspondence with the electrons of the original microscopic system - while the collective 
excitations are plasmon modes of large wavelength that involve many electrons. Typically, 
the nature of the fundamental excitations cannot be straightforwardly inferred from the 
microscopic definition of a model. Indeed, the mere identification of the relevant excitations 
often represents the most important step in the solution of a condensed matter problem.

1.1.2 Hamiltonian formulation

An important characteristic of any ex­
citation is its energy. How much en­
ergy is stored in the sound waves of 
the harmonic chain? To address this 
question, we need to switch back to a 
Hamiltonian formulation. Once again, 
this is achieved by generalizing stan­
dard manipulations from point-particle

Sir William Rowan Hamil­
ton 1805-1865
was an Irish mathematician 
credited with the discovery 
of quaternions, the first non- 
commutative algebra to be 
studied. He also made seminal
contributions to the study of
geometric optics and classical mechanics.

mechanics to the continuum. Remembering that, in the Lagrangian formulation of

8 Strictly speaking, the modeling of our system enforces a periodicity constraint <p±(x + L) = 
<p±(x). However, in the limit of large system sizes, this aspect becomes inessential.

9 N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt—Saunders International, 1983). 
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point particle mechanics, p = dxL is the momentum conjugate to the coordinate x, 
let us consider the Lagrangian density and define the field10

n (x) = dL
d^

(1.9)

canonical 
momentum

Hamiltonian 
density

as the canonical momentum associated with ^. In common with ^(x), the mo­
mentum n(x) is a continuum degree of freedom. At each point in space, it may 
take an independent value. Notice that n(x) is nothing but the continuum gener­
alization of the lattice momentum PI of Eq. (1.2). (Applied to PI, a continuum 
approximation like <^I ^ ^(x) would produce n(x).) The Hamiltonian density is 
then defined as usual through the Legendre transformation,

(1.10)

from which the full Hamiltonian is obtained as H = 0L dx H.

EXERCISE Verify that the transition L ^ H is a straightforward continuum general­
ization of the Legendre transformation of the N-particle Lagrangian L({^I}, {fa}).

H("x .:)) = n/ -L)|^= ■}()

Having introduced a Hamiltonian, we are in a position to determine the energy 
of the sound waves. Application of Eqs. (1.9) and (1.10) to the Lagrangian of the 
atomic chain yields n (x) = m^(x) and

H[n, $] = [ dx + ksa- ('r')2 

2m 2
(1.11)

Considering, say, a right-moving sound-wave excitation, ^(x,t) = ^ +(x — vt), we 
find that n(x,t) = — mvdx^ +(x — vt) and H[n, ^] = ksa2 J dx[dxx, +(x — vt)]2 = 
ksa2 J dx [dxx, +(x)]2, i.e., a positive-definite time-independent expression, as one 
would expect.

Hamiltonian 
action

INFO For completeness, we mention that the Hamiltonian representation of the 
action (1.5) is given by S[^,n] = [ dt 0L dx(-H). From here, the Hamiltonian version 
of the equations of motion can be derived by independent variations in $ and n, just as 
in classical mechanics. As an exercise, carry out this variation for the harmonic chain and 
verify that you obtain equations equivalent to the wave equation (1.8).11 Whether one 
prefers to work in a Hamiltonian or Lagrangian formulation of a field theory depends on 
the context and is often decided on a case-by-case basis.

Before proceeding further, let us note an interesting feature of the energy functional: 
in the limit of an infinitely shallow excitation, dxxj + ^ 0, the energy vanishes. This 
sets the stage for principles 4, hitherto unconsidered, symmetry. The Hamiltonian

10 In field theory literature, it is traditional to denote the momentum by a Greek letter.
11 Variation of the action in 0 and n leads to (invert this to check the result) = -¥• ‘^ = <f>.

Differentiation of the first equation in time followed by substitution into the second equation 
yields the wave equation.
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specific 
heat

of an atomic chain is invariant under simultaneous translation of all atom coordi­
nates by a fixed increment: pI ^ pI + 6, where 5 is constant. This expresses the fact 
that a global translation of the solid as a whole does not affect the internal energy. 
Now, the ground state of any specific realization of the solid is defined through a 
static array of atoms, each located at a fixed coordinate RI = la ^ pI = 0. We 
say that the above translational symmetry is “spontaneously broken,” i.e., the solid 
has to decide where exactly it wants to rest. However, spontaneous breakdown of 
a symmetry does not imply that the symmetry has disappeared. On the contrary, 
infinite-wavelength deviations from the pre-assigned ground state come close to 
global translations of (macroscopically large portions of) the solid and, therefore, 
cost a vanishingly small amount of energy. This is the reason for the vanishing of 
the sound-wave energy in the limit dxp ^ 0. It is also our first encounter with 
the aforementioned phenomenon that continuous symmetries lead to the formation 
of soft, i.e., low-energy, excitations. A much more systematic exposition of these 
connections will be given in chapter 5.

To conclude our discussion of the classical harmonic chain, let us consider the 
specific heat, a quantity directly accessible in experiment. A rough estimate of 
this quantity can be obtained from the microscopic Hamiltonian (1.2). According to 
the principles of statistical mechanics, the thermodynamic energy density is given 
by 

partition 
function

1 d dr e-PH H u — fu L f dr e-PH
-1 dp In Z, 

L

where P = 1 /kBT, Z = f dre PH is the Boltzmann partition function, and 
the phase space volume element dr = HN=1 dRIdPI. (Hereafter, for simplicity, 
we set kB = 1.) The specific heat is then obtained as c = dTu. To determine 
the temperature dependence of c, we can make use of the fact that, upon rescal­
ing of the integration variables, RI ^ P-1 /2XI, PI ^ P-1 /2YI, the exponent 
PH(R,P) ^ H(X, Y) becomes independent of temperature (a property that relies 
on the quadratic dependence of H on both R and P). The integration measure 
transforms as dr ^ P-N HN=1 dXI dYI = P-NdP. Expressed in terms of the 
rescaled variables, one obtains the energy density as u = — L-1 dp ln(P-NK) = pT, 
where p = N/L is the density of the atoms and we have made use of the fact that 
the constant K = f dF' e-H(X,Y) is independent of temperature. We thus find a 
temperature independent specific heat c = p. Notice that c is fully universal, i.e., 
independent of the material constants m and ks determining H. (In fact, we could 
have anticipated this result from the equipartition theorem of classical mechan­
ics, i.e., the law that in a system with N degrees of freedom, the energy scales as 
U = NT.)

How do these findings compare with experiment? Figure 1.1 shows the specific 
heat of the insulating compound EuCoO3.12 At large temperatures, the specific 
heat approaches a constant, which is consistent with our analysis. However, at

12 Note that, in metals, the specific heat due to lattice vibrations exceeds the specific heat of the 
free conduction electrons for temperatures larger than a few degrees kelvin.
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T (K)

Fig. 1.1 Specific heat cp of the insulator EuCoO3. At large temperatures, cp approaches a constant 
value, as predicted by analysis of the classical harmonic chain. However, for small temper­
atures, deviations from cp = const. are substantial. Such deviations can be ascribed to 
quantum effects. (Courtesy of M. Kriener, A. Reichl, T. Lorenz and, A. Freimuth.)

lower temperatures, the specific heat shows deviations from c = const. Yet, this 
temperature dependence does not reflect a failure of the simplistic microscopic 
modeling. Rather, the deviation is indicative of a quantum phenomenon. Indeed, 
so far, we have neglected the quantum nature of the atomic variables. In the next 
chapter we will discuss how an effective low-energy theory of the harmonic chain 
can be promoted to a quantum field theory. However, before doing so, let us pause 
to introduce several mathematical concepts that surfaced above, in a way that 
survives generalization to richer problems.

1.2 Functional Analysis and Variational Principles

functional 
differen­

tiation

Let us revisit the derivation of the equations of motion associated with the harmonic 
chain, Eq. (1.8). Although straightforward, the calculation was neither efficient, 
nor did it reveal general structures. In fact, what we did - expanding explicitly 
to first order in the variational parameter e - has the same status as evaluating 
derivatives by explicitly taking limits: f'(x) = lime .0 1 (f (x + e) — f (x)). Moreover, 
the derivation made explicit use of the particular form of the Lagrangian, thereby 
being of limited use with regard to a general understanding of the construction 
scheme. Given the importance attached to extremal principles in the whole of field 
theory, it is worthwhile investing some effort in constructing a more efficient scheme 
for the general variational analysis of continuum theories. To carry out this program, 
we first need to introduce the mathematical tool of functional analysis - the concept 
of functional differentiation.

In working with functionals, one is often concerned with how a given functional 
behaves under (small) variations of its argument function. In particular, given a 
certain function f that we suspect would make a functional F [f] stationary, one 
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would like to find out whether the functional remains invariant under variations 
f ^ f + h, where h is an infinitely small increment function. In ordinary analysis, 
questions of this type are commonly addressed by exploring derivatives, i.e., we 
need to generalize the concept of a derivative to functionals. This is achieved by 
the following definition: a functional F is called differentiable if

F[f + eg] - F[f] = eDFf [g]+ O(e2)

differential where the differential DFf is a linear functional (i.e., one with DFf [g1 + g2] = 
DFf [g 1] + DFf [g2]), £ is a small parameter, and g is an arbitrary function. The 
subscript indicates that the differential depends generally on the “base argument,” 
f . A functional F is said to be stationary on f if, and only if, DFf = 0.

In principle, the definition above answers our question concerning a stationarity 
condition. However, to make use of the definition, we still need to know how to 
compute the differential DF , and how to relate the differentiability criterion to the 
concepts of ordinary calculus. To understand how these questions can be systemati­
cally addressed, it is helpful to return temporarily to a discrete way of thinking, i.e., 
to interpret the argument f of a functional F [f ] as the limit N ^ x of a discrete 
vector f = {fn = f (xn), n = 1,..., N}, where {xn} denotes a discretization of the 
support of f (cf. the harmonic chain, ^ o f). Prior to taking the continuum limit, 
N ^ x, f has the status of an N-dimensional vector and F(f) is a function de­
fined over N-dimensional space. After taking the continuum limit, f ^ f becomes 
a function itself and F(f) ^ F[f ] becomes a functional.

Now, within the discrete picture, it is clear how the variational behavior of func­
tions is to be analyzed. For example, the condition that, for all e and all vectors g, 
the linear expansion of F(f + eg) ought to vanish is simply to say that the ordinary 
differential, dFf, defined through F(f + eg) — F(f) = e • dFf(g) + O(e2), must be 
zero. In practice, one often expresses conditions of this type in terms of a certain 
basis. In a Cartesian basis of N unit vectors, en, n = 1, . . . , N, dFf (g) = (VFf, g), 
where f, g) = N= n=1 fngn denotes the standard scalar product, and VFf = {dfnF} 
represents the gradient, with the partial derivative defined as

df F(f) = lim 1 [F(f + een) — F(f)] . (1.12)
Jn ^o nJ .

From these identities, the differential is identified as

dFf (g)= E dfn F (f) gn. (1.13)

The vanishing of the differential amounts to the vanishing of all partial derivatives, 
dfn F = 0.

Equations (1.12) and (1.13) can now be straightforwardly generalized to the 
continuum limit, whereupon the summation defining the finite-dimensional scalar 
product translates to an integral,

f, g} = E fngn ^ (f, g} = 
n=1

dx f (x)g(x).
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The analog of the nth unit vector is a 5-distribution, en ^ 5x, where 5x (x') = 
5(x — x'), as can be seen from the following correspondence:

N

fn (f, en } f fm ( en ) m ^ f(x) = (f,5x) = dx' f (x')5x (x').
m=1

Here (en)m = 5nm denotes the mth component of the nth unit vector. The corre­
spondence (unit vector o 5-distribution) is easy to memorize: while components 
of en vanish, save for the nth component, which equals unity, 5x is a function that 
vanishes everywhere, save for x where it is infinite. That a unit component is re­
placed by infinity reflects the fact that the support of the 5-distribution is infinitely 
narrow; to obtain a unit-normalized integral 5x , the function must be singular.

As a result of these identities, (1.13) translates to the continuum differential,

nF. hi] = d dx 5F [fL(x) (114)
DFf [g] J xdj 5f(x) g(x), (1.14)

where the generalization of the partial derivative,

Ff = lim-(F [f + e5x] — F[f]) (1.15)
5f(x) e-o e k L x i . J

is commonly denoted by 5 instead of d. Equations (1.14) and (1.15) establish the 
connection between ordinary and functional differentiation. Notice that we have not 
yet learned how to calculate the differential practically, i.e., to evaluate expressions 
like Eq. (1.15) for concrete functionals. Nevertheless, the identities above are very 
useful, enabling us to generalize more complex derivative operations of ordinary 
calculus by straightforward extrapolation. For example, the generalization of the 

chain rule standard chain rule, dfnF(g(f)) = £m dgmF(g) |g=g(f) dfngm(f) reads

5F [g[f]] _ d d 5F [g] 5 g(y)[f]
5f (x) J y 5g(y) g=g [f 5f(x) .

Here g [f] is the continuum generalization of an Rm-valued function, g : Rn ^ Rm, 
a function whose components g(y)[f] are functionals by themselves. Furthermore, 
given some functional F [f], we can construct its Taylor expansion as

5F[ - pmu IF 5F[f] .^[dx 1 dx2 52F[f]
F[f]= F[0]+/ dx 1 —7 f(x 1)+ —5—Jr;—TJ77—7 f(x 1)f(x2)+ ,

J 5f (x 1) f=0 2 2 5f (x2 ) 5f (x 1) f=0

where (exercise)

52 F [ f ]
5f (x 2) 5f (x 1)

= li^n -----  ( F [ f + 615x 1 + £ 2 5x 2 ] - F [ f + 615x 1] - F [ f + 6 2 5x 2] + F [ f])
e 1,2 — 0 e 1E 2

generalizes a two-fold partial derivative. The validity of these identities can be 
made plausible by applying the prescription given in table 1.1 to the corresponding 
relations of standard calculus. To actually verify the formulae, one has to find the 
continuum limit of each step taken in the discrete variant of the corresponding
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Table 1.1 Summary of basic definitions of discrete and continuum calculus.

Entity Discrete Continuum
Argument vector f function f
Function(al) multidimensional function F(f) functional F [f ]
Differential dFf (g) DFf [ g ]
Cartesian basis e n S x
Scalar product {, } nfn fngn dxf f (x) g(x)
“Partial derivative” dfnF(f) SF [ f ]/Sf (x)

proofs. Experience shows that it takes some time to get used to the concept of 
functional differentiation. However, after some practice, it will become clear that 
this operation is not only useful but is as easy to handle as conventional partial 
differentiation.

We finally address the question how to compute functional derivatives in practice. 
In doing so, we will make use of the fact that, in all but a few cases, the functionals 
encountered in field theory are of the structure

S[f] = J dx L( f df)

local 
functional

(1.16)

Here, we assume the base manifold M to be parameterized by an m-dimensional 
coordinate vector x = {x,,}. (In most practical applications m = d +1 and 
x = (x0, x1, . . . , xd) contains one time-like component x0 = t and d space-like 
components xk, k = 1, . . . , d.13) We further assume that the field manifold has di­
mensionality n and that fi, i = 1,... ,n, are the coordinates of the field. Functionals 
of this type are called local functionals.

What makes the functional S [f] easy to handle is that all of its information is 
stored in the function L. Owing to this simplification, the functional derivative can 
be related to an ordinary derivative of L. To see this, all we have to do is to evaluate 
the general definition (1.14) on the functional S :

S[f + ed] - S[f ] = f dx [L( f + e9, d^f + ed^9) - L( f, d^f)]

dfi 9 + d(d^ f)d^ °'

'd d dL A 
dfi d(d^fi) J

e + O (e 2)

ffie + O (e 2),

where in the last line we have assumed that the field variation vanishes on the 
boundary of the base manifold, 9 |dM = 0. Comparison with Eq. (1.14) identifies 
the functional derivative as

8S[f] dL a 9 dL \
dfi (x) dfi(x) M d(B^fi(x)) j

13 Following standard convention, we denote space-like components by small Latin indices k =
1,... ,d. By contrast, space-time indices are denoted by Greek indices p = 0,... ,d.
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We conclude that the stationarity of the functional (1.16) is equivalent to the 
condition

v . d L
vx,.: dtf(x)

d L ) =0
d ('^-' (x ))7

(1.17)

Euler—
Lagrange 
equation

Equation (1.17) is known as the Euler-Lagrange equation of field theory. In fact, 
for d = 0 and x0 = t, Eq. (1.17) reduces to the familiar Euler-Lagrange equation 
for a point particle in n-dimensional space. For d = 1 and (x0, x1) = (t, x), we get 
back to the stationarity equations discussed in the previous section. In the next 
section we will apply the formalism to a higher-dimensional problem.

1.3 Maxwell’s Equations as a Variational Principle

REMARK This section requires familiarity with the basic notions of special relativity 
such as the concepts of 4-vectors, Lorentz transformations, and covariant notation.14

14 For a summary of the covariant notation used in this text, see the Info block on 524.

classical
electro­

dynamics

As a second example, let us consider 
the archetype of classical field theory, 
classical electrodynamics. As well 
as exemplifying the application of con­
tinuum variational principles for a fa­
miliar problem, this example illustrates 
the unifying potential of the approach: 
That problems as different as the low- 
lying vibrational mo des of a crystalline 
solid and electrodynamics can be de­
scribed by almost identical language 
indicates that we are dealing with a

James Clerk Maxwell 1831­
1879
was a Scottish theoretical 
physicist and mathematician 
who made seminal contribu­
tions to the study of electricity, 
magnetism, optics, and the 
kinetic theory of gases. In par­
ticular, he is credited with the formulation of 
the theory of electromagnetism, synthesizing 
seemingly unrelated experiments and equations 
of electricity, magnetism and optics into a con­
sistent theory. He is also known for creating the 
first true color photograph in 1861!

Maxwell’s 
equations

useful formalism. Specifically, our aim will be to explore how the equations of mo­
tion of electrodynamics, the inhomogeneous Maxwell’s equations,

V- E = p, Vx B - dt E = j, (1.18)

can be obtained from variational principles. For simplicity, we restrict ourselves to 
a vacuum theory, i.e., E = D and B = H. Further, we have set the velocity of light 
to unity, c = 1. Within the framework of the variational principle, the homogeneous 
equations,

Vx E + dt B = 0, V- B = 0, (1.19)

are regarded as ab initio constraints imposed on the degrees of freedom E and B.

Lorentz 
invariance

INFO As preparation for the following discussion, let us briefly recapitulate the notion 
of Lorentz invariance. In this text, we will work mostly in non-relativistic contexts
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Euclidean 
field theory

where the time coordinate t and the d space coordinates xi are bundled into a (d + 1)- 
dimensional vector x = x1 = x^ = (t, xi) and p, = 0,... ,d. In this case, t and xi may be 
considered as coordinates of a Euclidean space. Field theories defined in such spaces are 
called Euclidean field theories. By contrast, in relativistic theories we are working in 
a space-time continuum with a Minkowski metric

15 Notice that the field tensor (1.21) differs from that in many textbooks on electromagnetism 
by a sign change, Ei o — Ei. The reason is that in this text we work with a different sign 
convention for the Minkovski metric, n o — n; see p.524 for a discussion of this point.

<-1

n = {n1v} =
+1

+1
+1

(1.20)

Lorentzian 
field theory

ence of magnetism upon radiation phenomena.” 
Lorentz derived the transformation equations 
subsequently used by Albert Einstein to describe 
space and time.

Expressed as a condition for the Lorentz

Hendrik Antoon Lorentz 
1853-1928
was a Dutch physicist who 
shared the 1902 Nobel Prize 
in Physics with Pieter Zeeman 
“in recognition of the extraor­
dinary service they rendered by 
their researches into the influ­

Here, too, we denote space-time coordinate vectors by x = x1 = (t, xi). However, now the 
- contravariant or “upstairs” - positioning of the index becomes an essential part of the 
notation; see Info block on 524 for a summary of the notation conventions of relativity.

Field theories in space-times with a 
Minkowski metric are called Lorentzian 
field theories. Recall that a linear coor­
dinate transformation x1 ^ x'1 = AVx xv 

is a Lorentz transformation if it leaves the 
Minkowski metric invariant: x^n1vxv = 
x'n^xx'v. In the covariant notation of 
relativity, covariant components, x1 , are 
obtained from contravariant components, 
x1 , by index lowering via the Minkowski 
metric, x^ = n1vxv (this is why the po­
sitioning is relevant) and the invariance 
condition assumes the form x^x'1 = xxx'1 

transformations, this reads n1vA1 , Avv, = n1.'v'•
In cases where we are discussing material which does not depend on the realization of 

the metric, covariant notation will be used. The Euclidean field theory is then represented 
by the unit metric n1v = &1V•

The representation of Maxwell’s theory as a variational principle is best formulated 
in the language of relativistically invariant electrodynamics. As a starting 
point, we require (1) a field formulated in a set of suitably generalized coordinates 
and (2) its action. Regarding coordinates, the natural choice will be the coefficients 
of the electromagnetic (EM) 4-potential, A1' = (■$, A), where ^ is the scalar poten­
tial and A is the vector potential. The 4-potential A is unconstrained and uniquely 
determines the fields E and B through the standard equations E = —V$ — dtA 
and B = V x A. (In fact, the set of coordinates A,, is “overly free” in the sense 
that gauge transformations A,, ^ A,, + d,,r, where r is an arbitrary function, leave 
the physical fields invariant. Later we will comment explicitly on this point.) The 
connection between A and the physical fields can be expressed in a more symmetric 
way by introducing the EM field tensor,15
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0 -E1 -E2 —E3 \

F = {F} =
E1

E2

0
B3

-B3

0
B2

-B1
. (1.21)

E3 -B2 B1 0

The relation between fields and potential now reads F,iv = d^Av — dvA^, where 
14

xp. = (—t, x) and d^ = (dt, V).

EXERCISE Confirm that this relation follows from the definition of the vector potential. 
To verify that the constraint (1.19) is automatically included in the definition (1.21), com­
pute the construct d\FIJV + d^Fvx + dvFy^, where (Xvp) represent arbitrary but different 
indices. This produces four different terms, identified as the left-hand side of Eq. (1.19). 
Evaluation of the same construct on F^v = d^Av — dvA^ produces zero, by the symmetry 
of the right-hand side.

To obtain the structure of the action S [A], we can proceed in different ways. One 
option would be to regard Maxwell’s equations as fundamental, i.e., to construct an 
action that produces these equations upon variation (by analogy with the situation 
in classical mechanics where the action functional is designed to reproduce Newton’s 
equations). However, we can also be a little bit more ambitious and ask whether 
the structure of the action can be motivated independently of Maxwell’s equations. 
In fact, there is just one principle in electrodynamics that is as fundamental as 
Maxwell’s equations: symmetry. A theory of electromagnetism must be Lorentz 
invariant, i.e., invariant under relativistic coordinate transformations.

Aided by the symmetry criterion, we can try to conjecture the structure of the 
action from three basic assumptions, all independent of Maxwell’s equations. The 
action should be invariant under (i) Lorentz transformations, (ii) gauge transfor­
mations, and (iii) it should be simple! The most elementary choice compatible with 
these conditions is

S[A] = J d4x (c 1 F^vF»v + C2 Aj), (1.22)

where d4x = dtdx 1 dx2 dx3 denotes the measure, jM = (p, j) the 4-current, and c 1,2 

are undetermined constants. Indeed, up to quadratic order in A, (1.22) defines the 
only possible structure consistent with gauge and Lorentz invariance.

EXERCISE Using the continuity equation 'P.P = 0, verify that the Aj-coupling is gauge 
invariant. (Hint: Integrate by parts.) Verify that a contribution like / A^A" would not be 
gauge invariant.

Having defined a trial action, we can apply the variational principle (1.17) to com­
pute equations of motion. In the present context, the role of the field ^ is taken 
by the four components of A. Variation of the action with respect to A,, gives four 
equations of motion,

dL n ( dL A _ n 9 ndA^ d^ d (dv A^ J 0, M 0,..., 3, (1.23)
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where the Lagrangian density is defined by S = d4x L. With the specific form of 
L, it is straightforward to verify that dA^L = c2jM and d(dva^)L = —4c 1 F"v. We 
substitute these building blocks into the equations of motion to obtain 4c 1 dvF'"''’ = 
c2j. Comparing this with the definition of the field tensor (1.21), and setting 
c1/c2 = —1/4, we arrive at Maxwell’s equations (1.18). The overall multiplicative 
constant c1 (= c2/4) can be fixed by requiring that the Hamiltonian density asso­
ciated with the Lagrangian density L reproduce the known energy density of the 
EM field (see problem 1.8.2). This leads to c1 = —1/4, so that we have identified

L( A^,dv A ) = — 1 F F v + Aj (1.24)

electro­
magnetic 

Lagrangian

as the Lagrangian density of the electromagnetic field. The corresponding 
action is given by S[A] = J d4x L(A^,dvA,,).

At first sight, this result does not look surprising. After all, Maxwell’s equations 
can be found on the first page of most textbooks on electrodynamics. However, our 
achievement is actually quite remarkable. By invoking only symmetry, the algebraic 
structure of Maxwell’s equations has been established unambiguously. We have thus 
proven that Maxwell’s equations are relativistically invariant, a fact not obvious 
from the equations themselves. Further, we have shown that Eqs. (1.18) are the 
only equations of motion linear in the current-density distribution and consistent 
with the invariance principle. One might object that, in addition to symmetry, we 
have also imposed an ad hoc “simplicity” criterion on the action S[A]. However, 
later we will see that this was motivated by more than mere aesthetics.

Finally, we note that the symmetry-oriented modeling that led to Eq. (1.22) is 
illustrative of a popular construction scheme in modern field theory. The symmetry- 
oriented approach stands as complementary to the “microscopic” formulation ex­
emplified in section 1.1. Broadly speaking, these are the two principal approaches 
to constructing effective low-energy field theories.

> Microscopic analysis: Starting from a microscopically defined system, one 
projects onto those degrees of freedom that one believes are relevant for the 
low-energy dynamics. Ideally, this “belief” is backed up by a small expansion 
parameter stabilizing the mathematical parts of the analysis. Advantages: The 
method is rigorous and fixes the resulting field theory completely. Disadvantages: 
The method is time consuming and, for complex systems, not even viable.

> Symmetry considerations: One infers an effective low-energy theory on the 
basis of only fundamental symmetries of the physical system. Advantages: The 
method is fast and elegant. Disadvantages: It is less explicit than the microscopic 
approach. Most importantly, it does not fix the coefficients of the different con­
tributions to the action.

Thus far, we have introduced some basic concepts of field-theoretical modeling in 
condensed matter physics. Starting from a microscopic mo del Hamiltonian, we have 
illustrated how principles of universality and symmetry can be applied to distill 
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effective continuum field theories, capturing the low-energy content of the system. 
We have formulated such theories in the language of Lagrangian and Hamiltonian 
continuum mechanics, and shown how variational principles can be applied to ex­
tract concrete physical information. Finally, we have seen that field theory provides 
a unifying framework whereby analogies between seemingly different physical sys­
tems can be uncovered. In the next section we discuss how the formalism of classical 
field theory can be elevated to the quantum level.

1.4 Quantum Chain

Poisson 
bracket

(1.25)

Previously, from measurements of the specific heat, we have seen that at low tem­
peratures the excitation profile of the classical atomic chain differs drastically from 
that observed experimentally. Generally, in condensed matter physics, low-energy 
phenomena with pronounced temperature sensitivity are indicative of a quantum 
mechanism at work. To introduce and exemplify a general procedure whereby quan­
tum mechanics can be incorporated into continuum models, we next consider the 
low-energy physics of the quantum atomic chain.

The first question to ask is conceptual: how can a model like (1.4) be quantized 
in general? Indeed, there exists a standard procedure for quantizing continuum 
theories, which closely resembles the quantization of Hamiltonian point mechanics. 
Consider the defining equations (1.9) and (1.10) for the canonical momentum and 
the Hamiltonian, respectively. Classically, the momentum n (x) and the coordinate 
^(x) are canonically conjugate variables: {n(x), ^(x')} = — 5(x — x'), where { , } is 
the Poisson bracket and the 5-function arises through continuum generalization of 
the discrete identity {PI, RI<} = — 5II<, 1,1' = 1,..., N.16 The theory is quantized 
by generalization of the canonical quantization procedure for the discrete pair of 
conjugate coordinates (RI, PI) to the continuum: (i) promote ^(x) and n(x) to 
operators, § ^ §, n ^ n, and (ii) generalize the canonical commutation relation 
[PI, RI,] = — i~5II, to* 16 17

(a / \ 7/ /XI '?-<•/ /X[n(x), $(xj] = — i~5(x — x)

16 Recall that for conjugate coordinates (RI , PI) the Poisson bracket is defined by

N
( df dg - df dg \ 

dR ddRj dPi dPi dRi) 
I=1

17 Note that the dimensionalities of both the quantum and the classical continuum field are 
compatible with the dimensionality of the Dirac 5-function, [5(x - xz)] = [length]-1, i.e., 
[fi(x)] = [^i] x [length]-1 /2 and similarly for n.
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Table 1.2 Relations between discrete and continuum canonically 
conjugate variables or operators.

Classical Quantum

Discrete

Continuum
{ PI, ri '} = - $n'
{n(x), 0(x')} = — S(x — x')

[PI, Riz ] = — i ~Sii z

[n(x), 0(x')] = — i~S(x — xZ)

quantum 
field

j ii c j • 1-17 i a ii c i, j r» i iOperator-valued functions like ( and n are generally referred to as quantum fields. 
For clarity, the relevant relations between canonically conjugate classical and quan­
tum fields are summarized in Table 1.2.

INFO By introducing quantum fields, we have departed from the conceptual framework 
laid out on page 8: being operator-valued, the quantized field no longer represents a 
mapping into an ordinary differentiable manifold.18 It is thus legitimate to ask why we 
bothered to give a lengthy exposition of fields as “ordinary” functions. The reason is that, 
in the not too distant future, after the framework of functional field integration has been 
introduced, we will return to the comfortable ground of the definition on page 8.

Employing these definitions, the classical Hamiltonian density (1.10) becomes the 
quantum operator

H(7 n) = n2 + ka(d:-' '. (1.26)
2m 2

The Hamiltonian above represents a quantum field-theoretical formulation of the 
problem, but not yet a solution. In fact, the development of a spectrum of methods 
for the analysis of quantum field-theoretical models will represent a major part of 
this text. At this point our objective is merely to exemplify the way in which physical 
information can be extracted from models like (1.26). As a word of caution, let us 
mention that the following manipulations, while mathematically straightforward, 
are conceptually deep. To disentangle different aspects of the problem, we will first 
concentrate on the plain operational aspects. Later in this section, we will reflect 
on “what has really happened.”

As with any function, operator-valued functions can be represented in a variety 
of ways. In particular, they can be subjected to Fourier transformation,

pk - 1 rL e.ikxj <xx) r <xx) = 1 v e{±ikj $k (127)
pk - L1 /2Jo dxe p(x) , p(x) L1 /2 ^e e pk , (1.27)

where k represents the sum over all Fourier coefficients indexed by the quantized
momenta k = 2nm/L, m G Z (not to be confused with the operator momentum 
n). Note that the real classical field ((x) quantizes to a hermitian quantum field 
$(x), implying that ok = $-k (and similarly for nk). The corresponding Fourier 
representation of the canonical commutation relations reads (exercise)

[ n k ,0k < ] = - i ~ 6kk <. (1.28)

18 At least if we ignore the mathematical subtlety that a linear operator can also be interpreted 
as an element of a certain manifold.
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When expressed in the Fourier representation, making use of the identity,

$k + k', 0

LL/ . . X X . -A- . . 1 / :fl. i 1.' \ .. X X n -A- -A­d dx (dx(f>')2 = y^(-ik0k)(-ik0k,) L/ dxe ( + ) k20k0-k,

Consider a standard harmonic oscillator (HO) Hamiltonian

- •p2 mx2 2H)=2m+—x.

19 The only difference between Eq. (1.29) and the canonical form of an oscillator Hamiltonian 
Hl = p2/2mm + m^2xi2/2 is the presence of the subindices k and — k (a consequence of the 
relation, <^k = <j)—k). As we will show shortly, this difference is inessential.

together with a similar relation for jL dx n2, the Hamiltonian 
LH = J0 dx H(0,n) assumes the near diagonal form,

H = E
k

E n k n-k + m0k 0k 0)-k

2m 2

where xk = v | k | and v = ay/ks/m denotes the classical sound 
wave velocity. In this form, the Hamiltonian can be identi­
fied as nothing but a superposition of independent quantum 
harmonic oscillators.* 19 This result is easy to understand 

(1.29)

(see the figure). Classically, the system supports a discrete
set of wave excitations, each indexed by a wave number k = 2nm/L. (In fact, we 
could have performed a Fourier transformation of the classical fields 0 (x) and n (x) 
to represent the Hamiltonian function as a superposition of classical harmonic os­
cillators.) Within the quantum picture, each of these excitations is described by 
an oscillator Hamiltonian with a k-dependent frequency. However, it is important 
not to confuse the atomic constituents, also oscillators (albeit coupled), with the 
independent col lective oscillator modes described by H.

The description above, albeit perfectly valid, still suffers from a deficiency: the 
analysis amounts to explicitly describing the effective low-energy excitations of the 
system (the waves) in terms of their microscopic constituents (the atoms). Indeed 
the different contributions to H correspond to details of the microscopic oscillator 
dynamics of individual k-modes. However, it would be much more desirable to de­
velop a picture where the relevant excitations of the system, the waves, appear as 
fundamental units without an explicit account of the underlying microscopic de­
tails. (As with hydrodynamics, information is encoded in terms of collective density 
variables rather than through individual atoms.) As preparation for the construc­
tion of this improved formulation, let us temporarily focus on a single oscillator 
mode.

1.4.1 Revision of the quantum harmonic oscillator

harmonic 
oscillator
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quasi­
particles

The first few energy levels en = w(n + 1 /2) and the associated Hermite polynomial 
eigenfunctions are displayed schematically in the figure. (To simplify the notation we 
henceforth set ~ = 1.) The HO has the status of a single-particle problem. However, 
the equidistance of its energy levels suggests an alternative interpretation: a given 
state en may be thought of as an accumulation of n V~\ 
elementary entities, or quasi-particles, each hav- \
ing energy w. What can be said about the features -*-o-o-
of these new objects? First, they are structureless, -O-O-O-
i.e., the only “quantum number” identifying the
quasi-particles is their energy w (since otherwise n-particle states formed of the 
quasi-particles would not be equidistant in energy). This implies that the quasi­
particles must be bosons. (The same state w can be occupied by more than one 
particle.)

This idea can be formulated in quantitative terms by employing the formalism of 
ladder operators, in which the operators p and xi are traded for the pair of hermitian 
adjoint operators a = \/mw/2(x + (i/mw)p) and at = -\/mw/2(x — (i/mw)p). Up to 
a factor of i, the transformation (x,p) ^ (a, at) is canonical, i.e., the new operators 
obey the canonical commutation relation

[a, at] = 1. (1.30)

More importantly, the a-representation of the Hamiltonian is very simple, viz.

HH = w (ata + 1 / 2), (1.31)

as can be checked by direct substitution. Suppose, now, that we had been given 
a zero-eigenvalue state |0) of the operator a: a|0) = 0. As a consequence, H|0) = 
(w/2)|0), i.e., |0) is identified as the ground state of the oscillator.20 The hierarchy 
of higher-energy states can then be generated by setting |n} = (1 /Vn!) (at)n |0).

20 Switching to a real space representation of the ground state equation, verify that its solution
is the familiar ground state wave function (x|0) = y2mu/2ne—mUjJx /2. can be verified by 
explicit construction. As an exercise, switching to a real space representation of the ground 
state equation, and verify that its solution is the familiar ground state
wave function gyx„^_a^g/™^A = (di®)-

EXERCISE Using the canonical commutation relation (1.30), verify that H|n} = x(n + 
1 /2)|n} and (n|n} = 1.

Formally, the construction above represents yet another way of constructing eigen­
states of the quantum HO. However, its real advantage is that it naturally affords a 
many-particle interpretation. To this end, let us declare that |0) represents a “vac­
uum” state, i.e., a state with zero particles. Next, imagine that at|0) is a state with 
a single featureless particle (the operator )at does not carry any quantum number 
labels) of energy w. Similarly, (at)n|0) is considered as a many-body state with n 
particles; i.e., within the new picture, )at is an operator that “creates” particles. 
The total energy of these states is given by w x (occupation number). Indeed, it is 



25 1.4 Quantum Chain

straightforward to verify (see the exercise above) that at«|n) = n|n), i.e., the Hamil­
tonian effectively counts the number of particles in the state. While at first sight, 
this may look unfamiliar, the new interpretation is internally consistent. Moreover, 
it achieves what we asked for above: it allows an interpretation of the HO states as 
a superposition of independent structureless entities.

INFO The representation above shows that we can think about individual quantum 
problems in complementary pictures. This principle finds innumerable applications in 
modern condensed matter physics. The existence of different interpretations of a given 
system is by no means heterodox but, rather, reflects a principle of quantum mechanics: 
there is no “absolute” system that underpins the phenomenology. The only thing that 
matters is observable phenomena. For example, we will see later that the “fictitious” quasi­
particle states of oscillator systems behave as “real” particles, i.e., they have dynamics, 
can interact, can be detected experimentally, etc. From a quantum point of view, these 
objects can be considered as “real” particles.

1.4.2 Quasiparticle interpretation of the quantum chain

Returning to the oscillator chain, one can transform the Hamiltonian (1.29) to a 
form analogous to (1.31) by defining the ladder operators21

a k = < mf (k+ + —n-k 

2 2 \ mwk

t
ak =

mwk

2
i

------ nkmwk
(1.32)i$—k

With this definition, applying the commutation relations (1.28), one finds that the 
ladder operators obey commutation relations generalizing Eq. (1.30):

[ak ,ak' ]= ^kk', [ k k ,a k' ] = [a k ,ak' ]=0 • (1.33)

Expressing the operators (ok, nk) in terms of 
(ak,ak), it is now straightforward to bring 
the Hamiltonian into the quasi-particle os­
cillator form (exercise)

H = wk (ak ak + 1 / 2) • (1.34)
k

massless 
excitation

Equations (1.34) and (1.33) represent the final result of our analysis. The Hamilto­
nian H takes the form of a sum of harmonic oscillators with characteristic frequen­
cies wk. In the limit k ^ 0 (i.e., long wavelengths), we have wk ^ 0; excitations 
with this property are said to be massless.

An excited state of the system is indexed by a set {nk} = (n1, n2, • • • ) of quasi­
particles with energy {wk} (see the figure). Physically, the quasi-particles of the

21 As to the consistency of these definitions, recall that <j>k = <j>-k and ft^ = ft-k. Under these 
conditions, the second of the definitions in Eq. (1.32) follows from the first upon taking the 
hermitian adjoint.
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Fig. 1.2 Phonon spectra of the transition metal oxide Sr2RuO4 along different axes in momentum 
space. Notice the approximate linearity of the low-energy branches (acoustic phonons) 
at small momenta q. Superimposed at high frequencies are various branches of optical 
phonons. (Source: Courtesy of M. Braden, University of Cologne.)

phonon harmonic chain are identified with the phonon modes of the solid. A comparison 
with measured phonon spectra (fig. 1.2) reveals that, at low momenta, we have 
wk ~ | k | in agreement with our simplistic model (in spite of the fact that the 
spectrum was recorded for a three-dimensional solid with a nontrivial unit cell - 
universality!). While the linear dispersion was already a feature of the classical 
sound wave spectrum, the low-temperature specific heat reflected non-classical be­
havior. It is left as an exercise (problem 1.8.3) to verify that the quantum nature of 
the phonons resolves the problem with the low-temperature specific heat discussed 
in section 1.1.2. (For further discussion of phonon mo des in atomic lattices we refer 
to chapter 2 of the text by Kittel.22)

The generality of the procedure outlined above suggests that the quantization of the EM 
field (1.24) proceeds in a manner analogous to the phonon system. However, there are a 
number of practical differences that make this task harder (but also more interesting!). 
First, the vectorial character of the potential, in combination with the condition of rela­
tivistic covariance, gives the problem a nontrivial internal geometry. Closely related, the 
gauge freedom of the vector potential introduces redundant degrees of freedom whose re­
moval on the quantum level is not easily achieved. For example, quantization in a setting 
where only physical degrees of freedom are kept - i.e., the two polarization directions of 
the transverse photon field - is technically cumbersome, the reason being that the rele­
vant gauge condition is not relativistically covariant. In contrast, a manifestly covariant

22 C. Kittel, Quantum Theory of Solids, 2nd edition (Wiley, 1987).

EXERCISE Classically, the ground state of the atomic chain comprises a regular array of 
ions. In the quantum chain, the distance between neighboring ions fluctuates even in the 
ground state, |0). Using the results above, show that

<0|[$(x) - $(0)]2|0> = ^ £ 
mL k

1- cos(kx)
Wk

In the limit |x| » a, show that (0|[^(x) — ^(0)]2|0} ~ (1 /ay/ksm) ln |x/a|. What does this 
imply for the stability of crystalline order in the one-dimensional chain?

1.5 Quantum Electrodynamics
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scheme, while technically more convenient, introduces spurious “ghost degrees of freedom” 
that are difficult to remove. To circumvent a discussion of these issues, we will not discuss 
the problem of EM field quantization in detail.23 On the other hand, the photon field 
plays a much too important role in condensed matter physics for us to drop the problem 
altogether. We will therefore aim at an intermediate exposition, largely insensitive to the 
problems outlined above, but sufficiently general to illustrate the main principles.

Consider the Lagrangian of the matter-free EM field, L = — If d3 x lkv F "v. As a first 
step towards quantization of this system, a gauge choice must be made. In the absence of 
charge, a particularly convenient choice is the Coulomb gauge V • A = 0, with scalar 
component f = 0. (Keep in mind that, once a gauge has been set, we cannot expect 
further results to display “gauge invariance.”) Using the gauge conditions, one may verify 
that the Lagrangian assumes the form

L = | y d3x [(dt A)2 — (V x A)2] . (1.35)

By analogy with the atomic chain, we would now proceed to “decouple” the theory by 
expanding the action in terms of eigenfunctions of the Laplace operator. The difference to 
our previous discussion is that we are dealing (i) with the full three-dimensional Laplacian 
(instead of a simple second derivative) acting on (ii) the vector quantity A that is (iii) 
subject to the constraint V • A = 0. It is these aspects that lead to the complications 
outlined above.

We can circumvent these difficulties by considering cases where the geometry of the 
system reduces the complexity of the eigenvalue problem. This restriction is less artifi­
cial than it might appear. For example, in anisotropic electromagnetic waveguides, the 
solutions of the eigenvalue equation can be formulated as24

— V2R k (x) = Xk R k (x), (1.36)

where k e R is a one-dimensional index and the vector-valued functions Rk are real and 
orthonormalized: J Rk • Rk/ = Skk/. The dependence of the eigenvalues Xk on k is governed 
by details of the geometry (see Eq. (1.38) below) and need not be specified for the moment.

INFO An electromagnetic waveguide is a quasi-one-dimensional cavity with metallic 
boundaries (see fig. 1.3). The practical use of waveguides is that they are good at con­
fining EM waves. At large frequencies, where the wavelengths are of order meters or less, 
radiation loss in conventional conductors is high. In this frequency domain, hollow con­
ductors provide the only practical way of transmitting radiation. Field propagation inside 
a waveguide is constrained by boundary conditions. Assuming the walls of the system to 
be perfectly conducting,

E|| (xb) = 0, B±(xb ) = 0, (1.37)

where xb is a point at the system boundary and E|| (B±) is the parallel (perpendicular) 
component of the electric (magnetic) field.

23 Readers interested in learning more about EM field quantization are referred to, e.g., L. H. 
Ryder, Quantum Field Theory (Cambridge University Press, 1996).

24 More precisely, one should say that Eq. (1.36) defines the set of eigenfunctions relevant for the 
low-energy dynamics of the waveguide. More-complex eigenfunctions of the Laplace operator 
exist, but they carry much higher energy.

1.5.1 Field quantization

Coulomb
gauge

waveguide
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Fig. 1.3 EM waveguide with rectangular cross-section. The structure of the eigenmodes of the field 
is determined by the boundary conditions at the walls of the cavity.

Regarding the problem of field quantization, let us for concreteness consider a cavity 
with uniform rectangular cross-section Ly x Lz. To conveniently represent the Lagrangian 
of the system, we need to express the vector potential in terms of eigenfunctions Rk that 
are consistent with the boundary conditions (1.37). A complete set of functions fulfilling 
this condition is given by

(c 1 cos(kxx) sin(kyy) sin(kzz)\ 
c2 sin(kx x) cos(ky y) sin(kzz) .
c3 sin(kx x) sin(ky y) cos(kz z)

Here, ki = nin/Li with positive integer ni, Nk is a factor normalizing Rk to unit mod­
ulus, and the coefficients ci are subject to the condition c1 kx + c2ky + c3kz = 0. In­
deed, it is straightforward to verify that a general superposition of the type A(x,t) = 
52k ak(t)Rk(x), with ak(t) 6 R, is divergenceless and generates an EM field compat­
ible with (1.37). Substitution of Rk into Eq. (1.36) identifies the eigenvalues as Ak = 
kx2 + ky2 + kz2 . In the physics and electronic engineering literature, eigenfunctions of the 

field modes Laplace operator in a quasi-one-dimensional geometry are commonly described as modes.
As we will see shortly, the energy of a mode (i.e., the Hamiltonian evaluated on a specific 
mode configuration) grows with |Ak |. In cases where one is interested in the low-energy 
dynamics of the EM field, only configurations with small |Ak | are relevant. If we consider 
a massively anisotropic waveguide with Lz < Ly Lx, the modes with smallest | Ak | are 
those with kz =0, ky = n/Ly, and kx = k L-yy. (Consider why it is not possible to set 
both ky and kz to zero.) With this choice,

Ak = k 2 + (n/Ly )2 (1.38)

and a scalar index k suffices to label both eigenvalues and eigenfunctions Rk . A schematic 
of the spatial structure of the functions Rk is shown in fig. 1.3. The dynamical properties 
of these configurations will be discussed in the text.

Returning to the problem posed by Eq. (1.35) and (1.36), one can expand the vector 
potential in terms of eigenfunctions Rk as A(x, t) = k ak (t)Rk (x), where the sum runs 
over all allowed values of the index parameter k. (In a waveguide, k = nn/L where n 6 N 
and L is the length of the guide.) Substituting this expansion into Eq. (1.35) and using 
the normalization properties of Rk, we obtain L = 2 52k (&k — Akak^, i.e., a decoupled 
representation where the system is described in terms of independent dynamical systems 
with coordinates ak . From this point on, quantization proceeds along the lines of the 
standard algorithm, as follows.

First, define momenta through the relation nk = dak L = ak. This yields the Hamil­
tonian H = 1^2k(nknk + Akakak). Next, quantize the theory by promoting fields to 
operators, ak ^ &k and nk ^ nk, and declare that [nk,&k/] = — iSkk/. The quantum 
Hamiltonian operator, again of harmonic oscillator type, then reads
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photon

Casimir 
effect

H = 2^2 (n n k + w2 a k a k),

25 Technically, the only difference is that, instead of index pairs (k, -k), all indices (k, k) are 
equal and positive. This can be traced to the fact that we have expanded in terms of the real 
eigenfunctions of the closed waveguide instead of the complex eigenfunctions of the circular 
oscillator chain.

26 H. B. G. Casimir and D. Polder, The influence of retardation on the London-van der Waals 
forces, Phys. Rev. 73, 360 (1948); H. B. G. Casimir, On the attraction between two perfectly 
conducting plates, Proc. Kon. Nederland. Akad. Wetensch. 51, 793 (1948).

where w~ = Xk. Following the same logic as that marshaled in section 1.4.2, we then define 
ladder operators

ak = J^k- (ak + —kk\ , ak = J^k- (dk-------- —ftk,
v2\ Wk J k v2\ Wk J

whereupon the Hamiltonian assumes the now familiar form

# = Wk (a k ak + 1 / 2). (1.39)

For the specific problem of the first excited mode in a waveguide of width Ly , Wk = 
[k2 + (n/Ly)2]1 /2. Equation (1.39) represents our final result for the quantum Hamiltonian 
of the EM waveguide. Before concluding this section let us make a few comments on the 
structure of the result.

> The construction above parallels almost perfectly our previous discussion of the har­
monic chain.  The structural similarity between the two systems finds its origin in the 
fact that the free field Lagrangian (1.35) is quadratic and, therefore, bound to map onto 
an oscillator-type Hamiltonian. That we obtained a simple one-dimensional superpo­
sition of oscillators is due to the boundary conditions specific to a narrow waveguide. 
For less restrictive geometries, e.g., free space, a more complex superposition of vecto­
rial degrees of freedom in three-dimensional space would have been obtained. However, 
the principle that the free EM field is mapped onto a superposition of oscillators is 
independent of geometry.

25

> Physically, the quantum excitations described by Eq. (1.39) are, of course, the photons 
of the EM field. The unfamiliar appearance of the dispersion relation Wk is, again, a 
peculiarity of the waveguide geometry. However, in the limit of large longitudinal wave 
numbers, k L-1, the dispersion approaches the form wk ~ |k|, i.e., the relativistic
dispersion of the photon field. Also, notice that, owing to the equality of the Hamilto­
nians (1.34) and (1.39), all that has been said about the behavior of the phonon modes 
of the atomic chain carries over to the photon modes of the waveguide.

> As with their phononic analog, the oscillators described by Eq. (1.39) exhibit zero­
point fluctuations. It is a fascinating aspect of quantum electrodynamics that these 
oscillations, caused by quantization of the ultra-relativistic photon field, have various 
manifestations in non-relativistic physics:

INFO Without going into detail, let us mention some manifestations of vacuum fluc­
tuations in the phenomenology of condensed matter systems. One of the most 
important phenomena induced by vacuum fluctuations is the Casimir effect.26 Two par­
allel conducting plates embedded into the vacuum exert an attractive force on each other. 
This phenomenon is not only of conceptual importance - it demonstrates that the vacuum 
is “alive” - but also of practical relevance. For example, the force balance of hydrophobic 
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Van der 
Waals 
forces

suspensions of particles of size 0.1 — 1 p,m in electrolytes is believed to be strongly influ­
enced by Casimir forces. Qualitatively, the origin of the Casimir force is readily understood. 
In common with their classical analog, quantum photons exert a certain radiation pres­
sure on macroscopic media. The difference to the classical case is that, due to zero-point 
oscillations, even the quantum vacuum is capable of creating radiation pressure. For a 
single conducting body embedded into the infinite vacuum, the net pressure vanishes by 
symmetry. However, for two parallel plates, the situation is different. Mode quantization 
arguments similar to those used in the previous section show that the density of quantum 
modes between the plates is lower than in the semi-infinite outer spaces. Hence, the force 
(density) created by outer space exceeds the counter-pressure from the inside; the plates 
“attract” each other.

A second context where vacuum fluctuations play a role is the physics of van der Waals 
forces. Atoms or molecules attract each other by a potential that, at small separation r, 
scales as r-6 . While a detailed discussion of the unusually high power at which this force 
decays would lead us too far astray, the essence of the argument is as follows. The zero­
point fluctuations of the EM field may induce a dipole moment in atoms, which in turn 
generate a dipole-dipole interaction between close-by atoms, whose detailed evaluation27 

leads to the r-6 power-law dependence. Seen in this way, geckos and spiders owe their 
ability to climb walls to a deeply microscopic principle of quantum field theory.28

It is a basic paradigm of physics that every continuous symmetry entails a conservation 
law.29 Conservation laws, in turn, simplify greatly the solution of any problem, which is 
why one gets acquainted with the correspondence (symmetry o conservation law) at a 
very early stage of the physics curriculum, e.g., the connection between rotational symme­
try and the conservation of angular momentum. However, it is not trivial to see (at least 
within the framework of Newtonian mechanics) that the former entails the latter. One 
needs to know what to look for (viz. angular momentum) to identify the corresponding 
conserved quantity (rotational invariance). A major advantage of Lagrangian over Newto­
nian mechanics is that it provides a tool - Noether’s theorem - to automatically identify 
the conservation laws generated by the symmetries of classical mechanics.

What happens when one advances from point to continuum mechanics? Clearly, multi­
dimensional continuum theories leave more room for the emergence of complex symmetries 
but, even more so than in classical mechanics, we are in need of a tool to identify the 
corresponding conservation laws.

27 P. W. Milonni, The Quantum Vacuum (Academic Press, 1994).
28 The feet of geckos and spiders are covered with bushels of ultra-fine hair (about three orders of 

magnitude thinner than human hair). The tips of these hairs come close enough to the atoms 
of the substrate material to make the van der Waals force sizable. Impressively, this mechanism 
provides a force of about two orders of magnitude larger than that required to support a spider’s 
full body weight. Both spiders and geckos have to “roll” their feet off the surface to prevent 
getting stuck by the enormous power of the forces acting on their many body hairs!

29 Before exploring the ramifications of symmetries and conservation laws for fields, it may be 
instructive to recapitulate Noether’s theorem in the context of classical point-particle mechanics 
— see, e.g., L. D. Landau and E. M. Lifshitz, Classical Mechanics (Pergamon, 1960).

1.6 Noether’s Theorem
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Fortunately, it turns out that Noether’s 
theorem of point mechanics affords a more 
or less straightforward generalization to 
higher dimensions. Starting from the gen­
eral form of the action of a continuum 
system, Eq. (1.16), the continuum version 
of Noether’s theorem will be derived be­
low. In that we do not refer to a specific 
physical problem, our discussion will be 
somewhat dry. This lack of physical con­
text is, however, more than outweighed by 
the general applicability of the result. The 
generalized form of Noether’s theorem can 
be - without much further thought - ap­
plied to generate the conservation laws of 
practically any physical symmetry. In this 
section, we will illustrate the application 
of the formalism on the simple (yet impor­
tant) example of space-time translational 
invariance. A much more intriguing case 
study will be presented in section 3.6 af­
ter some further background of quantum field theory has been introduced.

Amalie E. Noether 1882-1935 
was a German mathematician 
known for her ground-breaking 
contributions to abstract al­
gebra and theoretical physics. 
Alive at a time when women 
were not supposed to attend 
college preparatory schools,
she was often forbidden from lecturing under 
her own name. Despite these obstacles, Noether 
became one of the greatest algebraists of the 
century. Described by Albert Einstein as the 
most significant creative mathematical genius 
thus far produced since the higher education of 
women began, she revolutionized the theories of 
rings, fields and algebras. In physics, Noether’s 
theorem explains the fundamental connection 
between symmetry and conservation laws. In 
1933, she lost her teaching position owing to 
her being a Jew and a woman, and was forced 
out of Germany by the Nazis.

1.6.1 Symmetry transformations

The symmetries of a physical system are manifest in the invariance of its action un­
der certain transformations. Mathematically, symmetry transformations are described by 
two pieces of input data: first, a mapping f : M ^ M, x n- f (x) = x'(x) that 
assigns to any point of the base manifold some 
“transformed” point; second, the field configura­
tions themselves may undergo some change, i.e., 
there may be a mapping ($ : M ^ T) H- ($' : 
M ^ T) that defines a transformed “new field” $' 
in terms of the “old” $. In principle, there is unlim­
ited freedom in defining such transformations. How­
ever, for most applications it is sufficient to consider

4'(x ') = F ($ (x)), (1.40)

where F is a function: the new field in the trans­
formed space-time coordinates is obtained as a 
function of the old field at the original coordinates. 
With x' = f (x), this correspondence may be equiv­
alently represented as ^'(x) = F(^(f-1(x))). How­
ever, irrespective of the representation, it is important to understand that the two opera­
tions, x n- x' and $ n- $' may, in general, be independent of each other. The working of 
such transformations is best illustrated on a few examples:

The invariance properties of a theory under translations in space-time are probed by 
the mapping x' = x + a, a = const., $'(x') = $(x). This describes the translation of 
a field by a fixed offset a in space-time (see the figure). The system is translationally 
invariant if S[$] = S[$'] for all fields $. As a second example, let us probe the rotational 
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symmetry, x' = Rx, where R 6 O(m) is a rotation of Euclidean space-time. In this 
case it would, in general, be unphysical to define $'(x') = $(x). To illustrate this point, 
consider the example of a vector field in two dimensions n = m = 2 (see the figure). A 
properly rotated field configuration is defined by $'(x') = R$(x), i.e., the field amplitude 
actively participates in the operation. In fact, one does often consider symmetry operations 
where only the fields are transformed while the base manifold is left untouched.30 For 
example, the intrinsic31 rotational invariance of a magnet is revealed by setting x' = x, 
m'(x) = R • m(x), where the vector field m describes the local magnetization. Conversely, 
a scalar field $ 6 R will transform as $(x') = $(x). These examples show how the extrinsic 
effects of rotation, x n- Rx, and the intrinsic effects, $ n- R$, may appear in all sorts of 
combinations.

To understand the consequences of a symmetry transformation, it is sufficient to con­
sider its infinitesimal version. (Note that any finite transformation can be generated by 
successive application of infinitesimal transformations.) Consider the two mappings

xP' ^ xP'' = xP' + d_.-a xP' |„=0Wa (x) ,

^(x) ^ $'i(x') = ^(x) + Wa(x)F($(x)), (1.41)

expressing the change of fields and coordinates to first order in a set of parameter functions 
Wa characterizing the transformation. (For a three-dimensional rotation, (W1 , W2 , W3) = 
($, 0, ^) would be the rotation angles, etc.) The functions Fai - which need not depend lin­
early on the field $, and may explicitly depend on the coordinate x - define the incremental 
change $'(x') — $(x).

We now ask how the action (1.16) changes under the transformation (1.41), i.e., we 
wish to compute the difference

AS J dx' L($'i(x').d..xi$'i(x')) — y"dx L($i(x),dx»$i(x)),

where dx is a shorthand for the integration measure over m coordinates x. Inserting 
Eq. (1.41), using the identity dxvx'M = R v + dxv (wadJa:xR), together with32 the Jacobian 
matrix det(dx:'/dx) = 1 + dxv (wad^axR) + O(w2), one obtains

AS dx (1 + dxv (wad^ax^))L(($i + w)aFOi, (S^v — dx^ (Wad^axv))dxv (^i + waFai))

dx L( ^' (x) ,dx^ ^' (x)).

So far, we did not use the fact that the transformation was actually meant to be a sym­
metry transformation. By definition, we are dealing with a symmetry if, for constant 
parameters wa - a uniform rotation or global translation, etc. - the action difference AS 
vanishes. In other words, we may ignore terms in the expansion of AS which do not contain 
derivatives acting on wa, as they will not be present in the case where wa parameterizes a 
symmetry. The straightforward expansion of AS to leading order in d^wa then leads to

dx ja (x)d^wa (x),A S sym ■ (1.42)

30 For example, the standard symmetry transformations of classical mechanics, q(t) ^ qz(t), 
belong to this class: the coordinate vector of a point particle, q (a “field” in 0 + 1 space-time 
dimensions) changes while the “base” (time t) does not.

31 “Intrinsic” means that we rotate just the spins but not the entire system (as we did in our 
second example, rotational symmetry).

32 Note that det(dxz/dx) = exptrln(dxz/dx) ~ exp[dx^(^ad^ax^)] ~ 1 + dx^(^ad^ax^). (Exer­
cise: Show that det A = exp tr ln A, where A is a linear operator.)
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where the components of the so-called Noether currents ja are given by

dL i d. dLj t^d(d^'i)dv* L * J d,=0 d(d-) Fa(*)| (1.43)

For a general field configuration, not much can be said about the Noether current (no 
matter whether or not the theory possesses a symmetry). However, if the field $ obeys the 
classical equations of motion and the theory is symmetric, the Noether current is locally 
conserved,

dj = 0 | (1.44)

This follows from the fact that, for a solution $ of the Euler-Lagrange equations, the 
linear variation of the action in any parameter must vanish. Specifically, integration by 
parts in Eq. (1.42) leads to A S = A S [ $ ] = j ('dj“") wa. The vanishing of this expression 
for arbitrary solutions $ and arbitrary w requires Eq. (1.44). (As an exercise in partial 
differentiation, try to derive this identity directly from Eq. (1.43). You will need to use 
the Euler-Lagrange equations Eq. (1.17).) It is very important to keep in mind that 
the conservation law holds only for solutions of the equations of motion. Therefore, in 
summary, we have Noether’s theorem:

A continuous symmetry entails a classically conserved current.

We call the current “classically conserved” because, as we will discuss later, in section 9.2, 
quantum fluctuations around classical solutions may spoil the conservation of currents via 
the so-called quantum anomaly.

The local conservation of a current entails the existence of a globally conserved “charge.” 
For a theory with d + 1 space-time coordinates . = (.0 , .i) = (t, .i), integration over 
the space-like directions, and application of Stokes’ theorem (exercise), gives dtQa = 0, 
where33

Condensed matter systems are often translationally invariant, in space and/or in time. 
Translational invariance may hold down to the microscopic level, where it assumes the 
form of a discrete symmetry under translation by multiples of the lattice spacing, or it may 
be emergent only at larger length scales. For example, the fluctuating spin configurations of 
a paramagnet look locally random, however the system becomes translationally invariant 
on average over mesoscopic volumes containing many spins. In either case, translational 
invariance appears as a continuous symmetry of the effective theories relevant to the low- 
energy physics.

The corresponding symmetry transformation is defined by x'1 = x1 + a1, $' (x') = $(x). 
The infinitesimal version of this transformation reads x'1 = x1 + w'1, where we have

33 Notice that the integral involved in the definition of Q runs only over spatial coordinates.

Qa (t) = d ddx ja0(t,xi) (1.45)

is the conserved charge and we have assumed that the current density vanishes at spatial 
infinity.

Notice that nowhere in the discussion above have we made any assumption about 
the internal structure of the Lagrangian. In particular, all results apply equally to the 
Minkowskian and the Euclidean formulations of the theory.

1.6.2 Examples of symmetries

translational 
invariance
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energy—
momentum 

tensor

identified the parameter index a with the space-time index p,. Noether’s current, which in 
the case of translational invariance is called the energy-momentum tensor or stress­
energy tensor, is given by TJV:

7'J
V V — sJ\ (1.46)W) dv ^ L

The conserved “charges” corresponding to this quantity are

Pv = d ddJ-^ dv4i — S0V L
J \d (d 0 4i)

where P0 is the energy and Pi, i = 1, . . . , d, the total momentum carried by the system.

EXAMPLE Evaluation of the zeroth component T00 for the Lagrangian (1.4) of the 
harmonic chain yields

T 00 = mm 4 2 + k22 (dx 4 )2,

which is identical to the Hamiltonian density of Eq. (1.11), with n = m>x. For a discus­
sion of the momentum density of the chain and of the energy-momentum tensor of the 
electromagnetic field we refer to problem 1.8.4.

scale 
invariance

conformal 
symmetries

Systems positioned at the critical point of a second-order 
phase transition are scale invariant. Here, the system 
looks the same at all length scales, a feature formally 
expressed as symmetry under dilatation, x ^ Xx. The 
ramifications of this symmetry in field theories will be 
the central theme of chapter 6. However, at the critical 
point, systems generally show an even larger set of sym-
metries, known as conformal symmetries. By definition, conformal transformations 
of space-time are angle-preserving in that they map curves intersecting at a certain

conformal 
group

angle onto image curves intersecting at the same angle. For example, the figure shows 
the conformal image of a rectangular grid. Besides dilatations, translations and rotations 
have this feature. The final, and less obviously angle-preserving, representatives of con­
formal transformations in general dimensions are the special conformal transformations 
xJ ^ (xJ — bJx2)/(1 — 2xJbJ + b2x2). Geometrically, these are a composition of inver­
sion xJ ^ xJ/x2 followed by translation by bJ and then by another inversion. The set of 
all these transformations defines the conformal group, a finite-dimensional symmetry 
group. (Exercise: How many parameters define the group?34)

34 for dilation, translation, rotations, and special
transformation, respectively.

Where they exist, conformal symmetries have far-reaching consequences for the physical 
properties of a theory. This principle is driven to an extreme in the special and important 
case of two-dimensional conformal invariance (i.e., the physics of critical two-dimensional 
systems). The reason is that the two-dimensional conformal group is actually infinite 
dimensional. Referring to appendix section A.3 for a discussion of two-dimensional confor­
mal invariance, here we note only that the existence of infinitely many symmetries, and as 
many conserved currents, suffices to almost fully characterize two-dimensional conformal 
theories. The mechanisms by which this happens are discussed in the appendix, which is 
perhaps best read at a later stage after more concepts of field theory have been introduced.

Translational and conformal symmetry are examples of space-time symmetries. Later,
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when we have introduced field manifolds of richer geometric structure, we will encounter 
numerous realizations of internal symmetries.

1.7 Summary and Outlook

In this chapter we have introduced the general procedure whereby classical continuum 
theories are quantized. Employing the elementary harmonic oscillator as a example, we 
have seen that the Hilbert spaces of these theories afford different interpretations. Of par­
ticular use is a quasi-particle picture in which the collective excitations of the continuum 
theories acquired the status of elementary particles. Both examples discussed in this text, 
the quantum harmonic chain and free quantum electrodynamics, lead to exactly solvable 
free field theories. However, it takes little imagination to foresee that few continuum 
theories will be as simple. Indeed, the exact solvability of the atomic chain would have 
been lost had we included higher-order contributions in the expansion in powers of the lat­
tice displacement. Such terms would hinder the free wave-like propagation of the phonon 
modes. Put differently, phonons would begin to scatter, i.e., interact. Similarly, the free 
status of electrodynamics is lost once the EM field interacts with a matter field. Needless 
to say, interacting field theories are much more complex, but also more interesting, 
than the systems considered so far.

Technically, we have seen that the phonon or photon interpretation of the field theories 
discussed in this chapter could be conveniently formulated in terms of ladder operators. 
However, the applications discussed so far provide only a glimpse of the advantages of 
this language. In fact, the formalism of ladder operators, commonly described as “second 
quantization,” represents a central, and historically the oldest, element of quantum field 
theory. The next chapter is devoted to a more comprehensive discussion of both the formal 
aspects and applications of this formulation.

1.8 Problems

Lorentz 
gauge

1.8.1 Electrodynamics from a variational principle

Choosing the Lorentz-gauged components of the vector potential as generalized coordinates, 

the aim of this problem is to show how the wave equations of electrodynamics can be obtained 

as a variational principle.

Electrodynamics can be described by Maxwell’s equations or, equivalently, by wave-like 
equations for the vector potential. Working in the Lorentz gauge, dt^ = —V • A, these 
equations read (d2 — V2)0 = p, (d2 — V2)A = j. Using relativistically covariant notation, 
the form of the equations can be compressed further to iLd" A' = jv. Starting from 
the action, S [ A ] = — f d4 x (4 F/v F /v + Aj), obtain these equations by applying the 
variational principle. Compare the Lorentz gauge representation of the action with that 
of the elastic chain. What are the differences and parallels?

Answer:

Substituting the EM field tensor F/v = 'LA., — dvA^ and integrating by parts, the action 
assumes the form

S[A] = — y d4x (—1 Av [d/d/Av — d/dvA^] + j/A) .
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Owing to the Lorentz gauge condition,the second contribution within the square brack­
ets vanishes, and we obtain S[A] = — J d4x(2d^Avd^Av + jAA^), where we have again 
integrated by parts. Applying the general variational equation (1.17), one obtains the wave 
equation.

Previously, we stated that the mode quantization of elastic media manifests itself in low- 

temperature anomalies of the specic heat. In this problem, concepts of elementary quantum 

statistical mechanics are applied to determine the temperature prole of the specic heat.

Compute the energy density u = — L1 dp ln Z of one-dimensional longitudinal phonons 
_«u,with dispersion <xk = v|k|, where Z = tre p denotes the quantum partition function. 

First show that the thermal expectation value of the energy density can be represented as 

u = -1 [^2k + ^knb(^k)] , (1.47)

k

1.8.2 Hamiltonian of electromagnetic field

Here, it is shown that the Hamiltonian canonically conjugate to the Lagrangian of the EM 

eld does indeed coincide with the energy density familiar from elementary electrodynamics.

Consider the EM field in the absence of matter, j = 0. Verify that the total energy stored 
in the field is given by H = f d3x H(x) where H(x) = E2(x) + B2 (x) is the familiar 
expression for the EM energy density. (Hint: Use the vacuum form of Maxwell’s equations 
and the fact that, for an infinite system, the energy is defined only up to surface terms.)

Answer:

Following the canonical prescription, let us first consider the Lagrangian density

L = — 1 FF' = 1 V (doAi — diA0)2 — 1 V (diAj — djAi)2. 
42 4

i=1 i,j=1

We next determine the components of the canonical momentum through the relation 
n^ = dd0A'L : n0 = 0, ni = d0Ai — diA0 = — Ei. Using the fact that diAj — djAi is a 
component of the magnetic field, the Hamiltonian density can now be written as

H = nd0A — L = 1(—2E • d0A — E2 + B2) = 1(2E • V$ + E2 + B2)

= i(2V^ (E$) + E2 + B2),

where equality (1) is based on addition and subtraction of a term 2E • V$ and equality (2) 
on the relation V • E = 0 combined with the identity V • (af) = V • af + a • V f (valid for 
general vector [scalar] functions a [f]). Substitution of this expression into the definition 
of the Hamiltonian yields

H =1 y d3x (2V • (E$) + E2 + B2) =2 d3x (E2 + B2) ,

where we have used the fact that the contribution V • (E$) is a surface term that vanishes 
upon integration by parts.

1.8.3 Phonon specific heat
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where nB(e) = (< P — 1)-1 is the Bose-Einstein distribution. Approximate the sum over 
k by an integral and show that the specific heat cv = dTu ~ T. At what temperature 
Tcl does the specific heat cross over to the classical result, cv = const? (Remember that 
the linear dispersion uk = v| k| is based on a quadratic approximation to the Hamiltonian 
and, therefore, holds only for |k| < A, where A is some cutoff momentum.) Recalling 
the discussion in section 1.4, for a d-dimensional isotropic solid of volume Ld (with the 
atomic exchange constants remaining the same in all directions), show that the dispersion 
generalizes to uk = v|k|, where k = 2n(n 1,... ,nd)/L and ni e Z. Show that the specific 
heat shows the temperature dependence cv ~ Td.

Answer:

As discussed in the text, the eigenstates of the system are given by |n 1 ,n2,...}, where nm is 
the number of phonons of wavenumber km = 2nm/L, E।n 1 ,n2,...> — y ukm (nm + 1 /2) = 
y emm the eigenenergy, and um = v |km |. In the energy representation, the quantum 
partition function then takes the form

_   ''' -P"m/2
Z = tr e-pH = e-pEstate = e-P"m (nm+ 1 /2) = ^-fiu ,

where nm is the occupation number of the state with wavenumber km . Hence, ln Z = 
- Sm [ftum/2 + ln(1 — e- P"m)]. Differentiation with respect to ft yields Eq. (1.47) and, 
KKi O Iz'l Ki IK 4“ Tl KlKKll Cl K*lKKKi iKKiT” ^ T me ckkitio C|K 1 1C _ I_ 1 r v v- ___ v I _ _ I_making the replacement / ^^ r 2n j dk, we arrive at u — 1+ 1 -+ 2n J।k। <^ dk Qvj।k। 1 — 1 1 ~+
ft-2C2 , where C1 is the temperature-independent constant accounting for the “zero-point 
energies” um/2. In the second equality, we have scaled k ^ ftk. This produces a prefactor 
ft-2 multiplied by a temperature-independent (up to the temperature dependence of the 
boundaries A ^ ft A) integral that we denoted by C2. Differentiation with respect to T 
then leads to the relation cv — dTu ~ T. However, for temperatures T > vA higher 
than the highest frequencies stored in the phonon modes, the procedure above no longer 
makes sense (formally, owing to the now non-negligible temperature dependence of the 
boundaries). Yet, in this regime, we may expand e P|k| — 1 ~ ftv|k|, which brings us back 
to the classical result cv — const.

Consider now a d-dimensional solid with isotropic coupling, ks yd (ftR+ei — ftR)2 

with ei a unit vector in the direction i. Taking the continuum limit leads to a contribution 
ka(Vft(x))2. Proceeding as in the one-dimensional system, the relevant excitations are 
now waves with wavevector k — 2n(n 1,... ,nd)/L and energy uk — v|k|. Setting y k ~ 
f ddk and scaling ki ^ ftki then generates a prefactor ft-(d +1), and we arrive at the 
relation cv ~ Td.

1.8.4 Energy-momentum tensor of the harmonic chain

In this problem we analyze the energy{momentum (EM) tensor of the harmonic chain. We 

discuss its computation and how to make sense of its components.

(a) Show that the two independent components T00 and T 0 of the EM tensor of the 
harmonic chain defined via the Lagrangian (1.4) are given by

1

T 0o — y ft 2 + ksa2 (dxft )2, T 01 — mdtftdxft.

(b) In section 1.6.2 we identified T00 as the energy density of the system. But what is 
the meaning of the second component? Turning back to the discrete representation of the 
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chain, compute the total momentum carried by weak dynamical fluctuations $I (t) of the 
mass center coordinates and show that it turns into an integral over T 01 in the continuum 
limit. This construction identifies T 01 as the momentum density of the chain.

Answer:

(a) This part involves a straightforward application of Eq. (1.46). (b) We can consider the 
total momentum of the chain as P = I a x S(mass density) x $I, where S (mass density) 
are the fluctuations in mass density associated with a deviation profile $I. The local 
particle density at site I is given by (one particle) / (distorted particle distance), i.e., 
1 /(a — $I+1 + $I) ~ a-1 + a-2($I+1 — $I) ~ a-1 + a-1 /2 * * * *dx$, where we used the definition of 
the continuum variable $(x) = a-1 /2$I. This leads to S(mass density) ~ ma-1 /2dx$. With 
the particle velocity $I = a1 /2dt$(x,t), we obtain P = Iamdx^dt^ ~ f dxmdx^dt^.

This problem is for advanced readers. It requires familiarity with integration over manifolds 

of nontrivial geometry, as reviewed in section A.1, and uency in variational calculus. Other 

readers should not tackle this problem just yet. We oer an interpretation of the stress{energy 

tensor generalizing that given in section 1.6.2: the stress tensor describing how a eld theory 

responds to variations in the underlying geometry.

In section 1.6.2 we derived the stress-energy tensor by investigating how a theory changes 
under variations xJ ^ xJ + xJ (x), where the infinitesimal shift may be coordinate de­
pendent. Such deviations describe a local distortion in the geometry of the base manifold. 
To substantiate this view, consider a situation where the base manifold has a nontrivial 
geometry, described by a metric tensor g = {gJV}. For example, in the field theories of 
gravity, the base manifold is the universe, and gJV is its space-time metric. A more mun­
dane example would be a field theory formulated in curvilinear coordinates, where gJV is 
the (square of the) Jacobian describing the transformation from Cartesian coordinates.

The generalization of the Lagrangian Eq. (1.16) to this case is given by

S[$]= I dxggjL($,dg,dJ$),

where g = | det(g{JV})|, and the notation emphasizes that derivatives in the Lagrangian 
appear in invariant combinations such as dJ$dg$. Their dependence on the metric is 
hidden in dJ$ = gJVdv$, where gJV are the coefficients of the inverse of the metric tensor, 
gJVgvx = S'\. (We have omitted the internal field index $'i to lighten the notation.)
(a) Prove the auxiliary relations dgp,T/dgJV = — SPJS1"7, d,Xv ggi = |ggigJV, and dF/d(dg$) = 
(dF/d (dv $)) gVJ.
(b) Show that the stress tensor is obtained by variation of the action in the metric:

T vv (x) = — ------.
Vg Sgjv (x)

(c) As an example, consider the theory of a free scalar field, L = — 11 dJ$dJJ$. Compute the 
stress tensor via Eq. (1.48) and convince yourself that the result is compatible with that 
of the example below Eq. (1.46) for the harmonic chain Eq. (1.4) in the case where the 
differentiation is carried out on the two-dimensional Minkowski metric, g = diag(—1, 1), 
and the constants are scaled as m = ksa2 = 1.

Conceptually, Eq. (1.48) demonstrates that the stress tensor answers the question how 
a theory responds to variations in the geometry of its base manifold. (The terminology

1.8.5 Stress-energy tensor from variation in metric 

(1.48)
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stress tensor underpins this interpretation.) Methodologically, it is often convenient to 
compute the stress tensor via Eq. (1.48), including in cases where the theory is varied at 
a trivial metric gjv = Sjv.

Answer:

(a) Using that dgpa/dgjv = ^jp5av ,35 the first identity is obtained from the matrix relation 
0 = dg^v (gg-1) = (dg^vg)g-1 + gdg^vg-1. Written in components, it yields the desired 
relation. With g = ± det(g),36 the second follows from dg/jv Vg = 1 /(2Vg)dg^v (± det(g)). 
Using det g = exptrln g, and dg trln g = (g-1)vj = gjv, we obtain the relation. The 
final relation follows from the chain rule applied to dj6 = gjvdv6.
(b) The metric enters the action in two places, the first being the factor Vg, the second 
the derivatives 6J = gjv 0v. We thus have

TJV - 2 5S = — 2 Lg dVg + r dL d(dp 6) \
Vg Sgjv Vg V dgjv gd(dp6) dg J

2 (r d V^ d dL (dgpa \ \ dL
Vg VLdgjv + Vgd(dp6) (^v J da6) g + d(dP6)d 6,

where in the final step we used the three relations in (a). Lowering the right index, T jv = 
Tjpgpa, we get back to Eq. (1.46).

Now considering the relation det g = exp tr ln g, it is varied as dg Vg = | Vgdgpv tr ln g = 
Vg(g-1)VJ = VggJ, where we have used the symmetry gjv = gvj of the metric tensor, 
and the notation gjv = (g-1)jv for its inverse.

The differentiation in the second occurrence of the metric, dj6 = gjvdv6, is done as 
follows: d0 L = -^—dd du6 = „,,L ,, dv6. Adding the two terms we get gi'v d (o^g) g^v jp d (d^^) . © o

T jv = V~g{gjv L+d(d^)dV 6

(c) For the free field theory in Minkowski space, we have Vg = 1 and dg^gL = — dJ6. 
This gives T0o = 1 (dj6dJ6) — d06do6 = 1 (—d06do6 + d 1 6d 1 6) = 1 ((do6)2 + (d 1 6)2)). 
Identifying the zero-coordinate with time, and the one-coordinate with space, this equals 
the Hamiltonian density (kinetic energy+potential energy density) of the harmonic chain.

35 All derivatives are carried out for a general matrix, and then evaluated at the symmetric 
configuration gpa = gap. We are not differentiating within the class of symmetric matrices. 
Think about this difference.

36 It is common practice to denote the modulus determinant g = ± det({gjv }), and the matrix 
g = {gjv } by the same symbol g. Which is which should always be clear from the context.
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SYNOPSIS The aim of this chapter is to introduce and apply the method of second quan­
tization, a technique that underpins the formulation of quantum many-particle theories. 
The first part of the chapter focuses on the development of methodology and notation, 
while the remainder is devoted to applications designed to engender familiarity with, and 
fluency in, the approach. Indeed, many of these examples will subsequently reappear as 
applications in our discussion of the methods of quantum field theory.

second 
quanti­
zation

In the previous chapter, we encountered two field theories that could conveniently 
be represented in the language of second quantization, i.e., a formulation based 
on the algebra of ladder operators ak .1 There are two remarkable facts about this 
formulation. First, second quantization provides a compact way of representing the 
many-body space of excitations; second, the properties of the ladder operators are 
encoded in a simple set of commutation relations (cf. Eq. (1.33)) rather than in 
some explicit Hilbert space representation.

Apart from its aesthetic appeal, these observations would not be of much rel­
evance if it were not for the fact that the formulation can be generalized to a 
comprehensive and highly efficient formulation of many-bo dy quantum mechanics 
in general. In fact, second quantization can be considered as the first major cor­
nerstone on which the theoretical framework of quantum field theory was built. 
This being so, extensive introductions to the concept can be found throughout the 
literature. We will therefore not develop the formalism in full mathematical rigor 
but rather will proceed pragmatically by first motivating and introducing its basic 
elements, followed by a discussion of the second quantized version of standard oper­
ations of quantum mechanics (taking matrix elements, changing bases, representing 
operators, etc.). The second part of the chapter is concerned with developing flu­
ency in the method by addressing several applications. Readers familiar with the 
formalism may therefore proceed directly to these sections.

1 The term “second quantization” is unfortunate. Historically, this terminology was motivated by 
the observation that the ladder operator algebra fosters an interpretation of quantum excitations 
as discrete “quantized” units. However, fundamentally, there is nothing like two superimposed 
quantization steps in single- or many-particle quantum mechanics. Rather, there is only a 
particular representation of the “first and only” quantized theory tailored to the problem at 
hand.

40
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2.1 Introduction to Second Quantization

particle 
indistin­

guishability

We begin by recapitulating some basic 
notions of many-body quantum mechan­
ics, as formulated in the traditional lan­
guage of symmetrized/antisymmetrized 
wave functions. Consider the normalized 
set of wave functions | A) of some single­
particle Hamiltonian H: H |A) = eA|A), 
where ' A are the eigenvalues. With this 
definition, the normalized two-particle

EA
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1
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fermions

wave function ^F(^B) of two fermions (bosons) populating levels A 1 and A2 is 
given by the anti-symmetrized (symmetrized) product

^ f( x 1 ,x 2) =

^ B( x 1 ,x 2) =

-12 ((xi|Ax)(x2|A2) - {xi|A2)(x2|A 1)), 

— ((xi|Ai)(x2|A2) + {xi|A2)(x2|A 1)).

In Dirac notation, the two-body 
states |A 1 ,A2)F(B) corresponding to 
^F(B)(x 1,x2) = ((x 1|®(x2|) |A 1,A2>F(B) 

above can be represented as

|A 1,A 2)F(B) =

—2(| A 1) 0 |A 2) + Z |A 2 } 0 |A 1)) ,

where Z = —1 for fermions and Z = +1 
for bosons. Symmetrization is neces­
sitated by quantum particle indis­
tinguishability: for fermions (bosons)

Enrico Fermi 1901-1954
was the recipient of the Nobel 
Prize in Physics in 1938 for 
“his demonstrations of the 
existence of new radioactive 
elements produced by neutron 
irradiation, and for his related 
discovery of nuclear reactions
brought about by slow neutrons.” Born in Rome,
Fermi left Italy in 1938 to escape Mussolini’s 
regime. In Chicago, Fermi led the team that 
designed and built the first nuclear reactor, and 
he become centrally involved in the Manhattan 
Project during World War II.

the wave function must be antisym­
metric (symmetric) under particle exchange.2 Generally, a symmetrized N -particle 
wave function can be expressed as

|A1, A2 , . . .,AN) = , TO ==f EZ(1 sgn P)/2|AP1) 0 |AP2) ® • • • |APN')

NN!n A=0 n>! P

(2.1) 
where nA denotes the number of particles in state A (for fermions, Pauli exclusion 
enforces the constraint n\ < 1) - see the schematic figure above. The summation 
runs over all N! permutations of the quantum numbers {A1, . . . , AN}, and sgn P

2 Note, however, that in two dimensions, the standard doctrine of fully symmetric/antisymmetric 
many-particle wave functions is too narrow, and more general types of exchange statistics can 
be realized (cf. our discussion on page 42).
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Slater 
determinant

denotes the sign of the permutation P. (Note that sgnP = +1 [-1] if the number 
of transpositions of two elements that brings the permutation (P1 , P2, . . . , PN) 
back to its original form (1, 2,..., N) is even [odd].) The prefactor 1 / pN! [JA n\! 
normalizes the wave function. In the fermionic case, the wave functions are known 
as Slater determinants.

Finally, it will be useful to assume 
that the quantum numbers {Xi} defin­
ing the state | X 1, X2,..., XN) are or­
dered according to some convention; 
e.g., for Xi = xi , a one-dimensional co­
ordinate representation, we might or­
der according to the rule x 1 < x2 < 
• • • < xN. Once an ordered sequence of 
states has been fixed we may - for no­
tational convenience - label our quan­
tum states by integers, Xi = 1, 2,... Any initially non-ordered state (e.g., |2, 1, 3)) 
can be brought to an ordered form (|1, 2, 3)) at the cost of, at most, a change of 
sign.

His work in geometry had the greatest influence 
after Euclid. A systematic study of the axioms 
of Euclidean geometry led Hilbert to propose 21 
such axioms and he analyzed their significance.

David Hilbert 1862-1943
was a German who contributed 
to many branches of mathe­
matics including the theory of 
algebraic number fields, func­
tional analysis, integral equa­
tions, mathematical physics 
and the calculus of variations.

permutation 
group

group rep­
resentation

INFO For the sake of completeness, let us spell out the connection between the permuta­
tion group and many-body quantum mechanics in a more mathematical language. 
The basic arena wherein N -body quantum mechanics takes place is the product space,

HN =H®^®U
N copies

of N single-particle Hilbert spaces. In this space, we have a linear representation of the 
permutation group, SN,3 assigning to each P 6 SN the permutation (with no ordering of 
the As implied at this stage),

3 Recall that a linear representation of a group G is a mapping that assigns to each g G G 
a linear mapping pg : V ^ V for some vector space V. For notational convenience, one usually 
writes g : V ^ V instead of pg : V ^ V. Conceptually, however, it is often important to 
distinguish carefully between the abstract group elements g and the matrices (also g) assigned 
to them by a given representation. (Consider, for example, the symmetry group G = SU(2) 
of quantum mechanical spin. SU(2) is the two-dimensional group of unitary matrices with 
determinant unity. However, when acting in the Hilbert space of a quantum spin S = 5, say, the 
elements of SU(2) are represented by (2S + 1 = 11)-dimensional matrices.) Two representations 
p and p! that differ only by a unitary transformation, Vg G G : pg = Up!g U- 1, are called unitary 
equivalent. If a transformation U can be found such that all representation matrices pg assume a 
block structure, the representation is called reducible, otherwise irreducible. Notice that the 
different sub-blocks of a reducible representation by themselves form irreducible representation 
spaces. The identification of all distinct irreducible representations of a given group is one of 
the most important objectives of group theory.

P : H N ^ H N, | A i) ® ••• ® | An ) ^ | A p1) &...& | A p n ).

The identification of all irreducible subspaces of this representation is a formidable task, 
which, thanks to a fundamental axiom of quantum mechanics, we need not address in full. 
All we need to know is that SN has two particularly simple one-dimensional irreducible 
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braid
group

anyons

representations: one wherein each P E SN acts as the identity transform P(^) = ^ and 
another, the alternating representation P(^) = sgn P ^. According to a basic postulate of 
quantum mechanics, the state vectors ^ E HN describing bosons/fermions must transform 
according to the identity/alternating representation. The subset FN C HN of all 
states showing this transformation behavior defines the physical N -body Hilbert space. 
To construct a basis of FN , one may apply the symmetrization operator Ps = P P 
(antisymmetrization operator Pa = p (sgn P)P) to the basis vectors | A 1} ® • • • , |AN} of 
HN. Up to normalization, this operation obtains the states (2.1).

Readers may wonder why we mention these representation-theoretic aspects, since, be­
ing pragmatic, all we really need to know is the symmetrization/antisymmetrization postu­
late and its implementation through Eq. (2.1). Note, however, that one may question what 
we actually mean when we talk about the permutation exchange of quantum numbers. For 
example, when we compare wave functions that differ by an exchange of coordinates we 
should be able to tell by what physical operation we effect this exchange (for, otherwise, 
we cannot really compare them other than in a formal and in fact ambiguous manner).

Surprisingly, decades passed before this crucial issue in quantum mechanics was crit­
ically addressed. In a seminal work by Leinaas and Myrheim, it was shown that the 
standard paradigm of permutation exchange is far from innocuous. Indeed, its applicabil­
ity is tied to the dimensionality of space! In two dimensions, a more elaborate scheme is 
needed. (Nevertheless, one may use representation-theoretic concepts to describe particle 
exchange. However, the relevant group - the braid group - now differs from the permu­
tation group.) Physically, these requirements are manifest in the emergence of quantum 
particles different from either bosons or fermions. For a further discussion of these so- 
called anyons, we refer to section 8.6.1. (In spite of being included in a later chapter, this 
section is not difficult to read!)

While representations like (2.1) can be used to represent the full Hilbert space of 
many-body quantum mechanics, a moment’s thought shows that this formulation 
is not at all convenient.

> It takes little imagination to anticipate that practical computation in the lan­
guage of Eq. (2.1) will be cumbersome. For example, to compute the overlap of 
two wave functions, one needs to form no less than (N !)2 different products.

> The representation is tailor-made for problems with fixed particle number N. 
However, we know from statistical mechanics that, for N = O(1023), it is more 
convenient to work in a grand canonical formulation, where N is allowed to vary.

> Similarly, in applications one will often ask the question “what is the amplitude 
for the injection of a particle into a system at a certain space-time coordinate 
(x1 , t1) followed by annihilation at some later time (x2 , t2)?” Ideally, one would 
work with a representation that supports the intuition afforded by thinking in 
terms of such processes, i.e., a representation where the quantum numbers of 
individual quasi-particles, rather than the entangled set of quantum numbers of 
all constituents, are fundamental.

The second-quantized formulation of many-body quantum mechanics, as introduced 
below, will remove all these difficulties in an elegant and efficient manner.
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2.1.1 The apparatus of second quantization

Some of the disadvantages of the representation (2.1) can be avoided with relatively 
little effort. Specifically, it pays to label many-body states in a more efficient manner 
than Eq. (2.1), and to define a subset of the many-body Hilbert space just large 
enough to accommodate all states of definite exchange statistics.

Occupation number representation and Fock space

occupation 
number

In our present notation, quantum states are represented by “N -letter words” of the 
form |1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6,...). Obviously, this notation contains a lot of re­
dundancy. A more efficient encoding of the state above might read |4, 2, 3, 1, 0, 2,...), 
where the ith number signals how many particles occupy state number i; no more 
information is needed to characterize a symmetrized state. (For fermions, these oc­
cupation numbers take a value of either zero or one.) This defines the occupation 
number representation. In the new representation, the basis states of FN are 
specified by |n 1, n2,...), where ^2i ni = N. Any state |^) in FN can be obtained 
as a linear superposition,

^ cn 1 n 2,- 1 n 1 ,n 2 ,... ) .
n1,n2,..., 

i ni=N

As pointed out above, eventually we will want to emancipate ourselves from the 
condition of a fixed particle number N. A Hilbert space large enough to accommo­
date a state with an undetermined number of particles is given by

F =
oo
e f N

N=0 

(2.2)

vacuum 
state

Fock 
spaces

Notice that the direct sum contains 
a curious contribution F0 , the vac­
uum space. This is a one-dimensional 
Hilbert space which describes the sec­
tor of the theory with no particles 
present. Its single normalized basis 
state, the vacuum state, is denoted 
by |0). We will soon see why it is con­
venient to add this space to our fam­
ily of basis states. The spaces F are 
called Fock spaces and they define

duction of the Fock space and the development 
of perhaps the most important many-particle 
approximation scheme, the Hartree—Fock 
approximation.

Vladimir Aleksandrovich 
Fock 1898-1974
was a Soviet physicist who 
played a key role in the devel­
opment of the general theory 
of relativity and many-body 
theory. His ground-breaking 
contributions include the intro­

the principal arenas of quantum many-body theory. Note that the construction of 
a Fock space builds on a given single-particle basis defining the number of different
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labels i.4 Note that we also need to distinguish between fermionic and bosonic Fock 
spaces, depending on the exchange symmetry of their states.

To obtain a basis of F , we need only take the totality of our previous basis 
states {| n 1 ,n 2,...)}, and drop the condition in i ni = N on the occupation num­
bers. A general many-body state |^) can then be represented by a linear superposi­
tion |^) n n cn 1 ,n 2,... | n 1 ,n 2,...). Notice that states with a different particle 
numbers may contribute to the linear superposition forming |^). We shall see that 
such mixtures play an important role in, for example, the theory of superconduc­
tivity.

Foundations of second quantization

The occupation number representation introduced above provides a step in the 
right direction, but it does not yet solve our main problem: the need for explicit 
symmetrization or antisymmetrization of a large number of states in each quantum 
operation. As a first step towards the construction of a more powerful representa­
tion, let us recall an elementary fact of linear algebra: a linear map A : V ^ V of 
a vector space into itself is fully determined by defining the images wi = Avi of 
the action of A on a basis {vi }. Now let us use this scheme to introduce a set 
of linear operators acting in Fock space. For every i = 1, 2, . . ., we define operators 
at : F ^ F through

at | n 1,.. .,ni,...) = (ni + 1)1 / 2 Z si | n 1,... ,ni + 1, ■■ ■), (2.3)

where si = j=1_ nj. In the fermionic case, the occupation numbers ni have to be 
understood mod 2, so that (1 + 1) = 0 mod 2, i.e., the application of ait to a state 
with ni = 1 leads to its annihilation.

Notice that, by virtue of this definition, we are able to generate every basis state of 
F by repeated application of aits to the vacuum state. (From a formal point of view, 
this fact alone gives sufficient motivation to add the vacuum space to the definition 
of Fock space.) Indeed, repeated application of (2.3) leads to the important relation

| n 1,n 2 ,■■■) = Hr 1 1 / 2 (at) ni|0> 
(ni!)1/2

(2.4)

creation 
operators

Notice that Eq. (2.4) constitutes a strong statement: the complicated permutation 
“entanglement” implied by the definition (2.1) of the Fock states can be generated 
by straightforward application of a set of linear operators to a single reference 
state. Physically, the N -fold application of operators at to an empty vacuum state 
generates an N -particle state, which is why the ats are commonly called creation 
operators. Of course, the introduction of creation operators might still turn out to 
be useless, i.e., the requirement of consistency with the properties of the Fock states

4 Depending on the application, we use more complex labels than integers i to denote states 
in occupation number representation. For example, working with spinful fermions on a lattice 
with sites xi, i ^ (l, c) would be an appropriate notation.
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Fig. 2.1 Visualization of the generation of the Fock subspaces FN by repeated action of creation 
operators aj on the vacuum space F0.

annihilation 
operators

(such as the fact that, in the fermionic case, the numbers ni = 0, 1 are defined only 
mod 2) might invalidate the simple relation (2.3) with its (ni-independent!) operator 
ait . However, as we shall demonstrate below, this is not the case.

Consider two operators ait and ajt for i = j . From the definition (2.3), one may 
readily verify that (a!aj — Zaja|) |n 1, n2,...) = 0. As it holds for every basis vector, 
this relation implies that

Vi,j : [ai, aj] z = 0, (2.5)

where [ A ,B] z = A B — ZB A, i.e., [, ] z=1 = [, ] is the commutator and [, ] z=-1 = 
{, } = [, ]+ is the anticommutator. Turning to the case i = j, we note that, for 
fermions, the two-fold application of aii to any state leads to its annihilation. Thus, 
(aii )2 = 0 is nilpotent, a fact that can be formulated as [aii, aii]+ = 0. For bosons 
we have, of course, [aii , aii] = 0 (identical operators commute!).

Now, quantum mechanics is a unitary theory so, whenever one meets a new 
operator A4, one should determine its hermitian adjoint A4i . To understand the 
action of the hermitian adjoints (aj)j = ai of the creation operators, we may take 

the complex conjugates of all basis matrix elements of Eq. (2.3):

(n i, ...,ni,... | aj | n 1, ...,n i,...) = (n i + 1)1 / 2 Z s i <$n 1 ,n '1 • • • ^ni,n i+1 • • *

^ (n 1, . . . , ni, • • • |ai |n 1, . . . , ni, . . .) ni Z i ^n1 ,n 1 * * * $ni,ni — 1 * * *

As it holds for every bra (n'1,... ,ni,... |, the last line tells us that

ai | n 1,.. . ,n, .. .) = n1 / 2 Z si | n 1, ■■■,ni - 1, ■ ■ ■), (2.6)

a relation that identifies ai as an operator that “annihilates” particles. The action 
of creation and annihilation operators in Fock space is illustrated in fig. 2.1. 
Creation operators aj : FN ^ FN+1 increase the particle number by one, while 
annihilation operators a : FN ^ FN- 1 lower it by one. The application of an 
annihilation operator to the vacuum state, ai |0) = 0, annihilates it. (Do not confuse 
|0) with the zero vector.)

Taking the hermitian adjoint of Eq. (2.5), we obtain [ai, aj]z = 0. Further, a 

straightforward calculation based on the definitions (2.3) and (2.6) shows that 
[ai,aj]z = 6ij. Altogether, we have shown that the creation and annihilation 
operators satisfy the algebraic closure relations,

(2.7)[ ai,aj] z = &ij, [ ai,aj] z =0, [ aj ,aj] z = 0
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Given that the full complexity of Fock space is generated by application of ais to 
a single reference state, the simplicity of the relations obeyed by these operators 
seems remarkable and surprising.

Stone-von
Neumann 

theorem

INFO Perhaps less surprising is that, behind this phenomenon, there lingers some math­
ematical structure. Suppose that we are given an abstract algebra A of objects ai ,ai sat­
isfying (2.7). (Recall that an algebra is a vector space whose elements can be multiplied 
by each other.) Further, suppose that A is irreducibly represented in some vector space V , 
i.e., that there is a mapping assigning to each ai e A a linear mapping ai : V ^ V such 
that every vector |v} e V can be reached from any other |w} e V by (possibly iterated) 
application of operators ai and at (due to irreducibility).5 According to the Stone—von 
Neumann theorem, (i) such a representation is unique (up to unitary equivalence) and 
(ii) there is a unique state |0) e V that is annihilated by every ai. All other states can then 
be reached by repeated application of ats. The precise formulation of this theorem and its 
proof - a good practical exercise in working with creation and annihilation operators - is 
left to problem 2.4.1. From the Stone-von Neumann theorem, we can infer that the Fock 
space basis could have been constructed in reverse. Not knowing the basis {|n 1 ,n2,...)}, 
we could have started from a set of operators obeying the commutation relations (2.7) act­
ing in some a priori unknown space F. Starting from the unique state |0), the prescription 
(2.4) would then have yielded an equally unique basis of the entire space F (up to unitary 
transformations). In other words, the algebra (2.7) fully characterizes the operator action 
and provides information equivalent to the definitions (2.3) and (2.6).

5 To characterize this representation, we need to be a bit more precise. Within A, ai and ai are 
independent objects, i.e., in general, there exists no notion of hermitian adjointness in A. We 
require, though, that the representation assigns to aii the hermitian adjoint (in V ) of the image 
of ai. Also, we have to require that [ai, at] E A be mapped onto [ai, at] : V ^ V where, in the 

latter expression, the commutator involves the ordinary product of the matrices ai,aj : V ^ V.

Practical aspects of the second quantization

Our next task will be to promote the characterization of Fock space bases to a full 
reformulation of many-body quantum mechanics. To this end, we need to estab­
lish how changes from one single-particle basis {|A)} to another, {|A)}, affect the 
operator algebra {aA}. (In this section, we shall no longer use integers to identify 
different elements of a given single-particle basis. Rather, we use Greek labels A; 
i.e., aA creates a particle in the state A.) We also need to understand in what way 
generic operators acting in many-particle Hilbert spaces can be represented in terms 
of creation and annihilation operators.

> Change of basis: Using the resolution of identity id 22 a=o IAKA |, the rela­
tions | A) 22 a IAHA | A), | A) = aA |0), and | A) = a -10) immediately give rise to
the transformation law,

iia- = XA।AaA, a- = 2^(A|A)aA (2.8)
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occupation 
number

In many applications, we will be dealing with continuous sets of quantum num­
bers (such as position coordinates). In such cases the quantum numbers are 
commonly denoted as a (x) a (x IA) aA and the summations appearing in the
transformation formula above translate to integrals: aA = f dx(A|x)a(x). For ex­
ample, the transformation from the coordinate represetation to the momentum 
representation in a system of length L would read

ak = J dx (k|x} a(x), a(x) = x | k) ak, (2.9)

where (k|x) = (x|k)* = L-1 /2e-ikx and k = 2nm/L, m G Z.

> Representation of operators (one-body): Single-particle or one-body op­
erators O 1 acting in the N-particle Hilbert space FN generally take the form 
O 1 = N=1 on, where on is an ordinary single-particle operator acting on the
nth particle. A typical example is the kinetic energy operator T = n pin!(2m),
where pn is the momentum operator acting on the nth particle. Other exam­
ples include the one-particle potential operator V = n V(xn), where V (x) is a
scalar potential, and the total spin operator ^2n Sn• Since we have seen that, by 
applying field operators to the vacuum space, we can generate the Fock space 
in general and any N -particle Hilbert space in particular, it must be possible to 
represent any operator O1 in an a-representation.
Although the representation of n-body operators is straightforward in principle, 
it can, at first sight, seem daunting. A convenient way of finding it is to express 
the operator in terms of the basis in which it is diagonal, and only later transform 
to an arbitrary basis. For this purpose it is useful to define the occupation 
number operator

(2.10)

with the property that, for bosons or fermions, n A (a A ) n |0) = n (a A ) n |0) (exer­
cise). Since n A commutes with all a A,=A, Eq. (2.4) implies that n Aj | nA 1,...) = 
nA. |nA 1,...k i.e., nA simply counts the number of particles in state A. Let us 

j

now consider a one-body operator O1 which is diagonal in the basis |A), with 
o = i oAi |AiAi |, oAi = {Ai |o| Ai). With this definition, one finds that

(nA 1,nA2 ,. . . |O 1 |nA 1 ,nA2 , . . .) = 52 oAinAi (nA 1,nA2 ,. . . |nA 1, nA2 , . . .')

= (n 'a 1, n 'a 2 ,... | 52 oAi n Ai | nA 1, nA 2 ,...) .

Since this equality holds for any set of states, one can infer the second-quantized 
representation of the operator,

OO 1 = oAn A = A | o| A) a AaA.
A=0 A=0

The result is straightforward: a one-body operator engages a single particle at a 
time - the others are just spectators. In the diagonal representation, one simply 

^ „tn A = aAaA
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counts the number of particles in a state A and multiplies by the corresponding 
eigenvalue of the one-body operator. By transforming from the diagonal repre­
sentation to some arbitrary basis, one obtains the general result,

O’ 1 = 12 < ^ | o|v a lav (2.11)

To consolidate these ideas, let us consider some specific examples. Representing 
the matrix elements of the single-particle spin operator as (a |Si |a} = (Si)aa/ = 
2 (ai)aa', where a,a' is a two-component spin index and the ai are Pauli spin 
matrices,

0 
i

spin 
operator

one-body
Hamil­
tonian

01
a1 = 1 0 , a2=

the spin operator of a many-body 
system assumes the form

S= £ a la, S a' aaXa. (2.13)

Here, A denotes a set of additional 
quantum numbers, such as a lattice site 
index. When second-quantized in the 
position representation, one can show

-i 
0

0
-1

(2.12)

Wolfgang Ernst Pauli 1900­
1958
was an Austrian physicist who 
received the Nobel Prize in 
Physics in 1945 for the all­
important “Pauli Principle” ac­
cording to which two fermions 
cannot occupy the same quan­
tum state. Pauli also was the first to recognize 
the existence of the neutrino.

that the one-body Hamiltonian for a free particle is given as the sum of kinetic
and potential energy:

n2 \p- + V (r) a (r) 
2m

(2.14)

local 
density 

operator

number

EXERCISE Starting with the momentum representation (in which the kinetic energy is 
diagonal), transform to the position representation and thereby establish Eq. (2.14).

The local density operator pi(r), measuring the particle density at coordinate r, 
is given by

p(r) = at(r)a(r). (2.15)

Finally, the total occupation number operator, obtained by integrating over 
the particle density, is defined by NZ J ddr at (r)a(r). In a theory with discrete

tquantum numbers, this operator assumes the form N = 2_,a axa\•

> Representation of operators (two-body): Two-body operators O 2 are needed 
to describe pairwise interactions between particles. Although pair-interaction 
potentials can be included straightforwardly in classical many-body theories, 
their embedding into conventional many-body quantum mechanics is made cum­
bersome by particle indistinguishability. The formulation of interaction processes 
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two-body 
operator

within the language of second quantization is considerably more straightforward. 
Initially, let us consider a symmetric two-body potential V(rm, rn) = V(rn, rm) 
between two particles at position rm and rn . Our aim is to find an operator V 
in second-quantized form whose action on a many-body state gives

V |ri,..., r N) = V (r m, r n )|ri,..., r n ) = 2 V (r m, r n )|ri,..., r n ).

n<m m=n
Here, it is more convenient to use the original representation (2.1) rather than 

the occupation number representation. When this is compared with the one- 
point function, one might guess that

V = - y ddr J" ddr'at(r)at(rZ)V(r, rz)a(rz)a(r).

That this is the correct answer can be confirmed by applying the operator to a 
many-body state (exercise):

a1(r)at(rz)a(rz)a(r)|r 1,..., rN) = a1(r)at(rz)a(rz)a(r) at(r1) • • • at(rN)|0)
N

= 6 (r - r m) 6 (rz - r n )|ri,..., r N ).
m,n=m

Multiplying by V(r, rz)/2, and integrating over r and rz, one confirms the validity 
of the expression. It is left as an exercise to confirm that the naive expression 
2 J ddr f ddr'V(r, rz)/5(r)p(rz) does not reproduce the two-body operator. More 
generally, turning to a non-diagonal basis, it is straightforward to confirm that 
a general two-body operator can be expressed in the form

i 1 \ 4- t
O2 = 2 ? y Or,r' ,W'ala'a^'a^ (2.16)

where O,,A>A, = (p,p'|O2|X, X
Besides the Coulomb interaction to be discussed shortly, another important 
interaction is that between spins. From our discussion of the second-quantized 
representation of spin S, we infer that the general spin-spin interaction affords 
the representation

V=2J^ ddr J" ddr' J (r, rz) S a$ • S a' p' a t (r) a a, (rz) a^ < (rz) a^ (r),

where J(r, rz) denotes the exchange interaction.

In principle, one may proceed in the same manner and represent general n-body 
interactions in terms of second-quantized operators. However, as n > 2 interactions 
appear infrequently, we refer to the literature for further discussion.
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This completes our formal introduction to the method of second quantization. 
To develop fluency in the operation of the method, we will continue by addressing 
several problems chosen from the realm of condensed matter. In doing so, we will see 
that second quantization often leads to considerable simplification of the analysis of 
many-particle systems. The effective model Hamiltonians that appear below provide 
the input for subsequent applications considered in this text. Readers not wishing 
to become distracted from our main focus - the development of modern methods 
of quantum field theory in the condensed matter setting - may safely skip the next 
sections and turn directly to chapter 3. It is worthwhile keeping in mind, however, 
that the physical motivation for the study of various prototypical model systems 
considered later in the text is given in section 2.2.

2.2 Applications of Second Quantization

Starting from the prototype Hamiltonian (1.1), we have already explored aspects of 
lattice dynamics in condensed matter. In much of the remaining text, we will focus 
on the complementary system, the electron degrees of freedom. Drawing on the first 
of the principles articulated in chapter 1, we begin our discussion by reducing the 
Hamiltonian to a form that contains the essential elements of the electron dynamics. 
As well as the pure electron sub-Hamiltonian He , the reduced Hamiltonian involves 
the interaction between electrons and the ionic background lattice. However, typ­
ically lattice distortions due to the motion of the ions and the ion-ion interaction 
couple only indirectly. (Exercise: Think of a prominent example where the electron 
sector is strongly influenced by the dynamics of the lattice.) To a first approxi­
mation, we may therefore describe the electron system through the Hamiltonian 
TT TT i tV 1H = H0 + Vee , where

y ddr a t (r) p2£- + V (r)
2m

at (r),

Vee =|y ddr y dd r' Vee(r - r') a t (r) a t' (r') at' (r') at (r) •
(2.17)

H0

Here, V(r) = I Vei (RI - r) denotes the lattice potential experienced by the 
electrons, and the coordinates of the lattice ions RI are assumed fixed. For com­
pleteness, we have also endowed the electrons with a spin index, o = f / |.

Despite its seemingly innocuous structure, the interacting-electron Hamiltonian 
(2.17) accommodates a wide variety of electron phases, from metals and magnets 
to insulators. To classify the phase behavior of the model, it is helpful to divide our 
considerations, focusing first on the properties of the non-interacting single-particle 
system H0 and then, later, exploring the influence of the electron interaction Vee .
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2.2.1 Electrons in a periodic potential

Bloch’s 
theorem

From Bloch’s theorem, the eigen­
states of a periodic Hamiltonian can be 
presented in the form of Bloch waves6 

^kn(r) = eik'rukn(r), where the com­
ponents of the crystal momentum k 
take values inside the Brillouin zone, 
ki G [—n/a,n/a]. Here, for simplicity, 
the periodicity of the lattice potential 
is assumed to be the same in all direc-

6 For a further discussion, we refer to one of the many texts on the elements of solid state physics, 
e.g., N.D. Ashcroft and N. Mermin, Solid State Physics (Holt-Saunders International, 1995).

Felix Bloch 1905-1983
was a Swiss-American physi­
cist who, in 1952, shared the 
Nobel Prize in Physics with 
Edward M. Purcell “for the 
development of new methods 
for nuclear magnetic precision 
measurements and discoveries
in connection therewith.” Bloch served as the
first Director-General of CERN.

tions, i.e., V (r + aei) = V (r). The index n labels the separate energy bands of 
the solid, and the functions ukn(r + aei) = ukn (r) are periodic on the lattice. 
Now, depending on the nature of the bonding, there are two complementary classes 
of materials where the general structure of the Bloch functions can be simplified 
significantly.

Nearly free electron systems

For certain materials, notably the elemental metals drawn from groups I-IV of the 
perio dic table, the outermost itinerant conduction electrons behave as if they were 
“nearly free,” i.e., their dynamics is largely oblivious to both the Coulomb potential 
created by the positively charged ion background and their mutual interaction.

INFO Loosely speaking, Pauli blocking by the bound state inner core electrons prevents 
the conduction electrons from exploring the region close to the ion core, thereby screen­
ing the nuclear charge. In practice, the conduction electrons experience a renormalized 
pseudopotential, which accommodates the effect of the lattice ions and core electrons. 
Moreover, the high mobility of the conduction electrons provides an efficient method of 
screening their own mutual Coulomb interaction. In nearly free electron compounds, com­
plete neglect of the lattice potential is usually a good approximation (as long as one 
considers crystal momenta remote from the boundaries of the Brillouin zone, ki = ±n/a).

In practice, this means that we may set the Bloch function to unity, ukn = 1, and 
regard the eigenstates of the non-interacting Hamiltonian as plane waves. This moti­
vates the representation of the field operators in momentum space (2.9), whereupon 
the non-interacting part of the Hamiltonian assumes the free particle form

k2
H0 2mmkct ak°, (2.18)

k ct

where the sum runs over wave vectors k (and, once again, we have set ~ = 1). In 
the Fourier representation, the two-body Coulomb interaction takes the form
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1 1 X tz t t. \ _ t _ t
Vee =2 Ld / , Vee(q) a k-q a a k'+q a i a k a' a k' a ,

k, kz, q ,aa'

(2.9)

where (choosing units such that 4ne = 1), Vee(q) = e2/q2 represents the Fourier 
transform of the potential Vee(r) = e2/|r|. Now, as written, this expression neglects 
the fact that in ionized solids the negative charge density of the electron cloud 
will be compensated by the charge density of the positively ionized background.

jellium 
model

The latter can be incorporated into (2.19) 
by placing on the sum over q the re­
striction that q = 0 (exercise). Taken 
together, the free electron Hamiltonian 
H0 and the Coulomb interaction poten­
tial Vee are known as the jellium model.

The interaction described by Eq. (2.19) can be illustrated graphically, as shown 
in the figure (for a more elaborate discussion of such diagrams, see chapter 4): 
an electron of momentum k is scattered into a new momentum state k - q while 
another electron is scattered from k' ^ k' + q.

In concrete applications of con­
densed matter physics, one typically 
considers low excitation energies. The 
analysis of such systems is naturally or­
ganized around the zero-temperature 
ground state as a reference platform. 
However, the accurate calculation of 
the ground state energy of the system 

Niels Henrik David Bohr 
1885-1962
was a Danish physicist and 
philosopher who, in 1922, was 
awarded the Nobel Prize in 
Physics “for his services in the 
investigation of the structure 
of atoms and of the radiation 
emanating from them.”

is a complicated problem of many-body physics that cannot be solved in closed 
form. Therefore, assuming that interactions will not substantially alter the ground 
state of the free particle problem (2.18) — which is often not the case! - one uses 
the ground state of the latter as a reference state.

Bohr 
radius

Fermi 
energy

INFO Deferring a more qualified discussion to later, a preliminary justification for this 
assumption can be given as follows: suppose that the density of an electron gas is such 
that each of its N constituent particles occupies an average volume of O(ad). The average 
kinetic energy per particle is then estimated to be T ~ 1 /ma2, while the Coulomb inter­
action potential will scale as V ~ e2/a. Thus, for a much smaller than the Bohr radius 
a0 = 1/e2m, the interaction contribution is much smaller than the average kinetic energy. 
In other words, for the dense electron gas, the interaction energy can indeed be treated as 
a perturbation. Unfortunately, for most metals, one finds that a ~ a0 and neither high- 
nor low-density approximations are strictly justified.

The ground state of the system occupied by N non-interacting electrons can be 
readily inferred from Eq. (2.18). The Pauli principle implies that all energy states 
ek = k2/2m will be uniformly occupied up to a cutoff Fermi energy, EF. For a 
system of size L, the allowed momentum states k have components ki = 2nni/L, 
ni G Z. The summation extends up to momenta with |k| < kF, where the Fermi
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momentum kF is defined through the relation kF2 /2m = EF . The relation between 
the Fermi momentum and the occupation number can be established by dividing 
the volume of the Fermi sphere ~ kF by the momentum space volume per mode 
(2n/L)d, viz. N = C(kFL)d, where C denotes a dimensionless geometry-dependent 
constant (see the figure).

In the language of second quantization, the ground 
state is represented as

R^N H a ka 0 > (2.20)

where |0) denotes the state with zero electrons present. 
When the interaction is weak, one may anticipate that 
low-temperature properties will be governed by en­
ergetically low-lying excitations superimposed upon 
the state |Q). Therefore, remembering the philosophy 
whereby excitations rather than microscopic constituents play a prime role, one 
would like to declare the filled Fermi sea, |Q) (rather than the empty state |0)), to 
be the “physical vacuum” of the theory. To make this compatible with the language 
of second quantization, we need to identify a new operator algebra such that the 
operators cka annihilate the Fermi sea. This is easily engineered by defining

c t 
k a

atka

aka

k > kF

k < k f
aka

cka = t 
aka

k > kF 

k < kF
(2.21)

It is then straightforward to verify that cka |Q) = 0 and that the canonical commu­
tation relations are preserved.

The Hamiltonian defined through Eqs. (2.18) and (2.19), represented in terms of 
the operator algebra (2.21) and the vacuum (2.20), forms the basis of the theory 
of interactions in highly mobile electron compounds. The investigation of the role 
of Coulomb interactions in such systems will provide a useful arena in which to 
apply the methods of quantum field theory formulated in subsequent chapters. 
Following our classification of electron systems, let us now turn our attention to 
a complementary class of materials where the lattice potential presents a strong 
perturbation to the conduction electrons. In such situations realized, for example, 
in transition metal oxides, a description based on “almost localized” electron states 
will be used to represent the Hamiltonian (2.17).

Tight-binding systems

Let us consider a “rarefied” lattice in which the constituent ion cores are separated 
by a distance in excess of the typical Bohr radius aB of the valence-band electrons. 
In this “atomic limit,” the electron wave functions are tightly bound to the lattice 
sites. Here, to formulate a microscopic theory of interactions, it is convenient to 
expand the Hamiltonian in a local basis that reflects the atomic orbital states of
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Wannier 
states

the isolated ion. Such a representation is presented by the basis of Wannier states, 
defined by

| ^ R n) = ~N e i k'R $ k n ) , | ^kn) = ~N ek'R | $Rn n (2.22)

band 
insulator 

metal

where R denotes the coordinates of the lattice centers, and ^B' Z' represents a 
summation over all momenta k in the first Brillouin zone. For a system with a 
vanishingly weak interatomic overlap, i.e., a lattice where V approaches a super­
position of independent atomic potentials, the Wannier function tyrn(r) = (r|tyrn') 
converges on the nth orbital of an isolated atom centered at coordinate R. However, 
when the interatomic coupling is non-zero, i.e., in a “real” solid, theN formerly 
degenerate states, labeled by n, split to form an energy band (see the figure below). 
Here, the Wannier functions (which are not eigenfunctions of the Hamiltonian) dif­
fer from those of the atomic orbitals through residual oscillations in the region of 
overlap, to ensure orthogonality of the basis. Significantly, in cases where the Fermi 
energy lies between two energetically separated bands, the system presents insu­
lating behavior. Conversely, when the Fermi energy is located within a band, one 
may expect metallic behavior. Ignoring the complications that arise when bands 
begin to overlap, we will henceforth focus on metallic systems where the Fermi 
energy is located within a definite band, n0 .

How can the Wannier basis 
be exploited to obtain a simpli­
fied representation of the gen­
eral Hamiltonian (2.17)? The first 
thing to notice is that the Wannier 
states {| ^rn)} form an orthonor­
mal basis of the single-particle 
Hilbert space, i.e., the transforma­
tion between the real space and 
Wannier representation is unitary, |r) = Rr |^r^r|r) = Rr ^R(r)|^r).7 Being 
unitary, it induces a transformation

at (r) = ^R (r)a= ^R (r)a,ay/ R j R r v R ra / v R ri ia (2.23)

between the real- and Wannier-space operator bases, respectively. In the second 
representation, following a convention commonly used in the literature, we have 
labeled the lattice center coordinates R = Ri using a counting index i = 1, . . . ,N. 
Similarly, the unitary transformation between Bloch and Wannier states (2.22) 
induces an operator transformation

7 Here, since we are interested only in contributions arising from the particular “metallic” band 
n0 in which the Fermi energy lies, we have dropped the remaining set of bands n = n0 and, 
with them, reference to the specific band index. Exercise: By focusing on just a single band n0 , 
in what sense is the Wannier basis now complete?
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a = = ~^ V ei k'R i a,, a,= = ~^ e—i k'R i a . . (2.24)
ka v^^N ia, ia //’^N ka
ik

We can now use the transformation formulae (2.23) and (2.24) to formulate a Wan- 
nier representation of the Hamiltonian (2.17). Using the fact that the Bloch states 
diagonalize the single-particle component H0 , we obtain

H0 = £k aka aka (2=4) N XX ek(Ri — Ri') ek aL ai' a = X tii, a^ ai,a,

k ii1 k ii'

8 K. S. Novoselov, et al., Electric field effect in atomically thin carbon films, Science 306, 666 
(2004).

where we have set tii/ = -^ ^k eik'(Ri—Ri')ek. The new representation of H0 de­
scribes electrons hopping from one lattice center i' to another, i. The strength of 
the hopping matrix element tii< is controlled by the effective overlap of neighboring 
atoms. In the extreme atomic limit, where the levels ek = const. are degenerate, 
tn< x 8iii and no interatomic transport is possible. The tight-binding representation 
becomes useful when ti=i< is non-vanishing, but the orbital overlap is so weak that 
only nearest-neighbor hopping effectively contributes.

EXERCISE Taking a square lattice geometry and setting tii = — t when i, i' are nearest 
neighbors and zero otherwise, diagonalize the two-dimensional tight-binding Hamiltonian 
H0. Show that the eigenvalues are given by ek = -21(cos(kxa)+cos(kya)). Sketch contours 
of constant energy in the Brillouin zone and note the geometry at half-filling.

To assess the utility of the tight-binding approximation, let us consider its applica­
tion to graphene, a prominent carbon-based lattice system.

graphene INFO Graphene is a single layer of graphite, a planar hexagonal lattice of sp2-hybridized 
carbon atoms connected by strong covalent bonds of their three planar a-orbitals (see 
fig. 2.2 and the schematic overleaf). The remaining pz orbitals - oriented perpendicular to 
the lattice plane - overlap weakly to form a band of mobile n-electrons. For a long time, it 
was thought that graphene sheets in isolation would inevitably be destabilized by thermal 
fluctuations; only layered stacks of graphene would form a stable compound - graphite. It 
thus came as a surprise when, in 2004, a team of researchers8 succeeded in the isolation 
of large (micron-sized) graphene flakes on an SiO2 substrate. (Since then, the isolation of 
even free standing graphene layers has become possible. In fact, our whole conception of 
the stability of the compound has changed. It is now believed that whenever you draw a 
line in pencil, a trail of graphene flakes will be left behind!)

Soon after its discovery, it became clear that graphene possesses unconventional con­
duction properties. Nominally a gapless semiconductor, it has an electron mobility ~ 
2 x 105cm2/Vs, far higher than that of even the purest silicon-based semiconductors; it 
shows manifestations of the integer quantum Hall effect qualitatively different from those 
of conventional two-dimensional electron compounds (cf. chapter 8 for a general discussion 
of the quantum Hall effect); etc. Although an in-depth discussion of graphene is beyond 
the scope of this text, we note that most of its fascinating properties are due to its band 
structure: electrons in graphene show a linear dispersion and behave like two-dimensional 
relativistic (Dirac) fermions! By way of an illustration of the concepts discussed above, 
here we derive this unconventional band dispersion from a tight-binding formulation.
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Fig. 2.2 Left: Optical microscopy image of graphene flakes. Regions labeled by ‘I’ define monolayer 
graphene sheets of size ca. 10pm. Right: STM image of the graphene samples shown in 
the left part. Images taken from E. Stolyarova et al., High-resolution scanning tunneling 
microscopy imaging of mesoscopic graphene sheets on an insulating surface, PNAS 104, 
9209 (2007). Copyright (2007) National Academy of Sciences.

To a first approximation, graphene’s n-electron sys­
tem can be modeled as a tight-binding Hamiltonian 
characterized by a single hopping matrix element be­
tween neighboring atoms, -t (with t real and posi­
tive), and the energy off-set e of the n-electron states. 
To determine the spectrum of the system, a system of 
bi-atomic unit cells can be introduced (see the ovals 
in the schematic) and two (non-orthogonal) unit vec­
tors of the hexagonal lattice, a1 = (V3,1)a/2 and
a2 = (V3, —1)a/2, where a = |a11 = |a2| — 2.46 A denotes the lattice constant. The 

/t/\tight-binding Hamiltonian is then represented as H = —122(r rz)(a 1 (r)a2(rz)+h.c.), 
where h.c. denotes the Hermitian conjugate, the sum runs over all nearest-neighbor 
pairs of sites and a 1(2) (r) creates a state in the first (second) atom of the cell at 
position vector r. Switching to a Fourier representation, the Hamiltonian takes the 
form

E ( a 1a 

k a
a 2 a

0
—tf *(k)

a1a

a2a
(2.25)

where f(k) = 1 + e-ik1a + ei(-k1+k2)a.

EXERCISE Revise the concept of the reciprocal lattice in solid state theory. To derive 
the Fourier representation above, show that a system of two reciprocal lattice vectors 
conjugate to the unit vectors above is given by G1 /2 = 2n/(\/3a)(1, ±/3). Next, show 
that the Fourier decomposition of a field operator reads

aa (r)
Nn

k

e - i a ( k 1G1+ k 2G2)r aak
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(a)
kx y

(a) Spectrum of the tight-binding Hamiltonian (2.24) showing the point-like structure of 
the Fermi surface when EF = 0. (b) A contour plot of the same.

kx

Fig. 2.3

Dirac 
Hamil­
tonian

where ki 6 [0, 2n/a] is quantized in units 2n/Li. (Li is the extension of the system in the 
direction of ai and N its total number of unit cells.) Substitute this decomposition into 
the real space representation of the Hamiltonian to arrive at the Fourier representation.

Diagonalizing the Hamiltonian (2.25), one obtains the dispersion* 9

Although the pseudopotential of the nearly free electron system accommodates the 
effects of Coulomb interactions between the conduction and valence band electrons, 
the mutual Coulomb interaction between the conduction electrons themselves may 
lead to new physical phenomena. These effects can alter substantially the material 
parameters (e.g., the effective conduction electron mass). However, they change

9 P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622 (1947).

ek = ±t [3 + 2 cos(k 1 a) + 2 cos((k 1 — k2)a) + 2 cos(k2a)] 1 /2 . (2.26)

Here, in contrast with the square-lattice tight-binding Hamiltonian, the half-filled 
system is characterized by a point-like Fermi surface (fig. 2.3). When lightly doped 
away from half-filling, the spectrum divides into Dirac-like spectra with a linear 
dispersion. Notice that, of the six Dirac points (fig. 2.3), only two are independent. 
The complementary four can be reached from those two points by the addition of 
a reciprocal lattice vector and, therefore, do not represent independent states.

EXERCISE Derive an explicit representation of the Dirac Hamiltonian describing the 
low-energy physics of the system. To this end, choose two inequivalent (i.e., not connected 
by reciprocal lattice vectors) zero-energy points k1,2 in the Brillouin zone. Expand the 
Hamiltonian (2.25) around these two points in small momentum deviations q = k — k1,2 

up to linear order. Show that, in this approximation, H reduces to the sum of two two­
dimensional Dirac Hamiltonians.

The physics of low-energy Dirac Hamiltonians in condensed matter physics is the 
subject of chapter 9. There, we will discuss numerous phenomena that owe their 
existence to the “relativistic invariance” emerging in graphene and related systems 
at low energy scales.

2.2.2 Interaction effects in the tight-binding system
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(a) (b) (c) (d)

Fig. 2.4 Different types of interaction mechanism induced by the tight-binding interaction Vee. The 
curves symbolically indicate wave function envelopes. (a) Direct Coulomb interaction be­
tween neighboring sites. Taking account of the exchange interaction, parallel alignment of 
spins (b) is preferred since it enforces antisymmetry of the spatial wave function, lowering 
the electron presence between sites. By contrast, for anti-parallel spin configurations (c), the 
wave function amplitude in the repulsion zone is enhanced. (d) The Coulomb interaction 
between electrons of opposite spin occupying the same site.

the nature of the neither ground state nor that of the elementary quasi-particle 
excitations in any fundamental way; this is the basis of Fermi-liquid theory and a 
matter to which we will return. By contrast, interactions influence significantly the 
physics of the tight-binding system: at “half-filling,” even weak interactions may 
drive the system into a correlated magnetic state or insulating phase.

To understand why, let us re-express the interaction in the field operators as­
sociated with the Wannier states. Once again, to keep our discussion simple (yet 
generic in scope), let us focus on a single sub-band and drop any reference to the 
band index. Then, applied to the Coulomb interaction, the transformation (2.23) 
leads to the expansion Vee = ii,jj, Uii/j-j-/ a^aat,a, aja aj>a>, where

Uii'jj' = 1 [ ddr d ddr' $Ri(r)$Rj(r)V(r - r')$Ri O')$Rj/(rZ)• (2.27)
2 J J i j

Taken together, the combination of the contributions,

H 52 tii' aia ai'a + y2 Uii' jj' aia ai'a' aj'a' aja,
ii' a ii' jj' aa'

defines the tight-binding representation of the interaction Hamiltonian. Apart from 
neglect of the neighboring sub-bands, the Hamiltonian is exact. Yet, to assimilate 
the effects of the interaction, it is useful to assess the relative importance of the 
different matrix elements, drawing on the nature of the atomic limit that justi­
fied the tight-binding description. We will thus focus on contributions to Un<jj<, 
where the indices are either equal or, at most, those of nearest neighbors. Focusing 
on the most relevant of these matrix elements, a number of physically different 
contributions can be identified.

> The direct terms Uii>ii> = Vii> involve integrals over square moduli of Wannier 
functions and couple density fluctuations at neighboring sites, ^2i=i' Vii'n^i^i', 
where ni = a aia aia. This contribution accounts for the - essentially clas­
sical - interaction between charges localized at neighboring sites (see fig. 2.4). 
In certain materials, interactions of this type may induce charge-density wave 
instabilities.
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exchange 
coupling

> A second important contribution derives from the exchange coupling, which 
induces magnetic correlations among the electron spins. Setting JF = Uijji, and 
making use of the Pauli matrix identities (see below), one obtains

i=j,aa'

Uijjiaia aja' aia' aj‘
O \ ' tF I C! 1 1 ' ' 1

-2 X Jij\Si • Sj + 4ninj) .

ferromagnetic 
coupling

Hund’s 
rule

Such contributions tend to induce weak ferromagnetic coupling of neighbor­
ing spins (i.e., JF > 0). The fact that an effective magnetic coupling is born out 
of the electrostatic interaction between quantum particles is easily understood. 
Consider two electrons inhabiting neighboring sites. The Coulomb repulsion be­
tween the particles is minimized if the orbital two-particle wave function is an­
tisymmetric and, therefore, has low amplitude in the interaction zone between 
the particles. Since the overall wave function must be antisymmetric, the en­
ergetically favored real space configuration enforces a symmetric alignment of 
the spins (fig. 2.4). Such a mechanism is familiar from atomic physics where it 
manifests as Hund’s rule. In general, magnetic interactions in solids are usually 
generated as an indirect manifestation of the stronger Coulomb interaction.

EXERCISE Making use of the Pauli matrix identity aap • a--. = 2Sas SpY — Sap SYs, 
i i 1 1 1 t t 1 i , o 1 t —show that Si • S j = - \afi aiaajfiaifiaja - 4 ninj , where Si = A. a ^ ■aifi 

denotes the operator for spin 1/2, and the lattice sites i and j are assumed distinct.

Hubbard 
interaction

Hubbard 
model

> Finally, deep in the atomic limit, where the atoms are well separated and the 
overlap between neighboring orbitals is weak, the matrix elements tij and JiFj 

are exponentially small in the interatomic separation variables. In this limit, 
the “on-site” Coulomb or Hubbard interaction, iaa, Uiiiialaaja,aia'aia =
52i Unipni^, where Uiiii = U/2, dominates (fig. 2.4). Taking only the nearest- 
neighbor contribution to the hopping matrix elements, and neglecting the energy 
offset due to the diagonal term, the effective Hamiltonian takes a simplified form 
known as the Hubbard model,

JH = —1^2 ataja + ^2nipni^ (2.28)

where (ij) denotes neighboring lattice sites. In hindsight, a model of this struc­
ture could have been proposed from the outset on purely phenomenological 
grounds: electrons tunnel between atomic orbitals localized on individual lat­
tice sites, while the double occupancy of a lattice site incurs an energy penalty 
associated with the mutual Coulomb interaction.

2.2.3 Mott-Hubbard transition and the magnetic state

REMARK In this section we discuss condensed matter phases deriving from those of 
the Hubbard Hamiltonian Eq. (2.28) at low energies, and their description in terms of 
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effective Hamiltonians. The section illustrates the application of second quantization in 
condensed matter contexts, and puts some of the effective models discussed later into a 
wider physical context. However, readers wishing to progress as quickly as possible to the 
introduction of quantum field-theoretical concepts may skip it at first reading.

Deceptive in its simplicity, the Hubbard model is acknowledged as a paradigm of 
strong-electron physics. Yet, after more than half a century of intense investigation, 
the properties of this seemingly simple model are still the subject of debate (at least 
in dimensions higher than one - see below). Thus, given the importance attached 
to this system, we will close this section with a brief discussion of some of the 
remarkable phenomenology that characterizes the Hubbard model.

As well as dimensionality, the phase behavior of the Hubbard Hamiltonian is 
characterized by three dimensionless parameters: the ratio of the Coulomb inter­
action scale to the bandwidth U/t, the particle density or filling fraction n (i.e., 
the average number of electrons per site), and the (dimensionless) temperature, 
T/t. The symmetry of the Hamiltonian under particle-hole interchange (exercise) 
allows one to limit consideration to densities in the range 0 < n < 1, while densities 
1 < n < 2 can be inferred by “reflection.”

Focusing first on the low-temperature 
system, in the dilute limit n 1, the 
typical electron wavelength is greatly 
in excess of the site separation and 
the dynamics are free. Here the local 
interaction presents only a weak per­
turbation and one can expect the prop­
erties of the Hubbard system to mirror 
those of the weakly interacting nearly 
free electron system. While the interac­
tion remains weak, one expects metal­
lic behavior to prevail. By contrast, in the half-filled system, where the average site 
occupancy is unity, if the interaction is weak, U/t 1, one may again expect prop­
erties reminiscent of a weakly interacting electron system. If, on the other hand, 
the interaction is strong, U/t 1, site double occupancy is inhibited and electrons 
in the half-filled system become “jammed”: migration of an electron to a neighbor­
ing lattice site would necessitate site double occupancy, incurring an energy cost U . 
Here, in this strongly correlated state, the mutual Coulomb interaction between the 
electrons drives the system from a metallic to an insulating phase with properties 
very different from those of a conventional band insulator.

Experimentally, it is often found that the low-temperature phase of the Mott 
insulator is accompanied by antiferromagnetic ordering of the local moments. 
The origin of these magnetic correlations can be traced to a mechanism known as 
super-exchange10 and can be understood straightforwardly within the framework

10 P. W. Anderson, Antiferromagnetism. Theory of superexchange interaction, Phys. Rev. 79, 350 
(1950).

super­
exchange

Sir Neville Francis Mott 
1905-1996 
was a British physicist who, 
in 1977, shared with Philip 
W. Anderson and John H. 
van Vleck the Nobel Prize in 
Physics for their “fundamental 
theoretical investigations of the
electronic structure of magnetic and disordered 
systems.” Amongst his contributions to science, 
Mott provided a theoretical basis to understand 
the transition of materials from metallic to non- 
metallic states (the Mott transition).
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canonical 
transfor­

mation

of the Hubbard model. To this end, one may consider a simple “two-site” system 
from which the characteristics of the lattice system can be inferred. At half-filling 
(i.e., with just two electrons to share between the two sites), one can identify a 
total of six basis states: two spin polarized states aa2^.|Q), a 1^a2.|Q), and four 

t t t t t t tstates with Stzotal = 0: |s 1) = a 1^a2^|Q), |s2) = a2^a 1^|Q^, |d 1) = a 1^a 1JQ) and
|d2} = a2ta2^|Q). Recalling the constraints imposed by the Pauli principle, it is 
evident that the fully spin polarized states are eigenstates of the Hubbard Hamil­
tonian with zero energy, while the remaining eigenstates involve superpositions of 
the basis states |si) and |di). In the strong-coupling limit U/t 1, the ground 
state will be composed predominantly of states with no double occupancy, |si). To 
determine the precise structure of the ground state, we could simply diagonalize 
the 4 x 4 Hamiltonian - a procedure evidently infeasible in the lattice system. In­
stead, to gain some intuition for the extended system, we will use a perturbation 
theory which projects the insulating system onto a low-energy effective spin Hamil­
tonian. Specifically, we will treat the hopping part of the Hamiltonian Ht as a weak 
perturbation of the Hubbard interaction HU.

To implement the perturbation theory, it is helpful to invoke a canonical trans­
formation of the Hamiltonian,

H m- H' = e -t0 HI etO = e - t [0, ] H) = H - t [ O, H] + t2 [ O, [ O, H]] + ■ ■■ , (2.29)

where the exponentiated commutator is defined by the series expansion on the right. 

EXERCISE Considering the derivative of Hl' with respect to t, prove the second equality.

By choosing the operator O such that Ht + t[HU , O] = 0, all terms of first order 
in t can be eliminated from the transformed Hamiltonian. As a result, the effective 
Hamiltonian is brought to the form

H' = Hu + 2 [Ht, O] + O(13). (2.30)

Applying the ansatz tO = [PsHtPd - PdHtPs]/U, where Ps and Pd are operators 
that project onto the singly and doubly occupied subspaces respectively, the first- 
order cancellation is assured.

EXERCISE To verify this statement, take the matrix elements of the first-order equation 
with respect to the basis states. Alternatively, it can be confirmed by inspection, noting 
that PsPd = 0, HUPs = 0 and, in the present case, P'SHtPs = PdHtPd = 0.

Substituting tO) into Eq. (2.30) and projecting onto the singly occupied subspace 
one obtains
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J U-1 J

Fig. 2.5 Top: The hybridization of parallel spin polarized states is forbidden by Pauli exclusion. 
Bottom: The superexchange mechanism by which two antiparallel spins can lower their 
energy by a virtual process in which the upper Hubbard band is occupied.

1 1 , • 1 ' 2 2 t^ * / + + \ 1 1P’s Hi ps = — UPs HtPd HiP =--- UPs V + a 1a a 2a' a 1a' a 2a) Ps = J ( 81 ’ 8 2 — 4

exchange 
interaction

Heisenberg
Hamil­
tonian

where J = 4t2 /U denotes the strength of the antiferromagnetic exchange 
interaction coupling the spins on neighboring sites.

EXERCISE Noting the anticommutation relations of the electron operators, find the 
matrix elements of the Hubbard Hamiltonian with respect to the four basis states | si} and 
|di). Diagonalizing the 4 x 4 matrix Hamiltonian, obtain the eigenstates of the system. In 
the strong-coupling system U/t 1, determine the spin and energy dependences of the 
ground state.

Philip Warren Anderson 
1923-2020 
was an American physicist 
who, in 1977, shared with 
Sir Neville Mott and John H. 
van Vleck the Nobel Prize in 
Physics for their “fundamental 
theoretical investigations of the

The perturbation theory above shows that electrons subject to a strong local repul­
sive Coulomb interaction have a tendency to adopt an antiparallel spin configuration 
between neighboring sites. This has a simple physical interpretation: electrons 
with antiparallel spins can take ad­
vantage of the hybridization (however 
small) and reduce their kinetic energy 
by hopping to a neighboring site (see 
fig. 2.5). Parallel spins, on the other 
hand, are unable to participate in this 
virtual process due to Pauli exclusion.

The calculation presented above is 
easily generalized to an extended lat­
tice system. Once again, projecting 
onto a basis in which all sites are 
singly occupied, virtual exchange pro­
cesses favor an antiferromagnetic ar­
rangement of neighboring spins. Such 
a correlated magnetic insulator is described by the quantum spin-1/2 Heisenberg 
Hamiltonian

electronic structure of magnetic and disordered 
systems.” Anderson made numerous contribu­
tions to theoretical physics, from theories of 
localization and antiferromagnetism to super­
conductivity and particle physics. He is also 
credited with promoting the term “condensed 
matter” in the 1960s as the field expanded 
beyond studies of the solid state.

H = J^ S m • 8 n (2.31)
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t—J Hamil­
tonian

cuprate
materials

where, as usual, (mn) denotes a sum over nearest neighbors and the positive ex­
change constant J ~ t2/U. While, in the insulating magnetic phase, the charge 
degrees of freedom remain “quenched,” spin fluctuations can freely propagate.

When doped away from half-filling, the behavior of the Hubbard mo del is no­
toriously difficult to resolve. The removal of electrons from a half-filled system 
introduces vacancies into the lower Hubbard band that may propagate through the 
lattice. For a low concentration of holes, the strong-coupling Hubbard system may 
be described effectively by the t—J Hamiltonian

Ht - J = - t^ P"sa m« an- Ps + ^2 S m • S n 

(mn } a (mn)

However, the passage of vacancies is frustrated by the antiferromagnetic spin cor­
relations of the background. Here, transport depends sensitively on the competi­
tion between the exchange and kinetic energy of the holes. Oddly, at J = 0 (i.e., 
U = o©), the ground state spin configuration is driven ferromagnetic by a single 
hole (exercise: consider why!) while, for J > 0, it is generally accepted that a critical 
concentration of holes is required to destabilize antiferromagnetic order.

INFO The rich behavior of the Mott-Hubbard system is nowhere more exemplified than 
in the ceramic cuprate compounds - the class of materials that comprise the high- 
temperature superconductors. Cuprates are built of layers of CuO2 separated by heavy 
rare earth ions such as lanthanum. According to band theory, the half-filled system (one 
electron per Cu site) should be metallic. However, strong electron interactions drive the 
cuprate system into an insulating antiferromagnetic Mott-Hubbard phase. When doped
away from half-filling, charge carriers are intro­
duced into the lower Hubbard band. In this case, 
the collapse of the Hubbard gap and the loss of an­
tiferromagnetic (AF) order is accompanied by the 
development of a high-temperature unconventional 
superconducting (SC) phase, whose mechanism is 
believed to be rooted in the exchange of antiferro­
magnetic spin fluctuations. Whether the rich phe­
nomenology of the cuprate system is captured by 
the Hubbard model remains a subject of great in­
terest and debate. At increasing temperatures, the 
cuprates pass through a “pseudogap” phase with 
a partially gapped Fermi surface into that of con­
ventional metallic behavior. (See the figure, where 
the phase diagram of La2-xSrxCuO4 is shown as a
function of temperature and the concentration x of Sr atoms replacing La atoms.)

This concludes our preliminary survey of the rich phenomenology of the interact­
ing electron system. Notice that, so far, we have merely discussed ways to distill a 
reduced model from the original microscopic many-body Hamiltonian (2.17). How­
ever, save for the two examples of free field theories analyzed in chapter 1, we have 
not yet learned how methods of second quantization can be applied to actually solve
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free theory

carbon 
nanotube

organic 
conductor

quantum 
wire

problems. To this end, in the following section, we will illustrate the application of 
the method on a prominent strongly interacting problem.

2.2.4 Interacting fermions in one dimension

Within the context of many-body physics, a theory is termed free if the Hamil- 
_ i

tonian is bilinear in creation and annihilation operators, i.e., H ~ IVa aIIH^V av, 
where H may be a finite- or infinite-dimensional matrix.11 Such models are “solv­
able” in the sense that the solution of the problem simply amounts to a diagonal­
ization of the matrix H^v (subject to the preservation of the commutation relations 
of the operators a and at). However, only a few models of interest belong to this 
category. In general, interaction contributions that are typically quartic in the field 
operators are present, and complete analytical solutions are out of reach.

11 More generally, a free Hamiltonian may also contain contributions ~ a^av and a^aV.

Yet there are a few precious examples of genuinely interacting systems that are 
amenable to (nearly) exact solution. In this section, we address an important rep­
resentative of this class, the one-dimensional interacting electron gas. Not only is 
its analysis physically interesting but, in addition, it provides an opportunity to 
practice working with the second-quantized operator formalism on a deeper level. 
To this end, consider the electron Hamiltonian (2.18) and (2.19) in one dimension. 
Including the chemical potential EF into the free part, and neglecting spin degrees 
of freedom (e.g., one might consider a fully spin-polarized band) we have

__/ k 2 \ 1 _
H = I2 ak{ 2m - Ed ak + 2L H V(q)ak-qak'+qak'ak. (2.32)

k ' k kk' ,q=0

INFO At first sight, the treatment of a one-dimensional electron 
system may seem academic. However, effective one-dimensional 
interacting fermion systems are realized in a surprisingly rich spec­
trum of materials. For example, a carbon nanotube is formed 
from a graphene layer rolled into a cylindrical geometry. The car­
bon lattice is surrounded by clouds of mobile (itinerant) electrons 
(see the upper panel of the figure). Confinement in the circumfer­
ential direction divides the system into a series of one-dimensional 
bands, each classified by a sub-band index and wave number k. 
At low temperatures, the Fermi surface typically intersects a sin­
gle sub-band, allowing attention to be concentrated on a strictly one-dimensional system. 
A similar mechanism renders certain organic molecules (such as the Bechgaard salt 
(TMTSF)2 PF6 , where TMTSF stands for tetramethyl-tetraselenafulvalene) one dimen­
sional.

A third realization is presented by artificial low-dimensional structures fabricated from 
semiconducting devices. The redistribution of charge at the interface of a GaAs/AlGaAs 
heterostructure results in the formation of a two-dimensional electron gas. By applying 
external gates, it is possible to fabricate quasi-one-dimensional semiconductor quantum 
wires, in which electron motion in the transverse direction is impeded by a large potential 
gradient. At sufficiently low Fermi energies, only the lowest eigenstate of the transverse
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Schrodinger equation (the lowest “quantum mode”) is populated and one is left with a 
strictly one-dimensional electron system (lower panel). There are other realizations, such 
as the edge modes in quantum Hall systems, “stripe phases” in high-temperature 
superconductors or certain inorganic crystals; but we shall not discuss these here.

The one-dimensional fermion system exhibits a number of features not shared by
higher-dimensional systems. The origin of these peculiarities can be understood
using a simple qualitative picture. Consider an array of interacting fermions confined
to a line. To optimize their energy, the electrons can merely “push” each other
around, thereby creating density fluctuations. By contrast, in higher-dimensional
systems, electrons are free to avoid contact by moving around each other.
A slightly different formulation of the 
same picture can be given in momentum 
space. The Fermi “sphere” of the one­
dimensional system is defined through 
the interval [-kF, kF] of filled momen­
tum states. The Fermi “surface” con­
sists of two isolated points, {kF , -kF} 
(see the figure). By contrast, higher­
dimensional systems typically exhibit ex­
tended Fermi surfaces, thus providing
more phase space for two-particle interaction processes. The one-dimensional elec-
tron system represents a rare exception of an interacting system that can be solved 
under few, physically weak, simplifying assumptions. This makes it an important 
test system on which non-perturbative manifestations of many-body interactions 
can be explored.

q~1

We now proceed to develop a quantitative picture of the charge 
density excitations of the one-dimensional electron system. An­
ticipating that, at low temperatures, the relevant dynamics takes 
place in the vicinity of the two Fermi points {kF, -kF}, we will 
reduce the Hamiltonian (2.32) to an effective model describing 
the propagation of left- and right-moving excitations. To this 
end, we first introduce subscripts R/L to indicate that an oper­
ator «(+/-)kp+q creates an electron that moves to the right/left 
with velocity ~ vF = kF/m. We next note (see the figure) that, 
in the vicinity of the Fermi points, the dispersion relation is approximately linear, 
implying that the non-interacting part of the Hamiltonian assumes the approximate 
form (exercise)

u f q

H0 aS^aSq.vfqasq, (2.33)

where <js = (+ /—) for s = R/L, and the summation over q is restricted by some 
momentum cutoff |q | < r beyond which the linearization of the dispersion is invalid. 
(Throughout this section, all momentum summations are subject to this constraint.) 
Turning to the interacting part of the Hamiltonian, let us first define the operator
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psq 52 aSk+qask. (2.34)

These operators afford two interpretations. Application of psq to the ground state 
creates superpositions of particles (ajk+q) with momentum k + q and energy ek+q 

and holes (asq) with momentum k and ek. This may be interpreted as the excitation 
of a particle from a filled state k to an empty state k + q. Such particle-hole 
excitations cost energy ek+q — ek = vFq, independent of k (see the upper panel of 
the figure). Alternatively, thinking of psq as the Fourier transform of the real space 
density operator ps(x) (exercise), the particle-hole excitation can be interpreted as 
a density modulation of characteristic wavelength ~ q-1. Since both, particles and 
holes travel with the same velocity, vF , these excitations do not disperse and are 
expected to show a high level of stability. On this basis, we expect the operators 
psq to represent the central degrees of freedom of the theory.

Represented in terms of density operators, the interaction contribution to the 
Hamiltonian may be recast as

Vee = 2L ^"2 V5e(q) ak-qak' + qak'ak = 2^ [g4psqps-q + g2psqps-q] , (2.35)

where s = L/R denotes the complement of s = R/L, and the constants g2 and 
g4 measure the strength of the interaction in the vicinity of the Fermi points, i.e., 
where q ~ 0 and q ~ 2kF. (The notation g2,4 follows a common nomenclature.)

EXERCISE Explore the relation between the coupling constants g2,4 and the Fourier 
transform of Vee. Show that, to the summation kk,q, not only terms with (k, k',q) ~ 
(± k F, ± k F, 0), but also terms with (k, k' ,q) ~ (± k F, ^ k F, 2 k F) contribute. When ade­
quately ordered (check it!), these contributions can be arranged into the form of the right­
hand side of Eq. (2.35). (For a detailed discussion see, e.g., the books by Giamarchi12 and 
Mahan13). The only point that matters for our present discussion is that the interaction 
can be represented through density operators with positive constants g2,4 determined by 
the interaction strength.

12 T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, 2004).
13 G. Mahan, Many Particle Physics (Plenum Press, 1981).

commutator

INFO Working with second-quantized theories, one frequently needs to compute commu­
tators of operators A(a, a^) that are polynomial in the elementary boson/fermion operators 
of the theory (e.g., A = aa^, A = aaa^a^, etc., where we have omitted the quantum num­
ber subscripts carried by a and a^). Such types of operation are made easier by elementary 
commutator algebra. The most basic identity, from which many other formulae can be 
derived, reads

(2.36)[ el ,B C]± = [ el ,B]± C T B[ t! ,C]±

Iteration of this equation for boson operators a, a^ shows that

[a^, an ] = — nan 1. (2.37)
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(Owing to the fact that a2 = 0 in the fermionic case, there is no fermion analog of this 
equation.) Taylor expansion then shows that, for any analytic function F(a), [a^,F(a)] = 
—F'(a). Another useful formula is a^F(aa^) = F(a^a)a^, which is also verified by series 
expansion.

So far, we have merely rewritten parts of the Hamiltonian in terms of density 
operators. Ultimately, however, we wish to arrive at a representation whereby these 
operators, instead of the original electron operators, represent the fundamental 
degrees of freedom of the theory. Since the definition of the operators p involves 
the squares of two Fermi operators, we expect the density operators to resemble 
bosonic excitations. As a first step towards the construction of the new picture, we 
therefore explore the commutation relations between the operators psq.

From the definition (2.34), and the auxiliary identity (2.36), it is straightforward 
to verify the commutation relation [ psq, ps, q, ] = dss, £ k (a Sk+q ask - q' - a Sk+q+q , ask). 
As it stands, this relation is not of much practical use. To make further progress, we 
must resort to a mild approximation. Ultimately we will want to compute observ­
ables as expectation values taken in the zero-temperature ground state of the theory, 
(Q|... |Q). To simplify the structure of the theory, we may thus replace the right­
hand side of the commutation relation by its ground state expectation: [psq, ps<q<] « 
^ss' S k (^| aSk + q ask - q' — aSk+q+q' ask = $ss' $q, — q' S k (^|( n sk+q — n sk )|^), where, 
as usual, nsk = askask and we have made use of the fact that (Q|askask' |Q) = 6kk'. 
Although this is an uncontrolled approximation, it is expected to become better at 
low excitation energies.

EXERCISE Critically assess the validity of the above approximation. (For a comprehen­
sive discussion, see Giamarchi’s text. )

At first sight, it would seem that the right-hand side of our simplified commuta-
?

tor relation vanishes. A simple shift of the summation index, 52k (^1 nsk+q 1^) = 
52k(Q|nsk|Q), indicates that the two terms contributing to the sum cancel. How­
ever, this argument is naive: it ignores the fact that our summation is limited by a 
cutoff momentum r. Since the shift k ^ k — q changes the cutoff, the interpretation 
above is invalid. To obtain a more accurate result, let us consider the case s = R 
and q > 0. We know that, in the ground state, all states with momentum k < 0 are 
occupied, while all states with k > 0 are empty. This implies that

J2(Q|(nRk+q — nRk)|Q) = I ' +52 I (^|(nRk+q — nRk)|^

= ^|(nRk+q — nRk)|^ = —5-,2—2 2 n
—q<k<0

where, in the last equality, we have used the fact that a momentum interval of size q 
contains q/(2n/L) quantized momentum states. Similar reasoning for s = L shows
that the effective form of the commutator relation reads

[Psq, ps'q'] &ss1 3q, — q1 ®s
qL
2 n.

(2.38)
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If it were not for the q-dependence of the right hand side (r.h.s. throughout), we 
would indeed have found bosonic commutation relations. To make the connection
to bosons explicit, let us define 

bq — nqpLq,

b—q — nq PR— q,

bq — nq PL — q, 

b—q — nq pR q,
(2.39)

where q > 0 and nq — (2n/Lq)1 /2. The operators {bq, bq} do indeed obey canonical 
commutation relations (check this). We conclude that, apart from the scaling fac­
tors nq , the quantum density excitations of the system indeed behave as bosonic 
“particles.”

Expressed in terms of the b-operators, the interaction part of the Hamiltonian 
takes the form (exercise)

Notice that we have succeeded in representing a genuine two-body interaction, a 
contribution that usually renders a model unsolvable, in terms of a quadratic repre­
sentation. However, this representation of the interaction term is of little use until 
the kinetic part of the Hamiltonian H0 is represented in terms of the b operators.

It turns out that the direct construction of a representation of HP 0 in b’s, is cum­
bersome in practice. However, there exists a more efficient alternative: As follows 
from the discussion of section 2.1.1, the properties of second quantized operators 
are fixed by their commutation relations.14 If we manage to identify an operator 
H0 (b, bt) having the same commutation relations with the b-operators as the kinetic 
energy operator H0(a, a'), we know that H0 = H0, up to an undetermined (and 
inessential) constant.

14 This argument can be made quantitative by group-theoretic reasoning: Eqs. (2.4) and (2.7) 
define the irreducible representation of an operator algebra — an algebra because [ , ] defines 
a product in the space of generators {a\, a^}; a representation because the operators act in a 
vector space (namely Fock space F) which is irreducible because all states | A1,.. . ,An ) G F 
can be reached by the iterative application of operators to a unique reference state (e.g., |Q)). 
Under these conditions, Schur’s lemma — to be discussed in more detail in section 3.4.1 — states 
that two operators Ai and 7(2, having identical commutation relations with all {a\,a^} are 
equal up to a constant.

Using Eq. (2.33), the definition (2.34), and the auxiliary identity (2.36), it is 
straightforward to verify that [H0, psq] = qvF ff.p.q. On the other hand, using 

s /r> i j i j j i j j • i j • r tt! 1Eq. (2.38), one finds that the same commutation relations, [H0, psq] = qvFff.p.q, 
hold for

HP0 = ‘nF e p., p. - q.

qs

On this basis, we may substitute H0 for the non-interacting Hamiltonian.

EXERCISE To gain some confidence in the identification HHo = HH0 + const., and to estab­
lish that the undetermined constant actually equals zero, show that the energy expectation 
values of the state |^sq) = psq|Q) for both (^sq|Ho|^sq) and (^sq|H01^sq} coincide.
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Finally, using Eq. (2.39), and adding the interaction contribution Vee, we arrive at 
the effective Hamiltonian

i 1H=2iY/q(bq

q>0

, t W 2nvF + g4 
b-q-q g2

g2

2nvf + g4 b-q
(2.40)

bosonization

fermioni-
zation

number
conser­
vation

At this point, we have succeeded in mapping the full interacting problem onto 
a free bosonic theory. The mapping a ^ p ^ b is our first example of a concept 
known as bosonization. This technique plays an important role in 2(=1 space +

time)-dimensional field theory in general, and more sophisticated schemes will 
be discussed in section 3.6. Conversely, it is sometimes useful to represent a boson 
problem in terms of fermions, via fermionization. One may wonder why it is 
possible to represent the low-lying excitations of a gas of fermions in terms of 
bosons. Fermi-Bose transmutability is indeed a peculiarity of one-dimensional 
quantum systems. Particles confined to a line cannot pass “around” each other. 
That means that the whole issue of sign factors arising from the interchange of 
particle coordinates does not arise, and much of the exclusion-type characteristics 
of the Fermi system are inactivated.

Now, there is one last problem that needs to be overcome to solve the interacting 
problem. In chapter 1, we learned how to interpret Hamiltonians with the structure 
E q bqbq as superpositions of harmonic oscillators. However, in our present problem, 
terms of the type bqb-q and b-qbq appear. To return to familiar terrain, we need 
to eliminate these terms. Before doing so, it is instructive to discuss their physical 
meaning.

Recall that the number operator of a theory described by operators {bx,bx} _  4- _ ■
is given by N = ffb x bfbx. If the Hamiltonian has the form H = ^2 xv b^H^v bv, 
this number operator commutes with H, i.e., [N, H] = 0 (exercise), meaning that 
the dynamics conserves the total number of particles. Formally, particle number 
conservation implies that H and N can be simultaneously diagonalized. More 
generally, any Hamiltonian containing only operators with as many bs as bjs (e.g., 
bjbjbb, bjbjbjbbb, etc.) creates and annihilates particles in equal numbers and hence 
is number conserving. Conversely, in situations where the number of particles is not 
fixed (e.g., a theory of photons or phonons), terms like bb or btbt can appear. Such 
a situation is realized in the present problem: the number of density excitations 
in an electron system is certainly not a conserved quantity, which explains why 
contributions like bq b-q appear in H.

To finally solve the problem, we must find a way to diagonalize the matrix

K = 1 2 2nvF + g4

2 2 n \ g 2
g2

2nvf + g4

To this end, let us introduce the shorthand notation ^q = (b^, b-q)T, and rewrite 
the Hamiltonian as H = ^2q>0 q ^JK^q. If we now define ^q = T-1^q, where T 
is a 2 x 2 matrix acting on ^q,15 the Hamiltonian transforms as follows:

15 Since K does not depend on q , T can be chosen to be likewise q-independent.
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h = E q * q k * q ^E q *q *q (2^1)

with a new matrix K' = Tj KT. We will seek a transformation T that makes K' 
diagonal. Crucially, however, not all 2 x 2 matrices T qualify as legitimate trans­
formations. We must ensure that the transformed “vector” again has the structure 
*q = (b'j ,b-q)T, with a boson creation/annihilation operator in the first/second 
component; the bosonic commutation relations of the representation must be con­
served by the transformation (think about this point). This invariance condition is 
expressed in mathematical form as [*qi, *.j] = (—a3)j = [*qi, *qj]. Substitution 

of *' = T-1*, yields the pseudo-unitarity condition Tja3T = a3.
With this background, we may identify the transformation bringing K to a di­

agonal form. To this end, we multiply the definition TjKT = K' by a3 to obtain

(a 3 Tt a 3) a 3 KT = a 3 K'.
T -1

This equation states that the diagonal matrix a3K' = diag(+vp, — vp) = vpa3 is 
obtained by a similarity transformation T-1(^ • •)T from a3K. The diagonal a3K' 
contains the eigenvalues ±vp of a3K, which sum to zero since tr(a3K) = 0. These 
eigenvalues are readily computed as

vp = 2n [(2nvf+g4)2 — g2] /. (2.42)

Thus, with a3K' = a3vp, we ar­
rive at K' = vp x id., where id. de­
notes the unit matrix.16 Substitution 
of this result into Eq. (2.41) finally 
leads to the diagonal Hamiltonian H = 
vp^2q>0 q *q*q or, equivalently, mak­
ing use of the identity *q *q = bj bq + 
bt-q b-q + 1,

H = vp E IqIbjbq. (2.43)
q

quantum field theory, renormalization group 
theory, the proof of dispersion relations, and 
elementary particle theory.

Nicolai Nikolaevich Bogoli- 
ubov 1909-1992 
was a Soviet mathematician 
and theoretical physicist ac­
claimed for his works in non­
linear mechanics, statistical 
physics, the theory of super­
fluidity and superconductivity,

Bogoliubov 
transfor­

mation

Here we have ignored an overall constant and omitted the prime on the new Bose 
operators.

In the literature, the transformation procedure outlined above is known as a 
Bogoliubov transformation. Transformations of this type are frequently applied

16 Explicit knowledge of the transformation matrix T , i.e., knowledge of the relation between the 
operators b and bz, is not needed for our construction. However, for the sake of completeness, 
we mention that

T ( cosh &k

I sinh 0k

sinh 0k 

cosh 0k

with tanh(20) = — g2/(2nvf + g4), represents a suitable parameterization.
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charge 
density

waves

charge den­
sity waves

in quantum magnetism (see below), superconductivity or, more generally, all prob­
lems where the particle number is not conserved. Notice that the possibility of 
transforming to a representation ~ btb does not imply that, miraculously, the the­
ory has become particle number conserving. The new “quasi-particle” operators b 
are related to the original Bose operators through a transformation that mixes b 
and bt . While the quasi-particle number is conserved, the number of original density 
excitations is not.

Equations (2.42) and (2.43) represent our final solution of the problem of spin­
less interacting fermions in one dimension. We have succeeded in mapping the 
problem onto a form analogous to our previous results (1.34) and (1.39) for the 
phonon and the photon system, respectively. Indeed, all that has been said about 
those Hamiltonians applies equally to Eq. (2.43): the basic elementary excitations 
of the one-dimensional fermion system are waves, i.e., excitations with linear dis­
persion w = vp |q|. In the present context, they are termed charge density waves 
(CDW). The Bose creation operators describing these excitations are, up to the 
Bogoliubov transformation, and a momentum-dependent scaling factor (2n/Lq)1 /2, 
equivalent to the density operators of the electron gas. For a non-interacting system, 
g2 = g4 = 0, and the CDW propagates with the velocity of the free Fermi particles, 
vF . A fictitious interaction that does not couple particles of opposite Fermi momen­
tum, g2 = 0, g4 = 0, speeds up the CDW. Heuristically, this can be interpreted as 
an “acceleration process” whereby a CDW pushes its own charge front. By contrast, 
interactions between left and right movers, g2 = 0, diminish the velocity, i.e., owing 
to the Coulomb interaction it is difficult for distortions of opposite velocities to 
penetrate each other. (Notice that for a theory with g2 = 0, no Bogoliubov trans­
formation is needed to diagonalize the Hamiltonian. In this case, undisturbed left- 
and right-moving waves are the basic excitations of the theory.)

Our discussion above neglected the spin carried by conduction electrons. Had 
we included spin, the following picture would have emerged (see problem 2.4.6). 
The long-range dynamics of the electron gas is governed by two independently 
propagating wave modes, the charge density wave discussed above, and a spin 
density wave (SDW). 17 The SDW carries a spin current, but is electrically 
neutral. As with the CDW, its dispersion is linear, with an interaction-renormalized 
velocity, vs (which, however, is generally larger than the velocity vp of the CDW). To 
understand the consequences of this phenomenon, imagine that an electron has been 
thrown into the system (e.g., by attaching a tunnel contact somewhere along the 
wire). As discussed above, a single electron does not represent a stable excitation of 
the one-dimensional electron gas. What will happen is that the spectral weight of the 
particle18 disintegrates into a collective charge excitation and a spin excitation. The

17 The charge density of the electron gas p = p-\~ + p^ is the sum of the densities of the spin-up and 
spin-down populations, respectively. The local spin density is given by ps = p^ — p^. After what 
has been said above, it is perhaps not too surprising that fluctuations of these two quantities 
represent the dominant excitations of the electron gas. What is surprising, though, is that these 
two excitations do not interact with each other.

18 For a precise definition of this term, see chapter 7.
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Tomonaga-
Luttinger 

liquid

newly excited waves then freely propagate into the bulk of the system at different 
velocities ±vp and ±vs. The collective quantum state defined by the independent 
and free propagation of CDWs and SDWs is called the Tomonaga—Luttinger 
liquid19 or just the Luttinger liquid. We will return to the discussion of of this 
phase of quantum matter in chapter 3, from a field-theoretical perspective.

19 J. M. Luttinger, An exactly soluble model of a many-fermion system, J. Math. Phys. 4, 1154 
(1963); S. Tomonaga, Remarks on Bloch’s method of sound waves applied to many-fermion 
problems, Prog. Theor. Phys. 5, 544 (1950).

20 C. Kim et al., Observation of spin-sharge separation in one-dimensional SrCuO2 , Phys. Rev. 
Lett. 77, 4054 (1996); B. J. Kim et al., Distinct spinon and holon dispersions in photoemission 
spectral functions from one-dimensional SrCuO2 , Nature Phys. 2, 397 (2006); J. N. Fuchs et 
al., Spin waves in a one-dimensional spinor bose gas, Phys. Rev. Lett. 95, 150402 (2005); J. 
Vijayan et al., Time-resolved observation of spin-charge deconfinement in fermionic Hubbard 
chains, Science 367, 168 (2020).

spin­
charge 

separation

INFO The “disintegration” of electrons into collective spin and charge excitations is 
a phenomenon known as spin-charge separation. Such types of effective “fractional- 
izations” of elementary quantum particles into collective excitations are ubiquitous in 
modern condensed matter physics. In fractionalization, the quantum numbers carried by 
elementary particles become absorbed by different excitation channels. One of the most 
prominent manifestations of this effect is the appearance of fractionally charged excitations 
in quantum Hall systems, to be discussed in more detail in chapter 8.

Although the theory of spin and charge density waves in one-dimensional conductors 
has a long history spanning many decades, its experimental verification proved 
challenging but was eventually achieved.20

2.2.5 Quantum spin chains

In section 2.2.1, we discussed how 
Coulomb interactions may lead to the 
indirect generation of magnetic inter­
actions. We saw in the previous section 
how in one dimension this principle 
manifests itself via the generation of 
(magnetic) spin density wave excita­
tions. However, to introduce the phe­
nomena brought about by quantum 
magnetic correlations, it is best to first 
consider systems where the charge de­
grees of freedom are frozen and only 
spin excitations remain. Such systems

Werner Heisenberg 1901­
1976
was a German theoretical 
physicist who, in 1932, received 
the Nobel Prize in Physics 
“for the creation of quantum 
mechanics, the application 
of which has, inter alia, led
to the discovery of the allotropic forms of hy­
drogen.” As well as his uncertainty principle, 
Heisenberg made important contributions to 
the theories of turbulence, ferromagnetism, 
cosmic rays, and subatomic particles, and was 
instrumental in planning the first West German 
nuclear reactor at Karlsruhe.

are realized, for example, in Mott insulators, where the interaction between the spins 
of localized electrons is mediated by virtual exchange processes between neighboring 
electrons. One can describe these correlations through models of localized quantum 
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spins - either in chains or, more generally, in higher-dimensional quantum spin 
lattices. We begin our discussion with the ferromagnetic spin chain.

Heisenberg 
ferro- 

magnet

Quantum ferromagnet

The quantum Heisenberg ferromagnet is specified by the Hamiltonian

H = - S m • S n (2.44)

1 j j 1 j 1 • 1 j j 1 j j • • jwhere J > 0, Sm represents the quantum mechanical spin operator at lattice site m 
and (mn) denotes summation over neighboring sites. In section 2.1.1 (see Eq. (2.13)) 
the quantum mechanical spin was represented through an electron basis. However, 
one can conceive of situations where the spin sitting at site m is carried by a different 
object (e.g., an atom with non-vanishing magnetic moment). For the purposes of 
our present discussion, we need not specify the microscopic origin of the spin. All 
we need to know is that (i) the lattice operators Smi obey the SU(2) commutator 
algebra (~ = 1),

21 Remember that the finite-dimensional representations of the spin operator are of dimension 
2S + 1, where S may be integer or half integer. While a single electron has spin S = 1/2, the 
total magnetic moment of electrons bound to an atom may be much larger.

[ s m, sn ] = itmnj Sn, (2.45)

characteristic of quantum spins, and (ii) the total spin at each lattice site is S .21

Now, owing to the positivity of the coupling con­
stant J, the Hamiltonian favors configurations where 
the spins at neighboring sites are aligned in the same 
direction (see the figure). A ground state of the system 
is given by |Q) = ®m |Sm), where |Sm) represents a 
state with maximal z-component: Sm|Sm) = S|Sm).
We have written “a” ground state instead of “the” ground state because the sys­
tem is highly degenerate: a simultaneous change in the orientation of all spins does 
not change the ground state energy, i.e., the system possesses a global rotation 
symmetry.

spin waves

EXERCISE Compute the energy expectation value of the state |Q). Defining global spin 
operators through Si = S^m, consider the state |a} = exp(ia • S)|Q). Verify that the
state a is degenerate with |Q). Explicitly compute the state |(n/2, 0, 0)}. Convince yourself 
that, for general a, |a} can be interpreted as a state with rotated quantization axis.

As with our previous examples, we expect that a global continuous symmetry entails 
the presence of energetically low-lying excitations. Indeed, it is obvious that, in the 
limit of long wavelength A, a weak distortion of a ground state configuration will 
cost vanishingly small energy. To explore the physics of these excitations or spin 
waves quantitatively, we adopt a “semiclassical” picture, where the spin S 1 is
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taken to be large. In this limit, the rotation of the spins around the ground state 
configuration becomes similar to the rotation of a classical magnetic moment.

semiclassical
approx­
imation

INFO To better understand the mechanism behind the semiclassical approximation, 
consider the Heisenberg uncertainty relation A Si A Sj ~ |([ S i,S j ])| = e'ijk |( Sk )|, where 
ASi is the root mean square of the quantum uncertainty of spin component i. Using the 
fact that |( Sk )| < S, we obtain for the relative uncertainty, A Si / S, the relation

A Si A Sj S s »x 0
S S ~ S2 -^ 0,

i.e., for S 1, quantum fluctuations of the spin become increasingly less important.

In the limit of large spin S, and at low excitation energies, it is natural to de­
scribe the ordered phase in terms of small fluctuations of the spins around their 
expectation values (cf. the description of the ordered phase of a crystal in terms of 
small fluctuations of the atoms around the ordered lattice sites). These fluctuations 
are conveniently represented in terms of spin raising and lowering operators. With 
Sm = Sm ± iSm, it is straightforward to verify that

Sz S±1 ± AS ± S+ S-l 2 ASm, n = mn m, m, n = mn m

Holstein—
Primakoff 
transfor­

mation

(2.46)

Application of <S’m(+) lowers (raises) the z-component of the spin at site m by one. 
To make use of the fact that deviations around |Q) are small, it is convenient to 
represent spins in terms of bosonic creation and annihilation operators at and a 
through the Holstein—Primakoff transformation:22

22 T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a 
ferromagnet, Phys. Rev. 58, 1098 (1940).

S- — /,t (2 S _ Sr, V /2 S+ — (2 S _ Sr, V / 2„ Sz — S _ Sr, Sm = am 2S - amam , Sm = 2S - amam am, Sm = S - amam

EXERCISE Confirm that the spin operators satisfy the commutation relations (2.46).

The utility of this representation is clear. When the spin is large, S 1, an expan­
sion in powers of 1 /S gives §m = S — amam, §m ~ (2S)1 /2am, and Sm ~ (2S)1 /2am. 
In this approximation, the one-dimensional Heisenberg Hamiltonian takes the form

1 1I 1 i 1 i 1 r r r , \|11=— |S m s m+1 + 2 (sms-+1+s -sm+O /

= — JNS2 + JS ^^(am +1 — am)(am +1 — am) + O(S0) .

Keeping fluctuations at leading order in S, the quadratic Hamiltonian can be 
diagonalized by Fourier transformation. Imposing periodic boundary conditions,
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Fig. 2.6

0.2 0.4 0.6 0.8 1.0 1.2
Wave number (A-1)

Spin-wave spectrum of EuO as measured by inelastic neutron scattering at a reference 
temperature of 5.5 K. Note that, at low values of momentum q, the dispersion is quadratic, 
in agreement with the low-energy theory. (Exercise: Close inspection of the data shows the 
existence of a small gap in the spectrum at q = 0. To what may this gap be attributed?) 
Figure reprinted with permission from L. Passell, O. W. Dietrich and J. Als-Nielser, Neutron 
scattering from the Heisenberg ferromagnets EuO and EuS I: the exchange interaction, 
Phys. Rev. B 14, 4897 (1976). Copyright (1976) by the American Physical Society.

Sm+N = Sm and am+N = am , where N denotes the total number of lattice sites, 
and setting am = ^= B'Z' e-ikmak, the Hamiltonian takes the form (exercise)

B.Z.

H = — JNS 2 + ^k a k ak + O (S 0)
k

magnons

(2.47)

where wk = 2 JS(1 — cos k) = 4 JS sin2(k/2). In the limit k ^ 0, the excitation 
energy vanishes as wk ^ JSk2. These massless low-energy excitations, known 
as magnons, represent the elementary spin-wave excitations of the ferromagnet. 
At higher order in S, interactions between the magnon excitations emerge, which 
broaden and renormalize the dispersion. Nevertheless, comparison with experiment 
(fig. 2.6) confirms that the low-energy spin-wave excitations are quadratic in k .

Heisenberg 
antiferro- 

magnet

Quantum antiferromagnet

Having explored the elementary excitation spectrum of the ferromagnet, we now 
turn to the spin S Heisenberg antiferromagnet

E
. £
S m • s n
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bipartite 
lattice

Neel
state

frustrated 
magnet

where J > 0. As we have seen, such antiferromagnetic sys­
tems occur in the arena of correlated electron compounds. 
Although the Hamiltonian differs from the ferromagnet 
“only” by a change of sign, the differences in the physics 
are drastic. First, the phenomenology displayed by the 
antiferromagnetic Hamiltonian H depends sensitively on 
the geometry of the lattice.

For a bipartite lattice, i.e., one in which the neigh-
bors of one sublattice A also belong to the other sublattice B (see upper panel of 
figure), the ground states of the antiferromagnet are close23 to a staggered spin con­
figuration, known as a Neel state, in which all neighboring spins are anti-parallel.

23 It is straightforward to verify that the classical ground state — the Neel state — is not an exact 
eigenstate of the quantum Hamiltonian. The true ground state exhibits zero-point fluctuations 
reminiscent of the quantum harmonic oscillator or atomic chain. However, when S 1, the 
Neel state serves as a useful reference state from which fluctuations can be examined.

Again the ground state is degenerate, i.e., a global rotation of all spins by the same 
amount does not change the energy. By contrast, on non-bipartite lattices, such as 
the triangular one shown in the lower panel, there exists no spin configuration 
wherein each bond is assigned the full exchange energy J . Spin models of this kind 
are said to be frustrated.

EXERCISE Employing only symmetry considerations, identify a 
possible classical ground state of the triangular lattice Heisenberg 
antiferromagnet. (Hint: construct the classical ground state of a three- 
site plaquette and then develop the periodic continuation.) Show that 
the classical antiferromagnetic ground state of the Kagome lattice - 
a periodic array of corner-sharing Stars of David - has a continuous 
spin degeneracy generated by local spin rotations. How might the degeneracy affect the 
transition to an ordered phase?

Louis Neel 1904-2000 
was a French physicist who, 
with Hannes Alfven shared the 
1970 Nobel Prize in Physics for 
his “fundamental work and dis­
coveries concerning antiferro­
magnetism and ferrimagnetism 
that have led to important 
applications in solid state physics.”

Returning to the one-dimensional sys­
tem, we first note that a chain is triv­
ially bipartite. As before, our strategy 
will be to expand the Hamiltonian in 
terms of bosonic operators. However, 
before doing so, it is convenient to ap­
ply a canonical transformation to the 
Hamiltonian in which the spins on one 
sublattice, say B, are rotated through 180° about the x-axis, i.e., SB ^ SB = SB, 
SB ^ Sg = — Sb , and SB ^ SB = - SB . When represented in terms of the new 
operators, the Neel ground state looks like a ferromagnetic state, with all spins 
aligned. We expect that a gradual distortion of this state will produce the anti­
ferromagnetic analog of the spin waves discussed in the previous section (see the 
figure).
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In terms of the transformed operators, the Hamiltonian takes the form

H= - Sm SZm +1
1( sm S++1 + Sm Sm+1) .

m

Once again, using the Holstein-Primakoff representation Sm ~ (2 S )1 /2 a mm, etc.,

HH = — NJS2 + JS [amam + am +1 am +1 + amam +1 + ammam, +1] + O(S0) .

At first sight, the structure of this Hamiltonian, albeit quadratic in the Bose 
operators, looks awkward. However, after applying the Fourier transformation 
am = ^7= kek e-ikmak, it assumes a more symmetric form:

1H = - NJS (S + 1) + JS (a k
Yk

k (aA + O(S0),
1 a-k

a k

where Yk = cos k . Apart from the definition of the matrix kernel between the Bose 
operators, HI is equivalent to the Hamiltonian (2.40) discussed in connection with 
the charge density wave. Performing the same steps as before, the non-particle­
number-conserving contributions amam can be removed by Bogoliubov transforma­
tion. As a result, the transformed Hamiltonian assumes the diagonal form

H = -NJS(S + 1) + 2J^2 I sin kl(amkak + 1 /2) (2.48)

Thus, in contrast with the ferromagnet, the spin-wave 
excitations of the antiferromagnet (fig. 2.7) display a 
linear dispersion in the limit k ^ 0. Surprisingly, al­
though developed in the limit of large spin, experiment 
shows that even for S = 1/2 spin chains, this linear 
dispersion is maintained (see fig. 2.7).

More generally, it turns out that, for chains of arbi­
trary half-integer spin S = 1/2, 3/2, 5/2, . . ., the low- 
energy spectrum is linear, in agreement with the results of the harmonic approxima­
tion. In contrast, for chains of integer spin S = 1, 2, 3 . . ., the low-energy spectrum 
contains a gap, i.e., these systems do not support long-range excitations. As a rule, 
the sensitivity of a physical phenomenon to the characteristics of a sequence of num­
bers - such as half integer versus integer - signals the presence of a mechanism of 
topological origin.24 At the same time, the formation of a gap (observed for integer 
chains) represents an interaction effect; at orders beyond the harmonic approxima­
tion, spin waves begin to interact nonlinearly with each other, a mechanism that 
may (for S integer) but need not (for S half integer) destroy the wave-like nature 
of the low-energy excitations. In section 8.4.6 - in a chapter devoted to a discussion

24 Specifically, the topological signature of a spin field configuration will turn out to be the number 
of times the classical analog of a spin (a vector on the unit sphere) will wrap around the sphere 
in (1 + 1)-dimensional space-time.
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Fig. 2.7 Experimental spin-wave dispersion of the high-Tc parent compound LaCuO4 - a prominent 
spin-1 /2 antiferromagnet. The x-axis denotes individual trajectories between distinct points 
of the two-dimensional Brillouin zone, r: (0, 0), M: (1 /2, 1 /2), and X: (1 /2, 0). Reprinted 
with permission from R. Coldea et al., Spin waves and electronic excitations in La2CuO4, 
Phys. Rev. Lett. 86, 5377-(2001). Copyright (2001) by the American Physical Society.

of the intriguing phenomena generated by the conspiracy of global (topological) 
structures with local interaction mechanisms - we will discuss these phenomena at 
a deeper level.

2.3 Summary and Outlook

This concludes our discussion of second quantization and some of its applications. 
Additional examples can be found in the problems below. In this chapter, we have 
introduced second quantization as a tool whereby problems of many-body quantum 
mechanics can be cast and addressed more efficiently than by the traditional lan­
guage of symmetrized many-body wave functions. We have discussed how the two 
approaches are related to each other, and how the standard operations of quantum 
mechanics can be performed by second-quantized methods.

Beyond qualitative discussions, the list of concrete applications encountered in 
this chapter involved problems that either were non-interacting from the outset, 
or could be reduced to a quadratic operator form by a number of suitable manip­
ulations. However, we carefully avoided dealing with interacting problems where 
no such reductions are possible - the vast majority of problems encountered in 
condensed matter physics. What can be done in situations where interactions, 
i.e., operator contributions of fourth or higher order, are present and no tricks 
such as bosonization can be performed? Generically, either interacting problems 
of many-body physics are fundamentally inaccessible to perturbation theory, or 
they necessitate perturbative analyses of infinite order in the interaction contri­
bution. Situations where a satisfactory result can be obtained by first- or second- 
order perturbation theory are exceptional. Within second quantization, large-order 
perturbative expansions in interaction operators lead to complex polynomials of 
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creation and annihilation operators. Quantum expectation values taken over such 
structures can be computed by a reductive algorithm, known as Wick’s theorem. 
However, from a modern perspective, the formulation of perturbation theory in this 
way is not very efficient. More importantly, problems of particular interest are more 
often non-perturbative in character.

To understand the language of modern condensed matter physics, we need to 
develop another layer of theory, known as field integration. In essence, the latter is a 
concept generalizing the effective action approach of chapter 1 to the quantum level. 
However, before discussing quantum field theory, we should understand how the 
concept works in principle, i.e., on the level of single-particle quantum mechanics. 
This will be the subject of the next chapter.

2.4 Problems

2.4.1 Stone-von Neumann theorem

Stone—von
Neumann 

theorem

In the main text, we introduced creation and annihilation operators in a constructive manner, 

i.e., by specifying their action on a xed Fock space state. We saw that this denition implied 

remarkably simple algebraic relations between the newly-introduced operators { the Heisenberg 

algebra (2.7). In this problem we explore the mathematical structure behind this observation. 

(The problem is included for the benet of the mathematically inclined. Readers primarily 

interested in practical aspects of second quantization may safely skip it!)

Let us define an abstract algebra of objects ax and ax by

[ax, aM]z = 6\^, [a\, a„]z = [ax, aM]< = 0•

Further, let us assume that this algebra is unitarily represented in some vector space 
F. This means that (i) to every ax and ax we assign a linear map Tax : F ^ F such 
that (ii) Tax,& ^ ] z = [ Tax ,Ta * ] z, and (iii) Ta x = T^. To keep the notation simple, 
we will denote Tax by ax (now regarded as a linear map F ^ F) and Tax by aX.

The Stone—von Neumann theorem states that the representation above is 
unique, i.e., that, up to unitary basis transformations, there is only one such rep­
resentation. The statement is proven by explicit construction of a basis on which 
the operators act in a specific and well-defined way. We will see that this action is 
given by Eq. (2.6), i.e., the reference basis is simply the Fock space basis used in the 
text. This proves that the Heisenberg algebra encapsulates the full mathematical 
structure of the formalism of second quantization.
(a) We begin by noting that the operators nx = aXax are hermitian and com­
mute with each other, i.e., they are simultaneously diagonalizable. Let |nx 1, nx2, • • •) 
be an orthonormalized eigenbasis of the operators {n x }, i.e., n xi | nx 1 ,nx 2 ,...) = 
nXi |nX 1, nx2, • • •). Show that, up to unit-modular factors, this basis is unique. (Hint: 
Use the irreducibility of the transformation.) (b) Show that axi |nx 1 ,nx2, • • •) is an 
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eigenstate of nii with eigenvalue nii — 1. Use this information to show that all 
eigenvalues nii are positive integers. (Hint: Note the positivity of the scalar norm.) 
Show that the explicit representation of the basis is given by

|ni 1 ,ni2,...) = n (a>)4i 0, (2.49)

i n!

where |0) is the unique state which has eigenvalue 0 for all ni. Comparison with 
Eq. (2.4) shows that the basis constructed above indeed coincides with the Fock 
space basis considered in the text.

Answer:

(a) Suppose we have identified two bases {|ni 1 ,ni2,...)} and {|ni 1 ,ni2,...)'} on 
which all operators ni assume equal eigenvalues. The irreducibility of the represen­
tation implies the existence of a polynomial P({a^i, a^. }) such that |ni 1, ni2,...) = 
P({a^i, a^.})|ni 1, ni2,.../. Now, the action of P must not change any of the eigen­
values of ni, which means that P contains the operators a^ and a^ in equal numbers. 
Reordering operators, we may thus bring P into the form P({a^i, a<}) = P({nPi}). 
However, the action of this latter expression on |ni 1, ni2,...just produces a num­
ber, i.e., the bases are equivalent.
(b) For a given state |n) (concentrating on a fixed element of the single-particle 
basis, we suppress the subscript Xi throughout), let us choose an integer q such that 
naq-1|n) = (n — q + 1)aq-1|n) with n — q + 1 > 0 while n — q < 0. We then obtain

0 > (n — q)(n|(aXqaq|n) = (n|(a^)qnaq|n) = (n|(aXq+1 aq +1|n) > 0.

The only way to satisfy these inequalities is to require that (n|(at)q+1 aq +1|n) = 0 
and n — q = 0. The last equation implies the integer-valuedness of n. (In principle, 
we ought to prove that a zero-eigenvalue state |0) exists. To show this, take any 
reference state |ni 1 ,ni2,...) and apply operators aii until all eigenvalues nii are 
lowered to zero.) Using the commutation relations, it is then straightforward to 
verify that the right hand side of Eq. (2.49) is (a) unit-normalized and (b) has 
eigenvalue nii for each nii.

2.4.2 Semiclassical spin waves

In chapter 1, the development of a theory of lattice vibrations in the harmonic atom chain was 

motivated by the quantization of the continuum classical theory. The latter provided insight 

into the nature of the elementary collective excitations. Here we will employ the semiclassical 

theory of spin dynamics to explore the nature of elementary spin-wave excitations.

(a) Making use of the spin commutation relation, [Si*, Sj] = idij eajYSi, apply 

the operator identity iSi = [Si, H] to express the equation of motion of a spin in 
a nearest-neighbor spin-S one-dimensional Heisenberg ferromagnet as a difference 
equation. (b) Interpreting the spins as classical vectors, and taking the continuum 
limit, show that the equation of motion takes the form S = JS x d2S, where we
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Fig. 2.8 (a) An sp2-hybridized polymer chain. (b) One of the configurations of the Peierls distorted 
chain. The double bonds represent the short links of the lattice. (c) A topological defect 
separating two domains of the ordered phase.

Peierls 
instability

have assumed a unit lattice spacing. Find and sketch a wave-like solution describing 
small-angle precession around a globally magnetized state Si = Sez .

Answer:

(a) Making use of the equation of motion, and the commutation relation, substi­
tution of the Heisenberg ferromagnetic Hamiltonian gives the difference equation 
A tA . . / A , A \ /i \ t i i • 11 • i-i i iSi = JSi x (Si+1 + Si-1). (b) Interpreting the spins as classical vectors, and 
applying the Taylor expansion Si+1 ^ S( x + 1) = S + d S + d 2S / 2 + •••, one ob­
tains the classical equation of motion shown. Making the ansatz S = (c cos(kx - 
wt), c sin(kx — wt) ,y/S2 — c2) one may confirm that the equation of motion is sat­
isfied if w = Jk2 V"S2 — c2.

2.4.3 Su-Shrieffer-Heeger model of a conducting polymer chain 

25

Polyacetylene consists of bonded CH groups forming an isomeric long-chain polymer. According 

to molecular orbital theory, the carbon atoms are sp2 -hybridized, suggesting a planar cong- 

uration of the molecule. An unpaired electron is expected to occupy a single n-orbital that is 

oriented perpendicular to the plane. The weak overlap of the n-orbitals delocalizes the elec­

trons into a narrow conduction band. According to the nearly-free electron theory, one might 

expect the half-lled conduction band of a polyacetylene chain to be metallic. However, the 

energy of a half-lled band of a one-dimensional system can always be lowered by imposing a 

periodic lattice distortion known as a Peierls instability (see g. 2.8). The aim of this problem 

is to explore this instability.

(a) At its simplest level, the conduction band of polyacetylene can be modeled as 
a simple (arguably over-simplified) microscopic Hamiltonian, due to Su, Shrieffer 
and Heeger,25 in which the hopping matrix elements of the electrons are modulated 
by the lattice distortion of the atoms. By taking the displacement of the atomic 
sites to be un , and treating their dynamics as classical, the effective Hamiltonian 
assumes the form

N Nk
HH = — t ^2 (1 + un ) [ c n" cn +1" + h' c' ] + ^2 (un +1 — un ) ,

W. P. Su, J. R. Schrieffer and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 
1698 (1979).
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where, for simplicity, the boundary conditions are taken to be periodic. The first 
term describes the hopping of electrons between neighboring sites in terms of a 
matrix element modulated by the periodic distortion of the bond-length, while the 
second term represents the associated increase in the elastic energy. Taking the 
lattice distortion to be periodic, un = (—1)na, and the number of sites to be even, 
bring the Hamiltonian to diagonal form. (Hint: Note that the lattice distortion 
lowers the symmetry of the lattice. The Hamiltonian is most easily diagonalized 
by distinguishing the two sites of the sublattice - i.e., doubling the size of the 
elementary unit cell.) Show that the Peierls distortion of the lattice opens a gap in 
the spectrum at the Fermi level of the half-filled system.
(b) By estimating the total electronic and elastic energy of the half-filled band (i.e., 
it has an average of one electron per lattice site), show that the one-dimensional 
system is always unstable towards the Peierls distortion. To complete this calcu­
lation, you will need the approximate formula j-n//2 dk (1 — (1 — a2) sin2 k)1 /2 ~ 

2 + (a1 - b1 ln a2 )a2 + O(a2 ln a2 ), where a1 and b1 are (unspecified) numerical 
constants.
(c) For an even number of sites, the Peierls instability has two degenerate configu­
rations (for one of these, see fig. 2.8 (a)), ABABAB. . . and BABABA. . . Comment 
on the qualitative form of the ground state lattice configuration if the number of 
sites is odd (see fig. 2.8 (b)). Explain why such configurations give rise to mid-gap 
states.

Answer:

(a) Since each unit cell has twice the dimension of the original lattice, we begin by 
recasting the Hamiltonian in a sublattice form,

N/2

H = — t ^2 {(1 + a ) [ a ma bme + h • c• ] + (1 — a ) [ b ma am +1 a + h• c• ]} + 2 Nk s a 2 , 
m =1 ,a

where the creation operators a mm and b mm act on the two sites of the elemental unit 
cell of the distorted lattice. Switching to the Fourier basis, am = ^/2/N k e2ikmak 

(similarly for bm), where k takes N/2 values uniformly on the interval [—n/2, n/2] 
and the lattice spacing of the undistorted system is taken to be unity, the Hamil­
tonian takes the form

H = 2 Nk s a12

- t a ka bka )( 

k

0 (1 + a) + (1 — a) e2ik \ /aka A
(1 + a) + (1 — a)e-2ik 0 bka

1/2Diagonalizing the 2 x 2 matrix, one obtains e(k) = ±2t [1 + (a2 — 1) sin2 k] . In 
the limit a ^ 0, one recovers the cosine spectrum characteristic of the undistorted 
tight-binding problem, while, when a ^ 1, pairs of monomers become decoupled 
and we obtain a massively degenerate bonding and antibonding spectrum.
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excitons

Schwinger 
boson

(b) According to the formula given, the total shift in energy is given by <5e = 
—41(a 1 — b 1 lna2)a2 + 2ksa2. Maximizing the energy gain with respect to a, a 
stable configuration is found when a2 = exp((a 1 //b 1) — 1 — ks/(2tb 1)).
(c) If the number of sites is odd, the Peierls distortion is inevitably frustrated. The 
result is that the polymer chain must accommodate a topological excitation. The 
excitation is said to be topological since the defect cannot be removed by a smooth 
continuous deformation. Its effect on the spectrum of the model is to introduce a 
state that lies within the band gap of the material. (We will return to the discussion 
of the topology of this system later, in section 8.1.1.) The consideration of an odd 
number of sites forces a topological defect into the system. However, even if the 
number of sites is even, one can create low-energy topological excitations of the 
system either by doping (see fig. 2.8(b)) or by the creation of excitons, particle­
hole excitations. Indeed, such topological excitations can dominate the transport 
properties of the system.

2.4.4 Schwinger boson representation

As with the Holstein{Primako representation, the Schwinger boson provides another repre­

sentation of quantum spin. The aim here is to conrm the validity of this representation. For 

practical purposes, the value of the particular representation depends on its application.

In the Schwinger boson representation, the quantum mechanical spin is ex­
pressed in terms of two bosonic operators a and b:

S+ = atb, S~ = (S+)t, Sz = 1 (ata — btb) .

(a) Show that this definition is consistent with the commutation relations for spin: 
[S+, S-] = 2S z. (b) Using the bosonic commutation relations, show that

|S” > = JafSm, DS^ - 
(S + m)! (S — m)!

is compatible with the definition of an eigenstate of the total spin operator S2 and 
Sz. Here |— denotes the vacuum of the Schwinger bosons, and the total spin S 
defines the physical subspace {|na, nb)|na + nb = 2S}.

Answer:

(a) Using the commutation relation for bosons, one finds [S+, S-] = atb bta — 
bta atb = ata — btb = 2Sz, as required. (b) Using the identity S2 = (Sz)2 + 
2(S+ S- + S-S+) = 11 (na — nb)2 + nanb + 11 (na + nb) one finds that S2|S, m) = 
[m2 + (S + m)(S — m) + S] |S, m} = S(S + 1)|S, m}, as required. Similarly, one 

1finds Sz | S, m) = 22 (na — nb )|na = S + m, nb = S — m} = m | S, m), showing | S, m) 
to be an eigenstate of the operator SSz with eigenvalue m.



85 2.4 Problems

2.4.5 Jordan-Wigner transformation

So far we have shown how the algebra of quantum mechanical spin can be expressed using 
boson operators { cf. the Holstein{Primako transformation and the Schwinger boson rep­

resentation. Here, we show that a representation for spin 1/2 can be obtained in terms of 

fermion operators.

Jordan—
Wigner 

transfor­
mation

In the Jordan-Wigner transformation, spin-1 /2 degrees of freedom are repre­
sented in terms of a single structureless fermion. Consider an up spin as a particle 
and a down spin as the vacuum, i.e., |f) = |1) = f t|0), ||) = |0) = f 11). In this 
representation the spin raising and lowering operators are expressed in the form 
S+ = f t and S~ = f, while Sz = f tf - 1 /2.
(a) With this definition, confirm that the spins obey the algebra [S+, S-] = 2Sz. 
However, there is a problem: spin operators on different sites commute, while 

++ ++ tt ttermion operators anticommute, e.g., i j = j i , ut fi fj = -fj fi . To otain 
a faithful spin representation, it is necessary to cancel this unwanted sign. Although 
a general procedure is hard to formulate, in one dimension this can be achieved by 
a nonlinear transformation,

Si = fl exp nYnj j S- =exp( - in^nj) fl, SZ = fl fl - 2 •

Jordan—
Wigner 

string

Operationally, this seemingly complicated transformation is straightforward: in 
one dimension, the particles can be ordered on the line. By counting the num­
ber of particles “to the left,” we assign an overall sign of +1 or -1 to a given 
configuration and thereby “transmute” the particles into fermions. (Put differ­
ently, the exchange of two fermions induces a sign change that is compensated 
by a factor arising from the phase - the Jordan-Wigner string.) (b) Using the 
Jordan-Wigner representation, show that S + Sm+1 = fmm fm +1. (c) For the spin-1/2 
anisotropic quantum Heisenberg spin chain, the spin Hamiltonian assumes the form 
H = - E n (Jz S nS n +1 + JT (S+S n+1 + S— S++1)). Turning to the Jordan^Wigner 
representation, show that the Hamiltonian can be cast in the form

H — f “2” (fn fn +1 + h. c.) + Jz 4 - fn fn + fn fn fn+1 fn + 1^ .

n

(d) The construction shows the equivalence between the one-dimensional spin-1/2 
XY -model, defined as the spin chain with one coupling absent, Jz = 0, and a 
non-interacting theory of spinless fermions. In this case, show that the spectrum 
assumes the form e(k) = — J” cos ka.

Answer:

(a) From the fermionic anticommutation relations, [S+, S ]- = [f1 ,f]- = f1 f — 
ff1 = 2f1 f — 1 = 2Sz. (b) Using the commutativity of number operators on differ­
ent sites, we obtain SmSm+1 = fm exp(in £ j<m nj ) exp( — in El<m +1 nl ) fm +1 = 
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fme innm fm +1 = fmfm +1 where we have used the relation fmme innm = fmm. (c) 
The fermion representation is simply obtained by substitution of the above rela­
tions into the spin Hamiltonian. (d) With Jz = 0, the spin Hamiltonian assumes the 
form of a non-interacting tight-binding Hamiltonian H = J^ n(fnfn+1 +h.c.). 
This Hamiltonian, which has been encountered previously, is diagonalized in Fourier 
space, after which one obtains the cosine band dispersion.

2.4.6 Spin-charge separation in one-dimension

In section 2.2.4, a free theory of interacting spinless fermions was developed in one dimension 

making use of the bosonization formalism. This analysis showed that the low-energy degrees of 

freedom were described by hydrodynamic charge (i.e., density) uctuations propagating with 

a linear dispersion. However, as well as charge, the electron degrees of freedom carry spin. The 
aim of this problem is to explore the fate of the spin degrees of freedom in a one-dimensional 

environment.

As a first step, we introduce operators (cf. Eq. (2.34)) psqa = k aS(k+q)aaska, 
a =f, I, generalizing the previously introduced density operators for the presence 
of spin. Similarly, the bosonic degrees of freedom of the theory (cf. Eq. (2.39)) 
now carry a spin index, so that bq ^ bqa. One aspect that makes the problem 
more difficult to tackle than the previously explored spinless case is that the 2kF- 
momentum transfer interaction | kF + q + q 1, f; kF + q — q 1, |) ^ | — kF + q + q2, f 
; — kF + q — q2, |), in which a right-moving spin-up electron is scattered to a left­
moving spin-up electron, cannot be expressed in terms of slowly fluctuating density 
operators. (If you don’t believe this, try!) However, using the renormalization group 
methods to be introduced in chapter 6, it can be shown that this type of interaction 
is largely irrelevant physically and can be neglected from the outset.

Concentrating on the low-momentum-transfer interaction, the effective bosonic 
Hamiltonian assumes the form (verify)

HH= vFqbSqabsqa + |q| [gZ (blqab|qa' +h.c.) + g4blqabsqa'] .
L 2 /(\ 2 2 H J

q> 0 ,s,a q> 0 ,s,aaz

Introducing operators that create charge (p) and spin (a) fluctuations, bsqp = 
^72(bsqt + bsq;), bsqa = 772(bsqt — bsq;), rearrange the Hamiltonian, and thereby 
show that it assumes a diagonal form with the spin and charge degrees of freedom 
exhibiting different velocities. This is a manifestation of spin-charge separation: 
even without the introduction of spin-dependent forces, the spin and charge de­
grees of freedom of the electron in the metallic conductor separate and propagate 
at different velocities. In this sense, there is no way to adiabatically continue from 
non-interacting electrons to the collective charge and spin excitations of the system.

Answer:

Motivated by the separation into spin and charge degrees of freedom, a rearrange­
ment of the Hamiltonian gives



87 2.4 Problems

Hi = {vF q (b Ssqpbsqp + b Sqa bsqa ) + | q | [^ (bl qpb^Sqp + h • c •) + g4 ba qp bsqp] } •

Applying a Bogoliubov transformation, the Hamiltonian is brought to the diagonal 
form

HH= [lq \vF + g4n)2 - (g2n)2 aSqpasqp + | q |vFaSqa asq^ + const•
q>0,s

2.4.7 The Kondo problem 

Anderson 
impurity 

Hamiltonian

Historically, the Kondo problem has assumed great signicance in the eld of strongly correlated 

quantum systems. It represents perhaps the simplest example of a phenomenon driven by strong 

electron interaction and, unusually for this arena of physics, admits a detailed theoretical 

understanding. Further, in respect of the principles established in chapter 1, it exemplies a 

number of important ideas from the concept of reducibility { the collective properties of the 

system may be captured by a simplied eective Hamiltonian that includes only the relevant 

low-energy degrees of freedom { and the renormalization group. In the following problem, 

we will seek to develop the low-energy theory of the \Kondo impurity" system, leaving the 

discussion of its phenomenology to problems 4.6.3 and 6.7.3 in subsequent chapters.

The Kondo effect is rooted in the observation that, when small amounts of magnetic 
ion impurities are embedded in a metallic host (such as manganese in copper or iron 
in CuAu alloys), a pronounced minimum develops in the temperature dependence of 
the resistivity. Although the phenomenon was discovered experimentally in 1934,26 

it was not until 1964 that it was understood by Kondo.27 Historically, the first step 
towards the solution of the problem came with a suggestion by Anderson that the 
system could be modeled as an itinerant band of electron states interacting with 
dilute magnetic moments associated with the ion impurities.28 Anderson proposed 
that the integrity of the local moment was protected by a large local Coulomb 
repulsion which inhibited multiple occupancy of the orbital state - a relative of the 
Hubbard U -interaction. Such a system is described by the Anderson impurity 
Hamiltonian,

H k ckacka + (Vk dack^ + h• c•^ + ed nda + Undf nd^,
k a a

where the operators cka create an itinerant electron of spin a and energy ek in the 
metallic host while da creates an electron of spin a on the local impurity at position 
d. Here, Vk = eik^d(^d|H|^d) denotes the coupling between these states, where ^d 

is the atomic d level and ^d is the Wannier state of the conduction electrons at site

26 W.J. de Haas et al., The electrical resistance of gold, copper, and lead at low temperatures, 
Physica 1, 1115 (1934).

27 J. Kondo, Resistance minimum in dilute magnetic al loys, Prog. Theor. Phys. 32, 37 (1964).
28 P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124, 41 (1961).
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d. Here, we have used nda = dada to denote the number operator. While electrons 
in the band are described as free fermions, those associated with the impurity state 
experience an on-site Coulomb interaction of strength U. In the Kondo regime, the 
Fermi level eF lies between the impurity level ed and ed + U, so that the average 
impurity site occupancy is unity. Nevertheless, the coupling of the impurity to the 
itinerant electron states admits virtual processes in which the site occupancy can 
fluctuate between zero and two. These virtual fluctuations allow the spin on the 
impurity site to flip through exchange.

On the basis of our discussion of the half-filled Hubbard model in section 2.2.2 
it makes sense to transform the Anderson impurity Hamiltonian into an effective 
low-energy theory. To this end, we can express the total wave function of the Hamil­
tonian |^) as the sum of terms |^0), |^ 1), and |^2), where the subscript denotes the 
occupancy of the impurity site. With this decomposition, the Schrodinger equation 
for the Hamiltonian can be cast in matrix form, ^n=0 Hmn|^n) = E|tf>m), where 
Hmn = I’m HPn and the operators Pm project onto the subspace with m electrons 
on the impurity (i.e., Po = n a (1 - n ), P1 = (1 + nd t + nd I - 2 nd t nd J and 
P2 = nd t nd;)).
(a) Construct the operators Hmn explicitly and explain why H20 = H02 = 0. Since 
we are interested in the effect of virtual excitations from the |^ 1) subspace, we may 
proceed by formally eliminating |^0) and |^2) from the Schrodinger equation. By 
doing so, show that the equation for |^ 1) can be written as

1
| $ 1) = E | $ 1) .

E-
H21

H22

1
H12

1
E H 1121 + H10

Hi 10 * H01 + H 11 + H 12

E- H00

(b) At this stage, the equation for |^ 1) is exact. Show that an expansion to leading 
order in 1 /U and 1 /ed leads to the expression

E - H22 E-H00
H01

- E Vk Vk' cka ckz az da da 1 
U + ' d - £k'

ckz az cka da! da 

tk - ' d

To obtain the first term in the expression, consider the commutation of (E -H22)-1 

with H21 and make use of the fact that the total operator acts upon the singly 
occupied subspace. A similar line of reasoning will lead to the second term in the 
expression. Here, U + ed — ek/ and ed — ek denote the respective excitation energies 
of the virtual states.

Making use of the Pauli matrix identity, aap aYs = 2<8as8pY — 8ap8Ys, it follows 
that (exercise)

E cka ck' a' daz da = 2skkz • Sd + 1 cka ck' anda',

where Sd = a^ d^^a^dp/2 denotes the spin-1 /2 degree of freedom associated 
with the impurity and skk' = ap ckaaapck'p/2. Combining this result with that 
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obtained above, up to an irrelevant constant the total effective Hamiltonian (in­
eluding H 11) acting in the projected subspace |^ 1) is given by

Hsd e k ck ct ck++y^
k ct kkz

x—t
2 Jk,kz skkz • S d + Kk,kz / y ckc ckz ct 

where

Jk, k' = K* Vk
1

U + £d

1
£k - £d

+
- £k'

V* Vk ( 1___________ 1 \
2 \ 'k - £d U + £d - £k' J

sd-
Hamiltonian

With both U + ed and ed greatly in excess of the typical excitation energy scales, 
one may safely neglect the particular energy dependence of the parameters Jk,k/ 

and Kk,k/. In this case, the exchange interaction Jk,k' can be treated as local, the 
scattering term Kk,k' can be absorbed into a shift of the single-particle energy of 
the itinerant band, and the positive (i.e., antiferromagnetic) exchange coupling can 
be accommodated through the effective sd-Hamiltonian

Hsd = ekckctckct +2 JSd • S(0)
kct

(2.50)

where s(0) = ^kk,ctct, ckct&ctct'ck'ct'/2 denotes the local spin density of the itinerant 
electron band at the impurity site, d = 0. To understand how the magnetic impurity 
affects the low-temperature transport, we refer to problem 4.6.3, where the sd- 
Hamiltonian is explored in the framework of a diagrammatic perturbation theory 
in the spin interaction.

Answer:

(a) Since the diagonal elements Hmm leave the occupation number fixed, they may 
be identified with the diagonal elements of the Hamiltonian,

H00 = e k c k ct c k ct , H11 = y^ e k c k ct c k ct + ^d, H22 6 k c k ct c k ct +2 ld + U.

The off-diagonal terms arise from the hybridization between the free electron states 
and the impurity. Since the coupling involves only the transfer of single electrons, 
TT TT 1H02 = H20 = 0 and

H10 = y^ VkdCT (1 - nda) ckct , HI 12 = y^ VkdCTnda ck,,
k ct k ct

where a = f for a = | and vice versa, HI01 = HI-J0 and HI 12 = HI21. Since HI001^0) + 
HI011^ 1) = E|^0), one may set |^0) = (E - H00)-1 HI011^ 1) and, similarly, |^2) = 
(E — H22)-1 HI211^ 1). Then, substituting into the equation for |^ 1), one obtains the 
given expression.
(b) Making use of the expressions from part (a), we obtain

1 t 1 t
H 12 S H21 / J VkV<z c k CT ndCT dCT S dCT 1 nd!~‘ c kz ct !

- 722 kk' CTCT' — 22
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H 10—-------HH01 = VkVk* da(1 - nd^)ckj —--------g— ck,a,(1 - ndd>)da,.
E - H00 kk'aa' E - H00

ml 1 j -j j • c tt 1 TV f / \ 1 j • j 1Then, substituting for H22 and H00 from (a), and commuting operators, we have

-y dai nda'ckzaz 
E - H22

,1
da'ndc' ckzaz
U + Ed — £ k'

1-
E - td - H00 

U + Ed - Ek'

1

c ,', Ck'a' (1 nda' ) da'
E h H00

Ckza' (1 nda’ ) da'
E k' — Ed

E — Ed — H00

E k' — Ed

1

Expanding in large U and ed, to leading order we obtain

1
+ H10^------ H01

E- Hi22
a21a 12

kkza a!

C k a nd, a dada / nd<-'c kzaz ^ da (1 nd, a ) c k a c kzaz (1 nd ‘7’ ) d az

U + Ed — E k' E k' — Ed

Finally, noting that this operator acts upon the singly occupied subspace spanned 
by |d 1), we see that the factors involving nda are redundant and can be dropped. 
As a result, swapping the momentum and spin indices in the second part of the 
expression, we obtain the required expression.



3 Path Integral

SYNOPSIS The aim of this chapter is to introduce the concept and methodology of 
the path integral, starting with single-particle quantum mechanics and then generalizing 
the approach to many-particle systems. Emphasis is placed on establishing the intercon­
nections between the quantum mechanical path integral, classical Hamiltonian mechanics, 
and statistical mechanics. The practice of Feynman path integration is discussed in the 
context of several pedagogical applications. As well as the canonical examples of a quan­
tum particle in a single- or double-well potential, we discuss the generalization of the path 
integral scheme to the tunneling of extended objects (quantum fields), and dissipative and 
thermally assisted quantum tunneling. In the final part of the chapter, the concept of path 
integration is extended to that of field integration for many-body systems.

To introduce the path integral formalism, we leave temporarily the arena of many­
body physics and return to single-particle quantum mechanics. By establishing the 
path integral approach for ordinary quantum mechanics, we set the stage for the 
introduction of field integral methods for many-body theories. We will see that the 
path integral not only represents a gateway to higher-dimensional functional inte­
gral methods but, when viewed from an appropriate perspective, already represents 
a field-theoretical approach in its own right. Exploiting this connection, various con­
cepts of field theory, including stationary phase analysis, the Euclidean formulation 
of field theory, and instanton techniques will be introduced.

3.1 The Path Integral: General Formalism

91

Broadly speaking, there are two approaches to the formulation of quantum mechan­
ics: the “operator approach,” based on the canonical quantization of physical observ­
ables and the associated operator algebra and the Feynman path integral.* 1 While 
canonical quantization is usually encountered first in elementary courses on quan-

1 For a more extensive introduction to the Feynman path integral, we refer to one of the many 
standard texts including R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path 
Integrals (McGraw-Hill, 1965); J. W. Negele and H. Orland, Quantum Many Particle Systems 
(Addison-Wesley, 1988); and L. S. Schulman, Techniques and Applications of Path Integration 
(Wiley, 1981). Alternatively, one may turn to the original literature, R. P. Feynman, Space-time 
approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 362 (1948). Historically, 
Feynman’s development of the path integral was motivated by earlier work by Dirac on the 
connection between classical and quantum mechanics, P. A. M. Dirac, On the analogy between 
classical and quantum mechanics, Rev. Mod. Phys. 17, 195 (1945).
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with far-reaching consequences for the physics 
of elementary particles.” He was well known 
for his unusual life-style, as well as his popular 
books and lectures on mathematics and physics.

Richard P. Feynman 1918­
1988 
was an American physicist 
who, with Sin-Itiro Tomon- 
aga, and Julian Schwinger, 
shared the 1965 Nobel Prize in 
Physics for “fundamental work 
in quantum electrodynamics,

tum mechanics, path integrals have acquired the reputation of being a sophisticated 
concept that is better reserved for ad­
vanced courses. Yet this reputation is 
hardly justified! In fact, the path in­
tegral formulation has many advan­
tages, most of which explicitly support 
an intuitive understanding of quantum 
mechanics. Moreover, integrals - even 
the infinite-dimensional ones encoun­
tered below - are hardly more abstract 
than infinite-dimensional linear opera­
tors. Further merits of the path inte­
gral include the following.

> Although the classical limit is not always easy to retrieve within the canoni­
cal formulation of quantum mechanics, it constantly remains visible in the path 
integral approach. The latter makes explicit use of classical mechanics as a “plat­
form” on which to build a theory of quantum fluctuations. The classical solutions 
of Hamilton’s equation of motion always remain central to the formalism.

> Path integrals allow for an efficient formulation of non-perturbative approaches in 
quantum mechanics. Examples include the “instanton” formulation of quantum 
tunneling, discussed below. The extension of such methods to continuum theories 
has led to some of the most powerful concepts of quantum field theory.

> The Feynman path integral represents a prototype of higher-dimensional field 
integrals. Yet, even the “zero-dimensional” path integral is of relevance to appli­
cations in many-body physics. Very often, one encounters environments, such as 
the superconductor or correlated electron devices, where a macroscopically large 
number of degrees of freedom “lock” to form a single collective variable. (For 
example, to a first approximation, the phase information carried by the order 
parameter in moderately large superconducting grains can often be described 
by a single phase degree of freedom, i.e., a “quantum particle” on a unit circle.) 
ideally suited to the analysis of such systems.

What then is the basic idea of the path integral approach? More than any other 
formulation of quantum mechanics, the path integral formalism is based on connec­
tions to classical mechanics. The variational approach employed in chapter 1 relied 
on the fact that classically allowed trajectories in configuration space extremize 
an action functional. A principal constraint to be imposed on any such trajectory 
is energy conservation. By contrast, quantum particles have a little more freedom 
than their classical counterparts. In particular, by the uncertainty principle, energy 
conservation can be violated by an amount AE over a time ~ ~/AE (here, and 
throughout this chapter, we will make ~ explicit for clarity). The connection to 
the action principles of classical mechanics becomes particularly apparent in prob­
lems of quantum tunneling: a particle of energy E may tunnel through a potential 
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barrier of height V > E . However, this process is penalized by a damping factor 
~ exp(i /barrier dxp/~), where p = ^/2m(E — V), i.e., the exponent of the (imagi­
nary) action associated with the classically forbidden path.

These observations motivate a new formulation of quantum propagation. Could 
it be that, as in classical mechanics, the quantum amplitude A for propagation 
between any two points in coordinate space is again controlled by the action 
functional- controlled in a relaxed sense, where not just a single extremal path 
xcl (t) but an entire manifold of neighboring paths contribute? More specifically, one 
might speculate that the quantum amplitude is obtained as A ~ X(tx(t) exp(iS [x]/~), 
where x(t) symbolically stands for a summation over all paths compatible with 
the initial conditions of the problem, and S denotes the classical action. Although 
at this stage no formal justification for the path integral has been presented, with 
this ansatz some features of quantum mechanics would obviously be borne out 
correctly. Specifically, in the classical limit (~ ^ 0), the quantum mechanical am­
plitude would become increasingly dominated by the contribution to the sum from 
the classical path xcl(t). This is so because non-extremal configurations would be 
weighted by a rapidly oscillating amplitude associated with the large phase S/~ and 
would, therefore, average to zero.* 2 Second, quantum mechanical tunneling would 
be a natural element of the theory; non-classical paths do contribute to the net 
amplitude, but at the cost of a damping factor specified by the imaginary action 
(as in the traditional formulation).

All information about an autonomous3 quantum system is contained in its time 
evolution operator. A formal integration of the time-dependent Schrodinger 
equation i~dt|^) = H|^) gives the time evolution operator

|tf( t')) = U( t' ,t )|*( t )), U( t' ,t ) = e - ~ HH(t'-t) e( t' — t). (3.1)

The operator U(t' ,t) describes dynamical evolution under the influence of the 
Hamiltonian from a time t to time t'. Causality implies that t1 > t, as indicated by 
the step or Heaviside e-function. In the real space representation, we can write

2 More precisely, in the limit of small ~, the path sum can be evaluated by saddle-point methods, 
as detailed below.

3 A system is classified as autonomous if its Hamiltonian does not explicitly depend on time. 
Actually, the construction of the path integral can be straightforwardly extended to include 
time-dependent problems. However, in order to keep the introductory discussion as simple as 
possible, here we assume time independence.

Fortunately, no fundamentally novel picture of quantum mechanics needs to be 
declared in order to promote the idea of the path “integral” x(t) exp(iS[x]/~) to 
a working theory. As we will see in the next section, the new formulation can be 
developed from the established principles of canonical quantization.

3.2 Construction of the Path Integral

time 
evolution 
operator
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^(q',t') = (q'|^(t')) = (q'|U(t',t)^(t)) = dq U(q',t'; q,t)^(q, t),

propagator

1 tt/ ! >! .\ I i i Hf f'—fll \rv/./ ,\ 1 r> j 1 / ! \ j C J 1where U (q ' ,t '; q,t) = (q z| e ~ H(t t )| q )©( t ' — t) defines the (q ' ,q )-component of the 
time evolution operator. As the matrix element expresses the probability amplitude 
for a particle to propagate between points q and q' in a time t' — t, it is known as 
the propagator of the theory.

The idea behind Feynman’s approach is easy to formulate. Rather than taking 
on the Schrodinger equation for general times t, one may first solve the simpler 
problem of time evolution for infinitesimally small times At. We thus divide the 
time evolution into N 1 time steps,

e-iHH t/~ = ' A . .e - iHA t/~ (3.2)

where At = t/N. Although nothing more than a formal rewriting of (3.1), the
Hrepresentation (3.2) has the advantage that the factors e iHAt/~ are close to the 

unit operator. (More precisely, if At is much smaller than the [reciprocal of the] 
eigenvalues of the Hamiltonian in the regime of physical interest, the exponents are 
small in comparison with unity and, as such, can be treated perturbatively.) A first 
simplification arising from this fact is that the exponentials can be factorized into 
two pieces, each of which can be readily diagonalized. To achieve this factorization, 
we make use of the identity4 5 * *

4 Note that, by the Baker-Campbell—Hausdorff formula, for operators A and B, we have eA+B = 
eAeB(1 - 2[A,13]+-- ).

5 Although this ansatz covers a wide class of quantum problems, many applications (e.g., Hamilto­
nians involving spin or magnetic fields) do not fit into this framework. For a detailed exposition
covering its realm of applicability, we refer to the specialist literature.1

Ae i iHA t/~ = e - iTA t/~ e i iVA t/~ + O (A 12)

where the Hamiltonian H = T + V is the sum of the kinetic energy T = p2 /2m 
and potential energy V." (The following analysis, restricted for simplicity to a 
one-dimensional Hamiltonian, is easily generalized to arbitrary spatial dimension.) 
The advantage of this factorization is that the eigenstates of each factor e-iT At/~ 

and e-iV At/~ are known independently. To exploit this fact we consider the time 
evolution operator factorized as

{q f |( e - iHA t/~) N | q i) - (q f |A e ~iTA t/~ e - iVA t/~ ^■■■^ e - iTA t/~ e - iVA t/~| q i) (3.3) 

and insert at positions indicated by “A” the resolution of identity

id. ^C^n dpn | qn qn | pn pn |. (3.4)

Here | qn) and |pn) represent complete sets of position and momentum eigenstates 
respectively, and n = 1, . . . , N serves as an index keeping track of the time steps at 
which the unit operator is inserted. The rationale behind the particular choice (3.4) 
is clear. The unit operator is arranged in such a way that both T and V act on
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Fig. 3.1 (a) Visualization of a set of phase space points contributing to the discrete-time config­
uration integral (3.5). (b) In the continuum limit, the set of points becomes a smooth 
curve.

the corresponding eigenstates. Inserting Eq. (3.4) into (3.3), and making use of the 
identity (q|p) = (p|q)* = eiqqp/~/(2n~)1 /2, one obtains

(q,|e-iHt/~|q,) ~n dqnn 2 +

n=1 n=1
qN =qf,q0 =qi

/ A t N-1 / _ x\
x exp -' X ( V(qn)+ T(Pn+1) - Pn +1n+ v ] • (3.5) 

~ At
n=0

classical 
phase 
space

Thus, the matrix element of the time evolution operator has been expressed as a 
(2N - 1)-dimensional integral over eigenvalues. Up to corrections of higher order 
in V At/~ and T At/~, the expression (3.5) is exact. At each “time step” tn = 
nAt, n = 1 ,^,N, we are integrating over a pair of coordinates x+ = (q+,p+) 
parameterizing the classical phase space. Taken together, the points {xn} form 
an N -point discretization of a path in this space (see fig. 3.1).

To make further progress, we need to develop intuition for the behavior of the in­
tegral (3.5). We first notice that rapid fluctuations of the integration arguments x+ 

as a function of the index n are inhibited by the structure of the integrand. When 
taken together, contributions for which (q++1 - q+)p++1 > O(~) (i.e., when the 
phase of the exponential exceeds 2n) lead to “random phase cancellations.” In the 
language of wave mechanics, the superposition of partial waves of erratically differ­
ent phases leads to destructive interference. The smooth variation of the paths that 
contribute significantly motivates the application of a continuum limit analogous 
to that employed in chapter 1.

Therefore, sending N -^ x at fixed t = NAt, the formerly discrete set tn = 
nAt, n = 1, • • • , N, becomes dense on the time interval [0, t] and the set of phase 
space points {x+} becomes a continuous curve x(t). In the same limit,

A t ^ d dt' , q++A t q+ ^ dt' q 11 ' = tn = q| t '= tn ,
+=0 0 At



96 3 Path Integral

while [V(qn) + T(pn + 1)] M [T(p1t<= tn) + V(q11<=tn)] = H(x1t<=tn) denotes the clas­
sical Hamiltonian. In the limit N M rc>, the fact that kinetic and potential energies 
are evaluated at neighboring time slices n and n + 1, becomes irrelevant.6 Finally,

6 To see this formally, one may Taylor expand T(pn+1) = T(p(t! + At))|tf=n^t around p(tz). For 
smooth p(tz), all but the zeroth-order contribution T(p(tz)) scale with powers of At, thereby 
becoming irrelevant. Note, however, that all such arguments are based on the assertion that 
the dominant contributions to the path integral are smooth in the sense qn+1 — qn ~ O(At). A 
closer inspection, however, shows that in fact qn +1 — qn, ^ O(At)1 /2. In some cases, the most 
prominent one being the quantum mechanics of a particle in a magnetic field, the lowered power 
of At spoils the naive form of the continuity argument above and so more care must be applied 
in taking the continuum limit. In cases where a “new” path integral description of a quantum 
mechanical problem is developed, it is imperative to delay taking the continuum limit until the 
fluctuation behavior of the discrete integral across individual time slices has been thoroughly 
examined.

lim [ n dqn n Tnr = / Dx,
N ■ I J-J- J-J- 2n ~ J( (t)=qf 

n=1 n=1 q(0)=qi
qN =qf ,q0 =qi

where Dx = D(q, p) defines the integration measure.

functional 
integrals

INFO Integrals extending over infinite-dimensional measures, such as D(q, p), are gener­
ally called functional integrals (recall our discussion of functionals in chapter 1). The 
question how functional integration can be defined rigorously is not altogether straitght- 
forward and represents a subject of ongoing mathematical research. However, in this 
book - as in most applications in physics - we take a pragmatic view and deal with the 
infinite-dimensional integration naively unless mathematical problems arise (which actu­
ally will not be the case!).

Then, applying these conventions to Eq. (3.5), one finally obtains

(qf |e iHt/~|qi) = f Dx exp (| f dt' (p^ - H(p, q)) 
q(t)=qf ~ 0
q(0)=qi 0

(3.6)

Hamiltonian 
path 

integral

Equation (3.6) represents the Hamiltonian formulation of the path integral. 
The integration extends over all possible paths through the classical phase space, 
which begin and end at the same configuration points qi and qf respectively (cf. 
fig. 3.1). The contribution of each path is weighted by its Hamiltonian action.

classical 
action

INFO Remembering the connection of the Hamiltonian to the Lagrangian through the
Legendre transform, H(p, q) = p<? — L(p, q), the classical action of a trajectory t n- q(t) 
is given by S[p,q] = t dt' L(q,q) = J0t dt' [pq — H(p,q)].

Before we turn to the discussion of the path integral (3.6), it is useful to recast the 
integral in an alternative form which will be both convenient and instructive. The 
search for an alternative formulation is motivated by the resemblance of Eq. (3.6) 
to the Hamiltonian formulation of classical mechanics. Given that Hamiltonian and 
Lagrangian mechanics can be equally employed to describe dynamical evolution, it 
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is natural to seek a Lagrangian analog of Eq. (3.6). Focusing on Hamiltonians for 
which the kinetic energy T (p) is quadratic in p, the Lagrangian form of the path 
integral can indeed be inferred from (3.6) by straightforward Gaussian integration.

To make this point clear, let us rewrite the integral in a way that emphasizes its 
dependence on the momentum variable p:

2

Za,| e - iH t/~la-} = / De ~ ~ 0°dtv (q) De ~ ~ 0»dtt<' 2pm - Pq) (3 7)\qf |e |qi/ / , , i./e ' p pe e . (°’ ‘)
q(t)=qf q(0)=qi

The exponent is quadratic inp, a continuum generalization of a Gaussian integral.
Carrying out the integration (for the details, see Eq. (3.13) below), one obtains

(qf|e iHt/~|qi) = [ Dq expf | [ dt'L(q,q)
q(t)=qf ~ 0q(0)=qi

(3.8)

Johann Carl Friedrich Gauss 
1777-1855 
was a German mathematician 
and physicist who worked in 
a wide variety of fields includ­
ing number theory, analysis, 
differential geometry, geodesy, 
magnetism, astronomy and op­

where Dq = limN., ( Nmt) N/2 HN=11 dqn denotes the functional measure of the 

remaining q-integration, and L(q, q) = mq2/2 — V(q) represents the classical La­
grangian. Strictly speaking, the finite-dimensional Gaussian integral (see the Info 
section below) is not directly applicable to the infinite-dimensional integral (3.7). 
This, however, does not represent a substantial problem as we can always re­
discretize the integral (3.7), and reinstate the continuum limit after integration 
(exercise).

Together, Eqs. (3.6) and (3.8) rep­
resent the central results of this sec­
tion. A quantum mechanical transi­
tion amplitude has been expressed in 
terms of an infinite-dimensional in­
tegral extending over paths through 
phase space (3.6) or coordinate space 
(3.8). All paths begin (end) at the 
initial (final) coordinate of the ma­
trix element. Each path is weighted by 
its classical action. Notice in particu­
lar that the quantum transition ampli­
tude is represented without reference
to Hilbert-space operators. Nonetheless, quantum mechanics is still fully present! 
The point is that the integration extends over all paths and not just the subset of 
solutions of the classical equations of motion. (The distinct role played by classical 
paths in the path integral will be discussed below in section 3.2.2.) The two forms 
of the path integral, (3.6) and (3.8), represent the formal implementation of the “al­
ternative picture” of quantum mechanics proposed heuristically at the beginning of 
the chapter.

tics. As well as several books, Gauss published a 
number of memoirs (reports of his experiences), 
mainly in the journal of the Royal Society of 
Gottingen. However, in general, he was unwilling 
to publish anything that could be regarded as 
controversial and, as a result, some of his most 
brilliant work was found only after his death.

Gaussian 
integration

INFO Gaussian integration: With a few exceptions, all integrals encountered in this 
book are of Gaussian form. In most cases, the dimension of the integrals will be large, if 
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not infinite. Yet, after some practice, it will become clear that high-dimensional Gaussian 
integrals are no more difficult to handle than their one-dimensional counterparts. There­
fore, considering the important role played by Gaussian integration in field theory, here we 
derive the principal formulae once and for all. Our starting point is the one-dimensional 
integral. The proofs of the one-dimensional formulae provide the key to more complex 
functional identities that will be used throughout the text.
Gaussian integration: The ancestor of all Gaussian integrals is the identity

dx e a x 2 
2 x Re a > 0 (3.9)

In the following we will need various generalizations of Eq. (3.9). First, J-^ dx e ax /2 x2 = 
(2n/a3)1 /2, a result established by differentiating (3.9). Often one encounters integrals 
where the exponent is not purely quadratic from the outset but rather contains both 
quadratic and linear components. The generalization of Eq. (3.9) to this case reads

dx e a x 2 + bx 2 n ba 
— e2 a . (3.10)

To prove this identity, one simply eliminates the linear term by the change of variables 
x ^ x + b/a, which transforms the exponent — ax2 /2 + bx ^ — ax2 /2 + b2 /2a. The constant 
factor scales out and we are left with Eq. (3.9). Note that Eq. (3.10) holds even for complex 
b. The reason is that, as a result of shifting the integration contour into the complex plane, 
no singularities are encountered, i.e., the integral remains invariant.

Later, we will be concerned with the generalization of the Gaussian integral to complex 
arguments. The extension of Eq. (3.9) to this case reads

d(z, z) e-wzz = n, Re w > 0, 
w

where z denotes the complex conjugate of z. Here, / d(z, z) = J—0 dx dy represents the 
independent integration over the real and imaginary parts of z = x + iy. The identity is 
easy to prove: owing to the fact that zz = x2 + y2, the integral factorizes into two pieces, 
each of which is equivalent to Eq. (3.9) with a = w. Similarly, it may be checked that the 
complex generalization of Eq. (3.10) is given by

d (z,z) e - zwz+u z+z v = n<e W, Re w> 0. (3.11)

More importantly u and v may be independent complex numbers; they need not be related 
to each other by complex conjugation (exercise).
Gaussian integration in more than one dimension: All the integrals above have 
higher-dimensional counterparts. Although the real and complex versions of the N -dimensional 
integral formulae can be derived in a perfectly analogous manner, it is better to discuss 
them separately in order not to confuse the notation.

(a) Real case: The multi-dimensional generalization of the prototype integral (3.9) reads

dv e-avTAv = (2n)N2(det A)-1 /2, (3.12)

where A is a positive-definite real symmetric N -dimensional matrix and v is an N- 
component real vector. The proof makes use of the fact that A (by virtue of being 
symmetric) can be diagonalized by orthogonal transformation, A = OT DO, where 
the matrix O is orthogonal and all elements of the diagonal matrix D are positive.
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The matrix O can be absorbed into the integration vector by means of the variable 
transformation v n- Ov, which has unit Jacobian, |det O| = 1. As a result, we are 
left with a Gaussian integral with exponent -vT Dv/2. Owing to the diagonality 
of D, the integral factorizes into N independent Gaussian integrals, each of which 
contributes a factor -y/2n/di, where di, i = 1,... , N, is the ith entry of the matrix 
D. Noting that HNi di = det D = det A, Eq. (3.12) is obtained.

The multi-dimensional generalization of Eq. (3.10) reads

- -] - 1 v A Av+j A •v (n N2 2 2/J - - \-1 / 2 1 j A A 1j

7 Note that the notation A-m1n refers to the mn-element of the matrix A-1 .

Id v e 2 +J —(2 n) ( (det A) ' e2 J J (3.13)

where j is an arbitrary N -component vector. Equation (3.13) is proven by analogy 
with (3.10), i.e., by shifting the integration vector according to v ^ v + A-1 j, 
which does not change the value of the integral but removes the linear term from the 
exponent: — 2vTAv + jT • v ^ — 2vTAv + 11 jTA-1 j. The resulting integral is of the 
type (3.12), and we arrive at Eq. (3.13).

The integral (3.13) is not only of importance in its own right, but also serves as a 
“generator” of other useful integral identities. Applying the differentiation operation 
djmjn |j=o to the left- and the right-hand side of Eq. (3.13), one obtains the identity7 

f dv e-1 v Avvmvn = (2n)N/2(det A)-1 22 Amn. This result can be formulated as

(vmvn } = Amn , (3.14)

where we have introduced the shorthand notation

(•••) = (2n)-N/2det A1 22 dv e-1 vAAvC ••), (3.15)

suggesting an interpretation of the Gaussian weight as a probability distribution.
Indeed, the differentiation operation leading to Eq. (3.14) can be iterated. Dif­

-1 -1 -1 -1 -1 -1ferentiating ioui times, one obtains yVmVn Vq Vp] — -m-mnji-qp ~+ -m-m^^-np ~+ -m-rmp^nq . 
One way of memorizing the structure of this important identity is that the Gaussian 
“expectation” value (vmvnvpvq} is given by all “pairings” of the type (3.14) that can 
be formed from the four components vm . This rule generalizes to expectation values 
of arbitrary order: 2n-fold differentiation of Eq. (3.13) yields

{vi 1 vi 2 ••• vi 2 n } = E Ad ik 2 --A Ad n-1 i* 2

pairings of 
{i1,...,i2n}

(3.16)

Wick’s 
theorem

This result is the mathematical identity underlying Wick’s theorem (for real bosonic 
fields), to be discussed in more physical terms below.

(b) Complex case: The results above can be extended straightforwardly to multi­
dimensional complex Gaussian integrals. The complex version of Eq. (3.12) is given 
by

d (v4, v) e-vtAv — nN (det A)-1, (3.17)

where v is a complex N-component vector, d(v4, v) = N1 d(Re vi) d(Im vi), and 
A is a complex matrix with positive definite hermitian part. (Remember that every 
matrix can be decomposed into a hermitian and an anti-hermitian component, A — 
2(A + A2) + 1 (A — A2).) For hermitian A, the proof of Eq. (3.17) is analogous to 
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that of Eq. (3.12), i.e., A is unitarily diagonalizable, A = U*AU, the matrices U 
can be transformed into v, the resulting integral factorizes, etc. For non-hermitian A 
the proof is more elaborate, if unedifying, and we refer to the literature for details. 
The generalization of Eq. (3.17) to exponents with linear contributions reads

7 / f \ I t 4 | f | f / \ N / 1 , A \ --  1 ( t A --  1d(v , v) exp (—v Av + w v + v w ) = n (det A) exp (w A w ) (3.18)

Note that w and w' may be independent complex vectors. The proof of this identity 
mirrors that of Eq. (3.13), i.e., by first effecting the shift v'" ^ v'" + w'" A-1, v ^ 
v + A-1w'.8 As with (3.13), Eq. (3.18) may also serve as a generator of integral 
identities. Differentiating the integral twice according to d.2, - |w=w'=0 gives wm ,wn

(!‘mvn } — Anm,

where (•••)= n-N(det A) j d(v'", v) e-vtAv(••). Iteration to more than two deriva­
tives gives {vnvmVpVq} — A-mA-n + A-nA-m and, eventually,

{Vi 1 Vi2 ••• Vin Vj 1 Vj2 ••• Vjn ) = ^ Aj1ip 1 ' ' ' A V

where P represents a sum over all permutations of n integers.

Gaussian 
functional 

integration

propagator

Gaussian functional integration: With this preparation, we are in a position to define 
the main practice of field theory - the method of Gaussian functional integration. Turning 
to Eq. (3.13), let us suppose that the components of the vector v parameterize the weight 
of a real scalar field on the sites of a one-dimensional lattice. In the continuum limit, the 
set {Vi} translates to a function V(x), and the matrix Aij is replaced by an operator kernel 
A(x,x'). In applications, this kernel often assumes the role of the inverse of the effective 
propagator of a theory, and we will use this denotation. The generalization of Eq. (3.13) 
to the infinite-dimensional case reads

\ Dv (x) exp —J ! dx dx' v (x)A(x,x')v(x')^l dx j(x)V(x) 

x (det A)-1 /2exp J" dx dx' j(x)A-1(x,x')j(x')^

where the inverse kernel A-1(x,x') satisfies the equation

dx' A(x,x')A 1(x',x") — 5(x — x")

(3.19)

(3.20)

The notation DV (x) is used to denote the measure of the functional integral. Although 
the constant of proportionality, (2n)N, left out of Eq. (3.19), is formally divergent in 
the thermodynamic limit N ^ ^>, it does not affect averages that are obtained from 
derivatives of such integrals. For example, for Gaussian-distributed functions, Eq. (3.14) 
has the generalization

(v (x) v (x')} — A-1( x,x')

8 For an explanation of why v and vt may be shifted independently of each other, cf. the 
analyticity remarks made in connection with Eq. (3.11).
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where the r.h.s. features the propagator. Accordingly, Eq. (3.16) assumes the form

(v (x 1) v (x 2) ••• v (x 2 n )} = ^2 A 1( xk 1 ,xk 2 ) ••• A1( xk 2 n-1 , xk 2 n )
pairings of
{x1,...,x2n}

(3.21)

The generalizations of the other Gaussian averaging formulae above should be obvious.
To make sense of Eq. (3.19), one must interpret the meaning of the determinant, det A. 

When the variables entering the Gaussian integral are discrete, the integral simply rep­
resents the determinant of the (real symmetric) matrix. In the present case, however, 
one must interpret A as a hermitian operator having an infinite set of eigenvalues. The 
determinant simply represents the product over this infinite set (see, e.g., section 3.2.4).

Before turning to specific applications of the Feynman path integral, let us stay with 
the general structure of the formalism and identify two fundamental connections, 
to classical point mechanics and to classical and quantum statistical mechanics.

3.2.1 Path integral and statistical mechanics

The path integral reveals a connection between quantum mechanics and statisti-
cal mechanics whose importance can hardly be exaggerated. To reveal this link, 
let us for a moment forget about quantum me­
chanics and consider, by way of an example, a V(u)j 
classical one-dimensional model of a “flexible 
string” held under constant tension and con­
fined to a “gutter-like” potential (see the fig­
ure). For simplicity, let us assume that the mass density of the string is high, 
so that its fluctuations are “asymptotically slow” (i.e., the kinetic contribution to 
its energy is negligible). Transverse fluctuations of the string are then penalized 
by its line tension and the external potential. Assuming that the transverse dis­
placement u(x) is small, the potential energy stored in the string separates into 
two parts: the first arises from the line tension and the second from the exter­
nal potential. Starting with the former, a transverse fluctuation of a line seg­
ment of length dx by an amount du leads to a potential energy of magnitude 
dVtension = a((dx* 2 + du2)1 /2 — dx) ~ adx (dxu)2/2, where a denotes the tension. 
Integrating over the length of the string, one obtains Vtension[dxu] = f dVtension =
2 jL dx a(dxu)2. The second contribution, arising from the external potential, is 
given by Vexternal [u] = 0L dx V(u). Adding the two contributions, the total energy 
is given by V = Vtension + Vexternal = fL dx [f (dxu)2 + V(u)].

EXERCISE Find an expression for the kinetic energy contribution assuming that the 
string has mass per unit length m. How does this model compare with the continuum 
model of lattice vibrations discussed in chapter 1? Convince yourself that, in the limit 
m ^ to, the kinetic contribution to the partition function Z = tr(e-^H) is negligible.
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According to the general principles of statistical mechanics, the equilibrium prop­
erties of a system are encoded in the partition function Z = tr[e-^V], where “tr” 
denotes a summation over all possible configurations of the system and V is the to­
tal potential energy functional. Applied to the present case, tr ^ f Du, where J Du 
stands for functional integration over all configurations of the string u (x), x G [0, L]. 
Thus, the partition function of the string is given by

Z = y Du exp ^ —fl ! dx (— (dxu)2 + V(u))^ . (3.22)

A comparison of this result with Eq. (3.8) shows that the partition function of the 
classical system coincides with the quantum mechanical amplitude

Z = /dq (q|e-itH/~|q>|_.
t=-iL

evaluated at an imaginary “time” t ^ — iT = — iL, where H = p2/2 — + V(q), and 
Planck’s constant is identified with the “temperature” ~ = 1 /fl. (Here, we have 
assumed that our string is subject to perio dic boundary conditions.)

To see this explicitly, let us consider quantum mechanics in a time formally 
made imaginary as e-itH/~ ^ e-tH/~, or t ^ — iT. Assuming convergence (i.e., 
positivity of the eigenvalues of H ), a construction scheme perfectly analogous to 
the one outlined in section 3.1 would lead to a path integral of the structure (3.8). 
Formally, the only differences would be (i) that the Lagrangian would be integrated 
along the imaginary time axis t' ^ — iT' G [0, — iT] and (ii) that there would be 
a change of the sign of the kinetic energy term, i.e., (dt<q)2 ^ —(dT<q)2. After a 
suitable exchange of variables, t ^ L, ~ ^ 1 /^, the coincidence of the resulting 
expression with the partition function (3.22) is clear.

The connection between quantum mechanics and classical statistical mechanics 
outlined above generalizes to higher dimensions. There are close analogies between 
quantum field theories in d dimensions and classical statistical mechanics in d + 1 
dimensions. (The equality of the path integral above with the one-dimensional sta­
tistical model is merely the d = 0 version of this connection.) In fact, the connection 
turned out to be one of the major driving forces behind the success of path inte­
gral techniques in modern field theory and statistical mechanics. It offered, for the 
first time, the possibility of drawing connections between systems that had seemed 
unrelated.

However, the concept of imaginary time not only provides a bridge between quan­
tum and classical statistical mechanics but also plays a role within a purely quantum 
mechanical context. Consider the partition function of a single-particle quantum 
system,

TT 
dq {q | e-pH |qq)
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Wick 
rotation

Euclidean 
action

The partition function can be interpreted as a trace over the transition amplitude 
i -it/t/S.l(q | e iHt/~| q) evaluated at an imaginary time t = — i~fl. Thus, real-time dynamics 
and quantum statistical mechanics can be treated on the same footing, provided 
that we allow for the appearance of imaginary times.

Later we will see that the concept of imaginary, or even generalized complex, time 
plays an important role in field theory. There is even some nomenclature regarding 
imaginary times. The transformation t ^ — ir is described as a Wick rotation 
(alluding to the fact that multiplication by i can be interpreted as a (n/2)-rotation 
in the complex plane). Imaginary-time representations of Lagrangian actions are 
termed Euclidean, whereas the real-time forms are called Lorentzian.

INFO The origin of this terminology can be understood by considering the structure of the 
action of, say, the phonon model (1.4). Forgetting for a moment about the magnitude of the 
coupling constants, we see that the action has the bilinear structure ~ x^g^vxv, where p. = 
0, 1, the vector x^ = d^fl, and the diagonal matrix g = diag(-1, 1) is the two-dimensional 
version of a Minkowski metric. (In three spatial dimensions g would take the form of the 
standard Minkowski metric of special relativity; see the discussion in section 9.1.) On 
Wick rotation of the time variable, the factor -1 in the metric changes sign to +1, and g 
becomes a positive definite Euclidean metric. The nature of this transformation motivates 
the notation above.

Once one has grown accustomed to the idea that the interpretation of time as 
an imaginary quantity can be useful, yet more general concepts can be conceived. 
For example, one may contemplate propagation along temporal contours that are 
neither purely real nor purely imaginary but are generally complex. Indeed, it turns 
out that path integrals with curvilinear integration contours in the complex time 
plane find numerous applications in statistical and quantum field theory.

3.2.2 Semiclassical analysis of the path integral

In deriving the two path integral representations (3.6) and (3.8), no approxima­
tions were made. Yet the majority of quantum mechanical problems are unsolvable 
in closed form, and the situation regarding the path integral approach is no differ­
ent. In fact, only the path integrals of problems with a quadratic Hamiltonian - 
corresponding to the quantum mechanical harmonic oscillator and generalizations 
thereof - can be carried out in closed form. Yet, what counts more than the avail­
ability of exact solutions is the flexibility with which approximation schemes can 
be developed. As to the path integral formulation, it is particularly strong in cases 
where semiclassical limits of quantum theories are explored. Here, by “semiclas- 
sical” we mean the limit ~ ^ 0, i.e., the case where the theory is governed by 
classical structures with small quantum fluctuations superimposed.

To see how classical structures enter the path integral, consider Eqs. (3.6) and 
(3.8) at small ~. In this case, the path integrals are dominated by configurations 
with stationary action. (Nonstationary contributions to the integral imply phase 
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stationary 
phase 

approx­
imation

fluctuations which largely average to zero.) Since the exponents of the two path 
integrals (3.6) and (3.8) involve the Hamiltonian or Lagrangian action, the extremal 
path configurations are just the solutions of the corresponding equations of motion,

Hamiltonian : <5S[x] =0 ^ dtx = {H, x} = dpH dqx — dqH dpx,

Lagrangian : 8S[q] =0 ^ (dtdq — dq) L = 0.

These equations must be solved subject to the boundary conditions q(0) = qi and 
q(t) = qf. (Note that these boundary conditions do not uniquely specify a solution, 
i.e., in general there may be many solutions - try to invent examples!)

Now, although the stationary phase configurations are classical, quantum me­
chanics is still present. Technically, we are evaluating an integral in a stationary 
phase approximation. In such cases, fluctuations around stationary points are an 
essential part of the integral. At the very least it is necessary to integrate out 
Gaussian (quadratic) fluctuations around the stationary point. In the case of the 
path integral, fluctuations of the action around the stationary phase configurations 
involve non-classical (in that they do not solve the classical equations of motion) 
trajectories through phase or coordinate space. Before exploring how this mecha­
nism works, let us consider the stationary phase analysis of functional integrals in 
general.

INFO Consider a functional integral /Dxe F[x] where Dx = limN^TO N=1 dxn rep­
resents a functional measure resulting from taking the continuum limit of some finite­
dimensional integration space, and the “action” F [x] may be an arbitrary complex func­
tional of x (leading to convergence of the integral). The function resulting from the limit 
of infinitely many discretization points, {xn}, is denoted by x : t n- x(t) (where t plays the 
role of the discrete index n). Evaluating the integral above within a stationary phase 
approximation amounts to performing the following steps:

1. Find the “points” of stationary phase, i.e., configurations x qualified by the condition 
of vanishing functional derivative (see section 1.2),

= 0. 
x= x

Although there may be more than one solution, we first discuss the case in which the 
configuration x: is unique.

2. Taylor expand the functional to second order around x:, i.e.,

F [x] — F [x + y] — F [x] + i f dtdt' y(t')A(t, t')y(t) + • • • (3.23)

where A(t,t') = sx(t)Fx]t,) | __ denotes the second functional derivative. Owing to 
the stationarity of x:, no first-order contribution can appear.

3. Check that the operator A = {A(t,t')} is positive definite. If it is not, there is a 
problem - the integration over Gaussian fluctuations y diverges. (In practice, where 
the analysis is rooted in a physical context, such eventualities arise only rarely. The 
resolution can usually be found in a judicious rotation of the integration contour.) 
For positive definite A, the functional integral over y is doable and one obtains 

DF 0 0 ut. SF [x]DF x   0 V t : , Xdx (t)
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DDx e F[x] ~ e F[x] det(-A) 1 /2 (see the above discussion of Gaussian integrals 
and, in particular, (3.19)).

4. Finally, if there are many stationary phase configurations, xi, the individual contri­
butions must be added:

y Dx eFF[x] ~ eFF[xi] det (Ai. (3.24)

i

Equation (3.24) represents the most general form of the stationary phase evaluation of a 
(real) functional integral.

EXERCISE As applied to the Gamma function r(z + 1) = f^ dxxz e x, with z complex, 
show that the stationary phase approximation is consistent with Stirling’s approximation, 
r( s + 1) = V2nS es (ln s F1).

When applied to the Lagrangian form of the 
Feynman path integral, this programme can 
be implemented directly. In this case, the ex­
tremal field configuration q(t) is identified as 
the classical solution, <?(t) = qcl (t). Defining 
r(t) = q(t) - qcl(t) as the deviation of a general 
path q(t) from a nearby classical path qcl(t) (see
the figure), and assuming that there exists only one classical solution connecting qi

with qf in time t, a stationary phase analysis yields the approximation

/a,|e—iH/~~W~ eiS[qci]/~ / Dr ewl — [ dtdfor(U)____ ^ S[q]___
1qf|e |qi’~ e J p\2~J0 dt 1 dt2r(t 1) 5q(t1) 5q(t2)

r(0)=r(t)=0

r(t2) 
q=qcl

(3.25)

cf. Eq. (3.23). For free Lagrangians of the form L = mmq2 — V(q), the second func­
tional derivative of the action can be computed by rules of functional differentiation 
formulated in chapter 1. Alternatively, one can obtain this result by expanding the 
action to second order in fluctuations r(t) (exercise):

1 [ ■ r (t) f 2 S[q 1 ,
2 J0 7 fq(t) fq(t')

r(t') = — 2 y dt r(t) (mdt + V"(qd(t))) r(t), (3.26)

where V"(qcl(t)) = d2V(q)|q=qcl represents an ordinary derivative of the potential. 
Thus, the Gaussian integration over r yields the square root of the determinant 
of the operator md‘2 + V"(qcl (t)) - interpreted as an operator acting in the space 
of functions r(t) with boundary conditions r(0) = r(t) = 0. (Note that, as we are 
dealing with a differential operator, the issue of boundary conditions is crucial.)

This concludes our conceptual discussion of the path integral. Before turning to 
its applications, let us briefly summarize the main steps in its construction.
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3.2.3 Construction recipe for the path integral

iH i i i ■ iH ~ ill t/S.lConsider a general quantum transition amplitude (^ |e iHt/~|^7), where t may be 
real, purely imaginary, or in general complex. To construct a functional integral 
representation of the amplitude:

1. Partition the time interval into N 1 steps, e—iHt/~ = [e—iH^t/~]N, At = 
t/N.

i2. Regroup the operator content appearing in the expansion of each factor e iHAt/~ 

according to the relation

e — iiiA t/~ = i + a t ^nA mB n + o (A 12),

where the eigenstates |a), |b) of A,B are known and the coefficients cmn are c- 
numbers. (In the quantum mechanical application above, A = p!, B = q!.) This 
“normal ordering” procedure emphasizes that distinct quantum mechanical 
systems may be associated with the same classical action.

3. Insert resolutions of identity as follows:

e—in\t/~ = ।aa। + at ^nAmBn + o(At2)^ |b){b|

= |aXa|e—iH(ab)At/~|bXb| + O(A12),
a,b

where H (a, b) is the Hamiltonian evaluated at the eigenvalues of A and B .

4. Regroup terms in the exponent: owing to the “mismatch” of the eigenstates at 
neighboring time slices, n and n + 1, not only the Hamiltonians H(a, b), but 
also sums over differences of eigenvalues appear (the last factor in (3.5)).

5. Take the continuum limit.

3.2.4 Example: quantum particle in a well

Free 
particle 

propagator

The simplest example of a quantum mechanical problem is a free particle, 
H! = p!2/2m. The corresponding free propagator is given by

(3.27)

G free( qf,qi; t) — qf
( i p2t \ 

exP \ ~ 2 m 1
q•} S<t)= ^ml) 2 exP ( im(q'-qi)2 ) S<t) 

2 2nni~~ ~ 2t )

where the Heaviside ©-function is a reflection of causality.9

9 Motivated by its interpretation as a Green function, in the following we refer to the quantum 
transition probability amplitude by the symbol G (as opposed to the symbol U used above).
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EXERCISE Verify this result by the standard methodology of quantum mechanics. (Hint: 
Insert a resolution of identity and perform a Gaussian integral.)

Irritatingly, the derivation of Eq. (3.27) by the methods of path integration is not 
trivial; in a way, the problem is “too free.” In the path integral construction, the 
absence of a confining potential shows up as divergences that must be regularized 
by re-discretization. Instead of discussing such regularization methods in detail, we 
proceed pragmatically and simply postulate that whenever a path integral over a 
zero-potential action is encountered, it may be formally replaced by the propagator 
Eq. (3.27). This substitution will be applied in the discussion of various physically 
more interesting path integrals below.

EXERCISE Starting from a formal path integral representation, obtain a perturbative 
expansion of the amplitude (p' | U(t ^ to,t' ^ —<ro)|p) for the scattering of a free particle 
from a short-range central potential V (r). In particular, show that application of the above 
substitution rule to the first-order term in the expansion recovers the Born scattering 
amplitude, — i~e-i(t-t )E(p)/~8(E(p) — E(p'))(p'|V|p).

As a first application of the path integral, let us consider a 
quantum particle in a one-dimensional potential well (see if
the figure), H = p2/2m + V(7). A discussion of this ex- \ + yy

10 In general, this assumption is wrong. For smooth potentials V (q), a Taylor expansion of V 
at small q gives the harmonic oscillator potential, V(q) = V3 + mu2 q2 /2 + • • •. For times t 
commensurate with n/u, one has multiple periodic solutions, qci(t) k sin(ut), starting out 
from the origin at time t = 0 and returning to it at time t, as required by the boundary 
conditions. In the next section, we will see why the restriction to the trivial solution was 
nonetheless legitimate.

ample illustrates how the semiclassical evaluation scheme \ Z
discussed above works in practice. For simplicity we as- -----------
sume the potential to be symmetric, V(7) = V (-7), with
V(0) = 0. Consider then the amplitude for a particle initialized at 7I = 0 to return 

Hlafter a time t, G(0, 0; t) = (qf = 0|e iHt/~|qi = 0)©(t). Drawing on our previous 
discussion, the path integral representation of the transition amplitude for positive 
time t > 0 is given by

G(0, 0; t)= Dq exp dt’ L(q, q)^

q(t)=q(0)=0

with Lagrangian L = mq2 /2 — V (q).
Now, for a generic potential V (q), the path integral cannot be evaluated exactly. 

Instead, we wish to invoke the semiclassical analysis outlined above. Accordingly, 
we must first find solutions to the classical equation of motion. Minimizing the 
action with respect to variations of q(t), one obtains the Euler-Lagrange equation 
of motion mq = — V'(q). This equation must be solved subject to the boundary 
conditions q(t) = q(0) = 0. One solution is obvious: qcl(t) = 0. Assuming that this 
is the only solution,10 we obtain (cf. Eqs. (3.25) and (3.26))
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G(0, 0; t) ~ Dr exp ^—dt’r(t') — (92, + w2) r(t')^ ,

r(0)=r(t)=0

where —w2 = V"(0) is the second derivative of the potential at the origin.11 Note 
that, in this case, the contribution to the action from the stationary phase field 
configuration vanishes: S[qcl] = 0. Following the discussion in section 3.2, Gaussian 
functional integration over r then leads to the semiclassical expansion

11 Those who are uncomfortable with functional differentiation can arrive at the same expression 
by substituting q(t) = qcl (t) + r(t) into the action and expanding in r(t).

12 To find the solutions of this equation, recall the structure of the Schrodinger equation for a 
particle in a one-dimensional box of width L = t.

G(0, 0; t) ~ J det (-—(d2 + w2)/2)-1 /2 , (3.28)

where J absorbs various constant prefactors.
It is often most convenient to represent operator determinants such as Eq. (3.28) 

as infinite products over eigenvalues. In the present case, the eigenvalues en are 
determined by the equation —(—/2) (d2 + w2) rn = enrn, which must be solved 
subject to the boundary condition rn (t) = rn(0) = 0. A complete set of solutions 
to this equation is given by12 rn (t') = sin( nnt' /t), n = 1, 2,..., with eigenvalues 
en = — [(nn/t)2 — w2]/2. Applied to the determinant,

> f — n2 2\ A-1 /2 TT (— ( fnn\2 2AA 1 /2
det (— y( d2 + w2)J y ( ~) — w j) '

n=1

To interpret this result, one must make sense of the infinite product (which even 
seems divergent for times commensurate with n/w). Moreover the value of the 
constant J has yet to be determined.

To resolve these difficulties, one may exploit the fact that (i) we know the transi­
tion amplitude (3.27) of the free particle system, and (ii) the latter coincides with 
the transition amplitude G in the special case where the potential V = 0. In other 
words, had we computed Gfree via the path integral, we would have obtained the 
same constant J and the same infinite product, but with w = 0. This allows the 
transition amplitude to be “regularized” as

-1/2
z z G (0, 0; t) x rr / (wt V\ / — \1 /2 x

G (0, 0; t) = r nnGsG free(0, 0; t ) = n 1 — — e( t).
Gfree(0, 0; t) -1\ \n^/ J 2nni~t/

Then, with the identity [J^=1(1 — (x/nn)2)-1 = x/ sinx, one obtains
/ \ 1 / 2
I (j.) \G(0, 0; t) G . e(t). (3.29)
\2 ni ~ sin( wt) J

In the case of the harmonic oscillator, the expansion of the potential truncates at 
quadratic order and our result is exact. (For a more wide-ranging discussion of the 
path integral for the quantum harmonic oscillator, see problem 3.8.1.) For a general 
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potential, the semiclassical approximation involves the replacement of V (q) by a 
quadratic potential with the same curvature. The calculation above also illustrates 
how coordinate-space fluctuations around a completely static solution may reinstate 
the zero-point fluctuations characteristic of quantum mechanical bound states.

Poisson 
summation 

formula

EXERCISE Using the expression for the free particle propagator, use the Feynman path 
integral to show that, in an infinite square well potential between q = 0 and q = L, 
(qF| exp(-ip— t)|qI) = 2 ,e-~Ent sin(knqI) sin(knqF), where En = (~kn)2/2m andF ~ 2 m Il I1/ L n= = 1 n± I/ n n±F , n nj
kn = nn/L. (Hint: When considering contributions from different paths, note that each 
reflection from an infinite potential barrier imparts an additional phase factor of -1. Note 
also the Poisson summation formula, ,'.'' ^ f (m) = ^=_xf-°lxd^f (^) e2 nn.) 
Compare the result with that for a quantum particle on a ring of circumference L.

3.3 Advanced Applications of the Feynman Path Integral

SYNOPSIS In this section we discuss applications of path integration in the description 
of quantum mechanical tunneling, decay and dissipation. Readers on a fast track may skip 
this section at first reading and return to it at a later stage when reference to concepts 
introduced in this section is made.

The path integral was introduced roughly half a century after the advent of quan­
tum mechanics. Since then it has not replaced the operator formalism but developed 
into an alternative formulation of quantum mechanics. Depending on the context, 
operator or path integral techniques may be superior in the description of quan­
tum mechanical problems. Here, we discuss the application of the path integral in 
fields where it is particularly strong (or even indispensable): quantum mechanical 
tunneling, decay, and dissipation.

3.3.1 Double well potential: tunneling and instantons

quantum 
tunneling

Consider a quantum particle confined to a double well 
potential (see figure). Our aim will be to estimate the 
quantum probability amplitude for the particle either 
to stay at the bottom of one of the local minima or 
to go from one minimum to the other. In doing so, it 
is understood that the energy range accessible to the 
particle (AE ^ ~/t) is well below the potential bar­
rier height, i.e., quantum mechanical transfer between 
minima is by tunneling. Here, in contrast with the 
single well, it is far from clear what kind of classical stationary-phase solutions may 
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serve as a basis for a description of the quantum dynamics; there appear to be no 
classical paths connecting the two minima! Of course one may think of particles 
“rolling” over the potential hill. Yet, these are singular and energetically inaccessible 
by assumption.

The key to resolving these difficulties is an observation already made above, 
that the time argument appearing in the path integral should be considered as a 
general complex quantity that can (according to convenience) be set to any value 
in the complex plane. In the present case, a Wick rotation to imaginary times will 
reveal a stationary point of the action. At the end of the calculation, the real-time 
amplitudes that we seek can be obtained by analytic continuation.

glasses
INFO The mechanism of quantum tunneling plays a role in a number of problems of con­
densed matter. A prominent example is the physics of amorphous solids such as glasses.

A schematic of a glass is shown in the figure. The 
absence of long-range order implies that individual 
chemical bonds cannot assume their optimal bind­
ing lengths. For under-stretched bonds, this leads 
to the formation of two metastable minima around 
the ideal binding axis (see inset). The energetically 
lowest excitations of the system are transitions of 
individual atoms between nearly degenerate minima
of this type, i.e., flips of atoms around the binding axis. A prominent phenomenological 
model13 describes the system by an ensemble of quantum double wells of random center 
height and width. This model explains the existence of a vast system of metastable points 
in the landscape of low-energy configurations of glassy systems.

Consider the imaginary-time transition amplitudes

Ge (a, ±a; t) = (a|e-~H | ± a) = Ge (—a, ^a; t) (3.30)

for the double well, where the coordinates ±a coincide with the two minima of the 
potential. From Eq. (3.30), the real-time amplitudes G(a, ±a; t) = GE(a, ±a; t ^ 
it) can be recovered by the analytic continuation, t ^ it. According to section 3.2.1, 
the Euclidean-time path integral of the transition amplitudes is given by

GE (a, ±a; t) Dq exp

q (0)=± a,q ( T )=a

--~ f„T dr' (+V (q >)) (3.31)

where the function q now depends on imaginary time. From Eq. (3.31) we obtain 
the stationary-phase (or saddle-point) equations

— mq + V'(q) = 0. (3.32)

This result indicates that the Wick rotation amounts to an effective inversion of the 
potential, V ^ — V (shown in the figure above ). Crucially, in the inverted potential,

13 P. W. Anderson, B. I. Halperin and C. M. Varma, Anomalous low-temperature thermal 
properties of glasses and spin glasses, Phil. Mag. 25, 1 (1972).
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the barrier has become a trough. Within this new formulation, there are classical 
solutions connecting the two points, ±a. More precisely, there are three different 
types of classical solution fulfilling the condition for the particle to be at coordinates 
±a at times 0 and t : (a) a solution where the particle rests permanently at a ;14 

(b) a corresponding solution where the particle stays at -a; and, most importantly, 
(c) a solution in which the particle leaves its initial position at ±a, accelerates 
through the minimum at q = 0, and reaches the final position ^a at time t. In 
computing the transition amplitudes, all three types of path must be taken into 
account. As to (a) and (b), by computing quantum fluctuations around these solu­
tions, one can recover the physics of the zero-point motion described in section 3.2.4 
for each well individually. (Exercise: Convince yourself that this is true!) Now let 
us see what happens if the paths connecting the two coordinates are added to this 
picture.

14 Note that the potential inversion answers a question that arose above, i.e., whether or not 
the classical solution staying at the bottom of the single well was actually the only one that 
could be considered. As with the double well, we could have treated the single well within 
an imaginary time representation, whereupon the well would have become a hill. Clearly, the 
boundary condition requires the particle to start and finish at the top of the hill, i.e., the 
solution that stays there for ever. By formulating the semiclassical expansion around that path, 
we would have obtained Eq. (3.29) with t ^ —it which, upon analytic continuation, would 
have led back to the real-time result.

15 The instanton method has inspired a variety of excellent and pedagogical reviews including A. 
M. Polyakov, Quark confinement and topology of gauge theories, Nucl. Phys. B120, 429 (1977). 
See also A. M. Polyakov, Gauge Fields and Strings (Harwood, 1987); S. Coleman, Aspects of 
Symmetry - Selected Erice Lectures (Cambridge University Press, 1985), chapter 7; and A. I. 
Vainshtein et al., ABC of instantons, Sov. Phys. Usp. 25, 195 (1982).

The instanton gas

instanton

able to identify the properties of the W and Z 
particles. The’t Hooft—Veltman model allowed 
scientists to calculate the physical properties of 
other particles, including the mass of the top 
quark, which was directly observed in 1995.

Gerardus’t Hooft 1946- 
is a Dutch theoretical physi­
cist who, with Martinus J. G. 
Veltman, received the 1999 
Nobel Prize in Physics “for elu­
cidating the quantum structure 
of electroweak interactions in 
physics.” Together, they were

The classical solution of the Euclidean 
equation of motion that connects the 
two potential maxima is called an in­
stanton, while a solution traversing 
the same path but in the opposite di­
rection is called an anti-instanton. The 
name was conceived by ’t Hooft with 
the idea that these objects are sim­
ilar in their structure to “solitons,” 
particle-like solutions of classical field 
theories. However, unlike solitons, they
are structures in (Euclidean) time; hence the term “instant-.” Moreover, the syllable 
“-on” hints at a particle-like interpretation of the solution. The reasoning is that, 
as a function of time, instantons are almost everywhere stationary save for a short 
region of variation (see below). Considering time as akin to a spatial dimension, 
these states can be interpreted as a localized excitation or, according to standard 
field-theoretical practice, a particle.15
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To proceed, we must first compute the action of 
the instanton solution. Multiplying (3.32) by qcl, in­
tegrating over time (i.e., performing the first integral 
of the equation of motion), and using the fact that, at 
qci = ±a, dT qcl = V = 0, one finds

m <12l = V (q cl) • (3.33)

With this result, one obtains the instanton action

Sinst =y dT' (mmqCi + V(qcl)} =y dT' dT-(mqci) 

a
= I dq (2mV(q))1 /2• (3.34)

-a

instanton

-I rn-1p-

q

Note that Sinst is determined solely by the functional profile of the potential V 
(i.e., it does not depend on the structure of the solution qcl). Second, let us explore 
the structure of the instanton as a function of time. Defining the second derivative 
of the potential at ±a by V"(±a) = mw2, Eq. (3.33) implies that, for large times 
(when the particle is close to the right-hand maximum), qcl = — w(qcl — a), which 
integrates to qcl(t) T—— a — e-T":. Thus the temporal extension of the instanton is 
set by the oscillator frequencies of the local potential minima (the maxima of the 
inverted potential) and, in cases where tunneling takes place on time scales much 
larger than that, it can be regarded as short (see the figure).

The confinement of the instanton to a narrow interval of time has an important 
implication - there must exist approximate solutions of the stationary equation 
involving further anti-instanton-instanton pairs (physically, solutions with the par­
ticle repeatedly bouncing to-and-fro in the inverted potential). According to the 
general philosophy of the saddle-point scheme, the path integral is obtained by 
summing over all solutions of the saddle-point equations and hence over all instan­
ton configurations. The summation over multi-instanton configurations - termed 
the instanton gas - is simplified by the fact that individual instantons have short 
temporal support (events of overlapping configurations are rare) and that not too 
many instantons can be accommodated in a finite time interval (the instanton gas 
is dilute). The actual density is dictated by the competition between the config­
urational “entropy” (favoring high density) and the “energetics,” the exponential 
weight implied by the action (favoring low density) - see the estimate below.

In practice, multi-instanton configurations imply a transition amplitude

G(a, ±a; t) ~ Kn dT 1
n even/odd 0 0

dT2 ■■■ [ dTn An(T1, • • • ,Tn),
0

(3.35)

where An denotes the amplitude as­
sociated with n instantons, and we 
have noted that, in order to connect 
a with ±a, the number of instantons 
must be even or odd. The n instantons 
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contributing to each An can take place at arbitrary times Ti G [0, t], i = 1,... ,n, 
and all these possibilities have to be summed (i.e., integrated). Here, K de­
notes a constant absorbing the temporal dimension [time]n introduced by the 
time integrations, and An(T1, . . . , Tn) is the transition amplitude, evaluated within 
the semiclassical approximation around a configuration of n instantons at times 
0 < Tn < Tn-1 < ■■■ < t 1 < t (see the figure). In the following, we first focus 
on the transition amplitude An , which controls the exponential dependence of the 
tunneling amplitude, and will return later to consider the prefactor K .

According to the general semiclassical principle, each amplitude An = An,cl x 
An,qu factorizes into two parts: a classical contribution An,cl accounting for the 
action of the instanton configuration; and a quantum contribution An,qu resulting 
from quadratic fluctuations around the classical path. Focusing initially on An,cl 

we note that, at intermediate times, Ti t ' Ti+1, where the particle rests on top 
of either of the maxima at ±a, no action accumulates (see the previous section). 
However, each instanton has a finite action Sinst (3.34), and these contributions 
sum to give the full classical action,

An,cl(T1, . . . ,Tn) = e-nSinst/~, (3.36)

which is independent of the time coordinates Ti, i.e., instantons are “non-interacting.”
Regarding An,qu, there are two contributions. First, while the particle rests on 

either of the hills (corresponding to the straight segments in the figure above), 
quadratic fluctuations around the classical (i.e., spatially constant) configuration 
play the same role as the quantum fluctuations considered in the previous section, 
the only difference being that we are working in a Wick-rotated picture. There, it 
was found that quantum fluctuations around a classical configuration, which stays 
for a (real) time t at the bottom of a well, result in a factor -y/1 / sin(ut) (the 
remaining constants being absorbed into the prefactor Kn). Rotating to imaginary 
time, t ^ —it, it follows that the quantum fluctuation accumulated during the 
stationary time Ti+1 - Ti is given by

/ 1 \ 1 / 2
( __________________  j ^ e -U (Ti +1- Ti ) / 2
\sin(—iu (Ti+1 — Ti ))/

where we have used the fact that the typical separation times between instantons are 
much larger than the inverse of the characteristic oscillator scales of each minimum. 
(It takes the particle much longer to tunnel through a high barrier than to oscillate 
in either of the wells of the real potential.)

Second, there are also fluctuations around the instanton segments of the path. 
However, owing to the fact that an instanton takes a time O (u -1) At, where At 
represents the typical time between instantons, one can neglect these contributions 
(which is to say that they can be absorbed into the prefactor K without explicit cal­
culation). Within this approximation, setting t0 = 0, Tn +1 = t, the overall quantum 
fluctuation correction is given by

An, qu( T 1, ...,Tn) = fl e - ^ (Ti +1-Ti) /2 = e - ^ 2, (3.37)
i=0
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which again is independent of the particular spacing configuration {Ti}. Combining 
Eq. (3.36) and (3.37), one finds that

co

G(a, ±a; t) ~ Kne-nSi-t/~e-'" 2

T n/n!
/•r ti 1 rT--1

d dT y j dT2 • • •J dTn

= e-'" 2 V — (TKe-Sinst/~ 
n!

neven/odd

Finally, performing the sum, one obtains the transition amplitude

G(a, ±a; t) ~ Ce-"' 2
cosh(T K e-Sinst /~), 
sinh(T Ke-Sinst/~),

(3.38)

(3.39)

where the factor C depends in a non-exponential way on the transition time.
Before we turn to a discussion of the physical content of this result, let us check 

the self-consistency of our central working hypothesis - the diluteness of the in­
stanton gas. To this end, consider the representation of G in terms of the partial 
amplitudes (3.38). To determine the typical number of instantons contributing to 
the sum, note that for a general sum n cn of positive quantities cn > 0, the “typi­
cal” value of the summation index can be estimated as (n) = YCn cnn/^2n cn• With 
the abbreviation X = TKe-Sinst/~, it follows that

(n) =
En nX n/n!
Enxn/n!

= X,

where, as long as (n) 1, the even/odd distinction in the sum is irrelevant. Thus, 
we can infer that the average instanton density, (n}/T = Ke-Sinst/~, is both expo­
nentially small in the instanton action Sinst and also independent of T, confirming 
the validity of our diluteness assumptions above.

Finally, let us consider how the form of the 
transition amplitude (3.39) is understood in 
physical terms. To this end, consider the ba­
sic quantum mechanics of the problem (see the 
figure). Provided that there is no coupling 
across the barrier, the Hamiltonian has two 
independent, oscillator-like, sets of low-lying 
eigenstates sitting in the two local minima. Al­
lowing for a weak inter-barrier coupling, these 
states individually split into a doublet of sym­
metric and antisymmetric eigenstates, |S) and |A), with energies 'A and eS, respec­
tively. Focusing on the low-energy sector formed by the ground state doublet, the 
transition amplitudes (3.30) can be expressed as

G(a, ±a; t) ~ (a| (|S)e-eST/~(S| + |A)e-eAT/~(A|) | ± a).

Setting eA/S = (~w ± Ae)/2, the symmetry properties |(a|S)|2 = |(—a|S)|2 = C/2 
and {a|AA| — a) = —|(a|A)|2 = — C/2 imply
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G(a, ±a; t) ~ C (e-(~"'-Ae)t/2~ ± e-(~"'+A6
= Ce-^t/2 f cosh(Aer/~), 

[ sinh(Aer/~),

Comparing this expression with Eq. (3.39), the interpretation of the instanton cal­
culation becomes clear: at long times, the transition amplitude is obtained from 
the two lowest states - the symmetric and anti-symmetric combinations of the two 
oscillator ground states. The energy splitting Ae accommodates the energy shift 
due to the tunneling between the two wells. Remarkably, the effect of tunneling has 
been obtained from a purely classical picture formulated in imaginary time! The 
instanton calculation also produces a prediction for the splitting of the energies due 
to tunneling,

A e = ~ K exp(-S inst / ~),

which, up to the prefactor, agrees with the result of a WKB-type analysis.
Before leaving this section, some general remarks on instantons are in order:

> In hindsight, was the approximation scheme used above consistent? In particu­
lar, terms at second order in ~ were neglected while terms non-perturbative in ~ 
(the instanton) were kept. Yet the former typically give rise to a larger correc­
tion to the energy than the latter. However, the large perturbative shift affects 
the energies of the symmetric and antisymmetric states equally. The instanton 
contribution gives the leading correction to the splitting of the levels. It is the 
latter that is likely to be of more physical significance.

> Second, it may appear that the machinery above was a bit of an “overkill” for 
describing a simple tunneling process. Indeed, the basic result (3.39) could have 
been obtained by more elementary means such as the WKB method. Why then 
have we discussed instantons at such length? One reason is that, even within 
a purely quantum mechanical framework, the instanton formulation is much 
stronger than WKB. The latter represents, by and large, an uncontrolled ap­
proximation: in general it is hard to tell whether WKB results are accurate or 
not. In contrast, the instanton approximation is controlled by well-defined expan­
sion parameters. For example, by going beyond the semiclassical approximation 
and/or softening the diluteness assumption, the calculation of the transition 
amplitudes can, in principle, be driven to arbitrary accuracy.

> A second and, for our purposes, more important motivation is that instanton 
techniques are of crucial importance within higher-dimensional field theories 
(here we regard the path integral formulation of quantum mechanics as a (0 
space + 1 time) one-dimensional field theory). The reason is that instantons 
are intrinsically non-perturbative, i.e., instanton solutions to stationary-phase 
equations describe physics inaccessible to perturbative expansions around a non­
instanton sector of the theory. (For example, the instanton orbits in the example 
are not reachable by perturbative expansion around a trivial orbit.)

> A related feature of the instanton analysis above is that the number of instantons 
involved is a stable quantity; “stable” in the sense that, by including perturbative
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fluctuation 
determinant

fluctuations around the n-instanton sector, say, one does not connect with the n+ 
2 sector. Although no rigorous proof of this statement has been given, it should 
be clear heuristically: a trajectory involving n instantons between the hills of the 
inverted potential cannot be smoothly connected with one of a different number. 
Attempts to perturbatively interpolate between such configurations inevitably 
“cost” large action, greatly exceeding any stationary phase-like value. In this 
way, the individual instanton sectors are stabilized by large intermediate energy 
barriers.

INFO The analysis above provides a method to extract the tunneling rate between the 
quantum wells to a level of exponential accuracy. However, it is sometimes necessary to 
compute the exponential prefactor K . Although such a computation follows the general 
principles outlined for the single well, there are some idiosyncrasies in the tunneling system 
that warrant discussion. According to the general principles outlined in section 3.2.2, after 
integrating over Gaussian fluctuations around the saddle-point field configurations, the 
contribution to the transition amplitude from the n-instanton sector is given by

Gn = J det (-mdT + V"(qcl,n)) e-nSinst,

where qcl,n (t) represents an n-instanton configuration and J the normalization. In the 
zero-instanton sector, the evaluation of the functional determinant recovers the famil­
iar harmonic oscillator result, G(a,a,r) = (mw/n~)1 /2 exp[-wt /2]. Let us now consider 
the one-instanton sector of the theory. To evaluate the fluctuation determinant, one 
must consider the spectrum of the operator — mdT + V"(qcl, 1). Differentiating the defining 
equation for qcl,1 (3.32), one may confirm that

(—mdT + V"(qcl, 1)) dTqcl, 1 = 0,

i.e., the function dTqcl, 1 presents a “zero mode” of the operator! The origin of the zero 
mode is elucidated by noting that a translation of the instanton along the time axis, 
qci, 1 (t) ^ qci, 1 (t + St), leaves the action approximately invariant. However, for small St, 
we have qcl, 1(t + St) ~ qcl, 1(t) + s~d-qcl, 1, showing that, to linear order in St, the function 
dTqcl, 1 describes a zero action shift. For the same reason, St is a “zero-mode coordinate.” 

With this interpretation, it becomes clear how to repair the formula for the fluctuation 
determinant. While the Gaussian integral over fluctuations is controlled for the non-zero 
eigenvalues, its execution for the zero mode must be rethought. Indeed, by integrating over the coordinate of the instanton, 0T dt0 = t , one finds that the contribution to the 

transition amplitude in the one-instanton sector is given by

J^[S2Sdet' (—mdT + V"(qcl, 1))-1 /2 e-Sinst,

where the prime indicates the exclusion of the zero mode from the determinant and the 
factor Sinst /2n~ reflects the Jacobian associated with the change to a new set of integra­
tion variables which contains the zero-mode coordinate t as one of its elements.16 To fix 
the overall constant J , we normalize by the fluctuation determinant of the imaginary-time 
harmonic oscillator, i.e., we use the fact that (see section 3.2.4) the return amplitude of the 
latter evaluates to G(a,a,r) = Jdet(m(—d2 + w2)/2)-1 /2 = (mw/n~)1 /2 e-^t/2, where 
the first/second representation is the imaginary time variant of Eq. (3.28)/Eq.(3.29). Using

16 See, e.g., J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Oxford University 
Press, 1993) for an explicit calculation of this Jacobian.
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Fig. 3.2 Effective potential showing a metastable minimum together with the inverted potential and 
a sketch of a bounce solution. To obtain the tunneling rate, it is necessary to sum over a 
dilute gas of bounce trajectories.

this result, and noting that the zero-mode analysis above generalizes to the n-instanton 
sector, we find that the pre-exponential constant K used in our analysis of the double well 
affords the explicit representation

-1/2
mw2det' (-mdT + V" (qcl, 1)) 

det (—mdT + mw2)

Note that the instanton determinant depends sensitively on the particular nature of 
the potential V(q). For the quartic potential, V(q) = mw2 (x2 - a2)2 /8a2 , the term in 
parentheses above is given by 1/12 while Sinst = 2mwa2/3. For further details, we refer 
to, e.g., Zinn-Justin (1993).16

EXERCISE A quantum particle moves in a periodic potential V with period a. Taking 
the Euclidean action for the instanton connecting two neighboring minima to be Sinst , 
express the propagator G(ma,na; T), with m and n integer, as a sum over instantons and 
anti-instantons. Using the identity S(q — q') = J02n 2n ei(q-q )e, show that G(ma,na; t) ~ 
e - "T 2 J'2 n dn e- i(n -m) " exp[2A er cos 0 ], where the notation follows section 3.3.1. Noting 
that, in the periodic system, the eigenfunctions are Bloch states q'pa(q) = eipqupa(q), the 
Bloch function, show that the propagator is consistent with the spectrum ep = w/2 — 
2A e cos( pa).

bounce 
configuration

Escape from a metastable minimum: “bounces”

The instanton gas formulation can be adapted easily to describe quantum tunneling 
from a metastable state, such as that of an unstable nucleus. Consider the “survival 
probability” |G(qm, qm ; t)|2 of a particle captured in a metastable minimum qm of a 
one-dimensional potential, such as that shown in fig. 3.2. As with the double well, 
in the Euclidean-time formulation of the path integral, the dominant contribution 
to G(qm, qm; t) arises from the classical paths minimizing the action corresponding 
to the inverted potential (see fig. 3.2). However, in contrast with the double well, 
the classical solution takes the form of a “bounce,” i.e., the particle spends only a 
short time away from the potential minimum as there is only a single (metastable) 
minimum. As with the double well, one can expect multiple bounce trajectories 
to present a significant contribution. Summing over all bounce trajectories (note 
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that, in this case, we have an exponential series and no even-odd parity effect), one 
obtains the survival probability

G(qm,qm; t) = Ce-WT/2 exp (rKe -Sbounce/~) .

Analytically continuing to real time, G(qm,qm; t) = Ce-iUt/2e-rt/2, where the 
decay rate is given by r/2 = |K|e-Sbounce/~. (Note that, on physical grounds, K 
must be imaginary.17).

Hitherto, we have focused on applications of the path integral to the quantum 
mechanics of point-like particles. However, the formalism can be straightforwardly 
extended to richer physical contexts. As an illustration, here we consider a setting 
where the tunneling object is not a point particle but an elastic continuum with 
infinitely many degrees of freedom.

Consider a situation where a continuous clas­
sical field can assume two equilibrium states 
with different energy densities. To be concrete, 
one may consider a harmonic chain confined to 
one or other minimum of an asymmetric quasi- 
one-dimensional “gutter-like” double well po­
tential defined on an interval of length L (see the figure). When quantized, the 
state of higher energy density becomes unstable through barrier penetration - it is 
said to be a false vacuum.18 Specifically, drawing on our discussion of the harmonic

17 In fact, a more careful analysis shows that this estimate of the decay rate is too large by a 
factor 2 (for further details see, e.g., the discussion in Coleman 5 ).

18 For a detailed discussion of the history and ramifications of this idea, we refer to the original 
insightful paper by S. Coleman, Fate of the false vacuum: Semiclassical theory, Phys. Rev.

EXERCISE Consider a heavy nucleus having a finite rate of a-decay. The nuclear forces 
are short range so that the rate of a -emission is controlled by the tunneling of a-particles 
under a Coulomb barrier. Taking the effective potential to be spherically symmetric, with 
a deep well of radius r0 beyond which it decays as U(r) = 2(Z - 1)e2/r, where Z is the 
nuclear charge, find the temperature T of the nuclei above which a-decay is thermally 
assisted if the energy of the emitted particles is E0 . Estimate the mean energy of the a 
particles as a function of T .

EXERCISE A uniform electric field E is applied perpendicularly to the surface of a 
metal with work function W . Assuming that the electrons in the metal describe a Fermi 
gas of density n, with exponential accuracy, find the tunneling current at zero temperature 
(“cold emission”). Show that, effectively, only electrons with energy near the Fermi level 
are able to tunnel. With the same accuracy, find the current at non-zero temperature 
(“hot emission”). What is the most probable energy of tunneling electrons as a function 
of temperature?

3.3.2 Tunneling of quantum fields: “fate of the false vacuum” 

false
vacuum
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chain in chapter 1, let us consider a quantum system specified by the Hamiltonian 
density

n2 -a2
H , • -S^ (' + V (^), (3.40)

2m 2

where [n(x), ((x^)] = — i~6(x — xf) and V()) represents a double well potential. The 
inclusion of a weak bias — f^ in V()) identifies a stable and a metastable potential 
minimum. Previously, we have seen that, in the absence of a confining potential, the 
quantum string exhibits low-energy collective wave-like excitations - phonons. In 
a confining potential, these harmonic fluctuations are rendered massive. However, 
drawing on the quantum mechanical principles established in the single-particle 
system, one might assume that the string tunnels freely between the two minima. 
To explore the capacity of the system to tunnel, let us suppose that, at time t = 0, 
the string is located in the (metastable) minimum of the potential at = = — a. 
What is the probability that the entire string will tunnel across the barrier into the 
potential minimum at = = a in time t?

INFO The tunneling of fields between nearly degenerate ground states plays a role in 
numerous physical contexts. By way of example, consider a superheated liquid. In 
this context, the “false” vacuum is the liquid state, the true one the gaseous phase. The 
role of the field is taken by the local density distribution in the liquid. Thermodynamic 
fluctuations trigger the continuous appearance of vapor bubbles in the liquid. For small 
bubbles, the gain in volume energy is outweighed by the surface energy cost - the bubble 
will collapse. However, for bubbles beyond a certain critical size the energy balance is 
positive. The bubble will grow and, eventually, swallow the entire mass density of the 
system; the liquid has vaporized or, more formally, the density field has tunneled19 from 
the false ground state into the true ground state.

More speculative (but more dramatic) manifestations of the phenomenon have been 
suggested in the context of cosmology: what if the Big Bang released our universe not 
into its true vacuum configuration, but into a state separated by a huge barrier from 
a more favorable sector of the energy landscape? In this case, the fate depends on the 
tunneling rate:

If this time scale is of the order of mil liseconds, the universe is stil l hot when the 
false vacuum decays. . . if this time is of the order of years, the decay will lead to 
a sort of secondary Big Bang with interesting cosmological consequences. If this 
time is of the order of 109 years, we have occasion for anxiety. (S. Coleman)

Previously, for the point-particle system, we saw that the transition probability 
between the minima of the double well is most easily accessed in the Euclidean­
time framework. In the present case, anticipating our discussion of the quantum

D 15, 2929 (1977). In fact, many ideas developed in this work were anticipated in an earlier 
analysis of metastability in the context of classical field theories by J. S. Langer, Theory of the 
condensation point, Ann. Phys. (NY) 41, 108 (1967).

19 At this point, readers should no longer be confused regarding the concept of “tunneling” in the 
context of a classical system. Within the framework of the path integral, the classical partition 
sum maps onto the path integral of a fictitious quantum system. It is this tunneling that we 
have in mind. 
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field integral later in the chapter, the Euclidean-time action associated with the 
Hamiltonian density (3.40) assumes the form20

fT L / m k k„a.2
s[*] = y d^o d^-(dT*)2 + (dx^)2+v($)

where the time integral runs over the interval [0, T = it]. Here, for simplicity, 
let us assume that the string obeys periodic boundary conditions in space, ^(x + 
L,t) = ^(x,t). To estimate the tunneling amplitude, we will explore the survival 
probability of the metastable state, imposing the boundary conditions ^(x, t = 0) = 
^(x,t = T) = — a on the path integral. Once again, when the potential barrier is 
high, and the time T is long, one may assume that the path integral is dominated 
by the saddle-point field configuration of the Euclidean action. In this case, varying 
the action with respect to the field ^(x,r), one obtains the classical equation of 
motion

mdT $ + k s a 2 d2x $ = d^V ($),

with the boundary conditions above.
Motivated by our consideration of the point­

particle problem, we might seek a solution in 
which the string tunnels as a single rigid entity 
without “flexing.” However, it is evident from 
the spatial translational invariance of the sys­
tem that the instanton action would scale with 
the system size L. In the infinite system L ^- rc>, 
such field configurations cannot contribute to 
the tunneling amplitude. Instead, one must con­
sider different ones, in which the transfer of the 
chain occurs by degree. In this case, elements 
of the string cross the barrier in a consecutive 
sequence as two outwardly propagating “domain walls” (see the figure, where the 
emergence of such a “double-kink” configuration is shown as a function of space 
and time). Such a field configuration is motivated by symmetry. After the rescaling 
x ^ vsx, where vs = \/ksa2/m denotes the classical sound wave velocity, the saddle­
point equation assumes the isotropic form md2^ = d^V(^), where d2 = dT + d^. 
Then, setting r = \/x2 + (t — T/2)2, and sending (T, L) ^ rc>, the space-time 
rotational symmetry suggests a solution of the form ^ = ^(r), where ^(r) obeys 
the radial diffusion equation

mdr ^ + mclr ^ = d^V

20 Those readers who wish to verify this formula right away may (re-)discretize the harmonic chain, 
present the transition amplitude as a product of Feynman path integrals for each element of 
the string and, finally, take the continuum limit.
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with the boundary condition limr... ^ (r) = — a. This equation describes the one­
dimensional motion of a particle in a potential -V and subject to an apparent 
“friction force” — mr-1 dr^ whose strength is inversely proportional to “time” r.

To understand the profile of the bounce solution suppose that, at time r = 0, 
the particle has been released from rest at a position slightly to the left of the 
(inverted) potential maximum at a. After rolling through the potential minimum 
it will climb the potential hill at —a. Now, the initial position may be fine-tuned 
in such a way that the viscous damping of the particle compensates for the excess 
potential energy (which would otherwise make the particle overshoot and disappear 
to infinity): there exists a solution where the particle starts close to ^ = a and 
eventually ends up at ^ = — a, in accord with the imposed boundary conditions. In 
general, the analytical solution for the bounce depends sensitively on the form of 
the confining potential. However, if we assume that the well asymmetry imposed by 
external potential — f^ is small, the radial equation may be considerably simplified. 
In this limit, we may invoke a “thin-wall” approximation in which we assume that 
the bounce configuration is described by a domain wall of thickness Ar, at a radius 
r0 Ar, separating an inner region where ^(r < r0) = a from the outer region 
where ^(r > r0) = — a. In this case, and to lowest order in an expansion in f, the 
action of the friction force is immaterial, i.e., we may set md:2^ = d^V - the very 
instanton equation formulated earlier for the point-particle system!

Substituting the solution back into S, one finds that the bounce (or kink-like) 
solution is characterized by the Euclidean action

S = vs (2nr0 Sinst — nr22af ,

where Sinst denotes the action of the instanton of the point-particle system (3.34), 
and the second term accommodates the effect of the potential bias on the field 
configuration. Crucially, the instanton contribution to the action scales with the 
circumference of the domain wall in space-time, while the contribution of the po­
tential bias scales with the area of the domain. From this scaling dependence it is 
evident that, however small the external force f , at large enough r0 the contribu­
tion of the second term will always outweigh the first and the string will tunnel 
from the metastable to the global minimum. More precisely, the optimal size of 
domain is found by minimizing the action with respect to r0 . In doing so, one finds 
that r0 = Sinst/2af. Substituting back into the action, one obtains the tunneling 
rate

r ~ exp 1 nvsSinst A 
~ 2 af J

It follows that, in the absence of an external force f, tunneling of the string across 
the barrier is completely inhibited! In the zero-temperature unbiased system, the 
symmetry of the quantum Hamiltonian is spontaneously broken: the ground state 
exhibits a two-fold degeneracy in which the string is confined to one potential 
minimum or another.
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3.3.3 Tunneling in a dissipative environment

macroscopic 
quantum 

tunneling

In the condensed matter context, it is infeasible to completely divorce a system 
from its environment. For example, the tunneling of an atom from one interstitial 
site in a crystal to another is influenced by its coupling to the phonon degrees 
of freedom that characterize the crystal lattice. By exchanging energy with the 
phonons, which act in the system as an external bath, a quantum particle can lose 
its phase coherence and, with it, its quantum mechanical character. Beginning with 
the seminal work of Caldeira and Leggett,21 there have been numerous theoretical 
investigations of the effect of its environment on the quantum properties of a system. 
Such effects are particularly acute in systems where the quantum mechanical degree 
of freedom is macroscopic, such as the magnetic flux trapped in a superconducting 
quantum interference device (SQUID). In the following, we show that the Feynman 
path integral provides a natural (and almost unique) setting in which the effects of 
the environment on a microscopic or macroscopic quantum degree of freedom can 
be explored. For further discussion of the response of quantum wave coherence to 
environmental coupling, we refer to chapter 12.

Before we begin, let us note that the phenomenon of macroscopic quantum 
tunneling is an active area of research with applications in atomic, molecular 
and optical (AMO) physics, and other fields. By contrast, our discussion here will 
target a particular illustrative application, and highlight only the guiding principles. 
For an in-depth discussion, we refer the reader to one of the many comprehensive 
reviews.22

Caldeira-Leggett model

oscillator 
bath

Previously, we applied the path integral to study quantum tunneling of a particle 
q across a potential barrier V (q). Here, we consider the influence of an external 
environment on tunneling. Following Caldeira and Leggett, we represent the envi­
ronment by a “bath” of N quantum harmonic oscillators characterized by a 
set of frequencies {ua },

N

Hbath [qa] =
a

2
+ m- J. qa

2ma 2 a a

For simplicity, let us suppose that the particle-bath coupling is linear in the bath 
coordinates, Hc[q,qa] = — N fa [q]qa, where fa [q] represents some function of 
the particle coordinate q . Expressed as a path integral, the survival probability 
of a particle confined to a metastable minimum at a position q = a can then be 
expressed as (taking ~ = 1)

21 A. O. Caldeira and A. J. Leggett, Influence of dissipation on quantum tunneling in macroscopic 
systems, Phys. Rev. Lett. 46, 211 (1981).

22 See, e.g., A. J. Leggett et al., Dynamics of the dissipative two-state system, Rev. Mod. Phys.
59, 1 (1976), U. Weiss, Quantum Dissipative Systems (World Scientific Publishing, 1993).
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{a | e -iH t/~| a) =

q(0)=q(t)=a

Dq eSpart [q] I Dq eSbath [qa ]+ iSc [q,qa]

23 The second term in the action of the coupling has been introduced to keep the effect of the 
environment minimally invasive (purely dissipative). If it were not present, the coupling to 
the oscillator degrees of freedom would effectively shift the extremum of the particle potential, 
i.e., change its potential landscape. (Exercise: Substitute the solutions of the Euler-Lagrange 
equations dqaS[q, qa] = 0, computed for a fixed realization of q, into the action to obtain the 
said shift.)

24 In section 3.4, we will see that these boundary conditions emerge naturally in the derivation of 
the integral from a many-body Hamiltonian.

25 More precisely, anticipating our discussion of the Matsubara frequency representation below, 
we have defined the Fourier decomposition on the Euclidean-time interval ^, setting q(t) =

m qrne—i^mT,qm = T Jq dr q(t)ei^mT, where ^m = 2nm/fi with m integer.

where H = Hpart + Hbath + Hc denotes the total Hamiltonian of the system,

a ' t 7,/ (m ■ 2 Tri \\ Q r„ 1 _ t Jx/ ma (■ 2 ,,22 \
Spart[q] J dt ^2 q V(q)J s Sbath[qa] J dt / j 2 (q— waqa)

denote, respectively, the actions of the particle and bath, while

S c[ q, qa ]= [ dt' W fa [ q ] qa + Tf2^ ) 
J „ \ 2maw2 )

represents their coupling.23 Here, we assume that the functional integral over qa (t) 
is taken over all field configurations of the bath, while the path integral over q(t) 
is subject to the boundary conditions q(0) = q(t) = a. Since we are addressing a 
tunneling problem, it will again be useful to transfer to the Euclidean-time repre­
sentation. For convenience, we assume the boundary conditions on the fields qa (t) 
to be periodic on the interval [0,T-1 = P].24

To reveal the effect of the bath, we can integrate out the fluctuations qa and 
thereby obtain an effective action for q. Being Gaussian in the coordinates qa, 
the integration can be performed straightforwardly, and it induces a time-non­
local interaction of the particle (exercise) (a|e-iHt/~|a} = J Dq e-Seff[q], where the 
constant of integration has been absorbed into the measure and

1 r i 1 r i , 1 Wnfa [q(wn)] fa [q(-wn)]SeffIql = Spartiql + 2T X mJ2..(„5 + ) ■
^n ,a

Here, the sum ^2w runs over the discrete set of Fourier frequencies wn = 2nnT 
with n integer.25 Then, if the coupling to the bath is linear, fa[q(t)] = caq(t), the 
effective action assumes the form (exercise)

Seff Iq]= Spart Iq] - dT dT' q (T) K(T - T')q (T')
0

where the kernel K(t) = J0TO n J(w)Dw(t), with

J (w ) = n E m  ̂i (w - wa ), 
m m m a aa

D^ (t ) = — E 2 2Wn e'^
w(w2 + wn2 )

^n
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bath 
spectral 
function

ohmic 
dissipation

Physically, the time non-locality of the action is easily understood. Taken as a 
whole, the particle and the bath maintain quantum phase coherence. However, 
by exchanging fluctuations with the external bath, the particle experiences a self­
interaction, retarded in time. The integration over the bath degrees of freedom 
involved in the generation of this interaction implies a “loss of information,” which 
we expect to generate quantum mechanical phase decoherence. However, before 
developing this point, we first need to take a closer look at the dissipation kernel 
K itself.

In the representation above, which is standard in the field, the kernel K separates 
into a bath spectral function J(w) and a time-dependent factor l.k: (t). While 
the latter describes the temporal retardation, the former describes the bath. Its job 
is to bundle the information contained in the oscillator masses, frequencies, and 
coupling constants into a single frequency-dependent function J(w). For the small 
frequencies relevant to the description of the macroscopic degree of freedom, q, we 
expect the “density of bath modes” (i.e., the number of oscillators per frequency 
interval) to be a power law, implying that J(w) ~ wa will be a power law too. In 
principle, a may take an arbitrary value. However, the most frequently encountered 
and physically important is the case a = 1.

INFO Consider, the coupling of a particle to a continuum of bosonic modes whose spectral 
density J(u) = nu grows linearly with frequency. In this case of ohmic dissipation,

K (Un ) = f “ du J(“) = n | u |.
n Jo u (u2 + un) 2

Fourier transforming this expression, we obtain

nT n nTn 1 t«t-1 n 1 m
(T) = ~ sin2( nTT) ~ 2nTT2, (. )

i.e., a strongly time-non-local “self-interaction” of the particle. To understand why J(u) ~ 
u is termed ohmic, note that the induced linearity K(u) ~ u corresponds to a single 
derivative in the time representation.26 Thinking of q as a mechanical degree of freedom, 
this time derivative represents a friction term in the equations of motion. If q assumes the 
role of a fluctuating charge, the time derivative describes the presence of a resistor, hence 
the denotation “ohmic”.

26 Here, we are sweeping the modulus in |un | under the rug. The proper formulation of the argu­
ment requires the techniques of non equilibrium path integration to be introduced in chapter 
12. However, the conclusion remains the same.

To explore the properties of the dissipative action, it is helpful to separate the non­
local interaction according to the identity q(t)q(t') = 2(q(t)2 + q(tf)2) — (q(t) — 
q(t0)2/2. The first contribution effectively renormalizes the potential V(q) and 
presents an inessential perturbation, which can be absorbed in a redefined V(q). By 
contrast, the remaining contribution, which is always positive, plays an important 
role.
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Dissipative quantum tunneling

Previously we have seen that the tunneling rate of a particle from a metastable 
potential minimum can be inferred from the extremal field configurations of the 
Euclidean action: the bounce trajectory. To explore the effect of dissipative cou­
pling, it is necessary to understand how it revises the structure of the bounce 
solution. Now, in general, the non-local character of the interaction prohibits an 
exact solution of the classical equation of motion. In such cases, the effect of the 
dissipative coupling can be explored perturbatively or with the assistance of the 
renormalization group (see the discussion in section 6.1.2). However, by tailoring 
our choice of potential V (q), we can gain some intuition about the more general 
situation.

To this end, let us consider a particle of mass m con­
fined in a metastable minimum by a (semi-infinite) har­
monic potential trap (see the figure),

V

aq
2 mu 2 q 2,

—^,
V(q)= 0 < |q| < a, 

|q | > a.

Further, let us assume that the environment imparts an ohmic dissipation with 
damping or “viscosity” n. To keep our discussion general, let us consider the com­
bined impact of dissipation and temperature on the rate of tunneling from the potential trap. To do so, following Langer,27 it is natural to investigate the “quasi­

equilibrium” quantum partition function Z of the combined system. In this case, the 
tunneling rate appears as an imaginary contribution to the free energy F = —T lnZ, 
i.e., r = — 2 Im F.

Expressed as a path integral, the quantum partition function of the system takes 
the form Z = j((@)=q(0) Dq e-Seff/~, where the ohmic dissipation kernel (3.41) enters 
the effective action via the contribution — 2n JdTdT' q(t)K(t — t')q(t'). Setting 
q(t)q(t') = (q(t)2 + q(t')2)/2 — (q(t) — q(t'))2/2, and absorbing the first term into 
the potential V (q), the Euclidean action assumes the form

Seff[q]= f"dr(’-mq2 + V(,)) + / f (q(t>— q(t'>V.

Jo V 2 4 4n J 0 \ t — t' )

Once again, to estimate the tunneling rate, we will suppose that the barrier is high 
and the temperature is low, so that the path integral is dominated by stationary 
configurations of the action. In this case, one may identify three distinct solutions. 
First, the particle may remain at q = 0, poised precariously on the maximum of the 
inverted harmonic potential. Contributions from this solution and the associated 
harmonic fluctuations reproduce terms in the quantum partition function associated 
with states of the infintely extended harmonic potential trap. Second, there exists 
a singular solution in which the particle remains at the minimum of the inverted 
potential, i.e., perched on the potential barrier. The latter provides a negligible 
contribution to the quantum partition function and can be neglected. Finally, there

27 J. S. Langer, Theory of the condensation point, Ann. Phys. (NY) 41, 108 (1967). 
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exists a bounce solution in which a particle injected at a position q inside the well 
accelerates down the inverted potential gradient, is reflected from the potential 
barrier, and returns to the initial position q in a time P. While, in the limit P ^ ro, 
the path integral singles out the boundary condition q(0) = q(P) ^ 0, at finite P 
the boundary condition will depart from 0 in a manner that depends nontrivially 
on the temperature. It is this general bounce solution that governs the decay rate.

Since, in the inverted potential, the classical bounce trajectory stays within the 
interval over which the potential is quadratic, a variation of the Euclidean action 
with respect to q (t) yields the classical equation of motion

-mq + mi2q + n [’ dr' q(T) - q(T') = AS(T - P/2), 

n J0 (T - TP2

where the term on the right-hand side of the equation imparts an impulse that 
changes the velocity of the particle discontinuously, while the coefficient Ais chosen 
to ensure symmetry of the bounce solution on the Euclidean-time interval. Turning 
to the Fourier representation, the solution of the saddle-point equation then assumes 
the form

qn = ATe '"2 * *g(in), g(in) = [m(i + i2) + n|in|] 1 • (3.42)

2. Staying at zero temperature, we next consider the influence of dissipation
on the capacity for tunneling. We focus on the limit where the dynamics of the
particle is overdamped, n mic, with f = J—^ d— g(w) ~ (2/-nn) ln (n/mic),
which implies that Sbounce = nqa2/(4ln(n/mic)). This result shows that, the 
coupling of the particle to the ohmic bath leads to an exponential suppression 
of the tunneling rate, while only a weak dependence on the jump frequency

Imposing the condition that q(t = P/2) = a, one finds that A = a/f where 
f = TpAu g (in). Finally, the action of the bounce is given by

Sbounce = 2(m(in + ic ) + n | im |) |qn | =
—n

af ^ (3.43)

In the following, we discuss the meaning of this expression in a number of limiting 
cases.

1. Let us first determine the zero-temperature tunneling rate in the ab­
sence of dissipation as a point of reference: n ^ 0 and P ^ ro. In this case, 
the frequency summation translates to a continuous integral, f = —^ dpng(i) = 
(2mic)-1. Using this result, the bounce action (3.43) takes the form Sbounce = 
mica2. As one would expect, the tunneling rate r ~ eSSbounce is controlled by 
the ratio of the potential barrier height mic2a2/2 to the attempt frequency ic. 
Also notice that the bounce trajectory is given by

q(T) = a /“ di ei-(TSV2)g(i) = aeS^c|TS^2|, 
f J-VO 2n

i.e., as expected from our discussion in section 3.3.1, the particle spends only 
a time 1/wc in the under-barrier region.
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persists. Physically, this result is easy to rationalize: under-barrier tunneling 
is a feature of the quantum mechanical system. In the transfer of energy to 
and from the external bath, the phase coherence of the particle is lost. At zero 
temperature, the tunneling rate becomes suppressed and the particle becomes 
confined.

3. Let us now consider the influence of temperature on the tunneling rate 
when the dissipative coupling is inactive, n ^ 0. In this case, the discrete 
frequency summation takes the form28 f = T5Z& g(W) — coth(Pwc/2)/2wcm. 
Using this result, one obtains Sbounce = mwca2 tanh(Pwc/2). In the low- 
temperature limit P ^ x, we have Sbounce = mwca2, as discussed above. 
At high temperatures P ^ 0, one recovers a classical thermal dependence of 
the escape rate, Sbounce — Pmw2a2/2, as expected from statistical mechanics.

Having developed the single-particle path integral, we now consider its extension 
to many-particle systems: quantum field theory. Our starting point is analogous 
to that outlined at the beginning of the chapter. Just as there are two different 
approaches to quantum mechanics, quantum field theory can also be formulated 
in two different ways: the formalism of canonically quantized field operators and 
functional integration. As to the former, although much of the technology needed 
to implement this framework - essentially Feynman diagrams - originated in high- 
energy physics, it was with the development of condensed matter physics through

28 For details on how to implement the discrete frequency summation, see the Info block on 
page 141.

4. We conclude with a brief remark on the interplay of thermal activa­
tion with ohmic dissipation. Applying the the Euler-Maclaurin formula 
\ v /' l ' । e 'i — f(o f f f... 'j I f (0)   f (0) I . t t 4-q rol;ile (Ixcrole quttiq overm_ 0 f (mm) — *0o Cvx> f (x) + 2 12 + to leiat^msciete su^ms over
Matsubara frequencies to their zero-temperature integral limits, one finds that 
Sbounce(T) - Sbounce(T — 0) « nT2. This shows that, in the dissipative regime, 
an increase in temperature diminishes the tunneling rate with a scale propor­
tion to the damping.

This concludes our introductory discussion of the application of path integration 
methods to dissipative quantum tunneling. Thanks to recent progress in atomic, 
molecular, and optical physics, large varieties of quantum mechanical few-body 
systems in and out of equilibrium have come under experimental control. In this 
line of research the concepts of path integration introduced in this chapter (and 
further advanced in chapter 12 to the many-bo dy context) are crucially important. 

22
Readers interested in learning more are encouraged to study the classic references 
and stay tuned to ongoing developments!

3.4 Construction of the Many-Body Field Integral 
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the 1950s to 1970s that this approach was driven to unprecedented sophistication. 
The reason is that, almost as a rule, problems in condensed matter investigated at 
that time necessitated perturbative summations to infinite order in the nontrivial 
content of the theory (typically interactions). This requirement led to the develop­
ment of advanced techniques to sum perturbation series in many-body interaction 
operators.

However, in the 1970s, non-perturbative problems began to attract increasing 
attention - a still prevailing trend - and it turned out that the formalism of canon­
ically quantized operators was not tailored to this type of physics. By contrast, 
the alternative approach to many-body problems, functional integration, is ideally 
suited to it! The situation is similar to the one described earlier, where we saw 
that the Feynman path integral provided a spectrum of novel routes to approach­
ing quantum mechanical problems (parametrically controlled semiclassical limits, 
analogies to classical mechanics, statistical mechanics, etc.). Similarly, the intro­
duction of field integration in many-body physics spawned new theoretical develop­
ments. In fact, the advantage of the path integral approach in many-body physics is 
more pronounced than in single-particle quantum mechanics: higher dimensionality 
introduces more complex fields, and along with them concepts of geometry and 
topology enter the stage. The ensuing structures are conveniently exposed within 
the field integral framework. Moreover, the connections to classical statistical me­
chanics play a more important role than in single-particle quantum mechanics. 
These concepts will be addressed in subsequent chapters when applications of the 
field integral are discussed.

Before turning to the quantitative construction of the field integral, it is instruc­
tive to anticipate the structures we should expect to be emerging. In quantum me­
chanics, we were starting from a point particle characterized by a coordinate q (or 
other quantum numbers for that matter). Path integration then meant integration 
over all time-dependent configurations q(t), i.e., a set of curves t ^ q(t) (see fig. 3.3, 
upper panel). By contrast, the degrees of freedom of field theory are continuous ob­
jects ^(x) in themselves: x parameterizes a d-dimensional base manifold and ^ takes 
values in some target manifold (fig. 3.3, lower panel). The natural generalization of a 
“path” integral then implies integration over a single copy of these objects at each 
instant of time, i.e., we must integrate over generalized surfaces, mappings from 
(d + 1)-dimensional space-time into the field manifold, (x, t) ^ $(x,t). While this 
notion may sound daunting, it is important to realize that, conceptually, nothing 
much changes in comparison with the path integral: instead of a one-dimensional 
manifold - a curve - our object of integration will be a (d+ 1)-dimensional manifold.

3.4.1 Construction of the field integral

The construction of the many-body path integral (henceforth field integral for 
brevity) follows the general scheme outlined at the end of section 3.2.3. As before, 
we start with the segmentation of the time evolution of a quantum many-body 
Hamiltonian into infinitesimal time slices. The goal then is to absorb as much as
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Fig. 3.3 The concept of field integration. Upper panels: Path integral of quantum mechanics - in­
tegration over all time-dependent configurations of a point particle degree of freedom leads 
to integrals over curves. Lower panels: Field integral - integration over time-dependent con­
figurations of d-dimensional continuum mappings (fields) leads to integrals over generalized 
(d + 1)-dimensional surfaces.

possible of the quantum dynamical phase accumulated during the short-time prop­
agation into a set of suitably chosen eigenstates. But how should these eigenstates 
be chosen? In the context of single-particle quantum mechanics, the structure of 
the Hamiltonian suggested a representation in terms of coordinate and momen­
tum eigenstates. Remembering that many-particle Hamiltonians are conveniently 
expressed in terms of creation and annihilation operators, an obvious idea would be 
to search for eigenstates of these operators. Such states indeed exist and are called 
coherent states.

Coherent states (bosons)

Our goal is to find eigenstates of the (non-hermitian) Fock space operators at and 
a. Although the general form of these states will turn out to be the same for bosons 
and fermions, there are differences regarding their algebraic structure. The point 
is that the anticommutation relations of fermions require that the eigenvalues of 
an annihilation operator themselves anticommute, i.e., they cannot be ordinary 
numbers. Postponing the introduction of the unfamiliar concept of anticommuting 
“numbers” to the next section, we first concentrate on the bosonic case, where 
problems of this kind do not arise.

So, what form do the eigenstates |0} of the bosonic Fock space operators a and 
at take? Being a state in the Fock space, an eigenstate |0) can be expanded as

| $) = Cn 1 ,n 2,... | n 1 ,n 2,...), | n 1 ,n 2,•••) = (a1-^ (a2^-r ... 0,
n1 ! n2 !

n1 ,n2 ,...

where at creates a boson in state i, Cn 1 ,n2,... are expansion coefficients, and |0) is the 
vacuum. (Here, it is convenient to adopt this convention for the vacuum as opposed 
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bosonic 
coherent 

states

to the notation |Q) used previously.) Furthermore, the many-body state |n 1, n2,...) 
is indexed by a set of occupation numbers: n 1 in state |1), n2 in state |2), and so 
on. Importantly, the state |() may contain superpositions of basis states containing 
different numbers of particles. Now, if the minimum number of particles in state 
| () is n0, the minimum of at | () must be n0 + 1. Clearly, the creation operators at 
themselves cannot possess eigenstates.

However, with annihilation operators this problem does not arise. Indeed, the 
annihilation operators do possess eigenstates, known as bosonic coherent states,

| (= exp (52 ^aO |0 (3.44)

where the elements of ( = {(i} represent a set of complex numbers. The states |(') 
are eigenstates in the sense that, for all i,

ai | () = (i | () (3.45)

i.e., they simultaneously diagonalize all annihilation operators. Noting that ai and 
aj, with j = i, commute, Eq. (3.45) can be verified by showing that a exp((at) |0) = 
( exp((at) |0) .29 Although not crucial to the practice of field integration, in the con­
struction of the path integral it will be useful to assimilate some further properties 
of coherent states.

> By taking the hermitian conjugate of (3.45), we find that the “bra” associated 
with the “ket” |() is a left eigenstate of the creation operators, i.e., for all i,

<( | ai = < ( | ( i, (3.46)

where <pi is the complex conjugate of (i, and ((| = (0| expQ2i (iai)•
> It is a straightforward matter - e.g., by a Taylor expansion of (3.44) - to show 

that the action of a creation operator on a coherent state yields the identity

a||() = d^i |(). (3.47)

Reassuringly, it may be confirmed that Eq. (3.47) and (3.45) are consistent 
with the commutation relations [ai,aj] = <5ij: we have [ai, aj] |() = (d,j(i — 

". )|() = sij |().
> Making use of the relation (61() = (0| exp(^i 0iai)|() = exp(^i 0i(i)(0|(), one 

finds that the overlap between two coherent states is given by

{61() = exp ( pi(i). (3.48)

> From this result, it follows that the norm of a coherent state is given by

((|() = exp (^(i(i). (3.49)

29 Using the result [a, (aT)n] = n(at)n-1 (cf. Eq. (2.37)), a Taylor expansion shows that ae^a^ |0) = 
r ^a "^ 1 I r\ \ \ Co ^ r t + \ n I I m\ j \ Co ^ t t \ n — 1Im\ j. ^a ^Im\[ a,e^a ]|0) =)  ̂n=o ^n! [ a, ( a T) n ]|0) = n=1(n—)! ( aT) n 1|0> = ^e^a |0>.
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> Most importantly, the coherent states form a complete - in fact an over-complete 
- set of states in Fock space:

/ n dni exp ( - ^i^i|^ |̂ = 1F (3.50)

where dai = d Re ^i d Im fii, and 1f represents the unit operator or identity in 
the Fock space.

Schur’s 
lemma

INFO The proof of Eq. (3.50) proceeds by application of Schur’s lemma. The action of 
the creation and annihilation operators in Fock space is irreducible in the sense that any 
state can be represented by the action of these operators on a reference state (such as the 
vacuum). Under these circumstances, Schur’s lemma states that if an operator commutes 
with all {ai, at} it must be proportional to the unit operator. (Refer for a comprehensive 
discussion of Schur’s lemma to the mathematical literature, the essence of the statement 
is that only multiples of the unit matrix commute with all linear transformations of a 
vector space.) Specifically, the commutation property of the l.h.s. of Eq. (3.50) is verified 
as follows

a^ d^e-**|a}{a| y' d^e-**ai|a}{a|

= - I d<p (d* i e - * * ) | a){a | by =arts I d<p e - * * | a) (d* i {a |)

= j d^e - * * | a}{^ | ai, (3.51)

where we have set da = i d^i/n for brevity, and used the shorthand notation i ^i^i = 
<f><^. Taking the adjoint of Eq. (3.51), one verifies the commutativity with the creation 
operators, and hence the above proportionality statement. To fix the constant of propor­
tionality, one can simply take the overlap with the vacuum:

y da e - * * (0| a}(a |0) da e - * * = 1 • (3.52)

Taken together, Eqs. (3.51) and (3.52) prove (3.50). Note that the coherent states are 
over-complete in the sense that they are not pairwise orthogonal (see Eq. (3.48)). The 
exponential weight exp(-<f>a) appearing in the resolution of the identity compensates for 
the overcounting achieved by integrating over the whole set of coherent states.

With these definitions we have the basis to construct the path integral for bosonic 
systems. However, before doing so, we will first introduce the fermionic version of 
the coherent state. This will allow us to construct the path integrals for bosons and 
fermions simultaneously, thereby emphasizing the similarity of their structure.

Coherent states (fermions)

Much of the formalism above generalizes to the fermionic case. As before, it is 
evident that creation operators cannot possess eigenstates. Following the bosonic 
case, let us suppose that the annihilation operators are characterized by a set of 
coherent states such that, for all i,
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ai | n) = m | n') (3.53)

where ni is the eigenvalue. Although the structure of this equation appears to 
be equivalent to its bosonic counterpart (3.45) it has one frustrating feature: the 
anticommutativity of the fermionic operators, [ai , aj]+ = 0, where i = j , implies 
that the eigenvalues ni also have to anticommute:

ninj = -njni (3.54)

Clearly, these objects cannot be or­
dinary numbers. In order to define a 
fermionic version of coherent states, we 
have two choices: we may (a) accept 
(3.54) as a working definition and prag­
matically explore its consequences, or 
(b) try to remove any mystery from 
the definitions (3.53) and (3.54). This 
latter task is tackled in the Info block 
below, where objects {ni } with the de-

Hermann Gunther Grass­
mann 1809-77
was a German linguist, pub­
lisher, physicist, and math­
ematician. Decades before 
the formal definition of linear 
spaces around 1920, he in­
vented foundations of linear
algebra. Curiously, his best remembered single 
contribution, exterior algebra, appeared as a 
byproduct of his thinking about tidal waves.

sired properties are defined in a mathematically clean manner. Readers wishing 
to proceed more rapidly may skip this exposition and turn directly to the more 
praxis-oriented discussion below.

algebra

Grassmann 
algebra

INFO There is a mathematical structure ideally suited to generalize the concept of 
ordinary number (fields): algebras. An algebra A is a vector space endowed with a multi­
plication rule A/A — A. We can construct an algebra A tailored to our needs by starting 
out from a set of elements, or generators, ni 6 A, i = 1,... ,N, and imposing the following 
rules:

(i) The elements ni can be added and multiplied by complex numbers, e.g.,

c0 + cini + cjnj 6 A, c0, ci, cj 6 C, (3.55)

such that A is a complex vector space.

(ii) The product, A/ A — A, (ni, nj) — ninj , is defined to be associative and anticommu- 
tative, viz. (3.54). Owing to the associativity of this operation, there is no ambiguity 
when it comes to forming products of higher order, i.e., (ninj)nk = ni (njnk) = ninjnk. 
The definition requires that products of odd order in the number of generators anti­
commute, while (even, even) and (even, odd) combinations commute (exercise).

By virtue of (i) and (ii), the set A of all linear combinations 
oo N

c0 + E E ci1 ,...,in ni1 . . . nin , c0 , ci1 ,...,in 6 C,

spans a finite-dimensional associative algebra A,30 known as the Grassmann algebra or 
exterior algebra. For completeness we mention that Grassmann algebras find other 
realizations, a particularly important one being the algebra of alternating differential 
forms, which will play a role later in the text (see appendix section A.1).

30 Whose dimension can be shown to be 2N (exercise).
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Apart from their anomalous commutation properties, the generators {ni}, and their 
product generalizations {ninj,ninjnk,■■■}, resemble ordinary, if anticommutative, 
numbers. (In practice, the algebraic structure underlying their definition can safely 
be ignored. All we will need to remember is the rule (3.54) and the property (3.55).) 
We emphasize that A contains not only anticommuting but also commuting ele­
ments, i.e., linear combinations of an even number of Grassmann numbers ni are 
overall commutative. (This mimics the behavior of the Fock space algebra: products 
of an even number of annihilation operators aiaj . . . commute with all other linear 
combinations of operators ai . In spite of this similarity, the “numbers” ni must not 
be confused with the Fock space operators; there is nothing on which they act.)

To make practical use of the new concept, we need to go beyond the level of pure 
arithmetic. Specifically, we need to introduce functions of anticommuting numbers 
and also elements of calculus. Remarkably, most of the concepts of calculus - dif­
ferentiation, integration, etc. - generalize to anticommuting number fields, and in 
fact turn out to be simpler than in ordinary calculus!

> Functions of Grassmann numbers are defined via their Taylor expansion:

kco

f(e 1 ,...,tk) = E E 1 dnf

n=0 i1,...,in=1
n! dei 1 • • • dein ? =0

tin ••• ei 1, (3.56)

where 1 1,... ,tk € A and f is an analytic function. Note that the anticommu­
tation properties of the algebra imply that the series terminates after a finite 
number of terms. For example, in the simple case where n is first order in the 
generators of the algebra, f (n) = f (0) + fz(0)n (since n2 = 0) — functions of 
Grassmann variables are fully characterized by a finite number of Taylor coeffi­
cients!

> Differentiation with respect to Grassmann numbers is defined by

dn nj = dij (3.57)

Note that, in order to be consistent with the commutation relations, the differen­
tial operator dni must itself be anticommutative. In particular, dninjni i =j -nj•

> Integration over Grassmann variables is defined by

dni = 0, dni ni = 1 (3.58)

Note that the definitions (3.56), (3.57), and (3.58) imply that the actions of
Grassmann differentiation and integration are effectively identical, i.e.,

d dn f (n) = j dn (f (0) + f/(0)n) = f/(0) = dnf (n)•

With this background, let us now apply the Grassmann algebra to the construction 
of fermion coherent states. To this end, we must enlarge the algebra so as to allow 
for the multiplication of Grassmann numbers by fermion operators. In order to be 
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consistent with the anticommutation relations, we require that fermion operators 
and Grassmann generators anticommute,

[ ni,aj ]+ = 0 • (3.59)

It is then straightforward to demonstrate that

(3.60)| n) = exp( -^2 Viai)0

fermionic 
coherent 

states

for the fermionic coherent states, i.e., by a structure perfectly analogous to the 
bosonic states (3.44).31 It is a straightforward and useful exercise to demonstrate 
that the properties (3.46), (3.47), (3.48), (3.49) and, most importantly, (3.50) carry 
over to the fermionic case. One merely has to identify ai with a fermionic operator 
and replace the complex variables ^i by ni G A. Apart from a few sign changes 
and the A-valued nature of the arguments, the fermionic coherent states differ only 
in two respects from their bosonic counterpart: first, the Grassmann variables ni 

appearing in the adjoint of a fermion coherent state,

(n| = (0| exp ( -^2 aini) = (0| exp ( Viai)

are not related to the ni of the states |n) via some kind of complex conjugation. 
Rather ni and ni are independent variables.32 Second, the Grassmann version of 
a Gaussian integral (see below), f dn e-nn = 1, does not contain the factors of n 
characteristic of standard Gaussian integrals. Thus, the measure of the fermionic 
analog of (3.50) does not contain a n in the denominator.

For the sake of future reference, the most important properties of Fock space 
coherent states are summarized in Table 3.1.

Grassmann
Gaussian 

integral

supersym­
metry

Grassmann Gaussian integration

Before turning to the field integral, we need to consider the generalization of Gaus­
sian integration for Grassmann variables. The prototype of all Grassmann 
Gaussian integration formulae reads

31 To prove that the states (3.60) indeed fulfill the defining relation (3.53), we note that 
die—niai |0) ( = ) ai(1 — nia^)|0) ( = ) niaia^|0) = ni|0) = ni(1 - nia^)|0) = nie—niai |0). 

i i\ i i i i i iii iii i

This, in combination with the fact that ai and njaj (i = j) commute, proves Eq. (3.53). Note 
that the proof is simpler than in the bosonic case: the fermionic Taylor series terminates after 
the first contribution. This observation is representative of a general rule: Grassmann calculus 
is simpler than standard calculus — all series are finite, integrals always converge, etc.

32 In the literature, a complex conjugation of Grassmann variables is sometimes defined. Although 
appealing from an aesthetic point of view — symmetry between bosons and fermions — this 
concept is problematic. The difficulties become apparent when supersymmetric theories 
are considered, i.e., theories where operator algebras contain both bosons and fermions (so- 
called superalgebras). It is not possible to introduce a complex conjugation consistent with the 
super-algebra commutation relations and therefore the idea had better be abandoned altogether. 
(Unlike the bosonic case, where complex conjugation is required to define convergent Gaussian 
integrals, no such need arises in the fermionic case.)
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Table 3.1 Properties of coherent states for bosons (Z = 1, pi € C) and fermions (Z = -1, 
pi € A). In the last line, the integration measure is defined as d(pi,p) = Hi nP+rpd•

Definition

Action of ai 

Action of ai 

Overlap

Completeness

| P) = exp (c E ^iaty 1°)

ai | P) = Pt | P), (P | ai = d’i {P l_
ai | P) = cd’i | P), {P | ai = {P | Pi 
(P'lP) = exp ( E PiPt)

f d (p ,p) e - S i ’i’i | p}(p | = 1f

■t] an =a (3.61)e

This equation is derived by a first-order Taylor expansion of the exponential and 
application of Eq. (3.58). Its multi-dimensional generalization to matrix and vector 
structures is given by

d dp dp e - ‘ T A ‘ = det A, (3.62)

where p and p are N-component vectors of Grassmann variables, the measure 
d<pdp = Hi=i dpidpi, and A is an arbitrary complex matrix. For matrices that are 
unitarily diagonalizable, A = WDU, Eq. (3.62) is proven in the same way as its 
complex counterpart (3.17): through the change of variables p ^ Up, p ^ UTp>. 
Since det U = 1, the measure remains invariant (see the Info block below) and 
leaves us with N decoupled integrals of the type (3.61). The resulting product of 
N eigenvalues is just the determinant of A (see the later discussion of the partition 
function of non-interacting gas). For non-unitarily diagonalizable A, the identity 
is established by a straightforward expansion of the exponent. The expansion ter­
minates at Nth order and, by commuting through integration variables, it may 
be shown that the resulting N th-order polynomial of matrix elements of A is the 
determinant.

INFO As with ordinary integrals, Grassmanfn integrals can be subjected to variable 
transforms. Suppose we are given an integral dpdp f (<p>, p) and wish to change variables 
according to

, = M p, v = M' p, (3.63)

where, for simplicity, M and M' are complex matrices (i.e., we here restrict ourselves to 
linear transforms). One can show that33

,1 ••• vN = (det M) p>1 ••• p> N, v 1 ••• vN = (det Mz) p 1 ••• pN. (3.64)

33 There are different ways to prove this identity. The most straightforward is by explicitly ex­
panding Eq. (3.63) in components and commuting all Grassmann variables to the right. A more 
elegant way is to argue that the coefficient relating the right- and left-hand sides of Eq. (3.64) 
must be an N th-order polynomial of matrix elements of M. In order to be consistent with the 
anticommutation behavior of Grassmann variables, the polynomial must obey commutation 
relations, which uniquely characterize a determinant. Exercise: Check the relation for N = 2.
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On the other hand, the integral of the new variables must obey the defining relation 
d dv V1 • • • VN = d dv v 1 • • • nn = (—)N (N-1) / 2, where dv = dvi and the sign on the 
r.h.s. is attributed to ordering of the integrand, i.e., J dv 1 dv2 v 1 v2 = — f dv 1 v1 J dv2 v2 = 
— 1. Together Eqs. (3.64) and (3.63) enforce the identities dv = (detM)-1 d<j>, dv = 
(det M')-1 do, which combine to give

d<f>d^f(<j>,ty) = det(MM') fdvdv f(<f>(V),ty(v)).

Keeping the analogy with ordinary commuting variables, the Grassmann version of 
Eq. (3.18) reads

d d(d( exp (-(T A( + VT • ( + (T • v) = det A exp (vT A-1 v) . (3.65)

To prove the latter, we note that J dn f (n) f dn f (n + v), i.e., in Grassmann 
integration, one can shift variables as in the ordinary case. The proof of the Gaussian 
relation above thus proceeds in complete analogy to the complex case. As with 
Eq. (3.18), (3.65) can also be employed to generate further integration formulae. 
Defining (• • •) = det A-1 J d(d( e-& A&(• • •), and expanding both the left- and the 
right-hand sides of Eq. (3.65) to leading order in the “monomial” vjvi, one obtains 
{(j(i) = A-i1. The N-fold iteration of this procedure gives

((j 1 (j 2 • • • (jn (in ■ ■ ■ (i 2 (i 1 ) ”'" P) ^kip1 ' ' ' jipn

where the sign of the permutation accounts for the sign changes accompanying the 
interchange of Grassmann variables. Finally, as with Gaussian integration over com­
muting variables, by taking N ^ <x> the Grassmann integration can be translated 
to a Gaussian functional integral.

3.5 Field Integral for the Quantum Partition Function

Having introduced the coherent states, 
the construction of path integrals for 
many-body systems is now straightfor­
ward. However, before proceeding, we 
should address the question of what a 
“path integral for many-body systems” 
actually means. In the next chapter, we 
will see that much of the information 

Josiah Willard Gibbs 1839­
1903
was an American scientist who 
is credited with the develop­
ment of chemical thermody­
namics, and introduced the 
concepts of free energy and 
chemical potential.

on quantum many-particle systems is encoded in expectation values of products 
of creation and annihilation operators, i.e., expressions of the structure (a t a • • •). 
Objects of this type are generally called correlation functions. At any non-zero
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Gibbs dis­
tribution

temperature, the average (• • •) entering the definition of the correlation function 
runs over the quantum Gibbs distribution p = e-PH/Z, where

Z = tr e - PH ^2 (n | e - PH | n} (3.66)

is the quantum partition function. Here, the sum extends over a complete set of 
Fock space states {|n)}, and we have included a chemical potential, p, in the def­
inition of II = H7 — pN for notational simplicity. (For the present, we specify 
neither the statistics of the system - bosonic or fermionic - nor the structure of the 
Hamiltonian.)

34 In fact, the statement above is not entirely correct. Thermodynamic properties involve the 
thermodynamic potential Q = — T In Z rather than the partition function itself. At first 
sight, it seems that the difference between the two is artificial — one might first calculate Z and 
then take the logarithm. However, typically, one is unable to determine Z in closed form, but 
rather one has to perform a perturbative expansion, i.e., the result of a calculation of Z will 
take the form of a series in some small parameter e. Now a problem arises when the logarithm 
of the series is taken. In particular, the Taylor series expansion of Z to a given order in e does 
not automatically determine the expansion of Q to the same order. Fortunately, the situation 
is not all that bad. As we will see in the next chapter, the logarithm essentially rearranges the 
perturbation series in an order known as a cumulant expansion.

Ultimately, we will want to construct the path integral representations of corre­
lation functions. Later, we will see that they can be derived from a path integral 
for Z itself. The latter is actually of importance in its own right, as it contains the 
information needed to characterize the thermodynamic properties of a many-body 
quantum system.34 We thus begin our journey into many-body field theory with a 
construction of the path integral for Z .

To prepare the representation of the partition function (3.66) in terms of coherent 
states, one must insert the resolution of identity (see table 3.1)

Z /' d (X ,X) e - i P'iP' n | XX | e - PH | n}. (3.67)

We now wish to get rid of the - now redundant - Fock space summation over |n) 
(another resolution of identity). To bring the summation to the form 52n |nXn| = 
1f, we must commute the factor (n1X) to the right-hand side. However, in per­
forming this operation, we must be careful not to miss a potential sign change 
whose presence will have important consequences for the structure of the fermionic 
path integral: whilst for bosons (n1XXX|n) = (X|nXn|XX the fermionic coherent 
states change sign upon permutation, (n|XXX|n) = (—X|nXn|XX (Exercise: With 
(— X| = (0| exp'—52i Xiai], verify that this sign follows as a direct consequence of 
the anticommutation of Grassmann variables and Fock space operators.) Note that, 
as both H and N contain elements that are even in the creation and annihilation 
operators, the sign is insensitive to the presence of the Boltzmann factor in (3.67). 
Making use of the sign factor Z, the result of the interchange can be formulated 
as

thermody­
namic pote­

ntial
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e -^i 'i'i E< ZX | e PH | n X n | X) = dX e i' i'i {ZX | e PH | X) • (3.68)
n

INFO For notational brevity we will denote integration measures as d(p,p) ^ dp, 
i.e., we indicate only one representative of a group of variables or fields over which we are 
integrating. In the same spirit, we set S[p,p] ^ S[p], etc.

Equation (3.68) now becomes the starting point for the construction scheme of a 
path integral. To be concrete, let us assume that the Hamiltonian is limited to a 
maximum of two-body interactions (see Eqs. (2.11) and (2.16)),

normal 
ordering

A/ t , V^, t , t tH(at,a) hijai aj / y Vjkiai ajakal- (3.69)

Note that we have arranged for all the annihilation operators to stand to the right of 
the creation operators. Fock space operators of this structure are said to be normal 
ordered.35 The reason for emphasizing normal ordering is that such an operator 
can be readily diagonalized by means of coherent states. Dividing the “time interval” 
pp into N segments and inserting coherent state resolutions of identity (steps 1, 2, 
and 3 of the general scheme), Eq. (3.68) assumes the form

Z=
Tp°= Zip N
■p 0=ppN

N

dpnexp
n=1

N-1 

o E 

n=0

( x n - X n +1) 
0 Xn + H(Xpn+1, Xn) (3.70)

field 
integral

wl iprp 3 — F //V And '| H(a_,a)Ix ) — \ ' k.ppJ _i_ \ ' TA .,.p.P pp P? —— P(p ?/where o = p/N and ' ।' = 2_> ij hij ViPj ' ijki VijkiPiPj Xk Xi — H (X, X )
and we have adopted the shorthand Xn = {XP}, etc. Finally, sending N ^ <x>, 
and taking limits analogous to those leading from Eq. (3.5) to (3.6), we obtain the 
continuum version of the field integral,36

Z =yDXeSS['], S[X] = PdT (XdTX + H(X,X))
(3.71)

where DX = limN ^ HN=1 dXn and the fields satisfy the condition

X>(0) = ZX’(. P), X (0) = ZX (P) • (3.72)

35 More generally, an operator is defined to be “normal ordered” with respect to a given vacuum 
state |0) if, and only if, it annihilates |0). Note that the vacuum need not necessarily be defined 
as a zero-particle state. If the vacuum contains particles, normal ordering will not lead to a 
representation where all annihilators stand to the right. If, for whatever reason, one is given a 
Hamiltonian whose structure differs from Eq. (3.69), one can always effect a normal ordered 
form at the expense of introducing commutator terms. For example, normal ordering the quartic 
term leads to the appearance of a quadratic contribution that can be absorbed into hij .

36 Whereas the bosonic continuum limit is indeed perfectly equivalent to that taken in construct­
ing the quantum mechanical path integral (lim5_^o 5-1(ipn+1 — ipn) = dT |t=n$^/^(T) gives an 
ordinary derivative, etc.), a novelty arises in the fermionic case. The notion of replacing dif­
ferences by derivatives is purely symbolic for Grassmann variables. There is no sense in which 
i^n+1 — i^n is small. The symbol dTi^ rather denotes the formal (and well-defined) expression 
lim5 .0 5-1(in+1 — in).
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Written in a more explicit form, the action associated with the general pair-interaction 
Hamiltonian (3.69) can be cast in the form

S [ p ] = [ dT f p i ( T )( dT 5ij + hij ) pj ( T )+ Vijklp i ( T ) pj ( T ) pk ( T ) pl ( T )} .
0 ij ijkl

(3.73)
Notice that the structure of the action fits nicely into the general scheme discussed in 
the previous section. By analogy, one would expect that the exponent of the many­
body path integral would carry the significance of the Hamiltonian action, S ~ 
f d(pq — H), where (q, p) symbolically stands for a set of generalized coordinates and 
momenta. In the present case the natural pair of canonically conjugate operators 
is (a, at). One would then interpret the eigenvalues (p,p) as “coordinates” (much 
as (q,p) are the eigenvalues of the operators (q, p)). Adopting this interpretation, 
we see that the exponent of the path integral indeed has the canonical form of a 
Hamiltonian action and is, therefore, easy to memorize.

Equations (3.71) and (3.73) define the field integral in the time representa­
tion (in the sense that the fields are functions of a time variable). In practice it is 
often useful to represent the action in an alternative, Fourier conjugate, representa­
tion. To this end, note that, owing to the boundary conditions (3.72), the functions 
p (T ) can be interpreted as functions on the entire Euclidean-time axis that are 
periodic or antiperiodic on the interval [0, P]. As such, they can be represented in 
terms of a Fourier series,37

37 As always, the concrete definition of a Fourier transform leaves freedom for different conventions. 
However, in imaginary-time quantum field theory, it is often convenient if a factor of T multiplies 
each Matsubara sum.

p ( t )= ^p^n e -',

( 2nnT
^n = | (2n + 1)nT

pn = [ dT p (t) eiunT 

0

bosons
n n ■ n ^ Zfermions

(3.74)

Matsubara 
frequencies

where the un are known as Matsubara frequencies. Substituting this represen­
tation into (3.71) and (3.73), we obtain Z = J Dp e-S[], where Dp = Hn dpn 

defines the measure (for each Matsubara frequency index n we have an integration 
over a coherent state basis {|pn)}), and the action takes the form

S [ p ] = ^^2'p in ( — iunpj + hij ) pjn + T 3^2 Vijkl p in 1 pjn 2 pkn 3 pln 4 dn 1+ n 2 ,n 3+n 4 ,
(3.75) 

where the summations run over all Hilbert space and Matsubara indices and we have 
used the identity f^ dT e-iwnT = P6un0. Equation (3.75) defines the frequency 
representation of the action.

INFO In performing calculations in the Matsubara frequency representation, one some­
times runs into convergence problems (which will manifest themselves in the form of 
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ill-convergent Matsubara frequency summations). In such cases, it is important to remem­
ber that Eq. (3.75) does not actually represent the precise form of the action. What is 
missing is a convergence-generating factor whose presence follows from the way in which 
the integral was constructed and which regularizes otherwise non-convergent sums (ex­
cept, of course, in cases where the divergences have a physical origin). Since the fields 
^ are evaluated infinitesimally later than the fields ^ (cf. Eq. (3.70)), the h- (including 
p,)-dependent contributions to the action acquire a factor exp(-iunS), with S a positive 
infinitesimal. Similarly, the V contribution acquires a factor exp(-i(un 1 + un2)S). In cases 
where the convergence is not critical, we will omit these contributions. However, once in 
a while it is necessary to remember their presence.

Partition function of non-interacting gas

As a first exercise, let us consider the quantum partition function of non-interacting 
gas. In some sense, the field integral of the non-interacting partition function has 
a status similar to that of the path integral for the harmonic oscillator: the direct 
quantum mechanical solution of the problem is straightforward and application of 
the full artillery of the field integral seems somewhat ludicrous. From a pedagogical 
point of view, however, the free partition function is a useful problem; it provides 
us with a welcome opportunity to introduce concepts of field integration within 
a comparatively simple setting. Also, the field integral of the free partition func­
tion will be an important building block for our subsequent analysis of interacting 
problems.

Consider, then, the partition function (3.71) with Ho(^) 52 ^iH0,ij^j• Diag­
onalizing Ho by a unitary transformation U, H0 = UDU2 and transforming the 
integration variables, Ut^ = 2, the action assumes the form S = T <j)an (—iun + 
Sa)2 an, where Sa are the single-particle eigenvalues.38 Remembering that the fields 
2a (t) are independent integration variables (exercise: why does the transformation 
2 ^ 2 have a Jacobian unity?), we find that the partition function decouples, 
Z = n a Za, where

Za = y D2a exp ^-T<5an(-i^n + Sa)2an^ = fl(2(-i^n + Sa))-Z (3.76)

where the last equality follows from the fact that the integrals over 2an are of a one­
dimensional complex or Grassmann Gaussian type. In performing these integrals, 
we recalled that, as per the definition (3.74), [2n] = (energy)-1. This dimension 
is accounted for by a factor 2-Z accompanying each integration variable in the 
measure, where Z =1 (-1) for bosonic (fermionic) fields.39

At this stage, we have left all aspects of field integration behind and reduced 
the problem to one of computing an infinite product over factors iun — Sa. Since

38 We use the standard symbol £a = ea — ^ to denote single-particle eigenvalues including a 
chemical potential term.

39 In the later analysis of physical observables, we will never need to worry about such scaling 
conventions — as usual with path integrals, the normalization factor of the measure will cancel 
against a matching one in the denominator.
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products are usually more difficult to bring under control than sums, we take the 
logarithm of Z to obtain the free energy

F = -T In Z = TZ £ ln(ft(-i^n + fta)). (3.77)

INFO Before proceeding with this expression, let us take a second look at the intermediate 
identity (3.76). Our calculation showed the partition function to be the product over all 
eigenvalues of the operator — iw + H defining the action of the non-interacting system 
(here, W = {wnSnn/}). As such, it can be written compactly as:

Z = det (ft(—iW + TH)) z (3.78)

This result was derived by first converting to an eigenvalue integration and then performing 
one-dimensional integrals over “eigencomponents” ft an. While technically straightforward, 
this - explicitly representation-dependent - procedure is not well suited to generalization 
to more complex problems. (Keep in mind that later on we will want to embed the action 
of the non-interacting problem into the more general framework of an interacting theory.)

Indeed, it is not necessary to refer to an eigenbasis at all. In the bosonic case, Eq. (3.17) 
tells us that Gaussian integration over a bilinear form ~ ftXft generates the inverse deter­
minant of X . Similarly, as we have seen, Gaussian integration extends to the Grassmann 
case with the determinants appearing in the numerator rather than in the denominator (as 
exemplified by Eq. (3.78)). (As a matter of fact, (3.76) is already a proof of this relation.)

We now have to confront a technical problem: how do we compute Matsubara 
sums of the form 22n ln(-'^'n + x)? Indeed, it takes little imagination to foresee that 
sums of the type 52ni n2 X (^n 1, ~n2,...), where X stands symbolically for some 
function, will be a recurrent structure in the analysis of functional integrals. A good 
ansatz would be to argue that, for sufficiently low temperatures (i.e., temperatures 
smaller than any other characteristic energy scale in the problem), the sum can 
be traded for an integral, 7]7w f d^l2n. However, this approximation is too
crude to capture much of the characteristic temperature dependence in which one 
is usually interested. Yet, there exists an alternative, and much more accurate, way 
of computing sums over Matsubara frequencies.

Matsubara 
summation

INFO Consider a single Matsubara frequency summation,

S = h (Wn ) , (3.79)

where h is some function and wn may be either bosonic or fermionic (cf. Eq. (3.74)). The 
basic idea behind the standard scheme of evaluating such sums is to introduce a complex 
auxiliary function g(z) that has simple poles at z = iwn . The sum S then emerges as the 
sum of residues obtained by integrating the product gh along a suitably chosen path in 
the complex plane. Typical choices of g include

g(z) =
p

exp(pz) — 1
P

exp( pz ) + 1

bosons, 
fermions,

or g(z) = (ft/2) coth(ftz/2)
(ft/2) tanh(ftz/2)

bosons, 
fermions, (3.80)
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where, in much of this section, we will 
employ the former. (Notice the sim­
ilarity between these functions and 
the familiar Fermi and Bose distri­
bution functions.) In practice, the 
choice of counting function is mostly 
a matter of taste, save for some cases 
where one of the two options is dic­
tated by convergence criteria.

Integration over the path shown in 
the left panel of the figure then pro­
duces

dz eg(z)h(-iz) = ^2 Res (g(z)h(-iz))z=i^n = h (“n ) = S,
n

where, in the third identity, we have used the fact that the “counting functions” g are 
chosen to have residue Z and it is assumed that the integration contour closes at z ^ ±i to. 
Now, the integral along a contour in the immediate vicinity of the poles of g is usually 
intractable. However, as long as we are careful not to cross any singularities of g or the 
function h(-iz) (symbolically indicated by the isolated crosses in the figure40) we are 
free to distort the integration path, ideally to a contour along which the integral can be 
performed. Finding a suitable contour is not always straightforward. If the product gh 
decays sufficiently fast as |z| ^ to (i.e., faster than z-1), usually one tries to “inflate” the 
original contour to an infinitely large circle (see the right panel of figure).41 The integral 
along the outer perimeter of the contour then vanishes and one is left with the integral 
around the singularities of the function h. In the simple case where h(-iz) possesses a 
number of isolated singularities at {zk} (i.e., the situation indicated in the figure) we thus 
obtain 

S= ±fdz g(z)h(—iz) = -Z Res (g(z)h(—iz)|z=zk , (3.81)

where the contour integral encircles the singularities of h(-iz) in a clockwise direction. 
The computation of the infinite sum S has been now been reduced to the evaluation of a 
finite number of residues - a task that is always possible!

To illustrate the procedure for a simple example, let us consider the function

h ( ^n ) ZT 
u:n<. — in — £,

where 8 is a positive infinitesimal.42 To evaluate the sum S = ^ h(~n), we first observe
that the product g(z)h(—iz) has benign convergence properties. Further, the function

40 Remember that a function that is bounded and analytic in the entire complex plane is constant, 
i.e., every “interesting” function will have singularities.

41 Notice that the condition lim|z|^^ |gh| < z—1 is not as restrictive as it may seem. The reason 
is that the function h will be mostly related to physical observables approaching some limit 
(or vanishing) for large excitation energies. This implies vanishing in at least portions of the 
complex plane. The convergence properties of g depend on the concrete choice of the counting 
function. (Exercise: Explore the convergence properties of the functions shown in Eq. (3.80).)

42 In fact, this choice of h is not as artificial as it may seem. The expectation value of the number 
of particles in the grand canonical ensemble is defined through the identity N = -dF/d^, 
where F is the free energy. In the non-interacting case, F is given by Eq. (3.77) and, remem­
bering that ^a = ea - ^, one obtains N ^ ZTan 1 /(-i^n + £a). Now, why did we write 
“«” instead of “=”? The reason is that the right-hand side, obtained by naive differentiation 
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h(—iz) has a simple pole that, in the limit S ^ 0, lies on the real axis at z = £. This leads 
to the result

h(U) = -Z Res (g(z)h(-iz))z=e =
n

eM - Z'

We have thus arrived at the important identity

1
-ZT

iUn
i‘Jn

£a

n n b( €a )
I nf(6a)

bosons 
fermions (3.82)

where

nF (e) = exp(e - m) + 1 ’ nB (e) = exp(e - M) - 1 (3.83)

Fermi/Bose 
distri­
bution

are the Fermi and Bose distribution functions. As a corollary, we note that the 
expectation value for the number of particles in a non-interacting quantum gas assumes 
the familiar form N = a nF/ b(ea).

Before returning to our discussion of the partition function, let us note that life is not 
always as simple as the example above. More often than not, the function h contains not 
only isolated singularities but also cuts or, worse, singularities. In such circumstances, 
finding a good choice of the integration contour can be far from straightforward!

Returning to the problem of computing the sum (3.77), 
consider for a moment a fixed eigenvalue £a = ea — ^. In 
this case, we need to evaluate the sum S = nhn h(un), 
where h(u) = ZT ln[fi(-iun + £)] = ZT ln[P(iun — £)] + 
C and C is an inessential constant. As discussed before, 
the sum can be represented as S = 2^^ dz g(z)h(—iz), 
where g(z) = ft(e^z — Z)-1 is (ft times) the distribution 
function and the contour encircles the poles of g . Now, 
there is an essential difference from the example discussed 
previously: the function h(—iz) = ZT ln(z — £) + C has a branch cut along the real 
axis, z G (—rc>,£) (see figure). To avoid contact with this singularity one must 
distort the integration contour as shown in the figure. Noticing that the (suitably 
regularized, see our previous discussion) integral along the perimeter vanishes, we 
conclude that

of Eq. (3.77), is ill-convergent. (The sum n'' ^ 1 /(n + x), x arbitrary, does not exist!) At
this point we have to remember the remark made on page 139: had we carefully treated the 
discretization of the field integral, both the logarithm of the free energy and d^F would have 
acquired infinitesimal phases exp(-iwnd). As an exercise, try to keep track of the discretization 
of the field integral from its definition to Eq. (3.77) to show that the accurate expression for N 
reads

N = ZT E - „ne -1. + (, - E h("" >k=.. • 

an an

where h is the function introduced above. (Note that the necessity to keep track of the lifebuoy 
e-i.^n does not arise too often. Most Matsubara sums of physical interest relate to functions 
f that decay faster than z-1 .)
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Dirac 
identity

free energy 
of the

Fermi/Bose
gas

S = 2Ti f dea(e) (ln(e + - £) -ln(e - £)),

where e± = e ± in, n is a positive infinitesimal, and we have used the fact that 
g(e±) ~ g(e) is continuous across the cut. Also, without changing the value of the 
integral (exercise: why?), we have enlarged the integration interval from (—rc>, £] to 
(—<x>, oo). To evaluate the integral, we observe that g(e) = £3e ln(1 — Ze-''") and 
integrate by parts:

S=-£ Id ln <1 - Ze-* ’ (- )=zTin <1 - Ze-is> •

Here, the second equality is based on the Dirac identity

J*m xh = -in (x)+P 1, (3.84)

where P denotes the principal value. Insertion of this result into Eq. (3.77) finally 
gives the familiar expression

F = ZT ln (1 - Ze - ) (3.85)

for the free energy of the Fermi/Bose gas. While this result could have been 
obtained more straightforwardly by methods of quantum statistical mechanics, we 
will see shortly the power of Matsubara frequency summations in the analysis of 
less elementary problems.

3.6 Field-Theoretical Bosonization: A Case Study

The field integral (3.71) provides an exact representation of the quantum partition 
function; it contains full information about the microscopic Hamiltonian. However, 
our main interest lies in the universal large-scale behavior of a quantum system. 
To extract this information from the field integral, we must identify the relevant 
long-range degrees of freedom and transition from the microscopic field theory to 
some effective theory defined in terms of those variables.

In chapter 1 we saw that there are two principal strategies to execute this pro­
gram: explicit construction - the subject of the next two chapters - and more phe­
nomenological approaches based on consistency and symmetry arguments. Besides 
its low level of rigor, a disadvantage of the second route is the lack of quantita­
tive control of the results (which implies susceptibility to mistakes). On the other 
hand, the phenomenological approach is far less laborious and involves a mini­
mal amount of technical preparation. Often, the phenomenological deduction of a 
low-energy field theory precedes its rigorous construction (sometimes by decades). 
Indeed, there are cases where phenomenology is the only viable route.
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Below we will illustrate the phenomenological approach for an interacting one­
dimensional electron gas. We will map the microscopic partition function of the 
system onto a free (and thus exactly solvable) low-energy field theory.43 Here, em­
phasis will be placed on purely methodological aspects of the analysis, i.e., we will 
derive an effective theory but will not explore it. (Nonetheless, the derivation is 
instructive and will help to understand the essential physics of the system!) In later 
chapters, the theory will serve as the starting point for the discussion of various 
interesting applications.

3.6.1 One-dimensional electron gas (fermionic theory)

Our starting point is the action of a non-interacting one-dimensional electron, gas 

so[$] = y dxdr^S (—isvFdx + dT) ^s,

where ^+/_ are right- and left-moving fermions and we have denoted the Grass­
mann field conjugate to ^ by ^t.44 Recall that the right- and left-moving fermion 
operators are projections of the global momentum-dependent fermion operator to 
the vicinites of the right and left Fermi points, i.e., ^ + (q) = ^kp+q, ct'' (q) = ^-kp+q, 
where |q | kF. Fourier transforming this expression, we therefore obtain the ap­
proximate decomposition ^(x) = eikFx x + (x) + e-ikFx x_(x). Before proceeding, let 
us rewrite the action in a form that emphasizes the symmetries of the problem:

d2x ^t (ctodx0 — ia3dxi) ^ = / d2x'ip (ct 1 dx^ — ct2dx 1) ^, (3.86)

where we have set vF = 1 for notational simplicity. Here, ^ = (  ̂+ ,^_)T is a two- 
component field comprising right- and left-moving fermions, x = (x0 ,x 1) = (t, x) 
parameterizes (1 + 1)-dimensional Euclidean space-time, and ?/> = ^tct 1. The second 
equality identifies the action of the free one-dimensional fermion gas with that of 
the (1 + 1)-dimensional Dirac field. We can make this connection to Dirac theory 
more visual by defining the two-dimensional Euclidean 7-matrices y0 = ct 1 ,y 1 = 
—ct2 ,y5 = - ct3, to represent the action in the form

so[$] y d2x$d^Y1^, (3.87)

which may be familiar from particle physics textbooks. For later reference, we will 
use the y -matrix notation throughout parts of this section. However, keep in mind 
that these are just ordinary Pauli matrices, with the historical convention that 
ct3 = y5. (Chapter 9 contains an introduction to Dirac field theory in condensed

43 A preliminary account of the ideas underlying this mapping has already been given in sec­
tion 2.2.4.

44 Following the remarks earlier, this is a formal notation; there is no Grassmann analog of complex 
conjugation. However, within the context of relativistic fermions, our standard symbol ^ is 
reserved for another object (see below).

Euclidean
Y -matrices

S 0 [ ^] = J
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vector 
current

current
conser­
vation

matter physics. However, this material will not be needed now.) Independently of 
the concrete realization, the feature that will be essential is the relation

Y1YV + Yv Y1 = 2 61V, (3.88)

i.e., different y-matrices anticommute, and they square to unity.

Symmetries

We next turn to a discussion of the symmetries of the problem. First, the action 
is clearly invariant under the transformation, g ^ ei'vg, where pv = const. What 
is the resulting conserved current? The infinitesimal variant of this transformation 
is described by g ^ g + (i<5pv)g or, in a notation adapted to (1.41), g o q1, wa o 
i&Y Y i i I' i'iiia I iz iii (1 I Iipii trivpq flip nnnsprepd purrpnf p1 — _ dL_ th —lupv, g t t a a. i Aquaiion (j_.tO) ciien gives cue conseiv^u current jv — g(g ^) g — 

Py1g. For later reference, we mention that, under a rotation of space-time, x1 ^ 
(R • x)1, the components of jv transform like a vector, j1 ^ (R • j)1. In relativistic 
field theory, jv is therefore usually called a vector current.

Notice that the two components of the vector, j0 — gtg — g + g + + g-g- = p 
and j1 — — ig ta3 g — — i (g + g + — g— g_) = — ij, are the charge density, p, of 
the system and (-i times) the current density, j, respectively.45 Thus, the equation 
—idpj1 — idTp + dxj — 0 expresses the conservation of particle current in imaginary 
time.

INFO This is a manifestation of the general result that the U(1)-symmetry of quantum 
mechanics (the freedom to multiply wave functions - or operators, in a second-quantized 
approach - by a constant phase e'") implies the conservation of particle current. We 
will encounter various other realizations of this symmetry later in the text.

EXERCISE Subject the action of the general field integral (3.71) to the transformation 
p ^ > ', p ^ pe-i^ and compute the resulting Noether current. Convince yourself 
that the components of the current are the coherent state representation of the standard 
density/current operator of quantum mechanics.

Now the action (3.86) possesses a less obvious second symmetry: it remains invariant 
under the transformation

g ^ e1^aY g, g ^ ge1^aY . (3.89)

Using the anticommutativity relation (3.88), it follows that [y1,Y5]+ — 0 for p — 
0, 1, from which one obtains (gei^aY )d^y1 (ei^aY g) — gd^y^g. A straightforward 
application of Noether’s theorem to the infinitesimal transformation g ^ g + 
(ip a) Y 5 g gives the conserved current j 1 — ipj y1Y 5 g — e1v g Y v g, where e1v is the 
antisymmetric tensor. Introducing a unit vector e2 pointing into a fictitious third 
dimension perpendicular to the space-time plane, the current can be written as

45 Notice that, for a one-dimensional Fermi system with velocity vF = 1, the current density 
equals the density of right movers minus that of the left movers.
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axial 
current

ja = e2 x jv. This representation shows that ja transforms like an axial vector 
under rotations (as, say, a magnetic field). For this reason, ja is called an axial 
current.

EXERCISE In the transformation (3.89), unusually for a quantum symmetry, the two 
phase factors enter with equal signs. What is the physical meaning of this strange 
looking symmetry? To find out, pass back to the original first representation of the 
action in Eq. (3.86) and show that, in that language, ^ ^ e' ■'a173^ and ^^ ^ ^^e-3<aa73 

assume the form of a conventional unitary symmetry. In combination, the two transfor­
mations $v,a reflect the freedom to independently change the phase of the left- and right­
moving states. This means that, in the low-energy approximation, the numbers of left- 
and right-moving fermions, nL,R are individually conserved. (Formally, the two sectors 
are described via independent Hilbert spaces.) Specifically, the axial symmetry represents 
the conservation of the difference nL - nR .

chiral 
anomaly

INFO The axial symmetry of the relativistic electron gas is an example of symmetry that 
does not survive at the quantum level. The conservation of the axial current breaks down 
once quantum fluctuations are taken into account, a phenomenon known as the chiral 
anomaly or axial anomaly. In field theory, “anomaly” is the general terminology for 
the breaking of symmetries of classical actions by fluctuations in the field integral. This 
principle plays an important role in various areas of condensed matter physics and will be 
discussed in section 9.2. However, it is easy to understand why axial symmetry does not 
survive extension to the full quantum theory: the left- and right-moving sectors are only 
seemingly independent. In fact, they represent small sections of a band of one-dimensional 
fermions with a cosine dispersion; see fig. 9.2 for a visualization. Changes applied to the 
large-scale dispersion (i.e., via application of an electric field shifting all momentum states) 
may alter the number of left- or right moving fermions (violating the axial symmetry) for 
a conserved total fermion number (vectorial symmetry).

Given that we are dealing with the simplest possible one-dimensional theory, a for­
mal discussion of symmetries may seem to be something of an overkill. However, 
we shall see shortly that the effort was well invested: as soon as we switch on inter­
actions, the fermionic theory ceases to be exactly solvable. It turns out, however, 
that our symmetry discussion above provides the key to a bosonic reformulation of 
the problem which does enjoy exact solvability. Yet, before turning to the bosonic 
approach, let us briefly recapitulate how interactions couple to the model.

Interacting case

As in section 2.2.4, we assume a short-range interaction between the left- and 
right-moving densities. Quantitatively, this is described by the coherent-state rep­
resentation of the second quantized Hamiltonian (2.35), i.e.,

■ .| = 2 E / dxdT (g2Ms + g4Ms) (3.90)

where ps = ^s. ^s. Notice that this interaction term leaves the vectorial or axial 
symmetry of the system intact (exercise: why?). But what else can we say about
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the interacting system? In fact, we saw in section 2.2.4 that it is difficult to un­
derstand the physics of the system in the language of microscopic fermion states. 
Rather, one should turn to a formulation in terms of the effective long-range degrees 
of freedom of the model - non-dispersive charge density fluctuations. In the next 
section, we will formulate the dynamics of these excitations in a field-theoretical 
language. Remarkably, it will turn out that it takes only a minimal investment 
of phenomenological input plus symmetry considerations to extract this formula­
tion from the microscopic model. (For a more rigorous, but also more laborious, 
construction of the theory, see the article46 )

The native degrees of freedom of the one-dimensional electron gas are fermions, 
here assumed spinless for simplicity. On the other hand, we saw in section 2.2.4 
that, at low energies, the system is governed by bosonic excitations representing 
charge density waves. As a first step we thus aim to identify a set of operator rep­
resentations, which in the field integral framework turn into integration variables, 
representing the different realizations of degrees of freedom of the system. We begin 
by considering an algebra of boson operators b(x), bt(x) with commutation relations 
[b(x), bt(x)] = 6(x — x'). Anticipating the emergence of charge fluctuations, the bo­
son operator b is factored into the number-phase representation

(3.91)

i jii • j • j a. i 7 j i ii r-ji iwhere the hermitian operators p and ft represent charge and phase of the complex 
boson field, respectively.

INFO Representations of this type are frequently employed in bosonic theories. Impor­
tantly, (b,b7 ^ (p,p) is a canonical transformation, i.e., the density and the phase 
of a bosonic excitation form a canonically conjugate pair, [p(x), p(y)] = — iS(x — y)47 To 
check this assertion, let us temporarily shift the density operator p ^ p + kF/n, so that p 
now describes the total density. (A shift by a number does not alter the commutation re­
lations.) We thus write b = pi* 1 /2exp(ip) and b^ = exp(—ip) p1 /2, where the position index 
has been dropped for notational transparency, while [b,b^] = 1 requires that [p, p] = — i:

[ b,bf] = [ p1 / 2 e*e - i* p1 / 2] = p — e - i* p ei

= p - e-i[*, ]p = p - p + i[P,p] - 1[P, [P, p]] + ••• ['P,==i 1 •

(In the last line, we have used the general operator identity eAB e-A = e[A, ]B .)

46 H. Scholler and J. von Delft, Bosonization for beginners - Refermionization for experts, Ann. 
Phys. 7, 225 (1998).

47 This implies, in particular, that the corresponding field integral transformation (^,^jp) ^ (p,$) 
from complex integration variables to the two real variables (p, $) has a unit Jacobian (exercise).

3.6.2 One-dimensional electron gas (bosonic theory)

number— 
phase rep­

resentation
-< / • 7/ \ । • 7 / \ -< /b (x) = p( x )1 / 2 ei^(x), b t( x) = e - i^(x) p( x )1 / 2

canonical 
transfor­

mation
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Jordan—
Wigner 

transfor­
mation

We next aim to represent our actual degrees of freedom, spinless fermions, in terms 
of the bosonic operators p and p. To this end, we can think of the fermion as a 
structureless charge endowed with fermionic exchange statistics. In the above rep­
resentation, a charge is created by application of exp(i<p) to the vacuum. To see 
this, notice that <f) is the “momentum” conjugate to p, i.e., the “translation op­
erator” exp(i<f)(x)) increases the charge at x by unity. We next complement this 
operator with a second one responsible for the bookkeeping of the fermionic ex­
change statistics. Applying the Jordan-Wigner transformation, previously ap­
plied in problem 2.4.5 to represent bosonic spin operators as fermions, we first define 
0(x) = n — ^ dx' p(x') as a string operator satisfying the commutation relations

r 7/ x 7/ xi - za / \[ k (x) ,0 (y)] = - in 0( y - x) (3.92)

With this definition, it is straightforward to verify that for arbitrary integers s and 
s1, we have

x) ei$( x) ei' k x') eiK x')] + K eiQ(x'-x) + eiQ(xxx') = o (3.93)

Eq. (3.93) implies that the operators r exp(is0) exp(ip)) are candidates for fermion 
operators. To identify the constant r, we need to consider the anticommutators of 
these fermions and their adjoint, as follows.

EXERCISE Verify the anticommutator identity above. (Hint: Use the general identi- 
J ,i rj i D .i J ,ities eABe = e[A’]B and eAeBe = exp[eABe ].) To investigate the anticommuta­

tor of creation and annihilation operators, we temporarily turn back to a lattice repre­
sentation, p(x) ^ pi and 0(x) ^ 0i = ^27j<i Pj• Verify that, with these definitions, 

1ci = — exp(isOi) exp(io,) and its adjoint satisfy canonical anticommutation relations 
[ci, c • . = Sij (Hint: compare with problem 2.4.5). In the continuum limit, the Kronecker 
S must turn into a singular S-function, which explains the need for a formally divergent 
prefactor r (see also problem 3.8.10).

In practice, the value of r is not of particular relevance, and we can consider

c(x) = r 2 els(kfx+6(x))e1^(x) (3.94)

bosoni-
zation

as a bosonic representation of the fermion operator. This ansatz checks all the 
boxes required of a proper one-dimensional fermion field operator: the freedom to 
choose s in Eq. (3.93) is exploited to split the fermion into right- and left-moving 
contributions, as before. We have absorbed the “rapidly oscillating” part of the 
fermion operator in the c-number-valued factors exp(±ikFx), so that 6,p) may be 
considered as “slowly fluctuating” operator fields. In the language of Eq. (3.91), the 
shift 0 ^ 0 + kFx means that p = 1 dx0 ^ p + kF/n. The shifted operator p thus 
describes fluctuations of the density around the average value kF/n.

Eq. (3.94) is an example of a bosonization identity, a transformation represent­
ing fermions in terms of boson operators. At first sight, it is not obvious what one 
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might gain from this representation: we have traded our simple fermion operator for 
a nonlinear expression in terms of bosonic degrees of freedom - but why? The point 
is that we are usually interested not in expressions linear in the fermion operators 
but in fermion bilinears (currents, densities, etc.). In contrast with the case of a 
single fermion, fermion bilinears have very simple expressions in terms of bosons. In 
particular, the Hamiltonian operator of the interacting system becomes quadratic 
(manifestly solvable) when expressed in terms of bosons. This makes bosonization 
a singularly powerful approach to the physics of one-dimensional fermion systems, 
as we now explore.

Non-interacting system

We now apply a combination of symmetry and dynamical arguments to identify 
the Hamiltonian of the non-interacting system. The fermionic prototype action is 
invariant under global rotations of space-time, x ^ x' = R • x, ^'(x') = ^(x). 
This symmetry must pertain to the bosonic description of the theory. Turning to 
the “intrinsic” symmetries of the system, we note that the vectorial and axial 
symmetry operations considered in the previous section act on the left- and right­
moving fermion states as xs ^ ei'v^s and xs ^ eis^a^s, respectively. Of course, 
these transformations must continue to be symmetries no matter which representa­
tion of the theory (bosonic, fermionic or whatever) is chosen. A glance at Eq. (3.94) 
shows that the symmetry transformation acts on the bosonic variables by a sim­
ple shift operation: vectorial, (^,9) ^ (^ + ^v,9); axial, (<^,9) ^ (<^,9 + ^a). For 
^a,v = const., these transformations must not change the action, which excludes 
the presence of non-derivative terms. (For example, a contribution such as ~ f 92 

would not be invariant under a uniform axial transformation, etc.)
Of course, symmetries alone do not suffice to fix the action of the system. What 

we need, in addition, is a minimal amount of dynamical input. Specifically, we 
will use the fact that the creation of a density distortion p = dx9/n costs a certain 
amount of energy U. Assuming that U ~ p2 (i.e., that screening has rendered the 
Coulomb interaction effectively short-range), the Lagrangian action of the charge 
displacement field 9 will contain a term ~ (dx9)2. However, this expression lacks 
rotational invariance. Its unique rotationally invariant extension reads (dx9)2 + 
(dT9)2. Thus, up to second order in derivatives, the Lagrangian action is given 
by So[9] = (c/2) J dxdT [(dx9)2 + (dT9)2], where the coupling constant c needs to 
be specified. This expression tells us that the field 9 has a linear dispersion and 
propagates at constant velocity (recall our discussion of, e.g., the phonon action in 
chapter 1). Recalling that dx9 ~ p, this confirms our results regarding the behavior 
of density distortions in one-dimensional electron systems, derived in section 2.2.4.

To fix the value of the coupling constant c, we must compute the correlation 
function48

C(x,T) = (($ + $-)(x,T)($-$ +)(0, 0))^ (3.95)

48 The function C describes the correlation of the bilinear ip+^- with itself measured at different 
values of space and time. We have more to say on the subject of correlation functions in the 
next chapter.
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first in the fermionic, then in the bosonic, language and require coinciding answers. 
Referring for a detailed discussion to problem 3.8.10, we merely note that the re­
suit obtained for the free fermion action (3.86) reads C(x,t) = (4n2(x2 + t2))-1. 
The bosonic variant C(x, t) = r4 62ig(x,T)e-2ig(0,0)^g leads to the same expression 
provided that we set c = 1 /n and r = 1 /(2na)1 /2. Thus, our final result for the 
Lagrangian form of the action of the non-interacting system reads

S[0] = 2n y drdx ((dT0)2 + (dx0)2) .

Before proceeding to include interactions, let us turn from the Lagrangian to 
the Hamiltonian formulation. The transcription between the two languages is most 
naturally formulated in a real- (Lorentzian-) time framework, t = -it , where 
the action reads49

Sm[0] = y dtdx L(dx0,dt0) = — ^ dtdx ((dt0)2 — (dx0)2) .

From here, we obtain the canonical momentum associated with the field, ng = 
ddtgL = ndt0, and the Hamiltonian density as H = 2n((nng)2) + (dx0)2). On the 
other hand, we know from the commutator relation Eq. (3.92) that [dxo(x), 0(y)] = 
inb (x — y). Comparison with the structure of canonical commutation relations be­
tween coordinate and momenta [ng (x), 0(y)] = — ib(x — y) leads to the identification 
ng = — ndxo. In this way, the Hamiltonian action SM = f dtdx(ngdt0 — H) is iden­
tified as

SM[0, 0] = 2n y dtdx (—2dx^dt0 — (<^x.)2 — (dx0)2) .

We finally pass back to Euclidean-time to obtain

S[0, $] = — d dxdr ((dx0)2 + (dx^)2 + 2idT0dx^) . (3.96)

EXERCISE As a quick and dirty alternative to the Hamiltonian construction, decouple 
the dTQ2 term in the Lagrangian in terms of a Hubbard-Stratonovich field dx^ to obtain 
the representation Eq. (3.96).

It is instructive to inspect the Noether current corresponding to the vectorial sym­
metry in the bosonic language. A straightforward application of Noether’s theorem 
to the transformation ^ ^ ^ + ^v obtains d^jv = 0, where j0 p'= 6 p = dx0/n and 

jv p=6 — ij = — idx^/n.50 While the first of these relations merely reiterates the 

definition of the displacement field, the second contains new information. Remem­
bering that p = p+ + p- and j = p+ — p-, we obtain the identification

(3.97)

of the left- and right-moving densities in terms of the Bose field.

49 Recall that the overall sign of the action is determined by the equality exp(-S) = exp(iSM).
50 The (arbitrary) normalization constant n-1 has been chosen to obtain consistency with previous 

definitions; see below.

P± z— (dx0 ± dx^)
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EXERCISE Compute the bosonic representation of the axial Noether current.

Interacting system

We are now in a position to turn to the interacting case. In fact, all the hard work 
necessary to bring the interacting problem under control has already been done! We 
simply substitute the bosonic representation (3.97) into the Coulomb action (3.90) 
and obtain

Sint = J, 2 dxdT (g2dx(0 - s^)dx(0 + s^) + g4dx(0 - s^)dx(0 - s^))

= ■/dxdT ((g2 + g4)(dx0)2 + (g4 -g2)(dx^)2),

i .e., an action that is still quadratic and thus exactly solvable.

current—
current in­
teractions

INFO In the field-theoretical literature (especially the literature on conformal field the­
ory), interactions of this type are commonly referred to as current-current interac­
tions. The reaseon is that Sint can be expressed as a bilinear form in the Noether currents 
generated by the symmetries of the system.

Adding Sint to the action of the non-interacting theory (3.96), we arrive at the final 
expression

S[0,$] = .1 dXxdr v((dx&)2 + gv(dx)2 +2idT"'’.x.
2 n . \ g

(3.98)

where we have introduced the parameters 

v = 71 f(2nvf + g4)2 - g2} 
2 n \ /

2nvf + g4 - g2

2 nv f + g 4 + g 2
(3.99)

and have reinstated vF. Comparison with the results of section 2.2.4 identifies v 
as the effective velocity of the charge-density wave excitations of the system.51 

Equation (3.98) represents the main result of our analysis. We have succeeded in 
mapping a non-linear interacting problem onto a linear bosonic field theory. Critical 
readers may object that this result does not contain much new information. After 
all, a second-quantized representation of the theory in terms of free bosons was 
derived previously in section 2.2.4. Nonetheless, the analysis of this section is valu­
able from both a methodological and a conceptual point of view. Methodologically, 
it turns out that the field integral formulation J D(0,^)exp(-S[0,^]) is the most 
convenient starting point to address the many intriguing phenomena displayed by 
one-dimensional electron systems (we will meet some examples). From a concep­
tual point of view, it is remarkable that no “microscopic” calculations had to be

51 In fact, the structure of Eq. (3.98) by itself determines the interpretation of v as an effective 
velocity. To see this (exercise), integrate over ^ to arrive at a wave-like Lagrangian for Q whose 
characteristic velocity is set by v.
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performed to determine the effective field theory. All we had to invest was symme­
try arguments, some phenomenological input, and consistency checks. In chapter 
8 we will meet a related problem - the low-energy field theory of quantum spin 
chains - where no microscopic construction for an effective field theory is known. 
In this case, symmetry analysis represents the only viable route towards a solution 
of the problem.

3.7 Summary and Outlook

In this chapter we introduced the path integral formulation of quantum mechanics, 
an approach independent of, yet equivalent to, the standard route of canonical 
operator quantization (modulo certain mathematical imponderabilities related to 
continuum functional integration). While a few exactly solvable quantum problems 
are more efficiently formulated by the standard approach, a spectrum of features 
makes the path integral an indispensable tool of mo dern quantum mechanics: it 
is intuitive, powerful in the treatment of non-perturbative problems, and tailor- 
made to the formulation of semiclassical limits. We have also seen that it provides 
a unifying link relating quantum problems to classical statistical mechanics.

Building on this approach, we learned how to represent the partition function 
of a quantum many-body system in terms of a path integral. The field integral 
representation of the partition function will be the platform on which further de­
velopments will be based. In fact, we are now in a position to face the main problem 
addressed in this text: practically none of the “nontrivial” field integrals relevant 
to applications are tractable in an exact way. This reflects the absence of closed 
solutions for the majority of interacting many-body problems. Before employing 
the field integral to solve “serious” problems, we need to develop a spectrum of 
approximation strategies - perturbation theory, linear response theory, mean field 
methods, instanton techniques, and the like. The construction and application of 
such methods will be the subject of the following chapters.

3.8 Problems

3.8.1 Quantum harmonic oscillator

The quantum harmonic oscillator provides a valuable setting in which to explore the Feynman 

path integral and methods of functional integration. Along with a few other precious examples, 

the path integral may be computed exactly, and the propagator explored rigorously.

(a) Starting with the Feynman path integral, show that the propagator for the 
quantum harmonic oscillator, H = p2 /2m + mu2 q2 /2, takes the form
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(qf |e iHt/~|qi) = ( mw----) / exp f imw f(q2 + q2) cot wt - 2qf\\ .
\2ni~sin w^ \2~ \v 7 sinwt J J

Suggest why the propagator varies periodically in time, and explain the origin of 
singularities at t = nn/w, n = 1, 2,... Taking the frequency w ^ 0, show that the 
propagator for the free particle is recovered.
(b) Show that the wave packet ^(q, t = 0) = (2na)-1 /4 exp[-q2/4a] remains 
Gaussian at all subsequent times. Obtain the width a(t) as a function of time.
(c) Semiclassical limit: Taking the initial wave packet to be of the form ^(q, t = 
0) = (2na)-1 /4 exp[~mvq — 4aq2] (corresponding to a wave packet centered at q = 0 
with a velocity v), find the wave packet at times t > 0, and determine its mean 
position, mean velocity and mean width as functions of time.

Answer:

(a) Making use of the Feynman path integral, the propagator can be expressed as 
the functional integral,

<qf |e-iHt/~|qi) = ['(''f Dq eiS[q]/~, S[q] = [' dt' m (q2 — w2q2) .

q(0)=qi 0 2

The evaluation of the integral over field configurations q (t') is facilitated by pa­
rameterizing paths in terms of fluctuations around the classical trajectory. Set­
ting q(t') = qcl(t') + r(t'), where qcl(t') satisfies the classical equation of motion, 
we have mqcl = — mw2qcl, and, applying the boundary conditions, one obtains 
qci(10 = Asin(wt') + B cos(wt') with B = qi and A = qf/ sin(wt) — qi cot(wt). Gaus­
sian in q, the action separates as S[q] = S[qcl] + S[r], where S[qcl] = m2^- [(A2 — 
B 2,siii(2 ut) . 2 AB cos(2 ut )-1i _ mur( 2 । 2\ „ nt t _ 2 q i q fl F^olU intpoTfitino-B ) 2 u +2 AB 2 u ]= 2 [(q i + q f )cot( wt) sin( ut)]. Finally, integrating
over the fluctuations and applying the identity z/ sin z = [Jn=1(1 — z2/n2n2) 1, one 
obtains the required result, periodic in t with frequency w and singular at t = nn/w. 
In particular, a careful regularization of the expression for the path integral shows 
that

(qf|e-iHt/~|qi)rt J6(qf — qi), t = 2nn/w,

[J (q f + q i), t = n (2 n + 1)/w.

Physically, the origin of the singularity is clear. The harmonic oscillator is peculiar 
in having a spectrum with energies uniformly spaced in units of ~w. Noting the 
eigenfunction expansion (qf|e-iHt/~|qi} = n(qf|n}lnn|qi)e-iunt, this means that 
when ~w x t/~ = 2n x integer there is a coherent superposition of the states and 
the initial state is recovered. Furthermore, since the ground state and its even 
integer descendants are symmetric while the odd states are antisymmetric, it is 
straightforward to prove the identity for the odd periods.
(b) Given the initial condition ^(q, t = 0), the time evolution of the wave packet 

/ / TO ^ifrt/~lcan be determined from the propagator as ^(q,t) = f dq7 (q|e iHt/~|q^(q7, 0),
from which one obtains



155 3.8 Problems

Fig. 3.4 (a) Variation of a “stationary” Gaussian wave packet in a harmonic oscillator, taken from
the solution, and (b) variation of the moving wave packet.

fl (q,t ) = J (t)( dq q 
- — TO

e 4 a

exp
i mw
~ 2

[q2 + q/2] cot(wt) — 2 qq' 
sin(wt)

where J(t) represents the time-dependent contribution arising from the fluctuations 
around the classical trajectory. Being Gaussian in qfl the integral can be performed 
explicitly. Setting a = 1 /2a — imw cot(wt)/~, fl = imwq/(~sin(wt)), and performing 
the Gaussian integral over qfl one obtains

fl (q,t) = J (t)
1 . Z2n ef2 /2a

(2na)1 /4V a 

where fl2/2a = —(1 + iK cot(wt))q2/4a(t). Rearranging terms, it is straightfor­
ward to show that fl(q,t) = (2na(t))—1 /4 exp[—q2/(4a(t))]ei? (q,t), where a(t) = 
a(cos2(wt) + k—2 sin2(wt)), k = 2amw/~, and ^(q,t) represents a pure phase.* 52 

As required, under the action of the propagator, the normalization of the wave 
packet is preserved. (A graphical representation of the time evolution is shown in 
fig. 3.4a.) Note that, if a = ~/2mw (i.e., k = 1), a(t) = a for all times - i.e., it is a 
pure eigenstate.

Using the results derived in the previous example, this problem explores how real-time dynam­

ical information can be converted into quantum statistical information.

52 For completeness, we note that <p(q, t) = — 2 tan-1(K cot(ut)) — Ka cot(ut)(aflat) — 1).

(c) Still in Gaussian form, the integration can again be performed explicitly for 
the new initial condition. In this case, we obtain an expression of the form above 
but with fl = i m^.~. x (q — v sin(wt)). Reading off the coefficients, we find that ~ ~ sin(wt) w ,
the position and velocity of the wave packet have the forms q0 (t) = (v/w) sin(wt), 
v(t) = v cos(wt), coinciding with those of the classical oscillator. Note that, as 
above, the width a(t) of the wave packet oscillates at frequency w . (A graphical 
representation of the time evolution is shown in fig. 3.4 (b).)

3.8.2 Density matrix
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. . . / -W\Using the results above, obtain the density matrix p(q,qz) = (q|e PH |qfor the 
harmonic oscillator at finite temperature, P = 1 /T (kB = 1). Obtain and comment 
on the asymptotics: (i) T ~w and (ii) T ~w. (Hint: In the high-temperature 
case, carry out the expansion in ~w/T to second order.)

Answer:

The density matrix can be deduced from the general solution above. In the Euclidean­
time formulation, 

p (q,q') = (q | e—PH | q') = (q | e-(i/~) H (~ P/i )| q')

= (9 mhfffi }) exp f-mr f( q 2 + q/2)coth( P ~ w) - . 2 qq . 
\2n~sinh(p~w) J \ 2~ \ smh(p~w) J J

(i) For T ~w (P~w 1), coth(P~w) ^ 1, sinh(P~w) ^ eP~":/2, and

p(q,q') - ( mwu) / exp(—mw(q2 + q/2)) = (q|n = 0>e PE0 (n = 0|q.
n~ ~ eP ~ 2 2n J

(ii) Using the relations coth x x =1 1 /x+x/3+- • • and 1 / sinh x x =1 1 /x—x/6+- • •, 
the high-temperature expansion (T ~w) gives

\ 1 / 2
m j e—m ( q - q ')2 / 2 P h2 e - Prn  ̂2( q 2 + q '2 + qq') / 6 J — ^/) e - Prn^ 2 q2 / 2

2nP~P) - w q ep(q, q') -

i.e., the classical Maxwell-Boltzmann distribution.

3.8.3 Depinning transition and bubble nucleation

S

In section 3.3.2 we explored the capability for a quantum eld to tunnel from the metastable 

minimum of a potential, the \false vacuum." Yet, prior to the early work of Coleman on the 
quantum mechanical problem, similar ideas had been developed by Langer18 in the context 

of classical bubble nucleation. The following problem draws connections between the classical 

and the quantum problem. As posed, the quantum formulation describes the depinning of a 

ux line in a superconductor from a columnar defect.

Consider a quantum elastic string embedded in a three-dimensional space and 
“pinned” by a columnar defect potential V oriented parallel to the z-axis. The 
corresponding Euclidean-time action is given by

11dzdT (xpu2 + 2o(dzu)2 + V(|u|)J
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where the two-dimensional vector field u(z, t) denotes the 
string displacement within the xy-plane, p represents the density 
per unit length, and a defines the tension in the string. On this 
system (see the figure), let us suppose that an external in-plane 
field f is imposed along the x-direction, Sext = — f § dzdr u • ex. 
Following the steps below, determine the probability (per unit 
time and per unit length) for the string to detach from the de­
fect.
(a) Derive a saddle-point equation in the two-dimensional zt- 
space. Rescaling the coordinates, transform the equation of mo­
tion to a problem with circular symmetry.
(b) If the field is weak, one can invoke a “thin-wall” or “bubble” 
approximation to describe the saddle-point solution u(z, t) by 
specifying two regions of space-time, where the string is either free or is completely 
locked to the defect, respectively. In this approximation, find u(z, t). (Hint: use the 
fact that, in either case, of complete locking or complete freedom, the potential 
does not exert a net force on the string.)
(c) With exponential accuracy, determine the detaching probability. You may as­
sume that, for all values of ux obtained in (b), V(|u|) ~ V0 = const.
(Exercise: Finally, consider how the quantum mo del can be related to the classical 
system.)

u

Answer:

(a) Varying the action with respect to ux , the saddle-point equation assumes the 
form pux + ad2ux = — f + V'(u)(ux/u), where u = |u|. Applying the rescaling t = 
(p/a)1/4r and z = (a/p)1 /4z, the equation takes the symmetrized form ^apd2ux = 
—f + V'(u)(ux/u), where d2 = d.2 + d2, and the following boundary conditions on 
the radial coordinate (t, z) ^ (r, ^) are imposed,

ux (r) =
0, 

g(r),

r>R, 

r < R.

(b) In the “thin-wall” approximation, the potential gradient can be neglected. In 
this case, the saddle-point equation assumes the form d2 g = — f / Jap, with the 
solution g = (R2 — r2)f /f 4ap.
(c) With this result, the tunneling rate can be estimated from the saddle-point 
action

Sbubble = [ d2r f (dg)2 + V0 — f g\ = — nR2 f ,2 — V0^ .
2 16(ap)1/2

Minimizing over R, one obtains the optimal radius R2 = 8Vo^ap/(3f2). As a result, 
we obtain the tunneling rate W x e-S(R*) = exp(—4nV2fap/(3f2)).
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3.8.4 Tunneling in a dissipative environment

In section 3.3.3 we considered the inuence of dissipation on the action of a point-particle in a 

quantum well. There, a model was chosen in which the degrees of freedom of the environment 

were represented phenomenologically by a bath of harmonic oscillators. In the following, we will 

explore a model in which the particle is coupled to the uctuations of a quantum mechanical 

\string." We will discuss how this model is relevant to the physics of impurity scattering in 

interacting quantum wires.

(a) A quantum particle of mass m is confined by a sinusoidal potential U(q) = 
2gsin2(nq/q0). Employing the Euclidean-time Feynman path integral (~ = 1),

Z = / Dq e-SPart[q\ Spart[q] = j^ dT (y q2 + U(q)) ,

confirm by direct substitution that the extremal contribution to the propagator 
connecting two neighboring degenerate minima (q(t = —rc>) = 0 and q(t = rc>) = 
q0) is given by the instanton trajectory qcl(t) = (2q0/n)arctan(<e:0T), where w0 = 
(2n/q0^/g/m. Show that S[qcl] = (2/n2)mq0w0. (Note: Although the equation of 
motion associated with the minimum of the path integral is nonlinear, the solution 
above is exact.)
(b) If the quantum particle is coupled at one point x = 0 to an infinite “string” 
u(x, t), the path integral is given by

Dq d (q(T) - u(t, x = 0)) e-Sstring[u] —Spart[q],

where the classical action of the string is given by (cf. the action functional for 
phonons discussed in section 1.1)

Sstring[ U ] = 2 [ dT ( dx (pU 2 + a (dxU )2)) .
2 J — TO - —TO

Here d(q(T) - U(T, x = 0)) represents a functional d-function, which enforces the 
condition q(T) = U(T, x = 0) for all times T. Operationally, it can be understood 
from the discretized form n d(q(Tn) -U(Tn, x = 0)). By representing the functional 
d-function as the functional integral

d(q(T) - U(T, 0)) = Df exp i dT f(T)(q(T) - U(T, 0)) ,
—TO

and integrating over string fluctuations, show that the dynamics of the particle is 
governed by the effective action Seff [q] = Spart[q] + 2 f d^ |w||q(w)|2, where n = 
t/4pa. Compare this result with the dissipative action discussed in section 3.3.3.
(c) Treating the correction to the particle action as a perturbation, use your result 
from (a) to show that the effective action for an instanton-anti-instanton pair q (t) = 
qci(t + T/2) — qci(t — T/2), where w0T 1, is given approximately by

Seff [q] = 2Spart[qcl] — — ln (w0T) .
n
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(Hint: Note that, in finding the Fourier decomposition of qcl(t), a crude estimate 
is sufficient.)
(d) Using this result, estimate the typical separation of the pair (i.e., interpret the 
overall action as an effective probability distribution function for T, and evaluate 
(T = f dT Te-Seff). Comment on the implications of your result for the nature of 
the tunneling probability.

INFO The model above is directly applicable to the problem of impurity scatter­
ing in interacting quantum wires. Consider a clean interacting wire, as described by 
Eq. (3.98) in bosonized representation. Now assume the presence of an impurity potential 
V = uc^(0)c(0) ^ ycos(0(0)), where Y is a constant; here, we have used the bosonization 
identity (3.94) and anticipated that the most important physical effect of the impurity will 
be scattering from left to right movers, i.e., we neglect the left-left and right-right contri­
butions to the scattering operator. Adding this term to the action, the latter is Gaussian 
everywhere, except for the point x = 0 where the impurity sits. In particular, the $-action 
is Gaussian everywhere, and we may integrate over this field to obtain the effective action

S[0] = d dxdr (v(dx0)2 + —(dT0)2^ + y d dT cos(20(0))■

At this point, the connection to the above problem becomes apparent: q = ((0) is consid­
ered as the coordinate of the quantum particle and u(x) = ((x), x = 0 are the coordinates 
of the attached harmonic string with stiffness a = v/(ng) and mass density 1 /(nvg). At 
x = 0, these variables are rigidly locked to each other.

Considering the path integration over ((x = 0) as integration over the string, we then 
obtain the effective action for the 0(0) = 0 coordinate:

Seff [0] = — d d^-10(w)|2 + Y [ dTcos(20). 
n 2n J

(3.100)

In section 6.1.2 we will investigate this theory by renormalization group methods 
and study how dissipation affects the scattering properties off the cosine potential.

Answer:

sine—Gordon
equation

(a) Varying the Euclidean-time path integral with respect to q(T), the extremal 
field configuration obeys the classical sine—Gordon equation

mq - 2ng 3iJ‘2nq\ =o. 
q0 q0

Applying the trial solution, the equation of motion is satisfied if w 0 = (2 n/q 0)^/ g/m. 
From this result one obtains the classical action S[qcl] = J0/' dT(mq2l + U(qcl)) = 

2

J0 dT mq2 = m 0 dq qcl = 2 J.w0.
(b) In Fourier space, the action of the classical string takes the form Sstring = 
2 n W n dk(pw2 + ffk2)lu(w, k)|2. Representing the functional 5-function as 
the functional integral

Df exp it d dnf (w) dk
—u (2 n V -w, -k)
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and performing the integral over the degrees of freedom of the string, one obtains

Du e-S'""'' -if dT f(T)u(T,0) k exp
1 f ™ du f™ dk 1
2 J-TO 2n J^ 2n pu2 + ak2 |f (“)|

Integrating over k, and performing the Gaussian functional integral over the La­
grange multiplier field f (u), one obtains the given effective action.
(c) Approximating the instanton-anti-instanton pair q(t) = qci(t + t) — qci(t — t) 
by a “top-hat” function, we obtain q(u) = -J/2 dT q0eiUT = q0Tsin(uT/2)/(uT/2). 
Treating the dissipative term as a perturbation, the action then takes the form

n ,c n /^'0 du 2 sin2(ur/2) q0
S eff — 2 S part = X / |u |( q 0 t) , _ , ,2 - — d ln( u 0 t) ,2 J0 2n (ut/2)2 n

where u0 serves as a high-frequency cutoff.
(d) Interpreted as a probability distribution for the instanton separation, one finds

(t) = dr t exp ^——n ln(u0t)^ ~ ! dr t1 q0n/n.

The divergence of the integral shows that, for n > 2n/q2, instanton-anti-instanton 
pairs are confined and particle tunneling no longer occurs. Later, in chapter 6, we 
will revisit the dissipative phase transition from the standpoint of the renormaliza­
tion group.

3.8.5 Exercises on fermion coherent states

To practice the coherent state method, we include a few technical exercises on the fermionic 

coherent state which complement the structures discussed in the main text.

Considering a fermionic coherent state |n), verify the following identities: (a) (n|at = 
(n|ni, * (a) (b) at|n) = -dm|n) and (n|ai = dni{n|, (c) (n|v) = exp(Einiv), and (d) 
f dne-"n |nXn| = 1f, where dn = fli dni dni, and Ei nini = nn . Finally, (e) show 
that (n|XXX|n] = (ZX|nXnIXt, where |n) is an n-particle state in Fock space while 
|X) is a coherent state.

Answer:

Making use of the rules of Grassmann algebra,
(a) (n|a = (0| exp[— £ ajnj]a = (0| n(1 — ajdj)ai = (0|(1 — apqi)a n (1 — ajnj) = 

j j j=i

(Xaaiin i n(1 - ajnj) = (0| n(1 - ajnj)n i = (n |n i.

<0|[ ai,X]+=Cl

(b) ai|n} = ai(1 — mat) n(1 — njai)|0) = — d^ n(1 — njai)|0) = — d^|nX
'----------- ' j = i j

ai= dni Viat =- dni (1 - Vial)

(n|ai = (0| n(1 - ajnj) (1 - aidi)a^ = dni(0| n(1 - ajnj) = dni(n|.
ai = dni ai'1]i = dni (1 ai'Hi )
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(c) (n|v) = (n| n(1 — v-aX) 1°) = (n| n (1 + nv) |0> = exp(E niv)• 
i x z i s/ z i

(1+a! vi) exP( n,v,)

(d) To prove the completeness of fermion coherent states, we apply Schur’s lemma,
i.e., we need to show that [aj, § dne-nn |nXn |] = 0:

aj J dne nn|nXn| = — J dne nndVj|nXn| =J dndVje nn |nXn| =J dne nn|nXn|aj, 

n j e - n n

ydne ''n|n)(n| dn e nnnj |n)(n| dne ''n|n}9^j(n| dne nn|n)(n|a.

- d * ,e—n n nj

The constant of proportionality is fixed by taking the expectation value with the 
vacuum:

(0| / dne ''n |nXn 0 = dn e n n = 1.

(e) Representing a general n-particle state by | n) = a 1 ... a n |0), (n | = (0| an .. .a 1, 
the matrix element (n | X) reads

(n | X) = (0| an ...a i| X) = (0| Xn . .. X 1| X) = Xn ...X1 •

Similarly, we obtain (X|n) = X1.. .ipn• Using these results,

(n | X X X | n) = Xn . ..X1X1 ...'<P n = X1X1 . . . XnX’n

= ( Z'X’1 X1) . . . ( ZX n Xn ) = ( Z'X’X) . . . (ZX n ) Xn .. .X1 = (ZX | n}(n | X) .

3.8.6 Feynman path integral from the functional field integral

The abstract nature of the coherent-state representation conceals the close similarity between 

the Feynman and coherent-state path integrals. To help elucidate the connection, the goal of 

this problem is to confirm that the Feynman path integral of the quantum harmonic oscillator 

follows from the coherent state path integral.

1Consider the simplest bosonic many-body Hamiltonian, H = w(aTa + 2), where 
at creates “structureless” particles, i.e., states in a one-dimensional Hilbert space. 
Note that H can be interpreted as the Hamiltonian of a single oscillator degree of 
freedom. Show that the field integral for the partition function Z = tr exp(-XH) 
can be mapped onto the (imaginary-time) path integral of a harmonic oscillator by 
a suitable variable transformation.

Answer:

In the coherent-state representation, the quantum partition function of the oscilla­
tor Hamiltonian is expressed in terms of the path integral,

Z = y D<X exp f—y dT ((j)dT X + wcj)X , (3.101) 
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where $(t) denotes a complex scalar field, the constant factor e-^/2 has been 
absorbed into the measure of the functional integral D(B, B), and we have set the 
chemical potential p = 0. The connection between the coherent-state and Feynman 
integral is established by the change of field variables, $(t) = (mB)1 /2(q(t) + 
m^p(t)), where p(t) and q(t) represent real fields. Substituting this representation 
into Eq. (3.101), and rearranging some terms by integrating by parts, the connection 
is established: Z f D(p, q)exp[— J® dT(—ipq + 2pm + mf-q2)]. (Of course, the 
“absorption” of the constant ~w/2 in the Hamiltonian into the measure constitutes 
a “slight of hand.” In operator quantum mechanics, the correspondence between 
the (q,p) and the (a, at) representations of the Hamiltonian includes that constant. 
Keeping in mind that the constant reflects the non-commutativity of operators, 
think how it might be recovered within the path integral formalism. Hint: It is best 
to consider the mapping between representations within a time-slice discretized 
setting.)

3.8.7 Quantum partition function of the harmonic oscillator

The following is an exercise on elementary eld integration and innite products.

Compute the partition function of the harmonic oscillator Hamiltonian in the field 
integral formulation. To evaluate the resulting infinite product over Matsubara fre­
quencies, apply the formula x/ sin x = [Jn=1(1 — x2/(nn)2)-1. (Hint: The normal­
ization of the result can be fixed by requiring that, in the zero-temperature limit, 
the oscillator occupies its ground state.) Finally, compute the partition function by 
elementary means and check your result. As an additional exercise, repeat the same 
steps for the “fermionic oscillator,” i.e., with a, at fermion operators. Here you will 
need the auxiliary identity cos x = [J^= 1(1 — x2(n(n + 1 /2)) 2).

Answer:

Making use of the Gaussian functional integral for complex fields, from Eq. (3.101) 
one obtains ZB ~ det(dT + w)-1 ~ n (—iwn + w)-1 ~ nTO -,(1 + (B^)2)-1 ~ B T ln\ n in=12nn
(sinh(ftw/2))-1. In the limit of low temperatures, the partition function is domi­
nated by the ground state, lim@v ZB = exp(—ftw/2), which fixes the constant of 
proportionality. Thus, ZB = (2sinh(ft~w/2))- 1.

In the fermionic case, Gaussian integration gives a product over eigenvalues in the 
numerator and we have to use fermionic Matsubara frequencies, wn = (2n + 1)n/B: 
ZF ~ det(dT + w) ~ n (—iwn + w) ~ n“ -,(1 + (,„ ^B, )2) ~ cosh(Bw/2). Fix- F 1 lln\ n in= 1\ (2n +1)%, .■! . 1
ing the normalization, one obtains ZF = 2e-2"~ cosh(pw/2). Taken together, these 
results are easily confirmed by direct computation: ZB = e-^w/2 n=0 e-nl3u = 
(2sinh(Bw/2))-1, ZF = e-^/2 ^1n=0 e-n ' ' = 2e-cosh(pw/2).
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3.8.8 Frequency summations

Using the frequency summation techniques developed in the text, this problem involves the 

computation of two basic correlation functions central to the theory of the interacting Fermi 

gas.

pair cor­
relation 
function

(a) The pair correlation function xq is an important building block entering 
the calculation of the Cooper pair propagator in superconductors (see section 5.3.2). 
It is defined by

XU„ ,q - Ld G0(iMm, p)G0(i^n - iUm’ q - p) = Ld
Um, p p

1 - nF(£p) - nF(£q-p)
i^n £p £ q-p

density—
density 

resp onse 
function

where Go(p, ium) = (ium — £p)-1. Verify the second equality. (Note that um = 
(2m + 1)nT are fermionic Matsubara frequencies, while un = 2nnT are bosonic.) 
(b) Similarly, verify that the density-density correlation function, central to 
the theory of the Fermi gas (see section 4.2), is given by

xd xUn,q - Ld G 0( i^m, p) G 0( i^m + i^n, p + q) = — Ld
Um,p p

n F( £p) n F( £ p+q)
i'u'n + £p — £p+q

Answer:

(a) To evaluate the sum over fermionic frequencies um, we employ the Fermi func­
tion finF(z) = P(e?z + 1)-1 defined in the left column of (3.80). Noting that the 
function G0(z, p1)G0(z + iwn, p2) has simple poles at z = £p1 and z = £p2 — iun, 
and applying (3.81) (with the identification S = h and h = G0G0), we ob­
tain S = nF (^p1)+nF (^-p2 + iUn). Using the fact that nF(x + i3wn) = nF(x) and 

iUn ? pi £ p2

nF (-x) = 1 - nF (x) we arrive at the given result.
(b) One proceeds as in part (a).

3.8.9 Pauli paramagnetism

There are several mechanisms whereby a Fermi gas subject to an external magnetic eld 

responds to such a perturbation. One of these, the phenomenon of Pauli paramagnetism, is 

purely quantum mechanical in nature. Its origin lies in the energy balance of spinful fermions 

rearranging at the Fermi surface in response to the eld. In this problem, we explore the 
resulting contribution to the magnetic susceptibility of the electron gas.

Fermions couple to a magnetic field by their orbital momentum as well as by their 
spin. Concentrating on the latter mechanism, consider the Hamiltonian

Hiz = — M0B • S, s - L t „ .n
S 2 aaa&wz aaa'

where a is the vector of Pauli matrices, a is an orbital quantum number, and 
M0 = e/2m is the Bohr magneton.
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P

B > 0

B = 0
?e

It turns out that the presence of Hz in the energy balance leads 
to the generation of a net paramagnetic response of purely quan­
tum mechanical origin. Consider a two-fold (i.e., spin) degener­
ate single-particle band of free electrons states (see the figure). 
Both bands are filled up to a certain chemical potential p. Upon 
the switching on of an external field, the degeneracy is lifted and 
the two bands shift in opposite directions by an amount ~ p0 B. 
While, deep in the bands, the Pauli principle forbids a rear­
rangement of spin configurations, at the Fermi energy | states 
can turn to energetically more favorable f states. More precisely, 
for bands shifted by an amount ~ p0 B, a number ~ p0 Bp(p) of 
states may change their spin orientation, which leads to a total 
energy change of AE ~ — p2 B2 p (p). Differentiating twice with 
respect to the magnetic field gives a positive contribution to the 
magnetic susceptibility, x ~ —d‘BAE ~ p2p(p).
(a) To convert the qualitative estimate above into a quantitative result, construct 
the coherent state action of the full Hamiltonian H = H0 + Hz , where H0 = 
a^ct a aaaeaaaa is the non-magnetic part of the Hamiltonian. Integrate out the 
Grassmann fields to obtain the free energy F as a sum over Matsubara frequencies. 
(b) Show that, at low temperatures, the spin contribution to the magnetic suscep­
tibility x = -dB\B=0F is given by

2
x T—$ p ( p ) (3.102)

where p(e) Ea ^(£ — '“) denotes the single-particle density of states. (Hint:
Perform the field derivatives prior to the frequency summation.)

Answer:

(a) Choosing the quantization axis parallel to the magnetic field, the Hamilto­
nian assumes a diagonal form Hi = Eaa a^^[ea — (p0B/2)(az)aa]aaa and the 
(frequency representation of the) action reads S[^] = OBaan ^aan(—'^n + £a - 
(p0B/2)(az)aa)^aan. Integrating over ^, we obtain the partition function Z = 
nan V2[( — iwn + E )2 — 4 (p0B)2] and

F = — Tln Z = — T 'ln ft 22 T(—iwn + ^a)2 — 4(p0B)2 

an ' '

(b) Differentiating the free energy, we obtain x = — 1 p2T^2aw (—iP + £a) 2. 
Defining x = Ean ha(^n), where ha(wn) = 2p2T(-iwn + ^a)-2, Eq. (3.81) can be 
applied to perform the frequency sum. Noting that the function h(—iz) has poles 
of second order at z = £a, i.e., Res[g(z)h(-iz)]z=^a = g'(£a), we obtain

x=
2

— p20 E nF(£a) = 
a

—p0 [ dep(£)nF(£ — p).
2 --TO
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At low temperatures, T ^ 0, the Fermi distribution function approaches a step 
function, nF(e) ^ 9(—e), i.e., nF(e) = — 5(e), and our result reduces to (3.102).

3.8.10 Boson-fermion duality

The equivalence of the bosonic and fermionic representations of the one-dimensional electron 

gas is exemplied by computation of the correlation function (3.95) considered in the text.

(a) Employ the free fermion field integral with action (3.86) to compute the zero­
temperature limit of the correlation function (3.95). (Assume x > 0 and, for simplic­
ity, work in the limit of low temperatures, evaluating Matsubara sums as integrals.) 
(b) For a free scalar bosonic field 9 with action S[9] = (1 /2c)f dxdT [(dT9)2 + 
(dx9)2], compute the correlation function K(x, t) = (9(x, t)9(0, 0) — 9(0, 0)9(0, 0)) 
for x > 0. (c) Compute the correlation function C(x, t) = r2 (e2i6(x,T) e-2i6(0,0)) 

and find for which values of r equivalence to the fermionic representation is ob­
tained.

Answer:

(a) We set vF = 1 and defined the partition sum Z± = f D^ exp(—S±[^]), 
where S±[^] = d dxdTip(dT T idx)^. Next consider the Green function G±(x, t) = 
Z—ij Dr^'ip(x,t)^(0, 0) e-S±[^], which we compute by Gaussian integration as 
G (x t) —  (d / ~r~ id )) 1 —  — \ '  1 e ipx+iunT Assumin o’ for def-G ±( x,t ) — (dT' + idx' )(0,0; x,T) — L L<p,Un iun F p e . Assuming for def
initeness that x > 0, and integrating over momenta, we arrive at G± (x, t) — 
TiT Sn ®(Tn)e^n(±x+iT) — 2n ±ix-T, where, in the last equality, we have ap­
proximated the frequency sum by an integral. Thus, the correlation function (3.95) 
is given by C(x,r) — G +(x,r)G-(—x,r) — (2f)2 x2 + T2. (b) Expressed in a fre- 
quency/momentum Fourier representation, S[9] — 2L— qn 19qn|2(q2 + U2). Per­
forming the Gaussian integral over 9, we obtain

eiqx - iwnr — 1 

q2 + ^n

cTK(x,t) , x
L

qn

di^

cT _ e-|wn | X - iWnT - 1

2 „ | Un |

e - u (x+iT) — 1 XT^ a c / x2 + t 22

u 4 n \ a2

where we have approximated the momentum and frequency sums by integrals, the 
lattter cutoff at large frequencies by EF ~ vFa-1 vF—1 a-1. (c) Using the results 
derived in (b),

C(x, t) — r2 /e2i(6(x,T)-6(0,0))\ — r2e-2<(6(x,T)-e(0,0))2)

9 x2 + t 2 \\

V a2 ))— r2exp - ln 
n

— r2
x2 + t2

c 
n

Setting c — n and r — 1 /(2na), we obtain equivalence to the fermionic representa­
tion of the correlation function considered in (a).
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3.8.11 Electron-phonon coupling

electron— 
phonon 
Hamil­
tonian

As follows from the structure of the \master" Hamiltonian of condensed matter (1.1), mobile 

electrons in solids are inuenced by the vibrations of the host ions, the phonons. This coupling 

mechanism may generate a net attractive interaction between electrons. Referring to the info 

on page 258 for a qualitative discussion of this interaction mechanism, the purpose of this 

problem is to explore quantitatively the prole of the phonon mediated electron{electron in­

teraction. In section 5.3 we will see that this interaction lies at the root of conventional BCS 

superconductivity.

Consider the three-dimensional variant of the phonon Hamiltonian (1.34),

Hph ^7? iq aq,j aq,j + const;

where iq is the phonon dispersion (here assumed to depend only on the modulus 
of the momentum, |q| = q), and the index j = 1, 2, 3 accounts for the fact that the 
lattice ions can oscillate in three directions in space (i.e., there are three linearly 
independent oscillator modes.53) Electrons in the medium sense the induced charge 
Pind ~ V • P, where P ~ u is the polarization generated by the local distortion 
u of the lattice (u(r) is the three-dimensional generalization of the displacement 
field ^ (r) considered in chapter 1). Expressed in terms of phonon creation and 
annihilation operators (cf. Eq. (1.32)), uq = ej(aq,j + a- •)/(2miq)1 /2, where ej 

is the unit vector in the j-direction,53 from which follows the electron-phonon 
Hamiltonian

Hel-ph = ddrn (r)V • u(r) = Y £ (2 mi^j )1 / 2 nq( a q j + a-q j ) •

Here, nq = ^k ck+qck denotes the electron density and, for simplicity, the electron 
spin has been suppressed.
(a) Formulate the coherent state action of the electron-phonon system.
(b) Integrate out the phonon fields and show that an attractive interaction between 
electrons is generated.

Answer:

(a) Introducing a Grassmann field ^ (and a complex field ^) to represent the 
electron (phonon) operators, one obtains the coherent state field integral, Z = 
D D^D0 exp (-Sei[$] - Sph[$] - Sei-ph[$, $]), where

Sph[<b] X iin + iq)l' ^I2, Sei-ph[] = ^2 (2miq)1 /2 Pq(■ qj + ^-qj),

pq V k ^k+q^k, and the electron action need not be specified explicitly. Here we

53 For details, see N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders Inter­
national, 1983). 
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have adopted a short-hand convention setting q = (wn, q); this is not to be confused 
with the modulus |q|.
(b) Performing the Gaussian integration over the phonon fields, we obtain the 
effective electron action

S eff [ ^ ] = S ei[ ^ ] - ln [ D$e —Sph[ ^] —Sel-ph[ = Sel[ ^ ] - Y2- .'' Pq P — q,
2m q Mn2 + Mq2

where we have omitted a ^-independent contribution from the integration over the 
uncoupled ^-action. Transforming from Matsubara to real frequencies, wn ^ — iw, 
one may notice that, for every momentum mode q, the interaction is attractive at 
low frequencies, M < Mq .

3.8.12 Disordered quantum wires

In this problem, we consider a one-dimensional interacting Fermi system { a \quantum wire" 

{ in the presence of impurities. Building on the results obtained in section 3.6, we derive an 

eective low-energy action. (Analysis of the large-scale behavior of the disordered quantum 

wire requires renormalization group methods and is postponed to chapter 6.)

In section 3.6 we discussed the physics of interacting fermions in one dimension. We 
saw that, unlike in a Fermi liquid, the fundamental excitations of the system are 
charge and spin density waves - collective excitations describing the wave-like prop­
agation of the charge and spin degrees of freedom, respectively. Going beyond the 
level of an idealized translationally invariant environment, the question we wish to 
address currently is to what extent the propagation of these modes will be hampered 
by the presence of spatially localized imperfections. This problem is of considerable 
practical relevance. All physical realizations of one-dimensional conductive systems 
- semiconductor quantum wires, conducting polymers, carbon nanotubes, quan­
tum Hall edges, etc. - generally contain imperfections. Further, and unlike systems 
of higher dimensionality, a spin or charge degree of freedom propagating down a 
one-dimensional channel will inevitably hit any impurity blocking its way. We thus 
expect that impurity scattering has a stronger impact on the transport coefficients 
than in higher dimensions.

However, there is a second and less obvi- 2^ r-1
ous mechanism behind the strong impact of __ .....    ' ..... '
disorder scattering on the conduction behav- .. ~~............... ..
ior of one-dimensional quantum wires. Imagine ______________ jx_______________

a wave packet of characteristic momentum kF 

colliding with an impurity at position x = 0
(see the figure). The total wave amplitude to the left of the impurity, ^(x) ~ 
exp(ikFx) + r exp(-ikFx), will be a linear superposition of the incoming ampli­
tude ~ exp(ikFx) and the reflected outgoing amplitude ~ r exp(—ikFx), where 
r is the reflection coefficient. Thus, the electronic density profile is given by 
P(x) = |^(x)|2 ~ 1 + |r|2 + 2Re(re—2ikFx), which contains an oscillatory con-
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Friedel 
oscillations

tribution known as a Friedel oscillation. Moreover, a closer analysis (see the 
exercise below) shows that, in one dimension, the amplitude of these oscillations 
decays rather slowly, varying as ~ |x|-1. The key point is that, in the presence 
of electron-electron interactions, other particles approaching the impurity will no­
tice not only the impurity itself but also the charge density pattern of the Friedel 
oscillation. The additional scattering potential then creates a secondary Friedel os­
cillation, etc. We thus expect that even a weak imperfection in a Luttinger liquid 
acts as a “catalyst” for the recursive accumulation of a strong potential. In this 
problem, we will derive the effective low-energy action describing the interplay of 
interaction and impurity scattering. The actual catalytic amplification mechanism 
outlined above is then explored in chapter 6 by renormalization group methods.

EXERCISE To explore the Friedel oscillatory response of the one-dimensional 
electron gas to a local perturbation, consider the density-density correlation function

n(x,t) = {P(x,t)P(o,o)) - {P(x,t))(P(o,o)),

where {■ • ■) denotes the ground state expectation value, p = a^a, and a(x) = e,'kFxa +(x) + 
e-ikFxa- (x) splits into a left- and a right-moving part as usual. Using the fact that 

+H pLq s vF(PF + sq)asqasq and the von Neumann equation asq = i[H, asq], show that the 
time dependence of the annihilation operators is given by asq (t) = e-ivF(pF+sq)tasq. Use 
this result, the canonical operator commutation relations, and the ground state property 
a±,q|Q) = 0 for ±q > 0, to show that

1 P 1 1 2cos(2pFx) \
x^ 4n1 2 (x — vFt)2 + (x + vFt)2 + x2 — (vFt)2 j '

Use this result to argue why the static response to an impurity potential decays as ~ |x |-1.

Consider the one-dimensional quantum wire, as described by the actions (3.86) and 
(3.90). Further, assume that, at x = 0, the system contains an imperfection or 
impurity. Within the effective action approach, this is described by

Simp[^] y dT (v+^ + ^ + + v-^ + ^ + + v' + ^- + v^-^+) ,

where all field amplitudes are evaluated at x = 0 and the constants v± G R and 
v G C describe the amplitudes of forward and backward scattering, respectively.
(a) Show that the forward scattering contributions can be removed by a gauge 
transformation. This demonstrates that forward scattering is inessential as long 
as only gauge invariant observables are considered. What is the reason for the 
insignificance of forward scattering?

We next reformulate the problem in bosonic language. While the clean system 
is described by Eq. (3.98), substitution of (3.94) into the impurity action gives 
Simp[6] = dr cos(29(t, x = 0)), where y = 2vr2 and we have assumed the 
backward scattering amplitude to be real. (Consider how any phase carried by the 
scattering amplitude can be removed by a global gauge transformation of the fields 
^±. Notice also the independence of Simp of the field ^.)
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(b) Integrate out the Gaussian field ^ to obtain the Lagrangian form of the action,

S[0] = 5^ dxxdr (v(dx0)2 + v 1(dT0)2) + Stop[0].

This formulation still contains redundancy: everywhere, except atx = 0, the action 
is Gaussian. This observation suggests that one may integrate out all field degrees of 
freedom 0(x = 0), thus reducing the problem to one that is local in space (though, 
as we shall see, non-local in time). To this end, we may reformulate the field integral 
as Z = f D0 e - S [ 8], where e - S [ 8 ] = f DO e - S [8 ] H T 6 (0( t ) — 0 (0 ,t )) is the action 
integrated over all field amplitudes save for 0(0,t), and HT 6(0(t) — 0(0,t)) is a 
product of 6-functions (one for each time slice) imposing the constraints 0(0, t) = 
0(t). Representing the 6-functions as 6(0 — 0(0,t)) = -2n J dk(T)exp(ik(t)(0(t) — 
0(0, t))), one obtains

exp(—S [ 0]) = D0Dk exp — S[0]+ i dr k(t)(0(t) — 0(0, t))

= e Simp[8]l D0Dk exp (—[ dxd'r (-----  V((dx0)2 +—(dT0)2

2 2g \2gg \ v
+ ik (0 — 0) 6 (x)

The advantage gained with this representation is that it permits us to replace 
cos(0(0, t)) in Simp by cos(20(t)), whereupon the 0-dependence of the action be­
comes purely quadratic.
(c) Integrate out the field 0(x, t) and, redefining 0(t) ^ 0(t), obtain the represen­
tation Z = D0 e-Seff [8] , where

Seff [0] .1 V |Mn ||0n |2 + dT cos(20(t))
Tgg J

^n

(3.103)

Notice that the entire effect of the bulk 
electron gas at x = 0 has gone into the 
first, dissipative term. Thus we have re­
duced the problem to one involving a 0x
single time-dependent degree of freedom
subject to a dissipative damping mechanism and a periodic potential (see our earlier 
discussion of this problem in problem 3.8.4 above).

INFO To understand the physical origin of the dissipative damping mechanism, 
notice that, in the absence of the impurity, the system is described by a set of harmonic 
oscillators. We can thus think of the degree of freedom d(0,t) as the coordinate of a 
“bead” embedded into an infinitely extended harmonic chain. From the point of view of 
this bead, the neighboring degrees of freedom hamper its free kinematic motion; i.e., in 
order to move, the bead has to drag an entire “string” of oscillators behind. In other words, 
a local excitation of the x = 0 oscillator will lead to the dissipation of kinetic energy into 
the continuum of neighboring oscillators. Clearly, the rate of dissipation will increase with 
both the stiffness of the oscillator chain (g-1) and the frequency of the excitation (xn), 
as described by the first term in Eq. (3.103).
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Answer:

(a) Consider the gauge transformation: ^ +(x,T) ^ exp(-iv-1 v + 9(x)). While Sint 

and Simp are gauge invariant and do not change, substitution of the transformed 
field into the non-interacting action leads to S0[^t, ^] ^ S0[^t, ^] — v + f dr^ + ^ + . 
The induced term cancels the v+ contribution to Simp . A similar transformation 
removes the v- contribution. The physical reason for the insignificance of the for­
ward scattering operators is that they describe the scattering of states | ± kF) into 
the same states | ± kF). The optional phase shift picked up in these processes is 
removed by the transformation above.
(b) This step involves an elementary Gaussian integral.
(c) Expressed in momentum space, the effective action assumes the form

e-S[§] = e-Simp["' / Dke^n kn°—n

v un) |9 q,n | + ikn9q, — n

= e Simp[§] [ Dke1 n knS-n exp f— ngT ^(vq2 + v 1 un) 1|kn |2 

2L qn

= Ne-Simp[S] y Dk exp ^— |un |-1|kn |2 + i kn()—n^ .

Finally, integrating over k, and denoting 9(t) by 9(t), we obtain (3.103).



4 Perturbation Theory

SYNOPSIS In this chapter, we introduce the analytical machinery to investigate the 
properties of many-body systems perturbatively. Employing the paradigmatic “04-theory” 
as an example, we learn here how to describe systems that are not too far from a known 
reference state. Diagrammatic methods are introduced as a tool to implement efficiently 
perturbation theory at large orders. These new concepts are then applied to the analysis 
of various properties of the weakly interacting or disordered electron gas.

Previously, we have emphasized that the majority of many-particle problems cannot 
be solved in closed form; in general, one is compelled to think about approximation 
strategies. One ansatz leans on the fact that, when approaching the low-temperature 
physics of a many-particle system, we often have some preliminary ideas of its pre­
ferred states and excitations. One may then try to explore the system by using these 
configurations as a platform. For example, one might expand the Hamiltonian in 
the vicinity of a reference state and check that, indeed, residual “perturbations” are 
weak and can be dealt with by some kind of approximation scheme. Consider, for 
example, the quantum Heisenberg magnet. In dimensions higher than one, an exact 
solution of this system is out of reach. However, we expect that at low temperatures 
the spins will be frozen into configurations aligned along some (domain-wise) con­
stant magnetization axis. Residual fluctuations around these configurations, spin 
waves, can be described in terms of a controlled expansion scheme. Similar programs 
work for countless other physical systems.

These considerations dictate much of our further strategy. We will need to con­
struct methods to identify and describe the lowest-energy configurations of many­
particle systems - often called “mean fields” - and learn how to implement per­
turbation theory around them. In essence, the first part of that program amounts 
to solving a variational problem, a relatively straightforward task. However, the 
formulation of perturbation strategies requires some preparation and a good deal 
of critical caution (since many systems notoriously defy perturbative assaults - a 
situation easily overlooked or misjudged!). We thus turn the logical sequence of the 
two steps upside down and devote this chapter to an introduction to many-body 
perturbation theory. This will include several applications to problems where the 
mean field is trivial and perturbation theory on its own suffices to produce mean­
ingful results. Perturbation theory superimposed on nontrivial mean fields will then 
form the subject of the next chapter.

171
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4.1 General Concept and Low-Order Expansions

As with any perturbative approach, many-body perturbation theory amounts to 
an expansion of observables in powers of some parameter - typically the coupling 
strength of an interaction operator. However, before discussing how this program 
is implemented in practice, it is important to develop some understanding of the 
mathematical status of such “series expansions.” (To motivate our discussion, it 
may, and often does, happen that infinite-order expansion in the “small parameter” 
of the problem does not exist.)

4.1.1 An instructive integral

Consider the integral

. f°° dx ( x2 4
I(g) = /.„ exp I--2- gx (4.1)

Stirling’s 
approx­
imation

This can be regarded as a caricature of a particle subject to a harmonic potential 
(x2) and an “interaction” (x4). For g 1, it seems natural to treat the interac­
tion perturbatively, i.e., to develop the expansion I(g) « 52n gnIn where, applying 
Stirling’s approximation, n! n~1 nne-n,

gnIn
(-g)n r dx -x2/2 4n = (.n (4n - 1)!! n>1 

n! 2 (2n)1 /2 e x ( g) n!

This estimate should alarm us: strictly speaking, it states that a series expansion 
in the “small parameter” g does not exist. No matter how small g, at roughly the 
(1/g)th order in the perturbative expansion, the series begins to diverge. In fact, 
it is easy to predict this breakdown on qualitative grounds: for g > 0 (g < 0), the 
integral (4.1) is convergent (divergent). This implies that the series expansion of 
the function I (g) around g = 0 must have zero radius of convergence.

However, there is also a more “physical” way of understanding the phenomenon. 
Consider a one-dimensional version of (3.16), where the “Gaussian average” is given 
by Eq. (3.15):

(^dxi- ex2 / 2 x 4n = 1 = (4 n - 1)!!,

all possible
pairings of 4n objects

The factor (4n- 1)!! measures the combinatorial freedom to pair up 4n objects. This 
suggests an interpretation of the breakdown of the perturbative expansion as the 
result of a competition between the smallness of the expansion parameter g and the 
combinatorial proliferation of equivalent contributions, or “pairings,” to the Gaus­
sian integral. Physically, the combinatorial factor can be interpreted as the number 
of different “partial amplitudes” contributing to the net result at any given order 
of perturbation theory. Eventually, the exponential growth of this figure overpow­
ers the smallness of the expansion parameter, which is when perturbation theory 
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breaks down. (Oddly, the existence of this rather general mechanism is usually not 
highlighted in textbook treatments of quantum perturbation theory!)

Does the ill-convergence of the series imply that perturbative approaches to prob­
lems of the structure of (4.1) are doomed to fail? Fortunately, this is not the case.

^^^ nn nmax n^ie te innite series n=0 g n is ivergent, a partia resummation n=0 g n

can yield excellent approximations to the exact result. To see this, let us use the 
fopf- +•p)of- Ip gx __  \ nmax ( gx ) | c (gx )________  4-p. PQ'tl'msfp fl^P PWPT* ftQ fpllp'WQiact tnat |e n n_0 n! | <^ (n +1)! to estimate tue error as wuows

i(g) - E gnin

n_0

asymptotic 
expansions

< gnmax+1l inmax+il n '
nmax

Variation with respect to nmax shows that the error reaches its minimum when 
nmax ~ (16g)-1, where it scales as e-1 /16g. (Note the exponential dependence of 
the error on g. For example, for a small coupling g « 0.005, 12th order perturbation 
theory would lead to an approximation of high precision, ~ 10-5.) By contrast, for 
g « 0.02, perturbation theory becomes poor after the third order!

Summarizing, the moral to be taken from the analysis of the integral (4.1) is that 
perturbative expansions should not be confused with rigorous Taylor expansions. 
Rather they represent asymptotic expansions in the sense that, for weaker and 
weaker coupling, a partial resummation of the perturbation series leads to an ever 
more precise approximation to the exact result. For weak enough coupling, the 
distinction between Taylor expansion and asymptotic expansion becomes academic 
(at least for physicists). However, for intermediate or strong coupling theories, the 
asymptotic character of perturbation theory must be kept in mind.

$ 4-theory

4.1.2 $4-theory

While the ordinary integral i(g) conveys something of the general status of pertur­
bation theory, we need to proceed to the level of the functional integral to learn 
about the practical implementation of perturbative methods. The simplest inter­
acting field theory displaying all relevant structures is defined by

f,/1 „r„ A
D^e-S[a, S[$] = j ddx[2(d^)2 + 2$2 + g.4 J (4.2)

where ^ is a scalar bosonic field. Owing to the structure of the interaction, this 
model is often referred to as the $4-theory. The ^4-model not only provides a 
prototypical setting in which features of interacting field theories can be explored, 
but also appears in numerous applications. For example, close to its critical point, 
the d-dimensional Ising model is described by the ft4-action (see the Info block 
below). More generally, it can be shown that the long-range behavior of classical 
statistical systems with a single order parameter (e.g., the density of a fluid, the 
uniaxial magnetization of a solid, etc.) is described by the ^4-action.1 Within the

1 Heuristically, this is explained by the fact that S[$] is the simplest interacting (i.e., non­
Gaussian) model action invariant under inversion <p <—> — ^. (The action of a uniaxial magnet
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Ginzburg—
Landau 
theory 

Ising 
model

context of statistical mechanics, S [^] is known as the Ginzburg-Landau free 
energy functional (and less frequently as the Landau-Wilson model).

INFO The d-dimensional classical Ising model describes the magnetism of a lattice of 
moments Si that can take one of two values, ±1. It is defined through the Hamiltonian

HIsing = SiCijSj - H Si, (4.3)

where Cij = C(|i - j|) is a (translationally invariant) correlation matrix describing the 
mutual interaction of the spins, H is an external magnetic field, and the sums run over 
the sites of a d-dimensional lattice (assumed hypercubic, for simplicity). The Ising model 
represents the simplest Hamiltonian describing classical magnetism. In low dimensions, 
d = 1, 2, it can be solved exactly, i.e., the partition function and all observables depending 
on it can be computed rigorously (see chapter 6). However, for higher dimensions, no 
closed solutions exist and one has to resort to approximation strategies to analyze the 
properties of the partition function. Below, we will show that the long-range physics of 
the system is described by 04-theory. Notice that, save for the exceptional case of d = 1 
discussed in section 6.1.1, the system is expected to display a magnetic phase transition. 
As a corollary, this implies that the 04-model must exhibit much more interesting behavior 
than its innocuous appearance suggests!

Consider then the classical partition function

Z = tr e-'Ising = exp SiKijSj + hiS^ , (4.4)

where K = — fiC, and we have generalized Eq. (4.3) to the case of a spatially varying 
magnetic field, hi = fiHi. The feature that prevents us from computing the configurational 
sum is, of course, the interaction between spins. However,at a price, the interaction can be 
removed. Consider the identity for the “fat unity,” 1 = N f D.' exp(—4 52 ij Pi (K-1) ij Pj), 
where Dp = . dpi, K-1 is the inverse of the correlation matrix, and N = 1 / det(4nK)1 /2

is the normalization factor. A shift of the integration variables, pi ^ pi — 2 j KijSj , 
brings the integral into the form

1 = N j Dp exp I — 4 pi(K-1)ijpj + Sipi — SiKijSJ .

ij i ij

Incorporating the fat unity under the spin sum in the partition function, one obtains

Z = N D Dp exp ( —1 pi(K-1)ijpj + Si(pi + hi) j . (4.5)

{Si} ij i

Thus, we have removed the interaction between spin variables at the expense of intro­
ducing a new continuous field {pi.}. Why should we do this? First, a multidimensional 
integral / Dp is usually easier to work with than a multidimensional sum {S {5 } over

should depend on the value of the local magnetization, but not on its sign.) A purely Gaus­
sian theory might describe wave-like fluctuations of the magnetization, but not the “critical” 
phenomenon of a magnetic transition. One thus needs a $4-interaction term at least. Later 
on we will see that more complex monomials of $, such as $6 or (d$)4, are inessential in the 
long-range limit.
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Hubbard-
Stratonovich 

transfor­
mation

discrete objects. Moreover, the new representation may provide a more convenient plat­
form for approximation strategies. The transformation leading from Eq. (4.4) to (4.5) is 
our first example of a Hubbard—Stratonovich transformation. The interaction of one 
field is decoupled at the expense of the introduction of another. Notice that, in spite of 
the somewhat high-minded terminology, the transformation is tantamount to a simple 
shift of a Gaussian integration variable, a feature shared by all Hubbard-Stratonovich 
transformations!

The summation {S } = i S can now be performed trivially:

Z = Ny Dp exp ^-4 ^2pi(K-1)ijp^ ^J(2cosh(pi + hi))

= Ny Dip exp ^ — 4 ^(pi — hi)(K-1)ij(pj — hj) + ln(coshpi)^ ,

where we have absorbed the inessential factor i 2 into a redefinition of N . Finally, 
changing integration variables from pi to pi = 11 j (K-1)ijpj, one obtains

Z = N y DP exp — piKij pj + pihi + ln cosh(2 Kij Pj)) •

This representation still does not look very inviting. To bring it into a form amenable to 
further analytical evaluation, we need to make the simplifying assumption that we are 
working at temperatures low enough that the exponential weight Kij = — ftC'(|i — j|) 
inhibits strong fluctuations of the field p. More precisely, we assume that | pi | 1 and
that the spatial profile of the field is smooth. To make use of these conditions, we switch 
to a Fourier representation, pi = ^= ^k e-ik'rip(k), Kij = -1 ^k e-ik'(ri-rj)K(k), and 
expand lncosh(x) = x 2 /2 — x4 */12 + • • • . Noting that (Kp)(k) = K (k) p(k) = K(0) p(k) + 
1 k2 K "(0) p (k) + O(k ), we conclude that the low-temperature expansion of the action 
has the general structure

2 You should find ~ ‘((o)jfZ - l)(o)jf = Ta.
3 The only difference is that the magnetic p4-action contains a term linear in p and h. The reason

is that, in the presence of a magnetic field, the action is no longer invariant under inversion
p ^ — p.

S[p] = y? (pk(c 1 + c 1k • k)p-k + c3pkh-k)

+ N4 p k1 p k2 p k3 p k4 3 k1 +k2+k3+k4 , 0 + O(k4 ,h 2 ,p 6 ) •

EXERCISE Identify the coefficients c1...4 of the expansion.2

Switching back to a real space representation and taking the continuum limit, S[p] assumes 
the form of a prototypical p4-action:

S[p] d ddx (c 1(dp)2 + c 1 p2 + c3ph + c4p4) •

A rescaling of variables p ^ p^/2c2 finally brings the action into the form of Eq. (4.2) 
with coefficients r = c1/c2 and g = c4/2c2 .3
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We have thus succeeded in describing the low-temperature phase of the Ising model 
in terms of a 04-model. While the structure of the action could have been guessed on 
symmetry grounds, the “microscopic” derivation has the advantage that it yields ex­
plicit expressions for the coupling constants. There is actually one interesting aspect of 
the dependence of these constants on the parameters of the microscopic model. Con­
sider the constant c1 controlling the k-independent contribution to the Gaussian action: 
c 1 x K(0)(1 — 2K(0)) x (1 — 2@C'(0)). Since C(0) must be positive to ensure the overall 
stability of the model (exercise: why?) the constant c1 will change sign at a certain “crit­
ical temperature” ft*. For temperatures lower than ft*, the Gaussian action is unstable 
(i.e., fluctuations with low wavevector become unbound) and the anharmonic term ft4 

alone controls the stability of the model. Clearly, the behavior of the system will change 
drastically at this point. Indeed, the critical temperature c 1 (ft*) = 0 marks the position 
of the magnetic phase transition, a point to be discussed in more detail below.

4 Needless to say, the jargon introduced below is not restricted to the $4 example!
5 Notice that, depending on the context and/or scientific community, the phrase “n-point 

function” sometimes refers to C2n instead of Cn .

Let us begin our primer of perturbation theory by introducing some nomenclature.4
For simplicity, let us define the functional integral

J De-—S[*1( • ••)
1 '~ /De-—S [ t. . (4.6)

functional 
expecta­

tion value

Owing to the structural similarity to a thermal average, (• • •) is sometimes called 
a functional average or functional expectation value. Similarly, let us define

_eD e-—S 0[ *1( •••) 
• - f De-—S 0[ ^

(4.7)

as the functional average over the Gaussian action S0 - S|g=0 . The average over a 
product of field variables,

Cn (X1, X2 , ..., X n ) - {e (xi) e (X2) • • • e (x n )) , (4.8)

n-point 
correlation 

function

is known as an n-point correlation 
function or n-point function.5

The one-point function C1 (x) = 
(e(x)) simply measures the expecta­
tion value of the field amplitude. For 
the particular case of the e4-problem 
above the phase transition and, more 
generally, the majority of field theories 
with an action that is even in the field 
amplitudes, C1 = 0 and the first non­
vanishing correlation function is the 
two-point function

G(x1 - x2) - C2(x1, x2). (4.9)

George Green 1793-1841
With just four terms of for­
mal schooling, his early life 
was spent running a wind­
mill in Nottingham, UK. The 
inventor of Green functions, 
he made major contributions
to potential theory, although
where he learned his mathematical skills is a 
mystery. Green published only ten mathemat­
ical works, the first and most important being 
published at his own expense in 1828, “An essay 
on the application of mathematical analysis to 
the theories of electricity and magnetism.” He 
left his mill and became an undergraduate at 
Cambridge in 1833 at the age of 40, and then a 
Fellow of Gonville and Caius College in 1839.
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propagator

(Exercise: Why does C2 depend only on the difference of its arguments?) The two- 
point function is sometimes also called the propagator of the theory, the Green 
function or, especially in the more formal literature, the resolvent operator.

The existence of different names suggests that we have met with an important 
object. Indeed, we will shortly see that the Green function is both, a central building 
block of the theory and a carrier of profound physical information.

INFO To understand the physical meaning of the correlation function, let us recall 
that the average of a linear field amplitude, {$(0)), vanishes. (See the figure, where a few 
“typical” field configurations are sketched as functions of a coordinate.) However, the 
average of the squared amplitude (^(0))2 is cer- 
tainly non-vanishing, simply because we are inte­
grating over a positive object. Now, what happens 
if we split our single observation point into two, 
{^2(0)} ^ ^(0)^(x)} = G(x)? For asymptotically 
large values of x, it is likely that the two amplitudes 
fluctuate independently, i.e., G(x) ^ 0 asymptoti­
cally. However, this decoupling will not happen lo­
cally. The reason is that the field amplitudes are 
correlated over a certain range in space. For exam-
ple, if $(0) > 0 the field amplitude will, on average, stay positive in an entire neighborhood 
of 0 since rapid fluctuations of the field are energetically costly (owing to the gradient term 
in the action). The spatial correlation profile of the field is described by the function G(x).

dimensional 
analysis

How does the correlation behavior of the field relate to the basic parameters of the 
action? A quick answer can be given by dimensional analysis. The action of the theory 
must be dimensionless (because it appears as the argument of anexponential). Denoting 
the dimension of any quantity X by [X], and using the fact that (J" ddx^ = Ld, [d] = L-1, 
inspection of Eq. (4.2) yields the set of relations

Ld—2[ 4 ]2 = 1, Ld [ r ][ 4 ]2 = 1, Ld [ g ][ 4 ]4 = 1,

free 
propagator

from which it follows that [^] = L-(d—2)/2, [r] = L—2, [g] = Ld-4. In general, both param­
eters, g and r, carry a non-zero length dimension. However, temporarily concentrating on 
the non-interacting sector, g = 0, the only parameter of the theory, r, has dimensional­
ity L-2 . Arguing in reverse, we conclude that any intrinsic length scale produced by the 
theory (e.g., the range over which the fields are correlated), must scale as ~ r-1 /2.

A more quantitative description can be obtained by considering the free propagator 
of the theory,

G o (x) = (0 (0) 0 (x)}o. (4.10)

Since the momentum representation of the Gaussian action is simply given by S0[$] = 
|^2p 0p(P2 + r)0—p, it is convenient to first compute G0 in reciprocal space: G0,p = 
fddeep p”x G o (x) = £ p>z(0p0p/)0. Using the Gaussian contraction rule (3.14), the free 
functional average takes the form (0p0p>)0 = Sp+p',0(p2 + r)-1, i.e.,6

G0,p = ($p^-p')0 = p2 + r. (4.11)

6 This result clarifies why G is referred to as a Green function. Indeed, G0,p is (the Fourier 
representation of the) Green function of the differential equation (—d2 + r)G(r, r') = 5(r — r').
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To obtain G(x), we need to compute the inverse transform

G0(x) = -1 Ve-ipxG0P « [ p '2 p , (4.12)
0< = Ld 0’p J (2n)d p2 + r, . J

p

where we have assumed that the system is large, i.e., the sum over momenta can be 
exchanged for an integral.

For simplicity, let us compute the integral for a one-dimensional system. (For the two- 
and three-dimensional cases, see the exercise below.) Setting p2 +r = (p + ir1/2)(p - ir1/2), 
we note that the (complex extension of the) p-integral has simple poles at ±ir1/2 . For x 
smaller (larger) than zero, the integrand is analytic in the upper (lower) complex p-plane, 
and closure of the integration contour to a semicircle of infinite radius gives

G0(x) =
dp eipx

2n (p + ir1 /2)(p — ir1 /2)

e2r1/2|x|

2 r1 / 2
(4.13)

correlation 
length

This result conveys an interesting observation: typically, correlations decay exponentially, 
at a rate set by the correlation length, £ = r-1 /2. However, as r approaches 0, the 
system becomes long-range correlated. The origin of this phenomenon can be understood 
by inspecting the structure of the Gaussian contribution to the action (4.2). For r ^ 0 
(and still neglecting the ^4 contribution), nothing prevents the constant field mode ^(x) = 
$0 = const. from becoming infinitely large, i.e., the fluctuating contribution to the field 
becomes relatively less important than the constant offset. The increasing “stiffness” of the 
field in turn manifests itself in a growth of spatial correlations. Notice that this dovetails 
with our previous statement that r = 0 marks the position of a phase transition. Indeed, 
the build-up of infinitely long-range spatial correlations is a hallmark of second-order phase 
transitions (see chapter 6).

EXERCISE Referring to Eq. (4.12), show that, in dimensions d = 2 andd = 3,

i k>x
d=2 d2 k e2

G0(X) ( (2n)2 k2 + r

d . d d=3 k d3k e-ikx
G0(X) = J (2n)3 k2 + r

— K0(Vr|X|) = ( - 2n ln 77||X| 1 n . 

2 n 0VV 1 '> \i (2 n V |x|)-1 e-7 |x|

REMARK To navigate the following section, it is helpful to first recapitulate section 3.2 
on continuum Gaussian integration.

Having discussed the general structure of the theory and of its free propagator, let 
us turn our attention to the role of the interaction contribution to the action,

S int[  ̂] = g j ddx^4.

Within the jargon of field theory, an integrated monomial of a field variable (such 
as ^4) is commonly called an (interaction) operator or a vertex (operator). 
Keeping in mind the words of caution given in section 4.1.1, we wish to explore

|x| « 1 /Vr, 
|x| » 1 /Vr-,

e-Gr|x|

4 n |x|

Notice that, in both cases, the Green function diverges in the limit |x| ^ 0 and decays 
exponentially (at a rate ~ r-1 /2) for |x| r-1 /2.

vertex 
operator

4.1.3 Perturbation theory at low orders 
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perturbatively how the interaction vertex affects the functional expectation value 
of any given field observable, i.e., we wish to analyze expansions of the type

{X [ 2 D

£ (-gn{X[2](f ddx24)n)o 

n=0

E (-F «f ddx24)n)o 

n=0

Wick’s 
theorem

nmax

X(n), 
n=0

(4.14)

where X may be any observable and X(n) denotes the contribution of nth order to 
the expansion in g . The limits on the summation in the numerator and denomina­
tor are symbolic because, as explained above, we will need to terminate the total 
perturbative expansion at a certain finite order nmax .

To keep the discussion concrete, let us focus on the perturbative expansion of 
the propagator in the coupling constant, g. (A physical application relating to this 
expansion will be discussed below.) The zeroth-order contribution G(0) = G0 has 
been discussed before; so the first nontrivial term we have to explore is (exercise) 

g(1)(x, x') = -g ((2(x) y ddy2(y)42(x')^ — ^2(x)2(x')^ ddy2(y)^ )•

0 0 (40.15)

Since the functional average is now over a Gaussian action, this expression can be 
evaluated by Wick’s theorem (3.21). For example, the functional average of the 
first of the two terms leads to (integral signs and constants having been stripped 
off for clarity)

(2 (x)2 (y)42 (xr)')0 = 3(2 (x) 2 (x/))o ((2 (y)2 (y))o)2

+ 12(2 (x) 2 (y)W 2 (y)2 (y))o (2 (y)2 (x/))o

= 3Go(x — xz)Go(O)2 + 12Go(x — y)Go(O)Go(y — x'), (4.16)

ultraviolet 
(UV) di­
vergence

where we have used the fact that the operator inverse of the Gaussian action is, by 
definition, the free Green function (see Eq. (4.10)). Further, notice that the total 
number of terms appearing on the right-hand side is equal to 15 = (6 — 1)!!, which 
is simply the number of distinct pairings of six objects (see Eq. (3.21) and our 
discussion in section 4.1.1). Similarly, the second contribution to G(1) leads to

(2 (x) 2 (x')M 2 (y)4 )o = 3( 2 (x) 2 (x')>o[< 2 (y)2M2 = 3 g o(x — x') g o(o)2 •

Before analyzing these structures in more detail, let us make some general ob­
servations. The first-order expansion of G contains a number of factors of Go (0), 
the free Green function evaluated at coinciding points. This bears disturbing con­
sequences. To see this, consider Go (0) evaluated in momentum space,

G o<0> V (d¥ p2+r • (4'17’

For dimensions d > 1, the integral is divergent at large momenta or short wave­
lengths; we have met with an ultraviolet (UV) divergence. Physically, the di­
vergence implies that, already at first order, our expansion runs into a difficulty 
that is obviously related to the short-distance structure of the system. How can 
this problem be overcome? One way out is to remember that field theories such
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UV cutoff

infrared 
(IR) di­

vergence

as the ^4-model represent effective low-temperature, or long-wavelength, approxi­
mations to more microscopic models. The range of applicability of the action must 
be limited to wavelengths in excess of some microscopic lattice cutoff a (e.g., the 
lattice spacing), or momenta k < a-1 . It seems that, once that ultraviolet cutoff 
has been built in, the convergence problem is solved. However, there is something 
unsatisfactory in this argument. All our perturbative corrections, and therefore the 
final result of the analysis, exhibit sensitivity to the microscopic cutoff parameter. 
But this is not what we expect of a sensible low-energy theory (see the discussion 
in chapter 1)! The UV problem signals that something more interesting is going 
on than a naive cutoff regularization has the capacity to describe. We discuss this 
point extensively in chapter 6.

However, even if we temporarily close our eyes to the UV phenomenon, there is 
another problem. For dimensions d < 2, and in the limit r ^ 0, G0(0) also diverges 
at smal l momenta, an infrared (IR) divergence. Being related to structures at 
large wavelengths, this type of singularity should attract our attention even more 
than the UV divergence mentioned above. Indeed, it is intimately related to the 
accumulation of long-range correlations in the limit r ^ 0 (cf. the structure of the 
integral (4.12)). We will come back to the discussion of the IR singularities, and 
their connection to the UV phenomenon, in chapter 6.

The considerations above show that the perturbative analysis of functional inte­
grals will be accompanied by all sorts of divergences. Moreover, there is another, 
less fundamental, but also important, point: referring to Eq. (4.16), we have to 
concede that the expression does not look particularly inviting. To emphasize the 
point, let us consider the core contribution to the expansion at second order in g.

EXERCISE Show that the 10th-order contraction leads to the 945 = (10 - 1)!! terms

(0(x)0(y)40(y')40(x,')')0 = 9Go(x - x')Go(0)4 + 72Go(x — x')Go(y — y')2Go(0)2

+ 24Go(x — x )Go(y — y ) + (36Go(x — y)Go(x — y)Go(O)

+ 144( G o(x — y) G o(x — y) G o(y — y')2 G o(0) + G o(x — y) G o(x — y') G o (0)2 G o(y — y')) 

+ 96Go(x — y)Go(x — y')Go(y' — y)3 + (y o y')]. (4.18)

Note: Our further discussion will not rely on this result, which is only illustrative.

Eq. (4.18) is not an illuminating expression. There are <Xx) •— —• <Xy)
eight groups of different terms; but it is not obvious how
to attribute any meaning to these contributions. Further, (
if we considered the full second-order Green function G(2),
i.e., took account of the expansion of both numerator and •----------- •
denominator in Eq. (4.14), we would find that some con- G0(x,y)
tributions canceled (see problem 4.6.1). Clearly, the situ­
ation will not improve at third and higher orders in g .

To apply perturbative concepts beyond lowest orders, a more efficient formulation 
of the expansion is needed. The key to the construction of a better language lies
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Fig. 4.1 Graphical representation of a first-order-in-g contraction contributing to the expansion of 
the Green function.

diagrams

Feynman 
diagrams

in the observation that our previous notation is full of redundancy. For example, 
in the contraction of a perturbative contribution, we represent our fields by ^(x). 
A more compact way of keeping track of the presence of that field is shown in 
the upper portion of the unnumbered figure. Draw a point (with an optional “x” 
labeling its position) and attach a little leg to it. The leg indicates that the fields 
are sociable objects, i.e., they need to find a partner with which to pair. After 
the contraction, a pair (^(x)^(y)) ^ G0(x — y) becomes a free Green function. 
Graphically, this information can be represented by a pairwise connection of the 
legs of the field symbols to lines, where each line is identified with a Green function 
connecting the two terminating points. The full contraction of a free correlation 
function (^(x1)^(x2) • • • ^(x2n))0 is represented by the set of all distinct diagrams 
formed by pairwise connection of the field vertices.

INFO Graphical codes as a means for the representation of complex perturbation series 
were introduced by Feynman in 19487 and have since been called Feynman diagrams. 
After an initial phase of skepticism, they were soon recognized as immensely powerful and 
became an indispensable element of almost all areas of theoretical physics. Importantly, 
Feynman diagrams are not just computational tools but also a means of communication: 
when discussing in front of a blackboard, it takes seconds to draw the diagrams represented 
in, say, fig. 4.2, but much longer to write down the corresponding formulae. Not to mention 
that formulae are often difficult to read while diagrams - with a bit of practice - afford 
intuitive interpretations. Their status in many-body physics will become more tangible as 
we proceed and work with numerous different classes of diagrams.

7 R. Feynman, The theory of positrons, Phys. Rev. 76, 749 (1949).
8 In the figure, the coordinates carried by the field vertices have been dropped for notational

Figure 4.1 shows the graphical representation of the contraction of Eq. (4.16). (The 
cross appearing on the left-hand side represents four field operators sitting at the 
same point y.) According to our rule formulated above, each of the two diagrams on 
the right-hand side represents the product of three Green functions, taken between 
the specified coordinates. Further, each contribution is weighted by a combinato­
rial factor, i.e., the number of identical diagrams of that structure. Consider, for 
example, the second contribution on the right-hand side. It is formed by connecting 
the “external” field vertex at x to any of the legs of the internal vertex at y: four 
possibilities. Next, the vertex at x' is connected with one of the remaining three 
unsaturated vertices at y: three possibilities. The last contraction y o y is fixed, 
i.e., we obtain altogether 3 x 4 = 12 equivalent diagrams - “equivalent” in that each 
of these represents the same configuration of Green functions.

EXERCISE Verify that the graphical representation of the second-order contraction (4.18) 
is as shown in fig. 4.2.8 Associate the diagrams with individual contributions appearing
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Fig. 4.2

connected 
diagrams

Graphical representation of the second-order correction to the Green function. In the main 
text, the seven types of diagram contributing to the contraction will be referred to (in the 
order they appear above) as diagrams 1 to 7.

in Eq. (4.18) and try to reproduce the combinatorial factors. (For more details, see prob­
lem 4.6.1.)

The graphical representation of the contractions shown in figs. 4.1 and 4.2 provides 
us with sufficient background to list some general aspects of the diagrammatic 
approach.

> First, diagrammatic methods help to efficiently represent the perturbative ex­
pansion. However, we are still left with the problem (see the discussion above) 
of computing the analytical expressions corresponding to individual diagrams. 
To go back from an nth-order graph to its analytical representation, one (a) 
attaches coordinates to all field vertices, (b) identifies lines between points with 
Green functions, (c) multiplies the graph by the overall constant gn/n!, and (d) 
integrates over all the internal coordinates. When one encounters expressions 
like G(n) = “sum of graphs,” the operations (a)-(d) are implicit.

> As should be clear from the formulation of our basic rules, there is no fixed 
rule as to how to represent a diagram. As long as no lines are cut, any kind 
of reshaping, twisting, rotating, etc. of the diagram leaves its content invariant. 
(At large orders of perturbation theory, it often takes a second look to identify 
two diagrams as equivalent.)

> From the assembly of diagrams contributing to any given order, a number of 
internal structures common to the series expansion become apparent. For exam­
ple, looking at the diagrams shown in fig. 4.2, we notice that some are connected, 
and some are not. Among the set of connected diagrams (nos. 5, 6, 7), there 
are some whose “core portion,” i.e., the content of the diagram after the legs 
connecting to the external vertices have been removed, can be cut into two 
pieces just by cutting one more line (no. 7). Diagrams of this type are called

simplicity. To restore the full information carried by any of these “naked” graphs, one attaches 
coordinates x and xz to the external field vertices and integration coordinates yi to each of the 
i nodes that do not connect to an external field vertex. Since no information is lost, diagrams 
are often represented without explicit reference to coordinates.
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one- 
particle 

reducible

loop order

one-particle reducible while the others are termed one-particle irreducible. 
More generally, a diagram whose core region can be cut by severing n lines is 
called n-particle reducible. (For example, no. 6 is three-particle reducible, no. 
7 is one-particle reducible, etc.) One can also attach a loop order to a diagram, 
i.e., the number of inequivalent loops formed by segments of Green functions 
(for fig. 4.2, 4, 3, 3, 3, 2, 2, 2, in that order). One (correctly) expects that these 
structures, which are difficult to discern from the equivalent analytical represen­
tation, will reflect themselves in the mathematics of the perturbative expansion. 
We return to the discussion of this point below.

> Then there is the issue of combinatorics. The diagrammatic representation 
simplifies the determination of the combinatorial factors appearing in the ex­
pansion. However, the problem of getting the combinatorics right remains non­
trivial. (If you are not impressed with the factors entering the second-order 
expansion, consider the (14 - 1)!! = 135, 135 terms contributing at third or­
der!) In some sub-disciplines of theoretical physics, the art of identifying the 
full set of combinatorial coefficients at large orders of perturbation theory has 
been developed to a high degree of sophistication. Indeed, one can set up refined 
sets of diagrammatic construction rules that automate the combinatorics to a 
considerable extent. Pedagogical discussions of these rules can be found, for ex­
ample, in the textbooks by Negele and Orland, and by Ryder.9 However, as we 
will see shortly, the need to explicitly carry out a large-order expansion taking 
account of all diagrammatic sub-processes rarely arises in modern condensed 
matter physics; mostly one is interested in subclasses of diagrams, for which 
the combinatorics is less problematic. For this reason, the present text does not 
contain a state-of-the-art exposition of all diagrammatic tools, and interested 
readers are referred to the literature.

9 J. W. Negele and H. Orland, Quantum Many Particle Systems (Addison-Wesley, 1988); L. H. 
Ryder, Quantum Field Theory (Cambridge University Press, 1996).

> Finally, and perhaps most importantly, the diagrammatic representation of a 
given contribution to the perturbative expansion often suggests a physical in­
terpretation of the corresponding physical process. (After all, any term con­
tributing to the expansion of a physical observable must correspond to some 
“real” physical process.) Unfortunately, the ^4-theory is not well suited to illus­
trate this aspect - void of any dynamical content, it is a little bit too simple. 
However, the possibility of “reading” individual diagrams will become evident in 
the next section when we discuss an application to the interacting electron gas.

Above, we have introduced the diagrammatic approach for the example of field 
expectation values (^(x)(^(y)4)n^(x/))o- However, to obtain the Green function to 
any given order in perturbation theory, we need to add to these expressions the 
contributions emanating from the expansion of the denominator of the functional 
average (see Eqs. (4.14) and (4.15)). While, at first sight, the need to keep track of 
even more terms seems to complicate matters, we will see that, in fact, quite the
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'0 0

= 12

= 3 + 12

Fig. 4.3 Graphical representation of the first-order correction to the Green function: Vacuum graphs
cancel out.

vacuum 
diagrams

opposite is true! The combined expansion of numerator and denominator leads to 
a miraculous “cancellation mechanism” that greatly simplifies the analysis.

Let us exemplify the mechanism of cancellation on G(1) . The three diagrams 
corresponding to the contractions of Eq. (4.15) are shown in fig. 4.3, where integral 
signs and coordinates have been dropped for simplicity. On the left-hand side of the 
equation, the brackets (• • • )o indicate that the second contribution comes from the 
expansion of the denominator. The point to be noticed is that the graph produced 
by the contraction of that term cancels against a contribution arising from the 
numerator. One further observes that the cancelled graph is of a special type: it 
contains an interaction vertex that does not connect to any of the external vertices. 
Diagrams with that property are commonly termed vacuum diagrams.1o

EXERCISE Construct the diagrammatic representation of G(2) , verify that vacuum 
graphs in the denominator cancel against the numerator, and show that the the result is 
obtained as the sum of connected diagrams in fig. 4.4. (For more details, see problem 4.6.1.)

Indeed, the cancellation of vacuum graphs pertains to higher-order correlation func­
tions and to all orders of the expansion:

The contribution to a correlation function C (2n) (x1, . . . , x2n) at lth order of 
perturbation theory is given by the sum of all graphs, excluding vacuum graphs.

For example, the first-order expansion of the four- 
point function C(4) (x1, . . . x4) is shown in the figure, 
where coordinates xi o i are abbreviated by their 
indices and “+ perm.” stands for the six permuta­
tions obtained by interchanging arguments. In the 
literature, the statement of vacuum graph cancella­
tion is sometimes referred to as the linked cluster

C (4)(1,2,3,4) = 24 1 2
3 4

/
+ 12

\

1» 9 «2

3«------- *4
+perm.

linked
cluster 

theorem

theorem. Notice that the linked cluster feature takes care of two problems: first,

10 The term “vacuum graph” has its origin in the diagrammatic methods invented in the 1950s 
in the context of particle theory. Instead of thermal averages (•••)o, one considered matrix 
elements (Qp — |Q) taken on the ground state or “vacuum” of the field theory. This caused 
matrix elements (Q|(Sint[$])n|Q) not containing an external field vertex to be dubbed “vacuum 
diagrams.”
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+ 288. Q QG(2) = 192 ► + 288

Fig. 4.4 Graphical representation of the second-order contribution to the Green function.

we are relieved of the burden of a double expansion of numerator and denominator 
and, second, only non-vacuum contributions to the expansion of the former need 
to be kept.

INFO The proof of the linked cluster theorem is straightforward. Consider a contri-
bution of nth order to the expansion of the numerator of (4.14), ( ^ (X[^](J"dX^4)n}0.
The contraction of this expression will lead to a sum of vacuum graphs of pth order and
non-vacuum graphs of (n-p)th order, where p runs from 0 to n. The pth-order contribution
is given by

1
n!

where the superscript n.v. indicates that the contraction excludes vacuum graphs, and the 
combinatorial coefficient counts the ways of choosing p vertices 04 of a total of n vertices 
to form a vacuum graph. Summing over p, we find that the expansion of the numerator, 
split into vacuum and non-vacuum contributions, reads

oo n

n=0 p=0

(-g)n

(n - p)! p

By a straightforward rearrangement of the summations, this can be rewritten as

n=0

\ n
4

n.v. o

p=0

(-g)) 
p!

p \

00

The p-summation recovers exactly the expansion of the denominator; so we are left with 
the sum over all non-vacuum contractions.

Before concluding this section, let us discuss one last technical point. The transla­
tional invariance of the ^4-action suggests a representation of the theory in recipro­
cal space. Indeed, the momentum space representation of the propagator (4.11) 
is much simpler than the real space form, and the subsequent analytical evaluation 
of diagrams will be formulated in momentum space anyway (cf. the prototypical 
expression (4.17)).

The diagrammatic formulation of the theory in mo- </>„•— —• <^_D
F p —p Fmentum space is straightforward. All we need to do is to 

slightly adjust the graphical code. Inspection of Eq. (4.11) 
shows that the elementary contraction should now be for- ''
mulated as indicated in the figure. Only fields with op­
posite momentum can be contracted; the line carries this •-----—----- •
momentum as a label. Notice that the momentum rep- G0(p)

resentation of the field vertex ^4(x) is not given by ^p.
Rather, Fourier transformation of the vertex leads to the three-fold convolution
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+123

P

Fig. 4.5 Momentum-space representation of a first-order contribution to the Green function. Internal 
momenta pi are integrated over.

dxX4( 4(x) ^ L3d 0 pi 0 P2 0 P3 0 P4 5 P1+P2+P3+P4,0 .
p1,...p4

The graphical representation of the first-order correction to the Green function (i.e., 
the momentum space analog of fig. 4.3) is shown in fig. 4.5. It is useful to think 
about the vertices of the momentum space diagrammatic language in the spirit 
of “Kirchhoff laws”: the sum of all momenta flowing into a vertex is equal to zero. 
Consequently (exercise) the total sum of all momenta “flowing” into a diagram from 
external field vertices must also equal zero: (^p1 ^p2 • • • ^pn)0 ^ (• • •)5p1 +p2^+pn,0. 
This fact expresses the conservation of total momentum characteristic of theories 
with translational invariance.

EXERCISE Represent the diagrams of the second-order contraction shown in fig. 4.2. 
Convince yourself that the “Kirchhoff law” suffices to fix the result. Note that the number 
of summations over internal momenta is equal to the number of loops.

This concludes the first part of our introduction to perturbation theory. Critical 
readers will object that, while we have undertaken some effort to efficiently represent 
the perturbative expansion, we have not discussed how interactions actually modify 
the results of the free theory. Indeed, we are not yet in a position to address this 
problem, the reason being that we first need to better understand the origin and 
remedy of the UV and IR divergences observed above.

However, temporarily ignoring the presence of this roadblock, let us try to outline 
what kind of information can be obtained from perturbative analyses. We first note 
that, in condensed matter physics,11 low-order perturbation theory is usually not 
enough to obtain quantitative results. The fact that the “perturbation” couples to 
a macroscopic number of degrees of freedom12 usually necessitates the summation 
of infinite (sub)series of a perturbative expansion or even the application of non- 
perturbative methods. This, however, does not mean that the tools developed above 
are useless: given a system subject to unfamiliar interactions, low-order perturbation 
theory will usually be applied as a first step to explore the situation. For example, 
a malign divergence of the expansion in the interaction operator may signal the 

11 There are sub-disciplines of physics where the situation is different. For example, consider the 
high-precision scattering experiments of atomic and sub-atomic physics. In these areas, the 
power of a theory to quantitatively predict the dependence of scattering rates on the strength 
of the projectile-target interaction (the “perturbation”) is a measure of its quality. Such tests 
involve large-order expansions in the physical coupling parameters.

12 In contrast, low-order expansions in the external perturbation (e.g., experimentally applied 
electric or magnetic fields) are usually secure; see chapter 7.
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presence of an instability towards the formation of a different phase. Or it may 
turn out that certain contributions to the expansion are “physically more relevant” 
than others. Technically, such contributions usually correspond to diagrams of a 
regular graphical structure. If so, a summation over all “relevant processes” may be 
in reach. In either case, low-order expansions provide vital hints, in the planning of 
a more complete analysis. In the following, we discuss two examples that may help 
to make these considerations more transparent.

4.2 Ground State Energy of the Interacting Electron Gas

In section 2.2.1, we began to consider the physics of itinerant electron compounds. 
We argued that such systems can be described in terms of the free particle Hamil­
tonian (2.18) together with the interaction operator (2.19). While we have reviewed 
the physics of non-interacting systems, the role of electron-electron interactions has 
not been addressed. Yet, by now, we have developed enough analytical machinery 
to consider this problem. Below we will apply concepts of perturbation theory to 
estimate the contribution of electron correlations to the ground state energy of a 
Fermi system. However, before plunging into the technicalities of this analysis, it is 
useful to discuss some qualitative aspects of the problem.

4.2.1 Qualitative aspects

dimensionless 
density 

parameter

e2 mr02

r0 ~2

r0
— = r s a0

A principal question that we will need to address is un­
der what physical conditions are interactions “weak” (in 
comparison with the kinetic energy), i.e., when does a 
perturbative approach with the interacting electron sys­
tem make any sense? To estimate the relative magnitude 
of the two contributions to the energy, let us assume that 
each electron occupies an average volume r03 . According to 
the uncertainty relation, the minimum kinetic energy per 
particle will be of order O(~2/mr02). On the other hand, 
assuming that each particle interacts predominantly with 
its nearest neighbors, the Coulomb energy is of order
O(e2/r0). The ratio of the two energy scales defines the dimensionless density
parameter (see the figure)
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where a0 = ~2/e2m denotes the Bohr radius.13 Physically, rs is the radius of the 
sphere containing one electron on average; for the Coulomb interaction, the denser 
the electron gas, the smaller rs . We thus identify the electron density as the relevant 
parameter controlling the strength of electron-electron interactions. Below, we will 
be concerned with the regime of high density, rs 1, or weak Coulomb interaction, 
accessible to perturbation theory controlled by the smallness of this parameter.

13 Notice that the estimate of the relative magnitude of energy scales mimics Bohr’s famous 
qualitative discussion of the average size of the hydrogen atom.

14 L. D. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 3, 920 (1956).
15 As a simple example, consider the evolution of the bound states of a quantum particle as 

the confining potential is changed from a box to a harmonic potential well. While the wave 
functions and energies evolve, the topological characteristics of the wave functions, i.e., the 
number of nodes, and therefore the assignment of the corresponding quantum numbers, remain 
unchanged.

Wigner 
crystal

INFO In the opposite limit, rs 1, properties become increasingly dominated by electron 
correlations. It is believed that, for sufficiently large rs (low density), the electron gas 
undergoes a (first-order) transition to a condensed phase known as a Wigner crystal. 
Although Wigner crystals have never been unambiguously observed, several experiments 
performed on low-density electron gases are consistent with a Wigner crystal ground state. 
Monte Carlo simulation suggests that Wigner crystallization may occur for densities with 
rs > 31 in the two-dimensional electron gas and for rs > 106 in three dimensions. (Note 
that this scenario relies on the system’s being at low temperature and on the long-range 
nature of the Coulomb interaction. If the Coulomb interaction is screened, V(r) ~ e-r/x, 
then rs ~ (r0/a0)e-r0/x and the influence of the Coulomb interaction at low densities 
becomes diminished.)

Fermi liq­
uid theory

Lev Davidovich Landau 
1908-1968
Nobel Laureate in Physics in 
1962 “for his pioneering the­
ories for condensed matter, 
especially liquid helium.” Lan­
dau’s work covered all branches 
of theoretical physics, ranging

INFO Most metals lie in a regime 2 < rs < 6 of intermediate coupling, difficult to 
access in terms of controlled perturbation theory. Its description is the subject of Landau’s 
Fermi liquid Theory,14 an ingenious theoretical framework relying on the principle of 
adiabatic continuity.

In the absence of an electronic phase 
transition (such as Wigner crystalliza­
tion), a non-interacting ground state 
evolves smoothly or adiabatically into the 
interacting ground state as the strength 
of the interaction is increased.15 An ele­
mentary excitation of the non-interacting 
system represents an “approximate exci­
tation” of the interacting system (i.e., its 
“lifetime” is long). The excitations are 
quasi-particles (and quasi-holes) above a 
sharply defined Fermi surface.

The starting point of Fermi liquid 
theory is a few phenomenological assump­
tions, all rooted in the adiabaticity princi­
ple. For example, it is postulated that the 
density of quasi-particles can be described 
in terms of a momentum-dependent density distribution n(p), which, in the limit of zero 

from fluid mechanics to quantum field theory. 
Starting in 1936, a large portion of his papers 
refer to the theory of the condensed state, and 
eventually led to the construction of a com­
plete theory of “quantum liquids” at very low 
temperatures. In 1938, Landau was arrested for 
comparing Stalinism to Nazism, and was re­
leased a year later only after Kapitsa petitioned 
Stalin, vouching for Landau’s behavior.
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interaction, evolves into the familiar Fermi distribution. From this assumption (and a few 
more postulates) a broad spectrum of observables can be analyzed without further “mi­
croscopic” calculation. Its remarkable success (as well as few notorious failures) has made 
Landau’s Fermi liquid theory a powerful tool in the development of modern condensed 
matter physics, but one which we are not going to explore in detail.16

The starting point of the perturbative analysis is the functional representation of 
the free energy F = -T ln Z through the quantum partition function. (Here, as 
usual, we set kB = 1.) Expressed as a field integral, we have Z f Du e-S[^], 
where

S [^] T ^pa i^n + 2m p^ U'pa + 2l3 ' f-'p + qa f-'p'—qaz V(q) 'D'zaz^pa .

Here, we have introduced the 4-momentum p = (p,wn), comprising both fre­
quency and momentum.17 As usual, the sums extend over all momenta (and spin 
variables, a).

Zeroth-order perturbation theory

As with the Green function discussed previously, the free energy can be expanded in 
terms of an interaction parameter. To fix a reference scale against which to compare 
the correlation energies, let us begin by computing the free energy Eq. (3.85) of the 
non-interacting electron gas:

F(0) = — t V ln f1+ e-?(m-» A T^0 V ^p2 - M V -2(4 19)
+ e - ^ m P^JVP, (-t.if)

where p = pF/2m, N = (2mL2p)3/2/3n2 is the number of particles, and the esti­
mate on the right is obtained by replacing the sum over momenta by an integral 
(exercise). According to Eq. (4.19), the average kinetic energy per particle is equal 
to 3/5 of the Fermi energy. To relate this scale to the density parameter rs , we 
choose to measure all energies in units of the Rydberg energy (viz. the ionization 
energy of hydrogen), ERy = me4/2~2 = 13.6 eV,

F(0) N
E Ry r S .

16 Interested readers are referred to one of several excellent reviews, e.g., P. W. Anderson, Basic 
Notions in Condensed Matter Physics (Benjamin, 1984).

17 Be careful not to confuse the 4-momentum p with the modulus of the 3-momentum, p = |p|.

4.2.2 Perturbative approach

(4.20)
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First-order perturbation theory

If we turn now to a discussion of interactions, a formal ex­
pansion of F to first order in V gives

T4F(1) = 2L3 ( pp+qapp'-qa'V(q)'-’p'a''^p®] , (4.21) 

where (•• -)o denotes the functional average with respect to 
the non-interacting action. The two18 diagrams contributing 
to this expression are shown in the figure. To account for the 
specifics of the electron gas, we are using a diagrammatic 
code slightly different from that of the previous section:

18 Remember that, in a theory with complex or Grassmann fields, only contractions ~ t>^}q 
exist, i.e., there is a total of n! distinct contributions to a contraction (t>^ . .. ^}q of 2n field 
operators.

19 To verify this claim, one may notice that a loop is formed by a “ring-wise contraction” of 
{t>1 ^2> . . . ^n}q, i.e., (2 ^ 3)(4 ^ 5)... ((N — 2) ^ (N — 1))(N ^ 1). The last contraction 
introduces the minus sign.

free Green 
function of 

the elec­
tron gas

p+q

q 
p

> The Coulomb interaction is represented by a wavy line labeled by the momentum 
argument q.

> A contraction (ppa ppa )0 is indicated by a solid arrow representing the free 
Green function of the electron gas,

iwn — p— + 11 n 2m

(4.22)

i.e., the inverse of the free action. The labeling of the contraction by an arrow 
(instead of a unidirectional line as in ^4-theory) is motivated by two consider­
ations. First, it indicates that a contraction (pnp)0 describing the creation of 
an electron with quantum numbers A followed by the annihilation of an electron 
with quantum numbers n is a directed process; second, there are situations (e.g., 
when a magnetic field is present) where (pna(r)ipna(r'))0 = (pna(rz)ipna(r))0.

> The sum of all 4-momenta emanating from an interaction vertex formed by a 
wavy line and two electron field lines is equal to zero - the “Kirchhoff law.”

> Finally, we have to be careful about sign factors arising when Grassmann 
variables are interchanged. However, the anticommutativity of the fields merely 
leads to an overall factor (—)Nl , where Nl is the number of loops of a diagram.19

Hartree 
diagram

Turning to the discussion of the two individual contributions in the figure, we notice 
that the first, generally known as a Hartree contribution, vanishes. Technically, 
this is a consequence of the fact that the interaction line connecting the two loops 
carries zero momentum.
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However, as discussed in section 2.2.1, 
V (q = 0) = 0: physically, the vanish­
ing of the Hartree contribution is a con­
sequence of charge neutrality. Indeed, 
the two Green function loops p Gp 

measure the local particle density of 
the electron gas (see the discussion on 
page 142). Global charge neutrality re­
quires that the electron density cancels 
against that of the ionic background.

Douglas R. Hartree 1897­
1958
was a British applied mathe­
matician who became one of 
the first “computational physi­
cists.” He developed methods 
for numerically solving the 
Schrodinger equation, among
them the celebrated “Hartree approximation.”

INFO However, notice that this cancellation mechanism relies on our assumption of 
overall spatial homogeneity. Only in a spatially uniform system does the density of the 
electron gas locally compensate the positive counter-density. In the context of real metals, 
the inevitable presence of impurities breaks translational invariance and there is no reason 
for the Hartree contribution to vanish. Indeed, the analysis of Hartree-type contributions 
to the correlation energy in disordered electronic media is a subject of ongoing research.

Fock 
diagram

While the Hartree term describes the classical interaction of charge densities through 
the Coulomb potential, the second diagram shown in the figure, known as a Fock 
diagram, is quantum. Translating the diagrammatic language back into Green 
functions, we obtain

T2F (1) = — L3 X GPV (p — p/) Gp' = — L3 n F( e p)4 n |p- p/|2 n F( e p')

T -0

P,P' 

1
L3 e |P — P'|2

fcp ,fcpz <p

e2
-e2L3p4F.

(4.23)
^

Here, the sign factor in the first equality arises because there is an odd number 
of fermion loops, and the parametric scaling of the sum follows from dimensional 
considerations: we are integrating the inverse square of the distance in momentum 
space ([momentum]-2) over two Fermi spheres ([momentum]6). Since the integral 
is convergent at low momenta, it must scale as the fourth power of the upper cutoff 
~ pF .20 Division by the Rydberg energy leads to the scaling

F1- = const. x N, 

ERy rs
(4.24)

where the constant is of order unity. This result conforms with our previous estimate 
of the density dependence of correlation energies.

20 For a more detailed computation, see C. Kittel, Quantum Theory of Solids (Wiley, 1963).
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Second-order perturbation theory

Let us consider the second-order contribution

F(2) = -2 fnL^) f E^p+qa^p'-qa'V(q)'^p'a'^pa) )o

' p pp' q

where the superscript indicates that only connected diagrams contribute.

EXERCISE Using the field integral representation of Z, show that second-order ex­
pansion of F = -T ln Z in the interaction operator Sint leads to the identity F(2) = 
— TT [(Sint^O - {Sint)c]. Convince yourself that the second term cancels disconnected dia­
grams. Apply arguments similar to those involved in the proof of the linked cluster theorem 
to verify that the cancelation of disconnected graphs pertains to all orders in the expansion 
of F , i.e., the free energy can be obtained by expanding the partition function Z (not its 
logarithm) and keeping only connected diagrams; dropping disconnected contributions is 
equivalent to taking the logarithm.

Connected contraction of the eight field operators leads to four distinct types of 
diagram (exercise) of which two are of Hartree type (i.e., contain a zero-momentum 
interaction line V(q = 0)). The non-vanishing diagrams F (2),1 and F (2),2 are shown 
in the figure.21 Translating these diagrams into momentum summations over Green 
functions, one obtains (exercise)

T3F(2)’ 1 = -L6 E Gp 1 Gp 1+qGp2Gp2+qV2(q), 
p1 ,p2 ,q

1 T3F(2)’2 = 2L6 E GpGp—q 1 Gp—q 1-q2Gp—q2V(q1)V^2)
(4.25)

While, at first sight, these expressions do not look very 
illuminating, closer inspection reveals some structure. 
Reflecting the fact that electron transport in solids is 
carried by excitations at the Fermi energy, the electron 
Green function (4.22) assumes large values for mo­
menta p ~ pF. This implies that only configurations 
where all momentum arguments carried by the Green 
function are close to the Fermi surface contributes sig­
nificantly to the sums in (4.25). Considering the first 
sum, we see that, for small |q| and |pi | ~ pF, this con­
dition is met, i.e., there are two unbound summations 
over momentum shells around the Fermi surface. However, for the second sum, the

i1 In fact, one more non-vanishing contribution is obtained by drawing a single “ring” of Green 
functions containing two non-crossing interaction lines. This diagram, and its obvious gener­
alization to higher-order processes containing sequential “self-interactions” of a single Green 
function do not play an essential role (in the present context). The reasons why will become 
clear in section 4.3.1 when we introduce the notion of self-energies. 
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situation is less favourable. For fixed |p 11 ~ pF, fine-tuning of both q1 and q2 is nec­
essary to bring all momenta close to pF, i.e., effectively one momentum summation 
is frozen out. There is no need to enter into detailed calculations to predict that 
F(2), 1 F(2),2 as a consequence. The ratio of the two terms will be proportional to 
the area of the Fermi surface, which, in turn, is proportional to the density of the 
electron gas. For large densities, the second Fock diagram can thus be neglected in 
comparison with the first.

INFO Of course, there must be 
a more physical way of understand­
ing this observation. The Green func­
tion lines in the diagrams F (2),i 

describe the propagation of quasi­
particles and quasi-holes22 on the background of the interacting medium. Now, the diagram 
F(2),2 contains a simply connected propagator line: a single particle-hole excitation at the 
Fermi surface undergoes a second-order interaction process with itself (see part (a) of the 
figure). By contrast, the first diagram F (2),1 involves two independent electron-hole exci­
tations, as shown in (b). Since, in a dense electron gas, a second-order interaction process 
will more likely involve different particles, this type of contribution is more important. 
Notice that the process shown in (b) can be interpreted as a “polarization” of the medium 
due to the excitation of electron-hole pairs.

22 In principle, the system consists of physical electrons immersed into a globally positive back­
ground. However (cf. the discussion in section 2.2.1), keeping in mind that at low temperatures 
dynamical processes take place in the immediate vicinity of the Fermi surface, a more problem- 
oriented way of thinking about states is in terms of quasi-particles and quasi-holes, i.e., electron 
states immediately above and below the Fermi surface.

Higher orders in perturbation theory: RPA approximation

The picture ab ove readily generalizes to interaction processes 
of higher order. In the high-density limit, dominant contribu­
tions to the free energy should contain one free integration 
over the Fermi momentum per interaction process. A mo­
ment’s thought shows that only diagrams of “ring graph” 
structure (see the figure) meet this condition. Expanding the 
free energy functional to nth order in the interaction opera­
tor, and retaining only diagrams having that structure, one 
obtains

z?(n) — T (2Tvinr1 A
Frpa = - 2n / y L3 V q GpGp+qJ

(To understand the origin of the multiplicative factor 1/n, notice that F(n) results 
from the connected contraction of an operator ~ (n!)— 1 (Snt)0. There are (n — 1)! 
different ways of arranging the interaction operators Sint in a ring-shaped structure, 
i.e., the diagram carries a global factor (n — 1)!/n! = 1/n.)
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random
phase 

approx­
imation

polarization 
operator

In Eq. (4.26), the subscript RPA stands for “random phase approxima- 
tion.”23 However, more important than the designation are the facts: (i) we have 
managed to identify a particularly relevant subclass of diagrams contributing to the 
plethora of interaction processes; (ii) there is a physical parameter controlling the 
dominance of these diagrams; and (iii) we are apparently able to sum up the entire 
series of nth-order RPA-interaction contributions. Indeed, summation over n leads 
to the simple result,

2 T 1 1
L3 p iwn <p iwn+m

23 The attribute “random phase” seems to allude to the fact that the quantum mechanical phase 
carried by the particle-hole excitations stirred up by interactions gets lost after each elemen­
tary polarization process. This contrasts with more generic contributions to F , where quantum 
phases may survive more complex interaction processes. Also note that more than one approx­
imation scheme in statistical physics has been dubbed “random phase.”

24 The definition (4.28) applies to the specific case of a three-dimensional translationally invariant 
system. More generally, the polarization operator is defined as the frequency/momentum Fourier 
transform of the connected average (T^(x,t)^(x,t)^(x',t')^(x',t'))c.

FRPA = E FRPA = 2 E ln(1 - V(q)nq), (4.27)
nq

where we have introduced the polarization operator,24

n = 2T g g >
nq = L3 / y ^pp+p+q 

p

(4.28)

Equation (4.27) represents our first example of an infinite-order expansion. How­
ever, before turning to the discussion of further aspects of infinite-order perturba­
tion theory, let us stay for a moment with the RPA approximation to the weakly 
interacting electron gas.

The last unknown we need to compute before understanding its physics is the 
polarization operator. Drawing on the frequency summation in problem 3.8.8, the 
polarization operator can be written explicitly as

£ p+q

2 nF(£p) — nF(£p+q)
L3 p iwm €p+q + p

(4.29)

In this intermediate result, the polarization operator is expressed as a function of 
imaginary Matsubara frequencies. Referring to chapter 7 for a detailed discussion, 
the extraction of real-time information from it requires an analytic continuation 
from imaginary to real frequencies (iwm ^ w). Specifically, the above function is 
analytic in the complex half-planes of positive and negative Matsubara frequencies 
(singularities are confined to the real frequency axis), so that the analytic continu­
ation amounts to a straightforward substitution, and the frequency representation 
of the real-time polarization operator reads

_ 2 nF(£p) — nF(£p+q) 
q, L3 2“ w + - e p+q + £ p

(4.30)
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Lindhard 
function

density 
of states

(Here, we have kept an infinitesimal real part in w + = w + i0 to stay clear of the 
poles lying on the real axis; cf. an analogous frequency shift entering the definition 
of the retarded Green function, G = 1/(w+ - H) of quantum mechanics.) Eq. (4.30) 
is an intuitive result. The Fermi factors in the numerator tell us that the polar­
ization of the medium requires empty states ep+q and occupied states ep, or vice 
versa - polarization is confined to the neighborhood of the Fermi surface. The 
energy denominator indicates that polarization for AC frequencies w dominantly 
engages particle-hole configurations with energy difference w = ep+q — ep.

INFO The summation over p in Eq. (4.30) defines the Lindhard function nq,^. Refer­
ring to the literature for a detailed discussion of nq,^, we note that it depends on two 
scales with dimension energy, w and vFq. For later reference, let us consider the Lindhard 
function in the limiting cases of small and large values of the ratio w/vFq.

Low frequencies - For w vF q, we may neglect the frequency dependence of the
denominator of (4.30) and make the approximation (nF(ep+q) — nF(ep))(ep+q — ep)-1 — 

dfnF(ep) ~ — S(ep — p,). In this case,

nq)U ~ — vo, (4.31)

where

v0 = ^L-3 £ S(,. — ) = 2 j ^n_S(— ,) = mpF (4.32)

p

denotes the density of states per volume of spinful non-interacting electrons at the 
Fermi surface. Occasionally - for example, in the context of magnetic phase transitions 
addressed in problems 5.6.7 and 6.7.2 - one needs to push the expansion to higher orders. 
As a result of a somewhat tedious calculation (you can try; the integrals are elementary) 
one finds, e.g., that for low frequencies, |wn | < vF |q|,

nq,u = vo 1 — kF q — cvv—|qj + .. .^ , (4.33)

where c is a numerical constant.
High frequencies - In the opposite limit, w vFq, we can expand to first order in

ep+q — ep ~ vF • q. Noting that the sum over a single scalar product of this type vanishes 
by rotational symmetry, this leads to (exercise)

nq'“ ~— LW nF(6p)(vF ^ q)2 ~ 0(vWFq) , (4.34)

p

where nF(e) = denF(e). We will provide physical interpretations of these two limits shortly 
when we discuss the polarization operator in the context of screening.

Eq. (4.30) is an important building block in the theory of the weakly interacting 
electron gas. For example, one may ask what contribution to the expansion of the 
free energy ensues when nq is substituted into Eq. (4.27). While this calculation 
is straightforward in principle, the final summation over q turns out to be nontrivial 
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in practice. Here, we simply quote the result of a famous study of Gell-Mann and 
Brueckner25 where they obtained the free energy per particle

FRPA = -0.142 + 0.06--ln r s. (4.35)
ERyN

When combined with the kinetic energy (4.20) and the first-order correlation en­
ergy (4.24), the structure of the density expansion of the free energy becomes clear: 
the sum over all RPA diagrams yields the coefficient of O(rs0 ) in the expansion 
in rs .26 We conclude that the sum of the RPA diagrams provides the next term in 
the expansion of the free energy in the dimensionless density parameter.

However, more important for our present discussion is the conceptual mean­
ing of the RPA - notably its role in the physics of screening. To this end, 
let us temporarily consider the expectation value of the particle number N = 
—dpF, rather than the free energy itself. Specifically, we wish to compare the 
first-order correction (to the non-interacting result), N(1) = — d^F, with the RPA, 
NRPA = — d^FRPA. Noting that d^Gp = —(Gp)2 we readily find that (see Eq. (4.23))

2T2N (1) = — L E (Gp )2 Gp+q V (q).
p,q

See fig. 4.6(a) for a diagrammatic visualization. Now, consider the ^-derivative of 
FRPA, Eq. (4.27):

T
NRPA = - E 

q

V(q)d^ n q
1 — V (q)n q

t2 v(q) ' \ ^ 22 \2 ( xi—l^E 1 — V (q)n q[X Gp+q (Gp) +(q o — q)]

-T2 X' V(q) X' G G 2 -T2 X' G 2
= — L-. / v 1 _ V(q)n 2-^ Gp+q(Gp) = — L-^ Veff (qGp+q(Gp) ,

(4.36)

where we have defined the effective interaction

V (,) = 1 = V(q)
eff(q) - V(q)-1 — nq - e(q)

dielectric 
function

with the generalized dielectric function

e(q) - 1 — V(q)nq

(4.37)

(4.38)

Structurally, the expression for NRPA resembles the first-order expression N(1), but 
with the “bare” Coulomb interaction replaced by the effective interaction Veff . From 
its definition, it is clear that Veff represents a geometric series over polarization 
“bubbles,” augmented by bare interaction lines. This is visualized in fig. 4.6(b),

25 M. Gell-Mann and K. Brueckner, Correlation energy of an electron gas at high density, Phys. 
Rev. 106, 364 (1957); see also reference 13 .

26 Here we follow a convention (used mostly in the older literature) where the RPA starts from 
the second-order ring diagram F (2),1 . However, henceforth we will refer to the RPA as the sum 
over all ring diagrams, including the first, F (1) .
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Fig. 4.6
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Diagrammatic visualization of expectation value of the particle number. (a) First-order Fock 
correction and (b) the RPA approximation, where the definition of the RPA interaction line 
is shown in the lower part of the figure.

where the bold wavy line is defined in the bottom part. In fact, we do not need 
to look hard at the analytical expression (4.36) to understand its origin. The ^- 
differentiation acting on FRPA may pick any of the n rings contributing to FR(nP)A in 
Eq. (4.26). The “differentiated ring” becomes the bubble in fig. 4.6, while all other 
rings conspire to form the (n - 1)th-order contribution to the effective interaction 
line.

At this stage, the connection between RPA and the collective electromagnetic 
response of the charged system becomes discernible. We remember that the elec­
tric field E in a medium is related to the vacuum field D through the relation 
D(q) = e(q)E(q), where the dielectric function e(q) = 1 + 4nx(q) is determined 
by the electric susceptibility and where q = (q, w). The function x measures 
the tendency of the medium to “respond” or adjust to an external electromagnetic 
perturbation. Identifying E/D with the ratio of the “dressed” potential Veff and 
the “bare” potential V , we conclude that, on the level of the microscopic theory, 
4nx(q) = -V(q)nq, i.e., the susceptibility is proportional to the polarization oper­
ator nq. These connections motivate the introduction of the dielectric function, as 
in Eq. (4.38) above.

It is instructive to consider the form of the screened interaction in the two limiting 
cases of low and high frequencies discussed on p. 195. At low frequencies, w 
vfq, the electron gas has enough time to adjust to the spatial variation ~ q-1 of 
the potential, thus screening out electroneutrality-violating potential fluctuations. 
Substitution of Eq. (4.31) shows that, in this static limit, the electron gas interacts 
through the effective potential,

Veff(q) " '= F v^+vi = ■. = q^- (4.39)

-1/2

where A = (4ne2vq) denotes the Thomas-Fermi screening length, and
V(q) = 4ne2/q2 is the bare Coulomb potential. Indeed, it is straightforward to 
verify that the inverse Fourier transform leads to an effective interaction potential 
(exercise)



198 4 Perturbation Theory

e-|r|V
Veff(r) = e r (4.40)

that is exponentially suppressed, or screened, on length scales |r | > X.

INFO Let us briefly recapitulate the heuristic interpretation of Thomas-Fermi 
screening. Imagine a test charge e has been immersed in an electron gas. The host 
system will respond to this perturbation by a local distortion of its density. To compute 
the distortion, we note that the effective potential Veff (r) created by the test charge changes 
the electronic energy levels according to ep ^ ep — Veff. (Here, we assume that the external 
perturbation changes so slowly that the simultaneous usage of momentum and coordinate 
quantum numbers is not in conflict with the uncertainty relation.) The induced charge 
density thus reads as

P ind 2e
d 3 p

(2 n )3
(n f( ep — Veff) — n f( ep)) 2eVeff f ( p33 nF(ep) 

J (2 n )3
— — eVeff vo.

Substitution of this result into the Fourier transform of the Poisson equation V2 Vff (r) = 
—4nep(r) = —4ne(eS(r) + pind(r)) leads to Eq. (4.39).

dynamic 
screening

plasma 
frequency

Next, we consider the case of dynamic screening, w vFq. In this case, the
substitution of Eq. (4.34) into the effective interaction gives

4 ne 2 1
Veff (q,w) = 1 - (wp/w)2 ,

where wp = (4nne2/ m)1 /2 denotes the plasma frequency and we have used the 
fact that (exercise) the particle density n = N/L3 is related to the density of 
states by n = mv22v0/3.

plasmon 
mode

INFO The form of the denominator hints at a collec­
tive instability of the electron gas at frequencies ~ wp. 
Its quadratic dependence in frequency further suggests an 
instability akin to those in undamped oscillating systems. 
The “mode” responsible for this divergence is known as 
the plasmon mode, and its origin can be understood 
as follows. Imagine that the electron gas is uniformly dis­
placed by a distance x against the positively charged back­
ground (see the figure). This will lead to the formation of 
oppositely charged surface layers at the two ends of the 
system. The surface charge densities P± = ±exn lead to an electric field E = 4nenx
directed opposite to the displacement vector. Mobile charge carriers inside the system are 
thus subject to a force —4ne2nx. The solution of the equation of motion mx = —4ne2nx 
oscillates at a frequency wp = (4ne2n/m)1 /2, the plasma frequency. Since the motion of 
the charge carriers is in turn responsible for the accumulation of the charged surface lay­
ers, we conclude that the system performs a collective oscillatory motion, known as the 
plasmon excitation.

At this point, we conclude our preliminary discussion of the electron gas. We have 
seen that large-order perturbation theory can be applied to successfully explain 
various features of the interacting system: energetic lowering due to quantum cor­
relation, screening, and even collective instabilities.
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The interacting electron gas is but one example of the many applications of the 
diagrammatic perturbation theory. After the full potential of the approach had 
become evident - in the late 1950s and early 1960s - diagrammatic techniques 
of great sophistication were developed and applied to a plethora of many-body 
problems. Indeed, more than two decades passed before large-order perturbation 
theory eventually ceased to be the most important tool of theoretical condensed 
matter physics. Reflecting the practical relevance of the approach, there is a large 
body of textb ook literature concentrating on perturbative methods.27 Although 
it would make little sense to develop the field in its full depth once again, a few 
generally important concepts of diagrammatic perturbation theory are summarized 
in the next section.

Turning back to the prototypical 64-model, it is the purpose of the present section to 
introduce a number of general concepts relating to infinite-order perturbative sum­
mations. As should be clear from the discussion above, a meaningful summation 
over an infinite set of diagrams necessitates the existence of a class of perturba­
tive corrections that is “more important” than others. In practice, what we need 
is a small parameter distinguishing between diagrams of different structure. In our 
example above, this parameter was the effective density rs of the electron gas. How­
ever, in other settings, the control parameter N may be defined quite differently: 
large values of a spin, S, the number of colors Nc in QCD, the number of spatial 
dimensions, d, the number of modes of an optical wave guide, etc. Unfortunately, in 
most physical contexts, these parameters are far from large: S = 1/2, d = Nc = 3, 
etc. So we have to resort to a “poor man’s” strategy where we develop a controlled 
and self-consistent theory in the limit of asymptotically large control parameters 
and hope that some fragments of truth survive in the limit down to more mundane 
values of N . Perhaps unexpectedly, this strategy often works astonishingly well 
down to values N = O(1).

So, let us, then, begin by introducing a large control parameter into k b b/ 
a 64-type theory. To this end, we promote 6 from a scalar to an N- ./ K
component vector field 6 = {6a}, a = 1,..., N. The self-interaction a
of the field is modeled as g J ddx 6a&a6b6b, i.e., an expression that is “rotationally” 
invariant in 6-space. The action of our modified theory is thus given by

dd(b • d6 +— 6 • 6 +——(6 • 6)22 2 2^ 4 4N2

27 See, e.g., A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinkii, Methods of Quantum Field 
Theory in Statistical Physics (Dover Publications, 1975), A. Fetter and J. D. Walecka, Quantum 
Theory of Many-Particle Systems (McGraw-Hill, 1971), D. Pines and P. Nozieres, The Theory 
of Quantum Liquids - Normal Fermi Liquids (Addison-Wesley, 1989), and S. Doniach and E. 
H. Sondheimer, Green Functions for Solid State Physicists (Benjamin Cummings, 1974).

4.3 Infinite-Order Expansions 

(.1)
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where the factor 1/N in front of the interaction constant has been introduced for 
later convenience.

As before, we shall concentrate on the Green function Gaab(x — y) = (fia(x)$b(y)) 
as a “test observable.” Denoting the Green function by a bold line, the free Green 
function G0 = (fia(x)G(y))0 x 3ab by a thin line, and the interaction operator by 
a wavy line,28 29 the structure of the first- and second-order expansion of the Green 
function are shown in the upper portion of fig. 4.7. For simplicity, the combinatorial 
factors weighting individual diagrams have been omitted.

28 Since the four field vertices entering the interaction are no longer indiscriminate, the interaction 
“point” representation of section 4.1.3 is no longer suitable.

29 The conservation of global momentum in the theory implies (exercise: think about it!) that, like 
the Green function, the self-energy depends only on the difference of its coordinate arguments.

4.3.1 Self-energy operator

development of modern theoretical physics. Be­
yond his professional work in physics, Dyson has 
written several books on the social implications 
of modern science.

Freeman Dyson 1923-2020 
was a British scientist who, 
trained as a mathematician, 
turned to physics in the 1940s. 
His work in condensed matter 
physics, statistical mechanics, 
and several other areas has 
had a lasting influence on the

self-energy

Dyson 
equation

Even without resorting to the large-N 
structure of the theory, it is possible 
to bring some order to the spaghetti 
of diagrams contributing to the ex­
pansion. Indeed, there are two distinct 
sub-classes of diagrams: those that are 
one-particle reducible (i.e., can be cut 
into two halves by cutting a single 
internal line; see the classification on 
page 183) and those that are not. This
observation motivates the collection of all one-particle irreducible sub-portions of 
the diagrammatic expansion into a structural unit. In fig. 4.7, this entity, which is 
commonly called the self-energy and sometimes also the effective mass oper­
ator, is denoted by a hatched circle. The first- and second-order expansion of the 
self-energy are shown in the bottom part of the figure.

With that definition, the Green function becomes a “chain” of self-energy opera­
tors, separated by free Green function lines, as shown in the second identity of the 
figure. A convenient representation of the expansion is shown in the third identity. 
An insertion of the full Green function after the first self-energy correction recur­
sively generates the full series. Let us translate these statements into the language 
of formulae. Denoting the set of all self-energy diagrams by £ = {£ab(x — y)},29 

the expansion of the Green function assumes the form 
XX XXX X X X X X X XXX
G = G0 + G0£ G0 + G0£ G 0£ G 0 + ••• = G 0 + G 0£ G. (4.42)

Here, the operator products involve summation over coordinates and internal in­
dices, i.e., (AB")ab(x — y) f ddz Aac(x — z)Bcb(z — y). Recursion relations of this 
type are commonly referred to as Dyson equations. The Dyson equation states 
that the problem of calculating G is essentially tantamount to understanding the
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Fig. 4.7 Expansion of the Green function of <p4-theory. Bottom: Expansion of the self-energy operator.

self-energy. To make this point more explicit, let us reformulate the Dyson equation 
in momentum space:

-5. -5. -5 Z' , -5.Gp = GGO, p + G 0, pS p G p ^ [1 — GO, pS p ] G p = G 0, p .

Here we have used the convolution theorem or, more physically, the fact that all 
scattering processes lumped into the self-energy conserve momentum separately. 
Matrix multiplication of this identity from the left by [1 — G0,pSp]-1 leads to the 
expression

1
Grp = [1 — Gr0,p rp] Gr0,p = Gr0,p — rp .

Finally, using the fact that (G0p)ab = (p2 + r)Saab, we arrive at the formal solution

\ ab
(p2 +r— rp)-1 (4.43)
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This equation provides two lessons: first, the full information about the Green 
function is indeed stored in the self-energy; second, the self-energy somehow “adds” 
to the arguments p2 and r entering the quadratic action, a point to be discussed in 
more detail below.

But how then do we compute the self-energy operator? In fact, the construction 
recipe follows from what has been said above. By definition, the nth-order contribu­
tions to the self-energy are generated by the connected and one-particle irreducible 
contraction of n interaction operators (weighted with the appropriate combinatorial 
factor 1/n!). Two field vertices stay uncontracted as connectors to the free Green 
function lines contacting the self-energy. For example, the first-order contribution 
is given by (exercise)

(SP1))- = -a-Ld ( . £Gop + G0,p_p,),

where the first (second) contribution corresponds to the first (second) diagram in 
the self-energy expansion in fig. 4.7.

EXERCISE Represent the second-order contribution S(2) in terms of Green functions.

Once the self-energy has been computed to any desired order, the result is substi­
tuted into Eq. (4.43) and one obtains the Green function.

INFO A critical reader will note that there are some problems with the line of argument 
above. First, we have tacitly ignored the issue of combinatorics. (How do we know that, 
once we have plugged the expansion of the self-energy into the Dyson equation, we get 
the same result as a brute-force direct expansion of the Green function?) To understand
that the two-step program - “first compute the self-energy, and then substitute into the
Dyson series” - indeed produces correct results, let us consider the nth-order contribution 
to the expansion of the Green function, with its overall combinatorial factor 1/n!. Now
imagine that we want to distribute those diagrams that contain, say, one free internal
Green function over two self-energy operators according to the expression G0SG0SG0.
Assuming that the first self-energy operator is of order m < n and the second is of order 
n - m, we notice that there are mn possibilities to distribute the interaction vertices
over the two self-energies. That means that we obtain an overall combinatorial factor of
- Mn! m

1
m! (n-m) But 1/m! and 1/(n - m)! are precisely the combinatorial factors that

appear in the definition of an mth-order and an (n - m)th-order self-energy operator,
respectively. Arguing in reverse, we conclude that the prescription above indeed produces
the correct combinatorics.

A second objection concerns the consistency of the expansion, i.e., the nth-order 
expansion of the self-energy is, of course, by no means equivalent to nth-order expansion 
of the Green function, nor to any specific order of the expansion. Indeed, when working 
with the concept of a self-energy, structuring the expansion according to its order in the 
interaction operator does not make much sense. We should rather focus on the summa­
tion of specific infinite-order diagram classes, as exemplified in the previous section and 
discussed in more general terms below.
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4.3.2 Large-N expansion

non­
crossing 
approx­
imation 
(NCA)

So far we have not made reference to the N -component structure of the theory. 
However, let us now assume that N is very large, i.e., that we may be content with 
an expansion of the Green function to leading order in 1/N. This condition can be 
made explicit by sending N -^ x and declaring limN,. Gpa to be our observable 
of interest.

The limit of large N entails a drastic simplification of the diagrammatic ex­
pansion. Each interaction vertex brings an overall factor of 1/N, which must be 
compensated by a summation over field components to produce a contribution that 
survives the limit N ^ rc>. This condition removes numerous diagrams contribut­
ing to the series. For example, in the Green function expansion of fig. 4.7, only the 
first, third, eighth, and ninth diagrams survive the limit. In all other contributions, 
interaction and Green function lines are interwoven in a way that does not leave 
room for one field-index summation per interaction vertex.

Inspection of the series shows that only dia- rs/\/\/\
grams void of crossing interaction lines (cf. the ® = + ► ► ► + • • •

figure) survive the limit of large N. The ap­
proximation - indeed in the limit of infinite N = >
it becomes exact - that retains only these con­
tributions is commonly called the non-crossing approximation (NCA). More 
poetically, the diagrams contributing to the reduced expansion are sometimes called 
“rainbow diagrams.”

Importantly, the NCA self-energy 
can be computed in closed form. 
All one has to realize is that the 
summation over all rainbow diagrams 
amounts to substitution of the full 
NCA Green function under a single 
interaction line (exercise). Since the 
NCA self-energy is proportional to 
unity in the field-index space, we can 
express this fact through the formula

for “for his fundamental research in quantum 
mechanics, especially for his statistical interpre­
tation of the wave function.”

Max Born 1882-1970
was a German theorist who 
worked on the mathematical 
basis of quantum mechanics, 
and in particular on its prob­
abilistic interpretation. Born 
shared the 1954 Nobel Prize 
in Physics with Walter Bothe

^p N=A -gd E Gp' = -Ld E (P'2 + r - ^p'F1 • (4.44)
p' p'

self-consistent 
Born 

approximation

In the literature, this equation goes under the name self-consistent Born 
approximation (SCBA). It is a “Born approximation” because, formally, it 
resembles a first-order perturbative correction (due to the overall factor of g). The 
approximation is “self-consistent” because the self-energy recursively appears on 
the right-hand side of the equation again, i.e., the equation is in fact not of first 
but of infinite order.
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INFO Although the objective of the present section is to expose general structures, 
let us briefly review the solution of a Born equation. To keep things simple, let us 
assume that we are dealing with an effective low-energy model, so that the momentum 
summations must be terminated at an upper cutoff A. We further make the assumption 
(to be checked self-consistently) that the solution for the self-energy will turn out to be 
momentum independent: sp = s. This leads to the expression

A ddp 1
(2n)d p2 + r — S

The evaluation of the integral depends on dimensionality and on the analytical structure 
of the energy denominator. For example, taking d = 2 and assuming that the parameter 
r is much smaller than the self-energy induced by scattering - an assumption also to be 
checked self-consistently - we obtain

S -— g /A d(P2)-2^ --^ ln C A2 

4 n Jo p2 — S 4 n

s

S

A solution S(g, A) can now be sought either by approximate analytical methods or graph­
ically. (One plots both sides of the equation as functions of s and seeks a crossing point.)

However, for our present discussion, more important than the detailed dependence of s 
on the input parameters g and A is the principal meaning of the self-energy: apparently, 
s adds to the parameter r of the naked Green function. (Notice that the solution of the 
equation determining S will be negative.) Remembering that r ~ £-2, one concludes that 
the interaction operator lowers the spatial correlation of the system. This is indeed what 
one should expect intuitively: scattering due to interactions acts as a source of “disorder” 
inside the system.

four-point 
function

two- 
particle 

propagator

At this stage, it is worth taking a step back and seeing what we have achieved. 
We have managed to compute the Green function to infinite order in an expansion 
in the set of “relevant” diagrams. How does that fit with what has been said in 
section 4.1.1 about the “asymptotic” nature of perturbative series? In fact, the 
exponential proliferation of the number of diagrams, i.e., the mechanism that led 
to the eventual breakdown of the perturbative expansion, is blocked by the limit 
N ^ rc>. Only subclasses of diagrams, with far fewer members, contribute and the 
series remains summable.

The large-N principle is actually not limited to the expansion of the Green func­
tion. To illustrate the point, let us briefly consider the expansion of the four-point 
correlation function,

C(4) = V-tU -a4l'+a). (4.45)
q N / L2j / J 'T'p^-p-q^-p 'rp +q/ \ )

In the next chapter we will see that objects of this structure often represent the 
most important information carriers of the theory. Unlike the Green function dis­
cussed previously, they relate directly to observable quantities. In the many-body 
literature, the four-point function is described as a two-particle propagator, in­
dicating that it describes the joint propagation of two particles. Leaving a more 
substantial discussion to the next chapter, we concentrate here on the formal 
aspects of its perturbative expansion.
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(p,a) (p,a) (p',Z>)

C(4)

(p+q,a) (p+q,a) (p'+q,fe)

(p+q,a) (p'+q,Z>)

(p,a) (p',t)

Fig. 4.8 Expansion of the four-point function. Notice that the arrows represent the full Green func­
tion, i.e., all diagrams “renormalizing” the two-particle subunits of the diagram are auto­
matically included.

The structure of the expansion of the four-point function is shown in fig. 4.8 
where, for simplicity, momentum and component-indices are indicated only once. 
The simplest diagram contributing to the expansion consists of just two Green func­
tions. It encapsulates all disconnected contractions, i.e., ^p^—p/) (<—p—_q^p'+q) ~ 
6ab6pp' contributing to C(4). All other contractions simultaneously involve all four 
field operators, i.e., they contain interaction lines between the Green functions. The 
sum of all these contributions is represented by the diagram containing the hatched 
surface. A few low-order contributions to the expansion are explicitly shown in the 
second line. Notice that all arrows appearing in these diagrams are fat. This in­
dicates that diagrams “dressing” the two-particle sub-units of the expansion are 
automatically included. For example, the second contribution, containing just a 
single interaction line between the two-particle propagators, in fact represents an 
entire series of diagrams obtained by substituting the expansion of fig. 4.7 for the 
full Green function. (In an analytical calculation, one takes account of these contri­
butions simply by substitution of the self-energy renormalized Green function for 
each arrow.)

EXERCISE Write down analytical expressions contributing to the low-order diagrams 
shown in the first and second lines of the figure.

All diagrams involving interactions between the two Green functions have in com­
mon that they contain four external legs, the Green function connectors to the
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vertex

two- 
particle 

reducible

irreducible 
vertex

external field operators. Considering these legs as removed, one ends up with a core 
contribution often called the vertex. (The designation is motivated by the fact that 
the first contribution to the vertex is indeed the contracted interaction vertex of 
the action; see diagram no. 2. in the second line,) In fig. 4.8, the vertex is denoted 
by a tightly hatched area.

As with the Green function, the expansion of the vertex can be given some struc­
ture. To this end, notice that some of the diagrams contributing to the vertex (e.g., 
the fourth diagram in the second line with external legs removed) can be cut into two 
simply by cutting two internal Green function lines. Vertex diagrams of this type 
are called two-particle reducible, by analogy with the “one-particle reducible” 
contributions to the expansion of the Green function. As with the expansion of 
the latter, we lump all irreducible contributions to the vertex (e.g., the second and 
third diagram in the second line, external legs removed) into a substructure called 
the irreducible vertex. In the shaded box of fig. 4.8, the irreducible vertex is 
denoted by a lightly hatched area. The first two diagrams contributing to it are 
shown in the bottom row of the box. Here, one can see that the irreducible vertex 
plays a role similar to the self-energy of the Green function. Expressed in terms of 
the irreducible vertex, the expansion of the vertex assumes the regular form shown 
in the first row of the box.

well as nuclear matter, he has also contributed 
substantially to atomic and condensed matter 
physics.

Hans Albrecht Bethe 1906­
2005 
was a German-American Nobel 
Laureate in physics in 1967 for 
his “contributions to the theory 
of nuclear reactions, especially 
his discoveries concerning the 
energy production in stars.” As

To represent these graphical rela­
tions in analytical form, we denote the 
full vertex by the symbol f = {rpapbq } 

and the irreducible vertex by r0 = 
{Paa,bb „ }, where the indices a, a', b, b' 

0, p, p , q 
keep track of the index labels carried 
by the four Green functions entering 
the vertex. (Although we have defined 
our correlation function in such a way 
that a = a', b = b', a generalization to
a four-fold index label is necessary to formulate the recursion Eq. (4.46).) The three 
momentum arguments represent the momenta of the Green functions connecting 
to the vertex operators, as indicated explicitly in the first line of the figure. (Re­
member that the theory has overall momentum conservation, i.e., three momentum 
arguments suffice to fix unambiguously the momentum dependences of r and C(4).) 
The content of the third line of the figure can then be expressed in terms of a closed 
recursion relation:

paaz ,bbz   paaz ,bbz . 1 X A paaz ,ccz c<c c^cz ccccz ,bbz
1 p,pz,q =1 0,q,pz,p + Ld 1 0,p,p",q Gp" Gp/z+q1 pzz,pz,q ■

c,c', p"

(4.46)

Bethe—Salpeter 
equation

Expressions of this type are (often) called Bethe—Salpeter equations. Compar­
ison with Eq. (4.42) shows that this equation appears to be conceptually similar 
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to the Dyson equation for the one-particle Green function.30 31 Indeed, the principle 
behind most recursion relations of perturbation theory is a structure like

30 We can make the analogy perfect by defining a “one-particle vertex” r(1) = G(0) — 1[G — 
G(0)]G(0) —1. Inspection of the second identity of fig. 4.7 shows that the expansion of r(1) 

starts and ends with a self-energy operator, i.e., the first free Green function line G0 is re­
moved, and so are the two external G0 lines connecting to the self-energy operator. In direct 
analogy to Eq. (4.46), the analytical formula for r(1) then reads r(1) = S + SG0r(1).

31 Here we have used the fact that the large-N approximation of the irreducible vertex forces 
the two input indices a, a' to be equal (and the same for the output indices). As a word of 
caution our large-N approximation of the irreducible vertex explicitly uses the fact that the 
input/output indices entering our definition of the vertex are equal, i.e., should we compute 
a correlation function where the two input/output indices are different (a rare occurrence in 
realistic applications), the large-N approximation of the four-point functions would no longer 
assume the simple form of a regular ladder.

S' S' S' S' S'
X = X0 + X0 * Z * X, (4.47)

where X is our object of interest (e.g., r), X0 is its free version, Z is a subunit that is, 
• • 1 -11 A S~1\ 1 1 • 1 J • 1 J •in some sense, irreducible (£ or r0GG), and * some generalized matrix convolution.

Owing to the importance of the two- ^(4) 
particle propagator, the solution of Bethe- 
Salpeter equations is a central issue in 
many areas of many-body physics. In most cases, only approximate solutions can 
be obtained. With our present example, “approximate” means that one sends N to 
large values and seeks a solution to leading order in N-1 . In that limit, the only 
surviving contribution to the irreducible vertex is the first, a plain interaction line 
(see the figure). As with the self-energy operator discussed in the previous section, 
all diagrams with entangled interaction lines are frustrated in the sense that we 
do not have as many index summations (each producing a factor N ) as interaction 
constants (each proportional to 1/N). Such contributions vanish in the limit of large 
N . We thus conclude that the Bethe-Salpeter equation assumes the simple form

pab __ __ g   g 1 \ ' a a s-ic pcb
rp,p',q = n n Ld Gp" Gp"+q rp",p',q,

c, p"

where rab = raa ,bb <5aa 5bb .31 This equation can be simplified even further by 
making the ansatz rpbp, q = rq, where rq is independent of discrete indices and 
input momenta p and p'. (When solving a perturbative recursion relation, it is 
always a good idea to try an ansatz of maximal simplicity, i.e., one that is no more 
complex than the constituting elements of the equation.) Then,

r = —g Pp r ^ r -g 1  (4 48) 
rq n gpilq ^ rq n 1 + gpq, (4.48)

where we have introduced the abbreviation Pq = 21^52p GpGp+q. In princi­
ple, one may now proceed by substituting the large-N expansion of the Green 
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function (4.43) and computing the function Pq by integration over p. This would 
produce a closed expression for r and, by virtue of the relation

Cq4) = LdPq (1 + NrqPq] ,

our correlation function. Since the emphasis in this section is on conceptual aspects 
of perturbation theory, we will not pursue the analysis to its very end. (For an 
analysis of the Bethe-Salpeter equation in a context more interesting than ^4- 
theory, see the discussion of the quantum disorder problem in section 4.4.) Yet there 
is one aspect of the expression for rq worth noticing here. Consider Pq expanded 
as a Taylor series in q and focus on the zeroth-order contribution, P0 . From the 
definition of the Green function (4.43) we have

P0 = Ld E GP = ds E Gp (4=4) -g —1 dsS = -g-1 • (4.49)
pp

When substituted into the formula for r, this shows that for small momenta the 
expansion of the numerator of the vertex starts with a power of q. (By symmetry, 
the first non-vanishing contribution will be of O(q2).) This means that both the 
vertex and the four-point correlation function are long-range objects, i.e., unlike 
the Green function, they do not decay exponentially, but as a power law. The long- 
range character of the four-point function has observable consequences, as discussed 
in various different contexts below.

Summarizing, our discussion of the two- and four-point functions has shown that 
if a large parameter is present, relevant subclasses of perturbative contributions 
can be identified and summed to infinite order. As a matter of fact, there are not 
too many of these summable diagram classes: ring-diagrams, rainbow-diagrams and 
ladder-diagrams nearly exhaust the set of “friendly” corrections, amenable to ana­
lytical summation. Notice that so far we have largely considered abstract summa­
tion schemes; i.e., we still need to learn more about the way in which intermediate 
results like Eqs. (4.43) or (4.48) can be translated into concrete physical infor­
mation. These aspects are discussed - on applications more rewarding than plain 
^4-theory - a little later. However, at this point we leave the discussion of formal 
perturbation theory. While a state-of-the-art exposition of the subject would require 
much more space - for condensed-matter-oriented texts on perturbative methods, 
we refer to the references given in footnote27 The material introduced in this section 
suffices for nearly all purposes of the present text.

REMARK In this section we consider the disordered electron gas as a case study for 
application of the general concepts developed earlier in this chapter. Readers on a fast 
track may skip this section and return to it, for example, when they encounter a problem 
subject to quantum disorder in their own work (which sooner or later will be the case). The 
perturbation theory applied in this section largely parallels that developed in section 4.3.

4.4 Perturbation Theory of the Disordered Electron Gas
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We take this as an incentive to present some of the material in a question and answer style, 
giving readers an opportunity to test their understanding of diagrammatic perturbation 
theory on the fly.

Having introduced the formal building blocks of infinite order perturbation the­
ory, we now illustrate their application to the important example of the disordered 
electron gas. There is perhaps no better case study to exemplify the rationale of 
perturbative approaches - identification of relevant physical processes in low-order 
perturbation theory, followed by infinite order summation of parametrically distinct 
diagram classes - than the physics of this system. In this problem, we take a per­
spective complementary to that of section 4.2: Coulomb interactions are assumed 
to be irrelevant. Instead, we take the presence of translational symmetry breaking 
impurities seriously. Of course, “real” problems are subject to both interactions 
and disorder. However, there is a surprisingly large class of applications that can 
be addressed neglecting either one or the other. In this section, we emphasize the 
disorder perspective.

4.4.1 Field theory representation of the disordered electron gas 

No semiconductor, or metal of macroscopic32 extent, is ever free of imperfections 
and impurities. Indeed, the effect of disorder on the phenomenology of metals or 
semiconductors could not be more varied. In some cases, disorder plays an essential 
role (for example, conventional light bulbs would not function without impurity 
scattering!), in others the effect is parasitic (imparting only a “blurring” of otherwise 
structured experimental data) or it conspires to give rise to completely unexpected 
types of electron dynamics (as is the case in the quantum Hall effect to be discussed 
in chapter 8).

Some, but not all of these phenomena can be addressed in terms of the per­
turbative concepts introduced in this chapter. In this section, we will start our 
venture into the physics of the disordered electron gas by formulating a functional 
integral framework capable of describing perturbative and non-perturbative effects 
alike. Building on this platform, we will then develop a diagrammatic framework 
suitable to describe perturbative manifestations of impurity scattering: notably the 
physics of diffusion, and quantum processes heralding the eventual breakdown of 
perturbation theory in low-dimensional disordered materials.

Replica trick

In realistic materials, the inevitable presence of defect atoms or other types of lattice 
imperfections leads to the presence of static “random” potentials V (r) adding to the 
translationally invariant crystalline background potential (set to zero throughout,

32 In ultraclean semiconducting devices, electrons may travel up to distances of several microns 
without experiencing impurity scattering. Even so, the “chaotic” scattering from the typically 
irregular boundaries of the system has an equally invasive effect on charge carrier dynamics.
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assuming that we may adopt a free electron approximation describing a good metal). 
In many applications, one assumes that V is drawn from some random distribution 
P [V ]. One may then compute physical observables averaged over realizations of 
V - describing those aspects of the physics that are effectively self-averaging - or 
statistical fluctuations of observables in cases where sample-to-sample variations 
are a focus of interest. To further simplify matters, it is often assumed that V is 
Gaussian distribute, with

P[V]DV = exp —---- d ddr V2(r) ) DV, (4.50)
\ 2 Y2 J )

where the measure includes a factor unit-normalizing the distribution. In this case, 
fluctuations of V(r) are short-range correlated, as described by the second moment

(V(r)V(r'))dis = y2<$(r - r'). (4.51)

Here, (... )dis = f DVP[V](...), with the coefficient y2, of dimension energy2/volume, 
parameterizing the effective strength of the randomness.

As discussed above, our aim is to average the quantum expectation value of a 
certain observable O over the disorder ensemble. Let us assume that O is repre­
sented as a derivative of the functional free energy, O = — -J| j = 0 ln Z, where J is a 
parameter function (also known as a source field in the parlance of field theory),33

33 For example, the parameter ^ is a source generating expectation values of the particle number:
- 9^ F = (TV}.

34 K. B. Efetov, Supersymmetry method in localisation theory, Sov. Phys. JETP 55, 514 (1982).
35 For a review see, e.g., A. Kamenev, Many body theory of non-equilibrium systems in 

Nanophysics: Coherence and transport, eds. H. Bouchiat et al. (Elsevier, Amsterdam, 2005).
36 S. F. Edwards and P. W. Anderson, Theory of spin glasses, J. Phys. F 5, 965 (1975).

O = -JIj =0 0” Z i = VP[ JIj =0Z[V,J]. (4'52’

This fundamental relation presents a technical challenge: the appearance of the 
function V in both the numerator and denominator makes such integrals largely 
intractable.

There exist three different approaches circumventing the denominator problem: 
the supersymmetry approach,34 the Keldysh technique,35 and the replica 
trick.36 All three share the feature that they alter the definition of the functional 
partition function in such a way that (i) Z[J = 0] = 1 (i.e., the disorder dependence 
of the denominator disappears), while (ii) Eq. (4.52) remains valid, and (iii) the 
algebraic structure of Z [J] is left largely unchanged. Since the disorder appears 
linearly in the Hamiltonian, point (iii) implies that we need to average functionals 
with actions linear in the potential V, an enterprise that turns out to be quite 
feasible.

INFO All three approaches have different strength and weaknesses. Supersymmetry is 
technically the most demanding and tailored to problems non-perturbative in the disorder 
strength. A serious weakness is that (with few exceptions), it can not be applied to systems 
with particle interactions. The Keldysh technique is the method of choice for problems
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Z ZZ

Fig. 4.9 The idea behind the replica trick; for an explanation, see the main text.

Z —► ZR

with or without quantum disorder out of thermal equilibrium. It will be discussed in depth 
in chapter 12. Finally, the replica trick is the oldest and most widely applied applied 
formulation. Its applicability extends beyond disordered electron systems to numerous 
other disordered classical or quantum system. For example, the method has proven most 
fruitful in the theory of conventional and spin glasses.37 However, its application to non- 
perturbative problems is not innocuous and has occasionally been criticized (see below).

37 For a review of replica-based theoretical approaches in these fields we refer to G. Parisi, Glasses, 
replicas and all that, in Proc. Les Houches - Ecole d’Ete de Physique Theorique, vol. 77, ed. 
J.-L. Barrat et al. (Elsevier, 2004).

replica 
trick

The basis of the replica trick is to consider the Rth power of the partition function, 
Z R . For integer R one may think of ZR as the partition function of R identical copies 
of the original system (see fig. 4.9), hence the name “replica” trick. To appreciate 
the merit of this procedure, note the formal relations

O = -^ ln Z[ J] = -^ lim 1 ('R ln Z - 1) = -6 lim -1(ZR - 1) •
6 J 6 J r -O' Ry ’ 6J r -O' R

The crucial last equality states that expectation values of observables can be ob­
tained by performing computations with the Rth power of Z (instead of its log­
arithm). In the coherent state representation, the expression for the replicated 
partition function involves an effective action which is still linear in the disorder, 
(e dV )R =e dV , and hence comparatively easy to average. However, the replica­
averaging procedure involves one unusual feature - at the end of the calculation, 
one must implement the analytic continuation R ^ 0. More precisely, we will have 
to compute the function f (R) = 6JR-1(ZR)dis for every integer R and then ana­
lytically continue R ^ 0. As long as we are doing perturbation theory, f (R) will 
be polynomial in R (think why) and hence analytic. However, in non-perturbative 
problems, analyticity is no longer guaranteed and the application of the formalism 
becomes a tricky affair.

Specifically, for the disordered electron system, the replica partition function 
assumes the form

- £ S[ fa, J]) , (4.53)
a=1

where ^a,a = 1, • • • ,R, denotes the Grassmann field representing partition function 
number a, De = HR=1 D^a, and the action of the individual replicas in the absence 
of sources,

S [ ''a] = d ddr K (r) (~i^n - ^ - E F + V(r^ fa (r), (4.54)
n 2m n

n

ZR [ J] = D^ exp
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describes non-interacting fermions subject to the disorder potential. Since the source 
couples to all replicas identically, Ssource[p, J] 52a $ JO(pa) in symbolic notation, 
our our expectation value assumes the form

(O) = - lim - 5ZR[J] = lim - V(O(pa))^ 

x ' Rm0 R 5J Rmo r£-jx J/^
(4.55)

Assuming that all observables are evaluated as in Eq. (4.55), we no longer need to 
keep an explicit reference to the source field J.

Now, let us average the functional (4.53) over the distribution (4.50). A straight­
forward application of the Gaussian integral formula (3.19) leads us to the result

(ZR)dis = D Dp exp ( - £ Scl[pa ] - £ Sdis [pa, p] ) , (4.56)

a=1 a,b=1

where Scl = S |V=0 denotes the action of the clean (non-disordered) system, and

2
S > ■ [pa pb] = \ y / ddr pa (r)pa (r)?/?b (r)pb (r) (4 57)
‘Jdis[ p ,p ] — 2 / y I r I pm (r ) pm (r ) pn (r ) pn (r ) (4.5,)

represents an effective quartic interaction generated by the disorder average. Notice 
the superficial similarity between Sdis and an attractive short-range “interaction” 
term. However, in contrast with a dynamically generated interaction, (a) Sdis does 
not involve frequency-exchanging processes (the reason being that scattering off 
static impurities is energy conserving), and (b) it describes interactions between 
particles with different replica indices.

To understand the physics behind the attractive 
inter-replica interaction, consider the potential land­
scape of a given impurity configuration (see the fig­
ure). Irrespective of their replica indices, all Feynman 
amplitudes will try to trace out those regions in con­
figuration space where the potential energy is low, i.e., 
there will be a tendency to propagate through the 
same regions in the potential landscape. (Recall that 
all replica fields are presented with the same potential 
profile.) On average, this looks as if the replica fields 
are subject to an attractive interaction mechanism.

In summary, one may account for the presence of quenched or static disorder by 
(a) replicating the formalism, (b) representing observables as in Eq. (4.55), and (c) 
adding the replica non-diagonal contribution Eq. (4.57) to the action. This results in 
a theory wherein the disorder no longer appears explicitly. (Technically, the effective 
action has become translationally invariant.) The price to be paid is that the action 
now contains the non-linearity Eq. (4.57).
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4.4.2 Propagator of the disordered electron gas

Following the rationale of this chapter, we start our analysis of the theory with a 
discussion of the two-point function or propagator, G(x, y; t) = (^(x, t) ^(y, 0))^. 
The propagator is key to the understanding of the problem, both conceptually 
and methodologically, when it becomes a building block in the computation of 
observables in the next section.

Scattering time

elastic 
scatter­

ing time

elastic
mean 

free path

Before turning to the computation of the propagators, we need to introduce the 
concept of the elastic scattering time, t .

To this end, consider the quantum amplitude U(y, x; t) = (y|exp(—iHt) |x) for 
a particle to propagate from a point x to a point y in a time t for a particular 
realization of the disorder potential. One may think of this amplitude as the sum 
of all Feynman paths connecting the points x and y. On its journey along each 
path, the particle scatters (see the figure), implying that the action of the path 
depends sensitively on the particular realization of impurities. For large separations, 
|x - y|, the scattering phase becomes a “quasi-random” function of the impurity 
configuration. The same applies, of course, to the linear superposition of all paths, 
the net amplitude U.

Let us now consider the impurity-averaged value of _ _
the transition amplitude (U(x, y; t))dis. As we are av­
eraging over a superposition of random phases, one r \
may expect that the disorder average will be trans- I \

lationally invariant and, as a result of the random I .........

phase cancelation, rapidly decaying, (U(x, y; t))dis ~ \ I
exp(-|x — y|/2£). The decay constant £ of the aver- \ /
aged transition amplitude defines the elastic mean 'k
free path while the related time t = t/vF denotes the ----------
elastic scattering time. In the following, we develop a 
quantitative description of this “damping” process.

Within the framework of the coherent-state functional the transition amplitude 
(continued to imaginary time) is represented by the correlation function G(x, y; T) = 
(^(x,T) ^(y, 0))^, where the averaging is over the Grassmann action (4.54), and 
we write T for the imaginary-time argument to avoid confusion with the scatter­
ing time, t . As usual, it will be convenient to perform the intermediate steps of 
the computation in frequency-momentum space. We thus represent the correlation 
function as

T
G(x, y; T) = -L-d £ e-'+ip'x-ip yGp,p., (4.58)

^n, p, p'

where Mn is a fermionic Matsubara frequency and G(p, p'; m„) = (^n,pipnp/)^. 
(Keep in mind that, prior to the impurity average, the system lacks translational
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Fig. 4.10 In the literature the scattering off impurities is frequently denoted by dashed lines. Build­
ing blocks of the ensuing diagrammatic code include (a) the impurity scattering vertex, 
(b) the first-order self-energy diagrams, (c) the second-order self-energy diagrams, and (d) 
SCBA self-energy. In (d), the bold line represents the full Green function and the diagram 
implies that the self-energy is computed neglecting all crossed lines (see the discussion in 
section 4.3.2).

invariance, i.e., the Green function depends on two independent momentum argu­
ments.) Following the general prescription developed in the previous section, the 
correlation function averaged over a Gaussian disorder distribution is then given by 
(see Eq. (4.55))

= lim v; (Vaa „ V“ )F $p p' , R ^ 0 R / ' n,Pp n n,p / F p,p ‘
( G P, p' ,n )dis (4.59)

a=1

where Va is the a th component of the R-fold replicated field and (• • •) f now stands 
for the functional average, with an action including the interaction term (4.57) and 
the free fermion action Sd[u":] = n,p Vpa,p( —iup + (p2/2m) - Ef)Vpa,p.

In the following, we discuss the perturbative analysis of the propagator as a 
sequence of assignments whose detailed solution is given below. Readers are invited 
to test their understanding of perturbation theory by answering as many as possible 
of the questions below without consulting of the solutions.

Following the general arguments of section 4.3.1, the principal object of interest 
is the impurity-generated self-energy operator £. Let us prepare the analysis of 
this object by introducing some diagrammatic notation. We depict the impurity 
scattering vertex defining the action (4.57) as in fig. 4.10(a). As usual, setting 
p = (un, p), the free particle Green function G0,p = (iun — £p)-1 is denoted by a 
thin (directed) line. Using this notation, and following the rules of diagrammatic 
perturbation theory developed in chapter 4:

Q1: Consider £ « £(1) at first order in the scattering amplitude (fig. 4.10(b)). Show 
that the “Hartree-type” diagram (on the right) does not contribute (in the replica 
limit!). Identify the real and imaginary parts of the “Fock” contribution (left) to 
the self-energy, and show that

(4.60)Im£(1)( U ) = -sgn( Un ^1 = -sgn( Un) nu 2,
2 T

where v = v(EF) is the density of states at the Fermi energy. (Hint: Use the identity 
]£p F(£P) = f d£v(£)F(e) and make use of the Dirac identity (3.84).) Show that, in 
dimensions d > 2, Re £(1) actually diverges. Convince yourself (both formally and 
heuristically) that this divergence is an artefact of our modeling of the impurity 
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potential by a 5-correlated function (see Eq. (4.50) and the related discussion). 
Consider what could be the reason why the real part of the self-energy does not 
play a crucial role.

Q2: Turning to the second-order contribution £(2) (see fig. 4.10(c)), convince your­
self that, in dimensions d > 1, the diagram with crossed impurity lines is paramet­
rically smaller than the contribution on the right. (What is the small parameter of 
the expansion?)

Q3: This motivates computation of the self-energy in the self-consistent Born ap­
proximation (SCBA) (see fig. 4.10(d)). Show that the SCBA equation is solved by 
a self-energy whose imaginary part continues to be given by Eq. (4.60).

Q4: Putting everything together, we obtain the important result

p^dis iUn + EF — 2mm + 2sgn(Un) (4.61)

for the averaged propagator of the weakly disordered (kF£ ~ EFt 1) electron
gas.

We next aim to justify the identification of the self-energy with (one half of) the 
inverse scattering time. To this end, perform the Matsubara frequency summation 
by contour methods (noting the singularities of the Green function (4.61) and its 
decay at infinity). Then, taking T E— 1, consider the momentum integral to
conclude that

{G (x, y; f))dis = G d(x, y; T) e-|x-y|/2 ;. (4.62)

The decay at scales |x — y| ~ 2£ = vF(2t) underlies the identification above.

Q5: Why is the replica method exact in perturbation theory?

A1: Unlike the Fock diagram, where all replica indices are locked to the index of the 
incoming Green functions, the Hartree diagram contains one free replica summation. 
This summation yields an excess factor R that, in the limit R ^ 0, vanishes. For the 
same reason, all diagrams with closed fermion loops (loops connected to the external 
field amplitudes only by impurity lines or not at all) do not contribute to the 
expansion. Technically, the excluded contributions represent vacuum diagrams,38 

i.e., on the level of perturbation theory, the only39 effect of the replica limit is the 

38 To understand this assertion, consider the non-replicated theory prior to the impurity average.
Owing to the absence of “real” interactions, any closed fermion loop appearing in the expansion 
must be a vacuum diagram. After taking the impurity average, the loop may become connected 
to the external amplitudes by an impurity line. However, it remains a vacuum loop and would 
cancel against the expansion of the normalization denominator, if we were crazy enough to 
formulate the numerator-denominator expansion of the theory explicitly.

39 In a connected diagram, all replica indices are locked to the index a of the external field vertices. 
We thus obtain (symbolic notation) {G)dis ^ limr■" R a (/a/a} ^ limR ■" R x const■ = 
const. where the factor R results from the summation over a and we have used the fact that 
the correlation function {/a/?a} is independent of a (replica symmetry).
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elimination of all vacuum processes. We have thus shown that the replica theory 
exactly simulates the effect of the normalizing partition function present in the 
denominator of the unreplicated theory (see the discussion of the linked cluster 
theorem in section 4.1.3). This proves - all on the level of perturbation theory - 
the equivalence of the representations.

The representation of the disorder-generated interaction (4.57) in momentum 
space emphasizes the fact that impurity scattering exchanges arbitrary momen­
tum, but not frequency. A straightforward Wick contraction along the lines of our 
discussion in section 4.3.1 then yields the first-order contribution

d‘ ~n + EF - < = Y 2P / ‘d‘—t — inY 2 V sgn( ^ 

P'

where P J stands for the principal value integral. For d > 2, the increase in the DoS 
v(e) as a function of e makes the real part of the self-energy formally divergent. 
This divergence is an immediate consequence of the unbounded summation over p' 
- which is an artefact of the model.40 In any case, the real part of the self-energy 
is not of prime interest to us: all that Re Zpn = const. describes is a frequency- 
and momentum-independent shift of the energy. By contrast, the imaginary part 
Im £P1 )n = — ny2 v sgn (p,) describes the attenuation of the quasi-particle amplitude 
due to impurity scattering.

A2: The analysis of the second-order contribution £(2) parallels our discussion of 
the RPA in chapter 4: the Green functions Gp are sharply peaked around the Fermi 
surface |p| = pF. (Since the Matsubara index n in p = (p, n) is conserved in impurity 
scattering, we will not always write it out explicitly.) Representing the diagram 
oril li non linoe in m nm on 11 m eno oo nno i.Iufiiif X'1'2,'1 \ ' f ' '- ' 'i2wirn non crossing lines in momentum space, one outains z^n.c. ̂ ^2 p^ p2 (^'^Pi ) '-'rP2 ,
restricting both momenta to the Fermi surface, i.e., |pi|, |p21 — pf. By contrast, the 
nrM'rtpil'MI'tirM'i 'wifl'i pppQQpr] Iitipq 'tslrpQ flip fnrm \coumuuiion wim ciossen lines taives tiie 1 oil 11 c.c. ^^2 ->p^ P2 '~^Pi P2 p2 +p_pi'
Since all three momentum arguments have to be tuned to values close to pF, only 
one summation runs freely over the Fermi surface. To estimate the relative weight 
of the two contributions, we need to know the width of the “shell” centered around 
the Fermi surface in which the Green functions assume sizeable values. Since |G| = 
[(EF - p2/2m)2 + (Im G_1)2]_1, the width of the Lorenzian profile is set by Im G_1 . 
As long as we are working with the bare Green function, Im [G(0)]_1 = ^n x T is 
proportional to the temperature. However, a more physical approach is to anticipate 
that impurity scattering will broaden the width Im [G(0)]_1 ~ t_1 to a constant 
value (to be identified shortly as the inverse scattering time). Then, the relative 
weight of the two diagrams can be estimated as p F( d 1) / (p F( v F t )_1)d _1 = (p F £)d _1, 
where £ = vFt is the elastic mean free path and the numerator and denominator 
estimate the volume in momentum space accessible to the p1,2 summations in the

40 In reality, the summation will be finite because either (a) there is an underlying lattice structure 
(i.e., the p'-summation is limited to the Brillouin zone), or (b) the kernel K(r) describing the 
profile of the impurity potential varies on scales large in comparison with the Fermi wavelength. 
In this latter case, its Fourier transform has to be added to the definition of the scattering vertex 
above. The presence of this function then limits the p'-summation to values |p'-p | < £-1 < pF.
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non­
crossing 
approx­
imation

two diagrams. The important message to be taken away from this discussion is that, 
for weak disorder pF £-1 (which we have assumed throughout), and in dimensions 
d > 1, scattering processes with crossed impurity lines are negligible. Under these 
conditions, we are entitled to evaluate the self-energy (and, for that matter, all other 
observables) within the self-consistent Born approximation approximation. 
Since this approximation neglects crossing impurity lines, it is sometimes called the 
non-crossing approximation (NCA) to the weakly disordered electron gas.

A3: Drawing on the analogous discussion in section 4.3.2, the SCBA for the self­
energy is given by the diagram shown in fig. 4.10(d). The corresponding analytical 
expression takes the form (cf. Eq. (4.44))

S = Y- V
Sp,n Ld 

p'

1
u + EF - p'2 /2m - Sp/ ,n '

(4.63)

Guided by our results obtained at the first order of perturbation theory, we may 
seek a solution of (the imaginary part of) this equation by the ansatz Im Sp,n =
—sgn(un)/2t. Substitution of this expression into the SCBA equation gives

— T^sgnun ) ~ Y2Im d d-------7;----V------ —7 - — nY2 v sgn(Un),
2 T J iUn + E F — e + 2T sgn( Un)

where we have assumed that EFt 1. We have thus arrived at the identification
of t-1 = 2nvY2 and obtain the important result Eq. (4.61).

A4: The sign function contained in the self-energy of Eq. (4.61) implies that, in the 
contour integral representation of the Matsubara sum in terms of a complex variable 
z, we have an extended singularity (a cut) sgn(un) ^ sgn(Im z) at Re z = 0. We 
thus integrate along the contour indicated in the figure to obtain

1(G(x, y; T))dis = [

p

— e-eT(1 — nF(e))eip<x-y) Im ----------
2 n .................... \E F + e

Here, we are using 1 — nF instead of nF as a pole 
function because e-ZT(1 — nF(z)) is finite for large |z|, 
whereas e-ZTnF(z) is not. Turning to the momentum 
integral, we note that the essential difference from the 
Green function of the clean electron gas is an upgrade 
of the infinitesimal causality parameter in e + i5 to the 
finite 5 ^ 1 /2t . We need not do the momentum inte­
gral explicitly to conclude that, for e ^ t-1 EF, its 
poles are located at p ~ pF ± 2i^. In the evaluation of 
the integral by the method of residues, the exponen­

2m + 2T

tials exp(ip|x — y|) thus need to be evaluated at exp(ipF|x — y| — |x — y|/(2£)).
Consequently, the disorder-averaged Green function is related to the Green func­
tion of the clean system Gcl by the exponential damping factor factored out in 
Eq. (4.62).

A5: We refer to the discussion in A1.
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4.4.3 Diffusion

particle—
hole

propagator

How do local fluctuations in the electron density 8p(x) = p(x) — (p(x)), x = (r, t) 
relax in a given realization of a random potential? In the following, we consider the 
correlation function D(x) = ((8p(x)<5/5(0)))dis to answer this question. A good way 
to think about it is as a “response function” probing how 8p(x) changes in response 
to a density fluctuation at 0 = (0, 0). Notice that, since p ~ pp, D represents a 
four-point function.

INFO Classically, we expect D to show signatures of diffusion , a relaxation process that 
takes place over length scales much larger than the microscopic mean free path, £. To iden­
tify the underlying mechanism of “stability” think of D(x) = ((p(x)p(0)} {p(x)p(0)))dis 

as the product of two quantum mechanical amplitudes. The first, (p(x)p(0)}, describes 
the propagation of a particle created at 0 to x, and the second, (p(x)p(0)}, the propaga­
tion of a hole between the same space-time points. (Formally, the hole amplitude is the 
complex conjugate of the particle amplitude.)

To develop intuition for the behavior of this particle-hole propagator in the disor­
dered medium, we temporarily switch to a real-time description t ^ it and imagine the 
individual amplitudes represented as sums over Feynman paths weighted by their classical 
action. Individual paths, a, connect 0 = (0, 0) ^ x = (r ,t) and are traversed at energy e. 
This leads to the symbolic representation

D ~- j de de' AaAp exp (i (Sa (e) — Sp (e'))) ,

where the prefactors Aa are inessential to our discussion. As with the single-particle prop­
agator, the strong sensitivity of the actions Sa,p on the impurity potential implies that 
generic contributions (a, ft) to the path double sum (fig. 4.11 (a)) vanish upon impurity av­
eraging. By contrast, the “diagonal” contribution Ddiag = f dede^2 | Aa |2exp(~ (Sa (e) — 
Sa(e'))), is positive definite and will survive averaging. A glance at (fig. 4.11 (b)) indicates 
that it describes classical diffusion in the system.

However, the path double sum provides more than an elaborate quantum mechanical 
description of classical diffusion: we may expect the presence of select doublets (a, ft) 
formed by topologically distinct paths that even so provide a stable contribution to the 
pair propagator. For example, the two amplitudes depicted in fig. 4.11 (c) are different 
but locally propagate along the same path. This indicates that their actions should be 
approximately identical and hence cancel out in the exponent. Configurations of this loop 
topology are candidates for stable yet essentially non-classical contributions to the pair 
propagator. One may easily come up with other loop topologies (try it!) sharing the same 
qualitative signatures.

The merit of the above representation is that it anticipates the topologies of Feynman 
diagrams describing classical and non-classical aspects of the disordered electron gas. In 
the following, we will show how these contributions enter the quantitative description of 
the particle-hole propagator.

Below, we apply concepts very similar to those developed in section 4.3.2 to un­
derstand the spatial long-range character of the four-point function. Specifically,
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Fig. 4.11 (a) A generic pair of Feynman paths contributing to the density-density correlation function 
prior to averaging. (b) Particle and hole propagating along the same path in configuration 
space - the “diffuson.” (c) A non-classical contribution to the path sum.

thermo­
dynamic 

density 
of states

we will elucidate the diffusive character of this correlation function, and identify 
quantum contributions beyond diffusion.

Q1: Before turning to explicit computations, let us derive two exact relations 
obeyed by the Fourier transform Dq,um: show that limq .0, Dq,0 = L-dd^N is de­
termined by the thermodynamic density of states, d,N, and D0,um = 0, where 
N = (N) ^ denotes the number of particles in the system and, as usual, p o EF 

represents the chemical potential. Explain the origin of these two sum rules. (Hint: 
Consider particle number conservation.)

Q2: Represent the correlation function as D(x) = d^x)^^(lnZ)dis|M(x)=M, where 
p(x) is the generalization of the chemical potential to a space-time-dependent 
source field. As in the previous subsection, express the logarithm in terms of a 
replica limit and show that the momentum-frequency representation of D resembles 
that of the correlation function C(4) introduced in section 4.3.2. Using a Fourier con­
vention somewhat different from our standard choice, ^(x)=(T/Ld)1 /2 p e-ip' x^p, 
show that the frequency-momentum representation of D is similar to that of 
Eq. (4.45).

Q3: To compute the two-particle correlation function, one may apply concepts sim­
ilar to those introduced in section 4.3.2. In doing so, we will benefit from two major 
simplifications. First, the large parameter pF£ 1 plays a role similar to that of N 
in section 4.3.2. Second, we may make use of the fact that the momentum q Fourier 
conjugate to the argument |r | £ is much smaller than the Fermi momentum. Show 
that, under these conditions, the irreducible vertex r0,q,p,p< = (2nvT)-1 ^n^.'n col­
lapses to (the Fourier representation of) a single impurity vertex. (Since all field 
amplitudes that contribute in the replica limit carry the same replica index a, one 
may drop the replica structure from the notation.) Write down the Bethe-Salpeter 
equation for the full vertex.

Q4: Denoting the two individually conserved Matsubara frequencies of the two 
Green functions entering the particle-hole propagators by xn and xn+m, respec-
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tively, argue - formally and physically - why the cases of equal and opposite sgn(n) 
and sgn(n + m) must be considered separately. Why is n(n+m) < 0 the more inter­
esting case? Assuming opposite signs, we aim to solve the Bethe-Salpeter equation 
for the vertex rp,p<,q by expansion to leading order in the small parameters |q|£ < 1, 
and |wn |t ~ |wn+m |t 1. To begin, reason why, for these frequency/momentum 
values, the vertex will not depend on the “fast” momenta p, p'. To formulate the ex­
pansion, we will need two auxiliary identities: first, apply symmetry considerations 
to verify J ddp f (|p|)(v • p)2 = (v2/d) J ddp f (|p|)p2. Second, apply the theorem of 
residues to show that

L-d
£( G +)n++1 (G -)n- + 1 = 2 nin -- n +(n + + n-)! vt n++n -+1 nil Vi

n+! n-!
p

diffusion 
constant

where G± = (EF -p2/2m±i/2t)-1. Armed with these identities, expand the Bethe- 
Salpeter equation and show that rq — (2nvi2Ld(|wm| + Dq2))-1, where D — vFft/d 
defines the diffusion constant of a disordered metal and q - |q|.

A few remarks about this result are in order. First, note the absence of (q, wm)- 
independent constants in the denominator, which technically results from the 
cancellation of two terms in the vertex equation. (We have met with a similar can­
cellation in our discussion of the vertex of the generalized $4-theory.) Thanks to this 
cancellation, r(r,t) becomes a long-range object. Second, a Fourier transformation 
to real space shows that r is a solution of the diffusion equation (dT — D V2)r(t, r) — 
(2nLdT2)-1 <5d(r)5(t) (exercise), describing the manner in which a distribution ini­
tially centered at x — 0 spreads out in time.

Having the vertex for wnwn+m < 0 under control, we are now a few steps away 
from the final result for the density correlation function D(q). What remains to be 
done is (a) an attachment of Green function legs to the vertex, and (b) the addition 
of the “empty bubble” (see the second and first term in the first row of fig. 4.8), (c) 
summation over wn, and (d) the addition of the non-singular contribution of Green 
functions with Matsubara frequencies of equal sign. These calculations do not add 
much further insight (but are recommended as instructive technical exercises), and 
we just quote their result. Attachment of external Green functions to the vertex, 
as in (a) above, brings a multiplicative factor — Ld(2nv-)2, so that we obtain41

Dn,n+m (q) —
2 nv

Dq2 + | wm |,
wnwn+m < 0, (4.64)

diffusion 
mode

for the (singular contribution) to the impurity-averaged product of two Green func­
tions of different causality. This mode plays an important role as a building block 
in the analysis of the disordered electron gas and in the literature is called the dif­
fusion mode, or the diffuson. The empty bubble, (b), contributes a factor Ld2nv-, 
which we neglect in comparison to the singular vertex. There are m terms with 
wnwn+m < 0 in the sum T n(. . .), and so the diffuson enters the final result mul­
tiplied by a factor wm/2n. Finally, one can show that the infinitely many equal-sign

41 The overall minus sign comes from the reordering of Grassmann variables involved in the Wick 
contraction of (4.65); symbolically {ippipp) ^ — GG.
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Fig. 4.12 Maximally crossed contribution to the irreducible vertex. Second line: the corresponding 
Bethe-Salpeter equation.

Cooperon

configurations unun+m > 0 sum to the density of states, v.42 Adding everything up, 
we thus obtain D(q) = — vDq2(|um| + Dq2)-1 as the final result for our correlation 
function. Note how this result conforms with the two limiting conditions discussed 
in (A1) below. (For a non-interacting fermion system, the single particle density of 
states, Ldv, equals the thermodynamic one, v = L-dd^N.)

42 If you want to check this assertion, you will need to do the frequency summation before the 
momentum summation.

43 The denotation alludes to a similarity with the Cooper pair modes to be discussed in connection 
with superconductivity in the next chapter. They, too, represent pair correlations of quasi­
particles with nearly opposite momenta.

Q5: Can we extend the ab ove analysis to observe signatures of quantum modi­
fications of classical diffusion? A key hint follows from inspection of fig. 4.11(c). 
While the diffusion-like processes describe the propagation of particles and holes 
with nearly identical momenta, p + q and p, respectively, the situation if the loop 
is traversed in the opposite direction is different. Here, the momenta are nearly 
opposite, p + q and —p. This observation suggests that there must exist a long- 
range (singular for small q and um) contribution, rC, to the irreducible vertex 
representing this type of correlated motion. The diagrammatic representation of 
rC is shown in fig. 4.12: a sum over diagrams whose “maximally crossed” impurity 
lines reflect the fact that the particle and hole traverse a sequence of scattering 
events in reverse order. Formally, this diagram class is significant because it, too, 
contains one Fermi sphere summation per impurity line. The most economical way 
to see this is to imagine the lower of the two fermion propagators twisted by 180° 
(the second diagram in the figure). Superficially, it now resembles the previously 
explored vertex. The important difference, however, is that the arrows marking the 
fermion propagators point in the same direction. Proceed as in Q4 to compute rC 

and show that it equals Eq. (4.64).
In the literature, rC is called the Cooperon mode or Cooperon.43 The fact 

that the Cooperon mode has the same algebraic structure as the diffuson mode 
indicates that we have identified an important distinction between classical and 
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quantum dynamics. However, to fully explore its consequences, we need the more 
powerful field-theoretical machinery introduced in the next chapter.
Here are the answers to the above five questions.

A1: The functional expectation value of the particle number is given by (N} = 
f dT ddr (p(r,t))^ = f ddr (pum=0(r))^. Differentiating this expression with respect 
to p, and noting that the chemical potential couples to the action through the term 
p$ ddr f drp(r ,t ), we obtain44

'^{N} = j ddr ddr' «p0(r)p0(r'))^ - {p0(r)}^ {p0(r/))^] 

y ddr ddr' D „■=o(r - r7) = Ld Km Dq,0.

Particle number conservation demands that J ddr (<5p(r,t))^ = 0 at all times. Con­
sequently, J ddr D(r,t) = 0 or, equivalently, Dq=0,um = 0.

A2: It is straightforward to verify that the two-fold p-differentiation above yields 
the correlation function D .Now let us employ the replica formulation (ln Z)dis = 
limr0 -R (ZR — 1). Differentiating the right-hand side of this equation, one obtains

D (x) = lim — (1 a (x) ia (x) 1 b (0) ib (0)) ^.
R-0 R

To avoid the vanishing of this expression in the limit R ^ 0, we need to connect 
operators ip a and ib (ip b and ia) by fermion lines (thus enforcing a = b - otherwise 
the two-fold summation over a and b would produce an excessive factor R which 
would result in the vanishing of the expression in the replica limit). We thus obtain 
a structure similar to that discussed in section 4.3.2 (see fig. 4.13): two propagators 
connecting the points x and 0, where the role of the wavy interaction line of sec­
tion 4.3.2 is now played by the “interaction” generated by the impurity correlator 
( vv Y

Finally, substituting the Fourier representation of i a (x) into the definition of 
D, using the fact that (ipai ia + qip‘a.+q, I'a^) <x bqq< (momentum conservation in the 
averaged theory), and that the impurity lines do not exchange frequency, we obtain

T 1 .. .
Dq d d jim™ y y^1P1 ,wn1 P1+q ,wn+m 1 p2+q ,wn+m 1 p2 ,wn ^ . (4.65), n , n+m , n+m , n

^n P1P2

A3: As in our discussion of the self-energy, the condition that only diagrams con­
taining one free summation over the Fermi surface per impurity line contribute to 
leading order in (pf£)-1 eliminates all contributions with crossed impurity lines. 
Specifically, the only remaining contribution to the irreducible vertex is the single 
impurity line. As a consequence, the diagrammatic expansion of the correlation

44 From the expressions above it is, in fact, not quite clear why first we set Wn = 0 and only 
then q = 0. That this is the correct order of limits can be seen by generalizing ^ ^ ^(r) to a 
smoothly varying static field, evaluating the corresponding functional derivatives d/d^(r), and 
setting ^ = const. at the end of the calculation.
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p1, n

p1 + q, n + m

p1, n

p2 + q, n + m

p2, n

p1 + q, n + m

Fig. 4.13 Diagrammatic expansion of the diffuson mode.

function assumes the form shown in fig. 4.13. The Bethe-Salpeter equation for the 
impurity vertex (shaded in the figure) reads

r p 1 ,p 2 ,q = 2 nLdVT + 2 nLVT G p+q ,n+mG p ,nr p,p 2 ,q, (4.66)
p

where the Gs denote the impurity-averaged single-particle Green functions evalu­
ated in the SCBA and discussed in the previous section.

A4: In the solution of the Bethe-Salpeter equation, we encounter momentum inte­
grals over Green functions with Matsubara frequencies un,un+m. Comparing with 
Eq. (4.61), we notice that for unun+m > 0 these Green functions have their poles on 
the same side of the real axis, and the evaluation of the integrals by the theorem of 
residues vanishes. Physically, the continuation from positive (negative) Matsubara 
frequencies to the real axis defines a retarded (advanced) Green function. Prod­
ucts of two propagators of the same causality are rapidly oscillating, which is the 
physical principle behind the vanishing of the integral.

The expansion of the product of Green functions in the Bethe-Salpeter equation 
to leading order in the small energies un, un+m and in q • p/m reads as

Gp+qGp = G + G — (1 — iG + un+m - iG — un + (G +q • p/m)2 + • • • ) , (4.67)

where a term linear in q has been omitted as it will vanish upon integration over 
the angular coordinates of p.

We next assume rp,p<,q ~ rq. Physically, this is in the anticipation that, for the 
long time scales corresponding to |um |t 1, the diffusion process “forgets” about 
the direction of the incoming and outgoing microscopic electron trajectories. The 
integration over p - now decoupled from the vertex - is then carried out with the 
help of the two auxiliary identities, and we arrive at the relation

r _ 1 , A 2T 2 v F \ rr q ■■> + V1 - Tum - q~r)r q.

Solving this equation for rq, we obtain the final result for rq stated in the question.

A5: Let us now consider the irreducible vertex in a sector in momentum space where 
the sum of the upper incoming momentum, p1 , and lower incoming momentum, 
-p1 + q, is small. We can convince ourselves that, in this case, q is also conserved
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and each impurity insertion comes with an integration over a fast momentum. Now, 
consider the lower line turned around in such a way that the diagram assumes the 
form of a ladder structure. (Note that it still remains “irreducible” because the 
notion of irreducibility has been defined for fermion lines of opposite orientation.) 
The corresponding Bethe-Salpeter equation takes the form

2nvTLd + 2nvTLd G-p+qn1+ mG-pn1 rC '
p

Again, we assume that the Matsubara frequencies wn and wn+m carried by the 
upper and lower propagators are of opposite signs. An expansion of the Green 
functions followed by application of the two auxiliary identities of Q4 then readily 
leads to the result.

4.5 Summary and Outlook

rC
C

This concludes our introduction to the concepts of perturbation theory. We have 
seen that general perturbative expansions mostly have the status of “asymptotic” 
rather than convergent series. We have learned how to efficiently encode perturba­
tive series by graphical methods and how to assess the “importance” of individual 
contributions. Further, we have seen how the presence of a large parameter can be 
utilized to firmly establish infinite-order expansions. A number of recursive tech­
niques have been introduced to sum diagram sequences of infinite order.

However, a second look at the discussion in the previous sections shows that the 
central tool, the functional integral, did not play much of a role. All it did was to 
provide the combinatorial framework of the perturbative expansion of correlation 
functions. However, for that we hardly need the full machinery of functional inte­
gration. Indeed, the foundations of the perturbative approach were laid down in the 
1950s, long before people even began to think about the conventional path integral. 
(For a pure operator construction of the perturbative expansion, see the problem 
set.)

More importantly, the analysis so far has a serious methodological weakness: all 
subclasses of relevant diagrams have the common feature that they contain certain 
sub-units, more structured than the elementary propagator or the interaction line. 
For example, the RPA diagrams are organized in terms of polarization bubbles, the 
NCA diagrams have their rainbows, and the ladder diagrams their rungs. Within 
the diagrammatic approach, in each diagram these units are reconstructed from 
scratch, i.e., in terms of elementary propagators and interaction lines. However, 
taking seriously the general philosophy on information reduction declared at the 
beginning of the text, we should strive to make the “important” structural elements 
of an expansion our elementary degrees of freedom. This program is hardly feasible 
within purely diagrammatic theory. However, the functional integral is ideally suited 
to introducing degrees of freedom hierarchically, i.e., trading microscopic objects for 
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entities of higher complexity. The combination of functional integral techniques with 
perturbation theory presents a powerful theoretical machinery, which is the subject 
of the next chapter.

4.6 Problems

4.6.1 Technical aspects of diagrammatic perturbation theory

Taking the second-order expansion of the 04 Green function as an example, the aim of this 

problem is to discuss a number of technical aspects relating to the classication and the 

combinatorics of diagrams.

(a) In the ft4-theory, show that the full contraction of (x)ft4(y)ft4(y/)ft(x')) gen­
erates the 945 terms

9 G 0(x — x') G 4(0) + 72 G 0(x — x') G 2(y — y') G 2(0) + 24 G 0(x — x') G 0(y — y') 0 00 0

12 3

+ f 36G0(x — y)G0(x' — y)G0(0) + 144G0(x — y)G0(x' — y)G2(y — y/)G0(0)

^4 5

+ 96 G 0(x — y) G q(x’ — y) G 3(y — yz)
6

+ 144G0(x — y)G0(x; — y)G0(y — y)G2(0) +(y <—> y') . (4.68)
7 '

Try to reproduce the combinatorial prefactors. (b) Check that the disconnected 
terms cancel the “vacuum loops” from the expansion of the denominator. (c) Rep­
resent the corresponding diagrams in momentum space. Convince yourself that the 
“Kirchhoff law” discussed in the main text suffices to unambiguously fix the result.

Answer:

(a) The seven distinct pairings of the ten $-fields are shown in fig. 4.2 (and re­
ferred to here as diagrams 1-7 in the order in which they appear in the figure). By 
way of example, let us consider the combinatorial factor of diagram 2. There are 
3 • 2 = 6 ways to pair two fields $(y) and the same for $(yz). From these two contrac­
tions, we obtain a factor (6G(0))2 . Then, there are two possible ways of pairing the 
two remaining $ (y) with the two remaining $ (yz) leading to a factor 2G0 (y — y/). 
Finally, the pairing of $(x) with $(xz) gives a single factor G0(x — xz). Multiply­
ing all contributions, we obtain term 2. (b) To obtain all terms contributing to
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G(2) , both numerator and denominator of Eq. (4.14) have to be expanded to sec­
ond order (where the identification X[^] = ^(x)^(xz) is understood). In symbolic 
notation,

N0 + N1 + 1N2 + • • • 
1 + D i + 1D 2 + •••

— No + Ni — No D i + 2 N2 
G(1) '--------------

1
— N1D1 + N0 D 2 — 2 N0 D 2.

G2)

The expression for N2 is given by formula (4.68). From the main text, we know 
that N 1 = 3G0(x — x')G0(0) + 12G0(x — y)G0(0)G0(y — x') and D 1 = 3G2(0). 
Further, N0 = G0(x — x'). Finally, D2 reads

(t 4(y) </> 4(y,)> = 9 G 4(0) + 72 G 0(0) G 2(y — /) + 24 G 4(y — /).

Collecting all the terms, we obtain

N2 — 18 G 0(x — xr) G 4(0) —72 G 0(x — y) G3 (0) G 0(y — xr) +18 G 0(x — xr) G 0(0)

-(4+y^y')

—9 G 0(x — x') G 0(0) —72 G 0(x — x') G 2(0) G 2(y — y') 0 00

-1 -2

—24G 0(x — x')G 4(y — y;)

-3

= 144 G 0(x — y) G 0(x; — y) G 2(y — y;) G 0(0)
5

+ 144 G 0(x — y) G 0(x; —y;) G 0(y — y;) G 2(0)

6

+ 96 G 0(x — y) G 0(x' — y;) G 3(y— yz)

7

+(y /),

i.e., the set of connected diagrams shown in fig. 4.4. (c) This translates to a straight­
forward exercise in Fourier transformation.

4.6.2 Self-consistent T -matrix approximation

In section 4.4, we described the eects of static impurities on the electron gas within an 

eective model with Gaussian-distributed random potential. Here, we discuss an alternative 

approach, modeling impurities as dilute strong scattering centers in real space. Although many 

of the results obtained from these formulations are similar, it is sometimes preferable, or 

even necessary, to employ one or the other. The concrete aim of the present problem is to 

determine the scattering rate imposed by a collection of isolated impurities using diagrammatic 

perturbation theory.
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Consider a system of spinless electrons subject to a random pattern of Nimp non­
magnetic scattering impurities and described by the Hamiltonian H = H0 + Himp , 
where H0 = Xk ekckck,

Nimp Nimp

Himp = 7 f ddr 3(r - Ri)c* (r)c(r) = y ct(Ri)c(Ri),

i=1 i=1

and we have assumed that an impurity at position Ri creates a local potential 
y3(r - Ri) whose strength is determined by the parameter y (of dimensional­
ity energy/volume). Our aim is to compute the Green function Gn (r — r') = 
((cn(r)cn(r/)))imp, where n is a Matsubara frequency index and the configurational 
average (...)imp = L-dNimp Hif ddRi is defined by integration over all impurity 
coordinates.
(a) To begin, let us consider scattering from a single impurity, i.e., Nimp = 1. By 
developing a perturbative expansion in the impurity potential, show that the Green 
function can be written as Gn = G0,n + G0,nTnG0,n , where

Tn = (Himp + HimpG0,n (0)Himp + HimpG0,n (0)HimpG0,n (0)Himp + • • • )imp (4.69) 

denotes the T -matrix and Himp = y i 3(r - Ri) is the first-quantized represen­
tation of the impurity Hamiltonian. Show that the T -matrix equation is solved by 
Tn = L-d (Y-1 - G0,n(0)F1.

T -matrix INFO In the present problem, the T -matrix actually comes out as a c-number. More 
generally, for a Hamiltonian H = H0 + V split into a free part and an “interaction,” the 
T -matrix is implicitly defined through G = G + G0T G, where G0 = G(z) = (z - H)-1 

and G0 = (z - H0)-1 . Comparison with the geometric series expansion of G in V shows 
that this is equivalent to the recursion relation

T = V +VG0T. (4.70)

For a general interaction operator, T is an operator (possibly of infinite range), hence 
the denotation T-matrix. The denotation also hints at a close relation to the scattering S- 
matrix; the two objects carry essentially the same information. In the physics of scattering 
or that of quantum impurity problems, the T -matrix is a popular object to work with 
because it describes the “essence” of the scattering process via the recursion relation (4.70), 
which involves only V in the numerator and G0 in the denominator. This architecture is 
convenient for, e.g, the splitting of Hilbert space into physically distinct sectors in the 
solution of T -matrix equations (see the later problem 6.7.3 for an illustration).

For an in-depth discussion of the T -matrix formalism, we refer to textbooks on scattering 
theory.

(b) For a collection of random impurities, the bookkeeping in terms of a series ex­
pansion as in Eq. (4.69) becomes cumbersome. Instead, we turn to a diagrammatic 
representation as in fig. 4.14, where different crosses represent different impurities. 
In this series, we identify two types of diagrams: those with crossing impurity lines, 
and those without. Argue why the former class becomes irrelevant upon averag­
ing and in the limit of weak disorder (work in momentum space). What is the 
physical reason for their relative smallness (best argued in real space)? Convince
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x XI / \
as -------- + —s---- + —— + . . .

X A \
i -z \ /\\

= + -----" + + . . .

Fig. 4.14 Diagrammatic series expansion of the impurity-averaged Green function (for a discussion, 
see the main text).

yourself that the series is self-consistently summed by the representation in the final 
line. Identifying the self-energy with the circle, the algebraic representation of this 
expression reads

1
Gk =  ̂n Tn — n imp

1
Y-1 - G~n(0), 4.71)

G — k -  ̂n ,

T -matrix
approx­
imation

where nimp = Nimp/Ld is the impurity concentration. In the literature, this result 
is known as the self-consistent T -matrix approximation (SCTA). Comparing 
with the T -matrix of the single impurity, the difference is that the T -matrix of the 
dilute impurity system makes reference to the full Green function, which in turn 
contains the T -matrix. Hence the attribute self-consistent.
(c) As in the case of the Gaussian-distributed potential, the impurity self-energy 
defines the scattering time, t. Using the operator identity (1-O2)-1 — (1 — Oi)-1 = 
(1 — O2)— 1 (O)2 — Oi)(1 — O)1 )-1, and defining the real-frequency analytical contin­
uation T±( e) — T(iun ^ e ± id) (and the same for G), show that

T +(e) — T —(e) = T —(e)(G +(e, 0) — G—(e, 0))T + (e) = —2ni|T +(e)|2v,

where, as usual, v = v(e) denotes the density of states per unit volume. This leads to 
the “Golden Rule” result 1 /2t — —Im£+ = n|T +|2nimpv, expressing the scattering 
rate as a product of the transition rate ~ |T|2 and density of states.

Answer:

(a) A formal expansion of the Green function Gn = (iwn — H0 — Himp)-1 in Himp 

leads immediately to the series (4.69). Substitution of Himp = Yd(r — R), where R 
is the impurity position, we obtain T = (d(r — R)d(r' — R))impy(1 — yG0,n (0, 0))—1. 
Performing the average over R we arrive at the result. (b) The diagrams in fig. 4.14 
are in one-to-one relation to the different terms appearing when the expansion 
from (a) is generalized to multiple impurity Hamiltonians. Among them, there 
appear diagrams with crossing lines, such as number 5 in the second line. When 
averaged over the independent positions of the crosses, constraints in momentum 
space appear which violate the “one integration per impurity line rule.” In real 
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space, the crossing fourth-order diagram corresponds to a scattering path R1 — 
R2 —— Ri —— R2 , which for large impurity separation has less phase space than 
the competing sequence R1 — R1 — R2 — R2 . We arrive at the self-consistent 
T -matrix relation by straightforward diagrammatic manipulations, as indicated in 
the bottom part of fig. 4.14. (c) is obtained straightforwardly.

4.6.3 Kondo effect: perturbation theory 

In problem 2.4.7 we introduced the Kondo eect, describing the interaction of a local impurity 

with an itinerant band of carriers. (Those unfamiliar with the physical context and background 

to the problem are referred back to that section.) There we determined an eective Hamiltonian 

for the coupled system, describing the spin exchange interaction that acts between the local 

moment of the impurity state and the itinerant band. In the following, motivated by the seminal 
work of Kondo,45 we employ methods of perturbation theory to explore the impact of magnetic 

uctuations on transport. In doing so, we elucidate the mechanism responsible for the observed 

temperature dependence of the electrical resistance found in magnetic impurity systems.

The perturbation theory of the Kondo eect is one of those problems where the traditional 

formalism of second-quantized operators is superior to the eld integral (the reason being 

that perturbative manipulations on quantum spins are dicult to formulate in a eld integral 
language). More specically, the method of choice would be second-quantized perturbation 

theory formulated in the interaction picture, a concept discussed in great detail in practically 

any textbook on many-body perturbation theory but not in this text. For this reason, the 

solution scheme discussed below is somewhat awkward and not very ecient (yet fully sucient 

for understanding the essence of the phenomenon).

The phenomenology of the Kondo system can be explored in several different ways, 
ranging from the exact analytical solution of the Kondo Hamiltonian system46 to 
a variational analysis of the Anderson impurity Hamiltonian.47 In the following, 
we focus on the perturbative scheme developed in the original study of Kondo. 
Later, in problem 6.7.3, we will introduce a more advanced approach based on 
the renormalization group. The starting point of the analysis is the effective sd- 
Hamiltonian (2.50) introduced in problem 2.4.7. Setting Hsd = H0 + Himp, where

H0 = £ekck - ck-, Himp = 2 JS • s(r = 0),
k a

and s(0) = 2 £kk,aa, cka a--' ck'a', our aim is to develop a perturbative expansion 
in J to explore the scattering properties of the model. Here we have assumed that

45 J. Kondo, Resistance minimum in dilute magnetic al loys, Progr. Theor. Phys. 32, 37 (1964). 
46 N. Andrei, Diagonalization of the Kondo Hamiltonian, Phys. Rev. Lett. 45, 379 (1980), P. B.

Wiegmann, Exact solution of the s-d exchange model (Kondo problem), J. Phys. C 14, 1463 
(1981).

47 C. M. Varma and Y. Yafet, Magnetic susceptibility of mixed-valence rare-earth compounds, 
Phys. Rev. B 13, 2950 (1976).
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the exchange constant J is characterized by a single parameter, positive in sign 
(i.e., antiferromagnetic).

In problem 4.6.2 (c), we saw that the scattering rate associated with a system 
of impurities is specified by the T -matrix. Now, we are dealing with an impurity 
at a fixed position (no averaging). In this case, the impurity scattering does not 
conserve momentum, so that the scattering rate is given by

2b = nnLmdr Sd<k' IT +(£ )|k'' '^s 5 (£ k - £ k),

kz ,H1

where the symbol (•••)s = trs(---)/trs(1) indicates that the calculation of the 
electron self-energy implies an average over all configurations of the impurity spin. 
(Indeed, it is the presence of an internal impurity degree of freedom which makes 
the problem distinct from conventional disorder scattering.) The scattering time is 
proportional to the electric conductivity, and in this way experimentally observable. 
(a) Show that to leading order in the exchange constant J the scattering rate at 
e = eF is given by

21b = nc imp vJ2 S (S + 1),

where v denotes the density of states at the Fermi level. From this result, one can 
infer a temperature independent resistivity; hence, we have not yet explained the 
essence of the effect.
(b) At second order in the expansion in Himp , the T -matrix assumes the form 
T(2) = HHimp(e+ — HH0)-1 HHimp. Assuming for simplicity that we are working at zero 
temperature, |k, a) = cka |Q) is a configuration where a single particle with momen­
tum k, |k| > pf, and spin a is superimposed on the filled Fermi sphere. Convince 
yourself that the state Himp|k, a) is a linear combination of a single-particle state 
and a two-particle-one-hole state (see fig. 4.15). Determine the excitation energies 
of the two configurations. Use this result to compute (e + — H0)-1 Himp|k, a). Then 
show that the real part of the second-order matrix element is given by

Re k, a'|T(2)|k, a) = J2 £ ^-1-— (S(S + 1) — S • aHH,(0(£p) — 0(—£p))].

(4.72)

Hint: (i) In deriving this result, all vacuum contributions have to be discarded 
(since they cancel the partition function denominator of the properly normal­
ized perturbation series). The defining property of a vacuum contribution is that 
it factorizes into two independent ground state matrix elements. For example, 
(Q|ckHHimp(e+ — H0)-1 ck , |Q) (Q|Himp|Q) is of this type. (ii) Note that (S • a)2 = 
S2 — a • SS. (iii) Taking the real part of the T- matrix amounts to omitting the 
infinitesimal imaginary increment in the energy denominators.
At finite temperature, the Pauli blocking factors generalize to Fermi functions, 
0(e) ^ (1 — nf(e)) and 0( —e) ^ nF(e), and we obtain

Re(k', a'|:T(2) |k, a) = J2 1— (S(S + 1)5H, + + (2nf(^p) — 1)S • aH,H) .

(4.73)
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Fig. 4.15 The two spin-scattering processes contributing to the electron T-matrix at second-order 
perturbation theory. The second process involves a two-particle-one-hole configuration as 
an intermediate state.

Neglecting the first (non-singular, why?) contribution, one may note that the sec­
ond can be absorbed into a renormalization of the term first order in J derived 
above, 1 /(2t) = nvcimp Jff S(S + 1), where Jeff = J(1 + 2Jg(e, T)) and the function 
g(e,T) = 22P fDD d£ tanh(P£/2) depends sensitively on the bandwidth 2D of the 
itinerant electrons and on the energy e = ek of the reference state. Noting that

D
e

lim g(e, 0) = v ln 
e -O' firn g(0,T) = vln

D 
kBT

the effective exchange constant can be written as

Jeff = J 1 + 2vJ ln
D

max( e, T)

On substituting into the expression for the scattering rate, one finds that the resis­
tivity diverges logarithmically with temperature,

1 ~ 1
T ( T ) “ T0

1 - 4vJ ln

Kondo 
temper­

ature

which is the prime perturbative signature of the Kondo effect.
Although the perturbation theory suggests a divergence of the resistivity with 

temperature, the result remains valid only up to the characteristic Kondo tem­
perature scale,

Tk = D exp f—.
2vJ

At this temperature, the logarithmic correction becomes comparable to the first- 
order term, signaling a breakdown of perturbation theory. Experimentally, it is 
found that, at temperatures T TK, the resistance saturates. The origin of this 
saturation is that electrons in the itinerant band combine with the electron on 
the impurity site to form a singlet and in this way effectively screen the magnetic 
impurity.

INFO Although it was originally conceived for the problem of magnetic impurities 
in metals, effects of Kondo resonance formation have been observed in artificial 
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quantum dot structures.48 Here a microscopic quantum dot (with dimensions of about 
1 p,m) is sandwiched between two metallic leads. In the so-called Coulomb blockade regime 
(see problem 5.6.4), the charging energy of the dot plays the role of the local Hubbard 
interaction while the leads act as the Fermi sea. The development of a Kondo resonance 
below TK appears as a signature in the quantum transport through the dot. In particular, 
for temperatures T < TK , the differential conductance dI/dV shows a peak corresponding 
to the suppression of scattering off the impurity state.

48 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu et al., Kondo effect in a single-electron 
transistor, Nature 391, 156 (1998).

Answer:
( \ m i i • i • tt ji m j i rri rri( 1 tt tt • ji(a) To leading order in Himp, the T-matrix is given by T ~ T(1) = Himp. Using the 
facts that (k', a'|Himp|k, a) = JL-d(a|S • a|a'), we then obtain

21- ~ nNimp E ^|(k,a|Himp|k', a')|2^ 6(ek -

= nc imp J2 L - d E(( a |S • a | a'){a '|S • a | a »s E 6 (£ k — £ k')

= ncimpvJ2((a|S • aS • a|a))s = nJ2S(S + 1)cimpv,

e k')

where in the last line we have used the fact that ^2k 6(£k — £k') = Ldv and ((S • 
a)(S • a))s = S(S + 1) • 1.
(b) Substituting the explicit form of Himp and using the anticommutation relations 
of fermions, we obtain (summation convention)

Himp|k , a } = J c p1 M 1 (S • OM 1 M 2 ) c p2 M 2 c k' ,a' ^

= J^2(S • aMIa' )cplM1 |Q) — J^2 (S • aM 1M2 )cP1M1 ck'a' cP2M2 |Q) ,
p1 p1 p2

i.e., a linear combination of a one-particle state and a two-particle-one-hole state. 
Noting that the energies of the two contributions are given by eP1 and eP1 + £ k' — £ p2, 
respectively, multiplying by the “bra” (k, a|Himp, and observing that the overlap 
between a one-particle state and a two-particle-one-hole state vanishes, we obtain

Re(k,a|T^k',a') = J2(S • a  ̂1 )(S • Om 1 a')
P1P1

(^| c p'1 m 1 c P1M1

£ k — £ p1

+ J2(S • Om2M1 )(S • Om 1M2 ) E
P1P2p1p2

/O|c^, ci c / c c^ c^ c |O\ 
V £ | cp2 m2 ckacP1M1 cP1M1 ck2a1 cP2M2 P £/

£ k — £ P1 — £ kZ + £ p2

^ J 2(S • aaM )(S • aMa' )E 
p

e( Cp) 
e k — e p

+ J 2(S • a Ma' )(S • aaM )E 
p

e(—Cp) 
, e k — e p

where the arrow indicates that vacuum contributions have been discarded. Appli­
cation of the spin identity then leads directly to Eq. (4.72).
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Broken Symmetry and Collective 

Phenomena

SYNOPSIS Previously, we have seen how perturbative descriptions of weakly interacting 
theories may be formulated in a manner essentially detached from the field integral. (The 
same formalism could have been, and has been, developed within the framework of the 
“old” quantum field theory and second quantization.) In this chapter, we will learn how 
this approach becomes stronger, both conceptually and methodologically, when integrated 
more tightly into the field integral framework. In doing so, we will see how the field integral 
provides a method for identifying and exploring nontrivial reference ground states - “mean 
fields.” A fusion of perturbative and mean field methods will provide us with analytical 
machinery powerful enough to address a rich variety of applications including superfluidity 
and superconductivity, metallic magnetism, and the interacting and disordered electron 
gas.

As mentioned in chapter 4, the perturbative machinery is but one part of a larger 
framework. In fact, the diagrammatic series already contained hints indicating that 
a straightforward expansion of a theory in the interaction operator might not always 
be an optimal strategy: all previous examples that contained a large parameter N - 
and usually it is only problems of this type that are amenable to controlled analyt­
ical analysis - shared the property that the diagrammatic analysis bore structures 
of higher complexity. (For example, series of polarization operators appeared rather 
than series of the elementary Green functions, etc.) This phenomenon suggests that 
large-N problems should qualify for a more efficient and, indeed, a more physical 
formulation.

While these remarks might appear to be largely methodological, the rationale 
behind searching for an improved theoretical formulation is much deeper. With our 
previous examples, the perturbative expansion was benign. However, we already 
saw some glimpses indicating that more drastic things may happen. For example, 
for frequencies approaching the plasma frequency, the polarization operator of the 
weakly interacting electron gas developed an instability. The appearance of such 
instabilities usually indicates that one is formulating a theory around the wrong 
reference state (in that case, the uniformly filled Fermi sphere of the non-interacting 
electron gas). Thus, what we would like to develop is a theoretical framework that 
is capable of detecting the right reference states, or mean fields, of a system. We 
would like to efficiently apply perturbative methods around these states and do so 
in a language drawing upon the physical rather than the plain microscopic degrees 
of freedom.

233
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In this chapter, we develop a functional-integral-based approach that meets these 
criteria. In contrast with the previous chapters, the discussion here is decidedly 
biased towards concrete application to physically motivated problems. After the 
formulation of the general strategy of mean field methods, the following section 
addresses a problem that we have encountered before, the weakly interacting elec­
tron gas. The exemplification of the new concepts on a known problem enables 
us to understand the connection between the mean field approach and straightfor­
ward perturbation theory. In subsequent sections we then turn to the discussion 
of problems that lie firmly outside the range of direct perturbative summation, 
superfluidity and superconductivity.

Roughly speaking, the functional integral approach to problems with a large 
parameter proceeds according to the following program.

1. First, one must identify the relevant structural units of the theory. (This part 
of the program can be carried out efficiently using the methods discussed 
previously.)

2. Second, it is necessary to introduce a new field - let us call it ^ for concrete­
ness - that encapsulates the relevant degrees of freedom of the low-energy 
theory.

3. With this in hand, one can then trade integration over the microscopic fields 
for integration over ^, a step often effected by an operation known as the 
Hubbard-Stratonovich transformation.

4. The low-energy content of the theory is then usually explored by subjecting 
the resulting action S[^] to a stationary phase analysis. (The justification for 
applying stationary phase methods is provided by the existence of a large pa­
rameter N 1.) Solutions to the stationary phase equations are generically 
called mean fields. Mean fields can either be uniquely defined or come in dis­
crete or continuous families. In the latter case, summation or integration over 
the mean field manifold is required. Often, at this stage, instabilities in the 
theory show up - an indication of a physically interesting problem!

5. Finally, the nature of the excitations above the ground state is described by 
expanding the functional integral around the mean fields. From the low-energy 
effective (mean field + fluctuations) theory one can then compute physical 
observables.

In the next section, we will illustrate this program on a specific example studied 
earlier by diagrammatic methods.

5.1 Case Study: Plasma Theory of the Electron Gas

REMARK In this section, the electron spin does not play a significant role, and we 
assume spinless fermions for simplicity. (Alternatively, one may assume the electron gas 
to be spin-polarized by application of a strong magnetic field.)
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Let us return to the field theory of the interacting electron gas (see section 4.2.2),

S [p] = T p p(-iwn + p---------AHp + T3 pp+qpp'-qV(q)pp' pp,
2m 2L

p pp' q

where V(q) = 4ne2/|q|2, and p = (wn, p) are four-momenta. Being quartic in the 
fields P , the Coulomb interaction prevents explicit computation of the P-integral. 
However, it is actually a straightforward matter to reduce, or “decouple,” the in­
teraction operator, bringing it to a form quadratic in the fields P. This is achieved 
by a technical trick involving a tailor-made Gaussian integral:

5.1.1 Hubbard-Stratonovich transformation

Let us multiply the functional integral by the “fat unity”

1 = [ D' exp [-2T3 pV-1(q)$-q2L q

where ^ represents a real bosonic field variable, and a normalization constant 
has been absorbed into the definition of the functional measure I.)q. Notice that, 
here, the sum runs over a four-momentum q = (wm, q) containing a bosonic Mat- 
subara frequency. Employing the variable shift oq ^ oq + iV(q)pq, where pq = 
T Zp PpPp+q, one obtains

1 = D Dp exP (— 2T3 pqV —1(q)p-q - 2iP-qpq - PqV(q)P-q)2L q

The rationale behind this procedure can be seen in the last contribution to the 
exponent: this term is equivalent to the quartic interaction contribution to the 
fermionic path integral, albeit with opposite sign. Therefore, multiplication of our 
unity by Z leads to the field integral Z f D^Dpe-S[], where

S[''] = 2T3' qV-1(q)p-q+TPp ((-iwn+ 2m -sq,0+ LT^^ Pp-q

q p,q

(5.1) 
denotes the action, i.e., an expression that is free of quartic field interactions of pa.

To gain intuition for the nature ofthe action, it is helpful to rewrite S in a real 
space representation. With ^q = f^ dr f ddr e- i q^r+iWT ^ (r ,t ), one may confirm 
that (exercise)

S[^,P] = [ dT d d3 A ^—2(d0)2 + P dd- - d----- M + i^ P
J [8ne2 \ 2m J

Physically, ^ couples to the electron degrees of freedom as a space-time-dependent 
(imaginary) potential, while the first term reflects the Lagrangian energy density 
associated with the electric component of the electromagnetic field. Before proceed­
ing, let us step back and discuss the general philosophy of the manipulations that 
led from the original partition function to the two-field representation above.
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Hubbard-
Stratonovich 

transfor­
mation

INFO The “decoupling” of quartic interactions by Gaussian integration over an auxiliary 
field, is generally known as a Hubbard—Stratonovich transformation. (For a previous 
example, see our discussion of the Ising model on page 174.) To make the working of the 
transformation more transparent, let us reformulate it in a notation that is not burdened 
by the presence of model-specific constants. Consider an interaction operator of the form 
Sint = VapYsftaftpftYfts (summation convention), where ft and ft may be either bosonic 
or fermionic field variables, the indices a, ft,... refer to an unspecified set of quantum 
numbers, Matsubara frequencies, etc., and VapYS is an interaction matrix element. Now, 
let us introduce composite fields pap = ftaftp in order to rewrite the interaction as Sint = 
VapYs pappYs . The notation can be simplified still further by introducing composite indices 
m = (aft), n = (yS), whereupon the action Sint = pmVmnpn acquires the structure of a 
generalized bilinear form. To reduce the action to a form quadratic in the fts, one may 
simply multiply the exponentiated action by unity, i.e.,

exp(-m.....m..n.pY.. ) = / Dft exp —1 * ftm Vmn ftn ) exp (-prnVrnnpn) ,

1 Here, we have assumed that the matrix V is symmetric. If it is not, we can apply the relation
PmVmnPn = PTVP = 2 PT((V + VT)P^ to symmetrize the interaction.

where ft is bosonic. (Note that here V—1 represents the matrix elements of the inverse 
and not the inverse (Vmn)-1 of individual matrix elements.) Finally, applying the variable 
change ftm ^ ftm + 2i(V p)m, where the notation (V p) is shorthand for Vmnpn, one obtains

exp ( — pm Vmnpn ) — I Dft exp ^— 4 ftmVmn ftn — iftmpm

i.e., the term quadratic in p has been cancelled.1 This completes the formulation of the 
Hubbard-Stratonovich transformation. The interaction operator has been traded for in­
tegration over an auxiliary field coupled to a ft-bilinear (the field ftm pm).

> In essence,the Hubbard-Stratonovich transformation is tantamount to the Gaussian 
integral identity (3.13) but read in reverse. An exponentiated square is removed in 
exchange for a linear coupling. (In (3.13) we showed how terms linear in the integration 
variable can be removed.)

> To make the skeleton outlined above into a well-defined prescription, one has to be 
specific about the meaning of the Gaussian integration over the kernel ftmVm-n ftn : one 
needs to decide whether the integration variables are real or complex, and safeguard 
convergence by making sure that V is a positive matrix (which is usually the case on 
physical grounds).

1

> There is some freedom as to the choice of the integration variable. For example, the 
factor 1/4 in front of the Gaussian weight ftm Vm-n  ftn has been introduced for mere 
convenience (i.e., to generate a coupling ftmpm free of numerical factors). If one does 
not like to invert the matrix kernel Vmn, one can scale ftm ^ (Vft)m, whereupon the 
key formula reads

1

exp ( PrnVrnn Pn) — D Dft exp — 4 ftmVmnftn iftmVmnp^^ .

EXERCISE Show that the passage from the Lagrangian to the Hamiltonian formulation of 
the Feynman path integral can be interpreted as a Hubbard-Stratonovich transformation.
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Fig. 5.1

( a fij

(j 8)
(a) "" (b) (c)

The different channels of decoupling an interaction by Hubbard-Stratonovich transforma­
tion. (a) Decoupling in the “density” channel; (b) decoupling in the “pairing” or “Cooper” 
channel; and (c) decoupling in the “exchange” channel.

direct 
channel

exchange 
channel

Cooper 
channel

As defined, the Hubbard-Stratonovich transformation is exact. However, to make it a 
meaningful operation, it must be motivated by physical considerations. In our discussion 
above, we split up the interaction by choosing pa-. as a composite field. However, there 
is clearly some arbitrariness with this choice. Why not, for example, pair the fermion- 
bilinears according to (^a^p)(>:Y^s), or otherwise? The three inequivalent choices of pair­
ing up fields are shown in fig. 5.1 where, as usual, the wavy line with attached field vertices 
represents the interaction, and the dashed ovals indicate how the fields are paired.

The version of the transformation discussed above corresponds to fig. 5.1(a). This type 
of pairing is sometimes referred to as decoupling in the direct channel. The designation 
becomes more transparent if we consider the example of the spinful electron-electron 
interaction,

S int = 21 y dT j ddrddr' ^ (r ,t ) $„' (r ,t ) V (r - r') >.Y > (r ,t ) -- (r ,t ),

i.e., here, a = ft = (r ,t, a), y = S = (r ,t, a'), and Va@Y$ = V (r — r'). The “direct” de­
coupling proceeds via the most obvious choice, i.e., the density p (r ,t ) = fta (r ,t ) fta (r ,t ). 
One speaks about decoupling in a “channel” because, as will be elucidated below, the 
propagator of the decoupling field can be interpreted in terms of two Green function lines 
tied together by multiple interactions, a sequential object reminiscent of a channel.

However, there are other choices for p. Decoupling in the exchange channel (fig. 5.1(c)) 
is generated by the choice paS ~ ftafts, where, in the context of the Coulomb interaction, 
the reversed pairing of fields is reminiscent of the exchange contraction generating Fock- 
type contributions. Finally, one may decouple in the Cooper channel (fig. 5.1(b)) paY ~ 
ftaftY, ppY = p\fp. Here, the pairing field is conjugate to two creation operators. Below, we 
will see that this type of decoupling is tailored to problems involving superconductivity.

The remarks above may convey the impression of arbitrariness. Indeed, the “correct” 
choice of decoupling can be motivated only by physical reasoning. Put differently, the 
transformation as such is exact, no matter what channel we choose. However, later on we 
will want to derive an effective low-energy theory based on the decoupling field. In cases 
where one has accidentally decoupled in an “unphysical” channel, it will be difficult, if 
not impossible, to distill a meaningful low-energy theory for the field ft conjugate to p. 
Although the initial model still contains the full microscopic information (by virtue of the 
exactness of the transformation) it is not amenable to further approximation schemes.

In fact, one is frequently confronted with situations where more than one Hubbard- 
Stratonovich field is needed to capture the full physics of the problem. To appreciate this 
point, consider the Coulomb interaction of spinful fermions in momentum space:
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S int [ " ] = 2L3 / y "a'P1 "a' P 3 V (P1 — P2 ) "a' P 4 "'P 2 SP1-P 2+ P 3-P 4 . (5'2)
p1 ,...,p4

We can decouple this interaction in any one of the three channels discussed above. However, 
“interesting” physics is usually generated by processes where one of the three unbounded 
momenta entering the interaction vertex is small. Only these interaction processes have 
a chance to accumulate an overall collective excitation of low energy (see our previous 
discussion of the RPA, the interacting electron gas, and many of the examples to fol­
low). Geometrically, the three-dimensional Cartesian space of free momentum coordinates 
(p1 , p2 , p3) entering the vertex, contains three thin layers, where one of the momenta is 
small, (q,p 2 ,p 3), (p 1 ,q,p 3), (p 1 ,p 2 ,q), | q | | pi |. (Why not make all momenta small? Be­
cause that would be in conflict with the condition that the Green functions connecting to 
the vertex be close to the Fermi surface.) One may thus break down the full momentum 
summation to a restricted summation over the small-momentum sub-layers:

_ , T3 /V . ... , V . V . ... ,Sint[" ] ~ 2L3 E ("ffP^ffP + qV(q)"azpz"azp'-q "^P "azp+qV(p p)"azpz + q"apz

p,p' ,q

— " ap"a'-p + q V (p' — p) "ap' "a'-p' + q) .

Now, each of these three contributions defines its own slow decoupling field. The first 
term should be decoupled in the direct channel pd ,q ^52P "ap"ap+q, the second in 
the exchange channel px,aa/q ^52P "ap"a'P+q, and the third in the Cooper channel 
P c ,aa' q ^^2, " ap"a'—P+q. One thus winds up with an effective theory that contains three 
independent slow Hubbard-Stratonovich fields. (Notice that the decoupling fields in the 
exchange and in the Cooper channel explicitly carry a spin structure.)

In our discussion of the high-density limit of the electron gas above, we decoupled 
in the direct channel. That choice was made since, drawing on our previous discussion, 
we knew that the relevant contributions are generated by an RPA-type contraction of 
fields pd,q ^52p "ap"ap+q, where q is small. If we had not known this, an analysis of the 
three-fold Hubbard-Stratonovich decoupled action would have led to the same conclusion. 
Generally, if in doubt, one should decouple in all available channels and let the mean field 
analysis outlined below discriminate between the relevant fields.

At the expense of introducing a second field, the Hubbard-Stratonovich transfor­
mation provides an action quadratic in the fermion fields. The advantage of this 
representation is that the fermion integration can be carried out by the Gaussian 
integral formula (3.62), with the result

Z = D D^ exp |—ZT3 V 2qV-1(q)2-q) det(<G —1), <G—1 = -i& + p- - p + i<^,
2L3 2m

q

where, as usual, the circumflexes appearing in the argument of the determinant 
indicate that symbols have to be interpreted as operators (acting in the space of 
Matsubara and Hilbert space components), and the notation (G-1 is motivated by 
the structural similarity to an inverse Green function.

The standard procedure to deal with the determinants generated at intermediate 
stages of the manipulation of a field integral is to simply re-exponentiate them. 
This is achieved by virtue of the identity
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ln det A = tr ln A (5.3)

valid for arbitrary (non-singular) operators A* 2 Thus, the quantum partition func­
tion takes the form Z = J !)'■<-S[&], where

Since the remaining integral over c cannot be made exactly (but we expect the 
emergence of a large control parameter), we turn to the next best approach, a 
stationary phase analysis. We thus seek solutions of the saddle-point equations

for all q = (q, wn) with q = 0. (Why is q = 0 excluded? Recall our discussion of the 
Hartree zero-momentum mode and charge neutrality in section 4.2.2.) Solutions 

mean fields of such equations are commonly referred to as mean fields. The origin of this 
denotation is that, from the perspective of the fermions, p2/2m — ^ + i^ resembles 
the effective Hamiltonian in the presence of a background potential, or “mean” 
field.

The concrete evaluation of the functional derivative 8S/8^ leads us to question 
how one differentiates the trace of the logarithm of the operator G-1, with respect 
to rf>. Owing to the presence of the trace, the differentiation can be carried out as if 
G were a function:3 8,./qtrln(G-1) = tr(G8,.qG-1). Comparing with the momentum 
representation of Eq. (5.1), we find that (8,-,qG-1)p,p< = iTL-38p<,p-q and from 
there follows tr(G8q/qG-1) = iTL-3 ^2p Gp-q,p. The resulting saddle-point equation 
assumes the form

2 Equation (5.3) is readily established by switching to an eigenbasis, whereupon one obtains 
Indet A = )> In ea = trln A, where ea are the eigenvalues of A and we have used the fact that

the eigenvalues of In A are In Ea.
3 Consider an operator A(x) depending on some parameter x. Let f (A) be an arbitrary function 

(f (A) = ln A in the present application). Then

dxtr(f (>!)) = dx V f(^tr(An) = V f(^tr((dxA)An-1 + A(dxA)An-2 + •••) 
n! n!

nn

= V nff (n)(°)tr(An-1(dx.4)) = tr(f'(A)dxA), 
n!

n

where, in the third equality, we have used the cyclic invariance of the trace.

T
S [  ̂] = 2L3^ ^q V 1(q) -—q -trln( G 1) ■ (5.4)

q

At this point, steps 1, 2, and 3 of the general program outlined ab ove have been 
accomplished, and the problem has been mapped to an integral over the auxiliary 
field. No approximations have been made so far.

5.1.2 Stationary phase analysis

8S [ ^ ] = 0
8 ■ q
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-^-S[$] = V-1(q)$-q - i £ G[$]p-q,p = 0, (5.5)

where the notation emphasizes the dependence of G on ^.

INFO Almost every functional stationary-phase program involves the differentiation of 
trace logs of operators containing auxiliary fields. While the details of the program vary 
from case to case, the general strategy is always the same: use the presence of the trace 
to differentiate the logarithm to an inverse, and then represent the operator as a matrix 
containing the matrix elements of the auxiliary field. Since the auxiliary field enters that 
matrix linearly, the differentiation is easy. Finally, perform the trace. The procedure needs 
some familiarization but after a while becomes routine.

Equations of the above form are generally solved by making a physically moti­
vated ansatz, i.e., by guessing the solution. This ansatz should take the symme­
tries of the equation (both space-time symmetries and internal symmetries of the 
fields) into account. At present, all we have to work with is the space-time transla­
tional invariance of the problem, and so the first guess is a homogeneous solution, 
^(r, t) = </> = const. One thus relies on the picture that a spatially and temporarily 
varying field configuration will be energetically more costly than a constant one, 
and therefore could not provide a stable extremal point.

INFO Be aware that there exist translationally invariant problems with inhomogeneous 
mean fields; or a homogeneous solution exists, but it is energetically inferior to a textured 
field configuration. Indeed, there may be sets of degenerate solutions, etc. Often, when new 
theories describing an unknown territory have been developed, the search for the “correct” 
mean field turns out to be a matter of long, and sometimes controversial, research.

In the present context, spatiotemporal homogeneity and charge neutrality trans­
late to the trivial solution oq = 0. To see this, recall that ^0 is not defined (a 
consequence of the charge neutrality condition). With all components oq=0 = 0, 
Gp,p' x Gp' becomes diagonal in momentum space. As a consequence, both terms 
in the stationary phase equation vanish. We have thus found an (admittedly trivial) 
solution, and thus completed step 4 of the general program outlined at the start of 
the chapter.

5.1.3 Fluctuations

We now proceed to expand the functional in fluctuations around $ = 0. Since the 
mean field solution vanishes, it makes no sense to introduce new notation, i.e., we 
will also denote the fluctuations by the symbol $. As regards the first term in the 
action (5.4), it already has a quadratic form. The logarithmic contribution can be 
expanded as if we were dealing with a function (again, a consequence of the trace), 
i.e.,

trln G-1 = trln G-1 + i tr(G0$) + |tr(G00G0ft) + • • • ,
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where G-1 = wj — p2/(2m) + ^ is the momentum and frequency diagonal operator 
whose matrix elements give the free Green function of the electron gas. Now, let us 
discuss the terms appearing on the right-hand side in turn. Being ^-independent, the 
first term is a constant describing the non-interacting content of the theory. Indeed, 
11exp(tr ln G0-1) = exp(—tr ln G0) = det G0-1 = Z0 is just the partition function 

of the non-interacting electron gas. As it is linear in ^, the second term of the 
expansion vanishes by virtue of the stationary phase condition. (Perhaps pause 
for a moment to think about this statement.) The third term is the interesting 
one. Remembering that ^ represents an effective voltage, since this term describes 
the way in which potential fluctuations couple to the electron gas it must encode 
screening.

To resolve this connection, let us make the momentum dependence of the second- 
order term explicit (exercise):

^2 G o ,p^qG o ,p+q $ - q = 2L ^2 n q '"G $—q, 
p,q q

where, once again, we encounter the polarization operator (4.28) (excluding a factor 
of 2 as we are presently working with spinless fermions.) Combining with the first 
term in the action, one finally obtains

T ( cj2 \Seff[*] = 273 E M q — nq *-q + O(*4), (5.6)
2 l \ 4 n e i

q

2tr( Go >Go ^) = 2 f L3

where we note that odd powers of ^ vanish by symmetry (exercise).
Physically, the coupling to the medium modifies the long-range correlation ~ q-2 

of the effective potential ^. This screening effect, via the tr(G^G^) polarization bub­
ble, coincides with that of the effective RPA interaction (4.37) derived diagrammat- 
ically in the previous chapter. From here it is a one-line calculation to reproduce 
the result for the RPA free energy of the electron gas discussed previously. Gaus­
sian integration over the field ^ (step 5 of the program) leads to the expression 
ZRPA = Z0 nq(1 — 4ne2q-2nq)-1 /2, where we note that the $-integration is nor­
malized to unity, i.e., for n = 0 the integral collapses to unity. Taking the logarithm, 
we obtain the free energy

FRPA = — T(ln Z — ln Zo) = T £ ln (1 — 4^nq 

2 q q2

in agreement with Eq. (4.27).
At this point, it is instructive to compare the two approaches to the problem: di- 

agrammatics and field integration. We first note that the latter indeed leads to the 
“reduced” description we sought: an effective degree of freedom, $, coupling to the 
single physically relevant building block of the theory, the polarization bubble, nq. 
The downside is that we had to go through some preparatory analysis to arrive at 
this representation. However, this turned out to be an effort well invested. After the 
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identification of $ as the appropriate Hubbard-Stratonovich field, the construction 
proceeded along the lines of a largely automated program (seeking saddle-points, 
expanding, etc.). In particular, there was no need to do battle with combinatorial 
problems. Further, the risk of missing relevant contributions, or diagrams, in the 
expansion of the theory is less pronounced than in diagrammatic approaches. But, 
undoubtedly, the most important advantage of the functional integral is its exten­
sibility. For example, an expansion of the theory to higher orders in ^ would have 
generated an interacting theory of voltage fluctuations. The direct and error-free 
summation of such correlations beyond the RPA level by diagrammatic methods 
would require more refined skills.

The mean field optimizing the problem above is particularly simple, with ^ = 0. 
More interesting situations arise when one encounters non-vanishing mean field 
configurations and the perturbation theory has to be organized around a nontrivial 
reference state. In the next section we discuss an important case study where this 
situation is realized. (See problem 5.6.7 for an example closer to the current problem 
of the electron plasma.)

5.2 Bose-Einstein Condensation and Superfluidity

Previously, we considered the influence of weak Coulomb interaction on the prop­
erties of the electron gas. In the following, our goal will be to consider the phases 
realized by a weakly interacting Bose gas. To this end, let us introduce the quantum 
partition function Z = J Dee-S[^], where

S [ ^ ]^y dT j ddr (^>(r ,t )(dT + H0 - p,) ^ (r ,t ) + 2( ^(r ,t ) ^ (r ,t ))2} . (5.7)

Here ^ represents a complex field subject to the periodic boundary condition 
^(r, P) = ^(r, 0). The functional integral Z describes the physics of a system 
of bosonic particles in d dimensions subject to a repulsive contact interaction of 
strength g > 0. For the moment the specific structure of the one-body operator H0 

need not be specified. The most remarkable phenomena displayed by systems of this 
type are Bose-Einstein condensation (BEC) and superfluidity. However, contrary 
to a widespread belief, these two effects do not depend on each other: superfluidity 
can arise without condensation and vice versa. We begin our discussion with the 
more elementary of the two phenomena.

5.2.1 Bose-Einstein condensation

At sufficiently low temperatures the ground state of a bosonic system can involve 
the condensation of a macroscopic fraction of particles into a single state. This



243 5.2 Bose-Einstein Condensation and Superfluidity

Bose—
Einstein 
conden­

sation

phenomenon, predicted in a celebrated work by Einstein, is known as Bose— 
Einstein condensation. To understand it within the framework of the present 
formalism, let us temporarily switch off the interaction and assume the one-particle 
Hamiltonian to be diagonalized. In the frequency representation, the partition func­
tion is then given by

Zo = Z|g=0 = J D^ exp ^-T^ !a (-:n + ^a ) !

where ^a = ea — p,. Without loss of gen­
erality, we assume that the eigenval­
ues ea > 0 are positive with a ground 
state e0 = 0.4 (In contrast with the 
fermionic systems discussed above, we 
should not have in mind low-energy ex­
citations superimposed on high-energy 
microscopic degrees of freedom. Here, 
everything will take place in the vicin­
ity of the ground state of the mi­
croscopic single-particle Hamiltonian.)
Further, we note that the chemical potential determining the number of particles in 
the system must be negative for, otherwise, the Gaussian weight corresponding to 
the low-lying states ea < — ^ would change sign, resulting in an ill-defined theory.

From our discussion of section 3.5 we recall that the number of particles in the 
system is given by

Satyendranath Bose 1894­
1974 
was an Indian mathematician 
and physicist who undertook 
important work in quantum 
theory, in particular on Planck’s 
black body radiation law. His 
work was enthusiastically en­
dorsed by Einstein. He also published on sta­
tistical mechanics, leading most famously to 
the concept of Bose—Einstein statistics. Dirac 
coined the term “boson” for particles obeying 
such statistics.

N(M) = — ' F = T £ i^ — = £ nb (ea),

where, nB(e) = (e3(6-m) — 1)-1 denotes the Bose distribution. 
For a given number of particles, this equation determines the 
temperature dependence of the chemical potential, ^(T). As 
the temperature is reduced, the distribution function con­
trolling the population of individual states decreases. Since 
the number of particles must be kept constant, this scaling 

critical 
temper­

ature

must be counter-balanced by a corresponding increase in the chemical potential.
Below a certain critical temperature Tc , even the maximum value of the chem­

ical potential, ^ = 0, will not suffice to keep the distribution function nB(ea=0) 
large enough to accommodate all particles in states of non-vanishing energy, i.e., 

T<Tc
O>a>0 nb(£a)lm=0 = N 1 < N. Below this critical temperature, the chemi­
cal potential stays constant at ^ = 0 (see the figure). As a result, a macroscopic 
number of particles, N — N1 , must accumulate in the single-particle ground state: 
Bose—Einstein condensation.
4 The chemical potential ^ can always be adjusted so as to meet this condition.
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EXERCISE For a three-dimensional free particle spectrum, ek = ~2 k2 /2m, show that 
the critical temperature is set by T3 = c0~/ma2, where a = p-1 /3 is the average inter­
particle spacing, and c0 is a constant of order unity. Show that for temperatures T < Tc , 
the density of particles in the condensate (k = 0) is given by p0 (T) = p[1 - (T /T3)3/2].

5 Here, by “direct,” we refer to the controlled preparation of a state of condensed massive bosonic 
particles. There are numerous indirect manifestations of condensed states, e.g., the anomalous 
properties of the helium liquids at low temperatures, or of Cooper-pair condensates in super­
conductors.

6 M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Observation 
of Bose-Einstein condensation in a dilute atomic vapor, Science 269, 198 (1995).

Eric A. Cornell 1961- (left)
Wolfgang Ketterle 1957- (center)
Carl E. Wieman 1951- (right)
were joint recipients of the 2001 Nobel Prize in 
Physics “for the achievement of Bose—Einstein 
condensation in dilute gases of alkali atoms, 
and for early fundamental studies of the proper­
ties of the condensates.”

INFO After the theoretical prediction of Bose-Einstein condensation in the 1920s, it 
took about seven decades before the phenomenon was directly5 observed in experiment. 
The reason for this delay is that the critical condensation temperature of particles (atoms) 
that are comfortably accessible to experiment is extremely low.

However, in 1995, the groups of Cornell 
and Wieman at Colorado University and, 
soon after, Ketterle at MIT succeeded 
in cooling a system of rubidium atoms 
down to temperatures of 20 billionths(!) 
of a kelvin.6 To reach these temperatures, 
a gas of rubidium atoms was caught in a 
magnetic trap, i.e., a configuration of mag­
netic field gradients that coupled to the 
magnetic moments of the atoms so as to 
keep the system spatially localized.

The temperature of the gas of atoms 
was then lowered in a two-stage cooling 
process: laser cooling down to tempera­
tures of O(10-5) K, combined with evap­
orative cooling whereby a fraction of particles of comparatively high thermal energy was 
allowed to escape and one was left with a residual system of particles of ultra low energy. 
This procedure, which took years of experimental preparation, eventually led to temper­
atures low enough to achieve condensation.

The preparation of a Bose-Einstein condensed state of matter was recognized with the 
award of the 2001 Nobel Prize in physics. Since 1995, research on atomic condensates has 
blossomed into a broad arena of research. It is now possible to prepare complex states 
of Bose condensed matter such as atomic vortices in rotating Bose-Einstein condensates, 
condensates in different dimensionalities, or even synthetic crystalline states of matter. 
Regrettably, a detailed discussion of these interesting developments is beyond the scope 
of the present text. Those interested in learning more about this area are referred to the 
many reviews of the field.

With this background, let us now discuss how Bose-Einstein condensation is de­
scribed by the functional integral. Evidently, the characteristics of the condensate 
will be described by the zero field component ^0(t). The problem with this zero 
mode is that, below the condensation transition, both the chemical potential and 
the eigenvalue are zero. This means that the action of the zero Matsubara com­
ponent ^0,0 vanishes, and we have an ill-defined integral. We will deal with this 
difficulty in a pragmatic way. That is, we will treat ^0(t) not as an integration field 
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quantum 
fluctu­
ations

but rather as a time-independent Lagrange multiplier to be used to fix the number 
of particles below the transition. More precisely, we introduce a reduced action of 
the form

S o[ p ]= - po Jp 0 + T p an (-i^n + h ) pan,

where we have not yet set j = 0 (since we still need j as a differentiation variable). 
To understand the rationale behind this simplification, note that

N = — d^Fo|M=o- = Td^ In Zo|M=o- = TPopo + T £ .^ - £ = Thpo + N1 

a=0,n (5.8)

determines the number of particles. According to this expression, T popo = No 

sets the number of particles in the condensate. Now, what enables us to regard 
po as a time-independent field? Remembering the construction of the path in­
tegral, time slicing and the introduction of time-dependent integration variables 
were required because quantum Hamiltonians generically contain non-commuting 
operators. (Otherwise we could have decoupled the expression tr(e-''H(a ,a)) ~ 
d dp e-''H() in terms of a single coherent state resolution, i.e., a “static” config­
uration.) Reading this observation in reverse, we conclude that the dynamic content 
of the field integral represents the quantum character of a theory.

In view of this fact, the temporal fluctuations of field variables are often referred 
to as quantum fluctuations. Conversely:

A static approximation in a field integral p (t) = po = const. amounts 
to replacing a quantum degree of freedom by its classical approximation.

In order to distinguish them from quantum fluctuations in the “classical” static 
sector of the theory are called thermal fluctuations (see the following Info block). 
To justify the approximation of ao o po by a classical object, notice that, upon 
condensation, No = (aoao) will assume “macroscopically large” values. On the 
other hand, the commutator [ao,ao] = 1 continues to be of O(1). It thus seems to 
be legitimate to neglect all commutators of the zero operator ao in comparison with 
its expectation value - a classical approximation.7

Now, we are still left with the problem that the po-integration appears to be 
undefined. The way out is to remember that the partition function should extend 
over those states that contain an average number N of particles. That is, Eq. (5.8) 
has to be interpreted as a relation that fixes the modulus popo in such a way as to 
adjust the appropriate value of N .

7 Unfortunately, the actual state of affairs regarding the classical treatment of the condensate is 
somewhat more complex than the simple argument above suggests. (For a good discussion, see 
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory 
in Statistical Physics, Dover Publications, 1975.) However, the net result of a more thorough 
analysis, i.e., an integration over all dynamically fluctuating components ^o,n=o, shows that 
the treatment of ^o as classical represents a legitimate approximation.
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INFO The identification “time-independent = classical = thermal” is suggestive, 
but can be misleading. To see why, recall that, to leading order in an expansion in ~, 
rAz* a\ A/z* ■ r z \ x~>/z \ i r ~i ii i • i i~> • i i i[ O (q,p) ,O'(q,p)] = i { O (q,p) ,O'(q,p)} + ..., where { , } are the classical Poisson brackets 
and (q, p) on the r.h.s. are c-numbers (see section A.4.3 for more details). To this order, 
the time evolution of operators according to the von Neumann equation ~dtO = — i[H, O] 
is approximated as dtO = {H, O}, which is the Hamilton equation for the classical vari- 

1 1 z~> 111,1 i i /A ml i i • 1 ilil • 1able O represented by the quantum operator O. The construction shows that classical 
dynamics is entirely due to a quantum commutator, and that the identification “com­
mutator = quantum” is premature. Similarly, “classical = time independent” cannot 
be generally correct: the saddle-point equations of the Feynman path integral have the 
classical, yet generically time-dependent, trajectories of classical mechanics as solutions.

A safer reading is that commutators (and Poisson brackets) make a theory dynamical. 
In many-body theories, we often encounter states ^0 of macroscopic occupation O(N). 
Both, classically and quantum mechanically, such states show a high degree of dynamical 
inertia, the formal statement being that expectation values of commutators, which are 
O(1), are much smaller than the occupation numbers themselves. In this interpretation, 
the time independence of ^0 simply reflects the dynamical inertia of a macroscopically 
occupied state.

It is instructive to discuss the tendency to temporal stationar- 
ity from the perspective of the field integral. Consider the action 
S[0] = N fg dT d ddr (dT0)2 + ..., where N » 1 is a large cou­
pling constant representing the macroscopic occupation of a state 
with field degree of freedom 0 = 0(T, r), and the ellipses stand 
for other contributions to the action. Contributions of the “soft-

thermal 
fluctu­
ations

P

est” non-vanishing time variation have derivatives dT0 ~ fi-1 0 of the order of the inverse 
of the extension of the system in the time direction, fi (see the figure). (If you wish to 
formulate this estimate in more precise terms, inspect the Matsubara series expansion 
of 0.) Such fluctuations have actions scaling as S[0] ~ Nfi f ddr (fi-1 0)2 = NT dddr02. 
This estimate shows that, above temperatures scaling as ~ N-1, temporal fluctuations 
are blocked, and we are left with the “classical” configurations 0 = const. The action of 
these scale as S [0] = T-1 ddr(. . . ), resembling a thermal Arrhenius factor; hence the 
denotation “thermal fluctuations.”

5.2.2 The weakly interacting Bose gas

Gross—
Pitaevskii 

equation

Now, with this background, let us restore the interactions and consider a small but
nonzero coupling constant g in the action (5.7). To keep the discussion concrete, 
we specialize to the case of a free single-particle system, Hd0 = p2 * * * * * /2m. In this case, 
variation of the action yields

dT + p----- l^d + gdq d dd = 0, (5.9)2m Ld

a result known as the (time-dependent) Gross-Pitaevskii equation.8 Following 
the paradigm to seek solutions reflecting the symmetries of variational equations, 
we note that translational invariance in space and time suggests a constant solution, 
d0 = const. To better understand the meaning of the reduced equation

8 E. P. Gross, Structure of a quantized vortex in boson systems, Il Nuovo Cimento 20, 454 (1961);
L. P. Pitaevskii, Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13, 451 (1961).
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(—g + Ld|*o|2) * = 0, (5.10)

it is instructive to consider the action evaluated on constant field configurations

S [* *==“. Ld (-g* + 2Ld I * I4) ■
(5.11)

(Notice the similarity of the action 
to the integrand of the toy prob­
lem discussed in section 4.1.1.) 
Crucially, the stability of the ac­
tion is now guaranteed by the in­
teraction vertex, no matter how 
small g > 0 is (see the figure.) As a 
consequence, *o may be treated as 
an ordinary integration variable;
there are no longer any convergence issues. Integration over all field components 
will produce a partition function Z(g) parametrically dependent on the chemical 
potential. As is usual in statistical physics, this function is then employed to fix 
the particle number. (Notice that, with regard to thermodynamics, the interacting 
system behaves more “naturally” than its non-interacting approximation. This re­
flects a general feature of bosonic systems: interactions “regularize” a number of 
pathological features of the ideal gas.)

For negative g, the action has a single minimum at * = 0, corresponding to the 
unique solution of the stationary phase equation in this case. However, for positive 
g, the equation is solved by any constant *0 with modulus |*0| = \/gLd/g = Y. 
There is quite a bit of physics hiding in this innocent-looking result.

> For g < 0 (i.e., above the condensation threshold of the non-interacting system),
*0 = 0 means that no stable condensate amplitude exists.

> However, below the condensation threshold, g > 0, the proportionality *0*0 x Ld, reflects the principle of adiabatic continuity: even in the weakly interacting 

system, the ground state remains extensively occupied.

> The equation couples only to the modulus of *0. That is, the solution of the 
stationary phase equation is continuously degenerate: each configuration *0 = 
Y exp(i^), ^ G [0, 2n], is a solution.

For our present discussion, the last point is the most important. It raises the ques­
tion which configuration *0 = y exp(i$) is the “right” one?

Without loss of generality, we may choose *0 = Y G R as a reference solution. 
This choice amounts to selecting a particular minimum lying in the “Mexican hat” 
profile of the action shown above. However, it is clear that an expansion of the 
action around that minimum will be singular: fluctuations *0 ^ *0 + 8* that 
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do not leave the azimuthally symmetric well of degenerate minima do not change 
the action and, therefore, have vanishing expansion coefficients. As a consequence, 
we will not be able to implement a simple scheme “saddle-point plus quadratic 
fluctuations;” there is nothing that constrains the deviations 8^ to be small. In 
the next section, we discuss the general principles behind this phenomenon. In 
section 5.2.4, we then continue to explore its ramifications in the physics of the Bose 
system.

5.2.3 Spontaneous symmetry breaking

The mechanism encountered here is one of “spontaneous symmetry breaking.” To 
understand the general principle, consider an action S [^] with a global continuous 
symmetry under some transformation g (not to be confused with the aforementioned 
coupling constant of the Bose gas). The action then remains invariant under a 
global transformation of the fields such that Vi e M: ^i ^ g^i, where M is the 
base manifold, i.e., S[^] = S[gu-]. The transformation is “continuous” in the sense 
that g takes values in some manifold. Since symmetry operations may be applied 
in succession and reversed, the set of all g defines a symmetry group.

Lie group INFO Recall that a Lie group is a group that is also a differentiable manifold (see 
section A.1.1). In other words, it is a group which is smooth and to which concepts 
of geometry and calculus can be applied. Lie groups such as O(3) or SU(2) are often 
represented to act in vector spaces via the fundamental representation, v ^ gv, or in 
an adjoint representation <5 ^ gOg-1, where the representing matrices, g, are usually 
labeled by the same symbol as the abstract group elements. (A frequent source of confusion 
is the premature identification of the former with the latter.) Also recall that, close to the 
identity, the group may be parameterized as g = exp(^aTa) = 1 + ^ATa + ..., where the 
^a are real coordinates, and {Ta} is a basis of the Lie algebra. In the present textbook, 
not much more information is required. However, in some areas of quantum field theory, 
high-powered group theory is crucially involved, and we refer interested readers to the 
large number of textbooks on the subject.

Examples: The action of a Heisenberg ferromagnet is invariant under rotation of all 
spins simultaneously by the same amount, Si ^ gSi. In this case, g e G = O(3), 
the three-dimensional group of rotations. The action of the displacement fields 
u describing the elastic deformations of a solid (phonons) is invariant under the 
simultaneous translation of all displacements ui ^ ui + a, i.e., the symmetry 
manifold is the d-dimensional translation group G = Rd. In the previous section, 
we encountered a U(1) symmetry under the phase multiplication ^0 ^ eity0. 
This phase freedom expresses the global symmetry of quantum mechanics under 
transformations by a phase, a point we discuss in more detail below.

The breaking of continuous symmetries

Given a theory with an action that is invariant under a global symmetry G, two 
scenarios are conceivable: either the ground states share the invariance properties 
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of the action or they do not. The two alternatives are illustrated in the figure on 
p. 247 for the Bose system. For ^ < 0, the action S[^0, ^0] has a single ground state 
at ^0 = 0. This state is trivially symmetric under the action of G = U(1). However, 
for positive ^, i.e., in the situation discussed above, there is an entire manifold 
of degenerate ground states, defined through the relation | ^01 = y. These ground 
states transform into each other under the action of the gauge group. However, 
none of them is individually invariant. For the other examples mentioned above, 
the situation is similar.

In general, the ground states of a theory will be invariant under transformation 
only by the elements of a certain subgroup H C G (this includes the two extremes 
H = {1} and H = G). For example, below the transition temperature, the ground 
state of the Heisenberg magnet is defined by aligned configurations of spins. Assum­
ing that the spins are oriented along the z-direction, the state is invariant under the 
abelian subgroup H C O(3) containing all rotations around the z-axis. However, 
invariance under the full rotation group is broken. Solids represent states where 
the translation symmetry is fully broken, i.e., all atoms collectively occupy a fixed 
pattern of spatial positions in space, H = {1}, etc. Whenever H C G, we say that 
the symmetry spontaneously broken.

In spite of the undeniable existence of solids, magnets, and Bose-Einstein con­
densates of definite phase, the notion of ground states not sharing the full symmetry 
of a theory may appear paradoxical, or at least unnatural. For example, even if any 
particular ground state of the Mexican hat potential breaks the symmetry, should 
not all these states enter the partition sum with equal statistical weight, such that 
the net outcome of the theory is again fully symmetric?

To understand why symmetry breaking is a natural and observable phenomenon, 
it is instructive to perform a gedanken experiment. Consider the partition function 
of a classical9 ferromagnet,

The same argument can be formulated for the quantum magnet.

Z = tr (e-3(H h — iSi)} ,

where H is the rotationally invariant part of the energy functional and h represents 
a weak external field. (Alternatively, we can think of h as an internal field, caused 
by a slight structural imperfection of the system.) In the limit of vanishing field 
strength, the theory becomes manifestly symmetric,

lim lim Z —> rot. sym.,
N-. h^0

where the limit N -^ x serves as a mnemonic indicating that we are considering 
systems of macroscopic size. However, keeping in mind that the model ought to 
describe a physical magnet, the order of limits taken above appears questionable. 
Since the external perturbation couples to a macroscopic number of spins, a more 
natural description of an “almost” symmetric situation would be

9
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lim lim Z —> ?
h-^0 N~^w

The point is that the two orders of limits lead to different results. In the latter 
case, for any h, the N -^ ro system is described by an explicitly symmetry-broken 
action. No matter how small the magnetic field, the energetic cost to rotate N ^ 
ro spins against the field is too high, and the ground state |S) will be uniquely 
aligned, Si || h. When we then send h ^ 0 in a subsequent step, that particular 
state will remain the observable ground state. Although, formally, a spontaneous 
thermal fluctuation rotating all spins by the same amount |S) ^ | gS) would not 
cost energy, that fluctuation can be excluded by entropic reasoning.10 (By analogy, 
one rarely observes macroscopic quantities of heated water hopping out of a kettle 
as a consequence of a concerted thermal fluctuation of the molecules.)

10 In chapter 6, we will show that this simple picture in fact breaks down in dimensions d < 2.
11 Linear derivative terms qj | $ |2 would violate spatial reflection symmetry, and non-analytic terms 

|q|a |$|2 represent spatially nonlocal correlations. (Fourier transform back to real space to in­
vestigate this point.) We ignore these cases as exceptional.

Goldstone modes

The appearance of nontrivial ground states is just one manifestation of spontaneous 
symmetry breaking. Equally important, residual fluctuations around the ground 
state lead to the formation of soft fluctuation modes, i.e., field configurations 
^q whose action has the general structure

S[$]= c2 £ q2 |$q |2 + O($4,q3), (5.12)
q

which vanishes in the limit of long wavelengths, q ^ 0.11 Specifically, the soft 
modes formed on top of a symmetry-broken ground state are called Goldstone 
modes. We already know from the discussion in section 4.1.2 that the presence 
of soft modes in a theory has striking consequences, among them the buildup of 
long-range power-law correlations.

EXERCISE Explore the structure of the propagator G(q) = {$q$-q) associated with 
S [0] and convince yourself that the arguments formulated for the specific case of the 04- 
theory are of general validity. To this end, notice that, for small q, G(q) ~ |q|-2, as 
determined by the smallest power of q appearing in the action. The power-law behavior 
of the correlation function implies a homogeneity relation G(q/A) = A2 G(q). Show that 
this scaling relation implies that the Fourier transform G(r = |r|) = {$(r)$(0)) obeys the 
“scaling law” G(Ar) = A-d+2G(r). This, in turn, implies that the real space correlation 
function also decays as a power law, G(r) ~ |r|-d+2, i.e., in a “long-range” manner. Explore 
the breakdown of the argument for an action with a finite mass term. Convince yourself 
that, in this case, the decay would be exponential, i.e., short-range. We also notice that 
something strange is happening in dimensions d < 2. For a discussion of what is going on 
below this “lower critical dimension,” see section 5.2.3.
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Below, we will see that Goldstone mode 
fluctuations dominate practically all ob­
servable properties of symmetry-broken 
systems. However, before exploring the 
consequences of their presence, let us in­
vestigate their cause. To this end, con­
sider the action of a symmetry group element g on a (symmetry broken) ground 
state ^0 (see the middle row of the figure). By definition, S[gu-0] = S[^0] still as­
sumes its extremal value. Assuming a fixed group element parameterized as, e.g., 
g = expQ2a &aTa), the action represented as a function of the coordinates van­
ishes, S[^] = 0. However, for a weakly fluctuating spatial profile, ^0 ^ g(r)^0 (the 
bottom row of the figure), some price must be paid, S[^] = 0, where the energy 
cost depends inversely on the fluctuation rate A of the coordinate fields {ga (r)}. 
The expansion of S in terms of gradients of ^ is thus bound to lead to a soft mode 
action of the type (5.12).

In view of their physical significance, it is important to ask how many independent 
soft mo des exist. The answer follows from the geometric picture developed above. 
Suppose our symmetry group G has dimension r, i.e., its Lie algebra is spanned 
by r linearly independent generators Ta, a = 1,... ,r. If the subgroup H C G has 
dimension s < r , s of these generators can be chosen in such a way as to leave 
the ground state invariant. The remaining p = r — s generators create Goldstone 
modes. In the language of group theory, these generators span the coset space G/H . 
For example, for the ferromagnet, H = O(2) is the one-dimensional subgroup of 
rotations around the quantization axis (e.g., the z-axis). Since the rotation group 
has dimension 3, there must be two independent Goldstone modes. These are gener­
ated by the rotation, or angular momentum generators Jx,y acting on the z-aligned 
ground state. The coset space O(3)/O(2) is isomorphic to the 2-sphere, i.e., the 
sphere traced out by the spins as they fluctuate around the ground state.

Finally, why bother to formulate these concepts in the language of Lie groups 
and generators? The reason is that the connection between the coordinates param­
eterizing the Goldstone modes ga and the original coordinates ^i, of the problem, 
respectively, is often nonlinear and not very transparent. With problems more com­
plex than those mentioned above, it is best to develop a good understanding of the 
geometry of the problem before turning to specific coordinate choices.

Lower critical dimension

The above discussion indicates that symmetry breaking is to be expected in cases 
where stationary phase solutions of reduced symmetry are more stable (have lower 
action) than configurations of higher symmetry. But is this always the case? Or are 
there situations where a more powerful principle prevents symmetry breaking?

To understand that this is indeed the case, consider the classical XY -model, a 
model of classical planar spins of magnitude S defined on a d-dimensional lattice. 
This system possesses a global O(2) symmetry under simultaneous rotation of all 
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spins by the same angle 0. Now assume a symmetry-broken configuration where all 
spins point in the same direction, say, S(r) = Se1 . The canonical Goldstone mode 
action associated with departures from this configuration reads

S[S] = 2 j ddr (d0)2,

where 0(r) is the angular variable relative to e1 and c is a constant. Now consider 
the average value (S 1(r)) = S(cos(0(r))) of the local one-component, which we 
assume is close to unity. An expansion in small angular deviations gives (Si(r)) = 
S — (S/2)(02 (r)) + • • •. Performing the Gaussian integral over 0 in a momentum 
space representation, we obtain

(Si(r)> « S f 1------V -1 ® S (1 - 1) •
' U 7/ 2cLd q2] V 2cj (2n)d q2 J

The crucial observation now is that, in dimensions d < 2, the integral is divergent. 
In the marginal case d = 2, J^-1 d2qq-2 = n ln(L/a), where we have used the fact 
that the momentum integral should be limited by a short- (long-)wavelength cutoff 
of the order of the inverse lattice spacing (the system size). In the thermodynamic 
limit, L ^ <x>, the integral grows without bound, implying that the assumption of 
an ordered state was ill-founded. We observe that

The phenomenon of spontaneous symmetry breaking occurs only 
in systems of sufficiently large dimensionality.

The threshold dimension below which entropic mechanisms exclude spontaneous 
symmetry breaking is called the lower critical dimension, dc .

While derived for a specific model, a moment’s thought shows that the conclusion 
of no symmetry breaking below dc = 2 is of general validity: a general continuous 
symmetry entails a Goldstone mode action (5.12), which in turn leads to fluctu­
ations diverging in d < dc = 2. The consequence, that of no symmetry breaking 
below dc = 2, is known as the Mermin—Wagner theorem:12

12 N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or 
two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966).

The lower critical dimension of systems with broken continuous 
symmetries is dc = 2.

Notice that the divergence of the fluctuation integral reflects a competition between 
the volume element of the integration ~ qd-1 dq and the dispersion of the Gold- 
stone modes ~ q2. The former measures the phase space, or “entropy” available to 
Goldstone mode fluctuations, and the latter their action, or “energy” cost. From 
this perspective, the Mermin-Wagner theorem is a statement about energy versus 
entropy, a competition frequently encountered in statistical mechanics and field
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(a) Illustrating the absence of spontaneous symmetry breaking in the one-dimensional Ising 
model. No matter how low the temperature, the energy cost associated with the creation 
of a segment of flipped spins is outweighed by the entropy gain. (b) In higher dimensions, 
entropic factors no longer have the capacity to overpower the extensive growth of energy 
associated with the formation of mismatched regions.

theory.13 Its role in symmetry breaking becomes even more evident when we turn 
to the case of discrete symmetries.

Discrete symmetries

While the existence of Goldstone modes relies crucially on the continuity of symme­
tries, the phenomenon of symmetry breaking does not. As an example, consider the 
Hamiltonian of the classical one-dimensional Ising model H = — J ^iN=1 SiSi + 1 — 
B ^iN 1 Si, where Si G {1, —1} and J > 0 is a ferromagnetic exchange constant. In 
the absence of an external field B, the model has a Z2 symmetry under simultaneous 
exchange of all spins Si ^ — Si, and there are two candidates for symmetry-breaking 
ground states, . . . 1, 1, . . . and . . . (—1), (—1), . . . (fig. 5.2 (a)).

Now, let us imagine that a segment of M consecutive spins were to flip. In doing 
so, they would incur an energetic cost of U = 2J associated with the alignment 
mismatch at the domain boundaries. However, there are ~ N different choices for 
placing the domain, i.e., the energy loss is counteracted by an entropic factor of 
S ~ ln N (exercise). No matter how small T is, for large systems the free energy 
balance F = U — TS for domain creation is positive, implying that the system will 
favor a disordered phase.

EXERCISE By enumerating the number of spin configurations with the same energy, 
obtain a formal expression for the classical partition function Z = {S} exp(-fH) of an 
Ising chain of length N with periodic boundary conditions. (Hint: Consider the number of 
domain wall configurations.) Making use of Stirling’s approximation Inn! ~ n(Inn — 1), 
determine the temperature dependence of the correlation length (domain size) at low 
temperatures. Confirm that the system does not order at any finite temperature.

How do these arguments carry over to Ising systems of higher dimensional­
ity? For example, in two dimensions (fig.5.2 (b)) a large connected region of M 
mismatched spins has a circumference of O(M 1/2), and therefore incurs an en­
ergy cost U ~ M1 /2 J. However, the entropic gain still scales as ~ const. x ln N. 
Thus, for the two-dimensional system, F ~ JM 1/2 — T ln N . We conclude that it

13 See our previous analysis of instantons, where a large instanton action could be overcompensated 
by the entropic freedom to place the instanton anywhere in time. 
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is energetically unfavorable to flip a thermodynamic M ~ Nx>0 number of spins; 
the (d > 2)-dimensional Ising model does possess an ordered symmetry-broken 
low-temperature phase, and we conclude that

The lower critical dimension of systems with discrete symmetries is dc = 1.

In the next section, we return to the Bose gas and discuss how the general concepts 
developed here manifest themselves in that context.

5.2.4 Superfluidity

Im W S = extr.

w

_________ Sp t
, Re W

canonical 
transfor­

mation

The theory of the weakly interacting superfluid to be discussed below was originally 
conceived by Bogoliubov, then in the language of second quantization.14 We will 
reformulate the theory in the language of the field integral, starting with the action 
of the weakly interacting Bose gas (5.7). Focusing on temperatures below Tc (p > 0), 
we begin by expanding the theory around an arbitrary mean field, say ip0 = ^0 = 
(pLd/g )1 /2 = y .

INFO Notice that the quantum ground state corresponding to the configuration ^0 is un­
conventional in the sense that it cannot have a definite particle number. The reason is that, 
according to the correspondence ^ o a between coherent states and operators, respec­
tively, a non-vanishing functional expectation value of ^0 is equivalent to a non-vanishing 
quantum expectation value {a0}. Assuming that, at low temperatures, the thermal average 
{...} will project onto the ground state |Q), we conclude that (Q|a0|Q) = 0, i.e., |Q) cannot 
be a state with a definite number of particles.15

The symmetry group acts on this state by multiplication, 
^0 ^ ei'1^0 and ip0 ^ e-i^ip0. Knowing that the action of a 
weakly space-time modulated phase ^(r), r = (r, t) will be 
massless, let us introduce coordinates

^ (r) = P 1 / 2( r) ei’ (r), 4,( r) = P 1 / 2 (r) e - i$(r),

where p (r) = p0 + 5p (r) and p0 = ip0 ^0/Ld is the condensate
density. Evidently, the variable 5p parameterizes deviations of the field ^ (r) from
the extremum. These excursions are energetically costly, i.e., dp will turn out to be 
a massive mode. Also notice that the transformation of coordinates (^, ^) ^ (p, ^), 
viewed as a change of integration variables, has a Jacobian unity.

INFO As we are dealing with a (functional) integral, there is freedom as to the choice 
of integration parameters. (In contrast with the operator formulation, there is no a priori 
constraint for a transform to be canonical.) However, physically meaningful changes of 
representation usually involve canonical transformations in the sense that the corre­
sponding transformations of operators would conserve the commutation relations. Indeed,

14 N. N. Bogoliubov, On the theory of superfluidity, J. Phys. (USSR) 11, 23 (1947) (reprinted in 
D. Pines, The Many-Body Problem, Benjamin, 1961).

15 However, as usual with grand canonical descriptions, in the thermodynamic limit the relative 
uncertainty in the number of particles, ((TV2/ — (TV)2)/(TV/2, will become vanishingly small.
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we saw in the Info block starting on page 148 that the operator transformation a (r) = 
p(r)1 /2 e^(r) ,a+ (r) = e i^(r) p(r)1 /2 fulfills this criterion. Notice that, as in Lagrangian 
mechanics, a canonical transformation leaves the J (variable) x dT (momentum) part of the 
action form-invariant.

S [P, $] « J

We next substitute the density-phase relation into the action and expand to second 
order around the mean field. Ignoring gradients acting on the density field (in 
comparison with the “potential” cost of these fluctuations), we obtain

ddrfidpdT$ + p0-(V$)2 + g^2} . (5.13)
2m 2

Here, the second term measures the energy cost of spatially varying phase fluctu­
ations. Notice that fluctuations with ^(r) = const. do not incur an energy cost - 
^ is a Goldstone mode. Finally, the third term records the energy cost of massive 
fluctuations from the potential minimum. Equation (5.13) represents the Hamilto­
nian version of the action, i.e., an action comprising coordinates ^ and momenta p. 
Gaussian integration over the field 8p leads us to the Lagrangian form of the action 
(exercise):

S[$] « 2 J dTl ddr Q(dT$)2 + m(V$)2) . (5.14)

Comparison with Eq. (1.4) identifies this action as that for the familiar d-dimensional oscillator. Drawing on the results of chapter 1 (see, e.g., Eq. (1.29)), we find that 

the energy wk carried by elementary excitations of the system scales linearly with 
momentum, wk = (gp0/m)1 /2|k|.

phenomenon 
of super­

fluidity

INFO Superfluidity is one of the most counterintuitive and fascinating phenomena 
displayed by condensed matter systems. Experimentally, the most straightforward access 
to superfluid states of matter is provided by the helium liquids. As representatives of the 
many unusual effects displayed by superfluid states of helium, we mention the capability 
of thin films to flow up the walls of a vessel (if the reward is that on the outer side of the 
container, a low-lying basin can be reached - the fountain experiment), or to effortlessly 
propagate through porous media in a way that a normal fluid cannot. Readers interested 
in learning more about the phenomenology of superfluid states of matter may refer to the 
classic text by Pines and Nozieres.16

16 D. Pines and P. Nozieres, The Theory of Quantum Liquids: Superfluid Bose Liquids (Addison- 
Wesley, 1989).

The actions (5.13) and (5.14) describe the phenomenon of superfluidity. To make 
the connection between the fundamental observable of a superfluid system, the 

supercurrent supercurrent, and the phase field explicit, let us consider the quantum mechanical 
current operator

j(r) = ii ((Vaf(r))a(r) - af(r, t)Va(r))2m

fun.mt. /(v^(r))^(r) — ^(r)v^(r)\ ~ £0V$(r), (5.15)2m m
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where the arrow indicates the functional integral correspondence of the operator 
description and we have neglected all contributions arising from spatial fluctuations 
of the density profile. (Indeed, these - massive - fluctuations describe the “normal” 
contribution to the current flow.)

The gradient of the phase variable is therefore a measure of the (super)current 
flow in the system. The behavior of that degree of freedom can be understood 
by inspection of the stationary phase equations - i.e., the Hamilton or Lagrange 
equations of motion - associated with the action (5.13) or (5.14). Turning to the 
Hamiltonian formulation, one obtains (exercise)

idT $ = - gp + p, idT p = — V2 ^ = V- j.

The second of these equations represents (the Euclidean-time version of) a con­
tinuity equation. A current flow with non-vanishing divergence is accompanied by 
dynamic distortions in the density profile. The first equation tells us that the system 
adjusts to spatial density fluctuations by a dynamic phase fluctuation. The most 
remarkable feature of these equations is that they possess steady state solutions 
with non-vanishing current flow. Setting dT^ = dTp = 0, we obtain the conditions 
8p = 0 and V • j = 0, i.e., below the condensation temperature, a configuration with 
a uniform density profile can support a steady state divergenceless (super)current. 
Notice that a “mass term” in the ^-action would spoil this property, i.e.,

Supercurrent flow is intimately linked to the condensate phase 
being a Goldstone mode.

EXERCISE Add a fictitious mass term to the $-action and explore its consequences. 
How do the features discussed above present themselves in the Lagrange picture?

INFO It is instructive to interpret the phenomenology of supercurrent flow from a more 
microscopic perspective. Steady state current flow in normal environments is prevented 
by the mechanism of energy dissipation: particles constituting the current scatter off 
imperfections inside the system, thereby converting part of their kinetic energy into ele­
mentary excitations, which is observed macroscopically as heat production.
How does the superfluid state of matter -V
avoid this mechanism of dissipative loss? 7y^r77y777>777'
Trivially, no energy can be exchanged if ^//TTyzVyZ/
there are no elementary excitations to cre- /7^///////////
ate. This happens, e.g., when the excitations (a) (b)
of a system are so high-lying that the kinetic 
energy stored in the current-carrying parti­
cles is insufficient to create them. But th'^ w/zz/S/nV^
is not the situation that we encounter in the ^zz/zzZ/ZZ/// /2z/zZ/z/z2/z/
superfluid. As we saw above, there is no en- (c) (d)
ergy gap separating the quasi-particle exci­
tations of the system from the ground state. Rather, the dispersion w(k) vanishes linearly 
as k ^ 0. However, an ingenious argument due to Landau shows that this very linearity 
indeed suffices to stabilize dissipationless transport as follows.
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critical 
velo city

superfluid 
vortices

Consider a fluid flowing at uniform velocity V through a pipe (see figure (a)). Con­
sidering a fluid volume of mass M, the current carries a kinetic energy E1 = M V2/2. 
Now, suppose we view the situation from the point of view of the fluid, i.e., we perform 
a Galilean transformation into its own rest frame, (b). From the perspective of the fluid, 
the walls of the pipe appear as though they were moving with velocity -V. Now, suppose 
that frictional forces between fluid and the wall lead to the creation of an elementary 
excitation of momentum p and energy e(p), i.e., the fluid is no longer at rest but carries 
kinetic energy, (c). After a Galilean transformation back to the laboratory frame (d), one 
finds that the energy of the fluid after the creation of the excitation is given by (exercise)

E2 = MV2 + P • V + e(p).

Now, since all the energy needed to manufacture the excitation must have been provided 
by the liquid itself, energy conservation requires that E 1 = E2, or —p • V = e(p). Since 
p • V > — |p||V|, this condition can only be met if |p||V| > e(p). While systems with a 
“normal” gapless dispersion, e(p) ~ p2, are compatible with this energy-balance relation 
(i.e., no matter how small |V| is, quasi-particles of low momentum can always be excited), 
both gapped dispersions e(p) —^0 const. and linear dispersions are disallowed if V becomes 
smaller than a certain critical velocity Vt. Specifically, for a linear dispersion e(p) = v|p|, 
the critical velocity is given by Vt = v. For currents slower than that, the flow is necessarily 
dissipationless.

We conclude our discussion of the interacting Bose gas with an important remark. 
Superficially, Eqs. (5.13) and (5.14) suggest that we have managed to describe 
the superfluid phase in terms of a Gaussian theory. However, one must recall that 
^ is a phase field, defined only modulo 2n. (In (5.13) and (5.14) this condition 
is understood implicitly.) This phase nature reflects the fact that the Goldstone 
mode manifold is the group U(1), which has the topology of a circle. It turns out 
that phase configurations that wind by multiples of 2n as one moves around a 
center point define the most interesting excitations of the superfluid: superfluid 
vortices. Coexisting with the harmonic phonon-like excitations discussed above, 
these excitations lead to a wealth of observable phenomena, to be discussed in 
chapter 6.

The anticipation of phase vortices exemplifies an important aspect of working 
with Goldstone modes in general: one should always keep an eye on their “global” 
geometric structure. Straightforward perturbative expansions such as those leading 
to Eq. (5.13) are prone to miss topological features. Where present, these usually 
impact strongly on the physics of symmetry-broken phases and it is crucial to keep 
them on board.

5.3 Superconductivity

In this section, we discuss the phenomenon of superconductivity from the perspec­
tive of the field integral. As in the previous section, the phase of a macroscopically 
occupied state will be the main protagonist. However, unlike the neutral superfluid, 
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this phase is now coupled to the electromagnetic field, and this causes striking phe­
nomenological differences. This section will introduce the conceptual foundations of 
these differences, cast into the language of the field integral. Although the presen­
tation is self-contained, our focus is on theoretical aspects and some readers may 
find it useful to first consult an elementary introduction to superconductivity for 
further motivation.

5.3.1 Basic concepts of BCS theory

alia, to the production of liquid 
helium.”

Kammerlingh Onnes 1853­
1926
was a Dutch physicist awarded 
the Nobel Prize in Physics in 
1913 “for his investigations on 
the properties of matter at low 
temperatures which led, inter

The electrical resistivity of many 
metals and alloys drops abruptly to 
zero when the material is cooled to 
a sufficiently low temperature. This 
phenomenon, which goes by the name 
of superconductivity, was first ob­
served by Kammerlingh Onnes in Lei­
den in 1911, three years after he first liquefied helium.

Superconductivity involves an ordered state of conduction electrons in a metal, 
caused by the presence of a residual attractive interaction at the Fermi surface. The 
nature and origin of the ordering were elucidated in a seminal work by Bardeen, 
Cooper and Schrieffer - BCS theory17 - some 50 years after its discovery: at low 
temperatures, an attractive pairwise interaction can induce an instability of the 
electron gas towards the formation of bound pairs of time-reversed states k f and 
—k | in the vicinity of the Fermi surface.

INFO From where does an attractive interaction between charged particles appear? 
In conventional18 (BCS) superconductors, attractive correlations between electrons are 
due to the exchange of lattice vibrations, or phonons: the motion of an electron through 
a metal causes a dynamic local distortion of the ionic crystal. Crucially, this process is 
governed by two totally different time scales. For an electron, it takes a time ~ E —1 

to traverse the immediate vicinity of a lattice ion and to trigger a distortion out of its 
equilibrium position into a configuration that both particles find energetically beneficial 
(see the second panel of fig. 5.3).

However, once the ion has been excited it needs a time of O(u—1 E— 1) to relax back 
into its equilibrium position. Here, uD denotes the Debye frequency, the characteristic scale 
for phonon excitations. This means that, long after the first electron has passed, a second 
electron may benefit from the distorted ion potential (third panel). Only after the ion 
has been left alone for a time > uD—1 does it relax back into its equilibrium configuration 
(fourth panel). The net effect of this retardation mechanism is an attractive interaction

17 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic theory of superconductivity, Phys. 
Rev. 106, 162 (1957); Theory of superconductivity, Phys. Rev. 108, 1175 (1957).

18 Since the discovery of the class of high-temperature cuprate superconductors in 1986, it has 
become increasingly evident that the physical mechanisms responsible for high-temperature 
and “conventional” superconductivity are likely to be different. The pairing mechanism in the 
cuprates remains enigmatic, although the consensus is that its origin is rooted in spin fluctua­
tions.
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E-1

®D1

Fig. 5.3 On the dynamical origin of an attractive fermion interaction caused by phonon scattering. 
For a discussion, see the Info block below.

between the two electrons. Since the maximum energy scale of ionic excitations is given 
by the Debye frequency, the range of the interaction is limited to energies ~ wD around 
the Fermi surface. (For a more quantitative formulation, see problem 3.8.11.)

Cooper 
pairs

BCS 
Hamil­
tonian

Comprising two fermions, the electron-electron bound states, known as Cooper 
pairs, mimic the behavior of bosonic composite particles.19 At low temperatures, 

19 However, Cooper pairs typically have a length scale (the coherence length to be introduced 
below) exceeding the average particle spacing of the electron gas, typically by three orders of 
magnitude. In this sense, it can be misleading to equate a pair with a single composite particle. 
However, the crossover between a BEC phase of tightly-bound Fermi pairs and the BCS phase 
of weakly bound pairs has been explored in the context of atomic condensates. For details of 
the theory of the BEC—BCS crossover, we refer to the literature, e.g., C. A. R. Sa de Melo, M. 
Randeria, and J. R. Engletbrecht, Crossover from BCS to Bose superconductivity: Transition 
temperature and time-dependent Ginzburg-Landau theory, Phys. Rev. Lett. 71, 3202 (1993); 
J. R. Engletbrecht, M. Randeria and C. A. R. Sa de Melo, BCS to Bose crossover: Broken- 
symmetry state, Phys. Rev. B 55, 15153 (1997).

20 We here discuss spin-singlet superconductors. In spin triplet superconductors, electrons of 
equal spin are paired.

these quasi-bosonic degrees of freedom form a condensate which is responsible for 
the remarkable properties of superconductors.
To understand the tendency to pair formation, con- Idj.
sider the diagram, where the region of attractive corre- k-|-
lation is indicated as a shaded ring of width ~ wD/vF 

centered around the Fermi surface. Now, consider a cvd/^f 
two-electron state |k f, —k |) formed by two particles 
of (near) opposite momentum and spin.20 Momentum 
conserving scattering will lead to the formation of a 
new state |(k + p) f, — (k + p) |) = |k' f, — k' |) of 
the same opposite-momentum structure. Crucially, the 
momentum transfer p may trace out a large set of values of O(kFd-1wD/vF) with­
out violating the condition that the final states be close to the Fermi momentum. 
Remembering our previous discussion of the RPA approximation, we recognize a fa­
miliar mechanism: an a priori weak interaction may amplify its effect by conspiring 
with a large phase-space volume.

Following Bardeen, Cooper, and Schrieffer, we describe the ensuing phenomenol­
ogy in terms of the BCS Hamiltonian

H = 52eknka - Lgd 52 ck+qtc-k;c-k'+q^ck't 
k a k, kz, q 

(5.16)
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where g represents a (positive) constant. The BCS Hamiltonian describes the physics 
of a thin shell of width O(wD) centered around the Fermi surface region where a 
net attractive interaction prevails. It simplifies the realistic momentum-dependent 
interaction induced by phonon exchange (see problem 3.8.11) to a simple point in- 
teraction.21 As we will see, these simplifications keep the essential physics on board 
and make the problem amenable to analytical solution.

To explore the fate of a Cooper pair under multiple scattering, let us consider the 
four-point correlation function

C(q) =

describing the propagation of Cooper pairs at characteristic momentum q = (q, wm). 
In principle, a Fourier transformation may be applied to obtain information on the 
space-time correlation function of Cooper pairs; however, this will not be necessary 
for our purposes.
To calculate C(q), we draw on the pertur­
bative methods introduced in section 4.3. 
As in the random phase approximation, 
the density of the electron gas plays the 
role of a large parameter. We thus ex­
pand C (q) in the interaction constant g, 
retaining only those terms that contain 
one momentum summation per interac­
tion. Summation over these contributions 
leads to the ladder diagram series shown
in the figure, where the momentum labels of the Green functions are omitted for 
clarity. According to the definition of the correlation function, the two Green func­
tions entering the ladder carry momenta k+q and -k, respectively. Momentum con­
servation implies that the consecutive rungs of the ladder also carry near-opposite 
momenta p + q and -p, where p is a summation variable.

EXERCISE Convince yourself that the ladder diagrams shown in the figure are the only 
diagrams that contain one free momentum summation per interaction vertex.

21 For a discussion of the important influence of the repulsive electron-electron interaction on 
the physics of the superconductor, see A. I. Larkin and A. A. Varlamov, Fluctuation phenom­
ena in superconductors, in Handbook on Superconductivity: Conventional and Unconventional 
Superconductors, eds. K.-H. Bennemann and J. B. Ketterson (Springer-Verlag, 2002).

So far, our discussion has not yet explained why an attractive interaction is so 
special. Nor have we elucidated the consequences of repeated pair scattering at the 
Fermi surface. In the following, we will explore these points, first by perturbative 
methods. A breakdown of perturbation theory will then indicate the formation of 
a new mean field which we analyze in section 5.3.3 by field-theoretical methods.

5.3.2 Cooper instability

T tk+qt V-k;

k

T
Ld / , Vk'+q^ V- k't 

k'

(5.17)
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The central part of the correlation function is the vertex r shown in the bottom 
part of the figure. Translating to an algebraic formulation, one obtains the Cooper 
version of a Bethe-Salpeter equation rq = g + gTL d £p Gp+q G—prq, where we 
have anticipated a solution independent of the intermediate momenta. Solving this 
equation for rq, we arrive at an equation structurally similar to (4.48):

r q =
g

1 — gTL d Sp Gp+q G -p
(5.18)

The frequency part of the summation over p gives

T G G _ 1 1 - nf(ep+q) - nf(e—p)

1
= wD exp------

gV

Ld - Gp+q G—p = Ld ■ ■+ep+q+e-p

= Ld £ (1 - n F(ep>) („m + ep + e-p+ q ~ -q>) ■

where we have used results from problem 3.8.8 for the frequency summation and, 
in the last line, noted that £p = P2/2m - M = £-p- For the sake of our present 
argument, it is sufficient to consider the case of zero external momentum, q = 
(0, 0). (The summation for nonzero q is left as an instructive exercise in Fermi- 
surface integration.) Once more using the identity L—d ^2p F(£p) = f dev(e)F(e), 
and remembering that the interaction is limited to a wD-shell around the Fermi 
surface, we then obtain

T r Dj n1 - 2 n f( e) rD d£ i (w D A
Ld2^ GpG-p = J dev(£)------ 2^----------  V - = V ln^-J , (5.19) 

where we have used the fact that, at energies e ^ T, the 1 /e singularity of the 
integrand is cutoff by the Fermi distribution function. Substitution of this result 
back into the expression for the vertex leads to the result

r(0’0) ~ 1 - gv ln (T)'

From this, one can read off essential features of the transition to the superconducting 
phase.

> The interaction constant appears in combination with the density of states, 
where the latter factor measures the number of final states accessible to the pair 
scattering in figure 5.3. As a consequence, even a weak interaction can lead to 
sizable effects if V is large enough.

> The effective strength of the Cooper pair correlation grows upon increasing the 
energetic range wD or, equivalently, on lowering the temperature. Obviously, 
something drastic happens when gV ln (wD /T) = 1, i.e., when T = Tc with

T c (5.20)
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critical 
temper­

ature

At this critical temperature, the vertex develops a singularity. Since the vertex 
and the correlation function are related through multiplication by a number of 
(non-singular) Green functions, the same is true for the correlation function 
itself.

> As we will soon see, Tc marks the transition temperature to the superconducting 
state. Below Tc , a perturbative expansion around the Fermi sea of the non­
interacting system as a reference state breaks down. The Cooper instability 
signals that we need to look for an alternative ground state or mean field, one 
that accounts for the strong binding of Cooper pairs.

In the next section, we explore the nature of the superconducting state from a 
complementary perspective, namely one that gives the identification of that mean 
field the highest priority.

5.3.3 Mean-field theory of superconductivity

The discussion in the previous sec­
tion suggests that close to Tc the sys­
tem develops an instability towards 
an accumulation of Cooper pairs. The 
ensuing ground state must combine as­
pects of the filled Fermi sea with those 
of macroscopic condensation. Continu­
ing to follow the classic work17, we now 
develop a simple mean field analysis 
revealing the principal characteristics 
of this state. In section 5.3.4 we then 
combine the lessons learned in the per­
turbative and the mean field analyses, 
respectively, to construct a powerful 
field integral representation of the superconductor.

Our starting point here is the assumption that, below Tc, the ground state, |Qs), 
contains a macroscopic number of Cooper pairs. If so, the creation of another Cooper 
pair will leave the ground state essentially unchanged, c-k^ckt|Qs) — |Qs), and the 
expectation values

John Bardeen 1908-1991
Leon N. Cooper 1930-
John R. Schrieffer 1931-2019
Nobel Laureates in Physics in 1972 for their 
theory of superconductivity. (Bardeen was also 
awarded the 1956 Nobel Prize in Physics for his 
research on semiconductors and discovery of the 
transistor effect.)

A = gi E<Qslc-^cktlQs>’ A = g E<Qslcktc-kJQs>’ (5.21)
kk

will assume nonzero values. The anticipation that A > 0 assumes non-zero val­
ues below the transition temperature Tc and that A = 0 above it makes this 
quantity a candidate order parameter of the superconducting (BCS) transition. 
However, this statement remains a mere presumption until it has been checked 
self-consistently.
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At first sight, the non-vanishing expectation value of A indeed looks strange: it 
implies that the state |Qs) cannot contain a definite number of particles. To make 
this feature look more natural, remember the bosonic nature of the two-fermion 
pair state |k f, —k |). From this perspective, the operator cc-kt creates a bosonic 
excitation, and the non-vanishing of its expectation value implies a condensation 
phenomenon akin to that discussed in section 5.2.

To take this analogy further, we substitute

E c-k+qtckt = LdA + E c-k+qtckt - ALd 

k gk g

small

into the Hamiltonian (5.16) and retain only terms up to second order in the electron 
operators. Adding the chemical potential, and setting Sk = ek — ^, we obtain the 
mean field Hamiltonian

Ld|A|2H - p,N ~ E (Skckacka - (Ac-ktckt + Acktc-kE +------------------
a (5.22)

BdG 
Hamil­
tonian

Nambu 
spinor

While the linearization around a macroscopically occupied state was formulated 
by Gorkov22 (inspired by earlier work of Bogoliubov14 on superfluidity), the lin­
earized Hamiltonian itself is commonly known as the Bogoliubov—de Gennes 
(BdG) Hamiltonian, reflecting the promotion of the mean field description by 
de Gennes.

22 L. P. Gor’kov, About the energy spectrum of superconductors, Soviet Phys. JETP 7, 505 (1958).

Consistently with the anticipation of a ground state of indefinite particle number, 
the BCS Hamiltonian is not number conserving. To understand its ground state, 
we proceed in a manner analogous to that of section 2.2.4 (where there appeared a 
Hamiltonian of similar structure, namely ata + aa + atat). Specifically, let us recast 
the fermion operators in a two-component Nambu spinor representation,

t ( t \
^k = Ckt, c-kt J , 'K =

comprising f-creation and ^-annihilation operators in a single object. It is then 
straightforward to show that the Hamiltonian assumes the bilinear form

H - MN = E*k
sk

—A
—A
—sk

Ld |A|2 

g
^k+E sk +
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Bogoliubov 
transfor­

mation

Being bilinear in operators, the mean field Hamiltonian can be diagonalized by a 
unitary transformation (a fermionic version of the Bogoliubov transformation 
previously applied to a similarly structured bosonic problem in section 2.2.4)

cos 9 k 

sin 9 k

sin 9k \ C ckf 
- cos 9kJ lc-kt

(under which the anticommutation relations of 
the new electron operators aka are maintained 
- exercise). Note that the operators akf are 
superpositions of ckf and c-kt, i.e., the quasi­
particle states created by these operators con­
tain linear combinations of particle and hole 
states. Choosing A to be real,23 and setting 
tan (29k) = -A/£k, i.e., cos(29k) = £k/Xk, 
sin(29k) = — A/Xk, where

A k = (A2 + ek )1 /2, (5.23)

the transformed Hamiltonian takes the form 
(exercise)

„ ~ t A2 Ld
H- /IN 2_^ Xkaka aka ' 2_A'' ek — Ak) + g ■

(5.24)

Bogoliubov 
quasi­

particles

This result shows that the elementary excitations, the Bogoliubov quasi­
particles, created by atka , have a minimum energy A known as the energy gap. 
The full dispersion ±Ak is shown in the figure above. Owing to the energy gap sep­
arating filled and empty quasi-particle states, elementary excitations are difficult 
to excite at low temperatures, implying a rigidity of the ground state.

To determine the ground state wave function, one needs to identify the vacuum 
state of the algebra {ak, atk}, i.e., the state that is annihilated by all the quasi­
particle annihilation operators aka . This condition is met uniquely by the state

lQs) = nakfa-kt|Q) ~ JJ (cos9k — sin9kckfc-ktJ |Q)

where |Q) represents the vacuum state of the fermion operator algebra {ck, ck}, 
and sin 9k = ^/(1 — £k/Xk)/2. Since the vacuum state of any algebra of canonically 
conjugate operators is unique, the state |Qs) must, up to normalization, be the 
vacuum state. From the representation above, it is straightforward to verify that 
the normalization is unity (exercise).

23 If A = |A|ez^ is not real, it can be made so by the global gauge transformation Ca ^ 
ei^/2Ca,ca ^ e-i^/2ca . Notice the similarity to the gauge freedom that led to Goldstone 
mode formation in the previous section! Indeed, we will see shortly that the gauge structure of 
the superconductor has equally far-reaching consequences.
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Finally, we need to solve Eq. (5.21) self-consistently for the input parameter A:

A = Lgd ^(Qs|c-k;cktlQs> = — Lgd sin 6k cos 6k

kk

gA rD V(t)dt - - - -1, /AX
— 2 J (a2 + 12)1 /2 = gAV sinh (WD/A)’ 

g A
2 Ld^ (a2 + ek )1 /2

(5.25)

where we have assumed that the pairing interaction g extends uniformly over an 
energy scale w D (over which the density of states v is roughly constant). Rearranging 
this equation for A, we obtain the important relation

w D gv <1 1 1
A = ■ ■/-. /—r - 2 w D exp------sinh(1/g V) gV

(5.26)

This is the second time that have we encountered the combination of energy scales 
on the right-hand side of the equation. Previously, we identified Tc = wD exp[-(g V)-1] 
as the transition temperature at which the Cooper instability takes place. Our cur­
rent discussion indicates that Tc and the quasi-particle energy gap A at T = 0 
coincide. In fact, this identification might have been anticipated from the discus­
sion above. At temperatures T < A, thermal fluctuations are not capable of exciting 
quasi-particle states above the ground state. One thus expects that Tc ~ A sep­
arates a low-temperature phase, characterized by the features of the anomalous 
pairing ground state, from a Fermi-liquid-like high-temperature phase, where free 
quasi-particle excitations prevail.

In the mean field approximation, the ground state |Qs) and its quasi-particle 
excitations formally diagonalize the BCS Hamiltonian. Before proceeding with the 
further development of the theory, let us pause to discuss a number of important 
properties of these states.

Ground state

In the limit A ^ 0, sin2 6k ^ 6(n — ek), and the 
ground state collapses to the filled Fermi sea with 
chemical potential ^. As A becomes nonzero, states 
in the vicinity of the Fermi surface rearrange them­
selves into a condensate of paired states. The latter 
involves the population of single-particle states with energy ek > ^. (This fol­
lows simply from the energy dependence of the weight function sin 6k entering 
the definition of the ground state - see the figure.) However, it is straightfor­
ward to show that, for any value g > 0, the total energy of the ground state, 
E|ns) = (Qs|H — pN|Qs) = £k(tk — Ak) + A2Ld/g, is lower than the energy 
E0 = 2 J2|k|<Pf tk of the Fermi sphere when g = 0.

EXERCISE To show that E|ns> < E0, it is convenient to represent the ground state 
energy of the Fermi sea as E0 = lini^ .0 E|qs). Use this representation (and the solution 
of the mean field equation) to verify that the superconductor ground state energy lies 
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below that of the uncorrelated Fermi sea. It is also instructive to ask for the minimum 
value that E|nsj may assume upon variation of A for fixed g. Show that the solution of the 
variational equation daE|ns) = 0 leads back to the mean field equation for A discussed 
above.

Excitations

It is important to distinguish between quasi-particle states and “excitations.” Quasi­
particle states are the eigenstates of the BCS Hamiltonian. Their energy-momentum 
relation is shown in the figure on page 264. Notice that there is a positive- and a 
negative-energy branch of quasi-particles. In the limit A ^ 0, the quasi-particles 
evolve into ordinary electrons. By contrast, the energy of excitations (as created 
by the operators ak) is always positive. An excitation can be either the creation of 
a quasi-particle at positive energy or the elimination of a quasi-particle (the cre­
ation of a quasi-hole) at negative energy. (In the ground state, all negative-energy 
quasi-particle states are filled.)
As A ^ 0, the excitation operators evolve into the op­
erator algebra introduced in Eq. (2.21). Notice that the 
total number of excitations is equal to the number of 
quasi-particle states. However, their density of states 
(non-vanishing for positive energies only) is twice as 
large. This is so because the dispersion of the excita­
tions is obtained by superimposing the positive branch 
of the quasi-particle spectrum onto the sign-inverted 
negative branch. For a particle-hole symmetric system, the quasi-particle spectrum 
is invariant under sign inversion, which implies that the two branches contribute 
equally to the density of excitations.

After these general remarks we turn to the specific discussion of the excitations 
of the BCS superconductor. According to Eq. (5.24), the excitation spectrum is 
gapped, i.e., it takes a minimum energy A to create an excitation above the BCS 
ground state, compare the continuous spectrum at g = 0. To better understand 
the profile of the spectrum, let us compute the density of excitations p(e),24 in the 
vicinity of the Fermi surface, e « p:

P(£) = Ld 5(£ — Ak) = d d£Ld 5(£ - £k) 5(£ — A(£))

k a k a
Vw

~ _ f ~ 6 (£ - s[e2 - A2]1 /2) 2O( _ A) e
~ S=±1Jo d£ K [ £2 + A2]1 / 2| ( A)( e 2 - A2)1 /2 '

A schematic plot of the BCS quasi-particle density of states is shown in the figure 
above. It is apparent that the spectral weight of the quasi-particles has been trans­
ferred from the Fermi surface to the interval [A, rc>]. The divergence at A signals 
that the majority of quasi-particle states populate the spectral region just above 
the gap.

24 To distinguish the density of states of the quasi-particles (v) from that of the excitations, we 
denote the latter by p.
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d-wave
supercon­

ductor

spin-triplet 
supercon­

ductor

EXERCISE Integrate the result above to confirm that fE de p(e) E-— 2Ev. This demon­
strates that the excitation density of states is indeed twice as large as that of the quasi­
particles.

The analysis above explains important aspects of the physics of the BCS super­
conductor: the instability towards condensation, and the presence of an excitation 
gap. Indeed, it would be tempting to make the latter responsible for the absence 
of electrical resistivity: should current flow, the absence of low-lying quasi-particle 
excitations would require it to be dissipationless. Yet that picture neglects the most 
important excitation of the system, the collective phase mode. Previously, we made 
the ad hoc decision to set the phase of the order parameter to zero. However, as with 
the superfluid, the phase represents a Goldstone mode and its presence must have 
important consequences. Indeed, it will turn out that the phase mode is responsible 
for most of the electromagnetic properties of the superconductor.

INFO The mean field ansatz considered in this section assumes the pairing of parti­
cles of opposite spin into a condensate state that is spatially structureless. Reflecting 
the trivial rotational symmetry of the condensate, such superconductors are called spin 
singlet s-wave superconductors. Most conventional superconductors fall into this cate­
gory. However, there are others with more interesting pairing properties. For example, 
high-temperature superconductors generically exhibit d-wave pairing, which means that 
the condensate wave function changes sign under n/2 rotations around a symmetry axis. 
Importantly, this behavior implies the existence of zeros of the order parameter func­
tion on the Fermi surface. In the vicinity of these regions, the system admits quasi­
particle excitations with linearly vanishing, effectively relativistic dispersion, see the ex­
ercise below. (The physical properties of such forms of two-dimensional Dirac quantum 
matter are discussed in chapter 9.) Other types of superconductors - such as strontium 
ruthenate - exhibit p-wave pairing. In such cases, the orbital wave function of the Cooper 
pairs is spatially antisymmetric, implying that spin triplets with aligned spins are paired 
(to make the overall pair wave function antisymmetric under particle exchange). The sym­
metries of the condensate wave function are responsible for numerous fascinating proper­
ties of p-wave superconductors, notably the presence of topological ly twisted ground state 
wave functions, to be discussed in detail in chapter 8.

EXERCISE The order parameter of a lattice d-wave superconductor is given by Ak = 
A0(cos(kxa) — cos(kya)), where k = (kx, ky)T is a two-dimensional lattice momentum and 
a is the lattice spacing. At two lines in momentum space, kx = ±ky , the order parame­
ter vanishes and low-energy quasi-particles persist. Assuming that the kinetic energy of 
the lattice problem is given by tk = -t(cos(kxa) + cos(ky a)), compute the quasi-particle 
energies of the Bogoliubov Hamiltonian H = ^k ^k((tk — p)a3 + Aka 1)^k. Show that, 
at four points in the Brillouin zone, k = (±1, ±1)n/2a, the quasi-particle energy van­
ishes. Linearize the Hamiltonian in momentum space around one of these hot spots, say 
(+1, +1) n/2a, to show that it assumes the form

ta(kx + ky) A0a(kx — ky)
A0a(kx — ky) —ta(kx + ky)

Apply a unitary transformation to bring H++ to the form of a two-dimensional Dirac 
Hamiltonian H++ — k 1 a 1 + k 2 a 2, where k 1 / 2 = kx ^ ky, we have rescaled k 1 — (A0/t) k 1, 

A
H++ =
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and set vF = 1. Show that the quasi-particle density of states of this Hamiltonian is given 
by P (e) ~ | e |.

5.3.4 Superconductivity from the field integral

REMARK For notational simplicity, natural units ~ = e = 1 are used throughout.

In the previous section we discussed the physics of the BCS superconductor from the 
complementary perspectives of perturbation and mean field theory, respectively; the 
elephant in the room, the phase Goldstone mode, was ignored. We now turn to the 
field integral formulation, which combines all these facets into the most powerful, 
and arguably also the most physical, approach to the description of superconductor 
physics. Our starting point is the coordinate representation of the BCS Hamiltonian 
(5.16),

HiBCS = d ddr ( cJ (2m (-iV - A)2 + <fr - ^ca - gc|c|c^ct

Anticipating the emergence of nontrivial electromagnetic phenomena, we have cou­
pled the single-particle Hamiltonian to a vector potential A and a scalar potential 
^. The origin and physical consequences of these fields are discussed somewhat 
later. Expressed in the form of the coherent state path integral, the corresponding 
quantum partition function takes the form Z = J Di e-S[^], where

S[i] = d drddr (Ja (dT + ifi +------ (—iV — A)2

2m — P^ia

INFO The substitution

dT ^ dT + i^, — iV ^ — iV — A,

minimal 
coupling

- g^t^4.^t •(5.27)

(5.28)

is often called the minimal coupling of an electromagnetic field. It is minimal in the sense 
that only orbital and potential coupling of the field are taken into account. (For example, 
the field-spin interaction is neglected.) At the same time, it is the minimally required 
framework to endow the theory with local gauge invariance under U(1) transformations

^ ^ eie^, '<p ^ e-ie^, ^ ^ ^ — dT0, A ^ A + V3, (5.29)

where 3 = 3(t, x) is an arbitrary space-time-dependent phase configuration. Minimal 
coupling introduces the quantum gauge principle into the theory. This should be compared 
with the discussion of the neutral superfluid, where only invariance under global U(1) 
transformations was required. In field-theoretical parlance, one sometimes says that a 
global U(1) symmetry has been gauged to become a local one. Importantly, however, this 
does not mean that the symmetry has become richer. As we will discuss in detail in chapter 
10, the different gauges (different choices of 3) of a theory simply represent different ways 
of describing identical physical states.



269 5.3 Superconductivity

In addition, some care must be exercised in interpreting the status of the zeroth com­
ponent, 1, of the potential. Introduced to establish gauge invariance in an imaginary-time 
formalism, this potential couples as an imaginary contribution to the action (5.27). It thus 
differs from the true potential, 1M, of real-time electromagnetism by a factor i, where the 
subscript M stands for the real-time (Minkowski) formalism, in distinction from the present 
imaginary-time (Euclidean) framework with potential 1 = 1E. As with the analytic con­
tinuation of ium ^ E to real energies, a continuation i^ = i^E ^ 1M must be applied 
before interpreting the potential in a real-time context. To keep the notation slim, we will 
avoid subscripts E, M unless they are required to avoid confusion.

We know that the field integral cannot be done in closed form, that a perturbative 
expansion in g will fail below Tc , and that the relevant degrees of freedom of the 
problem are Cooper pairs. All this suggests a Hubbard-Stratonovich transformation 
in the Cooper channel (see the Info block on p.236) as a natural approach. We thus 
start from the identity

exp dTddr^/’f i.4141fj

= D DAexp - — d dT ddr d-|A|2 — (A 1 4 1 f + Aif ^4)

where A(r, t) is a complex field subject to periodic boundary conditions, A(0) = 
A( 1) (why?). Notice that, if A were constant, it would couple to the theory as the 
mean field order parameter of the BCS Hamiltonian (5.22). This analogy suggests 
to introduce once again a Nambu representation,

^ = (V’t 14),

comprising particle and hole degrees of freedom in a single object. Expressed in 
terms of the Nambu spinor, the partition function takes the form

Z = D1DA exp dTddr 1A|2— ^ G-1^

where

S'
G

(p)-1 
0

Ap
A

G(h)-1G0
(5.30)1

Gorkov
Green 

function

is the Gorkov Green function, and G0p) 1 = — dT — ifi — (—iV — A)2/(2m) + ^, 

G0h) 1 = — dT + i1 + (+iV — A)2/(2m) — p, represent the non-interacting Green 
functions of the particle and hole, respectively.

INFO Computing the ^-representation of the action for a general single-particle Hamil­
tonian H, one finds that G0p) 1 = — dT — H + ^, and G0h) 1 = — dT + HT — ^. (With 
VT = —V, the expression above is identified as a special case of the more general form.) 
This representation is actually very revealing: it tells us that the Green function of a hole 
is obtained from that of the electron by a sign change H ^ — H (the energy of a hole is 
the negative of the corresponding particle energy) followed by transposition — H ^ — HT, 
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i.e., a quantum time reversal operation (a hole can be imagined as a particle propagating 
backwards in time). Noting that pT = —p and xT = x, the pair of Green functions can 
equivalently be represented as

G^P = — dT — H(X, p) + d, G0 = — dT + H(X, —p) — d. (5.31)

The Gaussian integration over Grassmann fields can now be performed and yields 
the formal expression (see the analogous formula (5.4) for the normal electron 
system)

Z = y DA exp —— d drddr |A|2 +lndet G-1^ . (5.32)

This exact representation of the problem will now be our starting point for the 
mean field analysis of the superconducting phase.

Mean field theory

A variation of the action in A generates the mean field equation25 g-1A(x) - 

] f < ^7 W p \ JTP^A --- (I urTlOT’O /f* --  (~v\ I III. p p p Ill'll l'l\' F lph I II V'llilh.ll Cll'i.i'i'i I -I IzilCtr(G (x, x)e 12 ) — o, wnere x — (i, x), tiie 2 // 2 matrix -Eij in Na^mJu space taix.es
the value of unity at position (i, j) and is zero otherwise. Temporarily ignoring the 
presence of the fields (^, A), and employing a uniform solution ansatz, A(Tx x) =
A0 — const., the equation simplifies to

1A 0 — tr 
g

A0

- dT
V2 

2 m

T ii^n - Cp

Ld \ A0
p

A0

iMn + Cp

-1

21

)-1 \
, J 1H
(x,x) ^0 ) J

T v A 0
L^^ ■ n + CP + |A0|2 ’

- dT + 2 m + m
A 0

BCS gap 
equation

where, in the second line, we have switched to a frequency-momentum representa­
tion and p — (wn, p). Rearranging the equation, we arrive at g-1 — TL-^2p(m2, + 
Ap)-2, where Ap — (Cp + A2)1 /2 > 0 (see Eq. (5.23)). Performing the Matsubara 
sum by the usual contour integration (see section 3.5), and remembering that the 
range of the interaction is limited to values |Cp | . MD , the equation reduces to

1 1 _ 1 - 2nf(ap) DDD 1 - 2nf(A(C))
g — Ld 2ap — J_Dd dCv(C) 2A(C) .

Noting that the integrand is even in C, and using the identity 1-2nF(e) — tanh(e/2T), 
we arrive at the celebrated BCS gap equation

1 dd d tanh ( ^TG - / dC
(5.33)

where v(C) — v is assumed approximately constant at the Fermi surface.

25 For the differentiation of the tr In term with respect to A, we refer to the analogous calculation 
in Eq. (5.5).

taix.es
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For temperatures T AO, the approximation tanh(X/2T) ~ 1 gets us back to the 
T = 0 gap equation (5.25) analyzed above. But what happens as the temperature is 
increased? Since the onset of superconductivity has the character of a second-order 
phase transition (see section 6.2.3), we expect a singular dependence of its order 
parameter A0 (T) on temperature. Indeed, it turns out (see problem 5.6.2) that the 
gap A(Tc) = 0 vanishes at a critical temperature Tc given by, up to numerical 
constants, Eq. (5.20). In other words, the order parameter begins to form at the 
same temperature that we previously saw marked the destabilization of the metallic 
Fermi surface. For temperatures slightly smaller than Tc (see problem 5.6.2),

A0 = const. x -\/Tc(Tc — T) (5.34)

shows square root behavior, similarly to the magnetization order parameter of a 
ferromagnet. This temperature dependence has been accurately confirmed for a 
large class of superconductors. Also, again up to numerical factors, the critical 
temperature Tc coincides with the zero-temperature value of the gap A, Eq. (5.26).

5.3.5 Ginzburg-Landau theory

Having explored the large-scale profile of the gap function, we next turn our at­
tention to the vicinity of the superconductor transition. For temperatures 8T = 
Tc — T T, the gap parameter A T is small, providing a small parameter for 
the expansion of the action (5.32). The result of this expansion will be an effective 
theory of the superconducting phase transition, elucidating the similarity to the 
neutral superfluid (as well as important differences).

Our task is to expand trln G-1 in powers of A. For simplicity, we continue to 
ignore the coupling to the external field. (It will be straightforward to put it back 
in later.) We also define G—* 1 = G-1|a=0, and A = (^ A), so that

trln G 1 =trln G 1(1 + GoA)J=trln G-1 + trln[1 + Go^A].
"const"' —12. '-■ GA\)2 n

Here we have used the relation trln [AB] = trln .4 • trln B.26 Further, note that 
only even contributions in A survive. The free energy of the non-interacting electron 

1gas, tr ln G0-1 , provides an inessential contribution to the action, which we will 
ignore.

To give this formal expansion some meaning, let us consider the second-order
1term in more detail. By substituting the explicit form of G0-1 it is straightforward 

to verify that

1 T— 2tr(GoA) = —tr i’ G 11 A[GO]22 AJ = -^2 Ld^2 [G0 ,p ]11[G0 ,p—q ]22 A( q )A( q ), 
qp

— LTd Zp GPG—p+q

(5.35)

26 Notice that the relation tr In [ A B] = trln A + trln JB applies to non-commutative matrices.
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where we have made use of the representation of the composite Green function 
G0 in terms of the single-particle Green function Gpp) = Gp and the hole Green 
function G(ph) = -G(-pp) = -G-p (see Eq. (5.31)). On combining with the first term 
in Eq. (5.32), we arrive at the quadratic action for the order parameter field,

S(2)[A] = £r— 1|A(q)|2, r-1 = 1 - T £GpG-p+q. (5.36)
q gp

This is our second encounter with the vertex function r-1: in our perturbative anal­
ysis of the Cooper channel (see Eq. (5.18)) we identified the same expression. To 
appreciate the connection, we should revise the general philosophy of the Hubbard- 
Stratonovich scheme. The field A was introduced to decouple an attractive interac­
tion in the Cooper channel. By analogy with the field ^ used in the development of 
the RPA approximation to the direct channel, the action of the field A ~ pp can 
be interpreted as the “propagator” of the composite object ip-?p^, i.e., a quadratic 
contraction ~ (AA) describes propagation in the Cooper channel ~ (it it it it)> 
as described by a four-point correlation function. This connection is made explicit 
by comparison of the quadratic action with the direct calculation of the Cooper 
four-point function given above.

However, in contrast with our discussion in section 5.3.2 (where all we could do 
was diagnose an instability as r-=0 ^ 0), we are now in a position to compre­
hensively explore the consequences of the symmetry breaking. Indeed, r —=0 ^ 0 
corresponds to a sign change of the quadratic action of the constant order param­
eter mode A(q = 0). In the vicinity of this point, the constant contribution to the 
action must scale as ~ (T — Tc), from which we conclude that the action assumes 
the form

S(2) [A] = j drddr r(T) | A|2 + O(dA, dTA),

where r(T) ~ T — Tc and O(dA, dTA) denotes temporal and spatial gradients to 
be discussed shortly.

EXERCISE Use Eq. (5.19) and the expansion

nf(e,T) - nf(e,T3) ~ (T - Tz)dT|^nf(e,T) = -dnf(e,T3)(T - Tz)T.

to show that r(T) = vt, where t = (T - Tc)/Tc defines the reduced temperature.

For temperatures below Tc , the quadratic action becomes unstable and - in direct 
analogy with our previous discussion of the superfluid condensate action - we have 
to turn to the fourth-order contribution, S(4), to ensure stability of the functional 
integral. At orders n > 2 of the expansion, spatial and temporal gradients can 
be safely neglected (since A T and they have a low weight compared with the 
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leading gradient contributions to S(2)). For A = const., it is straightforward to 
verify that an expansion analogous to that in Eq. (5.35) gives

9(2n)_ 1 - /A A >2n (-)n r |A 12n~. v|A|2n V PD d£
S =2ntr(GoA) 2. ^(GpG-p) |A| („2 +e2)n

p ' -'D V l >

1 ./ |A| \2 n
= const. x v|A|2n 2n-1 = const. x vT I -— I ,

Wl T T /ul l

where “const.” denotes numerical constant factors. Here, in the fourth equality 
we noted that, for wD T, the integral is dominated by its infrared divergence, 
/o'D d£ (W + £2)-n — JJ^ d£ £-2n. We conclude that contributions of higher order 
in the expansion are (i) positive and (ii) small in the parameter |A|/T 1. This 
being so, it is sufficient to retain only the fourth-order term (to counterbalance the 
unstable second-order term). We thus arrive at the effective action

S[A] = d dT ddr(rT |A|2 + u|A|4 + O(dA, dTA, |A|6)") , (5.37)
L J 2 V 2.............................................................. ‘ ' '

with u ~ v/Tc, valid in the vicinity of the transition.

INFO Referring to problem 5.6.3 for details, we note that the straightforward inclusion 
of spatial gradients in the action leads to

dr2c 2 45gl[A]= ^drl 2|A| +21dA| + u|A| J (5.38)

Ginzburg—
Landau 

action

where c ~ p0(vF/T^. This action is known as the (classical) Ginzburg-Landau ac­
tion. It is termed “classical” because (cf. our remarks on page 245) temporal fluctuations 
of A are ignored. Notice that the form of the action might have been anticipated on sym­
metry grounds alone. Indeed, Eq. (5.38) was proposed by Ginzburg and Landau as an 
effective action for superconductivity years before the advent of the microscopic theory.27 

A generalization of the action to include temporal fluctuations leads to the time-dependent 
Ginzburg-Landau theory, to be discussed below.

27 V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zh. Eksp. Teor. Fiz. 20, 
1064 (1950).

Equation (5.37) makes the connection between the superconductor and superfluid 
explicit. In the limit of a constant order parameter, the action does indeed reduce 
to that of the superfluid condensate amplitude (5.11). Above Tc, r > 0 and the 
unique mean field configuration is given by A = 0. However, below the critical 
temperature, r < 0, and a configuration with non-vanishing Cooper pair amplitude 
Ao becomes favorable:

^SA! = 0 ^ Ao (r + 2u|Ao|2) =0 ^ |Ao | = J-r ~ VTc(Tc - T),
oA \2 / V 4u 
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cf. the previous estimate (5.34). As with the superfluid, the mean field equation 
leaves the phase of the order parameter A = e2ieA0 unspecified.28 Below the 
transition, the symmetry of the action is broken by the formation of a ground 
state with definite phase, e.g., 9 = 0. This entails the formation of a soft phase 
mode exploring deviations from the reference ground state. Pursuing the parallels 
with the superfluid, one might conjecture that this is a Goldstone mode with linear 
dispersion, and that the system supports dissipationless supercurrents of charged 
particles: superconductivity.

The ramifications of the local gauge structure can be explored only in conjunction 
with the electromagnetic field (^, A). We therefore return to the microscopic action 
(5.32), where G now represents the full Gorkov Green function (5.30). At this point, 
we need not specify the origin of the electromagnetic field - whether it is an external 
probe field, or a fluctuating ambient field. However, we will assume that it is weak 
enough not to destroy the superconductivity, so that the modulus of the order 
parameter is still given by the value A0 , as described in the previous section.

What is the form of the action describing the interplay of the phase degree of 
freedom and the electromagnetic field? As usual in field theory, the question may 
be answered in two ways: by phenomenology or microscopic construction. Here, 
both approaches are instructive and beautifully complement each other, and so we 
present them in turn.

Phenomenology

We begin the phenomenological construction of the phase mode action by listing 
the general criteria fixing its structure.

> The phase 9 is a Goldstone mode, i.e., the action cannot contain terms that do 
not vanish in the limit 9 ^ const.

> We will assume that gradients acting on the phase 9 (but not necessarily the 
magnitude of the phase) and the electromagnetic potentials are small. That is, 
we will be content with determining the structure of the action to lowest order 
in these quantities.

28 We denote the phase by 29 since, under a gauge transformation ^> ^ eitf>, the composite field 
A ~ ci:,' picks up twice that phase. However, in the functional integral, 9 is an integration 
variable, and the factor of 2 a matter of convention.

However, at this point, we have overstretched the analogies to our previous dis­
cussion. The argument has ignored the fact that the symmetry broken by the ground 
state of the superfluid is a global phase U(1). However, as explained on page 268, 
the microscopic action of the superconductor possesses a gauged U(1) symmetry. 
As we will discuss below, this difference implies drastic consequences.

5.3.6 Action of the phase mode
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> By symmetry, the action must not contain terms with an odd number of deriva­
tives or mixed gradients of the type dT 9V6. Respecting the character of the 
microscopic model, the action must be rotationally invariant.

> The action must be invariant under the local gauge transformation (5.29).

The first three criteria are manifestly satisfied by the trial action

S[6] = / drddr (c 1(dT6)2 + c2(V6)2) ,

where c1 and c2 are constants. However, this action is not invariant under a gauge 
shift of the phase, 6(t, r) ^ 6(t, r) + y(t, r). To endow it with that quality, we 
introduce a minimal coupling to the electromagnetic potential,

S[6, A] = / drddr (c 1(dT6 + iA0)2 + c2(V6 - A)2) (5.39)

To second order in gradients, this action describes uniquely the energy cost associ­
ated with phase fluctuations.29 Notice, however, that the present line of argument 
does not fix the coupling constants c1,2 . To determine their values, we need to derive 
the action microscopically, as in the next section, or invoke further phenomenolog­
ical input (see info below). Either way one obtains c2 = ns/2m and c 1 = v, where 
we have defined ns as the density of the Cooper pair condensate. (For a precise 
definition, see below.)

29 Actually, this statement must be taken with a pinch of salt: to the list of criteria determining 
the low-energy action, we should have added symmetry under Galilean transformations, x ^ 
x + vt, describing the change to a moving reference frame. The microscopic BCS action has this 
symmetry, but Eq. (5.39) does not. One may patch up this problem by adding to the action 
combinations of full derivatives and higher order derivatives in space and time (see I. J. R. 
Aitchinson et al., Effective Lagrangians for BCS superconductors at T = 0, Phys. Rev. B 51, 
6531 (1995)). However, here we do not discuss this extension but work with the lowest order 
approximation (5.39). (We thank Sid Parameswaran for drawing attention to this issue.)

INFO Beginning with coefficient c2 , let us briefly discuss the phenomenological deriva­
tion of the coupling constants. Our starting point is the representation of the current as a 
functional derivative, (SA(T,r)S} = j(t, r)}, of the action. (Readers not familiar with this 
relation will find it explained in the Info block on page 408.) Indeed, the differentiation of 
the microscopic action Eq. (5.27) yields

(sa) = - ’(-i ^ — A) ^^ +((i ^ — A) ’) ^^= j,
SA 2m

where j is the quantum current density operator. Now let us assume that a fraction 
of the electronic states participate in the condensate, such that j = jn + js , where the 
current carried by the normal states of the system, jn , will not be of concern, while js is 
the supercurrent carried by the condensate. Let us further assume that those states is 

participating in the condensate carry a collective phase 0 with a non-vanishing average, 
1s = ei^ , where the residual phase carried by the local amplitude ip averages to zero. 
Then, concentrating on the phase information carried by the condensate, and neglecting 
density fluctuations,
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(£) 1 m <v 0 - A ■

where ns = ^s^s is the density of the condensate.
Now, let us evaluate the relation {SAS} = (j) on our trial action (5.39), 

j = (SSA]= -2c2<V0 - A).

Comparison with the phenomenological expectation value of the supercurrent operator leads to the identification of the so far unspecified coupling constant c2 = ns/2m.

Turning to the coupling constant c1 , let us assume that the electron system has been 
subjected to a weak external potential perturbation $(r^ r). Assuming that the potential 
fluctuates slowly, we expect screening by a readjustment of the charge density, similar to 
that generating Thomas-Fermi screening (see the Info block on p. 198). This suggests a 
contribution to the effective Hamiltonian ~ (—) v $ ddr^2 , where the minus sign reflects 
a lowering of the energy by screening. Comparing this expression with our trial action 
- which contains the imaginary time “Euclidean” potential, A0 = i$ - we suspect an 
identification c 1 ~ v. However, the argument must be taken with caution: the presence of 
the order parameter implies a modification of the charge density close to the Fermi energy, 
where the charge redistribution takes place; we need a more microscopic calculation to 
gain certainty.

Microscopic derivation

REMARK This section is more technical than most in this text. It introduces various 
tricks routinely applied in the construction of low energy effective actions, and the authors 
thought it instructive to document such a derivation for a case study of a complexity 
matching that of research applications. However, readers on a fast track may skip this 
section, or return to it at a later stage. (To keep the notation concise, we write $ = A0 

for the temporal component of the vector potential. Note, however, that we are in an 
Euclidean framework, $Euclidean = i^Lorentzian .)

The starting point for the derivation of the phase action from first principles is the 
Gorkov Green function appearing under the tr ln of Eq. (5.32),

—dT — i<£ — 2m (—i v — A)2 + m Ao e2 i®

Aoe 2i® — dT + i$ + 2m(+iV — A)2 — M

now minimally coupled to the electromagnetic potential. To simplify the analysis, 
we assume a constant modulus, Ao , of the order parameter, thus neglecting massive 
fluctuations around the mean field amplitude. We next make use of the gauge free­
dom inherent in the theory to remove the phase dependence of the order parameter 
field. To do so, we introduce the unitary matrix U = diag (e-i®, ei®^ and transform 

11the Green function as G- ^ UG-1UT = G 1, where (exercise)

g-i = (—dT—i<t>—2m (—iv—-A)2+m Ao

V A0 — dT + ir> + 2m (+iV — -A)2 — M

contains the phase field through a gauge transformed potential $ = $ + dT0, A = 
A — V0. Since trln G-1 = trln( UG-1U t), the two Green functions represent the 
theory equivalently.

G®-
i



277 5.3 Superconductivity

Josephson 
junction

INFO The transformation above conveys an important message - under gauge transfor­
mations, the order parameter A ~ riJ>^<..\ changes as A ^ e* i 2 * * Sie A. Lacking gauge invariance, 
it cannot be an experimentally accessible observable nor serve as a conventional order 
parameter such as, e.g., the magnetization of a ferromagnet. Perhaps unexpectedly, the 
conceptual status of the order parameter field is a subject of ongoing research, and 
there are different proposed interpretations (see Ref.30 for a pedagogical discussion). A 
pragmatic, and experimentally relevant one, is to notice that, while A may be unobserv­
able, overlaps [AA'} between the order parameters of different superconductors are gauge 
invariant; the complex conjugate A' ^ e-i2e changes by the opposite phase, and hence 
may leave direct signatures in physical observables. This principle is used in the Joseph­
son junction , which is essentially a system of two tunnel-coupled superconductors (see 
problem 5.6.6), and represents one of the most important probes into the physics of su­
perconductors. A more radical view31 abandons the concept of a local order parameter 
for the superconductor altogether and proposes a topological phase, which by definition is 
a phase whose ordering principle evades classification by local order parameters (cf. sec­
tion 8.1). However, in the context of the present discussion, A has the status of a complex 
Hubbard-Stratonovich field. As long as we do not over-interpret its conceptual status, we 
may proceed pragmatically and describe the low energy physics of the superconductor in 
terms of this effective field, which, despite these complications, we will continue to call an 
order parameter, as most people do.

A
X1

i in -fi j i • i j • t j • j i j 7? r-nj i iwhere we define ct0 = 1 as the unit matrix. Noting that Xi are of first and second
i • 7 j-1j1 • j i j i r-order in A, respectively, the expansion takes the form

r T A A . A . \ -I A. r A . A . A \S[^4] = -trln (G 1 - Xi - X2) = const. - trln (1 - Go [Xi + X2] J

= const. + tr ^GoXi) +tr ^GoX2 + 2GoXiGoXi^ + • • • , (5.40)

x XA Z V_ _ _ X
S (1)[ 7 S (2)[ 4]

where we have used the fact that X1,2 are of first and second order in the field, 
respectively.

30 M. Greiter, Is electromagnetic gauge invariance spontaneously violated in superconductors?, 
Ann. Phys. 319, 217 (2005).

31 T. H. Hansson, Vadim Oganesyan, and S. L. Sondhi, Superconductors are topologically ordered, 
Ann. Phys. 313, 497 (2004).

To make further progress, we assume that both spatio-temporal gradients of 0 and 
the electromagnetic potential are small, and expand in powers of ($, A).

To facilitate the expansion, it will be useful to represent the 2 x 2 matrix structure 
of the Green function through a Pauli matrix expansion:

G 1 = -ctodT - ct3 ( i + 1 (—iv- Aa3)2 

2m
+ ct xAqM

= - ct o dT - ct 3 M
i+ ctlAo - iCT3 + + —cto[v, A] +

A 1G0

CT 3— TA 2,
3 2 m ,

A X
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gradient 
expansion

INFO Expansions of this sort, which in the literature are known as gradient expansions, 
appear frequently in the construction of low energy theories. After the introduction of a 
Hubbard-Stratonovich field, $, and integration over the microscopic degrees of freedom, 

-1one obtains trln(G— 1 + X[0]). Specifically, in cases where 0 parameterizes the Goldstone 
mode of a symmetry-breaking phase, the operator X[$] coupling to the new field con­
tains only gradients of it (spatially uniform fluctuations cost no action). Assuming that 
these gradients are small compared with the native action scales hidden in the free Green 

1function G0-1 , one then performs a gradient expansion.

Writing Q, ^ Q for notational simplicity, the first-order action S(1) takes the form 
(exercise)

S(1)[1 = Td tr(GpX1 (P,P)) = Td tr (pp ii°34 + ~aoP ' A0)) ,
Ld Ld m
pp

i ii i • j r\ r j j i j iCiiniiTwhere the subscripts 0 refer to the zero-momentum components of the fields 0 
and A. Since the Green function G is even in the momentum, the second con­
tribution k p vanishes by symmetry. Further (dT0)0 = 0 • 00 = 0, i.e., ^0 = ^0 

and S(1)[ 14] = iTL-d p (Qp, 11 — Qp,22) $0, where the indices refer to particle-hole 
space. To understand the meaning of this expression, notice that Qp, 11 = (4^,p4^,p)0 

gives the expectation value of the spin-up electron density operator on the back­
ground of a fixed-order parameter background. Similarly, —Qp,22 = — 4^,p4^,p)0 = 
+ (^i,p4i,p)o gives the spin-down density. Summation over frequencies and mo­
menta recovers the full electron density: TL-^2p(Qp, 11 - Qp,22) = N L-d = n, 
or

S(1)[i4]= iN00 = in f drddr ^(t, r).

Thus, the first contribution to our action simply describes the electrostatic coupling 
of the scalar potential to the total charge of the electron system. However, as with 
the electron plasma discussed earlier, the “correct” interpretation of this expres­
sion is S(1) = 0: the coupling of the potential to the electron density cancels an 
equally strong coupling to a positive background, whose presence we leave implicit 
as always.

We thus turn to the discussion of the second-order contribution S(2) . The term 
containing Xj2 is reminiscent in structure to the S(1) contribution discussed before. 
Thus, replacing Xj1 by Xj2 , we immediately infer that

tr(QiX2)= ,'n d drddr A2(t, r). 
2m

(5.41)

This contribution derives from the diamagnetic contribution A2/2m to the elec­
tron Hamiltonian and is hence called a diamagnetic term. If we had only the 
diamagnetic contribution, an external field would lead to an increase of the energy. 
However, we have not yet included the operator Xj1 in our analysis.
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-Gpff 3 ■' q Gpff 3 ^ - q + m12 Gpff 0p • A q Gpff 0p • A q

Substituting for X1, and noting that cross-terms ~ <$> p • A vanish on integration 
due to their oddness in momenta, we obtain

1 T
2tr (G0X1GX1) 2L \ tr

p,q

Here, noting that we are already working at the second order of the expansion, 
j i -ill i r j i z~i c j • A j i ii j -iithe residual dependence of the Green functions G on the small momentum variable 
q has been neglected.32 Originating in the paramagnetic operator ~ [p, A] + in 
the electron Hamiltonian, the magnetic contribution to this expression is called a 
paramagnetic term. Paramagnetic contributions to the action lead to a lowering 
of the energy in response to external magnetic fields, i.e., the diamagnetic and the 
paramagnetic term act in competition.

32 i.e., we have set £pq(Gp4>qGp+q<j>-q) w ^2pq(Gp<t>qGp0-q).
33 Here, we use the general matrix identity (v0a0 + v • a) —1 = (v0a0 — v • a)/(v2 — v2). Other

useful relations include (i,j = 1, 2, 3; p,, v = 1, 2, 3, 4) a? = 1 ,i = j, [ai,aj]+ = 0, affPj = 
ie'ijkak, tr ap = 26p,0.

To proceed, we need the explicit form of the Green function, which follows from 
a bit of Pauli matrix algebra33 * as

Gp = (iff0u - ff3£p + ff A = 12 2 (-iff0Un - ff3£p + ff 1A0) . (5.42)
un+tp+A0

Using this representation, and noting that for rotationally invariant functions F (p2 ) 
(exercise), ^p(p • v) (p • v')F(p2) = vv ^p p2F(p2), one obtains

1 , ( a-vAv A T °q ^—q (Un—A p+2A0) — 3m2 p A q • A-q (un—A p)2tr GXGX1) = Ld --------------------------- (UT+W--------------------------- , 

where Ap = £p + A2. We now substitute this result together with the diamagnetic 
contribution (5.41) back into the expansion (5.40), partially transform back to real 
space £q fq f— q = f dT ddr f f (t, r)2, and arrive at the action

SI-41 = j
,d I T Un Ap+2A0 72/ /

ldd-r’-L^L, (Un + Ap)2 ' T,r)

c1

+ (n_____ LT V p2(Un-Ap) A2(t r)\
+ ^2 m dm 2 Ld^ (u^n + A p)2 ) (,)j

c2

This intermediate result identifies the coupling constants c1,2 . The last step of the 
derivation, i.e., the sum over the “fast” momenta p, is now a relatively straight­
forward exercise. Beginning with the frequency summations, one may note that 
the denominator has two isolated poles of second order at Un = ±iAp . Applying 
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the standard summation rules, it is then straightforward to evaluate the coupling 
constant of the potential contribution as (exercise)

— 1 1c1 = Ld E 2Ap n F( —A p)
(A0 W A /" i

A / + n f(-A pH-Ap Ap
+ (A p ^ - A p)

± v A0 ~ v f ~ d A2 v 
Ld 2Ap ~ 4 /-TO e (e2 +A2)3/2 2 , (5.43)

superfluid 
density

in accord with the expectation c 1 ~ v. With the magnetic contribution, the 
situation is more interesting. Here, an analogous construction yields

c 2 = 2m - dmL B n f( a p)(1 - n f( a p)) “ nm, 
p

ns = nf 1 — f deft(nf(A)(1 — nf(A))j , (5.44)
— w

where we note that the integrand is strongly peaked at the Fermi surface, i.e., the 
factor p2 « 2nmi. can be removed from under the integral, and that34 n = 2vp/d.

35 In reality, the magnetic response of conducting materials is more nuanced. Going beyond sec­
ond lowest order of perturbation theory in A, a careful analysis of the coupling of a (small) 
magnetic field to the orbital degrees of freedom of the Fermi gas shows that the cancellation of 
diamagnetic and paramagnetic contributions is not perfect. The total response is described by 
a weak diamagnetic contribution, xd, a phenomenon known as Landau diamagnetism. The 
diamagnetic orbital response is overcompensated by Pauli paramagnetism, a three times 
larger coupling of opposite sign xp = -3xd . For large magnetic fields, the situation changes 
totally, and more pronounced effects such as Shubnikov—de Haas oscillations or even the 
quantum Hall effect are observed.

The parameter ns is called the superfluid density. Its definition reflects a com­
petition between dia- and paramagnetism in the magnetic response of the system. 
At low temperatures, T A0, the positivity of Ap > A0 implies that nF(Ap) « 0, 
and hence the vanishing of the integral. In this limit, c2 « n/(2m) and ns = n. 
The diamagnetic contribution to the action dominates which, as we will discuss 
below, leads to the expulsion of magnetic fields by the superconductor. In the 
opposite regime of high temperatures, T A0, the integral extends over energy do­
mains much larger than A0 and we can approximate — f de ft(nF(A)(1 — nF(A)) « 
— f dftft(nf(ft)(1 — nf(e)) = 1 to obtain c2 « 0. The near35 cancellation of dia- 
and paramagnetic contributions is typical of the response of normal conductors to 
external magnetic fields.

INFO At intermediate temperatures, the superfluid density ns lies between zero and the 
full density. Historically, the concept of a “superfluid density” was introduced prior to the

34 This follows straightforwardly from the two definitions (the factor 2 accounts for the electron 
spin)

4 2 vJs(^ - ^pH = 2 Hs J S(^ - £)Ld^ 1e( M - £ pH (2 n) 4 H ©( M - £) 
p
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two-fluid 
model

BCS theory, when a phenomenological model known as the two-fluid model defined the 
state-of-the-art understanding of superconductivity. The model assumes that, below the 
transition, a fraction of the electron system condenses into a dissipationless superfluid of 
density ns, while the rest of the electrons remain in the state of a “normal” Fermi liquid of 
density nn = n - ns . On this basis, various properties characteristic of superconductivity 
could be successfully explained.

However, BCS theory showed that the bulk of electrons are oblivious to the pairing in­
teraction and that only a small region around the Fermi surface undergoes restructuring. 
On this basis, the idea of an independent superposition of two independent “fluids” has 
been superseded by the microscopic (and not much more complicated) theory of super­
conductivity.

Before leaving this section let us discuss one last technical point, the validity of the 
gradient expansion. Previously, we expanded the phase action up to leading order 
in the gradients dT 9 and V6. Indeed, why is such a truncation permissible? This 
question arises in most derivations of low energy theories, and it is worthwhile to 
address it in generality. To this end, consider the action of a Hubbard-Stratonovich 
field S [^] and assume its independence under constant displacements ^(x) ^ ^ (x) + 
^0. In this case, the action depends only on derivatives d^, and expansion leads to 
a series with symbolic momentum space representation

S ~ N((l0q)22'q$-q + (l0q)42'q$-q + '''),

where l0 is some microscopic reference scale of dimension [length] or [time], the 
ellipses stand for terms of higher order in q and/or oq, and N is the large parameter 
of the theory (which usually appears as a global multiplicative factor). Since only 
configurations with S ~ 1 contribute significantly to the field integral, we obtain the 
estimate ^q ~ N-1 /2(l0q)-1 from the leading order term of the action. This means 
that terms of higher order in the field variable, N(l0qoq)n>2 ~ N1-n/2, are small in 
inverse powers of N and can be neglected. Similarly, terms like N(l0q)n>2oq^-q ~ 
(l0q)n-2. As long as we are interested in large-scale fluctuations on scales q-1 l0, 
these terms can be neglected, too.

Notice that our justification for neglecting terms of higher order relies on two 
independent parameters; large N and the smallness of the scaling factor ql0 . If 
N = 1 but still ql0 1, terms involving two gradients but large powers of the
field ~ q20n>2 are no longer negligible. Conversely, if N 1 but one is interested 
in scales ql0 ~ 1, terms of second order in the field weighted by a large number 
of gradients ~ qn>2^2 must be taken into account. An incorrect treatment of this 
point has been the source of numerous errors, including in the published literature.

5.3.7 Meissner effect and Anderson-Higgs mechanism

“Vanishing resistivity” is often the first thing that comes to mind in association with 
superconductors. However, from a conceptual perspective, the collective ordering 
of a macroscopically large numbers of quantum degrees of freedom is an equally 
striking phenomenon. Unlike in a metal, where the phases of individual fermion
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macroscopic 
quantum 

state

wave functions tend to cancel out, here they get locked to define one collective 
degree of freedom, mathematically represented by the order parameter amplitude. 
Its macroscopic occupation makes the condensate a macroscopic quantum state 
possessing a level of stability against local decoherence that conventional wave 
functions do not have. The presence of this state is responsible for most of the 
phenomena of superconductivity, including vanishing resistivity.

We have already emphasized that superconductors share the phase ordering prin­
ciple with superfluids. However, we now turn to a discussion of the principal dif­
ference between the two: the fact that the particles entering the superconducting 
condensate are charged. To appreciate the consequences, recall that in superfluids 
long range phase fluctuations could build up at vanishing action cost - the nature 
of the Goldstone mode. What happens in the superconductor? We have already 
seen that phase and charge are a canonically conjugate pair and that their fluctua­
tions are inseparably linked. However, in the presence of electromagnetic fields, long 
range fluctuations of the charge do cost energy, and hence action. We must there­
fore expect that the phase mode “talks” to the electromagnetic field in a manner 
that leaves room for the buildup of large (massive) action contributions destroying 
the Goldstone mode character of the dispersion. This is the principle behind the 
Anderson-Higgs mechanism.

To describe this phenomenon in more detail, we consider the case where temper­
ature is high enough to inhibit quantum fluctuations of the phase (cf. the remarks 
on page 245), 6(T, r) = 9(r). We also assume the absence of electric fields and work 
in a gauge ^ = dTA = 0. Under these conditions, the action simplifies to

S[A, 9] - [ ddr (ns(V6 - A)2 + (V x A)2^ , 
2m 

where we included the action 1 f dT ddr F,iVF'"' —> 2 f ddr (Vx A)2 = 2 f ddr B2 

of the static magnetic field. Since the action is gauge invariant under transforma­
tions A ^ A + V$, 6 ^ 6 + ^, we expect that integration over all realizations of 
6 - a feasible task since S[A, 6] is quadratic - will produce a likewise gauge invari­
ant effective action e-S[A] = $ D6 e-S[A,e]. As usual with translationally invariant 
systems, the problem is best formulated in momentum space, where

S[A, 6] = 2 (ns(iq6q - Aq) • (-iq6-q - A-q) + (q x Aq) • (q x A-q)

= 2 (m(6qq26-q - 2i6qq • A-q + Aq • A-q) + (q x Aq) • (q x A-q)

Integration over the components 6q is now straightforward and leads to

S[A] = - E fns f Aq • A-q - (q • Aq)(q • A-q)) + (q x Aq) • (q x A-q)) . 2m q

q
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To bring this result into a more transparent form, we split the vector potential into 
a longitudinal and a transverse component:36

3636 The terminology “longitudinal component” emphasizes the fact that Fq is the projection of a 
vector field Fq onto the argument vector q. Correspondingly, the “transverse component” is 
the orthogonal complement of the longitudinal component.

37 P. W. Anderson, Plasmons, gauge invariance, and mass, Phys. Rev. 130, 439 (1962); P. W. 
Higgs, Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett. 13, 508 (1964).

38 The same is true for the order parameter. For example, the zero and one occupation number 
states of the order parameter “phase boson” define the states of a superconducting qubit in 
quantum computation.

A = A - q(q • Aq) + q(q • Aq) (5 45)
Aq = Aq q 2 + q 2 . (5.45)

A A"q Aq

To motivate this decomposition, notice that the transverse component determines 
the physical magnetic field: Bq = iq x Aq and q x q = 0 imply Bq = iq x 
Aq. Also note that the transverse component is properly gauge invariant under 
transformations Aq ^ Aq + iqftq (since (qftq)x = 0).

Substituting the above decomposition, a straightforward calculation shows that

S [A1 = f E( nm + q 2) Ai • A-q (5.46)

Anderson—
Higgs 

mechanism

This action describes the essence of the Anderson—Higgs mechanism: 37 inte­
gration over all realizations of the phase mode has generated a mass term for the 
gauge field. As we will see, the mass term, proportional to the superfluid density, 
is responsible for the curious magnetic phenomena displayed by superconductors in 
the Higgs phase.

Higgs 
particle

INFO In the early 1960s, the discovery of the Anderson-Higgs mechanism had a disrup­
tive influence both in the physics of superconductivity and that of the standard model 
of particle physics. The latter described the fundamental forces of nature in terms of the 
exchange of gauge fields, which upon quantization assumed the identity of gauge parti­
cles. The problem was that, to explain the short range nature of the weak interaction, the 
corresponding bosonic particles - the W and Z vector bosons - had to be quite massive, 
about two orders of magnitude heavier than the proton. Peter Higgs, and independently 
several other researchers, proposed a solution by coupling the gauge bosons to a complex 
scalar particle with a symmetry breaking 04-type action similar to that of the supercon­
ducting order parameter. Via the Anderson-Higgs mechanism, the fluctuations of this 
field introduced the otherwise inexplicable mass generation. Upon quantization, the Higgs 
field assumed the identity of a scalar boson,38 with accurately predictable mass, as it had 
to determine the known masses of the vector bosons. In 2012 signatures matching these 
expectations where seen at the LHC facility at CERN. Subsequent research corroborated 
the discovery of the Higgs particle, whose existence is now considered established. The 
theoretical research leading to the experimental discovery five decades later was awarded 
with the 2013 Nobel Prize.
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To understand the phenomenological consequences of gauge field mass generation, 
let us vary the action (5.46) in A (keeping in mind the transversality condition 
q • Aq = 0, we henceforth drop the superscript ±) to obtain (ns/m + q2)Aq = 0, or

ns - V^ A(r) = 0. 
m

(5.47)

first
London

Remembering that B = V x A, multiplication of this equation by Vx produces 
the first London equation

equation
(— - V^ B(r) = 0 

m
(5.48)

For ns = 0, this equation does not have a non-vanishing constant solution and we 
conclude that:

A bulk superconductor cannot accommodate a magnetic field.

Meissner 
effect

This phenomenon is known as the 
Meissner effect. To understand 
what happens at the interface 
between vacuum threaded by a 
constant magnetic field B0 and a 
superconductor, we can solve the 
London equation to obtain B(x) ~ 
B0 exp(-x/X), where

p enetration 
depth

is known as the penetration depth and x is the direction perpendicular to the in­
terface (see the figure). The physical mechanism behind the Meissner phenomenon 
is as follows: previously, we saw that the magnetic response of a superconductor is 
fully diamagnetic. That is, in response to an external field, diamagnetic screening 
currents will be generated. The magnetic field generated by these currents coun­
teracts the unwanted external field. To see this explicitly, we obtain the current 
density induced by the field by differentiating the first term39 of the action in A:

39 See remarks on page 275. Only the first term, generated by the field-matter current, contributes 
to the current. It is instructive to think about this point.

j(r) =
6

3 A(r)
ddr ns-A2 = nsA(r), 

2m m
(5.49)

second
London 

equation

i.e., the current density is directly proportional to A. This is the second London 
equation. Since the vector potential and the magnetic field show the same decay, 
Eqs. (5.47) and (5.48), the current density also decays exponentially inside the 
superconductor. However, in doing so, it annihilates the external field.

INFO For increasing external field strength, eventually a point must be reached where the 
superconductor is no longer able to sustain zero resistance. It is instructive to explore this 



285 5.3 Superconductivity

breakdown from the perspective of the effective Ginzburg Landau field theory (5.38). To 
this end, we consider the minimal coupling of the latter to the external field. Remembering 
that under gauge transformations A ^ Ae2i^, i.e., VA VA ^ (V + 2iV0)A(V — 2iV0) A, 
the gauge invariant extension of the action reads as

Sgl[A, A] = l^ lddr (2|A|2 + 2|(V — 2iA)A|2 + g|A|4) ,

where A transforms as A ^ A + V$. To monitor what happens as |A| k |B| increases, 
we consider the mean field equation (exercise)

(r + c(—iV — 2A)2 + 4g|A|2) A = 0,

where r < 0, since we are below the superconducting transition temperature. Due to the 
positivity of the third term, a non-vanishing solution can exist only if the first two terms 
add to a negative contribution. This in turn requires that the eigenvalues of the kinetic 
operator satisfy

EV(—iV — 2A)2 < .

Formally, (—iV — 2A)2 is the kinetic energy operator of a particle of mass 1/2 and charge 
q = 2 in a uniform magnetic field. Its eigenvalues are the Landau levels, wc (n + 1 /2) , 
n = 0, 1,... , familiar from elementary quantum mechanics (see section 8.4.7). Here, wc 

is the cyclotron frequency, wc = qB/m = 4B . Thus, a finite pairing amplitude can be 
obtained only if |r|/c is larger than the energy of the lowest Landau level, or

B<B c2 = r.
2c

For magnetic fields larger than this, the energy needed to expel the field is larger than the 
maximum gain of condensation energy S [A], and superconductivity breaks down. For a de­
tailed discussion of the ways by which strong fields force their entry into 
superconductors - which include the formation of flux tube lattices in type II super­
conductors40 - we refer to the literature.41

To conclude this section, let us discuss the most prominent superconducting phe­
nomenon, absence of electrical resistivity. Assume a gauge with $ = 0, where 
an external electric field E is represented by E = — idTA. In this case, a time deriva­
tive of the second London equation (5.49) gives — idTj = — ins/mdT A = ns/m E. 
Continuing back to real times we conclude that

dt j = ns E
m

i.e., in the presence of an electric field the current increases linearly at a rate 
inversely proportional to the carrier mass and proportional to the carrier density. 
The unbound increase of current is indicative of uniform and dissipationless motion 
of the condensate particles inside the superconductor. Now, an unbound increasing

40 A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. 
JETP 5, 1174 (1957).

41 For example, L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 9 - Statistical 
Physics 2 (Butterworth-Heinemann, 1981).
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current is clearly unphysical, i.e., what the relation ab ove really tells us is that a 
superconductor cannot maintain non-vanishing field gradients.

EXERCISE Assuming that each particle is subject to Newton’s equation of motion 
mr = E, obtain the current-field relation above. How would the relation between field and 
current change if the equation of motion contained a friction term (modeling dissipation) 
so that mr = — m r + E? T

5.4 Field Theory of the Disordered Electron Gas

weak lo­
calization

REMARK Building on the perturbative analysis of section 4.4, we here construct a 
powerful field-theoretical approach to the physics of the disordered electron gas. As with 
its predecessor, this section is optional. Readers on a fast track may advance directly to 
the next chapter.

In the perturbative analysis of section 4.4 we identified diffusion modes as long- 
range excitations of the disordered electron gas (see the top panel of the figure for 
a schematic). As with the Cooper channel mode of the superconductor, or the RPA 
mode of the electron plasma, we expect these diffusion modes to be the excitations 
of an effective low energy theory. However, the perturbative analysis also hinted 
at a structures beyond diffusion. Without becoming quantitative, we reasoned that 
it supports excitations which are locally classically diffusive, but globally of non- 
classical nature.
A semiclassical illustration of such a process was 
shown in the right panel of fig. 4.11, and is redrawn in a 
more stripped down way in the middle panel of the fig­
ure shown here. Here, the propagators swap roles at a 
vertex to traverse a scattering path in reversed order. 
Owing to this reversal of amplitudes, such quantum 
contributions to transition probabilities, known as a 
weak localization corrections, require time reversal 
invariance as a microscopic symmetry. (For example, 
an external magnetic field would make the classical ac­
tion picked up along a path dependent on its direction 
of traversal, and in this way kill this weak localization 
correction.)

However, there exist other processes which do not 
require this symmetry, e.g., that shown in the bot­
tom panel. Looking at such representations from afar, 
they resemble “interaction vertices” of effective degrees of freedom whose elemen­
tary propagators are the diffusion modes. On this basis, we suspect the existence 
of an effective quantum field theory that, unlike the theories discussed so far, 
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must be strongly nonlinear and possess interaction vertices of higher complexity. 
We would like to derive this theory and understand what it has to say about 
the physics of the disordered electron gas at large distance and low temperature 
scales.

5.4.1 Mean-field theory and spontaneous symmetry breaking

As usual, our starting point is a microscopic description of the system, which in 
this case would be defined by the replicated partition sum (4.56). However, instead 
of working with the full partition sum, we simplify matters by exploiting the fact 
that impurity scattering does not transfer energy. In concrete terms, this means 
that the frequencies wn and wm carried by the solid and dashed line amplitudes 
in the diagrams above remain conserved throughout the entire scattering process. 
We have also seen that long range contributions arise only if the two frequencies 
have different signs. Finally, we will eventually perform an analytic continuation 
to real frequencies, say, wn ^ EF + 1 (w + id) and wm ^ EF — 2(w + i5), with 
5 > 0. On this basis, it is sufficient to consider the stripped down functional Z = 
f D^ exp(—S[^]), where

S [^] = d ddripf Ho + V — EF + 2(w + i5)t3 ) ^ (5.50)

is the action of a doublet of fields ^ = (^ +, ^ -) representing the two quasi-particle 
amplitudes of retarded and advanced signature ±i5, and t3 acts in this causal 
subspace. As before, ^± = {^±a} carry a replica index a = 1,... ,R, and H0 = p2/2m is the free electron Hamiltonian. Correlation functions may be generated by 

adding suitable source terms to the action. For example, we may define

J = (a+t+5 (r — ri) + a - t 5 (r — r2)) ® P1, (5.51)

where t± = 2(t 1 ^t2) and P1 is a projector onto the first replica subspace. Adding 
the source contribution J ddrip J^ to the action and differentiating, we have 

d 2Z
da+Z - = (V;+1(r1) ^ 1(r1)( ^ 1(r2) ^ + 1(r2)) = — G+F + 2 „ (r2, r1) G-F- 1 „ (r1, r2), 

where G± = (E — H0 — V)-1, and on the r.h.s. the implicit replica limit R ^ 0 leads 
to the vanishing of the determinant factor det(G+G-)R. In this way, the correlation 
function diagrammatically depicted above is extracted from the functional integral. 
However, to keep the notation simple, we will neglect source contributions in the 
notation until we need them.

As in our previous analysis, we start by averaging the action over the Gaussian 
distributed potential with second moment (V(r)V(r')) = 5(r — r')/(2^VT), where 
we represent the variance in terms of the scattering time via Eq. (4.60). Performing 
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the Gaussian average, we obtain the fixed-energy restriction of the action governing 
the partition sum (4.56)

S[t] = d ddr (^ HH0 - EF + i(w + iS)tt - —-— (tt)2>) . (5.52)
/ \ \ 2 4 4nvT /

We now subject the quartic term to a somewhat —Q-----[ , )------ >-----
strange looking operation: (tyt)2 = (ta^a)(td^) = *y
— (tdta)(fa4’d), where a = (o, a), o = ± is a com- x
posite index comprising the causal signature and the------------------ i—<—---------
replica index, and the minus sign accounts for the fact
that in the last step we exchange an odd number of Grassmann variables. The mo­
tivation behind this reordering is indicated in the figure, where the vertical shaded 
area represents the bilinears ipa^a coupling to the scattering potential V. However, 
we suspect the “slow” variables of the theory to be pairs of amplitudes correlated 
by scattering off the same potential vertices, bilinears ^aijd, as indicated by the 
vertical shaded area. The reordering of the averaged scattering vertex groups two 
of these vertical composite objects in such a way that they can be subjected to a 
subsequent Hubbard-Stratonovich decoupling.

INFO The concrete formulation of the Hubbard-Stratonovich decoupling depends on 
how ambitious one is. For time reversal invariant systems, the inclusion of both processes, 
with and without partially reversed sense of traversal (exemplified in the second and first 
diagram in the figure above), requires Hubbard-Stratonovich decoupling in the direct and 
in the Cooper channel (see Info block on page 236). However, to keep things simple, here 
we assume time reversal symmetry breaking by, e.g., a magnetic field whose presence in 
the action we keep suppressed for notational simplicity. In this case, the assumption that 
i.:a 1.:3 are slowly fluctuating bilinears is equivalent to direct channel decoupling in terms 
of a single field.

Q1: In the limit w,S ^ 0, what are the symmetries of the action? And how do the 
symmetries reduce for finite w, S?

Q2: Formulate a Hubbard-Stratonovich transformation to decouple the quartic 
term of an anti -hermitian matrix field A = {Aad}. Then integrate out the fermions 
to obtain the A-field action,

S [A] = — nvT y ddr tr( A2) — trln G-1[A],

G-1[ A ]= E F + |( w + iS) t3 — H0 + A. (5.53)

Q3: Neglecting the symmetry breaking shift w , vary the action in A to obtain 
a mean field equation. Comparing with the previous discussion of the SCBA in 
section 4.4.2, discuss why the non-hermitian configuration Ap = x + iyt3 with real 
x, y defines a good ansatz. Show that y = 1/2t is a solution for the imaginary part 
and argue why we may anticipate that the real part (which we neglect throughout) 
does not play an interesting role.
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nonlinear 
a -models

Q4: Explain why the finiteness of y represents a symmetry breaking phenomenon. 
Show that A = iQ/(2t), where Q = Tt3T-1 defines a natural representation of the 
Goldstone modes. Notice that transformations of the unbroken symmetry group 
T = bdiag(T + ,T-) e U(R) x U(R) (where bdiag means block diagonal) commute 
with t3 and hence do not change the saddle point. A concrete parameterization of 
the Goldstone mode manifold U(2R)/U(R) x U(R) is given by

B
T = exp(W), W = ( Bt } , (5.54)

where the generator matrices are anti-hermitian for unitarity and off-diagonal to 
act non-redundantly on the diagonal mean field, t3 .

Notice that the fields on the Goldstone mode configurations satisfy the equation 
Q2 = 1. We interpret this as a nonlinear constraint imposed on the degrees of 
freedom of the ensuing low energy field theory. In general, field theories whose 
degrees of freedom are subject to nonlinear constraints are called nonlinear a - 
models. For example, the field theory describing Goldstone mode fluctuations of 
the directional configurations n(r), n2 = 1 of a Heisenberg ferromagnet is another 
example of a nonlinear a-model. The present one is a matrix model, as opposed 
to the vector nature of the magnetic model. One may expect the nonlinearity of 
the field theory to lead to a complex hierarchy of “interaction vertices” when the 
theory is formulated in terms of linear coordinates (the B-generator matrices) of 
the non-linear field manifold. As outlined above, this is what we expect for the 
disordered electron gas, so we are on the right track in identifying its low energy 
effective description. In the next section, we derive the corresponding action in 
explicit terms.

A1: For w, 6 = 0 the action possesses a continuous global symmetry under rotations, 
^ ^ T^, ^ ^ $T-1, T e U(2R). The symmetry is broken by w, 6 to U(R) x U(R) 
where the two factors act in the replica subspaces of definite causality ±.

A2: The Hubbard-Stratonovich decoupling follows standard protocol, except that 
we need to account for the a-indices. We thus consider the functional integral 
multiplied by the unit normalized Gaussian integral

1= DA exp nvT ddr tr( A2)

where the integral is over anti-hermitian matrices A = {Aa } for convergence. (Why 
does anti-hermiticity safeguard convergence?) Next shift A ^ A + ’’/(2nvT). The 
generated quartic term cancels against the impurity vertex, and the mixed term is 
rewritten as -tr(A’’’) = +’’A’, where we again gain a sign from Grassmann 
exchange. Doing the integral over the ’-fields, we obtain the A -field action.

A3: Variation of the action 6/6 A^a (r) leads to the equation

2nvTA^3 (r) + G[A]'" (r, r) = 0. (5.55)
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We now seek for an ansatz reflecting the symmetries of the problem: translational 
invariance of the averaged action, and rotational symmetry in causal space, infinites­
imally broken by i5. This motivates the quoted configuration where, for y > 0, the 
imaginary contribution iyr3 guarantees that we do not hit the real cut line of the 
Green function (something to be categorically avoided). An imaginary part in the 
mean field solution will upgrade the symmetry breaking in causal space i5 ^ iy 
from infintesimal 5 to a finite value, y. In other words, it will represent a mecha­
nism of spontaneous symmetry breaking in the wake of which we expect Goldstone 
modes. By contrast, a real part only shifts the energy, and fluctuations around it 
are predictably massive. We therefore focus on the imaginary part throughout, and 
obtain the simplified equation

ddp 1
2nvTyT3 = -Im J - (p + iT3 y = - nVT3, (5.56)

In the previous section, we showed that the disordered electron gas is subject to 
a symmetry breaking principle, and identified the corresponding Goldstone mode 
degrees of freedom, Q = TT3T-1 . We next identify their effective action, which 
we expect to combine aspects of classical diffusion with non-classical quantum in­
terference. Again, we have the choice between an explicit derivation - substitution 
A ^ iQ/(2t) into the Hubbard-Stratonovich action Eq. (5.53) followed by a leading 
order expansion in gradients acting on the Q-fields, and in the symmetry breaking 
parameter w* 42 - and a symmetry based approach. Referring to Ref.43 for numer­
ous examples of explicit derivations of a-model actions for different realizations of 
disordered electron systems, here we proceed by symmetry reasoning.

42 A more cautious approach would decompose the full field manifold A = Ags + Am into the 
Goldstone mode fluctuations, Ags , and a massive contribution, Am . However, it can be shown 
(and is physically expected) that the integration over massive fluctuations does not alter the 
Goldstone mode action in a significant way.

43 K. B. Efetov, Supersymmetry in Disorder and Chaos (Cambridge University Press, 1999).

where Sp = p2/2m — EF and we note that the integral on the r.h.s. defines the 
density of states. This equation leads to y = 1/2T, showing that the imaginary 
part of the mean field is defined by the inverse of the scattering time. Indeed, the 
above mean field equation is identical to the SCBA equation (4.63), and hence the 
imaginary part of the mean field equals that of the scattering self-energy, 1/2T.

A4: Thinking of i5 as the analog of an infinitesimal magnetic field, the solution A = 
iT3 /(2T ) has a status analogous to a finite magnetization. Much as the Goldstone 
modes of a magnet are obtained by acting on the mean field magnetization vector 
with the symmetry group, we note here that, under symmetry transformations, 
':'A':' ^ ':'T-1AT^. This leads to the representation of the Goldstone modes quoted 
in the question.

5.4.2 Low-energy field theory
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Q1: What symmetries must an action of the Goldstone mode matrices Q = Qa (r) 
satisfy? Justify why, to leading order in gradients and in the symmetry breaking 
parameter w, the action assumes the form S[Q] = f ddr (c 1tr(VQ)2 + c2 ^tr(t3Q)), 
with as yet unspecified constants c1,2.

Q2: The action above looks deceptively simple, but it is not. Substitution of the 
parameterization (5.54) followed by expansion in the generators will lead to an 
action of infinite order in the matrices B . We tentatively identify the vertices of 
O(B2n) with the effective interactions indicated in the diagrams on p.286. For 
w ^ 0, there is no obvious small parameter suppressing the contribution of these 
nonlinearities. However, for finite w, we are probing time scales of O(w-1). In this 
case, classical diffusion must emerge as a dominant principle, and nonlinearities will 
play a lesser role.

To substantiate this intuition, expand the action to leading order in B and show 
that it reduces to

S(2)[B] = — ^ ddr tr (B(8c 1V2 +2c2w)Bt) . (5.57)

Q3: To make sense of this expression, and fix the coupling constants, we need to com­
pute from it an observable. At this point, we remember that our functional integral 
contains a source term (5.51). Show that the inclusion of the source and expan­
sion to leading order in B generates an additional contribution 2c2 [a+ tr(B 11 (r1)) + 
a-tr(Bt11 (r2))] in the action. Here, B11 is a complex-valued matrix field. The trace 
in S(2) implies that this field couples to the action as — J B 11(8c 1V2 + 2c2w)B 11. 
With this action, differentiation in the source parameters leads to

d 2 Z r, . o r, 1
d + d - =4c2(B 11(r1)B 11(r2)> = —4c2(8c 1V +2c2w) 1(r2, r1). (5.58)
d a d a

We identify this expression with the diffusion mode, previously computed by per­
turbative methods, see Eq. (4.64). More precisely, the previous result was for the 
imaginary-time diffusion mode expressed in momentum space. Referring to chapter 
7 for precise translation rules between imaginary-time and real-time frequencies, 
suggest a meaningful substitution of the Matsubara frequency wm by the real fre­
quency w + i8 (Hint: As with all propagators, the denominator of the diffusion mode 
must never vanish), and on this basis identify the action parameters as c 1 = Dnv/4, 
c2 = niv. We thus arrive at

S[Q] = T ddr D tr(VQ)2 +2iw tr(t3Q)) (5.59)

for the action of the nonlinear o-model of the disordered electron gas.
The field theory (5.59) provides the most advanced tool for the description of 

quantum state propagation in disordered media. We fixed its structure by demand­
ing that a quadratic expansion around the trivial mean field Q = t3 in Goldstone 
mode generators should yield a diffusive propagator. However, the principal ad­
vantage of the field theory is that it allows us to go beyond quadratic order and
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Hikami 
box

study the modifications of classical diffusion by quantum fluctuations. For example, 
the third diagram shown in the figure at the beginning of the section contains two 
structures resembling fourth-order “interaction vertices” (known as Hikami boxes 
or encounter regions). Indeed one can show (this is a tedious exercise, yet much 
simpler than a first principle computation by perturbative methods) that these cor­
rections arise from a fourth-order expansion of Q in B , followed by a contraction 
of the structure B (BBtBBt)2 Bt. Each Wick contraction of the B-fields brings 
down a factor 1 /(Dq2 — iw), which presents us with two questions: under which 
circumstances are these modifications of classical diffusion relevant? And if they 
are, how do we get them under control? The first of these is comparatively easy to 
answer. At large length scales, q ^ 0, and long time scales, w ^ 0, the Goldstone 
mode propagators become singular. In the diagrammatic analysis of the field the- 
ory,44 we will encounter loop integrals such as ddq 1/(Dq2 — iw). These become 
infrared singular for small w and d < 2, indicating that something happens below 
the critical dimension d = 2. However, at this point we are not yet in a position to 
explore this fluctuation-dominated regime. We will return to this question in chapter 
6 after the required methodology of the renormalization group has been introduced.

Compared with the microscopic diagrams in terms of Green functions, we are now on a meta­
level where the primitive building blocks of the diagrammatic code are diffusion modes.

Here are the answers to the above questions.

A1: In the absence of explicit symmetry breaking, the action must be invariant 
under uniform transformations Q ^ TQT-1. It must also be rotationally invariant 
in the spatial coordinates, r (which excludes terms of first order in gradients, or 
rotationally non-invariant second-order gradients). The gradient term in the action 
is the unique choice satisfying these criteria. Notice that higher order field poly­
nomials, such as tr(dQQdQQQQ) = — tr(dQdQ), all collapse to the stated term 
because of Q2 = 1 (exercise). The parameter w reduces the symmetry down to 
that of the unbroken subgroup U(R) x U(R), and the unique non-gradient operator 
having this symmetry is tr(t3Q). In this way we arrive at the second term, which 
naturally must be proportional to w.

A2: This follows from straightforward expansion and an integration by parts.

A3: The source term defined in Eq. (5.51) adds to the symmetry breaking term 72t3, 
and so will appear in the action as c2 f ddr tr( JQ) = 2c2(a + tr(Q(r1)t + 0 P 1) + 
a- tr(Q(r2)t - 0 P 1)). Expansion to leading order in the generators then readily 
leads to the stated result.

A4: The above real space expression is transformed to momentum space by substitu­
tion V2 ^ — q2. As for the energy arguments, we substitute the previous energy dif­
ference of Green functions, iwm, by the present one, w+id. The finite imaginary part 
ensures that the denominator Dq2 — iw+d will never vanish, even if q2 = w = 0. With 

44
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these rules, we obtain the correspondence —2nv/(Dq2 — iw) = 4c2/(8c 1 q2 — 2c2w), 
and from there the constants as stated in the question.

5.5 Summary and Outlook

In this introduction to functional mean field methods, we have learned how inte­
grals over microscopic quantum fields can be traded for integrals over effective de­
grees of freedom adjusted to the low-energy characteristics of a system. We found 
that the functional dependence of the action on the new coordinates is usually 
nonlinear - the notorious “trace logarithms” - and has to be dealt with by station­
ary phase analysis. While a first principles solution of the mean field equations is 
often not possible, all applications discussed in this chapter have shared the feature 
that solutions could be found by an educated guess. These solutions could display 
the full symmetry of an action or - the more interesting scenario - spontaneously 
break them down to a reduced symmetry.

INFO The mean fields discussed in this chapter shared the property spatial uniformity. 
However, there are numerous problem classes with spatially non-uniform mean fields. 
These include lattice systems with discrete translational symmetry, where the optimal 

staggering solutions show staggering, i.e., they change sign under translation by one lattice spacing.
Deceptively, these configurations usually exist in parallel with a uniform solution of higher 
energy (which therefore is unphysical); see problem 5.6.1 for an example.45

In other systems the existence of meaningful stationary phase 
frustration configurations is excluded by mechanisms of frustration. The 

principle of frustration is illustrated in the figure for an Ising sys­
tem with antiferromagnetic exchange interaction on a triangular 
lattice. In this case, the non-bipartite structure of the latter pre­
vents the spins from aligning in a uniformly alternating manner.

glasses Glasses (see the remarks on page 110) possess a macroscopic number of irregular 
metastable extremal configurations that are close in energy but differ from each other 
in a restructuring of the atomic configuration at remote places. The dynamics of such 

aging systems is governed by the process of aging, i.e., transitions between different extremal 
configurations on very long time scales (witness the apparent rigidity of window glass!).

Finally, even systems possessing spatially homogeneous mean field configurations may 
host other solutions of physical significance. We have encountered realizations of this 
scenario already in chapter 3. The imaginary-time Euler-Lagrange equations of a particle 
in a double well (its “mean field equations”) had a metastable constant solution (a constant 
mean field). However, in addition to that, we found instantons (non-uniform mean fields). 
Superficially, it seemed that the non-vanishing action of instantons would make them 
irrelevant. However, for sufficiently long times, this action cost was overcompensated by 
the freedom to place instantons at arbitrary times. In the language of statistical mechanics, 
the energy cost associated with instanton production could be overwhelmed by the free 
energy gain in configurational entropy. Later we will see that entropy-energy competitions 
of this type are realized in many other contexts in quantum and statistical field theory.

45 In problems where lattice structures matter, it is advisable to test various trial solutions trans­
forming differently under translation.



294 5 Broken Symmetry and Collective Phenomena

For example, the phase actions of superfluids possess extremal configurations wherein 
the phase winds around a fixed reference point in space to define a vortex. While the 
energies of individual vortices are high, the positional entropy may dominate and lead to 
a proliferation of vortices at high temperatures (section 6.5).

Building on mean field solutions, we considered various applications and described 
how effective actions for fluctuations are derived and evaluated. In cases where 
the mean field broke a continuous symmetry, these actions were soft, reflecting the 
presence of Goldstone modes. We saw that Goldstone mode fluctuations have a 
dominant effect on the observable physical properties of a system.

The theoretical machinery developed thus far already enables us to tackle com­
plex problems. However, two gaps need to be filled to make the functional integral 
a universally applicable tool. First, our discussion of field fluctuations has been lim­
ited so far: we expanded actions to second order and discussed the corresponding 
fluctuation determinants. However, interesting problems usually contain significant 
anharmoticities. For example, the quartic term in ^4-theory led to singularities 
whose nature remained largely obscure. To understand the physics of generic field 
theories, we thus need to (i) develop criteria indicating in what circumstances they 
can be limited to second order and (ii), in cases where they cannot, learn how to deal 
with anharmonic content. Second, the emphasis so far has been on the conceptual 
description of different phases of condensed matter systems. However, in applica­
tions, one is typically interested in comparison with experimentally accessible data. 
We thus need to develop ways to extract concrete observables from the functional 
integral. Theses two topics (which are not as unrelated as one might think) are 
discussed in chapters 6 and 7, respectively, and they conclude our introduction to 
the basics of condensed matter field theory.

5.6 Problems

5.6.1 Peierls instability

In problem 2.4.3 we saw that the half-lled one-dimensional lattice system is unstable to 

the formation of a commensurate periodic lattice distortion. It turns out that this is a general 

phenomenon: at zero temperature, one-dimensional crystals comprising electrons and ions tend 

to spontaneously develop lattice distortions transforming them into dielectrics. This lattice 

instability is known as a Peierls distortion, and in this problem we study its nature.

The starting point of the theory is the Euclidean action for a one-dimensional gas 
of electrons,

I' - ( d2 \
dT dx ^ dT----- —---- a ri,

2m

where, for simplicity, we assume spinless electrons. Anticipating that the detailed 
nature of lattice vibrations may not be essential, we describe the lattice in terms 
of a harmonic Euclidean action (section 1.1),

Sel [ri] =



295 5.6 Problems

Sph[u] = 2 dT dx ((dTu)2 + c2(dxu)2) ,

where u(T, x) denotes the scalar 
bosonic displacement field. We next 
need to couple the electron system to 
lattice distortions. While one might try 
to derive a “realistic” model of the cou­
pling, here we are interested in general 
stability issues, which show a high de­
gree of universality. We therefore con­
sider the phenomenological “Frohlich’s 
deformation potential approximation” 
(for more details, see problem 3.8.11),

of the “hole” in condensed matter. In collab­
oration with Otto Frisch, Peierls was the first 
to realize that an atom bomb based on 235U 
would be feasible, and was engaged in the 
Manhattan Project.

Rudolph E. Peierls 1907-1995 
Born in Germany, Peierls did 
fundamental work during the 
early years of quantum me­
chanics. He also studied the 
physics of lattice vibrations 
(phonons) and is credited with 
the development of the concept

wherein the coupling is proportional to the gradient of the deformation dxu,

Sel-ph[^, u] = g dx cc dxu.

The full Euclidean action S = Sel + Sph + Sel-ph represents an interacting theory, 
which is not exactly solvable. Here, we analyze it perturbatively in the coupling 
parameter g and then explore the stability of the ensuing effective theory by mean 
field methods.
(a) As a first step, integrate out the fermion field ^ to obtain an effective action 
for the displacement field u. Taking g to be small, expand the action up to second 
order in u to obtain the effective action

Seff[u] - (2(Wm + c2q2) — g 2 A"2 q x(q,wm ) ) | uWm ,q | ,

where x(q, -) = — TL 1Ep,^n G0wn G0,p+:-+■ ■ contains the Green functions 
of the free one-dimensional electron gas.
(b) When seeking saddle-points of effective actions, the first guess is usually ho­
mogeneous, such as u0 (x, t) = u0. However, such solutions are not necessarily the 
best; it may be favorable to spontaneously break the translational symmetry of 
an action. Show that the static solution u0 cos(2kFx + <p) has this feature, with 
S[u0 cos(2kfx + <p)] < S[u0] below a critical temperature Tc. At low temperatures, 
the system thus is unstable towards the formation of a static sinusoidal lattice dis­
tortion. Use the approximation x(2kf, 0) — ln(PwD)/4nvF, where wD is the Debye 
frequency, to determine the transition temperature Tc .

Referring for detailed discussions of the instability to solid state textbooks, we 
note that a distortion of periodicity 2kF effectively doubles the periodicity of the 
crystal, a ^ 2a. The corresponding electron dispersion relation contains band gaps 
at the new effective reciprocal lattice vector n/a, which lower the energy of the 
fermion system by an amount outweighing the energy required to distort the ion 
centers.
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Answer:

(a) Integrating out the electron degrees of freedom ^, one obtains

D^ e-Sel -Sel-ph = exp tr ln dT - 2m - ^ + gdxU

With the bare electron Green function G0 1 = dT — d2. /2m—/i, a second-order expan­
sion in g gives trln[G-1 + g(dxu)] ~ trln G-1 - (g2/2) £^ q2x(q,wm)|u..-.. ,q|2, 
where we note that the first-order term vanishes by symmetry. Adding the coupling 
term to the free action of the displacement field, we obtain the required result.
(b) In the presence of the static periodic modulation, uUm,q = nu0 [eiV3(q — 2kF) + 
e-iv6(q + 2kF)]6(wm) the action takes the value Seff = 4n2u2kF[pc2 — g2x(2kF, 0)]. 
This must be compared with Seff [u0] = 0. The transition is realized when pc2 < 
4n2g2 x(2kF, 0). Substituting the expression for x, one obtains the critical temper­
ature Tc = wd exp (—4n 2 vF pc2 / g2).

5.6.2 Temperature profile of the BCS gap

This problem addresses the dependence of the BCS gap on temperature. In particular, we wish 

to understand its nonanalytic vanishing at the transition temperature (this being a hallmark 

of a second-order phase transition).

Consider the BCS gap equation (5.33)

“d / 2 T tanh( x 2 + k 2)1 / 2

dx (x2 + k 2)1 / 2 ’

where we have introduced a dimensionless integration variable and k = A/2T. In 
spite of its innocuous appearance, the temperature dependence of this equation is 
not straightforward to infer. Referring for a quantitative discussion to Abrikosov 
et al.,46 we here restrict ourselves to exploring the gap profile in the vicinity of the 
transition temperature.
(a) To determine the value of Tc we proceed somewhat indirectly, assuming that 
this is determined through the condition A(Tc ) = 0. Use this criterion to obtain 
Eq. (5.20) for the critical temperature. (You may assume the hierarchy of energy 
scales wD Tc ^ A0 A(T Tc), where A0 = A(T = 0).)
(b) Now, let us derive the approximate profile Eq. (5.34) of the gap for temperatures 
T slightly smaller than Tc. To this end, add to and subtract from the right-hand 
side of the gap equation the integral dx x-1 tanh x. Then expand to leading order 
in the small parameters 6T /Tc and A/Tc, where 6T = Tc — T > 0.

46 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in 
Statistical Physics (Dover Publications, 1975).
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Answer:

(a) For A = 0, A(£) = (£2 + A2)1 /2 = |£| and (5.33) assumes the form

1 ruD/ 2 Ttanhx
g* v * * * * Jo x ,

Here, as a technical exercise, we derive the energy cost corresponding to large-scale spatial

uctuations of the order parameter of a BCS superconductor.

Consider the second-order contribution to the Ginzburg-Landau action of the BCS
superconductor (5.36). In problem 3.8.8 we saw that the frequency summation
involved in the definition of the integral kernel evaluates to

c _ T GG __ 1 1 — nF(£p) — nF(£-p+q)
xq = rdL, GpG-p+q I L ,', , _£ _£ 'L p L p iwn - £p - £-p+q

with the four-momenta q = (wn, q) and p = (wm, p). Expand xc(q) = xcOq) to 
second order in q. (Hint: You may trade the momentum summation for an in­
tegral, and linearize the dispersion as £p+q ~ £p + p • q/m. Also, use the iden­
tity J dee-1 d2nF(e) = cT-2, where the numerical constant c = 7Z(3)/2n2 and 
Z(x) = ^=1 nx defines the Z-function.)

where we have introduced x = £/2Tc as a dimensionless integration variable. 
The dominant contribution to the integral comes from the region x 1, where 
tanhx ~ 1. As a result, one obtains 1 /gv ~ ln(wD/2Tc). Solving for Tc, we arrive 
at Eq. (5.20).
(b) Adding and subtracting the integral given above, we have

( x2 + K 2)1 / 2

UD/2T^ (tanh(x2 + k2)1 /2 tanhx A ('uD/2T tanhx
x Jo x

Arguing as in (a), the second integral can be estimated as ln(wD/2T) « ln(wD/2Tc)+ 
(ST/Tc) = (1 /(gv) + (ST/Tc), where we have expanded to linear order in ST. Thus,

ST ? u D / 2 T / tanh( x2 + k 2)1 / 2 tanh x
Tc ~ 7o \ (x2 + K2)1 /2 ~

Now, the remaining integral can be split into a “low-energy region” 0 < x < 1, and 
a “high-energy region” 1 < x < wD/2T. Using the small-x expansion tanh x ~ x — 

x3/3, we find that the first region gives a contribution ~ k2. With tanh x >> 1, the 
second region contributes a term O(k2) that is, however, approximately independent 
of the large-energy cutoff wD /2T. Altogether, we obtain ST/Tc « const. x k2 « 
const. x (A2/T2) from which one obtains Eq. (5.34).

5.6.3 Fluctuation contribution to the superconductor action
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Answer:

Using the fact that £p = £-p,

xc(q) = - y ddp 1 - nF(£p+q/2) - nF(£p-q/2)

r ddp 1 - 2nf(£p) - dinf(£p)(q • p)2/(4m2)
-j 12nd 2£p

22= xc(0) - 12m /de e-1dnF(e) = xc(0) - 24TFqq2,

where c is a numerical constant and in the second equality we have used the fact 
that, for £ = O(T), p2/2m ~ p. Substituting this expansion into the quadratic 
action, we obtain the gradient term in Eq. (5.38).

5.6.4 Coulomb blockade

quantum 
dots

charging 
energy

tunneling 
DoS

The low temperature physics of quantum dots { metallic or semiconducting devices of 

extension 1 pm and less - is predominantly influenced by charging effects. In this problem, 

we explore the impact of charging on the most basic characteristic of a quantum dot, the 

tunneling density of states (DoS).

Quantum dots are of increasing technological importance as building blocks of quan­
tum electronic devices. Consider one such dot weakly47 connected to an environment 
representing the external components of the device (see fig. 5.4 for a realization of 
such a setup). Due to its small size, the removal or addition of an electron incurs a 
significant energy cost EC = e2/2C, where C is the capacitance of the system. The 
discreteness of this charging energy leads to a plethora of observable effects, the 
most basic of which is a strong suppression of the DoS at the Fermi surface.

For a non-interacting system, the single-particle DoS is defined as p(e) = 
tr 8(e - HH) = -n-1 Imtr G(e + i0) = -n-1 Imtr Gn|iun^e+i0, where G(z) = (z - 

H)-1 is the Green function. The tunneling DoS48 generalizes this definition to 
the interacting case: v(e) = -n-1 Imtr Gn|i^n^e+i0, where the coherent state path 
integral representation of the Green function is given by

Gap(t) = Z-1 j D: e-S[p(t)^a(0), (5.60)

and the indices a,fi label the eigenstates of the single-particle contribution to the 
Hamiltonian. Having an irregular structure, these states are unknown. However, 
this is not an issue for understanding the nature of the Coulomb blockade. A mo del 
Hamiltonian describing the joint effects of single particle physics and charging ef­
fects reads as HH = HH0 + Ec (N - No)2, where HH0 V a ^aa a aa, N^ JI a a aaa is 

47 By “weak,” we mean that the conductance of all external leads attached to the system is such 
that g < g0, where g0 = e2/h ~ (25.8kQ)-1 is the quantum unit of conductance.

48 The terminology tunneling DoS is motivated by the fact that v(e) is an important building 
block in the calculation of tunneling currents. (Recall the Golden Rule: tunneling rates are 
obtained by the multiplication of transition probabilities with state densities.)



299 5.6 Problems

(a)

Fig. 5.4 (a) Schematic picture of a confined two-dimensional electron gas (a quantum dot) formed
at the interface between a GaAs and an AlGaAs layer. (b) Electron microscopic image of 
the “real” device. (Source: Courtesy of C. M. Marcus.)

the number operator and N0 represents the preferred number of particles (as set 
by capacitively coupled gate electrodes; see the wiring indicated in fig. 5.4). The 
action controlling the behavior of the Green function (5.60) is thus given by

S [ ' ]= J 'a (dT + £a - M) 'a + EC ('a'a - Noj J- (5.61)

(a) Introducing a bosonic field variable V(t), decouple the interaction by a 
Hubbard-Stratonovich transformation. Bring the functional representation of the 
Green function to the form Ga (t) = Z-1 DV e-S[V]Za [V]Ga [V](t), where Ga is 
the diagonal element of the Green function (the representation above implies that 
all off-diagonal elements vanish), Ga [V] represents the Green function of the non­
interacting system subject to an imaginary time-dependent potential iV (t), and 
Za [V] is the corresponding partition function.
(b) Turning to a Matsubara Fourier representation V(t) = TJ2m e-i":mTVm, split 
the static zeroth component Vo = 2nk + V/T into an integer multiple of 2n and a 
residual term V e [0, 2nT], and show that all but the static component V can be 
removed from the action by a gauge transformation. Why cannot V be gauged as 
well? Explore the transformation behavior of the Green function and integrate over 
the non-zero mode components Vm=o .
(c) Making use of the relation V^ cois(kx) = n2 - n^^ + x2 + • • •, perform the 

k=1 k2 6 2 4

Matsubara summation, ^2u =o- Show that the Green function can be expressed as 
G(t) = F(t)G(t), where the function F(t) = exp(-EC(t — ft-1 t2)) is obtained 
by integration over the dynamical components of V, while G is a non-interacting 
Green function averaged over the static component Vo .
(d) The remaining integration over the static component Vo is achieved by the 
stationary phase method. Neglecting the weak dependence of the non-interacting 
Green function on Vo, derive and interpret the saddle-point equation. Approximate 
the functional by its value at the saddle-point (i.e., neglect quadratic fluctuations 
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around the saddle-point value for V0). As a result, obtain a representation G(t) = 
F(T) G0(T) where G0 is a non-interacting Green function evaluated at a renormal­
ized chemical potential.
(e) Assuming EC T, compute an approximation of the Fourier transform of 
F (t ). (You may approximate Matsubara sums by integrals.) Use your result to 
obtain the zero-temperature DoS49

49 For a more elaborate analysis of finite-temperature corrections, we refer to A. Kamenev and Y. 
Gefen, Zero bias anomaly in finite-size systems, Phys. Rev. B 54, 5428 (1996).

v(e) = v0(e - EC sgn(e))0(|e| - EC),

Coulomb 
blockade

where v0 is the DoS of the non-interacting systems. Owing to the large charging 
energy, the single-particle DoS vanishes in a window of width 2EC centered around 
the Fermi energy: this is the Coulomb blockade. Particles of energy e > EC 

larger than the charging threshold are free to enter the dot. However, in doing so 
they lose an amount EC of (charging) energy, which explains the energy shift in 
the factor v0 .

Answer:

(a) Using the identity (summation over a is implied)

exp DV exp iN0 V + ipaVpaa

the quantum partition function takes the form Z f DpDVe S[V] S['■',''], where 
S [ p, V ] = J dr £ a p a (dT + , — M + iV) Pa and S [ V ] = f dr (VC - iN0 V). Thus,

—S[V] —S[^,v] = _1 f DVe—S[V]Za [V]Ga [V](T), Ga (T) = Z D DpDV

where G [V] is obtained from a non-interacting theory with action S [V] = S |M^M—iV. 
(b) The gauge transformation pa (t) ^ exp (-i fj dT’ (V(t') - V)) pa (t) (with 
pa transforming under the complex conjugate phase) removes much of the time­
dependent potential from the tr ln. The zero mode offset V has to be excluded from 
the transformation to preserve the time periodicity of the gauge factor. Substitution 
of the transformed field leads to removal of the dynamic V -components from the 
action, S[V] ^ S(V), and the appearance of a gauge factor multiplying the pre­
exponential terms. We thus obtain

G ( t ) = !/ DpDV e—S [ V ]—S [ ^V0] eifT dT'(V(T')-V0) p>a ( t ) pa (0)

= Z f DVe—S[V] eifT dT'(V(T')-V)Z(VZ)Ga (VZ)(t)
Z
FZ (T) f ^ ^ 1^ 2 I - Q T\ T Ft ~= F(Z dV e — 4ECV +i>3N0VZ(V)Ga (V)(t), 
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where we have omitted the 2nkT contribution to the zero mode (as it does not play 
much of a role in the context of this problem - for the physical meaning of the 
integers k see section 12.6.1),

n
(. . r T V V + TVn (e-,-tl( it,i T) —1) T—r — 2 ECT (1—exp( —GnT)) IVVn e 4EC VnV-n + “n ( p(iWnT) 1) = n e ( ,

and in the second equality we have performed the Gaussian integral over Vn=0 .
(c) Using the formulae given, the Matsubara summation gives

-2ECT -1_(1 - exp(-i^nr)) = -EC(|t| - P—1 t2),

i.e., F(t) = exp[-EC(|t| - P 1 t2)], and Ga(t) = F(t)Ga(t), where

G a ( t ) = Z-1
~ ft 1Y 2 I - Q T\ Y Ft ~ ~

VV e — ■ V + il3N0 V Z (V/) Ga (V)(t).

(d) Defining a V-dependent free energy by Z(V) = exp(-PF(V)), noting that V 
shifts the chemical potential, F(V, i) = F(i-iV), and neglecting the V-dependence 
of G(V) ~ G, we obtain the saddle-point equation

0 = X 
dV

_±_ V2 

4 Ec
■' . I 1 ■'

iV) =------ V
7 2 Ec

iN0 + i (N) M—iV- iNoV - F(i

where, in the second equality, we have used the fact that d-V-F(i- iV) = -id^F(i- 
iV) = -i{N)M—iVr. Substituting the solution of the saddle-point equation V = 
2iEC (N0 - )N) M—iv) amounts to replacing the chemical potential i by an effective 
chemical potential p, = i + 2EC (N0 - )N) ^). As a preliminary result we thus 
obtain Ga (t) = F (t)G0a , where the non-interacting Green function is evaluated at 
i,. In passing, we note that the condition for the applicability of the saddle-point 
approximation reads as (exercise: why?) 1 /(2EC) - d^)N)^ ^.
(e) For EC T, the dominant contribution to the Fourier transform of F(t) comes 
from the boundary regions of the imaginary-time interval, t P and P - t P. 
Linearizing the exponent of F in these regions we obtain

Fm = ^ Vt ■ ' F (t ) - [ Vt (eimm + e—i^) e—EC T

00

2 EC 

ec+^m.

Using the fact that Gona = (iun - £a) 1, where £a = ea - ,, we then obtain

G T T F Gid_______________EC___________
Gna ^FmG 0( n—m)a J 2 n ( iGn - iG - £a )( EC + G 2)

1
iGn - EC sgn(£a) - £a
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Turning back to real energies, iwn ^ w + i6, and taking the imaginary part, we 
arrive at

v(e) = 6(e - Ec sgn(i,) - £a) = j dwvo(w)6(e - Ec sgn(w) - w),

and performing the final integral, we obtain the required result.

5.6.5 Action of a tunnel junction * S

In the previous problem, we considered the physics of a perfectly isolated quantum dot. How­

ever, in practice (cf. the dot depicted in g. 5.4) the system is usually connected to an external 

environment by some leads. It is the purpose of this problem to derive an eective action ac­

counting for the joint eect of charging and the coupling to an environment.

Consider a quantum dot connected to an external lead (it is straightforward to 
generalize to the presence of several leads). We model the latter as a wave guide 
with eigenstates 'a whose detailed structure we need not specify. The full system is 
described by an action S['a,'a] = Sdot['a]+ Siead['a]+ St['a,'a], where Sdot['a] 
is given by Eq. (5.61),

S lead[ 'a,'a ]=^J dT'a ( dT + ta - ^) 'a,

and the coupling between dot and lead is described by

St[ 'a,'a,'a,' a ] = dT 'aTaa'a +h • c..

Throughout we will assume that the coupling is sufficiently weak that contributions 
of O(T4) to the effective action are negligibly small - the “tunneling approximation.” 
(a) Proceeding as in the previous problem, decouple the charging interaction by a 
Hubbard-Stratonovich transformation. Integrate out the fermions and subject the 
problem to the same gauge transformation as used ab ove to remove the dynamical 
contents of the Hubbard-Stratonovich field V . You will observe that the gauge 
phase transforms the coupling matrices T .
(b) Expand the action to leading (i.e., second) order in the coupling matrix el­
ements Taa . (You may ignore the integration over the static component of the 
Hubbard-Stratonovich field; as discussed above, it leads merely to a shift of the 
chemical potential.) Assuming that the single-particle DoS of dot and lead do not 
vary significantly on the energy scales at which the field V fluctuates, determine 
the dependence of the tunneling term on the gauge phase ^(t) = TdT'(V(t') - V0) 
and identify its coupling constant as the Golden Rule tunneling rate 4gT .50 (To ob­
tain a finite result, subtract from the tunneling action Stun[^] the constant Stun[0].

In problem 7.6.3, we show that the coupling constant equals four times the tunneling conduc­
tance, gT , of the barrier; hence the denotation 4gT .

50
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dissipative 
tunnel­

ing action

Note that the Fourier transform of |wm| is given by (see Eq. (3.41)) nTsin 2(nTr). 
Expressing the charging action Sc[V] in terms of the gauge phase V = 0 + V (and 
neglecting the constant offset V), the complete dissipative tunneling action 
takes the form

i 2 sin2( 1 ( 0 ( T ) - 0 ( TQ)) 
sin2( nT ( t — t '))

(5.62)

INFO First derived by Ambegaokar, Eckern, and Schon,51 the action (5.62) is often 
called the AES action. Identifying the phase $ with a circular coordinate, it describes 
the quantum dynamics of a particle on a ring with kinetic energy ~ (f>2/EC and subject to 
a dissipative damping mechanism of strength ~ gT. The latter describes the dissipation 
of the energy stored in dynamical voltage fluctuations V ~ ^ into the microscopic degrees 
of freedom of the quasi-particle continuum.

In the absence of dissipation, the action describes ballistic motion, the ring topology re­
flecting the 2n-periodicity of the quantum phase, which in turn relates to the quantization 
of charge (recall that charge and phase are canonically conjugate). This periodicity is the 
main source of charge quantization phenomena in the AES approach. For strong (gT > 1) 
dissipation, full traversals of the ring get increasingly less likely, and the particle begins to 
forget that it lives on a ring. This damping manifests itself in an exponential suppression 
of charge quantization phenomena. Indeed, for increasing coupling between lead and dot, 
the charge on the latter fluctuates and is no longer effectively quantized. For a detailed 
account of the physical crossover phenomena associated with the strength of gT , we refer 
to the review Ref.52

Answer:

(a) Decoupling the action and integrating over the fermionic degrees of freedom, 
one obtains the functional Z = exp(—Seff [V]), where

Seff[V]=Sc[V]—trln

= Sc [V] — trln

— //. + iV + ei 
T t

— /' + iV + Ed 
e - i'Tt

dT

dr

T
— /!■ + El

Tei^
— /!■ + El

(5.63)

Here, as in the previous problem, Sc[V] = f dT(V2/(4EC) — iN0V), Ed = {ea<5aa<} 
and ei = {eabaa<} contain the single-particle energies of dot and lead, respectively, 
the matrix structure is in dot-lead space, and $(t) = J dT' (V(t') — V). In passing 
from the first to the second equality, we have subjected the argument of the tr 
ln to the unitary transformation (gauge transformation) described by the matrix 
diag(e'":!. 1) (with the block structure in dot-lead space).
(b) Expanding the tr ln to second order in T, and regularizing by subtracting the 
constant Stun [0], we obtain

51 U. Eckern, G. Schon and V. Ambegaokar, Quantum dynamics of a superconducting tunnel 
junction, Phys. Rev. B 30, 6419 (1984).

52 I. L. Aleiner, P. W. Brouwer and L. I. Glazman, Quantum effects in Coulomb blockade, Phys. 
Rep. 358, 309 (2002).
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S tun [ f ] = I TI2EE
aa n

^^e„ (e’'*)mGa,n+m (e-i*)-m 

m

a,n Ga,n + Stun [0],

(5.64)
where Ga/a,n = (iun — ea/a + p) 1 are the Green functions of dot and lead, re­
spectively, and the constant Stun [0] will be omitted throughout. Approximating the
Green functions as

Ga/a,n 

a/a

iUn + C
un+£ 2

- — nipd,i sgn(u), (5.65)

where pd,l = pd,l(p) is the density of states at energy p, we arrive at the result

Stun[  ̂] = gT E(-sgn( U ) sgn( U+m ) + 1)( ei* ) m ( e - i* )-m 

n,m

= E I Um I( e^) m (e - * )-m, (5.66)
2 nT *—J

m

where we note that ^2m(ei*)m(e-i*)-m = 1, gT = 2n2plpd|T|2 is proportional to 
the Golden Rule tunneling rate between dot and lead, and the appearance of a 
term ~ |um | is a signature of a dissipative damping mechanism (for a discussion of 
this point, see section 12.6.4). Using the given formula for the Fourier transform of 
|Um |, we obtain the time representation of the action as

r pi*(T)-i*(T')
Stun[^] = -T d dTdT'sin2(nT(t — t0)

s zsin2(( ^ ( t ) — ^ ( t ')) / 2)
= gT (dr (dr5---------------------------------------+ const.

T j sin2(nT(t — t'))

We finally add the charging action to obtain the result (5.62).

5.6.6 Josephson junction

Building on the results obtained in the previous problem, here we derive an eective action of 

a Josephson junction { a system comprising two superconductors separated by an insulating 

or normal conducting interface region. The problem includes a preliminary discussion of the 

physics of the Josephson junction, notably its current{voltage characteristics. In chapter 6, 

renormalization group methods will be applied to explore in detail the phenomenology of the 

system.

Consider two superconducting quantum dots separated by a tunneling barrier. Gen­
eralizing the model discussed in the last two problems, we describe each dot by an 
action

S [ fOa ,fi ]= I ^ dT E fa ( dT + Cia  ̂3 + f* (T)ff 3 A 01) fa, i =1, 2,

0a
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where Na = (Na^, Na^)T are Nambu spinors, ai Pauli matrices in particle-hole 
space, and )i the phase of the order parameter on dot i. Noting that two dots form 
a capacitor, we assume the presence of a “capacitive interaction”

Sint = EC y dT (N1 - N2) ,

i /i-jiwhere Ni = 22a Na a3Na is the charge operator on dot i, and 1 /2Ec the capacitance 
of the system. Finally, the tunneling between the two dots is described by the action

St[Na] = dT N1 (T-a3)22 +h• c.,

where Tap = (a |T|fi) denotes the tunneling matrix elements between the single­
particle states | a) and | fi). Now, were it not for the presence of the superconducting 
order parameter, the low-energy physics of the system would again be described by 
the effective action (5.62).

EXERCISE Convince yourself of the validity of this statement, i.e., check that the dot­
dot system can be treated along the same lines as the dot-lead system considered above 
and trace the phase dependence of the various contributions to the action.

(a) Turning to the superconducting case, show that the Hubbard-Stratonovich 
action is given by

S eff [ V,) ] = S c[ V ]

dT + (£1 + i () 1 + V)) a 3 + A a 1 e— 2 (01 — 0 2)' 3 T \
T t e 2 (0 1— 0 2) ' 3 dT + (e2 + 2 () 2 — V)) a 3 + A a J , 

where Ni, i = 1, 2, comprise the single-particle energies of the system and Sc[V] = (1/4EC) dT V2 is the charging action. Previously we have seen that the func­

tional integrals over Hubbard-Stratonovich fields decoupling charging interactions 
are concentrated around vanishing mean field solutions. Presently, the tr ln is cou­
pled to two such field combinations, V + ) 1 and — V + )2, respectively. We assume 
that these combinations remain close to their vanishing stationary phase values, 
and neglect fluctuations around them. In other words, we impose the Josephson 
conditions )1 = — cj)2 = — cj) and V = cj). (If you are ambitious, explore the stability 
of these conditions by second-order expansion of the tr ln in the field combinations 
above.)
(b) Expanding the action to second order in T (i.e., the leading order) and using 
the Josephson conditions, show that S = Sc + Stun, where

Stun[)] = |T|2 E tr (G1 ,a^n (eia30)mG2,a'^n+^m (e—ia30)-m — () O 0)) ,

Giun = (i^n — Na 3 — A a 1)-1 is the bare Gorkov Green function, and we again 
regularize the action by subtracting Stun[) = 0]. Denoting the block diagonal and 
off-diagonal contributions to the Green function by G,d/o, respectively, the action 

— tr ln
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Josephson 
action

splits into two terms, tr(G 1dei'3'73G2de-"!"3 + G 1oei'''"T3G2oe-"!"3). Show that, up to 
small corrections of O(wn/A), the diagonal terms vanish, and interpret this result. 
(Hint: Compare with the discussion of the previous problem.)
(c) Turning to the particle-hole off-diagonal sector, show that

Stun [A,  ̂] = Y [ dT cos(2 ^ (r)), Y = | T |2( np )2A.
0

Combining everything, one obtains the action of the Josephson junction,

(5.67)

Josephson 
current

DC 
Josephson 

effect

AC 
Josephson 

effect

S[$] = fdrj>2 + y [ dT cos(2$(r))+rSdiss[$]
4EC

While our analysis above suggests that the coefficient of the dissipative term should 
be zero, voltage fluctuations in “real” Josephson junctions do seem to be dissipa­
tively damped, even at low fluctuation frequencies. Although there is no obvious 
explanation of this phenomenon, it is common to account for the empirically ob­
served loss of energy by adding a dissipation term to the action.
(d) Finally, explore the current-voltage characteristics of the non-dissipative junc­
tion. To this end, perform a Hubbard-Stratonovich transformation on the quadratic 
charging interaction. What is the physical meaning of the Hubbard-Stratonovich 
auxiliary field? Interpret your result as the Hamiltonian action of a conjugate vari­
able pair and compute the equations of motion. Show that the Josephson current 
flowing between the superconductors is given by

I = -2 y sin(2 0). (5.68)

According to this equation, a finite-order parameter phase difference causes the 
flow of a static current carried by Cooper pairs tunneling coherently across the 
barrier: the DC Josephson effect. Application of a finite voltage difference or, 
equivalently, the presence of a finite charging energy, renders the phase $ = V 
dynamical. For a static voltage difference, 0 increases uniformly in time and the 
current across the barrier behaves as time-oscillatory: the AC Josephson effect. 
Finally, if the voltage difference becomes very large, V A, the Fourier spectrum 
of ^ contains frequencies |wm| > A (think about it). At these frequencies, phase 
variations have the capacity to create quasi-particle excitations, which in turn may 
tunnel incoherently across the barrier (thereby paying a price in condensate energy 
but benefiting from the voltage drop). The tunneling of independent quasi-particles 
is described by the dissipative term in the action (which, we recall, is negligible only 
at frequencies |wm | < A).

Answer:

(a) The given result is proven by decoupling the capacitive interaction by a field V 
and integrating out the fermions. This leads to the action

S[V,rf>] = Sc[V] - trln (G- V’^1] 
\ — T '(33 

- T3 3 \
G2^1 [-V,^2]) ,
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where the Gorkov Green functions of the two superconductors, G-1[V, i] = (—dT — 
(Zi + iV a3/2 — Aei*-^3a 1), appear coupled to the Hubbard-Stratonovich voltage 
field, and Zi = {Zi,a} is shorthand notation for the vector of energy eigenvalues. 
Noting that el*a3a 1 = D(i)a 1 D-1(i), where D(i) = exp(2ia3), we factor out the 
phase dependence as G-1[V, i] = D(ii)G-1[V + ii]D-1(ii), where G[V] = G[V, 0] 
is the Gorkov Green function with real order parameter. Substituting these rep­
resentations into the tr ln and using the cyclic invariance of the trace, we con­
clude that the tr ln is equivalent to one with G-1[V, ii] ^ G-1 [V + ii] and 
T ^ TD-1(i 1)D(i2), which is the stated form of the action.
(b) The first part of the problem is shown by straightforward expansion of the 
action derived in part (a), with Josephson conditions in place. Substituting the 
diagonal contribution to the Green function Gd,n = (—iun — £a3)/(^^ + Z2 + A2) 
into the tunneling action and comparing with Eq. (5.64), we find that the sum 
Eq. (5.65) becomes replaced by

- iUn - ^a3 , Un
un + e2 + A2 - — inpi (un + A2)1 /2 ■E( Gi, d) a,w„ = depi (e + M)

a

Comparing with Eq. (5.66), we obtain

un un+m ■ 1 ~ J 1 Um |/nT, |um |» A,
(U +A2)1 /2 (Um + A2)1 /2 ) 0 + O(um/A), |Um |« A,

instead of a global factor |um | /2nT. The physical interpretation of this result is 
that only high-frequency (u > A) fluctuations of the voltage field V = i have the 
capacity to overcome the superconductor gap and dissipate their energy by creating 
quasi-particle excitations. In contrast, low-frequency fluctuations do not suffer from 
dissipative damping.
(c) Substituting the off-diagonal term Go,n = —Aa1/(un2 + Z2 + A2) into the tun­
neling action and neglecting contributions of O(|um|/A), we find

Stun[ i ] - | T |2 EE 2 । ' । A2 ' x tr (a 1( ei^3 *) ma 1( e - i°3 *)-m )

nm aa un+^a+A2 un+^a ■+A2

= |T|2(2TP)2A E tr (a 1 (eia3*)ma 1(e-i°3*)-m)

m

= |T|2(np)2A d dT cos(2i(t))■

(d) Think of the non-dissipative Josephson action as the action of a point particle 
with kinetic energy ^ EC1 cj)2 and potential energy cos(2i). In this language, passage 
to the Hubbard-Stratonovich decoupled action 

S [i, N] = EC dT N2 + y dT cos(2i(t)) + E dT Ni,

amounts to a transition from the Lagrangian to the Hamiltonian picture. The nota­
tion emphasizes that the momentum conjugate to the phase variable is the number 
operator of the system. (More precisely, N measures the difference in the charges
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quantum 
phase 

transition

carried by the two superconductors; the total charge of the system is conserved.) 
Varying the action, we obtain the Hamilton equations

) = i2ECN, N = 2iY sin(2)).

Now, I = idT N is the current flowing from one dot to the other, i.e., the second 
relation gives the Josephson current (5.68). The first relation states that, for a finite 
charging energy, mismatches in the charge induce time variations in the phase. By 
virtue of the Josephson relation, such time variations give a finite voltage drop.

5.6.7 Metallic magnetism

Previously we considered the Hubbard{Stratonovich transformed functional integral as an ef- 

cient tool in the perturbation theory of the interacting electron gas. However, we have also 

seen that interactions may have non-perturbative eects and cause phase transitions, the 

Mott transition of section 2.2.3 being one such example. In this problem, we consider another 
interaction{driven transition of the electron gas, the Stoner transition53 into a magnetic phase, 

and explore it by methods of functional integration.

Historically, the Stoner transition has assumed a special place in the theoreti­
cal literature. Developments in statistical mechanics through the 1950s and 1960s 
highlighted the importance of fluctuation phenomena in the classification and phe­
nomenology of classical phase transitions (see chapter 6). The universal properties 
of classical finite temperature transitions are characterized by universal sets of criti­
cal exponents. In a quantum mechanical system, a phase transition can be tuned by 
a change in an external parameter even at zero temperature - a quantum phase 
transition. In a seminal work by John Hertz,54 it was proposed by that the region 
surrounding a quantum critical point was itself characterized by quantum critical 
phenomena.

In this context, the problem of metallic magnetism presents a useful prototype. 
It is also one for which the class of heavy fermion materials provides a rich arena for 
experimental observation. In the following, we develop a low-energy theory of the 
interacting electron system and discuss the nature of the mean field transition to the 
itinerant ferromagnetic phase. Later, following our discussion of the renormalization 
group methods in chapter 6, we will use the low-energy theory as a platform to 
discuss the general phenomenology of quantum criticality (see problem 6.7.2).

Our starting point is the lattice Hamiltonian for a non-interacting electron gas 
perturbed by a local “on-site” Hubbard interaction, H = HH0 + HHU where

H0 = ^2 6 P c P a c P ' , HU = ^2n i ^ n i ±.
p a i

53 E. C. Stoner, Ferromagnetism, Rep. Prog. Phys. 11, 43 (1947).
54 J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14, 1165 (1976).
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Here, the sum runs over the N lattice sites i and nia = ctacia. The electron disper­
sion relation ep (a function of the lattice geometry) as well as the dimensionality 
are left unspecified at this stage.

As we saw in chapter 2, the phase diagram of the lattice Hubbard Hamiltonian 
is rich, exhibiting a range of correlated ground states depending on the density and 
strength of interaction. In the lattice system, close to half filling, strong interactions 
may induce a transition into an insulating antiferromagnetic Mott-Hubbard state. 
Here, we will show that in the opposite case of low densities, the system may assume 
a spin-polarized magnetic phase. In this Stoner ferromagnet, the charge carriers 
remain in a mobile state. Magnetic systems with this property are called itinerant 
magnets.

As usual, the formation of this magnetic phase relies on a competition between 
kinetic and interaction energies: since electrons of the same spin cannot occupy 
the same state, they escape the Hubbard interaction. However, the same exclusion 
principle requires them to occupy different single-particle states, which implies a less 
favorable kinetic energy. When the total reduction in potential energy outweighs the 
increase in kinetic energy, a transition to a spin-polarized or ferromagnetic phase 
is induced.

Once again, our first step in the quantitative exploration of the phenomenon is 
a Hubbard-Stratonovich decoupling. We begin by separating the interaction into 
contributions coupling to charge and spin densities,

HU = U ^(nit + niJ2 - UU ^(nit - ni;)2•

We expect fluctuations in the charge density to have little influence on the physics of 
the low-density system, and therefore neglect their contribution to the interaction, 
so that HU ~ -U £i(SZ)2, where SZ = (nit - ni;)/2.

EXERCISE Here, for simplicity, we have isolated a component of the Hubbard interaction 
that couples to the spin degrees of freedom but violates the spin symmetry of the original 
interaction. How could the local interaction be recast in a manner which makes the spin 
symmetry explicit while isolating the coupling to the spin degrees of freedom? (Hint: Recall 
our discussion of the exchange interaction in section 2.2.2.)

(a) Express the quantum partition function of system as a functional field integral. 
Decouple the interaction by a scalar magnetization field m = {mi (r)} and show 
that, after integration over the fermions, the partition function takes the form

Z =Z0
— — d dr m2(r)+trlnf1 —— o3mG40 i 2

where Z0 is the partition function of the non-interacting system, the free Green 
function in momentum representation is given by Gp = (ien—£p)-1, and oi are Pauli 
matrices in spin space. For simplicity, we assume a nearly free electron dispersion 
£p = p2/2m throughout, which in physical terms means that we are working in a 
low density limit (why?).
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We suspect that there is a phase transition to a magnetic phase at some critical 
value of the interaction, U = Uc , signaled by the appearance of a non-zero mag­
netization field mi . Assuming this transition to be of second order (which means 
that at Uc a magnetization profile develops continuously, without jumps), we aim 
to identify a field theory that captures its critical behavior. As with the Ginzburg- 
Landau theory of the superconductor, we proceed by self-consistent expansion of 
the tr ln in a regime where m is small.
(b) Drawing on the RPA expansion of the weakly interacting electron gas (section 
5.1), expand the action to fourth order in the magnetization field and show that it 
assumes the form S [m] = S(2)[m] + S(4)[m], where

S(2)[m] = 1 r + f 2a2 + |un |^ |m |2 S(4)[m] = u d dxm(x)4 (5 69)
° [m] 2 / -/ ^r + f q + v|q| y |mq | , J [m] 4 J xm m(x) . (5.69)

Here f dx = f dTddx, r = 2/Uv — 1, the velocity v = cvF with a numerical 
constant c, v is the fermion density of states (including the spin multiplicity 2), 
and the magnetization field has been rescaled so that, in the limit U ^ ro, the 
coefficient r ^ —1. (Hint: In the term of quartic order, the momentum carried 
by the magnetization field is assumed to be negligibly small compared with that 
of the electron Green function. The term thus assumes the form m4 times a 
prefactor, which you need not evaluate in detail. However, convince yourself of its 
positivity.) For the “polarization bubble” multiplying the second-order expansion, 
use the results discussed following Eq. (4.28), and especially Eq. (4.33).

In problem 6.7.2, we will use this action as the starting point for the analysis 
of quantum criticality in itinerant magnetism. However, for the time being let us 
consider the problem on the simple mean field level, and for a moment assume 
constancy of the magnetization field. In this limit, the action collapses to

S[m] = J dx m2 + um4) .

This action indicates that the system has a transition into a magnetized phase at 
an interaction strength set by the Stoner criterion Ucv/2 = 1. The density of 
states v x An/AE tells us how much (non-interacting) energy AE is required to 
populate An energy levels. If the gain in interaction energy, x UAn, exceeds that 
energy, we have a transition.

INFO Disclaimer: The gradient expansion leading to the action (5.69) is far from innocu­
ous. Its validity relies on the benign nature of fluctuations in the magnetization density. 
Subsequent work, howvever, has cast doubt on the validity of this approximation.55 More­
over, in real lattice systems, the transition generically occurs at parameter values where 
interaction effects are strong, and the free fermion approximation used above becomes un­
reliable. Readers interested in the detailed theory of itinerant ferromagnetism are advised 
to study the specialized literature.

D. Belitz, T. R. Kirkpatrick, and T. Vojta, Non-analytic behavior of the spin susceptibility in 
clean Fermi systems, Phys. Rev. B 55, 9453 (1997).

55
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Answer:

(a) Starting with the functional partition function

z = [ Di expj - [ dT ( lp(f!- + £p)Ip - UU ^(faa3 fa)2 ) I,

0 p 4i

the interaction can be decoupled by a scalar field conjugate to the local magneti­
zation density,

Z = ! DmDl exp| - JdT (U mi + fa( dT + £ p) I p + UU I i-3 mi fa)}.

Integrating over i, one obtains the required partition function.
(b) The expansion of the action mirrors the RPA of the weakly interacting electron 
gas. Terms odd in powers of m vanish identically (a property compatible with the 
symmetry m ^ — m). To leading (second) order we obtain

S[m] = 1 UU C1 - U2nq) |mq|2, 

qwith the polarization operator defined by Eq. (4.28). Substitution of the expan­

sion (4.33) leads to

S[m] = U2v Y(— - 1 + £2q2 + ImI2. (5.70)
q. .

8 \Uv v|q| J

A final rescaling mq ^ 4mq/ favU brings the action into the given form. Here, the 
coupling constant v2 = U(1 + Un0)/2 = U(1 — Uv/2)/2 contains the polarization operator (4.28), and we have used Eq. (4.31) for its static limit.

The quartic coupling constant contains the product of four Green functions, 
v4 = (T U4/8N ) p Gp4, which we need not evaluate in detail for the purposes of 
the present problem. Transforming back to a real-space representation, we obtain 
the quartic action as given.



6 Renormalization Group

SYNOPSIS The renormalization group (RG) is a powerful tool for the exploration 
of interacting theories in regimes where perturbation theory fails. In this chapter, we 
introduce the concept on the basis of two examples, one classical, the other quantum. 
With this background, we then discuss RG methods in more general terms, introducing the 
notion of scaling, dimensional analysis, and the connection to the general theory of phase 
transitions and critical phenomena. In the final parts of the chapter, we discussion various 
examples including the RG analysis of the ferromagnetic transition, phase transitions in 
models with vortex formation, and the critical physics of nonlinear sigma models.

In this chapter we will frequently integrate over frequency or momentum variables. For 
improved readability, we use the notation (ddu) = d and (ddp) = d d pd .2 2 ' J ' ' J 2nJV2/ ( (2n)d

In chapter 4 we introduced ^4-theory as a prototype of interacting theories, and 
developed a perturbative framework to describe its nonlinearities in the language 
of diagrams. However, being critical, one might argue that both the derivation and 
the analysis of the theory presented only limited understanding: the ^4-continuum 
description was obtained as a gradient expansion of a d-dimensional Ising model. 
But what controls the validity of the low-order expansion? (The same question 
could be asked for most of the continuum approximations performed throughout 
previous chapters.) Individual terms contributing to the expansion of the mo del 
(see Eq. (4.17)) contained divergences at both large and small momenta. We had to 
concede that we had no clue about how to overcome these problems. It also became 
evident that such difficulties are not specific to the ^4-model but endemic in field 
theory.

To better address these problems, new ideas must be developed. First, let us 
remember that our principal objective is the understanding of long-range charac­
teristics. On the other hand, models such as ^4 exhibit fluctuations on all length 
scales, and it were the short-scale fluctuations that were responsible for the majority 
of difficulties. In principle, we already know how to deal with situations of this kind: 
we need a theory of slow fluctuations obtained by integrating over all rapid fluctu­
ations. For example, in section 3.3.3 we derived the effective action of a quantum 
particle by integration over the rapid fluctuations of an external environment.

The problem with our current application is that in the ^4-theory there is no 
clear-cut separation into “fast” and “slow” degrees of freedom. Rather, all fluctua­
tions, ranging from the shortest scales (of the order of some microscopic cutoff, a, 
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limiting the applicability of the theory) to the longest scales (of the order of, say, 
the system size, L) are treated on the same footing.

To implement the scheme of integrating over fast modes to generate an effective 
action of the slow degrees of freedom, one must declare artificially a certain length 
scale a(1) = ba > a as the scale separating “short-wavelength fluctuations” on 
scales [a, a(1)] from “long-wavelength fluctuations” on scales [a(1) , L]. Integration 
over the former will modify the action of the latter. Since the short-range action is 
no simpler than the long-range action, this step generically involves approximations. 
Indeed, various scenarios are possible. For example, the integration may corrupt the 
structure of the long-wavelength action, leaving us with a theory different from the 
one with which we began. Alternatively, the post-integration long-range action may 
be structurally identical to the original, in which case the effect of the integration 
can be absorbed in a modified set of coupling constants.

1 A perspective on the development of the renormalization group can be found in the review 
article by M. E. Fisher, Renormalization group theory: Its basis and formulation in statistical 
physics, Rev. Mod. Phys. 70, 653 (1998), or in the text by J. Cardy, Scaling and Renormaliza­
tion in Statistical Physics (Cambridge University Press, 1996).

2 See K. Wilson, The renormalization group: critical phenomena and the Kondo problem, Rev. 
Mod. Phys. 47, 773 (1975), still one of the best introductions to the approach!

If the latter, the procedure is well motivated: we have arrived at a 
theory identical to the original but for (a) a different, or renormalized, 
set of coupling constants, and (b) an increased short-distance cutoff a ^ 
a(1) = ba. Evidently, one may then iterate this procedure; that is, declare 
a new cutoff a(2) = ba(1) = b2a and integrate out fluctuations on length 
scales [a(1), a(2)], etc. Along with the recursive integration of more layers 
of fluctuations, the coupling constants of the theory change, or flow, until 
the cutoff a(n) ~ L has become comparable with the length scales in which 
we are interested. We will see that this flow of coupling constants encodes 
much of the long-range behavior of the theory.

The general line of reasoning above summarizes the essence of the renor­
malization group. Of course, a step by step algorithm would be useless had 
each reduction a(n-1) ^ a(n) to be performed explicitly. However, the pro­
gram is recursive. Since the model reproduces itself at each step, a single 
step already encodes the full information about its renormalization.

L

0--a (2)

01-a (1)

--a

history of 
the RG

INFO The formulation of renormalization group concepts has a long history, 
reflecting the versatility of the method.1 The advent of these ideas in the 1960s and early 
1970s marked the transition between two different epochs. While, hitherto, the focus in 
many-body theory had been on the development of ever more-sophisticated perturbative 
techniques, the seventies stood under the spell of the renormalization program.

In the second half of the 1960s, ideas to recursively generate flows of coupling constants 
arose - apparently in independent developments - both in condensed matter and in particle 
physics. However, it took the insight of Kenneth Wilson to realize the full potential of 
the approach and to develop it into a widely applicable tool2 . Wilson’s renormalization 
program, and its later extension by others, led to revolutionary progress in condensed 
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Kenneth G. Wilson 1936­
2013 
an American physicist who 
was awarded the 1982 Nobel 
Prize in Physics, awarded for 
“discoveries he made in under­
standing how bulk matter un­
dergoes phase transitions, i.e.,

matter physics, particle physics, and general statistical mechanics. In this way the RG 
concept became a major driving force behind the partial unification of these fields.

In fact, the (unfortunate) denotation 
“renormalization group” reflects the his­
torical origins of the approach: by the late 
60th, breakthroughs in the development 
of the standard model of elementary par­
ticles had cemented the belief that the 
fundamental structure of matter could be 
understood in terms of symmetries and 
their implementation through groups. In 
an attempt to absorb the newly devel­
oped RG approach into this general frame­
work, it became dubbed the renormaliza­
tion group. Of course, this link would not 
have been drawn had it not been justified: 
formally the sequence of RG transformations outlined above defines a semigroup.3 How­
ever, this analogy to groups has never been essential and is little more than a historical 
name tag.

sudden and profound structural changes result­
ing from variations in environmental conditions.” 
Wilson’s background ranged from elementary 
particle theory and condensed matter physics 
(critical phenomena and the Kondo problem) to 
quantum chemistry and computer science.

6.1 Renormalization: Two Examples

While the procedures outlined above may at first sight look mysterious, their work­
ing becomes quite natural when formulated in the context of concrete models. We 
therefore start our discussion of the renormalization group with two case studies, 
the renormalization of the classical one-dimensional Ising model, and of dissipative 
quantum tunneling. Along the way, we will introduce a number of concepts to be 
defined in more generality in later sections of the chapter.

6.1.1 One-dimensional Ising model

one­
dimensional Consider the classical one-dimensional Ising model defined through the Hamil-

Ising tonian 
model

HI = - JX SiSi+1 - HX Si, 
i=1 i=1

where Si = ±1 denotes the uniaxial magnetization of site i (periodic boundary 
conditions, SN+1 = S1 , imposed), and H represents an external field. Thinking of

3 We interpret individual RG transformations as abstract mappings of actions, R : S ^ S!. 
The concatenation of such transformations, R ◦ R1, satisfies two group axioms: there is a unit 
transformation (nothing is integrated out) and the iteration is associative. However, since there 
is no inverse to R, we only have a semigroup rather than a full group.
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—PHi[S] as a functional of the discrete field {Si}, we will solve the model in two 
different ways: the first is exact, the second makes recourse to an RG algorithm.

Exact solution

The model defined by the Hamiltonian above is exactly solvable, and all of its 
correlation functions can be computed in closed form. The starting point of this 
solution is the observation that the Boltzmann weight can be factorized as

e-PHI = exp (KSiSi+1 + hSi) ) = ]JT(Si, Si+1),
i=1 i=1

where we have introduced the dimensionless parameters K = PJ > 0 and h = PH, 
and the weight is defined as T(S, S') = exp(KSS1 + h(S + S')/2). Defining a two­
dimensional matrix T with elements Tnm = T ((—1)n+1, (—1)m+1), or

4 The terminology transfer matrix originates in an interpretation of the Ising model as a fictitious 
dynamical process in which a state Si is transferred to a state Si+1 , where the transition 
amplitude is given by T (Si , Si+1 ).

T=
( eK+h 

e-K eK-h

the partition function assumes the form

transfer 
matrix

NN

Z = E e-'I = E n T(Si, Si+1) = E n Tnini+1 = tr TN•

We have thus managed to represent the partition function as a trace of the Nth 
power of the so-called transfer matrix T.4 The advantage of this representation is 
that it describes the partition sum in terms of the two eigenvalues of T, which are 
readily computed as A± = eK(cosh(h) ± (sinh2(h) + e-4K)1 /2). With Z = trTN = 
AN + AN, and noting that A + > A-, we conclude that in the thermodynamic limit 
N -^ x we have Z N—P AN. Restoring the original microscopic parameters, we 
obtain the free energy as

F = — 1ln Z = — N J J + T ln 
p \

cosh(pH) + ^/sinh2(pH) + e 4PJ (6.1)

From this result, we obtain the magnetization density m = M/N by differentiation 
with respect to H,

sinh(pH) 
m = —. -----

sinh2(pH) + e-4PJ

(6.2)



316 6 Renormalization Group

We observe that, with decreasing temperature, 
the magnetization changes ever more steeply 
to adjust to an external field (see the figure). 
However, the system does not magnetize at any 
non-zero temperature in the absence of a field, 
H = 0. This finding is in accordance with our 
earlier observation (section 5.2.3) that discrete symmetries do not get spontaneously 
broken in one dimension.

|r1 - r2|-------------- I
k £

correlation 
length

The concept of scaling

Eq. (6.2) represents a full solution of the one-dimensional Ising model. From the 
magnetization, other thermodynamic characteristics, such as the magnetic suscep­
tibility x = — dH F, are obtained by further differentiation with respect to H and/or 
T . However, this is an exceptional situation; in most problems of interest, we are 
not in possession of a closed solution. This means that, before comparing the exact 
solution with that produced by the RG program, we should reformulate the former 
in a universally applicable language, a code that can be used to describe mo del 
solutions irrespective of the particular method by which these have been obtained.

A universal theme in the analysis of all many-body systems is their fluctuation 
behavior at large distance scales, as probed by correlation functions. Specifically, 
for the Ising model, the two-point correlation function assumes the form

C(r 1 - r2) = (S(r 1)S(r2)) — (S(r 1)><S(r2)) ~ exp

where we have switched to a continuum notation Si ^ S (r), and £ defines the cor­
relation length of the system. Such correlation functions are generically related to 
quantities of thermodynamic significance. For example, the magnetic susceptibility 
of the Ising model follows from its partition sum as

C ( r—r')

x = -dHF \h=0 = TdH ln Z\h=0 = ? j drdr' ((S(r)S(rf))-(S(r)><S(r')»'.

(6.3)
Performing the integral, we obtain x ~ £, i-e-, a proportionality of the susceptibility 
to the correlation length of fluctuations in the system.

This result exemplifies the role played by the correlation length in general: Close 
to zero temperature, or in the vicinity of a (second-order) phase transition, we 
expect fluctuations to become long-range, and hence a divergence of the correlation 
length- In these regimes, the correlation length exceeds all microscopically defined 
length scales; it is the only relevant length scale- Accordingly, we expect observables 
X of dimensionality [length]DX to obey the scaling form

X ~£DXgx,

where gX is a dimensionless function of other relevant system parameters-
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Let us explore how scaling manifests itself in the Ising model. Computing the 
susceptibility from the exact solution (6.2), we obtain

£ ~ X ~ dH|H=0 m ~ e2'J, (6.4)

5 Leo P. Kadanoff, Scaling laws for Ising models near Tc, Physics Physique Fizika 2, 263 (1966).

i.e., the expected divergence of the correlation length at low temperatures. As a 
scaling observable, consider the so-called reduced free energy,

f(T) = Ff, (6.5)
TL

a function with dimensionality L-1. Noting that N ~ L, a straightforward low- 
temperature expansion of Eq. (6.1) indeed gives

f ( t ) - f (0) = - e—1 (1 +1 e2 h 2) = e -1 g (eh), (6.6)

where we have subtracted the infinite but inessential constant f(0) and assumed 
that 1 e-1 h. (The scaling form above actually suggests that the magnetic 
field has dimension L-1, a prediction substantiated below.)

Referring for a more in-depth discussion to section 6.2.4, we note that scaling 
forms provide us with the sought after language for the description of systems in 
regimes with long-range fluctuations. They contain the “essential” information on 
physical observables, they can be measured — both experimentally and numerically — 
and they are obtained from the “natural” objects of study of field theory, correlation 
functions. In the next section, we will pretend that we did not know the exact 
solution of the one-dimensional Ising model and will derive its scaling properties 
from an RG analysis.

Kadanoff’s block spin RG

According to the general scheme outlined at the beginning of the chapter, the idea of 
the RG program is to recursively trace out short-scale fluctuations of a system and 
assess their influence on the remaining degrees of freedom. Several years before the 
RG procedure was formulated in generality, in a seminal study Kadanoff elucidated 
the conceptual power of such an approach for Ising type systems.5
His idea was to subdivide a spin chain into regu­
lar clusters of b neighboring spins (see the figure 
for b = 2). One then proceeds to sum over the 
2b sub-configurations of each cluster, thereby 
generating an effective functional describing the
inter-cluster energy balance. While it is clear that this energy functional exists, a 
less obvious question is whether it will again have the form of an Ising functional. 
Remarkably, the answer is affirmative: the Ising model is renormalizable. Its struc­
tural reproduction suggests an interpretation of each cluster as a meta-Ising spin, 

block spin or block spin. In this way, the renormalization step qualifies for iteration: in a 
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second RG step, b block spins are grouped to form a new cluster (now comprising 
b2 microscopic spins), which are then traced out, etc. We next discuss how this 
algorithm is implemented in concrete terms.

Within the transfer matrix approach, a cluster of b spins is represented through 
b transfer matrices T . Taking the partial trace over its degrees of freedom amounts 
to passing from these b matrices to the product T' = Tb. (The internal index 
summation involved in taking the product amounts to a trace over intra-cluster 
degrees of freedom.) The transition from the original partition function Z to the 
new partition function Z' is defined through the relation

Zn(K, h) = tr TN = tr (Tb)N/b = tr (T')N/b = ZN/b(K', h'), (6.7)

where the notation makes explicit the
parametric dependence of the par­
tition function on the size of the 
system, N, and on the coupling 
constants K, h. Notice that the equa­
tion relies on the condition that the re­
duced trace, tr (T')N/b, again has the 
form of an Ising partition function or, 
equivalently, that T' has the same al­
gebraic structure as T.

To establish this structure, we com­
pute T' for the case of b = 2 block spins. Defining u = e-K, v = e-h, we have

He was instrumental in the development of the 
concepts of scale invariance and universality in 
the physics of phase transitions.

Leo P. Kadanoff 1937-2015 
an American theoretical physi­
cist and applied mathematician 
who contributed widely to re­
search into the properties of 
matter, statistical models of 
physical systems, and chaos in 
mechanical and fluid systems.

T=
/ eK+h 

e-K eK-h
u v

u 1 v

and

T' = T2
u2 + u-2v-2 

v + v-1

v + v-1 

u2 + u-2v2

u1 1 v1 1

u
u

u A v

In the last equality, we require that the new transfer matrix be of the same struc­
ture as the original. However, noting that this requirement will introduce three 
conditions (for the three independent entries of the symmetric matrices T and T'), 
we are willing to tolerate the appearance of an overall multiplicative constant C .6 

Having introduced this new parameter, we have enough freedom to solve the three 
equations, from which one finds (exercise)

v+ + v 1 . U u4 + v2
---- :--------- :------ :---------:-- -r— - v = ---- ---- 

(u4 + u4 + v 2 + v-2)1 /4 ^ u4 + v-2
(6.8)

and the factor C = Vv + v 1 (u4 + u 4 + v2 + v 2)1 /4, which will be of lesser 
importance. The new transfer matrix describes an Ising spin system,

6 Taking the product of the new transfer matrices, we see that this constant appears in the 
partition function as Zz ~ CN/b, i.e., the free energy acquires an overall additive constant 
F' ~ — NT In C/b, which will be of no further significance.
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Fig. 6.1 (a) The flow of coupling constants of the one-dimensional Ising model generated by iter­
ation of the RG transformation. The three curves shown are for starting values (u, v) = 
(0.01, 0.9999)(f), (0.01, 0.999)(*), and (0.01, 0.99)(b). (b) Magnification of the zero­
temperature fixed point region.

RG fixed 
p oints

> whose Hamiltonian is defined at a different temperature, magnetic field, and 
exchange constant (as described by the new values of the coupling constants 
(u', v')) and

> which is defined for a lattice length scale twice as large as in the original system.

To make further progress, we note that the result of the block spin transformation 
can be represented as the discrete map

Uu= f f i(u, v)\

V'J V2(u,v)J ’

where the functions f1,2 are defined through Eq. (6.8). In fig. 6.1 sequences of points 
generated by an iterative application of the map f are shown for different values of 
starting values (u0, v0). It is evident from these RG trajectories that the map f 
possesses two sets of fixed points, i.e., points (u*, v*) that remain invariant under 
the application of the map f :

/u*\ = /fi(u*, v*)\ 
v* f2(u*, v*) .

Inspection of Eq. (6.8) shows that this is the case for the point (u*, v* ) = (0, 1), 
and the line (u*, v*) = (1, v).

The set of its fixed points defines the most fundamental element of an RG analy­
sis. Fixed points organize the space of “flowing” coupling constants into regions of 
different behavior. At the fixed points themselves, all characteristics of the model, 
including its correlation length £, remain invariant. On the other hand, individual 
RG steps increase the fundamental length scale of the system. Consistency requires 
that either £ = 0 or £ = ro.

In the present case, the line of fixed points is identified with u = exp[-PJ] = 1, 
i.e., P = 0. This is the limit of infinitely large temperatures, for which we expect a 
state of maximal thermal disorder, i.e., £ = 0. Besides the high-temperature fixed 
line, there is a zero-temperature fixed point (u, v) = (exp[-PJ], exp[-P h]) = (0, 1) 
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implying that T ^ 0 and h = 0. Upon approaching zero temperature, the system 
is expected to form larger and larger segments of aligned spins, £ ^ rc>.

Another important difference between the high- and low-temperature fixed points 
is that the former is attractive and the latter repulsive: recursion relations started 
from a low-temperature initial configuration will iterate towards high-temperature 
configurations. Physically, this means that, even if the system looks ordered at 
microscopic length scales (low temperature), at larger length scales we will notice 
the presence of domain walls - the absence of spontaneous symmetry breaking 
again; large block spins are in a less ordered (high temperature) state.

Beyond the fixed points themselves, their attractive or repulsive behavior is the 
second most fundamental signature of an RG analysis. This information is required 
in order to understand the actual flow patterns of a system under changes of scale. 
Further, in the vicinity of fixed points, flows are “slow” and recursion relations 
afford linearization. It is in this regime that their solutions simplify and derived 
physical observables assume scaling forms.

To illustrate these features on the present example, consider our RG map in 
the vicinity of the T = 0 fixed point. Defining a two-component vector, x* = 
(u*,v*)T = (0, 1)T, and with Ax a small deviation from the fixed point, we can 
write x* + Ax' = f(x* + Ax) « f(x*) + dxf • Ax + O(Ax2). Since f(x*) = x*, we 
obtain the linearized map Ax' = dxf • Ax + O(Ax2). To explore this linearization in 
more detail, we introduce another pair of variables, r = u4, s = v2 , whereupon the 
RG transformation becomes rational.7 Differentiating this map at (r, s) = (0, 1), it 
is straightforward to show that

/ A r' \ (4 \ / A r \
VAs') = \ 2/ \As)'

Noting that a transformation with b = 4, say, is equivalent to a two-fold application 
of a b = 2 transformation, we can recast the relation ab ove in the form

A r / b 2

A s / \
(6.9)

applicable to arbitrary b.
To make use of this linearized flow equation, we consider the free energy (6.5), 

f (Ar, As) = -N-1 ln ZN (K(Ar), h(As)) = -N-1 ln ZN (Ar, As), and reformulate 
Eq. (6.7) according to

f (Ar, As) = --1ln Zw(Ar, As) = -^1b In Zw, (Ar', As') = bf (b2Ar,bAs).

This equation describes the scaling of the free energy density under block spin 
transformations or, equivalently, changes in the fundamental length scale at which 
we consider our model (all in the linearizable low-temperature regime). The right­
hand side describes how it would look from a “blurred” perspective, where all 
degrees of freedom on scales < b have been combined into a single structural unit.

7 Show that and .
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Now, b is a free parameter without intrinsic significance; it can be set to any 
desired value. For example, we may find it convenient to consider the model at scales 
where b2Ar = 1. With this choice one obtains f (Ar, As) = Ar1 /2 f (1, As/Ar1 /2) = 
Ar1 /2 g(As/Ar1 /2), where the dimensionless one-parameter function g is defined 
through the second equality. Finally, we relate back to the physical parameters,

A r = r — 0 = r = u4 = e-4 K, A s = s — 1 = v2 — 1 = e-2 h — 1 ~ —2 h,

which brings us to the scaling relation

f = e-2Kg(e2Kh). (6.10)

This is the scaling form predicted by the RG analysis. Notice that the dependence of 
the free energy on two independent parameters K, h is reduced to a one-parameter 
function, multiplied by an overall prefactor. This finding is consistent with the as­
sumed scaling form f ~ £-1 g. Noting that there is no reason for the rescaled free 
energy g(x) = f (1 ,x) to be singular; the divergence of £ is driven by the prefactor, 
i.e., £ ~ e2K. On this basis, we have g = g(£h), i.e., the magnetic field appears in 
conjunction with the correlation length and we have reproduced the exact asymp­
totic, Eq. (6.6).

INFO Do not be concerned about the accumulation of vague proportionalities “~” in 
these constructions. Scaling laws describe the behavior of observables in the vicinity of 
phase transition points where power laws prevail. For example, different systems in the 
Ising universality class may show a common power law dependence of magnetization versus 
temperature, M ~ T3. However, the numerical prefactors in such proportionalities vary 
between materials, and depend on the chosen system of units. They are non-universal and 
likely to be of lesser importance both theoretically and experimentally.

EXERCISE Apply the block spin RG procedure to the one-dimensional q-state Potts 
spin model 'H = — K ^=1 8 si,si+1, where si = (1,2,... ,q). Identify all fixed points and 
note their stability.

6.1.2 Dissipative quantum tunneling

In a second case study, we apply the RG concept in a Fourier space represen­
tation, where the distinction between fast and slow modes is met on the basis of 
their momentum (or frequency). This is the standard procedure in field theory ap­
plications, where one is working with continuum fields that have ”forgotten” about 
underlying lattice structures.

In section 3.3.3, we explored the influence of external environments in quantum 
mechanical tunneling. We saw that an environment affects the tunneling action 
of a system with coordinate 9 via an ohmic contribution to the action Sdiss[9] = 
(nTg)-1 52w I~nII9n|2, where g-1 is a coupling constant. We also noticed that such 
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momentum 
shell renor­
malization

dissipative structures appear in a number of different settings, for example in the 
problem of impurity scattering in a quantum wire (see problem 3.8.12).

In the following, we apply an RG program to understand the effect of dissipation 
on quantum tunneling. For concreteness, let us assume that a quantum mechanical 
particle inhabits a periodic potential U(0) = c cos 0. In this case, the quantum 
partition function Z = f D0 exp(-S[0]) is governed by the action8

S[0] =--------- ((dw) |w||0(w)|2 + c d dT cos(0(t)). (6.11)
4ng J J

Momentum shell renormalization

Following the general philosophy outlined at the beginning of the chapter, we begin 
by arbitrarily subdividing the set of field modes 0n into short- and long-wavelength 
degrees of freedom. For example, assuming that the effective bosonic action applies 
up to a cutoff frequency A, we might say that fluctuations on scales A/b < |w| < A 
are fast (b > 1) while those with |w | < A/b are slow.

INFO Referring to frequency as the 0-component of a generalized momentum, the strategy 
outlined above is called momentum shell renormalization. It is particularly popular in 
condensed matter field theory, where effective theories always come with an upper cutoff 
defined by the lattice spacing. (The assumption of an upper cutoff is less natural in particle 
physics, which generically prefers to implement RG steps without reference to such a scale; 
see the remarks in the Info block on page 332.) While momentum shell renormalization is 
a method of choice in continuum field theory, numerical approaches or lattice statistical 
mechanics often favor real-space renormalization, as in the previous chapter. In cases 
where different renormalization programs are applied to the same problem, the results 
must agree, and such comparisons can provide valuable consistency checks.

We thus begin by decomposing a general field amplitude 0(t) = 0s(t) + 0f (t) into 
a slow contribution 0s(T) and its fast complementary 0f(T) part, where

0s,f(t) = jT (dw)e-i0(w), (6.12)

with Js = f[^।<A/b and f = fA/b<^।<A. Substituting this split into the action 
(6.11), one obtains S[0s, 0f] = Ss[0s] + Sf[0f] + SU [0s, 0f], where

Ss, f [ 0 s, f ] = 4~/ ( dw )| 0 ( w )|2| w |, Su [ 0 s ,0 f ]= c J" dT cos( 0 s( T)+ 0 f ( T )) .

Our goal now is to derive an effective action Seff [0s] of the slow fields, after the 
fast ones have been integrated out, i.e., e-Seff[3s] = e-Ss[3s] (e-SU[3s,3f])f, where 
(••• )f = f D0f e-Sf [3f] (•••). In view of the nonlinearity of the action, this step must

8 Here, we assume temperatures sufficiently low that Matsubara sums can be replaced by fre­
quency integration, | ^m || Gm |2 ^ T f 2^ | w || Q (w )|2, with Q (w) = Qn/T. We also assume the
coupling 1/g to be large so that, for low frequencies, the dissipative term dominates over the 
kinetic contribution mQ2/2. In the language of mechanics, this is the overdamped limit of an 
oscillator degree of freedom.
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necessarily be perturbative. Assuming that the coupling constant c is small, we 
approximate

e-Seff[6s] = e-Ss[es] - sU[es,Qf] + ,,,f _ e-Ss[es]e-SU[es,ef])f. (6.13)

In words, we have expanded the action to first order in c, averaged the resulting 
expression over fast fluctuations, and in the final step re-exponentiated the result. 
This linearization followed by re-exponentiation is reminiscent of the steps involved 
in the construction of the path integral by Trotter decomposition. While at first 
sight it may seem to be limited to asymptotically weak coupling, c, we will see later 
in the chapter that the approach is much stronger than that.

The influence of the fast fluctuations on the effective action is now contained in 
the average, which we compute as

DOf e-Sf[6f] ! dT cos(0f(t) + 0s(t))

dreis(TDOf exp ^—-— (ddu)0(u)|u10(—u)+ i^(du)elUT0(u)^ + c.c.

iOs(t) — ng J"(du)|u|-1^ +c.c. = c j dT cos(0s)e 2ng ^//b(dw)^

dT cos(0s)e-g ln b = cb-g dT cos(0s).

We arrive at the remarkable conclusion that the effective action for the slow field, 

seff [0s] = -7^ (ddu) 10(u)|2|u| + cb-g d dT cos(0s), 
4ng Js J

(SU [ 0 s ,0 f ])f = c J

is structurally identical to the action from which we started; 
the action is renormalizable. However, seff differs from the 
bare action s in two respects: first, the fast field integration 
induces a change in the coupling constant c and, second, the 
new action is defined for field configurations fluctuating in a 
reduced range |u | < A/b.

The essential step of the RG program is a comparison 
of the model before and after the integration over the fast 
fields. However, mo del actions defined for different sets of 
field configurations, 0 vs. 0s, cannot be sensibly related to 
each other. To facilitate the comparison, we first rescale fre- 
quency/time,

(T,u) ^ (T',u') = (Tb-1 ,ub),

in such a way that the product ut = u1 t 1 remains invariant but the new frequency 
range |u'| < A (see the figure).

Recalling that 0s (u) are just integration variables, the question remains as to how 
to choose a meaningful set of variables 0'(u') defined on the full frequency range. 
In principle, there is ample of freedom for further rescaling - which we will turn 
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into a creative resource when we discuss the RG program in generality. However, 
in the present context, 9(t) is an angular variable (the cos term) defined on a fixed 
interval [0, 2n], and so we define 9'(t') = 9s(t). Since 9'(w') is related to 9'(t') by 
Fourier transform, Eq. (6.12), this relation implies

9'(w') = b 19 (w).

Substitution of the new variables w' ,t ',9'(t'), and 9'(w') into the effective action 
then gives

Seff [9s] = S'[9'] = [ (dw') 19'(w')|2|w'| + cb1 g [ dT' cos(9'(t')).
4ng J|„'l<A J

INFO The transformation of the action Seff [9s] under rescaling could have been antic­
ipated without calculation from dimensional analysis: the definition w' = bw implies 
that all contributions to the action of dimension [frequency]d change by a factor b-d. Since 
9(t) is a dimensionless phase, we have [9(t)] = 1 while [9(w)] = [frequency]-1. Thus, the 
first term of the action has dimension 1 and remains invariant. The second operator carries 
the dimension [dt] = [frequency]-1 and, therefore, changes by a factor b.

Flow equations

Comparing the effective actions S [9] and S'[9'] before and after the integration 
over the fast modes, we note that the obvious difference is a change in the coupling 
constant,

c ^ c(b) = cb1 g. (6.14)

However, in addition to that, we have an implicit change: the new action describes 
fluctuations on slower frequency scales or larger temporal scales. This difference 
remains implicit because we have chosen to measure the “new” frequency continuum 
in rescaled variables w' = bw. The combination of these two changes implies that 
the effective strength of the potential changes when looked at from a somewhat 
larger length scales.

INFO To understand this mechanism in physical terms, 
consider the case where the action Eq. (6.11) describes —> 1-1 —
scattering off an isolated impurity in a quantum wire, see I I
Eq. (3.100) and the Info section on page 159. The scatter- ' ' ' ' '
ing of electrons off this impurity creates a 2kF -oscillatory ‘ —b "
density modulation in the electron gas known as a Friedel 
oscillation. In the presence of repulsive electron-electron interactions, g < 1, further in­
coming electrons witness a stronger potential, realized as the superposition of the native 
potential and the density modulation. (Conversely, attractive interactions, g > 1, weaken 
the scattering potential.) The support of this effective potential exceeds that of the impu­
rity, which is consistent with the scale increase under renormalization.

At this point, we have found out how the coupling constant changes after one RG 
step, Eq. (6.14). Notice that this result depends on how we choose to dissect the
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frequency spectrum via the parameter b. However, what we ultimately want to 
know is the coupling constant after all fluctuations down to a given infrared scale 
wmin have been integrated out. To obtain this information, the RG step needs to 
be iterated: from c = c(0) and c’ = c(1), on to a sequence of coupling constants 
c(0) ^ c(1) ^ c(2) ^ • • •. As in the previous discussion of the Ising model, we 
interpret this sequence as a dynamical system, where individual time steps involves 
an update c ^ c’ = c b 1-g = c eln b(1-g). Assuming that in each step only a thin layer 
in frequency space is shaven off, b = 1 + e is close to unity and the coupling constant 
update small. We may thus turn to a continuum description as e-1(c' — c) « dtc « 
dln bc = c(1 - g). The evolution equation describing the continuous change of the 
coupling constant,

(6.15)

RG flow 
equation

dc
= P(c )=c(1 - g)

is an example of an RG flow equation. For historical reasons, the right-hand side 
of the flow equation is called the P-function.

Interpreting t = ln b as a time-like coordinate, we can now integrate the evolution 
equation to obtain9 c(t) = c(0)e(1-g)t, where c(t = 0) = c(b = 1) is the bare 
coupling constant of the theory. (Remember that, for b = 1, Aeff = A/b = A, which 
is the unrenormalized theory.)

At what time scale t = ln b should the RG flow be stopped? The answer depends 
on the realization of the cutoff scale, wmin, which can be temperature, T , the oscil­
lation frequency w0 of an external perturbation, the inverse time of flight through a 
system of finite extension, vF/L, or some other natural scale. In either case, the fi­
nal cutoff value equals Aeff = wmin, or t = ln(A/wmin). The effective theory at these 
scales looks structurally identical to the microscopic model but with a renormalized 
coupling constant c = c(0)(A/wmin)1-g ~ wm-n .
Notice that both the bare constant c(0) and the 
cutoff A depend non-universally on microscopic 
parameters of the model. However, following 
the standard scaling paradigm, we will focus on 
the dependence of the coupling constant on the 
low-energy scale wmin . The dependence of the 
coupling constant on the time scales ~ wmi1n is 
illustrated in the figure. For interaction param­ 1 1/g

eters g > 1 (g < 1), it decreases (increases). The 
“non-interacting” case g = 1 defines a fixed line where the coupling strength does 
not change.

However, at this stage we remember that the analysis has been based on an 
expansion of the action to first order in the impurity operator. In the repulsive 
case, even if the initial value of the coupling constant is small it will soon flow

9 Alert readers will notice that this result coincides with the change of the coupling constant 
obtained after the first RG step. However, this is a coincidence due to the simple structure of 
the present model.
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weak—
strong 

coupling
duality

duality

self-duality

into a region where this approach loses its meaning (indicated by a wavy line in 
the figure). How do we know what happens after the coupling constant has disap­
peared into the forbidden zone? It turns out that, for that for this particular model, 
there exists a duality mapping the model at large c and g < 1 to a structurally 
identical model at small c ~ c-1 and g > 1 (see problem 6.7.1). We therefore 
conjecture - a hypothesis backed up by conformal field theory - that the coupling 
constant will grow in a regime of strong coupling, become equivalent to one with 
cg < 1, which then continues to diminish (gg > 1). This leads to the global flow 
diagram indicated in the figure, and to interesting physical conclusions: Dissipation 
strengths exceeding the critical value g = 1 block quantum tunneling at large time 
scales; repulsive interactions effectively enhance impurity scattering in Luttinger 
liquids and eventually block quantum transport, etc.

INFO The term duality is used by different communities in physics, although there 
does not seem to be a universal definition. Duality may refer to a situation where iden­
tical physics is described by different theoretical descriptions. The classical wave-particle 
duality of quantum mechanics is an example of this type. In this case, the two formula­
tions of quantum mechanics in momentum or position space representations, respectively, 
describe identical physics. However, the terminology is also used in the reverse situa­
tion where different physics is described by identical theories. For example, the vacuum 
Maxwell equations, V • E = 0, V • B = 0, V x E + dtB = 0, V x B - dtE = 0 map onto 
each other under exchange E ^ B, B ^ — E: the magnetic and electric sectors of vacuum 
electrodynamics are described identically, a parallelism driving the search for fundamental 
magnetic monopoles and extension to the charged theory.

In condensed matter physics with its many different effective theories, dualities can 
be powerful assets. For example, Kramers—Wannier duality10 maps Ising models in 
low temperature phases onto other Ising models at high temperatures. In the language 
of the old models, the variables of the new models describe different observables, and in 
this way crucial information on both partners of the duality is obtained. Duality becomes 
particularly powerful in the cases where a duality transformation maps a model onto a 
structurally identical one, albeit with different coupling constants, and different physical 
interpretations of its variables. An example of such self-duality is the two-dimensional 
Ising model on a square lattice, which is Kramers-Wannier self-dual to itself under an 
exchange of high and low temperatures. (The Ising variables of the dual theory describe 
the degree of “disorder” present in the original one, and hence are in a low expectation 
value/high-temperature phase if the former are in a large expectation value/low temper­
ature phase.)

Our discussion above refers to another self dual theory, namely that described by 
Eq. (6.11). For a discussion of the duality transformation and its physical interpretation 
we refer to problem 6.7.1.

Operator relevance

The above derivation of flow equations was based on a seemingly ill-controlled first- 
order expansion followed by re-exponentiation, Eq. (6.13). However, contrary to 
what one might suspect, the expansion is not just stabilized by the presumed initial

10 H. A. Kramers and G. H. Wannier, Statistics of the two-dimensional ferromagnet, Phys. Rev.
60, 252 (1941).
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weakness of c. More important is the fact that the model action does not admit “im­
portant” contributions other than cos 9; even if they are generated at higher orders 
in perturbation theory in c via correlations induced by the f -fluctuations, we need 
not consider them. This is the rationale behind the expansion (symbolic notation) 
exp cos9)> = E n!((—Jcos9)n> ^ E n!(—Ecos9))n = exp(—Ecos9»• Let

us explore this point in more detail.
To understand the legitimacy of the reduction above, we need to assess the rele­

vance of corrections to it. For example, expansion of the exponent to second order 
in the potential operator leads to

c2 ! dr dr' cos(9s(t) + 9f(t))cos(9s(t') + 9f(tz))^ ,

where we consider the connected average (AB)c = (AB) — (A)(B) since the square 
of the averaged action ~ ((c§ cos 9))2 is already accounted for by the previous 
scheme. Now consider the double time integral J = f^t-t,|>b/A + f^t-t,|<b/A to be 
decomposed into an off-diagonal contribution and one with nearly coinciding time 
arguments. In the first, the cosine terms are averaged at very different time coor­
dinates t and t ' over the rapidly fluctuating field, 9s. We thus expect correlations 
to be weak, and the connected average to be close to zero.

INFO Readers finding the above argument too vague, may consider the following estimate:

(exp (±i(9s(t) + 9f(t))) exp (±i(9B(t') + 9f(t')))(c

'X exp i J" (du) (± emT ± e"T ) 9 (u )^ — — ^exp ± ± i J" (du) eilT 9 (u)

(du) |u|-1 (1 ± cos(u(t — tz)))^ — exp —~ng J"(du) |u|-1

= b-2g fexp f^4ng [A (du) coS(u(t - t')) ) — 1) « 0. 
\ \ E/b u J J

Here, the ± signs in the first line indicate the four different possible combinations of signs 
in the cos functions; in the second equality we have used our previous results on the 
integrals over the high-lying frequency shell; and in the crucial third equality, we noticed 
that, typically, (t — t') > b/A, 1 /A so that the oscillatory term integrates to something 
close to zero and can be neglected in comparison with the constant.

However, from the complementary regime of nearly coinciding time arguments, we 
obtain

c2 ! ^t dT1 cos(9s(t) + 9f (t)) cos(9s(t') + 9f (t 1))

dr ^cos2(9s(t)) + 9f(t)^c k b-4g+1 J" cos2(9s(t)) + const., 

where the prefactor b is the width of the integration domain, f^t-t,|<b/a dTdT1 ^ 
b dt , and we noted that, for such narrow time windows, the field integration will 
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irrelevant 
operator

be oblivious to the difference between 9 (r) and 9(r'). The second proportionality 
is obtained by averaging the integrand along the lines of our previous calculations.

The above computations conveys two important messages. First, new operators 
may be generated by the RG procedure - here, a term f dr cos(29), not present 
in the original action. One may anticipate that the appearance of new operators 
in RG programs is the rule rather than the exception. However, second, one needs 
to ask if these new contributions are important or relevant contributions to the 
theory. The computation above shows that fast field integration in consecutive RG 
steps will lead to a factor (cos(29)) ^ cos(29)b—4g, where the factor 4 relative to 
the b-g of the original cosine term is due to the doubling of the angular argument. 
This suppression by fast field fluctuations is much stronger than the factor b-g of 
the native cos 9 term, leading to the conclusion that the addition to the action is 
an irrelevant operator.

Obviously, the classification of operators according to their relevance is an impor­
tant element of renormalization group theory, and we will discuss it from a general 
perspective in the next section. For now, we conclude that the principle backing 
our realization of the RG step as in Eq. (6.13) is the operator irrelevance of higher 
order correlations missed by it. (Convince yourself that the argument extends to 
correlation contributions of higher than second order.)

Before leaving this section, let us make a few general observations about 
the renormalization procedure. We first notice that it would have been futile 
to attack the problem by the perturbative methods developed in chapter 4. The 
reason is that the propagator of the (0 + 1)-dimensional effective theory, |w|-1, leads 
to logarithmic divergences when integrated over frequency; the present theory shows 
the UV and IR divergences problematic in perturbation theory. In section 4.1, we 
argued that the ensuing divergences may be removed by introduction of a UV and, 
if needed, an IR cutoff. However, this solution did not look attractive, as it would 
lead to non-universal cutoff dependences in all results.

The present approach solves this problem by introducing not one, but an entire 
hierarchy of cutoffs, A, A/b, A/b2,... In each RG step, the effect of UV fluctuations 
in one hierarchical cutoff interval on the effective IR theory at the next lower level 
is studied. While there remains some memory of the non-universal starting value 
in the solution of the flow equations, e.g., c = c(0)(A/wmin)1-g, their dependence 
on the IR scales of the theory c ~ w 1-g is universal. Since these proportionalities 
are the sole object of interest in scaling theory, the RG program has effectively 
overcome the issue of singularities. In fact, a stronger statement can be made:

RG programs extract nontrivial information on the IR scale 
dependence of a theory from its UV singularities.

Previously, we argued that in scaling theory a physical length dimension is at­
tributed to observables of interest. This dimension then determines how the observ­
ables scale in the vicinity of fixed points. For example, an observable with dimension 
[X] = (length) DX should change as X ^ XbDX under an RG step changing length 
by a factor of b. Presently, our “length” is “time,” and 9 is a dimensionless field. 
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anomalous 
dimension

(Appearing as an argument of a cos function, it has to be.) On this basis, we con- 
elude that, e.g., the nonlinear contribution to the action X = f dr cos 9 carries 
dimension (length)1 . However, our observation was that in a single RG step, this 
operator picks up a scaling factor, Eq. (6.14), different from b1 . What is going on?

We first note that dimensions attributed on the basis of plain dimensional anal­
ysis are called engineering dimensions. Deviations in scaling from the engineer­
ing dimensions are anomalous dimensions. For example, the operator above 
has engineering dimension 1 and anomalous dimension -g . Tracing the origin of 
the anomalous dimension, we realize that it has, once again, to do with the UV 
cutoff A. The latter is a dimensionful scale, and it affects the length-scaling of X 
through the backdoor, via the cutoff dependence of fluctuations. In relations such as 
c = c(0)(A/wmin)1-g, we see that the scale dependence of the operator is contained 
in dimensionless ratios (UV cutoff)/(IR scales). In this way, the actual dimension 
of the operator may deviate from its engineering dimension. Technically, deter­
mining the anomalous dimensions of all relevant operators is the goal of all RG 
programs.

6.2 Renormalization Group: General Theory

Having looked at two case studies, we are now in a position to discuss RG theory 
in its generality. Suppose we consider a field theory with action

S [ $] = ga O a [ $ ],
a=1

where ^ = {^(x)} is a (generally multi-component) field, (ga are coupling constants, 
and Oa [^] operators,* 11 often realized as Oa = f ddx (V0)n^m - products of field 
amplitudes and their derivatives.12 The goal of the renormalization program is the 
derivation of flow equations describing the change of the coupling constants {ga } 
as fast field fluctuations are successively integrated out.

Irrespective of their concrete technical implementation, the derivation of RG flow 
equations in statistical field theory involves three canonical steps, outlined in the 
following. (For the somewhat different rationale underlying renormalization in high 
energy physics - where the assumption of a UV cutoff as an anchor point for the 
procedure is unnatural - we refer to the literature; see also the Info block below.)

11 In RG theory, it is customary to call individual contributions to an action “operators.”
12 In our previous example of the Luttinger liquid, there appeared an operator J(du) 9(u) |u 19(—u).

When represented in space-time, this operator is highly non-local.

6.2.1 Renormalization group flow
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I: Subdivision of the field manifold

We begin with a separation of the field manifold {^} into a sector to be integrated 
out, {^f}, and a complementary set, {^s}. For example:

> In the real space renormalization of lattice problems, where the base manifold 
x ^ xi is realized through a set of lattice points, one may adopt a block spin 
scheme. In this case, the slow degrees of freedom live on a coarse-grained lattice 
with enlarged unit cell and are defined as suitable averages taken over the lattice 
degrees of freedom inside those cells.

> In momentum shell renormalization, frequently applied in continuum field 
theory, one integrates over high lying regions in momentum space, A/b < |p| < 
A. The explicit cutoff dependence introduced in momentum shell renormalization 
is avoided by an alternative scheme known as dimensional regularization. 
The idea of this approach is a formal modification of the physical dimension 
as d ^ d ± e .In this way, integrals that would be UV singular in the native 
dimension are made finite. For example, the logarithmically singular dp/p be­
comes convergent in 1 — e dimensions, J d 1-ep/p. (For the definition of integrals 
in non-integer dimensions, and the application of dimensional regularization in 
field theory, we refer to, e.g., Ref.13)

13 L. H. Ryder, Quantum Field Theory (Cambridge University Press, 1996).

> For a discussion of alternative schemes, such as the introduction of short-distance 
real space cutoffs underlying the so-called operator product expansion, we 
also refer to the literature (see, e.g., Ref.1 ).

II: RG step

In the second step, one integrates over the short-range fluctuations singled out in 
the first. These integrals generally require approximation schemes, several of which 
will be introduced below. However, after that fast field integration has been carried 
out, one obtains an action

S'[0s] = ga O'a [0S ],

with a new set of coupling constants, and potentially newly generated operators. 
If new operators form, one needs to find out whether they are relevant (see below) 
in their scaling behavior. If so, they have to be included in subsequent RG steps, 
with initial coupling constants whose specific values are generally not of much 
importance. One then needs to find out whether the augmented set of operators 
defines a complete system, i.e., one that does not generate further relevant operators 
under renormalization. If not, back to square one and repeat.
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field renor­
malization
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III: Flow equations

In the third step, one rescales frequency/momentum in such a way that the field 
amplitude ^' fluctuates on the same scales as the original field $. This is achieved 
by the transformation

q ^ b>q_^ u ^ bzu,

where the frequency renormalization exponent or dynamical exponent, z , 
may take arbitrary values. (Depending on the dispersion kz ~ u of the theory, 
common realizations include z = 1, 2, but sometimes also z = 3 (see problem 6.7.2), 
fractional values, or even z = rc>.) Finally, $ is an integration variable, which may 
be rescaled arbitrarily in a transformation

$ ^ b-d' ^

called field renormalization. This freedom is often used to select one or several 
terms in the action as representatives of the free theory - a canonical candidate 
being the gradient operator ~ f ddr(do)2 - and require that they remain fully 
invariant under the RG step. This is achieved by choosing bd^ so as to cancel the 
factor bx arising after the renormalization of the operator. (Exercise: Which field 
renormalization keeps the above gradient operator invariant?14)

14 Under rescaling, J ddr(do)2 picks up a scaling factor •f>pz+z_pq. So, s/(p — 6) = does the 
job.

INFO Notation such as X ^ bdX X, which is ubiquitous in the literature, can be quite 
confusing. For example, when we write p ^ bp, what we mean is “introduce a new mo­
mentum variable, p' = bp, related to the old one by multiplication by b.” However, in an 
integral, the change of variables implies f ddpf (p) = b-d f ddp' f (p'b-1). We then call the 
new variables p again, to write this as f ddpf (pb-1). So, the change p ^ bp means that 
in integrals we are supposed to replace all p ^ b-1 p - confusing! The situation with field 
renormalization 0 ^ bd^ is similar.

A safe way not to get lost is to handle the “... ^ . ..” notation with care and emphasize 
the integral structure: all that we are doing in RG theory is change integration variables in 
integrals and remembering that, after an RG step, one changes to (momentum) variables 
reinstating the old cutoff via a stretching by b.

As a result of these manipulations, we obtain a renormalized action,

S [$] = g'a Oa [$],

differing from the original one only in the set of coupling constants. Introducing 
the vector g = {ga }, we represent this change in terms of a function R as

g = R g) •

For small values of the control parameter, £ = ln b, this function is close to the 
identity map, and we may represent the difference g7 — g = R(g) — g in terms of the 
RG flow equation
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%=R (g) (6.16)

where the functions on the r.h.s., R(g) = lim£ .0, £ 1(R(g) — g), define the fi-
fl-function functions of the theory.

INFO It is interesting to compare the RG strategy above with the alternative renor­
malization schemes common in high-energy physics. In particle physics, the bare, un­
renormalized theory has no physical identity. Unlike in condensed matter, where field 
theories are derived from underlying microscopic theories, it is inaccessible, or maybe 
even not fully known. However, one may legitimately require that, after integration over 
UV-divergent fluctuations, the “renormalized” coupling constants of the theory - which 
are accessible in terms of physical observables such as the physical electron mass - are 
finite. On this basis, the rationale of the procedure is upside down: without introducing a 
physical cutoff, infinities arising in the theory are removed either by postulating cancelling 
infinities in the bare coupling constants and/or the introduction of counter terms. The 
latter are operators added ad hoc to the action for the purpose of cancelling infinities 
generated by other operators in the RG process.

Fortunately, the different RG schemes yield identical results in the form of ft-functions 
governing the flow of an effective set of couplings.

6.2.2 Analysis of the flow equation

RG fixed
points

self­
similarity

The flow equations (6.16) contain the full information on the renormalization of a 
theory. They predict the flow of its coupling constants under changes in the effective 
length scale, l. As exemplified in section 6.1, one generally starts the analysis of 
these equations with an identification of their fixed points, the set {g*} of coupling 
constants for which the flow remains stationary, R(g*) = 0. A theory fine-tuned to 
a fixed point configuration does not change under renormalization.

Self-similarity is the defining property of frac­
tals and is approximately realized in many systems in 
nature. (The picture shows a tendency towards self­
similarity in romanesco broccoli.) We have already 
mentioned that self-similarity is incompatible with the 
existence of any fixed length scales in a system, includ­
ing that of a finite correlation length:

At an RG fixed point, the correlation length, £, is either infinity or zero.

second- 
order

Specifically, a diverging correlation length, £ ^ <x>, is a hallmark of a second-order 
phase transition. This correspondence leads to the tentative identification of RG 
fixed points as signatures of phase transitions of the physical system. (For a review of 
phase transitions and the critical phenomena accompanying them, see the following 
section.) The flow of the coupling constants in the immediate vicinity of a fixed 
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point configuration must then describe the critical phenomena accompanying a 
transition.

For couplings g sufficiently close to a fixed point it is sufficient to consider the 
linearized mapping

R(g) = R(g* + (g - g*)) - W(g - g*), W = dRa
W ab — r-j

dgb g=g *

as described by a matrix W.
To explore the properties of flow, assume that W has been diagonalized with 

eigenvalues Xa,a — 1,... ,N and left-eigenvectors >:./,-,,

W — Xa

scaling 
fields

(In general, W does not have any symmetries besides being real, so its left- and 
right-eigenvectors may be different.) The advantage of using left-eigenvectors is that 
they allow us to conveniently describe the flow of the physical coupling constants 
under renormalization: with va — o\ (g — g *) the a th component of the vector g — g * 
expanded in the basis {oa}, we have

dva = & d(g— g *) = </% W(g— g *) = Xa (g - g *) = xa.
dt dt

Under renormalization, the coefficients va change by a mere scaling factor Xa, and 
hence are called scaling fields - an unfortunate nomenclature, the coefficients va 

are £-dependent functions, not fields. These equations are trivially integrated to 
obtain

Va (£) ~ exp(:X. )

This result suggests a distinction between three types of scaling fields:

(ir)relevance

marginality

marginally 
(ir)relevant

> For Xa > 0 the associated scaling field is said to be relevant, in the sense that 
it drives the system away from the critical region. In fig. 6.2, v2 , with associated 
vector ^2, is relevant.

> Scaling fields with negative eigenvalues (v 1 ,v3) are irrelevant; they vanish un­
der renormalization, and the corresponding (linear combinations of) coupling 
constants generally do not play much of a role.15

> Finally, stationary scaling fields, where Xa — 0, are called marginal. A marginal 
scaling field corresponds to a direction in coupling constant space with vanishing 
partial derivative, d,-a R|g*=0 — 0. In this case, one often considers the second- 
order derivative, d^R|g*=0 = 2x, and this leads to scaling, d/va — xv2. For 
x < 0 (x > 0), the field is marginally (ir)relevant: in the vicinity of the 
fixed point, its flow becomes vanishingly slow. However it is still directed, and in 
this sense (ir)relevant. In cases where no truly relevant fields exist, marginally 
relevant ones are the next most important objects to consider.

15 However, it may happen that physical observables depend in a singular manner on irrelevant 
scaling variables, in which case the latter are called dangerously irrelevant. For example, 
we will see that the coefficient of the quartic term in a $4-theory of magnetism is irrelevant in 
dimensions d > 4. However, the magnetization depends on this coefficient in a non-analytical 
manner, so cannot be ignored.
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Fig. 6.2 RG flow in the vicinity of a fixed point with two irrelevant ($ 1 ,$3) and one relevant ($2) 
scaling fields. The critical surface (shaded) is defined through the vanishing of the relevant 
field, $2 = 0. On it, the RG flow is directed towards the fixed point f. Deviations away from 
criticality make the system approach one of the stable fixed points f1 and f2 .

fixed 
points

critical 
surface

The distinction of relevant/irrelevant/marginal scaling fields in turn implies a clas­
sification of different types of fixed points:

> Stable fixed points have only irrelevant, or perhaps marginal, scaling fields. 
They define “stable phases of matter.” A system initiated at small length scales 
in the vicinity of such an attractor will scale towards it and eventually resem­
ble the self-similar fixed-point configuration. (Recall the example of the high- 
temperature fixed line of the one-dimensional Ising model.)

> Unstable fixed points realize the opposite extreme, with only relevant scaling 
fields. These fixed points are Platonic ideals: they can never be realized fully, 
and no matter how closely a model system resembles the fixed point limit at 
small distance scales, it will be driven away from it at large scales (cf. the T = 0 
fixed point of the 1D Ising model).

> However, generic fixed points have both relevant and irrelevant scaling fields. 
Such fixed points are associated with the physics of phase transitions. To un­
derstand this correspondence, we note that the eigenvectors oa associated with 
irrelevant scaling fields are tangent to a generalized surface, S , in coupling con­
stant space, the critical surface (see fig. 6.2 for a two-dimensional realization.) 
This surface defines the basin of attraction of the fixed point; a system with 
couplings g G S will be attracted towards it. Unlike unstable fixed points, there is 
a finite, if fine-tuned, set of material configurations realizing the critical physics 
of the phase transition.
However, even small deviations from S make the system flow away from the 
critical surface (see fig. 6.2 for one such relevant direction). For example, in the 
case of the ferromagnetic phase transition - discussed in more detail in the next 
section - deviations from the critical temperature Tc are relevant. If we consider 
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a system only slightly above or below Tc , it may initially (on intermediate length 
scales) appear to be critical. However, the relevant deviation will grow, and at 
large scales the system looks as if it were at a higher or lower temperature, 
depending on the sign of the initial deviation. Eventually, it ends up in either 
the ferromagnetic low temperature or the paramagnetic high temperature phase. 
The scenario outlined above suggests that systems with generic fixed points 
typically possess complementary stable fixed points towards which the flow is 
directed after it has left the critical region. We also notice that a scaling direction 
that is relevant at one fixed point (e.g., ^2 at the critical fixed point) may be 
irrelevant at others (^2 at the high- and low-temperature fixed points).

6.2.3 Review of critical phenomena

REMARK In this section we review elements of the theory of critical phenomena often 
taught in advanced courses in statistical mechanics. Readers familiar with the concept of 
criticality and critical exponents may skip this section, or use it for reference purposes.

The discussion above revealed a close connection between the concept of renormal­
ization and that of phase transitions and critical phenomena. This section provides 
a quick review of the concepts of criticality required to put the machinery of field- 
theoretical renormalization into a physical context.

Second-order phase transitions
order pa­

rameter
The most fundamental signature of a phase transition is its order parameter, M . 
The order parameter is a measurable quantity whose value identifies the phase of a 
system. Order parameters often reflect the breaking of locally defined symmetries at 
a phase transition - the breaking of rotational symmetry at the ferromagnetic tran­
sition, as evidenced by the magnetization order parameter, being a classic example. 
However, they need not necessarily be locally defined, nor represent the breaking 
of a symmetry. For example, at the quantum Hall transition (to be discussed in 
detail in section 8.4.7), an integer-valued order parameter signifies the change of 
non-local topological order in a quantum ground state.

second- 
order 
phase 

transition

In statistical mechanics, we learn that 
transitions between different phases of 
matter fall into two major categories: 
In first-order transitions, the order 
parameter changes discontinuously; at 
a second-order phase transition it 
changes in a continuous yet non-analytic 
manner. The distinction between the two 
classes is illustrated in the figure for the 
case of the ferromagnet. For tempera­
tures T < Tc , a variation in the exter­
nal magnetic field H leads to a discontinuous jump in the order parameter at
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H = 0 - first order. However, increasing T at zero H leads to a continuous vanish­
ing of the magnetization at Tc - second order. The figure also illustrates that lines 
of first-order phase transitions in parameter space (H = 0, T < Tc) often end at a 
second-order transition point (H = 0, T = Tc).

The phenomenology of second-order transitions is generally richer than that of 
first-order transitions: being a thermodynamic state variable, the order parame­
ter is coupled to a conjugate field, H : M = — dHF, defined here as a “source 
field” of the order parameter in terms of the free energy. At a second order transi­
tion M changes non-analytically, which implies that the second-order derivative, a 
thermodynamic susceptibility, x = -dHF, develops a singularity. However, the 
susceptibility is intimately linked to the field fluctuation behavior of a system (see 
the discussion around Eq. (6.3)). In particular, a divergent susceptibility requires a 
similarly divergent correlation length, an indication of self-similarity.

Through this mechanism, the divergence of a susceptibility implies (potentially 
singular) power law scaling of various other physical quantities. Suppose that X(t) 
is one such observable, and t a dimensionless control variable proportional to a 
relevant scaling field measuring the distance to the transition. Under a change of 
length scale, x ^ x/b and t ^ tb-Dt. The observable X can change only by a factor 
reflecting its own scaling dimension, X(t) = bDX X (tb-Dt). (A more far-reaching 
change would be in conflict with asymptotic self-similarity.) The homogeneity of the 
function X(t) is equivalently expressed as X ~ tDX/Dt, a power law dependence.

Critical exponents

The exponents characterizing the power laws of relevant thermodynamic observ­
ables are called the critical exponents of a phase transition. For various reasons, 
they represent data of outstanding physical importance:

1. Critical exponents are universal in that the complete set of them - usually just 
a handful - uniquely identifies a transition.

2. The spectrum of critical exponents carries information identical to that con­
tained in the spectrum of relevant scaling dimensions. In fact, it contains 
excessive information: for example, of the six critical exponents of the mag­
netic transition, only two are independent. The others are interrelated by  by 
scaling laws or exponent identities, to be discussed momentarily.

16

3. Critical exponents are universal; they are pure numbers depending on char­
acteristics such as space-time dimensionality, the identity of a system’s Gold- 
stone mode manifold, or the number of components of an order parameter.

4. Critical exponents can be measured, both in real and in numerical experiments 
probing power law scaling. Their universality and phenomenological relevance 
make them quantities of singular experimental interest.

16 Unfortunately, the parlance of critical phenomena makes excessive use of the prefix “scaling.”
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The following is a brief list of the most prominent exponents, a, ft, y, ft, n, v, 
and z:

a: In the vicinity of the critical temperature, the specific heat C = — TdftF scales as 
C ~ 11I-a, where t = (T - Tft)/Tc measures the distance to the critical point. Note 
that two physical statements are being made here: first, the reduced temperature is a 
relevant scaling field and, second, the scaling exponents controlling the behavior of C 
above and below the transition are identical. The same symmetry applies to most other 
exponents.

ft: Approaching the transition temperature from below, the order parameter vanishes 
as M = - dH F\H ^0 ~ (—t) P .

Y: The susceptibility behaves as x = dhM|hx^0 ~ 111-Y.
S: At the critical temperature, t = 0, the field dependence of the order parameter 

is given by M ~ | h|1/s.
v: Upon approaching the transition point, the correlation length diverges as ft ~ 111-v. 
n: This implies that the correlation function,

C (r) ~
222-d-n, 

exp(—r/ft),
2 « ft,
2 » ft,

anomalous 
dimension

quantum 
phase 

transition

dynamical 
exponent

crosses over from exponential to a power law scaling behavior at the length scale ft . No­
tice that C ~ (ftft} carries twice the dimension of the field ft. The engineering dimension 
of the latter follows from the dimensionlessness of the gradient operator J ddr (Vft)2: 
[ft] = L(2-d)/2 , according to which C(r) has canonical dimension L2-d . The exponent 
n, commonly referred to as the anomalous dimension of the correlation function, 
measures the mismatch between the observed and the canonical dimension.

z : The exponent z is special in that it applies to the theory of quantum phase transitions. 
A quantum theory in d space dimensions can be conceptualized as a classical theory in 
d+1 space-time dimensions. It possesses a quantum phase transition if that effective 
classical theory has a phase transition in the ordinary sense. In the vicinity of the 
phase transition, the correlation length in both the space and time directions diverges. 
However, the scaling of these scales need not be identical. Denoting the correlation 
length in the temporal direction by t , we define t ~ ftz, where deviations z = 1 in the 
dynamical exponent measure the degree of anisotropy.

scaling 
laws

Now, a moment’s thought shows that not all the six classical exponents can be 
independent. Previously we have noted that the flow in the vicinity of a transition 
point is governed by the relevant scaling fields. We anticipate that the field conjugate 
to the order parameter is relevant. For example, a magnetic field has a relevant 
influence on a magnetic transition. Deviations from the critical temperature, t = 0, 
are also relevant.17

17 Recall that, in the derivation of the ft4-model of the magnetic transition, the coupling constant 
of the “mass operator” r ft ddrft 2 was proportional to the reduced temperature t = | T — Tc|/Tc. 
Deviations away from r ~ t = 0 are relevant, and on this basis we consider t to be a (relevant) 
coupling.

However, for the majority of classical phase transitions, there are no further 
relevant scales, and the flow away from criticality is governed by a two-dimensional 
dynamical system. We therefore expect that only two of the six exponents are 
independent. Historically, the four scaling laws constraining the system of six 
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constants down to 6 - 4 = 2 independent constants were discovered at a time 
when the universal concept of “scaling fields” had not been fully understood. The 
table below lists these equations along with their discoverers, after whom they 
are named. In section 6.2.4, we will demonstrate with an example how these laws 
naturally emerge as a consequence of scaling theory.

Fisher v(2 - n) = 7 Rushbrooke a + 2ft + y = 2
Widom V (6 - 1) = 7 Josephson 2 — a = vd

The consequence of this discussion is that:

Only two arbitrarily chosen exponents need be specified to characterize 
comprehensively a classical phase transition.

Universality of phase transitions

We conclude this section with the discussion of a feature following from the ge­
ometric picture of scaling: universality. For example, there is a plethora of very 
different physical two-dimensional systems - from confined classical Coulomb gases 
and (1 + 1) dimensional disordered interacting quantum wires, to classical models 
of planar magnetism - that are in the universality class of the Kosterlitz-Thouless 
transition (to be discussed in section 6.5). The concept of universality implies that 
all these systems will behave identically when described in the language of critical 
flows.

universality 
classes

More generally, there is only a small 
number - tens - of different universality 
classes of phase transitions that are physi­
cally relevant, a number that should be com­
pared with the infinity of microscopically dis­
tinct many-particle systems. Consider then an 
experimentalist investigating a system that is 
known to exhibit a phase transition. Searching 
for the critical phenomena accompanying the transition, she will vary control pa­
rameters, Xi (e.g., temperature, pressure, magnetic field, etc.), until the system 
begins to exhibit large fluctuations. Variation of the Xi changes the couplings of 
the effective theory, i.e., it parameterizes a curve in the space of coupling constants. 
At some stage the curve may intersect the critical surface of the system (see fig. 6.2). 
For this particular set of coupling constants, the system is critical. In the vicinity 
of the crossing point, when looked at on larger and larger length scales, the sys­
tem will display the universal behavior characteristic of the phase transition point. 
This is the origin of universality: variation of the system parameters in a different 
manner (or considering a system with different material constants) will generate 
another coupling trajectory. However, as it intersects S , identical critical flows of 
observables will ensue.
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The principle assigning to different systems common universality classes through 
their effective theories (see the figure for a schematic) is the most powerful source 
of universality we have in physics. It is not tied to specific physical realizations, 
nor does it respect boundaries between fields (for example, the Kosterlitz-Thouless 
universality class is realized in condensed matter, particle physics, quantum optics, 
and beyond).

6.2.4 Scaling theory

The dynamical system of scaling fields fixes the power law behaviors of all observ­
ables described by the theory, including those that are accessible in experiment. To 
see how, suppose that we had represented an observable of experimental interest, 
X, as

X = c (pi, ga)

in the language of the functional integral. Here, C is an n-point correlation func­
tion C(pi, ga) = (• • •)(• • • $)$, and the notation indicates that C may depend on 
the momentum scale at which it is evaluated (e.g., through the momentum depen­
dence of current operators in the Fourier transform of a conductance correlation 
function). The ellipses indicate the dependence of the correlation function on cou­
pling constants and on other possible structures such as derivatives acting on the 
fields.

Assuming renormalizability, C can be evaluated before or after an RG step; the 
result must be the same. However, the RG transformation will modify the individual 
constituents entering the definition of C: it will change coupling constants, ga ^ 
gabXa, momenta pi ^ bpi, and field amplitudes ^ ^ bd^ ^ so that, after the RG-step, 
the correlation function assumes the form

C (pi,ga) = bnd^ C (pib,gabXa) (6.17)

where we have simplified the notation by assuming that the coupling constants 
themselves scale. (Otherwise, the rescaling assumes the form of a matrix relation, a 
complication that would make this section harder to read without offering further 
insight.) For notational convenience, let us also assume that the coupling constants 
are measured relative to a fixed point, i.e., we apply a shift g ^ g — g*.

The essential statement made by Eq. (6.17) is that multiple scale changes combine 
to give a net result that is scale invariant. In the next section, we demonstrate how 
the presence of the dummy parameter b can be used as a vehicle to obtain nontrivial 
results for the behavior of observables near phase transitions.

Scaling functions

In this section, we will formulate the scaling principle, previously applied to the 
Ising model, in a more general form. To begin with, let us assume that there is just
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scaling 
function

finite size 
scaling

a single relevant scaling field g, while all remaining ga are irrelevant or marginally 
irrelevant. We can then write

C(Pi, g, ga) = b dC(Pib, gbX, gabXa) = g-nd/XXC(Pig-1 /X, 1, gag-Xa/X) 

g^1 g-dd/XXC(Pig-1 /X, 1, 0) = g-dd/XXF(pig-1 /X),

where we have used the arbitrariness of b to set gbX = 1 and in the third equality 
assumed that we are close enough to the transition that the dependence of C 
on irrelevant scaling fields is negligible. The effective single parameter correlation 
function C, defined as

C (Pi,g ) = g - nd/F (Pig-1/X), (6.18)

is an example of a scaling function.
In other applications (for example, if C represents a thermodynamic observable 

or a global transport coefficient), one might be interested in correlation functions 
C(g, ga ) which do not depend on specifically chosen momenta. The freedom of 
scaling can then be used to describe the dependence of correlations on the most 
relevant and the second most relevant control parameter g' (which may be relevant, 
marginal, or irrelevant). Following the same logic as above, one obtains

c (g,g ') = g - nd^XG (g' g -X'/X) •

INFO While the results of analytical theories are often interpreted in thermodynamic lim­
its, L ^ to, numerical simulations are carried out for systems of limited size. To compare 
numerical data obtained for different system sizes L with analytical computations, one 
considers L as one of the coupling parameters of the theory. (For example, L might enter 
an analytical computation as an IR momentum cutoff pmin ~ L-1.) Since [L]=[length], 
this parameter changes as L ^ L/b under RG rescaling, and with the choice b ~ L one 
obtains the finite size scaling relation

G (g i ,g 2,. ..,L) = Lnd G fs( g 1/X1L, g 11 /X 2 L,...).

In a numerical experiment carried out for couplings {ga}, one may then check whether 
data obtained for different system sizes can be collapsed onto a single curve when plotted 
as a function of the scaling variables gaLXa. One may even proceed in reverse: determine 
the dimension of coupling constants by numerical identification of a scaling variable that 
leads to data collapse.

Figure 6.3 illustrates the principle on the example of the percolation transition (section 
11.7.1), which is a transition with a single relevant coupling, g = p — pc. With £ ~ g-v, 
we know that A = 1 /v and g ^ gb 1/v. The figure illustrates how raw data plotted as a 
function of p collapses onto a single curve when plotted as a function of gL 1/v.

While the form of specific scaling functions is context dependent, the construction 
principle is always the same. The free scaling parameter b is chosen to reduce the 
number of independent variables by one. The resulting scaling functions define 
powerful interfaces between theory and experiment. As illustrated in the Info block 
above, data collapse under rescaling is a prime signature of criticality near phase
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Fig. 6.3

f
|

1.0
— L = 8
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— L = 32
L-L = 64
L-L= 128
— L = 256

0.5

0.0
1.00.0 0.5

Occupation probability (p — pc)Lx/vOccupation probability p

Finite-size scaling of the observable percolation rate in the vicinity of the percolation tran­
sition (data courtesy of Simon Trebst). Left: Raw data as a function of the scaling variable 
“occupation probability,” p, for different system sizes. Right: Data collapsing onto a single 
curve when represented as a function of (p — pc)L1 /v.

transitions. The principle may be applied to confirm or to predict scaling dimensions 
of relevant system parameters.18

INFO In the particle physics and the field theory communities, the information contained 
in scale dependent correlation functions is often represented in a somewhat different man­
ner. Consider the relation

C (ga ) = end C (ga (£)), (6.19)

where we have set b = ee, and do not yet require power law scaling, i.e., the coupling con­
stants may change in an unspecified manner as ga ^ ga (£) under an RG transformation. 
Using the £-independence as 0 = de(r.h.s.), we obtain

(6.20)

where fia (ga) = dega are the ft-functions of the theory, and the partial derivative dl acts on 
optional scale dependent parameters in C (such as external momenta, as in Eq. (6.18)). 
Equation (6.20) is called a renormalization group equation. The RG equation and 
the scaling form (6.19) used to derive it express equivalently the scaling behavior of the 
correlation function.

(nd^ + de + fta(g)dga) C(ga(£)) = 0

renormal­
ization
group 

equation

Scaling functions and critical exponents

The critical exponents describe the scaling of very different physical observables 
in the vicinity of a phase transition. The fact that they are all determined by the

18 However, the collapsing of experimental data onto scaling functions requires considerable skill.
If the data set consists of patches of only limited overlap, errors are easily made; the cost of 
numerical finite-size scaling increases exponentially in L. For example, numerical research of 
the quantum Hall correlation function exponent (section 8.4.7), which is analytically unknown, 
has a history spanning four decades. With results hovering around 2.5 ± 0.2, there is still no 
conclusive answer.
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hyperscaling 
relation

smaller set of relevant couplings is another manifestation of universality in critical 
phenomena. To see how these correlations arise in concrete terms, we consider the 
case of a classical transition, with six exponents a, fl, y, 6, v, n (see page 337), and 
two relevant scaling fields, reduced temperature t, and the likewise reduced con­
jugate field h = H/Tc. Under a renormalization group transformation, the dimen­
sionless reduced free energy f = F/T Ld will behave as* 19 f(t, h) = b-df (tbyt , hbyh ). 
We next fix tbyt = 1 to reduce the number of independent variables to one:

In this section we will illustrate the general concepts introduced above for the 
classical theory of the uniaxial ferromagnetic transition - a paradigmatic transition 
whose universality class not only includes magnetism but also the transition between 
liquid and gaseous phases of matter. While the technical elements of our discussion 
are specific to the above transition, the solution strategy is generic.

19 We here note that f does not carry an anomalous dimension. The reason ist that, by construc­
tion, F = -T ln Z does not change under renormalization (renormalization merely changes 
the resolution at which the integral Z is evaluated). The scaling of the reduced free energy is 
therefore carried by the prefactor L-d .

f (t,h ) = td/yt f (h/tyh/yt) (6.21)

Modulo irrelevant perturbations, this function contains the full information on scal­
ing near the transition, and in particular on all critical exponents. Comparing with 
the definitions summarized on page 337, it is straightforward to show that

a = 2__ d fl = d - yh = 2 yh - d
yt, yt , yt ,

6 = -y^, V =-, n = 2 + d - 2yh, (6.22)
d- yh yt

from which follow the scaling laws summarized in the table on page 338 by elimi­
nation of the dimensions yh,t .

EXERCISE Verify the equations above. To obtain the fifth, the hyperscaling relation, 
v = 1 /yt, notice that / ^ b/. On the other hand, we know that t ~ /-1 /v. The sixth 
relation is obtained from Eq. (6.3) by a substitution of the n-dependent correlation function 
into the integral to obtain a relation between the critical exponents y and n (Fisher’s 
scaling law).

To summarize, Eqs. (6.22) underpin the assertion that:

The dimensions of the relevant scaling fields have a more fundamental 
status than the critical exponents.

6.3 RG Analysis of the Ferromagnetic Transition
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In section 4.1.2, we identified <4-theory as an effective low-energy model of the 
ferromagnetic system. We saw how, within this theory, the transition showed up at 
the level of mean field theory: Above the transition temperature, < = 0, and below < 
acquires a non-zero expectation value < = ±const., where the sign ambiguity reflects 
the Z2 spin up/down symmetry breaking in the ferromagnetic phase. However, 
beyond these statements, not much could be said, reflecting the absence of powerful 
analytical methods to handle the fluctuation singularities of the model. In this 
section, we will see that RG methods, and only these, are the appropriate tool to 
understand the critical physics of the system.

6.3.1 Engineering dimensions

The first question that we wish to address has a somewhat technical status: what 
is the justification for representing the Ising mo del as20 

S[<] = ddr (2<2 + 2(d<)2 + 4!<4 - h<^ , (6.23)

in terms of the <4 action? Why is it legitimate to neglect the higher powers and 
field gradients present in an exact reformulation of the Ising problem in terms of 
<-variables?

To rationalize the neglect of these terms, we proceed by dimensional analysis. 
We assume that the actual dimensions of the different operators in Eq. (6.23) will 
not differ strongly from their engineering dimensions (an assumption to be checked 
self-consistently), and we begin by identifying the latter. We first use the freedom 
of field, or integration variable, rescaling to give < a dimension [<] = L(2-d)/2 . 
In this way, the leading gradient term is made dimensionless, (f ddr(d<)2) = 
Ld-2+2x(2-d)/2 = l0, and the dimension of all other operators is fixed as

<2 = L2, ( I <4 ) = L-d+4, /f = Ld +(2-d)2, I I (dm<)2 ) = L2(1-m).

According to these relations:

> The engineering dimension of the non-gradient operator ~ <2 is positive in all 
dimensions, indicating its general relevance.

> The <4 operator is irrelevant in dimensions d > 4; in these high dimensions, a 
harmonic approximation (A = 0) should be justified. At lower dimensions, it is 
relevant, and it is not obvious how to deal with it. (Unlike for the problem stud­
ied in section 6.1.2, the fluctuation integrals of <4-theory cannot be dealt with 
in straightforward first-order perturbation theory.) However, we also anticipate 
that the watershed d = 4 plays an interesting role: in this case, the interaction 
operator is no longer irrelevant, but not yet relevant as in d < 4. One may thus

20 Generalizing the result of section 4.1.2, we have incorporated a coupling to an external field. 
(Exercise: Recapitulate the construction of section 4.1.2 to convince yourself how it is that 
coupling the Ising system to an external field generates the fourth term of Eq. (6.23). A lazy 
alternative: invoke symmetry arguments to explain the structure of this term.) 
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hope that renormalized perturbation theory will get the situation under control, 
and perhaps even allow one to extrapolate and draw conclusions as to what is 
happening below four dimensions.

> Operators 4>>4 become relevant in dimensions d < (—1 /n + 1 /2)-1 < 4. How­
ever, even then, they are less relevant than the dominant 44-operator. This is 
the justification for the neglect of n>>4 operators in the effective theory.

> Operators with more than two gradients are generally irrelevant and negligible 
in all dimensions.

> However, the operator J c coupling to the external field carries dimension 1 + d/2 
and is strongly relevant.

Guided by the orientation provided by dimensional analysis, we next analyse the 
model in a succession of steps: mean field analysis, analysis of quadratic fluctuations, 
and finally a renormalized analysis of nonlinear fluctuations.

6.3.2 Landau mean field theory

As usual, we begin our analysis of the functional integral by considering spatially 
homogeneous configurations, <4. Inspection of the potential part of the field-free 
Lagrangian, rc* 2 * 4 * 6/2 + Xc4/4!, shows that, depending on the sign of r, the system 
possesses two different stationary points.
For r > 0, the action has a global minimum . . S " r > q / 

at c = 0, with 4 = 0 the unique mean field. \ \ /
Remembering that c is a measure of the sys- \\ \ /I:

tem’s magnetization and that r is proportional \ \ \ / //r < ®
to the reduced temperature, we identify this \\ 'k / 4 h 

regime with the high temperature paramag- V\ | Zj

netic phase. Conversely, for r < 0, the ac- XCZ
tion has two Z2 symmetry breaking minima at h^O

4 = ±00 = ±(6|r|/X)1 /2 - the low temperature 
ferromagnetic phase. Finally, in the presence of an external field, the extrema 
shift, as described by the solution of the variational equation 5^S = 0, i.e.,

rc + X43 - h = 0. (6.24)
6

The explicit breaking of Z2 symmetry manifests itself in a unique stationary con­
figuration of least action whose sign is determined by that of h.

In this way, the stationary phase analysis shows how the sign change of the 
parameter r triggers a phase transition. This observation is consistent with the 
general relevance of the operator r / c2: the vanishing of its coupling constant 
defines a critical surface, and deviations away from it initiate a flow in either one of 
two different directions. Identifying the critical point with a critical temperature, 
we have the proportionality r ~ (T — Tc), a relation that may be just postulated, or 
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Table 6.1 Critical exponents of the ferromagnetic transition. The 
experimental exponents represent cumulative data from various 
materials. Values taken from K. Huang, Statistical Mechanics 

(Wiley, 1987).

exponent experiment mean field Gaussian e1 e 5
a 0-0.14 0 1/2 1/6 0.109
p 0.32-0.39 1/2 1/4 1/3 0.327
Y 1.3-1.4 1 1 7/6 1.238
S 4-5 3 5 4 4.786
V 0.6-0.7 - 1/2 7/12 0.631
n 0.05 - 0 0 0.037

mean field 
critical 

exponents

confirmed via microscopic derivations of the model (recall the derivation on page 
174, where we found that r exhibits a sign change as a function of temperature).

We next ask the obvious question, what does mean field theory say about the 
critical exponents of the transition? Identifying < ~ M with the magnetization­
order parameter of the transition, and referring back to the list on page 337, the low- 
temperature profile is given by |<| = (12|r|/X)1 /2 ~ 1111 /2, implying that P = 1 /2. 
The exponent y is obtained by differentiating Eq. (6.24) with respect to h. With 
X ~ dh<, it is then straightforward to verify that x ~ 1t|-1, or Y =1. The action 
evaluated on the mean field configuration takes the form

S [<\ _ r 72 , X -4 X- —112, t< 0,
Ld 2^ 4 4!^ [0, t> 0. (6.25)

Given the free energy F = TS [<<], the specific heat C = — T2 dTF ~ dt S behaves 
as a step function at the transition point, implying a = 0. At criticality, r = 0, 
the magnetization depends on h as < ~ h1 /3, implying that 6 = 3. Finally, the 
correlation length exponents v, n cannot be computed from mean field theory as 
they probe the spatial profile of fluctuating field configurations.

In table 6.1, the mean field exponents are compared with experimentally obtained 
values. At first sight, the differences do not seem dramatic, which in view of the total 
neglect of field fluctuations is surprising. On the other hand, we must keep in mind 
that observables depend sensitively on the values of the exponents via singular 
power laws, where a difference between 1.3 and 1, say, makes a huge difference. 
We will therefore aim to improve our understanding of the transition by including 
fluctuations.

6.3.3 Gaussian model

Following the standard doctrine (mean field + fluctuations), we will start by includ­
ing quadratic fluctuations around the constant value <-. We approach the transition 
from high temperatures, r > 0 and <- = 0, and consider the quadratic expansion,
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ddr 2 + 1(v * )2 - h4 (6.6)

where the presence of the linear term is due to the fact that the external field h has 
been neglected at the mean field level. In principle, we may now do the Gaussian 
integral to obtain an effective free energy. However, in view of the fact that this 
strategy will not work beyond the quadratic level, we pursue a different approach, 
via a baby version of momentum shell renormalization.

Following the algorithm of section 6.2, we split the field as ^ = ^s + ^f into fast and slow components. Substitution into Eq. (6.26) then leads to a breakup 

S[$s,<pf] = Ss[^s] + Sf[^f] into a fast and a slow action. Here, the simplicity of 
the Gaussian model is reflected in the absence of a coupling action Sc[^s, ^f]. As a 
consequence, the integration over ^f merely leads to an inessential constant. The 
effect of the RG transformation is reduced to its final step, the rescaling of the 
slow action. According to our previous discussion, the ensuing scaling factors are 
determined by the engineering dimensions of the operators appearing in the action, 
i.e., r ^ b2r and h ^ bd/2+1 h. Using the fact that r ~ t, this rescaling defines two relevant scaling dimensions, yt = 2 and yh = d/2 + 1. In a final step, we compare 
with Eq. (6.22) to obtain the list of exponents,

d
2,

a = 2 — d d 1 , . d+2 1 „
a = 4 — 2, Y = 1, 2' = d-2, v = 2, n = 0 •

Gaussian 
fixed point

These results now do depend on the dimensionality of the system, which is natural, 
since they were obtained from spatial fluctuations. Table 6.1 contains their values for 
a three-dimensional system. We cannot really say that the results improve those of 
the mean field analysis. Some exponents (e.g., 2) agree better with the experimental 
data, others (e.g., a) are worse.

As a corollary, we note that the Gaussian model possesses only one fixed point, 
r = h = 0. This fixed point is present in all free field theories and is generally called 
the Gaussian fixed point.

6.3.4 Renormalization group analysis 

We can now no longer postpone facing the main challenge in the problem, the 
manifestations of the nonlinear ^4 operator in its fluctuation behavior. In section 
6.3.1, we observed that this operator becomes relevant in dimension d = 4, a finding 
corroborated from a different perspective in the Info section below. It thus seems 
that this operator is strongly relevant, and therefore difficult to handle, in the 
dimensions 2, 3 in which one is usually interested.

However, there is a technical trick one can play to turn its marginality in d = 4 
into an asset: the functional integral is just an integral, and there is no reason not 
to consider it in non-integer dimensions. Specifically, one may focus on dimensions 
slightly below the threshold, d = 4 — e, and hope that small e provides an expansion 
parameter in which the effective “strength” of the nonlinearity can be controlled. 
(We do know that it becomes irrelevant for negative e.) At the end of the calculation,
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one will then need to “analytically continue” to the physical dimension d = 3 = 4- 1 
and trust in a mantra of faith of theoretical physics:

Good theories usually work outside their formal confines of justification.

e-expansion This is the idea behind the e-expansion of renormalization group theory.

INFO Besides dimensional analysis, the stability of a theory to fluctuations around 
mean fields provides another indication of the relevance of its operator contents. In the 
following, we outline such a stability analysis for the case of ^4-theory. While the line of 
reasoning may be somewhat contrived, it provides us with more insight into the nature 
of fluctuations than formal dimensional analysis. For concreteness, consider the magnetic 
susceptibility,

X = — dHF ~ J"ddr {$(r)$(0)>c ~ G(k = 0),

where we note that {$(r)$(r')} = G(r — r') is the Green function of the model. With this 
identification, we know that a divergence of the susceptibility indicating the transition is 
equivalent to a singularity of the zero-momentum Green function.

In the Gaussian theory, Eq. (6.26) implies that G(k) = (r + k2)-1. Thus, x ~ r-1, 
consistent with the identification of the mean field transition through r ~ t = 0. Now let 
us consider corrections to this result in perturbation theory in the ^4 interaction. From 
our discussion of ^4 perturbation theory in section 4.3.1, we recall that the Green function 
then picks up a self-energy, G-1 ^ r + k2 — S, which to leading one-loop order is given 
by S — 2 JA(dk)(r + k2)-1,21 where we note the presence of a UV cutoff limiting the 
integration. As a result, the susceptibility becomes

X-1 ~ G(0)-1 = r — S= r + 2 I (dk)'k..

Approaching the transition from above, r > 0, the fluctuation-induced contribution is 
positive. With r ~ T — T:, we consider this as a lowering of the transition temperature. 
Since interactions between fluctuation modes are likely to disorder the system, this looks 
like a natural interpretation. However, we also observe that the cutoff A is needed to 
prevent the fluctuation contribution from diverging in dimensions d > 2.

Let us try to make sense of this divergence without invoking the fully fledged RG ma­
chinery. To this end, we argue that the parameter r of the bare theory has no intrinsic 
physical meaning; at any rate, we do know that it will be strongly modified by the integra­
tion over fluctuations. This ansatz suggests that we should absorb the leading singularity 
into a redefinition r ^ f:

X-1 = r+ ~ [ (dk) (—' — 71 ~ r — — A (dk)t-----'. (6.27)
X 2. \r + k2 k2 J 2 J (f + k2)k2

In this equation f is formally defined as

f = r + 11 (dk) k12,

involving a strongly UV singular integral. However, physical ly, we define the leading con­
tribution to the inverse susceptibility, rf, as the effective temperature of the transition.

21 Compare the first two diagrams in fig. 4.7, which are identical in the present N = 1 version of 
$4-theory.
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Ginzburg 
criterion

loop ex­
pansion

This is an observable quantity and therefore it must be finite. Also note that, in the sec­
ond equality of Eq. (6.27), we replaced r ^ r in the fluctuation contribution, which is 
permissible to lowest order in perturbation theory in A.

Via this “bootstrap” construction, we have shuffled the UV divergence of the theory 
into a reinterpreted coupling rr. However, we still need to deal with the second fluctuation 
contribution in Eq. (6.27). On dimensional grounds, we estimate the parameter dependence 
of this integral as ~ XLdr(d-4)/2. For dimensions lower than d = dc = 4, this term 
becomes large for small rr, i.e., upon approaching the transition. This observation is the 
essence of the Ginzburg criterion. The latter defines the upper critical dimension, 
dc , of a theory as the dimension below which fluctuation contributions acquire a singular 
dependence on the effective control parameter, rr, of a phase transition. The upper critical 
dimension defines the threshold between a (mean field + quadratic fluctuations) scenario in 
d > dc from strongly fluctuation dominated physics below dc . However, what the Ginzburg 
criterion does not do is instruct us on how to bring these fluctuations under control; this 
is the job of the RG program to be discussed next.

We finally note that the above - admittedly contrived - reasoning parallels the rationale 
of renormalization in particle physics: the bare couplings (r) of a theory are denied any 
physical meaning; it is permissible to add formally divergent quantities to them if this is 
required to make observable predictions of a theory (rr) finite. For an illustration of the 
predictive power of this approach, we suggest the renormalization of quantum electrody­
namics as discussed in Ref. .

Turning to the concrete formulation of the RG analysis, we have to realize that 
$4 theory is sufficiently complex that we need to make recourse to all available 
approximation schemes. Besides the dimensional e-expansion, this will include an 
expansion in the loop number of momentum integrals. In fact, loop expan­
sions are engaged in the majority of RG analyses of field theories. To understand 
the rationale behind them, consider a fluctuation action multiplied by some large 
parameter (which could be ~-1 in a semiclassical expansion, or some large N pa­
rameter). The expansion in the number of loops is then equivalent to an expansion 
in the inverse of that parameter.

EXERCISE To verify this statement, assume the action S[$] to be multiplied by a 
parameter, a. Contributions of nth order in perturbation theory in the 04 vertex are then 
weighted by a factor an . At the same time, each of the 4n/2 propagator lines involved 
in their contraction comes with a factor a-1 , so that the overall power is an-4n/2 = 
a-n . Next express this parameter in terms of the number L of independent momentum 
integrals. Notice that the momentum space representation of each vertex contains three 
free momentum indices. (The fourth is locked by momentum conservation.) Contractions 
further reduce the number of free momentum indices. Do the bookkeeping to show that 
the overall power of the graph is a-L+1 .

The advantage of using L, rather than n, as a counting parameter is that no explicit 
reference to the vertex order in perturbation theory is made. In cases where more than 
one effective vertex is engaged (as will be the case when we introduce the slow field/fast 
field decomposition of the action), this way of fixing the parameter order of diagrams is 
simpler.

However, even if a theory does not provide us the favor of a large parameter - 
as is the case here - one often pretends that one is present and performs a loop 
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expansion nonetheless. The idea behind this formally uncontrolled expansion is 
then that fluctuations must somehow be controllably small to make the fluctuation 
integral meaningful.

In the following, we formulate the RG analysis of ^4-theory to lowest, one-loop 
order.

Step I

The first, straightforward, step of the RG analysis involves the introduction of 
slow and fast fields, ^ = ^s + ^f. Substitution into the action leads to S[^s, ^f] = 
Sf [$f] + Ss[$s] + Sc[$s, $f], where

S f [ 4 f ] = J ddr ( 2^ 2 + 1(V $ f )2} + ..., 

/, / r „ 1 „ A „ A
d r 2$2 + 2(v$s)2 + 4!$4 - Hs) ,

Sc[$s, $f] = 4 y ddr^2$2 + ...

Here, we have neglected terms of O(^4) since their contraction leads to two-loop 
diagrams. The same applies to terms ofO(^s^3) (exercise). Terms of O(^3^f) do 
not arise because the addition of a fast momentum and three slow momenta is 
incompatible with momentum conservation.

Step II

To simplify the notation, let us rescale the momentum according to q ^ q/A, 
implying that coordinates are measured in units of the inverse cutoff r ^ rA. 
With the coupling constants rescaled according to their engineering dimensions, 
r ^ r A2, A ^ A A4-d, the action remains unchanged, while the fast and slow 
momenta are now integrated over the dimensionless intervals |qs| G [0,b-1] and 
|qf | G [b-1, 1], respectively. We next construct an effective action by integration 
over the fast field: e-Seff[0s] = e-Ss[0s] e--Sc[0s,0f]^f. In performing the average over 
fast fluctuations, (•••)£, we retain only contributions of one-loop order. We also 
neglect terms that lead to the appearance of ^n>4 contributions in the action. 
(For example, the contraction ((f ^2^2) ) generates such a term.) To this level of 
approximation, one obtains

e-Seff[0s] = e-Ss[0s]exp (- (Sc[^s, ^f])f + | (Sc[^s, ^f]2)c

where the superscript c denotes a connected average. (Exercise: Check the consis­
tency of this expansion.) The skeleton structure of the two diagrams corresponding 
to the contractions (Sc[^s,^f])f and (Sc[^s,^f]2)c is shown in parts (a) and (b) of 
the figure below, respectively, where the external line segments indicate the passive 
^s amplitudes. The first of the two diagrams, (a), evaluates to
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(Sc[6s, 6f])f =
4 If (dq') r + q'2 ((dq)6s(q)6s(-q)•

s

We now consider the summation over fast momenta appearing in this expression. 
Assuming that we are in the vicinity of the critical point, where r is small, we 
expand to first order, f (dq)(r + q2)-1 = I1 - rI2 , where

Ia =1 (dq) qla • (6.28)

These integrals are conveniently computed in polar coordinates,

Ia = Qd lb\ dq qd-2a-1 = H (1 — b2a-d), (6.29)

where Qd = (2n) —d x 2nd/2/r(d/2) is the area of the d-dimensional unit sphere 
expressed in terms of the r—function and measured in units of (2n)d. After rescaling 
q ^ bq, 6 ^ b(d-2)/26, the quadratic part of the action takes the form

S(2)l6 = . (r Q(1 - b2-d) ' (1 - b4-d)W■*■ (6.30)
2 2(d - 2) 2(d - 4)

Turning to the second diagram, (b), the presence of four
external legs means that it is proportional to 64. Owing f "X

to momentum conservation, the internal propagator lines (a) 
depend on both a fast internal momentum variable and 
the slow external momenta carried by the fields 6s. Con­
veniently, however, the dependence on the latter is neg- x. /

ligible. To see why, note that the integral with all mo- q,) >X.
menta taken into account yields a result with structure
f(qi, q2, qs)6(qi)6(q2)6(qs)6(-qi - q2 - qs), where q1,2,3 

represent slow momenta and F is a function. Taylor expan­
sion of the latter would generate powers of qi, i.e., derivatives, acting on the slow 
field; we have seen that these are irrelevant, and we may thus neglect the q depen­
dence of F from the outset.

Simplified in this way, diagram (b) leads to the result

1 (S c[ 6 s ,6 f ]2>f ~ — f ddr6 4 A dq)--^7 = ^^ d ddr6 4 + O( A 2 r) •
2 \ ^sf if 16 y ss (r + q2)2 16 j sf )

We evaluate the integral with Eq. (6.29) and rescale to obtain the quartic contri­
bution to the renormalized action

\2o , i ^4-d \ rS(4)[6=b4-■'(A - A? 1--^) Ir6^4^

Finally, there are no one-loop diagrams affecting the linear part of the action, i.e.,

S(i)[6] = hbd/2+i ddr6

rescales according to its engineering dimension.
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Step III

Combining everything, we find that the coupling constants transform as

r — b2 (r + aqd (i - b2—d) - rxqd (i—b4—d,
V + 2(d — 2)( ) 2(d — 4)( 7

A^b4—d (A 3 A20 1 — b4—d
A — b (A — 2 A Q 4, ,

h — hbd/2+1.

We next set d = 4 — e and evaluate the right-hand sides of these expressions to
leading order in e. With Q4—e « Q4 = 1 /(8n2), we thus obtain

r —b 2 (r+3^n(1—b-2) — i6n2ln O’

.............................. / 3 A 2 , \A —— (1 + £ ln b) I A — -—y In b\ , 
\ 16n2 J

h — hb 3-e/2,

flow 
equations

which, setting b = e£, lead to the flow equations:

dr A rA
d£ + 16n2 16 n2

dA _ 3 A 2

d£ 16n2

dh 6 — e
— = —h— h

(6.31)

These equations demonstrate the meaning of the e-expansion. According to the 
second equation, a perturbation away from the Gaussian fixed point will initially 
grow at a rate set by the engineering dimension e. However, this runaway flow of 
the nonlinearity is countered by the one-loop contribution ~ A2, and is eventually 
stopped at the value A ~ e .A similar competition governs the flow of the coupling 
r in the first equation.

Temporarily ignoring the magnetic field and equat­
ing the r.h.s. of Eq. (6.31) to zero, we indeed find that, 
for e > 0, besides the Gaussian point (r£, A£) = (0, 0), 
a nontrivial fixed point (r%,A2) = (—e/6, 16n2e/3) 
has appeared. This second fixed point is O(e) away 
from the Gaussian one and coalesces with it as e is 
sent to zero. Plotting the P-function for the coupling 
constant A, we find that A is relevant around the Gaus­
sian fixed point but irrelevant at the nontrivial fixed 
point. In the opposite case of dimensions larger than four, e < 0, the nontrivial 
fixed point disappears and the Gaussian one remains as the only, now stable, fixed 
point.
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Fig. 6.4 Phase diagram of the $4-model as obtained from the e-expansion.

To understand the full flow diagram of the system, we linearize the P-function 
around the two fixed points. Denoting the respective linearized mappings by W1,2 , 
we find

(2 1 /(16n (2 - £/3 (1 + e/6)/(16n2)\
W1 = \0 e J, W2 =^ 0 - £ J'

Figure 6.4 shows the flow in the vicinity of the two fixed points, as described by the 
matrices W1,2, as well as the extrapolation to a global flow chart. Notice that the 
critical surface of the system - the straight line interpolating between the two fixed 
points - is tilted with respect to the r (~ temperature) axis of the phase diagram. 
This implies that it is not the physical temperature alone that dictates whether 
the system will eventually wind up in the paramagnetic (r 0) or ferromagnetic 
(r 0) sector of the phase diagram. Instead one has to relate temperature (~ r) 
to the strength of the nonlinearity (~ A) to decide on which side of the critical 
surface one is positioned. For example, for strong enough A, even a system with 
r initially negative may eventually flow towards the disordered phase. This type 
of behavior cannot be predicted from the mean field analysis of the model (which 
would generally predict a ferromagnetic state for r < 0). Rather, it represents a 
nontrivial effect of fluctuations. Finally, notice that, while we can formally extend 
the flow into the lower portion of the diagram, A < 0, this region is unphysical. The 
reason is that, for A < 0, the action is unstable and, in the absence of a sixth-order 
contribution, does not describe a physical system.

We now proceed to discuss the critical exponents associated with the one-loop 
approximation. Of the two eigenvalues of W2, 2 — e/3 and — £, only the former is 
relevant. As with the Gaussian fixed point, it is tied to the scaling of the coupling 
constant, r ~ t, i.e., we have yt =2 — e/3 and, as before, yh = (d + 2)/2 = (6 — £)/2. 
An expansion of the exponents summarized in Eq. (6.22) to first order in £ then 
yields the list

a = —, P = — — —, y = 1 + —, $ = 3 + £, v = — + —, n = 0.6,26, ’ +6, + , 2 + 12, 1
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If we are now cavalier enough to extend the radius of the expansion to e = 1, i.e., 
d = 3, we obtain the fifth column of table 6.1. Apparently, agreement with the 
experimental results has improved - in spite of the fact that the e-expansion has 
been pushed beyond its range of applicability! (For e =1, terms of O(e2) are no 
longer negligible.)

How can one rationalize the success of the e-expansion? One might simply 
speculate that nature seems to be sympathetic to the concept of renormalization and 
the loop expansion. However, a more qualified approach is to explore what happens 
at higher orders in the expansion. Although this extension comes at the price of 
a much more laborious analysis, the first-order expansion prompted researchers to 
drive the e-expansion up to fifth order. The results of this analysis are summarized 
in the last column of table 6.1. In view of the fact that we are still extending a series 
beyond its radius of convergence,22 the level of agreement with the experimental 
data is striking. In fact, the exponents obtained by the e-expansion even agree - to 
an accuracy better than one percent - with the exponents of the two-dimensional 
model,23 where the “small” parameter e = 2.

Conceptually, the merit of the e-expansion is that it enables one to explore the phase 
diagrams of nonlinear theories in a more or less controlled manner. Expansions of 
this type are not only applied close to the upper critical dimension (the mean field 
threshold) but also in the vicinity of the lower one (the collapse of spontaneous 
symmetry breaking, section 5.2.3). In this section, we consider a problem in this 
category: an e-expansion around d = 2 to detect the onset of global thermal disorder 
in models with continuous symmetries.

Real-valued scalar fields describe phase transitions with single-component order 
parameters. However, throughout the text, we have encountered problems where 
the order parameter involves more than one component: complex fields describing 
condensation phenomena, matrix fields associated with the disordered electron gas, 
or the field theories of spin. In such cases, the field degrees of freedom are often 
subject to nonlinear constraints. For example, we saw that, below the condensa­
tion point, amplitude fluctuations of the complex superfluid order parameter are 
negligible, and field fluctuations are confined to a circle in the complex plane - the 
phase mode.

Multi-component field theories subject to nonlinear constraints are generally 
known as nonlinear a-models. In many cases, these constraints reflect the breaking

22 It is believed that the e-series is an asymptotic one and that the agreement with the “true” 
exponents will become worse at some hypothetical order.

23 The latter are known from the exact solution of the two-dimensional model, see L. Onsager, 
Crystal statistics I. A two-dimensional model with an order—-disorder transition, Phys. Rev. 
65, 117 (1944).

6.4 RG Analysis of the Nonlinear a -Model 

nonlinear
a -model
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Haar 
measure

of continuous symmetries at phase transition points. The aim of the present section 
is to apply RG methods to describe critical phenomena in the vicinity of the lower 
critical dimension d = 2, where symmetry breaking can occur.

We consider a paradigmatic nonlinear a-model defined by the partition function 
Z = Dg e-S[g], where

S[9] = ddr tr (V9V9 —1^ ’ (6.32)

9 is uniformly distributed over the group manifold, representing fluctuations of max­
imal strength. We wish to understand the phase transition separating weak from

See, e.g., J. Fuchs and C. Schweigert, Symmetries, Lie Algebras and Representations, a Grad­
uate Course for Physicists (Cambridge University Press, 1997).

and 9 G G takes values in a compact Lie group G such as G = O(3), relevant 
to three-component spin models. (In this case, the nonlinear constraint would be 
realized through 9T9 = 1.) The integration J D9 = [Jx f d^g (x) extends over the 
Haar measure d^9 of G.

INFO The Haar measure d^g of a compact Lie group G is a (uniquely specified) 
integration measure defined by the condition that it is unit normalized, fG d^g • 1 = 1, 
and invariant under left and right multiplication by a fixed group element:

jG d^g f (g) = j d^g f (gh-1) = £ d f (h-1 g)

for any h G G. Upon translation of the integration variable g ^ hg or g ^ gh, these 
equations assume the form fG d^ (gh) f (g) = fG d^ g f (g) = fG d^ (hg) f (g). Holding for any 
f, this implies that d^ (hg) = d^g = d^ (gh), which means that the Haar measure assigns 
equal volume density to any point on the group manifold. Owing to this homogeneity 
property, integrations over groups are almost always performed with respect to the Haar 
measure. Details on the explicit construction of this measure can be found in textbooks 
on Lie group theory.24

weak/strong 
coupling

Given that nonlinear a-models de­
scribe Goldstone mode fluctuations, we 
presume that the physics of the latter 
is reflected in the functional integral Z . 
In particular, we know that Goldstone 
mode fluctuations become uncontrol­
lably strong in dimensions d < dc = 
2, while in larger dimensions they are 
weak.

In the present context, the strength 
of fluctuations is controlled by the pa­
rameter A, A ^ 0 representing the so- 
called weak coupling limit with sup­
pressed fluctuations, and A ^ x the 
strong coupling limit, where the field

Alexander M. Polyakov 
1945-
is a Russian theoretical physi­
cist and mathematician who 
has made important contribu­
tions to quantum field theory, 
from non-abelian gauge theory
to conformal field theory. His
path integral formulation of string theory had 
profound and lasting impacts in the conceptual 
and mathematical understanding of the theory. 
He also played an important role in elucidating 
the conceptual framework behind renormaliza­
tion independently of Kenneth Wilson’s Nobel 
Prize winning work. He formulated pioneering 
ideas in gauge-string duality which later be­
came key in the formulation of the holographic 
principle.

24
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strong coupling at dc = 2. To this end, following a seminal work by Polyakov,25 we 
will again apply an e-expansion, this time formulated in d = dc + e where fluctua­
tions remain controllable.

A. M. Polyakov, Interactions of Goldstone particles in two dimensions. Applications to ferro- 
magnets and massive Yang-Mills fields, Phys. Lett. B 59, 79 (1975).

However, before turning to the actual formulation of the RG analysis, we need 
to do some preparatory work concerning the perturbative evaluation of functional 
integrals with group target spaces.

6.4.1 Field integrals over groups

exponential 
represen­

tation

group 
generators

As with any other integral over nonlinear manifolds, group integrals are per­
formed in coordinates. Specifically, in perturbative applications where group field 
fluctuations are weak, it is convenient to work in an exponential representa­
tion where g = exp(W) and W G G lives in the Lie algebra (see the Info block 
on page 248) of the group. With W = j^Za naTa, and Ta the hermitian matrix 
generators (see info below) of the group, the integration reduces to one over a set 
of real coordinates, na.

In the exponential representation, an expansion in W describes fluctuations of g 
around the identity. However, owing to to the Haar invariance of the measure, the 
“anchor point” of the expansion is arbitrary, and the generalization g ^ h exp( W) 
describes fluctuations around arbitrary group elements, h. (In our RG application, 
W will parameterize fast field fluctuations around a slow field h = gs.)

INFO Recall that the Lie algebra G of a matrix Lie group is an M -dimensional vector 
space whose elements are N x N matrices. (For example, the Lie algebra su(2) is the three­
dimensional vector space of traceless hermitian 2 x 2 matrices.) A system of generators, 
Ta, of a Lie group {Ta|a = 1,..., M} is a basis of this algebra. (For example, Ta = aa, 
the Pauli matrices in the case of su(2).) The commutators between these generator matrices 
[Ta , Tb] = -if abcT c define the structure constants, f abc, of the group. (For su(2), 
f abc = eabc are defined by the antisymmetric tensor.)

For later reference, we note that the generators of the group families U(N), SU(N) and 
O(N) obey the completeness relations

a=1

N2

£ Ta Tai

a=1

N2-1

TajTaai

a=1

N (N -1)/2

£ Ta Ta

= 2 Su Sjk, U(N), (6.33)

= 2 Sil Sjk - 2NSij Skl, SU(N), (6.34)

= SiiSjk - SikSji, O(N), (6.35)

where the upper limits are the respective group dimensions. (Exercise: Verify these rela­
tions by inspection of the conditions that Lie algebra elements have to satisfy.)

25
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The generators are often chosen normalized as tr(TaTb) = cSab, where c is a constant. 
Interpreting {W|W'} = tr(WW') as a scalar product on the Lie algebra (exercise: convince 
yourself that { | } meets all the criteria required of a scalar product), this normalization 
makes {Ta } an orthonormal basis. In the cases U(N), SU(N), and O(N), consistency with 
the completeness relation requires c = 1/2, 1/2, and 1, i.e.,

tr(TaTb) = '^, U(W), SU(W),

tr( T aTb) = Sab, O( W).

(6.36)

(6.37)

The upside of the exponential parameterization is that W is a linear object, inte­
grated over the vector space G (see the Info block below for details). The downside 
is that the representation of the Haar measure in W -coordinates may involve a non­
trivial Jacobian. However, in many applications, like the present one, this Jacobian 
does not interfere significantly with a perturbative integration.26

We next discuss how integrals over fluctuations on the group manifold are per­
formed in practice. Substitution of the expansion g = eW = 1 + W + W2 / 2 + ■■■ 
into Eq. (6.32) produces a series S = n S(n), where S(n) is of nth order in W. As 
always, we will organize our analysis around the tractable quadratic action, which 
is given by

S (2)[ W ] = -1^ ddr tr(V W V W ) = j/ ddr V na V nb tr (T aTb) 

(6.37) 1 d a a 1 a -1 a
= - Id r V n V n = 2 (dq) np n p n _p.

Here we have used the normalization condition (6.37) and in the final step switched 
to a momentum representation (for a lighter notation, we are avoiding boldface 
notation in this section, p ^ p), where np = X/2p2 is the “propagator” of the fields 
na.

At higher orders in the expansion, we encounter integrals (tr(F(W))tr(G(W)) • • •), 
where F,G,... are functions of W and (• • •} = N f Dn exp(-S(2)[n])(• • •) denotes 
the average over the quadratic action. These integrals may be evaluated with the 
help of Wick’s theorem as the sum over all possible pairings of n-variables or, 
equivalently, W-matrices. Each pairing is of the form either (tr(AW)tr(A'W)) or 
(tr(AWA'W)), where the matrices A and A' may contain W-matrices themselves. 
(However, when computing an individual pairing, these matrices are temporarily 
kept fixed.) Specifically, for G = O(N ), the Gaussian integrals give

<tr( AWp )tr( A ’ Wp,)) = -nan$) tr( AT a )tr( A ’ T a')

= - 6p, - p, n p tr( AT a) tr( A' T a) (=5) - dp, — p, np (tr( AA') - tr( AA'T)),

26 In the exponential representation, the Haar measure assumes the form d^g fja dna J(n),
where J (n) encapsulates both the geometry of the Haar measure and the Jacobian associated 
with the transformation g ^ exp(naTa). It can be shown that its Taylor expansion starts as 
J(n) = 1 + O(n4). Since terms O(n4) do not enter the RG transformation at one-loop order, we 
may ignore J and work with the flat measure. However, at higher loop orders, a more careful 
analysis becomes necessary.
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<tr(AWpA'Wp-)) = -{nana',) tr (ATaA'Ta')

= - 6a, — a, n a tr( AT aA' T a) (= 5) - 6a, — a, n a (tr( A )tr( A') - tr( AA'T)).

General integrals over W -matrices are computed by applying these contraction rules 
until all possible pairings have been exhausted.

EXERCISE As an example, consider the expres­
sion

X = <tr( Aq,pWp + q W- p ) 

tr(A'q,,p,Wp,+q,W— p,)} , 

where A, A' 6 o(N) are matrix fields in the Lie al­
gebra of O(N) (and therefore traceless). Show that 
the pair contraction of the first W -matrix with the 
second vanishes owing to the tracelessness of A and 
A'. Next, perform the contractions (1 — 4)(2 — 3) 
and (1 - 3)(2 - 4) to obtain the result

X = (N — 2)npnp+qtr (Ap,q (A—

Referring to the inset box in the figure for the matrix index structure of the contracted 
operator, the origin of the factor N in the result lies in the emergence of a free running 
index sum in the contraction represented diagrammatically in the lower part of the figure.

6.4.2 One-loop expansion

With this background, let us now return to the actual RG program for the O(N )- 
model. As always, we proceed in stages, beginning with:

Step I

We start with a multiplicative decomposition of the matrix fields g into slow and fast 
components. This is achieved by defining g(r) = gs (r)gf (r), where the generators of 
gs(r) and gf(r) have momentum components in the ranges [0, Ab —1] and [Ab-1, A], 
respectively. Substituting this decomposition into the action, one obtains S[gsgf] = 
S[gs] + S [gf] + S[gs, gf], with the coupling action

S[gs, gf] = 2 y ddr tr (g-1^gSgfVg-1) . (6.39)

Step II

Turning to the integration over the fast field gf , we will again apply a first-order 
loop expansion. The strategy is an expansion of gf = exp(W) followed by the iden­
tification of all contributions that lead to no more than one momentum integration 
over the fast field propagator na. Representing a general trace J tr(XWn) with a 
slow X in momentum space, one may note that terms with n > 2 will inevitably 
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lead to more than one integral. On the other hand, terms with n = 1 vanish owing to 
momentum conservation (consider why!). Thus, all we need to do is to consider the 
action S[gs, W] expanded to second order in W. Substitution of gf = 1 + W + W2/2 
into the action (6.39) yields the effective coupling

s [ g s ,W] = H ddr tr ($ M [V ̂ W ]) ~- (dq) j (dp) pP tr ($ „, - q WpW- p),

where we have introduced the abbreviation $M = g-1 dpgs and, in the last repre­
sentation, neglected the small momentum in comparison with the fast, p ± q ~ p. 
To obtain all one-loop corrections, we have to expand the functional in powers of 
S[gs, W] and integrate over W. However, since each power of S comes with one 
derivative acting on a slow field, and terms of more than two such derivatives are 
irrelevant, it suffices to consider terms of order O(S2). To one-loop order, the RG 
step thus amounts to the replacement

S[g] ^ S[gs] - ln (1 + 1 (S[gs, W]2)~ S[gs] - 21 (S[gs, W]2)w.

Written more explicitly,

(S[gs,WHw = ^dq)(dq') I (dp)(dp') <tr(Aq,pWpW-p) tr(Aq>p>Wp,W-p,))w,

where Ap,q = —2iLdX 1 p^$^,-q. This is an expression of the type considered in 
the exercise above. Using Eq. (6.38) with the explicit form of the propagator, np = 
X/2p2, one obtains

(S[gs,W2}w ~-2(N - 2)/(dp)pp^J(dq)tr($$„,-q) 

ddr tr ($M $M) = C ddr tr (VgsVg-1) = CXS[gs], (6.40)

where the constant

C = 2Nr^ / (dp) p 

_ 2(N - 2)Qd(Ad-2

2(N - 2)Qd fA d-3
J//b dpp

(A/b)d-2) d=2+e (N - 2)lnb
(2n)dd(d - 2)

Step III

Substituting Eq. (6.40) back into the action, one obtains

2 n

S [ g ] ^ 1
(N - 2)ln bX 

4 n
(N - 2)ln bX

4 n

where, in the second step, we performed a rescaling of the momenta, q ^ bq, noting 
that in 2 + e dimensions the engineering dimension of the action is (2 + e) - 2 = e.
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As expected, the RG reproduces the action up to a global scaling factor. Absorbing 
this factor in a renormalized coupling constant, Ar, we obtain

A r 1
(N - 2)ln bA '' 1

4 n
b-'A A — el In b + A,

(NN - 2)A 
\ 4 n

RG 
equation

where, in the last equality, we assumed both A and e to be small.27 Finally, dif­
ferentiating this result, one obtains the RG equation of the O(N) nonlinear 
a-model

The smallness of A is needed to justify the perturbative loop expansion. In the opposite regime 
A 1, the fields g fluctuate wildly and perturbative expansion is not an option.

JL _£a . N + O(A3,,.2,A2)
d ln b 4 n

(6.41)

The figure shows that, in dimensions d < 2 ^ e < 0 
and generic group dimensions, the P function is posi­
tive, and hence the flow is directed towards large val­
ues of A. In other words, the model inevitably drifts 
towards a strong coupling phase. While this phase is 
inaccessible to the perturbative loop expansion applied 
here, there are no indications of an intermittent com­
peting phase transition. We thus conclude that a dis-
ordered phase is the fate of the a-model, which is consistent with the expected
restoration of broken symmetries by large fluctuations in low dimensions. However, 
for dimensions d > 2, the model exhibits a fixed point at finite coupling strength 
Ac = 4nt/(N — 2). Linearizing the flow in the vicinity of the fixed point, we obtain 
the exponent y\ = e, assuming the role of the “thermal exponent” of ^4-theory. 
Using the scaling relations (exercise: interpret the scaling relations in the context 
of the present model), we obtain the correlation length exponent v « 1 /e, and the 
heat capacity exponent a « 2 — 2/e.

EXERCISE To complete the analysis of the O(3) model, one may explore the magnetic 
exponent. Introducing a magnetic field perturbation into the action, i.e., h ddr tr [g+g-1], 
show that, under renormalization we have h' = byhh, where yh = 2 + e(N — 3)/(2(N — 
2)) + O(e2). From this result, use the exponent identities to show that the anomalous 
dimension n ~ e/ (N — 2).

We finally note that, for d = 2 and N = 2, the coupling constant does not renor­
malize. This is so because, for O(2) - the abelian group of planar rotations - the 
action of the a-model simplifies to S = 1 f d2r (V$)2, where ^(r) is the field of local 
rotation angles. This is a free action that is not renormalized by small fluctuations. 
(However, in the following section, we see that the situation is not quite as simple 
as it seems. The O(2) mo del admits large fluctuations - vortex configurations of 
the angular field - which do have a nontrivial impact on its behavior. However, 

27
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being topological in nature, these excitations are beyond the scope of our present 
analysis.)

EXERCISE Repeat the analysis above for the SU(N )-model. First derive the interme­
diate identities,

(tr(AWp)tr(A'Wp<))w = -Sp,—p< ^ (tr(AA') - -1tr(A)tr(A')} ,

<tr(AWpA'Wp,))w = -Sp,—p, n2p (tr(A) tr(A') - -1tr(AA')} ,

where n q = A/Ldp2, and

PpPp' <tr($ p,q Wp+q W— p )tr($ p' ,q' Wp'+q' W— p <)) w = N n p ^ p+q pp, tr($ p,q $ M,,—q).

Use these results to obtain the RG equation

d In A NX 
d In b 8 n

- € + O(A2 ,e2, Ae). (6.42)

Notice that the right-hand side of the SU(N = 2) equation coincides with the right-hand 
side of the O(N = 3) equation. This reflects the (local) isomorphism of the groups O(3) and SU(2).

6.5 Berezinskii-Kosterlitz-Thouless Transition 

two­
dimensional 

XY-model

(6.43)

Previously, we have discussed systems whose critical physics was encoded in local 
field fluctuations. However, it often happens that the relevant physics is that of 
global fluctuations, the latter colloquially defined as configurations that cannot be 
continuously deformed into flat configurations. As an example, consider the phase 
mode of a superfluid in two dimensions. This field takes values in O(2), and we 
saw in the previous section that its effective action is not renormalized by short 
range fluctuations. However, it may happen that the phase degree of freedom winds 
around a rotation center in space to form a vortex. Once created, the vortex cannot 
be annihilated by local deformation; it is a topological excitation. One can imagine 
that a regime with a finite density of free vortices will be physically distinct from 
one without, and that there may be a phase transition between them.

In this section, we will apply RG methods to explore the physics of the anticipated 
vortex transition. The discussion will illustrate how topological structures in field 
theory - the subject of chapter 8 - require the introduction of concepts beyond the 
local fluctuation paradigm emphasized thus far.

We consider the two-dimensional XY-model defined by the action

S [e ] = — ^2 cos( ei — ej)
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where the sum ^jijextends over nearest neighbors on a square lattice, and the 
di are locally defined phase variables. The continuum limit of this action is the 
two-dimensional nonlinear a-model with target O(2) ~ U(1) considered in the 
previous section. (Assuming g = exp(id) to be smooth, perform a lowest order 
gradient expansion of Eq. (6.43) to verify this statement.) However, at present, we 
are interested in the formation of vortices. At the center of a vortex, its phase winds 
rapidly (is non-differentiable), so we will not take the continuum limit just yet.

Josephson 
junction 

array

INFO Interpreting d as the angular variable describing the orientation of planar spins, 
a natural realization of the model above is two-dimensional magnetism and another is 
superconductivity:

Consider a system of small superconducting islands connected by tun- t-S, r*\ rS
neling barriers, see the figure schematic. (Such arrays mimic the meso- q'7 X T
scopic structure of strongly disordered superconducting materials. How- r"\f]_T\_ 
ever, they can also be realized synthetically, the most prominent real­
ization being superconducting qubit arrays for quantum computing. In CD O 
that context, each cell realizes a single qubit, and externally controllable 
coupling between them is used to perform qubit operations.)

Microscopically, each tunnel junction defines a Josephson junction, i.e., a tunnel cou­
pling between two superconducting structures (see problem 5.6.6). If these couplings are 
not too small, the local number of charges, Ni , will fluctuate strongly. However, this im­
plies that fluctuations of the canonically conjugate phase variable, di are weak (recall that 
[Oi,Nj] = — iSij form a conjugate pair). To a zeroth order approximation, one may then 
neglect dynamical fluctuations (i.e, set di = const.), and describe the full Josephson 
junction array by the action (6.43).

However, two-dimensional magnetism and superconductivity are but two of many real­
izations of the XY -model in- and outside condensed matter physics.

6.5.1 High- and low-temperature phase 

Let us begin by looking at the model in the complementary limits of low and high 
temperatures, respectively. By high temperatures, we mean that the dimension­
less parameter J - physically the ratio of some magnetic exchange coupling and 
temperature - approaches zero. In this limit, the partition function may be repre­
sented as a series expansion in J,

Z = j Dd e-S[ei] = j Dd H (1 + J cos(di - dj) + O( J2)) ,

where D0 = [Ji ddi. We may interpret the individual factors in the product as 
lattice links connecting neighboring sites i and j . Each of these contributes a factor 
of either unity or, with much lower probability, J cos(di — Oj). Since J0 n dd 1 cos(d 1 — 
d2) = 0, any graph with a single bond emanating from a site vanishes. On the other 
hand, a site at which two bonds meet yields a factor J2n(dd2/2n) cos(d 1 — d2) 
cos(d2 — d3) = (1/2) cos(d1 — d3). The argument shows that the partition function
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can be presented as a closed “loop” expansion, where individual loops contribute 
factors ~ J loop length. In a similar manner, we may consider the correlation function 
between phases at different lattice sites,

C(r) = Re(ei6e-i6j) - (J = exp f—,

28 The same correlation function was considered in problem 3.8.10 in a slightly different notation. 
Consult that problem for a derivation of the logarithm and/or argue on dimensional grounds 
why no other length dependence is possible.

2 s
where r is the lattice distance between sites i and j (the minimal number of links 
connecting them), and we introduced the correlation length s-1 = ln(2/J). The 
exponential decay is due to the fact that a minimum of r link factors - J need to 
be invested to cancel the otherwise independent phase fluctuations in the correlation 
function.

Conversely, in the low-temperature phase, fluctuations between neighboring 
phases 6i are penalized, and we may pass to a continuum representation 6i ^ 
6 (x) governed by the gradient action (J/ 2) J d2 x (V $ )2 - the O(2) nonlinear a - 
model. Neglecting the fact that the phase 6 is defined only mod(2n), it becomes 
an ordinary real field, and the correlation function may be evaluated as C(r) = 
Re(ei(6(0)-6(x))') = e-((6(0)-6(r))2/2 (exercise). In two dimensions, Gaussian fluctu­
ations grow logarithmically, ((6(0) — 6(x))2)/2 = ln(r/a)/2nJ, where a denotes a 
short-distance cutoff.28 We thus obtain a power law C(r) ~ (a/r) 2J, indicating a 
quasi-long-range order in the system.

The qualitatively different decay behavior of the correlation allows for two op­
tions: a gradual destruction of order as temperature is increased or a nonzero tem­
perature phase transition. Here, it is important to notice that the argument above 
was not specific to the O(2) model. For example, with a few technical modifications 
(think how), it would likewise apply to the O(3) or SU(2) model. The only differ­
ence is that, in these cases, the continuum action would not be that of a single real 
variable, but that of the nonlinear a-model studied in the previous section. And 
the RG analysis showed that the former scenario is realized. No matter what the 
value of J, fluctuations will gradually increase and make the system end up in a 
disordered phase when looked at from sufficiently large distance scales.

However, in d = 2, the O(2) theory is non-committal; its P-function (6.41) van­
ishes and short-range fluctuations do not alter the result of the continuum estimate. 
The construction above thus does not tell us how to interpolate between the two 
physically different regimes. However, there is an “elephant in the room,” which 
we have hitherto neglected: the option of vortex formation or, in other words, the 
phase periodicity in 2n of the field 6. In the next section, we discuss how this aspect 
is included in the analysis, and how it leads to the prediction of a phase transition 
with unique properties.
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6.5.2 Vortices and the topological phase transition

vortex

In separate and seminal works,29 Berezinskii, and Kosterlitz and Thouless, proposed 
that the disordering of the two-dimensional O(2) model is driven by a proliferation 
of phase vortices. (In recognition of this pioneering work on topological phase tran­
sitions, Kosterlitz and Thouless were awarded the 2016 Nobel Prize, shared with 
Haldane.)

29 V. L. Berezinskii, Violation of long-range order in one-dimensional and two-dimensional sys­
tems with a continuous symmetry group. I. Classical systems, Sov. Phys. JETP 32, 493 
(1971); J. M. Kosterlitz and D. J. Thouless, Ordering, metastability, and phase transitions in 
two-dimensional systems, J. Phys. C 6, 1181 (1973).

We thus consider a field configuration {9i} for which 
the phase winds an integer multiple n of a full 2n- 
rotation as one follows a closed path {i} around some 
anchor point. Such configurations are called vortices 
and the winding number n defines their topological 
charge. The discreteness of the winding number n 
makes it impossible to find a continuous deformation 
returning the vortex to a non-winding configuration. 
Another observation to the same effect is that, at the 
vortex center, the variable 9i must vary strongly from 
site to site: the center of the vortex is not accessible to continuum approximations 
in terms of a globally continuous variable 9. (Owing to the discontinuous variation 
of 9i, a vortex may not be seen in the blink of an eye. Exercise: Find the vortex 
center of the configuration shown in the figure.) Finally, the sign of n distinguishes 
between clockwise and anticlockwise winding configurations.

topological 
defects

INFO Phase vortices are representatives of a wider class of topological defects. Other 
defect structures include domain walls in Ising-like models, or hedgehog-like configurations 
in three-dimensional Heisenberg models with free rotating spin variables. Besides these, 
there are many topological defects which are not easy to visualize; for example, winding 
configurations in field theories with an SU(2) target space. Chapter 8 is devoted to the 
discussion of topological structures in continuum systems and their description by field- 
theoretical methods.

Far from a vortex center, 9 turns into a 
smooth variable - strong variations of 
9 incur an action cost - and continuum 
methods can be applied to describe the 
presence of a winding configuration. 
Specifically, the integral <£ V9 • dl = 
2nn along a path encircling the vortex 
yields its charge. A model phase config­
uration producing this winding number 
upon integration is defined by V9 = 
(n/r)e$, where e$ is the azimuthal

David J. Thouless 1934-2019 
was a British theorist known 
for breakthrough contributions 
to various areas of condensed 
matter including the physics 
of glasses, localization theory 
and, in particular, topologi­
cal phenomena. Thouless was 
among the first to appreciate the importance 
of topology in solid state critical phenomena, 
and was awarded the 2016 Nobel Prize (shared 
with Kosterlitz and Haldane) for his work on 
topological phase transitions.
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vector relative to the vortex center. (Notice the inevitable divergence of the deriva­
tive at the center.) All other phase configurations representing the vortex may be 
obtained by adding globally continuous fields to this rotationally symmetric config­
uration. Without loss of generality, we may thus describe the vortex in terms of the 
conveniently symmetric configuration. We also note that the vortex contents of a 
field can be visualized by plotting the “field lines,” V6, away from the centers (see 
fig. 6.5 for the example of a two-vortex system).

Before approaching the physics of vortices in terms of field theory, it is instructive 
to sketch an argument due to Kosterlitz and Thouless indicating the presence of 
a phase transition in the system. The action cost of a single vortex of charge n 
is the sum of a core contribution, Snc , and a contribution from the homogeneous 
distortions away from the center. Assuming that the boundary between the two 
regions is defined by a circle of radius a (whose detailed choice is arbitrary), the 
vortex action is given by

Sn = sn + J [ d2r (V6)2 = Snc + nJn2 ln L^) . 
n2 n a

a

The dominant contribution to the action arises from the region outside the core 
and diverges logarithmically with the system size L.

EXERCISE It is interesting to observe that defect structures in higher dimensional 
target spaces do not lead to divergences. As an example, consider the generalization of 
the XY-model to three-dimensional spin degrees of freedom, n = n(0,^) with n2 = 1. 
Formulate the nonlinear a-model action S = f d2x (dn • dn) in spherical coordinates. Next 
invent a spherical topological defect configuration n(x) winding once around the sphere 
as a function of the two-dimensional argument x. Show that its action remains finite, even 
in the case of an infinitely large system size.30

This observation is consistent with the absence of a phase transition in two-dimensional 
nonlinear a-models with higher dimensional target spaces; defect structures of arbitrary 
complexity can be created at finite action cost and do not interfere with the flow of these 
systems into a regime of strong structural disorder.

The large energy cost associated with the defects inhibits their spontaneous forma­
tion at low temperatures and protects the integrity of the phase with quasi-long- 
range order. To find out over what range vortices are suppressed, we consider the 
partition function of just a single n = 1 vortex configuration,

— exp (—S1 — nJ ln f—^ = exp f— SC — (nJ — 2)lnf—'V (6.44)
a 1a 1 a

Here the factor of (L/a)2 counts the different options for placing the vortex center 
into the system. Exponentiating that factor as in the second equality produces an 
entropic factor, logarithmic in system size as is the vortex energy. For temperatures

30 The spherical coordinate representation of the action is given by .
Using polar coordinates, (x 1 ,x 2) = (r cos <p,r sin <p), an example of a defect configuration is 
given by + l)/-^ = 0U!S, and “0 = 0,” where the 0 on the l.h.s. refers to that of n and that 
on the r.h.s. to that of x.
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BKT 
transition

Fig. 6.5 Spin configurations of the two-dimensional XY-model showing vortices of charge ±1.

exceeding a critical temperature implicitly defined by the condition Jc = 2/n, that 
entropy outweighs the energy cost and the creation of a vortex becomes statistically 
probable.

In fact, the estimate above for the onset of instability is even too conservative: 
Pairs of vortices may appear at lower J, before isolated vortices become affordable. 
To understand why, consider two oppositely charged ±1 vortices separated by a 
distance d (see fig. 6.5). In this case, the individual phase windings tend to cancel out 
at distances & d. (Exercise: Describe the pair as the superposition of two oppositely 
winding configurations and show that dO ~ r-2 far from the center. Discuss the 
analogy with the field created by an electric dipole.) The integral over this phase 
profile yields a finite energy, implying that vortex dipoles (whose entropy is even 
higher than that of individual vortices) will be present at any non-zero temperature.

The same argument also shows that multiply charged vortices are statistically 
irrelevant. Constructing an n = 2 vortex by the superposition of two n = 1 vortices, 
it is evident that its energy cost is SC ~ 2 x Sc However, by forcing the two centers 
to sit on top of each other, we loose a factor 2ln(L/a) in entropy. The 2 x 1 vortex 
configuration is therefore more likely than 1 x 2.

The argument above predicts the essential phenomenology of the Berezinskii— 
Kosterlitz—Thouless (BKT) transition. At low temperatures, the system will 
be in a phase containing tightly bound vortex dipoles, whose number diminishes 
with lowering temperature. However, beyond a critical temperature, Tc ~ Jc-1 , en­
tropy favors the unbinding of vortices and a transition into a vortex plasma phase 
takes place. (For this reason, the BKT transition is sometimes called vortex un­
binding transition.)

6.5.3 RG analysis of the BKT transition

The phenomenological model above predicts a phase transition but is too coarse 
to describes its critical physics. For this purpose, we now engage the more refined 
machinery of an RG analysis.
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Coulomb plasma representation

To prepare for application of the RG, we need to introduce an efficient syntax 
describing both the vortex contents and the local fluctuations of the phase field. 
We first note that the gradient form ui = di 9 does not capture the vorticity of 
field configurations (for otherwise, the loop integrals dl u could not assume finite 
values). However, any two-dimensional vector field can be described by the more 
general representation ui = di9 + eijdj^, where the two scalar fields (9, ^) implicitly 
define the component fields (u1 , u2). Integrating this ansatz around a vortex center, 
and using Stokes theorem, we obtain ±2n = d dlu = f dSA^, where the second 
integral is over the area bounded by the surrounding curve. Since the choice of the 
latter is arbitrary (as long as it stays away from the vortex center), we must require 
A ^ = ±2 nd (r), where we assume the center to sit at r = (r 1 ,r 2) = (0, 0), and 
the d-function is smeared over scales comparable to the extension of the core. This 
two-dimensional Poisson equation is solved by

^ (r ) = 2 nC (r), C (r) = — ln(| r |), (6.45)
2 n

where C(r) is the two-dimensional Coulomb potential.

EXERCISE Verifiy this identity either by using the results of problem 3.8.10, or by direct 
computation. It is useful to regularize the logarithm as ln(|r|) = lime .0, 1 ln(r2 + e2).

On this basis, we may represent the action of a general field configuration away 
from a set of vortices with charges {ni} at coordiantes {ri} as

S [ u ] = — d d2 r u 2, ui di9i + Uj dj ^, ^(r) ni ln(r - ri)•

An integration by parts shows that

S[u] = J [ d2r(di9di9 - ^A^) = — d d2r (d9)2 — 2 n2 J ninj C (ri — rj).
i,j

Here, the second term contains a singularity for i = j which, however, need not 
concern us: associated with the short-distance physics of individual vortices, it can 
be absorbed into a redefined core energy, Sc ^ Sc + 2n2JC(0). The first term 
describes the contribution of pure gradient (non-winding) phase fluctuations. We 
have seen in the previous chapter that these do not lead to interesting physics in 
the RG sense. We therefore focus on the second term throughout, and describe the 
system by the partition sum

4 n 2 J^^C (riZ= rj) (6.46)
i<jN
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vortex 
fugacity

Here, the sum is over N pairs of oppositely charged vortices,31 and the integration
Dr = i dri is over the 2N center coordinates ri , where the combinatorial factor

(N !)-2 prevents overcounting. (Permutations between positive or negative vortices, 
respectively, lead to identical configurations.) Finally, the vortex fugacity, y0 = 
exp(-Sc), contains the core energies.

Notice that Eq. (6.46) implies a remarkable statement: we have reduced the 
partition function of the XY -model to that of a two-dimensional Coulomb plasma, 
i.e., a classical system of logarithmically interacting point charges. This mapping 
underpins the universality of BKT criticality - it applies to a charge plasma in a 
plane as much as to the XY-model.

sine—
Gordon 

model

EXERCISE In fact, the list of systems in the BKT universality class does not end here. 
The sine—Gordon model defined by the action

S[3] = c d2r (V3)2 + 9 d2r cos 3 (6.47)

also belongs to this class. This constitutes one of the simplest models with a non-polynomial 
action. It frequently arises in the context of the (1 + 1)-dimensional electron gas, where 
the cosine operator describes potential scattering in the bosonized language of section 3.6.

To see the correspondence with the Coulomb plasma (and hence the vortex system), 
expand the partition function in powers of 9 and show that

~ 2 N 2N f I 2 2 N
Z =is ni i I ddn\ exp (-) i3 (ri)

where y0 = 9/2 and the angle brackets denote averaging over the free action. (To prove that 
positive and negative phases appear in equal numbers, consider the role of the integration 
over the zero mode 3(r) = const.) Using the fact that {3(r)3(r')) = C(|r — r'|)/c, and 
neglecting the infinite self-interaction of the fields at coinciding points, show that the 
partition function becomes identical to Eq. (6.46) when c = 1 /(8n2 J).

In the continuum representation of the sine-Gordon model, the BKT transition becomes 
accessible to momentum shell RG methods quite similar to those applied in section 6.1.2. 
For a detailed discussion of this particular RG analysis, we refer to the text by Gogolin, 
Nersesyan, and Tsvelik referenced in footnote of chapter 8.

Perturbation theory

We have already mentioned that, in the language of the Coulomb plasma, the BKT 
transition describes the unbinding of tightly bound dipoles into a gas of charges. 
However, to fully understand this phenomenon, we must take into account that 
the “bare” logarithmic interaction between charges is subject to screening. The 
quantitative description of this mechanism is a job for an RG analysis. However, 
unlike the momentum shell RG discussed in previous sections, this time it will be 
more natural to work in real space.

31 In the thermodynamic limit, configurations violating overall charge neutrality would cost di­
vergent energy and hence may be neglected.
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To begin, let us compute the effective interaction between two external charges 
at r and r' perturbatively in the fugacity y0. To lowest order, the bare interaction 
is modified by the presence of two internal charges, positioned at s and s', and the 
effective interaction assumes the form

e - Seff ( r—r') = ( e—4 n 2 JC ( r - r ')^

^ s

(r ®--------© r') + y of d2 s d2 s'
r

© s' \ 

I, 
© r J

1 + y2 f d2s d2s’ (s ®---- © s')

where we consider only terms up to O(y02) and the dashes represent the interaction 
between charges. Susbsitution of the corresponding inteaction terms leads to

e—Seff (r—r')+4n2 JC(r—r')
1 + y2 f d2s d2s' e—4n2 JC(s—s')+4n2 JD(r,r',s,s') 

1+ y 2 f d2 sd 2 s ' e—4 n 2 JC ( s — s')

1 + y2 d2sd2s' e—4n2JC(s—s') (e4n2JD(r,r',s,s') - 1 (6.48)

where D(r, r', s, s') = C(r - s) — C(r - s') — C(r' - s) + C(r' - s') denotes the 
interaction between the internal and external dipoles, while the direct interaction 
C(s - s') tends to keep the separation x = s' - s small. Defining the center of mass 
X = (s + s')/2, we can change variables to s = X - x/2 and s' = X + x/2, and 
expand the dipole-dipole interaction in small x as D(r, r', s, s') ~ -x • VXC(r - 
X) + x • VXC(r’ - X) + O(x3). To the same order

e4n2JD(r,r',s,s') - 1 ~ -4n2 jx • vX(C(r - X) - C(r' - X))

+ 8n4 J2[x • VX(C(r - X) - C(r' - X))]2 + O(x3).

Substituting this expression into Eq. (6.48), and changing integration variables, 
one finds that the term linear in x integrates to zero while the angular average of 
(x • VXC)2 leads to x2(VXC)2/2. Thus, to O(r4), one obtains

e — Seff (r—re —4n2 JC(r—r')

X (1 + y'' / d2 xe—4n 2 JC (x) 8 nJ2 x2 / d2 X (V X (C (r - X) - C (r' - X )))2

Using the identity V2C(r) = 52(r), integration by parts shows tha^f d2X [VX 

(C(r-X) -C(r'-X))]2 = 2(C(r-r') -C(0)). Finally, absorbing the short-distance 
divergence into an appropriate cutoff with C(x) ^ ln(|x|/a)/2n, one arrives at the 
expression

e—seff (r—r') = e—4n2JC(r—r') (1 + 16n5 j2y2c(r - r') ds s3 e—2nJ ln s + O(y4)

where s = |x|/a. Exponentiating the second term, one obtains the effective inter­
action Seff (r - r') ~ 4n2 JeffC(r - r'), where
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effective 
dielectric 
constant

Jeff = J - 4n3 J2y2^ -ss3-2nJ + O(y4). (6.49)

According to this result, the perturbative inclusion of screening charge-anti- 
charge pairs leads to a gradual suppression of their interaction, or a deviation 
of the effective dielectric constant of the medium £ = J/Jeff away from the 
vacuum value of unity. However, as long as the integral over the screening charge 
separation, sa, remains at large values, that correction is small. The breakdown of 
perturbation theory at J ~ Jc = 2/n occurs at the point where the free energy of 
an isolated charge changes sign.

Renormalization
real space 
renormal­

ization

The difficulty associated with the divergence at small J is overcome by a real space 
renormalization procedure, introduced by Jose et al.32 The idea is to break the 
integral in Eq. (6.49) into two parts, f^ ^ fb + f^, and absorb the non-singular 
short-distance contribution into a redefined J ^ J. This procedure is carried out 
order by order in y0 even though the full integral multiplying y02 remains formally 
divergent. As a result, one obtain a new equation J-1 = J-1 +4n3y2 f,f ds s3-2nJ, 
where J-1 = J-1 + 4 n3 y 2 fb dss3-2 nJ. The variable in the remaining integral is 
now rescaled (s ^ s/b) to yield an equation for Jeff1 equivalent to Eq. (6.49) but 
with renormalized parameters J and y0 :

J-ff = J + 4n3y2 ~ dxx3-2nJ,

where y0 = b2-nJy. For an infinitesimal renormalization step, b = e£ « 1 + £, one 
obtains the differential recursion relations

dJ-1
=4 n3 y 2 + O( y 4), (6.50)

-£
dyo = (2 - nJ)y0 + O(y3). (6.51)
-£

These equations predict a monotonic increase of the (inverse) coupling J-1 in £, 
while the recursion relation for y0 changes sign at J-1 = n/2. At high temperatures, 
when J is small, y0 is relevant, while at lower temperatures it becomes irrelevant. 
The RG flows, shown in fig. 6.6(a), separate the parameter space into two regions. 
At low temperatures, and small y0, flows terminate on a fixed line at y0 = 0 and 
Jeff > 2/n. This is the insulating phase, in which only dipoles of finite size occur 
(hence the vanishing of y0 under coarse-graining). The strength of the effective 
interaction is given by the point on the fixed line at which the flow terminates. 
Flows that do not terminate on the fixed line asymptote to larger values of J-1 

and y0 , where perturbation theory eventually breaks down. This is the signal of the 
high temperature phase, where charges dissociate.

32 J. V. Jose, L. P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Renormalization, vortices, and 
symmetry-breaking perturbations in the two-dimensional planar model, Phys. Rev. B 16, 1217 
(1977).
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Fig. 6.6 RG flow diagram of the XY -model (a) far from the critical point and (b) close to the critical 
point.

The critical trajectory separating the two regions of the phase diagram flows to a 
fixed point (J-1 = n/2, y0 = 0). To explore the critical behavior at the transition, 
we expand the recursion relations in the vicinity of this point. Setting t = J-1 — n/2, 
Eq. (6.51) simplifies to

dt = 4n 3 y 2 + O( ty 2 ,y4) , 
d£
dy =4 ty+O( t2 y,y 3) ■ (6.52)

low- 
temperature 

phase

RG flow

In contrast with the flow equations discussed in previous sections, Eqs. (6.52) remain 
nonlinear in the vicinity of the fixed point (see fig. 6.6b). To understand these 
nonlinearities, we first note that t2 — n4y2 is a conserved quantity. As a consequence, 
the flow proceeds along hyperbolae characterized by different values of c = t2 — n4y2. 
For c < 0, the focus33 of the hyperbola is on the y-axis, and the flows proceed to 
(t, y) ^- rc>. Conversely, hyperbolae with c > 0 have foci on the t-axes, and have two 
branches in the half-plane y > 0: the branches for t < 0 flow to the fixed line, while 
those in the t > 0 quadrant flow to infinity. The critical trajectory separating flows 
to zero and to infinite y corresponds to c = 0, or tc = — n2yc. Therefore, a small but 
non-zero fugacity y0 reduces the critical temperature to J-1 = n/2 — n2y0 + O(y0).

33 Recall that the foci of hyperbolae are the coordinates where they intersect the coordinate axes. 
Depending on the sign of c, the hyperbolae are oriented in the horizontal or vertical directions, 
as indicated in fig. 6.6.

In terms of the original XY -model, the low-temperature phase is character­
ized by a line of fixed points with Jeff = lim£ ., J(£) > 2/n. Here the phase correla­
tions decay as a power law, i.e., (cos(6(r) — 6(0))) ~ |r|-n, with n = 1 /2nJeff < 1 /4. 
Since the parameter c is negative and vanishes at the critical point, we can de­
fine c = —b2(Tc — T) close to the transition with a constant b. When described 
in this way, the trajectories of initial points track hyperbolic lines (t(T ), y(T)) 
whose foci c = t2 — n4y2 <x (Tc — T) define a linear measure of the proximity of 
the phase transition. In the thermodynamic limit, £ ^ ro, they end up at fixed 
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points (y, t) = (0, — by/Tc — T). Thus, in the vicinity of the transition, the effective 
interaction parameter,

Jeff =--------2 lim t ( ) =----- +----2 VTc - T,
n n2 e ■ n n2

exhibits a square root singularity.

INFO The stiffness Jeff can be measured directly 
in experiments on superfluid films. We saw in 
section 5.2.4 that the neutral superfluid is described 
by a phase action whose stiffness, J = T-1 ps/m2, 
contains the superfluid density, ps. This quantity is 
measurable by examining the changes in the inertia 
of a torsional oscillator; the superfluid fraction, ps 

experiences no friction and does not oscillate.
The figure34 shows data for the superfluid den­

sity at the critical temperature taken for different 
superfluid 4 He films. These experiments confirm a
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universal jump in J of 2/n at the critical point, and scaling consistent with a square root 
singularity for T <Tc. The universality of the ratio p s( Tc)/T3 = Jc m2 = 2 m2 /n visible in 
the figure demonstrates that Jc = 2/n is independent of any material parameters.

0 i

high- 
temperature 

phase

In the high-temperature phase, correlations decay exponentially. The parameter 
c = t2 — n4y2 = b2(T — Tc) characterizing individual hyperbolic trajectories is 
now positive. The recursion relation d^t = 4n3y2 = (4/n)(t2 + b2(T — Tc)) can be 
integrated to give

—£ ~ —, arctan | | .n b^T — Tc \b^T — Tc )

The integration must be terminated at values t(£) ~ y (£) ~ 1 beyond which the near 
fixed point theory loses its validity. This occurs for a value £ * « n2 / (8 ^/T — Tc), 
where we have approximated arctan(1 //by/T — Tc) « n/2. The resulting correlation 
length is then given by

n2

8 b j T — TJ .
7* £ « ael a exp (6.53)

Notably, the correlation length diverges but, unusually, not as a power law - again 
a consequence of the nonlinearity of the flow equations. From here, we obtain a 
reduced free energy

fsing x /, x exp
n2

4 b  ̂T — Tc /
(6.54)

whose derivatives with respect to temperature at the transition are all finite. In 
particular, the second derivative - the heat capacity - remains non-singular, which 
is again unusual for a second-order phase transition.

34 Reprinted with permission from D. J. Bishop and J. D. Reppy, Study of the superfluid transition 
in two-dimensional 4He films, Phys. Rev. Lett. 40, 1727 (1978). Copyright (1978) by the 
American Physical Society.
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6.6 Summary and Outlook

conformal 
symmetry

In this chapter we have introduced renormalization group methods as a powerful 
option for the understanding of theories beyond perturbation theory. The focus here 
has been on applications in quantum statistical mechanics: we introduced real space 
renormalization, tailored to spin models or local defect structures, and different ver­
sions of momentum space renormalization. We discussed concepts of renormalized 
perturbation theory, such as loop and e-expansion, and how the flow equations 
obtained by RG methods characterize the critical physics of phase transitions. Dif­
ferently geared introductions to the RG might have put more emphasis on the 
question of renormalizability, alternative regularization schemes, renormalization 
through counter-terms, or the triumphs that renormalization group methods have 
had in QED and QCD. However, we hope that the present discussion hs been sub­
stantial enough to convince the reader of the power and versatility of RG methods 
and that it will motivate further study.

At this point, we have introduced most of the basic concepts of field theory in 
condensed matter physics. The final missing piece is the discussion of concepts in­
terfacing between field integrals and observable quantities via correlation functions. 
This will be the subject of the next chapter, which will conclude the introductory 
part of this text.

INFO Before leaving this chapter one final comment on the role of symmetries in critical 
phenomena is due. We have seen the importance of the scale invariance of theories close 
to phase transitions - both methodologically in the execution of the RG program and 
conceptually in the manifestations of critical phenomena. However, it can be shown that, 
under quite mild conditions, critical theories enjoy an even richer set of symmetries, namely 
invariance under conformal transformations. Conformal transformations are mappings 
of space(-time) which are locally angle preserving. Besides scale transformations, they 
include translation, rotation, or angle preserving inversions of space. In the particular 
case of two-dimensional theories, the group of conformal transformations is even infinite 
dimensional, and conformal symmetry is a principle so rich that it almost fully determines 
the contents of a theory.

Readers wishing to learn more about conformal invariance are invited to take a look at 
the nutshell introduction in appendix section A.3, or to consult one of the many available 

6 
texts on the subect.

6.7 Problems

6.7.1 Dissipative quantum tunneling: strong potential limit

In section 6.1.2 we considered a quantum particle subject to a periodic potential and dissipative 

damping. We applied a combination of perturbation theory and renormalization to show that
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the potential will grow if the disispation is suciently strong. Eventually, however, it will 

become so large that the perturbative treatment is no longer valid. In this problem we consider 
the situation in this high-potential limit. As a result, we obtain the upper portion of the ow 

diagram discussed in section 6.1.2.

Let us consider the action (6.11) in the limit where the potential strength c is large 
in comparison to the high-frequency cutoff A. To implement the condition w < A, 
we add a kinetic energy term Skin[9] = (l2m/2) J dr 92 to the action, where l is a 
parameter of dimensionality [length]. The mass parameter is chosen such that, at 
wn = A, the kinetic energy term becomes of the same order as the dissipative term, 
and for larger frequencies dominates. Its strong frequency dependence, 92 ^ w29(w) 
then effectively regularizes all frequency integrals. (Consider the fast field integrals 
of the RG step to convince yourself that this is true.)

We thus start out from the generalization of Eq. (6.11),

S[9] = ^~ Adw) |wII9(w)|2 + /"dT (ml 92 + cos(9(T)) 
4ng J 2 \ 2

Assuming the dissipation term to be 
weak, let us consider the variational 
equations in the g ^ x limit: ml2dT9 + 
sin 9 = 0, i.e., the equation of the math­
ematical pendulum in imaginary time. 
Recalling that these equations describe 
the real-time problem in an effectively 
inverted potential (section 3.3.1), the 
relevant stationary phase configurations 
contain extended periods where the par­
ticle rests at the maxima of the potential. 
These resting periods are interspersed by 
instanton events, where it quickly rolls from one maximum to another.

Throughout, it will be convenient to change variables to h = dT9 (see the bottom 
part of the figure). For a configuration containing n+ instanton events and n- 

anti-instanton events, h(t) n=i eif (t — Ti), where Ti is the time of the event,
ei = +1 (—1) for an instanton (anti-instanton), n = n- + n + , and f (t) is a function 
that is peaked around zero, has a width ~ c, and integrates to 2n = J—^ dT f (t) = 
h(x) — h(—x).
(a) Show that the action of a general instanton trajectory is given by

S[9] = 1 f (dw) e-e-e-iu(Ti-Tj) |f (W)| + nS- t
1 |y] 4 J (^w) 2_■ eieje || + n^inst,

i,j=i

where Sinst is the action of a single instanton event and we neglect fluctuation 
determinants. Then, apply a Hubbard-Stratonovich transformation to bring the 
partition function to the form
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n

Z = ± m- i* e nSinst 

ei=±1

e-4n f(du)|q(u)|2|w| e1^ieiq(Ti)

You may use the fact that, in the frequency range of interest, f (w) ~ f (0) = 2n. 
(c) Sum over all configurations {ei} to obtain

Z = j Dq exp ^-4ngT | qm |2| wm | + y J dT cos( q ( t )) (6.55)

where 7 = 2e- Sinst.
Intriguingly, we have arrived at a functional integral whose action is structurally 

equivalent to the starting point (6.11). The only difference is the changes in the 
coupling constants, g ^ gdual = g-1 and c ^ y = 2e-Sinst• This is an example of 

self-duality self-duality of a field theory. In the present realization, large values of the potential 
c map onto a small potential in the dual representation; dissipation strengths g > 1 
map into gdual < 1. Use this information to convince yourself of the validity of the 
upper portion of the flow diagram discussed in section 6.1.2.

Answer:

(a) This result is obtained by substitution of dm = — '.I'mw-''' flfli eiei‘JmTi into the 
action. The decoupling of the eiej -term by an auxiliary field q(w) is achieved by 
standard Gaussian integration. In the partition function, we need to integrate over 
all intermediate time coordinates Ti , and sum over all sign configurations {ei }.
(c) Reorganizing terms we obtain

Z= Dqe-4n f (d^)lq(^)I2I(“)l

Dqe 4n ((du)|q(u)| |(“)| — Yy [ dT cos(q(t)^
nn!

and, upon resummation, the result is Eq. (6.55).

6.7.2 Quantum criticality

quantum 
phase 

transition

A quantum phase transition is a qualitative change of the ground state of a quantum 

system in response to the variation of an external parameter. If the order parameter charac-

terizing the transition remains continuous, power law singularities and critical phenomena are 

to be expected. In this problem, we discuss what sets these zero temperature quantum phase 

transitions apart from their non-zero temperature classical cousins.

We have frequently seen how d-dimensional quantum systems bear similarity with 
classical (d + 1)-dimensional systems - the imaginary-time coordinate adds one di­
mension, limited to a finite range [0, fl] at finte temperatures. However, in most 
applications, time and space enter the action in an anisotropic manner, and their
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heavy 
fermion 

materials

scaling properties must be discussed separately. This intrinsic anisotropy is at the 
origin of the phenomena characterizing quantum criticality. The theoretical phe­
nomenology of the quantum critical system was formulated by Hertz35 soon after the 
development of the renormalization group method. However, it took much longer 
before experimentalists were able to probe quantum criticality in, for example, the 
context of metallic magnetism in heavy fermion compounds.

35 J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14, 1165 (1976).
36 A. J. Millis, Effect of a non-zero temperature on quantum critical points in itinerant fermion 

systems, Phys. Rev. B 48, 7183 (1993).

INFO Heavy fermion materials contain rare-earth elements such as Ce or Yb, or 
actinide elements such as U (examples including UBe13, CeCu2Si2, and many more). The 
effective masses of their inner shell conduction electrons often exceed the bare electron 
mass by two orders of magnitude and, as a consequence, the Fermi energy is unusually 
small (exercise). At low temperatures, many of these materials are magnetically ordered, 
others show strong paramagnetic behavior, and some unconventional superconductivity.

In this problem, we will consider quantum criticality in itinerant magnetism. Our 
starting point is the effective action of a magnetization field, m, in a Fermi liquid, 
assumed uniaxial, or scalar for simplicity. In problem 5.6.7 we found that, for low 
frequencies, |wn| . rq (see Eq. (5.69)),

S [ m ] = TT y (dq) (5 + q2 + |rni^ | mq |2 + u y dxm 4( x).

In this expression, the lattice spacing is set to unity and hence q is dimensionless, 
with the q-integration cut off at A = 1. In problem 5.6.7 we considered ferromagnetic 
correlations, for which rq ~ vF|q|. However, here it will be instructive to compare 
with the antiferromagnetic case, for which one can show that rq = const. Finally, 
the parameter r measures the distance to the quantum critical point.

In the limit of high temperature, fluctuations are dominantly static, m(t) = 
const., and the problem reduces to that of ^4 theory. Recall that in dimensions 
dimensions 1 > d > du, and for 5 < 0, we observed the formation of a fixed point 
with finite magnetization and nontrivial critical fluctuations around it. Drawing on 
the seminal works of Hertz35 and Millis36 our aim here is to explore the role played 
by quantum fluctuations in this setting.
(a) As a warm-up exercise, show that the free energy of the Gaussian theory, 
5 > 0, u = 0, takes the form

FGauss = 2Ld ! (dq) j (dw) coth (^y ) tan 1 w/rq \ 
5 + q2J
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up to a formally divergent temperature-independent constant. (Hints: To extract
the 5-dependent contribution above, first compute the derivative d&F, to later regain
the 5-sensitive part of F by integration, J d5 d$ F.) 
For the Matsubara summation, work with the inte­
gration contours shown in the figure. The integral 
along the small semicircles cancels against the con­
tribution of the zero Matsubara frequency, w0, to the 
sum (why?). Neglect the contribution from the closing 
semicircles at |w | ~ rq.
(b) To guide our analysis of the non-Gaussian the­
ory, it is helpful to develop the RG on the Gaussian
model first. As usual, we start with the introduction
of a fast/slow field separation scheme. Here, the presence of independent frequency 
and coordinate axes complicates matters somewhat compared with earlier studies. 
Where momentum is concerned, the fast layer will be defined as A/b < |q| < A 
as usual. Frequencies, on the other hand, are cut off at w ~ rq = rq(q). We thus 
declare that frequencies rq//b-z < |w| < rq are fast and all others slow. Here, the 
presence of the dynamical exponent z reminds us that frequencies and momenta
may be scaled differently. The anisotropic dissection of the coordinate domain de­
fines the fast wedge indicated in the figure.

Perform the RG step for the Gaussian theory, and 
then a rescaling such that the coefficients of the q2 

and the |w|/rq terms remain constant. To facilitate 
the bookkeeping, represent the Matsubara sum as an 
integral T 52n ^ f (dw). Then rescale as q' = zq, w' = 
bzw,mq = b-dmmq, and determine the dynamical ex­
ponent z and the field renormalization dm needed to 
achieve the above constancy. Determine the scaling di­
mension y$ of the 5-term.

upper 
critical 

dimension

Finally show that the quartic interaction scales with yu = 4 - d - z, so that 
du = 4 - z is the upper critical dimension of the model.
(c) The inclusion of the interaction term generates fast-slow field coupling 
Sc[ms, mf] = (3u/2) dx ms2mf2. We represent the RG step as

Z = J Dms e-S[ms](e-U[msmf]f,

where (•••)£ denotes the fast field integration over the quadratic action Sf[mf]. 
Perform this integral to first order in an expansion in u.37 For the ensuing loop 
integrals over the fast field propagator, use the results obtained in part (a) and 
take the particular form of the fast momentum/frequency integration domain into 
account. Finally rescale as in (b) to obtain the the RG equations

37 Note that this is different from the one-loop expansion performed earlier for the ^4-model. The 
latter included terms of O(u2 ).
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d ln b ,
du

dinb = (4- d - z) u,

df = 25 + uf (T), (6.56)dlnb

where

f (T) =c [1 - P Cs) rh+z c°th f sz-2) sd  ̂)
n 2T T 1 + s2 2 T ) s4 + 1and c is a numerical c°nstant. The first and sec°nd °f these equati°ns say that 

temperature T = T(b) and interacti°n c°nstant, u = u(b) scale acc°rding t° their 
engineering dimensi°n at l°west °rder in perturbati°n the°ry. The third equati°n 

describes the change in the parameter 5 = 5(b) measuring the distance from the quantum critical p°int in terms °f a functi°n f(T). The c°mplicated-l°°king struc­
ture °f that functi°n reflects the j°int influence °f fluctuati°ns in spatial and in 
temp°ral directi°ns °n the fl°w °f the c°upling c°nstant.
(d) S°lve Eqs. (6.56) t° °btain

quantum 
phase 

transition

T(b) = Tbz, 
u(b) = ub4-d-z, 

5(b) = 5b2 + b2u ln b dx e(2-d-z)xf(T exz), (6.57)

0

where (T, u, 5 ) defines the starting c°nfigurati°n °f the fl°w.The functi°n f g°verning the fl°w equati°ns (6.56) c°ntains a wealth °f inf°rma- 
ti°n °n the nature °f the quantum critical p°int. Referring f°r their full analysis t° 
Ref.36 , we summarize here a few c°nclusi°ns.

At T = 0, a quantum phase transtion °ccurs at a critical value 5 = 5c , where

= uf (0)
z + d — 2

(6.58)

is pr°p°rti°nal t° the interacti°n c°efficient (and hence cl°se t° zer° 
in the present linearized the°ry). 
The critical p°int separates an °r- 

dered phase with finite magnetiza- 
ti°n (5 < 5c ) fr°m a dis°rdered °ne 
(5 > 5c).

F°cusing °n the dis°rdered side °f the transiti°n (the analysis °f 
the °rdered side is m°re c°mpli- 

cated and will n°t be addressed here), 5 > 5c , b°th 5 and T increase under ren°r- 
malization. Depending °n which one becomes large first, 5 ^ 1 °r T ^ 1, we expect 
different behavi°rs.
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quantum 
regime

To find the demarcation line between these two different regimes, we substitute 
1 — 6 (b) — 6b2 into T(b) — Tbz — T6-z/2. If T(b) < 1 when 6 (b) reaches unity, 
i.e., the starting value T const. x 6z/2, the critical properties of the transition 
are largely identical to those of the T = 0 quantum theory. This is the quantum 
regime, or T = 0 regime.

We may identify the scale £ - b - 6-1/2 at which 6(b) - 1 becomes large as 
the correlation length of the model and £T — 6-z/2 as the corresponding correla­
tion time. For temperatures larger than the crossover scale above, the extension of 
the system in the imaginary-time direction, we have T-1 < £T. The system looks 
strongly correlated at all scales, as if it were at the critical point. This tempera­
ture range defines the regime of quantum criticality. Notice the counterintuitive 
correspondence (large temperatures) o (quantum criticality).

Specifically, for temperatures T 1, the function f (T) ~ c, with c a numerical 
constant. We may then introduce the product v = uT and convince ourselves (do 
it) that the scaling equations reduce to

dv
d ln b

= (4 - d)v,

d6
d ln b

26 + ccv.

These equations are structurally identical to the (linearization of the) flow equations 
of ^4-theory, Eq.(6.31). The interpretation of this finding is that, at high tempera­
tures, the criticality of our system reduces to that of the classical ferromagnet.

The discussion of the ensuing critical phenomena requires matching the flow in 
the T 1 regime with that at lower temperatures T 1. Referring for a detailed 
discussion to Ref.36 , we note that the system supports a line of classical (finite 
temperature) phase transitions in the ^4-class at a critical temperature

6 6c
z(d+z-2)-1

Tc ^

This line terminates in the quantum critical point at Tc = 0. It also turns out that 
the critical line lies inside a narrow region (see the dashed line) in which the theory 
becomes essentially non-Gaussian, i.e., the interaction u cannot be treated in lowest 
order perturbation theory. Inside that region, the previous analysis of the classical 
ferromagnetic transition applies.

The above characterization of the phase diagram may be translated to measurable 
predictions of, e.g., the specific heat of quantum magnetic materials. For a discussion 
of this and other experimental signatures we refer to the huge body of literature on 
quantum magnetism.

Answer:

(a) For the Gaussian theory, integration over m(q) produces a determinant Z as­
suming the form of a product over values q = (q, un). Taking the logarithm to 
obtain the free energy F = -Tln Z, and then the 6-derivative, one finds
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= Ld I (dq) P f r1
5 + q2 + | un | /r q

dt F = Ld f (dq) T £

^n

= -Ld (dq)

du coth( flu/ 2)
2ni 5 + q2 — iu/rq

du coth(flu/2) u/rq 

~ (5 + q 2)2 + (u/r q )2 '

To arrive at the first integral, we have integrated over the contour described in
■j-l'-jp nrnhlpm TIqi'tio’ flip ir]p'ni~ii~'V' 1 I ^^^q i —________ ^/?_q_______  iirp flip

+ 1 [A(dq) (rq — rq) coth (lq )

J \ bz J \2/

Noting that A(1 — e- ln b) ~ Aln b and A(1 — e-z ln b) ~ Az In b, this result assumes 
the form (m2) — f (T, 5) ln b. Finally, applying the rescaling s — u/rA or s — |q|/A 
as appropriate, setting A — Aq — 1, and neglecting 5 1, we obtain the required ex­
pression for f (T) ~ f (T, 0), and the update equation 51 — 5(1+2 ln b)+12uf (T) ln b. 
At lowest order in perturbation theory, the coupling constant u changes according 
to its engineering dimension, u1 — b4-d-zu ~ (1 + (4 — d — z) ln b)u. Similarly,

die prouiein. using die icieiidty tt tan I , + q2 J — (t + q2)2 + (^ /r )2 , we outaiii die
required result.
(b) In the Gaussian theory, fast and slow fluctuations decouple, and so the RG step 
is trivial. The remaining slow field action is given by

S[ms] — 1 / (dq) ((du) 5+ + q2 + J^n |ms(q)|2,
2 J J \ r q J

where the cutoff dependence of the frequency integral is left implicit. Now rescale 
to obtain

S[m] — --------  f (dq) f (du) 5+ + q2b 2 + 1—1 b z+1^ |m(q)|2b2dm. (6.59)
2 J J \ r q J

In the ferromagnetic case, rq ~ |q|, the q2 term and the |u|/rq term remain 
invariant if and only if d + 2 + z - 2dm — 0 and d + 2z - 1 - 2dm — 0, respectively. 
This requires dm — (d + 2 + z)/2 with z — 3. For the antiferromagnetic case, we 
obtain z — 2. The 5-term picks up a scaling factor b2 , so yt — 2. Similarly, the 
dimension of the operator u dx m4 is given by yu — -3(d + z) + 4dm — -d-z + 4. 
Here, the factor 3 represents the three frequency/momentum integrals that are 
equivalent to a single coordinate integral.
(c) The first term in the u-expansion, (3u/2) Jdxm2(m2), gives rise to a renor­
malization of the coefficient 5 . Evaluating this contribution, and expressing the 
frequency summation by a contour integral as in (a), we obtain

(m2) — 2 (dq)(du) coth u/r q
(5 + q2)2 + (u/rq)2 ,

where the integral runs over the momentum shell dA (see the figure on page 376). 
Taking each component of the integral in turn, one obtains

(m2) — 2 f A
A 
b

Ad 1Qd f (du) coth _______u/rA_______
(5 + A2)2 + (u/rA)2

1
(5 + q2)2 + 1.
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T' = bzT ~ (1 + z In b)T. Differentiating these expressions, we arrive at the re­
quired differential recursion relations.
(d) This is a straightforward exercise in solving linear differential equations.

6.7.3 Kondo effect: poor man’s scaling

In problem 2.4.7, we saw that the low-energy properties of a magnetic impurity immersed into 

a metal are described by the sd-Hamiltonian, Eq. (2.50): a system of free fermions coupled 

to the impurity spin by an exchange coupling J. In problem 4.6.3, we applied perturbation 
theory to nd that the impurity scattering rate diverged at decreasing temperatures { the 

principle behind the increase in low-temperature resistivity in the Kondo problem. However, 

in perturbation theory, nothing could be said about the extrapolation of that temperature 

dependence to the low temperature/strong coupling regime. In the following, we ll this gap 

by renormalization group methods.

Our starting point is the sd-Hamiltonian

-O'_ V-- "K 4- V-- "K / _ -O'. / 4- 4- \ _ -O'. I 4- _ -O'. 4- \U , — \ - zJ r. I X I j qS zJ r. _ „T r. \ I 7, q+,T r. I 7 c—J r. \ H sd = / > £ k c k a c k a + / v JS S S Vc kf c kzf c k. c k^J + J + S c k. c kzf + J - S c kf c kz ±j ,

where S denotes the impurity spin and, anticipating anisotropy, we allow for inde­
pendent components of the exchange coupling.

In the following, we will implement a version of the RG procedure taken from 
the original paper by Anderson.38 To this end, let us divide the conduction band of 
width D into high-lying electron-hole states within an energy shell D/b < | ek| < D 
and the remaining states 0 < |ek| < D/b. To eliminate the high-lying excitations, we 
apply a procedure similar to that leading to the sd-Hamiltonian in problem 2.4.7: 
we write the eigenstates of the Hamiltonian as a sum |Z) = |Z0) + |Z 1) + |Z2), 
where |Z 1) contains no conduction electrons or holes close to the band edge, |Z0) 
has at least one high energy hole, and |Z2) has at least one electron. Following 
the discussion in problem 2.4.7, we eliminate |Z0) and |Z2) from the Schrodinger 

2equation £n=0 Hmn |Zn) = E | ^m) to obtain

f^H 1O * HU01 + HU 11 + HU 12^ \ HI21) |Z 1) = E|Z 1) • (6.60)
E - H00 E - H22

Here, the Hamiltonians H00 and H22 appearing in the high-energy shell propa­
gators can be approximated by the free conduction electron Hamiltonian H0 = 
Ska ekckacka. Corrections to this approximations would include higher powers of 
the shell thickness and may be neglected in the limit b \ 1.

38 P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 
3, 2436 (1970). For an extended and much more detailed discussion, see A. C. Hewson, The 
Kondo Problem to Heavy Fermions (Cambridge University Press, 1993).
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(a) Identify the concrete form of the third term on the l.h.s. of Eq. (6.60). In 
particular, show that there exists a contribution

T T \ ' C- t 1 C ' t l/\
J+ J> S ckstckf 4 E - Hc22 S ckf4ckst1^ 1/,

where the wave vectors kf (ks) lie within (outside) the band edge.
(b) Focusing on this contribution alone (for now), perform the summation over 
f -states to show that the operator assumes the form

J+J- V0D(0D(1 - b —1)S-S+ckstckst 

ksks

1

E - D + eks -H0

where v0 denotes the density of states at the band edge. Assuming that we interested 
in states close to the ground state, and E is close to the ground state energy, all three 
contributions to the energy denominator, H0, E, eks may be neglected compared to 
the high energy scale D. Using the fact that for spin S = 1/2, SC-SC+ = 1/2 - SCz, 
the contribution thus takes the form

- J+ J— v 0(1 - b 1)^2 - S z^ c kst c ks t.
ksks ' 7

We leave it as an unanswered part of the exercise to confirm that the parallel 
contribution from the process in which a hole is created in the lower band edge 
leads to the expression

-J+J- v0(1 - b-1) 2 + Sz) ckstckst.

(Try to use arguments based on particle-hole symmetry rather than developing a 
first principles analysis.) Following a similar procedure, one may confirm that the 
second class of spin-conserving terms lead to the contributions

J2—^52 v0 D(1 - b )
t

cks a cks a , 
t

cks a cks a .

This completes the analysis of contributions to the effective Hamiltonian for 
|^ 1) which leave the electron and impurity spin unchanged. The four remaining 
contributions involve a spin flip. Following a similar procedure to the one outlined 
above, one may identify two further contributions,

JJ+ y v0(1 - b—1)S+ / -ck74ckst, 
2 ksks I ckstcks4

where we have used the identity SCz SC+ = SC+/2. One may confirm that the corre­
sponding terms with the order reversed generate an equal contribution.

When combined with terms from a spin-reversed process, altogether one finds 
that the components of the exchange constant become renormalized according to
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J±(b) = J± - 2Jz J±vo(1 - b-1), 

Jz (b) = Jz — 2 J+ J- v o(1 — b 1).

Setting b = e as usual, we arrive at the differential recursion relations

J = 2 V o J+ J-.
± = 2 v o Jz J±, 

M

A crucial observation now is that these equations are 
mathematically identical to those of the BKT transi­
tion (6.52) - another manifestation of universality in 
critical phenomena. To understand the flow, we just 
need to import our earlier analysis. As a result, we ob­
tain the flow of coupling constants shown in the figure. 
In particular, the combination of coupling constants is 
conserved,

Jz2 - J±2 = const.,

and the constant Jz always increases. The lines Jz2 = J±2 separate the phase diagram 
into a ferromagnetic region (Jz terminating at a non-zero negative value) from a 
more interesting antiferromagnetic domain, where Jz and J± flow to large values.

Setting Jz = J± = J > 0, integration of the scaling equations dJ/dl = 2v0 J2 

gives
1
J

— =2 v o t = 2 vo DDL).

Kondo 
temper­

ature

This equation motivate the definition of the Kondo temperature through

D exp = D(1 )exp (- J>) = TK K

When the running cutoff D(£) ~ TK reaches the Kondo temperature, J(£) ~ vo 1 

has become large and perturbation theory breaks down. Physically, the large anti­
ferromagnetic coupling corresponds to a complete screening of the impurity spin by 
the spins of itinerant electrons. At temperatures far below the Kondo temperature, 
the effective spin singlet formed in this way behaves as an ordinary impurity, and 
transport coefficients such as the impurity resistivity cease to show strong temper­
ature dependence.

Answer:

(a) The operator transferring conduction electrons into the band edge is given by

Q„, — \ ( 7 Q z ( z r- — /' r- I -I- 7 Q+ r- T r- X- 1 Q-/^ r- IH 21 = / . Jz S J kf t c kst c kf ^ c ksj + J + S c kf £ c ks£ + J - S c kf £ c ks£> K

Since H22 ~ Ho does not change spin states, the operator H 12(E — H22)-1 HH21 

involves the following combinations:
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(1) J—S ckstckf^ x J+ S+ckf^ckst,

(2) - JzSzcks;ckf^x J+ S+ckf;ckst,

(3) J Szct c x J S-ct c (3) JzS cks^ckftx j—S ckftck,

(4) Jz S c kst c kf tx Jz S c kf t c ks^.

Of the four processes, terms (2) and (3) involve a spin-flip process while terms (1) 
and (4) preserve the electron spin orientation. When combined with the energy 
denominator, the particular contribution specified in the question corresponds to 
the first process, (1).
(b) Since the band edge occupancy of the reference state |^ 1) is zero, one can set

Et 1 t I , \ -^ ,—1A t 1ckstckf + E - H22 ckf;ckst|^ 1 > = voD(1 — b )ckstckst E - D + £k - Ho,

where H0 denotes the single-particle Hamiltonian of the band electrons, k = 
DD/^ dev(e) ~ v0D(1 - b —1), and we have set ekf ~ D. As a result, one obtains the 
required formula.



7 Response Functions

SYNOPSIS The chapter begins with a brief survey of the concepts and techniques of 
experimental condensed matter physics. We will show how correlation functions provide 
a bridge between concrete experimental data and the theoretical formalism developed in 
previous chapters. Specifically, we discuss an example of outstanding practical importance: 
how the response of many-body systems to various types of electromagnetic perturbation 
is described by correlation functions, and how these functions can be computed by field- 
theoretical means. We will exploit the fact that, in most cases, the external probes are weak 
compared with the intrinsic electromagnetic forces of a system, and hence can be treated in 
a linear approximation. The ensuing linear response theory defines the structure of a large 
group of probe functions routinely considered in field theory. Physically, these functions 
define transport coefficients, the electric conductance being the best known representative.

In the previous chapters we learned how microscopic representations of many-body 
systems are mapped onto effective low-energy models. However, to test these theo­
ries, we need to connect them to experiment. Modern condensed matter physics 
benefits from a plethora of powerful techniques, including electric and thermal 
transport, neutron, electron, and light scattering, calorimetric measurements, in­
duction experiments, scanning tunneling microscopy, etc. We begin this chapter 
with a synopsis of structures common to most of these approaches. This will antic­
ipate the links between experiment and theory to be addressed in later sections.

7.1 Experimental Approaches to Condensed Matter

7.1.1 Basic concepts

384

Broadly speaking, experimental condensed matter physics can be subdivided into 
three* 1 categories:

> experiments probing thermodynamic coefficients,

> transport experiments,

> spectroscopy.

1 Some classes of experiment (such as scanning tunneling microscopy) do not really fit into this 
scheme. Moreover, the physics of atomic condensates and optics — which on the theoretical side 
has an overlap with the concepts discussed previously — has its own portfolio of techniques.
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Most references to experimental data made in previous chapters were to thermody­
namic properties. Thermodynamic coefficients are extracted from the partition sum 
by differentiation with respect to globally defined parameters (temperature, homo­
geneous magnetic field, etc.). This simplicity has advantages but also limitations: 
thermodynamic data is highly universal2 and therefore represents an important 
signature of any system. On the other hand, it is blind with regard to microscopic 
structures and dynamical features, and therefore does not suffice for fully under­
standing the physics of a system.

2 Remember that a few thermodynamic variables are sufficient to characterize the state of a 
homogeneous system in equilibrium.

3 An important exception is heat conduction.

By contrast, transport and spectroscopic measurements - the focus of the present 
chapter - probe more fine-grained structures of a system. In spite of their large 
variety, these experimental approaches share a few common features:

Many-body systems usually interact with their environments via electromagnetic 
forces.3 Experiments use this principle to subject systems under consideration 
to electromagnetic perturbations (voltage gradients, influx of spin magnetic mo­
ments carried by a beam of neutrons, local electric fields formed at the tips of 
scanning tunneling microscopes, etc.), and detect their response by measuring 
devices.

Formally, the perturbation is described by an addition 

HF = ! ddr Fi (r,t)Xi (r) (7.1)

to the system Hamiltonian, where the generalized forces F/ are (time-dependent) 
coefficients, coupled to the system through operators X'. For example, F'^ (r, t) = 
^ (r, t) for a dynamical voltage coupling to the electronic charge carriers via the 
density operator Xi = p.

The use of the term “perturbation” is appropriate because the forces {F/} are 
generically weak.

The forces perturb the system out of its Fi = 0 reference state. The measurable 
consequence is that certain operators, Xi, build up non-vanishing expectation 
values Xi(r,t) = (Xi(r,t)). (For example, a current Xi = ji may begin to flow 
in response to an applied voltage Fi = ^.) The goal of theory is to understand 
the dependence of the measured values of Xi on the forces Fj.

For a general external influence, Xi [Fj] will be some functional of the forces. 
The situation simplifies under the assumed condition of weakness. In this case, 
the functional relation is approximately linear, i.e., it is of the form

Xi(r,t) y ddr'! dt' xij (r,t; r,t')Fj(r,t') + O(F/2). (7.2)
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response 
function

linear
response

While the quantities {FJ} and {Xi} are externally adjustable and observable, 
respectively, the integral kernel x represents an intrinsic property of the system. 
These response functions or generalized susceptibilities describe how the 
system responds to the application of {F/}, and they are the prime objects of 
interest of linear response theory.

> We are generally interested in response functions probing a system’s energeti­
cally low lying excitations. For this reason, condensed matter experiments are 
mostly carried out at low temperatures: from O(1 K) in the physics of correlated 
quantum matter, down to O(1 mK) in transport experiments.

These considerations show that response functions are a principal interface between 
experiment and theory; they are measurable, while theory attempts to predict them, 
or at least understand the experimental observation. However, before turning to 
the more specific discussion of response functions in field-theoretical frameworks, 
it may be illustrative to introduce a few concrete types of experimental probe and 
the information they yield.

INFO The linearity criterion may break down if either the perturbation is strong, or 
the system under consideration is small. Both scenarios are realized in modern physics. 
For instance, nonlinear optics probes the response of systems to strong electromagnetic 
forces, usually exerted via lasers. Phenomena such as frequency doubling (see below) 
then indicate a nonlinear response. Conversely, for the small-sized systems realized in 
nanoelectronics or atomic condensates, small perturbations may by themselves induce 
a shift out of thermal equilibrium (chapter 12). Finally, the measurement itself may play 
a non-trivial role: quantum measurement is an invasive process changing the state of a 
system. In some system classes, notably those considered in connection with quantum 
computing, these changes become crucially relevant. However, in this chapter, we restrict 
ourselves to the class of linear probe experiments.

7.1.2 Experimental methods

REMARK This section provides background material and can be skipped at first reading. 
Alternatively, it can be used as a (non-alphabetically ordered) “glossary” of experimental 
techniques in condensed matter physics.

In this section, we illustrate the connection ab ove (perturbation response) for 
a few examples. Theorists interested in applied aspects of condensed matter field 
theory will need a more substantial background in experimentation (see Kuzmany’s 
text4 for the important class of spectroscopic experiments); the following is no more 
than a quick overview.

4 H. Kuzmany, Solid State Spectroscopy (Springer-Verlag, 1998).
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thermo­
dynamic 
suscept­
ibilities

Thermodynamic experiments

Thermodynamic experiments usually probe susceptibilities, derivatives of exten­
sive variables with respect to intensive ones.5 Examples include the specific heat 
cv = dU/dT, the rate of change of internal energy under a change of tempera­
ture, the magnetic susceptibility x = dM/dH, the change of magnetization 
in response to a static magnetic field, and the (isothermal) compressibility 
k = — V-1 dV/dp, the volume change in response to external pressure, etc. Note 
that the magnetic susceptibility and the isothermal compressibility are tensor quan­
tities. However, as with other tensorial observables, that complication is usually 
suppressed in the notation unless it becomes relevant.

Thermodynamic response functions are highly universal. (Remember that a few 
thermodynamic state variables suffice to characterize unambiguously the state of 
a given system.) For given values of chemical potential, magnetic field, pressure, 
etc., a calorimetric experiment will produce a one-dimensional function cv (T). The 
low-temperature profile of that function generally contains hints as to the nature 
of the low-energy excitations of a system.6 However, the universality of thermo­
dynamic data also implies a limitation: thermodynamic coefficients do not contain 
information about the spatial fluctuations of a given system or about its dynamics.

Transport experiments

The application of a generalized “voltage” U 
may trigger current flow through a device (see 
the figure). That voltage may be electrical, U = 
V, or represent a temperature drop U = AT, or 
even a difference in magnetization between two 

I, IS, I

I, IS, ITV at; a

attached reservoirs, U = AM. Accordingly, the induced current can be the elec­
trical current I carried by the charge of mobile carriers, the “thermal current” 
IT carried by their energy, or the “spin current” IS carried by their magnetic 
moments. These currents need not be parallel to the voltage gradient. For example, 
in a perpendicular magnetic field, a voltage gradient will give rise to a transverse 
Hall current I£. The ratio of a current and a static voltage difference defines a 
direct current (DC) conductance coefficient, g = Uu. (Quantum transport in re­
sponse to time-varying voltages is described by alternating current (AC) transport 
coefficients, and will be addressed below.)

Conductance measurements probe the electrical transport behavior of metals or 
the thermal conduction properties of insulators and superconductors. The required 
attachment of contacts makes transport experiments invasive, which can be a disad­
vantage. For example, there are situations where injection processes at the contacts,

5 Recall that a thermodynamic variable is extensive (intensive) if it is proportional (independent 
of) system size.

6 For example, the specific heat of a Fermi liquid, cv,Fermi liquid ~ T, is linear in temperature 
and that of phonons, cv,phonon ~ T3, is cubic, while in a system without low-lying excitations, 
it vanishes exponentially (exercise: consider why).
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rather than the bulk transport in which one is interested, determine the measure­
ment outcome. (For a further discussion of this point, we refer to problem 7.6.1.)

Spectroscopic experiments

spectro­
scopy

The general setup of a spectroscopic experi­
ment is shown in the figure. A beam of particles 
p - either massive (electrons, neutrons, muons, 
atoms, etc.), or quanta of electromagnetic radia­
tion - is generated at a source and then directed 

S k, m

spectroscopy

onto a sample. The kinematic information about the source beam is contained in the 
dispersion relation (k, w(k)).7 The particles of the source beam then interact with 
constituents X of the sample to generate a secondary beam of scattered particles 
p'. Symbolically,

p
t

k, w(k)

+ X —> p' + X'

K, Q(K) k',w(k') K', Q(K'), 

where X' represents the final state of the process inside the sample. Notice that 
the particles p' leaving the sample need not be identical to those incident on the 
sample. (For example, in photoemission spectroscopy, X-ray quanta displace elec­
trons from the core levels of atoms in a solid.) The dominant scattering process 
may be elastic (e.g., X-rays scattering off the static lattice structure) or inelastic 
(e.g., neutrons scattering off phononic excitations). In either case, the accessible 
information about the scattering process is contained in the frequency-momentum 
distribution P(w(kz), k"’) of the scattered particles, as monitored by a detector.

From these data, one would like to obtain the dispersion (Q(K), K) of the states 
inside the solid, and this is where the detective work of spectroscopy begins. We 
know that (k, w(k)) and (K, Q(k)) are related through an energy-momentum con­
servation law, i.e.,

k + K = k' + K',

w (k) + Q(K) = w (kz) + Q(K').

According to this relation, a peak in the recorded distribution P(k',w(k')) signals 
the existence of an internal physical structure (for example, an excitation, or lattice 
structure) of momentum AK = K' — K = k — k' and frequency AQ = Q' — Q = 
w — w'. However, what sounds straightforward in principle may be complex in prac­
tice: solid state components interact almost exclusively through electromagnetic 
forces. When charged particles are used as scattering probes, the resulting interac­
tions may actually be too strong. This happens when scattering electrons strongly 
interact with surface states (rather than probing a bulk), or when complicated

7 For some sources, e.g., a laser, the preparation of a near-monochromatic source beam is (by 
now) standard. For others, such as neutrons, it requires considerable experimental skills (and 
a lot of money!).
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Table 7.1 Different types of condensed matter spectroscopy.

Type Incident Outgoing Application
Raman visible light same dispersion of optical phon 

-ons and other collective ex­
citations

Infrared infrared light same spectrosocopy of bandgaps, 
chemical composition

X-ray X-ray same crystalline structure
X-ray absorption X-ray same electronic structure via solid 

state binding energies
X-ray fluorescence X-ray same chemical analysis, detection 

of impurities
Photoemission spectroscopy 
(PES)

X-ray electrons photoemission of electrons 
probing binding energies

Angle-resolved photoemis­
sion spectroscopy (ARPES)

X-ray electrons angle-resolved detection
of photoemission electrons 
probing band structures

Neutron scattering neutrons same low-lying collective excita­
tions (phonons, magnons), 
crystallographic structure

Nuclear magnetic resonance 
(NMR)

magnetic field same magnetic properties of con­
duction electrons

processes of large order in the interaction parameters make the interpretation of 
scattering amplitudes difficult. For this reason, many spectroscopic techniques em­
ploy neutrons or electromagnetic radiation as scattering agents.

A few of the most important types of spectroscopy applied in condensed matter 
physics are summarized in table 7.1. The list is not exhaustive; other classes of spec­
troscopy include Auger, Mossbauer, positron-electron annihilation, electron energy 
loss spectroscopy. The large number of specialized spectroscopic probes emphasizes 
the importance of these approaches in condensed matter.

Other experimental techniques

STM 
microscopy

Among the few experimental probes of condensed matter that do not fit comfortably 
into the three-fold “transport-thermodynamics-spectroscopy” classification, scan­
ning tunneling microscopy (STM) is particularly important. STM provides 
visual images of quasi two-dimensional condensed matter systems; their invention 
by Binnig and Rohrer in the 1980s (for which they were awarded the Nobel Prize 
in 1986) triggered a revolution in the area of nanotechnology.

The figure (courtesy of T. Michely and T. Knispel) illustrates the principle for the 
example of an (8.5 nm)2 quasi two-dimensional sample of NbS2 - one layer of nio­
bium atoms sandwiched between two layers of sulfur atoms - resting on graphene.
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A small tip is brought into proximity to the 
surface. When the tip-surface separation be­
comes comparable with atomic scales, electrons 
begin to tunnel from the top sulfur layer. The 
resulting tunnel current is fed into a piezoelec­
tric crystal that in turn levels the height of the 
tip. Through this mechanism, the surface-tip 
separation is kept constant, with an accuracy 
of fractions of atomic separations. A horizontal 
sweep then generates an accurate image of the 
crystalline structure of the top layer of atoms. 
In this particular case, the system supports a 
charge density wave (CDW) of wavelength three 
times the atomic separation. The image illustrates how such surface excitations are 
also resolved with microscopic precision.

7.2 Linear Response Theory

REMARK Throughout this section we will alternately use operator and functional inte­
gral representations. If appropriate, we will use a caret notation, X, to distinguish second- 
quantized operators from their field integral represenation, X .

In the previous section, we argued that experiments often probe the (linear) re­
sponse of a system to the application of weak perturbations {FJ}. Such linear 
responses can be cast in terms of a generalized susceptibility x; see Eq. (7.2). In the 
following, we give this formal expression (7.2) a more concrete meaning by relat­
ing it to the theory familiar from previous chapters. However, before entering this 
discussion, let us list a few properties of x that follow from commonsense reasoning:

causality > Causality — The generalized forces Fj(t') cannot cause an effect prior to their 
action, i.e., xij(r, F; t, t0 = 0 for t < t'. Formally, we say that the response is 
retarded.

> If the system Hamiltonian does not depend on time, the response depends only 
on the difference in the time coordinates, xij (r, F; t, t0 = Xij (r, F; t — tO- In this 
case it is convenient to Fourier transform the temporal convolution (7.2),

Xi (r ,w )^y dd r' Xij (r, r'; w) Fj(r ,w) + O( F '2). (7.3)

The important statement made by Eq. (7.3) is that perturbations acting at a 
characteristic frequency w cause a linear response at the same frequency. For 
example, an AC voltage with frequency w will drive an AC current of the same 
frequency, etc. We can read this statement in reverse to say that, if the system 
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responds at frequencies = w, we have triggered a nonlinear response. Indeed, it 
is straightforward to verify (exercise) that the formal extension of the functional 
observable-force relation (7.2) to nth order generates a response with frequency 
nw. According to Eq. (7.3), a peak in the response Xi (w) at a characteristic 
frequency w indicates a maximum of the response function x• Such peaks, in 
turn, reflect the presence of intrinsic excitations and represent structures of 
interest.

> For translationally invariant systems, the response function depends only on 
the differences between spatial coordinates: xij(r, r7; t — t0 = Xij(r — r^ t — tO- 
Spatial Fourier transformation then leads to the relation

Xi (q ,w) = xij (q; w) Fj(q ,w) + O( f/2). (7.4)

By analogy with what was said above about the frequency response, we conclude 
that a peak of the function Xi (q, w) signals the presence of an excitation with 
frequency w and momentum q. We thus see that, at least in principle, linear 
response measurements probe the full dispersion of a system’s excitations.

This is as much as one can say on general grounds. We next turn to a more concrete 
level and relate the response function to the microscopic constituents characterizing 
a system.

EXERCISE Consider X-rays or neutron radiation probing a crystalline medium whose 
unit cells are spanned by vectors ai, i = 1,... ,d. Show that the response function x reflects 
this periodicity through the condition x(k, kz; w) 'x $k-k'-G, where G belongs to the 
reciprocal lattice of the system. In this way, angle-resolved scattering in spectroscopic

spectro- crystallography probes the periodicity of the reciprocal lattice and, therefore, of the
scopic crys­
tallography original lattice.

7.2.1 Microscopic response theory

We now set out to relate the response function to the microscopic elements of the 
theory. Our starting point is the representation of the response signal X(t) as the 
expectation value of some (single-particle) operator8 X aa' caXaa' ca' = c0 Xc,
where ca may be a bosonic or fermionic operator. Within the framework of the field 
integral this expectation value assumes the form

X(T) = {^>(T)X- (t)) = 1 D D^e-S[F' X] ^,(T)X^ (T), (7.5)

where S[F7,^] = So[^] + <5Sz[F7,^] contains the action, S0, of the unperturbed 
system and a contribution

8 For notational transparency, we drop operator indices in this section. For example, J dT F^pX'p 
might represent J dr/ ddrF (r ,t ) ipa ( t, r) X (r) CTCT pa / ( t, r).
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FS'[ F' ,V ] = drHF / dTF'( T ) V( T ) X ’ V ( T ),

added by the generalized force (see Eq. (7.1)).
In practice, it is often convenient to represent X(T) as a derivative of the free 

energy functional. To this end, let us formally couple our operator X to a second 
generalized force and define

FS[F,V] = j dTF(T)JX(T) = y dT F ( T ) tf>( T ) X'V ( T )

as a new element of our action. With S[F, F',V] = S0[V] + FS[F,V] + FS'[F',V], 
we then have

F _____
X(T) = - FFV) F=0lnZ[F,F',

where Z[F, F'] = J DV e-S[F,F ^] depends on the two generalized forces.
In the absence of the driving force F' the expectation value X would vanish. We 

also assume that F' is weak in the sense that a linear approximation in F' satis­
factorily describes the measured value of X . Noting that the first-order expansion 
of a general functional is given by9

G[F'] - G[0] + [ dT' FG[,F,] F'(t'), 
[ ] []+J FF'( t ') ( ),

we can write

r , ( F2 ,A ,, M
X(T) = J dTAFF(t) FF-(t-) Z'FFV F (T')■

Comparison with (7.2) leads to the identification x(t, t') = — F(T)SSF,(T,) ln Z[F, F'] 
of the response kernel. Carrying out the derivatives, we find

1 d2 1 d 1 d
x(T,T ) = —z FF(T)FF-(t-)ZIFF 1 + Z-Ft)Z'0F ' X ZFFF>ZIK0]'

where Z = Z[0, 0]. The last term in this expression is the functional expectation 
value )JX(t)) taken over the unperturbed action. We have assumed that this average 
vanishes, so that we arrive at the representation

X(T,T')
1 F2

Z FF(t) FF'(t')
Z [ F,Ff]

F = F 2=0
(7.6)

Performing the two derivatives, we obtain an alternative representation of the re­
sponse function as a four-point correlation function:

x(T,T') = —(X(T)X /(T')} = —(. V^ T)X^(T) V^ T') X' ^(T')}. (7.7)

While this result is obtained straightforwardly by first-order expansion of (7.5) in 
F', the utility of the representation (7.7) will shortly become evident.

9 T—Tot'd o vi Tlit'AiiifTi/iiil' oil v! ovmo T~moo o vo Tulzun nt n owt o it ] I _j.Here, ^axjAd txir^iu^^xjaoiug, ^aii ^deriv^atives ^are v^a.k.exn ^at zer^d, e.^^., ^2)) _ '̂j IF1 —0.



393 7.3 Analytic Structure of Correlation Functions

INFO Equation (7.7) indicates a connection between two seemingly different physical 
mechanisms. Consider the case where the observed and the driving operator are equal: 
X' = X. Using the vanishing of the equilibrium expectation values, (X(t)) = 0, we can 
rewrite (7.7) as

X(t,t') = - ((X(T) - {X(T)»(X(T') - {X(T')»> . (7.8)

fluctuation— 
dissipation 

theorem

This relation is called the fluctuation-dissipation theorem (FDT). On its right-hand 
side we have a correlation function probing the dynamical fluctuation behavior of the 
observable represented by X . By contrast, the response function X on the left-hand side 
describes the ways in which externally imposed fluctuations dissipate into the microscopic 
excitations of the system. For example, for X = j = current density (see below), X describes 
the dissipative conductance of the system. The manifold interpretations of the FDT in 
the context of statistical field theory will be addressed in the “nonequilibrium” chapters 
11 and 12.

While the function x(t,t') is formulated in imaginary 
time, the quantity in which we are actually interested is the 
real time response of X(t) to driving by F' (t'). This tension 
of real-time questions addressed in imaginary-time frame­
works appeared frequently in previous chapters, and we gen­
erally resolved it by the “analytical continuation” t ^ — ir. 
However, this was just high-minded terminology for a naive 
substitution of time variables, and now the time has come to 
address the issue properly.

In the majority of cases, substitution does indeed lead to 
correct results. It may happen, however, that a function f (t) 
contains singularities in the complex t-plane.* 10 If these are 

REMARK Throughout much of this section we will work in an operator representation 
in which expressions with circumflexes, X , represent canonically quantized operators and 
(•••) = Z-1 tr(— exp{- ft [ H — /i.N }) is the quantum-thermal expectation value.

Discussion of the analytic structure of correlation functions does not require the 
overhead of the field integral and is best formulated in the language of Fock space

10 It is best to think of f (t) as a function on the imaginary axis of a complex-time domain. 
Analytical continuation defines a generalization, F (z), on a domain around the imaginary axis. 
When we make the substitution f (t) ^ f (t ^ it), we imply that the analyticity domain 
includes the real axis.

extended singularities blocking interpolation to the real axis (see figure), the simple 
substitution prescription is problematic. In the following, we discuss the situation 
for the important case where f is a linear response function, and show how math­
ematically controlled continuation procedures are developed.

7.3 Analytic Structure of Correlation Functions
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j tit -j ji-jii • i i j • r j j ioperators. We are interested in the dynamical correlations of two operators X1 and
X2 , where

X i (T) = eT (H - ^N) Xie - T (H - *N), (7.9)

imaginary­
time— 

ordered 
correlation 

function

is the imaginary-time Heisenberg representation,11 HI is the full system operator, 
and Xi = Xi (c1, c) are constructed from the fundamental fermion or boson opera­
tors. (Think of them as current or spin operators, for definiteness.)

The imaginary—time—ordered correlation function of the two operators is 
defined as

CT(T1 - T2) = —Tt*1(t 1)XT2(t2))
(X1 (T1)XC2 (T2)) , 
Zx { X2( T2) X1( T1)) ,

T1 > T2

T2 > T1
(7.10)

time­
ordering 
operator

Here, the action of the time-ordering operator Tt is defined through the second 
relation, where the sign factor ZXN = ±1 is determined by the statistics of Xi : ZXN = 1 
if Xi is bosonic and —1 if it is fermionic.12 The action of Tt is to chronologically 
order the two operators under the expectation value.

INFO It is instructive to compare the definition (7.10) with the field integral correlation 
function (7.7) defined above. Within the field integral formalism, operators are replaced by 
coherent state functions, X(c1 ,c) ^ X('.'.'). These functions commute or anticommute, 
depending on the statistics of the coherent state variables, X 1 X2 = ZXX2X 1, so that the 
time-ordering operation becomes redundant.13 We conclude that the correlation function 
(7.7) is the field integral representation of (7.10).

real time- 
ordered 

correlation 
function

In a manner that is difficult to motivate in advance, we next introduce three different 
real-time correlation functions. Substituting in Eq. (7.10) real times for imaginary 
times, t ^ it, we obtain the real time ordered correlation function

C T (t1 — t2) = — i (TtX1( 11) X2( t2)) (7.11)

retarded 
correlation 

function

where the factor of i has been introduced for later convenience, Tt chronologically 
orders real times, and X(t) = ei(H-llN)Xe-it(H-llN) is a real-time Heisenberg 
operator. While this expression appears to be the “natural” generalization of (7.10), 
it is not our prime object of interest. More important is the retarded correlation 
function

(7.12)
I . . . . . - S' . . S' . . -C (t 1 — t2) = — iQ(t 1 — t2 ) ([X1 (t 1), X2(t2)]Zx }

11 If you are unfamiliar with the (imaginary-time) Heisenberg representation, either look it up in 
a textbook on second quantization or revisit the construction of the field integral to convince 
yourself that JXi (t) is the operator representation of coherent state “operators” Xi (t) inserted 
into the functional integral at time slice t .

12 The operator Xi is bosonic if {c1 ,c} are Bose operators or if it is of even order in fermion 
operators.

13 In second quantization, explicit time—ordering is required by the presence of nontrivial commu­
tators between the field operators.
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This function is “retarded” in that it is non-vanishing only for t1 > t2 . The comple­
mentary time domain, t1 < t2 , is described by the advanced correlation function

C (t 1 - t2) = + i©(t2 - t 1) ([XI (t 1), X2 (t2)]Zx ) (7.13)

INFO To appreciate the meaning of the retarded response function, we need to 
reformulate the construction above in operator language: We want to find the expec­
tation value X(t) = {U-1 (t)XU(t)), where Ut = UJ(t, —x) is the quantum mechani­
cal time-evolution operator, computed for a Hamiltonian H = H0 + F (t)X contain­
ing a weak time-dependent perturbation F'(t)X'. Here, the thermal average ft • •} = 
Z-1 tr[(^ • • )exp{—ft(H0 — /j,Nft}] is taken with reference to Ho only. This prescription 
corresponds to a dynamical protocol where, in the distant past t ^ —x, the system was 
prepared in a thermal equilibrium state of Ho. A perturbation x F'(t) was then gradually 
switched on to effect the dynamical evolution of X . The essence of this “switching on 
procedure” is the assumption that X is remains weak enough not to disturb the system 
out of thermal equilibrium.

To compute the expectation value, it is convenient to switch to a representation in 
which the evolutionary change due to the perturbation is isolated:

X (t ) = ((U F' )-1( t) X( t) U F' (t )), (7.14)

where UF (t) = U0-1 (t)U (t), and X(t) = U0-1 (t)X U0 (t) evolves according to the H0- 
f -Pili/rFHeisenberg representation. With these definitions, it is straightforward to verify that UF 

obeys the differential equation, dtUF (t) = — iF'(t)X'(t)UF (t), i.e., the time-evolution of 
UF is controlled by the (Heisenberg representation of the) perturbation X'. The solution 
of this differential equation (with boundary condition UF (t ^ —x) ^ 1) is given by

JJF' (t) = Tt exp (—i J" dt' F'(t')XL'(t')) ~ 1 — i J" dt' F'(t')X'(t') + • • • .

Substituting this expression into Eq. (7.14) we obtain

x (t ) = — dt' e (t — t') f '(t') ([ X( t) ,X'(t')]) = J dt' c +(t — t') f '(t').

According to this result, the retarded response function describes the linear response of 
X to the perturbation:

The retarded response function Eq. (7.12) is the prime object of 
interest of linear response theory.

7.3.1 Lehmann representation

Lehmann
represen­

tation

We next investigate the connections between the different correlation functions 
defined above. Specifically, we want to understand how to obtain the retarded re­
sponse function (7.12) (the function of interest) from the imaginary-time-ordered 
one (7.10) (the function computed from the theory). These connections are revealed 
by a formal expansion of the correlation functions CT/T,+/- in exact eigenfunctions 
known as the Lehmann representation: consider the Hamiltonian diagonalized in 
terms of eigenfunctions |^a) and eigenvalues Ea. With tr(- • •) 52a (^a | • • • |^a),
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and inserting a resolution of unity 1 ]>2/ |^/ H^/ | between the two operators
appearing in the correlation functions, it is straightforward to show that, e.g.,

CT(t) = -i= V X1 a/X2/aeiE(©(t)e-/E a + Zxe(-1)e-/E* ) , (7.15)
Z 

ap

1 '--- ’ T~I AT'--- ’ '--- ’ '--- ’ 1 TZ' K~Cr I TZ I ,T, \ IT T j T71where sa = Ea — ^Na, sa/ = sa — s/, and Xa/ = (^a |X|^/). We next Fourier 
transform to find

C T (w )= f dtC T (t) eiwt - n | i |

- -TO

= Z X1 a/X2/a

e - / E a e - / E &
—---------rz--------- zxx—n=;-------------- —
W + Sa/ + in W + Sa/ - in 

where the convergence-generating factor n — which will play a key role 
throughout - has been introduced to make the Fourier representation well-defined.14

14 Indeed, we can attach physical significance to this factor. The switching-on procedure outlined 
above can be implemented by attaching a small damping term exp(-|11n) to an otherwise 
purely oscillatory force. If we absorb this factor into the definition of all Fourier integrals, 
d dt (F(t)e-t|nI)e,ict(• • •) ^ f dt F(t) (e-t|n| ei^t)(• • •), we arrive at the Fourier regularization 
above.

With reference to a full solution of the problem, Eq. (7.15) is not of help for prac­
tical purposes. However, it is the key to understanding exact connections between 
the correlation functions that are essential, including from a practical perspective. 
To see this, consider the Lehmann representation of the other correlation func­
tions. Proceeding as with the real-time function above, it is straightforward to show 
that

C T (w) I 1

C + (W) > = Z X1 a/X2/a

C-(w) a/

e - / E a e - / E ?

------------------S---------Zx---------------- S—
+ I — I

w+sa/ + in w+sa/ + in

(7.16)

where the horizontal lines on the right-hand side indicate division by various de­
nominators. From this result, a number of important features of the correlation 
functions follow. Think of CT,+/- (z) as functions of a generalized complex variable 
z, from which CT,+/- (w) are obtained by restricting z = w to the real axis. Within 
the extended framework, CT,+/- are complex functions with singularities in the 
close neighborhood of the real axis. More specifically:

> The retarded correlation function C + has singularities for z = — sa/ — in, slightly 
below the real axis. It is, however, analytic in the entire upper complex half­
plane, Im(z) > 0.
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Im z pole 
cut

singularities of C

Re z
singularities of C+

Fig. 7.1 Illustration of the singularities of advanced and retarded correlation functions in the complex 
plane. The points denote poles and the lines branch cuts.

> Conversely, the advanced correlation function C- has singularities above the 
real axis. It is analytic in the lower half-plane, Im(z) < 0. Notice that C + and 
C- are connected through complex conjugation,

C + (w)= [C-(w)]* . (7.17)

> The time-ordered correlation function has singularities on either side of the real 
axis (which makes it harder to analyze).

> The positions of the singularities contain information about the excitations of the 
system (see fig. 7.1). To see how, consider the case where X 1 = c a and X2 = cb 

are creation and annihilation operators corresponding to some single-particle 
basis {|a)}. In this case, Na — Np = AN = 1 (independently of the state indices 
a, P) and Ea — Ep are the single-particle energies for a non-interacting system or 
are of the order of these energies for an interacting system (why?). We observe 
that the singularities of CT,+/- map out the single-particle spectrum of the 
problem described by the correlation functions. This correspondence follows in 
more direct terms from the interpretation of the one-particle correlation function 
as the amplitude for the creation of a state |a) followed by the annihilation of a 
state |b} at later time. The time Fourier transform of the amplitude, |a} -^ |b}, 
becomes “large” when the phase (~ wt) of the Fourier argument is in resonance 
with an eigenphase ~ (Ea — Ep)t supported by the system. (Think of the simple 
example of a plane wave Hamiltonian for illustration.)

The correspondence between singularities and excitations extends to cases of 
more complex structure. For example, for a two-particle correlation function, 
X1 ~ cacb, the energies Ea — Ep describe the spectrum (the “energy cost”) of 
two-particle excitations, etc. Also notice that the single-particle spectrum can 
be continuous, in which case the functions CT,+/- have cuts parallel to the real 
axis rather than isolated singularities (fig. 7.1).

> Once one of the correlation functions is known, the others follow straightfor­
wardly from a simple recipe: using the Dirac identity (3.84) it is straightforward 
to show that (Exercise)
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Re C T (w) = Re C + (w) = Re C -(w)

and

Im CT (w) = ±Im C± (w) J coth(/M2’’ bosons
I tanh(fiw/2), fermions

(7.18)

(7.19)

i.e., the three different functions store identical information and can be computed 
from one another.

We next include the imaginary-time correlation function CT in the general 
framework. Starting from the imaginary-time analog of Eq. (7.15),

CT(T) = -1 £X1 a?X2PaeSa>T (©(t)e-Ps a + Zxe(-t)e-Ps?) , (7.20)

aP

we observe that CT acquires periodicity properties,

CT (T )= Zx CT (T + V), T< 0, (7.21)

consistent with the periodicity properties of bosonic or fermionic correlation func­
tions in the functional integral formalism. Consequently, CT can be expanded in a 
Fourier representation CT (iwn) = fP dTCT(t)etiVnT with bosonic or fermionic Mat- 
subara frequencies. Applying this transformation to the Lehmann representation 
(7.20), we obtain

ct (iwn) = - y X1 ap X2Pa re-PS“ 

n Z^+ iwn + 2 aP L
aP

Zxe (7.22)

Our final task is to relate the four correlation functions defined through Eq. (7.16) 
and (7.22) to each other. To this end, we define the “master function”

C(z) = - V X1 apX2Pa [e-Psa - Zxe-PS^, (7.23)
Z aP z + 2aP

depending on a complex argument z. When evaluated for z = w+ , w- , iwn, re­
spectively, the function C(z) coincides with C+ , C- , Ct. Further, C(z) is analytic 
everywhere except for the real axis. This knowledge suffices to construct the re­
lation between the different correlation functions that was sought. Suppose we 
have succeeded in computing Ct(iwn) = C(z = iwn) for all positive Matsubara 
frequencies.15

15 Keep in mind that in practical computations we will not proceed through the Lehmann 
representation.

Further, let us assume that we have managed to find an 
analytic extension of C(z = iwn) ^ C(z) into the entire 
upper complex half-plane, Im z > 0. The evaluation of this 
extension on the infinitesimally shifted real axis z = w + i0 
then coincides with the retarded Green function C+ (w) 
(see figure). In other words,
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To find C +(w), we need to compute CT (iwn) for all positive Matsubara 
frequencies and then continue the result down to the real axis, iwn ^ w + i0.

(The advanced Green function C- is obtained analogously, by analytic extension of 
the thermal correlation function CT (iwn < 0) to frequencies with a negative offset, 
w - i0.)

INFO These statements follow from a theorem of complex function theory stating that 
two analytic functions F1 (z) and F2 (z) coincide if F1 (zn) = F2 (zn) on a sequence {zi} 
with a limit point in the domain of analyticity. (In our case, iun ^ ito is the limit point.) 
From inspection of (7.23), we already know that F1 (iun) = C +(u ^ iun) coincides with 
F2(iun) = CT(iun). Thus, any analytic extension of CT must coincide with C + everywhere 
in the upper complex half-plane, including the infinitesimally shifted real axis.

EXERCISE Writing z = u ± in, transform the spectral representation (7.23) back to the 
time domain: C (t) = 2n f due - i^C (u ± in). Convince yourself that, for Im( z) positive 
(negative), the temporal correlation function C(t) contains a ©-function ©(t) (©(—1)). 
(Hint: Make use of Cauchy’s theorem.) The presence of this constraint does not hinge on 
n being infinitesimal. It even survives generalization to a frequency-dependent function 
n(u) > 0. (For the physical relevance of this statement, see below.) All that matters is 
that, for n > 0, the function C(u ± in) is analytic in the upper (lower) complex half­
plane. This observation implies an important connection between analyticity and 
causality: correlation functions whose frequency representation is analytic in the upper 
(lower) complex half-plane are causal (anticausal). (A time-dependent function is called 
“(anti)causal” if it vanishes for (positive) negative times.)

How is the continuation process carried out in practice? Basically, the answer follows 
from what was said above. If we know the correlation function CT(iwn) for all 
positive Matsubara frequencies, and if that function remains analytic upon the 
substitution CT (iwn ^ z) of a general argument in the positive half-plane, we 
merely have to make the replacement iwn ^ w+i0 to obtain C +(w). Often, however, 
we do not know CT(iwn) for all positive frequencies. For example, we may be 
working within an effective low-energy theory whose regime of validity is restricted 
to frequencies wn < w* smaller than some cutoff frequency. Everything then hinges 
on finding a meaningful model function that can be extended to infinity and whose 
evaluation for small frequencies wn < w* coincides with our result. While, there 
are no generally applicable recipes for how to deal with such situations, physically 
well-defined theories usually admit analytic continuation.

INFO As an example, let us consider the non-interacting single-particle Green 
function, i.e., the choice X1 = ca, X2 = ca in the eigenbasis of a free particle system. 
With the many-body eigenstates |a} = |a 1 ,a2,...} defined as symmetric or antisymmetric 
combinations of single-particle states |ai), we obtain Ea = ea 1 + ea2 + • • • as sums of 
one-body energies. Using the fact that Ep = Ea + ea (exercise: why?), one may verify that 
the correlation function assumes the simple form

C (z) = Ga (z 1 .
z — ‘X:
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The notable thing here is that the dependence of the correlation function on the partition 
sum cancels out (check!). The thermal version of this Green function, Ga(iun) = (iun — 
Sa)-1, appeared previously as a building block of perturbation theory. This is, of course, no 
coincidence: the Green function featured as the functional expectation value {ipanipan}0 

in the Gaussian theory. But this is just the functional representation of the operator 
correlation function considered above.

Building on this representation, it is customary to define a Green function operator
S' . .

G( z) =
1 

*
z + ^ — H

By design, the eigenvalues of this operator - which are still functions of z - are given by 
the correlation function Ga (z) above. Numerous physical observables can be represented 
compactly in terms of the operator Green function. For example, using the Dirac identity 
(3.84), the single-particle density of states of the non-interacting system is obtained as the 
trace of the retarded Green function (operator),

p (e) = — — Imtr G+( e) 
n

(7.24)

To illustrate the procedure of analytic continuation, let us consider a few examples.

1. For the single-particle Green function (X1 = ca,X2 = ca) of a free system 
considered in the info block above, the continuation amounts to a mere sub­
stitution,

G+(w) = ,.1 . . (7.25)
w + i 0 — Sa

2. We have seen that quasi-particle interactions lead to the appearance of a - 
generally complex - self-energy £(z): Ga(wn) ^ (iwn — Sa — £(iwn))-1, where 
we suppress the potential dependence of the self-energy on the Hilbert space 
index a. Extension down to the real axis leads to the relation

Ga+ (w) =
1

w+ — Sa - £(w+),
(7.26)

where w+ = w + i0 and £(w+) is the analytic continuation of the function 
£(z) to the real axis. Although the concrete form of the self-energy depends 
on the problem under consideration, a few statements can be made in general. 
Specifically, decomposing the self-energy into real and imaginary parts, £ = 
£' + i £", we have

S'(w+) = +£'(w-), £"(w+) = —£"(w-) < 0. (7.27)

If the imaginary part is finite, the real axis becomes a cut line at which Im £(z) 
changes sign. Formally, the cut structure follows from Eq. (7.17) relating the 
retarded and advanced Green functions through complex conjugation. To un­
derstand it in physical terms, suppose we start from a non-interacting limit 
and gradually switch on interactions. The (Landau) principle of adiabatic 
continuity implies that nowhere in this process must the Green function - 
alias the propagator of the theory - become singular. Thus, the combination 
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i(wn — 'E'i'u ) can never approach zero. The safeguard preventing the vanishing 
of the energy denominator is that — £" and wn have opposite signs. This prin­
ciple can be checked order by order in perturbation theory, but its validity 
extends beyond perturbation theory.

Transforming back to the time domain we obtain

G + (t) = / —e-i^tG + (w) « e-it(2 +^')+ts"0(t), 
2 2 n

where we have somewhat oversimplified matters by assuming that the depen­
dence of the self-energy operator on w is negligible: £(w) « £.

EXERCISE Check the second equality above.

Interpreting G + (t) as the amplitude for propagation in the state | a) during 
a time interval t, and |G+ |2 as the associated probability density, we observe 
that the probability of staying in state |a) decays exponentially, |G +|2 x e2tE , 
i.e., —2£" = 1 defines the inverse of the effective lifetime t of state |a}. 
The appearance of a finite lifetime expresses the fact that, in the presence 
of interactions, single-particle states decay into a continuum of many-body 
states. This picture will be substantiated in section 7.3.2 below.

3. As an example of a situation where the analytic continuation is a little more 
involved, we can apply Eq. (7.24) to compute the BCS quasi-particle density 
of states (DoS) of a superconductor. In section 5.3.4 we found that the Gorkov 
Green function of a superconductor as G(iwn) = [iwn — (HI — p,)o3 — Aoi]-1. 
Switching to an eigenrepresentation and inverting the Pauli matrix structure,

1_1tr G(i , ) - 1 tr ( iwn + ^a °3 + A°- 2iwn _____________
n n n \ wn+£a+A2 ) n wn+£a+A2'

Next, performing our standard change from a summation over eigenenergies 
to an integral, we arrive at

—1tr G( iwn) 2i^ U'd 1 = "
n n J wn + £2 + A2 y/u+ + A2

where v is the normal density of states at the Fermi level. This is the quantity 
that we need to continue to real frequencies. To this end, we adopt the standard 
convention whereby the cut of the square root function is on the negative real 
axis, i.e., V—r + i0 = —/—r — i0 = i^/T for r positive real. Then,

---- tr (G(iwn —^ e+) —
2 e + v 2 ev

y2— e+2 + A2 ^— e2 — i0 sgn (e) + A2

where we anticipate that the infinitesimal offset of e in the numerator is irrel­
evant (trace its fate!) and, making use of the fact that, for e approaching the 
real axis, only the sign of the imaginary offset matters: (e + i0)2 ~ e2 + 2i0e ~ 



402 7 Response Functions

e2 + 2i0sgn e. Taking the imaginary part of that expression, we arrive at the 
standard BCS form

2 ■ f 0’ I£ I < A ’
p (e) = Im—, < 2| e | v

^-e2 - i0 sgn(e) + A2 | . 2 , |e| > A.
\ V e2 — A2

7.3.2 Sum rules and other exact identities

REMARK This section introduces a number of useful exact identities obeyed by correla­
tion functions. It is not directly related to the development of linear response theory and 
can be skipped at first reading.

Besides the connection between correlation functions, the Lehmann representation 
implies a number of additional identities. These formulae are not specific to any 
particular context. Based only on analytical structures, they are exact and enjoy 
general applicability. They can be used to obtain full knowledge of a correlation 
function from fragmented information - e.g., we saw in Eq. (7.18) and (7.19) how 
all three real-time correlation functions can be deduced once any one of them is 
known - or to gauge the validity of approximate calculations. The violation of an 
exact identity within an approximate analysis usually indicates that something has 
gone seriously wrong.

spectral 
function

The spectral (density) function

We begin by defining the spectral (density) function as (minus twice) the imag­
inary part of the retarded correlation function,

A(w) = —2Im C + (w) I (7.28)

Using Eq. (3.84) and the Lehmann representation (7.16), it is straightforward to 
verify that

2n
A(w ) = — Xla^X 1 aft X 2 fla [e ““ — ZX e $ (w ' — afl ) ■ (7.29)

Z 
afl

INFO To understand the physical meaning of the spectral function, we again 
consider the case X1 = ca, X2 = caa, where {|a)} is the eigenbasis of the non-interacting 
part, HH0, of some many-body Hamiltonian. In the absence of interactions, A(w) = 2nS(w — 
X) follows from Eq. (7.25); the spectral function is singularly peaked at the single-particle 
energy X = 6a — p.

This singularity reflects the fact that, in the free system, the many-body state ca |a} is 
again an eigenstate. Since it is orthogonal to all other eigenstates, the summation over 
states | ft} contains only a single non-vanishing term. We say that the “spectral weight” 
carried by the (unit-normalized) state ca |a} is concentrated on a single state. However, in 
the presence of interactions, ca |a) is no longer an eigenstate and we expect the spectral 
weight carried by this state to be distributed over a potentially large number of states |^}.
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It is instructive to explore this distribution of weight in the representation (7.26), where 
the effect of interactions has been lumped into a self-energy operator S. Taking the imag­
inary part of this expression, we find

Aa (u) 2__________ S"( u)___________
(u - ^a - S'(u))2 + (S"(u))2 ’

(7.30)

where we have neglected the infinitesimal imaginary increment u + in comparison with 
the finite imaginary contribution iS". This result indicates that interactions shift single­
particle energies, ea ^ ea + S', and smear the previously singular distribution of weights 
into a Lorentzian of width S" (see figure). This scales in proportion to the inverse of the 
lifetime t discussed in the previous section, indicating that the resolution in energy (the 
width of the broadened S-function) is limited by the inverse of the longest time scale (the 
lifetime of the quasi-particle state) by Heisenberg reciprocity.

The spectral density function obeys the general 
normalization condition, J df% Aa (u) = 1, and it 
is positive (see the exercise below). These features 
suggest an interpretation in terms of a probability 
measure describing in what way the state ca | a} is 
spread out over the continuum of many-body states.

spectral 
function as 
probability

The signatures of this broadening are schematically illustrated in the figure: for vanishing 
interaction strength, A is a S-function at a free particle eigenvalue. With increasing inter­
action, we observe a shift of the center and the broadening to a Lorentzian, as described by 
the self-energy representation (7.30). For still stronger interactions, the spectral function 
need no longer look Gaussian, and the analysis of its energy dependence reveals valuable 
information on the system’s excitations. Indeed, the spectral function is an important 
object of study in numerical analyses of strongly correlated systems.

EXERCISE Apply analyticity arguments to argue that Eq. (7.30) obeys the unit nor­
malization condition J 2(Aa(u) = 1, including for frequency-dependent S(u). Show the 
exactness of this statement on the basis of Eq. (7.29). Verify that all terms contributing 
to the spectral expansion are positive.

The spectral expansion may be applied to demonstrate other useful, and exact features 
of the spectral measure. As an example, show that the integral of the spectral function 
weighted by the Fermi or Bose distribution function yields the average state occupation:

/ dnnF/b(u)Aa(u) = (na}. (7.31)

A number of exact identities involving correlation functions are formulated in terms 
of the spectral function. For example, the spectral function carries the same infor­
mation as the correlation function itself. (In view of the fact that A is obtained by 
removing the real part of C, this statement might be surprising at first sight.) To 
see this, consider the integral

pA doj A (“) 
J-m 2n z - w

for Im z > 0, for definiteness. With A(w) = i(C +(w) — C- (w)), the second term in 
the integral is analytic in the entire lower half-plane, and C- (w) decays sufficiently 
fast to apply the Cauchy theorem and conclude that it does not contribute. By
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contrast, the first term is analytic in the upper half-plane, except for a simple pole 
at w = z. Application of the theorem of residues to an infinite semicircular contour 
surrounding the pole yields I = C+ (z) = C(z). The same reasoning applied to 
Im z < 0 shows that I = C(z) in general, or

> - P dw A (w) 
7-m 2n z - w

(7.32)

Notice that this is a highly nonlocal relation: yes, we can obtain the full expres­
sion for C(z) from just its imaginary part. However, for this we need to know the 
imaginary part along the entire real axis.

Equation (7.32) is one variant of a few other identities obtained from the above 
reasoning. Specifically, setting z = w+ , we have

C+(w)
If4 C C +(w ')

-—d I dw -------- ------—.
2 mJ — — w' + i 0

Kramers—
Kronig 

relations

Representing the denominator under the integral in terms of the Dirac identity and 
collecting terms, this yields

C +(w) = 1. I dw'C + (w-)P w—w

where P denotes the principal part. It is customary to consider the real and imagi­
nary parts of this relation separately, whence one arrives at the Kramers—Kronig 
relations or dispersion relations:

Re C +(w) = — d dw' Im C +(wZ)P —------
n J w' — w

Im C + (w) = —1 d dw' Re C +(w')P—1— 
n J w' — w

(7.33)

INFO To point out the physical content of the Kramers—Kronig relations, we 
anticipate a little and note that the scattering amplitude of particles of incident energy 
w is proportional to the retarded Green function C +(w) of the scattering target. The 
Kramers—Kronig relations imply that the real part of the scattering amplitude, the index 
of refraction, is proportional to the imaginary part, the index of absorption, integrated 
over all energies. In this way, these relations establish a connection between two seemingly 
unrelated physical mechanisms.

The dielectric function: a case study

As an example of the application of the Kramers—Kronig relations, we consider the 
dielectric function e(q,w) describing the polarization properties of a medium in 
the presence of an electromagnetic field. In section 4.2, we computed the dielec­
tric function within the framework of the random phase approximation (RPA), cf. 
Eq. (4.38). However, here we wish to stay on a more general footing. Indeed, it is a 
straightforward exercise in linear response theory to show that (see problem 7.6.2)



405 7.3 Analytic Structure of Correlation Functions

e (q, u) 1 = 1 - Vo(q) 
Ld

dTeim{n(q,t)n(-q, 0))c
i,w7n —— w+

= £(q, u)-1 = 1 - ' ''C + (q, u), (7.34)
Ld

density—
density 

resp onse 
function

where V0 (q) = 4ne2/q2 is the bare Coulomb potential, (nn)c denotes the connected 
thermal average of two density operators n(q,t) = cq(t)cq(t), and ium ^ u+ 

indicates the analytic continuation to real frequencies. Heuristically, Eq. (7.34) can 
be understood by noting that 1 /e = Veff/Vo measures the ratio between the effec­
tive potential felt by a test charge in a medium and the vacuum potential. The 
difference between these two quantities is due to the polarization of the medium, 
which, in turn, is a measure of its inclination to build up charge distortions 5 (n') 
in response to the action of the potential operator ~ f dV0n. In linear response 
theory,16 5(n) is given by the kernel Jd(nn)V0, i.e., the second term in Eq. (7.34). 
We thus observe that the dielectric function is determined by the retarded corre­
lation function C+ (q, u) with X1 = X2 = nt. This particular response function is 
called the retarded density-density response function, and it appears as an 
important building block in various contexts of many-body theory.

The linear response approximation is appropriate here since the standard definition of the 
dielectric function e = limy?^o(Vo0/Veff) implies an infinitesimally weak external perturbation.
Various other sum rules obeyed by the dielectric function are derived in Ref. 13 .

We now focus on the response function, e-1 — 1 k C + , and investigate what 
we can learn from analyticity criteria. Application of the Kramers-Kronig relation 
gives

Re e (q ,u )-1 — 1 = — d du ’ Im e (q ,u l')~1—------ .
n --to u — u

Using the fact that Im e(q, u/)-1 = —Im e (—q, — u/)-1 = —Im e (q, — u/)-1, where 
the first identity holds for the Fourier transform of arbitrary real-valued functions 
and the second follows from real-space symmetry, the integral is brought to the 
form

Re e (q ,u )-1 = 1+— d du1 Im e (q ,u/)-1 —5--------- 5-. (7.35)
n J 0 u12 — u2

Now consider this relation in the limit u = 0 and |q| ^ 0, describing the response 
to a quasi-static electromagnetic perturbation. Previously, we saw that in this limit 
the dielectric function behaves as (cf. Eq. (4.39))

e(q, 0) 1 = (1+4nv|q| 2) 1 |<—3-0 0. (7.36)

While this result was derived in RPA, it is based on the principles of Thomas- 
Fermi screening and should therefore be of general validity. Substitution of it into 

sum rule Eq. (7.35) leads to the sum rule17

to
lim du
q—0 0

Im e (q, u) 1 

u
(7.37)

n
2

16

17
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Exact sum rules play an important role as consistency checks for approximate 
physical theories. In the present case, we learn that the full integral over the 
frequency-dependent absorption properties of a medium (which are complicated) 
must integrate to a value determined by its static screening properties (which is 
simple). The derivation above exemplifies the standard principle for the construc­
tion of other sum rules. (a) A quantity of physical interest is represented in terms of 
a retarded response function, which then (b) is substituted into a Kramers-Kronig- 
type relation. This produces a frequency-non-local connection between the response 
function at a given frequency and an integral (“sum”) over all other frequencies. 
(c) The integral is evaluated at a specific frequency, where the reference quantity 
is known, and so we obtain a “known = unknown” relation.

Experimental access to the spectral density function

Previously, we showed how the structure of the spectral function reflects the dis­
persion of the fundamental excitations of a system. In this section, we emphasize a 
complementary aspect: the spectral function is measurable. In this way, it defines 
one of the most direct interfaces between theory and experiment.

For concreteness, consider a scattering setup, as indicated in the figure on page 
388. To describe the scattering rate from an incoming state (e, k) into an outgoing 
state (e', kz), we first note that the full Hilbert space H is the direct product of the 
Fock space F of the target system and the single-particle space H1 of the incoming 
particle: H = F ® H1. For simplicity, we describe the system-particle interaction 
by a point-like interaction

Hint = C [ ddr 6(r - r)ct(r)c(r) = C f d^eiqr p(q), (7.38)
( J (2 n)d

where r is the position operator in H1 and, in the second equation, we have trans­
formed to momentum space, with p(q) = f dr e-iq'rct (r)c(r) the particle density 
operator. Scattering processes of first order in the interaction Hamiltonian are de­
scribed by transition matrix elements A(q) = (fi, k — q|Hint|0, k) in the system 
eigenbasis {|a)}. Substitution of the above interaction Hamiltonian leads to

A(q) = {fi, k — q|Hlint |0, k) <x {fi|pq |0). (7.39)

We conclude that the scattering amplitude probes density modulations in the bulk.
Turning to observable consequences, we note that the transition rate between 

incoming and outgoing states differing in momentum q = k' — k and frequency w = 
e' — e is computed from the scattering amplitude as (consult a quantum mechanics 
textbook if you feel unfamiliar with this statement)

P(q) = P(w, q) = 2n £ |(fi|p(q) |0)|26(w — Spo), (7.40)
p

where the 6-function enforces energy conservation. The summation over fi reflects 
the fact that only scattering states are monitored, while the final state of the target 
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remains unobserved. To relate this to response functions, we abbreviate p(q)ai as 
(a |/5(q) |P) and reformulate (7.40) as

P(q) = -2 Im V p(q)P0p(-q)0P = -2 lim Im- V p(q)PaP(—q)aPe P5°

V W + +H0 i T ' “ + +H aip ! ap !

= -2 lim Iml y p(q)iap(-q)ap(e-p5a - e-p5')
T ■ Z y W+ + Eap

ap

= -2 lim Im C+(W) = A(q, W),
T '0

where A(q, w) is the spectral density function of the operators X 1 = p(q) and X2 = 
p(—q). Here, we have made use of the fact that, for T ^ 0, the Boltzmann weight 
exp(-PEa ) projects onto the ground state. Similarly, for W > 0, the contribution 
exp(-PEp ) vanishes (exercise: why?).

We conclude that:

The inelastic scattering cross-section for momentum transfer q and energy 
exchange W is a direct probe of the spectral density function A(q, W).

Building on a first-order perturbative representation of the scattering amplitude, 
this result belongs to the general framework of linear response relations.

7.4 Electromagnetic Linear Response

In this section we apply the general formalism to the particular case of the response 
to an electromagnetic field. In numerous applications discussed in this text, we 
“minimally couple” the vector potential representing a field to a theory and study 
the consequences, usually in some weak-field approximation. Here, we highlight the 
general features that all these coupling schemes have in common: they represent 
the retarded linear response of a system.

Consider a system of charged particles in the presence of an electromagnetic 
field with potential A,,(x) = (p(x), A(x)), where x^ = (t, x) and we are working 
in a real-time (“Lorentzian”) framework in d space dimensions. The system will 
respond to this perturbation by the build-up of charge and/or current expectation 
values, j^ = (jM), where j^ = (p, j). We wish to identify the linear functional j = 
K[A] + O(A2 ) relating the current to its driving potential. Written more explicitly,

j^1 (x)= I dx1K^v(x, xr) Av (x'),
t<' <t

(7.41)

where the condition t1 < t indicates that the response is retarded.
In equilibrium quantum field theory (for the discussion of out-of-equilibrium 

electromagnetic responses, see chapter 12), we first compute the response ten­
sor in imaginary time as K(r, rp iwn) and then continue to real frequencies, 
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iwn ^ w + i0. In this Euclidean framework, the Lorentzian coupling j^A^ = — j0 A0 + 
j^A, with j0 = p and A0 = 0, becomes j1' A, = + j0 A0 +j-bA, with j0 = ip and A0 = 
i^. The additional i mirrors the i from the temporal component of the imaginary­
time vector (t, r) ^ (—ir, r). Note that, in either framework, jA., = — p^ + j • A.

Before turning to a more concrete approach, we note two constraints obeyed 
by the response kernel K on general grounds. First, a change of gauge A^ ^ 
A^ + df cannot alter the response current. Substituting this condition into Eq. (7.41), 
we find

0 = y dx' K'"'(x, x')dv f (x') = — y dx' (dxK'"'(x,x')) f (x').

Since f is arbitrary, this implies 0 = Krvdv where the arrow indicates that the 
derivative acts to the left. Second, current conservation demands dj = 0, or 
0 = J dx' dx^ Kl,v (x, x')Av(x') in the language of Eq. (7.41). As it holds for general 
A, this relation implies that d,J\rv = 0. Summarizing,

Gauge invariance and particle number conservation demand that
d,, K '""' = K '""' dv = 0.

Our starting point in the derivation of a more explicit representation of the 
response tensor is the definition

j =
SSc [ A ] 

A-A
(7.42)

for the current in a system with action S = SEM + Sc . Here, the subscript c indicates 
that only the action, Sc, describing field-matter coupling is differentiated, while the 
Maxwell action SEM of the electromagnetic field itself remains unaffected.18

Sc [A] = J

Sc [Ao] = —

INFO For readers not familiar with Eq. (7.42), we note that the vector potential A 
couples to a system of charged particles at coordinates ri through the term

dT r i • A(r i )=y dT ! ddr S (r - r i )r i • A( t, r).

However, j = S A Sc = i S (r — r i )r i is just the definition of the total particle current 
density. Similarly, the coupling to the scalar potential (in imaginary time) is given by

dT $(ri) = y d^ ddr S(r — ri)iAo(r),

so that Sa0 Sc = ^2 i S(r — ri) = ip = jo.

Equation (7.42) is all we need to formulate a general expression for the linear 
response kernel. Since the electromagnetic potential A^ both drives a current as a

18 Why do we not start from a more explicit representation such as Sc [A] = j j^A^ ? The reason 
is that, in some cases — the microscopic theory of non-relativistic charged particles (section 7.4) 
being the most prominent example — the current j^ = j^ [A] depends on A itself, so that Sc [A] 
is nonlinear in A.
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generalized force and generates its expectation value via (7.42), Eq. (7.6) assumes 
the form

.....  . 1 32
K (x,x ) = Z 6A^(x) 6Av (x') Z[A] (7.43)

where, as usual, the derivative is taken at zero. We note that the symmetry of this 
relation implies that K''v(x,x') = Kv'(x',x). As a consequence, d^Ki,v = K''vdv, 
and we conclude that, in linear response, gauge invariance (right-hand side) and 
particle number conservation (left-hand side) represent flip sides of the same coin.

This is about as much as can be said in general. In the following we use two 
examples to illustrate how an electromagnetic linear response manifests itself in 
concrete terms in microscopic and in effective theories.

conductivity

INFO Equation (7.46) describes the general electromagnetic response of many particle 
systems. For example, working in a gauge with vanishing scalar component A0 , we have 
Ei(q) = xmAi(q) for the electric field. On this basis, the longitudinal conductivity 
ji (x) = a (x) Ei (x) is obtained from the response tensor as

a (x ) = — lim — Kii (q )| . (7.44)
q •0i xm fi^m^^+io

In the same manner, the off-diagonal components Ki=j yield the transverse or Hall 
conductivity. The temporal components K00 describe the density response, an ob­
servable that, as we saw, is essential in the analysis of scattering data. Notice that gauge 
invariance/current conservation imply some redundancy in this scheme. For example, in a 
gauge with non-vanishing scalar component, information on the conductivity is contained 
in the temporal components of the response tensor, etc. This freedom may be, by an ap­
proximate calculation, used to focus on the components that one finds easiest to compute, 
and/or to check that gauge invariance is respected.

Electromagnetic response of the microscopic theory

Consider the microscopic action of a system of spinless19 fermions or bosons in the 
presence of an electromagnetic field,

19 To keep the discussion simple, we do not consider the electromagnetic coupling of spin degrees 
of freedom, such as the Zeeman or spin-orbit coupling.

S [ p, A] = d dx ip dT + iA o + -—(—i V — A)2 — g + Vq

2m
i + Sint [i ],

where Vq denotes a (field-independent) potential. In this case, the derivative (7.42) 
leads to

jq = ip p, ji = — tp - — i-di + Ai ) 1, 
m2

(7.45)

where fdg = fdg — (df) g. Note that the spatial components of the current depend 
on the vector potential. Application of Eq. (7.43) then gives
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i a2 rK ~ (x,x') = Z A( (x (x -J D^e - ■

= -Z AW Dj “ (x) e - ’'Ml

= (-((x - x'),v((1 - t,<0) —(^^)(x) + j,(x)jV(x') 
m

where the first term comes from the A-derivative of the current operator, and the 
current operators in the second term are defined at A= 0. We thus obtain

K,v(x, x') = -^px-((x - x'),v((1 - ,o0) + (j,(x)jV(x')) (7.46)

for the response tensor of the electromagnetic field. The first term, whose presence 
originates in the A2 contribution to the microscopic Hamiltonian, describes the dia­
magnetic contribution to the response, and the second term gives the paramagnetic 
contribution. The diamagnetic and paramagnetic contributions tend to oppose each 
other in electromagnetic response phenomena. We studied such a competition in 
the context of the response of the BCS superconductor in section 5.3.6.

Electromagnetic response of effective theories

The tensor K describing the response of low-energy effective theories may look 
different from Eq. (7.46). To compute K, we first need to identify the coupling 
of the electromagnetic potential to the effective action. (It is often sufficient to 
minimally couple the field, i.e., to introduce A, in order to give the action local 
U(1)-invariance.) In a second step, we need to compute the derivative (7.43).

As an example, consider the phase action of the BCS superconductor mini­
mally coupled to the potential, Eq. (5.39), where the coupling constants c 1 = v2 and 
c2 = ns/2m are defined through microscopic material parameters. Differentiating 
with respect to the components Ai, one obtains, e.g.,

Kij(x,x9 =------ s [ijjA(x - x9----- s)did(x)dj9(x9)] (7.47)

for the spatial components of the response tensor.

EXERCISE Evaluate the correlator )did dj9} to show that the conductivity (7.44) di­
verges in the limit x ^ 0. This divergence of the conductivity can be traced to the 
fact that, in a superconductor, there is no cancellation between the diamagnetic and para­
magnetic responses. Compute the response of the system to a static magnetic field. Show 
that, in the London gauge V • A = 0, the current and vector potential are proportional 
to each other, j tx A. Recall (see section 5.3.7) that this result, in combination with the 
Maxwell equation V X H = 4nj, implies the Meissner effect.
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7.4.1 Longitudinal conductivity of the disordered electron gas

longitudinal 
AC 

conductivity

Drude 
theory

REMARK In this intentionally technical section, we consider the example of a disor­
dered electron gas to illustrate how response functions such as Eq. (7.46) are computed in 
concrete terms. We will introduce a few tricks related to the analytical structure of corre­
lations functions and their continuation to real times. Although formulated for a specific 
example, the strategy parallels that applied in other applications of response theory. Since 
most steps of the computation are routine repetitions of what we have done in previous 
chapters, we will not formulate every step in ultimate detail.

Our aim in this section is to compute the longitudinal AC conductivity of the 
disordered electron gas, j(w) = a(w)E(w), from the response tensor (7.46). We 
thus consider a situation with no current flow in directions transverse to the electric 
field (such as would be the case in the presence of strong magnetic fields outside the 
regime of linear response), and where the system is spatially isotropic, Kij = Kdij.

EXERCISE Before entering into the microscopic calculation, it is instructive to formulate 
an expectation of the result based on classical Drude transport theory. Consider a 
classical electron at coordinate r subject to the force of an electric field, -E(t) and to a 
friction force — mr inhibiting its free acceleration due to the presence of disorder, where t 
is the scattering time. Solve the equation of motion mr = —E — mr in a real-time Fourier 
frequency representation for the velocity v(w), and from there show that the current 
j = — nv (n is the particle density) is given by j(w) = a(w)E(w) with

n 1
a(w)

mt iw
(7.48)1

In spite of the oversimplifying nature of this derivation - neglecting the presence of a 
Fermi surface, etc. - it underpins the expectation that the presence of disorder is an 
essential factor in electronic transport, at least at frequency scales w . t-1 lower than 
the scattering rates.

We consider an electric field E of negligible spatial variation but finite temporal 
variation. Our object of interest is the induced current density, j(q ^ 0, w). Repre­
senting the vector potential as dt A = —E, it is computed from the spatial compo­
nents Kii = K of the response tensor (7.46). Although the presence of impurities 
is crucial, we expect “self averaging,” so that the response K(x,x') = K(x — x') 
will depend only on coordinate differences. In this case, our starting point is the 
Fourier transformation

K(q) = Ld (—m pv + ji,qji,-qv) , (7.49)

at external momentum q = (iwm, 0), where the index i is arbitrary (no summation). 
We are working in an imaginary-time framework and, at the end of the calculation, 
we need to perform the analytic continuation (7.44). With the current operators 
given by Eq. (7.45) (with Ai = 0), we have the Fourier representation

p = ^p^p, ji,q = m pi^p^p+q.
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We substitute these expressions into (7.49) and apply Wick’s theorem to compute 
the functional expectation value as

K (q) = - T~d El" - Gp + 2 Gp+q Gp} , (7.50)
Ld m m2

p

where Gp = (iwn — £p + 2t sgn ^'n) 1 are the free electron Green functions averaged 
over realizations of the disorder potential (cf. Eq. (4.61)),20 and t defines the mean 
impurity scattering time.
Turning to the summation over frequencies 
by contour integration, the key point is that 
the extrapolation of the Green functions to 
the complex plane, Gp = Gp(z) = (z — 
£p + 2T sgnImz)-1, has a cut along the real 
axis; this, in turn, means that the product 
Gp+q( z + iwm)Gp (z) has cuts at Im(z) = 0 and 
Im(z + iwm) = 0 (see figure). We need to inte­
grate over a contour encompassing all Matsub- 
ara frequencies while avoiding the cuts. While 
there is no connected integration path, the union of the three contours 7 1,2,3 shown 
in the figure suffices:

T GpGp+q =
Y1U Y 2U Y 3

dznf(z) Gp(z)Gp(z + ieem).

In these integrals, the imaginary parts of the Green function either have the same 
(Y 1,3) or opposite signs (72). We know from experience that products containing 
propagators of opposite causality are “more interesting” than those without, and 
the present case is no exception. Indeed, one can show (this is a useful exercise 
in Green function algebra) that the two integrals over the contours Y1 and Y3 

cancel the first (diamagnetic) term in Eq. (7.50). In this way, their role realizes the 
well-known diamagnetic-paramagnetic competition in the present electromagnetic 
response realization.

Turning to the integral over the central contour, Y2 :

® dznf(z) 
2ni J GP( z ) GP( z + i^m )

Y2

7—; d denf(e) [—Gp(e — 
2 nij-^

i 0) G p(£ + i^m) + G p( £ — i^m) G p( £ + i 0)]

20 Critical readers may wonder why we ignore “vertex” contributions, diagrammatically described 
by impurity scattering lines between the two Green functions, as in section 4.4.3. This is a 
somewhat subtle issue: owing to the strong momentum dependence of the current operators 
j « p'ei'e, such contributions tend to cancel. Physically, (jj} represents the expectation value of 
two velocity operators at different points in space. Impurity scattering leads to a rapid random­
ization of these velocities, which is why we do not expect “long-range” diffusion contributions 
to this particular correlation function.
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m—^ 2ni/ denf(£) [-Gp(£ )Gp(£ + + w) + Gp(£ - w)Gp(£ +)]

de [nF(e) 
2 n - -^

— nf(e + w)]Gp(e )Gp(e+ + w),

where, in the first equality, we have used the symmetry nF(e + iwm) = nF(e) of 
the distribution function under translation by bosonic frequencies. Substituting this 
result into (7.50) and (7.44), we arrive at the intermediate result

den f( e) — n f( e + w) 2
2 n w Ldm12

pGPi Gp (e)G +(e + w) 
p

(7.51)

where G±(e) = (e — £p ± 2T) 1. Equation (7.51) is 
an intuitive result: application of an AC field creates 
electron-hole pairs with excitation energy w. The dif­
ference of Fermi functions demands that the energy of 
the excited electron lie within a shell [^ — w, ^] at the 
Fermi surface. Its dynamics is described by a retarded
Green function of energy e + w, and that of the hole left behind by the advanced 
Green function. (Hole propagation can be understood as particle propagation back­
wards in time.) The weighting product Pi2/m2 probes velocity correlation as the 
observable for the conduction process.

The remaining two integrals are elementary. For low temperatures, nF(e) — nF(e + 
w) ~ —wdenf(e) ~ wd(e), so that the energy integral collapses and G±(0) = 
(—£p ± i/2t)-1 depends on momentum only through the energy variable £p. Ow­
ing to rotational invariance, we can make the replacement pi ^ p2/d, and the 
straightforward final integral over momentum confirms the result (7.48).

7.5 Summary and Outlook

In this chapter we discussed how real-time retarded response functions, represent a 
principal interface between experiment and theory. The connection was established 
by linear response, where the expectation values of observables modified by external 
influences are weak compared with the intrinsic energy scales of many-body sys­
tems. These retarded response functions have to be related to the imaginary-time 
correlation functions produced by finite-temperature equilibrium quantum field the­
ory. We saw how these connections could be established in general on the basis of 
formal spectral expansions. We finally illustrated the working of this machinery 
on the important example of an electromagnetic linear response, considering the 
longitudinal conductivity of an electron gas as a concrete case study.

This chapter concludes the introductory part of the book. We have learned how 
to formulate quantum field theories, analyze them in terms of a spectrum of 
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approximate methods, and read their contents by correlation functions. In the 
second part of the book, we discuss the application of field-theoretical concepts 
in various areas of condensed matter research, among them the theory of out-of­
equilibrium systems, and the theory of topological and relativistic quantum matter.

7.6 Problems

7.6.1 Orthogonality catastrophe

This problem describes a scenario often realized in condensed matter physics: a localized 

quasi-particle is immersed in a large host system. Assuming the latter to be described by its 

N-body ground state wavefunction, the ensuing “single-particle state ® N-particle ground 

state," turns out to be largely orthogonal to the true ground state of the now (N + 1)-particle 

system. As a consequence, it takes a very long time for the intruding particle to become 

accommodated to its new environment, a retardation phenomenon known as the orthogonality 

catastrophe. Following Anderson's original line of argument, here we explore the physical 

mechanism underlying this phenomenon.

Anderson showed21 that the ground state |^') of a system in the presence of a local 
perturbation V(r) is generically orthogonal to the ground state |^) of the unper­
turbed system: |(^|^/)|2 N—0 0. Here, the local perturbation serves as a model 
of the interaction potential created by a new particle in the system. The principle 
applies, for example, to samples connected to external leads at local contacts. In 
this case, the injection of external charge carriers gets blocked, and the resulting 
“contact resistance” can become the essential bottleneck in electron transport.
(a) Consider a system of non-interacting fermions. Let the single-particle eigen­
states in the absence or presence of the perturbation be given by {| m)} and {|m')}, 
respectively, and the corresponding many-body ground states by |^) and |^/). 
These states are Slater determinants formed from all single-particle states with en­
ergies below a Fermi energy EF. Their overlap is given by x = (^|^/) = det(A), 
where Anm = (n |m').

To understand the magnitude of this determinant, use the nontrivial statement 
that the determinant of a matrix A = (v1 , v2 , . . .) formed by unit normalized vectors 
|vi | = 1 obeys the condition det(A) < 1.22 Construct a determinant normalized in 
this way, and use the bound to reduce the estimate of det A to one of the norms 
of its row vectors. Make use of the completeness of the single-particle states {|m)} 
and assume that the overlap ^2e ,>ef Kn|m')|2 1 between occupied states |n) 
and empty |mstates is small. On this basis, show that

21 P. W. Anderson, Infrared catastrophe in Fermi gases with local scattering potentials, Phys. 
Rev. Lett. 18, 1049 (1967).

22 This bound can be understood from the interpretation of a determinant as the geometric volume 
of the parallelepiped spanned by its row vectors. For vectors of length unity, this volume is equal 
to or less than unity.
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X = |<1|1'>|2 <X = exp -2 . £EFk>E/"|m'>|2 = exp[-I].

(b) We next compute the exponent I for the particularly simple case of a spherically 
symmetric system of radius R. Focusing on the sector of lowest angular momen­
tum l = 0, the unperturbed states are given by ^n (r) = Nn sin(knr)/knr, where 
kn = nn/R, and the normalization Nn = kn/\/2nR. The asymptotic profile of the 
perturbed wavefunctions can be approximated as $n (r) = Nn sin(knr + 8m (1 — 
r/R))/knr, where 8m is the s-wave scattering phase shift. Use this ansatz to show 
that

sin 8 m
n (n — m) + 8m

Assuming that the scattering phase shift 8m ^ 0 for states | mwith energy em ~ 
km/2m0 & e0 (m0 is the particle mass), argue that I x cIn N and hence x ~ N-c 

is inversely proportional in the system size, where c is a constant.

(n | m

Answer:

(a) We define a matrix with unit-normalized rows through Anm = Anm /Nn with 
N = £ m K n I m ')|2- Since det A < 1, x = det A fl n Nn < H n Nn• Taking the 
logarithm of this relation, we obtain

lnx < ln(Nn) = 1 in | kn|m2|2|.
2

1 n<Ef en<Ef \€m/ <EF /

Using the closure relation ^2m' Imm'I = 1 and expanding the logarithm in
e ,>ef KnIm2I2 1, we arrive at the approximation

ln ^ |(n|m2|2^ = ln ^1 — |(n|m2|2^ — — |(n|m2|2 = —2I.

Substituting this result into the formula for ln x, we arrive at the stated result. 
(b) The overlap matrix A is given by

Anm = (n|m') = 4nNnNm /Rdr r2sin<knr2■-in 'km r + 8m ".'' 
0 knr kmr

2 nNnNm sin 8 m
knkm kn — km + m­

Using the above relation between wave numbers and momenta, we arrive at the 
result. Under the stated assumptions, the double sum over n and m is cutoff at an 
upper limit determined by the condition (nm/R)2 /2m0 ^ e0, or m ^ R. Since the 
“integration” over n and m is weighted by a term x (n — m)-2, we obtain a result 
logarithmic in the cutoff, I ~ ln R ~ ln N, where N ~ R3 is the particle number. 
From here, we obtain the scaling x = exp(—I) ^ N-c, proportional to an inverse 
power of the particle number.
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7.6.2 RPA dielectric function

On a fundamental level, the response of a charged fermion system to an external electro­

magnetic perturbation is described by the dielectric function eq. In this problem, we derive 

the connection between eq and the density{density response function (7.34). The problem is 

physically instructive and a good exercise in diagrammatic calculus.

(a) Derive Eq. (7.34). To this end, consider two infinitesimally weak (yet generally 
time-dependent) test charges immersed in a system of charged fermions. Omitting 
the self-interaction of the particles, determine the interaction correction to the free 
energy and use your result to compute the ratio between the vacuum and the actual 
interaction potential. Show that

eq =
TVc(q) 

Ld

X -1 

(nqn-q)c ) (7.52)1

where the subscript c indicates that only connected diagrams contribute. Analytic 
continuation to real frequencies yields Eq. (7.34).
(b) Equation (7.52) represents the exact density-density correlation function, which 
is generally unknown. As a first step towards a more manageable expression, apply 
diagrammatic methods to show that Eq. (7.34) is equivalent to

eq = 1+ TV q
Ld

( n q n - q )irr, (7.53)

where (nn)irr is the interaction-irreducible density-density response function, the 
sum of all diagrams that cannot be cut by cutting one interaction line. (The re­
sponse function (nn)irr is to the effective interaction what the self-energy is to the 
Green function.) In order to show that (7.52) and (7.53) are equivalent, find a 
series expansion of C(q, ip,.) in terms of V0 and n(q, iwm). While this series re­
sembles that of the RPA, it is more general in that the bubble (nn)irr still contains 
interaction lines.

Answer:

(a) If we represent the two test charges by two charge distributions p 1,2(q), the 
Coulomb interaction becomes Sint = .T £q [nq + p 1 ,q + p2 ,q] V0 (q)[n—q + p 1,—q + 
p2,-q]. An expansion of the field integral (or, equivalently, the partition function) 
to lowest order in p1,2 then produces the interaction contribution to the free energy,

T2
Fint[p 1 ,p2] = - Ld p 1 ,q

q

TV0 q TVc2(q)/. _
V)(q)-------Ld (n—qnq) p2,-q.

The term in square brackets determines the effective interaction potential Veff (q). 
Remembering that eq = V0(q)/Veff(q), we obtain Eq. (7.52).
(b) For a diagrammatic representation of the solution, see fig. 7.2.
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e 1 = 1 = 1 -

Fig. 7.2 Representation of the dielectric function in terms of the full density-density correlation func­
tion (the darker-shaded bubbles) and the interaction-irreducible density-density correlation 
function (lighter-shaded bubbles).

7.6.3 Electromagnetic response of a quantum dot

In problem 5.6.5, we derived the eective action of a quantum dot tunnel coupled to external 

leads. On this basis, here we derive a formula describing the response of the system to an 

applied time-dependent voltage at high temperatures, where it behaves nearly classically.

(a) Consider Eq. (5.62) for a quantum dot coupled to a lead. Assuming that a bias 
voltage iU(t) between lead and dot has been applied, show that the argument of 
the dissipative action generalizes to ft(t) ^ ft(t) + J0T dT' U(t'). (Hint: Apply gauge 
arguments at an early stage in the construction of the effective action.) Focusing 
on the regime of high temperatures, expand the action to second order in ^ (argue 
why, for high temperatures, anharmonic fluctuations of ^ are small) and compute 
the 00-component of the linear response kernel, K00 . Analytically continue back 
to real frequencies and show that the current flowing across the tunnel barrier in 
response to a voltage U (w) is given by

I<"’ = 2n/gTU“h/iw ( <754>

(b) To understand the meaning of this result, notice that, classically, the dot is 
equivalent to a capacitor connected via a classical resistor to a voltage source. 
Apply Kirchhoff’s laws to obtain the current-voltage characteristics of the classical 
system and compare with the result ab ove.

Answer:

(a) Consider the action of the system at an intermediate stage, immediately after 
the fermions have been integrated out (cf. Eq. (5.63)). In the presence of a bias 
voltage, the “tr ln” operator contains a term i(V + U), where V is the Hubbard- 
Stratonovich field decoupling the interaction. Removing the sum of these two fields 
by the same gauge transformation as used in the derivation of the dissipative action, 
the tunneling matrix elements acquire the phase factor specified ab ove.
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At second order in the expansion in ', the action assumes the form

S (2)[ ',V ] = 4E1T ^m | 'm |2 + 4T | um II 'm + Um/ium |2 ,
Cm m

where the Fourier identity |um | o — nT sin 2(kTt) has been used. Differentiating 
twice with respect to U, we obtain

/ 7,^ \   1 m^_____<7rrri   gT 1 gT | um | / ± ± \ A

23 Here, we note that the volume factor distinguishing between particle number and density is 
contained in our definition of the source variables.

( 00)m = ZT6Um6U-m [ ]= 2n|u|(^ 2nT 'm'-mV

= - 9T 1— - 9T | um | 1 \ =________1
2n|umI I 2nT “mm + gT|-' | 2n|-' | + 2 Er '

1 m| \ 2Ect + 2nT ) gT +2EC

The 00-element of the linear response tensor describes changes in the particle 
number23 in response to an applied potential, <5Nm = (K00)mUm. Noting that 
idT<5N = I is the current through the barrier, and substituting our result for K00, 
we obtain

I = U (— + 2 EC
-^m m ml +1gT IUm I

Analytical continuation from positive imaginary frequencies, |um | ^ -iu + 0, to 
real retarded frequencies gives Eq. (7.54).
(b) According to Kirchhoff’s laws, the sum of all voltage drops in the system must 
vanish, 0 = U(u) + C-1 <5N(u) - RI(u), where C and R denote the capacitance 
and resistance, respectively. Using the fact that <5N = I/iu, and solving for I, we 
readily obtain

I(u) = U (u)
R - 1 /iuC

i.e., the current-voltage characteristics for a classical RC circuit. The identifications 
R = 2n/GT and C = 1 /2EC bring us back to the formula derived microscopically 
above.



PART II

Readers who have advanced thus far should find that they can fluently 
read the majority of condensed matter theory research papers. Build­
ing on this level of attainment, the second part of the text discusses 
directions of contemporary condensed matter research - as always from 
a field-theoretical perspective. Readers will find that the second part is 
somewhat different from the first, both in content and style. For one 
thing, its chapters no longer build sequentially on each other; they can 
be studied in no particular order. At the same time, they are strongly 
interlinked among each other. To explain this structure, we first note a 
topical division between the first three chapters of the second part and 
the final two chapters. The former have in common that they gravitate 
towards the topic of topology. Referring for an introductory discussion 
to section 8.1, topology has become a dominant theme in the condensed 
matter physics of the last two decades. Three chapters discuss this de­
velopment from different perspectives, starting with chapter 8, which 
introduces field-theoretical concepts for the description of topological 
phases in condensed matter physics. Transitions between phases of dif­
ferent topological signature are often described by effectively relativistic 
(Dirac) theories. Chapter 9 introduces relativistic quantum field theory 
with an emphasis on this application field. Finally, the phenomenology 
of topological phases of matter is often described in the language of 
gauge fields. Chapter 10 discusses gauge theory with this application in 
mind, i.e., a perspective generalizing “minimal substitution schemes,” 
p ^ p — A, to a more geometrical and global interpretation of gauge 
theory.

Reflecting their interdependent contents, the three chapters make fre­
quent references to each other. If a particular section essentially relies on 
material from another chapter, we say so at the beginning. We also note 
that all three of these chapters use the language of modern differential 
geometry, and notably that of differential forms. Familiarity with it is 
not required (in all but a few sections, we offer shortcuts formulated in 
the traditional language of calculus) but it definitely helps and makes 
for a more satisfactory reading. The essential background material is 
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provided in appendix section A.1. First-time readers who are not in a 
rush may find it useful to read these pages before venturing into the 
topological chapters of this text.

The final two chapters of the text address the physics of nonequi­
librium systems, first from a classical, then from a quantum perspec­
tive. In the last two to three decades, research on condensed matter 
out of equilibrium has developed from a relatively small sub-field to 
mainstream. Factors driving this development include experimental de­
vice miniaturization (the smaller a quantum system, the easier it is to 
push it out of equilibrium), interdisciplinary overlap with the fields of 
atomic condensates and quantum optics (which routinely operate under 
out-of-equilibrium conditions), and the increase in numerical computing 
power, which now makes the meaningful simulation of nonequilibrium 
phenomena an option.

Compared with the relatively few equilibrium phases, matter out of 
equilibrium realizes many more universality classes - to a degree that 
the universality principle of many-body physics may reach its limits - 
and a matching number of different theoretical approaches for inves­
tigating them. A principal advantage of the field-theoretical approach 
to nonequilibrium physics is that it combines a multitude of theoreti­
cal formulations under one conceptual roof. In chapter 11 we lay the 
groundwork for this unified formulation by first reviewing various tra­
ditional approaches to classical nonequilibrium physics. We then show 
how these can all be derived from a common field integral representa­
tion. This formulation then serves as a platform for an investigation of 
nonequilibrium physics which otherwise would stay out of reach.

Finally, chapter 12 addresses quantum nonequilibrium phenomena via 
field integrals which have those of chapters 11 as their semiclassical 
limits. Readers familiar with the foundations of nonequilibrium theory 
should find it possible to read chapter 12 without previous study of the 
preceding chapter. However, there are numerous cross references, and a 
combined reading of the two chapters may be more rewarding overall.
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8 Topological Field Theory

SYNOPSIS In the context of condensed matter physics, the attribute “topological” refers 
to forms of matter whose microscopic physics is characterized by integer-valued indices, 
or “invariants.” In this chapter, we approach the physics of topological quantum matter 
from the perspective of field theory. Much as continuous deformations do not change the 
presence or absence of a knot in a string, local perturbations cannot alter topological 
invariants. This implies a powerful principle of universality with far-reaching physical 
consequences. Here, we discuss how topological signatures are diagnosed and described by 
methods of field theory. The chapter starts with a brief overview of topological quantum 
matter. We then illustrate for a simple example how the topological master principle 
- robustness against local deformations - manifests itself in field theory via topological 
terms. This will be followed by a more systematic discussion of three principal families 
of topological terms (0-terms, Wess-Zumino terms, and Chern-Simons terms) and their 
application in the physics of spin systems, the integer and fractional quantum Hall effects, 
and topological insulators.

The first two decades of the century have witnessed an explosion of research on 
topological quantum matter. The driving forces behind this development include 
both advances in our fundamental understanding of matter, and the promise of 
applications in quantum information technology or materials design. These days 
the field has become vast, and it is impossible to provide a comprehensive overview 
in this text. Instead, we will focus on the introduction of basic concepts in the 
physics of topological quantum matter, as always emphasizing the field theory per­
spective. However, the field-theoretical approach taken here is only one of several 
avenues to the physics of topological matter. Others include descriptions in terms 
of Dirac matter (chapter 9), gauge theory (chapter 10), mathematical classification 
theory, and more. These concepts are intertwined, and this shows up in the frequent 
appearance of topological concepts in the later chapters of this text.

We start with a short synopsis of topological quantum matter. Turning to the 
field integral framework, we then introduce salient features of topological actions 
for a toy model, that of a quantum particle on a ring. In the main part of the 
chapter, we discuss three large families of topological terms and their application 
in condensed matter physics.
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422 8 Topological Field Theory

8.1 Topological Quantum Matter
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The first thing to appreciate when entering the field of topological quantum mat­
ter is that we are far from having established a complete understanding. Unlike 
materials distinguished by, say, different types of local magnetization, topological 
matter is defined by non-local forms of order. These ordering principles are inter­
woven into macroscopically large numbers of microscopic degrees of freedom and 
are often hard to identify. While the understanding of two-dimensional topological 
order is relatively advanced, the extension to higher dimensions is still in its in­
fancy. Besides dimensionality, features entering the classification include quantum 
statistics (fermionic or bosonic), the presence or absence of excitation gaps distin­
guishing between insulators and metals, and the degree of particle correlations or 
entanglement.

Of these, the third criterion is the most essential. At the broadest level, we 
distinguish between topological matter with and without long-range entanglement. 
There are various equivalent definitions of this distinction. One definition says that a 
system is long-range entangled (LRE) if its ground states cannot be transformed 
into a disentangled product state by a sequence of local unitary transformations. 
(For alternative criteria, see below.) It should be evident that the complementary 
class of short-range entangled (SRE) matter is easier to understand. For example, we 
now have a more or less complete classification of fermionic gapped SRE topological 
quantum matter - the class of topological insulators and superconductors - in all 
dimensions. Numerous such systems have become experimental reality. Compared 
with that, both the classification and the experimental realization of LRE quantum 
matter is less developed.

In this text, we will discuss realizations of both SRE and LRE matter. To provide 
some orientation for beginners in the field, the following two sections contain a brief 
synopsis of essential features of these two material classes.

8.1.1 Short-range entangled topological matter

At first sight, the definition of short-range entangled topological matter above 
may seem a contradiction in terms. How can a system deformable to a trivial prod­
uct state be topologically ordered? To understand why we have nontrivial forms of 
SRE topological matter, note that the above criterion requires deformability into a 
trivial state under the most general class of unitary transformations. However, many 
systems are protected by symmetries, such as the time-reversal or charge conjuga­
tion symmetries of superconductor Hamiltonians. Under these circumstances, only 
unitary transformations respecting those symmetries are physical. This restriction 
defines the concept of symmetry-protected topological (SPT) order:

> Different classes of SPT order cannot be deformed into each other by symmetry­
respecting unitary transformations without passing through a phase transition.
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> However, all SPT phases can be transformed into the same product state under 
the most general class of local unitary operations.

To make the meaning of these state­
ments more tangible, let us discuss an 

ssh model example: The Su—Schrieffer—Heeger 
(SSH) model was introduced in 1979 as 
a minimal model for the one-dimensional 
organic compound trans-polyacetylene.1 

It is defined as the fermion chain, 

j = ^2 4+1(1+y (-1)) ci + h • c., 

where y is a real parameter defining 
a staggered hopping amplitude, and we 
have set the average hopping strength to
unity. Introducing a two-site unit cell containing even (◦) and consecutive odd (x) 
sites, and switching to a momentum space representation, the Hamiltonian assumes 
the form (exercise)

J E Ck (_fe z^ Ck, Zk = (1 - Y) + (1+ Y)eik, (8.1)

where Ck = (c◦ ,k, cx,k)T, and we have set the lattice spacing to unity. From here the 
eigenvalues are readily computed as e±,k = ±|zk| = ±/2((1 + y2) + (1-y2) cos k)1 /2 ■ 

For generic values of y, this dispersion has a gap with minimal value 4|y | at k = n. 
Only at y = 0 does the gap close and k = n becomes the center of a region 
of approximately linear dispersion (see the figure). To see how y = 0 marks a 
transition between different phases, we need to take a look at the ground state 
wave function.

The quantum ground state of the insulating phases is defined by the Slater deter­
minant built from all single-particle states with negative energy e-(k). Representing 
these (prior to normalization) as ^k = (—zk, |zk |)T, the information on the topo­
logical nature of the ground state resides in the upper component zk: As k G [0, 2n] 
runs through the Brillouin zone, zk traces out a circle of radius 1 + y, centered at 

1 - y in the complex plane (see bottom of figure). For y > 0 (y < 0) it does (does 
not) enclose the origin z = 0. It is not possible to change the control parameter y 
adiabatically from one option to the other without passing through the point y = 0. 
At this phase transition point, the ground state contains a zero-energy state. The 
gap to the valence band closes and the system is no longer an insulator. We conclude 
that the Hamiltonian of the SSH chain defines topologically distinct ground states 
distinguished by the “winding” of their wave functions. This structure implements 
the first of the two criteria mentioned above.

1 W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in polyacetylene, Phys. Rev. Lett. 42, 
1698 (1979).



424 8 Topological Field Theory

chiral 
symmetry

To understand the role of the second criterion, we note that the winding number 
construction above is stabilized by a symmetry: the Hamiltonian anticommutes with 
the third Pauli matrix, [H, a3]+ = 0, which is an example of a chiral symmetry. 
The consequences of this symmetry are best discussed in a Pauli spin language, 

TT tz^twhere we define zk = xk + iyk, and represent the Hamiltonian as H = 2_,k Ck (zk • 
a)Ck, with z • a = xkax — ykay. In this representation, k o zk • a defines a closed 
curve in the equatorial plane of the class of spin Hamiltonians H = viai, and the 
topological index distinguishes between curves that may or may not enclose the 
origin z = 0. Inside the plane, it is not possible to continuously deform one type of 
curve into the other without crossing the origin (the point of the gap-closing phase 
transition). However, the situation changes if we allow for unitary transformations 
HI ^ UHU-1 violating the chiral symmetry in that they generate contributions 
proportional to az . In this case, the freedom to enter the third dimension makes it 
possible to deform configurations with and without winding into the same trivial 
insulating state, without ever closing a gap.

EXERCISE Try to come up with a family of unitary transformations Uk,s such that 
Uk,0 = 1 is the identity and Uk,1 transforms the Hamiltonians Hk into the non-chiral form 
Hk = |zk|a3 with trivial ground state ^k = (0, 1)T. (Hint: Think geometrically. The curves 
previously confined to the xy-plane must be contracted to points on the z-axis.2) Since 
| zk | does not depend on the sign of y , this is an example of a chiral symmetry-violating 
unitary transformation connecting different topological sectors: Curves with and 
without winding number around the origin of the plane are deformed into identical, point­
like curves in three-dimensional space without compromising the ground state gap.

2 The transformation matrices —)dxa = do the job. They transform the

Hamiltonian to .

Do the two states separated by a phase transition differ in any characteristic besides 
a formal winding number? For an infinite or closed chain the answer is negative. 
This follows from the observation that a physically inconsequential relabeling ◦ ox 
maps the chain with parameter y to one with — y . However, the situation changes 
if a system with boundaries is considered. Assume the chain has been cut in such 
a way that a ◦/x-site defines the left/right boundary. We now claim that the 
configuration y > 0 supports a pair of zero-energy states exponentially localized at 
the boundaries, while there are no such states for y < 0. The most straightforward 
way to verify this assertion is by direct computation in real space: the zero-energy 
Schrodinger equation Ila = 0 defined by the nearest-neighbor hopping Hamiltonian 
assumes the form 0 = Ila2l+1 = t (1 + y ) ^21 + t (1 — Y) ^21+2 and 0 = Ila2l = 
t(1 — Y) ^21-1 + t(1 + Y) ^21+1, with boundary conditions 0 = ^ 1 = t(1 — y) ^2 

and 0 = ^2N = t(1 + y)^2N-1. Focusing on the left edge, the boundary condition 
requires ^2 = 0, which extends to ^2l = 0 upon iteration into the bulk. On the odd- 
numbered sites we have the recursion relation ^2l+1 = ca2l-1, with c = 1+^. For 
positive y or c < 1, this equation has an exponentially decaying solution ^2l+1 = 
cl a 1 living on the odd-numbered sites. No solution is found for y < 0. An analogous
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construction at the right-hand boundary demonstrates the existence of a second 
zero-energy state for y > 0. The presence or absence of surface states in the finite 
chain makes the two phases physically distinguishable.

The stabilization above of a pair of zero-energy states by a topologically nontriv­
ial bulk is an example of the bulk-boundary correspondence that is ubiquitous 
in the physics of topological quantum matter: gapped bulk states with topologi­
cally nontrivial ground states support gapless surface states. For one-dimensional 
systems, the surfaces are points, and “gapless” means zero-energy states sitting in 
the middle of the bulk spectral gap. However, for systems in higher dimensions, 
the extended surfaces are generally described by surface Hamiltonians with gap­
less dispersion relations. In practice, this means that we have conducting states 
of matter, protected by topological principles. We will see more examples of this 
correspondence later in the text.

The SSH chain is representative of the general class of topological insulators 
and superconductors, a form of fermionic short-range entangled (SRE) gapped 
quantum matter. The field of topological insulator physics3 has exploded in the 
first and second decades of the century. Compared with other forms of topological 
matter, the physics of this material class is relatively well understood. Referring 
for an in-depth discussion to one of a growing number of textbooks, here we em­
phasize that the question of whether an insulator in d dimensions may support 
topological ground states depends on symmetries. On the broadest level, there are 
ten symmetry classes distinguished by their behavior under the fundamental sym­
metries (see info block below): time-reversal, charge conjugation and combinations 
thereof.4 The 10-row table defined by symmetries and physical dimension defines 
the periodic table of topological insulators (see table 8.1).5 The subsequent 
inclusion of additional (unitary) crystalline symmetries6 has led to the discovery 
of the more diversified class of crystalline topological insulators. At the time 
of writing of this text, numerous representatives of these system classes have been 
realized experimentally, and there are certainly more to come. For a discussion of 
the complementary class of bosonic SRE phases, we refer to the literature, and to 
the example of the anti-ferromagnetic spin chain to be discussed in section 8.4.6.

3 Throughout, we will consider superconductors as materials with a quasiparticle excitation gap, 
and refer to topological insulators and superconductors as topological insulators.

4 A. Altland and M. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal- 
superconducting hybrid structures, Phys. Rev. B 55, 1142 (1997).

5 A. Kitaev, Periodic table for topological insulators and superconductors, in AIP Conference 
Proceedings 1134, 22 (2009); S. Ryu et al.,Topological insulators and superconductors: Ten­
fold way and dimensional hierarchy, New Journal of Physics 12 (2010).

6 L. Fu, Topological crystal line Insulators, Phys. Rev. Lett. 106, 106802 (2011).

INFO In this text, various realizations of topological insulators are discussed as examples. 
Although the understanding of these does not require familiarity with the systematic 
classification of topological insulators, here we provide a quick overview, showing how 
the symmetries and dimensionality of an insulating material determine whether it may 
carry topological structure or not. The upshot of this discussion is the periodic table of 
topological insulators and superconductors mentioned above.
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According to a famous theorem by 
Wigner,7 symmetries in quantum mechan­
ics are realized as unitary or anti-unitary 
transformations of Hilbert space. Specifi­
cally, the classification of topological in­
sulators builds on two transformations 
T and C representing the symmetry of 
a quantum system under time-reversal 
or charge conjugation, respectively.8 

When represented in the language of first 
quantized free electron Hamiltonians, they

7 E. P. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren 
(Friedrich Vieweg und Sohn, Braunschweig, 1931).

8 The denotations “time-reversal” and “charge conjugation” symmetry are a notorious source of 
confusion. The physical origin of Eqs. (8.2) are two symmetry operations that change the sense 
of traversal of world lines (T) and or that exchange particles with anti-particles (C), respectively. 
First-principle definitions of C, T are formulated within Dirac theory, which is the fundamental 
description of fermion matter (see problem 9.4.1). Equations (8.2) represent the non-relativistic 
descent of these symmetries, formulated in first-quantized language. The confusion starts when 
symmetries having different physical origin assume the form of C or T and are referred to as 
charge conjugation, time-reversal, particle-hole symmetry or something else. It can be avoided 
by being concrete and not paying too much attention to the name tag. For example, if a 
mean field superconductor Hamiltonian assumes the Nambu form H = ( h -^t , with anti­

symmetric A = — AT, it satisfies a C-symmetry, H = — axHTax with Uc = ax, and there is 
no need to become philosophical about whether to call it charge conjugation or particle-hole 
symmetry.

9 There cannot be additional independent anti-unitary symmetries X'. The reason is that the 
combination XX' = U is a unitary symmetry. Hence, X' = XU, meaning that X' equals X 
modulo a unitary transformation U.

assume the form of anti-unitary transformations (showing up via the presence of a matrix 
transposition), T : H ^ UTTHTUT and similarly C : H ^ UCHTUC, where UT,c are fixed 
unitary matrices. We call a system T or C invariant if

the discovery and application of fundamental 
symmetry principles.”

Eugene Paul Wigner 1902­
1995
was an American physicist and 
Nobel Laureate in Physics in 
1963 “for his contributions 
to the theory of the atomic 
nucleus and the elementary 
particles, particularly through

T-symmetry: H = UTHTUT, C-symmetry: H = — UCHTUC. (8.2)

(Note the minus sign entering the definition of C-symmetry.) The matrices UX , X = C, T 
satisfy a constraint putting our symmetries into one of two categories. This is seen by 
two-fold application of the symmetry operation, which for an X-symmetric Hamiltonian 
sends H back to itself: H ^ UX(UXHTUX)TUX = (UXUX)^H(UXUX) = H. This relation 
requires the commutativity of UXUX with arbitrary Hamiltonians in the symmetry class, 
which is possible only if

U X Ux = ±1, X=C, T.

We denote the case of the positive (negative) sign as the symmetry X = + (X = —). Cases 
with absent X-symmetry are called X = 0. Note that Eqs. (8.2) describe the symmetry 
for all Hamiltonians of a given symmetry in a given basis. This is reflected in a universal 
(simple) form of the matrices UX . Frequent realizations include UT = 1 (the time reversal 
of spinless particles in the position basis), UC = ax (charge conjugation symmetry of 
spin-triplet superconductors), and UT = ay (the time reversal of spin-1 /2 particles in the 
position basis), etc.

The different choices T, C = +, —, 0 yield nine different symmetry classes.9 To see that 
the actual number of distinct anti-unitary symmetry classes equals 10 = 9 + 1, we need
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to inspect the case (T, C) = (0, 0). A system lacking both time-reversal and charge conju­
gation symmetry may nevertheless be symmetric under the combined operation CT = S. 
Under it, H ^ USHUS, with US = UTUC, and we say that a Hamiltonian possesses chiral 
symmetry, S, if

S-symmetry: H = — US HUS, (8.3)

i .e., if it is symmetric under S = CT, in which case we write S = +.  This is neither an 
anti-unitary symmetry, nor a conventional unitary symmetry. The minus sign, inherited 
from C-symmetry, puts it in a different category. The chiral symmetry option means that 
(T, C) = (0, 0) splits into (T, C, S) = (0, 0, 0) and (T, C, S) = (0, 0, +).

10

We have thus arrived at the conclusion that:

Free fermion Hamiltonians belong to one of ten different symmetry classes.

Elie Cartan 1869-1951
was a French mathematician 
famed for work in the theory of 
Lie groups and differential ge­
ometry. His work in these fields 
has had profound influence in 
various areas of physics, in­
cluding particle physics and the 
theory of general relativity.

It now turns out that the membership in 
a given symmetry class decides the topo­
logical contents of insulating free fermion 
matter. Referring to Ref. for a compre­
hensive explanation, we note that the free 
fermion ground states of d-dimensional 
gapped Hamiltonians of a given symmetry 
may carry Z-valued integer or Z2-valued 
binary topological invariants. The differ­
ent options are summarized in the peri­
odic table of topological insulators (table 8.1), where the first column labels sym­
metry classes in a notation introduced by the mathematician Cartan in the 1920s.11 The 
connection to mathematics originates in the observation that the time-evolution operator 
U = exp(iH) of a first quantized Hamiltonian takes values in a class of manifolds known 
as symmetric spaces. For example, if H is just hermitian, (T, C, S) = (0, 0, 0), and U 
takes values in the N -dimensional unitary group, U(N), a.k.a. the compact symmetric 
space AN of rank N . If we impose the additional condition of time-reversal invariance 
(T, C, S) = (+, 0, 0), and consider the case UT = 1, such that H = HT , the time-evolution 
operator takes values in U(N)/O(N), which is to say that anti-symmetric generators 
iH = —iHT are excluded. This is the symmetric space AIN, etc. In the theory of topologi­
cal quantum matter, the seemingly unintuitive, but also unambiguous, Cartan denotation 
of symmetries has stuck - to say that a superconductor obeys time-reversal invariance and 
particle-hole symmetry leaves room for confusion; to say that it is in class CI does not.

The labels Z, Z2 , 0 in the table denote the possible topological invariants. For example, 
the SSH Hamiltonian considered above is defined in d = 1 and symmetry class (T, C, S) = 
(0, 0, +), or AIII. Its chiral symmetry is expressed as a3Ha3 = — H, where H is the 
off-diagonal first-quantized Hamiltonian in Eq. (8.1). This leaves room for a Z-valued 
topological invariant. In the discussion above, we saw that some SSH chain Hamiltonians 
were trivial, while others had winding number 1. Such Hamiltonians of higher winding 
number involve multiple coupled chains. This example demonstrates that Hamiltonians 
belonging to topologically nontrivial classes may, but need not, have topological ground 
states. However, the example also illustrates why class A Hamiltonians in d = 1 cannot 
support topological ground states.
10 Invariance under two-fold application of S leads to the condition US = ±1. However, these are 

not independent choices, since every time that US2 = 1, this can be changed into a -1 by the 
transformation US ^ iUS. (Why does this reasoning not apply to C,T?)

11 E. Cartan, Sur une classe remarquable d’espaces de Riemann, I, Bulletin de la Societe 
Mathematique de France, 54, 214 (1926).
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Table 8.1 Periodic table of topological 
insulators. The first two rows contain the 
classes without anti-unitary symmetries.

Class T C S 1 2 3 4
A 0 0 0 0 Z 0 Z
AIII 0 0 + Z 0 Z 0
AI + 0 0 0 0 0 Z
BDI + + + Z 0 0 0
D 0 + 0 Z2 Z 0 0
DIII — + + Z2 Z2 Z 0
AII — 0 0 0 Z2 Z2 Z
CII — — + Z 0 Z2 Z2

C 0 — 0 0 Z 0 Z2

CI + — + 0 0 Z 0

Also note the diagonal stripe pattern in the table, known as Bott periodicity: the table 
repeats itself with period d ^ d + 2 and d ^ d + 8 in the classes without and with anti- 
unitary symmetries, respectively. This repetitive pattern affords a physical explanation 
discussed in Ref. and represents a powerful organizing principle in the theory of quantum 
matter. For example, if unitary symmetries, such as crystalline symmetries, enter the 
stage, the classification of invariants becomes much more complicated, but it would be 
even more complicated if it were not for Bott periodicity. Finally, much of the discussion 
above survives the inclusion of particle interactions. However, it turns out that, in 
the presence of (Mott) gaps generated by interactions, ground states carrying integer 
invariants can be deformed to those with different invariants without closure of the gap, 
i.e., without a phase transition. This amounts to a partial collapse of the classification. 
For example, in class BDI in d = 1, this mechanism causes the reduction Z ^ Z8.12

We call matter topologically ordered if the ground state cannot be transformed 
into a product state by local unitary transformations. The terminology “ordered” 
makes reference to the complementary class of systems where a local order pa­
rameter is defined by the breaking of some symmetry. Here, the role of the order 
parameter is taken by non-local topological signatures of the ground state. Promi­
nent classes of matter included in this category are fractional quantum Hall systems 
(section 8.6.5), and various forms of spin liquids (section 10.4).

A key signature of topological order is the presence of long-range entanglement. 
This correspondence establishes a link between two of the most profound concepts 
of mathematics and physics. However, showing it in concrete cases is not straight­
forward, the reason being that entanglement is not an easily accessibe observable 
in many-body theory. There are essentially two ways to describe entangled states

12 L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 
83, 075103 (2011).

8.1.2 Long-range entangled topological matter

topological 
order
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of matter theoretically. The first is constructive, in that long-range entanglement is 
hardwired into quantum ground states by design, e.g., via the inclusion of spatially 
extended “string” order (for an example, see section 10.4.1). The second way detects 
entanglement in given systems via the computation of entropic measures known as 
entanglement entropies (see info block below). This approach has become indus­
trialized in the computational investigation of topological matter. However, except 
for the rare case of conformally invariant theories, entanglement entropies are usu­
ally not analytically computable.

INFO Composite quantum systems are entangled if their states differ from the product 
states of their constituents. That entanglement need not be easily visible can be illus­
trated even for a two-spin system: | ft) = | f) > | f) is a product state and therefore not 
entangled, the Bell state —^(| ft) + | It}) is maximally entangled, and the seemingly 
entangled state 1 (| ft) + | ft) + | It) + | tt)) is actually not entangled because it is 
the product state, | ^^), of two spin-x eigenstates | ^) = —2(| f) + | t)) in disguise. 
The example shows that the choice of basis is an important element in the detection of 
entanglement. This becomes a serious issue for systems with large numbers of degrees of 
freedom and competing bases, i.e., the standard situation in many-body physics.

In practice, entanglement is often probed via the computation of entropic measures. One 
starts by applying an entanglement cut, separating a given system into two constituents 
whose relative entanglement is of interest. Such cuts are often applied in real space, for 
example the division of a quantum wire into two halves. Calling the two subsystems A and 
B, one then picks one of them and computes the reduced density matrix pA = trB (p) 
by tracing over the Hilbert space of the other. The entanglement entropy is the von 
Neumann entropy of pA ,

(8.4)

Of particular interest are the entanglement entropies of pure states, i.e., projectors 
onto single wave functions p = |^)(^|. If |^) = |vf A )®|^ B} is a product state - think of a 
fully polarized spin system - the entanglement entropy vanishes. (As an exercise, compute 
the entanglement entropy of the two-spin system with A equal to the first spin for the 
three states mentioned above.) By contrast, eigenfunctions of many-body Hamiltonians at 
highly excited energies are generically strongly entangled with SA ~ VA extensive in the 
subsystem volume, VA . This is called volume law entanglement. (Notice the similarity 
to the extensive entropy in classical statistical mechanics.)

However, the most interesting forms of entanglement entropies are often observed for 
states close to the ground state. They usually show area law entanglement, SA = cAA , 
where AA is the geometric surface area of A and c is a measure of the spatial extension 
over which microscopic degrees of freedom are entangled across the interface.13 However, 
in systems with LRE topological order, SA = cAs — 7 picks up a correction known 
as topological entanglement entropy.14 Reflecting the topological background, y is a 
universal number, related (but not identical) to the ground state degeneracy. For example, 
the fractional quantum Hall systems to be discussed in section 8.6.5 have m-fold degenerate 
ground states and a topological entanglement entropy y = (ln m)/2. The topological Z2 

spin liquid to be discussed in section 10.3.2 has y = ln 2, etc. However, as with entropies 

13 An interesting exception is provided by states at a quantum critical point, where fixed length 
scales do not exist. For example, for one-dimensional systems at a (1 + 1)-dimensional quantum 
critical point, SA = const. X In LA, where LA is the length of the domain A.

14 A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96, 110404 (2006).

SA = —trA [pA ln(pA)]

topological 
entangle­
ment en­

tropy
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in general, analytical calculations of 7 for unknown theories are often impossible and we 
have to rely on computational methods.

Topological order shows not only in entanglement measures but also in physical ob­
servables, which are easier to access by analytical methods. First, the many-body 
wave functions of LRE topological matter contain robust ground state degeneracies. 
The ensuing ground spaces have very interesting physical properties. For example, 
in conventional systems, adiabatic (meaning intra-ground space) interchanges of 
quasiparticles lead to sign factors distinguishing between bosonic or fermionic ex­
change statistics. However, in systems with topological degeneracies, such “braid­
ing” protocols may generate more complex transformations of ground state wave 
functions. These include multiplication by phases different from ±1, or even non- 
abelian unitary transformations. The braiding statistics of topological matter is the 
subject of a huge research field, which even includes a future applied perspective. 
In topological quantum computation,33 engineered braiding protocols are in­
vestigated as a resource for computing that is protected against the local influences 
of decoherence by long-range entanglement.

Second, excitations forming on top of topologically degenerate ground states are 
emergent quasiparticles, different from the microscopic constituents of the system. 
The emergent nature of these particles shows in unusual properties such as fractional 
charge and/or exchange statistics.

The above signatures of topological order have the advantage that they show 
in analytically tractable physical observables. Both, ground state properties and 
quasiparticle excitations are described via topological field theories, which in the 
case of two-dimensional matter are the Chern-Simons theories to be discussed in 
section 8.6 below. (However, compared to the situation in two dimensions, the 
understanding of topological order in higher dimensions is still in its infancy.)

A natural question to ask is whether the two criteria long-range entanglement 
and ground state degeneracy condition each other. The answer is that generically 
they do, but not always. A case in point is the integer quantum Hall effect 
(section 8.4.7). This archetypal form of topological matter is long-range entangled: 
it does not show ground state degeneracy, and defines an entry in the periodic table 
of symmetry-protected topological insulators. In this way, it sits between all stools 
and connects to various concepts of topological matter at the same time.

After this short overview, we now turn to the introduction of quantum field- 
theoretical methods in topological matter. In quantum field theory, the presence of 
topological structures shows up via topological terms contributing to effective ac­
tions. We will introduce the three largest families of topological terms, the 9-, WZW- 
and Chern-Simons terms. All three cases will be discussed in the context of con­
crete examples (the integer quantum Hall effect, antiferromagnetic spin chains, and 
fractional quantum Hall effect, respectively). This approach is not only illustrative 
but also underpins an important practical aspect: like the standard contributions to 
effective theories, topological terms emerge from an underlying microscopic theory.
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However, unlike these, they probe non-local characteristics and are therefore easily 
overlooked in standard gradient expansion approaches. The examples below high­
light this aspect, and show how we can avoid missing topological terms. However, 
as a warm-up to the general discussion, let us begin by introducing a few common 
characteristics of topological terms in field theory for a simple example.

8.2 Example: Particle on a Ring

Consider a free quantum particle of unit charge confined to one |<i>
dimension and subject to periodic boundary conditions - a parti­
cle on a ring. To make the problem more rich, we assume the ring
to be threaded by a magnetic flux $. Describing the particle position by an angular 
variable ^ G [0, 2n], the free Hamiltonian of the system reads as (~ = e = c =1),

H=|(—idp - A)2, (8.5)

where A = $/$0 is the vector potential corresponding to the magnetic field (think 
why?) and $0 = h/e = 2n is the magnetic flux quantum. (For simplicity, we set 
the radius of the ring and the particle mass to unity.) Periodicity implies that 
we are working on a Hilbert space of wave functions ty subject to the condition 
ty (0) = ty (2 n).

The eigenfunctions and the spectrum of the Hamiltonian are given by

$n($) = —1 exp in$), en = 1 (n - -$) , n G Z. (8.6)
V2n 2 \ $o /

Although the above setup is very simple, many of the concepts of topological quan­
tum field theory can be illustrated on it. To explore these connections, let us 
reformulate the system in the language of the imaginary-time path integral (see 
problem 8.8.1 for details):

Z = D D$e- f dTL (pp), (8.7)

p ( p)-p (0)e2 n Z

where the boundary condition ^(P) — ^(0) G 2nZ allows for multiple ring traversal, 
and the Lagrangian is given by

L (<M) = 2 j> 2 — iA'. (8.8)

EXERCISE Verify by Legendre transformation that the Hamiltonian corresponding to 
this Lagrangian is given by Eq. (8.5). Obtain the spectrum (8.6) from the path integral, 
i.e., represent the partition function in the form Z = exp(-■>' n). (Hint: Apply a
Hubbard-Stratonovich decoupling of the quadratic term.)
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Fig. 8.1

fl

Maps fl : S1 ^ S1 of different winding numbers on the ring.

Suppose that we did not know the exact solution of the problem. Our routine 
approach to evaluating the integral would then be a stationary phase analysis. The 
Euler-Lagrange equations of the action S [fl] = fo dTL(fl,fl),

6S [ fl ]
’* ' (T)

winding 
number

= 0 O fl = 0,

have two interesting properties. (i) The vector potential does not enter the equa­
tions. On the other hand, we saw above that it does have a physical effect (the spec­
trum depends on A). We need to understand how these two seemingly contradictory 
observations can be reconciled with each other. (ii) There exists a whole family of 
solutions, Q\(- (r) = W2nr/fl, and the action of these configurations, S[flW]|a = 0 = 
2f (2nW)2, varies discontinuously with W. We have seen other systems supporting 
discrete families of saddle-point configurations separated by action barriers - for 
example, the instanton solutions in the quantum double well. However, the present 
problem is different in that the saddle-point sectors, W, are separated by a topo­
logical barrier that is not only energetic but also more profound.

To understand this point, we note that imaginary time with periodic boundary 
conditions is topologically a circle, S1, and the field fl is topologically a map fl : 
S1 ^ S1 from that circle to the one defined by the phase mod 2n.15 Each such map 
is indexed by a winding number, W, counting the number of times the phase 
winds around the target circle: fl(fl) — fl(0) = 2nW (see fig. 8.1).

It is not possible to change W by continuous deformation of fl. Since contijnuity 
is assumed in field integration (which physical principle stands behind this?), Dfl 
becomes a sum of integrals over functions fl(t) of definite winding numbers, or 
different topological sectors:

15 Imaginary time is equivalent to a circle of circumference fl. However, in arguments of a topo­
logical nature, it is customary to ignore “non-topological” complications such as the finite 
circumference of a circle.
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1/H (1/gauss)

Fig. 8.2 Power spectrum of the persistent current carried by a single gold loop of diameter O(1 pm), 
and circumference about ten times larger than the mean free path. (Reprinted from V. 
Chandrasekhar et al., Magnetic response of a single, isolated gold loop, Phys. Rev. Lett. 
67, 3578 (1991). Copyright by the American Physical Society.)

Z = D D^e- f dTL(^) = e2 'iWA J D^e-1 f d2, (8.9)

where we noted that the A-dependent term in the action,

Stop[0] = iA [ dr<j) = iA(<p(fi) — <fi(0)) = i2nWA, 
0

is sensitive only to the index W carried by 0. This representation makes the topo­
logical contents of the problem visible:

> The functional integral is an integral over disjoint topological sectors.

> The contribution to the action, Stop, is our first example of a topological term.
(It belongs to the class of 9-terms, to be discussed in section 8.4.)

> Variational equations probe how the action responds to small deformations of a 
field. These do not alter the topological sector, and for this reason the topological 
term does not show up in equations of motion.

> Nevertheless, it does affect the result of the functional integration as a W- 
dependent phase, weighting the contribution of different sectors.

> Since Stop knows only about topological classes, it is oblivious to the metrics 
of both the base and the target manifold. Specifically, rescaling t ^ ir = t, 
from imaginary to real time leaves Stop[^] = 2niAW invariant; in either case it 
assumes the form of an imaginary phase. We will see later that this reflects a more 
general principle: both in in Euclidean and Minkovski space-time, topological 
terms enter as imaginary phases.

All these features generalize to other realizations of topological field theories. How­
ever, before introducing these generalizations, we need to provide a little more 
mathematical background on the topology of fields. This will be the subject of the 
next section.

EXERCISE Reflecting its simplicity, the above particle-on-a-ring paradigm frequently 
appears in condensed matter physics. Examples encountered previously in this text include 
the Josephson junction (problem 5.6.6) between superconductors, where $ is a phase
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persistent 
currents

difference of condensates, and the physics of normal metal granules subject to strong 
charging, where the time-derivative of the phase is electric voltage. Another interesting 
realization is the physics of normal metallic persistent currents:

Consider a ring-shaped conductor subject to a magnetic flux. According to a prediction 
by Byers and Yang,* 16 the magnetic field induces an equilibrium current

In this section, we generalize the classification in terms of winding numbers previ­
ously exemplified for the particle-on-a-ring system to higher-dimensional settings. 
This leads to the concept of homotopy in field theory, which will be fundamental 
to the applications discussed later in the chapter.

16 B. Byers and C. N. Yang, Theoretical considerations concerning quantized magnetic flux in 
superconducting cylinders, Phys. Rev. Lett. 7, 46 (1961).

17 We do not want the impurity potential to be so strong as to localize wave function on length 
scales shorter than the ring circumference.

18 A. C. Bleszynski-Jayich et al., Persistent currents in normal metal rings, Science 326, 272 
(2009); H. Bluhm et al., Persistent currents in normal metal rings, Phys. Rev. Lett. 102, 
136802 (2009).

I ($) =
dF ($) 

d $

periodic in $ with period $0. Remembering that a vector potential enters the free energy 
as ~ J dA • j, derive this formula. Show that, at zero temperature, the persistent current 
flowing in a perfectly clean one-dimensional metal of non-interacting fermions assumes 
the form of a $0-periodic sawtooth function, I($) = 2LF [$/$0], where [x] = x — n and 
n is the largest integer smaller than x. (Hint: For zero temperature, the free energy of a 
non-interacting system of particles is equal to the sum of all single-particle energies up to 
the Fermi energy. Notice that the current is carried by the last occupied state, and the 
currents — d$en carried by all levels below the Fermi energy cancel.)

For a long time, the prediction of this current was believed to be of only academic 
relevance: the presence of impurities in realistic materials disrupts the phase of wave 
functions, so that a phenomenon relying on the phase of the highest occupied single­
particle level should be highly fragile. On the other hand, the topological nature of the 
flux coupling indicates that the effect might be more robust.

To substantiate this second view, show that a gauge transformation ^(<p) ^ e' A^(<p) 
removes A from the Hamiltonian while changing the boundary conditions to ^(0) = 
e2 ni'''.' (2n). For a clean system, obtain the spectrum in the twisted representation and con­
vince yourself that the information on the field now sits in the boundary conditions. While 
mathematically equivalent, the second formulation provides a new perspective: Even in the 
presence of a moderate amount of impurities,17 wave functions remain sensitive to changes 
in the boundary conditions, suggesting that a persistent current should be more robust 
than previously thought. In a series of beautiful experiments (see fig. 8.2 and Refs.18), 
persistent current flow in normal metallic rings was indeed observed for rings exceeding 
the scattering mean free path by orders of magnitude.

8.3 Homotopy
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8.3.1 Homotopy group

We begin by introducing a few mathematical concepts. In chapter 1, 
fields were defined as maps ^ : M ^ T, z ^ ^(z), from a base manifold 
M into a target manifold T . In practice, we often work with theories 
with continuous symmetries described by the action of a group G. These 
symmetries may or may not be spontaneously broken down to a smaller 
group H . (Think of the canonical example of a magnet with rotation 
symmetry G = O(3), broken down to H = O(2) in the ferromagnetic 
case.) In all these cases, T = G/H is a coset space, where G is one of 
the compact classical groups U(N), O(N), and Sp(N), and H is some 
subgroup thereof. Although this realization of T does not exhaust the 
repertoire of field-theoretical applications, it is general enough for our 
present purposes.

Turning to the base manifold, we frequently have situations where
fields at spatial infinity decay. The constancy of the field at the boundary,
^ I dM = const., can then be used to compactify to a sphere of large radius (see the 
figure). Again, this setting does not cover every possible situation, but will be 
general enough for the moment. Topologically, a large sphere is equivalent to a 
unit sphere, Sd , which means that the topology of a large family of applications is 
described by fields

$ : Sd ^ G/H, 

z ^ ^(z),

mapping unit spheres into coset spaces.

topology INFO A few comments on the term topology in the present context. The phenomena 
discussed in this chapter rely on continuity: disruptive changes in field configurations 
come with large action costs and are beyond the scope of effective theories. They have a 
status similar to the topology-altering breaking of a circle. However, topological data is 
oblivious to continuous deformations of fields; it does not depend on metric structures. The 
minimal structure describing continuity modulo metric is that of a topological space.19 

The target and base manifolds introduced above are of higher structure, admitting the 
definition of metrics probing distances in M or T . However, in this chapter, no reference 
to these will be made. This comment is more than a formality. For example, the metric 
independence of a term in an effective action is often the most straightforward way to 
identify it as a topological term.

19 Let X be a set and J = {Yi C X |i £ I} a collection of its subsets. The pair (X, J) is called 
a topological space if and only if, (a) {}, X £ J, (b) for J C I, ig j Yi £ J, and (c) for any 
finite subset J C I, Qig j Yi £ J. The elements of J define the open subsets of X. A map 
<p : X ^ Y between two topological spaces is a continuous map if for any open set U C Y, 
the pre-image $-1 (U) C X is open in X.

We proceed to discuss the topological contents of fields: Two fields $ 1 and $2 

are topologically equivalent if they can be continuously deformed into each other.
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Fig. 8.3
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Concatenation of two two-dimensional fields into a single field.
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Technically, this condition requires the existence of a continuous deformation map, 
a homotopy in the language of mathematics,

<£ : Sd x [0, 1] ^ T,

(z,t) ^ <b(z,t),
1 j 1 j 7 t C\ \ I 17/ 1 \ I TTTl j j 1 -7 7 f 11such that ft(., 0) = ft 1 and ft(., 1) = ft2. We denote the equivalence class of all 

fields topologically equivalent to a given representative ^ by [^]. For example, in 
the case ^ : S1 ^ S1 discussed in the previous section, individual classes contain all 
fields of a specified winding number. The set of all topological equivalence classes 
{[$]} of maps ^ : Sd ^ T is called the dth homotopy group, nd (T).

INFO In what sense is nd(T) a group rather than just a set? To understand this point, 
consider the base manifold deformed from a sphere to a d-dimensional unit cube I d = 
[0, 1] d. This operation is topologically empty provided that the boundary dId of the cube 
is identified with a single point on the sphere, 0|dId = const. (Think of dId as the infinitely 
large boundary of the original base manifold. Without loss of generality, we can assume 
the constant to be the same for all fields.)

Two fields $ 1 and $2 described in the cube representation may now be glued together 
to form a new field $3 = $ 1 * $2 (fig. 8.3). For example, we might define

, , , f<1>1(2x 1 ,x2,...,xd), x 1 e [0, 1 /2],
$3(x 1,x2, ... ,xd) s , . /- r-i /o -ii[<2> 2(2 x 1 - 1 ,x 2,... ,xd), x 1 e [1 / 2, 1].

(Think why the presence of a common reference configuration $* is essential here.) Each 
field is in a homotopy class, and we define the group operation in nd(T) as

[$ 1] * [$2] = [$3]. (8.10)

(Think why this is a valid definition and why it does not depend on the choice of coordi­
nates in which the gluing operation is formulated.) It is straightforward to verify that “*” 
satisfies the criteria required by a group operation:

The concatenation of fields by gluing defines a group structure of homotopy classes.

8.3.2 Examples of homotopies

Only in simple cases can homotopy group structures be identified by straightforward 
inspection. For example, maps S1 ^ S1 are classified by winding numbers W G Z
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Table 8.2 Homotopy groups of a number of common maps. A missing 
entry means that no general results are available.

S1 S 2
g>> 2 T k SU(2) SU( N)

d =1 Z 0T~ 0 Z © • • • © Z 0 0

d = 2 0 Z 0
d < k : 0

k
0 0 0

d> 2 0 0 a d = k : 
d > k :

Z 0 n 3(SU(2)) = Z

a But n3(S2) = Z.

and concatenation yields fields of added winding numbers: n 1(S 1) = Z with addition 
as a group operation. On the other hand, it is evident that maps S 1 ^ S2 - closed 
curves on the 2-sphere - can be shrunk to trivial maps: n 1(S2) = 0. However, in 
general, the identification of homotopy groups for the targets T = G/H of field 
theory is a hard problem and few things can be said in general.

For example, a topological space, T , is called simply connected if any closed curve 
on it is contractible. By the definition of homotopy, this is equivalent to n 1(T) = 0. 
Examples include all higher-dimensional spheres Sd> 1 and SU(N): n 1(Sd> 1) = 
n 1(SU(N)) = 0. Conversely, the first homotopy groups of non-simply connected 
spaces are nontrivial. For example, curves on the d-dimensional torus Td are clas­
sified by (think why!)

n 1( T k) = Z x ••• x Z .
k

The higher-dimensional groups, nd> 1(T), are less easy to imagine. For example, 
maps of S2 into itself are classified according to how often they wrap around the 
sphere: n2(S2) = Z. However, the generalization to higher dimensions, nd(Sk) = Z, 
with nk(Sd>k) = 0, is less intuitive. Interestingly, maps Sd ^ Sk<d into lower­
dimensional spheres can be nontrivial. For example, Hopf has shown that n3(S2) = 
Z. For a summary of these, and a few more results, see table 8.2.

However, even basic applications of physics are not covered by these known 
results, and in practice the identification of homotopies is often addressed on a 
case-by-case basis (see Ref.* 21 for further discussion).

We now turn to the question of how field homotopy shows up in field theory. 
Each field ^ : M ^ T is labeled by a homotopy class, which in nontrivial cases 
assumes the form of an integer or multi-integer index, W , sometimes denoted the

21 M. Nakahara, Geometry, Topology and Physics (IOP Publishing, 2003).

8.4 0-terms
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topological charge. Accordingly, the functional integral defining the theory is 
organized as

Z = f D^W e-S[W],

W

where J D^W denotes integration over all fields in the topological sector labeled 
by W . It may happen that the action of the theory,

S [ $ ] = S o[ $ ] + Stop[ <t ],

contains a topological action, Stop[^] = F(W), defined to be a contribution which 
depends on the charge, W, but on nothing else. Since Stop is constant within each 
sector, it may be pulled upfront to obtain

Z = ^2 e - F (W }y D^W e - S 0[ Ww ]. (8.11)

At first sight, it may look as if F(W) can be an arbi­
trary function. However, it turns out that topology 
almost uniquely fixes the form of allowed F(W). 
To see how this comes about, consider two fields ^ 1 

and $2, assumed to be constant everywhere, save 
for two localized regions somewhere in space-time 
(see figure). We now glue these fields to obtain a 
new one, ^ 1 * ^2, with charge W1 + W2. Assuming 
the respective regions of variation to be well sep­
arated, the action must be additive in the sense S[^ 1 * ^2] = S[^ 1] + S[^2]. In 
particular, F(W1 + W2) = Stop[$ 1 * $2] = Stop[$ 1] + Stop[$2] = F(W1) + F(W2).

This construction tells us that the topological action is linear, F(W1 + W2 ) = 
F (W1) + F (W2). If W is just an integer, it must be of the form,

F (W) = i9W,

where we ignore additive constants, and anticipate that the constant of proportion­
ality, 9, is generally imaginary.

The term i9W is called the topological phase. Since W is integer, the param­
eter 9 is defined only mod 2n, and therefore represents an angular parameter. This 
topological angle is commonly called 9,22 hence the denotation 9-term for the 
topological action.

A disadvantage of the representation above is that it makes reference to the index 
W as an abstract quantity. It would be better to work with representations

Stop[^] y ddx Ltop[&d^],

22 The concept of 0-terms was pioneered in ’t Hooft’s analysis of SU(2) gauge field instantons in 
four-dimensional compactified space-time (G. ’tHooft, Magnetic monopoles in unified gauge 
theories, Nucl. Phys. B79, 276 (1974).) In this paper, he labeled the topological angle by 0, 
and the denotation has stuck.
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directly in terms of the field, where the topological Lagrangian (density), Ltop, 
is implicitly defined by the condition Stop[^] = i0W. In this way, the winding 

e-term number is computed from a topological action, generally referred to as a 0-term,23 

and there is no need to explicitly split the field integration into a sum over distinct 
sectors:

REMARK In this section, we discuss the universal definition of topological 0-actions 
from a geometric perspective, using the language of differential forms introduced in ap­
pendix section A.1. Why coonsider this seemingly abstract perspective before turning to 
examples? The reason is that various features of 0-terms are hard to understand in the 
coordinate-heavy representations customary in physics. In fact, it is often not straightfor­
ward to decide whether a contribution to an action is a 0-term. Similarly, one would like 
to know whether a theory specified by a base and a target manifold admits a 0-term and, 
if so, how it will look. This question, too, is easier to answer if the underlying geometric 
structures are understood. Readers wishing to see some examples first are invited to skip 
this section at first reading. However, it will be required for our subsequent discussion of 
Wess-Zumino terms in section 8.5.

23 Note that it is appropriate to denote topological actions as “terms” and not “operators.” Un­
like other contributions to functional integral actions, they are not obtained as path integral 
representations of operators acting in Hilbert spaces.

Z = D DcW e-F(W)-So[*W] = D D^e-Stop[*]-So[*]. 

W

In the next section, we discuss ways to construct topological actions using geomet­
ric principles. Knowing this construction can be a useful asset in deciding whether 
an unfamiliar field theory admits a topological action. However, for standard re­
alizations of topological field theories - with fields defined on circles, or spheres, 
or other homotopically nontrivial manifolds - the form of the topological action is 
known, and what remains to check is whether a theory has a finite 0-angle. For 
example, the magnetic action appearing in our previous discussion of the particle 
on a ring,

^ dT ■
S top[ $ ] = i0 —= iW0,

JO 2 n

is a 0-term with 0 = 2nA, non-vanishing if there is magnetic flux through the ring. 
Before turning to the discussion of more advanced realizations in sections 8.4.2 and 
8.4.7, let us summarize the defining criteria satisfied by 0-terms in general:

> 0-terms are defined by integer-valued functionals of fields, and

> they couple to the action as imaginary phases.

> Their coupling constants, 0, are defined only mod 2n.

> Since 0-terms are invariant under local deformations of fields, they do not affect 
equations of motion.

8.4.1 Geometry of Q-terms
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A 9-term is a functional Stop[t] assigning to a field t : M ^ T,z ^ t (z) a number, 
namely the number of times t (z) covers T as z runs through M. The systematic 
construction of this functional starts with the observation that almost all target 
manifolds relevant to field-theoretical applications come with a natural integral 
measure. The precise statement is that on the n-dimensional target manifold, T, 
there exists a canonical volume n-form w such that VolT = fT w is the volume of T.24 

Without loss of generality, we may define w such that VolT = 1. For example, for 
T = S2, a two-sphere, w = 4n sin 9d9 Ad$ in a local system of spherical coordinates. 
First consider the case where t : M ^ T is a diffeomorphism, i.e., a smooth one- 
to-one coverage of T. In this case, we may think of t as a coordinate representation 
of T and M as the coordinate space. The integral 1 = T w may be computed by 
a “change of variables” as an integral over M : in differential-form language, this 
reads, 1 = fT w = fM t*w, i.e., the integral is calculated as the integral of the 
pullback of the form w under t over M (see Eq. (A.16)). For example, if (x, y) e M 
are base manifold coordinates and the field has spherical coordinate representation 
t(x, y) = (9(x, y), t(x, y)), the integral over the pullback assumes the form

. 1 f , , / de dt dedt \ , 1 c ,,, ,, , , ,1 = 4J M, (x’yH»xdy — dy dx) dxdy = - Mm (8‘n * n) y

where n is the unit vector on the sphere defined by the spherical coordinates. The 
last two expressions already do what we are looking for: they assign to the field 
n = n(x, y) an integer winding number equal to unity, provided that it covers the 
sphere in a diffeomorphic manner. However, a valid 9-term must do more: it must 
yield the winding number for fields including those that are not bijective, and it 
must yield higher-order winding numbers (or zero) for fields winding multiple times 
(or not at all) around M . In the following, we show that the topological action

Stop[t] = i9 t*w (8.12)

e-term satisfies these criteria and defines the invariant representation of a 9-term.

INFO 9-terms usually appear in field theories with equal dimension, dim(M) = T, of the 
base and target manifolds. However, there are exceptions to this rule. As an example, we 
consider the targets U(n) or SU(n) on base manifolds of odd dimension d = 1, 3, • • •. In 
these cases, the 9-terms are built from the forms tr(g-1 dg) for d = 1, tr(g-1 dg A g-1 dg A 
g-1 dg) for d = 3, or tr(g-1 dg)Ad for general odd dimensions. The terms themselves are 
then obtained by pullback under fields x n- g(x) to the base, which in d = 1 and d = 3 
assume the form;

9d =1, Stop[g] = — I dxtr(g 1dxg), (8.13)
2 n J

d = 3, Stop[g] = 24n2 I d3xeijktr((g-1 dzg)(g-1 djg)(g-1 dkg)). (8.14)

24 Field manifolds of indefinite volume, for example, hyperboloids, are usually topologically trivial 
and the present discussion does not apply.
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The topological quantization of these integrals is proven in problem 8.8.3. In the second 
line, we encounter the integral for the winding number invariant in three dimensions, 
where the numerical factor i/24n2 is obtained by explicit computation (as an exercise, you 
could perform the integral using the Euler angle coordinates (8.21) for the group SU(2)).

How can the existence of a winding number of fields from low-dimensional bases, such 
as d = 3, into higher-dimensional targets, such as U(n), n > 2, be understood? It turns 
out that the topological properties of the unitary groups are contained in SU(2) C U(n). 
Windings in U(n) reduce to windings around these three-dimensional submanifolds. To 
illustrate the idea of such a reduction on a simpler example, consider the punctured plane 
R \ {0, 0}. Embedded in this two-dimensional manifold, we have the one-dimensional circle 
around the origin, S1 C T . Closed curves in the punctured planes may be continuously 
deformed to closed curves in the circle, showing that this lower-dimensional manifold 
classifies the topology of the higher-dimensional manifold. A similar principle applies to 
the above group manifolds.

We finally note the equivalence SU(2) ~ S3 of the two-dimensional special unitary 
group to the three-sphere.25 This identification, and the various one- and two-dimensional 
examples discussed in this section, indicate that, where the topology of 0-terms is con­
cerned, targets with spherical topology, S1,2,3 , are the most important ones in condensed 
matter physics.

25 To see this explicitly, consider the representation ( —^ b ) of U(2) matrices for which the unit­

determinant condition of SU(2) reads as |a|2 + |b|2 = 1. With a = x0 + ix1 and b = x2 + ix3, 
this assumes the form (xi)2 = 1, defining a three-sphere.

In the info block below, we demonstrate that Stop [^] does not vary under continuous 
deformations of ^, and in this way show that Stop is sensitive only to the homotopy 
class [^] of the field. For fields in the zero-homotopy class, the topological action 
vanishes. (To see this, consider the representative ^ = const., for which ^*w = 0.) 
For fields covering T once, the integral yields unity, as discussed above. Finally, 
for fields with W coverages, the base M can be partitioned into sectors Mi , such 
that ^ |Mi performs a single coverage and JM ^* w = 1. The full integral then yields 
S top[ $ ] = W.

EXERCISE Construct a field ^ : M ^ S2, (x,y) n- n(x,y) wrapping W times around 
the unit sphere and show that the 0-term constructed above yields this winding number.

To summarize, Eq. (8.12) defines the invariant form of the 0-action, and concrete 
representations are obtained by substitution of w and ^ for a given set (M, T) and 
coordinate system. In the following sections, we illustrate the principle for various 
examples.

INFO Let us demonstrate the invariance of Eq. (8.12) 
under continuous field deformations. To this end, con­
sider two fields $ and $' continuously deformable into 
each other. More specifically, we set $' = ^ ◦ $, where 
^ : T ^ T is different from unity only inside a local 
domain U C T (see the figure).



442 8 Topological Field Theory

We then have

Stop[  ̂] - Stop[ ^'] = id j (^ * u - (^ ◦  ̂)* u ) = iO ^ *( u - ^ * u),

where we have used the fact that the pullback under two consecutive maps equals the 
succession of pullbacks, (^ ◦ $)*u = $*(^*u). Now $*(u — ^*u) = £ is a n-form on M, 
different from zero only locally. Any form of degree n can locally be represented as the 
derivative of an (n — 1)-form.26 We thus have a representation £ = dK with (n — 1)-form 
k and from there obtain

Field theories with 0-terms can have arbitrary dimensionality. However, some of 
the most interesting condensed matter applications are two-dimensional, and we 
will focus on them here. The target spaces of these theories have the topology of 
two-spheres, and the question we are addressing is how the homotopy of fields from 
two-dimensional space into the sphere affects their physics. More specifically, we 
will consider quantum spin chains (see section 8.4.6), the two-dimensional classical 
Heisenberg model, and the field theory of the integer quantum Hall effect (see 
section 8.4.7) as examples. In either case, assuming decaying boundary conditions 
at spatial infinity, and compactifying space as above, the fields assume the form of 
maps,

n : S2 ^ S2,

x ^ n(x), |n| = 1,

and the relevant homotopy group is n2( S2) ~ Z. We now reason that the topological 
action describing this setting is given by

Stop[n] = 4n d2x n ' (d 1“ x d2n

To understand this point, we first verify the insensitivity of Stop to small variations 
n(x) ^ n(x) + ta(x)Ran, where the functions ea,a = 1,2, are infinitesimal and

26 The reason is that, locally, an n-form affords the coordinate representation £ = fdx1 A- • •A dxn. 
With the ansatz k = gdx2 A--- A dxn, the equation dK = £ reduces to the differential equation 
dig = f (of course, one may pick any other of the n coordinates for the definition of this local 
representation), defined on some open interval of x1. This is an ordinary differential equation 
that can be solved. For example, sin0d0 A d$ = — d(cos 0 do) holds locally on the sphere, but 
there can be no such representation of the area form on the whole sphere. If it existed, w = dK, 
the area integral fs2 w = S$2 dK = f^s<2 k = 0 would vanish by Stokes’ theorem (A.17) and the 
absence of a boundary.

Stop [$] — Stop [$'] = i® dK = id y k = 0,

where we have used Stokes’ theorem (A.17); thus, by construction, the field difference on 
the boundary of M vanishes, k|dM = 0.

8.4.2 0-Terms in two-dimensional field theories

(8.15)
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Ra are the generators of rotations around two axes perpendicular to n. A few 
integrations by parts show that the variation of Stop assumes the form

SStop[n] =------- d d2xeaRan • (d 1n x d2n).
4 n .

However, Ran is perpendicular to n while (exercise) (d 1n x d2n) lies parallel, i.e., 
SStop = 0. This construction demonstrates that Stop does not affect the equations 
of motion.

The invariance of Stop also implies that the computation Stop [n0] for any test 
configuration determines the value of Stop for all fields n connected to n0 by con­
tinuous interpolation. Specifically, we consider the family

n(W) . r2 ^ s2,

(x 1, x2) ^ ^ = — W tan 1 ( — ) ,0 = 2 tan 1 ( —--------- 2
x1 x12 + x22

skyrmion

where the sphere is parameterized in polar coordi­
nates, n(W) = n(W)(0, $). In honor of their inven­
tor, Tony Skyrme, 27 these field configurations are 
called (magnetic) skyrmions. As usual, the suffix 
“on” hints at a stable, particle-like, excitation. The 
reason for this stability is that skyrmions of non­
vanishing winding number are twists of the spin 
vector around the sphere (see the figure for a vi­
sualization with W = 1), and such twists cannot 
be undone by continuous deformation. Substitution of n(W) (0, $) into the inte­
gral (8.15) shows that the winding number is extracted by the topological action, 
S top[ ^ (W)] = iffW.

27 See T. H. R. Skyrme, A nonlinear field theory, Proc. R. Soc. Lond. A 260, 127 (1961), where the 
skyrmion was introduced in an effective model of nuclear matter. The terminology “magnetic 
skyrmion” is reserved for fields with target space S2 (^ magnetic moments) in d = 2, in 
distinction to the higher-dimensional skyrmions of particle physics.

EXERCISE Verify these statements. Show that the topological charge is insensitive to 
coordinate changes on the target and the base manifolds. Try to invent other simple field 
configurations of non-vanishing topological charge.

INFO A word on semantics: depending on the context, topologically nontrivial field 
configurations are referred to as solitons, instantons, skyrmions, etc. There is no 
rigorous systematics in this. However, a rule of thumb is that topological excitations in 
dynamical quantum theories are called “instantons,” while the term “solitons” is preferred 
for static configurations.
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8.4.3 Functional integration over topologically charged fields

As discussed above, the integration over topologically nontrivial fields may be or­
ganized into an integration over sectors of definite index W . This means that the 
standard program of field theory - finding stationary configurations, integrating 
over fluctuations, renormalization group, etc. - needs to be carried out for each 
sector separately. While this sounds straightforward in principle, there are various 
practical aspects to consider.

For one, the solution of the extremal equations <5^S[^]|$e,-W. = 8^S0 [^]|^erjW 

in topologically charged sectors can be difficult, even though the topological term 
does not enter. The reason is that solutions with topological charge generally lack 
translational invariance, so that we are looking for inhomogeneous configurations 
of extremal action. (For a trick that solves the problem in the present context of 
fields on the sphere, see the following info block.)

INFO In some cases, the solution of stationary equations in topologically nontrivial 
sectors can be side-stepped by energetic arguments. To see how, consider the positive 
definite integral

0 < 2^ d2x (d^n + ■.n X dvn) • (d^n + ^v,n x dv/ n)

y' d2x (d^n • 'dn + ev^n • (d^n x dvn)).

The last term in the second line equals —8n times the topological charge, i.e.,

W < d d2xd^n • d^n = So[^].
8 n J

This construction shows that W is a lower bound for the action of field configurations of 
topological charge W . The limit is reached for configurations

d^n + e^vn x d„n = 0, (8.16)

y

0 5 10

on which the integral vanishes. Any deformation of these fields leads to a positive inte­
gral, showing that Eq. (8.16) defines a stationary (even minimal) configuration. In this 
way, stationary phase configurations are obtained by solution of the first-order differential 
equation (8.16).

Equation (8.16) is best solved in complex co­
ordinates, z = x 1 + ix2, and using a stereo­
graphic representation of the target vector, 

2w 1 — |w|2

n 1 + in 2 = , n 3 = . , (8.17)
1+ |w|2 1+ |w|2

where w 6 C. (Recall the stereographic repre­
sentation projecting points on the sphere to the 
infinite two-dimensional plane and discuss the
intuitive interpretation of w.) Straightforward substitution then shows that Eq. (8.16) 
assumes the form dzw(z) = 0 (exercise). This means that any meromorphic function 

x

W
z
z

w=
i=1

ai
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solves the equation. For example, the figure shows the n3-component of a W = 2 config­
uration with (a1 , a2, b1 , b2) = (0.4, 4, 2, 6). It changes twice between ±1, and inspection 
of the corresponding n1,2 components shows that the sphere is doubly covered in the 
process. For more details on these types of instantons and their topological densities, see 
problem 8.8.2.

Once extremal configurations have been identified, we need to integrate over fluc­
tuations. While this looks straightforward in principle, the practical execution of 
the program can be involved. To see why, notice that instanton field theory invokes 
a conflict of two principles:

Instantons cost energy; instantons gain entropy.

More specifically, for each instanton we need to pay an action (“energy”) S0. How­
ever, in return, we gain free integration parameters (“entropy”), namely the co­
ordinates specifying how the inhomogeneous instanton configuration is embedded 
in space-time. (In the info block above, ai, bi are such parameters.) Variations of 
these instanton zero modes do not cost further action, and hence they counter 
the action cost.

On this basis, consider a sector of fixed winding number W . The option to glue 
fields together implies that one may combine two fields of windings W1 and -W2 to 
obtain one of winding W = W1 - W2. This means that the W -sector effectively con­
tains instantons of arbitrary degree. In practice, the most important configurations 
are elementary W = ±1 instantons and anti-instantons, ^±, with identical 
action S0 = S[^+] = S[^-]. For example, for well-separated ai,bi, the configura­
tions (8.4.3) are superpositions of W = 1 instantons. (Why would W elementary 
instantons contribute more to a partition sum than a single W instanton? Hint: 
Consider entropy.) Assuming additivity of the actions, the W -sector will thus con­
tain W+ instantons and W- = W + W+ anti-instantons with action (W+ + W- )S0 . 
The zero-mode center coordinates of the instantons need to be integrated over. This 
program is relatively straightforward, provided instantons are energetically costly 
and scarce - the dilute instanton gas limit. However, for diminishing S0 , their 
number increases and they start to correlate and eventually overlap in space. This 
defines the instanton liquid which is usually difficult to bring under control. For 
a discussion of the S 2 -instanton gas problem, we refer to Ref.28.

28 A. M. Polyakov, Gauge Fields and Strings (Harwood, 1987).

INFO We have already seen an example of an instanton 
gas, namely in the path integral treatment of the double 
well in section 3.3.1. Strictly speaking, the instantons con­
sidered there were not instantons in a topological sense, 
because no winding numbers were involved. However, to 
see the relevance of that discussion to the present context, 
consider the particle-on-a-ring setup of section 8.2, for simplicity in the absence of flux, 
A = 0, but in the presence of a periodic potential, cos $. Much as in section 3.3.1, (anti- 
)instantons are W = ^1 configurations traversing the ring once to quickly pass between 
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minima of the potential. For example, the figure shows the phase profile of a configuration 
with total winding W = 4, which in the case of the bold line comprises seven forward wind­
ing instantons and three anti-instantons. For a discussion of the integration over instanton 
zero modes and the correlations between them, we refer to section 3.3.1.

8.4.4 Path integral of spin

In the next section, we will discuss the role played by 0-terms in the low-energy 
physics of antiferromagnetic spin chains. This discussion will be based on the (1+1)- 
dimensional field integral for a spin chain, which in turn is based on the (0 + 1)- 
dimensional path integral for individual spins. The latter is an interesting object 
in its own right, including from a topological perspective. However, perhaps sur­
prisingly, we will look at the topology of the single-spin path integral only later, in 
section 8.5. For the moment, we just need it as a building block for the construc­
tion of the spin chain extension. A second interesting thing to notice is that the 
construction of the Feynman path integral of spin is not entirely straightforward - 
Feynman tried and failed - although a single spin is the most elementary system 
of quantum mechanics. In view of this situation, we offer three options: readers 
wishing to proceed as quickly as possible with the discussion of 0-terms are invited 
to take the path integral representation (8.20) with action (8.18) below as given 
and advance to section 8.4.6. The alternative is to put the 0-terms on hold and 
continue reading here about the interesting first-principle construction of the spin 
path integral also in the next section. Finally, there is the compromise solution to 
study the qualitative discussion of the path integral but skip section 8.4.4 on its 
technical construction.

Classical mechanics of spin

Why should the path integral of spin be challenging to construct? A cheap answer 
would be to reason that path integrals are integrals over exponentiated classical 
actions while spin-1/2 is essentially quantum and therefore does not afford a de­
scription in terms of classical objects. However, this is not correct. The classical 
limit of a quantum mechanical spin is an angular momentum of fixed modulus, a 
spinning (!) top. The configuration of a top is determined by a point on the two- 
sphere marking its orientation. Naively, one might identify the two angles required 
to describe this point as generalized coordinates, so that the classical mechanics 
of the system would be described in a four-dimensional phase space, having added 
to these coordinates their canonical momenta. However, this does not feel right. 
If these momenta existed, we would have heard of the corresponding hermitian 
operators in quantum mechanics, which we haven’t.

To understand what is going on, it is instructive to look at the classical equations 
of motion for the Larmor precession dtSn = SBn x ez of an angular momentum 
of modulus L = Sn in the of direction n in the presence of a magnetic field, Bez 

(where we have set the magnetic moment to unity). These equations are first order, 
and so we interpret them as Hamilton equations of motion. Let us find out the 
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corresponding coordinates, momenta, and Hamiltonian. To this end, we describe 
n in the usual way in terms of spherical coordinates and find (exercise) that the 
equations above assume the form dt cos 0 = 0, dt0 = — B, where we temporarily set 
the angular momentum, S , to unity for simplicity. These equations are structurally 
consistent with the Hamilton equations, dtq = dpH, dtp = — dqH, if we make the 
identifications q = 0,p = cos 0, H = — B cos 0. The expression for H = — cos 0 
makes obvious sense; it renders 0 a cyclic variable, is periodic in 0, and states that 
the energy is minimized by aligning L with the external field. However, the more 
interesting observation is that the interpretation of the resulting equations of motion 
requires that the two-dimensional sphere is a phase space by itself, with 
cos 0 and 0 as a coordinate and momentum pair. Also notice that these coordinates 
cannot be extended to cover the whole sphere (e.g., 0 is an ill-defined variable at 
the north and south pole, and multi-valued at 0 = 0). This point, as we will see 
shortly, is essential to the topology underlying the present system.

INFO The unusual nature of the pair (0, cos 0) is why we do not normally hear about 
the Hamiltonian dynamics of angular momenta in elementary classical mechanics courses. 
There, the phase space of a system with f degrees of freedom is usually introduced as 
a 2f -dimensional real vector space, with coordinates (qi , pi) and the added structure of 
Poisson brackets. Mathematics has a nicer definition to offer: a phase space is a 2f- 
dimensional differentiable manifold equipped with a non-degenerate differential two-form 
w, a so-called symplectic form. We can think of the two-form as an object very similar 
to a metric, the essential difference being that it is skew-symmetric, wij = — Wji, unlike the 
symmetric metric tensor gij = gji . Manifolds with this structure are called symplectic 
manifolds, and the statement above says that the phase space of Hamiltonian dynamics 
is actually symplectic. Much as the local coordinate representation of a metric enters the 
definitions of the laws of relativity, the coordinate representation of the symplectic form 
gives us the Poisson brackets, the Hamiltonian structure of evolution equations, etc.29 

Specifically, in a coordinate representation, where w = f=1 dqz A dpi assumes a diagonal 
form, we recover the standard relations for a pair of canonical variables (qi , pi). However, 
the true merit of the definition is that phase space need not be a vector space but can be 
a more interesting manifold, such as a sphere. The natural two-form on the sphere is the 
area form (see appendix section A.1.3) w = d0 A dcos0 and this shows that the sphere is 
a two-dimensional phase space, also known as a symplectic manifold with local canonical 
coordinates (0, cos 0). However, we do not expect to find a system of global coordinates, 
as it would make our sphere identical to a section of flat space.

29 See V. I. Arnold, Mathematical Methods of Classical Mechanics (Springer, 1978) for a beautiful 
exposition of mechanics in this language

The above discussion suggests that the imaginary-time Hamiltonian action 
describing a precessing angular momentum reads

S [0,0] = S [ dr (—idT 0 cos 0 + B cos 0)
0

(8.18)

where we have reintroduced the angular momentum, S . It is straightforward to 
verify that the variation of these equations yields the imaginary-time variant of the 
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angular precession idT ^ = B. However, the above-mentioned coordinate singularity 
means that the underlying variation must not be applied to configurations touching 
the singular north or south pole of the sphere. Fortunately, we may use the arbitrari­
ness of coordinate choices to avoid these singularities: we always have the freedom 
to add to the action a full derivative dTF(^, cos 9) = drjFdT^ + dcosgdT(cos 9) with­
out affecting the equations of motion. One may show30 that different choices of F 
correspond to different choices of the singular points of the coordinate system. For 
instance, with F = ±iSdT^, we obtain the modified actions

REMARK In this section, we assume basic familiarity with SU(2) and its representations 
at the level of a standard lecture course of advanced quantum mechanics. For a classic 
reference on the subject consult, e.g., Ref.31 .

As promised in the introduction to this section, here we discuss a first-principle 
derivation of the path integral (8.20) with action (8.18). This construction intro­
duces methodology frequently applied in the path or field integration over target 
spaces with group symmetries. However, as mentioned above, it is optional where 
the subject of topology is concerned and can be read at any later stage.

Representation theory of SU(2)

The quantum mechanics of spin is intimately connected to the representation theory 
of SU(2). Before turning to the construction of the path integral, let us summarize 
a few facts, most of which will be remembered from the quantum mechanics lecture

30 H. B. Nielsen and D. Rohrloch, A path integral to quantize spin, Nucl. Phys. B 299, 471 (1988).
31 J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1994).

Sn/s[9, ^] = S [13 dr (-idT0 (cos 9 T 1) + B cos 9). (8.19)

0

In Sn , the problematic derivative term vanishes at the north pole and only the 
southern singularity remains. Similarly, Ss is singular at the north pole, etc., and 
so one singularity remains for the reasons mentioned above. We will address the 
topological interpretation of this structure in section 8.5 when we turn to the dis­
cussion of Wess-Zumino terms. However, for the time being, our main result is the 
classical action (8.18). Referring for a first-principle derivation to the next section, 
the imaginary-time path integral describing a spin S is given by the integral 
over all closed curves on the sphere weighted by the above action,

Z = j D(^,9) e-S[^e], (8.20)

where J D(■$, 9) = [JT $ sin 9T d9Td^T is the integral over the invariant measure on 
the two-sphere at each time slice.

8.4.5 Path integral for spin (derivation)
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courses. The special unitary group SU(2) is the group of two-dimensional uni­
tary matrices with unit determinant. Counting independent components, one finds 
that the group has three real free parameters or, equivalently, that its Lie algebra, 
su(2), is three-dimensional. The basis vectors of the algebra - the group generators 
- S ,i = x, y, z, satisfy the commutation relation [Si, Sj] = iejkSk. A useful alter­
native basis {S+, S-, Sz} is defined by the spin raising and lowering operators 
S' = Sx ± iSy with commutation relations [S+, S>-] = 2Sz, [Sz, S±] = ±S±.

Group elements themselves can be parameterized through the exponentiated al­
gebra. For example, in the Euler angle representation they are represented as

g (0,0,0 )= e - S e - ieS2 e - S, 0,0 & (0, 2 n) ,0 & (0 ,n). (8.21)

The Hilbert spaces HS of quantum spin are irreducible representation spaces of 
SU(2). Within the spaces HS, SU(2) acts via matrix representations of its generators 
Si , and the induced representation matrices of the group elements (likewise denoted 
by g).32 In each HS, there exists a state |f - a highest-weight state in the parlance 
of group theory, and a z-polarized state in that of physics - defined as the normalized 

zeigenstate of Sz with maximum eigenvalue, S .
All other states in HS, |g), can be obtained by applying group elements to this 

maximum-weight state, | g) = g |f. Specifically, for the group elements represented 
via Euler angles, the Hilbert space is given by the set of states33

|g(0,0))= e-iSe-ieS21 f)

spin 
coherent 

states

known as spin coherent states. Here, we have used the fact that the 0-dependent 
part of Eq. (8.21) affects the maximum-weight state only via a phase e-i^S3 |f = 
e-i^S। f^, which we have dropped. In quantum physics, the terminology “coher­
ent states” is reserved for states representing the best possible approximation to 
classical states. The above states are coherent, in that they are in one-to-one cor­
respondence with points on a sphere representing the orientation of an angular 
momentum. To see how, we use the auxiliary identity (i = j)

e-SiSjS = e-i'[Si,] Sj = Sj cos 0 + jSk sin 0 (8.22)

(which follows from expanding the commutator in odd and even contributions and 
using the spin commutation relations) to compute the expectation values

n = (g(0,0 )|S| g(0,0)) = S

sin 0 cos 0

sin 0 sin 0 

cos 0

= S n. (8.23)

32 To avoid confusion, keep in mind that HS are vector spaces of dimension 2S + 1, in which 
SU(2) — originally defined as a two-dimensional matrix group — acts via matrix generators S of 
equal dimension, 2S + 1.

33 The statement is not entirely correct since the exclusion of the angles 0 = 0,n and ^ = 0, 2n 
makes a zero-measure set of states (such as the down-polarized one | ^)) exempt from the 
representation. However, as we will use our representation in integrals, this is not a point of
concern.
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This equation is the key to understanding the terminology “spin coherent states.” 
The expectation values of the spin operator in these states are identical to the 
configuration Sn of a classical angular momentum, as described by a unit vector n 
on the sphere. In other words, the states |g(^, 9)) define the closest approximation 
to an angular momentum in Hilbert space.

In the construction of the path integral, resolutions of unity realized as inte­
grals over all group elements play a key role. These integrals have the architecture 

dg f(g), where the integration extends over the full group (parameterized by Eu­
ler angles, or other suitable coordinates), f is a function of g, and dg is the Haar 
measure. This measure is uniquely determined by its invariance under left and 
right multiplication of g by fixed group elements, i.e.,

V h e SU(2) : dg f(gh) = dg f(hg) = dg f(g).

This relation states that the Haar measure is “translationally invariant” under group 
multiplication and treats all elements of the group on the same footing.

Schur’s 
lemma

Construction of the path integral

With this background, we are now in a position to formulate the Feynman path 
integral. To be specific, let us consider a particle of spin S subject to the Hamiltonian

S'
H = B • S,

where B is a magnetic field and S = (S1, S2, S3) is a vector of spin operators in 
the spin-S representation. Our aim is to calculate the imaginary-time path integral 

~ _a£rrepresentation of the partition function Z = tr e 3H .In constructing this path 
integral, we follow the strategy outlined at the end of section 3.2.3 and start from a 
trotterization of the partition sum, Z = tr(e-eH)N, where e = fl/N. Next, we have 
the most important step in the construction - to insert a suitably chosen resolution 
of identity between each of the factors e-eH. A representation that will lead us 
directly to the final form of the path integral is specified by

1 = c/dg IgXgI, (8.24)

where J dg is a group integral over the Haar measure, C is a constant, and |g) = g| f 
as discussed in the previous section.

Of course it remains to be verified that the integral (8.24) defines a proper repre­
sentation of the unit operator. That this is so follows from Schur’s lemma, which 
states that, if, and only if, an operator A commutes with all the representation 
matrices of an irreducible group representation (in our case the gs acting in the 
Hilbert space HS), A is proportional to the unit matrix. That the above group 
integral fulfills this commutativity criterion follows from the properties of the Haar 
measure, Vh e SU(2):

h^ dg |g}(.g| dg |hg}(.g| H=ary dg |hh 1 g){h 1 g| dg |g}(g|h.
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We have thus established that the integral is proportional to the unit operator. As 
usual in the construction of path integrals, the constant of proportionality, C , is 
not of concern, as it cancels in any properly normalized expectation value.

Substituting the resolution of identity into the time-sliced partition function and 
computing matrix elements as

{g'|e-‘B'S|gg'|g) - e{g'|B • S|g) <S|==11 - {g|g) + {g'|g) - e{g'|B • S|gg 

(//l\ /l\ / /lT» Al\\(g |g) - (g|g) - e(g |B •S|g,

one obtains

c r,Z = lim dgi exp
N~^w I n _ngN =g0 i=0

<\ - /_< gi +1|gi >-< gilgi) + (gi |b • § । gt

S' e /

which in the limit N -^ x assumes path integral form, 

Z y Dg exp dr (-{dTg|g} + (g|B • §|g)) 
0

(8.25)

with the HS-valued function |g(t)) as the continuum limit of |gi). Equation (8.25) 
is a valid, if somewhat over-compact, representation of the path integral. In order to 
give this expression concreteness, we employ the Euler angle representation dis­
cussed above for the states |g). Substituting |g(^, 0)) into the integral, the latter be­
comes an integral over the closed path on the sphere, parameterized by (0(t), ^(t)). 
It can be verified that, in this representation, the Haar measure integral reduces 
to an integral over the canonical measure on the sphere, dg ^ sin 0d0d^, which 
likewise treats all points in configuration space indiscriminately.

Let us now proceed by exploring the action of the path integral. With the auxil­
iary identity (8.22), it is a straightforward matter to show that

r[0,0] = - I dr (dTg|g} = -iS /" dr dT0 cos 0. (8.26)
00

Finally, using Eq. (8.25) to compute the angular representation of the B-dependent 
term, we obtain Eqs. (8.18) and Eq. (8.20) for the spin path integral.

In the next section, we will use this path integral as a building block for the 
construction of the field integral of a spin chain. However, let us mention at this 
point that the “canonical contribution” to the action (8.26) is a topological term 
in itself. It belongs to the class of Wess—Zumino terms, and we will discuss its 
topological interpretation in section 8.5.

8.4.6 Spin chains

In this section, we use the spin path integral to construct a field integral represen­
tation of an antiferromagnetic spin chain. We will find that the coupling of many 
spins of approximately opposite orientation - the antiferromagnetic order of the 
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chain - leads to the emergence of a 9-term whose presence is of key importance to 
the physics of the chain at low temperatures.

Low-energy excitations of spin chains

In section 2.2.5, we saw that the low-energy dispersion of spin-wave excitations in 
antiferromagnets is approximately linear e(p) ~ vs|p|, where vs is the spin-wave 
velocity. This result was obtained by a semiclassical expansion in small values of 
1/S, where S is the magnitude of the spins. Here, we ask what happens as we push 
towards the quantum regime, S = O(1). The main conclusion will be that, via a 
mechanism linked to the topology discussed in section 8.4.2, the physics of a spin 
chain depends crucially on whether S is half-integer or integer.

For small values of S , we have no expansion parameter stabilizing the derivation 
of an effective action. In this situation, it is fortunate that the smallest possible 
choice, S = 1/2, is a solvable reference configuration: in problem 2.4.5, we saw 
that for small wave vectors, the S = 1/2 antiferromagnet becomes equivalent to a 
half-filled system of one-dimensional linearly dispersive fermions.34 The excitations 
of the latter, i.e., charge density waves, are likewise linearly dispersive, consistent 
with the semiclassical result. Given that both S 1 and the exactly solvable 
point S = 1/2 have similar excitations, one may speculate that the analytically 
inaccessible intermediate regime S ~ 1 also shows the same behavior.

34 To be specific, the equivalent fermion system contains an interaction whose strength depends 
on the anisotropy A of the magnetic correlations. In the XY-limit, A = 0 (vanishing coupling 
of the z-components), the fermion system is free and, like its equivalent spin system, supports 
long-range excitations. For finite A, bosonization techniques map the problem onto a two­
dimensional sine—Gordon model in the universality class of the two-dimensional classical 
XY -model (see the discussion on page 367). From the RG flow of the latter, one infers that, for 
all values of the anisotropy up to the Heisenberg limit A = 1, the system remains gapless and 
linearly dispersive. For further discussion of the spin-1/2 chain, we refer to A. O. Gogolin, A. 
A. Nersesyan, and A. M. Tsvelik, Bosonization and Strongly Correlated Systems (Cambridge 
University Press, 1998).

35 M. Kenzelmann, R. A. Cowley, W. J. L Buyers, et al., Properties of Haldane excitations and 
multiparticle states in the antiferromagnetic spin-1 chain compound CsNiCl3 , Phys. Rev. B 
66, 24407 (2002). Copyright (2002) by The American Physical Society.

However, this expectation does not con-
form with experimental observation. While 
neutron scattering experiments on spin-1/2 
chains have confirmed linear dispersion in 
the vicinity of the Neel ordering wave vec­
tor q = n/a, spin S = 1 chains show differ­
ent behavior and do not support low-energy 
magnetic excitations at all (see the figure, 
reprinted from Ref.35 , where the main panel 
shows the excitation energy for wave vec­
tors close to the value Qc = n corresponding 
to antiferromagnetic order). More generally, 

sine—
Gordon 

model

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Qc(r.l.u.)
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experiment has shown that antiferromagnetic chains of half-integer spin are gapless 
and linearly dispersive, while chains of integer spins are gapped.

Physical phenomena depending on the parity of an integer quantum number (in 
the present case, whether 2S is even or odd) tend to be of topological origin. To 
understand why topology appears in the present context, recall that the classical 
configuration space of spin S is a sphere of radius S. A spin chain is thus described 
by a map from (1 + 1)-dimensional space-time into the sphere, i.e., the class of 
maps discussed in the previous section.

Field theory of the antiferromagnetic spin chain

To demonstrate the appearance of topology in the present setting, we start out 
from the quantum partition function of a field-free isolated spin (8.26),

Dn exp d dr cos 0 dT ^ , 
0

where Dn = D(0, ^) is a shorthand for the measure on the sphere.
As a warm up to the following discussion of the antiferromagnetic chain, first 

consider the ferromagnetic chain. Application of Eq. (8.23) shows that, in this 
case, the interaction between spins at neighboring sites, i, is described by

- JSi -Si +1 ------> — JS2ni • ni +1  > ~^(ni - ni +1)2, (8.27)

where J is the positive exchange constant, the first arrow points to the functional 
integral representation, S ^ Sn, and the second holds true up to an inessential 
constant (ni2 = 1). Adding to this “discrete derivative” the free spin action, we 
obtain a partition function Z = Dn exp(-S [n]), with effective action

iS cos 0i dTfa + JS (ni - ni +1)2 . (8.28)

Note a curiosity here: while it would seem natural to express the entire action as a 
functional of n and dT n, it is not possible to represent the free spin action in this 
way. There is a topological principle behind this, and we will discuss it in section 8.5. 
The positive exchange constant favors smooth configurations {ni}, which justifies 
the continuum limit, 

Sferro [n] = a-1 dT dx iS cos 0 dT$ +------— (dn)2 (8.29)

where a denotes the lattice spacing. The action (8.29) does not contain a 0-term.

EXERCISE Recapitulate what we know about the variation of the first term in the action 
from section 8.20 to derive the equations of motion of this action and show that the mean 
field dispersion of the ferromagnetic chain, u ~ q2, is quadratic. Renormalization group 
analysis shows that, at large distance scales, the system flows into a strong fluctuation 
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regime (a manifestation of the Mermin-Wagner theorem according to which magnetic 
order in two-dimensional systems is not possible) and builds up a gap.

In the complementary case of an antiferromagnetic spin chain, the negative sign 
of the exchange constant favors the antiparallel alignment of spins at neighboring 
sites. We thus start out from an ansatz ni = (—)ini, with smoothly varying n'. One 
should now substitute this configuration into the action and perform a gradient 
expansion as above. However, instead of formulating this program in detail,36 we 
here determine the resulting action by semi-quantitative reasoning.

First, we know that the action supports a wave-like mode at the semiclassical 
level, and is rotationally invariant in n'. The minimal action satisfying these criteria 
reads

S o[n]=41 dr dx v s( dx n)2 + —(dT n)2 
vs

(8.30)

where we have relabeled n' as n for notational simplicity, and the definition of the 
spin-wave velocity, vs = 2aJ S, is beyond the scope of the present argument.

Rescaling variables so that t ^ v- 1 /2t = x0, x ^ v 1 /2x = x 1,

d 2 x d^ n • d^ n,S0[n] ^ vA
A = 4/S, (8.31)

nonlinear
a -model

we obtain the action of the O(3) nonlinear a -model.37

However, in addition to the O(3) action, we expect the presence of a topological 
term. This contribution must emanate from the - likewise topological - Wess- 
Zumino action. To see how this happens, let us turn back to the spatially dis­
cretized representation. In angular coordinates, a spin of orientation opposite to 
one described by the coordinates (9,^) has coordinates (n — 9,^ + n). This suggests 
describing pairs of almost opposite spins at sites xi and xi+1 = xi + a, respectively, 
by the variables (9(xi), ^(xi)) and (n — 9(xi + a), ^(xi + a) + n), where the angular 
functions are smooth and their time dependence is left implicit. In these variables, 
the sum over free spin actions becomes

—iS I dT (cos(9(xi)) dT^(xi) + cos(n — 9(xi + a)) dT($(xi + a) + n))

- iS^J dT sin(9(xi)) a(dx9(xi)dT$(xi) — dT9(xi)dx(xi)) 

iS
~ — d dx dr sin 9(dx9dT^ — dT9dx^).

Here, we have Taylor-expanded to first order in a and integrated by parts. The 
integral representation in the last line contains a factor 1/2 reflecting the fact that 
the “unit cell” contains two spins, so that the effective discretization interval equals 
2a. The main point here is that the final integral represents a standard coordinate

36 See N. Nagaosa, Quantum Field Theory in Condensed Matter Physics (Springer, 1999).
37 This common denotation is a bit of a misnomer since the target space of the theory is the 

two-sphere S2 ~ O(3)/O(2) and not O(3).
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Haldane’s 
conjecture

representation for an area integral over the sphere. In fact, it is straightforward to 
verify that, in a representation of the unit vector n(0, ^), it equals the integral (8.15) 
with topological angle 0/4n = S/2, and identification x = (x,t). Notice that the 
(1 + 1)-dimensional 0-term obtained by staggered addition of the (0 + 1)-dimensional 
Wess-Zumino terms is representable in terms of the invariant variables n. That, 
too, reflects a geometric principle whose origins we will explain in section 8.5.

Summarizing, we have found that the field integral of the antiferromagnetic 
spin chain assumes the form

Z = Dn e-S0[n]-Stop[n], (8.32)

where S0 is given by Eq. (8.31), and the topological action by Eq. (8.15) with angle 
0 = 2nS. From the renormalization group (RG) analysis of section 6.4, we know 
that, at large length scales, the system described by S0 [n] flows into a disordered 
phase. How will the presence of the topological term modify this behavior? Being 
insensitive to small variations, it does not couple to the RG decimation of fluctua­
tions in individual topological sectors, W . However, to see why it may nevertheless 
act as a game changer, let us reorganize the partition function as a sum,

Z = y DnW e2niSWe-S0[nW], (8.33)

38 F. D. M. Haldane, Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclas- 
sically quantized solitons of the one-dimensional easy-axis Neel state, Phys. Rev. Lett. 50, 
1153 (1983).

where nW denotes field configurations of winding number W . For integer spin, 
exp(2niSW) = 1, and the topological term just drops out. By contrast, for half­
integer spin, exp(2niSW) = (—)W, consecutive topological sectors are weighted by 
alternating signs. Notice that the topological term is susceptible to the parity of 
2S.

To understand the consequences heuristically, note that the RG flow to strong 
coupling is driven by fluctuations which at the late stages of the flow include fluc­
tuations over topologically nontrivial, W = 0, configurations. In the integer-S case, 
the positivity of exp(-S0) implies that all these fluctuations add up, furthering the 
flow into a disordered phase. However, for half-integer spin, they contribute with 
alternating sign, which implies a tendency to mutual cancellation. This observation 
is the basis of Haldane’s conjecture:38

Spin chains of integer S are conjectured to flow into a disordered phase with 
no long-range excitations, while half-integer spin chains are gapless.

This expectation is confirmed by neutron scattering measurements of the dis­
persion of various quasi one-dimensional magnets. However, it must be emphasized 
that the conjecture is not backed by an actual computation. In particular, it pre­
sumes that the topological a-model does not change its form under renormalization.
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Subsequent analysis by Affleck and Haldane39 indeed showed that this presumption 
was premature and that the topological O(3) nonlinear a-model flows to a different 
theory under renormalization. We will return to this point in section 8.5.5 after the 
concept of Wess-Zumino terms has been introduced in generality.

REMARK The integer quantum Hall effect constitues a role model showing many of the 
phenomena characteristic of topological condensed matter physics. Its topological origins 
can be addressed from different perspectives, including that of homotopy introduced in 
the previous section. At the same time, a discussion of the rich phenomenology of the 
quantum Hall state may come as a digression for readers primarily interested in a more 
streamlined introduction to topological field theory. To these readers, we suggest skipping 
this section and proceeding directly to section 8.5.

The traditional meaning of the integer quantum Hall effect (IQHE) is the quan­
tization of the transverse, or Hall conductance of two-dimensional electron gases 
subject to strong perpendicular magnetic fields. When this effect was discovered in 
1980,40 it could not be foreseen that the IQHE would become the precursor of multi­
ple conceptually related phenomena. From a modern perspective, the quantum Hall 
system belongs to the family of topological insulators. Referring back to section 8.1, 
all these materials are insulating in the bulk, with ground state wave functions 
carrying topological invariants. The observable manifestation of the ground state 
topology is the presence of gapless surface states. In the one-dimensional setting 
discussed in section 8.1, these assume the form of discrete zero-energy bound states 
sitting inside the excitation gap of the insulating bulk. In higher dimensions, they 
generalize to continua with gapless dispersion relations, i.e., surface metal lic states. 
However, unlike conventional metals, the surface states of topological insulators 
are protected by topological principles against the (Anderson) localizing effects of 
impurity scattering.

Below we will summarize the phe­
nomenological consequences of this 
topological bulk boundary correspon­
dence for the specific case of the two­
dimensional quantum Hall insulator. 
We will then investigate the topo­
logical origins of the IQHE, and fi­
nally introduce an effective low-energy 
field theory describing its experimental 
signatures.

39 I. Affleck and F. D. M. Haldane, Critical theory of quantum spin chains, Phys. Rev. B 36, 5291 
(1987).

40 K. v. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the 
fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980).

8.4.7 Integer quantum Hall effect

tance, R k = h/e2 = 25812.80745 • •• Q is 
named the von Klitzing constant in honor of his 
achievement.

Klaus von Klitzing 1943- 
is a German physicist renowned 
for his observation of the in­
teger quantum Hall effect in 
1980. For this discovery, he 
was awarded the 1985 Nobel 
Prize. The quantized unit of 
the transverse Hall conduc­
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IQHE phenomenology

REMARK For the convenience of the reader, here we summarize a few constants which 
keep reappearing in the physics of the IQHE.

Cyclotron frequency e . _ eB w c — c m energy spacing between Landau levels
Magnetic length l 0 = V ~~B defines the extension of one flux-quantum area
Flux quantum $0 — h quantum unit of magnetic flux
von Klitzing constant R k = . transverse resistance of lowest quantum Hall state

To ease the identification of these constants, we temporarily refrain from setting ~ and e 
to unity. Also note that the flux quantum is often defined as $0 = h/2e. This definition 
makes sense in the theory of superconductivity, where the Cooper pair charge is 2e, but 
less so here.

The IQHE is observed in two-dimensional 
electron gases subject to a strong magnetic 
field (see the figure). The driving of an elec­
tric current Ix through the system is accom­
panied by the build up of a voltage drop Vx 

in the direction of the current. In a conven­
tional conducting system, the ratio of the 
two, Rxx = Vx /Ix , defines the longitudinal
electric resistance, which in two dimensions equals the resistivity, pxx = Rxx, up 
to a dimensionless geometric factor inessential to our discussion.41 However, in a 
system subject to a transverse magnetic field, the driven motion in the x-diection 
(i.e., the current Ix) generates a Lorentz force in the y-direction, giving rise to a 
voltage Vy (see the exercise below). The ratio between current and voltage is now 
governed by a vectorial relation,

Vx

Vy

pxx

- pxy

pxy 

pxx

Ix

Iy

a xx

- axy
(8.34)

conductivity 
tensor

where the two matrices define the resistivity tensor p, and the conductivity ten­
sor, a = p-1, respectively. The two tensors are inverse to each other, p = a-1, 
and the relation axy = — ayx reflects a geometric symmetry of the system. In the 
physics of the quantum Hall effect, the tensorial structure of the transport coeffi­
cients is important. For example, for non-vanishing Hall conductivity, axy = 0, the 
vanishing of the longitudinal conductivity, axx = 0, implies the vanishing of the 
longitudinal resistivity, and not a divergence as one might naively expect.

In classical transport theory (see the exercise below), one expects a linear growth 
pxy = pB/a0, where p = er/m defines the mobility of the electron gas and a0 = 
ne2T/m is the Drude conductivity. Here, m is the electron mass, t the impurity

41 Recall that the resistivity pxx = Ex/jx is defined by the ratio of electric field and current 
density, while the resistance Rxx = Vx/Ix is voltage over current. In a system with homogeneous 
currents and electric fields, current equals current density times transverse area, Ix = Ajx , and 
voltage equal electric field times length, Vx = Lx Ex . In two-dimensions, where the transverse 
area equals the transverse linear extension, A = Ly , resistivity and resistance equal each other, 
up to a factor Lx /Ly .
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scattering time, and n = N/A the carrier density defined by the total number of 
charges, N , in a system of area A.

Drude 
conduct­

ivity tensor

EXERCISE Let us investigate the conductivity tensor within classical Drude 
transport theory. To this end, consider Newton’s equation

p = - e E + p B ) — p , 
\ m ) t

(8.35)

for the dynamics of an electron subject to the Lorentz force and to dissipative damping 
at a scattering rate t. Assuming stationarity, p 0, set up an equation for p in terms of 
the electric field, E, and from there obtain the current as j = -enp/m. Show that this 
defines the resistivity tensor as

1
- ■ B

1
P ff 0

IB
1

where the constants are defined above. Note that the Hall resistivity, pxy = B/en, is 
universal in that it does not depend on scattering rates.

40 
However, in the famous 1980 experiment 
different behavior was observed (see the 
figure, courtesy of D. Leadley): instead 
of increasing linearly, the Hall resistivity 
showed a more interesting step function 
profile with plateau values

Pxy = 1 h2, (8.36)
v e2

defined by integers v G N quantized to an accuracy of O(10-10).42 The center of

the vth plateau depends on the magnetic field strength through

v = 2 nnl 2, l0 = $o

2 nB,
(8.37)

magnetic 
length

filling 
fraction

where lo is the magnetic length. A good way to way to interpret the magnetic 
length is the 2nBl2 = $o/2n, i.e., up to a numerical constant, l2 is the geometric 
area containing one flux quantum $o = h/e. At the center of the vth plateau, we 
have 2nl2 N/A = v, corresponding to a filling fraction of v charge carriers per 
flux-quantum area.

By itself, the fact that for field strength B corresponding to integer v the re­
sistivity is given by Eq. (8.36) is not so remarkable - at these field strengths, the 
classical resistivity assumes the same value. However, the truly surprising observa­
tion is that the resistivity remains constant and sharply quantized under variations

42 The striking precision of the experimental data has led to the introduction of the von Klitzing 
constant Rk = h/e2 = 25812.80 Q as the unit of electrical resistance in 1990. As of 2018 
the value of Planck’s constant, h, and the electron charge, e, are likewise calibrated via this 
constant.
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of B around the center value, to form extended plateaus. In the following, we will 
discuss how this phenomenon is born out of a conspiracy of topology and, at first 
unexpectedly, the presence of disorder.

INFO To understand the crucial role of disorder in the stabilization of plateaus, 
consider the idealized case of a clean (translationally invariant) electron gas subject to a 
magnetic field, B, in the absence of electric fields, E = 0, or current flow, I = 0. Now 
suppose we observe the system from a frame moving with velocity v in the x-direction. An 
experimentalist working in that frame would measure both a current density j = -vnex 

and, owing to the Lorentz covariance of electrodynamics, an electric field E = vex x 
B = — vBey, where B = Bez. With jx = axyEy, we obtain axy = nB-1 for the Hall 
conductivity in the moving frame. Being independent of v, this result holds in all moving 
frames, including the static one, v ^ 0. We conclude that, in any translationally invariant 
environment, the Hall conductivity is linearly related to the magnetic field.

Landau 
levels

Landau levels

As a preparation for the discussion of the IQHE, let us recapitulate the quantum 
mechanics of a two-dimensional system of free spinless43 electrons in a perpendicular 
magnetic field B . Here, we summarize the facts essential to our discussion and 
refer to the info block below (or a quantum mechanics textbook) for an explicit 
diagonalization of the problem.

> The eigenenergies of the problem are called Landau levels and they are given 
by 'n = wc(n + 1 /2), where wc = eB/m is the cyclotron frequency.

> For a system of linear extension, L, each Landau level is (L/l0)2-fold degenerate. 
Roughly speaking, each individual wave function in the nth level occupies an 
area 12, accommodating one magnetic flux quantum, $0. Notice that this implies 
a massive degeneracy, extensive in the system size.

> The form of the wave functions depends on the gauge of A in B = V x A, and 
different choices cater to different applications. For example, in the symmetric 
gauge, A = BB (—y,x, 0)T, the wave functions display rotational symmetry rel­
ative to the center coordinate (0, 0). (This gauge is often the preferred choice in 
theoretical studies of the quantum Hall physics in “infinite geometries.”) The al­
ternative Landau gauge A = (0, Bx, 0)T is tailored to rectangular geometries, 
with wave functions extended in the y-direction and confined in the x-direction 
(see the info block below for an explicit construction of the wave functions in 
this gauge).

> For all electron numbers, N, different from that corresponding to precisely n 
filled Landau levels, N = n(L/l0)2, the degeneracy of the single-particle problem 
implies degeneracy of the many-body ground state. This implies high sensitivity 
to perturbations such as static disorder or interactions.

43 For strong magnetic fields, the Zeemann splitting effectively splits different spin components 
and we treat them as separate.
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INFO Explicit computations of Landau level wave 
functions in different gauges can be found in almost any 
solid state textbook. For later reference, here we discuss these 
states in a gauge tailored to the description of Hall bar ge­
ometries, as shown in the figure. Our starting point is the 
gauge A = B(0, x, 0)T , in which the Hamiltonian operator 
assumes the form,

Hi = —— P2 +—— (Py — eBx}2.
2 mpx 2 mpy J

With the ansatz ^(x,y) = e'i~ ky$(x), k = 2n~n/Ly, the 
equation IB.' = E^ reduces to

r1 p2 +__ 1_ (k
1.2 m x+2 m yy — eBx)2 ^(x) = E^(x),

which is the equation for a harmonic oscillator centered around ky /eB and with char­
acteristic frequency uc = eB/m equal to the cyclotron frequency. The solutions are the 
harmonic oscillator wave functions ^n (x — ky/eB) and the eigenenergies en = ~uc (n +1 /2) 
are the Landau levels. The number of linearly independent states in each Landau level is 
obtained from the condition that the center coordinates ky /eB must lie within the trans­
verse extension [0, Lx]. With ky,max = 2n~nmax/Ly = eBLx , we obtain the degeneracy as 
eBLxLy/2n~ = $/$0, equal to the total flux through the system $ = BLxLy in units of 
the flux quantum.

IQHE as a topological phenomenon

There are different approaches to understanding the IQHE as a topological phe­
nomenon. One approach starts from an interpretation of experimental facts, an­
other considers the IQHE as a representative of the grander scheme of topological 
insulators. They both provide different insights, and we discuss them in turn.

Empirical facts and the role of disorder: 
Let us take a closer look at the exper­
imental data shown on page 458 and 
schematically reproduced in the figure. 
The key observations are: (i) for extended 
parameter regions in the applied field 
strength, B, the transverse Hall resistiv­
ity remains constant at values given by 
Eq. (8.36) with integer v. (ii) At these 
plateaus, the longitudinal Hall resistivity 
vanishes. The plateaus are separated by 
transition regions, where the Hall resis­
tivity changes between quantized values and the longitudinal resistivity transiently 
assumes a non-zero value. (iii) The transition regions get steeper as one lowers 
the temperature and/or increases the system size, with a common crossing point 
corresponding to a half-integer value of the Hall conductivity,

^xy = e2 (n + 1 / 2) •
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These observations are explained by a phenomenological construction that in­
volves Landau level quantization, the effects of disorder, elements of scaling the­
ory, and a few bold assumptions. In the disordered system, the previously singular 
single-particle density of states broadens and assumes the from of smooth impurity 
bands centered around the Landau level energies. The peak width ~ ~t-1 < ~wc 

is set by the impurity scattering rate, which we assume to be smaller than the 
clean Landau level spacing. According to standard localization theory, all eigen­
states in a two-dimensional disordered system should be Anderson localized on the 
scale of the localization length, £. However, indiscriminate localization of all states 
would be incompatible with the experimental observation of a finite longitudinal 
conductivity at the magnetic field strength at which the transverse conductivity 
changes. In fact, we can say more: the sharpening of the steps (see the solid lines 
vs. the dashed lines in the left-hand panels of the figure) with increasing system size 
indicates the presence of a second-order phase transition. Tuning the magnetic 
field into a transition point implies the divergence of all length scales, including the 
localization length. In an ingenious argument44 Halperin suggested that all these 
observations fall into place if we assume that:

44 B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of 
extended states in a two-dimensional disordered potential, Phys. Rev. B 25, 2185 (1982).

Static disorder Anderson localizes all eigenstates, except those in 
the centers of the Landau bands.

More precisely, he reasoned that the localization length £(E) becomes a function 
of energy, and diverges upon approaching the center energies, E ^ ~wc (v + 1 /2).

The consequences of this proposition are best discussed in a gedanken experiment 
where, instead of changing the magnetic field at fixed density, the density is varied 
at fixed field, for a system of size L. Either way, this amounts to shifting the Landau 
level centers relative to the Fermi energy EF (see the figure on the previous page). 
First consider a situation where £(EF) L, so that all states at the Fermi energy 
are localized. In this case, the conductivity <jxx = 0. Let us make the additional 
assumption that this localization implies rigid quantization of the Hall conductivity, 
axy = ve2/h (the explanation of this statement being the subject of the next 
section.) Inversion of the conductance tensor (8.34) then leads to pxx = 0 and 
pxy = v-1 h/e2 (see dashed line c in the figure).

Upon approaching the Landau level center, we enter a crossover region where 
£(E) ~ L becomes comparable with the system size. At this stage, <jxx begins to 
increase which, for finite <jxy, also amounts to an increase in pxx (dashed line b). 
The crossover region shrinks with increasing system size, explaining the sharpening 
of the step regions. Finally, at the dashed line c, we reach the Landau level center 
where <jxx and pxx assume a maximal value. At this point, we cannot say what 
value <jxy assumes at these critical configurations; however, symmetry reasoning 
suggests half-integer values <jxy = (v + 1 /2) e2/h.
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Laughlin gauge argument: The above argument makes the 
formation of stable plateaus in the transverse conductance 
coefficient <jxy plausible. However, it does not yet explain 
its integer quantization. Shortly after the experimental 
discovery of the IQHE, Laughlin presented a similarly 
ingenious gauge argument, showing why <jxy must be 
quantized.45

45 R. B. Laughlin, Quantized Hall conductivity in two dimensions, Phys. Rev. B 23, 5632 (1981).

Laughlin’s starting point was the assumption that, if 
ffxy is a robust (“topological”) quantity, then it must be 
insensitive to continuous deformations of the sample ge­
ometry. Using this freedom, he considered deformation of 
the quantum Hall bar-geometry shown in section 8.4.7, as 
indicated in the figure: the bar geometry considered pre­
viously is replaced by a annular geometry, where the lon­
gitudinal voltage is generated by a time-dependent flux 
threading the center of the system. Laughlin then sug­
gested considering the effect of the adiabatically slow in­
sertion of a magnetic flux $ = $(t) through a solenoid 
piercing the center of the structure. This generalization is 
described by a vector potential A$ = (0, $/Ly, 0)T adding to the background po­
tential, where Ly is the circumference of the ring. Recapitulating the construction 
of the Landau states reviewed in the info block of section 8.4.7, we note that A $ 

couples to the now azimuthal y-coordinate via a constant shift ky ^ ky — e$/Ly (cf. 
the analogous persistent current problem of section 8.2). Specifically, the insertion 
of a flux quantum $ = $0 = h/e corresponds to a shift h/Ly in momentum by one 
quantization step, ky = hn/Ly ^ hn/Ly + h/Ly, or n ^ n + 1, and hence does not 
affect the solution of the problem.

This invariance is a manifestation of the Byers and 
Yang theorem,16 according to which the insertion of a 
flux quantum into a system with annular topology leaves 
the full set of wave functions and the spectrum unchanged 
(see the discussion in section 8.2 for a one-dimensional il­
lustration). It does not, however, require that the occupa­
tion of individual single-particle states remains the same. 
The situation is visualized in the figure, where the lines represent the full set of 
wave functions, and the dot tracks the fate of individual single-particle states. The 
insertion of flux is equivalent to a change in boundary conditions in the y-direction. 
For fractional fluxes, the boundary conditions are twisted, which means that the 
wave functions are different from the situation with no flux. After the insertion of 
a full flux quantum, we are back to periodic boundary conditions, and hence the 
original problem. However, individual single-particle states may map onto different 
states in the process.
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Fig. 8.4 Energy levels of a quantum Hall annulus as functions of the radial coordinate. For a discus­
sion, see the main text.

This is what we observe in the present case, where ky ^ ky + h/Ly implies a 
radial shift of individual wave function centers in the x-direction by one strip, in the 
representation in fig. 8.4.7. The physical consequences of this shift are illustrated 
in fig. 8.4, which indicates the centering of the single-particle radial coordinates 
along a cut through the system in the x-direction, along with the single-particle 
energies. Deep in the system, the energies are pinned to the Landau level centers. 
However, upon approaching the boundaries, the inclusion of a boundary potential 
causes an upturn of the energies (for sufficiently soft variation, this can be described 
by a shift of the Landau level energies), and eventually a crossing of the Fermi 
energy, assumed to be located somewhere between the center energies. The insertion 
of a flux quantum amounts to a shift of the entire pattern by one unit. At zero 
temperature, where all states below the Fermi energy are initially filled, this causes 
the appearance of a state on the inner perimeter ab ove the the Fermi energy and the 
removal of one on the outer perimeter - as if a charge had been transported from 
right to left. Referring to Ref.44 for a detailed discussion, the argument survives the 
inclusion of disorder (indicated by the broadening of Landau levels); flux insertion 
adiabatically pumps a particle from one edge to the other.

This charge transport in the x-direction is caused by the time-dependent insertion 
of flux, which by the law of induction is equivalent to an electromotive force in the 
y-direction: with <£y E + dt$ = 0, and assuming that the protocol injects one flux 
quantum in time t0 at uniform rate, we have <£y E = Vy = $0/t0. The corresponding 
current in the x-direction is Ix = e/t0 , so that the transverse conductance equals 
axy = Ix/Vy = e/$0 = e2 /h. The construction is topological in that it links the 
flux insertion protocol - equivalent to a winding number of unity “trajectory” in the 
circular space of boundary conditions - to an observable quantity. The structure 
of the quantum Hall ground state wave function enters indirectly via the stripe 
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pattern of its single-particle orbitals. However, it would be even better if we could 
attach a topological index directly to the wave function itself (much as we did in 
the case of the SSH wave function in section 8.1.1). In the info block below, we 
discuss how this is done for an example which is in the same universality class as 
the quantum Hall setup but of simpler design.

EXERCISE In actual quantum Hall measurements (performed on systems with geome­
tries as in the figure in section 8.4.7), charge transport occurs at the edge. To see why, 
considerthe simplified geometry of section 8.4.7 and compute the expectation value of the 
current J dx{jyx y)} in the y-direction integrated over a cross section in the x-direction for 
individual states in the nth Landau level. With

e —
(^ |j r | ^= wx-i ~ d y — eAy) ^ (r),2m

show that the current for the shifted harmonic oscillator states ^(x,y) = e~ky^n (x — 
ky/eB) vanishes by the spatial symmetry of the wave functions ^n for states deep inside 
the sample. For the same reason, states close to the sample boundary (how close?) do carry 
current. These are the edge states of the quantum Hall topological insulator. They are 
a two-dimensional analog of the edge states discussed in section 8.1.1 for the SSH chain. 
A voltage applied in the longitudinal direction to a system with the geometry shown on 
page 8.4.7 creates an imbalance in the chemical potential of individual edges and hence 
a net (quantized) current flow into the terminals in the transverse direction. This defines 
the edge interpretation of quantized Hall transport.

Note that the edge-state picture presents us with another opportunity to understand 
the importance of bulk Anderson localization by disorder in the IQHE: in the 
absence of localization, currents from one edge would “leak” to the other edge by diffusive 
transport through the bulk. This would compromise (and indeed does so in systems of 
narrow width) the quantization of conductance coefficients.

INFO In the theory of topological quantum matter, the quantum Hall system is classified 
as a two-dimensional topological insulator in symmetry class A - no symmetries of the 
Hamiltonian besides hermiticity. According to the periodic table, 8.1, these are systems 
characterized by integer-valued invariants, and our discussion above shows how these in­
variants define the quantized values of the Hall conductivity axy. However, furthering the 
topological insulator analogy, it must be possible to express the invariant as a topological 
property of the quantum ground state, much as we did in the case of the SSH insulator 
in section 8.1.1. That this is possible was shown in the seminal paper Ref.46 . However, 
the construction of this invariant is complicated by specific features of the IQH system, 
notably the Landau level structure and the necessary presence of disorder.

46 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance 
in a two-dimensional periodic potential, Phys. Rev. Lett. 49, 405 (1982).

47 F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter 
realization of the “parity anomaly,” Phys. Rev. Lett. 61, 2015 (1988).

Here, we discuss the same principles for the simpler example of the quantum anoma­
lous Hall (QAH) effect.47 The two-dimensional QAH effect is in the same symmetry 
class A as the conventional IQHE. However, crucially, it does not require the presence of 
a magnetic field, nor stabilization by disorder. In this way, it demonstrates the essential 
physics of two-dimensional topological insulators in a simple setting and will serve as a 
recurrent example of topological insulators in various sections of this text.
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Fig. 8.5 Dispersion of the quantum anomalous Hall effect Hamiltonian (8.38), for r = 2.5 (left), 
r = 2 (center), and r = 1.5 (right).

The QAH effect is defined on a hexagonal lattice whose Hamil­
tonian contains (a) a staggered potential on the A and B sublat­
tice (see the figure), (b) a nearest-neighbor hopping of strength 
t, and (c) next-nearest-neighbor hopping of strength t'. In di­
mensionless units, the Hamiltonian describing this setup can be 
reduced to (exercise)

Hk = sin k 1 a 1 + sin k 2 a 2 + (r — cos k 1 — cos k 2) a 3, (8.38)

where the Pauli matrix structure is defined in AB-space, r is the staggering potential, 
the sine-terms describe nearest-neighbor hopping off-diagonal in sublattice space, and the 
cosine-terms next-nearest-neighbor hopping diagonal in sublattice space. Finally, k1,2 are 
lattice momenta aligned with the reciprocal lattice vectors (cf. discussion of hexagonal 
lattice structures on page 56).

The dispersion of the Hamiltonian, e±,k = \/sin2 k 1 + sin2 k2 + (r — cos k 1 — cos k2)2, is 
shown in fig. 8.5 for the three values r = 2.5, 2, 1.5, respectively. At the critical value r = 2 
the gap closes at k = (0, 0)T . Such gap closings occur at three values, r = —2, 0, 2. Notice 
that for r close to these values, and momenta close to the gap-closing points, the dispersion 
is approximately linear. For these values, H may be approximated by an effective Dirac 
representation. For example, for r ~ 2 + m, small “mass” m, and |k| 1,

Hk k 1 a 1 + k2a2 + ma3. (8.39)

Much as with the SSH chain discussed in section 8.1.1, the gap closings separate insulating 
ground states of different topology. In simple systems such as the QAH insulator, the 
corresponding topological indices can be identified straightforwardly by inspection of the 
Hamiltonian itself. (In section 10.5, we introduce more powerful approaches shifting the 
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focus to the quantum ground states themselves.) To see how, write the Hamiltonian (8.38) 
away from the critical points as Hk = e +,knk • a, with unit vector nk. By way of example, 
consider r 2. In this case, nk points in an upward direction, with only weak dependence 
on k. For 0 < r < 2, we have the different situation that n(0,0)t = —e3 while nn,n)t = 
-e3 . Inspection of intermediate values of the momentum variable shows that, in this case, 
n covers the full unit sphere for k running through the Brillouin zone.

The coverage of the sphere by n has a status similar to the winding around the circle 
by a planar unit vector in the SSH context; configurations covering the sphere cannot be 
continuously deformed into those that do not. The corresponding winding number is given 
by

1 2n n
W = — J dk 1 dk2 n • (d 1n x d2n), (8.40)

i.e., the area swept out on the sphere by n in units of 4n. This winding number assumes 
the values 0, 1, —1, 0 depending on the value of r. It is a topological signature of the 
quantum ground state, encoded in the variation of n. The technical term for this type of 
winding number defined in d = 2 (and even-dimensional systems in general) is known as 
the Chern number. In section 10.5.3, we discuss the general concept of Chern numbers 
and will introduce ways to compute them for general even-dimensional quantum ground 
states. Furthering the analogy to the IQH system, section 9.1.3 addresses the physics 
of edge states and shows that this system also supports gapless boundary states and 
quantized transport coefficients.

Field theory of the integer quantum Hall effect

REMARK Before reading this section, we suggest that you re-familiarize yourself with 
the field theory approach to the disordered electron gas introduced in section 5.4. To keep 
the notation simple, we write the conductance coefficients aij as dimensionless quantities 
measured in units of the conductance quantum e2/h.

While Laughlin’s gauge argument and other phenomenological approaches lifted 
much of the mystery posed by the experimental discovery of the IQHE, they were 
not first-principle theories. A major step towards a microscopic description of the 
effect was taken by Pruisken when he extended the nonlinear a-model of disordered 
fermion systems to include a strong magnetic field. In the following, we will review 
Pruisken’s field theory and apply it to a description of the critical physics of the 
quantum Hall insulator.

Pruisken’s field theory: In section 5.4 we saw that the physics of the disordered 
electron gas at length scales exceeding the elastic mean free path is described by a 
nonlinear a-model with action

S[Q]= ^8' I d2x tr(diQdiQ)’ (8.41)

where the fields Q = {Qas,a s } are 2R-dimensional matrices, a = 1,..., R is a 
replica index, and s = ± is a causality index. This theory was derived from a 
microscopic parent theory describing the disorder average of retarded (s = +) 
and advanced (s = -) fermion Green functions. Prior to averaging, that theory 
possessed invariance under spatially uniform rotations T G U(2R) (reflecting the 
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identity of the microscopic actions of retarded and advanced Green functions of 
different replicas). However, disorder averaging led to symmetry breaking, in that 
retarded and advanced Green functions then carried a “self energy,” ±i/2t. The 
unbroken symmetry group U(R) x U(R) contained only rotations between replica 
flavors of identical causality, s = + or -.

The matrices Q G U(2R)/U(R) x U(R) are the Goldstone modes of this “causal 
symmetry breaking.” A concrete representation is given by Q = Ta ar T-1, where 
T G U(2 R) and a ar is a Pauli matrix in advanced/retarded (ar) space. The above 
Goldstone mode action is invariant under global transformations T ^ T0T, where 
T0 G U(2R) is constant, Q ^ T0QT0-1, and under local transformations T ^ 
TH(x), where H(x) G U(R) x U(R), and Q does not change (because [H, a3] = 0).

INFO Note how the above symmetry breaking parallels that in a magnet: the local mean 
field magnetization of a Heisenberg magnet can be represented as nia-i = Ta3T-1 = Q, 
where T G U(2) describes deviations away from the 3-axis magnetization, n = e3. The 
magnetization is locally invariant under T ^ TH, where H G U(1) X U(1) represents both, 
transformations by a trivial phase, and rotations around the 3-axis. The symmetry under 
global transformations T ^ T0T represents changes in the mean field magnetization axis, 
ni ^ n'i. In this case, the Goldstone mode manifold U(2)/U(1) xU(1) is a sphere, with two 
different representations in terms of n or in terms of Q. Similarly, the Heisenberg action 
affords the alternative representations J ddx tr( dQdQ) = 2/ ddxd n • d n. The nonlinear 
a-model of the disordered electron gas is the generalization of this theory to arbitrary R, 
and its Goldstone mode manifold is a higher-dimensional variant of the sphere.

The coupling constant of the action is proportional to the longitudinal conductiv­
ity, a11 of the electron gas at length scales comparable with the mean free path. 
(At large length scales, fluctuations of the Q-matrices cause a downward renormal­
ization of the coupling - Anderson localization.) In a series of seminal papers,48 

Pruisken investigated what happens if a strong magnetic field enters the stage. 
Referring for the first-principle derivation of the generalized theory to the original 
references, here we argue heuristically and note that we expect a contribution to 
the action containing a term with mixed derivatives d 1 Qd2 Q, whose coupling con­
stant is proportional to the second entry in the conductance tensor, a12 . We must 
also require rotational invariance around the three-axis on averaging over disorder 
realizations. This symmetry is satisfied by a system subject to a magnetic field in 
the 3-direction, and must be respected by the effective theory. A term tr(d 1 Qd2Q) 
would not have it (why?), and hence is ruled out. The minimal rotationally invariant 
extension reads eij tr(diQdjQ); however this term vanishes (why?). Next in order 
of complexity is the integrand eij tr(QdiQdjQ), and this is indeed the term derived 
by Pruisken: the field theory of the quantum Hall effect has the action

48 For a review, see A. M. M. Pruisken, Field theory, scaling and the localization problem, in The 
Quantum Hall Effect, eds. R. E. Prange and S. M. Girvin (Springer-Verlag, 1987).

S[Q] = 1 f d2x [a 11 tr(diQdiQ) - a 12ejtr(QdiQdjQ)] . (8.42)
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The second term in this action is a topological 0-term. To understand this point, 
consider the case R = 1 in which (see the info block above) Q = nioi becomes 
equivalent to a unit vector on the sphere. Substitution of this representation into 
the action gives

stop[ Q]
= -~82 J" d2x jtr(QdiQdjQ) = ^1 j d2x n • (d 1n x d2n).

On the left, we meet again the topological action (8.15), with 0 = 2no-12 as the 0- 
angle. For an infinitely large system with fields relaxing to a constant value Q(x) = 
const., the base space becomes topologically equivalent to a sphere, and the topo­
logical term measures the number of windings in the map Q : S2 ^ S2, x ^ Q(x). 
Before addressing the interesting question of what happens in finite sized samples, 
we note that the above interpretation extends to the case of general R. Heuristically, 
this follows from the observation that the action Stop is topological - it is purely 
imaginary and does not change under local changes of variables - and therefore it 
must measure topological contents (which the R = 1 analysis shows is nontrivial). 
From mathematics we infer that

U U(2 R) \ Z
2 VU(R) x U(R)]

i.e., maps from compactified real space to the field space of general Q matrices are 
characterized by integer winding numbers. A more detailed analysis does indeed 
show that these winding numbers are computed by the topological action above. Equation (8.42) demonstrates how the conspiracy of a strong magnetic field and 

disorder stabilizes a topological field theory with a 0-term. In the following, we will 
discuss the physics resulting from this description.

Quantum Hall phases: Consider a gedanken experiment where we are given a two­
dimensional electron gas of linear extension L & l with “bare” values o11 and o12 of 
the conductance tensor. What will happen as the size of the system is increased?49 

We know that local fluctuations of the Q-matrices serve to decrease the value of the 
coupling o 11. At the same time, they leave the topological action invariant. Naively, 
one might thus suspect renormalization to o11 = 0 - Anderson localization - and 
that o 12 is identical to its bare value in the limit L ^ rc>. However, an elegant 
argument presented in the info block below shows that a line of fixed points (0, o12 ) 
is inconsistent with fundamental principles; only configurations (0, n) with integer 
quantized Hall conductance qualify as fixed points of the localized phase.

49 In a real experiment, lowering of the temperature T has a similar effect. It leads to an increase 
in the length scale L(T ) over which wave functions remain phase coherent. Where localization 
effects are concerned, this scale plays a role similar to the physical system size.

INFO Let us investigate why field-theoretical localization, a 11 ^ 0, requires 
integer quantization of a 12. To this end, consider the action at a 11, where it has 
become purely topological, S[Q] = Stop [Q]. For definiteness, we consider a system with



469 8.4 0-terms

disk geometry, D, and assume that the boundary dD is parameterized by a coordinate
s G [0,L]. Referring to section 8.4.1 for a discussion of the underlying geometric principles, 
we note that the topological Lagrangian Ltop = — ^^ eijtr(QdiQdjQ), = = 2na 12 affords 
a local representation as a full derivative. This is most easily seen in differential form
notation, where Stop[Q] = — 1^ Jd tr(QdQ A dQ). With the representation Q = Ta3T 1 

it is straightforward to verify50 that

50 Readers not yet warmed up to differential-form notation may carry out the above operations in 
standard derivative notation with its explicit book-keeping of anti-symmetrization operations.

51 It is a good exercise to explore this point for a R = 1 toy model, where Q is a 
two-dimensional matrix and T G SU(2) are rotation matrices. For example, with T = 
exp(-i0a3/2)exp(-iOa2/2) parameterized in an Euler angle representation, one obtains (ex­
ercise) tr(dT A a3dT— 1) = sin 0d0 A d0. Locally, this can be written as a derivative, d(sin 0 d0). 
However, at the poles d0 becomes singular, demonstrating that complete extension is not pos­
sible.

Stop 4' / tr(dT A a3dT-1) = 4ny d(tr(Ta3dT-1)) = 40- tr(Ta3dT-1),

where in the last step we applied Stokes’ theorem (A.17) to pass to a boundary integral. 
The representation is “local” in the sense that it works for a topologically trivial base 
space, like our disk, D. However, it is not extensible to a map Q : S2 ^ T defined on 
compactified infinite space with its spherical topology.51

Represented in standard derivative form as an integral over the boundary coordinate, 
the topological action assumes the form

Stop = 40n lo ds tr(Ta3dST-1).

This is a nice result. It shows that, in the deeply localized phase (a11 = 0), the system 
is described by a linear-derivative boundary action. As one might expect (see the original 
reference for the details), this action describes chiral boundary current flow, i.e., the physics 
of the surface states discussed previously on a phenomenological basis. Also notice that 
the localized bulk action has completely dropped out of the picture at this stage.

However, there is something disconcerting about the result above: the required local 
symmetry under transformations T(x) ^ T(x)H(x), [H(x),a3] = 0, is no longer manifest 
in the boundary representation. While the original degrees of freedom Q = Ta3T-1 ^ 
T Ha3H-1T -1 = Ta3T-1 = Q do not transform, substitution of the transformation into 
the boundary action leads to

Stop[TH] = 0 [L ds tr(THa3ds(H-1T-1)) = Sw[T] + SStop[H], 
4 n 0o

where SStop[H] = 4n fL ds tr(Ha3dsH-1) and we have used the product rule and the 
cyclic invariance of the trace. Focusing on a single replica index and, within it, on the 
transformation generated by the U(1) subgroup of SU(2) rotating around a3 , H(s) = 
exp(i0(s)a3), the H-dependent term becomes

SStop[H] = 0 [ ds tr(HdsH-1) = i0 [ ds ds0(s) = 0 (0(L) — 0(0)) = i0W, 
4 n 00 2n J 0 2 n

where we note that 0(L) — 0(0) = 2nW may include windings. Gauge invariance re­
quires that the path integral must not depend on these transformations, and this requires 
exp(i0W) = 1, or 0 = 2nn. With a 12 = /2 2n, this is equivalent to the condition of integer 
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quantized Hall conductance. We thus conclude that the bulk localized theory actually 
requires integer quantization of the Hall coefficients for its intrinsic consistency.

Quantum criticality: While the identification ab ove of a discrete set of renormaliza­
tion group fixed points, (a 11, a 12) ^ (0, n), is consistent with the phenomenological 
understanding of the Hall effect - bulk localization stabilizes edge states carrying 
quantized currents - it presents us with a conceptual problem: if perturbative renor­
malization lowers a11 but does not change the bare value of a12, how can the renor­
malization group flow ever end up at the permitted target points (0, a12 )? This 
question was addressed in Pruisken’s series of papers on the subject (see Ref. 48 

for a review). The analysis is technically involved and here we limit ourselves to a 
discussion of the main ideas.

We first note that the presence of a 9-term implies that the field integration
DQ must be conceptualized as an integration over distinct topological sectors, 

i.e., distinct values of the topological action Stop [Q]. The subsequent renormaliza­
tion program is compatible with this organization of the integral: renormalization 
involves successive integration over short-ranged fluctuations and does not alter 
the global winding of field configurations. The renormalization steps operate within 
individual topological sectors. Second, our earlier discussion of the 9-action of the 
spin chain showed that nontrivial topological sectors are weighted with a minimal 
action, the reason being that topological twists require a minimal spatial variation, 
for which one has to pay via the gradient term. The same argument applied to the 
present action shows that S [Q] > 2nWa 11.

EXERCISE From the positivity of

21 y d2x tr [(d^Q + ie^vQdvQ)(d^Q + ie^xQdyQ)] > 0,

derive the lower bound for the action mentioned in the text.

Third, we know that under a change of orientation of the coordinate system (physi­
cally, a change of direction of the applied magnetic field) both the Hall conductivity 
a12 and the winding number W of individual field configurations change sign, while 
a11 remains invariant. On the basis of these structures, Pruisken carried out an 
RG procedure, perturbatively stabilized by a large value of a11 - an assumption 
which we know breaks down at large scales, where a11 has values of O(1). For 
a 11 1, the exponential suppression ~ exp(-2nWa 11) justifies a limitation of the
RG procedure to the sectors W = 0, 1. To this order, Pruisken obtained the flow 
equations

dan 1 —
P 11 = = - —--------- ca 11 e 2 11 cos(2na 12),

d ln L 2 n 2 a 11

da-io
fi 12 = = ca 11 e 2 11 sin(2na 12),

d ln L

(8.43)
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where c > 0 is a numerical constant. Here, 
the non-exponential term in the first equa­
tion describes the logarithmically slow down­
ward renormalization of the two-dimensional 
linear conductance due to disorder. The 
weighting of the RG equations for a 11 and 
a 12 with a cos or sin function reflects the 
above-mentioned change in the transport co­
efficients under a change of orientation. It im­
plies that, for a12 different from half-integer
values Z + 1/2, the Hall conductance grows or increases depending on whether the 
sign of the difference of a12 from the nearest half-integer is positive or negative. 
At the same time, the longitudinal conductance keeps decreasing. The flow equa­
tions do indeed have fixed points at values (a11, a12) = (0, n) that, however, are 
outside the highly conducting regime a 11 1, where the equations can be trusted.
Finally, a 12 e Z + 1 /2 defines configurations where a 12 does not change, while a 11 

decreases. These are the critical surfaces containing the quantum Hall critical 
points. Since cos(2n(n + 1 /2)) = -1, the equation for a 11 indeed contains a fixed 
point at (a11, a12) = (a0, n + 1/2), where a0 = O(1) (see the dots in the figure). 
This is in line with the experimental observation of a non-zero value, of O(1), of 
the longitudinal conductance at the quantum Hall transition.

Summarizing, the above RG equations are consistent with the flow depicted in the 
figure. Bare configurations characterized by a pair of transport coefficients at short 
length scales generically flow towards the quantum Hall fixed points, (a 11 ,a 12) ^ 
(0, n), with vanishing longitudinal and quantized Hall conductance. Only along the 
critical lines a12 e Z + 1/2 does the system end up in a quantum Hall critical state. 
For slight deviations away from criticality, controlled, e.g., by the strength of the 
external field, or deviations AE = | EF — E*| of the Fermi energy away from the 
centers of the Landau bands, the critical physics is controlled by a length scale 
£ (A E), diverging at the critical point. Identifying this scale with the localization 
length, bulk states of energy E are localized or not depending on whether £(E) is 
smaller or larger than the system size. This is consistent with the expected formation 
of long-range states close to the centers of the Landau levels, where AE is small 
(see the figure on page 460).

The discussion above shows that the nonlinear a-model enriched by a topological 
term explains numerous features related to the interplay of topology and disorder 
in the physics of the quantum Hall effect. Physically backed theories are often 
applicable beyond the regimes where their construction is parametrically controlled. 
One might thus cross one’s fingers and hope that even the critical physics of the 
quantum Hall transition is described by Pruisken’s theory. However, this is where 
we run out of luck. As discussed above, the quantum Hall critical point is observed 
at values of the coupling constants deep inside the strong coupling regime of the 
a-model. For these values it is out of control. Worse, we must expect that it loses 
its identity. Evidence that something drastic happens comes from the conceptually 
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similar yet simpler field theory of the antiferromagnetic spin chain. In section 8.4.6, 
we saw that this system, too, is described by a topological nonlinear a-model (8.32). 
It is identical to that of the quantum Hall insulator in the case R = 1 of one 
replica, the analog of the quantum Hall critical surfaces being half-integer spin 
configurations S G Z + 1 /2. In this case, we know the critical theory, and it is 
different from the nonlinear a-model!

In the next section we will introduce this theory, and along with it a new class of 
topological terms, the Wess-Zumino terms. However, where the IQHE is concerned, 
we must concede that four decades after its discovery, an effective theory describing 
the quantum Hall transition remains unknown.

8.5 Wess-Zumino Terms

REMARK Familiarity with the language of differential forms as introduced in appendix 
section A.1 will make this section easier to read.

In this section, we introduce a new class of topological terms, termed Wess- 
Zumino (WZ), Wess-Zumino-Witten (WZW), or Wess-Zumino-Novikov- 
Witten (WZNW) terms, honoring those who introduced them to physics. The 
rule of thumb is that WZ terms appear in theories in dimensions d with field target 
spaces T if the same theory in one dimension higher, d + 1, admits a 9-term. Be­
fore discussing this statement in general, let us illustrate its meaning on the teaser 
example of the spin path integral introduced in the previous section.

8.5.1 Spin path integral revisited

Let us take another look at the spin path integral (8.20) and specifically the “canon­
ical” part of the action (8.26). Notice two things: first, we reasoned that this contri­
bution to the action does not admit a representation in terms of the natural degrees 
of freedom, n(r), describing a time-dependent angular momentum (unlike, say, a 
Zeeman term in the action, which can be written as B cos 9 = Bez • n). Second, 
the spin path integral exemplifies the d ^ d +1 principle mentioned above. In 
the previous section, we saw that the action (8.26) of the (0 + 1)-dimensional path 
integral seeds the 9-term (8.15) of the (1 + 1)-dimensional spin field integral in one 
dimension higher. Let us discuss the principles behind these observations and how 
they are related.

Spin quantization from monopole potential

We first discuss the situation as it is usually presented in physics textbooks. As 
explained above, the free spin action describes a canonical pair of variables (■$, cos 9) 
via a term f pq dr = f cos 9 $dr familiar from classical mechanics. However, the
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Wess-
Zumino 

term

magnetic 
monopole

Dirac 
string

standard physics treatment takes a different view52 and reasons that a first-order 
time derivative in a classical action is reminiscent of a term f dr q • A describing 
the coupling of a particle with velocity v to a vector potential. To identify the 
corresponding vector potential, we start from the canonical term of the spin path 
integral r[9,)] = — iS § dr) cos 9. As in Eq. (8.19), we use our freedom to add a 
full derivative, and consider the modification

rn[9,)] = — iS J" dr) (cos 9 — 1) (8.44)

in the representation Sn of Eq. (8.19), where the coordinate singularity at the 
north pole of the sphere has been removed by the addition of a full derivative. 
Anticipating that this functional will be a realization of a Wess—Zumino term 
we use the notation r, frequently found in connection with these functionals. Our 
particle moves on the sphere and, from the relation v = n = 9 eq + sin 9 ) e^, we 
find that, with the choice

An = S 1^  ̂e *’ (8.45)

we obtain the corresponding expressions rn = — if dr q •An. What kind of magnetic 
field does An describe? The answer is found by taking the curl: application of 
standard formulae of vector calculus in spherical coordinates shows that B = V x 
An = Ser . This is the uniform radial magnetic field generated by a magnetic 
monopole of strength Js2 dS • B = 4nS at the origin of the sphere.

INFO How can this statement be consistent with the absence of magnetic charges? First, 
keep in mind that we are talking about a “fictitious magnetic field.” Second, the vector 
potential An becomes singular at the south pole. Inspection of its behavior around the 
singularity (exercise) shows that is identical to the vector potential generated by a likewise 
fictitious thin solenoid of magnetic flux —4nS entering the sphere through the south pole: 
the Dirac string. In this interpretation, the outward flux through the surface of the sphere 
enters through its south pole, and there is no net magnetic charge inside the sphere.

The spatial uniformity of the magnetic monopole field suggests _____
computing the action via Stokes’ theorem. To this end, we inter- Z' A\ 
pret rn as the line integral of An along the closed curve defined ! n \
by n(t), which via Stokes’ theorem equals the surface integral of I n('T~) ...___ I
B over an area on the sphere bounded by n (see the light- and \ J
dark-shaded areas in the figure). The applicability of Stokes’ s y'
theorem requires that we pick the light-shaded northern area, 
avoiding the singularity of An at the south pole. Since B = Ser
is constant, this integral yields S times the geometric area An bounded by n(T) on 
the sphere.

This finding immediately raises questions. First, there is the ambiguity in the 
choice of bounded area: northern or southern? Initially, we had to pick the northern 

52 Perhaps this point was not really understood at the time when the interpretation below was 
formulated.
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option. However, this was dictated by the ad-hoc choice of An , with its absence of 
singularities in the northern hemispshere. We might have built our analysis of the 
action on the alternative, As, in which case the dark-shaded southern area, -As, 
would have been obtained, where the sign reflects the different sense of orientation 
of the curve n(t) relative to that bounding area. The difference between the two 
answers, SAn — S(—As) = 4nS equals the S times the area of the sphere. This gauge 
ambiguity must be inconsequential, which requires that exp(iS4n) = 1, i.e., half­
integer quantization S G 1Z. Notice that, in the construction of the path integral 
via spin coherent states, we never used the quantization of S . However, the path 
integral requires it a posteriori to be geometrically consistent.

Finally, let us discuss the somewhat subtle issue of coordinates in connec­
tion with the topological action. Above, we reasoned that Stop[9, ^] cannot be ex­
pressed in a coordinate-invariant way. On the other hand, we have just argued that 
Stop equals iS times the geometric area bounded by n. The latter clearly is a “ge­
ometric object” defined without reference to a particular coordinate system. How 
can these two statements be reconciled with each other? The answer lies in the ob­
servation that the geometric interpretation of the action makes reference to a higher 
dimension, namely the one-dimensional curve n interpreted as the boundary of a 
two-dimensional area. This extension is made more concrete by introducing a ho­
motopic interpolation n(s, t) between the bounding curve and the north pole. Here, 
s G [0, 1], n(0,t) = n(t), and n(1, t) = e3, so that the parametric interpolation in 
s sweeps out the bounded area. The area functional can now be represented as

r[n] = iS j d'S j dT n ’ (dsn x dTn), (8.46)

i.e., the standard representation of an area integral on the sphere with parame­
terizing coordinates (s, t).53 This is the coordinate invariant representation 

WZ term of the WZ term in terms of the field n that, however, now is upgraded to a 
two-dimensional field. We observe that we have two options for expressing the 
topological action, either in coordinates in the native dimension of the theory or 
in an invariant way that is one dimension higher. We will see that this reflects a 
feature common to all Wess-Zumino terms.

Spin quantization from geometry

However, to understand the underlying principle, we had better abandon the 
monopole magnetic field interpretation. Recall that the introduction of the field 
became necessary as a result of a particular interpretation of the pq-term. We now 
take another and more geometrically inspired look at this term. Recall from the info 
block of section 8.4.4 that a phase space comes equipped with a non-degenerate 
symplectic two-form w = dp dpi A dql, and that the two-sphere is made a phase 
space by the choice w = — d(cos 9) A d^ = sin 9 d9 A d^. Three things are important

53 Notice how this expression resembles a 9-term. However, there is the crucial difference that now 
the variable n does not cover integer multiples of the full sphere, but only a fraction of it. 
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here: first, in this two-dimensional case, the symplectic form is top-dimensional, 
a two-form on a two-dimensional manifold. Second, the symplectic form of the 
sphere equals its canonical area form, Js2 w = 4n (see Eq. (A.15)). Third, being 
top-dimensional, w is locally, but not globally, exact, i.e., it is the derivative w = dK 
of a one-form. If there was a global representation of this kind, we would have 
fs2 w = fs2 dK = Jgs2 k = 0 by Stokes’ theorem, due to the absence of a boundary 
of the sphere. However, locally, the derivative representation can always be obtained 
by solution of a differential equation. For example, w = sin 0 d0 A d( = — d(cos 0d() 
in spherical coordinates, which is a “local” representation in that sets of measure 
zero such as the poles are not reached.

The discussion thus far is formulated on the sphere, S2 . To see how it is relevant 
to our path integral framework, all we need to do is “pull it back” from this target 
space to the base space of the theory. For example, consider the one-dimensional 
fields integrated over in the path integral, <p : S1 ^ S2,t ^ <p(t) = <p(0(t),((t)), 
where <p = n is an element of the sphere. The image of <p is a closed curve, y, on the 
sphere. Assuming that this curve lies inside the domain of a local representation 
w = dK, i.e., we are not accidentally running over a singularity, we may consider 
the integral,

J K j (* K = —y dT cos 0 ( dT, (8.47)

where the first integral is on the sphere, the second computes the integral by pulling 
it back to the base interval [0, fl] (see Eq. (A.16)), and the third contains an explicit 
representation of the integral. This final representation is the canonical term in 
our path integral action. In fact, nothing here is special to the sphere: when we 
write J dTpiqi in a Hamiltonian action, we are integrating the pullback of the local 
potential pidqi of the symplectic form w = d(pidqi) = dpi A dqi under the phase 
space curve t ^ x(t) = (q1,... ,pf).

In standard classical mechanics, there is no particular reason to emphasize this
view. However, with the somewhat more interesting phase space of the sphere it 
becomes crucial. With it, the mysteries we found earlier in our discussion of the 
monopole field are lifted.
First, it is evident that the canonical 
action does not have a global invari­
ant representation (in terms of <p = 
n). This is the pulled back version of 
the Stokes’ theorem argument given 
above. If there were such a represen­
tation, we could demonstrate that the 
integral of the area form of the sphere 
equals zero. However, we do have the option to extend our field to a two-dimensional 
one via a parametric construction <p : I x S1 ^ S2, (s, t) ^ <p(s,r), chosen such 
that its image SY on the sphere has our curve y as boundary: <p(0,t) = ((t). 
With this extension, we may consider the the pullback of the two-form w to the
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two-dimensional base space IxS 1 <p*w = fs w in order to obtain expressions such 
as (8.46), which make no reference to the coordinate potential, k, and hence is sin­
gularity free. Provided we have a local representation w = dK inside the full image, 
SY, Stokes’ theorem may be applied to this integral,

w = dk = k, (8.48)

Wess-
Zumino 

action on 
the sphere

with pullback representation Eq. (8.47).* 54 Again, we have the choice between dif­
ferent interpolations. The invariance of the integral above under changes of coor­
dinates implies that different interpolations to the north pole will not change the 
result. (If you feel uncertain about this statement, consider the definition of the 
integral over forms to verify it). However, an interpolation to the opposite pole, 
enforced by a singularity of k on the northern hemisphere, changes it. The differ­
ence between the northern variant SY = Sn,Y and the southern variant Ss,Y equals 
fs w — (— fs w) = fs dS = fs2 w = 4n, which is similar to what we had in 
the previous discussion. This is an alternative way of demonstrating the half-integer 
quantization of S required by the path integral formalism.

To prepare for our subsequent discussion of concrete realizations, we here summarize 
the principles behind the Wess-Zumino term, in direct extension of the discussion 
of section 8.4.1 on 9-terms. Fortunately, there is no essential work to be done: all we 
need to do is transcribe the discussion of the previous section on spins to generalized 
settings.
To this end, assume that we 
have a theory in d + 1 dimen­
sions defined on a base man­
ifold, which we assume to be 
realized as the product N = 
M x I, where I is an interval 
and M a d-dimensional mani-
fold. Keep an eye on M ; this is where our WZ theory will be defined.

54 Note that it is always possible to shift the position of singularities of k by adding full derivatives: 
with k ^ k + df we obtain the same area form w = d(k + df) = dK = w, due to dd = 0. In our 
previous discussion of the action we used this freedom with f = ±<p to work with potentials 
kn,s = (cos Q ± 1)do. However, for the reasons mentioned, it is not possible to remove all 
singularities.

Equations. (8.44) and (8.46) are two alternative representations of the Wess— 
Zumino action on the sphere. While the discussion was formulated for this 
specific target space, the geometric construction of the action did not make reference 
to particular properties of the sphere. In the following, we rephrase the geometric 
principle of WZ terms in a more general language. On this basis, we will then 
discuss other realizations of WZ terms, notably the beautiful two-dimensional WZ 
theory with target SU(n).

8.5.2 Geometry of Wess-Zumino terms

X
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Further assume that we have a target manifold T without boundary (think of the 
previous example, T = S2) and that the theory with fields Cp : N ^ M admits the 
construction of a 9-term. Referring back to section 8.4.1, this means the presence 
of a (d + 1) form w on T whose pullback integrals JMxI <p* w over the base produce 
2n-multiples of quantized winding numbers (see Eq. (8.12), with M ^ N and 
w ^ 2nw, where the 2n-scaling is introduced for later convenience). Now pick a 
point, say, 0 e I, and focus on the restriction i(x) = cp(x, 0), defining a field in one 
dimension lower, <p : M ^ T. The intersection at 0 splits the base manifold into 
two parts, N = N+ U N-, and <p is the common boundary configuration of both 
the upper and the lower extensions cp+/- .

In the situation we want to consider, c is our prime object of interest (for example, 
the one-dimensional fields of periodic time, M = S1, describing a closed curve 
on the spin manifold T = S2 ), and cp is an extension winding once around T, 
so that the above integral yields 2n. On this basis, let us assume that in N+ , 
w = dK + is the derivative of a d-form and, likewise in N-, w = dK_. Since a global 
representation w = dK on all N cannot exist (why?), the definition of k± necessarily 
makes reference to a local coordinate system. Now consider the integral over M of 
K+ pulled back by c (corresponding to the imaginary-time integral along a closed 
curve on the spin manifold in the previous example):

r±[c] = ik/ C*k±. (8.49)

WZ-term 
(coordinate 

represen­
tation)

WZ term 
(invariant 
represen­

tation)

This integral defines a coordinate representation of the WZ term (Eq. (8.44) 
in the spin example). Here an arbitrary integer prefactor, k e Z, known as the 
level of the WZ theory, has been introduced.

To obtain an alternative and coordinate invariant representation, we apply Stokes’ 
theorem to the integral over the boundary M = dN±, to pass to an integral of 
dK± = w over either N+ or N- :

c*K± = cp*K± ( = ) ± dcp*K± ( = ) ± cp*dK± = ± cp*w,
M M N± N± N±

where in the first equality we have used the identity c = cp on the boundary, 
in the second we have applied Stokes’ theorem, in the third we have used the 
commutativity of pullback and derivative, and the sign factor again reflects the 
opposite orientation of M relative to N+ and N- . The (d+1)-dimensional invariant 
representation of the WZ term

r±[i] =±ik / C*w, (8.50)
N±

is formulated in terms of w and does not rely on local coordinate representations (cf. 
Eq. (8.46) in the spin example). However, this comes at the cost of the dimensional 
extension. Which form of the WZ term is more convenient to work with depends 
on the application.
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Finally, note that the ambiguity implied by the choices N± must be inconse­
quential. The difference between the choices equals ik fN <p*w — ik(— fN <p*w—) = 
k !n+ uN 1*w = ik N V*w = 2nik, where in the final step the unit winding prop­
erty was used. In the exponentiated action, exp(ir), this difference is unobservable 
provided 2nk is an integer multiple of 2n, or k G Z. We observe that the integer 
quantization of the WZ-coupling constant, or its level, is required for consistency. 
Unlike 9-terms with their arbitrary topological angles,

WZ terms couple to actions via integer-quantized coupling constants. 
They are called the levels of the theory.

The differential form representations (8.49) and (8.50) may look unfamiliar but 
have the advantage that they describe the structure of WZ terms in general. In 
applications, WZ terms assume the form of Eqs. (8.44) and Eq. (8.46), or of more 
complicated expressions in higher dimensions. To identify a WZ term as such - 
which is not always straightforward - it may be best to translate to differential 
form language and describe the situation in this way. We also note that in down-to- 
earth derivations of WZ terms via gradient expansions in effective field theories, the 
above quantization criterion defines an important consistency check for the validity 
of the computation.

8.5.3 Example: magnetic moment coupled to fermions

Let us illustrate the statements made in the last paragraph of the previous section 
for a simple example. Consider a single energy level e of a spinful fermion system. 
(One may think, for example, of a discrete level of an atom.) Let us assume that 
the fermions inhabiting the level are coupled to a magnetic moment n = n(r) with 
externally imposed time dependence. The coherent state action of this system is 
given by

S[^, n] = d dr ip(dT + £ + Yn • °)^, 
0

where y is a coupling constant and, as usual, £ = e — p .A complete specification 
of the problem would have to include a term S[n] controlling the dynamics of the 
uncoupled magnetic moment. However, for the purposes of the present discussion, 
it is sufficient to consider the moment-fermion coupling in isolation. We assume an 
adiabatic situation where the moment varies over large scales, Ar, and does not 
generate transitions between spin states, Aty 1. We also assume low tempera­
tures, y/T 1.

INFO Actions of this type appear as building blocks of extended models, with n represent­
ing a magnetic environment, coupling to an orbital magnetic moment, or the Hubbard- 
Stratonovich decoupling of an electron-electron interaction.

Integration over the fermion degrees of freedom leads to the reduced action

S[n] = —trln(dT + £ + yn • o).
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To proceed, we use the representation

n • a = U-1 o3U, (8.51)

where U G SU(2). For example, with the standard polar representation, n = 
(sin 0 cos ■$, sin 0 sin ■$, cos 0)T, the choice

U = e - i!-'a 3 / 2 e - i6a 2 / 2 e - n.a 3 / “2 (8.52)

establishes this representation. Substituting Eq. (8.51) into the action, we obtain

S[n] ^ S[U] = — trln(dT + £ + yU 1 o3U) = — trln(UdTU 1 + £ + yo3)

= — trln( dT + £ + yo 3 + UU 1),

where, in the first equality we used the cyclic invariance of the trace and in the last 
equality we defined dT U = U. Under the above adiabaticity assumptions, the effec­
tive action may be approximated by a first-order expansion of the “tr ln” operator 
inthe time derivative, S[U] = tr(GUU-1)+ O(Aty)2, where G = (—dT — £ — yo3)-1 

(how would you formally verify this statement?). Switching to a frequency repre­
sentation,

S [ U ]= £tr( Gn (UUJ-1) m=0 ) = —J dT tr(0(—£ — yo 3) UdT U-1)

dt tr ©(—£—y° 3)—2 UdT U-1

where we used Eq. (3.82) for the frequency summation, and approximated the 
low-temperature Fermi function as nF(x) = ©(—x). In the last line, we intro­
duced a factor 1 /2, which is inconsequential because tr(UdTU-1) = — dTtr ln U = 
—dT lndet U = 0 and U has unit determinant.

Now, if both levels are either occupied (—£ ^ y < 0) or unoccupied (—£ ^ y > 0), 
the action reduces to tr(const. x UdT U-1) = 0. However, if the excited state £+y > 0 
is empty while £ — y is occupied, we obtain

S [ U ]| e+Y> 0 X - Y = r[ U ]= —1 f13 dT tr( o 3 UU-1). (8.53)
20

Being a first derivative in time, this action is invariant under reparameterizations 
of the integration variable t , indicating that it is a topological term. To identify 
its type, we first determine the dimensionality of the target space, T. Naively, one 
might suspect that T = SU(2), a three-dimensional manifold. However, this cannot 
be correct, as U was introduced to parameterize the two-dimensional n in Eq. (8.51). 
This equation indicates that, of the three variables in the parameterization (8.52), 
^ drops out and we are left with a two-dimensional integration manifold. In the 
action (8.53), the redundancy of this variable manifests itself via a “gauge invari­
ance” under transformations U ^ U exp(i^o3). These transformations generate an 
additional term, 1 f dTtr(o3(v^o3)) = i(^(fl) — fl(0)) = 2niW. The phase windings 
W are inconsequential because exp(2niW) = 1. This construction demonstrates 
that the actual field manifold is the two-sphere, SU(2)/U(1) ~ S2. Its dimension is 
one higher than that of the one-dimensional base manifold, indicating that we have 
a Wess-Zumino term.
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To substantiate this, we substitute the coordinate representation (8.52) into the 
action (exercise):

r[^,e] = -y dr (1 - cos e) dT$. (8.54)

We identify this expression as the coordinate representation (8.44) of the S = 1/2 
WZ term with base S1 and target S2 . In hindsight, the rediscovery of this action is 
not surprising: the action of the spin path integral measures the phase associated 
with the traversal of a closed curve in the space of spin coherent states. Presently, we 
are dealing with a two-level system (a spin) enslaved to a time-dependent magnetic 
moment. Quantum mechanically, this is again a spin tracing out a closed curve, 
and the result (8.54) shows the equivalence to the previous situation.

Berry phase

REMARK Here we review the concept of Berry phases and demonstrate their relation 
to WZ terms for the example of the magnetic moment studied above. This discussion 
reveals interesting connections between topological field theory and adiabatic quantum 
time evolution. However, readers primarily interested in the former subject may skip it at 
first reading.

Berry 
phase 
action 

of spin

self prefers to call it) and explored its mani­
festations in various physical contexts. (Figure 
courtesy of Sir Michael Berry.)

Sir Michael Berry 1941- 
is a British theoretical physicist 
who has made groundbreaking 
contributions to the field of 
quantum nonlinear dynamics 
and optics. Berry introduced 
the concept of the Berry phase 
(or geometric phase as he him­

In the literature on time-dependent quantum magnetism, the action (8.54) is known 
as the Berry phase action of a spin 1/2. To understand this connection, let us 
start with a review of Berry phases in quantum mechanics.
Consider a Hamiltonian H(x(t)) = 
H(t), where the D-component vector 
x(t) = {xi(t)} parameterizes a weakly 
time-dependent contribution to H . We 
assume that at each instant of time 
the spectrum of the operator H (x(t)) 
is discrete and that the time varia­
tion takes place on scales much larger 
than the inverse spacing between con­
secutive energy levels. Under this adi­
abaticity condition, a particle prepared in the ground state of H (x(0)) at time 
t = 0 will remain in the instantaneous ground state of H (x(t)) and, as shown by 
Berry, the dynamical phase acquired during its evolution assumes the form 

adiabatic 
evolution

exp [—i^(t)] = exp —ds eo(s) + iY(t) (8.55)

where e0(t) is the instantaneous ground state energy. The first contribution to the 
exponent is the usual dynamical phase of quantum evolution. The second contribu­
tion, Y(t), is of geometric origin. It depends on the path traced out by the vector x 
in parameter space, but not on the dynamical details. However, before discussing its 
connection to the phase described by the WZ action, let us review the computation 
of the geometric phase, Y , in the context of adiabatic quantum time evolution.
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We are interested in the phase picked up in the time evolution of the ground state, 
|^(t)). To this end, we start from a representation |^(t)) = e-i$(t) |0(t)), where 
|0(t)) is the instantaneous ground state of the Hamiltonian at time t, H(t)|0(t)) = 
e(t)|0(t)), and e(t) is its energy. Substitution of this ansatz into the time-dependent 
Schrodinger equation

S'.......................... . . ...
H x(t ))| ^(t)) = idt | ^(t)),

and multiplication by (0(t)| leads to the equation dt^ = e(t) — i(0(t)|dt|0(t)). In­
tegrating over time and comparing with our discussion above, we are led to the 
identification

Y(t) = i y ds (0(s)|ds |0(s)) (8.56)

Berry 
phase

of the Berry phase (exercise: why is Y real?). Now, the instantaneous ground state 
inherits its time dependence from the parameters x(t). We may thus write

Y(t) = i f ds (0(x)|dxi |0(x)> |x(s)dsxi(s) = i f dx (0(x)|dx |0(x)) = i f(0|d0). 
0 cc

Here, the second integral has to be interpreted as a line integral in parameter 
space. It is taken along a curve c which starts at x(0), follows the evolution of the 
parameter vector, and ends at x(t). Importantly, the line integral depends only on 
the choice of Y but not on the velocity at which this curve is traversed. In this 
sense, we are dealing with a phase of geometric but not of dynamic nature. (In fact, 
Berry himself calls Y the “geometric phase.”55) The third integral representation 
above emphasizes the geometric nature of the phase even more strongly: for any 
value of x, we have a state |0(x)). We may then construct the differential (one-form) 
)0(x)|d0(x)).56 The geometric phase is obtained by evaluating the integral of this 
form along the curve c.

55 M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 
392, 45 (1984). For an earlier identification of the phase factor, see T. Kato, On the adiabatic 
theorem of quantum mechanics, J. Phys. Soc. Japan 5, 435c (1950).

56 A somewhat less condensed representation is obtained by expansion of the ground state in any 
basis {|A)}, (0(x)|d0(x)} = (0(x)|A)d{A|0(x)), where d{A|0(x)} is the exterior derivative of the 
function {A|0(x)) in the parameters x.

The advantage of the third representation above is that it suggests an alternative 
interpretation of the geometric phase in cases where a closed path in parameter 
space is traversed. For a closed loop Y , application of Stokes’ theorem gives

Y = i (j) (0|d0) = i y (d0| A |d0) (8.57)

where S may be any surface in parameter space that is bounded by Y . This last 
representation is aesthetic, but too compact to be of real computational use. To give 
it a more concrete meaning, we insert a spectral decomposition in instantaneous 
eigenstates,



482 8 Topological Field Theory

Y = if (d 0| m} A (m | d 0).

EXERCISE Why does the m = 0 term vanish, {d0|0) A (0|d0} = 0? (Hint: Make use of 
the fact that d(0|0) = {d0|0) + (0|d0} = 0 and of the skew-symmetry of the A-product.)

We now evaluate the equation 0 = (m|d[(H — e0)|0)] to obtain (m|d0) = (e0 — 
em)-1(m|dH0 or

Y
(0|dH|m) A (m|dH|0) 

(em — e 0)2
(8.58)

As an example, we consider the Berry phase of spin due to the adiabatic 
variation of an external magnetic moment, n(t). In this case, the Hamiltonian 
reads H = p,n • a, where p, measures the coupling strength and the role of the 
parameters xi is now assumed by the coordinates x = (■$, 9) specifying the direction 
of n = n(x) on the sphere. Using the same trick as previously, we can represent the 
Hamiltonian as H = ^n • a = id.'a3U-1, where U is the rotation matrix introduced 
in Eq. (8.51). The instantaneous ground state of H is given by |0) = U||), where 
a311) = —|D. To compute its Berry phase along a closed loop, we can consider the 
first of the two representations in Eq. (8.57). Using the parameterization (8.52), we 
verify that (0|d0) = (||U-1 dU||) = 22(1 — cos9)d<£>, and hence

Y = - f dfi (1 — cos 9). (8.59)

This looks similar to the previously discussed WZ action of spin. Realizing the 
parameter dependence in terms of a periodic time variation, (9,^) = (9(t),^(t)), 
we indeed find that the exponentiated Berry phase, exp(iy) = exp(—ir), is given 
by the WZ action (8.54). This equivalence shows that:

The Berry phase is a one-dimensional Wess-Zumino action.

This identification underpins the geometric nature of the Berry phase. In the one­
dimensional case, the role of the higher-dimensional representation of the WZ action 
(8.50) is taken by the two-dimensional integral over parameter space, as in the 
second equation of Eq. (8.57). For the spin example, this integral assumes the form 
of Eq. (8.46).

INFO The Berry phase (8.59) is experimen­
tally observable. The key to understanding the 
connection with experiment lies in the interpre­
tation of A = i (0|d0} as a vector potential in 
the space of parameters, to be discussed in sec­
tion 10.2.2. This potential acts on fermions in ad­
dition to that representing extraneous magnetic

pyrochlores
fields and does contribute to the Hall conductivity. Such geometric contributions to mag-
netotransport have been observed in complex oxide minerals known as pyrochlores. The 
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frustrated lattice structure of these materials (see the figure57) implies spin chirality in 
the sense that, on average, the magnetic moments of the lattice unit cells point in an 
outward direction. From the point of view of itinerant electrons, this background appears 
like an external magnetic moment. The corresponding Berry connection provides a con­
tribution to the Hall conductivity, which can be identified via its pronounced dependence 
on temperature and external magnetic field.58

REMARK Familiarity with section 3.6 on bosonization of the one-dimensional Fermi gas 
is useful, but not essential.

In this section, we will discuss an example of WZ field theory with U(n) as a 
target space. The focus here is on the construction of this theory; its application 
in quantum magnetism will be addressed below. In section 3.6, we considered the 
action of free fermions in one spatial and one temporal dimension, as described by 
the two-dimensional Euclidean Dirac theory,

S[^,'ip]= j" dxdT^t(dT — ia3dx)^, (8.60)

where ^ = (  ̂+ ,^-)T contains a left- and a right-moving field component, the 
Fermi velocity vF has been set to unity and, as always with Grassmann fields, the 
dagger is a formal symbol, indicating that ^t and ^ are independent integration 
variables. We found that this theory was equivalently described by that of a free 
real bosonic field,

S[&] = 71 d d2x (>■)2,
2 n J

where we introduced the two-component 
vector (x0, x 1)T = (x, t)T. In a seminal 
paper,59 Witten asked how we should 
think about bosonization if a number 
N of independent fermion fields ffa 

with identical actions are considered 
or, equivalently, if ^ in Eq. (8.60) is 
upgraded to an 2N -component vector 
field.

INFO Realistic quasi one-dimensional conductors often support multiple channels of 
left- and right-moving fermions. In general, these have different Fermi velocities. However,

57 O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Order by distortion and string modes in 
pyrochlore antiferromagnets, Phys. Rev. Lett. 88, 067203 (2002).

58 Y. Taguchi et al., Spin chirality, Berry phase, and anomalous Hall effect in a frustrated ferro- 
magnet, Science 291, 2573 (2001).

59 E. Witten, Nonabelian bosonization in two dimensions, Commun. Math. Phys. 92, 255 (1984).

8.5.4 Nonabelian bosonization

Edward Witten 1951- 
is a mathematical physicist 
and string theorist. Awarded 
the 1990 Fields Medal for his 
ground breaking work in dif­
ferential geometry. Witten 
contributed massively to the 
success of string theory.
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nonabelian 
bosoniza- 

tion

one may always rescale fields and coordinates (think how?) to achieve equivalence of the 
effective free fermion actions. In this way, one arrives at the setting considered by Witten, 
indicating that his question is relevant, including from a condensed matter perspective.

Of course, there is the obvious (and frequently applied) option to bosonize each 
of the theories individually,]]] a S [ ^a,^a ] ^ OS a S [ da ], to arrive at an action of 
N independent free bosons. However, this representation misses out on an essen­
tial feature of the fermion action: the latter is invariant under uniform rotations 
>■.. ^ gs^s, ^S ^ ^sgS by gs e U(N), s = ±- Our action thus comes with a 
large symmetry group U(N) x U(N), where the two factors represent independent 
transformations of the left- and right-moving fields, generalizing the abelian trans­
formations by phases in U(1) x U(1) which motivated the bosonization program.

This symmetry is no longer manifest in the representation a S[da]. Of course, 
it is still present - the transformation is exact - but it is no longer visible. This 
is a problem in applications where, as well as the free fermion action, we have 
nontrivial contributions such as interactions in the problem. Symmetries are an 
essential part of the solution of such problems, and we would prefer to work with 
representations that keep them visible. This consideration motivated Witten to ask 
whether there is a generalization of bosonization, nonabelian bosonization with 
retained symmetry group U(N) x U(N).

Wess-Zumino action

In his paper,59 Witten suggested an extended bosonization identity based on a sym­
metry construction to be reviewed in problem 8.8.4. Here, we present an abridged 
version of the argument, which hopefully will be convincing enough to make the re­
sult plausible. Anticipating that group structures will be center stage, let us rewrite 
the abelian bosonization action as

So[g] = 1/dxdT tr(dp.gdp.g-1), A = 8n, (8.61)

where g = exp(2id) e U(1) and we have included the - here redundant - trace, 
anticipating later generalization to U(N). Previously, we have seen that transfor­
mations of the fermion fields ^ ^ gs':', with gs = ei^s affect the d-variable as 
d ^ d + (^ + — ^-)/2. This transformation is implied if we represent the symmetry 
group U(1) x U(1) as

g —> g + gg-1 • (8.62)

Upon making the generalization U(1) ^ U(N), the action (8.61) with this group 
representation appears to tick all the boxes where symmetries are concerned. How­
ever, there is a problem. Equation (8.61) defines a nonlinear o-model in two dimen­
sions. We saw in section 6.4 that, at large length scales, strong field fluctuations lead 
to an exponential decay of correlations, which in technical terms means a renor­
malization of the coupling constant A to large values. This is at variance with the 
behavior of the free fermion system, which exhibits long-range fluctuations. What 
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WZ term 
of U(N)

nonabelian 
bosoniza- 

tion action

bosonization 
dictionary

we need is an additional player in the action that prevents this renormalization into 
a disordered phase. On dimensional grounds this term must have an equal number 
of two-derivatives. However, the dilemma is that there is no rotationally invariant 
two-derivative term of the g-fields other than the one displayed in Eq. (8.61).

Nevertheless, we do know that in one dimension higher, d = 3, we have the U(N) 
winding number integral shown in the info block of page 440 in the notation g = U . 
This integral can be used for the construction of a U(N ) WZ term in d = 2. To 
see how, we assume two-dimensional space-time to be compactified to a two-sphere 
S2. Much as the circle, S1, is the boundary of a northern and a southern half of 
S2, the two-sphere, S2, is the boundary of two halves of S3 = B U B'. According to 
a construction known in topology, these two halves can be individually identified 
with three-dimensional balls, B and B', whose centers represent the north and 
south poles of S3, respectively, and their surface a two-sphere, S2 . The gluing of 
the balls at that equatorial boundary then gives S3 .60 We may now pick either of 
these balls as an integration domain, and its radial coordinate, r, to extend the 
field as g(x) ^ g(x,r), with g(x, 1) = g(x). In this way we obtain the WZ term 
of U(N),

60 An intuitive way to understand this construction is to go one dimension lower and imagine 
the northern and southern hemisphere of the two-sphere to be flattened to two disks, D. The 
centers of these disks represent the north or south pole, respectively, and their boundaries the 
circular equator.

r[g] = --i- d d3x eijk tr(g-1 dig g-1 djg g-1 dkg). (8.63)
12 n J B

Comparing with the winding number integral discussed on page 440, here we have 
set 9 = 2n (on the basis of our discussion in section 8.5.2 - explain why). Note that 
r[g] is a functional of g (not g), because it depends only on value of the field at the 
integration boundary, r =1. Also notice that r[g + gg-1] = r[g] is invariant under 
the transformation (8.62), and therefore displays the full symmetry of the problem.

With S0 given by Eq. (8.61), the sum of two terms,

S [ g ] = S o[ g ]+r[ g ], (8.64)

defines the nonabelian bosonization action. A refined version of the above 
symmetry analysis (see problem 8.8.4 and the next section) indicates that, at the 
coupling A = 8n, it provides an equivalent representation of the multi-flavor chiral 
fermion theory. In particular, it shows the conformal invariance (see section A.3) 
generic for two-dimensional critical theories. Below, we provide added evidence for 
the equivalence to the likewise-critical free fermion theory.

However, before going there, let us set up the bosonization dictionary trans­
lating different elements of the fermionic theory into the bosonic language. First, 
the nonabelian action (8.64) applies to fields in U(N). However, it is often conve­
nient to split g = e1^g' into a phase and an SU(N) matrix g'. A straightforward 
calculation shows that r[g] = r[g'], i.e., the WZ term is indifferent to the phase. In 
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holomorphic 
currents

the gradient term, we obtain S0[g] = S0[g'] + y f dxdT (d^)2, and in this way the 
action splits into an SU(N) action and a phase contribution.

In abelian bosonization, we defined holomorphic and anti-holomorphic currents, 
j = ^-^- and j = ^ + ^ +, obeying the classical conservation laws dzj = dzj = 0, 
where complex coordinates z = -^ (t + ix), dz = -^ (dT — idx) are used. The obvious 

generalization to nonabelian holomorphic currents reads

■ab   t& t /b ab   t a t /b /o pr\j = $ - $ -, j = $ + $ +, (8.65)

with the same conservation laws dzjab = dzjab = 0 (see problem 8.8.4 for details). 
In the abelian case, these currents have a bosonic representation j = —^dz0 and 
j = — ^^ dz0. The generalization to a nonabelian bosonic representation of 
the currents reads

3=Tng-1 dzg, j=-Tn (dzg)9-1 ■ (8.66)

For N = 1 and g = exp(2i0), these expressions reduce to the abelian version. The 
particular ordering of the group-valued factors, which matters in the nonabelian 
case, is explained in problem 8.8.4.

Finally, we identify a bosonic representation for the bilinears of mixed chirality 
^ +t'b'. In the abelian case, these were represented as (see Eq. (3.95)) b + b- = Ye2i6, 
with a non-universal prefactor y. This is generalized to the nonabelian case as

b +fb- ' Ygab (8.67)

Note that this translation is consistent with Eq. (8.62). However, unlike the abelian 
case, no bosonic representation of individual fermion operators exists.

Renormalization group analysis

Previously, we reasoned that the gradient action S0 flows to strong coupling at large 
length scales and hence disqualifies as a representation of the free fermion theory. 
Can the presence of the WZ term in Eq. (8.64) change the situation? Counting the 
number of derivatives in relation to the number of variable integrations, we note 
that the WZ term has the same engineering dimension, zero, as the gradient term. 
This makes it a potential game changer.

Suppose we started renormalizing the model at small values of A such that 1 /A 
1 /12n is much larger than the coupling constant of the WZ term. In this regime, 
the presence of the latter is irrelevant, and the RG flow will be towards increasing 
A. Eventually, one reaches a regime A ~ 12n, where a competition between the two 
terms starts. A one-loop RG analysis (see problem 8.8.5) almost identical to that 
performed earlier in section 6.4 yields the scaling equation

dA _ NA 
d ln b 4 n

(8.68)
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This result confirms our qualitative expectation: the value A * = 8 n defines an 
attractive fixed point at which the upwards flow of A comes to an end. While this 
result is based on a perturbative RG analysis - questionable in the regime of strong 
coupling 1 /A < O(1) — Witten showed that at A = 8n the theory is conformally 
invariant, thus proving the fixed-point property beyond perturbation theory.

The combination of symmetry arguments, RG analysis, and conformal invariance 
provides compelling evidence for the equivalence of Eq. (8.64) to the multi-flavor 
free fermion theory. Evaluated on diagonal configurations, g = diag(ei1,..., ei6N), 
it collapses to a sum of abelian bosonized actions, which we know likewise repre­
sents the free fermion theory. This raises the question of what advantages the more 
complicated nonabelian representation might have (beyond the aesthetic appeal of 
showing the full symmetry contents of the theory). It is fair to say that nonabelian 
bosonization has not yet become a mainstream tool in condensed matter theory, and 
perhaps never will. In most situations, the scalar fields of abelian bosonized theories 
are easier to handle than their U(N)-valued counterparts. However, there are some 
applications, notably in the physics of disordered or topological electron systems, 
as well as quantum magnetism, where it provides results that abelian bosonization 
cannot give. Below, we discuss one such application as an example.

8.5.5 Spin chains: beyond the semiclassical limit

In section 8.4.6, we considered the physics of one-dimensional spin chains at strong 
strong inter-site coupling J. In this regime, the system is described by the partition 
sum of the O(3) nonlinear a-model (8.32) with a topological 9-term. We reasoned 
that the role of the latter depended on whether the spin S is half-integer or in­
teger. In the latter case, its presence was inessential and the model ended up in 
a gapped strong fluctuation phase at large length scales, the standard behavior of 
two-dimensional a-models. However, for half-integer spin we reasoned, but could 
not show how, that the model will flow towards an ordered phase with long-range 
correlations.

In fact, the situation looks somewhat mysterious from the outset: the micro­
scopic Hamiltonian of the antiferromagnetic spin chain has global SU(2) invari­
ance. However, the antiferromagnetically ordered configuration around which we 
expanded in the derivation of the a-model spontaneously breaks the symmetry 
down to U(1), and the soft modes of the model are the spherical degrees of freedom 
on the sphere S2 = SU(2)/U(1). At large length scales, we expect two things to 
happen. First, the symmetry must be “restored” (there is no breaking of continuous 
symmetries in dimension two - the Mermin-Wagner theorem), so that we expect 
an effective theory with SU(2)-valued degrees of freedom. In effect, the number of 
degrees of freedom of the theory must be dynamically enhanced from two to three, 
which is unusual. Second, we expect the fixed-point theory to show long-range 
order.



488 8 Topological Field Theory

Fig. 8.6 (a) A chain of sites, each containing nc fermions on average. (b) A strong Hund’s rule
coupling maximizes the spin carried by each state to S = nc/2. (c) Upon the switching on 
of a nearest-neighbor hopping matrix element, the system becomes a spin S antiferromagnet.

Spin chain via nonabelian bosonization

As explained in a ground-breaking paper by Affleck and Haldane (AH),61 non- 
abelian bosonization is the key to the understanding of this phenomenon. To see 
why, we first need to draw a connection between the spin chain and the bosoniza- 
tion machinery. Referring to the info block below for details, the idea is simple. A 
chain of spin-1/2 degrees of freedom is realized in terms of a chain of spinful lattice 
fermions, occupied by one fermion per site. Replicating nc = 2S such chains and 
turning on a strong on-site spin interaction aligning the individual spin-1/2, we gen­
erate a single chain of effective spin-S degrees of freedom. This approach requires a 
strong local interaction U, and in addition a relatively weaker inter-site hopping J, 
to obtain antiferromagnetic correlations (see fig. 8.6). However, following AH, we 
now argue boldly that nothing drastic (no phase transition) happens as we reverse 
the strength of the couplings to weak on-site interactions superimposed on strong 
inter-site coupling. The non-interacting N = 2nc flavor fermion chain at half-filling 
is a system of left- and right-moving fermions described by the bosonization action. 
Turning on interactions, we may hope that the latter will teach us something about 
the physics of antiferromagnetism, including in the regimes beyond the reach of the 
nonlinear a-model.

61 I. Affleck and F. D. M. Haldane, Critical theory of quantum spin chains, Phys. Rev. B 36, 5291 
(1987).

62 To see this in more detail, use the relation aa3 • a" = 2SaS S3y — Sa3SY<s to verify that (with 
the site index left out for clarity) S • S = — 4 (3':fYa - nc)2 + • • •, where the omitted terms

INFO Consider a system of nc = 2S chains of spin-1 /2 lattice fermions iOa, where i, a, a 
denote the site, chain, and spin index respectively. To align their spins locally at each site, 
we turn on a strong spin interaction

1 1 a f a8 / 3Hint = - U}_^ S i • S i, S i =2 ^a ff PiaYa. (8.69)

The minimization of energy in the presence of this operator requires nc fermions at each 
site, i.e., half-filling of the total system.62 On top of this, we add a small amount of inter-
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site hopping HI0 = — 1 (nc JU)1 /2 V. M* + 'Ht+1a + h■ c■ In the limit J/U — 0, the half-filled 2 c i ia i+1a ,
system then becomes equivalent to the spin-S antiferromagnetic chain,

A   A i A ( ni = nc tt   7 \ ' c c i 7 ITJ\ X 7H i
H — H 0 + H int ——— H af — J / S i • S i + 1 + O( J/U ) ■ (8.70)

The easiest way to see this is to recall the situation in the standard Hubbard model 
(the nc — 1 variant of our present model) at half-filling (cf. section 2.2.3). There, virtual 
deviations from half-filling led to an effective antiferromagnetic exchange coupling between 
the S — 1/2 spins carried by neighboring sites. The effective strength of this interaction was 
J ~ t2/U, where t is the strength of the hopping term. Formally, the generalization of this 
mechanism to the case nc > 1 can be shown, for example, by subjecting the Hamiltonian 
H to a canonical transformation eliminating the hopping term (all in complete analogy to 
the nc — 1 canonical transformation discussed in section 2.2.3).

Let us then approach the problem from the perspective of N = 2nc free fermions, 
perturbed by the two-fermion interaction (8.69). This interaction respects certain 
continuous symmetries of the theory.

EXERCISE Pause reading and form an opinion as to which symmetries might be relevant 
to the present problem, considering which are conserved by the interaction and which are 
not.

Representing the fermions as Haa, with s = ±, spin index a = 1, 2 and a “color” 
index63 a = 1, . . . , nc, the interaction has U(1)-symmetry reflecting the conserva­
tion of charge, SU(2)-symmetry reflecting spin rotation invariance, and SU(nc)- 
symmetry reflecting isotropy in the color indices. However, chiral symmetry is lost, 
i.e., these symmetry groups do not come in two copies for the s = ± sectors because 
the interaction mixes left- and right-moving fermions.

It makes sense to start from a fermion representation of the interactions re­
specting these symmetries. To this end, we focus on a subset of the current oper­
ators (8.65), namely the charge current jq = HSHs, the spin currents, jS,aS = 
HaSHS, and the color currents, jSab = HSaHsb, where all non-appearing indices 
are summed over. Symmetry-compatible interaction operators then assume the form 
j+q j-q , tr(j+s j-s ), and tr(j+c j-c ). In general, momentum conservation forbids the scat­
tering of left-moving fermions into right-moving ones. However, the presently con­
sidered case of the half-filled chain is an exception to this rule: the scattering of 
a pair of left-moving fermions into a pair of right-moving ones exchanges momen­
tum 2 x 2 x 2a = ^n, which is a reciprocal lattice vector. This type of scattering 
is compatible with the crystalline symmetry and is represented by the Umklapp

are not essential to the argument. The term in parentheses tells us that the extremization of 
the local spin in the coupled chain system requires nc fermions per site. In passing, we note 
that the present way to engineer coupled spin states is not as artificial as it may seem. Large 
atomic spins are usually the result of the Hund’s rule coupling of shell electrons via the above 
spin interaction: parallel alignment is favored because, in this case, the orbital wave functions 
are mutually antisymmetric, thus reducing electronic repulsion.

63 The terminology is borrowed from particle physics, where (quark)-fermions carrying a threefold 
color index, red—green—blue, transform under SU(nc) with nc = 3.
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l/’■_> I-1, r .'i i > I jl r a o/,at /Ta^fl/1^^ 'l Y dI^ y':! i •'' 'l _L Ti /■ 1 I 'Ti o T "tiilzl •> ini <. iii>r‘i I <. ij icscattering operator (p + pu2 p + b) (p_au2 p_ b) -— 11.c. j_ne LJiiift.iapp operator is
compatible with the above symmetry groups (exercise); however, scattering left- 
ioving feriions into right-ioving feriions breaks the chiral syiietry of the 
problei. For the discussion of a few other interaction operators coipatible with 
the syiietries of the problei, we refer to Ref.61 and problei 8.8.6.

Quantum criticality

Our further course of action is now clear: we are to use the rules (8.66) and (8.67) 
to represent the interactions in bosonic language, apply RG reasoning to investigate 
their relevance, and interpret the nature of the fixed-point theory. In view of the 
iain theie of this chapter, a detailed discussion of this prograi would lead us too 
far astray (see, however, problei 8.8.6). However, it is instructive to discuss soie 
essential points on the exaiple nc = 1, the spin-1/2 chain. Our above iodeling is 
designed to separate the spin froi the charge dynaiics, and hence it iakes sense 
to split the U(2) matrices representing the N = 2 fermion systems as g = eip', 
into a phase and an SU(2) matrix g'. It is then straightforward to check that the 
Umklapp operator assumes the form cos(2$), i.e., as one would expect on the basis 
of its symmetries, it does not couple to the spin degrees of freedom, g'. However, it 
does “gap out” the chiral charge excitations: substituting the above decomposition 
into the perturbed WZ action, we obtain S[^, g'] = S[^] + S[g'], where

S [ ^] = 2n f d 2 x [(d!2)2 ' A ukcos(2 ^)]- • • •, (8.71)

s[g'] = S0 [g'] + r[g'] + As j d2x tr(dg’dg/_1)   , (8.72)

and the ellipses denote terms of lesser relevance. In this expression, charge and spin 
are fully separated. The Umklapp term coupling to the charge sector is strongly rel­
evant, and gaps out ^-fluctuations at large distance scales. This is the bosonization 
way of describing the Mott-Hubbard gap at half-filling discussed in section 2.2.3. 
Turning to the spin sector, we see that the current interaction effectively modifies 
the coupling constant of the gradient term S0, Eq. (8.61). However, as discussed 
above, the RG flow will push this deformation back to the critical value A = 1 /8n at 
large distance scales. In other words, the theory flows towards a fixed point equiva­
lent to a free fermion theory - the spin-1 /2 chain remains gapless, including in the 
deep infrared. Also notice that the bosonized theory represents the critical spin-1/2 
chain in terms of a field theory on SU(2), and not just on the Goldstone mode coset 
space S2 = SU(2)/U(1). In the strong-coupling regime, the mean field symmetry 
breaking is undone. In this way, the theory manages to reconcile the two seemingly 
conflicting principles “absence of a gap” and “absence of symmetry breaking.”

What happens for larger spins? Referring to problem 8.8.6 for details, AH found 
that excitations in flavor space are generally gapped out. This means that, as in 
the spin-1/2 case, the theory is described by a perturbed WZ action for SU(2)- 
valued fields. However, the presence of the color sector shows itself in an integer 
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coupling k = nc featuring as the level kr[g'] at the front of the WZ term. Affleck 
and Haldane also demonstrated that, in the case nc > 1, massive perturbations 
tr(g2 + g-2) become physically allowed. A chain of beautiful arguments then leads 
to the conclusion that, for odd k, the chains end up in the universality class of the 
spin-1/2 chain, and for even k become gapped. This is the most rigorous verification 
of the Haldane conjecture known to date. From the perspective of topological field 
theory, the take-home message is that:

Under renormalization, theories containing a 0-term may flow towards 
theories with a target manifold of one dimension higher and a corresponding 

WZ term.

8.6 Chern-Simons Terms

REMARK Chern-Simons theory is the effective theory behind many forms of strongly 
entangled quantum matter. This makes it a very rich theory with connections to quantum 
information, particle physics, and pure mathematics. Some of the mathematical and gauge- 
theoretical foundations of Chern-Simons theory are introduced in section 10.5, and it 
may be a good idea to read this section before, or in parallel, this section. Here, we will 
illustrate application of the theory for the important example of the fractional quantum 
Hall effect. However, there are numerous other applications, notably in the theory of 
nonabelian quantum matter and topological quantum computation. For further literature 
on these subjects, we refer to the reviews of Ref.* 64 and Ref.33 .

REMARK Readers familiar with the concept of braiding may skip the first section. 
However, the second may contain new material.

Depending on whether they are fermionic or bosonic, N -body quantum wave func­
tions stay invariant or change sign under the exchange of particle coordinates, 
^(x 1 ,x2,...,xn) = ±^(x2,x 1 ,...,xN). This exchange is usually introduced ax- 
iomatically without reference to concrete realizations of particle exchange. As late

64 G. V. Dunne, in Topological Aspects of Low-Dimensional Systems, eds. A. Comtet et al. 
(Springer, 1999).

In chapter 10, we will show that the topology of gauge theories in even dimensions 
is described by quantized topological actions of the field strength, which in the 
reading of this chapter play the role of 0-terms. These actions are closely related to 
the Chern-Simons (CS) actions, Eq. (10.27), in one dimension lower, which by the 
same rationale resemble WZ terms. In this section, we will discuss the fascinatingly 
rich Chern-Simons action in 2 + 1 dimensions and its applications in the theory of 
two-dimensional topological matter. However, before going there, we first need to 
discuss why the physics of topological matter in two-dimensional real space differs 
from that in general dimensions.

8.6.1 Topological phases in two dimensions
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as 1977, Leinaas and Myrheim65 investigated whether particle permutation can be 
made physical via concrete exchange protocols, and whether physical consequences 
beyond sign factors might ensue.

Fractional and nonabelian statistics

For a constructive realization of an exchange oper­
ation, consider an N -body ground state wave func­
tion with particles kept at positions x1 , . . . , xN by 
engineered potential traps. Assuming an excitation 
gap, we now adiabatically rotate the position of x2

around that of x 1 by an angle n (see the figure). In a second step, we translate 
as indicated, to arrive at the starting configuration, with the roles of x2 and x1 

interchanged. Neglecting correlations with the other particles, the second operation 
will leave the wave function unchanged. However, the first comes with a phase, ei 

associated with the n-rotation of particles. A two-fold execution of this protocol
is equivalent to the rotation of x2 around x 1 by an angle 2n and weighted with 
phase e2i6. However, in dimensions different from 2, a rotation around a full circle 
is topologically equivalent to a null operation (the closed rotation loop can be adi­
abatically contracted to a point), which requires e2i6 = 1, i.e., 0 = 0 or n. The two 
allowed options define fermionic or bosonic exchange statistics, respectively.

However, in d = 2, a full rotation of a particle around another is physical, and 20 is

anyons

nonabelian 
anyons

braid
group

not constrained to take the value 2n, which leaves room for particles with fractional 
transmutation statistics such as semions, exp(i0) = i, or anyons, exp(i0) = ±1. 
In cases where the ground state is degenerate, ^ ^ ^a, with quantum numbers 
a = 1, . . . , n, an adiabatic rotation of quasiparticles may even change the state 
by the nonabelian generalization of a phase, a unitary operation, ^a ^ Uab^b.
This happens for nonabelian anyons, the Majorana fermions to be introduced in 
section 9.1.2 being the most basic representatives.

Where the generic exchange statistics of wave func­
tions is associated with the trivial or antisymmet­
ric representation of the permutation group, particle 
transmutations in two dimensions are representations 
of the braid group. The idea of braiding becomes ap­
parent when we add time, t, to two-dimensional space 
to keep track of the world lines of the adiabatically ex­
changed particles (see the figure). An exchange of two 
or more anyons is described by the abstract concept of 
a braid. Individual braids can be concatenated to form 
new braids, and neutralized by inverse braids. Refer­
ring to Ref.33 for an in-depth introduction of the ensu­
ing group structure, here we mention a slightly differ­
ent interpretation of this concept. Consider imaginary

65 J. M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nuovo Cimento B 37, 1 
(1977).
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time with periodic boundary conditions, such that individual world lines become 
closed loops. A braiding operation now corresponds to a specific way of knotting 
these lines, and the bookkeeping of phases, or more generally unitary group opera­
tions, amounts to keeping track of the knot invariants associated with these struc­
tures. In section 8.8.7, we will discuss how Chern-Simons field theory describes such 
knots within the framework of field theory.

8.6.2 Nonabelian statistics and ground state degeneracy

In section 8.1.2, we pointed out that the concept
of anyonic statistics is related to that of degenerate 
ground states. To understand this link, consider a spa­
tial base manifold with periodic boundary conditions 
in both directions, a torus, and on it a ground state 
with (abelian, for simplicity) anyonic excitations with 
statistical angle 29 = 2n/k. Define T1 to be an op­
erator that creates an anyonic quasiparticle-quasihole 
pair out of the ground state, and adiabatically drags the particle around one of the 
circles defining the torus to then recombine with the hole (see the figure). Let T2 

perform the same operation around the complementary circle. We now claim that 
these operators obey the relation

T —1 t-1 T T  e2ni/k (8.73)

To understand why this is so, consider the world lines corresponding to the adiabatic 
motions. A good way to visualize them is to imagine the two-dimensional surface 
of the torus thickened into a slab whose transverse coordinate is imaginary time. 
On this space-time torus, T3, the curve T1—1T1 is contractible to a point and hence 
topologically equivalent to a closed loop. The same is true for the T2—1T2 loop. 
However, the nesting of the operators T1 and T2 implies that the respective loops 
are linked. In other words, the action of the operators is equivalent to an elementary 
braid operation and hence multiplies the ground state with the corresponding phase, 
the right-hand side of Eq. (8.73). None of the operators leaves the ground space of 
the system.

We next identify a space of minimal complexity realizing the commutation rela­
tion (8.73). To this end, assume the operator T1 to be diagonalized and flX, 0 < A < 
2n, to be one of its eigenvalues. Application of the kth power, Tk, generates k-fold 
traversed loops with trivial statistical angle, (e2ni/k)k = 1. This requires Ak = 0 
mod 2n, which is satisfied by A = 2nm/k, l = 0, 1,..., k — 1. We hence postulate 
that the operator T1 assumes the diagonal form T1 = diag(1, e2ni/k,..., e2ni(k-1)/k), 
which requires a ground space of dimension k. Equation (8.73) shows that, in the 
basis of states 11), the operator T2 acts as a lowering operator, T2|l) = |(l — 1) mod k). 
(In a basis where T2 is diagonal, T1 would assume the role of a ladder operator.)

The bottom line is that:
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fusion

topological 
field theory

Chern—
Simons 
action

Nonabelian
CS theory

The realization of anyonic statistics with phase 2n/k on a system with 
periodic boundary conditions requires a k-fold degenerate ground state.

The situation gets more complicated when quasiparticles of different statistics enter 
the stage. For example, we know that the bonding of two electrons defines a quasi­
particle of bosonic statistics (think of Cooper pairs as an example). In the same way, 
the fusion of anyons defines effective anyons whose braiding properties are induced 
by the compound particles. For an in-depth discussion of the corresponding fusion 
rules, the emergent types of abelian and nonabelian statistics, and the associated 
physical phenomena, we refer once again to the review in Ref.33 . We also refer to 
section 10.4.5 for a microscopic realization of the four-fold degenerate ground state 
of a system with fermions, bosons, and semions in its quasiparticle spectrum.

8.6.3 Topology from Chern-Simons theory

(8.74)

(8.75)

In previous sections, the interplay of “non-topological” elements (gradient terms, 
etc.) and topological terms in field theories led to new physics at large distance 
scales. We here consider Chern-Simons terms in the more restrictive setting of 
topological field theory. In such a theory the Lagrangian is purely topological. As 
we will see, Chern-Simons topological field theory is the theory describing gapped 
topological phases in two dimensions, including their ground state degeneracies and 
anyonic statistics.

In differential form language, the Chern-Simons action in 2 + 1 dimensions 
reads

Scs [A] = k / tr ( A A dA +2 A A A A A ) 
4 n J M \ 3 J

and in coordinate language

S cs[ A ] = k d d3 x ' tr AAddA Ap + 2 A.l Ap

4 n \ 3

Here A = A^dx^, where the coefficient functions .4,, = {(.4,,(x))ab} are matrices 
taking values in the Lie algebra of a gauge group. Following standard conventions, 
here we work in a representation with real-valued connection forms, and real CS 
action. The action enters functional integrals as exp(iSCS), i.e., via a “topological 
phase,” as in our previous discussions of topological terms.

INFO Nonabelian Chern-Simons theory, where A takes values in a Lie algebra 
of dimension higher than one, describes the properties of nonabelian topological phases 
of matter. In the nonabelian setting, the level k is integer-quantized.66 For example,

66 The quantization condition follows from the peculiar behavior of CS theory under nonabelian 
gauge transformations, addressed in problem 10.7.7. There, we show that, on manifolds M 
without boundary, the action changes as Scs ^ Scs + 2nkW, where W is the winding number 
of the map M ^ G,x ^ g(x). The invariance of exp(iScs) under “large” gauge transformations 
with W = 0 requires the quantization of k. In abelian CS theory, there is no such condition 
(except in a theory with magnetic monopoles, where a similar condition may be derived).
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abelian
CS theory

Atj. 6 su(2) describes Ising anyons at level k = 2 and Fibonacci anyons at level k = 3, 
respectively. The braiding statistics of the “Fibonaccis” is rich enough to define a universal 
set of logical gates for quantum computation, which has made them a subject of intensive 
research. For an introduction into the physics of these nonabelian phases of matter and 
their representation in terms of CS theory, we once more refer to Ref. .

Abelian CS theory is defined by the action

Scs,k[A] = k I A a dA =4n I'd3x e^vpA^dvAp (8.76)

where A = (A0, A1 , A2) is the vector potential in 2 + 1 dimensions and the coupling 
k may take arbitrary values. We will consider this theory in two contexts. In the 
first, A is an externally imposed fixed response field (which will become meaning­
ful once matter currents are coupled to the theory). In the second, A = a is an 
intrinsic integration variable (as in quantum electrodynamics), distinguished from 
the external field A by the usage of a lower case letter. In cases where the level 
index, k, is obvious, we write SCS,k = SCS for simplicity.

EXERCISE To see how magnetic monopoles may enforce level quantization in 
the abelian theory, consider the case M = S1 x S2, where S1 is time with periodic 
boundary conditions and S2 is a spatial sphere. Now assume that a represents a static 
magnetic monopole in the sense of section 10.5.2, such that integration of the field strength 
d 1 a2 — d2 a 1 over S2 yields a factor 2n. Consider a gauge transformation a0 ^ a0 + 
dt $, where the U(1) phase $ = $(t) has a unit winding in the t-direction (but does not 
depend on spatial coordinates). Show that invariance under this transformation requires 
the integer quantization of k.

8.6.4 Universal aspects of abelian Chern-Simons theory

REMARK Throughout this section, we assume our CS theory to be defined on a space­
time torus T3 = S1 x T2 comprising periodic time, S1 , and a spatial torus, T2. The 
discussion skips over some technical details whose completion is left as an exercise.

In this section, we assume that A is an emergent degree of freedom and discuss how 
its integration over the action (8.76) describes three key features of gapped abelian 
topological matter: stability of the ground state, its degeneracy, and the fractional 
statistics of quasiparticle excitations.

Absence of dynamics and ground state degeneracy

The Chern-Simons action for the degrees of freedom contained in A describes a 
dynamical system and we can ask what is the underlying Hamiltonian. (The same 
question asked for the standard electromagnetic action in 3 + 1 dimensions yields 
the electromagnetic field energy as an answer; see problem 1.8.2.) We eliminate 
gauge redundancy by fixing a0 = 0, in which case the action simplifies to



496 8 Topological Field Theory

SCS[a] d3 x a 2 d 0 a 1,

Wilson 
loop op­

erators

where we have integrated by parts. Interpreting this expression as a canonical action 
S = f dt(pdtq — H), we conclude that:

The Hamilton operator of the theory described by the 
Chern-Simons path integral vanishes.

This observation is in line with the expectation that there is no dynamics in this 
theory; excitations above the ground state would be represented in terms of addi­
tional contributions to the action.

A second observation is that (a1, a2) form a canonical pair and that the quantum 
operators corresponding to these variables obey the commutation relation

[ai(x), a2 (x)] = 2ni5(x — x'), (8.77)
k

where x = (x1 , x2 )T is a two-dimensional coordinate vector. However, these oper­
ators are not gauge invariant: even with fixed a0 = 0, we may make the change 
a(x) ^ a(x) + V$(x). This disqualifies them as representatives of physical ob­
servables. Instead, we consider the gauge invariant Wilson loop operators (cf. 
section 10.1.4)

where the curves Yi are chosen to run around the space torus in the direction of the 
coordinate xi . Using the fact that the two curves intersect in one point, we have

I a • d x, i a • d x
Y":. Yjj

2 ni
= ~k'

and application of the Baker-Campbell-Hausdorff formula shows that the Wilson 
loop operators satisfy the commutation relations (8.73). The way to read this re­
sult is that the gauge degrees of freedom (a1, a2) generate Wilson loop operators 
whose commutation relations require a k-dimensional Hilbert space. The absence 
of dynamics, H = 0, identifies this space as the ground space of the system.

Fractional statistics

In section 8.6.1, we reasoned that the quasiparticles forming on top of the above 
ground states obey fractional statistics, with exchange phase 2n/k. In order to 
describe this feature within the framework of CS theory, we need to couple to the 
action the quasiparticle worldlines describing the braiding of a minimum of two 
quasiparticles in 2 + 1 dimensions. We do so by adding a matter gauge potential 
coupling as

Scs[a] —> Scs[a] + d3xj^, (8.78)
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Fig. 8.7 Two intertwined current loops in (2+1)-dimensional Euclidean space-time.

where

jM(x) = dtx^5(x - xi (t)), x = (t, x),
i=1

is the current density corresponding to two particles i = 1, 2 moving along trajecto­
ries xi(t). We tentatively (for a microscopic justification, see below) interpret SCS 

as the action of a path integral describing the adiabatic braid of two particles in the 
space-time continuum. As will be discussed in section 8.6.1, the braid is defined 
in terms of two-particle world lines (t, x(t)), with identical coordinates x at the 
beginning and end of the protocol. We describe this feature by imposing periodic 
boundary conditions in time, thus converting the two worldlines to closed loops, Yi 

in the space-time continuum (see fig. 8.7).
In problem 8.8.7, we show how integration over a weights each configuration of 

such loops with a phase exp(2niI(Y 1 ,Y2)), where I(y 1 ,Y2) is the number of times 
the curve Y1 pierces the area defined by Y2 . This equals the number of exchange 
operations implied by the braid and hence sets the statistical phase. Referring to 
the problem for details, the CS functional does this counting by interpreting the 
loops as unit current-carrying “wires” in (3+0)-dimensional Euclidean space, time 
playing the role of a third coordinate. The loop Y1 then creates a magnetic field 
whose curl is centered on its infinitesimal wire cross-section. After integration over 
a, the action assumes the form of an integral of that curl over the area spanned by 
the other loop, Y2 . In this way, the number of piercings gets counted.

Note how the above construction underpins the topological nature of the CS 
action: the set of current loops is reduced to a single piece of topological data, its 
degree of knotting. The computation of “knot invariants” extends to the nonabelian 
setting, where it plays an essential role in the description of fractional statistics in 
nonabelian Chern-Simons theory. For further discussion of this point, we refer to 
Ref.33 , or the original Ref.67.

67 E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121, 351 
(1989).
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parity non­
invariance

Gauge (non-)invariance

The issue of gauge invariance in connection with CS actions is a delicate one. 
In problem 10.7.7, we will show that CS theory on a boundaryless space, M , is 
invariant under “small gauge” transformations68 A' = gAg-1 + gdg-1. However, in 
the physical case of base spaces with boundaries, both the abelian and non- 
abelian CS theory lack gauge invariance under even small transformations. Let us 
investigate this point in the abelian case. Application of Stokes’ theorem (exercise) 
shows that, under a ^ a + df,

In this section, we discuss the fractional quantum Hall insulator as an example of a 
long-range entangled topological phase of matter with abelian CS theory as its effec­
tive theory. The derivation of the theory from first principles will show how anyonic 
quasiparticles form on the microscopic level, and how they are represented by CS 
gauge field fluctuations on a spatially coarse-grained mesoscopic level. We will also

68 Recall that the extension of gauge invariance to large transformations requires the quantization 
of the level, k.

kSCS[a]  > SCS [a] + — I fda. (8.79)
4n J dM

For example, for a base manifold M = R x D, where R is time, and D a spatial disk, 
dM = R x S 1 is a cylinder comprising time and a spatial boundary with circular 
geometry. Parameterizing that circle with a boundary coordinate x, the excess term 
reads -n f dtdx f (t, x)(dtax(x, t) — dxat(x, t)). The way to read this gauge-deficit is 
that:

Pure CS theory on a manifold with a boundary is not complete.

It needs to be augmented by an, as yet unspecified, theory at the boundary which is 
likewise gauge non-invariant, in such a way that the two f -dependent contributions 
cancel. The argument indicates that the boundaries of systems described by bulk 
CS theories are generally “alive.”

Some of the dynamical phenomena generated by this principle are addressed 
in problem 8.8.8. In section 9.2.2, we will discuss specifically how the gauge non­
invariance of CS theory is linked to the presence of chiral anomalies in the cor­
responding boundary theories. This connection is so strong that the bulk and the 
boundary theory largely condition each other. The combined package then is gauge 
invariant and anomaly free, as required by a sensible low-energy theory of a con­
densed matter system.

Finally, note that the CS action with its first-order derivatives also lacks parity 
invariance. Reflections of space or time, x^ ^ — x^, change the sign of both d,, 

and a^, and hence that of the CS action. This parity breaking is again connected 
to a specific “anomaly,” the parity anomaly, to be discussed in section 9.2.2.

8.6.5 Fractional quantum Hall effect (FQHE)



499 8.6 Chern-Simons Terms

discuss how physical observables such as transport coefficients are extracted from 
the CS description. However, as always in this chapter, the focus is on topological 
principles. Many facets of the beautiful phenomenology of the FQHE will not be 
touched upon. For a more comprehensive coverage, we refer, e.g., to Ref.69.

69 E. Fradkin, Field Theories of Condensed Matter Systems, 2nd edition (Cambridge University 
Press, 2013)

70 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional magnetotransport in the 
extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982).

71 However, this two-parameter family does not capture all experimentally observed values. A 
prominent exception is the plateau at v = 5/2. It is believed that this plateau reflects an exotic 
pairing state of the quasiparticle degrees of freedom introduced below and that it harbors 
nonabelian anyons as excitations. However, the discussion of the 5/2 state is beyond the scope 
of this text.

Phenomenology

In section 8.4.7, we understood the 
Hall conductance of the two-dimensional 
electron gas as a topological observ­
able. Interpretations in terms of the 
number of edge channels or Chern 
number proved its robust integer quan­
tization. These principles were under­
stood soon after the discovery of the 
IQHE, and it therefore came as a major 
surprise when only slightly later Tsui, 
Stormer, and Gossard70 discovered a 
quantized Hall plateau at pxy = V, 
v = 1 /3, in high-mobility samples. 
This spectacular observation (which 
earned a Nobel Prize in 1988 for Tsui 

Robert B. Laughlin 1950- (left) 
Horst L. Stormer 1949- (middle) 
Dan C. Tsui 1939- (right)
The 1988 Nobel Prize was awarded to the ex­
perimentalists Horst Stormer and Dan Tsui 
for their discovery of the FQHE and to Robert 
Laughlin for groundbreaking contributions to its 
theoretical explanation.

and Stormer jointly with Laughlin) triggered an experimental effort which led to 
the discovery of whole families of plateaus at rational fractions of the conductance 
quantum (see fig. 8.8).

Salient experimental signatures of the FQHE include the following:

> Only relatively simple rationals n/m are observed as plateau values. The most 
prominent of these lie in the “principal sequence” 1/m, where m is odd. More 
generally, plateaus have been observed for filling fractions

np
m 2sp + 1

(8.80)

with integer s and p.71

> At v = 1 /2 (formally, the limit p ^ x for s = 1) the system behaves as if 
no external field was present. Around this filling fraction, Shubnikov-de Haas 
oscillations otherwise seen in weak-field Fermi liquids are observed.
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Fig. 8.8 Longitudinal and transverse resistance of a high-mobility electron gas, where the numbers 
indicate the filling fraction of the Landau levels. Image taken from R. Willet et al., Observa­
tion of an even-denominator quantum number in the fractional quantum Hall effect, Phys. 
Rev. Lett. 59, 1776 (1987). Copyright (1987) by the American Physical Society.

A first hint as to possible explanations of this phenomenology follows from the fact 
that the FQHE, unlike the IQHE, is averse to the presence of disorder. In the ab­
sence of disorder, the free electron system subject to a magnetic field is quantized 
in Landau levels, whose most striking feature is their macroscopic degeneracy. Per­
turbations such as interactions or disorder acting on the background of a massively 
degenerate state are expected to cause major instabilities (formally, due to the ap­
pearance of zero energy denominators in perturbation theory). We anticipate that 
the FQHE reflects a macroscopic reordering of the system into a novel state whose 
identity we aim to understand.

The resemblance of the FQHE to an ordinary QHE, albeit at different plateau 
values, and the observation of the Shubnikov-de Haas oscillations (which require a 
Fermi surface) indicates that the relevant players are fermionic quasiparticles. Early 
work by Jain72 indeed suggested an ingeniously simple fermion mean field scenario 
wherein much of the above phenomenology affords a simple explanation. Referring 
to the original reference for a more substantial discussion, think of the magnetic field

72 J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev.
Lett. 63, 199 (1989).
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Fig. 8.9 Illustrating the idea of the composite fermion approach. Imagine that an even number of 
flux quanta constituting the magnetic field get tied to the electrons in the system. The 
new composite particles (“electron + (2n) flux quanta”) continue to be fermions. They only 
see the remaining “free” flux quanta, i.e., a reduced external field (indicated by the lighter 
shading in part (b)).

composite 
fermions

as a large number N of unit flux-quantum tubes piercing the system. Homogeneity 
of the field implies that the distribution of these flux tubes is macroscopically 
uniform. For a system with filling fraction 1 > v = N/N$, the number of flux 
quanta exceeds that of electrons, N.73 Now assume that, by some mechanism, each 
electron pairs with an even number of flux quanta to form a composite particle. For 
example, for v = 1/3 the composite particles would comprise one electron and two 
flux quanta each, leaving one third of the flux quanta unpaired. What can be said 
about the properties of these composites?

73 If v > 1, then v — [v], where [v] is the largest integer smaller than v, sets the filling fraction of 
the highest occupied Landau level and the discussion applies to that level.

> First, the composite particles obey fermionic statistics and are hence called com­
posite fermions (CFs). To understand why, notice that the adiabatic trans­
port of an electron around a flux-quantum tube leads to a phase 2n (cf. sec­
tion 8.2). An exchange operation, meaning transport around a half-circle as in 
section 8.6.1, thus gives a phase n, and an even number, 2s, of flux quanta comes 
with an unobservable phase 2s x n. Where statistics is concerned, the flux tubes 
are unobservable, and we are left with the statistics of the bare electrons.

> The CFs see an effectively reduced external field. For example, for v = 1 /3, 
each electron binds to two flux quanta. Thus, the residual field seen by the 
CFs is three times lower than the original field. In other words, the number of 
remaining flux quanta, N — 2N = N, is equal to the number of CFs. This 
suggests a tentative identification of the v = 1/3 FQHE as an integer QHE of 
the composite fermions. For a half-filled (v = 1 /2) band, we have N — 2N = 0, 
i.e., the CFs experience a mean field of vanishing strength. This nicely conforms 
with the experimental observation of weak field behavior close to half-filling.

Starting from a microscopic field integral representation, we will show in the next 
section how a specific gauge transformation introduces the CFs as effective de­
grees of freedom. Building on this representation we will then demonstrate that 
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Laughlin 
wave 

function

the coarse-grained representation of the problem at mesoscopic length scales is an 
abelian CS theory. Finally, we will discuss how this theory elegantly describes the 
essential physics of the FQHE.

INFO An early triumph in the understanding of the FQHE was the proposal of the 
Laughlin wave function74

Consider the standard Hamiltonian of two-dimensional electrons subject to a per­
pendicular magnetic field, H = H0 + Hint , where

Ho = d d2xat(xU^(—idx + Ao)2a(x), 
2m

Ao = B0 (y, — x)T with B0 the external field strength, and Hint is the electron­
electron interaction.

Singular gauge transformation

Above, we reasoned that composite fermions are natural quasiparticles in the de­
scription of the FQHE. The distinguishing feature of a CF is that charged particles 
moving around pick up an additional phase owing to the presence of 2s attached

74 R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with frac­
tional ly charged excitations, Phys. Rev. Lett. 50, 1395 (1983).

^(z 1 ,...,ZN)= N n (Zi - Zj)m Hexp(-|Zk 12), (8.81)
1< i<j < N k =1

as a trial ground state wave function of the lowest Landau level at filling v = 1 /m. Here, 
z = (x + iy)/210 are complex dimensionless coordinates, where 10 = 1 /\[B is the magnetic 
length. Indeed, the harmonic oscillator-like second factor in Eq. (8.81) tells us that we are 
in the lowest Landau level (see the discussion in section 8.4.7). However, the first factor 
incorporates three essential aspects, which make the physics of the FQHE different from 
that of the IQHE:

> Unconventional quasiparticle statistics: Changing any coordinate zi, we pick up a phase 
factor that depends on the position of all other coordinates, and the filling fraction.

> Strong ground state entanglement: The wave function is very different from a product 
wave function.

> Particle interactions: Whenever particle coordinates get close to each other, the wave 
function vanishes. In fact, it could be demonstrated that for certain types of repulsive 
point interactions, Eq. (8.81) gives the exact ground state.

In the rest of the section, we will demonstrate how the physics characterized by the three 
points above is described from first principles.

8.6.6 Chern-Simons field theory: construction

(8.82)
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singular 
gauge 

transfor­
mation

flux tubes. We now introduce this additional phase by hand via a so-called singular 
gauge transformation affecting the many-body wave function ^ as follows:

^(xi,..., xN) ^ ^(x1,..., xN)exp —2is arg(xi — xj) I , (8.83) 

where arg(x) = tan-1 (x2/x1) is the angle enclosed between x and the positive real 
axis. This is not a true gauge transformation because the expression in the exponent 
is not a single-valued function of coordinates. In fact, it becomes singular whenever 
two coordinates xi ^ xj approach each other. Accordingly, the vector potential 
corresponding to the phase factor,

a = -2sdx £ arg(x — xi) = —2s £ (x1 — xi, 1)e2 — (x2 — xi,2)e1,
|x — xi|2

ii

is not a harmless gradient field, but creates the magnetic field

b = eidxiaj = —4ns 5(x — xi) (8.84)
i

of 2sN flux tubes centered at the coordinates of the fermions. The transformation 
(8.83) therefore is physical and replaces the system of N fermions by an equal 
number of CFs. Our rationale in the following will be the replacement N fermions 
+ B0 ^ N CFs + B0 — b. Since the fermion density is uniform on mesoscopic scales, 
both representations describe the same number of fermions in an external field of 
net strength B0 , and hence are physically equivalent.

Derivation of the Chern-Simons action

Within the framework of second quantization, the transformation (8.83) amounts 
to the replacement

at(x) ^ af(x)exp —2is J d2y arg (x — y)p(y) ,

where p = ata is the density operator.

EXERCISE Expand a many-body wave function |^) in the position basis |x1,..., xn} = 
Hi a(xi)|0> and verify that the above replacement induces the transformation (8.83).

The substitution of this transformation into the Hamiltonian (8.82) amounts to a 
replacement A0 ^ A = A0 + a with the gauge field operator

) = —2s f d2y (x 1 — y 1>e2 — (x2 — y2>eip(y). (8.85)
|x—y|2

Equivalently, this operator may be defined by the condition,

b = (V x a)3 = —2sp, (8.86) 
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i.e., the flux of the field generated by the vector potential operator is proportional 
to the charge density.

We now turn to a real-time field integral representation Z f DpeiS[^], with
action S = S0 + Sint and

S o[ p ] = d d3 x p idt
-L(-idx + A[ p ])2>j
2m

p,M -

where x = (t, x) are the space-time variables, and the chemical potential, m, deter­
mines the filling fraction. In this action, A[ p ] = A a  ̂p is nonlocal in p, reflecting 
the structure of Eq. (8.85). It is, thus, nonlinear and nonlocal in the integration 
variables, and not manageable in this form. However, we now apply an elegant trick 
to remove its nonlinearity by auxiliary integration variables: multiply the partition 
function by 1/ Dd Hx d (Ad + 4nsp(x)), where a determinant generated by the 
presence of the Laplace operator under the d-functional is absorbed in the measure. 
With this insertion, the functional integral assumes the form

Z = J Dp Dd J^d (Ad + 4nsp(x))exp(—S[p])

Dp Dd Dp exp

We now claim that the pAd combination is a CS action in disguise. To see how, 
define a three-component vector potential as75

a^ = (ao, a 1, a2)T = (—p, d2d + d 1 p, -d 1 d + d2p)T, (8.87)

where d and p define the transverse and longitudinal contribution to the spatial 
sector, ai = eijd + dip. It is then straightforward to verify that

-------- d d3 xp A d =--------- d d3 xe„ va a,.dv aa.
4ns P 8ns " M v '

EXERCISE Verify this relation. You will need to integrate by parts in space. For the time 
being, we assume periodic boundary conditions and will not worry about surface terms. 
We now understand that the pAd action is a CS action in the particular gauge where 
p = 0, or V • a = 0. (This is a (2+1)-dimensional version of the Coulomb, or transverse 
gauge.)

Comparison with Eq. (8.86) and the d-constraint shows that the spatial part of 
the vector potential obeys (V x a) = —2sp = —2spp. We may thus make the 
substitution A ^ Ao + a, and integrate over the Grassmann fields p, to arrive at 
the representation

S[a] = — i tr ln ( idt — M — p + 2m (— idx + A0 + a)2 ) + 8ns d3 x e^vaa^dva a

(8.88)

75 For completeness, we note that are working in a (2+1)-dimensional Lorentzian framework with 
(note the positioning of indices) x^ = (x0, x), d^ = (d0, V), and aIJ' = (+^, a). 
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where the factor -i before the tr ln operator arises because we are working in a 
real-time (exp(iS)) framework. This is the action of a gauge field a subject to a 
Chern-Simons action at level k = 1 /2s (non-integer!) and minimally coupled to 
the system of CFs via the first term. The field strength generated by a is set by 
Eq. (8.86) and the coupling to the effective potential A = A0 + a, indicating that 
the CFs are subject to a field of reduced strength. In the next section, we will discuss 
what can be learned from this representation about the physics of the FQHE.

8.6.7 FQHE from the Chern-Simons field integral

In view of the macroscopic occupation of such a system with (composite) fermions, 
we start our approach with a variational analysis, asking for stationarity of the 
action under variations 8a^ S [a] = 0. Specifically, variation in a0 = — ^ yields the 
equation

p [ a] = —T—b (8.89)4 ns

where p[a](x) = i(id0 + p — ft + 2mm(—iV + A)2)-1(x,x) denotes the local density 
of CFs. Assuming homogeneity of the density p at stationarity (see the info block 
below on this delicate point), we have p = vB0/2n, or b = —2sB0v. The differenti­
ation with respect to the space-like components a does not yield independent new 
information; all it gives us is two relations expressing the compatibility of Eq. (8.89) 
with the continuity equation.

EXERCISE Verify this statement. (Hint: Show that differentiation with respect to ai 

generates a relation between the CF current and the electric field represented by a. Then 
use the Maxwell equations.)

INFO At this point, we can understand why interactions are important in the 
interactions physics of the FQHE. At the beginning of this section, we formulated the expectation 

that the FQHE may be an IQHE of composite fermions. For that interpretation to work, 
we need the CFs to experience a homogeneous effective field, B = B0 + b. However, in the 
absence of both interactions, and dispersion in the partially filled Landau band, we have to 
expect uncontrollable fluctuations of the background density and, by virtue of Eq. (8.89), 
fluctuations of the CS gauge field. The way out is to take interactions into account.

To understand their effect, consider the CFs subject to both an effective field B = 
B0 + b, and repulsive interactions. Let us assume that repulsive interactions render the 
density of CFs, and hence the induced field b, homogeneous. We will have to expect 
Landau quantization of the CFs due to the effective field. Provided this effective quantum 
Hall system is at an integer filling fraction, p = 2npCF/B e N, we have a system of 
fully occupied effective CF Landau levels, which will be inert against weak perturbations. 
Conversely, at generic filling fractions, interactions may induce all kinds of fluctuations 
in the degenerate effective Landau level system and may destabilize it. Note that, in 
this argument, interactions have the two-fold effect of homogenizing the background field 
strength, and favoring integer filling of the CF Landau levels.

At which “native” filling fractions v = 2np/B0 does this self-stabilization occur? Noting 
that each bare fermion defines a single composite fermion, we have p = pCF . With the mean 
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fractional 
charge

field result — b = 2n2spCF, it is then straightforward to obtain the condition Eq. (8.80) 
defining the experimentally dominant filling fractions.

To conclude this brief excursion into the physics of interactions, let us investigate the 
effective charge of the CF degrees of freedom in mean field theory. To this end, consider a 
correlation function {^(x)^(y)} probing the propagation amplitude of a CF in the medium. 
We expect this amplitude to be weighted by a factor ~ exp(iqCF fy ds • Ao), defining the 
charge qCF of the CF. Now noting that the action of the path integral resembles that of 
a free fermion action in the presence of an effective field Ao + a, and that a = —2svAo 

at mean field level, we conclude that the phase factor will assume the form given above, 
with prefactor

q eff = 1 — 2 sv = —-1—. (8.90)
1 + 2sp

We conclude that the composite fermions carry an effective fractional charge, lower than 
the unit charge of the bare fermions. We saw in section 8.4.7 that the insertion of flux 
into an IQHE geometry leads to an expulsion of charge in the radial direction. It is thus 
not surprising that the composite fermion with its attached flux tubes carries an effective 
screening charge. Equation (8.90) quantifies the bare electron charge minus the screening 
charge due to the insertion of 2s flux tubes.

In essence, the mean field analysis above shows that:

The fractional QHE is an integer QHE of composite fermions.

In the following, we will include fluctuations and external response fields to see 
what further information can be obtained from the effective theory.

Linear response

Here, we will explore the transport physics of the FQHE on the basis of the action 
(8.88). Referring to the specialized literature for a more detailed discussion of the 
combined influence of interactions and gauge field fluctuations, our presentation 
will be brief and focus on the interplay of Chern-Simons gauge field fluctuations 
and matter currents.

The starting point is the coupling of the CF matter sector in Eq. (8.88) to an 
infinitesimal response field, A ^ A + A'. Splitting the internal gauge field as a ^ 
a + a into the mean field Eq. (8.89) plus fluctuations, the action assumes the form 
S[a, A'] = SCF [a + a + A']+ SCS[a + a]. Now consider the formal expansion S[a, A'] = 
Sn S(n)[a, AT where S(n)[a, A'] is of total order n in a and A’. The zeroth-order 
term S(0) describes the mean field CF system and was discussed in the previous 
section. As we are expanding around a stationary point, the first-order term S(1) 

does not contain a. We do not expect the system to support equilibrium currents, 
and hence no linear terms in A’ either, i.e., S(1) = 0. For the second-order action, 
we consider the general ansatz

S(2)[a,A'] = 2 d d3xd3y (a + A')M(x)K^(x,y)(a + A')v(y) + Scs[a]• (8.91) 
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Here, KIJv (x, y) = A (X CF a ] y) |a=_ is the electromagnetic linear response kernel (see 

section 7.2) evaluated at the mean field level. On general grounds, this object is 
gauge invariant, q^K^v(q) = K^vqv = 0, where K(q) is the Fourier transform in 
x - y. We also know that, in a bulk insulating material such as the FQHE system, 
K//v (q) is short-ranged, in the sense that it affords a Taylor expansion in q .76 Since 
there are no gauge invariant zero-derivative actions quadratic in A, the expansion 
starts at first order. In a conventional (parity invariant) condensed matter system, 
terms of first order in derivatives are forbidden by symmetry, but not so here. 
The unique gauge invariant, but parity non-invariant, action that is first order 
in derivatives and second order in A is the CS action. We thus speculate that, 
to leading order in derivatives, S(2)[a, A'] = S'cs[a + A'] + Scs[a], where the prime 
indicates that the first Chern-Simons action is multiplied by an as yet undetermined 
coupling constant. Of course, it is possible to derive that action, including the 
coupling constant, by microscopic expansion of the tr ln term. However, we here 
take the cheaper route to obtain it by consistency reasoning.

76 By contrast, in systems with a non-vanishing longitudinal conductivity, the kernel becomes 
non-local. For example, Kjv (q) = q 2q q— in diffusive systems, where D is the diffusion 

Dq + i^o^v 
constant.

77 Be careful of the positions of the indices. We used 1 j-v v^v- Vv = ^^av n^qj,' qaa' nvv' v^ va vv = 
eq'a'v'vj v- vv det(n) where n = diag(1, —1, -1) is the Minkovski metric with det(n) = -1.

78 Of course, this is not the actual Hall conductivity of the system. The latter is obtained by 
inclusion of the a-field fluctuations, which will be our next step.

\\T|| || —— k_ C <73T (- Cl C) i — __ ik \ ' / <7^<7^<7v 77 WP ll;lWl^ O [a] — 4n J x x fqtavapJaav 4n 2_^q qavaq q a—q, We Have

ik1 1
K^v(q) = — —tpavq + O(q ). (8.92)2 n

Physically, this kernel describes the linear response of the CFs subject to the effec­
tive background field A0 + a which, as we reasoned earlier, corresponds to p filled 
CF Landau levels. This system has Hall conductivity ct02 = 2pn .78 On the other 
hand, we know from linear response theory that ct02 = — i limq .0, w-1K 12(w, q), 
and comparison with Eq. (8.92) leads to the identification k1 = p.

We have thus arrived at the result

S [ A' ,a ] = S cs ,k [ A' + a ] + S cs ,k / [ a ], k = p, k' = 2-, (8.93)

for the effective low-energy action of the FQHE in the presence of an external 
response field, where we have made the level index explicit as in Eq. (8.76). The 
final step in the computation of the linear response is the integration over a.

EXERCISE Integration over the CS action can be carried out as in problem 8.8.7, 
i.e., gauge fixing followed by Gaussian integration over the non-redundant variables con­
tained in a. However, there is a more economic procedure. We may use the fact that 
integration over a Gaussian action S [$] amounts to finding the stationary configurations 
S^S[</>] = 0, followed by substitution back into the action, S[$] ^ S[</>]. To exponential 
accuracy (ignoring integration determinants), this procedure yields the result of the inte­
gral. Apply this procedure to the action Eq. (8.93). Verify that a solution of the stationary 
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phase equations 8 aS [A' ,a] is given by a = — k+k, A'. (In view of the gauge redundancy, 
this solution is non-unique. However, we ignore this point, trusting in the overall gauge 
invariance of the procedure.) Then substitute this result back into the action to obtain

SCS,k [A + a] + SCS,k' [a] -—> SCS,k" [A ], ,H _______1____
k 1 /k + 1 /k'■

As a result of the integral obtained via the strategy outlined in the exercise, we 
obtain

S [ A'} = S CS ,k [ A' ], k = 1+p2pSs, (8.94)

for the linear response action of the FQHE insulator. Above we have seen 
that the level of this action equals the Hall conductivity, o 12 = k/2n = v/2n, so 
we have confirmed Eq. (8.80) from the effective theory.

The above derivation is a first-principles confirmation of the courageous phe­
nomenological interpretation of the FQHE as an IQHE of exotic composite parti­
cles. However, there is further information to be obtained from the field theory. In 
section 8.6.4, we discussed the gauge non-invariance of the CS action in systems 
with a boundary, and the need to augment the CS description by a likewise gauge 
non-invariant boundary action. In the physics of the FQHE (and that of other ap­
plications of CS theory), this gauge deficit becomes an asset: in problem 8.8.8, we 
discuss how the boundary action partnering Eq. (8.94) describes the chiral trans­
port of fractional charge at the FQHE boundary. These effective theories define 
the basis for the interpretation of FQHE experiments, which generically probe edge 
transport coefficients (see Refs. 79 for direct observations of the v = 1/3 quasiparti­
cle charge by edge-current noise measurement). However, for the further discussion 
of the - still partially mysterious - physics of the FQHE edge and its description 
by effective field theories, we refer to the specialized literature.

In the last two decades, driven by experimental breakthroughs some of which we 
have reviewed in this chapter, the field of topological condensed matter has shown 
explosive development. At this point, it has become almost impossible to keep track 
of all the various research directions, both theoretical and experimental. However, 
the availability of universal low-energy theories helps to keep oversight in a jungle 
of “topologically quantized” physical observables whose conceptual meaning might 
otherwise remain obscure. Familiarity with the three large families of effective topo­
logical field actions, 9-terms, Wess-Zumino terms, and Chern-Simons terms goes

79 L. Saminadayar et al., Observation of the e/3 fractional ly charged Laughlin quasiparticle, Phys.
Rev. Lett. 79, 2526 (1997); R. de-Picciotto et al., Direct observation of a fractional charge, 
Nature 389, 162 (1997).

8.7 Summary and Outlook 
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a long way towards understanding the physics of topological quantization in con­
densed matter physics (and in particle physics, where the concepts introduced above 
were originally developed).

The question whether effective field-theoretical approaches are actually necessary 
cannot be answered in general and depends on the application. For example, many 
of the phenomena observed in the physics of weakly entangled topological insula­
tors or (semi-)metals afford straightforward explanations via the diagonalization of 
band Hamiltonians. However, the moment disorder or interactions enter the stage, 
effective field theories become indispensable tools, as illustrated in this chapter for 
various examples. Finally, where strongly entangled topological matter is concerned, 
we are still at the beginnings. At this point, it is not even clear whether quantum 
field theory will turn out to be the proper language to address this type of physics. 
Perhaps an entirely novel physical formalism and/or type of mathematics will be 
required?

8.8 Problems

8.8.1 Winding numbers

In applications of the Feynman path integral, one is often interested in phase spaces that are not 
simply connected. One then must integrate over topologically distinct classes of trajectories. 

To illustrate this situation, we consider here the application of the path integral to the single­

particle problem of a particle on a ring. The problem lls in some details left out in our 

discussion in section 8.2.

(a) Starting with the Hamiltonian HI = — d^2/21, where p denotes an angle variable, 
- .- ~ aiishow from first principles that the quantum partition function Z = tr e 'H is given 

by
co

Z = exp
2 1

—pn
P 21 (8.95)

(b) Formulated as a Feynman path integral, show that the quantum partition 
function assumes the form

z = [2 n dp ±

0 m=-o 4 (0)= $
^ ( &) = & (0) + 2 nm

(c) Varying the Euclidean action with respect to p, show that the path integral is 
minimized by the classical trajectories </>(t) = p + 2nmr/ p. Now parameterize a 
general path as p(t) = p(t) + n(t), where n(t) is non-winding, to obtain

o
Z = Z0 exp

I (2nm)2

2 p
(8.96)
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Poisson 
summation 

formula

with Z0 the partition function for a free particle with open boundary conditions. 
Making use of the free particle propagator, show that Z0 = ^/2nl/fi.
(d) Finally, using the Poisson summation formula,

ZOO 
d h ($) e2nine,

show that Eq. (8.96) coincides with Eq. (8.95).

Answer:

(a) Solving the Schrodinger equation, the wave functions obeying periodic boundary 
conditions take the form ':'n = ein0/^2n, with n integer, and the eigenvalues are 
given by En = n2 /2I. Cast in the eigenbasis representation, the partition function 
assumes the form of Eq. (8.95).
(b) Interpreted as a Feynman path integral, the quantum partition function takes 
the form of a propagator with

Z = f do (<fi|e PH |$} = f do f Do(t) exp — f di —2>2

Jo Jo J(> (p ) = 0 (0) = 0 Vo 2

The trace implies that paths ^(t) must start and finish at the same point. However, 
to accommodate the invariance of ^ under translation by 2n, we must impose the 
boundary conditions shown in the question.
(c) Varying the action with respect to ^, we obtain the classical equation of mo­
tion I<° = 0. Solving this equation subject to the boundary conditions, we obtain 
the solution given in the question. Evaluating the Euclidean action, we find that 
i'2 2^12 zAA 2 — 2nm 2n^^ 2 ,, i'2 — 22 2n^^ \2 rd d'r22 ti'I2 T'Iiiiq avpj 0 di (Cz t ^^) «J 0 dT ( P + Tn r ) lL~0 ( p ) + J 0 dT (Lz t n) . -LX J.u.s, W e ^V^zt^LiX J.
(8.96), where Z0 =f Dr) ( t )exp[— 2 fP di (dn r )2] = 2^ denotes the free particle 

partition function. This can be obtained from direct evaluation of the free particle 
propagator.
(d) Applying the Poisson summation formula with h(x) = exp[-- 2p(  ̂x 2],

wE
=-w

(2n)2 Im2 

e 2?
d^ e- ^)  ̂02+2nin0

n=

e
w

2£- n 
21 n

Multiplication by Z0 obtains the required result.

8.8.2 Topology of the magnetic skyrmion

In this problem, we explore the topology of the magnetic skyrmion, as described by the rep­

resentation Eq. (8.4.3). As preparation for this problem, recapitulate the stereographic repre­

sentation of the two-sphere.

In the info block on page 444, we showed that the meromorphic functions define 
stationary configurations of the two-dimensional a-model. Qualitatively, each zero 



511 8.8 Problems

(pole) of these functions defines a zero (infinity) of w(z), which is the stereographic 
representation of the north- (south-) pole n3 = ^1 on the sphere. A configuration 
with W zero-pole pairs thus interpolates W times between the poles. Inspection of 
the corresponding n1,2 coordinates shows that, in each sweep, the sphere is fully 
covered. In this problem, we compute the topological charge of these configurations. 
(a) Show that, in complex coordinates, z = x1 ± ix2 , the topological action assumes 
the form Stop[n] = 4n f dzdz n3(dzn 1 dzn2 — dzn 1 dzn2). (b) Substitute Eq. (8.17) 
to obtain the representation

3 3 i _ 3i / j j-* 1 — |w|2 w •. w <

In this technical problem, we compute the winding numbers of U(N) on base spaces of di­

mensions one and three.

(a) Assuming periodicity in the coordinate x G [0, 1], prove the quantization of 
the integral multiplying the topological angle 9 in Eq. (8.13) in units of iZ. (Hint: 
Demonstrate that the integrand is a full derivative and use the multi-valuedness of 
the logarithm.)
(b) Demonstrate the integer quantization of the second integral in Eq. (8.14) for 
the case of SU(2), or N = 2. Start by constructing an SU(2) instanton, here 
understood as an SU(2)-valued field g(x1, x2, x3) of three coordinates, xi G [0, 1], i =
1, 2, (for periodic boundary conditions), which cannot be continuously deformed
to unity. To this end, let n(x1 , x2 ) be a unit vector covering the two-sphere once as
a function of x 1, x2. Next define g(x 1, x2, x3) = exp(i2nx3n(x 1, x2) • a). Reason why
these configurations cover the group SU(2) twice, i.e., we have a winding number

Stop[w]= 2^dzdz 1 + |w|2 Vz 1 + |w|2 dz (1 + |w|2) (z ° z)) .

Next, show that for meromorphic functions w(z),

Ston[w] = — [ dzdz-.------•—L^-dzwdzw. (8.97)
pL J 2nJ (1 + |w|2 *)4 z z . J

Naively, one might now change variables as J dzdz dz wdzw = f dwdw. However, 
here one has to take into account the fact that for z covering the sphere, w(z) 
covers the sphere W times, where W is the multi-valuedness of the function w(z) 
(think about this point). This means implies that the proper replacement rule reads 
f dzdz dzwdzw ^ W f dwdw. With this replacement, show that the topological 
action is given by S[w] = iW9, as stated in the info block.

Answer:

(a) This involves a straightforward change of variables. (b) The first equation 
follows directly from the definition of w, and the second from the fact that, for 
meromorphic w(z), dzw = dzw = 0. The final w-integral is most easily made in the 
variables | w |2 = s, with dwdiz = 2nds.

8.8.3 U(N) winding numbers

SU(2) 
instanton
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W = 2 configuration. Proceed to compute the integral Eq. (8.14) and confirm this 
expectation. (Can you come up with a W = 1 configuration?)

Without proof, we mention that the computation of winding numbers in U(N), 
N > 2, reduces to that for SU(2) C U(N) embedded as a submanifold in those 
groups. The formula applied to general N therefore effectively computes SU(2) 
winding numbers.
(c) Demonstrate that the differential forms tr(g-1 dg) and tr(g-1 dgAg-1 dgAg-1 dg) 
have vanishing exterior derivative. Arguing as in the info block of page 441, this fea­
ture safeguards the robustness of the numbers W computed above for one particular 
family of fields under continuous field deformations.

Answer:

(a) Using tr( U-1 dxU) = dx trln U, we have 71 f„1 dx tr( U-1 dxU) = 2- trln U (x )|1 = 
\ x x V x t x , 2 n 0 0 - x J 2 n \ >10
21n lndet(U)|0 = iW, where we note that det(U(x)) = exp(ip(x)) is a phase that 
may wind by integer multiples p(1) — p(0) = 2nW along the base interval.
(b) The eigenvalues of an SU(2) matrix must be unit-modular and multiply to 
unity. This implies that any such matrix can be written as g = U exp(i^a3) Ut with 
unitary matrices U. Using the fact that Ua3 Ut = n • a, we obtain the representation 
g = exp(i^n • a) and, with the identification 2nx3 = ^, have our ansatz. Next note 
that for n covering the unit sphere, and x3 running from 0 to 1, each configuration 
is visited twice: with

g = cos(2nx3) + i sin(2nx3)n • a, (8.98)

this follows from the symmetry g(x3, n) = g(1 — x3, —n). To compute the wind­
ing number integral, differentiate the above representation to obtain g-1 d3g = 
2 ni n( x 1 ,x 2) • a, and dig = — dig-1 = i sin(2 nx 3) di n( x 1 ,x 2) • a. Using these rela­
tions, we compute the integral as

fijk f eij f
I = x-r-2 I d3xtr((g-1 dig)(g-1 djg)(g-1 dkg)) = -T-2 / d3xtr(g-1d3gdig-1 djg) 

24n2 J 8n2 J

— d dx3 sin2(2nx3) d2x eij tr((n • a)(din • a)(djn • a))

= — y d2x n • (d 1 n x d2n) = 2.

Here, the first equality follows by an elementary rearrangement of terms (note that 
g-1 digg-1 = — dig-1), and in the third we used tr((n1 • a)(n2 • a)(n3 • a)) = 
2in1 • (n2 x n3). The final S2 surface integral yields a factor of 4n and in this way 
we arrive at the result.
(c) The exterior derivative of the one-form yields d tr(g-1 dg) = tr(dg-1 N dg) = 
—tr($ A $), with the matrix-valued one-form $ = g-1 dg. In a matrix notation, 
this reads —tr($ A $) = — $ab A $ba = +$ba A $ab = +tr($ A $), where the 
anticommutativity of the wedge product has been used. The expression equals its 
own negative and therefore vanishes. The moral of this computation is that traces 
of matrix-valued differentials satisfy the cyclic invariance property. However, sign 
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factors arise when differential one-forms are exchanged. On the same basis, we 
obtain dtr(g-1 dgAg-1 dgAg-1 dg) = —3tr(SASASAS) = +3tr(SASASAS) = 0.

8.8.4 Wess-Zumino action from symmetries

In this problem, we demonstrate how the analysis of symmetries and conservation laws of the 

free Dirac action suces to x the U(N) Wess{Zumino action up to the value of its coupling 

constants.

(a) Writing the fermion action (8.60) as S[^] = f dxdT ^2s j (dT — isdx)^, and in­
troducing complex coordinates z = (t + ix), dz = (dT — idx) demonstrate that
the two independent Noether currents associated with the U(N) x U(N) symmetry 
are given by Eq. (8.65), with conservation laws dzj = dzj = 0.
(b) Now consider the trial action (8.61) purportedly representing the fermion ac­
tion in a bosonized language. Assuming that the plus-sector of the group symmetry 
is represented as g ^ g + g, show that the corresponding Noether conservation law 
reads as — 2dZ((dflg)g-1) = 0. This does not have the holomorphic structure dz(...) 
of current conservation in fermionic language and therefore does not faithfully rep­
resent the symmetry.
(c) Now consider what happens if we add the WZ term (8.63) to the action. We 
first need to understand how the WZ term responds to the above variation. In this 
part of the problem, we are going to show that

r[(1 + W)g] — r[g] = -n f d2x tr(Wd^gdvg-1) + O( W2). (8.99)

Equation (8.99) may be obtained from the three-dimensional representation (8.63) 
in two ways. The first is a brute force verification that the variation is a full deriva­
tive, and can be represented as a two-dimensional “surface integral.” The second 
exploits the defining properties of the closed differential three form w = tr(g-1 dg)A3 

(see the info block on page --0), which defines the WZ term as a pullback integral 
(see Eq. (8.50)). In working with topological terms, it is often best to operate on 
the target manifold (here the group SU(N)) and go back to the base only in the 
end. Adopting this strategy, argue as in the info block on page --1 to demonstrate 
that the variation g ^ (1 + W)g defines a closed three-form which is only locally 
non-vanishing on SU(N) and therefore must be exact. Then apply Stokes’ theorem 
to obtain the above result.
(d) Add the variation of the gradient action discussed in part (b) to that of the 
WZ term and show that, for the particular value A = 8n, it assumes the form 
Eq. (8.66). The construction shows that, for this choice of the coupling constant, 
the action S0 + r displays the same group symmetry as the fermion action. While 
not a mathematical proof, this provides compelling evidence for the equivalence of 
the two representations.
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Answer:

(a) The Noether current of the group symmetry is obtained by variation of the 
action under a weakly space-time dependent transformation. Focusing on the s = + 
sector for definiteness, we transform  ̂a ^ eW  ̂a ~ (1 + W)  ̂+, with an anti- 
hermitian generator matrix W = {Wab(x, t)}. Substituting this transformation, 
we obtain the change 5S = f dxdr^af(dz Wab)^b+ = — f dxdrWabdz(^ aa^b+). For 

extremal field configurations, all first-order variations, including this one, must 
vanish, and this implies the conservation law dz (^aax-a) = 0 on the classical level. 
(b) The result follows from a straightforward substitution of g ^ gag = eWg ~ 
(1 + iW)g into the effective action followed by integration by parts.
(c) In differential form language, the WZ term (8.63) is the pullback integral r[g] = 
— i2n Jb 3*w of the above three-form to the space-time manifold B. Substituting the 
variation g-1 dg ^ g-1 dW g into the latter, we obtain w ^ 3 tr(g-1 dW g A g-1 dg A 
g-1 dg) = —3tr(dWAdgAdg-1) = —3dtr(WdgAdg-1). This is a full derivative, and 
so application of Stokes’ theorem yields r[(1 + W)g] — r[W] = 4n fM g*tr(Wdg A 
dg-1), where g* is the pullback under the group-valued field g(x, t) to the two­
dimensional space-time boundary, M . Translating back to coordinates, we obtain 
the stated result.
(d) A straightforward computation shows that g(dzj)g-1 = dz j, i.e., the two con­
servation laws are equivalent. Demonstrating that they are equivalent to the van­
ishing of the first-order variation of the action at A = 8n is a matter of an equally 
straightforward substitution z = t + ix in the conservation laws.

8.8.5 Renormalization of the Wess-Zumino model

In this problem, we derive the RG equation (8.68) of the SU(N) model. To get warmed up to 

this task you should recapitulate the RG analysis of the SU( N) nonlinear a -model discussed 

in section 6.4.

Our starting point is the action (8.64) at a presumed small value of the coupling 
constant A 1 of the gradient action (8.61). As in our previous analysis of nonlinear 
a-models, we begin by splitting the fields g = gsgf into a slow and a fast part, and 
expand the latter as gf = 1 + W + 11 W2 + • • •, where W G su( N) is in the Lie algebra 
of anti-hermitian traceless matrices. The one-loop RG equations are obtained by 
expansion of the action to quadratic order in W followed by the computation of all 
contributions to the functional integral containing one fast momentum integration 
and no more than two derivatives acting on a slow field.
(a) Show that the expansion of the action S [gs gf] to second order in the generators 
takes the form S[gf gs] = S[gs] + S[gs, W] + S(2) [W], where

S(2) [W] = — 1 y d2x tr(d^Wd^W),

S [gs, W] = — 1 y d2 x tr
(8.100)

gs 1 d^gs — —e^g- 1 dvgJ [dW W] 
8 n /
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(b) One-loop corrections to the action are obtained by expanding the functional to 
second order in S(2)[gs, W] and integrating over W: S[g] ^ S[gs] — 1 {S[gs, W]2)W. 
Use the results of section 6.4 (in particular those derived in the exercises on page 
360) to confirm that only the gradient term of the action is renormalized and that 
the RG equation for its coupling constant is given by Eq. (8.68).

Answer:

(a) The first line of Eq. (8.100) and the first term in the second line are obtained 
by substituting gsgf into the gradient term of the action (8.61) and expanding to 
second order in the generators W. The second term in S[gs, W], a descendant of 
the WZ action, is best derived in the language of differential forms: substitution of 
(gSgf)-1 d(gsgf) = g-1(g-1 dgs + (dgf)g-1)gf into the pullback (gsgf)*w = tr(g-1 dg A 
g-1 dg A g-1 dg)| g=gsgf gives

(gsgf)*w = gs*(w) + 2tr(dg-1 A dgs A [W, dW]) + 3tr(dW A dW A g-1 dgs) + O(W3)

= g:(W) + 2d [tr([W, dW] A g... dgs)] + O(W3).

Application of Stokes’ theorem thus leads to

r[ g s g f] = —[ (g s g f )*W ^ -if d [tr([ W,dW ] A g-1 dg s)]

12 n J B 8 n J B 3
= —if tr([W,dW] A g-ldgs) = —[ d2xe^vtr([W,dW] A g-1 dvgs), 

8 nJ s 2 8 nJ s 2

where S2 is symbolic notation for the two-dimensional boundary surface and the 
arrow stands for the isolation of terms O(W2 ).
(b) Defining $M = g-l(d^ + 8ne^vdv)gs, the action S[gs,W] assumes the form 
S[gs,W] = 2iLd pqp^tr($M$M). Except for the differently defined field $, this 
equals the fast-slow action of the standard SU(N) model. Using the results derived 
in the exercises on page 360, we thus obtain

—1 (S [ g s ,W ]2) w = — Nlnb [ d2 x tr($ M $ M)
2 8 nJ

= — Nlnb / — (X f d2x dgsdgs~1).

8 n \ \8nJ J

This result confirms that only the gradient term in the action is renormalized. By 
proceeding in direct analogy to the discussion of section 6.4, it is a straightforward 
matter to derive the corresponding RG equation. The result is given by Eq. (8.68)

8.8.6 Strong-correlation physics via nonabelian bosonization

In this problem we study in more detail than in section 8.5.5 how nonabelian bosoniza- 

tion may reveal information on strongly interacting quantum systems that is dicult to 

obtain otherwise. Specically, we will consider the bosonized representation of the higher
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Fig. 8.10 (a) Dimerized phase of the spin chain and (b) the Neel phase.

(b)

S antiferromagnetic spin chain, perturbed by operators representing various types of latice 

dimerization, to understand its physics at large distance scales.

We consider the fermion representation of an S = nc/2 spin chain introduced 
in section 8.5.5. Affleck and Haldane61 showed that the inclusion of all relevant 
interaction operators leads to a collapse SU(2nc) ^ SU(2) of its symmetry, meaning 
that in the infrared the individual spins get locked to a single spin S with symmetry 
group SU(2). Substituting the reduced fields g ® 1 nc into the unperturbed WZ 
action (8.64), we obtain ncS[g] = ncS0[g] + ncr[g]. This is the action of an SU(2) 
field with coupling constants multiplied by nc, due to the trace over color indices; 
it is called the SU(2) WZ action at level k = nc.
(a) To understand how this model responds to the presence of interactions, we 
need the bosonic representation of lattice spin operators Sl = ^^aa^f. Decom­
pose the fermions of the half-filled system into left- and right-moving components, 
xl = eikFl^ +(xl) + e-ikFl^-(xl), where xl = la, and kF = n/2a. Then apply the 
bosonization identities (8.66) and (8.67) to the slowly oscillating components ^± to 
show Sl = tr([c(j + + j—) + c'(—)l(g + g-1)]a), where c, c' are constants inessential 
to our discussion.

The second term under the trace is of particular interest. It tells us that trans­
lation by one site, l ^ l + 1, is equivalent to a sign change of the field g. This 
observation can be read in different ways. For example, contributions to the action 
that are not invariant under g ^ — g explicitly break translational invariance on the 
lattice. We do not expect translational symmetry-breaking in the action and hence 
exclude contritions odd in g. However, terms even in g are not a priori excluded. 
Similarly, mean field ground states g obtained by variation of a translationally in­
variant action might turn out to break g ^ — g symmetry, and hence spontaneously 
break translational invariance.
(b) To explore these points, we consider the dominant translationally invariant 
massive contribution to the action, Sm[g] = m f tr(g2 + g—2).  These terms are 
RG relevant (why?) and we aim to understand their effect at large distance scales.

80

80 From where might such terms come? We know that in the half-filled system, momentum conser­
vation does not exclude the scattering of pairs of fermions between the Fermi points — Umklapp 
scattering. In the spin-1/2 case, there is only one such term compatible with the symmetries of 
the problem; the Umklapp scattering operator discussed in section 8.5.5. However, for higher 
spin, or nc > 1, the scattering of fermions of different a-index may generate terms like Sm in 
the effective action.

To prepare this discussion, we first note that a spin chain favoring local anti­
alignment may support two competing ground states: the first is a phase defined by 
local dimer formation - see fig. 8.10(a). This ground state contains local singlets, 
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and hence is trivially spin rotation invariant. It does not allow for gapless spin 
fluctuations. The second, (b), is the Neel order. This phase spontaneously breaks 
spin rotation invariance, and hence admits Goldstone modes. Both the dimer and 
the Neel phase spontaneously break translational invariance.

Identify the SU(2) ground states favored by Sm for negative and positive mass m, 
and show that they satisfy the criteria required by the dimer and the Neel ground 
state, respectively. In the Neel case, how do we describe the Goldstone mode spin 
fluctuations in the language of g-fields?
(c) We now understand that the ground state manifold of the Neel phase is defined 
by configurations ig0t3 g —1 = in • a, where the unit vector n is implicitly defined 
by the rotation g0 and describes the orientation of the Neel state on the two- 
sphere. What is the effective action of the Goldstone modes defined by spatially 
fluctuating orientation vectors n? To find out, we need to substitute g ^ in • a 
into the Wess-Zumino action. Show that the gradient term becomes ncS0[in • a] = 
nn f d^n • d,,n and the Wess-Zumino term becomes ncr[in • a] = Stop[n], with 
topological angle 9 = nnc. (Hint: Recycle the parameterization (8.98) and the 
calculation of problem 8.8.3.)

We have thus found that the extremal action configurations of the perturbed WZ 
models describing the S = nc/2 spin chains are described by the spin non-linear 
a-model at topological angle 9 = nnc. One may object that this is no surprise; 
we had already arrived at the same conclusion within the semiclassical expansion 
of the antiferromagnetic spin chain in section 8.4.6. However, there now is the 
added twist that we have the connection between the a-model and the WZ action. 
In this setting, the Haldane conjecture materializes as follows: starting from the 
WZ treatment of the S = nc/2 chain, we flow to a 9 = nnc a-model. Since the 
topological action is periodic in 9 mod 2n, even/odd values of nc are described by 
the action with topological coupling zero (flowing into a gapped phase), or nc = 1, 
the action of the spin-1/2 chain. However, the latter, as we have seen in section 8.5.5 
is equivalent to a level-1 WZ theory. In this way, we arrive at the conclusion that 
the critical theory of the half-integer spin chains is the level-1 (not nc) WZ theory, 
which in turn is equivalent to a free one-dimensional fermion. On this basis, the 
physical properties (critical exponents, correlation functions, etc.) are now known. 
Note that this result cannot be obtained by standard field-theoretical methods 
starting from the nonlinear a-model; the bosonization machinery is essential.

Answer:

(a) Substituting the decomposition into the definition of the spin operator, we 
obtain Sl = S2s ^S(xl)ans(xl) + [(-)l^ +(xl)ta/.'-(xl) +h.c.], where the sign factor 
results from eilkFx = e1 (n/a)la = (—)l. Substitution of the bosonization rules leads 
to the stated idenitity.
(b) For negative m, configurations of least action (and hence maximal weight 
exp(-Sm)) have tr(g) = tr(g-2 ) = 2, the maximal value realizable for SU(2)- 
matrices. The eigenvalues of g thus must be unit-modular and det(g) = 1 fixes 
g = ±12 as extremal configurations. Notice that either choice spontaneously breaks 



518 8 Topological Field Theory

g ^ — g invariance, i.e., we have translational symmetry breaking. At the same 
time, the ground states are individually spin-rotation invariant, g0gg —1 = g, with­
out any soft fluctuations around them; they describe the dimer phase. For positive 
m, we are looking for configurations with maximally negative tr g = tr(g—2) = —2. 
This requires eigenvalues ±i. A diagonal matrix satisfying this condition is g = 
exp(i2o3) = io3. Since the trace is unitarily conserved, all ig0o3g—1 satisfy the ex­
tremal condition, i.e., we have a continuous manifold of individually spin-rotation 
and translational symmetry breaking ground states. These describe the Neel phase. 
(c) The form of the gradient action follows immediately upon substitution of g ^ 
in• a into ncS0. Concerning the WZ term, we consider the parameterization (8.98), 
which interpolates between g = 12 and g = in • a for x3 = 0 ^ 1 /4. Using the 
fact that the winding number integral, I, studied in problem 8.8.3 equals r/2n, and 
reproducing the calculation of that problem, we arrive at the result.

8.8.7 Knot invariant from the Chern-Simons functional

In this problem, we derive the fractional phase of two-dimensional abelian anyon braiding 

from the Chern{Simons functional. The problem provides the technical details underlying the 

qualitative discussion of section 8.6.4.

In section 8.6.4, we described the braiding of two quasiparticles in terms of their 
current densities coupled to the CS functional, Eq. (8.78). We now want to integrate 
over a to obtain the statistical phase weighing the process. Prior to this integration, 
we need to fix a gauge, for otherwise the “infinite gauge freedom” would produce 
a divergence. In the present context, it is convenient to choose the Lorentz gauge, 
d0a0 = dta0 — diai = 0. In order to avoid positive indefinite expressions such 
as q0q0, we first turn to an Euclidean (imaginary-time) framework. We do so in 
the usual manner, by defining ir = t. This substitution entails secondary ones, 
—idT = dt, and — ia0 = a0. (Justify this latter replacement on the basis of gauge 
invariance or the structure of the CS action.) In this problem, it is best to think of 
Euclidean space as a (3 + 0)-dimensional real space.
(a) With x0 = (t, x) and a' = (a0, a), show that the gauge condition becomes 
d0a0 = 0, the Euclidean CS action is identical to its Lorentzian form, and that the 
current vector potential coupling reads as — ia0j0 (ordinary summation convention), 
where j' = j 1 + j2, and ji ^ = dTx0s(x — xi(t)).
(b) Next, we need to integrate over a. You may assume that the gauge fixing is 
implemented via addition of a contribution 2 f d3x(d0a0)2 to the action, where r 
is a large positive constant and we omitted the Euclidean primes to simplify the 
notation. Alternatively you may assume that the integration is restricted to the 
components of the Fourier transform aq satisfying the condition q0a0,q = 0. Apply 
either of these procedures to show that (a0,qav,qt) = — i2nglai,oSq,-q', and hence

■ i \ ..... I in .
j^qaqa0,-qjj exp k / y e0avj0,q

qa ■
q jv, -1
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(c) We now turn to an interpretation of this expression inspired by magnetostatics. 
To this end, we interpret the densities ji as those of two current-carrying loops i = 
1, 2 (use fig.8.7 for guidance). Integrate over a suitably chosen surface intersecting 
the loops to show that they carry unit current. Verify that the current density 
is sourceless, d^j^ = 0. Then verify that the expression above can be written as 
A = exp(-k f d3xjpbp,), where b is the magnetic field generated by j (for unit 
magnetic permeability). We are now almost there. Substituting the definition of 
the current vector fields, we obtain

, - in <ddrx i ( t )• bj (xi ( t )) — in fSSi •(Vx bj) _ 2in i (^ -yQ)A — e « / i,,j ~ i\ / j \ i\ = = — e fe / i,jj j i v j — e k I (11 ,Y2)

In the first expression, we collapsed the volume integral to loop integrals, over the 
field strengths generated by the two currents, in the second we applied Stokes’ 
theorem, and in the third we used the fact that the integral of V x bi — ji over loop 
j produces the linking number I(Yi,Yj)• The contributions from (i,j) — (1, 2) and 
(2, 1) add, which gets us to the final expression.

We have thus shown that the Chern-Simons functional produces the statistical 
phase weighting corresponding to the braid operation.

Answer:

(a) These features all follow from the definition of the Euclidean degrees of freedom. 
(b) In the presence of the gauge-fixing term, the quadratic CS assumes the form 
Scs[a] — 2 52q a^q(-ic^aVqa + rq^qv)av,_q. It is useful to think about the 3 x 
3 matrix kernel defined by this expression in a projected representation, where 
P = {q^qvq—2} projects onto the one-dimensional longitudinal subspace || q and 
Q — 1 - P onto its two-dimensional transverse complement. Since the first/second 
contribution to the matrix is annihilated by P/Q, it assumes a block diagonal form. 
We now claim that — ik^^avq2 defines the inverse of the matrix in the transverse 
sector. Indeed, it is straightforward to verify that the matrix multiplication of this 
expression with the first/second term in the action yields the projector Q/0. The 
displayed equation then follows from the standard rules of Gaussian integration.
(c) Integrating ji over a patch, P, in the 12 plane containing xi (0), we obtain 
I — fp dS • j — 1. The absence of current sources follows by straightforward 
differentiation. Taking the curl of the Ampere equation V x b — j and using 
V • b — 0, we obtain Ab — V x j , which in momentum space assumes the form 
b^,q — — q—2 <Ava (—iqv)ja • Turning to real space, the assertion follows.

8.8.8 Fractional quantum Hall effect: physics at the edge

In section 8.4.7, we saw that the bulk physics of the quantum Hall systems is inseparably 
connected to that of their boundaries. Following work of Wen and Stone,* 81 here we show how 

the edge theory of the FQHE is deduced from that of its bulk. (The discussion is limited to

81 X-. G. Wen, Theory of the edge states in fractional quantum Hall effects, Int. J. Mod. Phys.
B6, 1711 (1992); M. Stone, Edge waves in the quantum Hall effect, Ann. Phys. 207, 38 (1991).
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Fig. 8.11

V

dD

On the formation of surface wave excitations in an FQHE droplet. For an explanation, see 
the main text.

chiral Lut- 
tinger 
liquid

filling fractions p =1 in the principal sequence, v = 1 /(2s + 1). The inclusion of higher p 
requires theories with more than one chiral edge channel, which is beyond the scope of this 

problem.)

Consider an FQHE sample, D. At its boundary, dD, an (approximately linearly) 
increasing potential V = Ex± separates the vacuum and the filled states defining 
the FQHE ground state (fig. 8.11), where x± is a local coordinate transverse to the 
boundary coordinate, x.

In the first part of this problem, we will address the formation of boundary edge 
excitations on phenomenological grounds. The presence of a bulk excitation gap in 
the FQHE insulator implies B^/BN ^ <x>. The thermodynamic relation B^/BN ~ 
k -1 = — V (BP/BV) N relates this divergence to a vanishing bulk compressibility, the 
intuitive picture being that of an incompressible fluid. The lowest-energy excitations 
of the system must therefore be deformations of its boundary, h(x), similar to 
boundary distortions of a puddle of water (see fig. 8.11). With the bulk charge 
density, adxdxx, a = ’2BB (cf. Eq. (8.37)), this deformation is proportional to a 
spatially varying boundary charge density, p(x)dx = ah(x)dx.
(a) To derive the boundary action on phenomenological grounds, we proceed in a 
few steps. First, derive the energy cost of a boundary distortion p. Next, use the 
continuity equation and what you know about the Hall conductivity of the system to 
derive an equation of motion describing the propagation of density p(x, t) along the 
boundary at a constant velocity v. Defining a new variable ft through dx0 = VP, 
explain why

S[$] = 4n dx dt [v (’’x'')2 — dx^Bt^] (8.101)

defines its effective action. This is the action of the chiral Luttinger liquid. The 
correspondence follows from the fact that it describes the propagation of a bosonic 
variable ^ at constant wave velocity in one direction. (Indeed, it is straightforward 
to verify that the substitution of ^ = ^L + ^R, 9 = ^L — ^R into the action (3.96) of 
the Luttinger liquid splits the latter into two chiral actions describing propagation 
in opposite directions.)(b) In section 8.6.4, we showed that pure CS theory on a system with a bound­

ary is not gauge invariant and that a likewise non-gauge invariant boundary action 
is required to define an overall gauge invariant package. We tentatively identify 
Eq. (8.101) as this boundary action. A first indication that this action might also 
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lack gauge invariance follows from its identity as a chiral Luttinger liquid. Repre­
senting only one-half of a full Luttinger liquid, it defines the bosonized form of a 
single left- or right-moving branch of fermions.

However, we saw in section 9.2.1 that an individual chiral fermion branch displays 
the chiral anomaly - application of an electric field makes particles disappear into 
nowhere - and therefore lacks charge conservation and gauge invariance. We suspect 
this gauge invariance to cancel against that of the bulk CS action. In physical terms, 
this means that the above “nowhere” is the bulk of the system and that application 
of an electric field in the direction of the boundary leads to bulk boundary charge 
exchange.

Recalling from bosonization that the field ^ couples to gauge transformations, 
A u ^ A^ + d,, f, as the phase of a fermion field, ^ ^ ^ + f, find a minimal coupling 
of the action S [^] to the external field A such that the gauge anomaly of the bulk 
action (8.79) indeed cancels.

Answer:

(a) With the boundary potential V = Exx, a deformation of the surface profile 
costs energy H = f dxdxxpV = oE f dx fh(x) dxxxx = E f dxp(x)2. In a system 
with Hall conductivity o 12 = E, the confining electric field E generates a Hall 
current density j = — o 12 E = — EE tangential to the boundary. (We choose the 
negative sign for later convenience, as a matter of convention.) The total boundary 
current is obtained by integrating the current density from 0 to h(x), i.e., I(x) = 
— Ep(x), and the continuity equation dxI(x,t) + dtp(x, t) = 0 implies the equation 
of motion dtp — vdxp = 0, with the velocity v = E/B. We thus obtain a uniformly 
propagating density profile, p(x, t) = p(x + vt). Differentiating the equation of 
motion in x, we may rewrite it as dt^ — vdx^ = 0 in terms of the variable ^. 
The action (8.101) produces this equation under variation 5^S = 0 and contains 
the energy dtH as a first term. It thus defines the (Hamiltonian) action of the 
boundary system.
(b) A gauge invariant coupling of the boundary action (8.101) to an external gauge 
field is obtained by the substitution d^ ^ d^ — .A,. However, we now need 
an extra term, which cancels against the excess action S [A, f ] = —n faM fdA = 
4n f dxdtf (dtAx — dxAt) of Eq. (8.79). In differential form language, this term 
is easily guessed as —-J' d^ ^ A = — v J ^dA. Under a gauge transformation it 
changes as — —-J' (^ + f) d(A + df) = — v J ^dA — v f fdA, which contains a term 
countering the bulk gauge anomaly. Turning to a coordinate representation and 
collecting terms, we conclude that

S [ ^] = 4n y dx dt v(dx^ — Ax )2 — (dx^ — Ax )(dt^ — At)) + dt^Ax — dx^At ] 

defines the gauge field coupling of the boundary theory.
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SYNOPSIS In this chapter, we discuss relativistic effects in condensed matter physics 
from a field-theoretical perspective. We begin with an application-oriented derivation of 
the Dirac action. (This means that we will avoid the early specialization to 3 + 1 space­
time dimensions that is common in particle physics texts.) Building on it, we address 
fundamental aspects of relativistic quantum matter including its symmetries, the appear­
ance of anomalies, topological signatures of Dirac matter, and the coupling to gauge fields. 
We will discuss the realization of these principles in condensed matter contexts such as 
the (1 + 1)-dimensional Fermi gas, and different forms of topological quantum matter. 
Notably, the physics of topological insulators close to phase transitions is described by ef­
fective Dirac Hamiltonians, and this provides a rich spectrum of applications for concepts 
in relativistic quantum field theory.

We call a condensed matter fermion system relativistic if its 
Brillouin zone contains one or several singular points around 
which the dispersion is approximately, or even fully, linear 
(see the figure schematic). Before the turn of the century, 
such dispersion relations were known to exist in gapless su­
perconductors and certain narrow-gap semiconductors, but 
were otherwise considered exotic. Two disruptive experimen­
tal developments in the first decade of this century changed that situation and 
triggered a surge of research on relativistic, or Dirac, matter. First came the dis­
covery of graphene, a material whose fascinating properties are due to the presence 
of two Dirac points in its Brillouin zone (recall the info block on page 56). Shortly 
afterwards, the new material class of topological insulators was discovered. The sur­
face Brillouin zones of topological insulators harbor Dirac points protected against 
the detrimental effects of disorder and other system imperfections by principles of 
topology. These surface states are experimentally observable and responsible for 
the majority of the unconventional physical properties of topological insulators.

Along with these developments, the physics of Dirac quantum matter has become 
an experimental reality outside the realm of (3 + 1)-dimensional particle physics. 
Phenomena previously restricted to that field, such as anomalies, Klein tunneling, 
chiral symmetry breaking, etc., are now the subject of mainstream condensed mat­
ter research. In particular, condensed matter physics has introduced experimental 
platforms for realizing Dirac physics in dimensions different from four. This option 
has attracted the interest of particle theorists and is stimulating research at the 
interface between high energy and condensed matter physics.

522
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Motivated by these developments, here we introduce some of the key concepts 
distinguishing relativistic quantum field theory from the non-relativistic theories 
discussed previously. We start out in the first section with a condensed matter- 
oriented introduction to the Dirac action. In the remaining sections of the chapter, 
we discuss the physics of Dirac field theory with an eye on applications in condensed 
matter physics.

9.1 Dirac Theory

REMARK This section assumes familiarity with basic notions of special relativity, no­
tably the concept of four-vectors, Lorentz transformations, and covariant notation. For a 
succinct summary, see the info block below or otherwise consult a textbook to brush up 
your knowledge.

revolutionized

Paul Adrien Maurice Dirac 
1902-1984 
was a British physicist who 
made fundamental contribu­
tions to the development of 
quantum mechanics and its 
subsequent extension to rela- 
tivistically invariant quantum 
field theory. The Dirac equation
physics in various ways: among other things, it 
motivated the concept of quantum fields, pre­
dicted the existence of antimatter, and led to a 
fundamentally new understanding of fermions. 
In 1933, Dirac shared the 1933 Nobel Prize in 
Physics with Erwin Schrodinger “for the discov­
ery of new productive forms of atomic theory.”

Derivations of the Dirac equation are 
a canonical part of almost every in­
troductory text on particle physics. 
There, emphasis is usually placed on 
the historical development of Dirac’s 
approach towards a relativistic gener­
alization of the Schrodinger equation: 
requiring to replace a quadratic disper­
sion ~ p2 /2m by a relativistic disper­
sion ~ cp, Dirac suggested generaliz­
ing the scalar Schrodinger equation to 
a four-component spinor equation. He 
then introduced the famous Dirac 7- 
matrices, engineered to satisfy certain
commutation relations, and on this basis wrote down the first-order Dirac equa­
tion. The construction is ingenious and can be developed on little more than a 
single sheet of paper.

However, the price to be paid for its brevity is its limitation to (3+1)-dimensional 
space-time and that the ad hoc introduction of 7-matrices does not really elucidate 
the underlying physical symmetry principles.1 On the other end of the spectrum are 
derivations of Dirac theory on the basis of representation theory.2 These emphasize 
symmetries; they work in general dimensions, but are a little too abstract for our 
purpose. Here, we aim to strike a middle ground and derive the Dirac equation 
by extending the known quantum mechanics of the rotation group (describing the 
physics of spin) to a quantum mechanics of the Lorentz group. (The derivation

1 It’s the other way around: a plethora of symmetry principles fol lows from the equation intro­
duced ad hoc, which led Dirac himself to comment that “the equation was more intelligent than 
its inventor” (a statement which may be disputed).

2 For a succinct introduction to this approach, see the text by Gockeler and Schiicker in Ref.
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takes six pages instead of one. However, along the way, we will introduce a lot of 
useful material, so even readers familiar with the equation may find the construction 
instructive.)

covariant 
notation

Minkowski 
metric

INFO For convenience, here is a quick synopsis of the covariant notation used in 
special relativity and several parts of this text. Contravariant vectors v = {v1}, p = 
0, 1, 2, 3, comprise a time-like component v0 and three spatial components vi , i = 1, 2, 3. 
(In general dimensions, p = 0,... ,d +1.) We follow the convention of labeling space­
time indices by Greek indices, p, v,..., and spatial ones by Latin indices, i,j,.... For 
example, space-time events are recorded as x = x1 = (ct, x), where the inclusion of the 
velocity factor c (whose role in condensed matter physics will be taken by the velocity v 
of a linearly dispersive quasi-particle) gives all components the same physical dimension. 
The associated covariant vector is defined as x^ = n1v xv by contraction with the 
Minkowski metric,3

The derivation of the Dirac equation discussed in this section starts from symme­
try considerations. Particular emphasis is placed on the connection between Dirac

3 The metric is sometimes defined with a negative sign, n ^ -n (preferred in electromagnetism 
and particle physics). Here, we work with the choice above (preferred in gravity), or noo = — 1, 
as it naturally reflects the sign change noo ^ — noo when switching between real (“Lorentzian”) 
and imaginary (“Euclidean”) quantum field theory. However, the choice of convention remains 
physically inconsequential.

-1

n = {n^v } =
1

1
1

(9.1)

The passage back to contravariant vectors is defined by x1 = n1vxv, where n1v is the 
inverse of the metric. (In the above representation, the Minkowski metric is trivially self­
inverse. However, it need not be in other coordinate representations. For a discussion of 
the actual meaning of the above index-raising and index-lowering operations we refer to 
section A.1.3.)

Derivatives with respect to covariant and contravariant vector components are defined 
respectively as

a a
di = — = (+do, v), d1 = — = (-do, v).

dx1 dx^

For example, the d’Alembert operator is defined as

d.d = - dt + A.
c2

Theories following the conventions above are said to be formulated in Lorentzian signa­
ture. By contrast, a theory with Euclidean signature has a standard metric g1v = S1V. 
We can pass from one to the other by allowing Lorentzian time to take imaginary values 
(via a Wick rotation), t = — ir. In the t-representation, the Minkowski metric assumes 
Euclidean form. The imaginary-time formalism used in many parts of this text effectively 
implements this change of representation.

9.1.1 Derivation of the Dirac equation 
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theory and the quantum mechanics of spin. For the time being, we will work in 
three spatial dimensions for definiteness.

Spin rotation symmetry: a warm-up

As a preparatory exercise, consider a single-particle Hamiltonian containing a cou­
pling term HLS = ^2i li ® ai between an orbital angular momentum and a spm- 
1/2. The tensor product indicates that the problem is defined in a Hilbert space, 
H = L2 (R2) ® C2, comprising the space L2 (R2) of square integrable wave functions 
in three-dimensional space and C2 for spin. The summation over spatial indices, 
i = 1, 2, 3, makes HLS rotationally invariant. However, to prepare for the discussion 
of the relativistic case, let us review in detail how this invariance comes about. To 
this end, consider a rotation of space xi ^ Rijxj described by a rotation matrix 
R G SO(3). We anticipate that the rotation (group) is represented on the state 
space as |^) -RRR |^'}, where ^'(x) = U x(R-1 x) (see the figure in section 1.6.1). 
Here, the as yet undetermined matrix U G SU(2) accounts for the fact that |^') 

is not a “scalar” field, but contains a spin structure. For a classical vector field, 
2(x) G R3, the transformation would be represented as 2(Rx) = R2(R-1 x). Our 
task is to find out what transformation U replaces R in the case of a spinor field.

To answer this question, we pass from a “Schrodinger representation” emphasiz­
ing the transformation of states to the operator “Heisenberg picture” as follows:

(^'|HLSI^') i d3x (V’(R-1 x)Uf)liffi(> '(R-1 x))

= / d3 xi^( x)(R l) i (Uf aU) ^ (x ) = (^ |( R )i i (U t aiU )| ^), (9.2)

where in the second equality we changed integration variables and used the fact that 
the operator l transforms as a vector (why?). This computation shows that (i) on the 
operator level, the transformation is represented as I ^ Rl and ai ^ UTaiU, and (ii) 
that rotational invariance (^'|HLS|^= ^|HLS|^) requires (Rl)i(UtaiU) = liai, 
which is equivalent to the condition

U taiU = Rij aj . (9.3)

We read this as an equation (almost) determining the SU(2) matrix U by the 
SO(3) matrix R. The key to the solution of Eq. (9.3) lies in the identity between 
the Lie algebras su(2) and so(3) of the two matrix groups, i.e., the generators of 
infinitesimal rotations. Recall that both algebras su(2) and so(3) are spanned by 
generators satisfying the commutation relations

[ Ji,Jj ]= iejk Jk. (9.4)

The difference lies in the realization of these generators as matrices:

su(2): Ji = 2ai, so(3): Ji = -itijkEjk, (9.5) 
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spinor rep­
resentation

spinor

Lorentz 
group

where Eij is a three-dimensional matrix of zeros except for a unit entry at position 
(i, j ). We denote these matrices by identical symbols, emphasizing that they realize 
the same algebra (9.4) but represented in the different vector spaces C2 and R3 , 
respectively. The equivalence of the algebras implies a local isomorphism between 
the two groups: to a finite SU(2) rotation U = exp(i^iJi) it assigns the SO(3) 
rotation R = exp(i^iJi), with differently represented Ji. It is straightforward to 
verify that, with these identifications, Eq. (9.3) holds and rotational invariance is 
established.

4 The generalization of this statement to dimensions other than 3 + 1 is straightforward. How­
ever, in even dimensions such as d = 2, we need to replace the now unit-determinant parity

Summarizing, we have seen that the rotational invariance of quantum mechanics 
with fermionic (spin-1/2) particles relies on the combination of two different repre­
sentations of the rotation group. The first is the ordinary representation in terms of 
SO(3) space rotations, the second is a spinor representation in terms of SU(2). 
The two representations are determined by each other via their equivalence at the 
algebra level, so(3) ~ su(2), and on this basis rotational invariance is established.

INFO Notice, however, that the two groups are only locally equivalent. Global ly, the 
correspondence between SO(3) and SU(2) is 2 to 1: the correspondence above assigns 
to a rotation by 2n around, say, the three-axis the SO(3) matrix R = exp(2niJ3) = 13 

and the SU(2) matrix U = exp(2niJ3) = -12. These formulae state that a 2n rotation 
of Euclidean space is an empty operation. However, it changes the sign of the spinor 
degrees of freedom. In fact, the transformation behavior above is the defining property of 
a spinor. Nevertheless, in Eq. (9.3) this sign factor drops out and hence does not conflict 
with rotational invariance.

At this point, readers may wonder how this discussion is related to the theme of 
this chapter, relativistic quantum field theory. In the following, we explain this 
point and show how a slight extension of the construction above defines a Lorentz 
invariant theory.

Lorentz group (and its double cover)

Recall that the Lorentz group is defined by the set of linear transformations, 
A, of (3 + 1)-dimensional space-time that leave the Minkowski metric invariant, 
ATnA = n. With, n = diag(-1, 1), it contains SO(3, 1) as a subgroup. This is 
the group of unit-determinant Lorentz transformations, which can be continuously 
deformed to unity. It will assume the role SO(3) had in the previous discussion. In 
addition, there are the discrete non unit-determinant transformations parity, P, 
and time-reversal, T, with

P(x0, xi) = (x0, -xi), T(x0, xi) = (-x0, xi). (9.6)

The combination of SO(3, 1) transformations with P and T exhausts the contents 
of the Lorentz group.4
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Lorentz 
boost

The Lie algebra so(3, 1) is spanned by matrices satisfying Xn + nXT = 0. Three 
of its six independent generators are conveniently chosen as Ji = — ieijkEjk, now 
realized as four -dimensional matrices. These are the space rotation generators em­
bedded in the Lorentz group. For the remaining three we choose the symmetric 
matrices Ki = i(E0i + Ei0), the generators of Lorentz boosts.

EXERCISE Consider a Lorentz boost in the 1-direction A = exp(dK 1) and convince 
yourself that x'M = A":,xv describes a relativistic transformation between inertial frames.

A quick calculation shows that rotation and boost generators satisfy the commu­
tation relations of so(3, 1),

[ Ji,Jj ]= ieijk Jk, [ Ki,Kj ] = — ieijk Jk, [ Ji ,Kj ]= ieijkKk. (9.7)

Guided by the construction of the previous section, we now ask whether there 
are spinor representations of the same abstract algebra. The answer can be found 
by guessing: we need a six-dimensional matrix algebra, and it must span a non­
compact matrix group (the latter feature reflecting the non-compact nature of 
Lorentz boosts). These two features suggest sl(2, C) as a candidate, the algebra of 
unit-determinant complex two-dimensional matrices. This algebra contains the her­
mitian rotation generators Ji = 2 ai and three anti-hermitian generators Ki = i ai. 
A quick calculation shows that, with this identification, the commutation relations 
(9.7) are satisfied.

To summarize, we have found

sl(2, C) : Ji = ^ai, so(3, 1) : Ji = — ieijkEjk,

Ki = 2,ai, Ki = i (E 0 i + E i 0), (9.8)

as a generalization of Eq. (9.3). Below, we discuss how this result forms the basis 
for a relativistically invariant generalization of quantum mechanics.

Weyl fermions

At this point, the essential groundwork towards the construction of the relativistic 
theory has been laid. All we need to do is generalize the above criterion of rota­
tional invariance to Lorentz invariance. To this end, consider the linear operator, 
Or = p^a^, where a1 are the Pauli matrices as before, a0 = 12, and p^ = — i’dx„ 

transforms like a covariant vector. We require the matrix elements (^|O01^) to 
be Lorentz invariant under transformations affecting states as ^'(x) = Ue(A-1 x), 
with an as yet undetermined matrix U. Here, ^ (x) are functions of space-time 
with scalar product (^|^) = J d4xt/>(x)$(x). Arguing as in Eq. (9.2), the invariance 
condition assumes the form

U t a1'U = A ^v av, (9.9)

transformation by reflection at a plane, for example, R(x0 , x1 , x2) = (x0, -x1 , x2). (Why is 
the choice of this plane inessential mod SO(d, 1)?) 
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generalizing Eq. (9.3). It is straightforward to verify that, for a general SO(3, 1) 
transformation, with A = exp(i^iJi + idiKi) combining space rotations and boosts, 
the criterion is satisfied with the matching SL(2, C) transformation

U = exp( i^iJi + idiKi). (9.10)

(For all that follows, keep in mind that, in general, U is not unitary, U-1 = Ut, for 
0 = 0.)

Weyl 
fermions

EXERCISE As usual with such statements, it is sufficient to check them on the level of 
an infinitesimal transformation. Do so using the commutator relations (9.7).

To summarize, we have found that the equation

OR'Rr = -ia1 dp, ^R = (idt - iaidi)^r = 0, (9.11)

5 See B. Q. Lv et al., Experimental discovery of Weyl semimetal TaAs, Phys. Rev. X 5, 031013 
(2015), for an experimental realization in TaAs and N. P. Armitage, E. J. Mele, and A. Vish- 
wanath, Weyl and Dirac semimetals in three-dimensional solids, Rev. Mod. Phys. 90, 015001 
(2018) for a review.

is relativistically invariant if the solutions transform under SO(3, 1) transformations 
as Rr ^ RR with RR(x) = URr(A-1 x). Note that the zero on the right-hand side 
is fixed by the invariance criterion. For example, a term like V(x)R(x) with some 
scalar “potential” would not transform in the right way. (Why? Remember that 
UtU = 1 in general.) Two-component spinor fields with this property are called 
(right-handed) Weyl fermions.

Weyl 
semimetal

INFO Weyl fermions have recently come to promi­
nence in the condensed matter physics of Weyl 
Semimetals.5 These are three-dimensional mate­
rials harboring an even number of singular points in 
their Brillouin zone around which the dispersion is 
linear (see the figure). These Weyl points, or nodes, 
can be shifted relative to each other, both in mo­
mentum space and in energy, but cannot be individually destroyed. Eigenstates describing 
the physics of the system at low excitation energies relative to the Weyl nodes obey the 
equation II^ = Erf, where H = — aipi features as the effective Hamiltonian of individ­
ual Weyl nodes. Up to a rescaling by the velocities of the band dispersion, the nodal 
time-dependent Schrodinger equation is equivalent to the Weyl equation Eq. (9.11).

Dirac equation

At this point, we have defined an SO(3, 1)-invariant theory. However, what about 
the remaining Lorentz transformations, parity and time-reversal? Following the 
same strategy as above, we seek a transformation Prf = rf', where rf'(x) = UPrf(Px), 
and the action of P = P-1 on space-time vectors is defined in Eq. (9.6). Invariance 
of the Weyl equation requires Pa1 = UPa1/'P = P1Vav = a1, with a1 = (a0, — ai). 
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Evaluated on the spatial indices, this means that UpaiUP = — ai. However, there 
is no matrix with this property (check it!). To achieve parity invariance, we need 
to extend the theory.

The key lies in the observation that there exists a second representation of 
SL(2, C) defining an SO(3, 1)-invariant theory. In this case, states transform as 
'■L ^ ^L with ^L(x) = (U-1)f^l(A-1 x). It is straightforward to verify that, for 
these states, the equation

OL^L = — ia"'^ •:> = (idt + iaidi)•:> = 0 (9.12)

Dirac 
spinor

is SO(3, 1)-invariant. We distinguish between the two realizations of the theory by 
calling cR and ^L right- and left-handed Weyl spinors.

The equation Pa1' = dM indicates that parity couples the two representations, 
and the only remaining question is how the extended theory can be made P and T 
invariant. To this end, we combine the two Weyl fermions into a four-component 
Dirac spinor

^ = (9.13)

and the two Weyl equations then become
' z' \ / \
. O^ PR^ = 0

,OR J \LlJ (9.14)

In this extended representation, Lorentz transformations, with A e SO(3, 1), are 
implemented as

^'(x) = Ua^(A-1 x), Ua = (U u-1f) , (9.15)

where the subscript indicates that the SL(2, C) matrices U are functions of A 
via Eq. (9.9). However, it is now also evident how to include parity symme­
try. Previously, we have seen that Pa1' = dM, or POL = Or. We thus need a 
unitary transformation Up exchanging the role of OL and Or in the above equa­
tion. This transformation is easy to find: with UP = t 1 and the t-matrix acting 
in the L/R space of Eq. (9.13), the extended equation becomes invariant under 
^(x) ^ ^'(x) = Up^(Px). For the slightly more tricky inclusion of time-reversal, 
we refer to problem 9.4.1. Summarizing, the extended representation:

i ■ i • \ • j i /A in i • Zn 1 1 \ i Zn -i n\ j • i • iEquation (9.14), with OR,L defined in (9.11) and (9.12), respectively, provides 
the minimal framework for a fully Lorentz invariant theory of quantum 

spinors.

Previously, we have seen that the Weyl equations were rigid in that they did not 
admit anything but zero on their right-hand side. However, perhaps the doubled 
representation leaves room for more flexibility? To find out, we represent the matrix 
operator in Eq. (9.14) as

—iD = — id^Y ^. (9.16)
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Dirac 
equation

The notation emphasizes that the operator is of first order in derivatives and con­
tains a 4 x 4 matrix structure implicitly defined by the y" • These — you will have 
guessed it - are the Dirac y-matrices, and they will be discussed in detail in sec­
tion 9.1.1. However, at this point all we need is the Lorentz invariance of the struc­
ture above, id^y^ ^ U(iid^AY,yv)U-1 = id^y^. (Compare this expresssion with 
the transformation of the previously discussed Weyl equations.) There, we had 
a matrix structure U(...)Ut with UUt = 1 in general. This is now replaced by 
U((...)U-1, and so we may add an invariant term m 14 ^ UA(m 1)U-1 = m 1. 
Following this generalization, we arrive at the full Dirac equation6

6 P. A. M. Dirac, The quantum theory of the electron, Proc. R. Soc. Lond. A 117, 610 (1928).

(i/ — m) ^ = 0, 1/ = d^y^ (9.17)

Physically, the mass term defines the rest mass of the corresponding relativistic 
particle. It couples left and right spinors, which exist in isolation only in the ultra- 
relativistic limit, m ^ 0.

Referring for an in-depth discussion of relativistic Dirac quantum theory to text­
books on particle physics, here we simply note that in condensed matter physics 
linearly dispersive fermions generally appear in even numbers containing equally 
many left- and right-moving branches (see section 9.1.2 for a more detailed discus­
sion). This principle explains, e.g., the even number of linear cones in the Weyl 
semimetals mentioned previously. Mass terms occur when the left and the right 
sectors get coupled by, e.g., potential scattering. In such cases, the Weyl cones “gap 
out” to produce a dispersion, as in the figure at the beginning of the chapter. To 
see how this happens, make the plane wave ansatz ^ ~ ^0 exp(ip^x^), which re­
duces the Dirac equation to (p^yM + m)^0 = 0. With the above identification of the 
y-matrices and the relation OL Or = OrOL = p^p^, it is straightforward to verify 
that solutions exist for p^p^ + m2 = 0. Recalling that p0 = E is the energy, we have

E = ±(pipi + m2)1/2 (9.18)

for the two branches of a massive Dirac dispersion.

y -matrices

In his original derivation, Dirac introduced a set of y-matrices ad hoc, in such a way 
that the (likewise postulated) first-order differential equation (9.17) would produce 
a relativistic dispersion. He found that the defining condition required

[ y^,yv ]+ = -2 ' (9.19)

Clifford 
algebra

i.e., different y -matrices anticommute and square to multiples of the unit matrix. 
(These are the defining commutation relations of a Clifford algebra.) A beautiful 
aspect of Dirac’s construction is that any set of matrices satisfying the Clifford 
algebra will define a valid representation of the theory.
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Y -matrices

Y0 = T 1, Yi = — iT2 ® Oi

Y c = Y 5 = i2 1 Y 0 ■■■Y d 1

Majorana 
represen­

tation

To see how this construction is related to the present approach, we can compare 
the definition — id^Y^ = ( ~ OM = —id^ (a^ aM ) with the operator representation 

OR

in Eq. (9.14) to obtain the explicit realization

(9.20)

These matrices satisfy the Clifford algebra relations and they define the Y-matrices 
in the so-called Weyl (or chiral) representation.7 8 In addition to ym, one often 
introduces a further matrix

7 In the literature, different yet unitarily equivalent sign conventions such as Yi ^ -Yi can be 
found.

8 The answer is given by ® (l — ^) j-?)dxa Ij, = /].

(9.21)

In d = 4, this defines a fifth Y matrix; and for historical reasons it is often called 
Y5 , including cases where d = 4. The denotation Yc reflects that, in the Weyl 
representation, y5 = t3. Comparing with Eq. (9.13), we note that the eigenstates of 
this operator have purely right- or left-handed chirality, hence the subscript c for 
chiral.

EXERCISE Note that y0 is hermitian, while the Yi are anti-hermitian. Considering the 
Clifford algebra, why can Yi not be hermitian? On the same basis, show why the '■" are 
traceless.

The form of the Y-matrices is fixed only up to transformations leaving the Clifford 
algebra invariant. For example, in the Dirac basis representation, Y0 = t3 and 
Yi as in Eq. (9.20). Another example is the Majorana representation,

Y0 = o2 ® ti, y 1 = i'~3, Y2 = °2 ® (-iT2), Y3 = -i'~ 1, (9.22)

for which the Y -matrices are purely imaginary. The physical meaning of this repre­
sentation is discussed in section 9.1.2.

EXERCISE Identify the unitary transformation U mapping between the Weyl and the 
Majorana representations, yMajorana = UyweylU^-8 (Hint: In the solution of such prob­
lems, two tools come in handy. First, the anticommutativity of the Pauli matrices, e.g., 
t1 t2t1 = — t1, and second, the option to “rotate” them around coordinate axes, e.g., 
exp( i a a 1) a 2 exp(—i 2 a 1) = — a 3 for a = n/2.)

Spinor bilinears and currents

In Dirac theory, physical objects are usually labeled according to their transfor­
mation behavior under the Lorentz group. For example, the field ^(x) transforms 
under the spinor representation defined by Eq. (9.15). “Good” operators have the 
property that they transform spinors into spinors. For example, application of the
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pseudo 
scalar

vector 
current

Dirac operator to a spinor produces (i/) — m)p, which again is a spinor (check it) 
regardless of whether p solves the Dirac equation.

Physical observables are usually described by bilinears in the states, and here 
again we should classify them according to their transformation behavior. The 
simplest transformation in relativity is that of scalars p(x) ^ p'(x) = p(A-1 x). 
How can we build a scalar from quantum spinors? Since U-1 = U^ in general, the 
obvious guess, ptp, does not do it. However, with the definition

p = p t y 0, (9.23)

the bilinear pp = p ty0 P is a proper Lorentz scalar. This follows from the iden­
tity y0U ty0 = U -1, which in turn follows from Eqs. (9.15) and (9.20). The same 
argument shows that pp is scalar even for p = p, provided both are spinors.

There are several useful generalizations to bilinears with different transformation 
behavior. For example, it is straightforward to verify (exercise) that the combination 
pY5p defines a pseudo scalar. It is invariant under Lorentz boosts and rotations, 
but changes sign under parity and time-reversal. A similar computation shows that 
the quantity

jV = P Y^P (9.24)

transforms like a Lorentz vector, jVV(x) ^ ApvjVV(A-1 x'). This bilinear turns out 
to be the conserved current associated with the gauge invariance of the Dirac action 
(section 9.1.2) and is hence called the vector current. In particular py0p defines 
the charge density in Dirac theory. Finally, the axial current,

jA = P Y^Y 5 P, (9.25)

transforms like a vector under proper Lorentz transformations but changes sign 
under parity and time-reversal just like the pseudo scalar.

Although the classification above, emphasizing transformation behavior, is tai­
lored to applications in relativistic quantum field theory, it turns out to be useful 
in condensed matter applications as well. We will see this in later sections when 
realizations of currents and scalars reappear in different contexts.

Dirac operators in lower dimensions

The symmetry-oriented derivation of the Dirac equation works in arbitrary dimen­
sions. In the following, we illustrate this point for (1 + 1)-dimensions; this plays a 
role in numerous condensed matter applications. Another motivation for an early in­
troduction of the lower-dimensional realization is that it is technically simpler than 
the (3+ 1)-dimensional realization, but conceptually similar; many of the intriguing 
phenomena observed in Dirac systems afford a technically simpler representation in 
two dimensions. This will allow us to understand their physical principles without 
being bogged down by technical complications.

The dimensionally reduced theory follows from the analysis of SO(1, 1), which 
is now a one-dimensional group represented by matrices A = exp(6a 1) acting on 
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the (1 + 1)-dimensional space-time vectors of the theory as Lorentz boosts. The 
invariance condition is satisfied as before via right and left Weyl fermions acted 
upon by the differential operators, ia^d^ and ia'Yy with a1' = (a0,a 1) and <rM = 
(a0, — a 1). Accordingly, we end up with just two y-matrices, y0 = t 1 and y 1 = 
—iT2 ® a 1. The corresponding yc = Y0 Y 1 = T3 ® a 1.

We note that there are just three y -matrices acting in a four-dimensional spinor 
representation space. The “sparsity” of these matrices indicates redundancy in the 
representation. A more compact form follows from the observation that the Clifford 
relations (9.19) imply the commutation relations [y0, y1] = 2yc, [y1, yc] = 2y0, 
[yc, y0] = —2y1 . Up to a sign, these are the relations satisfied by the algebra of 
the Pauli matrices, showing that the two-dimensional Dirac equation can be 
equivalently represented as9

(id 0 y 0 + id 1 y 1 + m) ^ = 0, (9.26)

with

y0 = t1 , y1 = —it2, yc = t3. (9.27)

In condensed matter applications, the equation with Lorentizan signature (9.26) 
often describes the physics of quasi-one dimensional materials, where x0 = t is time 
and x1 = x is space (section 3.6.1).

There exists another way of reducing the dimensionality of Dirac equations: 
the Kaluza—Klein reduction. While the idea originated long ago in the con­
text of gravity,10 it affords a natural motivation from condensed matter reasoning: 
Dirac materials are often realized through the dimensional reduction of higher­
dimensional materials. For example, a graphene sheet is a dimensional reduction of 
graphite, and a carbon nanotube is a dimensional reduction of graphene. Consider 
what happens if a d-dimensional material with a massless Dirac operator for its 
low-energy description gets “rolled up” to a cylinder of narrow circumference Lx. 
Choosing the d-coordinate to be the transverse coordinate, the size quantization 
of its eigenvalues requires pd = 2nn/Lx. For sufficiently small Lx, the contribu­
tion of this momentum to the Dirac eigenvalue becomes large, and the low-energy 
sector is that of the transverse zero mode, pd = 0. The reduced Dirac operator 
describing it has d — 1 longitudinal variables, and one y -matrix fewer. Importantly, 
it also contains a higher degree of symmetry than its d-dimensional parent: the 
reduced operator anticommutes with yd, which defines a chiral symmetry (cf. sec­
tion 8.1.1). Symmetry hierarchies defined by the successive dimensional reduction 
of low-energy Dirac representations provide a particularly transparent way of un­
derstanding the symmetry patterns of the periodic table of topological insulators 
discussed in section 8.1.1.

9 One can show that the minimal dimension of matrix representations for d-dimensional Clifford 
algebras is given by 2[d/2] , where [d/2] is the integer part of d/2, i.e., 2 in d = 3 + 1, 1 in 
d = 2 + 1 and 1 + 1, etc.

10 T. Kaluza, On the problem of unity in physics, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. 
Phys.), 966 (1921); O. Klein, Quantum theory and five-dimensional theory of relativity, Z. 
Phys. 37, 895 (1926).
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To summarize, there are two different strategies for realizing Dirac operators in 
dimensions different from 3 + 1, dimensional reduction or “working from scratch” 
by constructing spinor representations of the relevant Lorentz groups. Either way, 
one finds that there is a key difference between Dirac operators in even and odd 
dimensions. Odd-dimensional Dirac operators have no sense of chirality, i.e., 
there is no notion of left- and right-handed fermions. There are different ways to 
see this. For example, we have defined chiral fermions as eigenstates of the matrix 
Yc with eigenvalue ±1. However, in odd space-time dimensions, yc commutes with 
all other y-matrices and is therefore a multiple of the unit matrix in irreducible 
representations of the latter - there do not exist nontrivial eigenstates of a chiral­
ity operator. Alternatively, one may work from the fundamentals, and investigate 
spinor representations of, e.g., the three-dimensional group SO(2, 1). This is a highly 
recommended exercise (play with the group SL(2, R)), which shows that the theory 
no longer splits into distinct L and R sectors.

9.1.2 The Dirac action

Dirac sea

REMARK The discussion in this section glosses over a number of fundamental issues 
concerning the symmetries of the Dirac action, or the differences between operator and 
path integral representations. For an authoritative discussion of these aspects, see Ref. 11 .

The derivation of the Dirac equation marked the beginning of quantum field the­
ory. Attempts to interpret it as a relativistic generalization of the single-particle 
Schrodinger equation failed due to the unbounded dispersion (9.18). The suggested 
solution was a many-bo dy interpretation, where all negative energy eigenstates are 
filled - the “Dirac sea.”

INFO The postulate of a Dirac sea of filled states was one of the early triumphs 
of Dirac theory. It showed that a consistent relativistically invariant generalization of 
quantum mechanics required a many-body interpretation. It also led to the prediction of 
antimatter: positively charged hole states left behind when electrons are excited out of 
the sea. At the same time, the Dirac sea led to conceptual problems such as the need for 
an infinitely large negative charge of sea states compensating the precisely equal positive 
charge of empty space. In modern quantum field theory, the idea of the Dirac sea has been 
replaced by a reinterpretation of the vacuum. (In essence, it is axiomatically declared 
that, for negative energy states, fermion annihilators create hole states, rather than the 
null vector.) However, in condensed matter physics, the Dirac sea is generally physical and 
represents the Fermi sea of filled valence electrons below the chemical potential.

In the field integral-oriented spirit of this text, Dirac quantum field theory is de­
fined by a free fermion coherent state action whose variational equation is Eq. (9.17). 
Naively, one might expect a Gaussian action with the Dirac operator as a Gaus­
sian weight. This guess is almost, but not quite, correct. Inspection of Eq. (9.17) 
shows that the Dirac operator is not hermitian (y0 = Y0, Yi = — Yi )• Even though

11 M. Stone Gamma matrices, Majorana fermions, and discrete symmetries in Minkowski and 
Euclidean signature, J. Phys. A: Math. Theor. 55, 205401 (2022).
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convergence is not an issue with free fermion actions, we require the hermiticity of 
one-body fermion operators.

The key to the resolution of this issue lies again in the symmetry of the problem. 
We have seen in section 9.1.1 that ^t^ does not have invariant transformation 
behavior in a relativistic theory. However, with ^ = (id/y^ - m)^, the bilinear 
is a Lorentz scalar and thus defines a promising building block for the construction 
of an effective action. On this basis, we can consider

S [^]= d ddxtp( iD - m) ^ (9.28)

as a candidate for the Dirac action (in Lorentzian, i.e., real-time representation). 
This action checks the two boxes of Lorentz invariance and the correct variational 
properties: variation in ^ trivially produces the Dirac equation (9.17). However, 
there is more to be learned from this representation. Using Eq. (9.20) to rewrite it 

12as

S[^]= J ddx^t(idt + t3 ® ci (idi) — mT 1)^, (9.29)

we observe that the operator sandwiched by the Grassmann fields is hermitian, 
so that one of the issues raised ab ove is out of the way. Second, Eq. (9.29) nicely 
illustrates the splitting of the theory into chiral sectors of R and L Weyl fermions. 
The propagation of the right- and left-moving states is described by idt ± idici, 
respectively. The two sectors are coupled by the Dirac mass operator mt1 . Notice 
that Eq. (9.29) is still perfectly Lorentz invariant. The special role played by y0 in 
this construction is due to the signature (—, +, +, . . . ) of the Minkowski metric; all 
it does is make a perfectly invariant theory look somewhat asymmetric.

INFO In condensed matter applications, Dirac theory frequently emerges in the 
form of Eq. (9.29). For example, the minimal Hamiltonian of a Weyl semimetal contains 
two Weyl nodes, individually represented by ±idiai. Impurity scattering may couple these 
sectors by an operator ~ mT1.13 The real-time action then assumes the form of Eq. (9.29). 
It may or may not pay to switch to the manifestly invariant representation of Eq. (9.28).

Depending on the context, one may prefer to work in an imaginary-time framework. 
Following standard protocol, the latter is defined by the analytic continuation t ^ — ir. 
The additional factor ‘i’ upfront of the analytically continued time derivative would then be 
absorbed in the matrix y0 ^ iY0 = YE to define an algebra of Euclidean y-matrices.12 13 14 

Comparing with Eq. (9.19), the new set of matrices does indeed satisfy a Euclidean Clif­
ford algebra, [yE,YE] = -2''"", and they are uniformly (anti)-hermitian, yE^ = -YE• 
Unfortunately, however, the definition of a Euclidean action from the Lorentzian one is 
not quite as straightforward. The point is that, in the construction above, the definition of 

12 Here, the spinor ^^ and ^ are independent Grassmann fields. Alluding to the representation in 
terms of creation and annihilation operators, we use the (standard) f-notation to distinguish 
between t/> and ^^ = ^y0.

13 In the condensed matter context, more general couplings are possible as we are not constrained 
by relativistic invariance.

14 In the particle physics literature, the Euclidean y-matrices are often labeled differently, namely 
YE, '"4, with iY0 ^ YE and Yi = YE•
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the adjoint ' = '^70 reflected the special role played by the time coordinate. The particle 
physics Euclidean Dirac action often (but not always) replaces the ' adjoint by '^, so 
that the two variants of the action differ by more than a few factors of ‘i’. The rule of 
thumb is as follows:

Lorentzian (real-time) action: S['] = ddx'(id^yM — m)',
(9.30)

Euclidean (imaginary-time) action: S['] = ddx'^(d^yE — m)'■

However, there are no generally accepted conventions, which makes navigating the liter­
ature on Euclidean versus Lorentzian Dirac theories somewhat tedious.15 In condensed 
matter physics, the situation is better in that effective Dirac theories are generally defined 
by an underlying microscopic theory, and in this way all factors of i and adjoints get fixed 
automatically.

15 See P. Nieuwenhuizen and A. Waldron, On Euclidean spinors and Wick rotations, Phys. Lett. 
B 389, 29 (1996) for a discussion.

16 In the first equality we used the fact that for arbitrary Grassmann bilinear forms, XTXv = 
XiXij vj = — vj XTiXi = — vT X T X.

Majorana fermions

REMARK This section discusses Majorana fermions in- and outside the context of Dirac 
physics. It digresses somewhat from the main theme of this chapter and can be skipped 
at first reading.

subsequent whereabouts and fate remain un- 
knonwn.

Ettore Majorana 1906-?
was an Italian theoretical physi­
cist famed for the discovery 
of Majorana fermions and his 
work on neutrino masses. Ma­
jorana disappeared in 1938 
under mysterious circumstances 
while on a ferry passage. His

Majorana 
fermions

In section 9.1.1 we saw that the 7- 
matrices can be represented in purely 
imaginary form (9.22). In this repre­
sentation, the Dirac operator id^yM — 
m is real, and the Dirac equation 
(9.17) affords a solution in terms of 
real spinors, p. Within the many-body 
framework, such solutions give rise to 
neutral particles, which are their own
antiparticles - the famous Majorana fermions.

The fundamental physics of Majorana fermions is discussed in every textbook 
on particle theory and will not be reviewed here. With condensed matter applica­
tions in mind, we rather focus on the manifestations of Majorana fermions in 
effective Dirac theories. To this end, consider the Dirac action (9.28) in the Ma­
jorana representation. With p(idp'-p - m)p = pKid^Y0Y^ - m70)p and Eq. (9.22), 
we notice that the operator in parentheses is purely imaginary and hermitian. In 
other words, it assumes the form of i times an antisymmetric matrix. With the 
abbreviation (id/y0Y^ - mY0) = iA, we may rewrite the action as (the notation is 
somewhat symbolic16)

s [ p ] = i p t Ap yJ (p t Ap — pT AT p *) (nT An + v T Av) = S [ n, v ],

where n = p + p * and v = (p — p *)/i. This construction shows that the action can 
be represented as a ‘real’ bilinear form, in terms of the “real” and “imaginary” part 
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of the Grassmann variables ^ = 2 (n + iv). We are using quotes because complex 
conjugation for Grassmann variables is not defined, i.e., ^t and ^ are independent 
variables.

To make the real representation of a fermion more tangible, consider the simpler 
t t t texample of the free fermion Hamiltonian, H = ai 2hjaj + (ai Ajaj +h.c.). Here, 

h and A are arbitrary N x N matrices constrained only by hermiticity, h = ht, 
and the antisymmetry A = -AT required by Fermi statistics, [ait, ajt]+ = 0. The 

Hamiltonian H represents the most generic form of a free fermion Hamiltonian. It 
obeys no symmetries besides hermiticity, not even particle number conservation. 
Equivalently, we may think of H as the most general mean field superconductor 
Hamiltonian.

As in section 5.3, we introduce a Nambu-Gorkov representation,

H=(at,a)i ( h- At) f at) = *H*•-A -hT ij at j

Notice that the matrix Hamiltonian HI obeys the relation oxHTox = — HT. Except 
for the presence of the Pauli matrices in Nambu space, this is an antisymmetry 
relation similar to that we had in the Majorana representation of the Dirac operator. 
This suggests a transformation

1 f1
2 \1

0 M - M S
—i v

(9.31)

Majorana 
fermion 

operators

to the “real” Majorana fermion operators,

n = a + at, v = — (a — at). (9.32)

Majorana 
represen­

tation

Comparison with our previous discussion shows that this is the operator analog of 
the transformation of Grassmann variables ^ o a, ^t o at. Indeed, it is straight­
forward to check that, in the Majorana representation, the Hamiltonian assumes 
the form

H = i STXS, XT = — X, (9.33)

with a real antisymmetric matrix.17 The defining features of the Majorana fermion 
operators are their self-adjointness,

Sta = Sa, (9.34)

Clifford 
commu­

tation 
relations

and the Clifford commutation relations,

[Sa, Sb]+ = 2^ab (9.35)

where a is a container index for the 2N components of S = (n, v). Notice that we 
have another realization of the Clifford algebra (9.19), this time in a 2N -dimensional 

17 As an exercise, verify that (V - V) - (j5 - l-l') 
(V + V)? - (jV + V)?

(V + V)? - (j5 + V)?-A 2 _ 
(V-V) + (j5-V) J1 X-
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Euclidean realization, n^v ^ dab• Also notice that the Majorana fermion squares 
to unity, Sa = 1.

We may establish contact with the previous discussion by turning to an effective 
Grassmann action representation. Starting from the imaginary-time action S[^] = 
f dT 'J'(2dT + H)^,18 we then apply the above similarity transformation to obtain

S[S] = j dT sT (1 dT + iX^ s (9.36)

for a Euclidean variant of the Majorana action. With the identification iA = 1 dT + 
iX, this resembles the previously discussed Dirac expression, iA = idt + idiY0Yi - 

mY 0.

INFO There exist various condensed matter realizations of free fermion Hamiltonians 
lacking all symmetries. Examples include semiconductors with strong spin-orbit interac­
tion, such as InAs, tunnel-coupled to superconductors and to external magnetic fields. The 
corresponding Hamiltonians violate particle number conservation, time-reversal, and spin­
rotation symmetry; in the classification of section 8.1.1, they belong to the class of least 
symmetry, D. In low dimensions, d = 1, 2, these systems can be pushed into “topological 
phases,” where they harbor Majorana fermion modes (d = 2), or isolated Majorana bound 
states (d = 1) close to their boundaries. In the case of finite-size topological quantum wires 
(d = 1), the two boundary regions are separately described by a Majorana Hamiltonian 
(9.33) of odd dimension. (Notice that our “bulk” construction above necessarily led to 
even-dimensional Majorana Hamiltonians. This indicates that the two odd-dimensional 
effective edge Hamiltonian of a topological class D quantum wire cannot exist in isolation. 
However, the full system comprising two odd-dimensional boundary systems conforms 
with the dimensionality principle, even if the boundaries are separated by an arbitrarily 
extended insulating bulk.)

The crucial point now is that every odd-dimensional antisymmetric matrix has a zero 
eigenvalue (why?). The corresponding wave function is the Majorana zero-energy bound 
state. We may combine the left and right Majorana zero modes nL,R to form a complex 
fermion, a = 2 (nL + inR)• The wave function of this fermion state is unusual in that 
it is “decentralized” with weight accumulated at the two ends of the wire. This feature 
makes it robust against local perturbations and gives the qubit states defined by the 0 
and 1 occupation of the non-local fermion a high degree of “topological protection.” In a 
nutshell, this is the principle behind the Majorana qubit and its stability. At the time 
of writing, various material platforms are showing indications of Majorana bound state 
formation (see fig. 9.1 for the example of semiconductor quantum wires). However, in spite 
of intensive experimental efforts, the definite proof that these states are indeed Majoranas 
(as opposed to conventional superconductor mid-gap resonances) remains in question.

Dirac actions describing lattice structures

Previously, we derived the Dirac action in a continuum framework. Condensed 
matter systems, on the other hand, are defined as lattice structures. Realizations 
of Dirac Hamiltonians in condensed matter physics therefore must have the status 
of effective long-range descriptions. In many cases, the passage from a lattice to

18 The factor 1/2 multiplying the time derivative follows from the rewriting of the canonical term 
f V>dT^ = 2 f JdTJ for J = (^X).
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Fig. 9.1 Local density of states of an InAs quantum wire measured by tunnel spectroscopy, as a 
function of energy and the strength of the external magnetic field. At a critical point, the 
wire enters a topological phase and signatures of a zero-energy state appear. Figure courtesy 
of C. M. Marcus, QDev Copenhagen.

a continuum is straightforward: we pick a reference point in the Brillouin zone 
and expand around it in small momentum deviations. The same strategy works in 
connection with Dirac fermion representations; but there is a subtlety.

The issue is best understood by going in reverse: how would a good lattice dis­
cretization of the Dirac action (9.28) look? The natural approach to answering this 
question is to introduce a space-time lattice, and replace derivatives by differences,

dpi(x) ^ x(I(x + Axe^) — ’(x — Ax)).

In a momentum space representation, this turns into

d ddx-ipid^i ^ - l^ax iY^ (sin(Axp^))’.

p

fermion 
doubling 
problem

The issue is that the lattice representation has not just one but 2d hot spots in its 
Brillouin zone around which it is described by a Dirac representation: linearizion 
around any of the points p G {0, n}d leads back to the same continuum action, 
i.e., the lattice action describes 2d different “flavors” of Dirac fermions. In particle 
physics, this is known as the fermion doubling problem. It presents a nuisance 
in numerical approaches to Dirac problems, and a great deal of effort has been 
invested into minimizing its consequences.

In condensed matter physics, we generally approach the problem from a different 
perspective: given a solid state system, what kind of effective Dirac low-energy
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descriptions are possible? Possible answers to this question must conform with 
the Nielsen—Ninomiya no-go theorem.19 In essence, this theorem is another 
manifestation of the conflict between multiple zeros in trigonometric functions and 
single linearly dispersive hot spots in Brillouin zones. More precisely, it states that 
in even d space-time dimensions, and under mild conditions (such as locality and 
translational invariance), it is impossible to realize odd numbers of Weyl fermions 
on a lattice. For example, in d = 3 + 1, the number of Weyl cones in a Weyl 
semimetal is necessarily even. Or, in d = 1 + 1, it is impossible to have a lattice 
with only left-moving fermions in the low-energy limit, etc.

In odd space-time dimensions (e.g., d = 2 + 1), there is more freedom. For ex­
ample, graphene has two Dirac Hamiltonians as a low energy theory. However, the 
quantum anomalous Hall (QAH) insulator introduced on page 464 reduces to only 
one Dirac Hamiltonian at low energies. This is understood by inspection of the lat­
tice dispersion (8.38). For r ~ 2, an expansion of sin ki shows that zero momentum, 
k = (0, 0), becomes the center of a linearly dispersive low-energy Hamiltonian

Heff = k 1o1 + k 2 o 2 + mo 3, (9.37)

with small mass m = r — cos k 1 — cos k2. The complementary points ki = n have 
large mass and effectively get gapped out. As an exercise, investigate how attempts 
to gap out only one of the two Weyl fermions in a lattice discretization of a (3 + 1)- 
dimensional Dirac model fail.

Symmetries of the Dirac action

spin 
statistics 
theorem

In the present section, we postulated the Dirac action (9.28) associated with the 
Dirac equation (9.17) (for an actual derivation, see problem 9.4.2) and discussed 
some of its key features. It should be emphasized just how amazing is this list of fea­
tures. We started from a minimal relativistically invariant extension of Schrodinger 
theory. That extension required a spin-1/2 spinor structure. The unboundedness 
of the relativistic spectrum forced on us a many-body fermion interpretation. (For 
further details, see problem 9.4.2.) This linkage between fermion statistics and odd 
half-integer spin is a manifestation of the spin statistics theorem,20 which states 
that, in (3 + 1)-dimensional Lorentz invariant theories, particles with odd/even 
half-integer spin are fermions/bosons.

In addition to its invariance under 
proper Lorentz transformations, the 
Dirac action possesses three discrete 
symmetries: charge conjugation C, 
parity P, and time-reversal T. We 
discussed parity in section 9.1.1; time­
reversal and charge conjugation are ad­
dressed in problem 9.4.1. Specifically, the physics of elementary particles.

Julian Schwinger 1918-1994 
an American physicist who re­
ceived the 1965 Nobel Prize in 
Physics with Sin-Itiro Tomon- 
aga and Richard P. Feynman, 
for their fundamental work in 
quantum electrodynamics, with 
far-reaching consequences for

19 H. B. Nielsen and M. Ninomiya, Absence of neutrinos on a lattice, Nucl. Phys. B. 185, 20 
(1981).

20 J. Schwinger, The quantum theory of fields I, Phys. Rev. 82, 914 (1951). There are older 
references, but this one appears to provide the first watertight proof.
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the symmetry under the latter implies the existence of antiparticles, particles iden­
tical to fermions but of opposite charge. From a condensed matter perspective, the 
Dirac antiparticles are just the holes left in the Dirac sea of filled negative energy 
states when one particle is excited out of it. However, to appreciate how weird 
the original postulate of anti-electrons (positrons) appeared to the physics com­
munity, note that Dirac himself mistakenly identified his positive-charge solutions 
with protons before accepting them as a new species of particle. The combined 
appearance of C, P, and T is a manifestation of another fundamental theorem, the 
CPT-theorem,* 21 which states that Lorentz invariant theories must be invariant 
under the combined application of the three symmetries. As a corollary, note that, 
in a relativistic theory, the fulfillment of two of the three symmetries implies the 
third. Conversely, violation of one of them implies violation of the combination of 
the remaining two.

In condensed matter physics, phase transitions between distinct topological insu­
lator phases involve the closure of band gaps, which can be modeled in terms of

21 The statement appeared first in Ref. and was independently proven by Pauli, Liders and 
Bell. See particle physics textbooks for further discussion and references.

Finally, the Dirac action conserves charge and hence is invariant under continuous 
U(1) transformations ^ ^ e1^ of the Dirac spinors. However, there is a second 
and less obvious U(1) symmetry. Consider the transformation

^ ^ eia5 ^, ^ ^ ^eia5. (9.38)

Since y5 anticommutes with all other y-matrices, this is a symmetry of the massless 
action (m = 0) called its axial symmetry.

EXERCISE Show that the conserved currents associated with the two U(1) symmetries 
are the vector current (9.24) and axial current (9.25), respectively.

At first sight, this looks like a weird non-unitary symmetry (identical signs in the 
exponent of Eq. (9.38)) of the Dirac operator. However, note that the above trans­
formation implies that ^ t = $y0 transforms as ^t ^ ^t exp( —iaY5). The sym­
metry thus preserves the hermitian conjugacy between ^ and ^t in the operator 
interpretation of these objects. Indeed, the physical meaning of the axial symme­
try becomes more obvious in the chiral representation (9.29) in terms of ^ and 
^t. With y5 = t3 in the basis underlying this representation, we observe that the 
axial symmetry simply describes the independently conserved charges of the left- 
and right-handed fermions in the absence of mass. In this limit, the spinor compo­
nents with t3-eigenvalues ±1 may be independently transformed, with phase factors 
exp(i(^ ± a)).

From the perspective of the condensed matter physicist, that second continuous 
symmetry of the Dirac action looks suspicious. We do not expect to find indepen­
dently conserved charges in lattice theories with approximately linear low-energy 
spectra. In the next section we will show how the inclusion of quantum fluctuations 
is key to reconciling these two views of the axial symmetry.

9.1.3 Massive Dirac operators and the physics of boundaries
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surface
zero modes

low-energy Dirac Hamiltonians. Referring to Ref. 22 for a general discussion covering 
all dimensions and symmetry classes, the principle is illustrated by the Hamilto­
nian of the quantum anomalous Hall insulator (8.38). Depending on the sign of 
m = r — 2, the system is either in a topological phase (m < 0) or in a trivial 
insulating phase (m > 0). The assignment of a topological index to the parameter 
r requires a complete description of the system’s quantum ground state (see info 
block on page 464) beyond the local Dirac approximation. Nevertheless, the latter 
knows about the topological phase via the sign of the Dirac mass.

Now consider a spatial boundary between different topological phases realized 
by the change in sign of a mass function m(x) smoothly changing as a function of 
one variable, chosen such that m(0) = 0 marks the position of the phase boundary. 
Far from that interface, our system is in an gapped insulating phase. However, at 
the interface, the system is in a critical configuration, and we expect a divergence 
of length scales symptomatic of critical points. Phenomenologically, this spatially 
confined criticality manifests itself in the protected surface transport properties 
of topological insulators. Within the Dirac description, it shows in the emergence 
of surface zero modes, zero-energy eigenstates of the Dirac operator spatially 
confined to the surface.

Let us construct these states for the example of the low-energy Dirac represen­
tation of the QAH insulator (8.39),

H = idxox + idy ay + m (x) az.

Multiplication of the equation H |^) = e |^) from the left with the matrix iax leads 
to [(—dx + m(x)ay) + iax(idyay — e)] ^ = 0. The separability of this differential 
equation, translational invariance in the y-direction, and the Pauli structure of 
its x-dependent part motivates an expansion |^(x, y)) = kSks=± ^s (x) etky |s) in 
y-eigenstates, ay | s) = s | s). Substitution of this ansatz into the equation gives

[(—dx + m(x)s)^s (x) + ^s (x)iax(—ks — e)] |s} = 0. 
s

The x-dependent part of the equation has the formal solution

a (x) = ^s (0) exp s / du m(u) ,
0

where the actual existence of the func­
tions ^s (x) depends on the spatial pro­
file of m. For m crossing from negative to 
positive values, s = —1 defines a normal­
izable solution exponentially decaying on 
a scale set by the variation of m. For m 
changing from positive to negative, the
s = 1 solution exists. This distinction is at the origin of the definite “chirality” 
of the surface states. Notice that, for a finite-size geometry with, say, a (—, +, —)

22 S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, Topological insulators and su­
perconductors: tenfold way and dimensional hierarchy, New Journal of Physics 12, 065010 
(2010).
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sign profile of the gap in the x-direction, boundary states of opposite chirality are 
stabilized. Provided m varies on scales short compared with the transverse extension 
of the system, these states do not overlap (see the figure).

The second term in the equation above fixes the linear dispersion of the surface 
states as e = — ks. (In physical units, this would read e = — v0 ks, where the char­
acteristic velocity is determined by the low-energy dispersion of the system.) We 
conclude that either interface supports a single branch of linearly dispersive modes 
propagating with opposite velocity ±v0 . These solutions define the edge modes of 
the QAH insulator.

While the details of surface state identification in general dimensions de­
pend on the “fine print” such as the metric signature (Euclidean versus Lorentzian) 
or on the realization of the 7-matrices, the general principle mirrors the rationale 
of the computation above. To see why, consider the Lorentzian Dirac equation 
(9.17) with a mass parameter crossing zero as a function of, say, x1 = x. Using 
the fact that (y 1 )2 = —1, multiplication of the equation by iY1 transforms it into 
(dx + iY1 m(x) -22M = 1 d^(Y 1 Y^))^ = 0. Now, the anti-hermitian matrix y 1 has 
eigenvalues ±i, and a projection ^ 22s Ps'--', where y 1 Ps = isPs reduces the x-
dependent part of the equation to (dx — sm(x))I’sxs = 0. Depending on the slope 
of the zero crossing, this equation has a bound state solution for s = ±1. The pro­
jection of the “longitudinal” part of the equation then defines a system of linearly 
dispersive surface states as above. (As an exercise, fill in the details!)

In section 9.2.1, we will discuss the connection between the topological signature 
of the Dirac operator and its zero modes of definite chirality. In that reading, the 
surface modes identified above reflect a change in a topological index of the Dirac 
operator. The practical consequence of this topological principle is that there is a 
high level of protection of the surface states against, say, potential disorder or other 
sources of inhomogeneities.

9.2 Anomalies

In section 1.6, we introduced symmetries as transformations of fields that leave their 
action unchanged. Introduced in this way, the invariance criterion must hold for all 
fields. In particular, it applies to fields satisfying extremal conditions, the “classical” 
equations of motion, where it manifests itself in conservation laws via the Noether 

anomaly theorem. A symmetry anomaly is realized if the inclusion of (integration over) 
fluctuations around the classical configuration spoils the conservation law. In view 
of what has just been said, this statement seems paradoxical. If all fields individually 
satisfy the symmetry criterion, how can it be violated as a result of an integration 
over fields? The only way for this to happen is that something exceptional is going 
on at the boundaries of the integration domain - we anticipate that anomalies are 
ultraviolet (UV) phenomena.

As an example, consider the action of the nonlinear 0-model (6.32) in d = 2. It 
contains as many derivatives as spatial integrations, which implies scale invariance, 
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a symmetry under transformations g(x) ^ g(x/b). However, as discussed in sec­
tion 6.4, fluctuations in this theory are UV singular, and their integration - i.e., 
renormalization group procedure - sends the theory into a disordered phase with 
exponentially decaying correlations and no scale invariance.

The reinterpretation of fluctuation-renormalization as an anomaly may be in­
teresting, but is a little too vague to be useful in its own right. More concrete 
realizations are found in the physics of Dirac systems. These theories have linear 
dispersion, which implies that their propagator is inverse-linear in momenta. Loop 
integrals over fluctuations thus show a higher degree of UV singularity than in non- 
relativistic theories. In the following, we discuss the classic example of an anomaly 
relying on this principle - the chiral anomaly.

9.2.1 Chiral anomaly

chiral 
anomaly

Discovered by Adler,23 and Bell and Jackiw,24 the chiral anomaly refers to the 
non-conservation of the axial current density (9.25) in Dirac theory. The essence of 
this effect is explained in a (1 + 1)-dimensional setting.

Qualitative discussion

Consider the two-dimensional Dirac action, in the representation of Eq. (9.29), 
minimally coupled to a background field:

S[^] = y d2x at((idt + A0)+ a3 (id 1 + A1) — ma 1)^. (9.39)

In the massless case, m = 0, the left- and right-moving sector decouple. The sepa­
rately conserved particle numbers on the two branches define the conservation law 
of the axial symmetry. (In the presence of m, the two branches hybridize and only 
global charge conservation remains.)

EXERCISE To make the consequences of this decoupling in the effective action more 
explicit, make the generalization A ^ A + Ba3 to a vector potential with an “axial 
component,” B. Write down the gauge principle for A and B tha upgrades the above 
two-fold symmetry under phase transformations by ($, a) to a local gauge symmetry 
with gauge group U(1) X U(1). Show that the conserved charges of this symmetry are 
proportional to the particle numbers on the left- and right-moving branches. Where in 
this construction do you sense trouble with regard to UV regularity?

Now, let us see what happens if the system is coupled to an electric field E repre­
sented by a potential (A0, A1) = (0, —Et). Inspection of the Dirac Hamiltonian in a 
first-quantized representation (see problem 9.4.2), H = —(p + Et)o3 + mo1, shows 
that the kinematic momentum k = p + Et changes in time. Assume that, at time

23 S. L. Adler, Axial-vector vertex in spinor electrodynamics, Phys. Rev. 177, 2426 (1969).
24 J. S. Bell and R. Jackiw, A PCAC puzzle: no ^ YY in the a-model, Il Nuovo Cimento A 60, 

47 (1969).
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0

Fig. 9.2 Chiral anomaly in a (1 + 1)-dimensional system from a condensed matter perspective. The 
application of an electric field to a one-dimensional crystal (with cosine dispersion relation) 
shifts momentum states as indicated in the upper figure. From the perspective of the two 
low-energy left- and right-moving linearizations around the chemical potential, it looks as 
though particles are appearing or disappearing (see the two lower insets).

zero, all negative-energy states are filled. Over time the momentum increases and 
the state occupation changes, as indicated in the insets in fig. 9.2. From the per­
spective of the right- and left-moving branches, it looks as if particles appear and 
disappear, respectively, in conflict with particle number conservation. If we define 
the particle density pa, a = L, R, in terms of the number of particles outside the 
Dirac sea of negative-energy states, we have (verify) dtpa = aE/2n, different from 
zero.

Where does the conflict between a decoupling of the two branches, yet violation 
of individual charge conservation, originate? The problem lies in the naivety of our 
definition of charge. To determine the total charge of the right-moving branch, say, 
we would need to subtract the infinite number of all empty states from the equally 
infinite number of occupied states. The alternative to this ill-defined operation is a 
UV regularization, defining how the number of left- and right-moving states is lim­
ited at some large momentum cutoff A. This is how the problem gets resolved. Any 
consistent UV regularization effectively introduces coupling between the branches 
and removes the spurious conservation of axial charge.

Depending on the context, there are different options for making such UV regu­
larization schemes explicit, and we will discuss some of them below. For the time 
being, we just note that condensed matter (lattice) realizations afford a particularly 
transparent interpretation. In condensed matter physics, the (1 + 1)-dimensional 
Dirac action arises as the linearization of a cosine-lattice dispersion around two 
Fermi points (see fig. 9.2). The above time-dependence of the momentum is now 
understood as a sliding of the full cosine band, as indicated by the arrows. In this 
way, we understand how particles get pushed (through the energetically high-lying 
UV states) from the left- to the right-moving branch.
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Invariant formulation

In previous sections, we emphasized the relativistically invariant formulation of 
Dirac theory. In the same spirit, let us formulate the above symmetry violation in 
an invariant form. We first note that dt ( pr — pL) is the zeroth component of d.jA, 
where the axial current density is defined in Eq. (9.25). The non-conservation of 
axial current thus assumes the form

dj = 1E. (9.40)
n

The left-hand side of this equation is a Lorentz scalar, and so we need to represent 
the right-hand side as a scalar, too. What could this be?

A straightforward way to figure this out is to look at the situation in the language 
of differential forms.25 In this framework, the current density in 2 dimensions is a 
one-form, ja = jAvdxv (see page 784), where we use a roman letter ja to avoid 
confusion with the vectorial object jA = <Avja,v.26 Its conservation is probed by 
the exterior derivative, dja = dAjavdxA A dxv, a two-form. The non-conservation 
of axial current must thus be expressed in terms of a two-form containing the 
electric field. Indeed, we have one such object, the two-dimensional field strength 
tensor F = 1 FavdxA A dxv, whose single non-vanishing component is given by 
F01 = do Ai — diAo = E. On this basis, we conclude that the invariant formulation 
of the non-conservation of axial current assumes the form

dj A = 1- F. (9.41)
2 n

To translate back to a scalar (0-form) relation, we apply the Hodge star of appendix 
section A.1.3, which in two-dimensions maps two-forms to 0-forms. Application of 
Eq. (A.20) leads to

9» jA = 2^ F . (9.42)

On the right-hand side, we have the invariant representation of the electric field.

Chiral anomaly in field theory

How can we describe the chiral symmetry and its breaking within the framework of 
Dirac field theory? In principle, the strategy seems clear. Given that the anomaly 
is caused by UV singularities, we need a regulator in the action which damps out 
fluctuations for large momenta, p > A, and remains invisible at low momenta. The 
regulator must explicitly break the chiral symmetry (for otherwise it would remain 
unbroken in the regularized theory). It is also evident that we will see the manifes­
tations of the symmetry breaking only after the UV singular fluctuations have been 
integrated over, i.e., at the level of “trace logarithms.” If, following Noether, we then

25 Readers not yet familiar with this concept may take this is as an incentive to read appendix 
section A.1. Differential forms will be increasingly used in what follows.

26 The relation between the current form and vectors involves the antisymmetric tensor, i.e., it is 
not the usual metric index-raising operation connecting one-forms and vectors. 
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Pauli—
Villars 

regulator

Fujikawa
approach

consider an infinitesimal axial gauge transformation (9.38), its non-commutativity 
with the regulator will lead to a finite contribution to the effective action. From 
our discussion above, we expect this contribution to include the coefficients of an 
external vector potential.

The expansion of the “tr ln” operator in symmetry generators and the vector 
potential leads to a momentum integral rendered finite by the regulators. The dia­
grammatic representations of these integrals are known as triangle diagrams,27 

and we refer interested readers to any textbook on particle physics for a discussion.

INFO There are different ways to regularize UV divergences in relativistic field theory. 
For example, Pauli—Villars regularization28 introduces a fictitious system of heavy 
particles such that divergent propagators are replaced by (ppY1^ + m)-1 - (PpY^ + M)-1. 
For small momenta |p| M, the subtracted term is irrelevant, but for large momenta, 
it cancels the singularities of the first. In condensed matter physics, Dirac Hamiltonians 
arise as low-energy approximations of band structures that define the extrapolation of the 
theory to larger energies. In these cases, the band structure provides UV regularization. 
As an example, consider the QAH insulator, Eq. (8.38). For low energies, it reduces to 
the two-dimensional Dirac Hamiltonian (9.37) with mass m = r — cos k 1 — cos k2 ~ r — 2. 
However, at larger momenta, m ~ r + 11 (k2 + k2), and the quadratic terms provide UV 
regularization of momentum space propagators. (The full integral over the Brillouin zone 
is “even more” convergent owing to the finite range of the lattice dispersion relation.)

Below, we will compute the anomaly by a beautiful alternative strategy due to 
Fujikawa.29 Compared with the diagrammatic formulation, the Fujikawa method 
is closer in spirit to the path integral approach. It makes reference to dimension­
ality only at late stages, and elucidates the connections between the anomaly and 
topology.

Fujikawa method

REMARK In this section, we work in a Euclidean framework. With y0 ^ iY0, all Y- 
matrices are anti-hermitian, and the eigenvalues ±(p^p^)1 /2 = ±p of the Dirac operator iD 
are real. We will also make reference to the Wigner transform explained in section A.4.3. 
However, even readers unfamiliar with the Wigner transform will likely be able to under­
stand the section.

The idea of Fujikawa was to pay attention to the measure of the field integral, Dty. 
The measure controls which fluctuations are integrated over and should therefore 
take into account UV issues. Before investigating how axial transformations affect 
it, we must first define a measure suitable for later UV regularization. To this end, 
let
27 The particle physics literature generally focuses on (3 + 1)-dimensions, where the anomaly 

manifests itself through a term quadratic in field amplitudes (see below). The corners of the 
diagrammatic triangle are two vertices defined by A and one defined by the infinitesimal rotation 
generator.

28 W. Pauli and F. Villars, On the Invariant Regularization in Relativistic Quantum Theory, Rev. 
Mod. Phys. 21, 434 (1949).

29 K. Fujikawa, Path-Integral Measure for Gauge-Invariant Fermion Theories, Phys. Rev. Lett. 
42, 1195 (1979).
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iD$n = Xn^n (9.43)

be the complex-valued eigenfunctions (to be distinguished from the Grassmann 
integration variables) of the Dirac operator D = (d,, — iA^)7M minimally coupled 
to an external vector potential. In the Euclidean framework, the eigenvalues Xn are 
real.

EXERCISE Consider the inner product

{f,g } = y ddxfg = J" ddxff Y 0 g (9.44)

and verify that the Dirac operator is hermitian30 relative to it: (f, (iD)g) = {(iD) f, g}. On 
this basis, conclude that the set of eigenfunctions {'.'>n } is complete. These features hold 
for both the Euclidean and the Lorentzian Dirac operators. However, in the latter case, 
p^p^ has indefinite sign and hence the eigenvalues (p^p^)1 /2 can be real or imaginary. How 
do hermiticity and the absence of a real spectrum go together? Recapitulate what linear 
algebra has to say about this matter to figure out why the above inner product does not 
exclude hermitian operators with complex eigenvalues.

Assuming these states to be orthonormalized, (^n,^m) = dnm, we can expand the 
Grassmann spinors entering the field integral as p = nCn cn^n, p = nCn cn^n, with 
Grassmann-valued coefficients cn,cn. The integration measure is then defined as 
Dp = fln dcndcn = Dc, and the massless Dirac action reads S[p] n Xncncn.

On this basis, we now investigate the change of the measure under the infinites­
imal axial transformation

p ^ p1 = (1 + A-Y5)P, P ^ '.■’' = 4’(1 + ieY5), (9.45)

with real e = {e(x)}. (Since the axial transformation is not unitary, a change in 
the measure is to be expected.) Expanding p' in coefficients {cn}, and using the 
orthonormality of the eigenfunctions, it is straightforward to verify (do it) that 
the vector of transformed coefficients is given by c' = Jc, where J = 1 + iM and 
the matrix M has elements Mnm = (pn,ey5°m)• We note that the matrix M is 
anti-hermitian, M = — Mt.

EXERCISE Use the definition of the above inner product and the properties of the 
matrices Y0 , Y5 to verify this statement.

The measure thus changes as Dc = | det( J)|-2 Dc"", with a Jacobian factor

| det(J)|-2 = exp(—trln J + c.c.) = exp(—trln(1 + iM) + c.c.) exp(—2itr(M)),

where in the final step we have used the anti-hermiticity of M .

30 Actually, the hermiticity (or self-adjointness) of the Dirac operator is a subtle issue. We are 
accustomed to “symmetry relative to a scalar product” as a criterion for the hermiticity of an 
operator X. However, there is another requirement, that X and X^ have identical domains of 
definition. The Dirac operator defines one of the rare cases in physics where this additional 
disclaimer matters, and we will touch upon this point in section 9.2.1. However, for the time 
being, we rely only on the exchange symmetry of the scalar product and in this sense consider 
it hermitian.
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At this point, we have reduced the problem to a computation of the trace over 
M = eY5. However, this final step is not trivial. On the one hand, M contains the 
matrix y5, which is traceless. On the other hand, there are infinitely many terms 
in the n-sum. We are thus left with a 0 x x situation, whose clarification requires 
a regularization of the sum.

We achieve this regularization by introduction of a “convergence generating fac­
tor,”

tr(M) = tr(x5) —> tr (x5e+&D> } , (9.46)

with positive infinitesimal 5. At this point, the fact that we are using a Euclidean 
metric comes into play: the eigenvalues of D) are imaginary, and hence 5D) defines 
a negative-definite damping operator. The tracelessness of M further implies that 
contributions to the now regularized trace must involve the participation of the 
exponents. At the same time, the exponent is small in 5 and the smallness of that 
parameter must be compensated by a large summation volume, which means large 
momenta; we see the UV nature of the anomaly creeping in.

To make optimal use of this fact, we evaluate the trace in a Wigner transform 
representation (see appendix table A.1). In concrete terms, this means that we 
abandon the concept of “exact eigenfunctions” and represent the trace as an integral 
over momenta and coordinates. Products of non-commuting operators such as p^ 

and Av(x) are evaluated to leading order (in a Wigner expansion), piAv(x) ^ 
pj^Av(x) — 2d^Av(x), where the expressions on the right-hand side are functions of 
c-number variables. In this way, the squared Dirac operator becomes

—D2 = (pM — A) ' (Pv - Av) Yv

^ (PP + 2(dA — dvA»))= P^vpv + iF^vy',

where, in the final step, we have used the anticommutation relation (9.19) and 
the notation makes the presence of the (Euclidean, n^v ^ 5^v) metric explicit.31 

Substitution of this expansion into the trace yields

tr (ey 5 e+SD = =
ddxddp 
(2 n) d

£(x) y5 e-s(P +iiF^v (x)Y^YV/2) (9.47)

where we have made the coordinate dependence of e and F explicit. We now see light 
at the end of the tunnel. The y-matrices appearing in the exponent may counter 
the tracelessness of the pre-exponential y5 . Expansion in these matrices introduces 
small factors of 5, which in turn are countered by the integral over momenta.

Specifically, for d = 2, a first-order expansion and Eq. (9.27) imply that

tr (ey5e+SD> = — i5 d d2xe(x)eAvF;jv(x) [ -—pe Sp .
V (J J (2 n )2,

1 / 4 n6

31 In the ^ step, we have ignored a term A^A^ proportional to the unit matrix, which does not 
contribute to the trace in the limit 5 ^ 0.
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In the final step, we turn back to the Lorentzian formulation, which effectively 
removes a factor i, through — ix0 4 x0. In this way we arrive at

tr( ey 5) —4 -L d d2xeF,v epv = ;1 [ eF (9.48)
4 nJ 2 nJ

for the regularized trace. The upshot of the construction is that the above 0 x 
ro conflict is resolved via the appearance of a finite contribution <x f eF to the 
regularized action.

EXERCISE Repeat the derivation above in d = 4 to obtain

tr( eY 5) 4 .J ^ d d2 - F Fp„ epvp = -1^ [ eF A F.
32n2 j 8n2 J

(9.49)

We may now piece everything together to compute the full change of the action 
under an infinitesimal axial transformation. Substitution of the transformation 
(9.38) into the Dirac action generates a term (verify), 5S = f ddxed^(Jy^Y5J) = 
d ddx ed^ jA. If there was only this term we would conclude that the axial current is 
conserved, d^jA = 0. However, from the transformation of the measure, we pick up 
an additional —2i tr('"■5), whose regularized value is given by Eqs. (9.48) or (9.49). 
From the perspective of the path integral, the transformation is just a change 
of variables, and hence must remain inconsequential. Symbolically: DJ eiS 4 
f DJ' eiS +e (■■■) ~ f DJ eiS (1 + e (...)). The identity of the functional in primed 
and unprimed variables requires the vanishing of the functional expectation value, 
f DJ' elSe(...) = 0. Collecting all terms multiplied by e, this condition is equivalent 
to the equation

2nFAv " ’

W2 FFv F- eAvpa

d=2

d=4
(9.50)

where the brackets stand for the functional average. (On the right-hand side, we 
have the externally-imposed field strengths, and the average is inessential.)

INFO The chiral anomaly is a real physical effect. In condensed matter systems, 
it describes how two chiral branches of a low-energy Dirac Hamiltonian “talk to each 
other” indirectly via energetically high-lying parts of the Hilbert space. We have already 
mentioned electric field-induced charge pumping in1 +1 dimensions as an example. The 
(3 + 1)-dimensional anomaly shows in the physics of Weyl semimetals. To understand 
how, recall the definition of the electromagnetic fields Bi = eijkFjk and Ei = F0i in terms 
of the strength tensor, which implies FpvFpaepvp<7 = 8E • B. The analog of axial charge 
pumping in the (1 + 1)-dimensional case is now a transport of charge from one Weyl node 
to the other. With jA = 0 and jA = pR — pL, the difference in particle density between 
the nodes, we obtain

dt(pr — pl) = -12E • B. (9.51)
2 n 2
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This equation describes the build-up of charge balance in response to an electric field and, 
unusually, a longitudinal magnetic field. For the (not entirely straightforward) manifesta­
tion of this equation in observable transport coefficients, we refer to Ref. .

Chiral anomaly and topology

REMARK The following section requires familiarity with section 10.5 and, in particular, 
the concept of Chern classes. It can be skipped by readers who have not yet been through 
chapter 8.

Consider Eqs. (9.48) and (9.49) for the regularized traces, which we saw were 
the essential piece in the construction of the anomaly equation. Comparison with 
Eqs. (10.49) and (10.50) shows that, for constant e, these relations can be rewritten 

32as32

tr( Y 5)reg = ch d/2( F )=Ch d/2( F) (9.52)

where, on the right-hand side, we have the Chern characters and Chern numbers of 
the gauge theory defined by F. With d^jA the vector representation of the invariant 
object dj (section 9.2.1) we formulate the anomaly equation in the language of 
differential geometry as

djA = 2
ch1(F),

ch2(F),

d=2,

d = 4,
(9.53)

in terms of the first or second Chern characters.
These are remarkable identities: Eq. (9.52) establishes a connection between an 

“analytical” object (a trace regularized in the basis of eigenfunctions of an operator) 
and a topological object. On this basis, Eq. (9.53) suggests an interpretation of the 
chiral anomaly as a topological phenomenon: in section 10.5.3, we introduced 
Chern classes as fingerprints of gauge theories defined in topologically nontrivial 
contexts. To understand the consequences of this connection, consider Eq. (9.53) 
integrated over a space-time without boundaries,33

d djA = 2 f chd/2(F) = 2 Chd/2(F), (9.54)
MM

Chern 
numbers

where, on the right-hand side, we have the integer-valued Chern numbers char­
acterizing the gauge theory on M . At first sight, this relation looks like a triviality: 
on the left-hand side, we are integrating a derivative over a boundaryless domain, 
suggesting that 0 = 0 is the only consistent reading. However, Eq. (9.54) must be 
taken with a grain of salt. For gauge theories with a nontrivial Chern class, the

32 The connection A in these definitions is related to the physical connection A of the present 
discussion by a factor i, and the trace is irrelevant, as we are considering abelian gauge theory.

33 This includes the case of infinitely extended space-time with vanishing boundary conditions. 
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index of 
the Dirac 
operator

derivative djA is defined only locally, and more than one coordinate system is re­
quired to describe the divergence. Under these circumstances, both the left- and 
the right-hand side evaluate to non-vanishing integers. For a concrete example, see 
problem 9.4.3 where we discuss a manifestation of the chiral anomaly in connection 
with a topological charge pumping protocol.

Above, we introduced the anomaly as a UV effect. Topology, on the other hand, 
probes large-scale structures and in this regard connects to the most extreme IR. 
How, then, can the chiral anomaly afford a topological interpretation? The key to 
understanding what is going on lies in the relation (9.52). We consider the regular­
ized trace, so there is no reason to worry about 0 x x pathologies. Switching back 
to a representation of the trace in the basis of eigenfunctions of the Dirac operator 
iD/ , we have

tr( Y 5)reg (&n |Y 5| ^n ) ,

where the sum effectively extends over finitely many terms. (Equivalently, we could 
damp the sum out via an exponential weight, as in (9.46).) The clue to a better 
understanding of this relation is the anticommutativity [y5, iD]+ = 0. It implies 
that, for any eigenfunction iJ/^n = Xn^n, the function y5!Y> has negative eigenvalue 
—Xn. For Xn = 0, these are eigenfunctions with different eigenvalues and hence 
orthogonal, (y |y5 <fin} 0=0 0. We conclude that the trace reduces to one over the 

kernel of the Dirac operator,

tr( Y5)reg (^n |Y 5| ^n ) •

To better understand this expression, we consider the y-matrices in the chiral rep­
resentation, Eq. (9.20). In this representation, the Dirac operator assumes the 
block off-diagonal form (9.14), and y5 = -t3 relative to that block form. We 
note that the zero-energy eigenfunctions are of the form ^ = ^r = ^r(1, 0)T or 
^ = Y. = ^L (0, 1)T with OCr^C = 0, C = R, L, and y5 eigenvalue ^1, respectively. 
In other words:

The zero-eigenvalue eigenstates of the Dirac operator iD/ are defined by 
the solutions of the right and left Weyl equations (9.11) and (9.12).

Denoting the number of left or right solutions of the Weyl equation by nC , we have

tr( y5)reg = nR — nL = Index( iD)). (9.55)

The difference in the number of zero-energy eigenstates of right and left chirality 
appearing on the right-hand sideof this equation is called the index of the Dirac 
operator. Our analysis above identifies the index with a topological invariant,

Index(iD/) = Chd/2(F) (9.56)
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Atiyah—
Singer 
index 

theorem

This result connecting the analytical index to topology |£|
is known as the Atiyah-Singer index theorem.34 

The common sense explanation for the (topological) 
stability of the index is that all non-zero energy states 
of the Dirac operator come in left-right pairs. Nothing 
prevents a doublet defined by a left and a right zero­
energy eigenfunction from gapping out and becoming such a pair: the total number 
nL + nR is not protected. (See the figure for the lifting of a pair out of an (nL , nR) = 
(2, 1) eigenspace.) However, by the same principle, it is not possible to shift an 
individual left or right mode from zero energy. In this way, we can understand how 
topological stability and analytical stability (i.e., the impossibility of creating L-R 
pairs out of L or R solutions alone) are different sides of the same coin. However, in 
problem 9.4.3 we demonstrate how “large gauge transformations” may alter then 
Chern number and at the same time change the analytical index.

Historically, the chiral anomaly is the oldest and most widely known anomaly. 
However, there are many others. The field theories of particle physics are generally 
linearly dispersive at large energies, with the consequence that there exists a cobweb 
of interrelated anomalies that only experts can oversee. Anomalies also appear in 
realizations not tied to linear dispersion; for an example see the discussion of the 
conformal anomaly in appendix section A.3.3.

Since the advent of topological quantum matter and its effective Dirac representa­
tions, anomalies have become increasingly important in condensed matter physics. 
While an exhaustive overview of this ongoing development would be beyond the 
scope of the present text, here we provide a synopsis of some of the more prominent 
realizations, along with applications. The context of this discussion is the physics 
of topological insulators and their surface states.

Anomalies and 0-terms

REMARK This section requires a survey of section 8.4 as a prequisite.

34 M. F. Atiyah and I. M. Singer, The index of el liptic operators on compact manifolds, Bull. 
Amer. Math. Soc. 69 , 422 (1963).

INFO An important consequence of the topological interpretation is that the chiral 
anomaly (and other realizations of anomalies) shows a high level of robustness in the 
presence of perturbations. For example, particle interaction or translational invariance­
breaking due to disorder leave the topological terms generated by the anomaly untouched. 
This protection mechanism implies that physical phenomena predicted on the basis of 
anomalies enjoy exceptional stability. For examples, see the next section.

9.2.2 Generalizations and physical manifestations of anomalies
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So far, we have discussed the chiral 
anomaly of the massless Dirac opera­
tor. A mass term ~ ^m^ explicitly 
breaks the axial symmetry (9.38). This 
transformation makes the change m ^ 
m cos(2a) + im sin(2a)75. At the same 
time, the transformation of the measure induces a term 2a tr(y5)reg in the effective
action. While we derived this term for infinitesimal a, a repeated application of the
transformation shows that the construction extends to finite parameters, a. The 
upshot of this argument is that we have a family of equivalent representations of 
the action,

Sa = J (tp(m cos(2a) + imsin(2a)75)^ + 2a chd/2(F)) , (9.57)

where a now is a constant parameter. From Eq. (10.51) we recognize in the sec­
ond term the 9-action at topological angle 9 = 2a. The freedom implied by the 
choice of a has interesting physical consequences in the physics of topological in­
sulators (TIs). As an example, consider the three-dimensional TI in class AII (see 
section 8.1.1). Following the rationale of section 9.1.3, one may describe the inter­
face of the TI and the vacuum in terms of a (3 + 1)-dimensional Dirac operator, 
where a spatially varying mass describes the closing and reopening of a band gap. 
(The figure35 shows photoemission spectroscopy data mapping out the spectrum 
of the massless (2 + 1)-dimensional Dirac fermions at the surface of a TI in the 
Bi1-x Sbx material class.)

Taken from D. Hsieh et al., A tunable topological insulator in the spin helical Dirac transport 
regime, Nature 460, 1101 (2009).

However, noting that a bulk configuration with negative m is equivalent to one 
with positive m, subject to a rotation a = n/2, the situation may alternatively be 
described in terms of a Dirac fermion with uniform mass signature (say, negative on 
both sides of the interface). In this alternative description, the “Dirac determinant” 
is structureless, but we have an induced 9 = n term in the insulator. Remembering 
the info block section on page 550 (and Eq. (10.51)), this term represents an E • B 
coupling contributing to the bulk electromagnetic response. In spite of the presence 
of a magnetic field, it respects time-reversal invariance: the sign change of B under 
time-reversal is equivalent to n ^ — n = n mod 2n. Referring to Ref. for details, 
this term describes the unconventional bulk polarization properties of the TI and its 
surface conduction (recall that, on systems with boundaries, 9-terms are reducible 
to surface terms). A take-home message of this discussion is that the continuous 
symmetries of the relativistic action may be exploited to pass from “microscopic” 
Dirac fermions descriptions to “effective” response actions of macroscopic electro­
magnetic fields.

35
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gauge 
anomaly

parity 
anomaly

Parity anomaly

The chiral anomaly affects Dirac operators in even space-time dimensions. In odd 
dimensions, d = 1, 3, . . ., the parity anomaly is observed instead. While this anomaly 
is physically different, it is intimately related to the chiral anomaly via one of the 
dimensional-reduction mechanisms frequently at work in this field.

Consider a Dirac action in odd space-time dimensions. Following the discussion 
of section 9.1.1, we may think of it as the descent of an even-dimensional action 
in one dimension higher, where one of the spatial fluctuation directions is gapped 
out by size quantization. (This reflects the reality of most condensed matter real­
izations in (2 + 1)-dimensions.) Assume the Dirac fermions are minimally coupled 
to an electromagnetic field. The coupling ensures that the theory is invariant un­
der local gauge transformations. It turns out, however, that the Dirac determinant 
resulting from an integration over fermion degrees of freedom, i.e., the inclusion of 
potentially singular UV fluctuations, is no longer invariant under topologically non­
trivial “large” gauge transformations. Specifically, for gauge phase configurations 
winding W times around the odd-dimensional space-time torus of a system with 
periodic boundary conditions, it changes as (-)W . This is an example of a gauge 
anomaly.

Unlike physical symmetries, the breaking of “gauge symmetries” by quantum 
fluctuations is something that we can not tolerate. As discussed in the info block 
on page 589, gauge symmetries reflect the redundancy in describing physical ob­
jects in different ways, or gauges. They do not represent physical symmetries, and 
hence should not be broken either. It turns out that a properly regularized rela­
tivistic action does indeed respect gauge invariance, including under large transfor­
mations. However, this comes at the price of the breaking of a physical symmetry 
present in the classical action, parity , the symmetry under spatial reflection at 
planes.36

More specifically, the parity anomaly materializes as follows.37 Our starting 
point is a UV-regularized action. In realizing this regulator, we have to choose 
between Scylla and Charybdis: either we decide for a regulator breaking gauge in­
variance, or for one breaking parity symmetry via a mass term.38 For the reasons 
outlined above, we choose option number two. Note that the explicit symmetry 
breaking becomes effective only in the asymptotic UV; the low-energy action con­
tinues to be parity invariant. After integration over regularized fluctuations, the 
action contains not just a (gauge non-invariant) Dirac determinant, but also an in­
duced term that couples to the electromagnetic field. Without going into detail, we 
know that this term must be of topological nature (on a boundaryless space-time, 

36 In three space-time dimensions, a spatial point inversion xi ^ — xi is equivalent to a n-rotation 
of space. In the (-1) determinant operation, parity is thus defined as a mirror reflection, e.g., 
(x1 ,x2) ^ (—x1, x2).

37 A. Redlich, Parity violation and gauge noninvariance of the effective gauge field action in three 
dimensions, Phys. Rev. D 29, 2366 (1984).

38 Unlike in even dimensions, a mass term in odd dimensions breaks parity (see problem 9.4.4). 
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it takes into account the difference between local and large gauge transformations 
and nothing else), and is defined in odd dimension. These two criteria single out 
the Chern-Simons (CS) action SCS[A] as the candidate for the induced term.

As discussed in section 8.6.4, the CS action is also non-invariant under large 
gauge transformations. It changes as SCS [A] ^ SCS + 2nWk, where the coupling 
constant (or level), k, is generally chosen to be integer to safeguard the invariance 
of the exponentiated action exp(iSCS). The Chern-Simons action generated by UV 
fluctuations in the effective action comes with a half-integer level, k = 1/2. In 
this way, a large gauge transformation generates two sign factors: (-)W from the 
Dirac determinant, and exp(inW) from the Chern-Simons action. The two factors 
cancel out and gauge invariance is restored. However, the Chern-Simons action does 
violate parity. For example, in d = 3, the action (8.76) contains the antisymmetric 
combination epvpApdvAp. For each coordinate direction, i = 1, 2, it contains di or 
Ai exactly once. If we define the parity operation as (x0,x1 ,x2) ^ (x0, — x1 ,x2) 
the transformation d 1 ^ — d 1 and A 1 ^ — A 1 makes the action change sign. (On 
the same basis, the action breaks time-reversal invariance under (x0,x1 ,x2) ^ 
(—x0 , x1 , x2 ).) In this way, the parity and time-reversal symmetry present in the 
unregularized action is broken.

We finally note that:

The parity anomaly affects only (2n + 1)-dimensional theories with 
massless fermions.

Heuristically, in theories where a mass m breaks parity,38 there is no symmetry 
left to be broken, and hence there is no anomaly. The actual state of affairs is 
somewhat more interesting. For massive fermions, both the intrinsic mass, and the 
mass introduced by the regulator, individually introduce a CS action. We then end 
up with a CS action at level k = (sgn(m) + sgn(M))/2. For a physical manifestation 
of such contributions, see the info block below.

The question remains how the structures mentioned above are made concrete. 
In three-dimensions, the actual calculation generating the CS action from the reg­
ularized action is technically involved.37 However, in problem 9.4.4, we consider a 
one-dimensional toy version of the parity anomaly, which has enough structure to 
demonstrate the workings of the regularization in a manner unburdened by techni­
cal complications. Readers interested in the derivation of the three-dimensional CS 
action are referred to the original Ref.37 or to particle physics textbooks.

In condensed matter systems, the parity anomaly shows in systems contain­
ing gapless Dirac fermions in odd dimensions. This situation is realized, e.g., in the 
QAH insulator introduced on page 464. As another example, consider the Weyl 
semimetal defined on page 528, interpreted as a (3 + 0)-dimensional system. In 
this case, we work at fixed energy and the Hamiltonian of individual Weyl nodes, 
H = ±idi/A, assumes the role of the massless Dirac operator. On this basis, we 
know that the electromagnetic response action contains a CS action. The topo­
logical protection of the anomaly implies robust manifestations in the conduction 
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properties of Weyl semimetals, including in the presence of strong disorder.39 An­
other example of a (2 + 1)-dimensional gapless Dirac system is the surface of the 
(3 + 1)-dimensional topological insulator. Naively, one might think that the 
surface must be subject to the parity anomaly, which would imply the breaking of 
P and T symmetry. However, this is contrary to physical observation. The point 
is that the surface of the TI cannot be considered in isolation: it is inseparably 
linked to the underlying bulk. Where anomalies are concerned, this coupling mani­
fests itself through a mechanism called anomaly inflow, the cancellation of surface 
anomalies against anomalies from the bulk (see below). In the case of the TI sur­
face, the anomaly, and its cancellation from the bulk, go a long way in determining 
the electromagnetic response properties.40

INFO In Eq. (8.39) we defined Hi = — idiai + ma3 as an effective low-energy Hamiltonian 
describing the anomalous quantum Hall (AQH) insulator. We consider S = f d3x (^^^i — 
^^Hi^) as the corresponding (2 + 1)-dimensional Dirac action (see problem 9.4.2 for a gen­
eral discussion of the connection between the Dirac action and Dirac Hamiltonian) and, 
with t/> = ^^a3, obtain S = d d3xip(iD — m) ^ with the realization 'Y: = (a 3 ,ia 2, — ia 1). 
Minimal coupling of the action to a vector potential defines a problem showing the par­
ity anomaly. The discussion above then leads to the prediction that the effective action 
describing the system after the regulated integration over fermion fields is a CS action of 
levels 1 + (—1,0, 1) = (0, 11,1) depending on whether m is (positive, zero, negative).

In our discussion of CS linear response theory in section 8.6.7 we saw that the level of 
the CS action determines the transverse conductivity as a 12 = k/2n. Our discussion thus 
determines the Hall response of the QAH insulator without further calculation.

Anomaly inflow

We have seen that individual realizations of relativistic fermions display anomalies, 
which in turn may represent the non-conservation of physical currents. For example, 
the (1 + 1)-dimensional Dirac fermion with action (9.39) describes left- and right­
moving chiral fermions, whose individual charge is not conserved, including in the 
case m = 0, where they are not explicitly coupled.
Now consider the particular case where such (d + 1)- 
dimensional chiral fermions are realized as the surface states 
of a (d + 2)-dimensional bulk system. Thinking from a con­
densed matter perspective, where such setups describe the 
low-energy physics of topological insulators, we would reason 
that the system at large (including the UV degree of freedom) 
must be non-anomalous and current conserving. This in turn 
implies that the anomaly of individual surfaces is canceled 
by a similarly anomalous low-energy theory of the bulk. In this way, current con­
servation is restored without the need to engage UV degrees of freedom (see the

39 A. Altland and D. Bagrets, Theory of the strongly disordered Weyl semimetal, Phys. Rev. B 
93, 75113 (2016).

40 M. Mulligan and F. Burnell, Topological insulators avoid the parity anomaly, Phys. Rev. B 88, 
85104 (2013).
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anomaly 
inflow

figure for the case where two spatially one-dimensional surfaces are coupled to a 
two-dimensional bulk; the horizontal arrows represent the leakage of current from 
one part of the system into another). This mechanism of anomaly cancellation is 
called anomaly inflow.

Anomaly inflow implies the cancellation of anomalies between theories of dif­
ferent dimensional “parity.” (An even-dimensional surface has an odd-dimensional 
bulk, etc.) We have seen on multiple occasions that dimensional parity is a key 
factor in the manifestations of both anomalies and topology. For example, systems 
in even space-time dimensions display the chiral anomaly. In this case, the odd­
dimensional bulk does not contain a chiral anomaly but a parity anomaly instead. 
The parity anomaly in turn manifests itself through a topological Chern-Simons 
response action. We conclude that anomaly inflow into even-dimensional surfaces 
happens through a channel of “communication” between CS theory and the rela­
tivistic theory of chiral fermions.

Let us illustrate the workings of this mechanism on the example of the QAH 
insulator. Earlier in this section, we reasoned that the bulk of the topological 
insulating phase is described by a CS response action (see Eq. (8.76))

S [ A ] = ^/ d 3 x^^vpA^dv Ap.

Now consider the current flowing in response to a static electric field E in the y = x2 

direction. From the variation 

jp =
8S [ A ] 
^AT

71- ' Ap,

we obtain jx = 2n (dyA0 — dtA2) = — 2nE• At the boundary, this violates charge 
conservation - there is current flow out of “nowhere” - in line with the gauge non­
invariance of the CS action. The “nowhere” is the anomalous boundary theory. That 
boundary theory is a chiral fermion, say the left-moving branch of the Dirac action 
(9.39). In section 9.2.1 we saw that this action is anomalous; the axial current is 
non-conserved according to Eq. (9.40). Specifically, with j0 = pL — pR, we have 
dt (pL - PR) = E/n, or dtpL = E/2n for a single branch. We conclude that the 
rate of charge leakage out of the boundary, E/2n, is what feeds the current into 
the bulk. Considering the whole system comprising left boundary, bulk, and right 
boundary, this mechanism describes the Hall current flow between the boundaries 
in response to a longitudinal electric field.

9.3 Summary and Outlook

We started this chapter with a symmetry-oriented construction which led to the 
Dirac Hamiltonian for the minimal description of spin-1/2 particles with a lin­
ear dispersion. On our way towards the Dirac Hamiltonian we came across similar 
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but more restricted theories describing spinful particles subject to a non-relativistic 
linear spin-momentum coupling and to the chiral Weyl fermion Hamiltonian, respec­
tively. We continued with a discussion of the astonishingly rich spectrum of symme­
tries of the Dirac Hamiltonian and derived the Dirac action describing many-body 
Dirac theory. On the basis of these foundations we discussed various ramifications 
of Dirac theory which have recently turned out to be crucially important to the 
physics of topological quantum matter: Dirac Hamiltonians as effective low-energy 
theories close to topological phase transitions, dimensional reduction and the bulk 
boundary-principle connecting gapless boundary phases to gapped topological bulk 
phases, and the breaking of continuous or discrete symmetries through anomalies. 
While the early sections of the chapter introduced Dirac theory as a stand-alone 
subject, it later became clear that its inclusion into the context of condensed matter 
physics is inseparably linked to two other subjects: gauge theory and topology. This 
brings us back to a principle mentioned in chapters 8 and 10, namely that Dirac 
physics, topology, and gauge theory in condensed matter physics are like a Siamese 
triplet, and ideally should be studied in parallel.

9.4 Problems

9.4.1 Parity, charge conjugation and time-reversal symmetry

41

In recent years, the fundamental symmetries charge conjugation and time-reversal have played 

a major role in the classication of quantum matter. In condensed matter physics, we often 

consider \eective" realizations of these symmetries in non-relativistic settings. However, it is 

important to know how these symmetries can be traced back to their fundamental origins in 
relativistic quantum physics.41 Compared with the Schrodinger equation, the Dirac equation 

has a more authoritative standing where symmetries are concerned: it is Lorentz invariant, 

which includes symmetry under time-reversal and parity in their original form. The realiza­

tion of these symmetries combines a transformation of space{time with a transformation of 

the equation's spinor degrees of freedom. In the main text, we showed how this combined 

transformation makes the Dirac equation parity invariant. Here, we extend the discussion to 

include time-reversal, which is slightly more tricky because it is an anti-linear symmetry. We 

also add the third fundamental symmetry of the Dirac equation, one that exchanges particles 

with their corresponding antiparticles, thus changing the sign of all charges. The relativistically 

invariant realization of charge conjugation that we discussed motivates similar transformations 

in non-relativistic many-body physics, testing invariance under the exchange of particle and 

hole degrees of freedom.

In this problem, we focus on d = 4, as it is relevant to the realization of symmetries in 

nature.

S. Weinberg, The Quantum Theory of Fields, Cambridge University Press, 1996.
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Our starting point is the Dirac action

S [ ,1=/ d4 xyiD -eA - m)<,, (9.58)

minimally coupled to a vector potential A = A^y^. Since the sign of the charge will 
play a role in this problem, we have reintroduced e. We write the Dirac conjugate 
spinor as ty = ty jTy0. This somewhat awkward notation emphasizes that tyi o ai 

and tyi o aj are Grassmann representatives of second-quantized operators. (Of 
course, ty and ty'' remain independent integration variables.)

When we discussed symmetries in section 9.1, the focus was on the action of 
Lorentz transformations on the complex valued Dirac spinors. However, since we 
understand Dirac theory as a many-body theory, it is more natural to switch to a 
discussion in Fock space or, equivalently, the language of the effective action. Our 
starting point is a formal representation of the symmetries X = C, T, P as

ty(x) ^ tyx(x) = Xty(A-1 x)X-1, (9.59)

with the explicit realizations (the argument AX1 x is omitted for clarity)

P ty P-1 = Up ty, Ap = diag(1,-1,-1,-1),

T ty T-1 = UT ty, T i T-1 = - i, At = diag(-1, 1, 1, 1),

C ty C-1 = UC tyj, AC = 1.

Here, AX implements the symmetry transformation of space-time coordinates, the 
reflection of space (P), inversion of time (T), or no transformation (C). The factors 
Up are fixed and as yet undetermined unitary 4 x 4 matrices acting in spinor 
space. The second entry in the second line states that time-reversal is an antilinear 
transformation. Recall that the antilinearity of time-reversal is required for physical 
reasons, e.g., to effect an inversion of time in dynamical phases, TeletT-1 = ei(-t). 
(Consult a textbook on quantum mechanics for further discussion.) Finally, the 
unitary operation C exchanges creation and annihilation operators in such a way 
that the action of a C-transformed operator on the vacuum creates a quasiparticle 
of opposite charge. Note how these transformations of Grassmann variables (or of 
the operators represented by them) resemble those for states in Eq. (9.15). The 
difference is that the linear or antilinear operators UX now act from both sides, as 
befits operators. Finally, the transformation of ty'' is obtained by taking the formal 

tt tadjoint of tyX,i = UX,ijtyj as tyX = UX,ijtyj, X = P, T, and tyC = UX,ij^C,j.
We now ask how these Fock space transformations become symmetries of the 

Dirac action, where “symmetry” means that the transformed action XS [ty]X-1 = 
S[ty'] equals the original one. What we have at our disposal in satisfying this con­
dition are the as yet unspecified definitions of the matrices UX .
(a) The sought-for choices for UX must be compatible with the matrix symme­
tries of the y-matrices, which are affected by the symmetry transformations. Us­
ing Eqs. (9.20) and (9.22), tabulate their symmetries under the hermitian adjoint, 
transposition, and complex conjugation in the Weyl and Majorana representations.
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Table 9.1 Symmetry properties of 7-matrices in Weyl 
and Majorana representation.

0 1 2YWeyl 

T" 
T 

c.c.

3 YMajorana 0 1 2 3
t + — — —
T — + + +

c.c. — — — —

+
+ - +
+ + +

(b) We next discuss the symmetries of the action under discrete transformations, 
first setting A = 0 for simplicity. As a warm-up, establish the parity transformation 
previously discussed for the Dirac equation as a symmetry of the action, S[^P] = 
S[^]. Try to define UP = UP(y^), without reference to the detailed structure of the 
Y-matrices.
(c) Next run the same program for charge conjugation to identify UC such that 
S[^c] = S[^]. (Hint: You will need to use the fact that the action, a number, 
equals its own transpose. Also keep the anticommutativity of Grassmann variables 
in mind.) Repeat the analysis for the y -matrices of the Majorana representation. 
Are the transformation matrices Uc obtained in the two representations unitarily 
equivalent? If not, why is this allowable?
(d) Finally, we consider time-reversal in the Weyl representation. The best way 
to proceed is to subject the entire action, considered as a (Grassmann o operator) 
bilinear form to the antiunitary operation T(action)T-1 . Identify matrices UT such 
that S [^t] = S [^]. Compared with conventional unitary symmetries, an additional 
complex conjugation is required to describe the time-reversal transformation of 
dynamical phases, exp(iS) ^ exp(iS). When writing down S[^T], use the fact that 
':'T are Grassmann variables, and that complex conjugation has no effect on them. 
Inspect how UT acts on the spin degrees of freedom of the Weyl fermions contained 
in the Dirac spinor and compare with what you know from quantum mechanical 
time-reversal.
(e) Finally, extend your analysis to include the coupling to the vector potential 
eA. On physical grounds, formulate an idea of how eA needs to be transformed 
in order to establish invariance under P, C, T in the presence of minimal coupling. 
Then repeat the steps above to verify that you have guessed correctly.

Answer:

(a) From Eq. (9.20) and the properties of the Pauli matrices, we obtain the prop­
erties summarized in table 9.1. What is unappealing about our discussion is that 
it makes reference to properties specific to a given basis. To remedy this issue, one 
would need to switch to a framework where transposition and complex conjugation 
are invariantly defined. However, this generalization11 is beyond the scope of the 
present text. We simply have to accept that the concrete realization of the symme­
tries (the form of UX) is specific to a given basis. Owing to the presence of anti-linear 
symmetries (T), the different representations are not unitarily equivalent.
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(b) Substitution of the parity transformed field into the action yields

s [ p p] = Up (A 1 x)(idpY ^ — m) Up (A 1 x )= Up (x)(idp A p, yv — m) U p (x)

p ( y 0 Uf y 0)( idp. (A y )M — m) Up,

where we have made the abbreviation d4x = , UP = U , AP = A for notational 
simplicity; in the first equality we made the change of variables Ap1 x ^ x, and in 
the second we used the definition p = ptTy0 of the Dirac conjugate. We want this 
action to equal the original one, S[pP] = S[p], and this requires that [U, y0] = 0 
(i.e., invariance of the mass term). With (Ay)0 = y0 and (Ay)i = —yi, we obtain 
the additional conditions [U, yi]+ = 0. These are simultaneously satisfied with the 
choice U = UP = y0. In the Weyl representation, p0 = t 1, which is consistent with 
our discussion in section 9.1.1.
(c) We proceed as above, except that in the last line we need to exchange p and 
pt, and there is no transforming matrix A. This gives

S [ p c] = pT Ut y 0( idy — m)Upt = — I ptTUT(—id^y^T - m)y0TUp,

where, in the second line, we have taken the transpose of the bilinear form in the 
action. This operation introduces a global minus sign (nTXv = — vTXTn for anti­
commuting variables), and another one due to the antisymmetry of the derivative 
under partial integration. Using table 9.1, we now do our bookkeeping again to 
obtain [ U, y 0 ]+ = 0 from the mass term and d 0 invariance. With [ y 0 ,yl ]+ = 0, the 
remaining conditions read [U, y1,3] = 0 and [U, y2]+ = 0. These conditions are satis- 
fiedby U = UC = y0y2. With this choice, we have S[pC] = J p(id^y^—m)p = S[p], 
as required. In the Majorana representation, Eq. (9.22), the y-matrices have dif­
ferent symmetries, as summarized in the second half of the table. Now we require 
[U, y0] = 0 and [U, yi]+ = 0, which is satisfied for UC = y0. This matrix is not 
related to its counterpart UC,Weyl by the unitary transformation relating the Ma­
jorana and Weyl y -matrices (see exercise on page 531). There is no contradiction 
since the derivation involves transposition, which is not a unitarily invariant con­
cept. For example, [UWeyl, yW0 eyl]+ = 0 becomes [UMajorana, yM0 ajorana] = 0, while a 
unitary transformation would preserve the commutator structure.
(d) Consider the complex conjugate S[pT] = f pT(—id^yM — m)pT, where we 
note that complex conjugation has no effect on y0 in pp = pty0 . With pT (x) = 
Up (A-1 x), we obtain S [ p T] = f p y 0 Ut y 0(—idp (A y)M — m) Up. From the table and 
the definition of A = AT, we have (Ay)1,3 = y1,3 and (Ay)0,2 = — y0,2, leading to 
the invariance criteria: [U, y0,2]0 and [U, y1,3]+ = 0. This is satisfied by U = UT = 
y 1 y3 . For this choice, we have the required invariance. In the Weyl representation, 
y1 y3 = — iff2. This implies that time-reversal acts on spin-1 /2 spinor wave functions 
by a combination of complex conjugation and multiplication by ff2 (consider why 
the factor of —i is irrelevant), as is familiar from quantum mechanics.
(e) Under parity, we have A^ ^ Av(AP)v^, i.e., the scalar potential is unaffected, 
and the vector potential changes sign. In this way, E ^ —E and B ^ +B. The 
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substitution of the parity-transformed field into the covariant derivative then es­
tablishes parity invariance of the minimally coupled action. Similarly, we have 
A,, ^ — Av(AT)'"',, corresponding to E ^ E and B ^ —B under time-reversal. 
Again, the symmetry analysis above goes through in this way. (Note how the ex­
tra minus sign compensates for the sign change of i under complex conjugation in 
idp — eA^.) Finally, charge conjugation should do what its name says, i.e., exchange 
charge as eA ^ (—e)A. With the global sign change in the covariant derivative, C, 
also holds.

9.4.2 Quantization of the Dirac action

Dirac 
Hamil­
tonian

In the main text, we leapfrogged over various conceptual steps in the passage from the Dirac 

equation to the many-body physics of the Dirac eld. Readers not familiar with the quantization 

of the Dirac action from their lecture courses are advised to read about this interesting story in 

any textbook on particle physics. Here, we address a few aspects concerning the quantization 

of Dirac theory in the simplied setting of d = 2.

Consider the real-time two-dimensional Dirac action S[^] = f d2xip(id^y^ - m)^, 
where y0 = a 1, Y 1 = ia2.
(a) Interpreting S[^] as a classical Lagrangian action, identify the canonical mo­
mentum, n, associated with ^, the action in Hamiltonian representation, and the 
Hamiltonian. How many classical degrees of freedom does the theory have? How 
would that number increase in d = 4, and what meaning do these degrees of freedom 
have in the quantum theory?
(b) We now want to quantize the theory. To this end, we first upgrade ^ and 
^t to operators satisfying canonical commutation relations. But which ones? In 
principle, the two options of bosonic relations, [^i(x), ^j(y)] = 6ij6(x — y) and of 
fermionic relations [xi(x), ^t(y)] + = 6ij6(x — y), are on the table. In particle physics 
textbooks, a great deal of attention is devoted to the discussion of these two options. 
Energy considerations eventually invalidate quantization in terms of bosons; the 
Dirac field must be a fermion field. On the basis of the field integral construction, 
provide arguments supporting this conclusion. Why would a derivation of the Dirac 
field integral in terms of boson coherent states run into trouble? And why is the 
fermionic version safe?

Answer:

(a) Making the time-derivative explicit, we write the Dirac action as S[^] = 
d d2x L(^,3t^), with the Lagrangian L(^,3t^) = ^t(idt — idxa3 — ma 1)^. Varia­
tion in ^ yields the canonical momentum of the Dirac field as n = 3gt^ L = i^ t. 
From here, we define the Hamiltonian density as H(^,n) = nip — L(p,n) = 
n(dxa3 — ima 1)p = pt(idxa3 + ma 1)p. The action in the Hamiltonian representa­
tion is given by S[p, n] = J d3x (np — H(n, p)). Being first order in derivatives, the 
Dirac action leads to a canonical momentum expressed in terms of the original vari­
ables, p, pA (In this regard, the situation resembles that of the classical mechanics
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of spin; see section 8.4.4.) With 2 x 2 real variables contained in ^, the theory has 
two degrees of freedom. In d = 4 that number doubles. In the quantum theory, 
these four degrees of freedom become the amplitude of the spin-up and spin-down 
components of the two Weyl fermions, respectively.
(b) Suppose we subjected the Hamiltonian above to a boson coherent state field 
integral construction. We would end up with an integral over the complex variables 
^ with Gaussian action S [^, n]. What about convergence? The eigenvalues of the 
Dirac Hamiltonian are given by e± = ±(p2 + m2)1/2. A variable transformation to 
eigenmodes b± leads to the action S[b, bt] S= s=± f dtdpbp' (idt — ep)bp. The prob­
lem is the instability of the negative-energy branch. This convergence issue cannot 
be fixed by a Wick rotation, the reason being that it is physical, not technical. The 
integral describes a continuum of unstable boson modes, and the divergence reflects 
the option to “condense” in this sea of negative-energy states. For Grassmann vari­
ables, the convergence issue does not arise. In this case, the negative-energy states 
are filled up (for the chemical potential-zero considered here), and excited states 
are interpreted as particle-hole (or particle-antiparticle) pairs.

9.4.3 Chiral anomaly and topological quantization

In section 9.2.1 we discussed the topological interpretation of the chiral anomaly on bound­

aryless space{time manifolds. Here, we consider the example of a charge pumping protocol in 

1 + 1 dimensions to make this abstract statement tangible. The problem requires familiarity 

with section 10.5.

Consider the (1 + 1)-dimensional Dirac action (9.39) on a spatial circle of radius 
L. Assume that a time-dependent flux is turned on and a single flux quantum 
^0 = h/e = 2n is pushed through the system during a long interval [0, 10].
(a) Describe the setting in the language of section 10.5, and especially that of the 
discussion of the Dirac monopole in section 10.5.2: why does the setting above define 
the U(1)-fiber bundle with a space-time torus as the base manifold? Describe the 
electric field generated by the flux in two alternative ways, first through a time­
varying “magnetic vector potential” and second through a “scalar potential.” Show 
that the two representations are equivalent up to a large gauge transformation. 
Show that two coordinate charts with nontrivial transition function are required to 
parameterize the situation.
(b) Translate your description to the language of differential forms, and compute 
Eq. (9.54). Identify the right-hand side as a non-vanishing Chern number. On the 
left-hand side, discuss the continuity properties of the current and obtain a state­
ment on axial charge non-conservation. Discuss the meaning of your findings in the 
context of fig. 9.2.

In the second part of the problem, we want to understand the anomaly from the 
perspective of the Dirac index, Eqs. (9.55) and (9.56). To this end, we consider 
the Euclidean version of the Dirac operator defined by Eqs. (9.27): y0 = t 1 ^ iT 1, 
equivalent to dtT 1 ^ dTiT 1 with it = t. Assume this operator is minimally coupled 
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to a vector potential (A0, A 1) = (AT, Ax) = (0, ^(t)/L), where ^ is a function slowly 
increasing from — n to + n over an asymptotically large imaginary-time interval 
[—ro, ro]. This is the same potential as in the first part of the problem, and so we 
know that it has associated Chern number unity.
(c) Show that the Weyl modes of this operator obey the equation [—dT + C(—idx — 
^(t)/L)]'..'C(x,t) = 0. Consider the instantaneous eigenfunctions of the spatial 
operator in this equation to solve it in an adiabatic approximation. Show that the 
function ^(t) stabilizes a zero mode in the C =1 sector, while there are no regular 
solutions for C = —1. In this way, the minimally coupled Dirac operator has a unit 
index, and the Atiyah-Singer index theorem (9.56) is satisfied.

Answer:

(a) Topologically, a 2-torus T is a product of two cir­
cles, T = U(1) x U(1). Here, the role of the first is 
taken by compactified space, and that of the second by 
time subject to periodic boundary conditions. A time­
varying flux, ^(t), is represented by a vector potential 
with component A 1 = ^L) along the ring, with asso­
ciated field E = dtA 1 = $/L. The pushing of a single 
flux quantum means that ^(t) increases from, say, 0, 
to 2n in time t0. Locally, A 1 may be removed by a
gauge transformation ^ ^ exp(i^(t) L)^. However, this generates a 0-component 

xA0 = — $L. (Of course, the field E = — dxA0 remains invariant.) Globally, the gauge 
transformation above is not continuously contractible to a trivial one, and hence 
represents a large transformation in the sense of section 10.5.1. In either represen­
tation, two coordinate charts are required to describe the system. For example, in 
the first, A 1 is constant in the spatial direction but would have a jump 2n/L as we 
pass through time 0 = t0. (In the other gauge, A0 jumps by — $(t) at the joining 
point 0 = L of the spatial circle.) We describe the situation in terms of two charts, 
the first defined on (0, 10 / 2), and the second on (10 / 2 ,t 0). Next define A 1, e = ^Lt) 

on the earlier domain and A 1,l = ^Lt) on the later one. In this way we have a triv­
ial transition gauge, A1,e(t0/2) = A1,l(t0/2) on the first chart boundary, and the 
nontrivial transition gauge A 1,e(0) = A 1,l(10) — 2n/L on the second chart boundary 
(cf. Eq. (10.44)).
(b) The local connection forms on the two halves of the torus are given by Ae,l = 
^Lt)dx. With this representation, the right-hand side of Eq. (9.54) is evaluated as

2n^ F 2nJs 1(Ae Al) 2'

Here, S 1 is the spatial circle defining the boundary between the two charts at times 
t = 0 and 10. At this boundary, we have the jump Al — Ae = Ldx, and the integral 
leads to the stated result.

Turning to the left-hand side, the integral extends over a local derivative djA . 
Since T has no boundary, there must be a singularity involved. Decomposing the 
current as jA = jA,0dt + jA,1dx, the spatial rotational symmetry of the problem 
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implies constancy of the temporal component jA,0 (t, x) = jA,0(t) along the ring; 
there will not be any discontinuities in the spatial direction. However, we do ex­
pect the axial charge density, jA,1 , to be different at the beginning and end of the 
protocol. To make this quantitative, we write

djA = (jA,f - jA,i) = QA,f - QA,i,
T S1

where the the subscripts f (final) and i (initial) refer to the charge density at times 
t0 and 0, respectively. In this way, we arrive at the conclusion that the axial charge, 
i.e., the difference between the left- and the right-moving charge changes by 2 in the 
process. The interpretation of this number is that the insertion of a flux quantum 
makes individual momentum states, indicated in fig. 9.2 as dots, shift by one unit. 
In this way, a right-moving particle and a left-moving hole are created. The charge 
balance at the end of the process thus reads 1 - (-1) = 2.
(c) With iD) = (idp + A,,)7M = — dTt 1 — (dx — iAx(t))t2, the zero-mode equation 
i/ty = 0 splits into the two stated chiral equations. The instantaneous eigenfunc­
tions obey the equation (—idx — Ax(t))un(t) = Xn(t)^n(t), with time-independent 
Fourier mode solutions un(x,t) = un(x) = L-1 /2 exp(iknx), kn = 2nn/L, and 
eigenvalues Xn(t) = kn — Ax(t). With the ansatz ^C(x,r) = f (t)^n(x), the dif­
ferential equation reduces to [—dT + CXn(t)] f (t) = 0. This equation has the for­
mal solution f (t) = f (0)exp(C ds Xn(s)). A solution with regular behavior for 
t ^ ±x must satisfy CXn(s) < 0 for large positive times, and CXn(s) > 0 for 
negative times. In other words, the function Xn(s) must have a zero with posi­
tive derivative. Considering the eigenvalue equation CXn(s) = —C (kn + Ax (t)) for 
Ax(t) = $(t)/L, and the given profile of ^(t), we realize that this condition is met 
for C = R = +1 and n = 0. We thus have a single R-zero mode, nR = 1, and no 
L-zero mode, nL = 0, corresponding to a unit index.

9.4.4 Parity anomaly

In this problem, we discuss the parity anomaly in d = 1. The one-dimensional Dirac operator, 

essentially a single derivative, is somewhat too simplistic to be of practical relevance. However, 

the merit of this toy problem is that it lets us understand the parity anomaly in a manner 

uncluttered by technicalities. The question relies on problem 9.4.3 as a prerequisite.

We consider a one-dimensional Dirac action f dxip(—idx — A)^ defined on a ring 
of circumference L. The minimal coupling to A provides invariance under local 
gauge transformations, but not necessarily large ones. A large gauge transforma­
tion is defined by A = W/L or J dx A = 2nW, corresponding to the insertion 
of W flux quanta through the ring. Naively, one would say that this is an empty 
operation, or that A can be removed by the inverse (large) gauge transformation 
^ ^ exp(—i2nWx/L)^. However, this transformation is defined for an unregular­
ized theory and we are, in a sense, again met with a 0 x x ambiguity.

An elegant way to make sense of the situation is to establish contact with the 
Dirac operator in one dimension higher, d = 2, with its chiral anomaly. To this end, 
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we consider the setup of problem 9.4.3, where the additional time coordinate defines 
the space-time torus shown in the figure, and A 1 = A = A(t) = ^(t)/L is the 
vector potential locally describing a large gauge transformation with Chern number 
W =1. Choosing our coordinates such that ^(0) = 0 and ^(t0) = 1, and thinking 
of t as an adiabatic parameter, we notice that t smoothly interpolates between 
the situations with and without an inserted flux quantum. (Intermediate values, 
^(x, t) do not represent gauge transformations of the one-dimensional theory. They 
correspond to the insertion of fractional flux quanta into our ring, which do have 
physical effects such as changes in the spectrum, or persistent current flow. It will 
be useful to think about this point.)
(a) In problem (9.4.3), we showed that the above potential stabilizes a zero mode of 
the two-dimensional Dirac operator. Reinterpret this finding in terms of the eigen­
values of the one-dimensional Dirac operator. Specifically, show that the adiabatic 
time-dependent parameters A(t) appearing in the solution of the zero-mode equa­
tions assume the role of eigenvalues associated with the instantaneous eigenfunc­
tions. On this basis, reason why the Dirac determinant det(—idx — A) must undergo 
a sign change as A = A(t) interpolates between A(0) = 0 and A(t) = 2n/L.
(b) We now want to show how the regularized theory generates a Chern-Simons 
term after integration over the ^-fields. With the abbreviation D = dx — iA, we 
regularize the action by adding a second contribution 9(—iD + iM)9, where M > 0 
is large and 9 is a bosonic field with 9 9t. Discuss how, after integration over 
9, this contribution regularizes the previously UV-singular determinant; how it is 
inessential at low energies; and in what sense it breaks parity.
(c) The abelian Chern-Simons action in general odd dimensions is given by SCS [A] = 
2nkf ch(d +1)/2(F), where the Chern characters are defined in Eq. (10.49). Show 
that the expansion in A of the regulator action after integration over 9 yields 
a one-dimensional Chern-Simons action at half-integer level. You may ignore all 
UV-singular contributions to the expansion as they will cancel against the fermion 
determinant. Demonstrate how this action produces a sign factor when evaluated 
on a large gauge transformation. (Hint: It is most economic to work in a Wigner 
representation; see appendix section A.4.3.)

Answer:

(a) The zero-mode equations for the C = L, R sector of the two-dimensional Dirac 
operator discussed in the previous section were solved in terms of the instantaneous 
eigenfunctions (—idx — A(t))un(t) = An(t)^n(t) of the one-dimensional Dirac op­
erator. We saw that the existence of a normalizable zero mode required a solution 
^n whose associated eigenvalue An(t) crosses zero in the course of adiabatic evolu­
tion. This implies that the determinant of the one-dimensional operator n An (t) 
changes sign (or, more generally, changes sign W times) as t progresses from 0 to 
t0.
(b) Integration over the added action, which is convergent owing to the contribution 
~ — M f dxifi9 to exp(iS), produces the inverse of the determinant of — iD + iM. 
Denoting the eigenvalues of the hermitian operator —iD by An, the integration thus 
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yields a product Hn A +niM. For large Xn M, numerator and denominator cancel 
out and, for small momenta, the large mass M makes the contribution from the 
denominator an inessential constant, Xn + iM ~ iM. Finally, a parity transforma­
tion sends the spectrum to its negative, Xn ^ — Xn. For finite M, this will affect 
the product above.
(c) Integration over a generates the contribution i trln(—iD + iM) = i trln(p — 
A + iM) ^ — i tr( A(P + iM)-1). In the Wigner representation, this becomes 
—dxdp a (x) p+iM. The momentum integral contains a singular real part, which 
we ignore for the reason mentioned. However, the imaginary part gives the finite 
contribution — in, so that we obtain a term SCS[A] = — 11 f dxA = 2nk f ch1(F) 
with k = —1 /2. For a large gauge transformation, A = 2n/L, so that SCS[A] = — n, 
so that exp(iSCS) = —1.

9.4.5 Functional bosonization

(9.60)

In our discussion of the interacting electron gas in (1 + 1)-dimensions in section 3.6, we used 

symmetry arguments to guess the action of an equivalent bosonic theory. In this problem, we 

discuss how the action emerges directly within the functional integral approach as a manifes­

tation of the chiral anomaly.

Consider the interacting one-dimensional electron gas as described by the relativis­
tic action (3.86) and the interaction contribution (3.90). Throughout, it will be 
convenient to formulate the latter in a matrix representation,

Sint[p] = 11 dTdx (p+ p-) g(p+) , g = g44 42>)

2 J \- — 422 44/

To probe the response of the system to external perturbations, we add to the action 
a source term Ssoum[p,j] = $ £s=±(p*js + j*ps).
(a) Adding Sint to the Euclidean free action (3.86), decouple the four-fermion inter­
action by introducing a two-component Hubbard-Stratonovich field AT = (a +, a-) 
and show that the result can be written as

S[P, A] = 2 / d2x ^T4 1 A + d2x P(iD — A)P

where D = d^YM, the components of the interaction field are defined by a 1 = 12 (A + + 
A-) and a 2 = 1i (A + — A-), and we use the representation ( y 1 ,Y 2) = (—ia 1, — ia 2).

The interaction field A couples to the fermion action as a two-dimensional vector 
potential. As with any two-component vector, we may decompose the coefficients 
of A into a longitudinal and a transverse contribution (the Hodge decomposition): 
A^ = —(d^ + ie^vdvn). This is an interesting decomposition as it suggests that 
the vector potential a^ can be removed from the action by a combined vector and 
axial gauge transformation ^ ^ e^+ina3^, ip ^ ipe-iiina3 (check). However, we 
know that the axial transformation by n is anomalous and must be handled with 
care. (Think what the situation would be otherwise: we would have shown that 
interactions leave the one-dimensional fermion system totally unaffected!)
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In principle, we might follow the Fujikawa route to track the v-dependent change 
in the action caused by the axial transformation. However, as an instructive alterna­
tive, here we proceed differently and expand the action in the gauge potential. Given 
what we know about the anomaly, we expect the appearance of UV-problematic 
contributions whose regularization will yield the effective action. (This procedure 
parallels the historic approach to anomalies.)
(b) Expand the “tr ln” operator obtained by integration over fermions to second 
order in the fields v±. Switching to a frequency-momentum representation and 
approximating the Matsubara sum by an integral, one obtains an expression that 
is formally UV divergent. Regularize the integral by introducing a cutoff A in mo­
mentum space.42 Show that the effective v-action reads as

S [ v ] = 1 E vT (g-1+n k) v -k, (9.6i)

where k = (u, q) and nk = {~n —isqu+q }• Note that this result is independent of 
the cutoff. Finally, introduce the field doublet rT = (£, n) to represent the action 
as

S[r] = 22 E rTDk (g-1 +nk) d—kr—k, (9.62)

where the transformation matrix Dk = I q— i? —q— i^ mediates between the field — — q i& q+i^

variables r and v (exercise).
We next turn our attention to the source terms. Integration over the original 

fermion variables generates a source contribution

Ssource[^,j] —— S[j, r] = / d2xd2x' j(x)G[r](x,x')j(x')

/ d2xd2x1 (je—i(^+na3))(x)G(x, x')(ei(^+na3)j)(xr),

where x are space-time indices, G[r] is the Green function coupled to the interaction 
field, and in the last step we have applied the generalized gauge transformation 
above to transfer the (£, n)-dependence to the source vectors j. The action Ssource 

contains the free fermion Green function (a matrix in both space-time and the 
space of s-indices) as an integration kernel. To proceed, notice that its matrix 
elements can be obtained as correlation functions of an equivalent free bosonic 
theory. This connection was introduced in problem 3.8.i0 on the example of a 
specific free fermion correlation function. Generalizing the results of that problem, 
one may verify that (exercise)

G ss / (x,x') = (2 na) —1( e—i (v+se)(x) ei (v+se)(x')), (9.63)

42 In particle physics, it would be more natural to work with a rotationally symmetric regulator 
preserving the Euclidean invariance of the theory. However, in condensed matter physics we 
should remember that the action above is obtained by linearization of a lattice Hamiltonian. 
The theory thus includes an in-built momentum cutoff. 
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functional 
boson- 
ization

where a is the lattice spacing and the action of the bosonic doublet sT = (<p, 6) is 
given by

S0[S] = 2 HTKkS-k, Kk = 1(q2 - iq^a 1), (9.64)

k

i.e., a non-interacting variant of the Luttinger liquid action (see Eq. (3.96)).
(c) Use the Fermi-Bose correspondence to represent the generating function as a 
double field integral over r and s. Next shift the integration variables s to remove 
the field r from the source action, and perform the quadratic integral over r. Show 
that the final form of the action is given by (3.98).

Summarizing, we have rediscovered the action of the interacting Luttinger liquid, 
and the boson representation of fermion correlation functions (the latter obtained 
by differentiation with respect to the source parameters j). While the present func­
tional bosonization approach is more involved than that of section 3.6, it has the 
advantage of explicitness. However, if the truth be told, the authors are not aware 
of cases where this aspect became relevant: usually, the standard bosonization ap­
proach is just fine and, where it is not, the formalism above would not be any 
better).

Answer:

(a) This is resolved by a straightforward exercise in Gaussian integration and re­
organizing indices.
(b) Integrating over fermions, we obtain the effective action

S[¥] 9 / d2-''PTg—1 ^ — trln(d — i^)

d2x^Tg—1 p — 2tr(d 1 // 1 /) + O(W4)

= 2 'pks (g-s I + Ps'n s,k) r's', — k + O( ‘P ) ,

where k = (w, q) and ns,k = f d2p (e + isp) — 1(e + w + is(p + q))-1. Evidently, the 
structure of this integral poses a problem: while all the poles of the integrand appear 
to be on one side of the real axis (so that analyticity arguments might suggest a 
vanishing of the integral), the double integral is divergent.43 This is a 0 xx conflict, 
which we resolve by introducing a momentum cutoff:

1 1 ’
e + isp e + w + is (p + q)

= —i [ dp [sgn(sp) - sgn(s(p + q))] = 1—. \ • 
w + isq 2 J-A 2n 2n — isw + q

Substituting this result into the action, we obtain Eq. (9.61).

43 Note that the situation gets better at higher orders in the expansion: the poles remain on the 
same side, but now the integrals are convergent. We conclude that the expansion of the action 
stops at second order.

1 p 

s,k w + isq J-A



571 9.4 Problems

(c) Representing the fermion Green function as in Eq. (9.63), we obtain the local 
expression

Z = j DS Dr e-S0[s]-S[r]exp — j d2x (je-i(e+0+(n+6)a3) + ei(3+0 +(n+6)a3)j} , 

where the non-universal factor 2na has been absorbed into the definition of the 
source fields. (To confirm that the S-integral faithfully reproduces the source ac­
tion, one has to take into account the fact that exp(i($ ± 6)) o ^ is a Gaussian 
correlated variable.) The structure of the source term suggests a shift ^ ^ ^ — £, 
6 ^ 6 — n, or S ^ S — r for short. Denoting the now r-independent source 
contribution by exp(—Ssource [S]), the partition function assumes the form Z = 
f DS Dr e-S0[“-r]-S[r]-Ssource - . We further note that Kk = — DTnkD-k, to ob­
tain the integral over r,

s o [s — r] + s [r]
_  1 \ ' [77T TX 77 ['TI TT- -1 D 11' “T TX T"' I'T TX 77 1 

2 / Y [S k Kk s-k + r k ( Dk g D - k )r - k + s k Kkr - k + r k KqS-k\

—D? 1 V ST rKk — Kk(dTg-1D-k)-1 Kk 1 S-k 
k k- -

= 2 ST [Kk + 2q2(g4 — g2a3)] S-k 

k

— V(rt 6) (q2[1+2n(g4 — g2)] — iqw \(^
2 n , kv — iqu q 2[1 + 2n (g 4 + g 2 )V \e--k ,

where we have used the fact that KkD- 1 = — g(1 — ia2). Transforming back to real 
space-time, we obtain Eq. (3.98).
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SYNOPSIS In this chapter we introduce modern concepts and applications of gauge 
theory. We will start out from a geometric interpretation of gauge theory. This entry point 
will provide the basis for understanding the common origin of many phenomena in gauge 
theories. Specifically, we will discuss the general concepts of covariance, confinement, the 
gauge theory of topological matter, and that of strongly entangled systems with discrete 
gauge groups (notably Z2).

Reflecting the geometric origin of gauge theory, we will increasingly use differential form 
language as the chapter develops. Readers not familiar with this concept are encouraged 
to read the quick introduction in appendix section A.1 before starting this chapter, or in 
parallel with it.

What is gauge theory? Even a modern physics curriculum often does not provide 
an easy answer to this question. At an early stage, we get introduced to gauge 
fields as computational tools in electromagnetism. Later, we learn about the “gauge 
invariance” of classical and quantum mechanics, and that gauge fields have their 
own physical identity as mediators of forces, or as gauge particles when quantized. 
Later still, we get acquainted with a multitude of other gauge concepts, among 
them:

> the fact that gauge forces can be decaying or increasing with distance, the latter 
phenomenon being known as confinement;

> the application of gauge fields to the topological classification of solids (in that 
context, they are often called gauge “connections” - but connections of what?);

> the destruction of classical symmetries by quantum fluctuations (quantum 
anomalies) and its connection to topological signatures of gauge theories;

> gauge theories with discrete gauge groups featuring in the description of 
strongly entangled quantum matter;

> and parallels between general relativity and electromagnetism, where, e.g., 
the Riemann curvature tensor plays a role similar to the field strength tensor in 
electromagnetism.

Clearly, a concept essential to so many different physical contexts must be quite 
fundamental. But what is the overarching idea behind gauge theory?

To understand the principle, recall that physics describes nature by comparing 
(differentiating) quantities at different instances of space and time. For scalar quan­
tities, this is simply achieved by subtraction; for example, the temperatures in a 
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room at two different times are compared by computing their difference. However, 
for objects of higher structure the situation gets more involved. As an example 
of the relevance to relativity, consider a vector field, v, in the universe. How do 
we compare its amplitudes at two different space-time points? A naive approach 
would be to pick a common basis and compute the differences between vector com­
ponents, v'. However, the problem with this construction is the requirement of a 
synchronized choice of basis at different points in space-time, which is in conflict 
with the spirit of relativity.* 1 The situation in quantum mechanics is similar. For 
example, the Bloch wave functions, ':'k, of electrons in a solid are defined only up to 
a phase. One may apply this freedom to choose different phases for different Bloch 
momenta, <:k ^ el^k ^k. However, this arbitrariness invalidates comparisons based 
on the naive subtraction of wave function components; answers would depend on 
the choice of phases.

REMARK In this section, we introduce the foundations of gauge theory from a unifying 
perspective. To be concrete in our discussion, we will focus on the detailed discussion of 
two examples: the U(1) gauge theory of electromagnetism and quantum mechanics; and 
the GL(4) gauge theory, which is relevant to the description of space-time structures in 
general relativity. The second is added for illustrative purposes and may be skipped by 
readers who are in a hurry.2

In the 1930s, mathematicians invented a concept tailored to the understanding of 
gauge structures: fiber bundles. Much as linear algebra provides a perfect language

1 The choice of a space-time synchronized basis would require action at a distance, which is 
axiomatically excluded.

2 However, we note that a basic familiarity with general relativity appears to become more impor­
tant in condensed matter, notably in the context of holographic condensed matter physics. 
This emerging fields draws connections between strongly correlated quantum theories and grav­
itational theories in one dimension higher. For a discussion of this interesting development we 
refer to an increasing number of specialized textbooks.

Gauge theory provides a unified framework for the unambiguous 
comparison of non-scalar quantities at different points of space and time.

This viewpoint actually motivates the terminology “gauge.” However, the math­
ematician’s terminology for a gauge field, connection, is even more to the point. 
Gauge fields/connections bridge between the different points of a (space-time) man­
ifold, and in this way provide valid frames of reference.

In the first section of this chapter we introduce this way of thinking as a one-does­
it-all framework covering most aspects of gauge theory relevant to condensed matter 
physics. This will be followed by the discussion of various applications which all have 
in common the feature that the geometric viewpoint facilitates the understanding 
of the underlying physics.

10.1 Geometric Approach to Gauge Theory

holographic 
condensed 

matter 
physics
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to describe quantum mechanics, the concept of fiber bundles allows us to describe 
different realizations of gauge theory - electromagnetism, theories with non-abelian 
Lie gauge groups in particle and condensed matter physics, or theories with discrete 
gauge groups, etc. - in a unified setting. We begin this section with an heuristic 
introduction to bundles and their connection to field theory. On this basis, we will 
then address the problem of invariant differentiation, and its solution through the 
introduction of gauge fields.

10.1.1 Fiber bundles

The construction of a fiber bundle, E, starts with a smooth manifold M . This 
manifold assumes the role of the base space of the theory, for example, a condensed 
matter Brillouin zone, or the space-time manifold of the universe. To each point 
x G M, we attach a fiber, Fx. The fiber defines the target space of the theory. 
In theories with continuous targets, it is a smooth manifold in its own right; for 
example, Fx = C in the case of solid state wave functions, or Fx = R4 in the case of 
space-time vector fields defined in the universe. However, we will also discuss cases 
with discrete fibers, such as Fx = {-1, 1} in the case of Z2 gauge theory.

We assume that the fib ers are subject to the action of a group, G. In mathe­
matics, it is called the structure group of the theory, and in physics its gauge 
group. In the case of complex-valued wave functions, G = U(1) acts by phase mul­
tiplication and, in the case of four-dimensional vector fields, G = GL(4) acts as the 
group of basis transformations. Importantly, the actions of G at different fibers are 
independent of each other, which reflects the freedom to perform different phase or 
basis transformations at different points of the physical system.

The attachment of fib ers to points in x G M means that, locally, E looks like 
a Cartesian product of M and F: there exists a neighborhood x G U C M such 
that the restriction of the bundle to the neighborhood is isomorphic to U x F (see 
fig. 10.1). It is important to keep in mind that such local trivializations of E are 
defined locally but, in general, not globally. Specifically, one can show that bundles 
whose base manifold M is not contractible to a point can not be globally trivialized. 
For example, a torus base space, M = T d , is nontrivial and this feature is at the 
root of most topological structures in band insulators. We will return to this point 
in section 10.5, where we discuss topological aspects of gauge theory. However, for 
the time being, it is okay to think of the bundle as a local Cartesian product U x F.

Finally, a section is a map s : x ^ s(x) assigning values s(x) in the fiber Fx 

to points x. Sections are the geometric analog of wave functions or fields. It is 
always possible to define local sections in trivializing neighborhoods of points in 
M . However, both in mathematics and physics, the existence of global sections is 
intimately related to the topology of the bundle, and this is again a subject to be 
addressed in section 10.5.3

3 For example, one can show that principal bundles, i.e., bundles whose fibers are groups, 
admit global sections if and only if they are trivial.
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Fig. 10.1 The concept of fiber bundles: to the points of a smooth manifold, M, fibers, F, are attached. 
Locally, but not necessarily globally, the total space, E, defined by this construction looks 
like a Cartesian product U x F of subsets of U C M and the fibers. Fields are described as 
local sections of the bundle, i.e., maps x ^ s(x) € F. Fibers, and thereby fields, are subject 
to the action of a (gauge) group, G.

definition 
of fiber 
bundles

21
INFO The mathematical theory of fiber bundles is a subject of great depth (see Ref. 
for a physics-oriented introduction). Fortunately, the concept is also quite intuitive, and 
a heuristic understanding is sufficient for our purposes. Just for the sake of completeness, 
here we state the definition of fiber bundles, articulating what has been said above in 
precise terms:

A fiber bundle (E, n, M, F, G) consists of a total space, E, a base space, M, and a fiber, 
F, which are all differentiable manifolds. The projection, n : E ^ M is a surjective map, 
whose pre-image n-1(x) = Fx ~ F, x e M, defines the fiber above the point x. For each 
point x e M, we require the existence of an open neighborhood, Ui, and an isomorphism 
Ui, which maps the local trivialization Ui x F ^ n-1 (Ui), (x, f) n- ui(x, f) to the bundle 
space over Ui. Further, we require that n(ui(x, f)) = x, i.e., the trivialization does not alter 
base points. In cases where x e Ui A Uj lies in the intersection between two neighborhoods, 
points in the fiber n-1(x) above x are represented by two different elements of the reference 
fiber F. We then require that the transition functions, uij (x) = U-1(x) ◦ Uj (x) : F ^ F 
are elements of a transformation group of the fiber, the structure group, G.

For convenience, table 10.1 lists some fiber bundle vocabulary and its translation 
to physics. Some of the entries are not yet explained and are included for later 
reference.

10.1.2 Parallel transport

REMARK In this and the following sections we will interchangeably use geometry and 
physics parlance. Which of the terminologies is preferred depends on the context, while a 
mixture of languages is also widespread in the modern physics literature. For reasons of 
notational transparency, we frequently use subscript notation, sx = s(x), for the coordinate 
dependence of fields.
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Table 10.1 Fiber bundle vocabulary with its translation to physics.

Geometry Physics
Fiber bundle, E
Base manifold, M
Fiber, F
(Local) section, s
Structure group, G
Action of structure group 
(Loop) parallel transport, r 
Connection form, A 
Curvature form, F

—
Base manifold of field theory
Target manifold of field theory
Field
Gauge group
Gauge Transformation
Wilson-loop
Vector potential/Berry connection/Christoffel symbol
Field strength/Berry curvature/curvature tensor

We are now in a position to formulate the problem of invariant differentiation and 
its solution. To this end, consider two points x, y G M connected by a curve 7 
(see fig. 10.2 for a one-dimensional visualization). Let us assume that the fiber has 
been parameterized by coordinates, so that we may assume F C Rn. The values 
of a section, sx , sy , at the points may then be compared by subtraction, sy - sx . 
However, the problem with this prescription is that it is not invariant under local 
gauge transformations, gx. The latter change the section values as sx ^ gxsx and 
sy ^ gysy. After a transformation, the naive comparison may yield a different 
result, which means that it is lacking gauge invariance.

parallel 
transport

To define an invariant comparison scheme, addi­
tional structure is required. We define a parallel 
transporter, r[y] G G, which depends on the cho­
sen curve and is an element of the structure group 
itself. Applied to a field value, r[7] sx defines an el­
ement of the fiber Fy above the terminal point of 
the curve. This value is called the parallel trans­
port of sx to y, and it serves as a reference value 
for comparison. Changes in the section are measured as sy — r[y] sx, i.e., differences
between the local value sy and the parallel transported value r[y] sx. Specifically, 
a section sy = r[y] sx identical to the parallel transported value is considered to be 
effectively constant, even if r[y]sx = sx.

gauge 
invariance

Of course, this prescription remains formal as long as we have not defined physi­
cally, or mathematically, motivated realizations of parallel transport. However, for 
the moment, let us stay on a general level and implement the key condition of 
gauge invariance (see fig. 10.2). Assume that a gauge transformation has been 
applied such that sx ^ gxsx and sy ^ gysy. In the gauge-transformed setting, we 
work with a new realization of the parallel transporter, which we term P where, to 
keep the notation concise, we temporarily omit the curve dependence [y]. Applied 
to the gauge-transformed section value gxsx, it yields Pgxsx in Fy. Alternatively, 
we may first transport to rsx under the old transporter and then consider the gauge 
transform gyrsx at y. Gauge invariance means that the target values are the same,
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Fig. 10.2 The concept of parallel transport: elements sx in the fiber above x get transported to the 
fiber above y in a manner compatible with the action of the gauge group. The inset shows 
an infinitesimal version of the process.

gyrsx = r'gxsx, irrespective of the value of sx. Multiplication by gx 1 leads to the 
gauge invariance condition for parallel transport,

r'[ y ] = gy r[ y ] g-. (10.1)

While this condition expresses the essence of gauge invariance, it is tied to the 
choice of a curve, y , and therefore is not very useful in practice. As is usual in such 
situations, a more practical expression is obtained by considering the limiting case 
of infinitesimal parallel transport. To this end, note that an infinitesimal curve on 
M is characterized by a product ev, where e is a small parameter and v a tangent 
vector to the manifold. For example, v' = Ik' might be the components of lattice 
momentum vectors in the case M = Brillouin zone, or those of space-time vectors 
in the case M = universe.4 Under these conditions, parallel transport will be almost 
the identity operation,

r = 1 - eA,

where 1 is the unit element of the gauge group, A, an element of its Lie algebra, and 
the minus sign is a matter of convention. For example, for G = U(1), infinitesimal 
transformations are described as e - A, which identifies A = i0 as (i times) a real 
number. For G = GL(4), A = {AY} are real 4 x 4 matrices, etc. The dependence of 
r on the curve is now encoded in the dependence of A on the displacement vector. 
For infinitesimal arguments, this dependence is linear, i.e., r[y] - 1 - eAv, where

4 Note that, in the latter setting, the vector components v! appear in two different contexts: 
as coordinates of the fibers and as components of tangent vectors to the base manifold. This 
double function can be a source of confusion, especially when reading relativity textbooks.
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connection 
form

gauge the­
ory of elec-
troweak or 
strong in­
teractions

parallel 
transport 
in general 
relativity

covariant 
notation

Av = A^A with Lie algebra-valued coefficients A,,. The linear functional A is the 
connection form of the theory. Its denotation in physics depends on the context, 
where the vector potential (quantum mechanics), gauge field (SU(n) gauge theory of 
particle physics), and Christoffel symbol (general relativity - see info block below) 
are specific realizations. For a d-dimensional base manifold, A has many components 
A,,. Notice, however, that A is not a vector (and the denotation “vector potential” 
an unfortunate misnomer). Rather, it is a dual vector, or one-form, taking vectors 
as arguments, v ^ Av = A,,vA. This assignment is required to be smooth on the 
manifold, which makes A a Lie algebra-valued differential one-form.

EXAMPLE In the case M = R4 and G = SU(2) or SU(3), relevant for the gauge 
theory of electroweak or strong interactions, A takes values in the Lie algebras su(n), 
n = 2, 3. It can be expanded as A = iAaT a in the anti-hermitian generators iTa of these 
algebras. In physics, it is more customary to pull out an i and work with hermitian 
n-dimensional matrix representations T a = {(T a)ij } instead. For example, in the two­
dimensional spin-1 /2 representation of su(2), Ta = aa are just the Pauli matrices. The 
coefficients Aa = Aadx^ are one-forms whose application to a tangent vector A of M 
yields the generator matrix iAAajTa.

How does the infinitesimal version of gauge invariance look? With y = x + ev, 
the invariance equation assumes the form

1 — eA xv = gx+ev(1 — 'A") gx 1 = 1 — egxAxvgx 1 + 'd,.P gxv^gx 1 + O( £2) •

Dropping the argument dependence for better readability, and using that B^gg-1 = 
—gB^g-1, and gB^g-1 A = (gdg-1) v, this assumes the form

A ^ = gA^g-1 + gd^ g-1, (10.2)

or

A' = gAg1 + gdg-1 | (10.3)

in invariant notation. In the case G = U(1), relevant to electromagnetism or quan­
tum mechanics, A is purely imaginary and, with g = exp(i0), we obtain the familiar 
gauge transformation A'^ = A^ — id^o. However, for theories with a non-abelian 
structure group, Eq. (10.2) defines the transformation of the connection form.

INFO In the context of general relativity, F = R4 are the local tangent spaces to the 
universe, M, i.e., the target spaces of space-time vector fields. One usully expands these 
fields in coordinate bases, defined as bases whose vectors are tangent to coordinate lines of 
a local coordinate system (see the figure for a two-dimensional illustration). For example, 
in three-dimensional space, the local basis vector eg is tangent to the lines of varying polar 
angle 0 in a spherical coordinate system. If {v^} are the coordinate vectors of a system of 
coordinates {X},5 and {wv} those of a system {yv}, the basis transformation is mediated

5 Here, we use standard covariant notation, where superscripts (contravariant indices) label 
coordinate functions .x'', or the components of vectors, >u, and subscripts (covariant indices) 
label partial derivatives, gx = g^, or the components :‘X of forms (see info block on page 
524). The index positioning specifies the behavior under coordinate transformations x^ ^ y'',



579 10.1 Geometric Approach to Gauge Theory

by the Jacobi matrix, vM = ^xXwv. This means that the elements of the structure group 
representing transformations between coordinate bases are given by the Jacobi matrices 
J — { dy_} with in verse J 1 — { dxp }J ---- { Qx^ } , with inverse J -- { QyV } .

Following standard conventions, we denote the compo­
nents of the connection form of this structure group as rM, 
y — 0, 1, 2, 3.6 The individual rM are four-dimensional real 
matrices with matrix elements rAM — (rP~)M. A change of 
basis amounts to the action of the structure group under 
which r changes as in (10.2), with g — J, such that

r' — J r J-1 + JdJ-1. (10.4)

In the y-representation, r is naturally expanded in y-coordinate differentials as r — 
rMdxM — rMddy^dyv — rM (J-1)Mvdyv• This leads to the coordinate-resolved transition 
law, rae ^ r'"'P — J“ (J-1)va (J-1)prM^ + JapdyY (J-1)p . Substituting the defini- Y Y Y M Y Y Y P P '
tion of the Jacobi matrix, we arrive at the transformation identity,

ra — dya dx dxP rM + dya d2xp

X dxM dyd dyY vp dxp dyYdyd , (10.5)

which in this form is found in almost any textbook on relativity. Note how this equation 
looks much more cluttered than Eq. (10.4). The equation is not only crawling with indices, 
but also does not visibly distinguish between two different sectors of gauge theory, the fiber 
structure (encoded in the indices y and v) of rMvp and the geometry of the base manifold, 
(the index p). Under a coordinate change, both transform but in different ways, and this 
leads to the mingled appearance of the equation. Equation (10.5) illustrates that it can be 
advisable to stay on the more transparent coordinate-invariant level, r ^ grg-1 + gdg-1, 
for as long as possible. Of course, concrete calculations are then made in coordinates.

10.1.3 Covariant derivative

covariant 
derivative

In the previous section, we argued that a gauge invariant prescription for the change 
in fields between different points, x, y, of the target manifold reads as sy — r[y] sx, 
i.e., a comparison between the actual value, sy, and the parallel transport r[y]sx 

in the same fiber Fy . However, this expression must be taken with a grain of salt. 
For example, it prematurely assumes the independence of the parallel transport on 
the choice of the curve y connecting x and y , a point to which we return in the 
next section. An unambiguous and more tractable definition is once again obtained 
by considering the case where the points are only infinitesimally separated, and 
differences become derivatives. Writing y = x + ev as before, this leads to sx+ev — 
(1 — eAv)sx ~ ev^ (dy + Ax,y)sx. Division by e yields the covariant derivative:

or

D = dv + Av,

D = d + A

(10.6)

(10.7)

where contravariant indices transform as vM ^ Sy^vv and covariant indices as w^ ^ Wv.
For further details on covariant notation, consult a textbook on relativity.

6 Do not confuse these rM with the parallel transporter r[y].
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in coordinate-invariant language. By construction, covariant differentiation yields 
ev'D.sx for the difference of two field values at points y = x+ev and x, respectively. 
This expression is invariant in that, under a gauge transformation sx ^ gxsx, the 
covariant derivative changes as v' ID,sx ^ gx(v'D.sx).

minimal 
coupling in 

quantum 
mechanics

covariant 
derivative 
of general 
relativity

EXAMPLE The construction above generalizes the standard minimal coupling scheme 
of quantum mechanics. With s(x) = D(x) a wave function, and g = <'" a U(1)-gauge 
phase, the standard vector potential, A^ equals i times the connection form. Its transfor­
mation under gauge transformations, A^ ^ A^ — dt1D is designed to make the covariant 
derivative D^ = d^ — iA^ gauge covariant, D^eii^D = <'"(D^D).

For SU(n) gauge theory, and A^ = iA^Ta, the covariant derivative acting on SU(n) 
spinors assumes the form Dex."'' = rDDD + iAl (Ta)ijDj, with the anti-hermitian generators 
Ta acting as matrices on D . In general relativity the covariant derivative of one vector 
field v(x) in the direction of another, w, acts as wvDvv1 = wv(dvv1 + r1Xva). In this 
way, it is guaranteed that, under coordinate transformations, wvDvv1 transforms as a 
contravariant vector, i.e., covariant differentiation maps vector fields onto vector fields 
(verify this statement using Eq. (10.5)).

parallel 
trans­

port along 
curves

The covariant derivative can be applied to obtain a concrete expression for par­
allel transport along extended curves: by definition, a field is parallel trans­
ported from x to x + ev if its covariant derivative vanishes, ev'D.s = 0. Now 
consider two points x, y and a connecting curve 7 with coordinate representation 
x(t), x(0) = x, x(1) = y. We transport sx to y by a succession of infinitesimal 
parallel transports along the local tangent vectors v(t) = dtx(t) = x(t). All the 
while the parallel-transported field amplitudes obey the equation

x^( t )( d. + A. ) sx (t) s x (t) + x^ Ax (t) ,'sx (t) 0. (10.8)

This is a system of ordinary differential equations for the fiber components of the 
parallel transports s(t) = sx(t) along the curve, which needs to be solved with initial 
condition s(0) = sx.

First consider the situation where s = D is a scalar (wave function), and A. G 
iR are imaginary numbers. In this case, dtD + dtx'A.D = 0 is a single ordinary 
differential equation, which is solved by

D(t) = exp —~f du x'A. D(0).

Noting that the expression in the exponent is the line integral of the vector potential
A along the curve connecting x and y, the final value Dy = D(1) is obtained as

Dy = exp - A Dx. (10.9)

This expression features frequently in quantum mechanics where, depending on the 
context, it is called Berry phase, geometric phase, Aharonov—Bohm phase, 
or Peierls phase. In each case, it describes situations where a vector potential is 
present and the “minimal variation” of a wave function along the base manifold is 
considered.
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Aharonov—
Bohm 
effect

EXAMPLE The Aharonov—Bohm effect of 
quantum mechanics is a phenomenon caused by 
the path dependence of parallel transport. In 
the experiment shown in the figure - the first 
observation of the effect in a condensed matter 
experiment* 7 - the conductance of sub micron­
sized gold rings threaded by a magnetic flux was 
measured. The conductance is sensitive to the 
interference of wave function amplitudes parallel 
transported along different paths, 7 and y' from 
the entry point, x, to the terminal point, x', of 
the ring. The phase difference, f A — J/ A = 
fS A = S dA equals the flux of the magnetic 
field B = dA through the area S bounded by 
dS = y - Y'. Since this quantity appears as a 
phase, one expects 2n-periodic modulations of 
the conductance in the flux. This expectation is 
confirmed in the lower panel of the figure, which

As an interesting special case, consider parallel transport along a closed curve, 7, 
parameterized as x(t), t e [0, 1]. The transporter

(10.11)

will now send section values sx to r[7] sx in the same fiber Fx. It is therefore a map 
r[Y] : Fx ^ Fx, which may be identified with an element of the structure group. 
In cases where it is nontrivial, sx gets parallel transported to a different value. In 
mathematics, this mechanism is called holonomy. While holonomy appears to be

7 R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Observation of h/e Aharonov- 
Bohm oscil lations in normal-metal Rings, Phys. Rev. Lett. 54, 2696 (1985). Copyright by The 
American Physical Society.

shows periodic modulations of the conductance, whose flux periodicity is revealed by the 
power spectrum on the right. The effect rapidly diminishes upon increasing temperature, 
reflecting the sensitivity of quantum mechanical wave interference to decoherence.

non-abelian
parallel 

transport

More generally, for a gauge theory with a non-abelian gauge group, the differ­
ential equation for parallel transport is solved by a path-ordered exponential (in 
much the same way as the mathematically identical time-dependent Schrodinger 
equation),

s (t) = P exp —~f du x''' Aa s(0), (10.10)

where the path ordering P exp ft (...) = n ft dun fUn dun-1 • • • fU2 du 1(...) ac­
counts for the lack of commutativity of the matrices A,, appearing in the integrand.

10.1.4 Field strength and Wilson loops 

r[y] = P exp

holonomy
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of purely geometric origin, it is of defining importance to the physically observable 
fields of gauge theory.

To understand how this comes about, consider 
the example of an abelian U(1) connection and 
a purely spatial curve, 7, parameterized as r(u), 
u e [0, 1]. In this case, Eq. (10.11) is a phase de­
fined by the closed-loop line integral du dur1 Ai = 
</>Y ds • A = Js dS • (V x A) = Js dS • B, where 
SY may be any area in M bounded by y and 
B=V x A is the gauge invariant magnetic in­
duction. The construction demonstrates that non­
trivial holonomy is equivalent to the presence of a non-zero magnetic flux.

electro­
magnetic 

field 
strength 

tensor

non-abelian 
field 

strength 
tensor

INFO In the example considered on the previous page, the difference 7 — y' defines a 
closed loop; the area of the gold ring is a natural choice for the corresponding surface, 
and the probed quantity is the magnetic flux through that loop. It demonstrates that the 
Aharonov-Bohm effect is a manifestation of geometric holonomy.

More generally, considering curves that need no longer be space-like, application 
of the general Stokes theorem (see appendix section A.1.2) yields Yy A = fs dA = 
fs F, where the two-form dA = F = F^vdxF A dxv is the electromagnetic 

field strength tensor with components F^v = d,Av — dvAY. We conclude that 
holonomy and field strength in the gauge theory of electromagnetism are different 
sides of the same coin!

From a physics perspective, the b eauty of holonomy is that it defines physical 
field strengths regardless of the specific realization of a gauge theory. However, what 
makes our life in non-abelian theories a little more complicated is the path-ordering 
prescription in Eq. (10.11). A way to sidestep this problem is to consider the case of 
infinitesimally short loops of length e. The previous example of the U(1) connection 
established a correspondence between the line integral of the connection form (a 
quantity nominally O(e)) with the integral over a surface bounded by 7 (which is 
O(e)2). We thus expect the expansion of r[y] to start with a contribution of that 
order. Indeed the expansion of the parallel transporter up to second order in e (see 
problem 10.7.1) yields r[y] = 1 — fs F + • • • where the general field strength 

tensor is defined as

F^v = dA — dv A, + [ AAv ] • (10.12)

Introducing the field strength differential two-form as F = 2F,vdxF A dxv, the 
invariant representation of this identity assumes the simple form,

F = dA + A A A (10.13)

In the abelian case, where [A^, Av] = 0, the second term vanishes and we are back 
to the formula F = dA familiar from electrodynamics. More generally, the AY are 
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structure 
constants

Riemann 
curvature 

tensor

(10.14)

(10.15)

F ^ f' = gFg-1

matrices acting on the fiber degrees of freedom, where the explicit representation 
of the second term depends on the context.

EXAMPLE In SU(n) gauge theory, the fields A are expanded as A = iAaT a, and 
their commutator is characterized by the structure constants of the corresponding Lie 
algebras, [Ta,Tb] = fabcTc. For example, in the case su(2), fabc = 2ieabc is given by 
the antisymmetric Levi-Civita symbol. The field strength tensor (10.12) then assumes the 
form F^v = (idAa - ‘AJ - f abcAbA)Ta.

EXAMPLE For the connection coefficients Av — {(rPa) v} of the GL(4) gauge theory, 
Eq. (10.12) yields

f — r = d r + r a r,

which becomes

P FP \ pp ,h,p _ ,M'P rP r _ rP r(^ a ) l-tv — a apv t^l av l v^ ap + -*- t/A av J- tv1- ap

8 S. Lang, Differential and Riemannian Manifolds, 3rd edition (Springer, 1995).

in a coordinate representation. The four-index object RPjv is the Riemann curvature 
tensor. Referring for the connection with curvature to section 10.2.2, the ab ove formula for 
R is another example of a hard-to-read coordinate representation. Quoting the differential 
geometer Serge Lang, “In many cases, proofs based on coordinate-free local representations 
are clearer than proofs that are replete with the claws of a rather unpleasant prying insect 
such as RPapv .”8 Lang’s point is made by comparison of Eqs. (10.14) and (10.15).

Under a gauge transformation, the field strength tensor transforms as

F^v ^ F'^v = gF^vg-1, (10.16)

or

(10.17)

in invariant language. This follows from the master equation (10.1), and the defi­
nition of F as an infinitesimal closed-loop parallel transporter, r = 1 — Js F. The 
loop transporter transforms as r ^ grg-1, with identical factors on the left and 
right, and this transformation is inherited by F . However, the relation can of course 
also be checked by direct computation.

EXERCISE Verify Eq. (10.16) or Eq. (10.17) on the basis of the above definitions. 
Depending on your taste, use the differential form representation (10.3) of the gauge 
transformation, and the definition (10.13), or start from the component-resolved relations 
(10.3) and (10.12).

In abelian U(1) gauge theory, the transforming factors commute through, and the 
field strength tensor remains invariant. This is the principle behind the gauge in­
variance of the fields of electromagnetism. However, in general, the field strength 
tensor is subject to change.
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EXERCISE Apply reasoning similar to that which led to Eq. (10.5) to verify that the 
coordinate transformation of the Riemann curvature tensor is given by

R= *.,. (10.18)

As one might have expected, it transforms as a tensor that is contravariant to first degree 
(the superscript index) and covariant of third degree (the three subscripts). However, while 
the first two of the four Jacobi matrix factors appearing in this relation assume the role of 
the transforming factors in Eq. (10.17), the remaining two account for the transformation 
of the differentials in the expansion R = 2 Rapdxa A dxp. The coordinate representation 
obscures the different roles played by fiber and manifold coordinates.

Bianchi 
identitiy

We finally note that the behavior of the field strength under gauge transforma­
tions implies an interesting type of “constancy” of the field strength: referring to 
problem 10.7.2 for an in-depth discussion, one can verify the Bianchi identity

DF = dF + A A F - F A A = 0 I (10.19)

Wilson 
loop

where the “D” acting on F is a version of the covariant derivative appropriate to 
objects transforming as X ^ gXg-1 rather than as s ^ gs. (Exercise: What is the 
coordinate representation of the Bianchi identity?) In electromagnetism, it reduces 
to dF = 0, which is a compact version of the homogeneous Maxwell equations. 
More generally, the Bianchi identity constrains the number of degrees of freedom 
contained in the field strength tensor, and in this way simplify the theories of 
gravitation, or of the strong and weak interactions.

The discussion above indicates that the majority of quantities fundamental to the 
theory change under gauge transformations. However, there are exceptions to the 
general rule. An important class of gauge invariant quantities are Wilson loops. 
For a theory whose fibers are vector spaces, and a closed curve y in M, the Wilson 
loop operator is defined as tr(r[y]), i.e., the trace of the structure group element 
representing the parallel transporter taken over fiber space. Using Eq. (10.11),

1

W = tr P exp
0

dt xf' A, f (10.20)

In this expression, the group elements g(. . . )g-1 picked up by the parallel trans­
porter under a gauge transformation cancel out owing to the cyclic invariance of the 
trace. Applications of Wilson loops in the diagnostics of physical phases of gauge 
theories are discussed in sections 10.3 and 8.6.4. In either case, they are instrumental 
to the description of the degenerate ground states of topological matter.

10.2 Connections 

The theory above did not make reference to a particular choice of the connection. 
For a given fiber bundle there are infinitely many connections, and this freedom is
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the essential resource of gauge theory. Depending on the application, connections 
are chosen according to different principles:

> The connection can be a dynamical degree of freedom in the sense that 
different connections are integrated subject to some action principle. This is the 
standard situation in the gauge theories of electromagnetism, or strong and weak 
interactions.

> The choice of a natural connection can be determined, or at least partially 
constrained, by geometric structures characterizing the fiber bundle. 
Important examples include adiabatic parallel transport via the Berry connec­
tion, or gravity. In the latter case, the base manifold carries a metric, which in 
turn defines a class of connections.

> We often encounter hybrid situations where integration is carried out over a 
connection, partially constrained by geometrical or physical principles.

In the following, we briefly consider these cases in turn.

10.2.1 Dynamical gauge theory

REMARK This section uses the language of differential forms to derive the most fre­
quently occurring gauge field actions. Readers not yet familiar with forms may skip over 
this section at first reading. However, we will later refer back to the results: Eq. (10.23) 
for the dynamical gauge field action, and (10.25) and (10.28) for the topological actions. 
(Throughout, “d dimensions” means space-time dimensions, i.e., (d — 1)-dimensional real 
space.)

In this section, we use the terminology “dynamical gauge theory” for theories where 
the connection coefficients A,, are fields over which integration is carried out. We 
thus consider structures DA exp(-S[A]) and need to address two questions: over 
what measure, DA, should we integrate, and what action, S[A], weights the gauge 
field fluctuations? The answer to these questions fixes the pure gauge theory. A gen­
eral theory will also contain matter fields, coupled to the gauge theory by current­
vector potential terms, ~ f dx tr(A^j1'). However, we ignore the field-matter cou­
pling for the moment and concentrate on the pure gauge sector.

INFO People often refer to gauge structures as “gauge symmetries.” However, one 
may reason that this is a misnomer. Quoting the physicist Xiao-Gang Wen:9 “The terms 
gauge symmetry and gauge symmetry breaking are two of the most misleading terms in 
theoretical physics.” Unlike, e.g., rotation (symmetries), whose application to a magne­
tization vector creates physically different states of magnetization, states related by a 
gauge transformation represent the same physical state. The gauge transformation is not 
a physical transformation. Instead, it expresses the freedom to express the same state in 
different representations. We tend to talk of gauge symmetries when this freedom becomes 
a creative tool. However, one should keep in mind that these “symmetries” do not generate 
physical phenomena. In particular there is no such thing as gauge symmetry breaking (see 
the discussion in section 10.3).

9 X. -G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, 2004).
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The proper choice of an integration measure must ensure that connections A 
and A' related to each other by a gauge transformation (10.3) should be regarded 
as identical and not be independently integrated over. In the abelian case, the 
situation can be handled by imposing a gauge fixing condition, e.g., by defining the 
integration measure as DA = [Jx ^ dAx,^ 5(d^A^), where the 5-function implements 
the Lorentz gauge, d^A^ = 0 (and A^ = g^vAv if a metric is present).10 In non- 
abelian theories, more thought is required. The gauge-fixing condition must be 
augmented by a functional determinant securing its proper transformation behavior. 
That determinant is in turn represented by an integration over Grassmann-valued 
integration variables, the Faddeev-Popov ghost fields. However, since these 
complications do not arise on a daily basis in condensed matter applications, we 
will not discuss them here.11

Let us instead turn to the second aspect, realizations of effective gauge field 
actions, S [A]. From the theory of electromagnetism, we are accustomed to the 
effective action of abelian gauge theory in four space-time dimensions, Eq. (1.22). 
However, is this the only possible choice? And what about theories in two and 
three space-time dimensions? What differences arise in non-abelian theories? None 
of these questions is straightforward to answer by physical reasoning. However, what 
comes to the rescue are conditions deduced from the geometry of gauge fields. These 
criteria imply an almost unique fixation of gauge field actions in all dimensions, and 
for all realizations of the fields. The geometric analysis also tells us which actions 
are “topological” (in the sense of the discussion of chapter 8) and which are not. 
This information is also not so easy to obtain in other ways.

In the following, we will discuss these two classes of gauge field actions in turn.

Maxwell and Yang-Mills actions

Let us begin our discussion with a few general remarks. The desirable objects to 
integrate in a theory in d space-time dimensions are d-forms. At present, we also 
require gauge invariance, which means that the integrands must be independent 
(at least up to total derivatives) of the gauge choice. An obvious building block 
for the construction of integrals satisfying these criteria is the field strength tensor, 
F , a two-form. In differential geometry, there exists an operation, the Hodge star 
(see appendix section A.1.3), mapping a general p-form, w, to a (d — p)-form *w. 
Applied to the field strength tensor, it yields the dual field strength tensor,

G = — * F. (10.21)

This is a form of degree d — 2, which means that the (d = (d — 2) + 2)-degree form 
F A G = — F N *F is a good object to integrate. We thus conjecture that

10 As an alternative to the 8-constraint integration over all gauge sectors, one may fix a gauge 
first, and integrate only over one gauge sector. This is straightforward to implement in the 
abelian case, but less so in non-abelian theories.

11 For an excellent introduction, see Faddeev-Popov ghosts, Scholarpedia 4, 7389 (2009) by Ludwig 
Dmitrievich Faddeev, one of the inventors of the concept.
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S [ F ] = cj tr( F A* F) (10.22)

is a candidate for an effective gauge action. To make the representation more con­
crete, we note that, in a coordinate representation, F = 2F^vdx^ Adxv, the applica­
tion of the Hodge star (Eq. (A.20)) yields G = 2( d—2)! Fpa eP&g 3 ...g.d dxp 3 A---A dxpd, 
where Fpa = gpp,galv F^v are the components of the field strength tensor with in­
dices raised by the metric.12 Substituting this expression into the wedge product, 
it is straightforward to verify that F A *F = 2gFF,.vFpvdx1 A • • • A dxd, so that 

the coordinate representation of the action functional reads

S[F] = C [ ddx tr(F^vF^v) • 
2M

(10.23)

In d = 4, and for non-abelian gauge groups, this is the action of Yang-Mills 
theory. It plays a key role in the formulation of the standard model, and we refer 
to the particle theory literature for an in-depth discussion. In the simpler abelian 
U(1) setting, it reduces to the standard Maxwell action of the electromagnetic 
gauge field, Eq. (1.22). In this case, G, is the dual field strength tensor entering the 
inhomogeneous Maxwell equations. However, Eq. (10.23) equally applies to other 
dimensions. For example, it defines the action of (2 + 1)-dimensional electrodynam­
ics, or the Schwinger action13 in (1 + 1)-dimensions. In these cases, it is sometimes 
argued that the integrand ~ Fliv Fpv is the only Lorentz-invariant expression that 
can be constructed from the field strength tensor (an incorrect assertion, as we will 
see shortly). Here, we arrive at the result via the general field strength dual, which 
in dimensions 3 and 2 is a one-form or an index-less zero-form, respectively.

INFO For illustrative purposes, let us review how the tensors F and G feature in the co­
variant description of electromagnetism. Starting from the definitions 
Fjv = d^A/j, — dvA^, the Minkovski metric g = n = diag(—1, 1, 1, 1), and Aj = ($, A), a 
straightforward comparison shows that the field strength tensor and its dual are related 
to the electromagnetic fields Ei = — dio — c-1 dtAi and Bi = eijkdjAk as

/ 0 —E1 —E2 —E3 ( 0 B1 B2 B3

{F } = i
E1 0 —B3 B2

, { GJV } = i
—B1 0 —E3 E2

E2 B3 0 —B1 —B2 E3 0 —E1
.

E3 —B2 B1 0 \ —B3 —E2 E1 0
(10.24)

Again, we have a factor i by which the (imaginary) geometric tensor Fjv differs from the 
field strength tensor of physics, Fgeo = iFphys (see Eq.(1.21)). Expressed in terms of F(phys) 

and G(phys), the Maxwell equations assume the form d^Fjv = 0 and dJG'M' = const. x jj, 
where jj = (cp,ji) is the four-current vector and the constant depends on the chosen 
system of units (e.g., const. = 4n in CGS units).

12 We here assume that we are working with a metric of unit-modular determinant, such as the 
Minkovski metric. More generally, the coordinate representation of the field strength dual must 
be multiplied by a factor ^/jg|, where g = det({gjv }) is the determinant of the metric tensor.

13 J. Schwinger, Gauge invariance and mass. II, Phys. Rev. 128, 2425 (1962).
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In view of the importance of effectively low-dimensional systems in condensed mat­
ter physics, the study of electromagnetism in (1 + 1)- or (2 + 1)-dimensions, as 
described by the effective action (10.23), is becoming an increasingly important 
subject. The discussion above indicates that, in these dimensions, the traditional 
formulation of Maxwell theory in terms of vector fields is not as straightforward 
as in the (3 + 1)-dimensional case.14 However, here we do not pursue this subject 
further and instead ask whether there can be effective gauge field actions different 
from Eq. (10.23).

14 Curiously, the literature on low-dimensional electromagnetism appears to be scattered. See, 
however, the unpublished online resource K. T. McDonald, Electrodynamics in one and two 
spatial dimensions (physics.princeton.edu/mcdonald/examples/2dem.pdf).

Topological gauge field actions

Previously, we reasoned that a “natural” field strength action is obtained by inte­
gration of the form tr(F A *F) over d-dimensional space-time. The presence of this 
*-operator indicates that a metric is involved; these actions are not topological. 
However, in even space-time dimensions, we may easily define integrands with­
out reference to *: in (1 + 1)-dimensions consider tr F and in (3 + 1)-dimensions, 
tr(F N F). These traces define the effective actions

S(2) = cl tr( F) S(4) = cl tr( F A F) (10 25)Stop = cj ll(F ), Stop = cj ll(F A F ), (10.25)

or

Q(2) -- c I -Papp. C(4) --- c I j4„. ^liyp^at-rl‘ Z.’ Z? > ZinOfi'lS top — 2 J d X£ tr( F pv) , S top — 4 J d x£ tr( F pv F pa ), (10.26)

in coordinates. No reference to a metric is made, indicating that these are topolog­
ical gauge field actions. Indeed, we will show in section 10.5.3 that the effective 
actions St(o2pl) are topological invariants defining the so-called lth Chern class of the 
underlying bundle. However, the topological nature of these terms is not easy to 
see with the naked eye. For example, it is straightforward to show (do it!) that 
ep'^atr(FpvFpa) = -8E • B. That this term is Lorentz invariant, and yields an 
integer-quantized result upon integration, is not obvious (a point to which we will 
return in section 10.5).

Equation (10.25) defines topological actions in the even-dimensional cases d = 2, 4. 
But what about the odd dimensions d = 1, 3? To understand what is happen­
ing here, consider an odd-dimensional base manifold M as the boundary of an 
even-dimensional one N in one dimension higher, M = dN. Mathematically, the 
integrands of gauge field actions on N are differential forms of highest degree, 
which means that, at least locally, they can be written as exterior derivatives of 
something else: tr F = dX and tr(F A F) = dY in symbolic notation. For exam­
ple, in d = 2, tr(F) = tr(dA + A A A) = tr(dA) = d tr(A), where we noted that 
tr(A A A) = -tr(A A A) = 0 owing to the cyclicity of the trace and the anti­
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commutativity of the wedge product.15 A similar calculation in d = 4 shows that 
tr(F A F)= tr(dA A dA + 2dA A A A A) = dtr(A A dA + 2A A A A A).

Applying Stokes’ theorem to the topological action over N as N dX = M X , 
we obtain

S(1) = ik f tr( A) S(3) = k t tr A A A dA + — A A A A Al (10 27)
CCS — ij tr( at), Ccs — J tr I Al A A Ujat. | AT. A A AT. A A AT. I (10.27)

as candidate topological actions, where the integer-valued coupling constant k de­
fines the level of the theory. (For the necessity of integer quantization, see below 
and section 10.5.) In coordinates, these actions read

S(1) = ik f dx tr( A) S(3) = — d d3 x A'v,T tr I A d A +— A A A i
C cs -  i^ I Lxt tr(_/i), C C^S ---- I x x t til AT^ C/^^T7 | Al'Alv Alff I ,

M M (10.28)

where we note that, in one dimension, the connection has only one component. 
These actions are called Chern—Simons actions (or CS actions for brevity).16 

In the abelian case, the commutativity [A^,Av] = 0 implies that the term AA3 

vanishes, and the action reduces to the abelian form A A dA. In section 10.5, we 
discuss the CS action from a geometric perspective and in section 8.6 from that of 
field theory.

Note that the odd-dimensional CS actions are formulated in terms of the gauge­
connection rather than the physical field strength. This raises interesting questions 
concerning gauge invariance, whose answer depends on both the topology of 
space, and that of the fibers. As an example, consider the d = 1 case, where the 
fibers U(1) have the topology of a circle. A gauge transformation (10.3) leads to a 
shift A ^ A + ei&de-i^, where ^ is a function on M. The action then picks up a 
liilTi. i (1 i _ L i (1 i ii~ ii 1' iA^ rl - iX If 1\/T li'ic k.. 1 1 tiI ■> lj v C/.l" j. I n 1111\/T c rTioterm ^top ' *~iop ~+ i j jm e e . j.i ivj. nas a L/ou-iiuary, ior example, iki is me
interval [a, b], the induced term k(^(b) — ^(a)) is non-vanishing, and the action lacks 
gauge invariance. The appropriate “repair mechanisms” fixing this problem at the 
boundary were discussed in problem 8.8.8. However, even if M is boundaryless, 
for example, M ~ S 1, we may run into trouble. To see why, consider the choice, 
^ (x) = 2nx, where x G [0, 1] is the circular coordinate parameterizing M. The gauge 
transformation, g(x) = exp(i2nx), then winds once around the structure group as x 
runs through M. The multi-valuedness of the exponential function, exp(2ni x 1) = 
exp(2ni x 0), makes this a legitimate transformation; however, it is one that cannot 
be continuously deformed into a trivial transformation. This is the defining criterion 
for a large gauge transformation. Under it, our topological action picks up a 
term 2nk. In this case, there is no boundary where repair mechanisms can be 
installed to fix the problem. The only way to safeguard gauge invariance is to 
require that exp(2nik) = 1 be integer, or k G Z, so that value of the induced action

15 In coordinates: tr(A A A) = tr(A^AV)dxA A dxv = — tr(A^AV)dxv A dx^ = — tr(AvA^)dxv A 
dxp' = — tr(A A A). The same construction shows that tr(AAn) = 0 for even n, but not in 
general for odd n.

16 In physics, the terminology “Chern—Simons action” often refers to the three-dimensional variant. 
However, the argument above shows that these actions exist in all odd-dimensional spaces. 
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remains inconsequential.* is * 17 We thus see that, by a mechanism similar to that of 
path integral spin quantization in section 8.4.4, invariance of Chern-Simons theory 
under large gauge transformations requires integer quantization of the Chern— 
Simons level, k. Summarizing:

In this section, we discuss a second approach to the definition of physically mo­
tivated connections. Unlike the previous case, here we do not integrate over all 
realizations of the gauge field. Instead, we consider situations where the geometric 
and/or physical structure of the theory singles out a “canonical connection,” or at 
least imposes geometric constraints on the realization of connections. This scenario
is best explained using two examples.

Adiabatic transport and Berry connection

REMARK In this section, we introduce the concept of non-abelian Berry phases. For a 
discussion of the “standard” abelian Berry phase, see section 8.5.3.

Suppose a quantum system depends on a parameter R and that its R-dependent 
ground state |0(R)) is separated from the rest of the spectrum by an energy 
gap. For concreteness, let us consider a two-dimensional band insulator, where 
R = k = (k 1 ,k2)T G T2 is a crystal momentum taking values in the two-torus 
T = [0, 2n]2 (where we have set the lattice spacing to unity). The ground state is 
defined by n occupied Bloch eigenstates |^ 1,k),..., |^n,k). These states define the 
valence band energetically separated from the conduction band by a global gap (fig. 
10.3.) In the following, we will apply gauge theory to the description of topological 
properties of the system. Since topology is insensitive to the continuous deforma­
tions of system parameters, it will be sufficient to consider a fictitious variant of the 
system in which local transformations have been applied to collapse the spectrum 
to a set of degenerate and flat valence band energies, e 1,k = • • • = en,k = e. Without 
loss of generality, we set e = 0.

Consider a single-particle state prepared in a superposition |^k) = aCa ca |^a,k) 
of eigenstates. We ask how this state changes in response to an adiabatically 
slow change of parameters k(t) along a curve in T2 . (Here, “adiabaticity” means 
parametric variations made sufficiently slowly that excitations into the conduc­
tion band are negligible.) The evolution of the state is described by the time­
dependent Schrodinger equation, idt|^(t)) = Hk(t)|^(t)). At any instant, |^(t))

17 We follow the general convention of coupling the Chern—Simons action as exp(i x Scs) to the 
functional integral.

Chern-Simons actions lack invariance under generic gauge transformations on 
manifolds with a boundary and under large transformations on manifolds 

without.

10.2.2 Connections from geometry
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Fig. 10.3 Left: Band structure of a two-dimensional solid with two valence and one conduction band. 
Right: Band structure of a “deformed” Hamiltonian, topologically identical to the original 
one but with a degenerate band structure.

Berry 
connection

can be expanded in the states spanning the degenerate ground-space, | ^ (t)) = 
^Cb cb(t)|^b,k(t)), with initial condition cb(0) = cb. Substituting this ansatz into the 
Schrodinger equation and using Hk(t)|^b,k(t)) = 0, we obtain ^2b(cb(t)|^b,k(t)) + 
cb(t)dt|^b,k(t))) = 0. We multiply by (^a,k(t)| and use the assumed orthogonal- 

<
ity {^a,k|^b,k) = Sab, as well as dt |^b,k(t)} = dk. |^b,k(t)}k^(t) to obtain ca + 
22b('^a|d^b}k^cb = 0. Comparing with Eq. (10.8), identifying x and k and the 
parametric section sx(t) with the vector ca (t) = ca,k(t), we recognize that this equals 
the equation for parallel transport under the Berry connection A = {Aab}, where

(Aab )k ^ = {^a | dk. 'X), (10.29)

or

Aab = (^a |d^b) = (Aab)k,^ dk^ (10.30)

in an invariant representation. Since 0 = d^ (^a |^b} = (d^a |^b) + (^a |d^b) =
(^b|d^^a) + (^a|d^b), the Berry connection is anti-hermitian, Aba = — Aab, and 
hence takes values in the Lie algebra u(n) of the unitary group U(n). This tells us 
that adiabatic parallel transport is defined on a bundle with fibers Cn 5 ck and 
structure group U(n).

We may therefore conclude that:

The adiabatic evolution of n-fold degenerate quantum states can be 
understood as parallel transport by the Berry connection (10.30) on a 
bundle with fibers ~ Cn and base defined by the parameter manifold.

A particularly interesting situation arises when topological obstructions prohibit a 
continuous deformation of the Berry connection to a trivial one, A = 0. In this case, 
the parametric variation of the ground state manifold {^a,k} contains a “twist.” 
Referring for further discussion to section 10.5.2, we note that such twists define 
the fundamental principle distinguishing topological insulators from trivial ones.
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Riemannian parallel transport and the Levi-Civita connection

REMARK This section refers to GL(4) parallel transport, introduced earlier in vari­
ous examples. Readers who skipped over these examples, should skip this section, too. 
Our discussion assumes familiarity with the concept of curvilinear coordinates and local 
coordinate bases, as introduced in section A.1.1.

metric 
connection

Here we consider another setting in which the ge­
ometry of the bundle defines a connection. Here, 
the main player will be a metric, g, on the base 
manifold, M. Recall that a metric is defined by 
a symmetric non-degenerate bilinear form gyv,x = 
gx(v^,x,vv,x), where {vy,x} is a local basis of the 
tangent space of M at x (see appendix section 
A.1.3). A metric provides the means to measure 
lengths and geometric orientations on a manifold.
In this discussion, we show that it also provides a canonical way of comparing (co- 
variantly differentiating) vectors on the manifold, via the Levi-Civita connection. 
This connection plays a fundamental role in general relativity.

To set the stage, consider the locally flat approximation to M at a point x, 
the tangent vector space, TxM (see the figure). Importantly, we do not assume 
M to be embedded in a “larger space” (for all we know, the universe is not so 
embedded). To support the intuition, it may be helpful to think of M = S2 as a unit 
sphere, and Tx S2 as a two-dimensional plane locally approximating it. Assuming 
that the neighborhood of x is represented by a system of coordinates {xp} (such as 
(x1 ,x2) = (9,^) for a sphere), we may define a local coordinate basis of vectors 
vi pointing in the direction of the coordinate lines.18 These basis vectors are not 
normalized in general. For example, the canonical metric on the sphere, which 
is defined as the restriction of the standard metric of three-dimensional space to 
the sphere, is given by (exercise) gee = 1, grjrj = sin2 9, gerj = 0. The spherical 
coordinate basis vectors eg, about which we learn in entry level courses are the 
unit normalized versions of ve,^: ee = ve,e$ = sin-1 9 v^.

18 If x = x(x1 , . . . , xn ) is a coordinate representation of the point x, these vectors are obtained 
as tangent vectors vi = ds |s=0x(x1 , . . . , xi + s, . . . , xn) of the curves obtained by varying one 
coordinate.

19 Pay attention to the (standard) notation: vp are vectors, and v! are the components of vectors.

Given the metric tensor and a basis {vy}, the inner product of two vectors 
u,w e TxM assumes the form g(u, w) = upwvgpv, where the vectors are ex­
panded as u = upvy and the subscript x is omitted for better readability.19 We 
now define a metric connection by the condition that it leave the inner prod­
uct of parallel-transported vectors invariant: for any curve y connecting x and 
y, we require gx(ux,wx) = gy (r[y]ux, r[y]vx). As usual, this condition is best 
analyzed in its infinitesimal form, where y ~ x + ev, r[y]u = u — eA(v)u, and 
(A(v)u)M = rpvpvpuv, with the connection coefficients introduced in the info block 
on page 578. Substituting the coordinate representations of the transported vectors, 
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we obtain the condition upwvgx,pv = (up — erppaupva)(wv — ervpawpva)gx+e,pv. 
Expanding (gx+ev ~ gx + evpdpg and isolating terms of first order in e, this be­
comes (rappgav + g^aravp — dpgpv)upwvvp = 0. Since this relation must hold for 
all tangent vectors, u, v, w, we have the condition

r\pg«v + gPa r \p — dpgPv = 0. (10.31)

In the literature, the connection coefficients {rapp} satisfying this metricity condi­
tion are called Christoffel symbols. Defining the one-forms dgpv = dpgpvdxp, and 
rpv = rpvpdxp, the equation assumes the less index-heavy form rvp +rpv — dgpv = 
0.

Does the metricity condition suffice to uniquely fix a connection? The answer 
is no. We need to fix d x d x d Christoffel symbols rpvk. The metric tensor is 
symmetric, and hence contains d(d + 1)/2 independent coefficients. We have d2(d + 
1)/2 equations for the derivatives dpgpv, and thus d2(d — 1)/2 Christoffel symbols 
remain undetermined. For example, in the case d = 4 of relativity, 64 symbols are 
constraint by 40 equations, leaving 24 free parameters.

EXAMPLE As an example, consider metric parallel 
transport on the two-sphere. Using polar coordinates, the 
connection-form is represented by

/rA r6 Ar = (r£ r*J ’ (10.32)

where r\ = r6...6dd + r66^d$, etc. With g = diag(1, sin2 d) 
and dg = diag(0, 2sin d cos ddd), it is straightforward to verify 
(exercise) that the metric condition assumes the form

r 66 = 0, r \ = cot ddd,

sin2 d r \ + r- = 0.
(10.33)

This equation fixes the diagonal elements rii, i = d, $, but 
leaves r''''6 undetermined.

To better understand the meaning of this connection, con­
sider a south-pointing vector with components w = (w6 ,w^) = 
(1, 0) at the point x = (d, $) = (n/2, 0) on the equator of the sphere. Let us explore what
happens as we parallel-transport the vector to the point y = (n/2,n/2) separated from x
by a quarter rotation around the equator. We parameterize the curve connecting the points 
as x (t) = (n/2, t) with t E [0, n/2]. With v = (v6 ,v) = x = (0, 1), we have cot d = dd (v) = 0 
and sin d = 1 along the curve. This means that the equations for parallel transport assume 
the form

dtw6 = -r ^w ,̂ dtW = -r ^6^w6.

For r6^^ =r^6^ = 0, the solution of this system of differential equations reads 
(w6 ,w^)(t) = (1, 0): the vector gets shifted along the curve, all the while pointing south 
(upper panel of figure). However, for non-vanishing off-diagonal elements of the connec­
tion form, e.g., r6^^ = c = const., we obtain (w6 ,'w = (cos( ct), sin( ct)). Now the vector 
rotates as it is transported along the curve, at constant metric length. This phenomenon 
is called torsion. We observe that the undetermined components r^6^ distinguish between
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realizations of parallel transport determined by their degree of torsion. The example also 
suggests that metric transport might become unique if we require the absence of torsion, 
in addition to metricity. As an instructive exercise, consider different choices of curves 
along the sphere and explore what happens under parallel transport both in the presence 
and absence of the torsion coefficients.

A unique metric connection is specified if the absence of torsion is imposed. Refer­
ring to the specialized literature for details, we note that torsionless parallel tran- 
port is defined by Christoffel symbols symmetric in the lower indices, rpvp = r^pv. 
This gives d2(d - 1)/2 additional equations, i.e., precisely the number of missing 
conditions. For example, in the case of parallel transport on the sphere, the absence 
of torsion requires 0 = ree^ = re^e = 0. We also have — cot 6 = ree^ = re^e. All 
connection coefficients are now fixed. (Along the equator, re^s = r<7,.„., = 0, so that 
the discussion of parallel transport in the example remains unaffected.)

The unique torsionless metric con­
nection is called the Levi-Civita con­
nection. This connection is key to 
the formulation of general relativity. 
Its curvature tensor Rpvpa defines the 
Riemann curvature tensor. From 
it, two objects of lower tensorial degree, 
but likewise denoted by the symbol R, 
are built by contraction of indices: the 
Ricci tensor is obtained as R pv = 
Rp,,n,, and from it the scalar curva- LbfJV

ture as R = gpv R pv. Integrated over space-time, the scalar curvature defines the 
Einstein-Hilbert action,

for his theory of relativity and specifically mass­
energy equivalence, E = mc2. However, he also 
made breakthrough contributions to other fields, 
notably the theory of “old quantum mechanics,” 
and non-equilibrium transport.

Albert Einstein 1879-1955 
was a German-born physicist 
awarded the Nobel Prize in 
Physics in 1921 “for his ser­
vices to theoretical physics, and 
especially for his discovery of 
the law of the photoelectric 
effect.” Einstein is best known

Sem = d d4x V-gR,
2 K J

(10.34)

where k = 8nGc-4 is the Einstein constant, and G is the gravitational constant. 
The factor V-g is the square root of the negative determinant of the metric, i.e., 
the canonical measure (see appendix section A.1.3) required to define a coordinate­
invariant volume integral. This action plays a role analogous to that of the elec­
tromagnetic field action (10.23). The full relativistic action SGR = SEM + SM is 
obtained by adding a matter action, similar to the J jpA' matter-field coupling 
of electromagnetism. The idea here is that matter is affected by the gravitational 
background gij , much as charged matter is affected by the electromagnetic field. 
For a simple example of the ensuing matter-field coupling, see problem 10.7.5. 
When these actions are considered as functionals of the space-time metric, gpv, the 
(nontrivial) variation RPiv SGR = 0 yields the Einstein equations

R^v -
1 R — nGT8
2 giv R = c4 Tpv, (10.35)
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energy—
momentum 

tensor

where the energy-momentum tensor of gravity, T'lv, is defined by the variation 
of the matter action, TIJV = — —2= 6g^v SM. For further discussion of this equation 
and its physical interpretation, we refer to the extensive literature on the sub­
ject. Readers interested in exploring the connection between gauge structures and 
geometry on a simple example are invited to solve problem 10.7.4.

10.3 Lattice Gauge Theory

In this text, we have routinely mapped lattice models onto coarse-grained contin­
uum field theory descriptions. Here, we take the reverse step, and put the previously 
discussed continuum gauge theory onto a lattice. In view of our earlier emphasis 
of smooth geometric structures in gauge theory, this reverse step may at first seem 
ill-motivated. However, it turns out that there are numerous reasons for considering 
gauge theory on a lattice.

> Theories with discrete gauge groups are more naturally formulated on a 
lattice. The most important example is G = Z2 , a gauge group featuring in the 
physics of topological quantum matter, and in quantum information.

> The important phenomenon of confinement, to be discussed below, is best 
introduced on a lattice.

> Lattices are instrumental to numerical approaches to gauge theory, and 
numerical lattice gauge theory has become a research field in its own regard.

> Lattice systems are ideally suited to identify dualities between gauge theories 
in different physical limits.

Lattice gauge theory replaces the space-time manifold M by a d-dimensional lattice, 
often chosen to be a hypercubical lattice of spacing a. The gauge group acts on 
degrees of freedom living on the sites of the lattice. Prominent examples include 
G = SU(n) in high energy lattice gauge theory, U(1) in “compact electrodynamics” 
(see info block section on page 603), and G = Z2 in the theory of strongly entangled 
quantum matter. In the following, we briefly introduce the general framework of 
lattice gauge theory and then specialize to the particularly interesting case G = Z2 .

10.3.1 General framework

Following Ref.* 20, we denote lattice sites by n and the ^th lattice unit vector em­
anating from n by p. The link connecting n and n + p, is denoted by (n,p). On 
each link we place a group element U (n, p) e G. This element is interpreted as a 
parallel transporter along the microscopically short stretch n ^ n + p.

20 The classic reference on the subject is J. Kogut, An introduction to lattice gauge theory and spin 
systems, Rev. Mod. Phys. 51, 659 (1979). This is a highly pedagogical paper, which continues 
to present a modern view of lattice gauge theory.
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To connect this picture with our previous discussion, identify the lattice points 
n with the points of a base manifold and consider a fiber attached to each of them. 
For example, if G = U(m), we may assume these fibers to be isomorphic to Cm , 
with the standard representation of group elements, U, by matrix multiplication: 
U : Cm ^ Cm. To compare fields at different points n and m, we need parallel
transporters r along lattice curves connecting n and m. In particular, we need 
parallel transporters rn^n+M = U(n, ^) along the elementary links of the system. 
In lattice gauge theory, these link par­
allel transporters are center stage and 
assume the role of effective degrees of 
freedom. For a finely resolved space-time 
discretization of a theory with smoothly 
fluctuating continuum gauge fields, indi­
vidual elements stay close to unity. In this case, the interpretation of parallel trans­
port with a line integral over the connection form (see Eq. (10.9)) implies that 
U(n, ^) ~ 1 — aA^(n) ~ exp(-aA^(n)), i.e., link variables in the ^-direction are 
determined by the corresponding components of the connection form. However, lat­
tice gauge theory also addresses settings where this continuity assumption does not 
hold, and the link variables differ strongly from unity. In fact, these are the most 

action of 
lattice
gauge 

theory

interesting applications of lattice gauge theory.
Applied to the present framework, Eq. (10.1) re­

quires U(n,^) ^ U(n)U(n,^) U-1(n + ^) under 
local actions of the gauge group. We now need 
a lattice implementation of a gauge theory 
action, which takes the link variables as degrees 
of freedom. The form of this action is determined 
by two principles: it should be consistent with the 
above transformation condition and as local as pos­
sible. These two criteria suggest consideration of

n + v U(n + m + v,-m) n+M+v

+
~l

v

M

+

n U(n +v,M) n + M

S[U] = — J tr [U(n, ^)U(n + ^, v)U(n + ^ + v, — ^) U(n + v, — v)] , (10.36)

where J is a dimensionless constant. The product of link variables describes parallel 
transport along a minimal Wilson-loop defined by a single plaquette with corner 
point n and boundary vectors, ^ and v. The loops contributing to the action are 
gauge invariant by design. Indeed, since a gauge transformation applied at a corner 
n multiplies one of the U elements in the plaquette by U(n) from the left and its 
neighbor by U-1(n) from the right, the factors cancel. The action (10.36) defines 
the partition sum of lattice gauge theory as Z = DU e-S[U] , where the measure 
DU = fl(n^) dU(n, ^) contains the independent integration of all link variables 
over the group space (see below for concrete examples).

In the following, we discuss various aspects of the remarkably rich physics de­
scribed by this partition sum. Specifically, we will discover confinement transitions 
separating phases with strong link fluctuations at small J from ordered phases at 
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large J. A remarkable feature of these transitions is that, unlike conventional phase

Wilson 
loops

transitions, they are not characterized by a local order parameter. Instead, spatially 
extended gauge invariant test observables known as Wilson loops assume the role 
of order parameters. Before turning to the physics of confinement transitions, let 
us introduce these loop variables and discuss their physical interpretation.

A Wilson loop is the expectation value of 
a parallel transporter around a rectangular 
surface in the lattice: 

wu (i) (10.37)

where the product over links, l, extends 
over a large rectangle lying in one of the 
two-dimensional planes of the (d > 1)-

physical 
meaning of 

Wilson 
loops

dimensional lattice, and the functional average is defined as usual, (...) = 
Z-1 DU e-S[U] (. . . ). For definiteness, we consider a rectangle of extension r and 
t in the direction of two coordinates denoted by x and t, respectively.

Let us discuss the physical meaning of the Wilson loops. To this end, recall that 
in (3 + 1)-dimensional electromagnetism, matter currents couple to the gauge field 
through the term j j' A, in the action. Specifically, a single unit-charged particle 
moving along a trajectory xi(t) carries a charge density j(x) = (1, x(t))T6(x — 
x(t)) = dtx(t)6(x — x(t)), where x = (t, x) is the position four-vector, and the 
speed of light is set to unity, c = 1. Substitution into the gauge-matter action 
gives J A^x^dt = f A, where the latter representation is a shorthand for the line­
integral of the potential along the space-time curve x(t) representing the particle. 
Exponentiating this expression, and passing to a lattice-discretized representation of 
the line integral, we obtain exp(a ^2l Al) = [Jl U(l), where Al G iR is the imaginary 
generator of the link phase Ul = exp(iaAl) G U(1).

This argument shows that products of the U(1) parallel transporter along lattice­
curves probe the presence of charged test particles in the system. We now turn 
the logic upside down and postulate that the generalization to non-abelian gauge 
fields (10.10) defines the coupling of “charged” particles to the field. (For a further 
discussion on matter-gauge field coupling; see the info block below.)

matter—
gauge field 

coupling

INFO In the abelian continuum framework, S M = f Anjn defines the coupling of a 
gauge field to matter, represented by a current vector, jn. Under a gauge transformation, 
An ^ An — idnf, this term picks up a phase contribution which, upon partial integration, 
assumes the form if ^ dnjn. This vanishes owing to continuity, dnjn = 0. However, a 
moment’s thought shows that the generalization to the coupling of matter to non- 
abelian gauge fields is not straightforward. For example, assuming that the generalized 
currents take values in the Lie algebra of the gauge group, one might consider expressions 
such as tr(Anjn), where jn is now matrix-valued. However, this expression lacks invariance 
under the transformation (10.3) and therefore cannot be valid in general.

Instead of discussing this issue from a general perspective, here we proceed pragmati­
cally and mention two manifestly gauge invariant matter-field coupling schemes employed
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minimal 
coupling

charged 
matter on 

a lattice

in practice: the standard approach in continuum field theories is minimal coupling. 
Derivatives acting on matter-fields $ carrying a representation of the gauge group are 
replaced by covariant derivatives, d:x> ^ (dg + Ag)$. This generates a matter-gauge field 
coupling, which need not necessarily assume the current-vector potential form above. For 
example, the energy-momentum tensor entering the Einstein equations (10.35), which 
plays a role analogous to the matter currents of electromagnetism, is defined by differen­
tiation of a matter-gravitational field coupling action in the metric, Tij = — —2— SgijSM. 
This is similar to the definition of the electromagnetic current jM = SA^ SM as the varia­
tion of the matter-electromagnetic field action, but does not assume the linearity of SM 

in fields and currents.
While the constructions above are tailored to the continuum, a matter field on a lattice 

is described by variables ^(n) at the nodes transforming under gauge transformations as 
^(n) ^ U(n)^(n). In fact, this transformation behavior is taken as a definition of charged 
matter on a lattice. The building blocks for currents are bilinears, t/>(n)^(n + p,), where 
the shift p, resembles the degree of off-diagonality (represented by derivatives in a contin­
uum theory) required to describe directional current flow, and t/>(n) ^ U1 t/>(n) trans­
forms under the inverse of the gauge transformations. These expressions are rendered gauge 
invariant by the addition of a parallel transporter ^(n)^(n + p,) ^ ^(n + p,)U(n,p,)^(n). 
Under a gauge transformation, the latter changes to leave the overall expression invariant.

The recipe can be generalized to describe non-local insertions of matter. For example, 
^ (n) ^ (m), interpreted as a particle-antiparticle pair at space-time coordinates n and m 
is made gauge invariant via the addition of a string variable ^ (n) l U(l)^(m), where the 
product runs over a lattice path connecting n and m. We thus realize that the coupling 
of particles to the gauge field naturally leads to the concept of gauge strings, as reasoned 
above.

Specifically, consider the product Hler U(l) along a rectangle in the t 
xt-plane whose temporal extension exceeds the spatial extension by 
far, t r. What kind of matter coupling might it represent? In 
the U(1) case, and on a two-dimensional lattice, we would interpret 
the boundaries of the rectangle in the t-direction as integrals of a 
current density j± = ±5(x — x±)(1, 0), where x± = ±r/2 are the 
two x-coordinates of the boundaries. These are the current densities 
of two static particles at ±r/2 with opposite charges ±1. In the 
assumed limit t r, the stretches in the x-direction are inessential, 
and we conclude that an asymptotically extended Wilson loop in 
the xt-plane represents the insertion of a static pair of oppositely 
charged particles at distance r.

22

T

r r x

2

The generalization to higher-dimensional lattices does not add anything essen­
tial, only that the particles now sit at coordinates marked by the two temporal 
boundaries of the rectangle. On this basis we postulate that:

space-time Wilson loops probe the presence of oppositely charged 
particles on the lattice.

In the following, we specialize to the case G = Z2 (the smallest of all gauge groups) 
to explore a confinement transition in the gauge field sector and how it is reflected 
in the physics of charged matter.
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10.3.2 Z2 lattice gauge theory

Despite the simplicity of Z2 , this gauge theory is more than a toy model: it plays 
an important role in the physics of topological and correlated quantum matter (see 
info block below), and in the the physics of “quantum codes” (section 10.4.4), where 
the binary-valued fields (^ qubits) of the theory protect quantum information via 
macroscopic entanglement.

Z2 symme­
try from 
fraction- 
alization

INFO In lattice theories with strong interactions, Z2 gauge symmetries may emerge 
via the fractionalization of physical degrees of freedom. Referring to Ref.* 21 22 for a de­
tailed discussion, consider an electronic model subject to charge (nn), spin (S • S), and 
d-wave pairing (AA) interactions. Anticipating fractionalization, we splinter the lattice 
fermions into structureless charge operators, or “chargons,” and neutral spinful fermions, 
or “spinons” c£ (n) = b^(n) f£(n), where a = ±1 /2 is spin. In this way, one introduces a 
local Z2 gauge symmetry, a transformation b^(n) ^ g(n) b^(n), fa (n) ^ g(n) fa (n), where 
g(n) 6 {1, —1} leaves the physical degrees of freedom unchanged. (Since a Cooper pair 
is represented as a double chargon, b^ b^, this is the only symmetry consistent with the 
model.) In regimes where both the chargons and the spinons acquire an effective mass, 
one is left with an effective Z2 gauge theory.

Recall that the majority of second-order phase transitions describe the breaking 
of a symmetry in terms of a local order parameter. For example, in a conventional 
Ising model - a lattice system similar to the present one, where however, the binary 
lattice variables are coupled by nearest-neighbor coupling rather than by plaquette

21 T. Senthil and M. P. A. Fisher, Z2 gauge theory of electron fractionalization in strongly corre­
lated systems, Phys. Rev. B 62, 7850 (2000).

22 Denoting a binary quantity ±1 by the symbol for the Pauli matrix a3, and its opposite by 
a 1 a3, is confusing yet standard notation. The rationale behind this convention becomes clear 
when we pass to the quantum theory.

In the case G = Z2, each link carries 
a binary degree of freedom, ±1, de­
noted by a3(n, ^). We denote the op­
posite values ^1 by a 1 a3.22 The gauge 
group acts locally on the lattice sites 
via 1(n) or a1 (n), where application 
of the nontrivial element flips all par­
allel transporters emanating from n as a3(n,^) ^ a 1 a3(n,^) = — a3(n,^).

The Z2-variant of the general action (10.36) reads

S[a3] = — J a3(n, p,)a3(n + ^, v)a3(n + ^ + v, — ^)a3(n + v, — v), (10.38)

where, as before, J = eft. In the following, we discuss the remarkably rich physics 
described by this action.

10.3.3 Confinement transition 



600 10 Gauge Theory
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breaking
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exchange - symmetry is a global Z mapping o3 ^ — o3 for all spins. This symmetry 
is broken at an Ising transition, where (o3(n,^)) = 0 defines the low-temperature 
phase.

But what about the present system? Unlike with the single Z2 symmetry of 
the Ising model, here we have a Z2 freedom at each node, which seems to in­
troduce a much higher level of symmetry. In the early literature on the subject, 
the symmetry-perspective of gauge theories was emphasized, and the breaking of 
“gauge
symmetries” became a topic of interest. However, we have reasoned above that the 
gauge degrees of freedom simply reflect redundancy in the description of invariant 
physical objects, much as an invariant vector can be described by numerous (gauge) 
equivalent component representations. There is no associated physical symmetry. 
Specifically, the 2N configurations on an N -site lattice related to each other by 
gauge transformations represent the same state. Observables “breaking the gauge 
symmetry” must vanish under averages over equivalent realizations. The realization 
that:

“Gauge symmetries” cannot be broken

is known as Elizur’s theorem (see info block below for further discussion of this 
statement).

INFO Consider a conventional Ising system with a global Z2 symmetry. Symmetry­
breaking expectation values of local order parameters at low temperatures {a3(n,p,)) = 0 
are possible because the inverted expectation value (a 1 a3(n, p,)) = — {a3(n, p,)) is symmetry- 
related to {a3(n,p,)) by the simultaneous reversal of all spins. In the presence of just an 
infinitesimal symmetry-breaking perturbation, this operation costs a divergent amount of 
action, and hence may be excluded.

Elitzur’s theorem23 considers the different situation with a local symmetry, where

(a3(n,^)) = jj e-S["3]a3(n, ^) (10.39)

includes the summation over all gauge-equivalent configurations. Specifically, a 1 (n)a3(n, p,) 
= — a3(n,p,) differs from a3(n,p,) only by a local gauge transformation a 1 (n), for which 
S[a1 (n)a3] = S[a3] by gauge invariance. This implies that

e-S['3]a3(n, M) = e-S['1 (n)'3] (a 1(n)a3(n, M)) = — e-S[' 1(n)'3]a3(n, M),

and hence the vanishing of the expectation value. Note that the expectation value cannot 
be rescued by coupling the system to a small gauge “symmetry” breaking field: since 
the expectation value inverting transformation is local, the price in action to be paid in 
the presence of a symmetry non-invariant perturbations is local too, and it vanishes in the 
limit of zero field strength.

Elizur’s theorem implies that (o3(n,^)) = 0, for all temperatures. This raises the 
question of alternative order parameters detecting phase changes in the system

23 S. Elitzur, Impossibility of spontaneously breaking local symmetries, Phys. Rev. D 12, 3978 
(1975). 
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following changes in temperature. In fact, this question was Wegner’s motivation 
for inventing Z2 lattice gauge theory in the first place.24

24 F. Wegner Duality in generalized Ising models and phase transitions without local order 
parameters, J. Math. Phys. 12, 2259 (1971). This paper is a still underrated classic. It an­
ticipated the physics of strongly correlated topological quantum matter many years before the 
explosive development of the field in the first decade of this century. In view of the depth 
and scope of this work, it is remarkable how little credit it has received in the mainstream 
community (as lamented already in Kogut’s 1979 review of the subject).

It is clear that candidate order parameters must be gauge invariant. A single 
plaquette term (a3a3a3a3) satisfies this criterion, but there is no indication of 
a singular change in the expectation value under variations of temperature. The 
next obvious choice is nonlocal order parameters, realized through Z2 Wilson loops 
W = ([J;er a3(l)^, where R is a large rectangle embedded into the d > 1 dimen­
sional lattice.

First consider the limit of small J 1. (In the literature, the coefficient J is 
sometimes defined as J = 1 /2g2 through a coupling constant g, and J 1 is called 
a strong coupling limit. Interpreting Z as a classical partition sum, one may 
also define J = e/T, where e is an energy scale, and J 1 corresponds to the 
limit of high temperatures.) In this case, the partition sum can be expanded in 
powers of the plaquette terms, where the non-vanishing term of lowest order yields 
the dominant contribution to the partition sum. For the denominator, this means 
limJ .0i Z = ^2{CT3} 1 = 2M, where 2M is the number of different Z2 configurations 
on a lattice with M links. In the numerator, we have the situation that the individual 
links of the Wilson loop rectangle vanish when averaged over spin configurations, 
22{CT3} a3(l) = 0. To obtain a non-vanishing contribution, we must make sure that 
every a3(l) under the sum appears as a square, a3 (l)2 = 1.

The cheapest way to achieve this is to expand the exponentiated action to first 
order in each of the plaquettes inside the rectangle. Each of the links inside the 
rectangular perimeter then appears twice as a boundary of adjacent plaquettes. 
The outer perimeter of the assembly of plaquettes cancels against the links of the 
Wilson loops. In this way, a non-vanishing configurational average is obtained. 
Considering a loop of extension r and t in the direction of the coordinates x and 
t as before, there are A = rr plaquettes inside the loop and this leads to the 
estimate W ~ J A = exp(-| ln J | A). This dependence is called an area law for the 
expectation value of the loop.

Now consider the opposite weak coupling limit, J 1. In this case, violations 
of the product criterion a3 a3 a3a3 = 1 around individual loops are costly. Both, 
the action and the loop observable are gauge invariant, and so we may organize 
the summation around any convenient representative of the least-action gauge­
equivalence class. For convenience, we choose the uniform configuration a3(n, g,) = 
1. For infinite J, the Wilson loop expectation value is then trivial, W ~ Z-1 x 1. 
Single spin flip departures from this state change the sign of the 2(d - 1) plaquettes 
containing the inverted link, and hence cost the action 6 = e- J4(d-1). To lowest 
order in perturbation theory, we obtain W ~ Z-1(1 + (M — 2L)6), where M is the 
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number of links of the lattice, L = 2(r + t) is the circumference of the loop, and the 
factor (M - 2L) accounts for the sign change in the product over pre-exponential 
a3 if it is one of the loop links that is flipped. Pushing the expansion to two flipped 
links (assumed to be separated by more than one plaquette distance), we obtain 
the refined estimate W ~ Z-1(1 + (M — 2L)5 + 2(M — 2L)252). (Exercise: Do the bookkeeping of signs and explain the prefactor (M - 2L)2 /2.)

We recognize the beginning of an exponential series. Provided J is large enough 
to make contributions from close-by spin flips (for which the counting of signs 
becomes more complicated) statistically insignificant, resummation yields W ~ Z-1 

exp[(M — 2L)5]. By the same argument, Z ~ exp(M5), so that
W e-2Le-4(d-1)J.

perimeter 
law

This expectation value contains the length of the perimeter of the loop and hence 
is called an perimeter law. Since the strong coupling area law and weak coupling 
perimeter law, respectively, depend in a qualitatively different ways on the loop 
geometry, a phase transition must occur at some intermediate temperature.

INFO For completeness, we mention that the construction above works only in dimensions 
d = 3 and above. The two-dimensional Ising gauge system is always in the disordered 
area law phase, no matter what the coupling. We discuss the somewhat subtle mechanism 
behind this phenomenon in problem 10.7.3, where we show that the two-dimensional 
Z2 gauge theory is equivalent to the one-dimensional conventional Ising chain. This is 
an example of various equivalences between Ising gauge systems and conventional Ising 
systems identified in Ref. and reviewed in Ref. .

Phase transitions of this type occur in many lattice gauge the­
ories and it is important to understand their physical conse­
quences. To this end, we again think of t and x as a time- 
and a space-like coordinate, respectively. In this picture, the 
partition sum, Z = tr[exp(—-'H)], becomes the imaginary-time 
path integral of a (d — 1)-dimensional quantum system, with 
Hamiltonian H, and an inverse temperature 0 ^ ^ set by 
the extension of the system in the t-direction. (There will be 
more on this view in the next section.) The space-time Wil­
son loop describes the insertion of a particle-antiparticle pair 
at time —t/2 and its subsequent annihilation at time t/2. In 
the expectation value W ~ exp(—tc), the constant c is the en­
ergy associated with this process. To understand why, consider a 
gauge where a3 (n, t) = 1 on all links in the t-direction (see prob­

t
T

2

2 2

T
2

lem 10.7.3 for the counting arguments showing that this is a pos­
sible choice). In this gauge, the Wilson loop reduces to W = (X+(t /2)X-(—t/2)), 
where X±(t) = Hn =(t x) a3(n, x) are the operators defined by taking the product 
of link operators along the spatial boundaries of the loop at times t = ±t /2, and 
(...) = Z-1tr[e-PH(...)] is a quantum expectation value. Representing the latter 
through a formal insertion of eigenstates of the (d — 1)-dimensional system, and 
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using the fact that P -^ x enforces a projection onto the system’s ground state, 
|0>,* 25 we obtain W ~ |(0|^|n)|2 exp(-EnT), where En is the energy of the lowest 
lying state excited by application of X relative to the ground state energy itself. 
We identify AEn = E(r) with the energy required for the creation of a particle­
antiparticle pair at distance r.

REMARK Whereas, in previous sections, a3 = ±1 were the link variables, the notation 
ai now refers to an operator, acting in a space of a3 eigenstates |s3(n,p,)} defined on the 
links of the lattice.

In this section, we take a closer look at the interpretation of the d-dimensional lattice 
gauge partition sum as the trace Z = exp(—P H) of a quantum Hamiltonian. We will

25 Here we assume uniqueness of the ground state. However, this assumption is not essential to 
the argument.

Comparison with the result W ~ exp(—25L) = exp(—45(t + r)) obtained in the 
weak coupling phase shows that, in this case, the energy E(r) = —45 associated 
with the particle pair is constant and independent of the particle separation. In this 
case, pairs of separable particles can be created out of the vacuum at finite energy 
cost.
The situation in the strong coupling case is more interest- ------------------------------ r
ing. Here, we obtained W ~ exp(| — ln J|rr), indicating tg=?J
that E(r) ~ r increases linearly in the particle separation *’
r. This is the hallmark of confinement. In the confined ._______ , ._______ ,

|O *) [o *)
phase, the energy associated with the separation of in- (o=j) [c „|
dividually charged particles increases linearly with their
separation. At some point, it becomes favorable to create a new particle pair, thus 
breaking the energetically expensive string separating the original pair into two. 
The conclusion is that it is not possible to obtain individually charged particles in 
isolation; particle-antiparticle pairs remain confined as dipoles.

INFO The construction demonstrating confinement does not rely on specific properties of 
the gauge group Z2 . For example, in QCD, the quarks gauge-interacting with SU(3) color 
gauge fields are also believed to be in a confinement phase. Quark confinement binds 
them into color-neutral configurations such as baryons or mesons. Even U (1) gauge theory 
(which in the weak coupling phase reduces to electromagnetism) supports confinement 
phases. Emphasizing that this theory is described by “compact” phase factors exp(i$), 
it is also called compact electrodynamics. The strong coupling confinement phase of 
compact electrodynamics is easy to describe by adaption of the plaquette cancellation 
argument to U(1) phases. However, a surprising amount of work is required to obtain 
the energy of a pair of charges - the standard Coulomb potential - in the weak coupling 
phase! This demonstrates that the lattice language is best suited to the description of 
strongly fluctuating phases of matter.

10.4 Quantum Lattice Gauge Theory
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formulate this analogy in detail for a three-dimensional Z2 lattice gauge theory, in 
which case HH will emerge as a two-dimensional spin-1 /2-Hamiltonian.26 The main 
purpose of the exercise is to identify the ground state of H , and its qualitative 
change, when the classical parent system undergoes a confinement-deconfinement 
transition. An understanding of the ground state will be key to the identification 
of the phase transition as a topological phase transition.

In this text, we are biased towards thinking of thermal traces, trexp(-flH), as 
path integrals over fields. Remembering the Trotter constructions of chapter 3, 
these integrals are obtained by the factorization trexp(-/?HH) — tr(e-SH)N, where 
6 = fl/N is chosen to be infinitesimally small such that e-SH is close to the unit 
operator. We now apply this strategy to the d-dimensional lattice partition sum. 
The idea is to understand Z = tr(TN) as a trace, where N -^ x is the extension 
of the lattice in the time direction and T is a transfer matrix yet to be identified. 
However, we will assume T ~ 1 to be close to the unit operator, and define the 
system’s quantum Hamiltonian through T = eSH, in analogy with the general path 
integral construction.

The condition T ~ 1 means that 
spin configurations remain almost sta­
tionary from one time slice to the 
next. Clearly, this assumption re­
quires a modification of the lattice ac­
tion such that the coupling constants 
of the spatial plaquettes, J, are cho­
sen differently from those, JT, of the 
plaquettes in space-time planes. If we 
choose JT J, we make changes of
spins in the time direction very costly, 
and in this way can implement our 
working assumption.27

a situation where spin configurations defined
in a spatial plane are just copied in the time direction, and no flips occur. (In the 
figure, up-spin and down-spin configurations are visualized as solid and dashed 
lines, respectively. For better visibility, the vertical time-like bonds are shown as 
thinner lines.) No action ~ JT has to be paid in this case, and the transfer matrix 
acts as a unit operator.

26 It is straightforward to generalize the construction to different dimensions and gauge groups. 
However, the (d = 3)-dimensional Z2 application is particularly interesting.

27 The introduction of this anisotropy is physically equivalent to the taking of a temporal con­
tinuum limit in the general path integral construction. It may be useful to think about this 
point.

10.4.1 The Hamiltonian of Z2 lattice gauge theory

transfer 
matrix

The upper panel in the figure shows
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More specifically, we consider the latter as a linear operator in the 2M -dimensional 
space of configurations spanned by the tensor products ®n,^ |s3(n,^)) of a3 eigen­
states |s3(n,^)) of the spins in the spatial links of the lattice. We choose a gauge 
where the links in the temporal direction, | s3(n, t)) = | +1 /2), are all in an up-spin 
configuration. Under these assumptions, the zero-spin flip transfer matrix assumes 
a diagonal form, and comparison with the action shows that it acts as

T(0) — e^ ^2 □ a3a3a3a3

where the sum extends over all spatial plaquettes of the lattice, and a shorthand 
notation for the bond operators is used. Notice that, in this case, all space-time 
plaquettes are locked to a +1 configuration. We ignore the large positive constant 
exp[ JT x (number of space-time plaquettes)] corresponding to this configuration.

At first order in the number of flipped spins (see bottom panel of figure) a single 
spin flip in time direction occurs. One of the space-time plaquettes is now frustrated 
(the shaded one), and this comes at a price 2 JT relative to the above configuration. 
The transfer matrix flips one spin, and thus contains a single operator a 1(n,^):

T(1) — e-2jteJ £□ '3'3'3'3 ai(n, M). (10.40)
(n,p)

We will assume exp(—2 JT) to be so small that higher powers of this factor, appearing 
in combination with multiple spin flips, are negligibly small. Under this condition, 
the transfer matrix can be written as

T - T(0) + T(1) = eJ£□ '3'3'3'3 ^1 + e-2JT a 1(n, p,)^

~ eJ £□' 3' 3' 3' 3+e-2 JT E( n,»)' 1( n,^) = e - sh .

Inspection of the last equation shows that the Hamiltonian of the system may be 
defined as

H — — Jm Bp - Js a 1 ,l, (10.41)

plaquette 
operators

star op­
erator

where J = 8Jm, e 2JT = Js8, ^2l is a shorthand for the sum over all spatial 
links, l, and we have introduced the standard notation p Bp for the sum over 

all plaquette operators Bp — a3a3a3a3 around spatial plaquettes, p. Keeping 
the second coupling constant, Js , fixed, we have e 2 JT ~ 8, which means that 
higher-order hopping terms generate higher powers of 8 and can be neglected.

Our Hamiltonian has been derived descending from a gauge invariant action 
in one dimension higher and therefore should be gauge invariant as well. Gauge 
transformations change the sign of Z2 states at lattice nodes, n, and hence flip all 
link variables (or spin states) emanating from that node, |s3(n, ^)) ^ | — s3(n, ^)). 
The action of a local gauge transformation is thus described by the star operator 
As — HM ai(n,^), i.e., application of a a 1 operation at the “star” defined by all 
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bonds (n, p,) emanating from site n.28 We confirm gauge invariance, [As,H = 0: 
the ax in As trivially commute with those in H, and [As, Bp] = 0 follows from the 
fact that a star and a plaquette have either two or no bonds in common, implying 
the commutativity of the corresponding a3 and a 1 products.

10.4.2 Gauge invariant ground state

(10.42)

Since the gauge transformation (operators) commute with the Hamiltonian, we can 
seek energy eigenstates which are simultaneously eigenstates of all As . In particular, 
we can decide to work in the Hilbert space of gauge invariant states, defined by 
the condition As |^) = | ^) for all s. We may consider this as an additional condition 
imposed on top of the ground state property. Alternatively, we may define a new 
Hamiltonian,29

Hig = - Je A s - Jm B p - Js^] a 1( n, ^)

and seek its ground state. Since all terms in Hg commute, this identification both 
reveals the ground state of H and implements the gauge invariance condition. On 
top of that, the study of the ground state of Hg will reveal the topological nature 
of the Z2 confinement transition.

We begin our search for the ground state of Hg by introducing some analogies 
to electrostatics: the subscripts “e” and “m” in (10.42) hint at an “electric” and 
“magnetic” interpretation of the plaquette and the star operator in the Hamiltonian, 
respectively.

EXERCISE Recall the connection between the plaquette terms of lattice gauge theory, 
Wilson loops, and the field strength tensor. Think what happens if we subject U(1) the­
ory to the transfer matrix procedure (or better still, formulate it explicitly), to convince 
yourself that the spatial plaquette terms become the ~ B2 contribution of the field energy 
in the Hamiltonian. The denotation indicates that Jma3a3a3a3 is the Z2 analog of the 
magnetic energy density.

Turning to the star operator, recall from problem 1.8.2 that, in U(1) gauge theory, the 
components of the electric field, Ei , and the spatial components of the connection Ai 

form a canonical pair. Much as the momentum operator generates spatial translations, 
the electric field operator generates translations in the eigenstates of the vector potential 
(operator). In our present theory, we have no continuous structures with which to work. 
However, the analogs of the vector potential operator are the link variables a3 . Their 
eigenstates are translated, or flipped, by the application of a1 , and in this sense the latter 
assumes the role of an electric field operator.

28 It is customary to label star operators by an index s, although just using the center coordinate, 
n, of the star would be a less redundant notation.

29 E. Fradkin and S. H. Shenker, Phase diagrams of lattice gauge theories with Higgs fields, Phys. 
Rev. D 19, 3682 (1979). This highly recommended paper studies an extended version of the 
theory, where the pure Z2 gauge theory is coupled to a Z2 matter field.
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charge 
density 

operator

In the same spirit, the star operator As,n = a 1(n, ^)a 1(n, — ^)a 1(n, v)a 1(n, — v) 
at a site n is interpreted as a charge density operator: this operator probes 
the total radial electric field emanating from site n. By virtue of Gauss’s law, a 
negative eigenvalue of this operator is equivalent to the presence of a Z2 charge at 
the center. In this way, the gauge invariant ground state is understood as a globally 
charge-neutral state, As |^) = |^).

10.4.3 Confining phase

Building on these analogies, we revisit the confining phase transition, now in the 
quantum Hamiltonian framework. We begin with the confining phase, which cor­
responds to small coupling constants in the (2 + 1)-dimensional classical model. 
To understand what this means in the present context, let us rescale the coupling 
constants as J ^ Je, JT ^ JTe, and investigate what happens as e ^ 0. From the 
above identifications, we have Jm = 5-1J ~ e and Js ~ 6-1 e-JT ~ e-6; we infer 
that, for diminishing e, we will enter a regime where Js > Jm, i.e., the electric op­
erator in (10.42) is stronger than the magnetic operator. For simplicity, we consider 
a situation where Jm = 0 can be totally ignored.

In this case, a charge-neutral/gauge invariant 
ground state is easily found: simply define |^) = 
®n,v I ^>(n,v), where ai| ^) = | ^), i.e., a tensor 
product of a1 eigenstates on all links. Previously, 
we reasoned that confinement is diagnosed by com­
puting the energy required for the separation of two 
opposite charges in the system. Let us, therefore, 
consider a state | ^n,m) defined by the condition 
that it contains two charges at positions n and m 
and is of minimal energy. We claim that states sat­
isfying these criteria contain strings of flipped con­
figurations | ^) along the shortest path connecting 
we need a single flipped link | ^)n,^ connected to n to satisfy the charge condition 
As,n |^nm) = —|^nm). However, we cannot end there, for a single flip would imply 
a charge at site n + p,. The only way to avoid this is to extend the flipping to the 
terminal charge at m, thus creating a flip-string (see the figure).

The energy cost of this string is |n — m|2 Js, where |n — m| is the “Manhattan­
metric” distance (the minimal number of links) between the sites. The value increases 
linearly in the separation, and this is how the present formulation describes con­
finement: a separation of two test charges costs an unbounded amount of energy 
and is thus energetically unfeasible.

EXERCISE The proportionality of the string energy to length, |n - m|2Js, implies 
a string tension (energy per unity length) 2Js. It is interesting to explore how the 
perturbative inclusion of the plaquette operator modifies this value. Apply second-order 
perturbation theory in Jm to show that the inclusion of plaquette terms couples the 
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minimal string state to states containing a one-plaquette detour, as indicated in the lower 
panel of the figure. Show that this lowers the string energy by an amount -Jm2 /(6Js). 
(Hint: Interpret the denominator as 6 = 2 x (4 — 1).) The first-order perturbative inclusion 
of plaquette operators thus diminishes the string tension, Js ^ Js — J^m/6 Js. In the next 
section, we will discuss where this tendency for the strings to become more slack translates 
to the magnetic term becoming dominant.

Turning to the other side of the phase transition, we consider the opposite extreme, 
where Js = 0 at finite Jm ,

'X » A X /
HHt = — Ja / y A s - Jm / y B p

toric code The Hamiltonian Ht is known as the Hamiltonian of the toric code. It is a repre-
sentative of a larger class of stabilizer codes, which are defined by Hamiltonians 
containing mutually commuting operators (all operators in Eq. (10.43) commute). 
The denotation stabilizer codes indicates that such Hamiltonians play a role in 
quantum information. Specifically, the toric code describes physics at the interface 
of information theory, topology, and gauge theory and, since its introduction in 
2006,30 has become a paradigm of many-body physics. However, before discussing 
why the toric code is of interest to different communities, let us compute its ground 
state.
The stabilizer property implies a number of sym­
metries (growing extensively in system size), which 
indicates exact solvability. To see why, note that 
the commutativity of all plaquette operators means ------- , r------------------
that the ground state must satisfy Bp |^} = | ^} for
all of them. It is easy to find such states. For ex- ! _ ■
ample, the uniformly z-magnetized configuration '

| t) = ®n,p | f)(n,p) has this property. The problem
with this ansatz is that it lacks gauge invariance. The action of any As flips spins, 
and hence violates the invariance condition As |^) = | ^). However, what first looks 
like a problem can be turned into a construction principle for a gauge invariant 
ground state. Consider the state, |^) = N^ [Js As | th where N is a normaliza­
tion factor, and s is a symbolic notation for the sum over all possible star 
configurations. This is an equal-weight superposition of all possible applications of 
products of star operators to the polarized state. By construction, the application 
of any As does not change this state, i.e., As |^) = |^) (think about this point), and 
owing to the commutativity of all operators, the condition Bp |^) = |^) is preserved. 
We thus have a gauge invariant ground state at hand.

30 A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006).

10.4.4 Deconfined phase

(10.43)
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string net 
condensate

Application of As at a site n flips all spins emanating from that site. In the fig­
ure, this is indicated by a dashed square centered on the site, where a dashed line 
crossing a solid one means a spin flip. Application of all possible As combinations 
then amounts to a superposition of all patterns of closed dashed line loops. Allud­
ing to the equal weight superposition of string-like objects, states of this type are 
called string net condensates.31

String net condensates are paradigms in the physics of topological phases. In 
section 8.1.2, we argued that degeneracy of the ground state is a hallmark of 
such phases of matter. To identify possible ground states besides the one constructed 
above, we impose periodic boundary conditions, i.e., we put the lattice on a torus 
with L sites in each direction.

EXERCISE On the torus, compare the number of constraints identifying ground states 
with the number of available degrees of freedom. Count the number of vertex and plaquette 
constraints, and the number of available link degrees of freedom to show that the latter 
exceeds the former by 4. This indicates a four-fold ground state degeneracy.

Repeat the exercise for a lattice on a surface containing g handles (one handle is a 
torus, two is a pretzel, etc.) to conclude that there are now 22g uncompensated degrees 
of freedom. The fact that this number depends on the surface topology suggests that the 
system supports a form of topological order.

If the degeneracy is of topological origin, the 
distinction between different ground states 
cannot depend on “details.” However, it 
must be sensitive to the topology of the un­
derlying surface. Guided by this principle, 
we consider the operators £3, MIh,v a3, 
where h,v is shorthand for a product of 
links cutting the system in a horizontal or 
vertical direction, respectively, and it does 
not matter which line is chosen (see the fig­
ure). The ground state considered previously is an eigenstate £3|ty) = |^). To 
understand why, note that its construction started with the up-polarized state | f, 
which trivially satisfies the eigenstate condition. Now, each of the loops defined by 
the application of products of As operators intersects the horizontal or vertical lines 
in the grid an even number of times. This means that it flips an even number of 
spins in the intersection and so the product operators commute with £i3 .

However, we might just as well have started the loop construction on a different 
£3-polarized state, for example, one where we start with | f but then flip all spins 
along a horizontal or vertical line cutting through the system. This operation is 
generated by £1, = [Jh v a 1, where the product is now over a horizontal or vertical 
cut line; see the dashed lines in the figure. If we now let the loop construction act 
on these states, we generate gauge invariant ground states, which are eigenvalues of

31 M. A. Levin and X. -G. Wen, String-net condensation: a physical mechanism for topological 
phases, Phys. Rev. B 71, 45110 (2005).
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putation

spin liquid

£3 with different eigenvalues. Since these states differ from the original one by loop 
operators winding around great circles of the torus, they are topologically distinct. 
We have a totality of four such states, labeled by their eigenvalues ±1 of £31,2 . It is 
straightforward to show (exercise) that on a genus g surface, the dimension of the 
ground space is given by 4g .

It is interesting to consider the construction ab ove from the perspective of 
quantum information. The original system is defined in terms of a macroscopi­
cally large number of “physical” spin-1/2 states, or physical qubits living on the 
links of the lattice. Embedded in the high-dimensional Hilbert space of this system, 
we have the ground space, which we saw is a tensor product of the much smaller 
number of just two (or 2g) logical qubits defined by their eigenvalue of £13,2 . 
The states of these qubits are changed by application of £11,2 , where the operators 
£1a,2 define a Pauli matrix algebra (consider this point.) Since the logical qubits 
are topologically distinct, one may say that their states are “encoded” in a large 
number of physical qubits. This is the essential idea of stabilizer code quantum 
computation: logical information protected by being encoded in a much larger 
set of physical information. The advantage gained in return for the redundancy of 
the approach - a large number of physical qubits need to be realized for just O(1) 
information qubits - is error protection. An accidental change of physical qubits, 
will not in general change the logical state, unless the errors spread over the bulk 
of the torus (see info block in next subsection). In the context of quantum informa­
tion, the ground space of a stabilizer code is sometimes called the computational 
space. Quantum information is stored and manipulated in the topologically dis­
tinct states of this space. For further discussion of the stabilizer approach to quan­
tum computation we refer to a large body of literature, starting with the original 
reference30 .

32 N. Read and S. Sachdev, Large-N expansion for frustrated quantum antiferromagnets, Phys.
Rev. Lett. 66, 1773 (1991); X. -G. Wen, Mean field theory of spin liquid states with finite energy 
gaps and topological orders, Phys. Rev. B 44, 2664 (1991).

INFO The degeneracy of the toric code ground states is a manifestation of their macro­
scopic entanglement (see section 8.1.2). Indeed, we have constructed these states as a large 
sum over “entangled” loops of macroscopic extension. For a spin system, this is the defin­
ing feature of a spin liquid, a state of correlated spins with strong fluctuations including 
at low temperature. For the original references on Z2 spin liquids, see Ref.32

To summarize, we now understand that the confinement-deconfinement transition 
in Z2 gauge theory is not a symmetry-breaking phase transition but a topological 
one. It distinguishes a confining phase from a strongly spin-fluctuating deconfined 
phase. The latter is long-range ordered in that the ground state is characterized by 
topological invariants - the eigenvalues of non-local string operators winding around 
the system. There is no local observable distinguishing between the different ground 
state sectors. The absence of local order parameters identifies the phase transition 
of Z2 Ising gauge theory as a topological phase transition.
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10.4.5 Anyonic excitations

string 
operator

error cor­
rection

Given the topological nature of the ground 
state, one may speculate that excitations 
also afford a topological interpretation. The 
elementary excitations of the system have in 
common that they (i) cost energy 2Jm or 
2Je, respectively, (ii) can only be created in 
pairs, which (iii) are connected by strings. 
All these features follow from the schematic 
representation shown in the figure. Consider 
the string operator £3(7) = [JleY 03, where the product is over the lattice links 
defining a curve, y, on the lattice. This operator commutes with all operators in 
the Hamiltonian, except for the vertex operators As sitting at the end-points of 
the string, with which it anticommutes. Application of the operator to the ground 
state thus generates a state of energy 2 x 2 Je. We interpret it as a state containing 
two “electric” excitations, e, at the end points of the string. Similarly, the string 
operator £1(y0 = II1eY 0 1, where the product is over all links intersecting a curve 
Y', commutes with everything, except for the two plaquette operators defined by 
the terminal points. Application of this operator costs energy 2 x 2Jm and creates 
two “magnetic” excitations, m, at the end points.

INFO Electric and magnetic excitations of this type pose a threat to the integrity of 
quantum information encoded in the computational space of the code: a pair of excitations 
may be created by, e.g., a thermal activation. Once created, the two excitations may 
propagate on the lattice without further energy cost. A logical error occurs when an 
excitation string moves around one of the great circles of the torus before its end points 
recombine. The final state is again in the ground space, but in a different topological 
sector. Referring to the literature, we note that various passive and active schemes of 
error correction have been devised to counter such processes.

The end points of the string operators play the role of effective quasiparticle exci­
tations of energy 2Je,m, respectively. Once the energy 2 x 2Je,m has been paid, they 
are free to move on the lattice. What kind of quantum statistics do these particles 
obey: bosonic, fermionic, or other? To answer such questions in a two-dimensional 
setting one needs to understand what happens if one of these particles gets dragged 
around another along a circle (see discussion of section 8.6.1). For two magnetic or 
electric quasiparticles the answer is evident: nothing happens because the motion 
of the end-point of a string of 01,3 operators has no consequences.

However, a more interesting situation arises if a| 
magnetic particle gets dragged around an electric
one (see the figure). Magnetic and electric string-------------- ■------------------- ;--------

! * ■ operators intersecting an odd number of times an-; e 
ticommute because they contain an odd number of i.------------------ i---------

m moperators 0 1 ,l, 03,l on the intersecting links in com-------------------------'------------------
mon. This implies that the loop introduces a mi­
nus sign, or a phase (-1), distinguishing the wave
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semion
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functions before and after the braiding procedure. This phase is characteristic of 
a specific type of anyon, a semion. The defining feature of semions is that their 
exchange - which is topologically equivalent to a half rotation - leads to a phase 
factor i, half that for fermions. We have thus found that the magnetic and electric 
excitations of the toric code are bosons relative to themselves, and semions relative 
to each other.

The exchange statistics identified above is a simple example of the braiding 
properties of topologically ordered ground states. States defined by more 
complex string-net ground states31 support excitations whose braiding may lead 
back to the ground state wave function U | f) multiplied by a nontrivial unitary 
matrix U. The exploration of such non-abelian anyons and their potential ap­
plication as a computational resource is the subject of the field of topological 
quantum computation, not discussed in this text but beautifully reviewed in 
Ref.* 33.

We begin by asking how the presence of topology manifests itself in the principal 
building blocks of the theory: connections, states, and covariant derivatives. To this

33 C. Nayak et al., Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 
80, 1083 (2008).

However, before closing this section, let us mention one entertaining fact about 
the simple semions of the toric code: one may consider a composite excitation de­
fined by an electric and a magnetic excitation on a site and a neighboring plaquette, 
i.e., a charge with a Z2-gauge flux attached to it. The “composite particles” defined 
in this way are linked by two strings. This implies that the exchange of two of them 
comes with a phase i2 = -1, characteristic of a fermion. We thus observe that the 
toric code - nominally a system of localized spins, is capable of generating spatially 
delocalized fermions as emergent quasiparticles. These fermions have the remark­
able property that they always come in pairs, which means that the fermion parity 
is a conserved quantum number. They are non-local objects, in that they emerge 
as end-points of strings. It is interesting to see how these structures - which sepa­
rately play a role in the understanding of the standard model and the fundamental 
structure of matter - appear as emergent signatures of a simple spin system.

10.5 Topological Gauge Theory

Up to now, we have considered gauge theories over space-time regions M equivalent 
to simple subsets of Rn. In this section, we turn to situations where M has a more 
interesting topology. Here, the bundle is no longer equivalent to a Cartesian product, 
E = M x F. This generalization can have profound consequences whose study is 
the subject of topological gauge theory.

10.5.1 Connections of topologically nontrivial bundles
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Fig. 10.4 Left: Coverage of a bundle by overlapping coordinate charts. Right: Locally the bundle is 
equivalent to Cartesian products U x F of coordinate domains and fibers. Depending on the 
chosen system, a section has different local representations, ^(y) and ^'(y'), respectively, 
related to each other by a gauge transformation, ^' = gx.

transition 
function

end, consider a region of N C M covered by two overlapping trivializations, U 
and U'. In the restriction to either of these regions, the bundle is equivalent to 
U x F or U' x F', respectively, where U and U' may be considered subsets of Rn 

equipped with their individual coordinate representations.34 Points x G N in the 
overlap region then have two different coordinate representations, y G U and y' G U' 
(see Fig. 10.4). The denotation of these coordinates is arbitrary and, confusingly, 
they may even have the same name. For example, in the case M = S2 , U and 
U' might be domains covering the northern and the southern hemisphere, with 
overlap in the equatorial region, both equipped with identically named spherical 
coordinates y = y' = (9, ^). The states, or sections, of the theory have independent 
representations, ^y and ^'y, in U x F and U' x F', respectively. Since these are 
different representations of the same state, there must be a translation gx : F ^ 
F, ^y ^ ^y, = gx'-'y, realized through an element of the gauge group. The subscript 
indicates that gx is a transition function, i.e., a group-valued function in the 
overlap region between different trivializations. A key point now is that:

34 There is a potentially confusing subtlety here. In principle, one needs to distinguish between 
points in M and their coordinate representations — there is a difference between a geometric 
point on a sphere and its representation (Q, <p), z,.. . in spherical, stereographic, . . . coordinates. 
This is important, specifically in cases where M does not have a global coordinate representa­
tion. However, for brevity, one often does not distinguish between local domains U C M and 
their coordinate representations U C Rn. As long as one knows what one is doing, this (not 
very hygienic, yet convenient) practice is acceptable and we will adopt it throughout.

The transition functions between different local trivializations 
encapsulate the topology of a fiber bundle.
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As a corollary we note that on a bundle characterized by nontrivial transition func­
tions, it is not possible to describe sections as globally defined functions. Specifically, 
quantum wave functions become sections of a complex line bundle, with only locally 
defined function representations.

Mobius
strip

INFO As an example illustrating these structures, con­
sider the Mobius strip. A Mobius strip can be described 
as a bundle with a circle base, S 1 , and a finite inter­
val F = [-1, 1] as fibers. Consider the circle covered by 
two overlapping coordinate charts, such that we have two 
overlap regions (see the figure, where the local fiber rep­
resentations are indicated by solid and dashed lines, re­
spectively). The presence of a twist is equivalent to the 
statement that, in one of these regions, the transition map
g : [—1, 1] ^ [—1, 1], s H- — s inverts the local representation of a section on the fibers (see 
the figure.) If it were not for this twist, the strip would have the topology of a cylinder.

At this point, connections have not yet entered the stage. However, this changes 
when we aim to monitor the local change of sections via parallel transport. In an 
overlap region, we then have two independent versions of a covariant derivative, 
Du = (d + A)^ and D' = (d + A')^', and we need to find out how the coordinate 
representations of the connection A and A' are related to each other. To this end, we 
note that the covariant derivatives (evaluated along a certain direction on M ) are 
local functions, and as such are subject to the translation protocol: D' ^' = g(Dty), 
where we have omitted subscripts for brevity. Substituting ty' = gu', this leads to 
D' = gDg-1. With gdg-1 = d + g(dg-1), we obtain the identification

A' = gAg 1 + gdg 1 (10.44)

large gauge 
transfor­

mation

This shows that the local representations of the connection are related to each other 
by a gauge transformation as in Eq. (10.3), where the transition functions feature as 
group transformations. We may think of the gauge transformation between A and 
A' as a map g : N ^ G from the intersection of the two coordinate domains into the 
gauge group. The bundle is nontrivial if this map cannot be continuously deformed 
to unity. In the physics literature, gauge transformations with this property are 
called large gauge transformations.

10.5.2 Dirac monopole

In this section, we illustrate the principles of topological gauge theory for the ex­
ample of the Dirac monopole. In the early 1930s, Dirac was interested in quantum 
mechanics in the presence of a magnetic monopole field.35 Studying this problem, he 
ran into singularities which we now understand as a manifestation of the topological

35 P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. Lond. A 133, 
60 (1931).
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structure of the gauge field representing the monopole. Here, we proceed in reverse 
order. We will start from a singularity-free description of a gauge field with non­
trivial topology. From there, we will discover effective monopoles which, as we will 
see, find applications in condensed matter physics.

complex 
line bundle

Monopoles as a consequence of geometry

The Dirac monopole problem is defined on a base manifold M ~ S2 of spherical 
geometry. We want to develop quantum mechanics on this surface, which means 
that the relevant fibers, F = C, are the complex image spaces of wave functions. 
Mathematicians call such bundles complex line bundles. The sphere is different 
from an open subset of R2 , meaning that more than a single coordinate chart is 
required to cover it. This generates the situation depicted schematically in fig. 10.4.

Let us now explore how these structures manifest themselves in the monopole 
problem. We begin by covering the northern and the southern hemisphere in­
dividually with spherical coordinates. The simplest way to glue the locally de­
fined wave functions ^n and ^s in the equatorial overlap region is to identify 
^n(9,^) = ^s(9,^), with transition function g(9,^) = 1. In this case, a consistent 
choice of the connections in the two hemispheres reads An = As = 0. A more inter­
esting gluing prescription is given by ^s(9, ^) = eintyn(9, ^), with non-vanishing 
integer n, where the latter condition is required to make ^n,s single valued along 
the equator.36 This twist corresponds to the choice g = e'nn' for the U(1) structure 
group transformation. It is topological nontrivial in that g cannot be continuously 
deformed to g = 1. Conceptually, this transformation plays a role analogous to 
that of the coordinate sign inversion implementing the twist of the Mobius band. 
In the present context, it gives the complex line bundle over the sphere a nontrivial 
topology.

Owing to the abelian nature of the theory, the transformation between the local 
connections reads

A s = A n — ind$. (10.45)

This condition cannot be satisfied by vanishing connections, An = As = 0, which 
conveys an important general message:

The topological nontriviality of a bundle requires the presence of a 
non-vanishing connection.

In section 10.5.3, we will indeed see that the topological nontriviality of a bundle 
can be diagnosed via universal properties of the connections defined on them.

36 Critical readers may object that spherical coordinates are ill-suited to cover the sphere in terms 
of just two charts. For example, a single coordinate <p cannot even parameterize the full equator. 
However, there do exist two-chart atlases of the sphere, a stereographic projection providing one 
of them. A watertight formulation would refer to 0 and Q as the local spherical representations 
of a singularity-free stereographic system with different charts for the northern and southern 
hemisphere. However, this language would make our story intolerably complicated while not 
changing its conclusions.
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magnetic 
monopole

Now consider the choice

An = — (+1 — cos 6) d$,

As = — (—1 — cos 6) d$.

The key features of these connections is that they satisfy the transformation law, 
and are well defined on their respective hemispheres. The first property follows via 
inspection of the equatorial line 6 = n/2. On it, both connections are defined and 
we have An = ind^ = As + ind^, as required. To verify the second assertion, note 
that at the points of singularity of the form do, the north- and the south-pole, the 
one-forms An and As , vanish, respectively. This removes the singularities in their 
domains of definition and makes An/s valid connection forms.

However, the connections An/s have further remarkable properties. We first note 
that they support a non-vanishing and non-singular field strength,

F = dAn/s = — sin 6d6 A d$. (10.46)

Mathematically, this is in/2 times the area form of the two sphere. Integrated over 
the sphere, Js2 sin 6d6 A d$ = 4n, meaning that the total flux, or integrated field 
strength of the problem, equals Js2 F = 2nin. Physically, — iAn/s are real-valued 
vector potentials and —iF represents its magnetic field. Translated to a vector 
language, (—iAn/s)$ = (n/2)(±1 + cos6), with all other components vanishing. It 
is straightforward to compute the curl and confirm that the corresponding mag­
netic field (the vector formalism analog of F ) points radially outward with uniform 
strength Br = n/2. This is th defining feature of a magnetic monopole. Further, 
we may observe that the strength of the induced field is integer quantized, where the 
index characterizes the degree of topological twisting of the bundle. (This includes 
the case n = 0 of the trivial bundle.) We observe that:

The topological nontriviality of the complex line bundle over S2 is equivalent 

to the presence of a magnetic monopole field of quantized strength.

Later in the section, we will understand this phenomenon as a manifestation of a 
more general structure: the topological contents of bundle structures in physics and 
mathematics - which are often not easy to see from the outset - may be diagnosed 
by computing integral invariants of their connections. This approach to classifying 
topology is formulated in a language reminiscent of that of electromagnetism and 
hence resonant with a physics way of thinking.

Finally observe that we really need a minimum of two connections An/s to rep­
resent the problem. For example, upon approaching the south pole, An ^ in d$ 
becomes ill-defined. If it were not for this singularity, we would have a global rep­
resentation, F = dA, and by Stokes’ theorem JS2 F = fgs2 A = 0, since the sphere 
has no boundary: the non-vanishing of the topological flux excludes the existence 
of a globally defined connection on M, which in turn indicates the nontriviality of 
the bundle.
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Dirac 
strings

INFO As mentioned above, Dirac approached the problem by postulating the presence 
of a monopole field and exploring the consequences. Noticing that the single-valuedness 
of wave functions requires magnetic charge quantization, he took an important additional 
step to show that electric charge had to be quantized as well. This led to the spectacular 
conjecture that the (experimentally observed) quantization of charges might be rooted in a 
(sought for but not yet observed) existence of magnetic sources in the universe. Dirac also 
noticed the necessary presence of singularities in the vector potentials generating the field. 
However, unlike our present discussion, he attributed physical significance to the singular 
points and interpreted them as the piercing points of infinitesimally thin solenoidal flux 
lines, called Dirac strings, between remote monopoles of opposite charge. In this way, the 
physics of individual monopoles can be addressed and no conflict with the fundamental 
non-existence of isolated monopoles in nature arises (see section 8.5.1 for further discussion 
of the Dirac string).

Monopoles in condensed matter systems

For all we know there are no fundamental monopoles in nature. However, in con­
densed matter physics there are numerous realizations of effective gauge fields that 
do not represent real magnetic fields and hence may support monopoles. In the 
following, we discuss two example realizations of such fields.
QAH insulator: In the info block of section 8.4.7 we introduced the quantum anoma­
lous Hall insulator as a two-dimensional topological insulator. We analyzed its effec­
tive Bloch-sphere Hamiltonian (8.38) with associated the integer winding number 
(8.40). However, this assignment was indirect in that the actual object carrying a 
topological index is the ground state of the system.

A more systematic approach describes the ground state as a bundle with base 
Brillouin zone torus, one-dimensional fibers hosting the single-particle valence band 
states, and the Berry connection, Eq. (10.29), describing the twisting of the latter. 
In the exercise below, we demonstrate that, for a QAH insulator in a topological 
phase, the torus contains an integer monopole charge.

EXERCISE The ground state wave function of the QAH Hamiltonian (8.38), Hk = vk • a, 
vk = (sin k 1, sin k2,m — cos k 1 — cos k2), is given by Uk|-|) = |nk), where Uk is the unitary 
transformation diagonalizing the 2x2 matrix Hk and the second representation emphasizes 
that these transformations rotate the spin-down state | J) into a direction set by the unit 
vector nk || vk on the Bloch sphere. Verify that in an Euler angle representation, Uk = 
exp(2$ka3) exp(20ka2), the Berry connection (10.29) assumes the form Ak = | cos0kd^k. 
In this expression, ($k,0k) are functions of the crystal momentum, implicitly defined by 
the condition that they describe the orientation of nk in spherical coordinates.

In the topological phase m e (0, 2), these angles cover the full 
sphere upon variation of k. Specifically, the north pole corresponds 
to the center of the Brillouin zone 0(0,0) = 0, and the south pole 
to the boundaries 0(±n,±n) = n. The equatorial line is visited 
for momentum configurations implicitly defined by the condition 
m-cos k1 -cos k2 = 0. This line defines the boundary between two 
coordinate patches on the torus (see figure for a visualization for 
|2 — m| 1, where the boundary approaches a circular geometry). 
Inside (outside) that line we need to choose a gauge An = A + 2 d^
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(An = A — | d'y) removing the singularity of A upon approaching the north-pole (south­
pole), as in our previous discussion of the Dirac monopole. Show that the field strength 
on the torus, F = dA = dAn = dAs, has the coordinate representation F = sind(d 1 dd2y — 
d2dd 1 y)dk 1 A dk2 and convince yourself that it has non-vanishing flux, i.e., it describes a 
monopole included in the torus. Integrate the field strength to obtain its flux as

2ni.^2 F 1' (10.47)

(Hint: Apply Stokes’ theorem for an efficient calculation of the integral.) Can you reason 
without explicit calculation why, in a non-topological phase, such as m > 2, the monopole 
charge vanishes?

For the simple QAH system, it does not seem to matter whether we identify an index 
from the Hamiltonian or its ground state. However, for more complex systems this 
need not be so. Specifically, the periodic table of topological insulators is built on a 
geometric classification of quantum ground states, taking the ground state bundle 
with Berry connection (section 8.1.1) as its starting point.

Weyl semimetals: In section 9.1.1 we introduced the Weyl semimetal as a gapless 
fermion system harboring an even number of Weyl nodes in its three-dimensional 
Brillouin zone. Each node is represented by the Hamiltonian Hk = kiai, where 
the momenta are measured from the nodal center. Assuming that the system is 
kept at a small chemical potential, ^, the nodes are surrounded by spherical Fermi 
surfaces at |k| = k = ^ separating filled states, k < ^, from empty ones. To this 
ground state, a Berry connection is assigned through Ai = (k|dki |k), where |k) 
is the ground state of the above 2 x 2 Weyl Hamiltonian. In the notation of the 
previous discussion of the Hall insulator, this translates to nk = k/k. Representing 
k = k(6, ■$, k) in polar coordinates, the integral of the Berry curvature around 
each node equals 1 f sin 6 dddo = 2n, i.e., each node is the source of a Berry flux 
quantum.

INFO While there may be no “real” monopoles in nature, effective monopoles have 
been observed in condensed matter physics. As in Dirac’s construction, they appear tied 
to solenoidal flux lines. Such structures have been observed in pyrochlore compounds - 
lattices of highly frustrated magnetic moments generating a form of matter dubbed spin 

spin ice ice (see info block on page 482). In these compounds, the local alignment of moments may 
generate effective solenoids with magnetic flux emerging at end-point monopoles. Such 
local flux sources have been observed in neutron scattering experiments on the pyrochlore 
compound Dy2Ti2 O7.* 37

The discussion above showed that gauge fields on topologically twisted bun­
dles are nontrivial. We cannot put A = 0 everywhere since this would be in conflict

37 D. J. P. Morris et al. Dirac strings and magnetic monopoles in the spin ice Dy2 Ti2 O7, Science 
326, 411 (2009).

10.5.3 Characteristic classes
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with the transition rules (10.44) for the translation of vector potentials between 
charts; either A or A' or both must be non-vanishing.

Since the As take into account the underlying topology, one may wonder whether 
the logic can be turned around: can we describe the topology of bundles from the 
connections defined on them? This is the idea behind the concept of characteristic 
classes. Technically, characteristic classes are functionals of the connections of a 
bundle, defined to classify the underlying topology. For two reasons, they define 
a powerful concept in the description of topological quantum matter. First, the 
microscopic information describing, say, a band insulator is often delivered in the 
form of a vector potential, locally computed from underlying microscopic structures. 
A class functional may then be employed to integrate this information and obtain a 
number classifying the topology of the system. Second, it is irrelevant which vector 
potential is employed. Any vector potential permissible on the bundle structure will 
yield the same class information.

There are various characteristic classes, and we refer to Ref.21 for a comprehensive 
discussion. Here, we focus on the realization most frequently encountered in physics 
applications, the Chern classes. In the next section, we introduce the concept of 
Chern classes in generality. We will then consider the example of a topological band 
insulator to illustrate their utility in physics.

38 For example, with F = 2F^vdxp A dxv, F^v are matrices in g, and 12(F) = tr(F A F) = 
4tr(F^vFp&)dx^ A dxv A dxp A dxa, etc.

Chern classes

REMARK The following is an informal introduction to Chern classes. For a more rigorous 
discussion, see Ref. .

Let us begin with an introduction to Chern classes formulated in the language of 
geometry. Consider a Lie group G, and let B be matrices in the Lie algebra g. For 
definiteness, we may think of g = R, the Lie algebra of U(1), or su(N). We now 
define the matrix monomials In (B) = tr(Bn). Cyclic invariance of the trace implies 
that these are invariant monomials in the sense that In(gBg-1) = In(B).

Now consider a setting with base manifold M of even dimension d and fibers 
on which G acts as a gauge group. Assume we have chosen a local connection A 
with field strength F. Expanded as F = 2F'IJVdxA A dxv, the coefficients F'IJV are fl­
valued matrices, and F transforms as F ^ gFg-1. Hence it makes sense to consider 
In(F) = tr(F A • • • A F) = tr(FAn), invariant polynomials evaluated on the field 
strength form.38 These monomials define the so-called Chern characters,

ch n (F) = Itr (iF VA 

n! 2 n
(10.48)

where the normalization factor is chosen for later convenience. Notice that Chern 
characters exist only up to 2n = d (think why?).
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As we will explain shortly, the importance of these objects in the topological 
description of bundles follows from two key properties (the Chern—Weil theo­
rem): (i) they are closed, d chn(F) = 0, and (ii), for two different field strengths 
on the manifold, F and F', the difference chn(F) — chn (F') = dKn is exact, where 
k = k(A, A') is a differential form depending on the local vector potentials.

For an instructive proof of the Chern-Weil theorem we refer to problem 10.7.6. As 
useful spin-offs from this proof, we get explicit representations for k. For example, 
if F' = 0 locally39 then for n = 1, 2 (which cover most applications in condensed 
matter physics), we have the representations

chi( F ) = A tr( F ) = ^d tr( A), 
2 n 2 n

ch2( F) =---- tr( F A F) =-------- d tr (A A dA + - A A A A A
8 n2 8 n2 \ 3

(10.49)

which can be straightforwardly verified by computing the derivatives on the right­
hand side and comparing with the definition of the field strength tensor (10.13). 
On the right-hand side, we encounter the differential forms defining the topological 
gauge field actions (10.27). Their coupling constants are obtained by multiplication 
of Eq. (10.49) by 2nk, where k is the integer level of the theory. The factor 2n 
guarantees that ambiguities related to the global gauge structures addressed below 
affect actions only via unobservable phases, 2ni times an integer.

Chern numbers

After this formal construction, let us now now discuss its utility. To this end, as­
sume we have a bundle setting comprising a (boundaryless) base manifold, M , a 
fiber structure, and a connection, A, as usual. For example, consider a Brillouin 
zone base, a Hilbert space Cn for n-bands as the fiber, and a Berry connection. The 
twisting of the bundle is encoded in the transition functions between local realiza­
tions of the connection. However, assuming that we do not know these functions 
yet, we now show how equivalent information is obtained by computing relatively 
straightforward integral invariants of the curvature tensor.

These invariants are called Chern numbers and they are defined as

Chn [F] = chn (F) (10.50)

i .e., as integrals of the above Chern characters. These intgrals are defined to produce 
integer-valued (Chern) numbers. Their advantage is that they produce fingerprints 
of the underlying topology via relatively straightforward integrals. Crucially, any 
field strength F compatible with the bundle structure  may be used to compute the40

39 Keep in mind that, in nontrivial cases, F' = 0 can hold only locally. The form Kn is defined in 
terms of a connection form which, likewise, is a local object.

40 Remember that on a manifold with a nontrivial twist, we cannot just set F = 0 globally. 
We need to work with the As, and the corresponding Fs, consistent with the bundle’s gluing 
conditions.
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Chern number. The reason is that the difference Chn(F) — Chn(F') = JM(chn(F) — 
chn(F')) = fM dKn = 0 vanishes by the Chern-Weil theorem and Stokes’ theorem.

Let us illustrate how this works for the example of the Dirac monopole bundle. 
In this case, a representative of the field strength is given by Eq. (10.46), and 
integration over the sphere M = S2 yields Ch1 (F) = —n. However, to make the 
connection to the underlying bundle twist more explicit, let us do the integral in 
a slightly different manner: locally the Chern characters afford the representation 
(10.49) in terms of patches of the connection form, i.e., F = 2indAn/s on the northern 
and the southern hemisphere, respectively. Splitting the integral into contributions 
from these two regions, we obtain

Chi(F) = / F + /F = 2n (//An + /dA8)

i (10.45) i
= ^/ (A n — A s) = (ind4 )= — n.

2 "J equator 2 "J equator

The take-home message is that the Chern number responds only to what happens 
in the equatorial gluing region (third equation), and there probes the twist between 
An,s. Parameterizing the equator through the azimuthal coordinate ^, the large 
gauge transformation between An and As is a map S1 ^ U(1), ^ ^ >’iJ, from the 
equator-circle into the gauge group U(1), which is topologically also a circle. The 
windings (homotopy classes) of that map determine the Chern numbers. Notice how 
this construction describes the topology of the bundle with two-dimensional base 
in terms of the winding numbers of a map in one dimension lower. In the info block 
below, we illustrate the same principle on a higher-dimensional example, likewise 
of relevance to topological matter.

INFO As an example of the application of Chern numbers in condensed matter 
physics, compare with the discussion of the bundle structure describing the QAH insulator 
in the exercise on page 617. The topological index of that system, Eq. (10.47), is the 
(negative of the) first Chern number of its Berry connection.

The second Chern number comes into play when we consider topological insulators 
of more complex structure. As an example, consider the four-dimensional band insulator 
described by the Hamiltonian41

41 X. Qi, T. Hughes, S. C. Zhang, Topological field theory of time-reversal invariant insulators, 
Phys. Rev. B 78, 195424 (2008).

42 To be concrete, ro = y0, r1,2,3,4 = -iY0Y1,2,3,5.

H( k) = sin ki r i + m + cos k^ ] ro = ^<ir (k )r ^,
i =1 \ i = 1 / p,

where k = (k 1, • • • k4) is the crystal momentum parameterizing a four-dimensional Bril­
louin zone, T4, and rM, /J, = 0, • • • 4 are the Euclidean Dirac y-matrices, [r^, rv]+ = 2S^v 

(see section 9.1.1).42 At first sight, four-dimensional insulators seem like a purely academic 
concept. However, systems defined in synthetic dimensions can nowadays be engineered 
by techniques of quantum optics. Futhermore, insulators in dimensions > 3 play a role as 
parents for the construction of lower-dimensional insulators by reduction (see Refs. for 
a discussion of this point).
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At given k, H(k) is a four-dimensional matrix with two-fold degenerate eigenvalues 
±|d(k)|. (Verify this statement using the anticommutation relations of the r-matrices. 
Hint: Use the “ln det = tr ln” formula for the computation of the characteristic poly­
nomial.) For generic values of the parameter m = 0, ±2, ±4, the spectrum has a gap, 
|d(k)| = 0, and our system is an insulator at half-filling, p, = 0. Its two-fold degenerate 
ground state defines a non-abelian Berry connection Aab (k), a, b = 1, 2, Eq. (10.29), 
describing the variation of the ground state wave functions '.'a (k) in k.

A hint as to the topology of the system follows by inspection of the Hamiltonian, 
analogously to what we did in the case of the QAH insulator: without closing the energy 
gap, one may deform H(k) to d^ (k)rM, with the four-dimensional unit vector d = d/1d|. 
This representation suggests a classification in terms of homotopy classes (see section 8.3) 
of maps from the four-torus, T4 , to the four-sphere, S4, i.e., a higher-dimensional variant 
of the T2 ^ S2 Bloch sphere mapping describing the QAH insulator. It turns out that 
different classes are distinguished by an integer winding number, so that we expect a 
Z-classification scheme.43

43 Alert readers my wonder how this statement can be compatible with nd(Tk) = 0 for d > 2, 
i.e., the absence of topologically nontrivial maps from d-spheres to k-tori. The resolution is 
that winding maps from the torus to the sphere exists, but not the other way around. (We are 
grateful to A. Abanov for pointing this out.)

Referring to Ref. for the conceptually straightforward yet technically lengthy details, 
we now outline how the situation is described via the Chern classes of the ground state 
bundle. The discussion again parallels that of the QAH insulator, except that the base 
space changes as T2 ^ T4, the fiber dimension 1 ^ 2, and the gauge group U(1) ^ SU(2). 
(In dimensions > 2, the abelian factor in U(2) = U(1) X SU(2) is topologically trivial and 
the gauge group reduces to SU(2).) For parameter values, m, corresponding to a twisted 
ground state, no globally non-singular connection form Aab can be found. Rather, we need 
to segment the four-torus into two chart regions with a three-dimensional boundary. For 
example, if m ~ 4 is close to a critical value, the “mass coefficient” of the Hamiltonian H(k) 
vanishes on a small three-sphere S3 in the momentum space surrounding k0 = (n, n, n, n)T. 
This sphere, now plays a role analogous to that of the circle indicated in the exercise on 
page 617. Inside and outside this sphere, we work with different Berry connections (once 
again, we call them An,s), and on it there is a large gauge transformation connecting them, 
An = gAsg-1 + gdg-1. Here, g = g(k) is a map S3 ^ SU(2) which cannot be deformed 
to a trivial one. We now have the local representations ch2(Fn,s) = dK2(An,s) inside and 
outside that sphere, respectively and, by Stokes’ theorem, the topological index assumes 
the form of an integral over the difference of Chern-Simons three-forms k2(An) — k2(As) 
over S3. Assuming that, locally, As = 0, and using Eq. (10.49), it is straightforward to 
verify (exercise) that k(An) — k(As) = 24^2tr[(gdg-1)A3]. In problem 8.8.3, we showed that 
the integration of this form over the boundary three-sphere yields the winding numbers 
of the map S3 ^ SU(2) describing the twisting of the bundle.

There may be easier ways to describe the windings of the four-band insulator. However, 
the striking advantage of the present approach is its extensibility to different representa­
tions of the Hamiltonian, and more complicated lattice structures. Topology guarantees 
that the integrals defined via the structures above will always yield the same answer. This 
makes them valuable tools in, e.g., the numerical computation of topological indices.

As an aside, we mention that, in the particle physics literature, these gauge transfor­
mations are called SU(2) instantons. In that context, the domains introduced above 
assume the role of the four-dimensional universe, and S3 is a “space-time boundary.” It 
may be useful to consult particle theory textbooks and check how their discussion of the 
subject compares with the present one.
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INFO Equations. (10.50) define homotopy classes of gauge field configurations as integer­
valued integrals over fields with local representation, F = F(A, dA). These are the defining 
features of the 0-terms discussed in section 8.4. In both the particle physics and the 
condensed matter physics literature, the coordinate representations of the integrals (10.50),

Stop[F] = J chd/2 (F) = Chd/2[F]

f -1 d d2 xF'vtr(FtJv),
= } 4 nJ
f 321'/ d4x^'tr(F,v F ■),

d=2,

d = 4,
(10.51)

0 -terms are often referred to as 0-terms.44 In particle physics, the d = 4 variant describes, e.g., the 
instanton configurations mentioned in the info block above. In condensed matter physics, 
four-dimensional topologically nontrivial gauge field configurations are rare. However, the 
d = 4 term may appear in effective actions nonetheless. To understand why, consider 
electromagnetism, where Fpv is the familiar field strength tensor and a short calculation 
shows that epvp,Ttr(FpvFpa) = 8E • B. This leads to Stop = 4n2 J" d4x E • B, which in this 
form appears as part of the electromagnetic response action of topological insulators or 
Weyl semimetals . For further discussion, we refer to section 9.2 where these terms are 
discussed from the perspective of physical anomalies.

Much of physics involves comparing (differentiating) objects at different points in 
space, time, or differently defined parameter spaces. Our starting point in this chap­
ter was the observation that naive comparison of objects containing internal symme­
tries, vector fields, wave functions, etc., leaves room for ambiguities which are fixed 
by the introduction of connections. This simple realization defined a geometric ap­
proach to gauge theory and leads to intuitive and universally applicable definitions 
of all of its elements, vector potentials, field strengths, gauge “symmetries,” covari­
ant derivatives, Wilson loops, etc. By way of illustration, we considered the physics 
of gravity, where the view ab ove led to a transparent representation of structures 
otherwise plagued by hordes of indices. We also discussed how this framework is 
implemented on lattice structures, and for discrete gauge groups such as Z2 . In the 
final part of the chapter, we upgraded the geometric perspective to a topological

44 Here, we made the replacement iF ^ F relative to Eq. (10.50) since the hermitian-physics A 
is the anti-hermitian gauge group generator iA of this section.

To conclude this section, Chern numbers are integer-valued invariants describing the 
topology of even-dimensional bundle manifolds as integrals over their gauge field 
strengths. Although Chern numbers do not exist for odd dimensional manifolds, 
Eq. (10.48) shows how the Chern characters of (d = 2n)-dimensional manifolds 
determine the topological gauge field actions in d = 2n - 1. The physics of these 
Chern-Simons actions was the subject of section 8.6.

10.6 Summary and Outlook
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one, and learned how to detect topological structures by inspection of the gauge 
fields defined on them. This view is increasingly important in the physics of topo­
logical condensed matter physics, where gauge fields frequently appear as interfaces 
between the microscopic physics and the macroscopic topologies defined by it. For 
example, the microscopic band crossings of a topological insulator are described by 
lattice fermions minimally coupled to a Berry gauge potential. Their integration 
leads to a topological gauge field action, whose integration defines a Chern class 
macroscopic invariant. This example also illustrates that the contents of this chapter 
are inseparably linked to that of chapter 8, whose theme is the physics of non-local 
structures in condensed matter physics and their field-theoretical description.

10.7 Problems

10.7.1 Identifying the field strength tensor

The goal of this problem is to practice uency in handling the mathematical objects of gauge 

theory. It introduces various tricks which facilitate the handling of structures containing matrix 

gauge fields A- = {(A^)ab}.

Consider the parallel transporter r[y], Eq. (10.11), along an infinitesimal closed 
loop y of linear extension e on a manifold. Our goal is to identify the contribution 
of leading order, e2, to r[y] . Parameterizing the loop as x(t) = {x1'(t)}, t G [0, 1], 
expand the exponential up to second order in the time integrals and show that the 
first order of the expansion yields the contribution - S dA, which is of second 
order in e (think why?). In the term of second order, you will encounter products 
xM(11)Ax(11),^xv(12)Ax(12,v) of the matrix-valued gauge fields evaluated at different 
positions along the curve. Use the matrix commutator and anticommutator [ , ]± 
to decompose such products into the sum of a symmetric and an anti-symmetric 
matrix. Show that the symmetric contribution can be written as the square of two 
integrals, each contributing to O(e2). Being of O(e4), this term can be neglected. 
Turning to the anti-symmetric term, assume that the coefficients A^ vary only 
weakly over the extension of the curve so that they can be pulled out of the integral. 
Show that one of the time integrals over the remaining parts of the integrand can 
be performed, and the second can be written as dxAxA. Apply Stokes’ theorem 
and use A = A^dx^ to bring the result into the form — fs(Y) A A A. Combined 
with the first contribution, this leads to the structure — fs(y)(dA + A A A) for the 
O(e) contribution to the parallel transporter. Assuming a fiber-matrix structure 
A = {Aab}, derive the form of the integrand fully resolved in indices, ^ and a.

Answer:

The expansion of the the transporter (10.11) up to second order in exponentials 
reads
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adjoint 
repre­

sentation

1 1 t

r[Y] = 1 - J dt xU(t)At,^ + j dtJ du xU(t)At,^xv(u)A^ + O(e3), 

where we have used the abbreviation At,U = Ax(t) ,U. The first term is a line integral, 
which can be converted to an area integral via Stokes’ theorem: f1 dt xU(t)At,U = 
YA A = Js(Y) dA, as in the abelian case. Turning to the second term, we arrange 
the product of matrices as At,uAu,v = 1 [At,u,Au,v] + 1 [At,^,Au,v]+, thus into 
a symmetric and an anti-symmetric contribution. A straightforward rearrange­
ment of terms (never changing the order of matrices) shows that the symmetric 
fprm ppm !">p w r 11 I p 11 sq C <7/ /i*U /i*v f ? / 1 , — 1 ( A UUXU /! \ 1 ipterm can ue written as, j q tt jq uu x (t)x (u)[^t.t u, u v]-+ — 1 (jq txtx aa.u) , i.e.,
a product of two line integrals. Since each of these scales as O(e 1), this is a sub­
leading term, which we can neglect. Turning to the antisymmetric term, we as­
sume that the dependence of Ax(t) over the extension of the curve is weak, and so 
pull these factors out of the integral, to obtain 1 [AU,Av] JQ1 dt ft duXU(t)xv(u) — 
1 [AU,Av] J0 dtxU(t)xv(t) — 11 [AU,Av] </>A dxUxv, where in the second step we per­
formed the full-derivative integral over u (consider why the term coming from the 
lower integration boundary, u — 0, does not contribute), and in the third step turned 
to a parameter-invariant formulation of the integral. Rearranging indices, and once 
more applying Stokes’ theorem, we obtain 1 [AU, Av] YA dxUxv — 1 AUAv fA(dxUxv — 
dx1'xU) — — 1 AUAv fs(A)(dxU A dxv — dxv A dxU) — — AUAv fs(A) dxU A dxv — 
— fs(A) A A A, where in the third equality we used the anti-symmetry of the A- 
product, and in the final step pulled the matrices Au back under the integral. Com­
bining terms, we have identified the second-order contribution to the expansion of 
the parallel transporter as — fs (A)(dA+A A A). The integrand, F = dA+A A A defines 
the field strength tensor of the general theory. For Au — (Au)ab, its index represen­
tation reads F — F^dxU Adxv, with (F^) ab — (d^Av) ab — (dvA^) ab — (A^) ac (Av) cb.

10.7.2 Bianchi identity

In this problem, we explore how the eld strength tensor of a gauge theory behaves under 

parallel transport. This is an interesting problem both mathematically and physically. Mathe­

matically, we consider an object that transforms under gauge transformations dierently from 

the ber elements discussed so far. This requires an extension of the concept of parallel 

transportation. Physically, the behavior of the eld strength tensor of electromagnetism under 

parallel transport is described by the homogeneous Maxwell equations. We thus realize that 

these, as well as their non-abelian generalizations, are of purely geometric origin.

In section 10.1.2, we studied the parallel transport of sections/fields, which un­
der gauge transformations change as sx ^ gxsx. If gx acts as the matrix repre­
senting a group operation, this is called transformation under the fundamental 
representation of the group. Not all elements of gauge theory transform under 
the fundamental representation. An important example is the field strength tensor, 
which changes as Fx ^ gxFxgX1 (see Eq. (10.17)). This action is called the adjoint 
representation of the group. All that has been said above about the differentiation 
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of non-scalar objects generalizes to those transforming under the adjoint. Specifi­
cally, a slightly modified variant of parallel transport defines a covariant derivative 
tailored to objects in the adjoint representation.
(a) Apply reasoning similar to that in section 10.1.3 to show that the covariant 
differentiation of the components of the field strength tensor in the direction of a 
tangent vector v, takes the form

iFDpFpa = v^ (diF'p~ + ApFpa - FpaA,) •

Verify that the differential form representation of this identity reads as

DF = dF + A A F - F A A

(b) Now use the definition of the field strength tensor to demonstrate that it is 
covariantly constant: DpFpa + DfFdp + DaFpp, which in differential form notation 
assumes the compact form

\DF = 0| (10.52)

Bianchi 
identity

This is the famous (second) Bianchi identity. In the abelian case, where A = 
A, dx, with scalar coefficients, DF = dF reduces to the ordinary derivative (re­
flecting the gauge invariance of the field strength in the abelian case). The Bianchi 
identity dF = 0 is then equivalent to the homogeneous Maxwell equations (if you 
are not familiar with this statement, verify it by application of the derivative to the 
tensor F = {Fpv} with components defined by Eq. (10.24)). The Bianchi identity 
plays a similarly important role in general relativity and Yang-Mills theory, where 
it geometrically constrains (and algebraically reduces the number of free compo­
nents) of the Riemann curvature tensor and of the field strengths tensors describing 
the strong and weak interactions, respectively. For further discussion of this point 
we refer to the literature.

Answer:

(a) Applied to objects transforming under the adjoint, the covariant rule of dif­
ferentiation is obtained from the difference Fx+ev — (1 — eAv)Fx(1 + eAv). Here, 
the first term is the object at a displaced point x + ev, and the second term is the 
object adjointly transformed under the action of a group element infinitesimally 
close to unity, with Av = Apv^. First-order expansion in e immediately leads to 
the first displayed equation stated in the problem. With F = 2Fpvdx^ A dxv and 
A = Apdxv, this is seen to be equivalent to the invariant representation.
(b) With F = dA+AAA, we have dF = dAAA—AAdA, where the rules of exterior 
multiplication (appendix section A.1.2) have been used. Further, A A F — F A A = 
AAdA—dAAA. Adding the two contributions, we obtain zero and in this way prove 
the covariant constancy of the field strength tensor, DF = dF + AA F — F A A = 0. 
The computation in coordinates F ^ (Fpv) ij is likewise straightforward but more 
cumbersome.
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10.7.3 Two-dimensional Z2 gauge theory

In this problem we address the physics of the two-dimensional Z2 gauge theory. We demon­

strate its equivalence to a conventional one-dimensional Ising chain, and in this way show that 

it is in a strongly uctuating phase at all temperatures.

Consider a two-dimensional variant of the Z2 lattice gauge theory of section 10.3. 
There, we argued that, at low temperatures, the reversal of an individual spin comes 
at an action cost of 4P(d — 1). Show that the argument fails in the special case d = 2, 
where one may reverse arbitrarily large numbers of neighboring spins at the action 
cost of just 4P (hint: think of line defects). Why does this construction fail in d > 2?

Energetically cheap line defects of reversed spins must be quite effective in dis­
ordering the system: their finite energy cost competes with the large amount of 
entropy created by the integration over their geometric orientation. To find out 
which wins, energy or entropy, we may use the gauge freedom to map the system 
onto a simpler one. First convince yourself that there exists a gauge in which all 
links pointing in one of the directions of the lattice, the v-direction, say, are equal: 
a3(n, v) = 1. Do so by counting the number of gauge-equivalent configurations 
in each state with definite plaquette values. Show that this number exceeds the 
number of links pointing in a given direction.

Finally, show that the system with uniform link variables in one direction decom­
poses into a stack of independent one-dimensional Ising models. This establishes the 
equivalence (two-dimensional Z2 gauge theory) o (one-dimensional Ising model). 
From our discussion of section 6.1.1, we know that the 1d Ising model is in a 
disordered phase at any non-zero temperature. The same is therefore true for its 
two-dimensional gauge partner system.

Answer:

Rather than graphically sketching the structure of the low-energy line defects (which 
would give the solution away too easily), we describe them in words: pick a link 
(n, ^) on the lattice and reverse it along with a stack of parallel links at positions 
(n + kv,^), where v and ^ are perpendicular unit vectors, and k is an integer. 
This flips the plaquette products at the terminal points of the stack, but nowhere 
else. The action cost of the configuration with k + 1 reversed spins thus equals 
2 x 2P = 4P. In dimensions three and above, the stack would be surrounded by a 
chain of plaquettes sharing just one reversed spin. Each of these would cost action, 
so the total action of the configuration would be extensive in its length.

On a lattice with L, and Lv rows and columns, respectively, we have NP = 
(L, — 1)(Lv — 1) plaquettes and NB = Lv(L, — 1) + L,(Lv — 1) bond degrees of 
freedom. Fixing the plaquette values, thus leaves NB — NP = L^LV — 1 (gauge) 
degrees of freedom. This is more freedom than is required to set all bonds in a given 
direction (^ or v) to a specified value.

If the v -link variables are set to +1, the plaquette terms in Eq. (10.38) simplify 
to
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S [ o 3] = - J o 3( n,p.) o 3( n + p, + v, - p,).

This equals the action of a stack of independent one-dimensional Ising models in 
the v -direction.

10.7.4 Geometric curvature from gauge theory

In this problem, we investigate how the Levi-Civita connection describes the geometric curva­

ture of a simple manifold.

In the example on page 593, we have computed Christoffel symbols of the Levi- 
Civita connection on the two-sphere. We found that r"'ek! = r'''fkj = cot 0, rZ$ = 
— sin 0 cos 0, and all other symbols are zero. Show that the corresponding connection 
is given by the one-forms

rAA = cot 0 d0, r^g = cot 0 <ty, reA = — sin 0 cos 0 <ty.

Next consider the Riemann curvature tensor Rj = 2Rljkldxk A dxl and verify that 
it is defined by the matrix of two-forms

R=
( 0 sin2 0\ IZ1 , ,, 

]d0 A d$.
-1 0

Proceed to obtain the coefficients of the Ricci tensor as RAA = sin2 0, with all other 
matrix elements non-vanishing,

Z R = 1 sin2 0

Show that this result implies a constant scalar curvature R = 2 of the sphere. (The 
scalar curvature of a two-dimensional surface equals twice its Gaussian curvature, 
which for a sphere equals unity.)

Answer:

The first part of the solution follows from reading the Christoffel symbols as rikl = 
(rik)l, where the inner indices represent the matrix structure of the connection 
form and the outer index defines a form as (rik) l dxl = rik. The curvature tensor 
is obtained as R = dr + r A r, or Rj = drij + rik A rkj, and the building blocks 
entering this construction are obtained from the connection forms as

d r ee = 0, r ek A r ke = 0,

dreA = (sin2 0 — cos2 0) d0 A d^, rek A rkA = cos2 0 d0 A d^,

dr = =-------d— d0 A dd, rA A rZ = cot2 0 d0 A d6,
e sin2 0 k k A ,^

drAa = 0, rAk A r\ = 0.
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Adding these terms, we obtain the curvature tensor as a matrix of two-forms, as 
given above. From this result, we can read off the non-vanishing elements of the 
curvature tensor, Rij?.. = —Rij^e• Specfically, the elements of the Ricci tensor are 
obtained as R = R?^ = sin2 0, Re. = Reee^ = 0, R ■? = '' ■? = 0, and
Ree = R’ew = 1. The Ricci tensor R = diag(1, sin2 0) = g thus equals the metric 
tensor of the sphere. This means that contraction with the inverse metric tensor, 
R = gij Rij = gij gij = 2, as stated.

10.7.5 Scalar field coupled to gravity

In this problem we consider a scalar eld as a simple example of matter{gravity coupling. Its 

energy{momentum tensor is derived by variation of the corresponding action in the metric.

Consider a scalar field, ^, defined on a four-dimensional space-time manifold with 
metric, gliv. Assuming, for simplicity, that there are no potentials acting on the field, 
the minimal two-derivative action form-invariant under coordinate transformations 
reads (think why?)

Sm[^, g] = -|y d4x\ g d^d^, (10.53)

where the notation emphasizes that SM is considered as a functional of the field, ^, 
and the metric, g . Vary this action in the metric to obtain the energy-momentum 
tensor as

T' = ~^= S = d^^dv— - 1 g»vdpddp$. (10.54)
V—g dg 2

Answer:

The metric couples to the action through the determinant, V—g, and the con­
tracted derivatives, d^od1'= = d^g^dv^. The differentiation of the derivative 
term yields dgv (d^ gpvdv)) = B^dv^. Turning to the determinant, we can write 
V—g = exp( 1 ln(—g)) = exp( 1 (—trln g-1 + in), where we have used the iden­
tity ln g = - ln det(g-1) = tr ln(g-1) and, in the last term, ln(g-1) is the loga­
rithm of the matrix g-1 = {gpv}. The partial derivative then yields dg»„ -g —g = 
dg^v exp(2(—trln g 1+ in)) = V—gdg^v 2(—trln g) = -—-g2tr(gE^v) = — gV^ V—g, 
where dg»„ g = E^v is the matrix containing zeros everywhere except for a unity at 
position (g,v). Combining the two terms, we obtain the stated result.

10.7.6 Chern-Weil theorem

Here, we prove the Chern{Weil theorem discussed in section 10.5.3. The problem is a technical, 

yet instructive, application of dierential form calculus.

We aim to investigate properties of the monomials In(F ) = tr(Fn). Our main allies 
in this problem will be the cyclic invariance of the trace (which extends to forms 
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as tr(X A Y) = tr(Y A X)(—)r' s, where r and s are the form degrees of X and Y - 
think why?), and the Bianchi identity (10.52), DF = dF + A A F — F A A = 0.
(a) Apply the two relations just mentioned to prove that the invariant monomials 
are closed, dIn(F) = 0.
(b) Now let F and F' be two connections, and Ft a one-parameter curve contin­
uously connecting them with F0 = F and F1 = F'. Use the definition of the field 
strength (10.13) and the relations above to identify a form k such that dtFt = dKt. 
Why is this sufficient to demonstrate that In (F) — In(F') is exact? As an example, 
consider the case F' = 0 and choose Ft = dAt + At A At, with linear interpolation 
At = tA. Considering the case n = 1, 2, show that this leads to Eq. (10.49).

Answer:

(a) Using the cyclic properties of the sphere, we have dIn(F) = ntr(dF A F (n-1) ). 
Since A and F commute as forms (but not in general as matrices), we have

0 =tr(AA Fn — Fn AA) = ntr(AAF— F A A)Fn-1). (10.55)

We can add the two relations to obtain dIn(F) = ntr((dF+AA F— FAA)Fn-1) = 
n tr(DF F n-1) = 0.
(b) We can then compute the time derivative as dtIn(Ft) = nI(FFn-1) = n tr((dA+ 
A A A + A A A) A Fn-1) = n tr(dA A Fn-1 + A A (A A Fn-1 — Fn-1 A A)). We 
now use the fact that commutators obey “chain rules,” much as derivatives do: 
n n 77n-1 77n — 1 a A _  X^ n -2 77l a I A a 77 77a 4^ a 77n—2 — l _ X^ n— 2 77l a I Ai 77> aA A F — F A A = l=0 F A (A A F — F A A) A F = — l=0 F A (dF) A
F n—2—l = —dF n—1, where the Bianchi identity is used again. Combining these for­
mulas, dtIn (Ft) = n tr(dA A Fn—1 — A A dFn— 1) = nd tr(A A Fn— 1) = dKt, with 

n1kt = n tr(At A Ftn—1) demonstrates the exactness on the infinitesimal level. Inte­
gration then yields I(F) — I(F') = d f0 dt Kt, i.e., the difference equals the exterior 
derivative of another form, and therefore is exact. Under the stated conditions, we 
have kt = n tr(A A (tdA + t2A A A)n—1) and integration over t immediately leads 
to the stated result.

10.7.7 Gauge invariance of Chern-Simons action

This is another technical, yet instructive, problem. We demonstrate that the second Chern 

class of a bundle with structure group SU(2) is determined by the winding number of large 

SU(2) gauge transformations (\instantons") in three-dimensional space. As a by-product, 

we learn that the Chern{Simons action (10.27) is not gauge invariant under large gauge 

transformations. The problem nicely illustrates how various algebraic expressions routinely 

encountered in topological eld theory are related to each other.

Consider the second Chern number, Eq. (10.50), of a bundle with four-dimensional 
base space, T, and with SU(2)-gauge connection and Chern character (10.48). We 
assume that the bundle is twisted and that T = X U X1 is the union of two domains 
separated by a three-dimensional boundary, B . On the sub-domains, the connec­
tions generating the field strength are given by A and A1, respectively, and on B the 
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two are related by an SU(2) gauge transformation, Eq. (10.3), A1 = gAg 1 + gdg 1 

We may now apply Stokes’ theorem to compute the Chern number as

Ch2[F = i T F = -2; (X dL°S(A) + X dLCS(A') 

= - 1- [ (Lcs(A) -Lcs (A')), 
2 n J B

where LCS(A) = 4n tr (A A dA + 2A A A A A is the Chern-Simons topological den­
sity (see Eq. (10.27)).
(a) Defining the matrix valued one-form g-1 dg = $, verify that tr(A' A A' A A' — 
A A A A A) = tr(3A A $ A $ + 3A A A A $ + $ A $ A $).
(b) In a similar manner verify that tr(A’ A dA’ — A A dA) = tr(—2A A A A $ — 3A A 
$ A $ + $ A dA - $ A $ A $) and explain why the third term may be replaced by 
tr(A A $ A $) in the action. Combine the results of (a) and (b) to demonstrate that 
LCS(A) — LCS(A') = — ilntr($ A $ A $) and Ch2[F] = W, where W is the winding 
number defined by the integral (8.14) at 9 =1.

It is instructive to look at the result above from a slightly different perspec­
tive. Focusing on the three-dimensional boundary-less manifold B , we have found 
that the non-abelian Chern-Simons action SCS[A] = B LCS(A) defined on it is 
not gauge invariant. Under an SU(2) gauge transformation A ^ A', it changes as 
SCS [A] — SCS [A'] = 2nW, where W is the winding number characterizing the trans­
formation. The gauge invariance of the exponentiated action exp(ikSCS) requires 
integer quantization of the level index k .

Answer:

(a) This follows straightforwardly from A1 = g(A + $)g-1 and the cyclic invariance 
of the trace.
(b) The first result is obtained as in part (a). The third term in the trace appears 
under an integral over the three-dimensional boundary-less manifold B. (B is the 
boundary of X and X', and hence does not have a boundary itself.) Application 
of Stokes’ theorem thus yields 0 = B d tr($ A A) = B tr(d$ A A — $ A dA). Now, 
d$ = dg-1 A dg = —g-1dgA g-1dg = —$ A $. Combination of these formulae shows 
that the substitution stated in the problem is valid.
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SYNOPSIS This chapter provides an introduction to nonequilibrium statistical field 
theory. We start by reviewing various concepts describing many-particle systems out of 
statistical equilibrium (with no previous knowledge required). We will then discuss how 
cornerstones of this theory - notably the Langevin, master, and Fokker-Planck equation - 
are derived through variational principles from field integrals. Within this framework, 
we will discuss various signatures of non-equilibrium physics, such as metastability, the 
interplay between dissipation and noise, out-of-equilibrium universality classes, phase tran­
sitions, and more. Throughout the chapter, we will highlight remarkable parallels between 
the theory of classical nonequilibrium processes and (imaginary-time) quantum mechan­
ics. The full scope of this parallelism will become evident in the next chapter, when we 
discuss quantum non-equilibrium systems.

In this chapter, we need some elements of probability theory that may be unfamiliar. 
The required material is reviewed in appendix section A.2.

The world around us is full of nonequilibrium phenomena: jams forming out of seem­
ingly light traffic, charge carrier dynamics in a strongly voltage-biased electronic 
device, the dynamics of social or economic networks, and chemical reactions are all 
examples where large numbers of interacting “particles” are out of equilibrium. The 
ubiquity of nonequilibrium phenomena makes the understanding of physics beyond 
that of thermal states an important part of statistical physics. However, this state­
ment by itself does not explain the dramatic growth of the field in the last two to 
three decades.

The primary driving force behind recent developments has been the progress in 
experimentation and device technology. While bulk solid state phases are hard to 
perturb out of equilibrium, the situation with cold atomic and optical systems, 
or miniaturized condensed matter device structures, is different. These systems are 
easily pushed out of equilibrium, and the ensuing phenomenology can be monitored, 
e.g., via imaging techniques available to atomic physics, or quantum transport in 
condensed matter physics.

Nonequilibrium physics is a discipline much more multi-faceted than equilib­
rium statistical mechanics. The multitude of phenomena addressed by this field 
in fact bears the risk of “over-diversification”: facing a confusingly rich spectrum 
of physical regimes and phenomena, it is easy to get bogged down with details 
and over-specialized theory. The unifying field-theoretical approach introduced be­
low counteracts this tendency. From it, the majority of theoretical tools applied in 
nonequilibrium physics follow by reduction. This defines a versatile and transparent 
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thermal 
equilibrium

top-down structure. Specifically, it reveals connections between different approaches 
that are not easy to see otherwise.

We begin this chapter by introducing a number of traditional approaches to 
nonequilibrium physics, involving the Langevin, Fokker-Planck, Boltzmann, and 
master equations, and their application in the physics of stochastic processes. We 
will then derive a unifying variational principle for these equations. This “stochastic 
path integral” will be the basis for the extension of the theory to higher-dimensional 
stochastic processes in the second half of the chapter.

INFO How does one define a state of nonequilibrium? “Nonequilbrium” is the opposite 
of thermal equilibrium, the latter being defined by the following two conditions:1

> An equilibrium system is characterized by a unique set of extensive and intensive 
variables, which do not change over time.

> After isolation of the system from its environment, all the variables remain unchanged.

The second condition is necessary to distinguish an equilibrium from a stationary nonequi­
librium. For example, the particle distribution function of a conductor subject to a voltage 
bias is time-independent (the first condition is fulfilled), yet different from the equilibrium 
Gibbs distribution. Upon removal of the “environment,” defined by the attached leads, it 
will change and relax to the Gibbs distribution (the second condition is violated).

Note that the two conditions are quite restrictive, indicating that pristine realizations 
of thermal equilibrium are rare in nature.

11.1 Fundamental Concepts of Nonequilibrium Statistical 
Mechanics

Above, we pointed out that thermodynamic equilibrium is an exception, rather than 
the rule. What makes that limit so much easier to describe than the nonequilibrium 
limit is that its many-body distribution is known: states in thermal equilibrium 
are distributed according to the grand canonical ensemble Z-1exp[—ft(H — /N)]. 
Our task is reduced to computing observables from this distribution (which can 
be complicated enough, as we saw in the early chapters of the text). However, in 
thermal nonequilibrium, the distribution of the system is a priori unknown, a lack 
of information that bears important consequences:

> Identifying the many-particle distribution function becomes part of the challenge 
(and usually the first to be addressed).

> Concepts that we often take for granted - the existence of a uniquely defined 
temperature, homogeneity of thermodynamic variables, etc. - need to be re­
examined.

1 W. Ebeling and I. M. Sokolov, Statistical Thermodynamics and Stochastic Theory of Nonequi­
librium Systems (World Scientific, 2005).
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> There exists an unfathomable multitude of different universality classes in 
nonequilibrium physics. Identifying the scope of any of these can also be a diffi­
cult task.

Ludwig Boltzmann 1844­
1906 
was an Austrian physicist 
famous for his pioneering 
contributions to statistical 
mechanics. Concepts such as 
Maxwell-Boltzmann statistics, 
the Boltzmann distribution,

How does one determine the statistical distribution of a system if the only known 
data are a Hamiltonian, the number of particles, and boundary conditions? Fun­
damentally, the state of a classical d-dimensional N -particle system defines a point 
X e R2 Nd in 2 Nd -dimensional phase space. The full information about its dy­
namics, and all derived physical properties, are contained in a high-dimensional 
Hamiltonian equation of motion.

The view ab ove is rigorous, but 
largely useless in practice. However, 
in the late nineteenth century, Boltz­
mann introduced a much more practi­
cal approach. He suggested describing 
the system as a “swarm” of N points 
in 2d-dimensional phase space, rather 
than as a single point in a high­
dimensional space. This idea paved the 
way to a statistical formulation of the 
problem and may be considered as 
the starting point of statistical mechanics. Indeed, we may now trade the exces­
sive fine structure contained in the full coordinate dependence of the swarm for 
a statistical formulation. This is achieved by introducing a probability measure 
f(x, t) ddx, where x = (q, p) is a point in phase space and the dimensionless func­
tion f (x, t) is the distribution of the number of particles found at time t in the 
volume element ddx = Hd=1 dqidpi (see figure). The function f is normalized as

and the logarithmic connection between entropy 
and probability remain foundations of this field. 
Boltzmann was one of the most important sup­
porters of early atomic theory, at a time when 
the reality of atoms was still controversial.

ddx f(x) = N,

where L is an integral over classical phase space. Apart from this normalization to

Boltzmann 
distri­
bution

N (rather than unity), it is a probability 
is statistical by design.

The Boltzmann distribution f is 
the most important object of the theory. 
From it, average values of physical ob­
servables X can be calculated as

(X) y ddxf (x,t)X(x),

where X(x) is the phase space function 
representing the observable. For exam­
ple, the energy of the system is obtained 
H(x) is the Hamiltonian.

distribution, i.e., Boltzmann’s approach

as E = (H) = J ddxf (x, t) H (x), where
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Understanding the state of a system is now equivalent to the identification of 
its Boltzmann distribution for a given Hamiltonian and initial state f ( . , t = 0). 
As a warm-up to this general problem, we first ask how thermal equilibrium is 
described via the function f , and by which mechanisms is the equilibrium state 
approached if the system is allowed to relax under the influence of its own many­
body dynamics. For concreteness, consider a system that is weakly interacting, or 
gaseous, in the sense that the dynamics is essentially of single-particle type. Particle 
collisions, (x1, x2) ^ (x'1, x'2), define a channel of relaxation by exchange of energy 
and momentum. Under these conditions, it is safe to assume that the distribution 
of particles will be independent in the sense that the joint probability of observing 
particles at x1 and x2, respectively, p(x1, x2), factorizes into independent particle 
distributions, p(x1, x2) = p(x1)p(x2). Under this assumption, the system can be 
described via a distribution f (x) = N p(x).

EXERCISE Think why this condition is crucially required for the definition of the Boltz­
mann statistical approach, and how it might be compromised in the presence of strong 
correlations.

The fact that coordinate configurations (x1, x2) o (x'1, x'2) are coupled by an 
elementary scattering event implies the conservation of probability, f(x1, x2) = 
f (xi)f (x2) = f (x1) f (x2) = f (x1, x2). Assuming that f (x) = f (H(x)) = f (e) is a 
function of energy, we conclude that probability conservation is compatible with en­
ergy conservation, e 1 + e2 = e 1 + e2, if ln f (e) = «e + b is linear in energy. In this case, 
f (x1) f (x2) = exp(a(e 1 + e2)+2b) = exp(a(e 1 + e'2)+2b) = f (xi) f (x2) is indeed satis­
fied. To fix the constants a and b, we require normalization of the partition function 
and employ the equipartition theorem, i.e., we use the fact that, in thermodynamic 
equilibrium, the expectation value of the energy of each of the 2N d degrees of free­
dom must equal T/2.2 Normalization requires (Exercise) b = ln N — ln J ddx exp(ae) 
and from the equipartition theorem we obtain

NdT =! dN fr ddxeaH(x) H(x) 
fr ddx eaH(x)

Nd 1
—P,

where, again, a quadratic Hamiltonian is assumed. We thus arrive at the conclusion 
that

e - PH (x)

f (x) = N fr dxe-PH(x) (11.1)

Maxwell—
Boltzmann 

distri­
bution

which is the famous Maxwell-Boltzmann distribution. Exercise: In what sense 
is Eq. (11.1) a descendant of the many-particle Gibbs distribution?

While the construction above fixes the form of the equilibrium distribution, it 
does not describe the relaxational dynamics whereby equilibrium is approached. 
The modeling of these processes will be discussed in the next two sections.

2 Here we assume that, close to thermal equilibrium, the energy of the particles will be approxi­
mately quadratic in their d coordinate and momentum degrees of freedom.
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11.2 Langevin Theory

REMARK Readers familiar with the Langevin and Boltzmann equation, or those on a 
fast track towards field theory, may skip this and the following section and directly proceed 
to section 11.4.

How can we describe the dynamics of a distribution initially described by a given 
f (x,t = 0)? Specifically, we wish to understand how the Maxwell-Boltzmann dis­
tribution is approached if the system is kept in isolation, and how departures from 
equilibrium may be caused by external forcing.

Naively, one might argue that phase space points x A x(t) = exp(-1{H, . })x 
propagate according to Hamiltonian dynamics. This phase space flow implies the 
following time-dependence of phase space distributions (Exercise: See footnote3 )

3 Noting that , the partial derivative of the distribution with respect to time
is computed as .

4 P. Langevin, Sur la theorie du mouvement Brownien, CR Hebd. Acad. Sci. 146, 530 (1908).

(dt -{H, . }) f (x,t) = 0. (11.2)

dissipation

fluctuations

However, this equation does not capture the irreversible approach to equilibrium. 
Neglecting the interaction processes with other particles, it misses two key aspects 
of the dynamics.
First, interaction processes hinder the 
ballistic motion of individual particles. 
In a coarse-grained description, they 
generate dissipation of energy and 
friction. Second, repeated collisions 
with other particles generate fluctu­
ations in the particle trajectories. As 
we will see, the two mechanisms, dissi­
pative friction and fluctuations, are not 
independent. Indeed, in thermal equi­
librium, they completely determine each other. This mutual dependence is encap­
sulated by the fluctuation-dissipation theorem and we will discuss it extensively 
throughout.

In a seminal work,4 the French physicist Paul Langevin described the joint influ­
ence of dissipation and fluctuation on a single test particle of mass m by a stochastic 
generalization of Newton’s equation, the Langevin equation,

anti-fascist and lost his academic position under 
the Vichy regime. (Shortly before his death he 
was rehabilitated.)

Paul Langevin 1872-1946 
was a French physicist who 
developed the concept of 
Langevin dynamics. He is also 
known for his modern inter­
pretation of para- and diamag­
netism in terms of the electron 
spin. Langevin was a devoted

Langevin 
equation

mdt v + my v — F = C (t) (11.3)

where v is the particle velocity, F = — dqH a macroscopic force acting the particle, 
Y a phenomenological friction coefficient, and C is a randomly fluctuating force 
describing the effect of particle collisions. Langevin modeled the components of 
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the stochastic force as short-range correlated Gaussian random variables with zero 
mean, (£i (t)) = 0, and variance

(£i(t)&' (t')) = ASii,3(t - t'), (11.4)

where A > 0 is a constant.

y

Brownian 
motion

x

INFO The development of Langevin’s the­
ory was motivated by the phenomenon of 
Brownian motion. In 1827, the Scottish 
botanist, Robert Brown, observed* 5 erratic 
motion of pollen particles in aqueous immer­
sion. The first qualitative explanations of the 
phenomenon in terms of random particle col­
lisions appeared in the late nineteenth cen­
tury. Langevin suggested Eq. (11.3) as an 
effective equation of motion governing the 
dynamics of “mesoscopic” particles, subject to collisions with microscopically small con­
stituents of the system. The erratic nature of solutions of the Langevin equation - qual­

To understand the connection between dissipation and fluctuation, we consider the 
Langevin equation in the absence of driving forces, F = 0. The equation then 
assumes the form of a linear differential equation for v with inhomogeneity £. 
A temporal Fourier transformation, v(w) f dt exp(iwt) v(t), yields the solution 
v(w) = m(-1,+Y)£(w). Thinking of £ as a random variable, this gives v = v[£] the

5 The phenomenon had, in fact, been observed earlier by the Dutch physician Jan Ingenhousz in 
1785.

itatively consistent with Brownian motion - is illustrated in the figure, which shows the 
numerical solutions of two-dimensional Langevin trajectories for given realizations of the 
fluctuation force.

Before turning to a more detailed analysis of Eq. (11.3), let us make two general 
remarks in order to provide orientation for our subsequent discussion.

> One may ask whether the friction coefficient, y, and the fluctuation strength, 
A, are independent parameters of the theory. We will show below that they are 
not: in thermal equilibrium, the strength of the fluctuations is related to that 
of the friction by temperature. This is the manifestation of the aforementioned 
fluctuation-dissipation theorem in Langevin theory, and we will discuss it 
in the next section.

> One may expect that fluctuations render the dynamics of particles partially or 
fully diffusive. Indeed, it turns out that A-1 is a measure of the diffusivity of 
a medium. The connection between Langevin theory and diffusion is addressed 
in full in section 11.2.3, and phenomenologically in the following section.

11.2.1 Dissipation versus fluctuations 
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status of a dependent random variable. The latter has zero mean, (vi(t)) = 0, and 
second moment (exercise)

(vi2 (t)) =
A f TO du 1
m2 J-TO 2n u2 + y2

A 
2 m 2 y

However, in thermal equilibrium, the equipartition theorem relates the average 
kinetic energy per degree of freedom to temperature, m(v2)/2 = T/2. Comparison 
with the result above then leads to the equation

A = 2myT, (11.5)

stating that, in thermal equilibrium, the variance of the fluctuation is proportional 
to the strength of the dissipative friction forces, and to temperature. This relation 
is the first of several formulations of the fluctuation-dissipation theorem.

INFO Let us briefly review Einstein’s phenomenological derivation of Eq. (11.5). 
It starts by observing that, in a medium governed by frequent inter-particle collisions, 
the dynamics of individual particles will be diffusive. By the same principle, exter­
nally applied forces will cause drift motion, rather than free ballistic acceleration. The 
first postulate implies that a density gradient, df, in the medium generates a diffusion 
current,

jd = - D V f

Fick’s law

(11.6)

i.e., a current acting to restore a uniform density profile. Equation (11.6) is Fick’s (first) 
law. Application of the continuity equation dtf = —V • jd shows that dtf = DA f (Fick’s 
second law), implying that the dynamics is indeed diffusive.

The second postulate states that jext = ^^Fext, i.e., an external force generates a drift 
current proportional to the force, the density, and the inverse of the friction coefficient. 
(This formula may be obtained by dimensional analysis, or by consideration of the sta­
tionary configuration, dt{v} = 0, obtained by averaging the Langevin equation (11.3).) 
In thermal equilibrium, the diffusion current and external current must compensate each 
other, jd = —jext, or DVf = — f VV/my, where we assumed that the force is generated by 
some potential, V. This equation for the density profile is solved by f ~ exp(—V/Dmy). 
However, compatibility with the Maxwell-Boltzmann distribution (11.1) requires that 
f ~ exp(—V/T), or

D = — 
mY

(11.7)

Einstein 
relation

Equation (11.7) is the Einstein relation. Comparison with Eq. (11.5) finally leads to the 
identification,

2T2
A = -D-, (11.8)

i.e., the variance of the (microscopic) fluctuation forces in the medium is inversely pro­
portional to its (macroscopic) diffusion constant.
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11.2.2 Noise

REMARK This section reviews different types of noise appearing in the physics of many­
body systems in and out of equilibrium. It can be skipped at first reading, and consulted 
later as a reference.

Our discussion above conveys the important message that dissipa­
tion and friction are linked to the presence of fluctuating forces. 
However, unlike the everyday phenomenon of friction, the presence 
of fluctuation forces is often not felt. The reason is that friction 
acts in a directed way (cf. the action of a brake), while the response 
caused by fluctuations tends to average out. Yet, there are excep­
tions to this rule. For example, high amplification levels render the 
fluctuations, or noise caused by resistive elements in electronic cir­
cuits, a noticeable (and generally unwelcome) side effect.

The figure shows three set-ups where the interplay of fluctuations 
and dissipation is essential: an electronic RLC-circuit, an electro­
magnetic cavity mode experiencing radiative losses, and a damped 
oscillator. In the non-dissipative limit, the dynamics of all these are 
harmonic. The presence of dissipation (resistor/radiative losses/mechanical damp­
ing) generates fluctuations. While these fluctuations do not affect the motion of the 
macroscopic mechanical oscillator, they can be noticeable in the other two systems.

Johnson-Nyquist noise

Let us take a closer look at the example of the RLC-circuit. Here, the observable 
of interest is the charge Q transmitted through the circuit (from which current 
and voltage drop across the resistive element are obtained as I = Q and U = 
RQ, respectively). In elementary courses, we learn that the dynamics of charge is 
governed by the equation,

Ldt Q + RdtQ + Q = Uext, (11.9)
C

where Uext is the externally applied voltage. This is the equation of motion of a 
dissipatively damped oscillator. However, we now know that Eq. (11.9) neglects the 
effect of the fluctuations accompanying dissipation. A correct way to think about 
Eq. (11.9) is as an equation for (Q), the coordinate Q averaged over realizations 
of these fluctuations. A realization-specific generalization of Eq. (11.9) compatible 
with the fluctuation-dissipation theorem is given by

Ld2 Q + RdtQ + ?! = Uext + Ujn(t), (11.10)
C

where the statistics of the noise is described by

(Ujn(t)) = 0, (Ujn(t)Ujn(t')) = 2TR3(t - t') . (11.11) 
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thermal 
noise

The noise term in Eq. (11.10) can be interpreted as a time-dependent fluctuating 
voltage, additional to the external voltage. It is important to realize that this type of 
noise is an inevitable consequence of the presence of resistive elements in electronic 
circuits; it cannot be removed by “improving the quality” of the device.

The presence of a fluctuating voltage of strength (|Ujn(w) |2) = 2TR was experi­
mentally discovered by Johnson6 . Nyquist7 explained the phenomenon in terms of 
the thermal equipartition of energy of electromagnetic oscillator modes. Reflecting 
this background, Ujn is alternatively denoted as Johnson noise, Nyquist noise, 
Johnson—Nyquist noise, or just thermal noise.

6 J. B. Johnson, Thermal agitation of electricity in conductors, Phys. Rev. 32, 97 (1928).
7 H. Nyquist, Thermal agitation of electric charge in conductors, Phys. Rev. 32, 110 (1928).

INFO The strength of the noise correlator is fixed by slight modification of the 
arguments used in section 11.2.1: Think of a non-resistive LC -circuit as an electronic 
realization of the harmonic oscillator. The R = 0, U = 0 variant of Eq. (11.10) is obtained 
by variation of the Lagrangian action

S=i I dt (L Q 2 - 2cQ ’).

where LQ2 /2 and Q2 /2C represent the kinetic (inductive) energy and potential (capaci­
tive) energy, respectively. We expect an interplay of fluctuation and dissipation to establish 
an energy balance compatible with the equipartition theorem,

Li(Q 2\ = _L /Q 2\ = — 
2 ' Q 7 2 C ' Q 7 2

i.e., —/2 for both kinetic and potential energy. This energy balance should hold, including 
in the presence of dissipation due to resistance (R). In the absence of external biasing, 
Uext = 0, the temporal Fourier transform is given by

Q ( — ) = Ujn(-)
Q( ) i-R - -2 L + C-1.

Using Eqs. (11.10) and (11.11), it is then straightforward to verify that

L lot t)2\ = 2TRL f —_________-__________  = —
2 7 Q() 7 R 2j2 no2 R2 + (-2 L - C-1 )2 2 .

Similar reasoning shows that 2C {Q2} = TT.

noise
power

Although the voltage correlation (11.11) is consistent with the classical equipar­
tition theorem, this very consistency generates an annoying problem: the second 
moment (Ujn(t)2) k 5(0) diverges, i.e., our analysis makes the unphysical pre­
diction that a voltmeter measuring noise amplitudes will detect voltage spikes of 
unbounded strength. Equivalently, we are making the unphysical prediction that 
the noise fluctuates with constant average intensity at arbitrarily high frequencies. 
(More formally, the noise power

S(Ujn, w) = lim — 
t ^ T

eii^t. (11.12)
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is a measure of the fluctuation intensity at characteristic frequency w, remains 
constant.)

This problem disappears if we replace the classical fluctuation energy of the har­
monic oscillator, 2 x T = T ^ w(e^/T — 1)-1, by the energy of a quantum oscillator. 
(Exercise: Explore this point.) For frequencies much larger than the temperature, 
w T, the mode does not store energy and the problem with the diverging noise 
amplitude disappears.8

Shot noise

In electronic devices, the discreteness of charge quanta generates a noise source 
additional to the thermal noise. The current supported by a train of uncorrelated 
electrons moving down a wire is a random variable with Poisson distributed statis­
tics (see section 11.4.2 for a general discussion of Poissonian stochastic processes). 
The average number of electrons, n, passing through the wire in a time interval At 
(large in comparison to the mean passage time) defines the mean current,

I = .x ' A t

However, it is a characteristic feature of Poisson processes that the variance in the 
number of transmitted electrons var(n) = (n), which means that

var( I)=At < I ■

Although the signal-to-noise ratio (I}2/var(I) = At(I) increases with increasing 
observation times and increasing mean current strength, the discreteness of charge 
remains a source of noise. In a continuum model of charge transport, in addition to 

shot noise the Johnson noise term, this shot noise9 can be modeled by the further addition 
of a suitable noise term to the right-hand side of Eq. (11.9). (In section 0.6 of the 
next chapter, we explore how this addition emerges in a microscopic construction.) 
Unlike Johnson noise, shot noise is independent of the temperature and resistivity 
of the circuit. Both have in common that the noise power is largely independent of 
frequency.

Other sources of noise

A variety of physical processes produce noise. Empirically one finds that these 
sources of noise can add to give a non-universal noise signal with pronounced fre­
quency dependence. It is customary to denote noise signals with a power spectrum

8 Notice that the expression w(e-':'T — 1)-1 excludes the vacuum or zero-point energy, w/2. 
If the vacuum energy is kept in the energy balance, the problem with the divergence in the 
integrated noise power reappears. One may reason that the exclusion of the vacuum energy is 
justified because only physical transitions can participate in dissipative processes. For a more 
satisfactory picture, see below.

9 Shot noise was first observed in vacuum tubes, i.e., devices where electrons are “shot” from 
some cathode through empty space.
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Markovian
process

S (w) - w - a, 0.5 <a< 2,

as 1/f -noise (since “f” is the commonly used variable for frequency in engineer­
ing). For further discussion of 1/f -noise, we refer to the literature.10

Individual solutions q(t) = q[£](t) of the Langevin equation depend on a given noise 
profile. They contain excessive microscopic information (about the details of £), and 
are randomly fluctuating. However, it would be interesting to know the probability 
p(v, t) of observing velocity values at a given time. We expect this distribution to 
be a smooth function describing the interplay between drift, diffusion, dissipation, 
and fluctuation, which we saw is characteristic of Langevin dynamics.

Technically, q[£] is a random variable depending on the random variable £ . The 
distribution p(v, t) is therefore an induced distribution, determined by the known 
(Gaussian) distribution of the noise, and by the dependence q[£] expressed in the 
Langevin equation. More precisely, we wish to derive an evolution equation for the 
conditional probability p(v, t|v0, t0) of observing a particle velocity v at time t given 
that we started with velocity v0 at time t0 < t. The evolution of the variable v 
is controlled by the Langevin equation (11.3), a first-order differential equation in 
time. This means that the evolution v' —t v from some initial configuration v' 
to v depends solely on the initial configuration v' and on the instantaneous value 
of £ . However, it does not depend on the history of the particle prior to reaching 
v'. (Why is it essential here that the evolution equation has a first-order term?) 
This feature is expressed by the recursive relation (again, a statement to reflect 
upon),

p (v ,t |vo ,t o) y ddv' p (v, t |v ,t') p (vz ,t '|vo ,t o), (11.13)

where t' G [t0,t] is an arbitrary intermediate time. Summation over the product 
of probabilities p (v' ,t '|v0 ,t 0) to reach all possible intermediate values v', and over 
p(v, t|v', t') to move on to the final value v, yields the full probability p(v, t|v0, t0). 
This convolution relation is the defining property of a Markovian stochastic 
process. (For a more systematic discussion, see section 11.4.2 below.)

Evaluating Eq. (11.13) for the time arguments t ^ t + St and t' ^ t, and 
suppressing the initial data (vo, to) for notational simplicity, we obtain an equation 
for the incremental evolution of probability,

p(v, t + St) = y dduw (v — u, t; u, St)p(v — u, t), 

where we define

w(v — u, t; u, St) = p(v, t + St|v — u, t)

10 For instance, see P. Dutta and P. M. Horn, Low-frequency fluctuations in solids: 1/f-noise, 
Rev. Mod. Phys. 53, 497 (1981).

11.2.3 Fokker-Planck equation



643 11.2 Langevin Theory

for the probability of short time transitions (v — u, t) ^ (v + u,t + fit). We next 
use that, for diffusive motion, the increment u during a sufficiently small time 
window, fit, is small in comparison to the length scales over which the probability 
distribution p is expected to change. This smallness invites a Taylor expansion in 
the argument v — u around u, i.e., an expansion in the underlined arguments in 
W(v — u, t; u, fit)p(v — u, t).

Kramers—
Moyal 

expansion

INFO It is important to appreciate that the legitimacy of this so called Kramers—Moyal 
expansion hinges on the kinematics of the process. In cases where one-step transitions 
are over large distances (as is the case in, say, ballistic collisions in dilute gases), other 
procedures have to be applied. One of these alternative approaches, Boltzmann kinematic 
theory, is discussed in section (11.3) below.

Performing the expansion up to second order, we obtain the differential equation,

p(v, t + fit) = (a(0)p)(v, t)

- dd (a(1)P)(v,t) + 1P) \ (ai2P)(v,t),
dvi 2 oviOVj J

where

(11.14)

a(0)(v, t) = ddu w(v, t; u, fit),

ai(1)(v, t) = ddu w(v, t; u, fit) ui,

ai(,2j) (v, t) = ddu w(v, t; u, fit) uiuj.

To compute the coefficients, w, we discretize the Langevin evolution for short times 
as

v( t + St) = v — StY v +----- C (t).

This equation defines the random variable v(t + fit) in terms of the random variable
C(t). From this information, the transition probability is obtained as11

w(v, t; u, St) = p(v + u, t + St|v, t) = (fi(v + u — v(t + St)))g

= {fi(u + fityv — StC(t)/m)}^ .

We next note that, in the time-discretized framework, the probability for the in­
stantaneous noise variable is given by

p(C) = Nexp f— a|C|2)^ , 2A

where here, and in the following, N stands for an appropriate normalization factor.

11 Here, the essential third equality uses the fact that the probability of obtaining a specific value 
x = v + u of a random variable X = v(t + St) that depends on another random variable Y = C 
is obtained by averaging the corresponding S-function {S(x — X(Y)))y.
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EXERCISE Write down the Gaussian functional distribution corresponding to the con­
tinuum Langevin noise Eq. (11.4); discretize it in time and verify the relation above.

From this distribution, we obtain

w (v ,t; u, St )= dd£p (C) S (u + Sty v - St^/m ) = Nexp
m2

- Su+YStv|

where the normalization is defined through J ddu w(v, t; u, St) = 1. The a-coefficients 
are now straightforwardly computed as

a(0)(v t) = 1 a(1)(v t) = -Stv- a(2)(v t) = S -2StA
a (v, t) -*-, ai (v, t) jutvi, ai,j (v, t) ijJ m2 ,

Fokker—
Planck 

equation

where terms of O(St2) are neglected. Substitution of these results into Eq. (11.14), 
followed by first-order expansion in St leads to the Fokker-Planck equation,12

(dt — dvi Yvi - dViVi Dv) P(v, t) = 0 (11.15)

where

Dv
A

2 m 2

is the diffusion constant of velocity. In equilibrium, Dv = TY/m, which is related 
to the particle diffusion constant (11.7) through the relation Dv = Y2D.

Equation (11.15) is a second-order partial dif­
ferential equation for the probability distribu­
tion. It has to be solved with initial condition 
p(v, t = t0) = S(v - v0), i.e., Eq. (11.15) de­
fines an initial-value problem (much like the 
time-dependent Schrodinger equation in quan­
tum mechanics).

Derived from the Langevin equation with its
interplay of dissipation and fluctuation, the Fokker-Planck equation describes dif­
fusion and drift as the dominant transport mechanisms at large times. For example, 
the figure shows a number of simulated Langevin trajectories randomly fluctuating 
around a common average. We expect the corresponding distribution to diffusively 
expand around a drifting center, as indicated in the figure. In the following, we 
discuss in more detail how this evolution follows from the Fokker-Planck equation.

> The meaning of the drift term is best discussed in a framework general­
ized for the presence of a constant external driving force F. Retracing the 
derivation of the Fokker-Planck equation, one verifies that13 this generalization

12 Anticipating later generalizations to the case of v-dependent coefficients, v, Dv , we place the 
latter to the right of the differential operators dvi.

13 External forcing may drive the system out of equilibrium. (Switching off the force will change 
the state of the system, a criterion for a nonequilibrium situation.) In this case, the fluctuation­
dissipation relation Dv = TY/m need not hold.
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amounts to a shift 0(1) ^ St(—Yvi + m 1 Fi) of the drift coefficient. The Fokker- 
Planck equation thus generalizes to (dt — dvi (Yvi — m 1F ) — dVivi DY P (v ,t ) = 
0. Multiplying this equation by vi , and integrating over velocity, we obtain 
dt (v) + Y(v) — m-1F = 0, a result otherwise found by averaging the Langevin 
equation over noise. This equation describes the relaxation of the velocity ex­
pectation value to a stationary drift configuration (v) ^ mY F. Identifying that 
expectation value with the force-induced drift current, we obtain jd = F/mY , in 
agreement with the phenomenological reasoning above.

> The third term in Eq. (11.15) describes diffusion. The influence of the diffusion 
term on the dynamics is visualized in the figure ab ove for the case of particles 
in two dimensions subject to a uniform driving force F = const. x (2ex + ey). At 
large times, the distribution of the spread p(v) becomes stationary. It is obtained 
by solution of the stationary long-time limit of the Fokker-Planck equation, 
(dvi (Yvi - m-1 Fi) + Dv dvivi)p(v) = 0, or

(Yvi - m-1 Fi + Dvdvi) p(v) = 0.

This is solved by p(v) ~ exp[— ^D-|v — mYF|2], which is a diffusion cloud cen­
tered around the drift trajectory. At F = 0, the diffusion constant Dv = TY/m 
assumesits equilibrium value and p(v) = exp[— m |v|2] reduces to the Maxwell— 
Boltzmann distribution. We conclude that:

In the absence of external driving, a combination of diffusion and drift 
sends the system into a state of thermal equilibrium.

EXERCISE The discussion above focused on the dynamics of the velocity distribution, 
p(v, t). To describe the diffusive dynamics of the particle coordinates, q, consider 
a force-free (F = 0) Langevin equation in the overdamped limit, m/ydtq = 4, i.e., a limit 
void of external forces where the ballistic acceleration ~ mdtq is negligible. Show that 
the Fokker-Planck equation for p(q, t) takes the form

(dt - Dd2p(q,t) = 0, (11.16)

where D is given by Eq. (11.7). The equation confirms the expectation that, in thermal 
equilibrium, the coordinate diffuses, and the level of diffusivity increases with temperature.

EXERCISE Consider single-particle dynamics governed by a Hamiltonian H(q, p) = 
H (x). Describing the influence of an environment by a combination of dissipation and 
fluctuation as before, we consider the generalized phase space Langevin equations, dt q = 
d-H, dt p = — dq — yP + 4. Show that the probability distribution p (x ,t) is governed by 
the phase space Fokker-Planck equation,

d d d d d d d d \ ,
dtp(x,t) = -{H,P(x,t)} + Yp + D'-. P(x,t)d p \ d p J

(11.17)

where Dp = m2Dv = Tym is the diffusion constant of momentum. The second operator on 
the right-hand side describes the dissipation-fluctuation generalization of the deterministic 
single-particle dynamics (see Eq. (11.2)).

Finally, show that the stationary limit of the solution is given by the phase space 
Maxwell-Boltzmann distribution p(x) = N exp (—H(x)/T).
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To summarize, we have seen how the Fokker-Planck equation describes the univer­
sal aspects of drift-diffusion dynamics, microscopically described by the Langevin 
equation. The derivation relied on two crucial features of the micro-evolution: its 
Markovianness (what happens in the future does not depend on the history of the 
evolution) and on the smallness of coordinate updates in short instances of time. 
In section 11.4, we will discuss other “stochastic processes” satisfying these two 
criteria and show that they too afford a description in terms of the Fokker-Planck 
equations. However, before turning to this generalization, let us discuss what can 
be done if the second of the above criteria is violated.

11.3 Boltzmann Kinetic Theory

REMARK In this section, we introduce the Boltzmann equation as an alternative to 
the Fokker-Planck approach in cases where stochastic variables do not locally “diffuse.” 
The inclusion of this section pays tribute to the importance of Boltzmann kinematics 
in condensed matter applications. Readers interested primarily in the field-theoretical 
approach to nonequilibrium dynamics may skip it at first reading.

As mentioned above, a crucial condition in the derivation of the Fokker-Planck 
equation by the Kramers-Moyal expansion is the smallness of coordinate updates 
in short instances of time. (More precisely, we assumed that ((x(t+<5t)— x(t))n) . <5t, 
for n = 1, 2.) Boltzmann kinematic theory describes situations where this condition 
may be violated.

11.3.1 Derivation of the Boltzmann equation

By way of an example, consider a gaseous system of particles in a container. In 
the infinitely dilute limit (where particle collisions can be neglected), the phase 
space coordinates of individual particles change according to Newtonian dynamics, 
Eq. (11.2). Specifically, the single-particle energy e is conserved, and (assuming the 
absence of smooth potential gradients) momentum is constrained to an energy shell 
|p|2 / 2 m = e.

However, once interactions are taken into account, 
the rate at which the distribution f(x1, t) changes be­
comes influenced by particle collisions: losses occur 
when particles at phase space point x2 scatter off par­
ticles at x1 into final states x1 and x22 (see figure). 
We denote the corresponding two-particle transition 
rate by w(x'1, x22; x1, x2) ddx'1 ddx'2ddx 1 ddx2, where the 
function w encapsulates the kinematic constraints (en­
ergy and momentum conservation) of the collision. 
The derivative dtf due to “out” processes then reads

dtf i|out = d2 d 1' d2' w(1, 2';1, 2) f 1 f2,
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collision 
integral

micro­
reversibility

collision 
integral

Boltzmann 
equation

where we take into account that the total transition rate depends linearly on the 
number of available collision partners in the two initial states, and introduce a 
(standard) notation abbreviating coordinates by numbers, ddx 1 ^ d 1, f (x1) ^ f 1, 
etc.

Gain occurs when particles get scattered into state 1 in collisions (1/, 2') ^ (1, 2): 

dtfi|in = j d2 d 1' d2 w(1, 2;1', 2')f 1' f2' •

The total occupation change due to collisions, I[f] = dtf 11in — dtf J, is then 
described by the so-called collision integral,

I[f] = j d2 d 1' d2 (w(1, 2; 1', 2')f 1 f2- — w(1', 2'; 1, 2) f 1 f2) • (11.18)

Notice that the collision integral is a nonlinear functional of the distribution func­
tions, i.e., we are looking at a nonlinear theory.

The transition rates w are subject to symmetry relations that reflect the time­
reversal invariance and unitarity of the microscopic laws of physics. For example, 
microreversibility implies that a transition (1, 2) ^ (1/, 2') must be as probable as 
the time-reversed process (1/T, 2!T) ^ (1T, 2T), where 1T = (q1, p1)T = (q1, —p1) 
is the time-reverse of (q1, p1), i.e., w(1/, 2'; 1, 2) = w(1T, 2T; 1'T, 2'T). The conse­
quences of unitarity are best exposed if we interpret the coefficients w as classical 
limits of quantum transition probabilities. Identifying (1, 2) o |i) as a classical ap­
proximation to a (coherent) state in two-particle Hilbert space, and (1/, 2') o |f) 
as a final state, we have the identification

w(1', 2';1, 2) o |Sfi|2,

where Sfi is the scattering matrix. Unitarity means that f |Sfi |2 = f |Sif |2 = 1, 
and in particular f=i |Sfi |2 = f=i |Sif |2, where we exclude the “forward scatter­
ing” configuration i = f, which does not change the state. With the identification 
f d 1' d2! o ^2 f=i, this implies

y d 1'd2 w(1', 2;1, 2) = y d 1'd2' w(1, 2;1', 2')• (11.19)

Using this relation in the out-process, the collision integral can be transformed 
to

I[f ] d2 d 1' d2 w(1, 2; 1', 2') (f 1, f2, — f 1 f2) (11.20)

Adding I[f] = dtf 11in — dtf 1|out to the right-hand side of Eq. (11.2), we obtain the 
Boltzmann equation14

(dt — {H, • }) f (x,t) = I[f ]| (11.21)

14 In the Russian literature, the Boltzmann equation is usually called the “kinetic equation.”
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11.3.2 Discussion of the Boltzmann equation

The Boltzmann equation (11.21) is one of the most important equations of statisti­
cal physics. First, it has been, and still is, a powerful tool in applied many-particle 
physics. Before the advent of the more modern techniques reviewed in previous 
chapters, it was the most important computational workhorse in many-particle 
physics.15 Even today, Boltzmann equation-based approaches often represent the 
most economic and straightforward route to understanding the physics of interact­
ing many-particle systems.

Second, the Boltzmann equation is of conceptual value. Various of the principal 
questions raised in the beginning of the chapter afford a relatively straightforward 
answer in terms of this equation. For example, note (cf. the related discussion before 
Eq. (11.1)) that the collision term vanishes in thermal equilibrium. In this case, 
the distribution function is given by the Maxwell-Boltzmann distribution (11.1). 
Energy conservation in elastic collisions, H(x1 ) + H (x2) = H (x'x) + H(x2), means 
that f 1 f2 = f 1/ f2<, i.e., the vanishing of I[f ]. In equilibrium, the losses and gains 
due to many-particle collisions compensate each other and I[f] does not change the 
distribution. (Since f(x) = f(H(x)), the single-particle dynamics also conserves f, 
{H, f} = 0, i.e., the Maxwell-Boltzmann distribution is stationary under (11.21).)

The Boltzmann H -theorem

We expect the collision term to drive the system towards a thermal equilibrium 
configuration. Indeed, it does; however, it is not entirely straightforward to show 
this. The defining property of the thermal equilibrium is that it maximizes entropy, 
S. In equilibrium statistical mechanics, it is usually taken for granted (according to 
the second law of thermodynamics) that many-body relaxation processes increase 
the entropy, dtS > 0, before the maximum of the equilibrium configuration is 
reached. However, the present theory should actually be able to demonstrate how 
a microreversible theory leads to macroscopic irreversibility and entropy increase.

The manner in which interactions increase entropy was demonstrated by Boltz-
H-theorem mann in a famous construction known as the H -theorem. (It is called the H-

theorem rather than the S -theorem because Boltzmann called entropy H.) Using 
the shorthand notation fr ddx = fr = f, consider the definition of entropy

S = - fln(f/e),

which differs from the information entropy S = - plnp of the distribution f = p 
only by the presence of the constant e. A change in S is then given by

dtS = -/ ln fdtf = -J ln f ({H,f} + I[f ]).

15 For a detailed account of applications and solution strategies related to the Boltzmann equation, 
see L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 10 - Physical Kinetics 
(Butterworth-Heinemann, 1981).
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Since the full phase space integral of any function is invariant under Hamiltonian 
flow (exercise: why?), we have 0 = {H, f ln(f /e)} = ln f{H, f}, i.e., changes in 
entropy are due to interactions.

To explore how interactions do the job, consider the collision integral Eq. (11.18). 
For an arbitrary function ^(x), and using the abbreviation dr = d 1 d2 d 1' d2', we 
have

Id 1 $(1)I[f (1)] = /dr$(1)(w(1,2;1', 2/)f 1'f2' - w(I',2';1,2)f 1 f2) 

= j d r( $ (1) - $ (1')) w (1,2;1', 2') f 1/ f2, (11.22)

= J dT($(1)+ $(2) - $(1') - $(2'))w(1, 2;1', 2') f 1, f2,, 

where, in the first equality, we relabeled coordinates, (1, 2) o (1/, 2'), and the second 
equation is based on the micro-reversibility principle (11.19). From this result, we 
can derive a few auxiliary identities. Setting ^ = 1, we conclude that the collision 
term vanishes upon integration,

0 = / d 11[f ]=/ dr w(1,2;1', 2')(f 1 f2, - f 1 f2), 

where the representation (11.20) was used. Introducing the abbreviations 

A = f, X = w(1, 2;1', 2') f 1 f2, 
f1f2

this can be written as 0 = f dPX(A - 1). Setting ^ = ln f, Eq. (11.22) yields 
dtS = -f d 1 ln(f 1)I[f (1)] = 2 J drXAlnA. The combination of these results 
finally leads to

dtS = 11 drX(AlnA - A + 1).

Now, the functions X and A are manifestly positive. For positive A, the combination 
A ln A - A + 1 is also positive (exercise). This construction demonstrates that elastic 
particle collisions do indeed increase the entropy of the system. The asymptotic 
state of the system must be the thermal equilibrium state, for which we saw the 
collision term vanishes, and the entropy becomes stationary.

Mesoscopic evolution laws

The arguments used in the derivation of the H -theorem are useful for deriving 
evolution equations describing the flow of particle currents, densities, and other 
observables on “mesoscopic” scales larger than the collision mean free path l = tv 
(where v is a typical particle velocity) yet smaller than macroscopic scales. Such 
equations must reflect the conservation laws of a system, notably the conservation 
of energy, particle number, and momentum. Interactions may change the energy or 
momentum of individual particles, but they will not change the total energy and 
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momentum of a sufficiently large assembly of particles. To be more concrete, let 
6r = 6V ® R3 be a thin slice in phase space containing phase space points in the 
small volume element 6 V at coordinate q and of arbitrary momentum p e R3. The 
particle, energy, and momentum density averaged over the volume are given by

p (q ,t) 1 1 (■ ( 1,
e(q,t) ? = iv I f(x,t) i H(x),
n(q,t)6V J>r I p.

Let us prove that interactions do not change these values. To this end, we assume 
that the transition coefficients w(1/, 1'; 1, 2) represent an elastic point interaction, 
i.e., an interaction local in space that respects energy, momentum, and particle 
number conservation. 
phase space cells 6r,

d d 1 $ (1)I[f (1)] =
Js r

For the specific choices ^ = 1, e, p (corresponding to density, energy, and momen­
tum), the linear combinations ^(1) + ^(2) — ^(1') — ^(2') on the right-hand side 
vanish. For example, e(1) + e(2) = e(1Z) + e(2Z) for an energy-conserving interaction 
(1, 2) —> (1/, 2'). We thus conclude that

[ d 11[f (1)] j H(x) =0 .

Jsr I P

This identity is the key to the derivation of effective transport equations. For 
example, changes in the particle density are obtained as dtp6V = dt Jsr f = 
fs r{ H,f } + fsr I [ f ]. We see that the second term on the right-hand side vanishes, 
and the first evaluates to

£{ H, f } dqa Hdpa f — dpa Hdqa f )

In this case (think why), Eq. (11.22) applies to individual

1 / d 1 (t(1) + t(2) - t(1) - </>(2'))w(1', 2'; 1, 2) f 1' f2'•
2 Jlesr

current 
density

dqa H/ dpa f -/ Vadqa f 0 — dqa ja,
Jsr Jrr

where we note that 0 = r dpa f is a full derivative and j = 6V-1 f$r vf defines 
the current density. We thus obtain the continuity equation,

dtp + V- j =0 •

Although this result may look trivial, it has been derived for arbitrary distribution 
functions, and under reasonably general assumptions on the microscopic interac­
tions.

EXERCISE Show that, for a translationally invariant system, the energy and momentum 
density obey the conservation laws

dt.e + V- j e = 0, dtna + dq? n a, = 0, (11.23)

where je = —V fsr fHv and na--: = —V J—r fmvav@ are the energy current density and the 
momentum current tensor respectively.
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relaxation 
time

approx­
imation

Above, we showed why the thermal distribution f0 ~ exp(-fte) annihilates the col­
lision term. Use the same reasoning to demonstrate that this vanishing extends to all 
distributions exponential in conserved quantities,

f0 ~ exp(-ft(e(x) - v • p - n)) , (11.24)

with free coefficients ft, v,p,.

To summarize, our discussion has shown how particle number, energy, and mo­
mentum conservation are hardwired into the Boltzmann theory. Other conserved 
quantities - for example, spin - may be included in the theory, if required. Once 
established, these conservation laws must be respected by approximate solutions, 
which can constitute a strong consistency check.

Beyond equilibrium: Boltzmann transport theory

While the Boltzmann equation predicts the thermalization of isolated systems, it is 
also a powerful tool for the description of nonequilibrium phenomena. Referring to 
Ref.15 for a more detailed discussion, here we mention a few basics of Boltzmann 
theory beyond equilibrium.

We reasoned above that the collision term is annihilated by distributions (11.24) 
exponential in the conserved quantities. All parameters entering the distribution 
may vary in space and time. For example, T = T (r, t) may be a nontrivial temper­
ature profile, in which case f0 describes the local equilibrium, with spatio-temporal 
variation.

Noting that externally applied perturbations are usually weak compared with 
the internal forces, it is often sufficient to consider a system weakly perturbed out 
of equilibrium, f = f0 + Sf. We know that the collision term will act to restore 
equilibrium and suppress Sf. This relaxation can be described phenomenologically 
via a simple relaxation time approximation,

I[f] -^-f-f0, (11.25)
T

where t is of the order of the microscopic scattering times in the system.
As an example, consider a system of charged particles subject to an external 

electric field, E(t), harmonically varying in time with frequency w. Setting the 
particle charge to unity, the field coupling is described by the single-particle poten­
tial —Eq • q exp(-iwt). We expect this perturbation to cause local time-dependent 
departures from equilibrium, but no macroscopic variations in the equilibrium pa­
rameters T, ^, v themselves. This suggests entering the equation with an ansatz 
f(x,t) = f0(e(p)) + Sf(t). Using the identity

{H, f} = dqH • dp f - dp H • dq f = - e-i“tEq • v df0 ,

the relaxation time approximation to Eq. (11.21) becomes dtSf+e-iutE-vdef0 = 
- T, which is readily solved to give

Sf (x,t) = TE0 ^ vdef0e-iut.

1 - iwT
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(Exercise: Interpreting v • E as the rate at which the electric field does work on 
a phase space volume at (q, p), discuss the physics of this result, both for high 
(w t-1) and low (w t-1) frequencies.) From here, the average current density 
is obtained as j(q, t) = r 8f (x, t)v. Defining the longitudinal AC conductivity 
as j( w) = a (w )E(w) and, assuming a Maxwell-Boltzmann distribution f0(x) = 
Z-1 exp(-p2/2mT), a straightforward calculation (exercise) leads to

a(w) =
nt 1

.
m 1 - iwt

One may reason that the Boltzmann machinery is a bit of an overkill for a result 
otherwise obtainable from simple Drude transport theory. However, unlike Drude 
theory, the present approach can be straightforwardly extended to the presence 
of external magnetic fields, disorder, the coupling to optical or phonon modes, 
etc. At the same time, it is simpler than fully microscopic theories. In this way, 
Boltzmann theory represents a favorable trade-off between microscopic explicitness 
and simplicity. In the next chapter we will see how elements of this theory are 
reflected in quantum field-theoretical approaches to nonequilibrium physics.

11.4 Stochastic Processes

In the previous sections, we have met with various examples of stochastic processes. 
Stochastic processes are frequently realized not just in physics but also in the life 
sciences, engineering, the socio-economic sciences, and others. In this section, we 
introduce this highly versatile concept as a generalization of the Langevin process 
considered previously. This discussion will provide the basis for our later field- 
theoretical formulation of nonequilibrium dynamics.

11.4.1 The notion of a stochastic process 

stochastic
process

A process describes the temporal evolution of a certain state. It is represented 
by a sequence {a(ti)}, where ti, i = 1, . . . , n are the discrete times at which the 
states are recorded and a(ti ) is a (generally multi-component) state variable, for 
example a(ti ) = q(ti) for the state vectors representing a stochastic random walk 
in d-dimensions. To keep the notation simple, we often write ai = a(ti) for the 
ith recording. A stochastic process16 is one where the evolution ai ^ ai+1 in­
volves elements of randomness. The task then is to identify a probability measure 
p(an, an-1, . . . , a1) for the realization of individual sequences {ai}. It is useful to 
think of the full probability as a product

P (an, an-1, ••• ,a 1) = P (an | an-1, ••• ,a 1) P (an-1| an-2, ••• ,a 1) ...p (a 21 a 1) P (a 1),

16 A standard reference covering theory and application of stochastic processes is N. G. van Kam- 
pen, Stochastic Processes in Physics and Chemistry (Elsevier, 1992).
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Markov 
process

where the individual factors measuring the probability of the next step depend 
conditionally on the history of previous events.

Before moving on, it is worthwhile to distinguish between a few categories of 
stochastic processes. A stationary stochastic process is one where p does not 
change under a uniform shift ti ^ ti + t0 of all time arguments and the theory is 
translationally invariant on average. The process is called purely random if the 
probabilities p(aj |aj-1 , . . . , a1) = p(aj) are independent of the history of events. In 
this case,

n

p(an, . . . , a1) = p(aj)

is the product of n uncorrelated random numbers; evidently, purely random pro­
cesses are not very interesting. However, next in the hierarchy of complexity are 
conditional probabilities, for which

p(an|an-1, . . . ,a1) = p(an|an-1). (11.26)

Processes of this type are called Markov process. Markov processes have a vast 
spectrum of applications in statistical sciences, and deserve a separate discussion.

11.4.2 Markov processes

In a Markov process, the passage to the state an depends on the previous state an-1, 
but not on the earlier history (an-2 , . . . ). Put differently, a Markov process lacks 
memory. Few stochastic processes are rigorously Markovian. However, Markovian 
approximations often capture the essential contents of a stochastic evolution and 
at the same time are numerically or analytically tractable. The reduction of a 
stochastic process to a Markovian one often amounts to the choice of an update 
time window At = tn +1 — tn that is long enough to eliminate the short-time memory 
of a process, yet short enough not to miss relevant aspects of the dynamics (see 
Ref.16 for a more detailed discussion).
Whether a process assumes a Markovian form also depends 
on the choice of coordinates. To see this, consider a Brown­
ian motion represented in coordinate space as q 1 ^ q2 ^ 
• • • ^ qn-2 ^ qn-1 ^ qn, where the coordinates are 
recorded at equal time steps. If the spacing |qn-1 — qn-2 | 
is exceptionally large, the particle will be moving at high 
instantaneous velocity. It is then likely that the next step 
qn-1 ^ qn will also be large. The conditional probability 
p(qn|qn-1, qn-2, . . . ) = p(qn|qn-1) thus does not reduce to 
a Markovian one. (Exercise: Discuss why the particle veloc­
ity can be assumed to be Markovian.) For a given process 
one will naturally try to identify coordinates making it as 
“Markovian” as possible.
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Chapman-Kolmogorov relation and master equation

The Markovian nature of a process can be expressed in a manner alternative to 
Eq. (11.26). Consider the joint probability of observing a at time t and a' at an 
earlier time t', given initial data ai at ti, p(a, a'|ai). From this probability, the full 
probability of a at t, p(a|ai ) is obtained by integration over intermediate events,

p(a|ai) = da'p(a, az|ai) = I da'p(a|a', a i) p (a '| a i),

Chapman—
Kolmogorov 

relation

where we have used Eq. (A.22). For a Markovian process, p(a|a', ai) = p(a|a'), this 
convolution reduces to the Chapman-Kolmogorov relation

p (a | a i) = da' pst (a | a') p (a z|ai) (11.27)

where the notation pst (a | a') indicates the dependence of the conditional probability 
on the time difference 5t between the observation of a at t and a' at t' = t — 6t.
The usefulness of Eq. (11.27) becomes evident if 
we consider the case t — t' = 5t t — ti. Equa­
tion (11.27) then factorizes the description of 
the process into three blocks: (a) the probability 
of getting to a given an initial configuration ai , 
(b) the probability of reaching an intermediate 
stage a' shortly before the final time, t, and (c) 
the short-time transition probability a' —+ a 
(see the figure). This iterative, or “transfer ma­
trix,” description of the process is fundamental to most theories of Markovian dy­
namics.

To develop the description further, assume 5t to be very small. To a very good 
approximation, pst(a|a') ~ 5(a — a') + O(5t) will then be stationary. The term of 
O( 5t) contains losses out of a' due to transition into another state a" and gains 
due to transition from a'. Denoting the probability of transitions a 1 —t a2 by 
W (a2 |a1)5t, we may thus write

pst(a|ar) = 11 — 5t da" W(a/z|az) 1 5(a — a') + 5t W(a|ar).

master 
equation

Substituting this expression into Eq. (11.27), taking the limit 5t ^ 0, and suppress­
ing the initial time argument for simplicity p(a|ai) = p(a) = p(a, t), we obtain the 
master equation17 (see fig. 11.1),

17 The term “master equation” was coined in A. Nordsieck, W. E. Lamb, and G. E. Uhlenbeck, 
On the theory of cosmic-ray showers I: the Furry model and the fluctuation problem, Physica 
7, 344 (1940), where a rate equation similar to Eq. (11.28) appeared as a fundamental equation 
of the theory.
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Fig. 11.1 The evolution of Markovian probability, as described by the master equation: the probability 
gain of states ai (here considered as discrete entities, while the text uses continuum notation) 
due to in-processes is counteracted by loss due to out-processes. The sum over all in- and 
out-contributions cancels, reflecting probability conservation.

dtp(a, t)= da' [W(a|a')p(a',t) — W(a'|a)p(a, t)] (11.28)

Notice that the master equation conserves the total probability, i.e., dt J" da 
p(a, t) = 0.

INFO There is not much that can be said in generality about the master equation. 
However, at large time scales, solutions of the equation often relax to a stationary distri­
bution function peq(a). In this limit, we have 0 = J da' [W(a|a')peq(a') — W(az|a)peq(a)], 
an equation that can be read as an effective sum rule obeyed by the transition matrix 
elements W(a|a'). In many cases, this balance equation holds not only in an integral sense 
but also locally for (a,a'), i.e., W(a|a')peq(a') = W(a'|a)peq(a), or

W (a | a') = p eq( a)
W (a '| a) p eq( a')

(11.29)

detailed 
balance

Equation (11.29) is called a detailed balance relation. If detailed balance holds, knowl­
edge of the stationary distribution contains information on the transition rates, and vice 
versa. It can be shown that closed, isolated, classical systems obey this principle. Under 
more general circumstances, it is often not easy to decide whether or not a system obeys 
detailed balance.

Gaussian process

random 
walk

Consider a one-dimensional random walk, a process where a particle performs 
random motion on a one-dimensional lattice (see the figure) with N sites. Setting 
the lattice spacing to unity, the state variable a = n G Z takes integer values, and 
the goal is to compute the probability p(n, t|n0, t0). Defining the probability density 
for an individual left-turn (right-turn) as q dt ((1 - q) dt), the master equation 
assumes the form

dtp(n, t) = qp(n + 1, t) + (1 - q)p(n - 1, t) - p(n, t).
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Anticipating smoothness of the probabil­
ity distribution, we convert this discrete 
equation into a differential one: define the 
scaling variable x = n/N G [0, 1] and a 
rescaled probability distribution through 
p(x)dx = p(Nx)dn = p(Nx) dndx, which 
means p(x) = Np(Nx). We may then 
Taylor expand as p(x ± 1 /N) = p(x) ± 
N 1 dxp>(x) + (1 /2)N 2dXp>(x), and the master equation assumes the form of a
drift-diffusion equation for the rescaled function,

(dt + Ydx - Dd22) p(x, t) = 0, p(x, to) = 6(x - xo),

with drift coefficient y = (1 — 2q)/N, diffusion constant D = 1 /(2N2), and initial 
point xo = no/N. This equation is solved by

dk e-(i^k+Dk2)teik(X-Xo) 1 / (x — x o — Yt )2

2(nDt)1 /2 exp V 4Dt

or, in terms of the original variables,

p(n, t) =
1 ( (n — n o — (1 — 2 q) t )2

exp ----------------2t--------------

Gaussian 
process

(Exercise: Consider how the structurally similar Schrodinger equation is solved and 
discuss the above solution in the light of this analogy.)

The Gaussian form of p(n, t) is a manifestation of the central limit theorem: 
the variable n is an additive quantity obtained by summing t elementary random 
variables ±1 drawn from a bimodal distribution with probability p(1) = 1 — q and 
p(—1) = q . According to the central limit theorem, a large number of additions will 
result in a Gaussian-distributed variable n centered around the mean, no + (1 — 
2q)t, with variance ^ tfi, as stated by the above result. Random processes whose 
distributions are Gaussian are generally called Gaussian processes.

Example: Poisson process

Now consider a succession of sparse elementary events uncorrelated in time (apples 
falling off a tree, a Geiger counter exposed to weak radiation, etc.). The random 
variable of interest is the number, n, of events occurring in a certain time t (see the 
figure below). Calling the probability for an event to occur in a short time window 
vdt, the master equation takes the form

dtp (n,t ) = vp (n — 1 ,t) — vp (n,t). (11.30)

For definiteness, we impose the initial condition p(n, t = 0) = 6n,n0 .
This equation may again be solved by assuming smoothness and using a Tay­

lor expansion. However, it turns out that this approach is too crude to resolve 
the statistics of this process. (Exercise: Approximate the right-hand side of the 
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equation by a first-order Taylor expansion, obtain the solution, and compare with 
the results below.) Instead, we build on the similarity of the master equation to the 
Schrodinger equation and employ concepts from quantum mechanics to construct 
a more accurate solution.
We start by rewriting the equation as 
dtp(n,t) = v(E-i - 1)p(n,t), where Em 

is the translation operator in discrete n- 
space, Emf (n) = f (n+m). Thinking of n 
as the discrete eigenvalues of a coordinate 
operator n, the translation operator af­
fords a representation in terms of the con­
jugate operator ft, defined by the commu- 
j j • i j • r 7 i / j j • m • i • i •j i itation relation [ft, n] = — i. In the ft-representation, E-1 is diagonal with eigenvalues 
E-1 (<fi) = exp(—ifi) and eigenfunctions fy(n) = (2n)-1 /2exp(i^n). With the spec­
tral decomposition of the initial configuration p(n, 0) = <5n,n0 = J02n dd e-i&(n-n0),
the distribution p(n, t) is obtained in analogy to the solution of a time-dependent
Schrodinger problem,

p(n,t)= [2n dte-vt(e—*-1)ei^(n-n0).

Jo 2 n

Using the identity J02n dk e1 ank = 3an,0, a straightforward Taylor expansion of the 
exponent leads to the result (exercise)

Poisson 
process

(vt)n-n0 p (n,t ) = -(-2----- e - vt. (11.31)
(n - n0)!

Comparing with Eq. (A.28), we note that the process is described by a Poisson 
distribution, where vt = vdt(t/dt) o np is interpreted as the product of t/dt o n 
attempts with individual probability vdt o p. This explains the name Poisson 
process. In the present notation, the first and second cumulants of the Poisson 
distribution are given by p 1 = p2 = vt: centered around p 1 = vt, the width of the 
distribution is given by ~ (vt)1/2.

Kangaroo 
process

EXERCISE Kangaroo process: Consider the master equation, 

dtp (a,t) = d da' [ W (a | a') p (a' ,t) — W (a '| a) p (a,t)] , 

with a factorizable transition matrix W(a|a') = u(a)v(a'). The process is “kangaroo­
like” in that the transition rates for jumps a ^ a' depend on a and a', but not on 
the distance a — a'. Solve the master equation with the help of the Laplace transform 
p(a, z) = ///' dteiztp(a,t). In a first step, show that the following relation holds:

p(a, t = 0) + u(a)a(z
—iz + v (a)/t

where 1 /t = j dau (a) and a (z) d dav (a) p (a, z). Determine a (z) by substituting the
expression for p(a, z) and solving the resulting algebraic equation.

)p(a, z)
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Kubo—
Anderson 

process

one-step 
process

Kramers—
Moyal 

expansion

Kubo—Anderson process: Taking v(a) = v, simplify the resulting equation for p(a, z) 
and compute the inverse Laplace transform to obtain the time evolution of the distribution 
p(a,t). Compare with the Ornstein-Uhlenbeck process (problem 11.9.2).

For readers interested in gaining a little more fluency with stochastic processes, 
here are some additional practice exercises.

EXERCISE The defining property of a one-step process is that the rate of change of 
pn depends only on pn and pn±1 . Its master equation is given by

Pn = rn +1 Pn +1 + Sn-1 Pn-1 — (rn + Sn )Pn .

To solve this equation, consider the generating function g(z,t) = “=— znpn(t), where 
g(1, t) = 1 reflects the conservation of probability. Show that, for a given g, the probability 
follows from the inverse Mellin transform,

Pn (t ) = 2nifdzz—1—ng (z,t), (11.32)

where the integral is taken around a contour enclosing z = 0 (but no singularities of g). 
(a) Consider the special case rn = Sn = 1 defining a symmetric random walk with the 
initial condition pn(0) = fin,0. From the master equation, derive a differential equation for 
g(z, t) and show that its solution is g(z, t) = exp((1/z + z - 2)t). Solve the integral (11.32) 
in the saddle-point approximation and show that the resulting behavior for large times 
t ^ to is diffusive, pn (t) ~ e—n /4t /V4nt.
(b) Consider the case rn =0 and sn = yn with the initial condition pn (0) = fin, 1 (the 
Furry process). Determine g(z, t). You can solve its partial differential equation with 
the help of the method of characteristics. Using Eq. (11.32), show that the probabilities 
for n > 0 are given by pn (t) = e—Yt (1 — e—Yt)n— 1.
(c) Consider the case rn = an and sn = fin relevant for the modeling of population 
growth. Imposing the initial condition pn (0) = Sn,m, show that the probability that the 
population dies out at time t is given by p0(t) = ( a„(1~em, where e = e(a—3)t. Discuss 0 °v\ 3 3 — ae ,
the short- and long-time limits.

11.4.3 Fokker-Planck approach to stochastic dynamics

The master equation (11.28) is a linear integral equation for the probability density, 
p. Like the structurally similar Schrodinger equation it can be solved via a spec­
tral decomposition of the integral kernel {W(a|a')} (exercise: discuss this solution 
strategy). However, for kernels W(a|a') with nontrivial dependence on the state 
variables a, an explicit eigenmode decomposition of p is usually out of reach.18 On 
the other hand, we may use the fact that transitions between remote states are 
usually suppressed for short fit. In such cases, W(a|a') is short range and, as in 
section 11.2.3, we may formulate a Kramers—Moyal expansion in a - a'. (Again, 
compare with quantum mechanics: for low energies, or large times, the discrete 
Schrodinger equation for an electron subject to short-range hopping on a lattice 
can be reduced to a second-order differential equation.)

18 However, a numerical diagonalization of W may still be the most efficient route to obtain the 
distribution.
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Following the same strategy as in section 11.2.3, we define W(a|a') = Wb(a'), b = 
a — a', where Wb(a') is the transition probability for a' ^ a' + b. In this notation, 

dtp(a) y db [(Wbp)(a — b) — (W-bp)(a)] .

Using the relation db (Wb(a) — W-b(a)) = 0, a Taylor expansion of (Wbp)(a — b) 
in b around a (the subscript in Wb remains passive) yields the series

co

dtp(a, t)
n=1

(—)n
----r-da (anP) (a,t), n! a

(11.33)

where the coefficients an are the moments of the transition probabilities,

an (a) = dbWb (a) bn. (11.34)

Fokker—
Planck 

equation

Assuming that all moments beyond the second are of negligible importance, we 
obtain the Fokker-Planck equation

dtp(a, t) = —daa i( a) + 1 d2 a 2( a ) ) p (a,t), (11.35)

generalizing the Fokker-Planck equation of the Langevin process (section 11.2.3).

drift term

diffusion
term

As in that case, the first derivative, or drift term ~ daa 1 p, is deterministic in 
that it describes the evolution of the averaged variable (a). Indeed,

dt(a) J daadtp(a,t) = J daa^—daa 1(a) + —$2a2(a)^ p(a, t)

/ daa 1(a)p(a,t) = (a 1(a)),

where we have integrated by parts.

In a similar manner one may verify that (exercise) the variance of the distribution 
grows as dtvar(a) = 2(aa 1(a)) — 2(aa 1(a)) + (a2(a)). In most cases, the third 
term on the right-hand side dominates, telling us that the second derivative, or 
diffusion term k a2, governs the diffusive spread of probability around the 
center of the distribution.

11.4.4 Quality of the Fokker-Planck approximation: an example

The Fokker-Planck approximation is routinely applied in the description of prob­
ability distributions. It is therefore important to identify those situations where it 
goes qualitatively wrong. Indeed it turns out that Fokker-Planck approaches often 
fail to describe the tails of probability distributions, i.e., regions describing large and 

rare event statistically unlikely fluctuations of variables. Such rare events can be of profound 
importance: think of the probability of the emergence of a vicious viral mutant, or 
of a chain reaction in a nuclear power plant.
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As an example, consider the Poisson process introduced in section 11.4.2. We have 
computed the rigorous solution of this process, Eq. (11.31), and we now compare 
with the results obtained by Kramers-Moyal expansion. As before, we introduce 
a scaled variable, x = n/N, with distribution p(x, t) = p(xN, t)N, and we subject 
the equation to a second-order Kramers-Moyal expansion according to the above 
protocol. Equivalently, we may note that the one-step translation operator appear­
ing in the Poisson master equation enters the equation of the scaled variable as 
dtp) = v(E-1 /n — 1)p, where Eaf(x) = f(x + a). Second-order Taylor expansion 
then leads to

(tt + N^ - 2NN2dX) p(x, t) = 0’

with p (x, 0) = 6 (x). This equation is solved by p( x,t) = N (^^vtt )1 / 2exp[— 2v (x— - 
tv )2] or

1 
p (n’t

1/2

exp ------- (n — tv )2 (11.36)

in the language of the original variable.
This Gaussian approximation repro­

duces the two main characteristics of the 
Poisson distribution, the mean value vt 
and width ~ (vt)1 /2. However, in the 
tails of the distribution the approxima­
tion is poor. This is illustrated in (a log­
arithmic representation in) the figure: al­
ready at values of n about four times 
bigger than the mean value, the Fokker-
Planck prediction underestimates the probability by orders of magnitude. The ori­
gins of this error can be traced to the expansion of the operator E-N-1 = e-dx/N. 
The second-order expansion takes no account of whether the variable n is an integer. 
(Exercise: Why?) To obtain a better result in the tail regions, we need to keep the 
full identity of the hopping operator intact. This makes the direct solution of the 
differential equation difficult. However, we may push the quantum correspondence 
further, thinking of p(n, t) = p(n, t|0, 0) as the analog of a transition amplitude, 
and turn the smallness of p to our advantage: using a path integral-oriented lan­
guage, and writing p ~ J exp(—S) as the integral over an exponentiated action, we 
know that S 1 in the tails. This indicates that a variational approach similar

large de­
viation 

approaches

to the semiclassical approximation to quantum amplitudes might be successful. So­
lution schemes of this type are called large deviation approaches to stochastic 
dynamics.

Let us formulate a large-deviation analysis for the Poisson process and demon­
strate that it leads to excellent results in the tail region. We first write the master 
equation in a form reminiscent of the imaginary-time Schrodinger equation,

(dt + H)p(n,t) = 0, p(n, 0) = 6n,o, 
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governed by the non-hermitian operator HI = — v (e ip — 1). This equation has the 
formal solution

q(t)=n
p (n,t ) = (n | e -tH |0) = / D (q,p) Jo dt' (ipq-H (p,q)),

q(0)=0

where (n|n= <5n,n< is the scalar product in n-space and in the second equality 
we switched to a path integral representation. To avoid the mixed appearance of 
real and imaginary terms in the exponent, we subject the integration over the 
momentum variable to a Wick-rotation, p ^ — ip. In the new variables, 

q(t)=n
p (n,t )=/ D (q,p) Jo dt' (pq-H (q,p)), H (q,p ) = — v (e - p — 1) .

q(0)=0

Application of a stationary-phase approximation to this representation leads to 

p(n,t) — e-S[q,p], S[q,p] = — ^ dt' (pci — H(q,p)),

where (q,p)(t') are solutions of the extremal 
equations with the configuration-space bound­
ary conditions q(0) = 0, q(t) = n, and the 
symbol - indicates that fluctuations around 
the stationary configurations are neglected at 
this stage. Variation of the action leads to the 
Hamiltonian equations of motion,

-pdt' q = dp H = ve 

dt < p = — dq H = 0,

whose solution reads p(t') = — ln(n/vt),q(t') = n(t' /t). The Hamiltonian form 
of the equation implies that energy is conserved and is given by H(q(t'),p(t')) = 
H = —n/t + v. The figure shows a phase portrait of these solutions. Owing to the 
conservation of momentum, the flow lines are parallel to the q-axis with constant 
velocity ve-p. At p = 0 we have q(t') = vt', corresponding to the evolution of the 
mean value (n(t')) of the Poisson process. The action of this particular trajectory 
vanishes, S(q, p = 0) = 0. Final configurations q(t) = n(t) different from the mean 
value vt can be reached at the expense of non-zero action cost. Substitution of the 
above solution leads to S[q, p] = n ln(n/v t) — n + vt, which assumes a minimum 
value S = 0 on the mean trajectory n = vt and is positive otherwise. We finally 
exponentiate this function to obtain the estimate

pnn t) ~ e-(n ln(n)-n)+n ln(vt)-vt = e-(ln(n)-n)(vt)ne-vt ~ (vt) e-vt 

n!

where the final expression is based on the Stirling formula, n! ~ 2 ln(2nn)enln n-n — 
en ln n-n . This semiclassical approximation of the probability function is shown as a 
dashed curve in the figure on page 660. In the center of the distribution, where S = 0 
and semiclassical approximations are problematic, the Fokker-Planck equation does
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microscopic Hamiltonian

mesoscopic
Langevin equation

master equation

continuum Fokker-Planck equation

Fig. 11.2 The three levels of description of nonequilibrium systems.

a better job at approximating the Poisson distribution. However, in the tail regions, 
where S 1, the semiclassical approximation works remarkably well. The quality 
of the result may be improved by including quadratic fluctuations around the mean 
field trajectory, which is equivalent to including the next to leading term in the 
Stirling approximation. However, in applications, it is often sufficient to work with 
“exponential accuracy” and just determine the action of extremal trajectories.

The take-home message here is that variational methods can be powerful in the 
study of rare events. The situation is similar to that in quantum mechanics, where 
the amplitudes of unlikely events - for example, the tunneling of particles through 
a large barrier - are conveniently described by WKB or instanton methods.

11.5 Field Theory I: Zero-dimensional Theories

In the previous sections, we introduced elements of classical nonequilibrium theory. 
We have seen that systems out of equilibrium can be described (see fig. 11.2) on:

> a microscopic level, i.e., in terms of microscopic Hamiltonians and their in­
teractions,

> a mesoscopic level, where the microscopic transition rates are lumped into 
either a stochastic differential equation of Langevin type or a master equation, 
and

> a continuum level. In our discussion so far, the continuum description has 
been formulated in terms of the Fokker-Planck equation, a second-order partial 
differential equation in the state variables that is first order in time.

We have also seen that these formulations in terms of differential (Langevin, Fokker- 
Planck) or integral (master) equations show similarities to the Schrodinger equation 
of quantum mechanics. In the following, we will build on this analogy and formulate 
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stochastic 
differential 

equation

a path integral approach to classical non-equilibrium theory. Much of what has been 
said in earlier chapters to motivate path integration carries over to the present 
context. However, before discussing how the path integral describes nonequilibrium 
physics, let us first construct it.

11.5.1 Martin-Siggia-Rose (MSR) approach

As a warm-up exercise, let us construct a path integral representation for stochastic 
differential equations. A (first-order) stochastic differential equation has the 
structure

dt n + f (n )= £, (11.37)

where n = n(t) is a time-dependent random variable, f = f(n) is a function, and 
£ = £(t) is a noise term. In some applications, £ = £(n,t) depends on n. However, 
here we restrict ourselves to linear noise, defined through n-independent £.19 For 
simplicity, we assume Gaussian correlations,

(£(t))e = 0, (£(t)£(t')>e = A6(t -t'). (11.38)

MSR and Onsager-Machlup functional

As usual in the construction of path integral representations, we start with a dis­
cretization of time, n (t) ^ ni, i = 1,. ..,N, t = i A t, which brings the evolution 
equation into the form

ni - ni-1 + At [f (ni-1) - £i-1] = 0. (11.39)

Denoting the solution for a given noise profile by n[£], the expectation values of 
observables, (O[n]) e, assume the form

OnDe = Dn O[n] (6(n - n[£We = Dn O[n]

where Dn = i dni is the functional measure and 6(n - n[£]) = i 6(ni - n[£]i). In 
the second equality, we have introduced a vector X = {Xi}, where Xi = ni — ni-1 + 
At [f (ni-1) — £i-1] and 16X/6n| is the (modulus) of the determinant of {dX}. The 
advantage of the discretization chosen above is that 6X/6n is a triangular matrix 
with unit diagonal, i.e., the functional determinant equals unity. Thus, substituting 
the definition of X,

(O[n])e = Dn O[n] (6(dtn + f (n) — £))e, (11.40)

where dtn = {ni — ni-1} is shorthand for the lattice time derivative.

19 For an application with nonlinear noise term, see section 11.7.1.
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Ito dis­
cretization

MSR- 
functional

INFO The discretization leading to a unit determinant is called Ito discretization. 
Other discretization schemes generate functional determinants, which are often repre­
sented in terms of Grassmann integrals. The resulting integrals then include both real and 
Grassmann variables. Interestingly, this combination gives rise to a symmetry principle, 
the BRS-symmetry, which plays an important role in various contexts, including particle 
theory. For further discussion of BRS symmetries in field theory, we refer to J. Zinn-Justin, 
Quantum Field Theory and Critical Phenomena (Oxford University Press, 1993).

Representing the 5-function in terms of a Fourier integral and switching back to a 
continuum notation, we arrive at the functional integral representation

(O[ n ]) e = y D (n,n) O[ n ] ( ei f dtn( dtn+f(n)-«,

where the structure of the action suggests that the two fields n and n are canonically 
conjugate to each other. We finally average over the noise to arrive at the Martin— 
Siggia—Rose—Bausch—Janssen—de Dominicis (MSR) functional integral20

(°[nD? = f D(n,n dt in( dt n + f (n))
A 2—n
2

(11.41)

Equivalently, we may use the path integral representation to represent the condi­
tional probability p(n, t|n0, 0) (just write O[n] = 5(n - n(t))) as a path integral 
with boundary conditions:

n(t)=n

dt in( dtn + f (n)) — — n2D(n, n

n(0)=n0

(11.42)

Before proceeding, let us make a few remarks on the structure of the path integrals 
(11.41) and (11.42).

> Introducing a new set of variables (q,p) through (n,n) = (q, — ip), Eq. (11.41) 
assumes the form of an imaginary-time phase space path integral,

q(t)=n

p(n,t|n0, 0) = y D(q,p) Jdt [pq-H(q,p)], H(q,p) = — pf (q) — 2p2. (11.43)

q(0)=n0

However, it is important to keep in mind that, in this representation, the inte­
gration over p extends over the imaginary axis.

> The variation of the action shows that we always have a solution with p = 0 and 
q = — f (q). It describes the evolution of the system in the absence of noise. A 
second characteristic of this solution is that its action vanishes, S [q, p = 0] = 0. 
In fact, both the action and the Hamiltonian H(q, 0) vanish for all trajectories 
with p = 0, regardless of whether they are variational solutions or not.

20 P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics of classical systems, Phys. 
Rev. A 8, 423 (1973). Although the integral has been independently derived a number of times, 
“MSR-functional” appears to be the most frequent denotation.
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> Since the Hamiltonian is quadratic in momenta, we may integrate over p to 
obtain

q(t)=n

p (n,t | n 0, 0) = y D (q) e - "' d dt [ dtq+f (q )]2 • (11.44)

q(0)=n0

Onsager—
Machlup 

functional

This defines the Lagrangian variant of the theory, the Onsager—Machlup 
i 21 211221 I 21 T O III"'! II O’! 1 KI 1 11 1 ---- 1 ,~.2 I f ((q) f(q) 1\T2 f n ill'll T

21 L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91, 1505 (1953).

fUIlCUOIldl, with Lagrangian L((q, q) — 2^a q | q ^a | 2^a . INote tXiat Ll

resembles the Lagrangian of a one-dimensional point particle with mass m = 1/A
coupled to a velocity-dependent one-dimensional vector potential, of strength 
A(q) — f (q)/A, and a potential V(q) — f (q)2/2A. Interpreting the Onsager- 
Machlup functional as the analog of a Feynman path integral, the corresponding
“Schrodinger equation” reads as

dd- — 2m (dq+a (q ))2+v (q 0 p (q,t)=dd- — A"q — dq f (q 0 p (q,t)=0,

where we note that p(q, t) — p(n, t) plays the role of a wave function, subject 
to the initial condition p(n, 0) — 5(n — n0) (think about this point). Comparing 
with our earlier discussion, we recognize the Fokker-Planck equation:

The Fokker-Planck equation is the “Schrodinger equation” of the MSR 
path integral.

The discussion above is somewhat abridged in that we do not pay much attention 
to operator ordering, e.g., the order dq f (q) versus the order f (q) dq.

thermal
escape

Example: thermal escape

Consider a particle trapped at the bottom of a metastable potential configuration 
(see inset of fig. 11.3). Thermal fluctuations may assist the particle in overcom­
ing the potential barrier and reach an energetically more favorable configuration. 
The corresponding thermal escape rates are controlled by Arrhenius factors 
whose computation is of importance in, e.g., the chemistry of thermally activated 
reactions. In the following, we demonstrate how the functional integral approach 
describes the situation in an intuitive and computationally efficient manner.

Assuming overdamped dynamics, the equation of motion of the trapped particle 
reads yq + dqV(q) — £'(t), where {£'(t)£'(t')) — 2yT5(t — t'), by the fluctuation­
dissipation theorem. Dividing by y, we obtain a stochastic differential equation 
of the type (11.37), with the identification q o n, f — dqV, and noise strength 
A — 2Ty-1. We assume that T is much lower than the height AV of the barrier, so 
that thermal escape is a rare event, occurring with probability p ~ exp(—AV/T). 
The largeness of the exponent — ln p ^ AV/T 1 suggests a variational evaluation 
of the path integral (11.43), neglecting fluctuation effects.
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Fig. 11.3 Inset: Particle in a metastable potential well. Main figure: Phase space portrait of the 
corresponding MSRJD functional. For a discussion, see the main text.

V

With H (q, p) = - 
action (11.43) read

p(dqV(q) + Tp), the Hamiltonian equations of motion of the

q = dpH(q,p) = -1 dqV(q) - 2Tp, p = -dqH(q,p) = 1 pd2V(q).

For the purposes of the present discussion, we do not need to solve these equations; 
it is sufficient to inspect the ensuing phase portrait.

As we shall see, the topology of the Hamiltonian flow in phase space is largely 
determined by the zero-energy contours H(q, p) = 0. We saw above that one of 
these curves is specified by (q, p = 0). On the line p = 0, the equations of motion 
reduce to Yq = — dqV (q). This is drift motion down the potential gradient towards 
the local minimum. We note that the point of the local potential maximum q = q* 
defines an unstable point on that line, while q = 0 is stable.

Besides the obvious downward drift, one may expect the presence of a reverse 
trajectory 0 ^ q* representing thermal escape. This fluctuation-induced trajectory 
must emanate from the fixed points and, since H is conserved, it must also have zero 
energy. Indeed, the equation H(q,p) = 0 possesses a second solution, p = — T-1 dq V. 
At the fixed points, q = 0,q* we have dqV = 0, and this solution intersects the p = 0 
line. However, as in classical mechanics, physical trajectories cannot cross it. Instead 
we have trajectories terminating at (0, 0) and (0, q*), where the time it takes to 
reach the fixed points, or depart from them is infinite. Further, Liouville’s theorem 
requires the conservation of phase space volume. Since the fixed point (0, 0) is 
attractive along the p = 0 line, it must be repulsive along the trajectories escaping 
into the p = 0 continuum, in order to define an overall hyperbolic fixed point. 
(Recapitulate why globally attractive or repulsive fixed points are at variance with 
the laws of classical mechanics.) The figure shows how the interpolation between 
the near fixed-point regions generates a phase diagram where the E = 0 trajectories 
are separatrices between differently directed flows.
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None of these features is specific to the present escape problem, which is one of 
the strong features of the present formalism. On general grounds, the fixed points of 
rate equations defined on the p = 0 lines of an MSR functional are always terminal 
points of p = 0 trajectories, which describe the essential physics of fluctuations 
in the problem. To see how this materializes in the present context, note that the 
fluctuation trajectories leaving or arriving at the point 0 or q* are connected to 
form a single trajectory 0 ^ q* moving against the potential gradient. Its action 
(finite, although the energy H vanishes) is calculated as

*

S = - fdt(p(q)q - H(q,p)) = T^ dqdqV(q) = T(V(q*) - V(0)) =

where the defining property p = — T-1 dqV has been used. Exponentiation of the 
action, p ~ exp(—S) = exp(—AV/T) shows that, in the present case, the escape 
probability is determined by the Arrhenius factor of the potential well. Of course, 
one might have arrived at this result with less effort, for example by reasoning sim­
ilar to that applied before in connection with the Einstein relation (11.7). However, 
as usual with functional approaches, the advantage of the above formalism is its 
extensibility to the more complex problem classes addressed below.

11.5.2 Field integral representation of the master equation I

REMARK In order to avoid potential confusion with the “momentum” variable below, 
the symbol for probability is capitalized in this section, p ^ P.

The MSR path integral formalism can be generalized to a general stochastic path 
integral describing the evolution of Markovian stochastic processes. For simplicity, 
here we consider a one-step master equation, i.e., an equation where a discrete 
state variable n changes by no more than one unit, ±1, in each time step. Gener­
alization to multi-step processes is straightforward. Our starting point, thus, is a 
general one-step master equation,

dtP(n,t) = [(E1 — 1)f-(n) + (E-1 — 1)f+ (n)] P(n,t), (11.45)

where E±1 f (n) = f (n ± 1) as before. We rewrite the equation as

(dt + H(q,p)} P(t) = 0, P(0) = 1, (11.46)

with the “Hamiltonian operator”

H(q,p) = - (e+ip - 1) f-(q) - (e-ip - 1) f+($) (11.47)

emphasizing the interpretation of P(n, t; n0, t0) = P(n, t|n0, 0) = P(n, t) as an 
imaginary-time evolution operator. Throughout, we will work in a coordinate rep­
resentation, where q ^ q is a real variable and p ^ — idq acts by differentiation. It 
is understood that the continuous variable q is initialized at discrete values q o n0. 
The fact that the Hamiltonian changes q ^ ±1 in integer steps, then ensures that 
a discrete-variable stochastic dynamics is described.
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stochastic 
path 

integral

demographic 
noise

We next represent the formal solution to (11.46) as an imaginary-time phase 
space path integral:

q(t)=n

P (n,t; n 0 ,t 0) = {n | e -tH | n 0) j D (q,p) J dt (ipq-H'(pq)),

q(0)=n0

where H'(q,p) is the classical Hamiltonian corresponding to the operator (11.47). 
Again, it will be convenient to remove the i-dependence of the action via a Wick 
rotation of the p-integration contour, p ^ — ip. This leads to the stochastic path 
integral

q(t)=n

P (n,t; n 0 ,t 0) = D D (q,p) J dt (pq-H (pq)),
(11.48) 

q(0)=n0

H(q,P) = — (e+p - 1) f-(q) — (e-p — 1) f+(q),

where H(p, q) = H'(q, — ip) is the Hamiltonian evaluated on the new momentum 
variable. Let us remark on the structure of this integral:

> In the present variables, the integration is over imaginary momenta. This can 
become relevant when convergence issues are discussed.

> The stochastic path integral is a close ally of the MSR functional (11.43). 
As with the latter, its action vanishes on the axis p = 0. The line p = 0 ac­
commodates a solution of the variational equations, (q(t),p = 0), where q = 
f+(q) — f-(q). Comparison with dt{n) = {f+(n)) — (f-(n)) ^ f+({n)) — f-({n)) 
shows that this equation describes the fluctuationless dynamics, again in analogy 
with Langevin theory.

> A quadratic expansion of the Hamiltonian operator, H ~ ip(f+(q) — f-(q)) + 
p2//-/^\,/-/^Wl
pf (f-(q) + f+(?)), leads to the Fokker-Planck approximation of the master 
equation

^t + dq(f+ — f-)(q) — 2d22( f- + f+)(q)) P(q, t) = 0.

Performing this expansion on the level of the action, we obtain an MSR func­
tional with quadratic momentum dependence and “diffusion” coefficient A = 
f- + f+ . This observation conveys an interesting message: here, the dynamics 
is rendered noisy (the presence of a diffusion term) via the discreteness of the 
variable q o n. For small q, the fact that the state variable changes in integer 
steps becomes essential, and this is reflected in the increased importance of the 
higher-order terms in the expansion (consider why). Specifically, the diffusive 
second-order term has a stronger influence on the drift dynamics described by 
the first-order term. Noise of this type is of importance, e.g., in the evolution of 
populations of small size, and is often called demographic noise.
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11.5.3 Doi-Peliti operator technique

Besides Eq. (11.48), there exists another path integral approach to the master equa­
tion, the Doi-Peliti operator technique.22 The main feature of the Doi-Peliti 
formalism is that it describes the evolution of a discrete state variable with tech­
niques borrowed from second quantization. To introduce the idea, let us consider 
the stochastic extinction of a population whose individuals die at a constant rate 
A. It is described by a process with weight functions f+ = 0, f- = An, and the 
corresponding master equation reads

dtP(n, t) = A(E1 — 1)nP(n,t).

Again, we approach this equation from a quantum perspective; however, this time 
with techniques of second quantization. To this end, define a bosonic Fock space 
with basis states |n). Within this space, we introduce an algebra of Fock space 
operators through

a | n) = | n — 1), «| n) = (n + 1)| n + 1). (11.49)

It is straightforward to verify that these operators obey canonical commutation 
relations, [a, a] = 1, i.e., they are related to the standard ladder operator algebra of 
second quantization (defined by a | n} = n1 / 2| n — 1), a t| n} = (n + 1)1 /21 n + 1)) by 
a simple canonical transformation. Employing these operators, the right-hand side 
of Eq. (11.45) assumes the form (exercise)

H = — A (a — a a), (11.50)

and

P(n, t) = {n|e tH|n0} (11.51)

is a Fock space representation of the distribution function.
We next apply the techniques introduced in section 0.4 to represent P(n, t) as 

a coherent state field integral. Proceeding in the usual manner, we decompose the 
time interval into N 1 steps, e-tH = (e-SH)N, 6 = t/N, then note that the 
Hamiltonian Eq. (11.50) is normal ordered, and finally insert coherent state resolu­
tions of the identity, id. = J d(X, X) e-XX |XXX|, where the coherent states |X) obey 
the relations a|X} = X|X}, a|X) = dx|X}, (X|a = (X|X, (X|a = d,^(X|. This leads to 
the representation

-s N=01 [5-1(X1 n-Xn+1)^n + H(Xn +1 ,^n)] + n ln ^N+n0 ln 7/>0-ln n!

Here, H (Xa, X) = —AXa(1—X) is the coherent state representation of the Hamiltonian 
and the last two terms in the exponent (action) represent the boundary matrix 
elements;

22 M. Doi, Second quantization representation for classical many-particle system, J. Phys. A 9, 
1465 (1976); L. Peliti, Path integral approach to birth-death processes on a lattice, J. Physique 
46, 1469 (1985).

P(n, t) = DXe
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{n | 4n ) = 4N = en ln 'N,

(4o|no) = -1 400 = en0 ln'0-lnn0!• 
n!

(11.52)

Switching to a continuum notation, we arrive at the Doi—Peliti functional inte­
gral

p(n,t) yD^e-4dtz(-dt'''+H('')])+nln'(t)+n0ln*(o)-lnn0! (11.53)

Equation (11.53) defines a representation of P (n, t) alternative to the phase space 
path integral (11.48). To understand how the two representations are related to each 
other, note that, in the path integral formalism of an extinction process with f+ = 0 
and f- = Xn the Hamiltonian (11.47) reduces to H = — A(ep — 1)q. Comparison 
with Eq. (11.50) suggests the identification

a = epq, a = e - p, (11.54)

Cole-Hopf
transfor­

mation

which, up to a constant, leads to an identical Hamiltonian. Equation (11.54) defines 
the Cole—Hopf transformation. It is straightforward to verify that it is canoni­
cal, i.e., the relation [pi, q = 1 is compatible with [a, a] = 1. The operator transform 
defines a structurally identical transformation of coherent state integration vari­
ables, whose substitution into the functional integral (11.53) transforms the bulk 
action, J dt'(—(dt>4)4 + H(4,4)), into that of Eq. (11.48). A careful treatment of 
the boundary term generates the effective boundary condition qq((ot))==nn .

EXERCISE Explicitly represent the coherent states above as exponentials of the op­
erators a, a and verify the relations (11.52). Apply the Cole-Hopf transformation to the 
time-discretized representation of the functional integral to prove the above boundary 
identity in the large-n limit. In doing so, avoid taking hermitian adjoints - the operator a 
is different from a^.

Summarizing, we have constructed two alternative representations of P(n, t) that 
are related by a Cole-Hopf transformation. The example above illustrates that 
the Doi-Peliti formalism often leads to simpler representations of the Hamiltonian. 
However, the price to be paid for this simplicity is that its variables are more ab­
stract and less easy to interpret in physical terms. One cannot say categorically 
which of the two representations is better. The network of different theories con­
structed in the previous sections is summarized in fig. 11.4.

11.6 Field Theory II: Higher Dimensions

So far, we have been focusing on systems whose state is described by a single scalar 
variable - the analog of (0 + 1)-dimensional point quantum mechanics. However, 
one of the strongest features of the path integral formalism is its extensibility to
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Summary of different functional integral approaches to Langevin dynamics and stochastic 
processes.

continuum problems - the analog of (d + 1)-dimensional quantum field theory. 
Examples in this category include the following:

> interacting lattice particle systems, whose dynamics is governed by an in­
terplay of single-particle hopping and interactions. For example, in exclusion 
processes, a hardcore repulsion prohibits multiple occupancy of lattice sites, 
and in driven diffusive lattice gases, an external force generates nonequilib­
rium states.

> reaction-diffusion systems, which are lattice systems populated by parti­
cle species A, B , . . . which may undergo reactions. They frequently appear in 
the modeling of chemical reaction kinetics, the description of evolutionary or 
ecological dynamics, traffic simulation, and related set-ups. For example, the 
bottleneck limiting the throughput of a fast chemical reaction A + B ^ C in 
solution may be the speed at which the agents diffuse through the liquid. In this 
case, a combination of diffusion and local reaction defines the minimal frame­
work to describe the process. Adopting the language of population dynamics, 
elementary reaction processes include birth 0 ^ A, death A ^ 0, transmutation 
A ^ B, death at contact, A + B ^ A, etc.

In such problems we typically deal with macroscopically large particle numbers. 
First principle solutions of stochastic evolution equations are out of the question, 
and besides would contain excessive information. As in Boltzmann statistical me­
chanics (section 11.3), one therefore starts by defining coarse-grained effective 
variables. For example, reaction-diffusion systems are often described in terms of 
the local concentration of agents, nA(x), nB (x),   Throughout, we will denote the 
set of effective variables of a problem by fia(x), a = 1,... ,n.

As in the Langevin theory discussed in section 11.2, the microscopic degrees of 
freedom influence the dynamics of coarse-grained ones in different ways: (i) combi­
nations of dissipative and external forces may stabilize local stationary configurations.
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However, (ii) such dissipative relaxation is accompanied by stochastic fluctuations. 
(iii) The dynamics of conserved quantities is constrained by continuity relations 
dt$ + V • j = 0, where j is a current field.

11.6.1 Dynamical critical phenomena

dynamical 
critical 

phenomena

dynamical 
critical

exponent

Systems of the above kind may undergo phase transitions between macroscopically 
distinct states. As in equilibrium statistical mechanics, such phase transitions are a 
prime object of study. A difference is that, now, we are working under nonequilib­
rium conditions, implying richer forms of critical phenomena with interesting time 
dependence. Following the seminal review article23 by Hohenberg and Halperin 
(HH), this section is an introduction to dynamical critical phenomena in gen­
eral. In what follows, we will then apply this framework to the field-theoretical 
study of nonequilibrium phase transitions.

Consider a system a system undergoing a second-order phase transition charac­
terized by an order parameter ^. The distance to the transition point is measured 
by a relevant scaling field t (e.g., t = (T — Tc)/Tc, where T is temperature and 
Tc is the critical temperature). Assume that the order parameter ^ is conjugate to 
a field h, in the sense that (^) = — dh F [h], where F [h] is an effective functional 
describing the system. (In thermal equilibrium, this would be the thermodynamic 
free energy.)

In the vicinity of a critical point, the system builds up long-range correlations. 
For example, the static correlation function C(x) = (^(x)^(0)) is expected to show 
power law behavior:

C (x) = |x|-(d-2+n) Y (|x|/£), (11.55)

where Y is a dimensionless scaling function and the correlation length £ ~ | t |-v 

defines the characteristic length scale of order parameter fluctuations. However, the 
order parameter may also fluctuate in time. The corresponding characteristic order 
parameter time scales are denoted by t(t) and are expected to increase as

t(T) ~ £(T)* ~ |T|-^ (11.56)

where z defines the dynamical critical exponent. The growth of these time scales 
upon approaching the transition is called critical slowing down. Equation (11.56) 
can be read as a statement on the dispersion of order parameter fluctuations: 
the characteristic frequencies corresponding to Eq. (11.56), w(t) ~ t(t)-1 ~ tvz, 
relate to the momenta |q| ~ £-1 ~ |t|v according to

w ~|q|zf (|q|£),

where f is a dimensionless function.

23 P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 
49, 435 (1977).
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To make these statements more concrete, consider a situation where $ has been 
prepared in an initial state and is subsequently allowed to relax. It is reasonable to 
describe the relaxation profile by the scaling ansatz

<b (t,T) = |T |13 g (t/t (T)),

where P is the standard order parameter exponent and g is a dimensionless scaling 
function. For large arguments, g(x ^ rc>) ^ const., reflecting that, for t t(t), 
the order parameter scales as in the static theory: ft ~ |t|@ below the transition 
point, and ^ = 0 above. For short times, t ^ 0, the relaxation process does not feel 
the full extension of the correlation volume, and ^(t, t) must be independent of t . 
This leads to the condition g(t/t(t)) t|t|-@, or

<p (t) ~ t-a, a = fl/vz.

dynamic 
suscep­
tibility

We next define two correlation functions characterizing the fluctuation/correlation 
behavior of the order parameter: The dynamic susceptibility, x, is defined 
through the linear response relation

($(q)) h =0 X(q)h(q), (11.57)

dynamic 
correlation 

function

where q = (q,w). Since $(t) can depend only on h(t' < t) (by causality), x(w) is 
an analytic function in the upper complex w-plane (recapitulate why). The spatio­
temporal fluctuation behavior of the order parameter is described by the dynamic 
correlation function

C (x) = {0 (x) 0(0)) — {0 (0))2, (11.58)

where x = (x, t). While (11.57) probes the response of the average order parameter 
to changes in h, and is therefore affected by dissipation, Eq. (11.58) is a mea­
sure of the fluctuations. In section 11.6.4, we will see that, in thermal equilibrium, 
the two quantities satisfy a variant of the fluctuation-dissipation theorem, 
C(q, w) = — 2T-Im x(q, w). Violations of this relation are an indication of nonequi­
librium conditions.

11.6.2 Field theories of finite-dimensional Langevin systems

With theses definitions in place, we now formulate an effective field theory approach 
to dynamical critical phenomena. Let us assume that the energy stored in an order 

23 
parameter configuration is described by an energy functional H[^]. Following HH, 
we anticipate that fluctuations in H cause temporal changes in ^, where the specifics 
depend on the nature of the order parameter field.

> In a model for a system with non-conserved order parameter (model A, in 
the terminology of HH), ^ will relax to the minima of the energy functional.
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Defining x = (x, t) as usual, this is described by a variational equation of the 
form24

24 The Hamiltonian is a function of ^(x). In 5$^(x) H = 5^(x) H| ^(x,t), we evaluate the variational 
derivative at a specific time-dependent configuration.

dt2(x)
H [ 2 ] 

2( (x)

For example, for a Hamiltonian with quadratic order parameter dependence, 
H[2] = 2 f d2x22(x), the equation above leads to exponential relaxation, dt2 = 
- y2 .

> However, in a system with conserved order parameter (model B), the continuity 
equation dt2 + V • j = 0 has to be obeyed. Assuming drift current away from 
regions of increased energy, j(x) = —V ^^), it assumes the form

dt2 (x) = A
8H [ 2 ] 
2( (x)

generalized 
Langevin 
equation

With the choice D = y, the above quadratic Hamiltonian now leads to a variant 
of Fick’s law, j = — DV2, with diffusion dt2 = D A2.

T'Tio I xit/ l /■■icfiL' ■ il'uim /''iii Vao onn/I m nno -ic n.AX— A n [0] mhoro
t ne tw ^o cases ^ai—■ o)ve co*ii i_■e ie.^neseiitevi iii ^yiie e^qu.^ati^^ii ^as t21^2(^x) &(x) , wneie
n = 0, 1 for models A and B, respectively. This equation describes the dissipative 
relaxation of the order parameter, and hence a noise term must be added to account 
for the presence of fluctuations. This defines the generalized Langevin equation,

dt2 ( x ) = -(-A) n H2] + £n ( x ) 
62(x)

where, for model A, the noise is correlated as

(£o(x)£0(X, t')} = 2T8(t - t')6(x - xz) = 2T6(x - x').

(11.59)

(11.60)

This ansatz assumes a time resolution sufficiently coarse-grained that the noise 
is effectively Markovian and short-range in space. The noise strength defines a 
parameter T, playing the role of an effective temperature. For model B, we assume 
that £ 1 = dini is the divergence of a noisy current field whose components ni are 
independently Gaussian correlated as (ni(x)Vj (x')) = 2T6ij6(x - x'). In this way 
the conservation of the field 2 is guaranteed, dt2 = -di(ji - ni).

Functional averages (O[2]) f may now be computed by straightforward general­
ization of the (0 + 1)-dimensional functional (11.40):

<O[2])f = [ D2O[2H n 6 (dt2(x) + (-A)n6H2 - £n(x)M .
62(x)

xf

Again, we represent the 6-functional as a integral over a field ^ and integrate over 
the noise to arrive at

//nr-AlV i ^2 dX /\ znrj.1 dx^ (x)( dt0 (x) + (-A) n ^H• -] )- T f dx^ (x)(-A) n^ (x) 
(O[2])f = D(2,^) O[2] e v 5-(x,
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MSR- 
functional

where J dx = f ddxdt, and the derivative present in the noise correlation of model 
B leads to the appearance of the Laplacian (—A) in the second term in the action. 
A Wick rotation t ^ — it finally brings us to the finite-dimensional generalization 
of the MSR-functional

<O[ * ]) e = / D (t,t) O[ * ] e *dx^ (dt*+(-A) n^)+T 1dx^(-A) n^ (11.61)

where we omit the argument x of the fields for notational simplicity. Before dis­
cussing the physics described by this functional, we extend the formalism to include 
more general Markovian stochastic processes.

11.6.3 Field theory of finite-dimensional stochastic processes 

(11.63)

Problems in reaction kinetics or population dynamics are frequently described by 
master equations defined on a lattice,

dtpt [ n ] = (W [ n, n'] pt [ n'] — W [ n' ,n ] pt [ n ]) . (11.62)

The notation Pt[n] indicates that the distribution depends on the discrete field {ni}, 
where i is a lattice point and ni is a generally multi-component variable describing 
the local state of the system (the concentrations Ai, Bi, . . . of chemicals, etc.). In 
reaction-diffusion systems, the transition rates W describe the competition of 
diffusive spreading (a random walk on a lattice) and particle reactions. Field theory 
representations of such systems are obtained by straightforward generalization of 
the (0 + 1)-dimensional techniques introduced in sections 11.5.1 and Eq. (11.50).

As an example, consider the simple process A -^ 0 describing the extinction of 
an agent A at constant rate A. Defining ni = as the number of A -agents at lattice 
site i, we may ask how the probability pt [n] evolves under the joint influence of 
annihilation and diffusive spreading. A field theory representation of this process 
can be obtained by generalization of the Doi-Peliti operator algebra,

ai | .. .,ni,.. .) = |. ..,ni — 1,...),

ai | .. .,ni, .. .) = (ni + 1) | .. .,ni + 1,...),

where the population {ni } is described as a Fock space state. A straightforward gen­
eralization of the discussion of section 11.5.3 shows that the Hamiltonian generating 
the process is given by

H = — D aiAijaj — A ai (1 — ai), (11.64)

where Aij is the lattice Laplacian and D a diffusion constant. The corresponding 
coherent state field integral action then reads

S[tp,^]= I ddxdt [?/>(dt — DA)^ — A?/>(1 — ^)] , (11.65)
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where we have switched to a continuum notation. The variational equations of this 
action,

(-dt + DA)V = X(V - 1), 

(dt + D A) V = XV,

have the fixed point (V,V) = (1, 0). Remembering the Cole-Hopf transformation 
(11.54), (V,V) = (e—p,epq), this is identified as the lifeless and noiseless configu­
ration (q, p) = (0, 0). In agreement with the general principle, p = 0, or V = 1, 
while the conjugate variable describes a combination of extinction at rate — XV and 
diffusive spreading.

11.6.4 Fluctuation-dissipation theorem

How can one tell whether a system is in thermal equilibrium? One way to answer 
the question is to compute the stationary limit of the probability distribution and 
check whether it is of Maxwell-Boltzmann form. However, this procedure is often 
too elaborate to be practical. In general, it is more economical to check whether a 
system satisfies the fluctuation-dissipation theorem (FDT) - a hallmark of thermal 
equilibrium. We have already encountered various manifestations of the FDT. In 
this section, we discuss the FDT from a general perspective, first in the terminology 
of response functions, and then from a field theory perspective.

Equilibrium linear response

Linear response was introduced in section 0 as a means to compute the expectation 
value of observables X (x,t) = X (x) in response to the application of a generalized 
force, F, conjugate to X. Assuming that, in the absence of force, X(x) = (X(x)) = 
0, we obtained the linear relation

X (w ) = x q( w) F (w)+ O( F 2), (11.66)

where xq(w) is a generalized quantum susceptibility. Equation (11.66) defines 
a connection between the two macroscopic quantities F and X in an environment 
containing a large number of microscopic degrees of freedom. In general, the latter 
have a damping, or dissipative, effect on external perturbations and, in this sense, 
xq probes the dissipative response of the system. In section 0.3 we showed that 
Xq(w) = C+(w) is the Fourier transform of the retarded response function

c+(t ) = — i e( t)<[ X( t) ,x(0)]).

We also considered the time-ordered correlation function

cT (t) = — i (TtX( t) XT(0)>,

which describes the average second moment, or fluctuations, of the observable X . 
It turned out that the dissipative cq+ and the fluctuation cqT are related by (cf. 
Eq. (0.19))
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Im CT (w) = Im C+ (w) coth(fiw/2). (11.67)

This is the FDT of (quantum) linear response.
We want to understand the classical limit of this relation. Referring for a more 

rigorous discussion to appendix section A.4, we note that in this limit X ^ X(x) 
becomes a function in phase space, and X(t) ^ X(x(t)) is the evolution of that 
function according to classical mechanics. The time-ordering in CqT becomes irrel­
evant, so that the object replacing the time-ordered expectation value reads

C (t) = {X (t) X (0)),

where the phase space average (...) = fr p(x)... assumes the role of the quan­
tum thermal trace and we do not include the factor -i present in the definition 
of CqT. Noting that C(t) = C (-t), the left-hand side of the FDT is replaced as 
ImCTT(w) ^ C(w). Turning to the retarded response function, the commutator 
[A, B] ^ ~i{A, B} becomes a Poisson bracket, so that C+ ^ ~C + with

C+ (t) = X(t) = ©(t)({X(t), X(0)}), (11.68)

where x defines the classical susceptibility. Finally, we note that the dimen­
sion [@w] = action-1 of the argument of the coth-factor requires another ~, so 
that coth(~ftw/2) ^ 2/~flw. This ~ in the denominator cancels that multiply­
ing the Poisson bracket, and the substitution of all factors leads to the classical 
fluctuation—dissipation theorem

C (w) = - 2T Im x (w) (11.69)

We obtained this expression by taking the ~ ^ 0 limit of its quantum analog. 
However, it is equally possible to derive the FDT entirely within the framework of 
classical linear response theory. Interested readers may consult the original reference 
on the subject,25 or consult section 11.9.3.

25 R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys. 29, 255 (1966). Note that 
Kubo uses a different convention for the temporal Fourier transform. This leads to a few sign 
differences.

EXERCISE Consider a classical harmonic oscillator H(x) = 1 (p2 + q2) (with the 
mass and spring constant set to unity for simplicity) in a state of thermal equilibrium, 
p(x) = N exp(-H (x)/T). Compute the two response functions and verify that the FDT 
is satisfied. (Hint: It may be more economical to evaluate the Poisson brackets in a pair of 
canonical variables different from x = (q, p).) For more details and the solution, see sec­
tion 11.9.3. Below, we will approach this problem from a somewhat different perspective.

It is sometimes useful to consider a variant of the FDT integrated over frequencies.
To this end, we note that the integrated fluctuation function

C(t = 0) = I d^C(w) = (X(0)X(0)) = (X2}
2 2 n
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just probes the second moment of the variable X in the thermal distribution func­
tion. Turning to the right-hand side, x(u) is analytic in the upper half-plane. Ap­
plication of the theorem of residues to an integration contour shifted infinitesimally 
into the lower half plane then yields J 2^ ImX(“) = x20). This leads to the static 
version of the FDT,

C(t = 0) = Tx(u = 0) | (11.70)

where the notation highlights the non-local character of the statement: fluctuations 
local in time are related to the zero-frequency susceptibility, which is the suscepti­
bility integrated over time.

Field theory

Here, we discuss how the FDT (11.69) is implied by the path integral approach. 
For definiteness, let us consider the quadratic Hamiltonian

H [ 0 ] = ddx ^~2(d0)2 + 202 — h0^ ,

describing the relaxation of an effective variable, 0. Assuming noisy dynamics, the 
corresponding MSR functional (11.61) reads

Z = J D(0,0) e dx [^(dt0+(-A)n(-DA0+r0-h))+T^(-A)n^].

Switching to (d + 1)-dimensional momentum space, q = (u, k), we represent the 
action as a bilinear form, S[0,0] = S0[0,0] + f dq0qk2nh—q, where

. r , ,1 1f,/, 0 0 (g—) 000S o[ 0,0] = - 2 J dq (0, 0) —q g+) — 1 2 Tk2 nJ

g± = (T iu + k2 n (Dk2 + r ))-1 .

Here, J dq = f (2Jkd+1, and we use an index notation gq, instead of g(q), for im­
proved notational clarity.

We next employ this functional to compute the dynamic susceptibility. Owing 
to the evenness of S 0 in the fields, {0 )0 = 0, where {... )0 = f D (0,0) e—So[ 0,^]. 
To leading order in the driving field, we thus obtain (0q) ~ f dq' (0q k/2n 0—q/) hq/, 
giving 

x(q) dq' (.0q k/2n 0-q'} = gq+ k2n.

This leads to the identification x(q) = q2ngq+ . On the other hand, the fluctuation 
correlation function is given by

c(q) dq00q0q.}o = 2Tk2ng+ g—

where from the last equality we note Imgq+ = ugq+gq- . This calculation demon­
strates the consistency of the free (quadratic) equilibrium field theory with the

(11.71)

2T
= —Im Xq, u

(11.72)
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FDT. However, it can be much more challenging to show that this compatibility 
extends to the interacting case. A common strategy is first to consider limiting 
cases, where a system of interest is in equilibrium. Compatibility with the FDT is 
then demonstrated, if necessary by approximate or perturbative methods. Building 
on this reference point, departures from equilibrium can then be diagnosed by FDT 
violation.

INFO The function C(q) = C(q ,u) describes spatio-temporal fluctuations at the char­
acteristic length scale |q|-1 and time scale u-1, and for this reason is sometimes called 
the dynamic structure factor. Another frequently used notation is S(q) = C(q). The 
FDT establishes a connection between the dynamic structure factor and the dynamic sus­
ceptibility. Likewise, the static version of the FDT (11.70) relates the static structure 
factor C(q) = S(q) to the static susceptibility.

It may be worth recapitulating that, in systems kept at some predetermined noise 
level (set, e.g., by the coupling to an external environment), the noise strength 
determines the effective temperature via the FDT condition.

11.7 Field Theory III: Applications

In this section, we apply the formalism developed thus far to explore one of the 
most important universality classes of nonequilibrium physics, directed percolation. 
Within the framework of this discussion, we will address the following questions:

> How can the effective Hamiltonians H[^] introduced in section 11.5.2 be con­
structed for concrete physical systems?

> What can the theory say about the different phases realized in and out of equi­
librium?

> And what can be said about the transitions between these phases? To what 
degree can we generalize concepts developed for equilibrium systems - critical 
dimensions, mean field theory, renormalized theory of fluctuations, etc. - to the 
present setting?

11.7.1 Directed percolation

In equilibrium statistical mechanics, the ^4- or Ising-class defines perhaps the most 
fundamental universality class. For systems defined by a single scalar order pa­
rameter ^, it describes the spontaneous breaking of reflection symmetry ^ o — ^ 
in a phase transition. In nonequilibrium statistical mechanics, the directed perco­
lation class plays a similarly fundamental role. In this section, we will introduce 
the concept of directed percolation, demonstrate its importance to non-equilibrium 
physics, and describe its critical phenomena.
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Directed percolation: phenomenology

directed 
percolation

The term directed percolation26 (DP) 
refers to a class of models describing the 
directed spreading of a substance. Ex­
amples include liquids dispersing through 
porous rock under the influence of a 
gravitational force, the spreading of an 
epidemic in time, and many other sys­
tems. DP models are often defined on 
d-dimensional hypercubic lattices. As in 

26 See H. Hinrichsen, Nonequilibrium critical phenomena and phase-transitions into absorbing 
states, Adv. Phys. 49, 815 (2000) for an excellent review of the subject.

non-directed percolation models, the links of the lattice are chosen to be open or 
closed with probability p and 1 - p, respectively. Percolation becomes directed when 
a specific main diagonal of the lattice is singled out to give the bonds a sense of 
preferred orientation (see the figure).

DP phase 
transition

dry/wet 
phase

At a critical value, p = pc , the 
model undergoes a directed per­
colation phase transition (see 
the figure). The order parameter 
of this transition is the probability 
Px that a randomly chosen site of 
the lattice is at the origin of an 
infinitely large connected cluster. 
At p < pc , the system is in a dry 
phase void of extensive clusters, and at p > pc it is wet. It is evident that the 
critical value pc = pc (d) depends on the dimensionality. In one dimension, any 
broken link truncates a cluster, such that pc(1) = 1. In infinite dimensions, the 
unlimited number of options for departing from individual lattice sites implies 
pc(d ^ rc>) \ 0. However beyond such qualitative statements, the critical proper­
ties of the DP-transition are not fully understood. Numerical studies indicate that 
the critical exponents characterizing it assume complicated, and likely irrational, 
values.

It turns out that many reaction-diffusion processes fall into the DP univer­
sality class. To understand the connection, note that a reaction-diffusion system 
can be defined on a hypercubical lattice, where one main diagonal represents the 
direction of time. In this formulation, covered bonds are segments of the world lines 
of particles, whose state may change at the nodes of the network. This includes a 
diffusive change of direction and reactions (see fig. 11.5). A cut through the network 
at a fixed instance of time defines the instantaneous state of the system. The rules 
describing the generation update at the next plane of nodes can now be chosen to 
describe even very complicated reaction-diffusion processes; some basic examples 
are shown in fig. 11.5. However, it turns out that many of these choices imply a
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diffusion birth

time

death coagulation

offspring production

Fig. 11.5 Dynamical interpretation of a DP network. Each row of sites represents a generation of parti­
cles. The generation dynamical update then involves diffusion, birth and death, coagulation 
and the generation of offspring.

phase transition between two principal alternatives, a dry and a wet phase charac­
terized by full and absent coverage of the lattice, respectively. It is a challenge to 
theory to describe the universal properties of such transitions, and their connection 
to the basic DP universality class. However, before turning to this point, we first 
discuss the physics of the DP as initially defined.

Elements of scaling theory

The physics of the DP transition is conveniently described in terms of scaling laws. 
Introducing t = p — pc as a parameter measuring the distance from the transition 
point, correlations in the spatial directions of the system are characterized by a 
correlation length £ ~ t-v and those in the time direction by a correlation 
time t ~ £z ~ t-vz. The transition as such can be diagnosed via two candidate 
order parameters. The first is the average number of active sites,

P(t) = N-^si(t)^ ,

where N is the total number of sites within one time layer, and where si = 1 if site 
i has occupied bonds emanating from it, and zero otherwise. In the vicinity of the 
transition, p is expected to exhibit power law scaling, p(t ^ rc>) = p ~ t'',t < 0. 
More generally, the critical time dependence of order parameter fluctuations is 
described by the ansatz

P(t) ~ |t|?g(t/t(t)),

with short-time asymptotics (see the discussion in section 11.6.1), 

p(t) ~ t-a, a = fl/vz.

Another possible order parameter is the infinite-cluster size probability Px 

introduced above. It can be generalized to a time-dependent quantity by defining
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P (t) as the probability that a cluster that started at t = 0 is still active at time t. 
Since the spatial size of the cluster grows indefinitely with time, P= = P(t ^ o©). 
The scaling behavior of P is described by P= = tP , t > 0, and

P(t) - |t|P'g'(t/t(t)),

with short-time limit P(t) — t-a , a' = ft' /vz. The four exponents v, z, ft, ft' de­
scribe the basic scaling behavior of the system. (For the elementary DP class, 
ft = ft', however, this is not a general identity.)

Another important quantity is the pair connectedness function C(x, t), de­
fined as the probability that an active site at (0, 0) is connected to the site at (x, t) 
by an open path. The scaling hypothesis implies that

C(x, t) = t6-d/z F (|x |/1 /z, rt1 /vz), (11.73)

where it is understood that |x| is small enough that the final point is within reach of 
generic clusters spreading out from 0. The dimension 0 can be determined via a few 
consistency checks: the probability of finding connectivity along a fixed coordinate 
in space, (x = 0, 0) ^ (0, t), is proportional to both the probability of finding a 
cluster of temporal extension P (t), and the density of active sites p (t): C (0 ,t) t — " 

tp+P . On the other hand, the expected stationarity of C(0, t ^ rc>) requires that 
F(0pit1 /vz) — t-(6-d/z), i.e., F(0pit1 /vz) — t-vz(6-d/z). Comparing these two 

conditions, we obtain the identification t-vz(6-d/z) —^ tp+P , or

0 = 1 f-^+P- + dY (11.74)
zv

Equations (11.73) and (11.74) describe the correlation behavior of the cluster.27 In 
the next section, we discuss how these quantities can be obtained by field-theoretical 
methods.

Field theory

Above, we described cluster formulation in a language whose translation to a field- 
theoretical description is not entirely obvious. We begin by formulating a dynamical 
mean field equation implementing the nodal update rules. This equation will then be 
used as input for the construction of a field theory, along the lines of section 11.6.3.

The mean field equation describes the evolution of the mean density of active 
sites, p(t). This quantity increases at a rate proportional to the product of the 
probability of open bonds, p, the density, p, of active sites prior to the update, 
and the density, 1 - p, of sites that may be converted to active sites. Conversely, 
it decreases at a rate proportional to product of the density of active sites prior to 
the update and the probability of closed bonds, 1 - p. This defines the evolution

27 Notice, however, that the construction assumes that the center of the cluster remains stationary.
In high dimensions, this condition may be violated, and clusters may branch out along different 
directions in space. Closer analysis shows that the validity of Eq. (11.74) is limited to dimensions 
below the upper critical dimension of the universality class.
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mean field 
critical 

exponents

multi­
plicative 

noise

equation dtp = c 1 pp(1 — p) — c2(1 — p)p, where c 1,2 are non-universal constants. 
We may rescale density and time in such a way that the equation assumes the 
form,

dtp =( A — 1) p — Xp 2. (11.75)

A key feature of this equation is that it possesses a stationary configuration p = 0, 
and a non-empty stationary state p = ^--, provided X > 1. The critical value 
Xc = 1 at which the non-empty mean field begins to emerge marks the position 
of the continuous DP transition. Notice the simplicity of the DP mean field equa­
tion, which explains the ubiquity of the DP class: one may conjecture that generic 
processes described by a rate equation free of constant terms exhibit a DP transi­
tion, provided that the first two terms ~ p and ~ p2 admit a non-zero fixed-point 
solution.

Equation (11.75) fixes the mean field critical exponents of the system. Using 
the notation t = X — Xc = X — 1 for the difference from the critical point, near 
criticality, p ~ t, i.e., Pmf = 1. In the dry phase, t < 1, the asymptotic temporal 
decay of density is given by p ~ exp(—|t11), which means that — vz = 1. However, 
lacking spatial structure, mean field theory cannot say anything about v (nor z) 
individually.

Equation (11.75) can be generalized to a spatially resolved rate equation by 
upgrading p(t) ^ p(x, t) = p(x) to a local density profile and adding a diffusion 
term:

dtp = Dd 2 p + rp — Xp 2. (11.76)

Dimensional analysis shows that vmf = 1/2. In combination with the results above 
(which survive generalization to a local equation - exercise) we then have the mean 
field, or tree level, prediction

Pmf= 1, vmf= 1/2, zmf=2. (11.77)

A field theory can now be constructed by interpreting Eq. (11.77) as a model A 
rate equation along the lines of our discussion in section 11.6.2. To this end, we 
generalize Eq. (11.76) to a stochastic equation,

dtp = Dd 2 p + tp — Xp 2 + £,

where the noise is correlated as

(£(x )} = 0, (£(x) £(x')} = 2 Ap(x) <$(x — x'). (11.78)

The crucial feature here is the scaling £ ~ ^p. It reflects the assumption that the 
system self-generates noise through its active sites. Since we are to interpret £ as 
a coarse-grained variable sampling fluctuations in a large number of active sites, 
the central limit theorem requires that the fluctuations scale as ^p>. We are thus 
dealing with a Langevin equation governed by multiplicative noise, i.e., noise 
that scales in some power of the Langevin variable itself.
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In the MSR field theory representation, we have Z f D(0,0) e S[],
where the action (cf. Eq. (11.61)) corresponding to Eq. ( 11.77) reads28

28 Curiously, this theory has a background in particle physics, where it is known as Reggeon 
field theory; see M. Moshe, Recent developments in Reggeon field theory, Phys. Rep. 37, 255 
(1978) for a review.

29 A. Kamenev, Classification of phase transitions in reaction-diffusion models, Phys. Rev. E 74, 
41101 (2006).

S[0, 0] = d dx [0(dt — Dd2 — t)0 + K00(0 — 0)] (11.79)

with k = (AX)1 /2. (In deriving Eq. (11.79), we rescaled the fields so as to make the 
coefficients of the two nonlinear terms ~ 002 and ~ 020 equal.) We next aim to 
understand the importance of the various terms in the action at large length scales. 
To this end, we consider what happens under the rescaling transformation

x ^ x/b, 0 ^ bd 0,

t ^ t/bz, 0 ^ bd*0. (11.80)

A quick calculation shows that the individual terms scale as

/ 0dt0
0d 2 0
00
0012
0 2 0

^ bd + z dx

' b — (d,:- + d iy) — z 

b — (d$ + i0' )—2 

b —(d$ + do' ) 

b —(2d& + do') 

b —( d$ +2 d^ )

0dt0, 
0d 2 0, 
00, 
r002, 
0 20,

(11.81)

upper crit­
ical di­

mension

Choosing z = 2 and d^ = d^ = d/2, the first two contributions to the action 
become scale invariant. The operator ^ t00 measuring the distance from criticality 
is strongly relevant, with dimension 2. Finally, the nonlinear operators ^ X002 and 
^ A02 0 carry dimension 4 — d. This identifies the upper critical dimension of 
directed percolation as d = 4.

Before discussing the role of fluctuations below d = 4, let us see how the mean 
field limit materializes in the field theory (11.79). As with the zero-dimensional 
problems discussed in section 11.4, the phase structure of the system is determined 
by the pattern of intersecting zero-energy lines of the mean field Hamiltonian, 
H = 00(0 — 0 — t). Depending on the sign of t, three distinct phases need to 
be distinguished (see fig. 11.6). At t > 0, the system is in its active phase: on 
the fluctuationless manifold 0 = 0, the concentration variable 0 is driven towards 
the stable configuration 0 = t . (Notice that only positive values of 0 are physically 
meaningful.) At t < 0, the empty state 0 = 0 is stable, the inactive phase. The 
mean field phase transition between the two phases happens at t = 0. The phase 
space picture of directed percolation was introduced by Kamenev29 as the basis 
for a classification of phase transitions in reaction-diffusion systems. For further
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Fig. 11.6 Three distinct phase portraits of directed percolation. Left: phase supporting a non-vanishing 
concentration of active sites, center: phase transition, right: empty state.

aspects of the utility of the Hamiltonian approach in this field, we refer to the 
original reference.

Perturbative renormalization group

How will fluctuations alter this picture? Close to the upper critical dimension, in 
d = 4 — e, renormalization group (RG) techniques can be applied to answer this 
question. This analysis shows how the two coupling constants (t, k) evolve if short­
distance fluctuations of the field variables are successively integrated out, and the 
other coefficients in the action are kept constant using the freedom to rescale space, 
time, and fields. Referring for the actual computation to problem 11.9.5, this leads 
to the RG flow equations

dt 
d ln b 
dk 

d ln b
e
2

—DCk2 + t 2—
(11.82)

where the constant C = (2 J)4D2 and S4 is the area of the four-dimensional unit­
sphere. The exponents used to rescale space-time and fields as in Eq. (11.80) are 
given by

z=2—
Ck 2 Ck2

x 4 .

These equations possess a nontrivial fixed point at

T* = v + O(e2), 
6

+K

which means that fluctuations shift the position of the DP transition to a non­
vanishing value of t. At the fixed point, z = 2 — e/12 and x = e/12. Linearization 
of the RG equations around the fixed point leads to

dT 
d ln b 

dK 
d ln b

(2 - D T - KCDk* {'2 + D ,

— €K,
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where t = t* + t and = = ** + k. The linearized equations imply that the coupling 
constant T is a relevant scaling field with T ~ b2-e/4. This result can in turn 
be used to determine the one-loop critical exponents; the scaling b —1 ~ p ~ 
T-v ~ b—v(2-e/4) leads to the identification v = 1 /2 + e/16 + O(e2). The critical 
exponent P follows from the scaling relation t@ ~ {p} = b-(4-e) / 2+xp (-rb 2-'4). 
Setting b ~ t 2-»/4 , we obtain the identification P = 1 -e/6 + O(e2). Summarizing, 
the one-loop RG analysis generates the list of exponents

z = 2 - — + O(e2), v = 1 + — + O(e2), P =1 - - + O(e2).
12 h 2 16 h = 6

How do these values compare with reality? Numerical simulations for (3 + 1)- 
dimensional clusters30 obtain (z, v, P) = (1.90(1), 0.581(5), 0.81(1)), which com­
pares reasonably well with the e =1 extrapolation of the exponents above, (z, v, P) = 
(1.92, 0.56, 0.83). A two-loop extension of the RG31 leads to excellent agreement. 
However, in lower dimensions, the situation is worse. For example, in the extreme 
case of (1 + 1)-dimensional percolation clusters, the RG exponents differ from the 
results of simulations by around 40%. Even so, the field theory analysis sheds light 
on the physical mechanisms generating critical behavior, and this is information 
that cannot be obtained from direct simulations.

In this chapter, we discussed the foundations of nonequilibrium systems and in­
troduced three pathways to their description: the Boltzmann approach, Langevin 
dynamics, and probabilistic formulations via master equations. We saw that the 
latter two afford a unified description, the MSR formalism, in terms of functional 
integrals. Interpreting the latter as a Hamiltonian functional integral, we con­
structed its Lagrangian partner - the Onsager-Machlup functional - and recov­
ered the Fokker-Planck equation as the functional variational equation. Noting 
similarities to quantum mechanics, we saw that the MSR path integral provides a 
framework for the unified description of nonequilibrium phenomena. Examples of 
functional-based methods included the variational approach to large fluctuation, 
and RG approaches to the understanding of fluctuations in higher-dimensional sys­
tems. In the final chapter, we will discover another facet of the MSR functional: its 
interpretation as the classical limit of a nonequilibrium quantum theory.

30 I. Jensen, Critical behavior of the three-dimensional contact process, Phys. Rev. E 45, R563 
(1992).

31 J. B. Bronzan and J. W. Dash, Higher order epsilon terms in the renormalization group ap­
proach to Reggeon field theory, Phys. Lett. B 51, 496 (1974).

11.8 Summary and Outlook
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11.9 Problems

Wigner 
surmise

11.9.1 Wigner surmise

At the lowest energy scales, the description of quantum problems subject to randomness can 

often be reduced to just a pair of states governed by a Hamiltonian with statistically distributed 

matrix elements. The distribution of the spacing between these levels is then induced by the 

distribution of matrix elements. Specically, for Gaussian statistics of the Hamiltonian, the 

spacing distribution assumes a form known as the \Wigner surmise." What makes this nding 

important is that Wigner spacing distributions are frequently observed in realistic quantum 

systems. For example, the spacings of consecutive scattering resonances in complex nuclei 

often show this form of statistics.

Technically, the derivation of the Wigner surmise is an exercise in identifying the distribution 

of a dependent variable (the spacing) from that of a primary variable (the matrix elements).

Consider a real Hamiltonian H having the form of a 2 x 2 matrix parameterized as 

A ( H1 A \
H = I A H2 ) ■

Suppose that the three real numbers H1 , H2 , and A are drawn from a Gaussian 
distribution P(H 1 ,H2, A) k e-2tr H2. Derive the joint distribution P(E 1 ,E2) of 
the two energy levels Ei, i = 1, 2, of the Hamiltonian H. Use this result to derive 
the distribution of the energy splitting s = |E1 - E2 |, and show that it has the form 
of the Wigner surmise

P(s) = c1 s e-c2s2,

with constants c1 and c2 . As a further exercise, show that if H is complex hermitian, 
i.e., both real and imaginary parts of A are drawn from a Gaussian distribution, 
the probability distribution vanishes as P (s) — s2 for small s.

Answer:

The joint eigenvalue distribution is given by

P(E+ ,E-) - j dH 1 dH2 dA 6(E + - A+)6(E- - A-)e-(E ++E-)/2,

where A± = H 1+2H2 ± (A2 + (H 1-H2 )2)1 /2 denote the eigenvalues of the ma­
trix H and we assumed E+ > E- (in the opposite case, one has to interchange 
A + o A-). Integrating over (H 1 + H2)/2 and setting 6H = H 1 — H2, one obtains 
P(E + ,E-) - / d6H dA6(E+ — E- — 2(A2 + 6H2)1 /2)e-(E2 + E-)/2. Finally, set­
ting r = (A2 + 6H2 )1/2, and integrating over the angular variable, one obtains 
P(E + ,E-) - drr6(E + — E- — 2r)e-(E2 + E2)/2 - (E + — E-)e-(E ++E2)/2. 

From this result, we obtain the distribution
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P(s) "/ dE+ dE- P(E + ,E-)6(E + — E- — s) - se—s2/8 .

We therefore find that c2 = 1/8, and c1 = 1/4 is obtained from the normalization 
condition. This result shows that the probability of finding a degeneracy is vanishing 
i.e., the levels repel each other. The generalization to a complex Hamiltonian along 
the same lines is straightforward.

11.9.2 Ornstein-Uhlenbeck process

(11.83)

r d a . . i d 2 .
di + dV,a 1( v)— 2 dVfl a2( v

The Ornstein{Uhlenbeck process32 is the \harmonic oscillator" of nonequilibrium dynamics.

It describes stochastic evolution in cases where the averaged dynamics of a Langevin particle 
is described by a linear rst-order dierential equation. Realizations include the dynamics of a 

particle subject only to friction (but no external forces), or that of an overdamped particle in 

a harmonic external potential. The dissipative dynamics close to extremal potential points is 

often described by variants of this process.

(a) Consider a Brownian particle in one dimension whose velocity is governed by 
the stochastic differential equation

. , f (t)
v + y* * * * v = -----m

where f is a Langevin force, and (f (t)f (t')) = A6(t — t'). Determine the general 
solution of Eq. (11.83) for the velocity with the initial condition v(0) = v0, and 
calculate (v(t)) and (v2(t)). Using the long-time limit of the latter, identify the 
coefficient A with the help of the equipartition theorem.
(b) Consider the time-dependent velocity distribution p(v, t). It is governed by the 
Fokker-Planck equation

32 G. E. Uhlenbeck and L. S. Ornstein, On the theory of Brownian motion, Phys. Rev. 36, 823 
(1930).

p(v, t) = 0. (11.84)

With the help of Eq. (11.84), derive equations for dt (v) and dt (v2) and iden­
tify the coefficients a1 and a2, e.g., by using the results of part (a). Show that 
the corresponding Fokker-Planck equation for the generating function g(k, t) = 

dve-ikvp(v, t) is given by

d + Ykdk+'^’2 21 g(k’t ) = 0. (11.85)

(c) The first-order partial differential equation (11.85) can be solved, for example 
with the method of characteristics. Show that a general solution is of the form

Tk2

g(k, t) = e 2m ^(ke Y ).
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Determine the function ^ from the initial condition p(v, t = 0) = 5(v—v0) and derive 
the distribution p(v, t). Discuss the short- and long-time limits of your result.

Computing the inverse transform, we obtain the probability distribution func­
tion of the Ornstein—Uhlenbeck process,

p(v, t) =
(— (1 - e-2Yt)) / exp

m
(v — v0e Yt)2 

2m (1 - e-2Yt)

For short times, the solution p(v, t) — a/2n1Dtexp[— (v4Dt], with diffusion constant

D = m Y, spreads around the initial configuration, and in the long time limit it
2 2 -------------- 2 2

becomes thermal, p(v, t) — 2nTexp[-mT].

Answer:

(a) Integrating the equation, one obtains the solution,

v (t) = e Yt
v 0 + ( dt' ft) eYt'

0m

where v0 = v(0). Averaging over the distribution for the Langevin force and noting 
that (f) = 0, we obtain (v(t)) = v0e-Yt. Similarly, making use of the expression for 
the correlator, we have

(v 2( t)) = e-2 Yt

= e-2 Yt

v0 + t dt' dt" (f(tfteY(t'+t")

v 0 + 5-------2(e 2 Yt - 1) •
2Ym2

In the long-time limit, (v2(t)) = 2Ym2 FDT m, i.e., A = 2pmT. Setting 5v(t) = 

v(t) — {v(t)), one may further show that {5v(t)5v(t')) = m(e-Y|t-t'| — e-Y(t+t')). 
(b) Using the Fokker-Planck equation, we have

dt {v} = dvvdv (a 1P) J" dv 2 vdv( a 2 P)

= y dv a i P d dv dv (a2 P) = (a 1) •

From this result, we obtain a1(v) = —Yv. Similarly,

dt(v2} = y dvv2dv(aiP) dv2v2d^(a2P)

= y dv 2 va i P — y dvvdv (a 2 P ) = (2 va i) + (a 2) •

From part (a), we have dt(v2} = —2yv2e-2Yt + ^^2e-2Yt. A little bit of algebra 
then leads to the result (a2} = 2mT. The derivation of Eq. (11.85) amounts to a 
straightforward substitution of the Fokker-Planck equation into the Fourier integral 
defining g(k).
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(c) Using the method of characteristics, the left-hand side of the equation in (b) 
gives — Ykdt + dk = 0, i.e., dk = Yk and k(t) = ceYt. From the variation of g along 
the characteristic, dg = — mkdk, we obtain g(k, t) = const. x e-kBTk2/2m, i.e.,

g (k,t) = e - k B Tk 2 / 2 m . (ke - ' t).

With the initial condition g(k, 0) = e-ikv0, we obtain ^(k) = e-ikv0 ekBTk2/2m, and 
this leads to

g(k, t) = exp —ikv0e Yt----------- k2(1 — e 2Yt)
2m

11.9.3 Classical linear response theory

In this problem, we derive the correlation functions describing the linear response of an ob­

servable to a force in classical dynamics.

Consider a Hamiltonian, H(x, t) = H0(x) + F (t)X (x), where F is a generalized 
time-dependent force conjugate to an observable X . For example, for F a mechanical 
force, X(x) = q is a real space coordinate. For simplicity, we assume that, in the 
absence of the force, (X) = 0, where (...) = fr p0(...), and p0 = Nexp(—H/2T) 
is the equilibrium thermal average of the unperturbed system. To leading order in 
F, we must then have a relation (X(t)) = f dt' x(t — t1)F(tO, where the kernel x 
defines the susceptibility. We aim to represent x as a correlation function of the 
observable X .
(a) As a warm-up, show that for arbitrary phase space functions f, g, h, we have 
the algebraic relation, Jr{ f, g}h = fr f {g, h}. Defining the inner product (f, g) = 
fr f (x)g(x), discuss in what sense {H, } is an anti-hermitian operator and et{H, } 

is a unitary operator in the space of functions defined on r.
(b) Assuming that F(t ^ —rc>) = 0 and p(t ^ —<x>) = p0, consider the Hamil­
tonian equations of motion describing the evolution of the phase space function p. 
Solve them to first order in F to verify that the distribution changes as p ^ p0 + 8p, 
where

8p(t) = t dt' e-(t-t'){-H0, }F(t'){X, p0}.

(Hint: Let yourself be guided by the structural similarity of the problem to time­
dependent quantum mechanical perturbation theory.)
(c) Use this result and the unitarity of the classical time evolution operator derived 
in (a) to obtain the classical susceptibility (11.68). In doing so, note that if a phase 
space function X(x) = X(x, 0) = X(x(0)) is interpreted as the initial value along 
a Hamiltonian flow, then et{H }X(x, 0) = X (x(t)) = X(t) describes the evolution 
of that function.
(d) Show that, in thermal equilibrium, ({f, g}) = T((dtf)g).

(e) Combine the results of (c) and (d) to derive the classical FDT (11.69).
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(f) Test the theorem on the harmonic oscillator, i.e., do the problem stated in 
more detailed terms in the exercise in section 11.6.4. Choosing X = q, it is best to 
represent the Hamiltonian H = 1 (q2 + p2) = w01 in action-angle variables (I, ^), 
with q = II cos($), p = VIsin($), and w0 = 1 /2. This set of variables is the 
classical analog of the number-phase variables frequently used in the description of 
the quantum harmonic oscillator. Check that the transformation (q,p) ^ (I, ^) is 
canonical, and use the simplicity of the equations of motion in the latter variables 
to compute the building blocks of the FDT.

Answer:

(a) With {f, g} = dqi fdpig — dpi fdqig, the first identity follows immediately from 
an integration by parts. The Poisson bracket {H, } : f ^ {H, f} acts as a linear 
operator in the vector space of phase space functions. Integrating by parts, one 
finds that ({H,f },g) = Jr{H, f }g = — fr f {H, g} = —(f, {H, g}), showing its 
anti-hermiticity. The unitarity of its exponential, (et{H, } f, g} = (f, e-t{H, } g), then 
follows on general grounds, or more explicitly by Taylor expansion in t and iterative 
application of the anti-hermiticity relation.
(b) The classical equation of motion describing the evolution of the phase space 
function p reads dtp = —{H, p}. Writing p = p0 + 8p, an expansion to first order in 
F leads to dt8p = —{H0, 8p} — F(t){X, p0}. This is an inhomogeneous first-order 
linear differential equation for 8p. Noting that the homogeneous equation is solved 
by 8p(t) = e(t-t ){H, }6p(t'), we immediately obtain 6p as stated in the problem.
(c) Computing the average of the observable X at time t, we obtain

(X(t)) = dp(x, t)X(x) = — Jt dt(e-(t-t'){H0, }F(t'){X, p0}) X

= — ^ dt'F(t') y {X, p0}e(t-t'){H0, }X

= — [ dt1F (t ')^ { X (0) ,p 0} X (t1 — t)

= j dt1F(t') j p0{X(0),X(t1 — t)} = j dt'F(t')<{X(0),X(t' — t)})

= [ dt '©( t — t')({X (t — t') ,X (0)}) F (t') =[ dt' x (t — t') F (t'), 
-—tt -—co

where in the fourth line we used the properties of the Poisson bracket derived in 
(a), and in the last line the temporal translation invariance of phase space averages, 
(f (0)f (t)) = (f (s)f(t + s)). Comparison with (11.68) proves the statement.
(d) This is proven as ({f,g}) = rr p0{f,g} = rr{p0,f}g = — 1 fr p0{H,f}g = 
T fr p0(dtf)g = T((dtf)g), where we used p0 = Nexp(—H/T), the chain rule for 
the Poisson bracket, and the equation of motion.
(e) The FDT makes reference to the imaginary part of the Fourier transformed 
susceptibility, which we represent as
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ImX(u) = ± r dtei*({X(t),X(0)}) - c.c. = ± P dtei*({X(t),X(0)}).
2 O o 2 o—TO

Here, the second equality is based on the fact that the phase space expectation 
value is real, and on its time translational invariance, already used in (c). Using the 
identity proven in (d), this becomes

Im x (u) = -^ d dt ■ (dtX (t) X (0)') = - [ dte1^ (X (t) X (0)') = —C (u).
/V \ / ^rp i \ tV/ \ // c)rT1 I \ \ / \ / / . .

(f) The canonicity of the action-angle variables follows from the quick check 1 = 
{q,P} = (dI/Icos(<f))(d^/Isin(<f)) — (d^/Icos(^))(dI/Isin($)), proving the in­
variance of the Poisson bracket. This shows that, in action-angle variables, the equa­
tions of motion assume the form I = 0 and $ = — dIH = — u0. We thus obtain q (t) = 
I^I cos($ — u0t), where (I, $) define the initial coordinates of the trajectory. From 
here, the Poisson bracket entering the susceptibility is obtained as {q(t), q(0)} = 
(dI\^I cos( $ — u 0t))(d^I cos( ft)) — (d^I cos( $ — u 0t))(Bi^/I cos( $)) = — sin( u 0t). 
This function does not depend on the phase space variables, and therefore equals its 
average. The Fourier transformation of x(t) = ©(t)({q(t),q(0)}) = — ©(t) sin(tu0) 
leads to Imx(u) = 2(5(u + u0) — 5(u — u0)). (What is the physical meaning of 
this result?) Noting that {...) = N J0/' dI 02n d<fe- ^ 0I/T (...), a quick calcula­
tion shows that (q(t)q(0)) = (I cos(ft — u0t) cos(ft)) = 2T- cos(u01). Computing 
the Fourier transform as above, this gives C(u) = 2T(5(u + u0) + 5(u — u0)) = 
— '2t (5(u + u0) — 5(u — u0)). Comparison of the two formulae shows that the FDT 
is satisfied.

11.9.4 Ornstein-Uhlenbeck process revisited

Here, we approach the Ornstein{Uhlenbeck process from the point of view of path integration. 

As with the harmonic oscillator in quantum mechanics, the application of the path integral to 

this simple problem may seem like shooting sparrows with canons. However, what makes this 

integral useful is that it frequently appears in the representation of more complex problems. 

(In this regard, it has a status similar to that of the path integral of the quantum harmonic 

oscillator.)

Once more, we write P instead of p to distinguish probability distributions from momenta 

p in phase space.

Consider the stochastic equation describing a particle in a harmonic potential with 
overdamped dynamics, q + ^0q = ^ with {£(t)£(t')) = A5(t — t'), where A = 2T^2. 
In the path integral representation, the probability distribution reads

P(qf,t|qi,0)= D[q, p]e-S[q,p],
q(t)=qf,q(0)=qi

where S = — ft dt' (p<q — H), and H = — apq — ^f p2 with a = Y.
(a) Solve the Hamiltonian equations of motion and determine the correspond­
ing classical action Scl. (b) To go beyond the leading semiclassical approximation 
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P(qf,t|qi,0) ~ e S[q,p], we need to determine the fluctuation determinant. In sec­
tion 0.2 we saw that the fluctuation determinant of a path integral assumes the 
form

1 d 9 2 S cl 
—■—=. 4   : : . 
V2^\ dqidqf

(11.86)

where the action under the square root is multiplied by a real factor i ^ — 1, 
since we are doing an imaginary-time integral. However, the direct substitution 
of expression (11.86) for the fluctuation determinant would be premature: (11.86) 
applies to theories whose Hamiltonian is of conventional type, H = T + U , where 
T and U are the kinetic and potential energy, respectively.

In order to bring the Hamiltonian into this form, interpret q and p ^ dq as 
operators with commutation relation [p, q] = 1, and H(q,p) ^ H(q,p) as the op­
erator governing a Fokker-Planck equation (recall the positioning of derivatives in 
the Fokker-Planck operator). Next rearrange terms to bring this operator into a 
T + U representation, where the kinetic energy contains a suitably defined vec­
tor potential. This expression defines the Hamiltonian function appearing in an 
imaginary-time path integral. Show that the action has picked up a constant piece, 
S ^ S — at relative to the formula given above. At first sight, this seems to indi­
cate the presence of a diverging factor eSS ^ eSSeat in the long-time evolution. 
However: (c) Evaluate the determinant (11.86) to obtain the result

1 /2 -a (qi_qfeat)2

. 2aa\ /2 e A e2at-1
,t|qi, 0) = (^A J (1 — eS2at)1 /2 •

Notice that the factor exp(at) obtained in (b) cancels a factor coming from the 
fluctuation determinant.

Answer:

(a) The classical equations of motion read

q = dpH = — aq — Ap, p = — dq H = ap,

with solution p(t) = p0 eat and q (t) = ce-at — 20 eat. From the boundary condi­

tions ono finds  Ap0 — qi qfe  q — qi qfe____  substituted into thenous, one nuns q — -< 2at aim c — _ 2at . vv lien sujsntui^u into tiie2a 1_e 1_e
classical action, after some algebra one obtains 

scl — y dt' ^P+ + apq + 2pp a (qi — qf eat)2

A e2at — 1

with a/A — y/2T. (You may check for consistency that dS/dqi — pi.) (b) The 
Fokker-Plank differential operator reads H — — adqq — Adq. This can be equiva­
lently represented as H — — A (dq + A q)2 + aA q2 — a• Substituting the function 
corresponding to this representation (dq ^ p) into the path integral, and rearrang­
ing terms, we obtain H — — apq — App2 — a. Integration over time yields a shift — at 

relative to the na”ive action. (c) The solution involves a straightforward exercise 
in differentiation.
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11.9.5 Directed percolation

In this problem, we apply the eld theory (11.79) to explore the role of uctuations in directed 

percolation slightly below the upper critical dimension, d = 4 — e. The analysis yields a set of 

RG equations, whose physical signicance is discussed in the main text.

Phase transitions in the directed perco­
lation universality class are described by 
the field theory (11.79). In this problem, we 
apply elements of diagrammatic perturba­
tion theory to explore the impact of fluctua­
tions on the critical theory. To this, end, we 
first note that contractions of the fields ■$, ^ 
with respect to the free action of the theory, 
k = 0, generate a Green function,

(d^q' } = g+ Sq,-q', (g+)

where the corresponding advanced Green function is given by g— = g+q, and q = 
(u, k) is the four-momentum.
(a) Perturbation theory: To familiarize ourselves with the structure of the per­
turbation theory in k, we first consider perturbative corrections to the Green func­
tion and the vertex. Show that the Green function generalizes as g-1 ^ g-1 — £, 
where, to lowest order in k, the self-energy correction reads

£ q =
ddk ' 1

—2k2
(2n)d — iu + Dk'2 + D(k — k')2 — 2t '

(11.88)

Show that the first correction to the coupling constant, k ^ k + Sk, appears at 
third order and has the form,

Sk ~ —2k3 [ -—.------ -r. (11.89)
J (2n)d (Dk2 — t)2 ( )

Convince yourself that the diagrams contributing to the renormalization of k and 
t correspond to the configuration-space processes indicated in the figure above.
(b) Renormalization group: Consider the theory regularized with a hard cutoff 
A for the (spatial) momentum integral. Rescale (spatial) momentum by this cutoff, 
k ^ k/A, which means that the momentum integrals now extend over the support 
|k| < 1 and all coupling constants are measured in units Adx, where dx is the 
relevant engineering dimension.

Integrate out perturbatively the spatial fast modes within the momentum shell 
(1, 1 /b) with 0 < ln b 1. Show that, in spatial dimension d = 4 — e, this modifies 
the coupling constants in the following way:

u ^ u (1 — — ln b) , D ^ D (1 — — ln b) ,

t ^ t [1 — +----- + 1 ] x ln b ] , k ^ k (1 — 2 x ln b),
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Fig. 11.7 Skeleton structure of the two diagrams contributing to the renormalization of the propagator 
(left) and interaction vertex (right).

where we have introduced

S 4 

(2 n )4
(11.90)x =

and S4 is the area of the four-dimensional unit-sphere. Next, rescale coordinates 
and fields as q ^ q/b, w ^ w/bz, $ ^ ^b ~ +x. Choose the dynamical exponent 
z and the field renormalization exponent x so as to make the diffusion constant 
D and the coefficient of frequency invariant under renormalization. Show that this 
condition generates the equations

z=2-
x
4 ,

x
x = 4 •

The mass term t and the interaction constant k flow according to (11.82). The 
meaning of these equations is discussed in the main text.

Answer:

(a) In the Fourier basis, the interaction contribution to the action S = S0 + Sint 

is given by Sint[^, ^] = kJ dqdq' ^qoq<($-q-q< — ^-q-q<), where the measure dq = 
dwddk/(2n)d +1. Expanding the action to second order in k, and applying the con­
traction rule (11.87), we obtain the self-energy

Sq 2 K d dq ( gq- qi gqi + gq + qi gqi ) •

The frequency integration J dw' over gq+q< gq< vanishes because the integrand falls off 
as ^ 1 /wand has no poles in the upper complex plane. Performing the contour 
integration over the remaining contribution, we readily obtain Eq. (11.88). The 
diagrammatic representation of this term is shown in fig. 11.7, where the external 
field vertices (which do not contribute to the self-energy) have been included for 
the sake of notational clarity.

To obtain the renormalization of the coupling constant of the interaction, k, it 
is necessary to expand to third order in perturbation theory. The Wick contraction 
of these terms (up to the external field vertices entering the interaction operator, 
^ ^^2 and ^ ^2 ^) yields two one-loop diagrams. In one of these, all Green functions 
have their poles on one side of the real axis, which implies that they vanish upon 
frequency integration. The surviving diagram, whose graphical representation is 
shown in fig. 11.7 has the analytic representation
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(-1)3 243—3!— (Sint) ^ -ATK I dqdq dq °q'^q" (-^q-q'-q1 + '^q-q'-q") I dp gpg—p,

where we have neglected the “small” momenta q, q', q" in the arguments of the 
“fast” Green functions gp. The required renormalization of 3 k thus reads 3 k = 
-(2k)3 f dq gqg-q. Performing the integral over frequency, we obtain Eq. (11.89).
(b) Consider the contribution 3£ to Eq. (11.88) due to the integration over the 
fast momentum layer, f ddk' = f//b<|k/|<1 ddk' ■ An expansion of the self-energy in 
small corrections to the fast momenta gives

3 £ q ~ 2 k 2
I —2 (iw + 2t)I-4 k2 / 2 A I
2D + (2D)2 +4D d- ) -4 +

where we have introduced In = f (d-nkd k'n. Likewise, the fast momentum contri­
bution to the coupling constant correction (11.89) reads

3k = - D21—4.

In dimensions 4 — e, we have I-2 ~ I-4 = (2^4 ln b. Substituting this result into the 
fast-fluctuation induced change in the Green function, g-1 ^ g-1 — 3£, we obtain 
the required renormalization of the coupling constants.

The rescaling of coordinates and fields modifies the renormalization of coupling 
constants according to

w ^ w (1 + (2 X — (/ x \ \
1 + 2Xx + z — 2 — — J ln ,

T ^ T 1+ 2 X + z
Dx
t

— x ln b

k ^ k (1+ (^+3X + z — 2 — 2x^ ln b

The invariance of the first two terms generates the required conditions on X and z . 
We finally substitute X and z into the remaining two equations to obtain the RG 
equations (11.82).
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SYNOPSIS In the previous chapter, we saw that the description of physics away from 
equilibrium requires a whole new conceptual framework. We will now extend this theory to 
the quantum world. Specifically, we will derive and discuss quantum master equations, and 
construct a nonequilibrium quantum field theory, which reduces to the MSR functional 
integral in the classical limit. After introducing the required theoretical foundations in 
the first sections of the chapter, we will apply them to one extended case study: out-of­
equilibrium transport through mesoscopic quantum devices. This application will illustrate 
how the various concepts introduced earlier are required in order to address realistic 
problems in nonequilibrium physics.

Departures from equilibrium require theoretical frameworks different from the Mat- 
subara formalism developed in earlier chapters. The latter builds on the grand 
canonical density operator, and hence becomes inapplicable outside thermal equi­
librium. This begs the question as to how quantum many-body systems can be 
described if their state is not known a priori . One approach would be to quantize 
the individual approaches introduced in the previous chapter to derive quantum- 
Langevin, or quantum master, equations. This can and has been done. However, 
from the perspective of the present text, there exists a more powerful strategy. 
We will build our approach on a formalism introduced by Leonid Keldysh1 to de­
scribe nonequilibrium systems under general conditions. Originally formulated in 
the language of second quantization, Keldysh theory is tailored to a functional 
integral representation. Its classical limit turns out to be the MSR integral intro­
duced in the previous chapter to describe a classical nonequilibrium. In this sense, 
the Keldysh functional is a “theory of everything” describing both classical and 
quantum aspects of nonequilibrium physics within one coherent framework.

1 L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP 20, 1018 
(1965).

2 A. Kamenev Field Theory of Non-Equilibrium Systems (Cambridge University Press, 2011).

Unlike the previous chapter, here we will follow a top-down approach and begin 
with an introduction of the general Keldysh functional integral representation. It 
will then be used as a platform from which various more specialized tools can 
be derived by reduction. While the present exposition will be introductory and 
self-contained, readers interested in a more expansive coverage of the subject are 
referred to the excellent textbook of Ref.2 .
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INFO The probabilistic nature of classical nonequilibrium theory originates in the effec­
tively random influence of a large number of microscopic degrees of freedom on a smaller 
number of mesoscopic ones. Quantum mechanics, on the other hand, is intrinsical ly prob­
abilistic. Even for small systems, with deterministic classical dynamics, quantum uncer­
tainty makes the measurement of observables probabilistic. We will thus be confronted 
with two “layers” of stochasticity: extrinsic- and intrinsic-quantum.

To understand the connection between these two, consider a classically deterministic 
system, prepared in a definite quantum state |^). The quantum expectation value of 
an observable X is then given by (X) = (^|X|^) = n Xn|^n|2, where Xn is the

Zs
nth eigenvalue of X, ^n = {n|^), |n) is the nth eigenstate, and we denote the quantum 
expectation value by parentheses to distinguish it from the average over fluctuations below. 
The formal analogy to a distribution with probabilities Pn = |^n |2 makes the probabilistic 
nature of quantum mechanics manifest.

However, for our present purposes, it will be more useful to represent the expecta­
tion value as (X) = tr (/5|^>X^), where /3|^> = |^)(^| is the density operator of a pure 
quantum state. This representation immediately generalizes to mixed states, p|^j ^ p = 
OP pa |^a X^a |, where the system is realized with probability pa in the states of an or­
thonormal basis {|vl/a)}. In a many-particle system, the inevitable presence of 
fluctuations- cf. the principles discussed in the previous chapter - may render the co­
efficients pa effectively random. These fluctuations may be externally imposed, or caused 
by integration over microscopic degrees of freedom of the system. Summarily denoting the 
average over fluctuations by {... }f, we then have

(X ) = ((X))f = (tr (p X)\ = tr ((p}f X) = P )f (  ̂a | X |tf a ).
a

This representation makes the distinction between classical and extrinsic fluctuations man­
ifest: the latter make the quantum probabilities random variables subject to external fluc­
tuations. In a canonical (basis-invariant) manner, all aspects of quantum mechanics - 
interference, wave coherence, etc. - are encapsulated in the mathematical properties of 
the density operator and the trace operation. The statistics of fluctuations (both thermal, 
and externally imposed) is contained in the average over coefficients, {.. . }f. This aver­
age may effectively be generated by a taking a quantum average (i.e., a trace operation) 
over many microscopic degrees of freedom, leaving only a smaller number of mesoscopic 
quantities in a “reduced density matrix” (we will discuss this principle in the following 
section). For a summary of the above discussion, see the following table:

Classical Quantum

variable X
values of X , x
probability distribution p
moments (Xn) = f dxp (x) xn

hermitian operator X 
eigenvalues of X, x 
density operator p 
moments (XXn} = tr(pXn)

12.1 Prelude: Quantum Master Equation

REMARK This section introduces several quick approaches to the description of nonequi­
librium systems and, at the same time, motivates the subsequent construction of a field 
theory. Readers wishing to proceed in a streamlined manner may proceed directly to 
section 12.2.1.
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Consider the standard set-up of a 
“system” coupled to a “bath.” The 
bath may represent external degrees of 
freedom (e.g., electromagnetic modes 
coupled to a quantum dot), or inter­
nal microscopic degrees of freedom cou­
pled to fewer collective quantum vari­
ables (e.g., quasiparticles affecting the 
phase of a superconducting Josephson 
junction). As in the previous chapter, 
our strategy will be to integrate, or trace 
over, the environmental degrees of freedom to generate an effective description of 
the system’s degrees of freedom.

12.1.1 Nakajima-Zwanzig equation 

reduced 
density 
matrix

Consider the density operator p describing the state of the total system in the 
product Hilbert space H = Hs ®Hb of system (s) and bath (b). The information in 
which we are interested is contained in the reduced density matrix, ps = trb (p), 
where trb denotes the trace over the Hilbert space of the bath. Note that ps is 
a linear operator in Hs and that it has the hermiticity, positivity, and unit-trace 
properties of a density matrix. The dynamics of the full system is controlled by the 
Hamiltonian operator H = Hs + Hb + aHi, where the coupling between system and 
bath, Hi , is multiplied by a dimensionless coupling constant a. We assume that, at 
some initial time, t = 0, the system and bath were decoupled, and that the latter 
is in a state of thermal equilibrium, p(0) = ps (0) ® peq.

An efficient strategy to obtain an effective evolution equation controlling the 
dynamics of the system has been introduced by Nakajima and Zwanzig.3 Its starting 
point is an exact representation of the von Neumann equation

(dt - L)p = 0,

in terms of the “quantum Liouville operator” L = Ls + Lb + aLi, where Ls,b,i = 
-i[Hs,b,i , ]. We next introduce the projector

P = peq trb (.), 

where the trace operation acts on everything to the right, and unit normalization of 
peq is assumed (why is P a projector?). The idea behind introducing this projector is 
that we assume the bath stays close to a thermal state. In this sense, P projects onto 
the preferred state of the system, and the complementary projector Q = id - P 
projects onto transient states. Without loss of generality,4 we assume that the 

3 S. Nakajima, On quantum theory of transport phenomena: Steady diffusion, Prog. Theory.
Phys. 20, 948 (1958); R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. 
Phys. 33, 1338 (1960).

4 Should this condition not be met by the interaction, the term trb (peq Hi) = 0 can be interpreted 
as part of the system Hamiltonian operator.
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thermal trace of the interaction operator over Hb vanishes, trb(peq HIi) = 0. The 
projector then obeys the equations,

P L b = L b p = 0, [ L s, p ] = 0, P L i P = 0, (12.1)

where the first equation follows from the cyclic invariance of the trace and the 
commutativity [Hb, peq] = 0, the second should be obvious, and the third expresses 
the presumed vanishing of the interaction under the bath-trace. Introducing the 
shorthand notation pP = Pp, pQ = Qp, the Liouville equation may now be split 
into two,

dtpP = L spp + a P L ipQ, 

dtpQ = Q L pQ + a Q L ipjp.
(12.2)

The second of these is an inhomogeneous linear equation solved by

pQ (t) = a [ dt' et QL QLipP (t — t').
0

Substitution of this result into the first equation yields

dtpP = Lspp + a2 f dt' PLiee'QLQLipp(t — t'). (12.3)
0

Finally, using the definition of the projection operation p>P = Pp = peq ® ps, this 
can be rewritten as

dtps = L sps + a 2 ! dt' IL L .e ' LQ L i ^p ps (t — t') (12.4)

Nakajima—
Zwanzig 
equation

where (...)b = trb((...)peq).
3

Equation (12.4) is called the Nakajima—Zwanzig equation or quantum 
master equation. The latter denotation is misleading in that this equation (to­
gether with a complementary equation for pQ) contains the full information on 
the quantum evolution of the density operator. Specifically, the information on the 
environmental coupling is stored in the time-nonlocal memory kernel on the right 
hand side. By contrast, master equations describe memoryless Markovian processes.

Markovian approximation and Lindblad equation

To reduce Eq. (12.4) to the simpler form of a master equation, we apply a Marko­
vian approximation, which assumes that the time-scales over which ps changes 
are large in comparison to the relaxation times t' of the integral kernel (for the 
discussion of a setting where such approximations fail, see problem 12.9.1). In this 
case, the equation reduces to the time-local form dtps = (Ls + a2XI)ps(t), where 
XI = f0^ dt' (Liee'QLQLi)b.
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The equation can be simplified further if we assume weak coupling a in order to 
approximate the generator in the exponent by L ~ L0 = Ls 

“Born approximation”). The Markovian approximation pP(t 
integral kernel in Eq (12.3) then reduces to

+ Lb (a variant of a 
— t') ~ pP (t) to the

P L ie Q L0Q L i pP (t) = p L ie' L0 L i pP (t).

EXERCISE Use Eq. (12.1) above to verify this relation.

Further, defining H0 = HHs + HHb and O(t) = eitH0 Oe-itH0 for the interaction-picture 
time-representation of an operator O, we have

PLie L0 Li pP (t) — PLiLi (— t') pP (t).

EXERCISE For an arbitrary operator OO, show that etL0 O = OO(t) etL0. The equality above 
is approximate since, once again, we neglect the action of e* L0 on the (slow) operator pP.

Markovian 
quantum 

master 
equation

Using this result, we find that Eq. (12.4) reduces to the Markovian quantum 
master equation

t

dtps = S' 
ps (12.5)

Under a mild set of further assumptions, this equation can be reduced to a yet more 
manageable form due to Lindblad.5 We first represent the system-bath coupling as

HHi = CCrrn ® Xn + 5n0 X,) ,
n

Lindblad 
operators

1 j 1 j j 11 1 T ♦ 11 1 1 J ♦where the system operators Xn are now called Lindblad operators or jump 
operators, and the Cn are coupling constants defined to absorb the global constant 
a above. We now assume that correlations between different bath operators, rn, 
vanish, (F,rm)b = 0 for n = m, and that the bath memory is instantly lost,

<r n (0)rn (t)) b = k+6 (t),

(in (0)r n (t)) b = K- 6 (t).

Lindblad 
equation

Both assumptions rely on a separation of energy scales, i.e., that the dynamical 
phase factors in (rn (0)rm(t))b oscillate so rapidly that the correlation can be ne­
glected for n = m and that they decay nearly instantly on time-scales relevant to 
the evolution of ps. Under these assumptions, substitution of the interaction into 
Eq. (12.5) leads to the Lindblad equation

dtps = Lsps + £ [y+ (2^Xnps^Xn — {XnX:n, ps })

+Y- (2XnpsXn — {XnXn,ps })] ,

where y± = k± |c, |2.

5 G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48 
(2), 119 (1976).
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AMO 
physics

EXERCISE Derive this equation from Eq. (12.5).

The crude assumptions on the bath correlation functions and the dynamical phases 
of the system evolution which led to the Lindblad equation can all be relaxed. Such 
refinements are important in atomic molecular and optical (AMO) physics, 
where the Lindblad equation is extensively applied to the description of externally 
driven or open quantum systems. The resulting equations still have the algebraic 
structure of (12.6), while the details of the physics sit in the dependence of the 
couplings y± on the system parameters.

Combining all jump operators Xn, Xn into a single set of (generally non-hermitian) 
operators {—i} = {X1, X-J, X2,... }, the Lindblad equation assumes the form

dtps = Lsps + / , Yi [2—i ps—i - !'— i—i ,ps }J = Lps

Lindbladian

(12.7)

The linear operator on the right is called the Lindbladian. It describes the irre­
versible system dynamics under the influence of the bath and obeys a number of 
important properties (see Ref.5 for a more complete discussion):

> Lindbladian dynamics is trace preserving, dtps = 0, implying that the general 
condition ps = 1 is not violated. This follows by taking the trace of the right­
hand side and using cyclic invariance.

> Lindbladian evolution defines a completely positive map. Here, positivity means 
that the formal solution ps (t) = etLpS (0) maps positive initial configurations 
ps (0) (all eigenvalues positive) to positive configurations. For a discussion of the 
stronger attribute completely positive, we refer to the original reference.

> The evolution defines a dynamical semigroup in the sense that etL esL = 
e(t+s)L . It is not a group, because the inverse of the Lindbladian evolution op­
erator does not in general exist (irreversibility).

12.1.2 Example: oscillator coupled to a bath

The Lindblad equation is an important tool in various areas of nonequilibrium 
quantum physics. For example, it provides an efficient description of the decoherence 
processes affecting quantum systems coupled to environments (see problem 12.9.3). 
In this example, we focus on a different aspect, namely, the emission, absorption 
and thermalization processes caused by the coupling of a system to a bath.

We mo del the system as a single harmonic oscillator, and the bath as an assembly 
of oscillators: H = Hs + Hb + aHi, where
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Hs = e(ata + 1 /2), Hb = Wk(akak + 1 /2), Hi = Ckaka + h.c. (12.8)

Using a(t) = e-ieta and ak(t) = e-iUktak, it is straightforward to verify that

dt 1L Li i(0) L i(-t 9^ k Ps

= - IckI2 [ dt'
k 7

x (e-i(Uk-e)t ((nk) (psaat — atpsa} + {nk + 1) (ataps — apsa

+ e+i(*-e)t ((nk} (aatps — atpsa) + (nk + 1) (psata — apsat)) )

= n^ ICk|2$(e — Wk)

x ((nk) (2atpsa — psaat — aatps} + {nk + 1) (2apsat — psata — ataps

- n 1 ce|2p(e)

x ((ne) (2atpsa — psaat — aatps} + {ne + 1) (2apsat — psata — ataps}} .

Here, nk = akak is the number operator of the bath, and we have made the abbre­
viation (...) b = (...). In the fourth equality we introduced the spectral density of 
the bath, p(w) = k$k $(w — wk), and we assumed that ck = cUk and (nk) = (nUk) 

depend only on the energy of the reference state.

EXERCISE In the second equality above we assumed that [ps,a^a] = 0. Verify that a 
relaxation of that assumption leads to terms with structure ~ P f du 1 cp. P‘ “) (n^} [a^a, ps], 
where P j' is the principal value integral. Interpret these expressions in terms of an energy 
shift of the oscillator energy due to virtual transitions into the bath.

Assuming again the commutativity of p>s with n = ata, we have £sps = 0 and thus

dtps = n|ce|2p(e) [(ne) (2atpsa — psaat — aatps) 

+ (ne + 1) (2apsat — psata — ataps}] ,
(12.9)

which has the form of a Lindblad equation. It is instructive to look at (12.9) 
from a number of different perspectives. The commutativity [ps, n] = 0 implies that 
/5s = ps (n). Using commutator relations such as atps (n) = ps (n — 1)at, it is then 
straightforward to bring Eq. (12.9) into the form

dtps(n) = 2nIceI2p(e)[ (ne) (nps(n

+ (

— 1) — (n + 1) p( n)) 
absorption

n e +1) ((n +1) ps (n +1) n ps
(n))].

emission
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The right-hand side of this equation has a 
straightforward interpretation in terms of the 
absorption and emission of bath bosons (see the 
figure). The absorption term is proportional to 
the number of available bosons that are res­
onant with the oscillator frequency, (ne), the 
golden rule transition rate, ~ |ce |2p(e), and the 
number of absorbing bosons (plus one). Absorp­

n + 1 — —

Hln

n 1
I1!, _____ +___

tion appears on the right-hand side of the equation in the characteristic rate-balance 
form of a master equation: interpreting ps (n) as the probability of having n system 
oscillator quanta, this quantity increases due to an in-process k ps (n — 1) and it 
diminishes due to an out-process k ps (n). The equation also describes the opposite 
emission process, where bath bosons are resonantly created from oscillator bosons.

spontaneous 
emission

Emission, too, enters the master equation as a sum of an in- and an out-process. 
Notice the proportionality (ne + 1), where the +1 is interpreted as spontaneous 
emission, i.e., the emission of energy by the system independently of the occupa­
tion of the bath. This process survives in the limit of zero bath occupancy, (ne) = 0, 
where no bath quanta are present. By contrast, the emission/absorption rates k (ne') 

are stimulated in that they are resonantly triggered by bath quanta.
A few more comments can be made on the structure of the master equation:

> The competition of in- and out-terms implies the conservation of probability: 
dttr(ps) = 0 (Exercise).

> Assume the bath to be in equilibrium, (ne) = (exp(0<) — 1)-1. It is then straight­
forward to verify that the distribution ps becomes stationary (the right-hand side 
of the master equation vanishes) at the equilibrium configuration

ps (n) = Z -1 e - ^n,

where Z = (1 — e-''")-1 is the normalizing partition function. Interaction thus 
leads to thermalization of the system at the bath temperature. Notice that 
this process is based on the interplay of emission and absorption.

> The in- and out-terms in the master equation are obtained from contributions 
of the form ~ atpsa and ~ psata in (12.9), respectively. It is instructive to 
interpret this structure from a perspective emphasizing the underlying quantum 
dynamics. Recall that the time-evolution of the density operator is given by 
(in symbolic notation) ps (t) = U(t)ps (0) Ut(t), where U is the time-evolution 
operator. We may visualize the time-evolution described by these operators by 
two time-lines, one directed forward and one backward (see fig. 12.1).

If we now compare ps (t + At) with ps (t) to probe the incremental change 
of ps in time, we need to expand the tensor product U 0 Ut to first order 
in the system-bath coupling. This produces the sum of two contributions ~ 
a (Hi (t) U 0 Ut + U 0 UtHHi(t)). However, to obtain a non-vanishing result, we 
need to expand to one more order. This gives a factor ~ a J dt’Hli(t') which, 
again, may act to the left or the right of the density operator, or on the forward
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Fig. 12.1 Evolution of the density operator (shaded box) along the double time-contour. Left: Out- 
processes (self-energy corrections). Right: In-processes (vertex corrections).

or backward contour. This leads to four combinations as visualized in the figure. 
The contributions where Hi acts on different time-contours correspond to terms 
where the density operator is sandwiched between creation and annihilation 
operators. The presence of these operators changes the state of the system in a 
manner in which the forward and backward time-evolution are correlated via a 
bath correlation function. In the diagrammatic representation of the figure, they 
represent vertex corrections to a two-particle propagator. These are the in­
terms. Conversely, the terms with two Hi on the same contour do not change the 
state of the system (it is first changed at t' and then changed back at t.) These 
out-terms resemble self-energy corrections to the two-particle propagator. 
Indeed, we have seen on various occasions that the imaginary part of a self­
energy correction represents a decay rate, here corresponding to the rate of the 
out-process.

For further discussion of the quantum master equation, we refer to the textbooks 
by Weiss,* 6 van Kampen,7 and Haake.8

In this section, we take the emergence of the double contour picture as a guiding 
principle for the construction of a field integral approach to quantum nonequilib­
rium: the Keldysh formalism. We start by introducing the idea behind this formal­
ism and then make it concrete for the simple example of a free bosonic theory. This 
construction will then be the starting point for the discussion of various nontrivial 
applications.

6 U. Weiss, Quantum Dissipative Systems (World Scientific Publishing, 1993).
7 N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, 1992).
8 F. Haake, Quantum Signatures of Chaos (Springer-Verlag, 2001).

12.2 Keldysh Field Theory: Basics
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12.2.1 The idea

Keldysh 
contour

hole excitations in semiconductors to the de­
velopment of techniques to explore quantum 
systems driven from equilibrium. Recipient of 
the Lenin Prize, the Lomonosov Prize, and the 
Hewlett-Packard Prize.

Leonid. V. Keldysh 1931­
2016 
was a Russian physicist and 
former Director of the Lebedev 
Physical Institute, Moscow. 
Keldysh made seminal contri­
butions to solid state theory, 
from the physics of electron­

Consider a general quantum system initialized in a known state p at time t = 0. For 
concreteness, we may think of a (system + bath) configuration initialized as ps ® pb, 
or a single system initialized in a thermal state. The state then evolves as p ^ 
p(t) = U(t)pUt(t), where U(t) = Tt exp(-i ft dt'H(t')) with Tt the time-ordering 
operator, and we allow for explicit time-dependence of the Hamiltonian. This time­
dependence serves to implement a protocol often used in nonequilibrium problems: 
we assume that, at the initial time, the evolution is trivial in that the system-bath 
coupling or many-body correlations are absent, Hi = 0. These complications are 
then gradually turned on and eventually switched off again at tt ^ rc>. (Although 
these assumptions are not strictly needed, they lead to a formally cleaner description 
of the dynamics.)

Consider the following trace iden­
tity 1 =tr(U(t0)pUt(t0)). At first sight, 
considering a complicated representa­
tion of unity may seem like a waste 
of time. However, Keldysh’s brilliant 
idea1 was to interpret this expression 
as a unit-normalized path integral, Z, 
from which useful information can be 
extracted in a second step, via the in­
troduction of suitable source terms. To 
see this picture emerging, let {pa} be 
a complete set of states, chosen to di­
agonalize the initial density operator, pj. We may then write the unit trace as 
1 = Z = E a (Pa | U pU t| pa) = tr( U t| pa}{pa | U p) = {pb | U t| papa | U | Pb) pb, where 
summation over a and b is implied. Now consider what happens if we “trotter- 
ize” the time-evolution operator in order to pass to a path integral representation. 
Starting from a configuration | pb), we would obtain a path integral describing 
the evolution under U to |pa), in time 0 ^ t0. The subsequent application of 
U(t) = Tt exp(-i ftdtH(t)) describes time-evolution in reversed chronological 

order, where Tt is an anti time-ordering operator, arranging factors in Hint (t) such 
that later times appear to the right of earlier times. The trotterization of this factor 
leads to the same path integral, except that time is integrated in reversed order. 
The structure of the formula above suggests combining U and Ut into one path 
integral, where |papa | appears as a central trotterization step in the middle at 
t = t0. This defines a path integral where time is integrated along a closed dou­
ble contour, as shown at the bottom of fig. 12.2, where the fat dot indicates the 
presence of the initial state pj.

The reversal of chronological orders involved in the construction of the double 
Keldysh contour path integral can sometimes be inconvenient. In such cases, 
one may replace the double contour parameterization t : 0 ^ 10 ^ 0 by a single



707 12.2 Keldysh Field Theory: Basics

, r H(t)

0 -H(t) t0 *

Fig. 12.2 Upper panel: Keldysh contour parameterized in a forward-running parameter s. Lower panel: 
Keldysh contour parameterized in a time variable.

one, s : (WS, where S=2t0, and the new parameter variable runs in the forward 
direction. In this case, the sign change previously implemented by a chronological 
reversal is described by a change in the integrand: H(s) = H (t), with s = t on the 
first half of the contour, 0 < s < t0, and H(s) = — H(t), with t = 2t0 — s on the 
second half, t0 < s < 2t0 (see the upper panel in fig. 12.2), where we also indicate 
the adiabatic switching on and off in the terminal regions. Within this formulation, 

Sthe dynamics is described by the operator U = Ts exp(—i 0 ds H (s)), where Ts 

orders along ascending s.9 Note that this operator equals unity by design, and that 
Z = tr( U p) = 1.

To get a first idea of the usefulness of this construction, consider what happens 
if we add a perturbation breaking the perfect ±H symmetry on the s-contour: 
H(s) ^ H(s) + aS (s — t) X, where t < 10 is in the first half of the contour, X 
is some operator, and a is a source parameter. Let Uint (a) be the time-evolution 
operator in the interaction representation relative to this perturbation. The full 
evolution operator then assumes the form U(a) = UUint(a) = Uint(a), where U = 1 
is the unperturbed evolution operator, and Uint(a) = 1 + ia J'S dsS(s — t)X(s) + 
O(a2) = 1 + iaX(t) + O(a2), with X(t) = U(t)XUt(t). Note that, for s = t, 
U(s) = U(t) evolves along the forward directed contour and is equal to the time­
evolution operator U(t) = U (t, 0). Insertion of this result into the trace leads to the 
result

—ida\ tr(U(a)p) = tr(U^t, 0)XU(t, 0)p) = tr(Xp(t)),
a=0

where p(t) = U(t, 0)pUt(t, 0) is the density operator evolved to t. Thus, differen­
tiation of the density operator with respect to the source generates expectation 
values of operators in the dynamically evolved state of the system. This shows 
j 1 j z-r t \ l t ■'--tt t \\ • 1 • A t t r\\ -i \ i ♦ f* i ♦ c 1that Z(a) = tr(pU(a)) is a normalized (Z(0) = 1) generating function for dy­
namically evolved quantum expectation values of the operator X . Crucially, the 
construction does not assume a thermal state, which makes it superior to the equi­
librium Matsubara approach. However, before demonstrating how Keldysh theory

9 To be precise, TsA(s 1)A(s2) = JL(s 1)A(s2), if s 1 > s2, and A(s2)A(s 1) otherwise. 
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is applied to describe out-of-equilibrium physics, we need to make the path integral 
representations more concrete.

12.2.2 Case study

To prepare for the functional representation of the Keldysh partition function, we 
first consider a miniature quantum system containing only a single bosonic state of 
energy w. This leads to a simple path integral whose subsequent generalization to 
more complex systems will be straightforward. Consider the partition function

Z = tr (Tse - i J'S dsHH( s) p0) , (12.10)

where

p0 = Z-1 e -3 (11 - ^N), (12.11)

with equilibrium partition sum Z0 = (1 — e-3(":-M))—1, is the initial density opera­
tor, H = wata is the Hamiltonian operator, and N = ata. Since the theory is free, 
there is no need for an adiabatic switching-on procedure, and we assume constancy 
of H along the contour.

EXERCISE Show that

(i|eca+a |p) = ee33, (12.12)

where (p| and |p} are boson coherent states. (Hint: Differentiate by c to derive a first-order 
differential equation and use the uniqueness of its solution.)

Let us now apply the standard recipe - insertion of a large number (2N) of coherent 
state resolutions of unity into a time-slice dissection of Z - to construct a path 
integral. This leads to the representation

I . . . I . X. . I I . -*■ . I . . I .
Z = (P-|1| pN> X «PN IUe | ^+-1X ^+-11Ue • • • | p +)) X (P +| po| p-) 

x ((p- |U- e | pN-M ̂ N-l^ U- e • • • |p-)),

where e = t0/N, Ue = e-ieH, and the factors in parentheses are the trotterized 
representations of the propagation along the two contours. The functional integral 
representation then becomes

— -—if , yN (’/’+[ ^ +,- ^+-i  ̂+,]+v>-[ ^ -,- ^-+i  ̂- j)Z = Z-1 DP e j=2 j j-1 j j-1 j j-1 j j-1

0 (12.13)
X e - ^P + ^ + - V^-^-+ kZ+ ^N + 7^-^N

where k = exp(—P(w — ^)). Before turning to a continuum representation, let us 
interpret the exponent of the functional integral as a bilinear form ipG-1 p, with 
the (2N X 2N)-dimensional matrix kernel
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G-1 = i

1
-a+ 1

—a+

—1 (12.14)

a-

— K

1
1

1
a- 1

where a± = 1 ^ iew. This matrix has a number of interesting properties. First, it is 
straightforward to verify that

det(—iG-1) = 1 — K(a+a-)N-1.

EXERCISE Verify this result. (Hint: Use the identity “det = exp tr ln.”) Expand the 
logarithm in powers of the difference from the unit matrix, (-iG-1 - 1) (essentially the 
side-diagonal containing the coefficients a±, plus the corner element k). Take the trace 
and re-sum the series into another logarithm. Exponentiation leads to the result.

Taking the limit N ^ <x>, we obtain

/ 2\ N-I
det(—iG-1) = 1 — k(1 + (ew)2)N-1 = 1 — k( 1+() N '? 1 — k = Z-1.

Since Z = Z0-1 det(—iG-1)-1, this result proves 
the unit normalization of the functional 
Keldysh partition function. Later, we will want 
to compute expectation values (ipiVj • • • Vk) by 
Wick’s theorem. For this purpose, we need to 
know the elementary contractions

Gcc' = - i(VC V C ’}^ii' i \ Vi Vi' /,

where C, C' = ±. To compute these elements, we introduce the block decomposition 
G-1 = M-+++ M +--- . It is a straightforward exercise to show that 

1[ M CC ]
ij -i©(i - j)a± j,

where ©(n) = 1 if n > 0 and zero otherwise.

EXERCISE To verify this result, write M = 1 - H , where H contains the a-dependent 
terms next to the main diagonal. Consider M-1 = (1 - H)-1 , expand in H, and interpret 
the powers Hk as kth-order directed hopping processes in time.
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We may now use the general formulae for the inversion of 2 x 2 block matrices 
to obtain G++ = (M++ - E++)-1, where E++ = M+-(M )-1 M-+. Substitu­
tion of e +j + = i6i 1 6jNaN-1 k into this formula followed by a straightforward series 
expansion in e leads to the result

G++
ij = ia+ 0(i - j) +

k (a + a-) N 1 \

1 — k (a+a-) N-1 J
(12.15)i j

INFO This formula affords an intuitive interpretation (see the figure above). The 
matrix G++ is the amplitude for propagation between two discrete points j and i on 
the + segment of our closed time-contour. To get from j to i we may either go directly, 
which is possible if i > j (because of the time-ordering). In this case, we pick up i - j 
hopping amplitudes a+ . This is the first term in the equation. Alternatively, we may go 
via round-trips through the - segment of the contour. In this case, and no matter what 
the chronological ordering is between i and j, we first go from j to N (N - j amplitudes 
a+), then from 1 to N on the bottom contour (N - 1 amplitudes a-), back to the upper 
contour (giving a factor k), and finally from 1 to i ((i — 1) amplitudes a +). This gives the 
contribution of first order in k to the second term. Now, orbiting around the contour can be 
continued, where each additional revolution contributes a factor ka-N -1 a+N -1 . Summation 
over all these processes generates the denominator of the equation.

The remaining three matrix elements are computed in the same manner, with the 
result

G- ij
i ia e( i j) +

k(a- a+) N-1
j

1 k (a - a +) N 1 ] ’

G i
1

kaN- -j ai+-1

(12.16)
k (a-a+)N 1 ’

G-+ 
ij -i

N-jai

— k (a + a-) N 1

a+
1

1

Now, let us take the continuum limit. To the discrete time-steps on the upper/lower 
contour we assign a time variable (see fig. 12.2)

+, t — is;
—, t — (N — i) e.

(12.17)

Noting that limN^TO(a + a-)N — 1, and ai+ ^ e-iut,a- ^ e™(T-t), we obtain 
the propagators in a continuous-time representation, Eq. (12.36), where 
n(w) — k/(1 — k) — (e'(":-M) — 1)-1 is the Bose distribution function.

INFO In the literature, a few different conventions for the Green functions of 
Keldysh field theory are in use. For later referencing purposes, we summarize all these in 
the info block section of page 716. Note that Green functions on the Keldysh contour are 
often written as G++ = GT, G = GT, G + = G<, G + = G>, a convention that we
will not adopt in this text.
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12.2.3 Continuum field theory

Keldysh 
functional 

integral

Having derived the continuum propagators, we now represent the action (12.13) 
in a continuum form. Using Eq. (12.17), we immediately obtain the Keldysh 
functional integral

Z = Z-1 D^ei 0 dt*a 3(idt - ^) * (12.18)

where ^ = (  ̂+ ,^-)T is a two-component field in contour space and ai are Pauli 
matrices in that space. Notice that, in the continuum notation, the terms gluing 
the boundaries at t = t0 in Eq. (12.13) and the presence of the density operator at 
t = 0 are suppressed. However, as we saw above, these terms play a crucial role as 
initial conditions for the computation of the propagators GCtC of the theory. Before 
discussing how the correlation between the contours is described in the continuum 
formalism, let us represent the path integral in a new set of integration variables.

One more thing to notice is that the Green function G contains a degree of 
redundancy. Inspection of Eqs. (12.15) and (12.16) shows, for example, that 
G++ + G-- = G+- + G-+ . Defining the linear transformation

U 1 -\ (12.19)

we obtain an alternative representation of the block Green function:

1Gtt' ^ Gtt' = UGtt' Ut = 2 Q
-1

G++
G-+

G+-

G-

* (t -1') ( 1+2 n (u) ©( t - t ')\ = (GK

\-e(t' -1) o J = GG-

1
1

(12.20)tt'

where the three block Green functions are defined by the last equation,10 or the 
explicit representation of Eq. (12.43) below. Here, the functions G± are identical 
to the retarded and advanced Green function of quantum mechanics, i.e.,

G+-1, = -ie(t - t')([a(t),at(t')]), 

G--t< = + ie(t' - t)([a(t), at(t')]),

Keldysh
Green 

function

where a(t) = elHtae-iHt = e-iuta are the Heisenberg-evolved boson operators of 
the theory. The Keldysh Green function, GK , is a new acquaintance. Notice 
that GK , and only GK , contains the initial distribution. We will obtain a better 
understanding of this function as we go along.

The correspondence GCtC' = -i {^C ^C') implies that G'ttC,C' = (UGUt)CC' = 
-i((U^)C(^Ut)C) = -i(^'tC?/»tC )• It is customary to denote the transformed 
fields as

^' = U^ = 72 ( ^ + + ^ - 
^ + - ^ -

f ^c \

\ ,7
(12.21)

or, expressed in terms of the block Green functions, G± = G++ — G±^ and GK = G++ + G
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classical 
and quan­
tum fields

where pc and pq define the classical and quantum fields, of the theory. Formally, 
pc and pq are the center of mass and the difference of the field amplitudes p±, 
respectively. To understand the origin of the terminology classical/quantum, notice 
that in quantum mechanics dynamical evolution is governed by the product of two 
independent wave function amplitudes, p±. It collapses to the classical limit if these 
two amplitudes become identical, p + = p- = tc/y/2, and pq = 0.

With p = Utp’ and p = tp'U, and noting that Ua3 Ut = a 1, the action in the 
new variables assumes the form

S [ p ,p ] =[ dt (tc,tq )( idt f^c) , (12.22)
J \do- — w J \qq/

where now p = (pc, pq)T and we have omitted the primes for clarity.
On this basis, let us now return to the question of how to represent the infor­

mation on the initial distribution in the continuum theory. We first notice 
that the temporal exponents in Eq. (12.20) must be understood as infinitesimally 
damped, exp(—itw) ^ exp(—itw — 6111), 5 > 0. Fourier transformation of the Green 
functions then leads to

G ± K (e) = f dteietG±0K, (12.23)
— — TO

with

G ±(£) = “+----------,
e ± — W (12.24)

Gk (e) = —2niF(e)6(e — w) = F(e) [G + (e) — G-(e)] .

Here, we have defined the function

F(e) = 1 + 2n(e) = coth (-—r^ (12.25)

Note that the 6-function appearing in combination with F locks the argument as 
F(e)5(e — w) = F(w)5(e — w). As discussed below, this locking is important and 
ensures the convergence of the integral. Also notice that the integration has been 
extended to infinity, in spite of the fact that the theory was introduced on a finite 
interval [0, t0 ]. The rationale behind this procedure is that, in applications of the 
theory, t0 must be chosen sufficiently large that the correlation functions of the 
theory decay on scales to. Formally, this decay is enforced by the order of limits 
lim<5 .o lim10 .-.,. However, as we will see shortly, actual theories generate finite 
decay times such that the formal limiting procedure is not necessary.

Anticipating that for arbitrary Hamiltonians, H , anti-hermiticity will be a general 
feature of the Keldysh Green function, Gkt = — Gk and, recalling that G+t = G—, 
the structures above suggest the representation

<GK = <G+ F — F1 G -, (12.26)

where F is an hermitian operator and the energy dependence X = X (e) = Xe is 
suppressed. With this we obtain
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=
(G+)-1 -(G+)-1 GK(G-)-1J VG +) (G+) F - F(G-1)-1

f G K
G= U- ^G+VfG+ F — Fg.- G.+X (12 27)o J V G.- o), (.)

G.-1 = L.0 (G-)-1 \ ( o (G-)-1 \
=.

(Note that these formulas do not assume the commutativity of G± and F.) Fi­
nally, we substitute this representation into the energy-Fourier representation of 
the action, S[/] = f 2^ripeG-1 /e to obtain the structure

/ 1 \ / \
d n d'F . 0 0 (G-)-1 \ (Cc\S[1] = J 2n (/c,lq)4(G+)- (G+)—1 F - F(G-1)—J J^q) (12.28)

In the specific context of our toy model, where F commutes with G±, this reads

S[1] = [ dr(1c ^q) e
2 2 n e+ — w

6 — W
2i6 coth (T) 6 (e

A f^c\ 
— w )J \qdqj (12.29)

This formula suggests a new interpretation of the 6-broadening used in the 
Fourier transform. First, notice that in applications the parameter 6 is physical. It 
appears whenever the imaginary part of the self-energy of a propagator, (G+)-1 ^ 
(G+)-1 — £ is non-zero, in which case —Im£ o 6 plays the role of a damping 
rate. This damping makes the otherwise purely oscillatory integral convergent: on 
physical grounds, w > ^ ensures that the single-boson level is stable and has a 
finite occupation. The effective real damping rate 26 coth(^T) then safeguards the 
convergence. At the same time, it injects the information on the distribution into 
the continuum representation, via the factor F . The construction above shows that 
even if that coupling is infinitesimally small, k 6, it affects the propagator G as an 
O(1) effect. In less trivial applications, F, will change in the course of time, and in 
this way will describe the evolution from an initially trivial distribution to different 
distributions.

In the next section, we generalize the construction above to settings rich enough to 
show changes in the state of a system via interaction and thermalization processes.

12.2.4 Generalization

Retracing the construction steps leading to the field integral (12.18), one notices 
that the simple structure of the one-level free boson Hamiltonian was nowhere 
essential. For a higher-dimensional interacting system governed by the sum of a 
free Hamiltonian Jddrat(r)HHa(r) and an interaction 1 f ddrddr'(ata)(r)V(r — 
r')(ata)(r'), trotterization in terms of boson coherent states /(r) leads to the gen­
eralization Z = Z-1 f D/eiSo[^]+ iSint[^], where

So[/] =y dx CtpC(x)(idt — H)^C(x),

Sint[^] = — 2 y dtddrddr' C (i^C/C)(x) V(r — r') (i/>C^C)(x'), 
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x = (t, r), and dx = dt ddr. Switching to classical and quantum fields through the 
transformation (12.21), and assuming a contact interaction V(r) =2g<8(r) for nota­
tional simplicity, these relations assume the form

, S' 1 fS [ J ] = d dx ( J J ) ( 0 (G ) | ( J'
S0[ J ] = J dX ( Jc ,Jq ) ^( G +)-1 (G—1) KJ ^J

S int[ J ] = — dX (JcJq ( J2 + J2) + C • C •) ,

where

(G±)-1 = idt ± i<5 — HI, 
X H . 1/ A . -I A A . A -j

(G-1) K = (G+)-1F — F( G-)-1

(12.31)

(12.32)

are the retarded and advanced Green functions, and the Keldysh sector of the 
inverse of the Green function is given by Eq. (12.27). Building on this representation, 
let us now turn to a more thorough discussion of the different elements of Keldysh 
field theory.

Retarded and advanced Green function

The infinitesimal increments entering the definition of the retarded and advanced 
Green function imply the causality condition G±(t, t') x 0(±(t — tz))- For a time­
independent Hamiltonian,

G ±( t,t') = G ±( t — t') = T i 0(±( t — t')) e - iH( t- t'),

G ± 1 (12.33)
e e ± i8 — HH'

If H contains explicit time-dependence, we need to include a time-ordering 
procedure,

G±(t, t') = ti0(±(t — t'))T±e-ift' dtH(‘),

where T± time-orders in the chronological/anti-chronological direction. Finally, the 
Green functions obey the composition law G± (t, t') = G±(t, t") G±(t" ,t') and the 
limit behavior G+(t, t) + G-(0, 0) = 0.

Keldysh Green function

As discussed above, the representation (12.32) for the Keldysh block of the inverse 
Green function, (G-1) K ,11 is motivated by the anti-hermiticity of GK and (G-1) K. 
The operator F appearing in this construction holds the information on the state 
of the system, and determining its dynamical evolution is an important part of the 
theory. This task is greatly simplified by the ansatz F = {F(t, t')}, depending on

11 Carefully distinguish between this object and the inverse of the Keldysh Green function, 
(<GK)-1 = (<G+ F - FG-)-1.
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time arguments, but independent of the Hilbert space indices of the problem (r in 
the current continuum field theory).

INFO To motivate this form for F, we recall its origins in the non-interacting sector of 
the theory (see Eq. (12.25)) and interpret F as a generalized (quasi-)particle distribution 
function. In a non-interacting theory, it is natural to assume that F(e) = F(e, H) depends 
on the Hamiltonian of the system. The straightforward generalization of Eq. (12.24) to 
a higher-dimensional Hilbert space, GK(e) = —2niF(H,e)3(e — H), then suggests the 
eigenfunction representation GGK(e,ua) = —2niF(e,ua)3(e — ua), where the spectral 3- 
function locks the eigenenergies ua to the energy argument. Since F always appears in 
combination with the spectral function, dropping its Hilbert space index, F(e, ua) = F(e), 
does not imply a loss of information.

For problems without explicit time-dependence, F (t1 , t2) = F (t1 - t2) and the 
Fourier transform F(e) determine the occupation of quasi-particles at energy e. 
For example, in thermal equilibrium F(e) = coth(e_T/2) = 1 + 2n(e), with the 
Bose distribution function n (e). However, nonequilibrium problems often contain 
external time-dependence. In such cases, F(t1, t2) = F(t, At) depends on the center 
time t = (t1 +t2)/t and on the difference At = t1 — t2 and it is mostly a good idea 
to Fourier transform in the latter, and keep the former as a parameter:

F (t,t) = j d A teiet' F (t + A t/2 ,t — A t/2). (12.34)

The function F ( . , t) then represents the instantaneous particle distribution function 
at time t.

Interaction

In many ways, the treatment of particle interactions in Keldysh theory parallels 
that in equilibrium theories, the repertoire including diagrammatic perturbative 
methods, Hubbard-Stratonovich transformations, mean field treatments, renormal­
ization group methods, etc. One often starts by considering the propagator of an 
interacting theory,

— i {pa (r,t)pa' (r,t')) =
GK G+

G-
(r ,t; r ,t')
aa1

(12.35)
0

Once this function is known, the particle distribution function, F is defined through 
Eq. (12.27).

In perturbative approaches, elements of the matrix propagator are usually rep­
resented by a diagrammatic code, as in fig. 12.3. In the same spirit, the interaction 
vertex is represented as in the lowest row of that figure. Notice that the interaction 
vertex connects to at least one Keldysh (dashed) field component, the reason being 
that Sint[p] = 0 for pq = 0 (think why). Other than that, not much can be said 
in general terms. However, in the remainder of the chapter, we will discuss various 
applications illustrating how interacting theories are handled in practice.
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—*— 1c 1c

--■^- 1>q 1q

-------------G---------- G+ = —i^) 

--------->---------- G- = —idic) 

---------- g------------ GK = —i{1c'4>c}

Fig. 12.3 Building blocks of bosonic Keldysh diagrammatic perturbation theory. Top, field vertices;
middle, propagators; bottom, interaction vertices.

To conclude the discussion of general structures, the info block below provides 
a reference to standard conventions in bosonic Keldysh theory. While the different 
forms of Keldysh matrix Green functions can be confusing at first, the conventions 
listed below are standard and are used in this form with little or no alteration in 
the literature. Over time, one just gets used to them.

INFO For the convenience of the reader, we here provide a reference chart summariz­
ing conventions for bosonic quantum fields and propagators. To simplify the notation, 
we list formulas for a single-level Hamiltonian, H = ua^a, with equilibrium distribution 
n(u) = (e3(--M) — 1)-1. We consider the free theory with infinitesimal damping constant 
iS. A straightforward generalization to more complex Hamiltonians and particle distribu­
tions was discussed earlier in this section.
Contour representation:

S [^] = y? dt^C (idt — u) ^C = C f d^G (e — u) G. 
C=± 2 2 n

Coupling between contours (mediated via boundary terms) is often left implicit in this 
representation. Green functions in the contour representation are represented as

_i,,C,CG++ G+G ' G<\
i \vt Gt1 / —+ g —j — \G > GT j ,

where

/'*+— — /-*<   ->—i-(t—tr)^if Gtt' — Gtt' = — ie n (u),
G—+ — G>, = — ie—i-(t—t') (1 + n(u)),
/-*++ /'-’<
Gttz — Gtt' = Gtt!U(t — t) + Gtt!U(t — t),

^—nT, ___^> (^(+z +a । /^< (^(+ +'\Gtt' — Gtt' = Gtt!U(t — t) + Gtt!U(t — t ),

with the constraint G++ + G—— = G+— + G—+ .

(12.36)
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Keldysh representation: Fields in the Keldysh basis are defined as (cf. Eq. (12.21))

\ _ 1 / ++ + -- \ / ++
) = \ 2 V ++ - - J , \^-

'A +
^c - ^q

(12.37)

The transformation (++ ,ip-) ^ (^c,^q) is unitary. Depending on the interpretation of 
the fields, the alternative definitions ±± = ^c ± 2pjq, ^c = 1(++ + —-), q= = ++ — —- 

are sometimes used. The Keldysh action (see Eqs. (12.27) and (12.28) for a generalization 
not assuming the commutativity of F and G±) is defined by

S[••',,] = J dtp>t (G-1)-1 ^t = J' 2^ (G-1)-1 py, (12.38)

where

-' G-1 = = (p c ■) A ++--i G) Rc ) , (12.39)
v 47 \ (G+) 1 (G 1)1 / \Fq I

with

(G±)-1 = idt ± iS — u, 

(G-1) 1 = 2 iSF (u),

(G±)-1 = e ± iS — u, 

(G-1) 1 = 2 iSF (u). (12.40)

Here, the subscripts serve to distinguish between the time and energy representations. Note 
that, in either case, the Keldysh blocks (G-1) 1 are constants defined by the distribution

F (u) = 1 + 2 n (u) = coth
u — p, 

2 T
(12.41)

and depend on the energy eigenvalue. The Keldysh Green function is given by

—A <

—A <
( ^q

>€

< q>q,t
tc^t 
pc,,t ’}

( c,e,t 
(q,q,t

q,_ti,t' A 
qjtl,i ’') J

G1
= G-

G+
0 tt

tPc,e ) ( c,e,e tqr- A f G1 G +\
c^c,e ('^q,e 7pq,£ V

= G- 0, / €

(12.42)

with Keldysh factors defined by

G+t, = — i©(t — t')e-™(t-t'), G+

G-t, = + i©(t' — t)e-iu(t-t'), G-

G1, = — iF(u)e-i"(t-t'), G1

1
e+ — u ,

1
e- — u '

—2 niF (u) S (e — u).

(12.43)

In the equilibrium situation considered here, we have the FDT relation

G1 = F(u) (G+ — G-) . (12.44)

The relation to the Green functions of the contour representation is given by

G+ = Gt — G<, G- = Gt — G>, G1 = Gt + GT. (12.45)

Also note the relations

(G ±)f = GT, (G1 )f = — G1. (12.46)
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12.2.5 Fluctuation-dissipation theorem

fluctuation— 
dissipation 

relation

In thermal equilibrium, the Keldysh Green function is fully determined by the 
Kretarded and advanced Green functions: with F =1 + 2n = coth(e/2T) and GK = 

G + F — F G-1, we have

GK(e) = coth (2T) (G+(e) — G-( e)). (12.47)

This relation resembles the fluctuation-dissipation relation reviewed in section 
11.6.4. In the following, we will make this connection more concrete and at the 
same time explain the physical meaning of GK. Turning back to a representation 
in terms of contour fields, the Keldysh Green function is defined as

G K (t, t') = — i (Gc (t) Gc (t')} = 1 ((G +(t) + G -(t))(G+( t') + ^-( t'))},

where Hilbert space indices are omitted for clarity. These correlation functions con­
stitute the field integral representation of the contour-ordered expectation values, 
{Gc(t)Gc' (t')) ^ (Tyac(t) aC' (10), where the angular brackets on the right-hand 
side give the thermal expectation value (...) = tr( ...p0), and the combination 
(C, t) fixes the position of the operator on the closed time-contour. Employing an 
exact spectral decomposition (see info block below), it is a straightforward exercise 
to demonstrate that

GK (e) = 2i Im GT(e). (12.48)

In words:

The Keldysh Green function GK equals twice the imaginary part 
of the time-ordered correlation function GT.

(The latter is defined in Eq. (7.11) for X 1 = a and X2 = at.) Substitution of 
this identification into Eq. (12.47) then gives the standard representation of the 
fluctuation-dissipation relation:

Im GT(e) = coth Im G +(£)•

INFO To prove Eq. (12.48), we employ 
the Heisenberg representation of the oper­
ators, as aC (t) = U-1 (C, t)aU (C, t), where 
U(C,t) = Ty exp (i f(C,t) dtH(t)} describes 
the evolution along the contour up to the 
point specified by (C, t). For example, re­

/3

0 t
calling that times on the backward contour are always Keldysh-later than those on the 
forward contour, {TYa-(t')a + (t)} =tr(e'iH* a + e'iH(t-t )ae-iHtp0) = {a +(t')a(t)}, where the
time-dependence in the last expression refers to the standard Heisenberg representation. 
Inserting a formal decomposition in system eigenstates, this yields the Lehmann represen­
tation { Ty a -(t') a +(t)} = pp | aap |2 e1=a?(t - t ), where aap = {a | a | ^}, H a = Ea — p,Na,
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Eap = Ea — Ep, pp = Z01 e-p“?, and a summation over a, ft is implied. Pro­
ceeding in the same way with the remaining contributions, one obtains GK (t, 0) =
—iZ01|Xap |2ei~ai t (pa + pp), which Fourier transforms to

GK ( 6) = —2 ni Z0 1| Xap |2 S ( e + E ap )(Pa + Pp ) ■

Comparison with Eq. (7.16) then leads immediately to Eq. (12.48).

12.2.6 Classical limit I

Readers who went through the previous chapter may have noticed apparent simi­
larities between the Keldysh theory outlined in the previous section and the MSR 
functional of section 11.5.1. Specifically, the triangular form of the quadratic ac­
tion, containing retarded/advanced Green functions and the distribution functions 
as building blocks, resembles that of the MSR theory. In this section, we indicate 
how classical structures emerge in interacting Keldysh theories as a particular class 
of stationary configurations. A more comprehensive discussion of the ensuing struc­
tures and connections with MSR theory will then be the subject of section 12.3.

Prior to taking the semiclassical limit of a theory, we need to let ~ re-enter 
the description. Presently, the Keldysh action represents a quantum phase, which 
requires the scaling iS ^ ~~ S. In the limit ~ ^ 0, the functional is governed by 
stationary configurations obeying

dS [^c,^q] = dS [^c,^q] = 0 
d^q d^c

(12.49)

classical 
saddle­

point

Among the solutions of these equations, there is always one that reflects the classical 
physics of the problem. Recalling that an expansion of the action in ^q starts at 
linear order (the purely classical action S[^c, 0] vanishes), we identify this classical 
saddle-point by the equations,

!'q = 0,

dS [^c,^q] 
d"q

= 0.
^q =0

(12.50)

The first line, tf>q = ^ + — ^- = 0, underpins the classical nature of this solution.
In the case of the interacting Bose action (12.30), the equation assumes the form

iitt — d — V|^c|^ ^c = 0. (12.51)

Gross—
Pitaevskii 

equation

This is the Gross—Pitaevskii equation, a time-dependent generalization of the 
static mean field equation (5.10) discussed in chapter 5 in connection with superflu­
idity. The Gross-Pitaevskii equation describes the non-linear evolution of a bosonic 
order parameter amplitude ^c self-interacting with its own density ^ |^c|2. Refer­
ring for a discussion of this particular equation to the info block below, here we note 
that the approach above exemplifies a general principle: typical many-body actions 
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dark 
soliton

are large in comparison with ~. One therefore often applies stationary phase analy­
sis: identify stationary configurations first, then include fluctuations. In the sections 
below, we will illustrate on more examples how this program works in practice.

INFO We may think of the Gross—Pitaevskii equation (GPE) as the time-dependent 
Ginzburg-Landau equation of the transition into a superfluid state. Alternatively, it may 
be interpreted as a nonlinear Schrodinger equation describing the wave function of a 
Bose-Einstein condensate. Inhomogeneous solutions of this equation describe collective 
excitations of the condensate field.

As an example illustrating this mechanism, consider a one-dimensional spatially homo­
geneous system where H = — 2m (~dx)2 — j includes a chemical potential. Passing to the 
Fourier energy representation, i~dt ^ E, the equation assumes the form

(e + (~2mT + J — VI ^c|2) ^c = 0 ■

The solution of lowest energy, E = 0, is the spatially homogeneous condensate ampli­
tude |ripc|2 = VV (see the discussion in section 5.2.1). However, the GPE also contains 
information on spatially inhomogeneous excitations of the condensate. For example, it is 
straightforward to verify that, for any x0 , the function

i^c = ^0 tanh ( (—-—— ) (12.52)
\ 5 J

solves the GPE. Here, ^0 is a complex amplitude with |^0|2 = j/g, and 5 = ~/V4mJ is 
the coherence length. The wave function (12.52) is called a dark soliton, the attribute 
dark alluding to the vanishing of the condensate amplitude |^| at the soliton center. The 
sign change in ^ cannot be removed by a continuous deformation, indicating that the 
soliton is a topological excitation. As an exercise, try to identify a bright soliton for a 
system with attractive interactions, V < 0.

12.3 Particle Coupled to an Environment

In the previous section we reasoned that, starting from an initial distribution at 
negative infinity, a system may generate an effective distribution via interaction 
processes. We also saw that the theory may be analyzed starting from its classical 
stationary phase configurations. In this section, we illustrate these principles on the 
example of a quantum particle coupled to a bath.

Keldysh theory of a quantum particle

Consider the quantum mechanics of a point particle with Hamiltonian H = 2— + 
V(q), initially prepared in a state p0. In this case, the Keldysh theory is best 
formulated in the language of a Feynman path integral, rather than as a coherent 
state field integral:
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Zs = Z-11 D(q, p) e £c sC f dt (pcdtqc—H(qc,pC))

= z—1 yDqei£cs fdt(mm(')2-V(qc))

= z-1 [ Dq e f dt (mdtqqdtqc—V ((qc+qq)) + V (72(qc—qq)))

where, in the second equality, we integrated over momenta to pass to a Lagrangian 
representation. To explore the classical limit of this expression, we scale ~ as 
iS ^ i~-1 S. Recalling the quantum nature of configuration differences q + — q — ~ qq 

above, it is also natural to make the scaling qc ^ ~qc. A first-order expansion of 
the action in qc~ then identifies the ~-independent (classical) sector of the action:

Sc[qc,qq] — d dt qq —mdt qc — 22 V' 1

Integrating over the quantum component, we obtain the constraint -md2qc — 
2d dqV(qc/^/2) = 0 or, upon rescaling coordinates so that qcj2d — q, Newton’s 
equations of motion

mdt q = — dq V (q). (12.54)

This equation determines the classical stationary phase configurations of the sys­
tem. We next ask what happens if the coupling to a bath environment is switched 
on.

GG -,L =

Coupling to an oscillator bath

The bath itself is described by a partition function such as Eq. (12.31). Assume the 
bath degrees of freedom to be oscillator-like, pHp — 2k '.’k vk pk, with wave-like 
dispersion vk — c | k |, we get

Sb[p] — j(dv) £ G-^ p, (12.55)

with p = (pc,pq)T, (dv) = dv/2n, and the oscillator Green function,

0 v — i6 — Vk

v + i6 — Vk 2i6 coth( 2^T)6(v — Vk)

The coupling between system and bath is now modeled by the action

Ssb [ P, q ] — I ^t^sc qc (t)(Yk pc,k (t )+c. c. )= d dt^2q (t) T a 1 (Ypk (t )+c. c.) 
k,C k

(dv) (YkqT a i pk, - ^ + 7 k 4’T,^ a i q - ^, (12.56)
k

where in the second line we switched to the Keldysh representation qT = (qc, qq), 
and y(k) are complex coupling constants, assumed to scale as |y(k)| = A|k|a for 
definiteness.



722 12 Nonequilibrium (Quantum)

Integration over oscillator modes

At this stage, the oscillators may be integrated out. Using the fact that — i(^^T) = 
G (see. Eq. (12.35)), we obtain the effective action, Seff = Ss + Sdiss, where the 
dissipative action is given by

Sdiss[q] = — / (du)qTa 1 |Yk|2Gk,T I a 1 q-T,

and the Green function has the form

A _ (-2ni coth ( TT ) 3 (u — uk)
Gk,T I ( — \ —1(u — i3 — uk)-1

dissipation 
kernel

u + i3 — uk )­

0

Using the relation |yk |2 = A2 k2a, and noting that the Green function enters in a 
1frequency-symmetrized form, ^2T 'IT GT q-T = 2 52T 'IT (GT + G-T) q-T, summation 

over the k-modes produces the expression (exercise)

Sdiss[q] = y"(du) qTKqqT, (12.57)

where the dissipation kernel K is given by

0 
i

KtT = nvA2
—i

2i coth ( 2T )
(12.58)

Ohmic dis­
sipation

Here we have introduced the density of modes, v = ^2k 3(u — uk), and omitted a 
frequency-independent contribution to K (which can be absorbed into the chemical 
potential). Physically, KT may be interpreted as the self-energy of the particle due 
to its coupling to the oscillator bath. The frequency dependence of KT signals 
that Sdiss is a time-nonlocal contribution to the action. The temporal profile of the 
dissipation kernel depends on the coupling y. In the following, we concentrate on 
the particularly important case of Ohmic dissipation where a = 1 /2 and

0
KT = g • iu

—iu
2iu coth ( 2T )

(12.59)

with g = nV£ . Notice that the addition of Sdiss to the action renders the qq-sector 
of the quadratic action non-zero. In the present context, this contribution plays 
the role of an effective self-energy (see the comments after Eq. (12.29)). We next 
discuss how this coupling affects the dynamics of the system coordinate.

INFO The power law a = 1 /2 is realized for the coupling to an elastic medium and 
therefore is physically relevant. To see how this comes about, define y = i^sgn(k)\/2kI and 
recall the representation of the coherent state amplitudes in terms of oscillator coordinates 
and momenta, ^k = ^12 (^Jkqk + ^=pk). Substitution of these expressions into the 
coupling term gives

y^(YkGk +c.c.) ~ y~^ sgn (k)^N iVGkqk - ~y^Pk +c.c J ~ ikqk ~ dxq(x)|x=0 
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where, noting that q(x) and p(x) are real, we used qk = q-k and pk = p-k. The last 
term describes the local coupling of the system coordinate to the stress dxq(x) acting 
on an elastic string. Macroscopic degrees of freedom are frequently coupled to harmonic 
microscopic modes in this way. One example is the coupling of an electric field to the 
microscopic modes defining a resistive medium. This coupling mechanism explains the 
denotation “ohmic” dissipation.

Langevin equation

Assuming that the dynamics of the system coordinate is almost classical, let us 
explore the role of the system-bath coupling, and indicate how quantum effects 
resolve problems plaguing the purely classical theory. To this end, we reintroduce 
~ as follows

(i) : iS ^ i-S,
~

(ii) : coth(w/2T) ^ coth(w~/2T) ^ , (12.60)
~ w

(iii) : -.'q ^ ~-.'q,

where, in the second line, we used the fact that, in the semiclassical limit and at 
fixed frequency w , the coth can be linearized. The extra power of ~ appearing in 
the denominator of this expression compensates for the additional power in ~ due 
to two factors qq in the quantum-quantum sector of the action. Summarizing, the 
effective classical action is given by

Sc [qc, qq] = dt qq —mdt qc — T2 V' - 2gdtqA +4iTgq2

which has the characteristic structure of an MSR action. From here, we may pass 
to a Langevin-type differential equation for q by Hubbard-Stratonovich decoupling 
of the qq term:

Sc[qc,qq] ^ Sc[qc,qq,]] = dt q^ - mdt qc— T2 V7 (T/^j— 2 gdtqc + T2e

i
+ 8gT

Introducing the rescaled variable q = qc/^2 and integrating over qq, this leads to

md2 q + V'(q ) + 2 gdt q = £, (12.61)

where the noise correlator

(e (t) e (10) =4 Tg^ (t — t') (12.62)

is consistent with the fluctuation-dissipation theorem. In this way, we see that the 
coupling of the system to a bath renders the classical limit noisy. Recalling the 
discussion of the previous chapter, the combination of damping and noise will push 
the system towards a thermal distribution, at a temperature set by that of the bath.
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INFO The semiclassical theory solves a problem that plagued the purely classical 
theory discussed in the previous chapter. Discussing the dissipative damping of voltage 
fluctuations in a resistor network, we saw that Johnson noise is problematic inasmuch 
as the white noise correlator {i(t)i(t')} = 2RTS(t — t') predicts singularly strong noise 
levels {i(t)2}. The coupling to a quantum bath regularizes this infinity at Planck scales. 
Comparison with Eq. (12.59) and the subsequent steps of the derivation show that the 
frequency representation of the actual noise correlaton reads

As in the bosonic case, let us begin with a single-level Hamiltonian HI = ua^a,
where a and at are fermion operators. The definitions of the Keldysh partition
function (12.10), and of the equilibrium density operator (12.11), remain unchanged.

12 See, e.g., G. B. Lesovik and R. Loosen, On the detection of finite-frequency current fluctuations, 
JETP Lett. 65, 295 (1997).

(iuiu'} = gS(u + u')u coth 
n

~ u
2T

In the classical limit ~ ^ 0, this reduces to the white noise limit 2n~s(u + u'), which 
Fourier transforms to Eq. (12.62). However, at large frequencies ~u T, we obtain

{£& iu'} —^ gS (u + u Z)| u |. 
n

It turns out that the replacement T ^ ~| u | /2 in this expression removes the ultraviolet 
singularity of the classical theory. However, the actual derivation of the regularized noise 
statistics requires additional discussion beyond the scope of the present text, and the 
interested reader is referred to the literature.* * * 12

The discussion above exemplifies how Keldysh theory describes the coupling of a 
quantum system to an environment, and its subsequent thermalization. In the re­
maining sections of the chapter, we will go beyond this level and address problems 
out of thermal equilibrium. However, since most of these involve the coupled ap­
pearance of bosonic and fermionic degrees of freedom, we first need to construct a 
fermionic extension of Keldysh theory.

12.4 Fermion Keldysh Theory

REMARK The construction of a fermionic Keldysh theory parallels that for the bosonic 
one. However, as might be expected, the anticommutation of fermion operators introduces 
a few sign changes. Impatient readers may skip this discussion and consult the reference 
chart on page 727 for a summary of the essential changes.

In the following, we construct the fermion Keldysh functional by retracing the 
construction steps of the bosonic one, indicating the changes required by fermion 
statistics.

12.4.1 Single level
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However, the normalizing factor is now given by Z0 = 1 + e -3 (": -M). We again 
represent the partition function in terms of (now fermionic) coherent states.

It is straightforward to verify that the auxiliary identity (12.12) generalizes to 
the fermionic case. This implies that the discrete functional (12.13) remains as it 
is, except for a sign change k — — k . As in the construction of the Matsubara 
equilibrium functional, this is the sign factor picked up when the final one of the 
2N coherent state amplitudes required to trotterize the time-evolution along the 
Keldysh contour is commuted through all others to complete the construction of 
the discrete coherent state integral; see the discussion below Eq. (3.67) (think about 
this point). Likewise, the inverse of the discrete fermionic Green function is given 
by Eq. (12.14), again up to a sign change k — — k. Otherwise, all the formulae 
of section 12.2.2 generalize to the fermionic case. Specifically, det(—iG-1) N—— ' 

1 + k = 1 + e-3(":-M) = Z0 defines the normalization of the functional integral. 
Taking the limit N — <x>, and switching to a continuum representation, we obtain 
the fermionic Green functions (12.71).

We may now pass to a continuum representation of the functional integral whose 
unregularized form (with no accounting for infinitesimal damping and boundary 
conditions) is given by the Grassmann version of Eq. (12.18). A glance at Eq. (12.71) 
shows that the redundancy in the theory, which motivated the “Keldysh rotation,” 
now assumes the form G++ + G-- = G+- + G-+ . In the case of Grassmann 
variables, it is customary to remove this redundancy by a field transformation 
slightly different from the bosonic Keldysh rotation:13 using the independence of 
the Grassmann variables / and J, we introduce new fields by

J 1 = 72( J ++ J-), 

^i = -12( ’j+ - v—,

-1=(J + - J-),
J 2

/’2 -2(/++/-). (12.63)

With the notation / = (^+ ), /' = (^ 1), / = (/+, /—), J = (Ji, ?J2), this assumes 
the form of a non-unitary transformation

/1 = U/i Jj/ = j’ o 3 U T,

where U was defined in Eq. (12.19). The form of the above transformation is mo­
tivated by the transformed contraction rule

—i (/'/,') = U (//}} o 3 U T = UG U T o 3 = G',

13 Owing to the non-unitarity of the transformation, and the fact that Grassmann fields are never 
“classical,” these fields are labeled 1 and 2 instead of classical and quantum. The motivation for 
sticking to the particular field decomposition (12.63) is probably historical. (It was introduced 
in A. I. Larkin and Yu. N. Ovchinnikov, Vortex motion in superconductors, in Nonequilibrium 
Superconductivity, eds. D. N. Langenberg and A. I. Larkin (Elsevier, 1986), to give the Green 
function the form (12.64), considered convenient for perturbation theory.) However, in the recent 
literature, various authors have been adopting an alternative “center of mass,” previously used 
in the bosonic case. The transformation to those coordinates leads to a different, but no more 
complicated, structure for the Green function; and it is conveniently unitary.
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where G = ( G++ GG+- ); the transformed Green function assumes the form

( G+ G = G (12.64)

and the retarded, advanced, and Keldysh Green functions are defined by analogy 
to Eq. (12.42) as

G+, = -i0(t - t')e-'(t-t'),

G—t, = + i0(t' - t)e-'(t-t'), (12.65)

GK, = -i(1 - 2nF(w))e-^(t-t').

n • • 11 j i i • j i j i j c i c i • -jj!Since we will mostly work with the transformed Green function G, we omit the
• J 1 1 J /yf .prime throughout, G' ^ G.

12.4.2 Generalization

As with the bosonic theory, the form of the Green function (12.65) suggests the 
introduction of a fermionic distribution operator F = {F(e)}, with

F(e) = 1 - 2nF(e). (12.66)

Expressed as a Fourier transform, the Keldysh Green function then assumes the 
form

GK = G+ F - FG-, (12.67)

as in the bosonic theory. The generalization of the toy model above to an inter­
acting theory is described by the Grassmann version of the functional, Eq. (12.30). 
(The option to add spin-indices should be straightforward.) In contrast with the 
bosonic case, where mean field approaches to the interacting theory lead to immedi­
ate results, most fermionic theories call for a Hubbard-Stratonovich decoupling of 
the interaction term. Prior to passing to the Keldysh-rotated theory, we therefore 
introduce an auxiliary bosonic field to decouple the interaction:

eiSint [ ^ ] = y D^e - 2 f dtddrddr' C sc ^C (r ,t ) V-1(r-r') ^C (r' ^t )

x e+i f dtddr C sc^c (r,t)^c (r,t)^c (r,t)

We may now implement the Keldysh rotation to arrive at the effective action 
S[^, ^] = S[^] + S[^] + Sint[^, ^], where (omitting obvious space-time coordinates)

S[G] = -W ddrdt^c(r,t)V 1(r - r')^q(r',t),

S [G]= I ddrdt'ipG0 1r^, (12.68)

S int[ G,G ] = d ddrdtip(ocn0 + Gq& 1)G.
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Here
(G +)-1 (G-1)K \ 

(G-')-1) (12.69)

is the inverse of the free Green function14 and (G±) 1 = (idt ± i0 — H). We finally 
note that elements of the Green function are generated by the fermionic variant of 
Eq. (12.35)

- .......... / G+ Gk \ , ,.—i {^a (r ,t) 4^a/ (r ,t )> =( (r ,t; r,t)
0G\ a aa'

(12.70)

INFO Here, we complement the bosonic reference chart on page 716 with a chart list­
ing the conventions of fermionic Keldysh theory. Again, we assume a single-level 
Hamiltonian, H = ua1 a, now with fermionic distribution nF(u) = (e3(--M) + 1) —1.
Contour representation:

E/ —i''' ■ . X / d,6 —C J dt't(idt - u)'t = G J 2n '°(- u)'?'

Again, the correlation between contours - via a coupling term at the temporal boundaries 
now involving the fermionic distribution function - is left implicit in this representation. 
The Green functions in the contour representation are given by

CCC'\_ GG++ G+  ̂ =^T G<\
i \'t't1 / I Q—+ Q — I — I g> qt / ,

G+ — — G<t, = + ie—i-(t—t') nF (u),

G—+ — G>, = -ie—i-(t—t')(1 - nF(u)), (12.71)
/-*++ —   /"7> + Z> I f'<Gtt' — Gtt' = Gtt'U(t — t) ■ Gtt'U(t — t),

dr . I . I.—--------— <7T,   <■*> + Z +A I <7< (^(f +!\Gtt' — Gtt' = Gtt! U( t - t) ' Gtt! U( t - t ) ,

where nF (u) = -—4---- ? is the Fermi distribution. This differs from the bosonic vari-1 1 + eP (w p)

ant, Eq. (12.36), in the replacement n(u) ^ — nF(u), where the sign change reflects the 
fermionic statistics on the contour. Note the constraint G++ + G = G+ + G +.
Keldysh representation: Fields in the Keldysh basis are defined as (see Eq. (12.63))

' 1
' 2

'+

' —

'+ + '—

'+ - '—

' 1 + ' 2

' 1 - ' 2

tp+ 

' —

'+ - l' —

^+ + 'W

'^1 + '^2

'^2 - '^1
(12.72)

Note the signs in the definition of ipt, which make this transformation non-unitary. The 
Keldysh action retains its form (12.38); however, the block representation of the Green 
function changes to

^C'+ + — 1 </'-'— 1^K'
G—1' =( '^1,1^2) ( ) ((r———1 '1 , (12.73)

(G—)—1 '2

14 The off-diagonal block (<G— 1)K is given by (<G— 1)K = -(G+) — 1GK(G—) —1 = (G+) —1F - 
F(G—) — 1 = 2i&F, where the last identity holds if F commutes with (G±) — 1.

G - 1
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where the entries are given by Eq. (12.40) with the fermionic equilibrium distribution

F (u) = 1 — 2 nF (u) = tanh (12.74)

The Green functions are defined by

{1,1 ,t<P1 ,t') 

V ( 2,2 ,ttp1 ,t'}

(1,1 ,^f1 ,e } 

V { 2,2 ,elh ,e )

(1 i ,, ,t'}
{  ̂2 th ,t'}
{^ i ,^lh ,e ~)

(2,2,e<p2,e')

G+ 

0

G+ 

0

(12.75)

GK

G 
t ttt

GK A

G / €

with entries given by Eq. (12.43) (now with the fermionic distribution Eq. (12.74)). The 
equilibrium FDT (12.44) and the relations (12.45) and (12.46) remain valid.

12.5 Kinetic Equation

The action (12.68) defines an exact representation of an interacting Fermi system 
and is the starting point for numerous approximation schemes. As an example, here 
we discuss the kinetic equation formalism, which is tailored to the description of 
effective particle distributions forming as a result of interactions. The methods 
introduced in this section are powerful and are routinely applied in the analysis of 
out-of-equilibrium quantum systems.

Let us interpret the Hubbard-Stratonovic field employed 
to decouple the four-fermion interaction as an effective 
bosonic degree of freedom. Seen in this way, the nonlinear­
ity described by Sint represents a boson-fermion interaction 
vertex. We aim to describe the ensuing boson and fermion 
self-energies £f and £b dressing the respective propagators. 
To this end, we apply an RPA-type approximation, which 
discards intersecting propagator lines. The topology of £f is then given by the up­
per diagram shown in the figure, with external legs removed, and all propagators 
representing full propagators, with a self-consistent account of the self-energies. In a 
similar manner, £b is obtained from the lower diagram. Inspection of the diagrams 
shows that the two self-energies contain the propagators as £f ~ GD, £b ~ GG, 
where G and D are the fermion and boson Green function, respectively. However, 
what this simple observation is not able to describe is the matrix structure of the 
self-energies in Keldysh space.

To understand this point recall that, in a functional formulation, the fermion 
self-energy is obtained by the contraction of interaction operators at fixed external 
field indices. Specifically, the fermion self-energy is defined as

y dxdx' i/’/(x)£f (x, x')^z(x') = — — y dxdx’i/’/(x) <^>(x)^(x)?/>(x')$(x')^ ^'(x'), 
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where <p = 0co0 + xqo 1 and we have switched to the space-time abbreviation 
x = (r, t). The self-consistency of the RPA scheme requires that the contractions 
must be interpreted as the full Green functions of the theory. Comparison of the two 
sides of the equation and Eqs. (12.35) and (12.70) then leads to the identification,

x - i /x i I 7 / x / / x / / /x 7/ /x \ 1 / 7/ xA/ /x?//x\£f (x,x9 = — — (x)^(x)^(x9$(x = — (x)G(x,x)<p(xjy

— ^G(x, xr)DK(x, xr) + G(x, xr)o 1 D +(x, x') + o 1 G(x, x')D-(x, xr)^ ,

where we follow the standard convention of denoting the bosonic Green functions 
of a real field by D+,-,K . Using the above expression, the components of the self­
energy operator

/ -*■ I£ (' f
ff = of

£K 
f

£ -

are identified as

£±(x, x1) = — — (G±(x, x')DK(x, x9 + GK(x, x')D±(x, xz)) (12.76)

i
£K(x,x) = — - GGK(x,x9DK(x,x9 + G +(x,x9D +(x,x9 + G (x,x9D (x, x9)

i
= — - (GK(x,x9DK(x,x9 + (G + — G )(x, x9(D + — D )(x,x9) ,

where we have made use of the fact that causality implies G +(x,x1)D-(x, x') = 0, 
etc. On the same basis, we have D±(x, x')G^(x, x') = 0, which implies the vanishing 
of the lower right-hand block of the self-energy operator.

Turning to the propagator of the effective bosonic field, comparison with 
the first line in Eq. (12.68) shows that it has the structure

D£ = V£ o1
S' -1

V£-1

V£-1 £+ £ b £K £ b
(12.77)1 1 £ b =

0 £

EXERCISE Apply a construction as above for £ f to show that the bosonic self-energy 
is given by

£± (x, x') = —^ (G^ (x',x)GK (x, x9 + G± (x, x')GK(x',x)) , (12.78)

£ K (x, x') = —^ (GK (x' ,x) GK (x, x') + G + (x' ,x) G - (x, x') + G- (x' ,x) G +(x, x9)

= -1 (GK(x',x)GK(x,x') - (G + - G-)(x',x)(G + - G-)(x,x')) .

In the present context, where the boson field actually represents fluctuations in a scalar 
potential, we may think of the self-energy as an effective polarization operator screening 
field fluctuations.
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12.5.1 Quasiclassical theory

REMARK This section uses the Wigner transform. Consult appendix section A.4.3 for 
a discussion of this representation.

We now have everything we need to understand the effective Fermi and Bose dis­
tributions stabilized by particle interactions. The understanding of the underlying 
relaxation mechanisms is the basis for the description of the out-of-equilibrium 
distributions forming, e.g., if a system is exposed to strong external fields.

kinetic 
equation

collision 
term

Derivation of the kinetic equation

In this section, we will derive the kinetic equation, a differential equation governing 
the evolution of the distribution F in an interacting environment. In view of the 
spatio-temporal scale separation of the difference and center of mass coordinates 
discussed above, it will be convenient to formulate this discussion in a Wigner 
transform representation. Note that this makes F(x,p) = F(e,t, r, p) a function of 
phase space coordinates describing the distribution of particle densities. In view of 
this interpretation, we may anticipate similarities between the kinetic equation and 
the Boltzmann equation discussed in section 11.3 of the previous chapter.

Our starting point is the formal operator equation

/-+ - HI - S + -SK \ iG + GK\ i1 0\
o - - Hi - s-yv o GJ = \o i) .

Writing GK = G+ F - FG-, this matrix equation is equivalent to

(- - H - s±)g± = i,

(- - Hi - S +)(G+ F - FG-) - SKG- =0.

Multiplying the second equation by (G-)-1 and using the first, we obtain

F(- - Hi - S-) - (- - Hi - S+)F - SK = o.

At this stage, it is convenient to pass to the Wigner transform. Making use of the 
identities summarized in table A.1, we obtain the kinetic equation

(dt + {H, }) F = i(SK - (S + F - FS-)) = IcOdFJ (12.79)

The approximation underlying this equation is the first-order Moyal expansion, i.e., 
the semiclassical assumption that additional derivatives acting on the constituents 
yield contributions small in comparison to inverse powers of ~. The left-hand side 
describes the evolution of the distribution function F(e, t, r, p) generated by the 
classical Hamiltonian function corresponding to the single-particle Hamilton oper­
ator. On the right-hand side the collision term describes the effect of interactions 
and plays a role similar to the collision term of the Boltzmann equation. Its influence 
on the distribution function is discussed below.
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in/out- 
term

Collision term

To lowest order in the Moyal expansion, the operator products appearing in the col­
lision term are just products of Wigner functions, £ + F = £ + (e, t, r, p)F(e, t, r, p), 
etc. Within the framework of this approximation, we will now show that the term 
£K represents an in-term, i.e., a gain in particle occupancy driven by interactions. 
Conversely, £+ F - F£- is an out-term. The physical principles behind this assign­
ment are best understood using a concrete example, such as a system of interacting 
electrons.

Recall the discussion earlier on, where we reasoned that the Hubbard-Stratonovich 
transformation of the electron-electron interaction introduces an effectively bosonic 
degree of freedom with propagator D, Eq. (12.77). The inversion of this equation 
leads to the identification

A. । .A -i Al. -i A । . A -i —— . A
D ± = (1/-1 - £ ±)-1 = D + (V/-1 - £ J) D -,

D K = D +£ K D -

of the building blocks of D. From here, it is a straightforward if somewhat tech­
nical exercise to determine the quasiclassical representation of the collision term. 
We first need an auxiliary identity for the Wigner transform of the composites 
X(x,x')Y(x' ,x) appearing in the self-energies, Eqs. (12.76) and (12.78).

EXERCISE Consider an operator, ZZ, with space-time argument dependence Z(x,x') = 
X(x,x')Y(x,x'). Assuming that X(x,x') = X(x — x') depends only on coordinate differ­
ences, show that the Wigner transform X (p) is a function of the space-time momentum 
only. With the same assumption for Y , show that the Wigner transform of the composite 
is given by

X(x,x')Y(x,x') ^ d dp'X(p')Y(p — p'). (12.80)

Similarly, show that

X (x,x') Y (x' ,x) ^ d dp' X (p') Y (p' — p). (12.81)

We now start from the definition of the collision term in Eq. (12.79), substitute the 
self-energies (12.76) and (12.78), use the fact that translational invariance implies 
G(x,x') = G(x — x'), etc., and pass to the Wigner representation to obtain

Icol[ F ](p) (12 • 76=12 •80) |y dq [ GK (p+q) DK (q) + (G + — G -)(p + q )( D +— D - )( q)

— ((G + — G-)(p+q)DK(q) + GK(p + q)(D+—D-)(q)} F(p)] 

(1=7) — 2 I dqD +(q) D - (q) A (p + q)

X [(F(p + q)—F(p))£K(q) + (£ + — £-)(q)(1—F(p + q)F(p))]

4/(12•78),(12 • 81)
dqdp' D + (q) D (q) A(p + q) A(p' + q) A(p')
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transition 
probability

X [(F(p + q) - F(p))(1 - F(p' + q)F(p')) 

- (F(p' + q) - F(p'))(1 - F(p + q)F(p)],

where we have introduced the spectral function A = -2 Im G+ as a measure of 
the fermion spectral density (see Eq. (7.28)). To understand the meaning of this 
expression, note that the distribution functions, F (p) = F(e, p) = 1 - 2ne depend 
only on energy. This motivates the split of integrations over p = (e, p) and the 
definition of the transition probability

T(e,e',w) = [ ddp-dddD + (q)D-(q)A(p + q)A(p' + q)A(p').
J (2n)a (2n)d

Adding and subtracting a term nene+une<ne'+w, it is then straightforward to show 
that the collision integral takes the final form

Icol[F]( p ’ = / dW £ T ( ','>)

X (ne (1 - ne+u)ne,+u (1 - ne,) - (1 - ne)ne+u (1 - ne,+ u)ne,).
(12.82)

Pauli 
blocking

We interpret this expres­
sion as the interaction-induced 
rate change of the distribution 
of fermions with energy e. The 
skeleton process responsible for 
the out-rate is shown in the 
left part of the lower panel of 
the figure: Pauli blocking re­
quires an empty state at the 
target energy e + w (with dis­
tribution factor 1 - ne+^). The 
required energy for this transition must be provided by the conversion of an oc­
cupied state at energy e' + w (with distribution factor ne»+w) into an empty state 
at e' (with distribution factor 1 - ne<). The in-process shown at the right is inter­
preted analogously. For a fixed configuration (e, e1 ,w), this process is weighted by 
the transition amplitude, T (e, e' ,w), which in turn is given by the absolute square 
of the quantum amplitudes indicated in the lower part of the figure. The rate sam­
ples all momentum arguments, (p', q), of the quantum states participating in the 
process, and the propagators encode the underlying dynamics, as indicated in the 
upper part where the dashed line indicates the interpretation of the diagram as the 
absolute square of a transition amplitude.

A few more comments are due on the the interpretation of the quantum collision 
term:

> The structure of Icoi resembles that of the classical Boltzmann collision term 
discussed in section 11.3 (see Eq. (11.18)). Quantum mechanics enters through 
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the Pauli blocking factors 1 — ne, requiring emptiness of the final states of 
the scattering process. In the classical theory, these factors are absent.

> Just as the collision term of Boltzmann theory was annihilated by the Maxwell- 
Boltzmann distribution, the collision term Eq. (12.82) vanishes in the Fermi- 
Dirac distribution: substitution of ne = (1 + e(6-^)/T)-1 makes the in- and 
the out-part balance and Icol vanish. This happens regardless of the parameters 
(^, T), i.e., interactions drive equilibration into a Fermi-Dirac distribution at 
arbitrary temperature and chemical potential. For example, in situations where 
the constituents of the theory vary in space and/or time (meaning that the 
Wigner transforms pick up a dependence on the center coordinate), Fermi-Dirac 
distributions with varying parameters, T (t, r) and ^ (r ,t), often define a good 
ansatz for the solution of a theory.

12.6 Non-equilibrium Quantum Transport

In the previous sections, we discussed how interaction effects drive a system to­
wards local equilibrium configurations and how departures from that configuration 
can be described. However, we have not yet investigated much of the fascinat­
ing phenomenology of out-of-equilibrium phases. Instead of attempting a complete 
overview - an impossible task - we focus here on one selected application: quantum 
transport beyond the regime of linear response studied in chapter 7.

The smaller a quantum system, the easier it is to drive it out of equilibrium. 
Ongoing progress in miniaturization implies that quantum devices are more fre­
quently operated out of equilibrium and that the concepts discussed in this section 
are increasingly important in fields such as quantum information devices, quantum 
optics, and the general physics of driven and open quantum systems. We begin 
by introducing an exemplary setup illustrating this physics: a small metallic island 
sandwiched between macroscopic electrodes kept at a relative voltage difference. We 
will then demonstrate how almost all the concepts introduced earlier in this and 
the foregoing chapter are relevant to this system. Specifically, we will address the 
formation of non-thermal distribution functions, the generation of various forms 
of noise, their influence on quantum observables, and the statistics of transport 
coefficients in regimes beyond linear response.

12.6.1 Out-of-equilibrium quantum dot

REMARK Recapitulate problems in section 5.6.5 on the physics of a small metallic island 
tunnel-coupled to external leads. Our discussion below will generalize this setting to an 
out-of-equilibrium situation.
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Consider a metallic or semiconducting is­
land of mesoscopic proportions.15 The is­
land is connected by tunnel electrodes to 
two leads, kept at a voltage difference V . 
We also assume capacitive coupling to a 
gate electrode (indicated by the horizon­
tal plate in the figure), which determines 
the electrostatically preferred number of 
electrons on the dot.

15 The island is “mesoscopic” in the sense that it contains a macroscopically large number of elec­
tronic degrees of freedom, yet is sufficiently small that the quantum coherence of single-particle 
wave functions is maintained over the full system size. At low temperatures of O(10 mK), quan­
tum phase coherence is only weakly disrupted by environmental noise, and so systems satisfying 
this condition can be as large as several ^m, scales that are within easy reach of modern device 
technology.

We describe this system by the Hamil- 
toman Hi = 52a=L,R(Ha + Ht,a ) + Hd + 
Hc, where

Ua = ca,aHa,abca,b,

Ud = E d) Hd,^v dv,

Ht,a c ca,aTa,a^d^ + h• c.,

(
\ 2

E dMd» - N0) 

M /
(12.83)

Here the operators ca=LRa create fermions in state |a) of the left/right lead, z\ z\
dM creates fermions in state |p,) of the dot, and Ha and Hd are the corresponding 
single-particle Hamiltonians. The operators Ta=L/R describe tunneling between the 
leads and the dot. Finally, EC is the electrostatic charging energy on the dot, 
and N0 defines its electrostatically-preferred charge (notice that N0 need not be 
an integer). The voltage bias between the leads will be introduced momentarily 
through a chemical potential difference.

The fermion Keldysh action describing this system is given by

S[i,V] = E (Sa[ia]+ St,a[ia,id]) + Sd[id,V] + Sc[V], (12.84) 

where

Sa [ia ] = dt^Ja

I
idt + Ef — Ha

0
2 i5Fa 

idt + E- —
ia

iaSt,a [ia, id] = dt iJa
o \ , - rr^

tJ id + '^E o
Ta

0

J \ I VI /" ,7/ 7 (idt + EF — Hd — Vc
Sd[id, V] = dtid —FV /2 —Vq / 2 + 2 i3Fd \

ididt + EF — Hd — Vc)

Sc [V] = [ dt( ^~~ VcVq + N0 Vq 

2EC
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Here, E± = EF ± i8 is the common Fermi energy of leads and dot, infinitesimally 
shifted by the regulator, i<8. The information on the biasing of the leads is introduced 
via distribution functions

Fl,r = coth ( £ ±2T2) . (12.85)

Finally, Vd(t (t) are the classical and quantum components of a Hubbard-Stratonovich 
field decoupling the interaction.

EXERCISE Adapt the Hubbard-Stratonovich transformation introduced in sec­
tion 12.4.2 to the charging interaction in Eq. (12.83), to reproduce the action above. In 
Eq. (12.84), the Hubbard-Stratonovich classical and quantum fields Vc and Vd are defined 
as Vc = 2(V+ + V-), Vq = V+ — V-, in terms of the fields V± decoupling the interaction 
on the contours. This differs by a factor \/2 from earlier conventions and facilitates the 
interpretation of Vc as a classical degree of freedom.

Physically, V (t) is a fluctuating potential, or voltage, conjugate to the charge on 
the island. As with the equilibrium situation studied in problem 5.6.5, it will be 
convenient to remove V by a gauge transformation on the dot by introducing the 
change of variables, ^d ^ e-i^^d,, ^d ^ ^de1^, where ^ = e,c + oqo 1 /2 and the 
phases are defined by dt<pc,q = Vd,d, di disappears from the bulk action while the 
tunneling matrix becomes dynamical,16

16 The gauge transformation also alters the distribution function Fd (Exercise: How?). However, 
this change will not be of importance to our discussion.

T ^ T e-i^ = T. (12.86)

At this point, the fermions can be integrated out to generate the familiar “tr ln” 
term. The rest of the derivation then proceeds as in problem 5.6.5:

EXERCISE Adapt the derivation of problem 5.6.5 to the present setting. Expand the “tr 
ln” operator to second order in the tunneling matrix elements to generate the tunneling 
action

Stun[$] = i tr((5:TGT.
<T

Evaluate this expression using the fact that the Hamiltonian operators H: and Hd are 
diagonal in the bases |a} and |p,), respectively, and assuming that, in the range of relevant 
energies, the modulus |Ta,a^|2 = |T:|2 does not depend significantly on Hilbert space 
indices. Represent the Green functions as G±(e) = f (de') A—I,, via the spectral functions 

+A:,d(e) = —2ImG+d(e) = 2nv:,d(e). Assuming the energy independence of the single­
particle density of states, v:,d, of the leads and dot, respectively, show that the tunneling 
action assumes the form (12.87).

The derivation sketched in the formulation of the exercise above then leads to the 
tunneling action
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Stun[$] = - 44 £ g. tr (aa e -Adei) 

a

where

(12.87)

ga = 4n2 vdva |Ta |2 (12.88)

defines the tunneling conductance between the dot and lead, a = L/R, and Aa,d 

is a matrix with energy dependence,

Ax =2i g+ gxK- , gxK = (g+ - g-)Fx, x=d,a. (12.89)

\0 g

Here, g± 17 are auxiliary Green functions defined by for a unit spectral density

g± = I (de') -±- .̂ (12.90)

These objects have two key properties that will be of importance in the follow­
ing: first, the imaginary part Im g± = ^i/2, owing to the Dirac identity. Sec­
ond, causality implies that g + (t, t') = 0 for t < t', and the other way around 
for g- . Specifically, for time-local functions X, Y , integrals such as tr(g+Xg-Y ) = 
d dt dt' g + (t, t')X(t')g-(t', t)Y(t) vanish because the integration extends over acausal 
time configurations.

The representation (12.87) is a little too compact to be useful for practical cal­
culations. To bring it into a more practical form, think of the phase ^ as a bosonic 
field coupled to the fermion system of the dot and leads via tunneling. This should 
be reflected in the emergence of a “self-energy” of the ^-action very similar to that 
of the boson-fermion coupling (12.77). To see this structure emerging, we define 
the abbreviations,

c = eiic cos(oq/2), s = eiic sin(oq/2),

and substitute >’JJ = c + isa 1 and e - ’" = c - is a 1 into Eq. (12.87) to obtain

// o £— \ / c \
dt 1 dt2 (C is) 11 ( £ £K \ \ ) ,

t1—t2 t2

where (notice the similarity to the self-energy of a boson coupled to fermions 
(12.78))

£± = - (g± gK t + gKt g^t) ,t t a,—t d,t —t ,

^K = 2 gK—tgK - (g + - g )t(g + - g )— t.

Here, the absence of a csc coupling is due to the ab ove causality principle, gt+g-+t = 
0. On the same basis, we added g + g + and g—g— terms to £K to obtain the

17 It is customary to denote both the Green functions, g±, and the tunneling conductance, g&, by 
the same symbol. However, which is which follows from the index structure, and the context.
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products of (g+ - g-) factors in the second line. The motivation for this exten­
sion is that, as usual with dissipative actions, the most important contribution to 
the self-energies £± is given by the imaginary parts. Discarding the real parts, 
and recalling Eq. (12.89), we note that the Green functions appear solely in the 
combination g+ - g- = -i. Using this replacement and passing to the Fourier 
representation, we obtain

Stun[ ) ] = / (du) (c, - is) „
£-

£ K is

£ + — — £- = 2 ga / (de) (Fd,e — Fa,e-u ),
(12.91)

£K = i 9a (de) (1 - Fd,eFa,e-u ) •

The tunneling action (12.91) describes the coupling of the dot to the outside world 
via the effective self-energy of the phase field. Adding to this the )-representation 
of the action Sc in Eq. (12.84),

dt 2E, dt^cdt^q + N0dt)q , (12.92)

we obtain the full effective action in the phase representation, S[)] = Sc [)] + 
S tun[ ) ].

In the case of strong interactions, EC T, the charge action does not sup­
press phase fluctuations. (What is the physical meaning of this statement?) If, in 
addition, the dot is nearly insulated, ga 1, the phases fluctuate wildly (also
interpret this statement), and no longer represent suitable degrees of freedom. In 
this case, the system is more appropriately described in terms of the canonically 
conjugate charge degree of freedom, n. (Indeed, the dot charge will fluctuate 
only moderately in the limit of small gx.)

Technically, the charge variable is introduced by a Hubbard-Stratonovich de­
coupling of the charging term. This leads to the action in the phase-charge 
representation,

S[n, )] = dt (ncdt)q + nqd) — 2Ec(nc + No)nq) + Stun[)] (12.93)

Conceptually, the introduction of n amounts to passing from a Lagrangian formu­
lation - one variable, ), governed by an action with “velocity squared” term )2 - 
to a Hamiltonian action f (n) — H(n,))) defined in the phase space of variables 
(n, )). Notice that the classical component nc is conjugate to the quantum field )q, 
and vice versa.
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INFO The representation (12.93) is a good starting point to explore the phenomenon of 
mesoscopic charge quantization. For the isolated dot, ga ^ 0, we expect quantization of 
charge in integer units. However, the action above does not manifestly show this constraint. 
Rather, n appears to have the status of a continuous Gaussian variable. The key to its 
quantization lies in the boundary conditions of the conjugate variable $. (Think of the 
quantum mechanics of a particle on a ring, where the quantization of momentum is a 
consequence of the periodic boundary conditions of its conjugate real space coordinate.)

The boundary conditions of the phase field, are best discussed in the closed 
Keldysh contour s G [0, 210] (see fig. 12.2). As a phase field, $(s) is defined only up to multi­
ples of 2n. This implies the boundary conditions $(210) = $(0)+2nW, where summation is 
required over the integer W (see the discussion of functional integrals over S1-valued fields 
in chapter 3). We implement the condition by the ansatz, <f(s) = <^>(s) + 2nW (s -t0), where 
^ obeys periodic boundary conditions. Defining the classical and quantum fields through 
the field on the s-contour as n,(t) = 1 (^(t) + ^(2t0 — t)) and ■fiq(t) = ^(t) — ^(2t0 — t), 
it is straightforward to check that this condition translates to an unconstrained $c = n,, 
and to

, , , 2 , 2 2nW
$q (t) = <t>q (t) + —--- (t - t0) ,t0

(12.94)

with Dirichlet boundary conditions nq(0) = nq(10) = 0. The quantization of the field nc 

may now understood as follows: to begin, assume that the W -dependence of the tunneling 
action is negligible. The winding number then enters the action through the contribution 
2nWt1 ft0 dtnc. Summation over W thus generates the condition -1 ft0 dtnc G Z: the 
temporal average of the classical charge on the dot is integer. However, the operators 
~ exp(±ioq/2) in the action change the charge only in half-integer units, nc ^ nc ± 1 /2 
(think why a tunneling event on the upper or lower Keldysh contour changes the classical 
charge by a half-integer), and the numbers of positive and negative jumps are equal. 
This implies that the average charge equals the initial charge, *1 ft0 dtnc = nc(0). The 
winding number summation thus enforces the quantization nc (0) G Z, and the subsequent 
tunneling processes change this integer in quantized steps. As an instructive exercise, 
consider the W -dependence of the tunneling action and show that the conclusion remains 
unaltered.

12.6.2 Dot distribution function

The action (12.93) contains the distribution function of the dot via the tunneling 
term (12.91) as an unknown element. Its first-principles calculation is a compli­
cated recursive problem: the distribution function is the result of the interaction of 
particles whose state depends in turn on the distribution function. It is generally 
more practical to start the analysis of the distribution with an educated guess and 
see how far one can get from there.

In the present context, we will identify a dot distribution function Fd ignoring 
interactions. This ansatz reflects the assumption that the coupling to the leads 
defines an effective distribution on the dot at time-scales ~ v|Ta|2, that are faster 
than the relaxation times due to interactions. Its validity must of course be self- 
consistently checked.
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In the absence of interactions, all 
single-particle states below the energy 
-V/2 (relative to EF) are occupied. 
At energies in the window [-V /2, V/2] 
states in the left lead are occupied and 
in the right lead are empty. It is natu­
ral to assume that empty and occupied 
states hybridize with dot states at cou­
pling strengths gL,R, respectively. This 
motivates the ansatz,

gLFL + gRFR
Fd = --------- ,---------gL + gR

(12.95)

The corresponding distribution function 
nd = (-Fd + 1)/2 assumes the form of a 
double-step distribution built by the 
superposition of two single-step Fermi- 
Dirac distributions.

EXERCISE It is instructive to back up the guess (12.95) by a variational calculation. 
To this end, we ask for which distribution Fd does the action become stationary in the 
limit of weak voltage fluctuations, 0 ~ 0. The most economic way to answer this question 
is to start from Eq. (12.87) and verify that the vanishing of the first-order expansion in 
0 requires that 2_, g&tr([Ad, Aa]0) = 0. Using Eq. (12.89), compute the commutator and 
convince yourself that, with Eq. (12.95), the condition is satisfied. Recalling the connection 
between phase and voltage, argue why the stationarity condition is equivalent to the 
absence of stationary current flow onto the dot.

EXERCISE Let us find out how the double-step distribution affects the dissipative action 
of the phase field. Using the auxiliary relations

d d± (F(e + w) - F(e)) = -, 
J 2 n n

d (1 - F(e - w)F(e)) = ~Fb(w), 
J 2 n n

with F(e) = tanh(e/2T) and Fb(w) = coth(w/2T), and assuming equal barrier transparen­
cies g = gL = gR for simplicity, show that the substitution of Eq. (12.95) into Eq. (12.91) 
leads to

s = -S- = ig^, S K 2gK (w),

K(w) = 2 wFb (w) + — (w + sV) Fb (w + sV).
(12.96)

In section 12.6., we will use this result to explore the impact of dissipation on the quantum 
mechanics of phase fluctuations on the dot.



740 12 Nonequilibrium (Quantum)

Fig. 12.4
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Tunneling density of states as a function of voltage (energy) in a mesoscopic SNS structure. 
The arrows mark the position where, in the normal wire, the TDoS was recorded. Figure 
taken from H. le Sueur, P. Joyez, H. Pothier, C. Urbina, and D. Esteve, Phase controlled 
superconducting proximity effect probed by tunneling spectroscopy , Phys. Rev. Lett. 100, 
197002 (2008). Copyright (2008) from the American Physical Society.

orthogonality 
catastrophe

12.6.3 Tunneling density of states

The action (12.93) with the double-step distribution (12.95) completes our descrip­
tion of the dot, and we may now turn to the discussion of physical phenomena. 
Specifically, in this section, we take a look at the tunneling density of states 
(TDoS) of the dot. Assuming no external time-dependence, the TDoS is defined 
as

v (e) =-------Imtr( G +(e)) =----- Im f dte^t tr (G +(t)). (12.97)

This observable is physically interesting from various perspectives:

> The TDoS can be measured by tunneling spectroscopy. See fig. 12.4 for an 
example of local probes of the TDoS in a mesoscopic superconductor-normal- 
superconductor (SNS) wire. In the figure, the “external wire” shows as a canyon 
ending in the central region. In this system, the TDoS is suppressed owing to the 
superconductor proximity effect: the superconductor induces pair correlations in 
the adjacent normal metal region, thus suppressing the spectral density. The size 
of the spectral gap, a function of voltage (energy), diminishes with the distance 
from the superconductor.

> As follows from the definition, the function v(e) probes the amplitude of re­
tarded quasiparticle propagation at time-scales t ~ e-1. This propagation am­
plitude comes with a quantum dynamical phase. Out of thermal equilibrium, we 
expect this quantum phase to be affected by nonequilibrium fluctuations. 
Specifically, the TDoS is affected by a mechanism known as the orthogonal­
ity catastrophe: the quantum state, “bare quasiparticle plus unperturbed sys­
tem,” realized right after the tunneling event is generally very different from 
(i.e., “orthogonal to”) the stationary state approached in the long-time limit. 
The formation of that final state involves the readjustment of a large number of 
particles and generally takes much more time than the tunneling process itself.
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The corresponding signatures in the energy dependence of the spectral density 
are called zero-bias anomalies.

INFO The Coulomb blockade discussed in problem 5.6.4 is an extreme manifestation 
of the zero-bias anomaly: tunneling onto an isolated quantum dot creates a state that 
is energetically forbidden, i.e., a “sub-barrier,” by an amount Ec. This means that the 
TDoS vanishes from e = 0 to e = EC. (Recall that energy is measured from the Fermi 
energy.) Equivalently, we may say that tunneling processes onto the dot are limited to short 
duration t ~ E—1. Tunneling into a metallic system leads to more complex behavior. 
The tunneling process generates an energetically unfavorable (sub-barrier) initial charge 
distribution, which subsequently relaxes via diffusive spreading. The corresponding action 
weights the quasiparticle propagator and hence the TDoS. For example, in two dimensions, 
the relaxation action diverges,18 which implies a singular zero-bias anomaly. Below, we 
will investigate how the zero-bias anomaly manifests itself in the quantum dot.

We start by expressing v(e) in terms of the degrees of freedom entering the effective 
action. In a non-interacting setting, the formulae of section 12.4.1 imply that 

v(e) = -2- J dtei* (G-+(t) - G +-(t)) .

We continue to build in interactions via the Hubbard-Stratonovich field, ^. The lat- 
fpp pfffppfQ flip C-^pppn functions — + —  —th ^+\  7pi($ —(t) $ +(t )) /th ?A+\ — cer aneccs cue careen mnccions as crtt/ — Tt Ttz / ' ^e \ Tt Ttz / —

ei($—(t)-$ +(t))G0+t,, where G0 is the non-interacting Green function. For the multi­
level dot, the single-level representation of G0 given in Eq. (12.71) generalizes to

G + = — i e - ie^ (t - t ,)(1 — ni (F )) = — i I dev ( F ) e - ie (t - t Z)(1 — n, ( F ))''01 ,tt' — i / J (1 nd (0)) — 1 ut v ()e (1 nd ())

— — 2 nivd (1 — nd )(t — t'),

where nd (t) is the Fourier transform of the function n (e) and we assumed constant 
non-interacting density of states vd as before.19 Adding the analogous construction 
for G±, we obtain v(e) — ve(e) + vh(e), where

ve (£) — vd Re I' dtG^ei (^ —(++‘)-^+(‘»(1 — nd)(t),

(12.98) 
vh (e)— vd Re / dteieitG (^ +(t+1)-^ -(i)) nd (t).

Here ve,h are to be interpreted as the contributions of electrons (holes) tunneling 
onto the dot, and t is an arbitrary reference time marking the beginning of the 
tunneling process. The hole contribution, vh , differs from ve in the replacement 
(1 — nd) ^ nd, and in a sign change in the phase of the oscillatory exponential.

These formulae represent the TDoS in terms of the effective variable ^ of the 
tunneling action. In the following, we explore the physics of this expression for a

18 L. S. Levitov and A. V. Shytov, Semiclassical theory of the Coulomb anomaly, Pisma Zh. Eksp. 
Teor. Fiz. 66, 200 (1997) [JETP Lett. 66, 214 (1997)].

19 Here, (1 — nd)(t) = 5(t) — nd(t) is the Fourier transform of 1 — nd(e). 
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dot well connected to the external leads. The complementary case of an almost 
closed dot is addressed in problem 12.9.4.

12.6.4 Open quantum dot

REMARK To simplify the notation we assume equal transparencies g = gL = gR through­
out this section.

At large values of the tunneling conductance, g 1, fluctuations of the phase 0 
are largely quenched, while the conjugate charge degree of freedom, n, fluctuates 
wildly. Specifically, the smallness of fluctuations in 0q implies that the dot stays 
close to the classical limit and behaves similarly to an RC-resistor unit kept at 
voltage ~ 0c. However, Eq. (12.98) shows that, even in this semiclassical limit, the 
dynamics of 0 will affect the quantum observable v.

To see this in more concrete terms, we expand the tunneling action (12.96) to 
second order in 0 around its stationary configuration 0 = 0. With c ~ 1 + i0c and 
s ~ 0q/2, this gives (exercise)

S (2)[ 0 ] = -E- [ dtdt0cdt0q + g [ 2^ (0c,0q) „ f i 0 } f 0c} , (12.99)
2 Ec J 2 nJ 2 n iw^ i^\. (w) J \jPc[J

where the kernel Kis defined in Eq. (12.96) and we neglected the N0-contribution 

to the charge action (12.92).20

EXERCISE Compute the 0-Green function corresponding to the above action and discuss 
how in the absence of biasing, V = 0, it conforms with the fluctuation-dissipation theorem. 
Conversely, departures from equilibrium, V = 0, lead to FDT violation.

Classical resistor circuit

The action (12.99) resembles that of a particle with coordinate 0 coupled to an 
environment (see section 12.3). To better understand the physics of this connection, 
we decouple the 0q 0q -term to obtain a Langevin-type system:

S [ 0,0 ] = [ dt0q (~nj0~~ dt - Jd^} 0c + 0 + i [ ~^~0:-) K 'l 0 —. ' (12.100) 
J 2 Ec 2 nJ J J 2 n 2 gK (w)

Integration over 0q in Eq. (12.100) produces the classical field configurations solving 
the equation

(2EECdt + 0n dt) 0c = 0-

20 The formal justification for this is that, for large g, topologically excited configurations (i.e., 
with winding number W) of the phase field are strongly suppressed (why?). However, for W = 0, 
Nof dtdt^q = 0. (Consider the physical reason for the irrelevancy of the No-term in the wide 
open quantum dot.)
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where the noise field £ is correlated according to

{£(t)£(t')) = gK(t - 1'), 
n

and K (t) f d^ e-i^t K (w) is the Fourier trans­
form of the kernel K. Physically, this Langevin 
equation describes the dynamics of voltage fluctu­

2?r/g 2?r/g

ations in an effective resistor circuit equivalent to the quantum dot. The circuit is 
depicted in the figure where the node represents the quantum dot, coupled by two 
resistors of resistance R = g-1 to a bias voltage source. The dot is also coupled 
to a capacitor of capacitance C = 1/2EC. That capacitor is kept at a gate voltage 
VG = N0/C (which, however, as we have seen is irrelevant to the physics of the 
open dot).

To make the connection to a near-classical circuit more explicit, we change no­tation as21

21 The factor 2n in the definition of R is explained as follows: g is the dimensionless conductance 
of the tunnel barriers. The physical conductance G = R—1 = ge2 /h = (g/2n) /~. In our units, 
e2 = ~ =1 and this reduces to g = 2n/R.

22 The factor of 2 in y = 2/RC reflects the coupling of the dot via two resistances R, with parallel 
resistance R/2.

g =2n, Ec = ^, U = dt^c, £ = Cn. (12.101)
R 2C

The Langevin equation describing voltage fluctuations away from V/2 then 
assumes the form

dtu + yU = n, (12.102)

RC -time 
scale

where (n(t)n(t')) = CK(t — t0 and Y = rc is set by the inverse of the RC-time 
scale of the circuit. The meaning of this equation is not difficult to understand: in 
the absence of fluctuations, n = 0, the voltage on the dot relaxes to its stationary value, V/2, at the relaxation scale y.22

However, in contrast with our previous studies of dissipative systems, the coupling 
to two distinct leads (“baths”) implies that the voltage distribution on the dot 
cannot relax to an equilibrium configuration. To explore this point, let us take a 
closer look at the fluctuation kernel, K:

> In the absence of biasing, V = 0, the fluctuation kernel reduces to K(w) = 
w coth(w/2T ), equivalent to that induced by an ohmic bath of oscillators, dis­
cussed in section 12.3. In the present context, these oscillators are realized via the 
bosonic particle-hole excitations of the Fermi liquids contained in the dot and 
leads. However, the observable effect is the same: Nyquist-Johnson noise, 
regularized by the quantization of the oscillator ground state energy at zero 
temperature, through K(w) = |w|.
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> A non-zero bias, V > 0, hinders the dot in reaching thermal equilibrium. 
Focusing on T = 0 for simplicity, inspection of Eq. (12.91) reveals a crossover,

K( ,) - J |w |, |w | |V|, (12 103)
K(W) ( 11V |, | w |<<| V |. (12.103)

This equation states that, at large frequencies, |w| |V|, the noise is dominated
by the equilibrium fluctuations of oscillator modes. However, at lower frequen­
cies, the biasing of the dot generates a mean current flow through the system. 

shot noise This in turn induces noise with the signatures of shot noise.
Recall from section 11.2.2 that n charges flowing through an elementary resistor 
in a time-window [t,t + At] define a current Iat = n/At. Assuming the lack 
of correlations between these charges, var(Iat) = I/ At, where I = (Iat) is the 
average current. We may write the instantaneous current through the resistor 
as I = I + SI, where (SI(t) SI(t')( = fS (t — t') describes short-range correlated 
current fluctuations. Computing the variance,

var(Iat) ^42 [_ + dtdt' {6I(t)6I(t')) = f-, (12.104)

(At) Jt At

we find that f = I establishes compatibility with Poissonian shot noise. Turning 
to the slightly more complex two-resistor setting, we expect that the observable 
noise is due to the superposition of the shot noises of the individual contacts. 
To see this explicitly, we write the Langevin equation as

Cdtu = — -2 u + Cn, (12.105)
R

i.e., an equation that relates the rate of change of the charge on the dot (left­
hand side) to current flow (right-hand side). Specifically, Cn = SIL + SIR is 
to be interpreted as the sum of current fluctuations through the left and right 
tunnel resistor. Each of the two contributions Ia, a = L, R is expected to express 
Poissonian shot noise statistics, (Ia(t)Ia(t/)( = IS(t — t') = V/(2R)S(t — t'). 
Compatibility with our considerations above then requires

1V
n(t)n(t )> = ^2 ((SIL(t)SIL(t )) + SIR(t)SIR(t )\) = ^2S(t — t ), C2 RC2

in agreement with Eq. (12.102) and K(t — t') = (V/2)S(t — t'), or K(w) = V/2. 
This shows that Eq. (12.103) correctly models the double-barrier shot noise 
statistics at low frequencies.

INFO The analysis of noise levels in systems with several independent Poissonian noise 
sources plays an important role in nonequilibrium mesoscopic physics. It is customary 

Fano factor to quantify the noise in a composite system by the Fano factor F = sS . This factor 
compares the DC-noise power in the system

S = 2 dt {SI(0)SI(t)( (12.106)
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with that of an elementary resistor unit with Poissonian statistics, S0 . For an elementary 
Poissonian resistor, Eq. (12.104) implies that J"dt(SI(t)SI(0)} = I = V/R and S0 = 
2V /R. The analysis above implies that (exercise) S = V/R for the double dot system, 
corresponding to a Fano factor F = 1/2. The relatively lower noise power reflects a partial 
averaging of the individual noise sources a = L,R.

Zero-bias anomaly

Here, we explore how nonequilibrium fluctuations of the collective variable ^ af­
fect the quantum mechanics of the TDoS, and in particular the development of the 
zero-bias anomaly (see the discussion at the beginning of the section). Being sen­
sitive to the overlap between two many-body wave functions, the latter represents 
a “deep quantum” observable (as opposed to an observable with stable semiclas- 
sical limit). We therefore expect that the disruption of quantum coherence due to 
nonequilibrium noise will show in the manifestation of the anomaly. We will dis­
cuss this phenomenon using the example of the TDoS of the quantum dot at low 
frequencies w < y ~ 2/RC, smaller than the inverse of the RC-time.

EXERCISE Consider the double-step distribution function nd (e) in the limit of zero 
temperature, where the Fermi functions reduce to step functions. Show that its Fourier 
transform is given by

cos(V t/2) cos(V t/2)
nd (t ) = i---- -—r-^-, (1 — nd)(t ) = — i---- -—-—(12.107)

= 2nt+ , - dK = 2 nt- , . 7

where t± = t ± iS .

First consider the particle contribution ve to the density of states in Eq. (12.98). 
Choosing t = — t/2 to symmetrize the notation and using that nc (t + t) — nc (t) = 
J-'t/2 dt' U (10, we obtain

V (e) = Re d dteiet / ei—t / 2 dt U(t) e i(0q(-t/2)+‘"'''!(t/2))\ (1 - ni)(t)ve = vd e e e e — nd
J \ I 0

= vd R^ dt.i:^ ei f-t 2/ 2 dt' Ud (t (1 — nd)(t), (12.108)

where Ud is the actual time-dependent classical voltage on the dot and is the solution 
to the Langevin equation

(dt, + y) Ud(t') = n + 2C ^(t' - st/2).
s=±

EXERCISE Verify Eq. (12.108). To this end, represent the )...}^-functional average via 
Eq. (12.100). Next redefine variables as in Eq. (12.101) and integrate over ^q to generate 
a constraint equivalent to the Langevin equation above.

Physically, this equation is easy to interpret. The two 5-functions on the right-hand 
side generalize the Langevin equation (12.102) to the presence of voltage peaks 
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caused by the tunneling of charges at ±t/2.23 The voltage on the dot is thus driven

23 There is no reason to be puzzled by the presence of two 5-functions. The Langevin equation 
describes the retarded evolution of Un in the time-window [—t/2,t/2] (or [t/2, — t/2] for negative 
t). For t > 0, only 5(t' + t/2) affects the evolution in the time-window [—t/2, t/2]. For negative 
t, the other 5-function is effective, but never both.

by the competition of an initial 5-inhomogeneity, noise, and RC-relaxation.
The effect of this dynamics on the TDoS is obtained by averaging the “propaga- 

t/2tor” exp(i —/22 dt7 Ud(t')) over the fluctuating voltage Ud. We start by solving the 
Langevin equation for Ud in its Fourier representation,

Ud (u) + R £ e"'2t _ n(R) + Uo(u) ’

where we have neglected iu in comparison with y, since we are interested in low 
frequencies u 7. The integral over the noiseless part of the voltage, U0 gives 
PVn 7 C rR! d dm , ittt f T ( . < -- pvn i R‘ r I ' ' 'R i i I iR c .. (4-\\ B I 11; i -i VM I'-i <r<2> /bVM I"exp( i j i-tt J 2 e *d 0 (^u)) exp ( 4 sg^x x (t)) — (1 1 4 sg^x x (t)), ^xxx vx txxe Oj v ex^xg^e o) v ex
the noisy part of the voltage with correlator (n(u)n(u')) = 2n5(u + u')CK(u) is 
obtained as

t .. t
i i 2 2 dt'2 d^ e — iMt n (m ) \ — R 2 2 dt' dt "2 d^ e— iM ( t — t ) K (m)

Y Y - — t dt 2 2 n e n (m) \ 4 - _ t dt dt 2 2 n e K (m) ___  __  S (t)

\ / n

with effective tunneling action

S(t) _ R f dy b1„2 (ut) KM. (12.109)
J 2 n \ 2 / u2

Combining terms, we arrive at

// • D \
dtelet I 1 + —-sgn(t)J eSS(t)(1 - nd)(t).

Inspection of the hole contribution in Eq. (12.98) shows that the latter differs 
from ve by a replacement (1 — nd) ^ nd, and by a sign change of the signum 
function. Adding the two contributions and using Eqs. (12.107), the full TDoS is 
thus obtained as

v(e) = vd f1 — — [ dt cos(et) cos f—eSS(t. (12.110)
\ 4nJo t 2 2 J J

In this expression, the cosine factors encode the information on the double-step 
distribution governing the TDoS in the non-interacting limit. The essential fac­
tor exp(—S(t)) contains the tunneling action associated with the combination of 
interactions, noise, and external biasing.

We first consider its impact on the TDoS in the case of zero temperature, and 
no external bias, V = 0, where the dot is in thermal equilibrium. In this limit, 
Eq. (12.103) states that K(u) = |u|. In Eq. (12.109), this implies an IR singularity 
with cutoff at low frequencies u ^ tS1. Remembering that we are working under 
the assumption u . 7 and, replacing sin2 ~ 1 /2 by its average, we obtain S(t) ~ 

R CY 1 ddJ = R ln(nt). The logarithmic increase indicates a weak suppression of 2 t—— 1 2n|m| 4n \ . g pp 
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coherence at large times. The cause of this suppression is that the system acts as
its own bath, creating a residual noise background even at zero temperature.
To explore the consequences, we substitute exp(-S) = 
(Yt)- 4n into Eq. (12.110), note that at large times 
cos(et) cuts the integral at t ~ e-1, and again remem­
ber that the derivation holds only for t & Y-1 . Using 
these two scales as limits for the integral, we arrive at 
the estimate

R R R R f1 e 1 1 dt, R_r 
v(') “ v41 - 4n Y--i t(Yt) 4

e/7

R
4 n4 n

R Y

This is a radical manifestation of the orthogonality catastrophe: the orthog­
onality of the state (one tunneling particle + the dot ground state) to the true 
dot ground state leads to a complete suppression of the TDoS at zero energy. Re­
markably, this holds even in the presently considered case where the dot is well 
connected to the environment. In our units e = ~ = 1, the conductance quantum 
g0 = 2e2/h = 1 /n, which means that the exponent can be expressed in terms of the 
dimensionless conductance g = G/g0 as R/4n = 1 /(4nG) = 1 /(4ngg0) = 1 /(4g). 
For large conductance, g 1, the suppression range gets narrower, but the TDoS 
is still vanishing at zero energy. This effect depends sensitively on the long-time 
quantum phase coherence being maintained under zero-temperature equilibrium 
conditions. For example, even at zero temperature, it gets destroyed by the shot 
noise accompanying a non-zero voltage bias, as demonstrated in the following ex­
ercise.

EXERCISE Explore what happens to the zero-bias anomaly in the presence of voltage 
bias. First show that, for V = 0, the tunneling action (12.87) increases linearly in time 
S(t) x V111. Verify that, in this case, the suppression of the TDoS is no longer complete. 
Also show that the minimum of the TDoS splits into two at ±V/2 (see figure). Interpret 
this splitting as a consequence of the double step distribution.

12.7 Full Counting Statistics

Above, we noted that miniaturized quantum devices are easily pushed out of equilib­
rium. By the same principle, statistical fluctuations of quantum observables play an 
increasingly important role, the smaller the system. We have already seen how de­
viations from Poissonian statistics contain information on the architecture of a sys­
tem, or how changes in the fluctuations of some observables may have a qualitative 
impact on the behavior of others. In fields where small complex quantum sys­
tems are center stage - atomic, molecular, and optical physics, and increasingly 
condensed matter physics - the full statistical distribution of observables is there­
fore an important object of study. Such analysis is usually applied in connection 
with quantized particle transport, such as photon transmission in optics, or electric
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full 
counting 
statistics

current in quantum electronics, and in condensed matter physics is referred to as 
full counting statistics (FCS). In this section, we introduce the basic concepts 
of FCS and apply them to electric transport through the quantum dot introduced 
in section 12.6. For more in-depth reviews, we refer to Refs.24

A fundamental observable describing transport through a quantum device is the 
number of particles transmitted in a time-interval At,

t ttt/2
N = dtI( t), (12.111)

-tt/2

where I is the current operator, and the center of the observation time-window has 
been set to zero. In the definition of N , the choice of At must be optimized to be 
sufficiently large to acquire enough statistics, and small enough not to average over 
physically interesting fluctuations.

TTT-jl • r* 1 1 j 1 j • 1 C 1 • C j • j 1 j j • j • f iCr • 1Within a field-theoretical framework, information on the statistics of N is ob- 
tamed by coupling the observable to a source variable, y. The moments of N, and 
in fact the entire distribution, can then be obtained by evaluation of the sourced 
functional integral in the presence of y.

To start the construction of a suitable source, recall that current densities, j(x), 
are obtained by differentiation of effective actions in the vector potential, A(x) = 
A(t, x). Specifically, in Keldysh field theory,

j( x ’ = — itAX) L=0Z [A ® ’ 3 / 2]-

where the notation Z [A 0 a3/2] indicates that the action is minimally coupled to a 
purely quantum vector potential (with opposite signs on the two Keldysh contours).

24 W. Belzig, Full counting statistics in quantum contacts, Proceedings of the Summer School on 
Functional Nanostructures, Karlsruhe, 2003; L. S. Levitov, The statistical theory of mesoscopic 
noise, Quantum Noise in Mesoscopic Physics: Proceedings of the NATO Advanced Research 
Workshop, Delft, the Netherlands, 2002, and M. Kindermann and Yu. V. Nazarov, Full counting 
statistics in electric circuits, in: Quantum Noise in Mesoscopic Physics, ed. Yu. V. Nazarov, 
(Kluwer (Dordrecht), 403 (2002)).

INFO Historically, the concept of full (photon) counting statistics was introduced in 
quantum optics (see L. Mandel, Fluctuations of photon beams: The distributions of the 
photoelectrons, Proc. Phys. Soc. 74, 233 (1959) for an early reference and L. Mandel and 
E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, 1995) for 
a review). The fruitfulness of these concepts in condensed matter physics was recognized 
in the beginning of the 1990s, when micron-sized mesoscopic quantum devices became a 
new subject of study (see L. S. Levitov and G. B. Lesovik, Charge distribution in quantum 
shot noise, Pis’ma Zh. Eksp. Teor. Fiz. 58, 225 (1993) [JETP Lett. 58, 230 (1993)]). This 
statistical approach defined a new field, giving unprecedented insight into the dynamical 
processes governing complex electronic quantum systems.

12.7.1 Generalities
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counting 
field

moment­
generating 

function

According to our general discussion of the Keldysh contour in section 12.2.1, the 
coupling of A to a3 makes it a suitable source variable.25 Building on this definition, 
we may introduce a source variable for currents by defining the vector potential,

In this section, we introduce two frequently occurring types of noisy current distri­
butions. We then compare these distributions with the transport statistics of the 
quantum dot introduced earlier in the chapter.
Quantum point contact: Consider an isolated scatterer 
embedded into a single-channel quantum conductor. In 
modern device technology, such quantum point contacts 
are realized as artificial imperfections or tunneling bridges 
(picture courtesy of Nanocenter Basel) in a few channel 
quantum wires. Charge carriers incident upon the point 
contact get transmitted with probability T and reflected

25 In section 12.2.1, sources were introduced on the upper Keldysh contour. A sign inverted source 
on the lower contour generates the same observable, and the choice above is symmetrized over 
the two representations.

A(x, t)= x(t)e± I dd-1 x' d(x — x'), (12.112)
S

where the surface integral confines the support of A to a planar section S of the 
system, ex is normal to S (the generalization to curved sections is straightforward), 
and the definition of the counting field,

X(t) = X©(t - t)©(t + At — t),

implies a projection onto the counting time-interval. Differentiation of Z[A®a3/2] = 
Z(x) with respect to x yields the average of the transmitted particle number,

d i r‘+At r—id-x L=oz(x>=\, S„ ds-<i(x.t»=<N>.

Repeated differentiation - and this is the prime advantage of the above 
construction - generates moments of the counting variable:

dn
<N n) = (—i) n =0Z (x). (12.n3)

This identifies Z(x) as the moment-generating function and its logarithm

ln g(x) = ln Z(x),

as the cumulant-generating function. From it, cumulants characterizing the 
distribution can be obtained by differentiation in x. For a discussion of the meaning 
of the first few of these cumulants, we refer to appendix section A.2.1.

12.7.2 Types of current noise



750 12 Nonequilibrium (Quantum)

binomial 
distri­
bution

with probability 1 - T . This means that the probability of transmitting n charges 
in N events is given by the binomial distribution (cf. section A.2.2),

N 
n

p(n) = Tn(1 - T) N-n

The cumulant-generating function of this distribution reads

g (x) = ln elxnp (n) = N ln(1 + T (eix — 1)).

Assuming spinless electrons, a perfect single-channel conductor has dimensionless 
conductance g = e2/h = 1 /2n (in our standard units e = ~ = 1), i.e., half the 
conductance quantum. If the system is biased, N = IA t = V A t/2 n charges will 
be incoming, and the statistics of current in the quantum point contact (at 
zero temperature26) is described by

26 For the generalization to non-zero temperatures, see Refs.24 . 

VAt
ln g(x) = ln(1+ T(' — 1)).2 n

(12.114)

Ohmic resistor: In an ohmic resistor, the situation is different. The transmission 
of charge is no longer the result of a single scattering event. However, different 
transmission events continue to be uncorrelated. Under these circumstances, the 
transmitted charge may be assumed to be Poisson distributed (appendix section 
A.2.2),

p(n) = e-v —j- —> ln g(x) = v (eix — 1) . (12.115)

Here, the rate is determined by the applied voltage bias, barrier transparencies, 
temperature, and possibly other system parameters.
Bidirectional distribution: The cur- "Hh h

rent through a conductor connected to
two terminals (for the generalization to ______ , » »» » » T

multi-terminal geometries, see Refs. ) is
obtained by the additive superposition ---- •------ •------ •------------- •—I
of two counter-propagating current flows
(see figure). For simplicity, let us assume the two distributions pi(ni), i = 1, 2 of the 
counter-propagating charges to be statistically independent. The distribution p(n) 
of the total number of transmitted charges, n = n1 — n2 can then be computed as 
follows:

P ( n ) = y? 5n,n 1-n 2 P1 ( n 1) P 2( n 2 )

dX „ -ix(n -n 1+ n2) 

2 n
d ^1e-ix 1 n1 g(x 1) f dx2e-ix2n2g2(x2)
J 2 n J 2 n

f x - ixng 1( x ) g 2(— x ) .
2 2 n
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This means that the generating function of the transmitted charge is the product 
g(x) = g 1(X)g2(-X) of the partial distributions. For example, in the case where the 
two distributions are individually Poissonian, we find

ln g (X) = V1 (eix - 1) + v2 (e ix - 1) , (12.116)

where V1 and V2 determine the average rates.
In the following, we consider the biased double-barrier quantum dot and explore 

to what extent its current statistics reflects the limiting cases discussed above.

12.7.3 Full counting statistics of the double-barrier quantum dot 

In this section, we consider the double-barrier dot introduced in section 12.6.1. 
We will monitor the current through the tunnel barriers connecting the dot to the 
left lead. To define a suitable counting field note that, in the presence of a vector 
potential A ex parallel to the lead axis, the tunneling matrix elements Ta,a^ defined 
in section 12.6.1 generalize as Ta,a^ ^ Ta,a^ exp(if dxAa), where the integral runs 
over the transverse extension of the barrier a = L, R. The definition (12.112) then 
implies that the fields \a probing charge transport through the barriers couple to 
the tunneling matrix elements on the Keldysh contour as

T'a,ad ^ Taaii exp(iXa(t)a1/2).

Notice that the coupling of the counting field to the tunneling matrix elements 
is identical to that of the quantum component of the dynamical phase field (cf. 
Eq. (12.86)), and can be described by the shift oq ^ oq + xa/2. This observation 
fixes the coupling of the counting field to the effective action without further calcu­
lation: the tunneling action (12.87) generalized for the presence of counting fields, 
reads as

Stun [ X ] = - - E ga tr (A a (Xa ) e—i^A dA^ , A a (Xa ) = ei * a 1A a e—i a 1,
a=L,R

where we have generalized to barriers with different tunnel conductances, ga . Fol­
lowing the logic of section 12.6.2, our next step will be to determine the matrix 
Ad. As before (see exercise on page 739), we do this by requiring stationarity under 
variations of <f. Variation of the action in the limit of vanishingly weak interaction, 
<f ~ 0, generates the condition

[a d, E ga A a (Xa )] = 0 • (12.117)

Now, the transformations A ^ exp(iXa 1 /2)Aexp(-iXa 1 /2) render the matrices 
Aa(Xa) non-triangular. This means that in general the stationary configurations 
Ad will also no longer be of the form (12.89). However, the transformation by the 
counting field does not alter the nonlinear equation A2 = a0 satisfied by the matrices
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of Eq. (12.89). It is straightforward to verify that the solution of Eq. (12.117) 
obeying this normalization is given by27

27 More precisely, the above result is obtained in an approximation where the Green functions 
appearing in the matrices A of Eq. (12.89) are replaced by their imaginary parts, Img± = ^1 /2. 
A more careful analysis shows that the real parts regularize the superficially divergent constant 
C in Eq. (12.118).

A d = _______ g lal( x L) + g rar (x R)________ 

(g L + g R + g l g r [al( x L), ar (x r )]+)1 / /

(Notice that the the anti-commutator matrix in the denominator commutes with 
the numerator, i.e., the relative ordering of numerator and denominator immaterial. 
Also notice that, in the limit x = 0, the solution reduces to that discussed in section 
12.6.2.) Substitution of this configuration into the action leads to

Stun[x] = —4 tr (gL + gR + glgr[al(xL), ar(xr)]+)1 /2.

Assuming that the inverse of the counting time-window (At)-1 is large in compari­
son with the energy scales relevant to the distribution functions, we will evaluate the 
trace over energy/time indices within the leading-order Wigner approximation (see 
appendix section A.4.3), tr(...) ^ f dn(...), F(£) ^ F(£), x(t) ^ x(t), where 
F(e) and x(t) are ordinary functions of energy and time, respectively. As a result of 
a straightforward calculation (exercise) one finds that the matrix [AL(xL), AR (xR)] 
is proportional to the unit matrix, and that the trace evaluates to

Stun[x] = -[ X(x(t)) = -iAt I drX(x) + C, (12.118)
2 J 2 n 2 J 2 n

where

X(x) = ((gl + gr)2 +4glgr ((e1* — 1)nl(1 — nR) +(e ix — 1)nr(1 — nL)))1 /2.

Here, in the first equality, we defined x = xL — xR, and in the second specialized to 
the time-dependence x(t) = x©(t —1)^(£ + At-1), with x a constant differentiation 
parameter and C an inessential constant. From this result we find the cumulant­
generating function ln g(x) — lnexp(iS[x]), i.e.,

ln g(x > = t/ d;X (x). (12.119)

Let us try to make sense of this expression. Comparison with Eq. (12.116) shows 
that ln g contains the generating functions of two Poisson distributions as building 
blocks. To explore the meaning of this result, we first consider the limit of zero 
temperature and voltage bias V, nL/R(e) = ©(±V/2 — e). The generating function 
then reduces to

ln g(x) = AtV ((gl + gr)2 + 4glgr (ex 
4 n

— 1))1 /2 +C.
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According to Eq. (12.113), the first moment of the transmitted charge through 
the system is given by

(N) = - idx\x=0 ln g (X) = A tV g l g r
.

2n g l + g r

Comparison with the definition of the conductance, G = (I) /V = (N) /VAt, gives 
G = 1 g l g r

2 n (g l+ g r)
which we recognize as the mean conductance of two tunnel barriers 

shunted in series (in units of the conductance quantum e2/h = 1 /2n). Turning to
the current statistics, let us consider the limit gL gR. We may then expand 
the square root to first order in the ratio gL/gR to obtain a bi-directional Poisson 
distribution (12.116), with (time-integrated) characteristic rates identified as

/de
— nl(1 - nr), 
2 n /de

— nr(1 - nl).
2 n

These coefficients may be interpreted as the integrated rate at which filled states 
in the right lead scatter into empty states in the right lead, and vice versa. As one 
may expect, the statistics of the current is caused predominantly by the bottleneck 
in the system, i.e., the conductance of the weaker tunnel barrier, gL . At non-zero 
temperature we have v 1 ~ AtgLV/2n, while v2 ~ exp(-V/T) AtT /2n shows that 
thermal activation is necessary to push charges against the voltage gradient.

The second (cumulative) moment defines the noise power (cf. Eq. (12.106)), 

22 2g
S o = Atvar( N) = - At dX\x=0 ln g [ x ] = At(v 1+ v2) = 22nV coth( V/ 2 T).

This shows how the noise interpolates between the equilibrium noise, (6I(t)5I(t')} V~ 0 

glT and the shot noise limit (5I(t)5I(t')) VT gL|V|. In the more general case of 
barriers of comparable transparency, gL ~ gR, the current statistics is more com­
plicated and is described by the full expression (12.119).

In principle, we could now include phase fluctuations to explore the interesting 
question of how interaction effects influence full counting statistics (FCS). However, 
this topic28 lies beyond the scope of the present text.

In this final chapter, we have introduced the Keldysh formalism as a versatile and 
powerful tool in quantum nonequilibrium theory. Admittedly, the Keldysh frame­
work comes with a steep learning curve. However, after a while, one begins to 
realize that it is actually more intuitive than the technically more straightforward 
Matsubara formalism. It is also a unifying framework in that other approaches to 
nonequilibrium are included in the Keldysh functional. Specifically, we discussed the

see D. A. Bagrets and Y. V. Nazarov, Full counting statistics of charge transfer in Coulomb 
blockade system, Phys. Rev. B 67, 085316 (2003).

12.8 Summary and Outlook 

28
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derivation of quantum master equations and quantum kinetic equations, the connec­
tion to equilibrium field theory, the classical limit in terms of the MSR formalism of 
the previous chapter, nonequilibrium variants of diagrammatic perturbation theory, 
and more. At the time of writing of this book, physics beyond thermal equilibrium 
is becoming more and more important, with key driving factors including device 
miniaturization in condensed matter physics and experimental advances in cold 
atomic and optical many-body systems. It stands to reason that familiarity with 
the Keldysh framework will be an indispensable element of the repertoire required 
by future generations of researchers. The material introduced in this chapter is far 
from complete. However, it should be sufficient for readers to engage in their own 
research in the fascinating field of nonequilibrium physics.

12.9 Problems

12.9.1 Atom-field Hamiltonian

The atom{eld Hamiltonian is a simple model Hamiltonian reducing the interaction of atoms 

with the electromagnetic eld to a two-level system (\the atom") coupled to an assembly of 

oscillator modes. In spite of its simplistic nature, the model gives rise to rich phenomenology, 

and is often employed in quantum optics. In this problem, we study the simplest variant of the 

system, the exactly solvable limit of a single eld mode. In this limit, the model shows fully 

coherent quantum dynamics. We use it as a benchmark system to compare with incoherent 

approximations underlying the quantum master equation of section 12.1. In the follow-up 

problem 12.9.2, we then explore the generalization to multi-mode coupling.

Consider an atom exposed to electromagnetic radiation. 
Assuming that the field modes predominantly couple two 
atomic states |a) and |b) (see the figure), and forgetting about 
the complications introduced by the polarization of the elec­
tromagnetic field, we describe this setup by the model Hamil­
tonian

H = 2/3 + -'kakak + ggk++ ak + gka-ak

|a)
e 

UJ

i&) -L

(12.120)

where e is the energy difference between the excited state, |a), and the lower state, 
| b), the Pauli matrices ai act in the two-dimensional Hilbert space defined by these 
states, and a± = (a 1 ± ia2)/2 as usual. This atom-field Hamiltonian describes 
excitation processes | b) ^ |a) by field quantum absorption (at coupling constants 
gk ), and the corresponding relaxation processes by quantum emission.

We may simplify the problem further by assuming that only a single mode of the 
electromagnetic field satisfies the resonance condition w ~ e required for significant 
field-state coupling. This, defines the single-mode Hamiltonian
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H = 333 + wa^a + g (o + a + o- a^) , (12.121)

where we have omitted the mode index, k, and gauged the coupling constant g to 
become real.
(a) Using the parlance of section 12.1, consider the atom as the “system,” prepared 
at time t = 0 in a mixed state,

ps = paP+ + pbP-,

where P± are projectors onto the upper state a or lower state b and pa,b, pa + 
Pb = 1, are the probabilities of occupation of these states. Apply the Markovian 
approximation of section 12.1 to derive an equation of motion for the reduced system 
density matrix ps coupled to the “bath” defined by the mode. (For the moment, do 
not worry about the appearance of singular couplings ~ 5 (e — w) and treat them 
as formal coefficients.) Derive a closed expression for the diagonal elements of the 
reduced density operator px — (x|ps |x), x = a, b, and verify that the stationary 
limit px,TO — px(t ^ rc>) obeys the detailed balance relation

pa,<x   (n)

pb,& (n + 1),
(12.122)

where n is the number of mode quanta and the expectation value is over the thermal 
distribution of the bath. Accordingly, the population imbalance between the 
levels approaches the limit

1
2( n) + 1'

Ap — pa, m pb, m (12.123)

Discuss the meaning of this expression. Is it physical? If not, where do you think 
the derivation failed?
(b) Let us compare the predictions of the Markovian approximation with reality. To 
this end, solve the time-dependent Schrodinger equation defined by the Hamiltonian 
(12.121). Assume that the system is prepared in the excited atomic state |aa| ® 
|nXn|pn, where pn is the nth eigenvalue of the thermal-mode density operator, 
pn = Z-1exp(—flw(n + 1 /2)). Using the fact that the Schrodinger equation couples 
only the states |a, n) and |b, n + 1), solve the time-dependent problem with an initial 
condition corresponding to the ab ove density operator.

With px — ^2n (x,n|x, n) denoting the probability for the system to be in state 
|x), compute the population imbalance and compare with the predictions of the 
Markovian approach (12.123). Assuming the mode population to be thermal, it is 
instructive to plot the imbalance as a function of dimensionless time, gt, for different 
values of temperature and frequency mismatch A = e — w (see figure on page 757.) 
(c) Discuss qualitatively the origin of the discrepancies between the two approaches. 
Why is the Markovian approximation not appropriate under the present circum­
stances, and why does the exact solution not predict the relaxation of an initially 
occupied state |a) to the ground state, even at zero temperature?
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Answer:

(a) In the interaction representation, a(t) = e mta, a± (t) = e±irta±, the interac­
tion Hamiltonian Hi = g (a+a + a - a t) reads

Hi (t) = g (e A ta + a + e - iA ta - at) ,

where A = e — w is the energy mismatch between the level splitting and mode 
frequency. Defining Li = —i[Hi , ], it is then straightforward to verify that Eq. 
(12.4) assumes the form

dt ps = — g 2 J" dt' e+iA t (+(n + 1>[ a + ,a - ps (t — t')] — (n)[ a + ,ps (t — t') a-])

— g2 y dt' e - iA t' (—(n + 1)[ a - ,ps (t — t') a+] + (n)[ a - ,a + ps (t — t')]),

(12.124)

where the expectation value is over the mode distribution. The initial state defined 
above is diagonal as a matrix in the two-state basis, and the evolution equation 
preserves this form. The Markovian approximation neglects the time-dependence 
of p(s) under the integral. Under this assumption, the evolution assumes the form 
of a master equation, 

d pPa\ -r (~nn + 1>
dM = r / -i \\PM \ \n + 1?

pa 

pb
(12.125)(n )

—n )

where the rate r = 2ng<5(A) is singular at resonance. This equation predicts an 
exponential approach to a stationary limit satisfying the detailed balance relation 
(12.122).
(b) For given n > 0 the Hamiltonian acts in the two-dimensional space spanned by 
the states | a, n) and |b, n + 1). Specifically, Hi(t)|a, n} = ge iAt(n + 1)1 /2|b, n + 1) 
and Hi(t)|b, n + 1) = ge+iAt(n + 1)1 /21a, n}. Introducing wave functions by |^(t)) = 
^a,n (t )| a, n) + ^b,n+1(t)|b, n + 1), the time-dependent Schrodinger equation idpp = 
HHi (t) rp assumes the form

idt^a,n = geffe+iAt 'pb,n+1, idppb,n +1 = geffe-iAt ^a,n, (12.126)

where we have introduced the effective coupling constant geff = g(n + 1)1/2 . These 
equations are solved by

^a,n(t) = e+i^t (^a,n(0) cos(Q^t) — igeff'^bn+1(0j) + 2 ^a,n(0) sin(Qt/j 

^ n

^b,n +1 (t) = e - i "2 ^b,n +1(0) cos(Q nt) — igeff ^a,n ()Q 2 ^b,n+1() sin(Q t)
\ ^ n
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- 2^2+i’S,n2(nnt)) .
Q2n

1.01 Ap

with Qn = (g2ff + (A/2)2)1 /2. The wave function p(0) = £n |^n,a(0)><^n,a(0)| has 
initial value ^a,n(0) = ^pn. Substitution of this value leads to an exact result for 
the population imbalance:

AP = (|^a,n |2 - |Kn P) = Pn 1

This result is very different from the one 
obtained within the Markovian approach, 
Eq. (12.123): no stationary limit is approached. 
A short period of decay of the initial value 
Ap(0) = 1 merges into a pattern of irregu­
lar fluctuations - the result of a superposition 
of contributions of incommensurate frequencies 
(see the figure). In quantum optics, the phenomenon of transient near-recoveries 
of the initial value is known as collapse and revival and the fluctuations of the 
two-state atom are Rabi oscillations caused by the field mode. Their oscillatory 
pattern is the result of maintained quantum coherence and reversibility of the dy­
namics. Notice that, even at zero temperature, the atom does not relax by emission 
of field quanta: at T = 0, only the n = 0 term (zero field quanta) contributes to 
the sum above. This leads to oscillatory behavior of the density operator in which 
the initial state is recovered at regular intervals t ~ g, but no relaxation. For fur­
ther discussion of the fluctuation pattern, we refer to Ref.29 . Here, the take-home 
message is that the prediction of irreversible dynamics derived in (a) is incorrect. 
(c) The Markovian approximation fails because a single quantum oscillator mode 
is different from a bath. Indeed, the mode-atom coupling is strongest at resonance, 
A = 0, when “system” and “bath” fluctuate at comparable time-scales. In this 
case, the memory of the latter is comparable to that of a system, and a Markovian 
approximation is not justified.

In the previous problem, we saw that the coupling of an atom to a single electromagnetic 

mode does not lead to radiative relaxation. Here, we study how irreversibility emerges when 

a large number of modes are coupled. The modeling introduced in the present problem plays 

an important role in, e.g., the theory of lasing. (This problem should be attempted only after 

problem 12.9.1.)

(a) Consider the Hamiltonian (12.120) of a two-level atom coupled to a multi-mode 
field. Assuming zero temperature, so that all mode occupation numbers are van­
ishing, start from the ansatz ^ = ^0|a) 0 |0) + k ','k|b} 0 ak|0), where |0) is the 
zero-temperature photon vacuum, to generalize the Schrodinger equation (12.126) 

29 M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

12.9.2 Weisskopf-Wigner theory of spontaneous emission
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Weisskopf—
Wigner 
approx­
imation

for the initial configuration |a) ® |0) to the presence of many modes of frequency 
wk coupled to the system with coupling constants gk. Formally integrate the sec­
ond equation to convert the system of two equations to a single integro-differential 
equation. Assume that |gk |2 = g2 (wk) depends only on the mode energy and formu­
late the equation in terms of the density of bath modes p(w) k d(w - wk).
Assuming that p(w) = p and the coupling strength g2(w) = g2 vary only neg­
ligibly on the energy scales relevant to the states ^ - the Weisskopf—Wigner 
approximation - derive an approximate solution of this equation.

Compute the population imbalance between the two atomic levels (hint: consider 
the unit normalization of the wave function), Ap = |^0|2 — k |'^k|2, and show that 
it relaxes as Ap(t) = 2e-rt — 1 at the golden rule decay rate

r = 2 npg2. (12.127)

(b) For arbitrary temperature and initial population, attack the multi-mode prob­
lem by generalization of the projector formalism applied in problem 12.9.1 (a) to 
the single-mode case and compare with the results of the Weisskopf-Wigner theory. 
Convince yourself that the approximation used there is equivalent to a Markovian 
approximation.

Answer:

(a) The multi-mode generalization of the Schrodinger equation (12.126) reads

idpf> o = gk eiA kt^k, idt^k = gk e - iA k t •: o,
k

where Ak = e — wk. We integrate the second equation and substitute the result into 
the first equation to obtain

dt^o(t) = — gk dt' e Ak(t-t')^o(t')

= — y dwp (w) g (w) y dt' e (e - '')(t - t) $ o( t') -- npg 2 $ o (t),

where in the second equation we applied the Weisskopf-Wigner approximation and 
evaluated the frequency integral as J dwe-i~(t-t ) = 2nd(t — t/).3o The (irreversible) 
effective equation for ^o is now trivially solved as ^o(t) = e-npg t.

With the normalization condition 1 = |^|2 = |^o|2 + 22k |^k|2, the population 
imbalance is obtained as Ap = 2|^o|2 — 1, and substitution of ^o(t) leads to the 
stated result.
(b) Comparing with the discussion in the previous problem, we verify that the 
multi-mode generalization of Eq. (12.124) reads

30 We count ft dt'S(t — t') = 1 /2 since the S-function lies at the boundaries of the integration 
domain.
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dtps — J du p (u) g 2( u) j dt'

x [e+i('-")t' (+{n(u) + 1)[a + ,a-ps (t — t')] — (n(u))[a + ,ps (t — t')a-]) 

— e-i(e-»)t' (—n(u) + i)[a-,ps(t — t')a+] + {n(u))[a-,a + ps (t — t')]) ],

where n(u) is the boson distribution function. The integral now contains the su­
perposition of contributions fluctuating at different time-scales and decays rapidly. 
Unlike the previous problem, this justifies the assumption of near constancy of the 
density operator. (Think why this is equivalent to the Weisskopf-Wigner assump­
tion of the approximate frequency independence of pg2.) Doing the integral, we 
obtain the master equation (12.125), where (n) = (n(e)) is the mean number of 
bath quanta at the resonance energy and the decay rate is given by Eq. (12.127). 
Solution of this equation yields the population imbalance

A p (t) = (A p (0) + —^-} e-r(2 n+1) t — 
y 2\n/ + i /

1
2( n ) + 1'

With the initial condition Ap(0) = 1 and at zero temperature, (n(e)) = 0, this 
reduces to the results obtained in (a).

12.9.3 Qubit decoherence from the Lindblad equation

One of the most important and problematic aspects of system{bath couplings is the decoher­

ence of quantum information. Here, we study this phenomenon for the example of a single 

qubit coupled to a bath.

qubit A qubit is a quantum mechanical two-level system. As an example, consider a 
tqubit subject to the Hamiltonian H = ea3 + kuk uka'kaka3, where the second term 

describes the fluctuations of the qubit energy 2u due to the coupling of the qubit _  J.
to a system of bath modes with the Hamiltonian Hb = k uk (ak ak + 1/2). We aim 
to explore how these fluctuations compromise phase coherence.
(a) We will be interested in the evolution of the density operator representing the 
qubit. As a first step, show that any density operator of a two dimensional Hilbert 
space can be represented as p = | + miai, where m is a real vector of norm |m| < 1. 
Now assume that the qubit has been initialized in a pure state, p = | ^((^ |, where 
|^( = a |f) + P| I) is a linear superposition. Find an efficient way to obtain the 
corresponding expansion coefficients as m = (Re(aP), Im(aP), 2(|a2| — |P|2)).
(b) Assuming a Lindblad form, write down the evolution equation for the density 
operator. For the purposes of this exercise, it is not important to work out the value 
of the Lindbladian coupling strength in detail; just call it y. From there, show that 
the parameterizing vector evolves as

(m A /—2 em 2 — 4ym 2\
m 2 = 2 em 1 — 4 ym 2 .
m3 0

(c) Discuss the meaning of this equation and describe what happens for a qubit 
initialized in a pure state.
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Answer:

relaxation 
time

Coulomb 
blockade

(a) Any 2 x 2 matrix can be represented as a linear combination of the unit- and 
Pauli-matrices. The condition tr(p) = 1 fixes the coefficient of the unit-matrix to 
1/2. Hermiticity requires the reality of the expansion coefficients, and the positivity 
of the eigenvalues 1 ± |m| constraints the norm of the expansion vector.

Considering the ansatz |^ |̂ = 2 + miai, we take the trace tr(|^)(^|aj) =tr(1 + 
miai)aj to obtain mj = 1 tr(|^)(^|aj) = 1 (^|aj|^). From here we immediately 
obtain the result.
(b) With the hermitian Lindblad operator XX = a3, the Lindblad equation assumes 
the form

dtp) = - it [ a 3, p) + 2 y (a 3 pa 3 - p}, (12.128)

where the positive constant y measures the coupling strength. Substitution of the 
expansion then leads to the equation stated in the problem.
(c) The evolution equation describes the precession of the transverse components 
(mi, m2) at a frequency k e. However, it also shows that they diminish at a rate 
4y . In the parlance of decoherence theory, this time-scale is called the transverse 
relaxation time, T1 . The transverse relaxation drives the density matrix towards 
a coherence-free mixed state p = c^| f)(f | + cJ |)(| |, c= 1 (1 ± (|a|2 — |ft|2)), 
without off-diagonal elements.

A more complete model of decoherence would also include bath couplings with 
jump operators a1,2 inducing qubit flips. The corresponding Lindblad equation 
(whose derivation and discussion along the lines of this problem is an instructive 
exercise) describes the diminishing of the longitudinal component at a rate set by 
the longitudinal relaxation time, T2 . The two time-scales T1,2 are perhaps the 
most important parameters characterizing the quality of a qubit.

12.9.4 Keldysh theory of single-electron transport

(Recapitulate section 12.6 before turning to this problem. If not stated otherwise, the notation 

of that section will be used throughout.) Here, we consider the quantum dot introduced in 

section 12.6 in a regime of near isolation from its environment. Under these conditions, the 

charge on the dot is almost perfectly quantized. Here, we show how Keldysh theory can describe 

transport through the system at a level where the dynamics of individual electrons is resolved.

In problems 5.6.4 and 5.6.5 we considered an equilibrium quantum dot in a state 
of perfect or near isolation from its environment. At low temperatures, the dot 
admits only the integer quantum of charges that minimizes its capacitive energy. 
This Coulomb blockade manifests itself in the partition function of the isolated 
quantum dot,

Z = exp — T^r(n - N0)2 (12.129)
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where the optimal charge number is determined by the parameter N0 e R (which 
may be set by changing the external gate voltages) and Ec is the charging energy.

As usual, the first challenge we meet in the Keldysh approach to the problem is 
the identification of its distribution function. Keep in mind that Keldysh theory is 
constructed assuming a non-interacting theory at large negative times, where the 
dot distribution is assumed to be thermal (or double-step, if an external voltage 
is applied). If we then adiabatically switch on a charge interaction, the energies of 
sectors of fixed n shift, but the distribution functions remain unchanged. Equili­
bration towards an effective distribution as in Eq. (12.129) can happen only if the 
Hamiltonian contains a contribution capable of changing n and hence the occu­
pation of states of fixed n. It turns out that the switching on of a weak dot-lead 
coupling achieves just this. Indeed, the dot-coupling term reads (cf. section 12.6.1) 
/dTei^/a-, where /d are the fermion fields of the dot, /a=L,R the fields of the leads, 
and $ is the Hubbard-Stratonovich field of the interaction. This term both creates 
an excitation in the field ^ (physically, a voltage fluctuation) and changes the oc­
cupation of the dot. In this way it is capable of altering the distribution, as we will 
show below. To keep the discussion simple, we assume a vanishing gate voltage, 
N0 = 0, and zero temperature, T = 0, throughout. (As an instructive exercise, 
generalize the discussion to non-zero gate voltage and temperatures.)
(a) Our first step is purely technical: observing that at weak coupling, gT 1, 
fluctuations in the field ^ are strong, we will trade the integration over ^ for an 
integration over different charge states n of the dot. To this end, expand the action 
(12.93) in the tunneling action (12.91) and integrate over the phase degrees of 
freedom (hint: keep the quantization condition nc(0) = n e Z in mind; see info 
block on page 738, and do the integration in the contour representation ^±) to 
obtain the representation

Z = E m (- 2 ) ” E [ Dte - E ' dt (n + (')-n-(' ” II La 2 k-ia 2 k (12 k-1 - 12 k ), 

m=0 {ak} k=1 (12.130) 

where 52{ak} is a sum over all sign configurations ak e {—1,1}2m, the integration 

measure Dt = Hkmi dtk, and the charge profiles are given by

na (t) = n + a (-)k0(t — tk)' , -. (12.131)
k=1

Finally, the matrix elements of the kernel L are defined as

Laa, = | (aa'EK + aE+ + a'E-) , (12.132)

where the self-energies EK,± were introduced in Eq. (12.91).
This representation expresses the partition function as a sum over quasiparticle 

in- and out-tunneling events, connected by elements of the kernel L. We next need 
to make physical sense of this expansion.
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(b) The temporal entanglement of tunneling events 
makes a closed computation of the partition func­
tion impossible. However, for weak tunneling pro­
cesses containing intersecting or nested propagator 
lines, L(t, t'), is negligibly small. Estimate the temporal range of the propagator L 
to derive a criterion for the applicability of the non-interacting blip approxima­
tion (NIBA), wherein tunneling events occur in a sequential manner (see figure.) 
For simplicity, you may assume an unbiased situation, V = 0. However, it is worth 
checking that, for V = 0, the quality of the approximation improves. (Hint: Note 
the frequency dependence of the self-energy in Eq. (12.96).)
(c) The lack of entanglement of tunnel­
ing events in the NIBA makes the com­
putation of the Keldysh partition func­
tion a lot easier. The basic picture now 
is that occasional charge tunneling events 
(blips  ) are interspersed in long periods 
of time wherein the charge contour pro­
file stays in a diagonal state, n+ = n- = 
ncl = n (sojourns). During a blip, the 
quantum component n + — n- = nq = £ G 
{-1, 0, 1} jumps to a value ±1, depend­
ing on the configuration (a2k-1 ,a2k) of 
the tunneling event, and the sign of the 
time-difference t2k-1 — t2k (see figure).

31

31 U. Weiss, Quantum Dissipative Systems (World Scientific Publishing, 1993).

Building on this structure, and assum­
ing zero biasing, V = 0, derive a mas­
ter equation for the quantity P (n, t) = 
P (n, t|n0, 0), i.e., the probability that 
the system evolves into a charge state
(n+, n-) = (n, n) at time t, give that it started in (n0, n0) at t = 0. To this end, 
interpret P (n, t) as the Keldysh field integral (12.130), subject to the constraints 
(see Eq. (12.131)) na(t) = n and na(0) = 0. Relate P(n, t) to P(n', t — dt), where 
<5t E-1 is much larger than the typical duration of blips, yet smaller than the
average spacing between blips, At (gEc)-1.

Apply a continuum approximation (At)-1(P(n, t) — P(n, t — At)) ~ dtP(n, t) to 
obtain the master equation

dtP(n, t) = [(E1 — 1) Wn,n-1 + (Ei — 1) Wn,n +1] P(n, t), (12.133)

where E±i f (n) = f (n ± 1) are charge raising and lowering operators, the transition 
rates are

Wn,n±1 = gEc(n, n ± 1)0(Ec(n, n ± 1)), 
n
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and

Ec (n,n') = Ec (n2 — n '2) (12.134)

is the relative energy of different charge states.
(d) Assuming that only the charge states n = —1, 0, 1 energetically closest to the 
ground state n = 0 are significantly occupied, solve the master equation (12.133) 
and show that, at large times, the system relaxes to the ground state, P(n, t ^ 
rc>) = fin,0. Show that the relaxation rate governing the approach is given by r = 
gEc/n = 1 /RC, the RC time of the circuit.
(e) Generalize to the case of non-zero bias voltage V . Will the ground state occu­
pancy change?

Answer:

(a) Expressed in terms of the contour representation oc = (^ + + ^-)/2, oq = 
$ + — $-, the charging contribution to the action Sc = S | g=0 reads as

Sc[n, ^] = y dt (n + dt0 + — n-dt$- — Ec(n2+ — n-)) ,

where n± = nc ± nq. The quantization condition on nc translates to n + (0) = 
n-(0) e Z. The relative sign change between the first two terms tells us that the 
operator ei0+ raises the charge on the upper contour by one, n + ^ n + + 1, while 
ei"- lowers the charge on the lower contour by one, n- ^ n- — 1. To make this 
action explicit, we first transform the tunneling action (12.91) to contour fields,

e e I pi+ +(t')\stun[ 4 ] = |y dtdt' (e - i0 +(t) ,e - i0-(t)) L (t — t') I -(t J ,

where the matrix kernel L = {Laa<} is defined in Eq. (12.132). We may now expand 
exp(iStun) in powers of the coupling constant to obtain the series

eStun [0] = V - ( ig m V [ Dtei £^1 M^k (tk ) TT L (1 — P fc)

e = / Y m, 2 J / Y J Dte k 1 11 LCT 2 k-1 ,a 2 k (t 2 k-1 t 2 k),

where Dt = H^mi dtk. The expansion 
weights in- and out-tunneling events at 
times t2k-1 and t2k, respectively, with el­
ements of the kernel L (see figure.) We 
now pass to a charge representation by
integrating this expression against the
charging action Sc. This generates the constraint dtna = a ^km1(—)kfi(t — tk)fiak,a

This equation is solved by Eq. (12.131), and substitution of this result into the
n-dependent part of the charging action yields the representation (12.130).
(b) The scaling L(w) ^ w implied by Eq. (12.96) is equivalent to power law temporal 
decay, L(t) ^ t-2. This means that a charge tunneling event carries the statistical
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weight ''--J dt e±iEctt-2 ~ Ec. The characteristic temporal range of this integral
is 6t ~ E-. With this, we estimate the statistical weight of a tunneling event 
occurring somewhere in a time-window of duration t0 as ~ gEct0. This means that 
the average number of tunneling events in t0 is

{m) ~ \ (gEct 0)m
E mm1 ( gEct 0) m

= gEct0 .

The temporal spacing between events follows as t0/(m) ~ (gEc)-1, and this relates 
to the duration of the event as t0/St ~ g-1: at low tunneling, g 1, the spacing 
between events exceeds their duration, and a sequential approximation becomes 
justified.
(c) For E-1 At (gEc)-1, the increment of P in the time-window [t - At, t] is
determined by zero-blip or one-blip processes:

n+1

P(n,t) ~ P(n,-At)+ £ Cnn,P(n',t — At),

where the coefficients Cnn< are one-blip transition probabilities. An individual blip is 
characterized by its center time, 10 e [t-At, t], its duration, s, and the sign structure 
(a, a'). Specifically, inspection of the figure shows that the connection between the 
signs and the post-blip increment in classical charge is given by (+, +), (-, -) : 
n ^ n, (+, -) : n ^ n - 1, (-, +) : n ^ n + 1. Comparison with Eq. (12.130) 
shows that, e.g.,

Cn,n-1 = 'gA' I dseiEc (n-1 ,n) sL-+(s) = igA L-+(Ec (n - 1 ,n))

= igA(-£K - £+ + £-)(Ec(n - 1 ,n))

= g^t E(n - 1, n)©(Ec(n - 1, n)), 
n

where Ec(n,n') is the relative charging energy of Eq. (12.134), the prefactor At 
results from the integration over the center time, and the ©-function results from 
the zero-temperature distribution function. In an analogous manner, we obtain

Cn,n +1 = g^ E (n + 1 ,n)©(Ec(n + 1 ,n)),
n

Cnn = ^t (-Ec(n, n + 1)©(Ec(n, n + 1)) - Ec(n, n - 1)©(Ec(n, n - 1))), 
n

where, in computing Cnn, it is important to keep in mind that £±(t) k ©(±t) 
carry retarded and advanced causality. Substituting this result into the evolution 
equation above, dividing by At, and taking the continuum limit, we obtain the 
master equation (12.133).
(d) The restriction of the master equation to the sub-system n = 0, ±1 reads

dtP (0 ,t ) = r( p (1 ,t) + p (-1 ,t)), 

dtP (±1 ,t) = -r p (±1 ,t).
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This is solved by P (±1 ,t) = e r tP (±1, 0) and

P(0, t) = 1 - P(1, 0) - P(-1, 0) + r dt' e-rt' (P(1, 0) + P(-1, 0)).

This solution describes the relaxation towards the state P(n, t) ’—r §n,0 at the rate 
r, as stated in the problem.
(e) Non-zero voltages affect the theory through a redefined Keldysh self-energy £K. 
Comparison with Eq. (12.96) shows that

£K(V) - £K(0) = * (V - |w|)e(V -1w|).
2 n

The transition rates thus change as follows:

Wn,n±1 ^ Wn,n±1 + (V - |Ec(n ± 1 ,n)|)e(V ± |Ec(n - 1, n)|).4 n
This expression is easy to interpret: for voltages |V| < |Ec(n±1, n)| smaller than the 
charging energies, the transition rates of the unbiased problem remain unaltered. 
This means that the excess energy of external charge carriers ~ V needs to exceed 
the charging energy in order to lift the exponential suppression of charged dot 
states. At large voltages, |V| |Ec(n ± 1 ,n) |, the tunneling rates cross over to
values ~ gV/4n. For these rates, different charging states become equally populated 
at a rate ^ gV set by the average current through the dot interfaces.



Appendix

A.1 Differential Geometry and Differential Forms

SYNOPSIS This appendix is a quick introduction to basic differential geometry and 
the language of differential forms. We aim to introduce computational tools useful in 
quantum field theory as succinctly as possible. While our presentation of the subject 
cannot substitute for a thorough introduction, it will perhaps motivate readers to dig 
deeper into the beautiful mathematics of differential geometry.

In chapter 1, we introduced fields as maps from a base manifold to a target manifold. 
Most of the time, physicists work with these maps in a language of “coordinates,” 
where they are represented as smooth functions fii (x) of an argument vector x = 
{xi}. However, in many instances, such representations work only locally. Think 
of a phase field taking values in the group U(1) as an example. It can be locally 
described by a variable ^. However, at the boundaries 0, 2n this is no longer a 
function. The local variable ^ jumps and hence is defined only on the open interval 
(0, 2n), “locally” covering the field manifold up to a point. For the circle, this locality 
constraint is easy to work with, for instance via the introduction of the winding 
numbers frequently employed in earlier chapters. However, for more complex fields 
(taking values in group manifolds as SU(N), for example) things get more involved, 
and an efficient framework for working with local coordinates as descriptors of global 
structures is required.

Besides these technical aspects, an overly strong emphasis of local views tends 
to obscure the physically important presence of global structures. (A phase tells 
us only indirectly, via its winding numbers, that a circle is under consideration.) 
In areas where global geometric structures are key - for example in topological 
quantum field theory, areas of gauge field theory, or relativity - it is often preferable 
to stay for as long as possible on a global level, and postpone the introduction 
of coordinates to the final stages when “concrete calculations of observables” are 
performed. Differential geometry and the language of differential forms provide us 
with a framework for such invariant representations. For concrete evidence and 
motivation, consider the numerous formulae in chapters 9, 10, or 8, which looked 
hostile in coordinate representation but took a friendly form when expressed in 
differential geometry language.

This appendix is an introduction to concepts of differential geometry in field 
theory. We emphasize that the presentation is intentionally terse. It should be 
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sufficient to give a first overview, or serve as a reference manual. Either way, it 
cannot replace a - highly recommended - deeper study of the subject.1

1 See, for example, M. Nakahara, Geometry, Topology and Physics (IOP Publishing, 2003), which 
has a focus on topology, is fairly rigorous, and comprehensive; M. Gockeler and T. Schiicker, 
Differential Geometry, Gauge Theories, and Gravity (Cambridge University Press, 2011), which 
provides a miraculously concise, readable, and modern particle physics-oriented perspective; and 
A. Altland and J. von Delft Mathematics for Physicists (Cambridge University Press, 2019), 
which has an emphasis on pedagogy, and is far more basic than the texts above.

A.1.1 Differentiable manifolds

differentiable 
manifold

local 
coordinate

coordinate 
transfor­

mation

chart

A differentiable manifold is a set M that locally, but not necessarily globally, 
looks like an open subset of Rn . With few exceptions, all fields discussed in this 
text take values in differentiable manifolds, hence the denotation field manifold.
Similarly, the domains of definitions of fields, the base manifolds, are also locally 
identical to open subsets of Rd .
In more concrete terms, local identifica­
tion means that, for all p G M, we have 
a subset r 5 N C M and a local co­
ordinate map x : U ^ N,x ^ r(x), 
where U C Rn is an open subset. Here, 
x G Rn is the coordinate vector of the 
point r G M. (In differential geometry, 
one generally does not represent vectors 
in a boldface notation. To keep the nota­
tion slim, the coordinate map x : U ^ N, 
and the coordinates themselves, x, as in r = r(x), are often denoted by the same
symbol.) A point r may be included in the domain of two different coordinate rep­
resentations, r G O, where y : V ^ O, y ^ r(y). In this case, the same point r is 
described as r = r(x) = r(y) in different ways, and the map y : U ^ O,x ^ y(x) 
describes the coordinate change. The defining feature of a differentiable manifold 
is that these coordinate transformations are smooth diffeomorphisms, i.e., in­
finitely often differentiable, and one-to-one.

INFO In the parlance of differential geometry, coordinate maps are called charts and 
a minimal collection of charts large enough that each point on the manifold is covered 
by an atlas. The complete coverage of topologically nontrivial manifolds such as circles, 
spheres, or tori, requires multi-chart atlases.

A few more comments on the concept of manifolds:

> The definition above does not assume the embedding of the manifold in some 
larger space. For example, we often visualize the differentiable manifold “two- 
sphere” as embedded in three-dimensional space. However, in differential geom­
etry, it is good practice to avoid this view. The two-sphere might just as well be 
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covariant 
notation

embedded in the group SU(2), or appear as a stand-alone object, without any 
embedding.

> Computations with differential manifolds are exclusively performed in their co­
ordinate domains, U . We never differentiate or integrate in M (as this would 
require the embedding of M into a vector space). This is more than a formality. 
Getting used to the mindset “geometry in M, calculus in U” avoids confusion.

> The coordinate domains U, V,... are differentiable manifolds in their own regard. 
(Being subsets of Rn, they are trivially identical to subsets of Rn.) This view is 
frequently useful in practice. Unlike the generic case, operations of calculus can 
be performed in the coordinate manifolds.

> In covariant notation, coordinate indices as in xi are generally written as 
superscripts, and called contravariant indices. In this way, they are distin­
guished from symbols (see below) vi with subscripts, called covariant indices.

> In practical computations, one often identifies functions defined on f : M ^ 
R, r ^ f (r), and their local coordinate representations, f : U ^ R, x ^ f (x) = 
f (r(x)), where the “f” in f(x) is a function of coordinates, and in f (r(x)) is 
a function on M . However, occasionally one must be careful not to take this 
identification too far. For example, a circle has a coordinate angle function ^, 
which is defined in the coordinate domain (0, 2n), but not on the full circle 
manifold.

EXAMPLE The two-sphere, S2 , is a 
differentiable manifold, and the standard 
spherical coordinates (0, 0)T are a coordi­
nate system on it. In this case, U = (0,n) x 
(0, 2n), and the map r (0, <p) covers almost 
all, but importantly not all, of the sphere. 
For an alternative coordinate system, con­
sider the stereographic coordinates, de­
fined by the projection of points on the sphere onto a plane, as indicated in the figure. 
These coordinates also do not cover the entire sphere. (What is the covered subset N C S2 

in this case?) They are defined by the coordinate transformation (exercise)

y1 (0, 0) 
y2(0, 0) = cot(0/2) cos 0 

sin 0 (A.1)

Tangent space

Intuitively, differentiable manifolds are smooth objects, which look flat from a close­
up perspective. For example, a sphere looks locally like a two-dimensional plane. 
However, a problem with this picture is that the tangent plane lies “outside” the 
sphere and therefore requires embedding into a larger space. Mathematics offers an 
alternative description of tangency that, after a bit of getting used to it, is intuitive 
and does not require an embedding space.
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tangent 
space

This alternative approach starts from 
the observation that all local characteri­
zations of manifolds ask questions about 
the variation of functions, f , defined in a 
neighborhood, N, of points p e M. For 
example, how do the angles defining a lo- x2 
cal coordinate system on a sphere change 
under small departures from p? Or how 
does a potential V (p) change?

By virtue of a local coordinate embedding, we may consider f as a function 
f : U ^ R, x ^ f (x), of local coordinates. Infinitesimal variations are now probed 
by directional derivatives of f at x. This line of thought suggests defining the 
tangent space, TpM, to M at p as the space of linear operators dv acting on 
functions by directional derivatives. For a given coordinate system, this space has a 
natural basis: the set of operators dxi = di, acting by partial differentiation, dif (x) 
in the coordinate direction. Defined in this way, the tangent vector di probes how 
f varies in the direction of the coordinate lines on M defined by the variation of 
the coordinate xi with all other coordinates fixed (see the figure). Generic tangent 
vectors may then be defined by the linear combination

dv = £ vi di, (A.2)

with coefficients vi . Defined in this way, the vector acts as a common directional 
derivative: dtf(x + vt) = vidif = dvf. Also note that, for a given tangent vector, 
dv, its expansion coefficients in the basis {dxi} are obtained by the action of dv on 
the coordinate functions themselves: (dv)i = dvxi = vjdjxi = vi, where we have 
used dixj = <Fi.

While the definition above has been formulated in a specific coordinate system, 
it is easy to switch to a different one. Consider the basis tangent vectors dyj defined 
by a competing coordinate system. By definition, the components of dv in the y- 
representation are obtained as ddv = vi^Xi such that

dv = v dj dyj. (A.3)

This formula can be read as a basis 
change for tangent vectors, or as the 
chain rule for partial derivatives. Either 
way, it is compatible with the action 
dv f (x) = vidxi f (x) = vidjdyj f (y) on 
functions.

pushforward

We frequently consider maps F : M ^ L,p ^ F(p) between manifolds. Any 
such map defines a pushforward map between tangent spaces, F*p : TpM ^ 
TF (p) L. Intuitively, this is the “infinitesimal version” of the map, describing how 
small variations (vectors) on the argument manifold map onto the image. In our 
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current way of describing tangent spaces, the action of the pushed vector F*pdv 

on functions g defined in the vicinity of F(p) is defined as (F*pdv)g = dv (g ◦ F). 
In words: we probe how the composite map g ◦ F responds to variations in v. 
Specifically, for g = yj , a coordinate function and Fj = yj ◦ F the coordinates of 
the function values in L, we obtain the components of the pushforward vector as 
(F*pdv)j = (F*pdv)yj = dvFj = VidF , or

„ dFj „
dv = v dxi ^ F* dv = v dx~ dyj (A.4)

This is the differential geometric reading of what in coordinate language is a chain 
rule.

EXAMPLE Consider the local basis vectors (de, d:.) probing how functions on the sphere 
change in the polar and azimuthal directions, respectively. We can expand them in the 
basis of the stereographic system as

d - dyla j. dy2a 
de de dy 1 + de dy y

- 2sJ( e/2)(cos ¥dy1 +sin ¥dy2) •

Technically, the coordinate change y : U ^ V, x n- y (x), is a map between the coordinate 
manifolds U and V. With the identifications y = F, and dv = dxi, the equation above 
shows that the coordinate-transformed vector is the pushforward of dxi under y (x).

Finally, it follows directly from the definition that repeated pushforward obeys the 
composition rule (G ◦ F)* = G* ◦ F* .

A.1.2 Differential forms

In this section, we introduce the concept of differential forms. We begin with one- 
forms, which are the differential geometric variant of the dual vectors perhaps re­
membered from linear algebra. Next we will introduce forms of higher degree and 
learn how to build them from one-forms by a product operation known as the wedge 
product, or by (exterior) differentiation. Finally, we will discuss how differential 
forms are key to the definition of integrals over manifolds.

Differential one-forms

dual space

differential 
one-form

Recall that the dual space, V * , of a vector space, V , is the space of all linear 
functions, w, of vectors w(av + a' v') = aw(v) + a' w(v'). Elements of the dual vector 
space are called dual vectors or one-forms. For a basis {ei} of V , the dual basis 
{ej} of V* is defined through ej (ei) = j. Dual vectors are expanded as w = wie1, 
with covariant coefficients wi. The latter are obtained as wi = w(ei) by the action 
of w on the basis vectors.

A differential one-form is a field of one-forms, Qp, where Qp G (TpM)* is a one- 
form on the tangent vector space TpM, and the dependence of ^p on p is smooth.
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cotangent 
space

differential 
of function

pullback

The dual space (TpM)* = T*M of the tangent space TpM is called the cotangent 
space to M at p, and T* M = UpeM T* M is the cotangent bundle of M.

In practice, differential one-forms are mostly realized as differentials of func­
tions. A function f : M ^ R defines a one-form df whose action on vectors is given 
by df (dv) = dv(f) (why is this a one-form?). From the expansion dv = vidi, we see 
that df (dv) = vidif, showing that df (dv) is just the derivative of f in the direction 
of the vector defined by the components vi . Specifically, for coordinate functions 
x1, we have dx1 (dj) = tij, from which we learn two things: {dxi} is the dual basis 
of T*M corresponding to the basis {dj} of TpM, and arbitrary forms afford the 
expansion

w = widxi,

where the covariant coefficients are obtained as wi = w(di). Specifically, the form 
df is expanded as

df = dif dxi, (A.5)

which is consistent with df (di) = dif. Equation (A.5) shows that the differential of 
a function familiar from calculus affords an interpretation as a differential one-form. 
Indeed, the differential wants to “eat” vectors to produce the corresponding direc­
tional derivatives as numbers, and this assignment is linear, i.e., it is a differential 
form in the sense of the ab ove definition.

The expansion of a form in a different basis dy1 is obtained from w (dyj) = 
widxi (dyj) = widyjx1 as

dxi
w = wi dyj dyj, (A.6)

which is the form analog of the vector identity (A.3).

EXAMPLE The forms dd and df on the sphere are locally defined as differentials of 
the coordinate functions (d,f). The differential form x = cos ddf is not realized as the 
differential of a function. What is the representation of the basis forms dz1 , dz2 of the 
stereographic representation in the basis (dd,df)?

Much as vectors get pushed forward under maps F : M ^ L, differential forms, w, 
defined on TF* (p)L get “pulled back” to forms in the pre-image tangent space TpM. 
The pullback map F* : T*(p)L ^ T*M, w ^ F*w is defined by (F*w)(dv) = 
w(F*dv), i.e., the action of the argument form in T*(p) on the pushforward F*dv. 
Pullback and its partner operation pushforward simply lift the apparatus of dif­
ferential geometry from one domain to another, w(F*dv) = (F*w)(dv), i.e., a form 
evaluated on a pushed vector equals the pulled form evaluated on the original vector 
(see figure).

For a form represented on L as w = wj dyj, the coefficients of F* w are obtained 
as (F * w) i = (F * w)(di) = w (F* di) = w ((diF j) dj) = wj diFj, or

„ dFj . ..
w = wj dyj ^ F * w = (wj ◦ F) i dx (A.7)
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This formula, which is the partner rela­
tion of Eq. (A.4), shows that pullback is 
the differential form representation of the 
“chain rule for differentials.” For exam­
ple, for a curve x = x(t), the transfor­
mation dx = dx dt is interpreted as the 
pullback of the coordinate form dx under 
the map t ^ x (t) to the differential form 
dxdt in the time domain. The advantage 
of the differential-form representation is 
its simplicity. For example, F*df is more transparent than (dyj f |F(x))dxiFj, etc.

Finally, note that for repeated pullback operations we have the composition rule 
(G ◦ F)* = F* ◦ G* : a form is pulled back by first pulling it under the final map, 
then under the initial one (a result that follows directly from the definition).

INFO Many objects sold as vectors in standard physics teaching actually are differential 
forms. One-forms and vectors are easily confused because they have equally many com­
ponents and transform similarly (but not identically!) under coordinate transformations. 
Examples of forms in vector disguise include mechanical forces, vector potentials, 
electric fields, and many others besides. To understand why, say, mechanical force, F , 
is a form and not a vector, recall that forces are measured by recording the work required 
for the displacement of test objects, W = Fivi , where vi are the coefficients of a small 
displacement vector, W is work, and Fi are the components of force. The latter enters as a 
linear map (a one-form) acting on a vector to produce a number. This construction demon­
strates that the conceptualization of force as a form is more physical (and at the same 
time no more abstract) than the standard vectorial formulation. The situation with the 
other examples mentioned above is similar. Unfortunately, the “all-are-vectors” paradigm 
is so deeply rooted into the social system of physics that it appears to be impossible to 
eradicate.

differential 
r-form

Forms of higher degree and wedge products

Above we introduced differential one-forms as objects measuring the effects of linear 
displacements on manifolds. In a similar manner, differential forms of higher degree 
probe surfaces, volumes, etc.

Technically, a differential r-form is a multilinear and antisymmetric map wp : 
®rTpM ^ R, (dv 1,..., dvr) ^ wp(dv 1,..., dvr), assigning to r tangent vectors 
a number, where the dependence on p is smooth. Antisymmetry means that wp 

changes sign under the permutation of any of its argument vectors. Owing to lin­
earity and antisymmetry, a differential r-form is fully determined by its action on 
ordered r -tuples of basis vectors w (di 1,..., dir) = wi 1 ,...,ir, where i 1 < ■■■ < ir. 
Antisymmetry further implies that w...,i,...,j,... = -w...,j,...,i,... , resulting in nr inde­
pendent coefficients. It follows that the space of r-forms at p G M, often denoted as 
Ar(TpM), is (")-dimensional and that forms of degree higher than n do not exist. 
Forms of degree n are called top-dimensional, or just top-forms. At the other end
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wedge 
product

of the spectrum, we have the space of 0-forms, A0M, defined as the set of smooth 
functions on M.

Forms of degree r > 1 may be built hierarchically as wedge products of 
forms of lesser degree. The wedge product of two one-forms ^ and ^ is a two-form 
defined as

(^ A $)(dv, dw) = ^(dv)$(dw) - ^(dw)$(dv).

The generalization of this operation to forms of higher degree w e ArM and k G 
As M is a form of degree r + s defined as

(w A K )( dv 1 , ... , dvr + s )

= rs sgn( P ) W ( dVP 1 ,...,dVPr ) K ( dVP (r + 1) ,...,dvP ( r + s ) ) ,

where the sum over the permutation group implements antisymmetry. Note that 
the anti-symmetrization implies the commutation relation

(A.8)

e.g., dw A dn = — dn A dw for the product of two one-forms, or dA A dF = dF A dA 
for that of a one-form and two-form, etc.

Specifically, the wedge products of coordinate basis one-forms dyi 1 A • • • A dyin 

define nd independent n-forms, which serve as a natural basis of An M. In this 
basis, generic forms are expanded as

w A k = k A w (-)rs

w = n!wj 1 ...jndyj1 A • •• A dyjn (A.9)

area form EXERCISE The area form of the two-sphere is defined as w = sin OdO A dx. Expand 
this form in the basis of stereographic coordinates.

The pullback of higher degree forms is defined by an obvious generalization of the 
one-form operation F*w(dv 1 ... dvn) = w(F*v 1,..., F*vn). Verify that application 
of the pullback to forms expanded as Eq. (A.9) is conveniently obtained as the 
product of the individually pulled one-forms:

F * w =—(wj. j ◦ F) ——— •••——:— dx11 A •••A dxln. (A.10)
nr j1 ...jn !Xxl 1 dxin v !

INFO The space of forms on three-dimensional manifolds has dimensionality 32 = 3, 
the same as the space of vectors, and one-forms. It should therefore not be surprising that 
numerous three-component objects treated as vectors in physics teaching are two-forms. 
For example, the magnetic induction B or current density, j, belong to this category. 
These objects describe (magnetic or current) fluxes through surface elements. One should 
think of them as a locally defined function of two vectors producing the flux flowing 
through the area spanned by the vectors as an output. For example, in differential-form 
language, a magnetic field of strength B through the 12-plane is described by the form
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B = B0dx1 A dx2, and the flux through the area spanned by two tangent vectors a1 d 1 and 
a2d2 is given by B(a 1 d 1 ,a2d2) = B0a 1 a2. This definition reflects how fluxes are actually 
measured. However, in physics, we describe the setting by a vector B = B0e3 standing 
perpendicular to the direction of the flux, via a construction that requires a scalar product. 
This vector construction is less physical: it requires the excess baggage of a scalar product, 
its connection to the protocols by which fluxes are measured is indirect, and it leads to 
the infamous transformation of magnetic field vectors under, say, spatial inversion. (The 
magnetic field is a “pseudo” or “axial” vector in that it remains invariant under space­
inversion.)

Exterior derivative

exterior 
derivative

Besides the wedge product, there is a second operation increasing the degree of 
differential forms: the exterior derivative. To start with, consider a function ^ on 
M . This is a zero-form, and we have seen above that it defines a one-form as 
do. Building on this definition, we introduce the exterior derivative as a linear 
operation, d : AnM ^ An+1(M), increasing the degree of general n-forms by one. 
It is defined by

d(ui 1 ...indx11 A • • • A dxln) = (dui 1 ...in) A dx11 A • • • A dxln

= (djui 1 ...in)dxj A dx11 A • • • A dxln.
(A.11)

EXERCISE Prove that the definition above is independent of the choice of coordinates. 
For example, d(xid.x) equals d(xjdyj) with xj = widj, where the second exterior deriva­
tive is carried out in y-coordinates. (Hint: Keep in mind that contractions of symmetric 
tensors such as dijF with antisymmetric tensors such as dxi A dxj vanish.)

EXAMPLE The area two-form on the sphere in polar coordinates x = sin ddO A dx is 
the exterior derivative of k = — cos Odx. For the potential one-form of electrodynamics, 
A = A^dx1, the exterior derivative F = dA = dv A^dxv Adx1 = 2 (dv A^ — 8^AV)dxv Adx1 

yields the electromagnetic field strength tensor with components F1V = dvA^ — d^Av.

Finally, we mention without proof that pullback and exterior differentiation 
commute,

(A.12)

In applications, it may be either more convenient to first differentiate and then pull 
back, or to proceed the other way around. The rule above tells us that we need 
not worry about the order. As an instructive exercise, prove this relation using 
Eq. (A.7) for one-forms, or for forms of higher degree using Eqs. (A.10) and (A.11).

Integration

In elementary vector calculus, we distinguish between line integrals, various types 
of surface integrals, volume integrals, etc. Differential geometry subsumes all these 

dF* u = F * du
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species under one umbrella concept, the integral of forms of top-degree, d, over 
d-dimensional manifolds.2

2 Actually, there exists a slightly more general concept, that of the integration of densities over
manifolds. Closely related to top-forms, densities include the book-keeping over the orientation 
of coordinate systems (left-handed versus right-handed). The latter becomes relevant on non- 
orientable manifolds that we will not discuss here.

For a chart domain N C M, we define the integral of a top-form w = wi1...in dx11 A
. . . dxin as

W w = J wi 1... in dx11 A •••A dxln = J wi 1 ...in dx11 ••• dxln (A.13)

where the final form is the or­
dinary multi-dimensional Riemann 
integral (no wedge products) of the 
coefficient functions over the coordi­
nate domain. In a slightly more general 
representation, for r(x) a coordinate 
representation, and w a top-form, the 
integral is defined as

I w J r*w, (A.14)

i.e., the integral of the pullback of the

Sir George Gabriel Stokes 
1819-1903
As Lucasian Professor of Math­
ematics at Cambridge, Stokes 
etablished the science of hy­
drodynamics with his law of 
viscosity (1851), describing
the velocity of a small sphere
through a viscous fluid. Furthermore, he inves­
tigated the wave theory of light, named and 
explained the phenomenon of fluorescence, and
theorized an explanation of the Fraunhofer lines 
in the solar spectrum.

form to the coordinate domain. The last equality in Eq. (A.13) defines this integral 
in U C Rn as a conventional integral. For example, the integral of the area form 
on the sphere is defined as

S sin 0 d0 A do = f sin 0 d0 A do = f sin 0 d0 f do = 4n. (A.15)
S2 U 0 0

These definitions entail a particularly transparent way of understanding integral 
transforms: for F : N ^ L a diffeomorphism, we have

(A.16)

i.e., the integral of a form over L equals that of the pullback F* w of the form 
over N. To understand this equality, note that F ◦ r : x ^ F (r (x)) defines a 
coordinate coverage of L. Thus, using that (F ◦ r)* = r* ◦ F* (why?), we have 
L w = U(F ◦ r)*w = U r*(F *w) = N F*w. Notice how these identities are 

proven in full generality (for all dimensions, etc.) without the need for explicit 
variable transformations or the computation of Jacobians.

EXAMPLE Let r : I ^ R3,t n- r(t), describe a curve. In R3, consider a differential 
one-form A = Aidx'i. Denoting the image of the map r (i.e., the geometric curve) by y, 
we have



776 Appendix

A = = A r * A Ai(r (t))r * dxi = A Ai (r (t)) dd^dt’

where in the final step we have used the single-component version of the pullback formula 
Eq. (A.7). On the final right-hand side we recognize the familiar line integral, except that 
the integrated object is defined by the covariant components of a form, and not those of a 
contravariant vector: the natural objects appearing in physically motivated line integrals 
(electric fields, vector potentials, forces, etc.) are all one-forms.

EXERCISE Consider the Cartesian coordinates xi(y) = xi(r(y)), where r(y) 6 S2 is an 
arbitrary coordinate representation of the sphere, e.g., x 1(0,X) = sin 0 cos X for spherical 
coordinates. Given a two-form B = 2Bijdxi A dxj and assuming that the coordinate map 
r : U ^ S2 covers the sphere up to domains of measure zero (which do not matter in an 
integral), show that

1 1 r d 9xi dxj
= 2 Ju jd dyl dy2

dxi dxj 

dy 2 dy1
dy1dy2 .

How does one have to relate the three independent components Bij to a vector to obtain 
the familiar parameter representation of spherical surface integrals? For y = (0, X)T, com­
pute the term in parentheses and relate the integral to familiar representations of surface 
integrals.

Stokes’ 
theorem

A powerful tool in the integration of forms is the generalized Stokes’ theorem:

(A.17)

- one of the most beautiful formulae of mathematics. Here, k is an (n — 1)-form, 
and dM is the boundary of the integration domain M. Stokes’ theorem generalizes 
various identities of (vector) calculus equating the integral of the derivative of a 
quantity to a boundary integral of that quantity.

EXAMPLE Consider the one-form k = (1 — cos0)dx defined on the northern hemisphere 
S + of the two-sphere. (Why is K not extensible to the full sphere?) With dK = u = 
sin 0d0 A dX we have JS+ + dK = 2n. On the other hand, dS + is the equator where cos 0 = 0 
and K = dx. Integration gives j'9S + dx = 2n, in agreement with the area integral.

A.1.3 Metric

metric

The structures introduced thus far make no reference to the actual “geometry” 
of a manifold. Geometric structures such as length, angles, areas, volumes, etc. 
are described by a metric. A metric is a scalar product on a tangent space: a 
bilinear and symmetric form gp assigning to two vectors dv ,dw G TpM the number 
gp(dv, dw), where, as always, smooth dependence on the base point, p, is required.
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positive 
definite 

Riemannian 
manifold

metric 
tensor

Writing gp = g for brevity, symmetry means that g (dv ,dw) = g (dw ,dv), and non­
degeneracy means that if g(dv,dw) = 0 for all dw, then this implies that dv = 0. 
A metric is positive definite if g(v, v) > 0 for all non-vanishing v. A manifold 
equipped with a positive metric is called a Riemannian manifold and one with 
a positive indefinite metric is called pseudo-Riemannian.

Metric tensor

Given a (coordinate) basis, {di}, the metric is represented by the metric tensor, 

gij = g (di ,dj), (A.18)

and general scalar products are represented as g(dv, dw) = vi gij wj. The symmetric 
tensor of second degree, g, is sometimes represented as g = (gijdxi ® dxj, where the 
tensor product acts on vectors as dx1 ® dxj (dv, dw) = viwj.

EXAMPLE The natural metric on the sphere is given by g(de, de) = 1, g ■■■■■■ = sin2 0, 
ge,g = gg,e = 0. The Minkovski metric g = n is the canonical metric of flat four­
dimensional space-time, n00 = —1, nii = 1, for i = 1, 2, 3 and U-V = 0, d = v. Here, d0 

is the tangent vector in the time-like direction of x0 = ct. In the literature, the symbol 
n is often used for metrics in orthonormal systems |n(di,dj)| = Sij. Depending on the 
field, n or -n is called the Minkowski metric; the global sign change is physically and 
mathematically of no significance.

A metric provides us with a canonical map between vectors and one-forms. 
Given a vector, dv, we define a one-form Jdv by the condition that, for all dw, 
g(dv,dw) = (Jdv)(dw), i.e., the application of the newly-defined form Jdv is equal 
to the scalar product g(dv,dw). Notice that this is a canonical (basis invariant) 
passage between TM and (TM)* = A1 M.3 With the expansion Jdv = (Jdv)idx1, 
the equalities g(v, w) = vi gijwj and (Jdv)(dw) = (Jdv)iw1 lead to the identification 
(Jdv) i gij v.

The inverse passage A1 M ^ TM between forms and vectors is defined in an 
analogous manner. To each form w, we assign a vector J-1 w through the condition 
w(dw) = g(J-1 w, dw). With w = widx1,, and w = dj, this defines a vector with 
components wi = (J-1 w)i = gijwj, where gijgjk = 5lk defines the inverse met­
ric tensor. For example, the gradient of a function, V^ = Jd$, is the vector 
conjugate to its differential one-form. It has components (V$)i = gijdj^.

Summarizing:

The one-form Jdv canonically assigned to dv has components vi = gijvj, 
and the vector J-1w assigned to w has components wi = gij wi.

3 The previously discussed definition of a dual basis is specific to the choice of a basis in T M 
and is therefore not canonical.
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In physics, the raising and lowering of indices as in w'i = gijwi is often treated as 
a purely formal, or notational, operation. However, the present construction shows 
that it is conceptual. It implements the passage between vectors and differential 
forms via a scalar product.

EXAMPLE In physics, mechanical work is defined as the scalar product F • v = 
g(F, v) = F igijvj between a vector and a spatial increment. Previously, we have seen that 
a more natural definition understands work as Fivi , i.e., the application of a differential 
form with covariant components Fi to the vector. The discussion above shows that the 
physics definition refers to the vector Fi = gij Fj canonically assigned to that form. In 
this way, it requires the excess baggage of a scalar product, which does not feature in the 
natural definition.

That is, the length of a curve in n = 1, the geometric area in n = 2, volume in n = 3, etc.

INFO The above passage between co- and contravariant objects generalizes to tensors of 
higher degree. For example, the components BJV of a differential two-form B = 1 BJVdxp' A 
dxv define an alternating bilinear form acting on vectors as BJVvJwJ. One may raise one 
of its indices to define the matrix Bpv = gPJBJV. This matrix acts on a single vector to 
produce another vector, Bpvvv.

Canonical volume form

volume 
form

On a general manifold, the objects to integrate are n-forms, as in Eq. (A.13). For 
Riemannian manifolds, there exists a special n-form, the canonical volume form, 
W, whose integral M W = Vol(M) defines the generalized4 volume of the manifold. 
It is defined as

w = \/|g|dx 1 A • • • A dxn, g = det{gj} (A.19)

The connection with our intuitive understanding of volume is best seen by inspec­
tion of specific cases: for example, with n = 2, the application of a volume form 
to two basis vectors yields w (d 1 ,d2) = x/TgT, where the determinant of the two­
dimensional metric tensor g11 g22 - g122 equals the parallelogram area spanned by 
the basis vectors (think why). Integration then yields the geometric area of M as 
the sum over infinitely many of these area elements.

Although the definition above is formulated in a basis, it is canonical. To see 
why, change variables to a different basis system dyi . The product of differentials 
changes as

dy1 dyn . ,
dy 1 A • • • A dy o . • • ■ . dx 1 A • • • A dxn

dx11 dxln

dy1 dyn , , „ T, „
i • • • i ei 1,... ,indx 1 A • • • A dx = Jdx 1 A • • • A dx ,

with Jacobian J = det(dy). At the same time, the metric tensor in y-coordinates 
is given by

4
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dXi dxj dxi dxj
gj - g (dyi ,dyj) = W W g (dxi' ,dxj') = W W gx j<,

with determinant gy = J -2gx. Substituting these expressions into Eq. (A.19), we 
see that the Jacobians cancel out, proving the invariance of the volume form.

EXAMPLE For the sphere, we have det(g) = geeg$$ — gl$ = sin2 O, and hence \/|g| =
sin O. This gives the canonical volume (or, better to say, area) form sin O dO A d^.

EXERCISE Compute the spherical coordinate basis of three-dimensional space, M = R3 . 
Show that the standard Cartesian metric g = Sijdxi ® dxj assumes the form g = dr ® 
dr + r2dO > dO + r2 sin2 Odx > d$. From there, we obtain the familiar volume element, 
u = r2 sin Odr A dO A do.

Hodge star

The Hodge star is an operation * : Ar M ^ Ad-r M, w ^ *w assigning (d — r) 
-forms to r-forms. In field theory, it is frequently used to engineer actions (objects 
obtained by integration) from the natural building blocks (forms) describing the 
theory. For example, in three-dimensional space with Cartesian coordinates, dx3 = 
*(dx1 A dx2) is the (1 = 3 — 2)-form assigned to the two-form dx1 A dx2 such that 
dx1 A dx2 A *(dx1 A dx2) = dx1 A dx2 A dx3 is a top-form, which may feature in an 
integral. However, this assignment is not canonical.

The Hodge star employs the metric to define a canonical map. We here define it 
in (an arbitrary system of) coordinates, and leave it to the reader as an instructive 
exercise to demonstrate the coordinate independence of the definition: the Hodge 

Hodge star star of an r-form, ^ = ^i 1,... ,ir dx11 A • • • A dxi, is defined as

(* 4 ) ir +1 , ••• ,in = r !(n—r)! ^ 1 , ■" ,ir * 1 ,... ,in , (A.20)

where q1 1,,ir = g11 j1 ... gir jr $j 1 ,...,jr are the contravariant components of the form.

EXERCISE Consider three-dimensional space parameterized by spherical coordinates. 
Verify that the inverse of the metric determined in the previous exercise reads grr = 1, 
gee = r-2, g'''' = (r sin O)-2. Use this result to show that

*dr = r2 sinOdO A d^, *dO = sinOd^ A dr, *d^ = (sinO)-1 dr A dO.

EXAMPLE The Hodge star of the field strength tensor F = 11 F^vdx^ A dxv defines the 
dual field strength tensor G = — * F = — 4eVPpaF^vdxp A dxa. In (3 + 1)-dimensions, 
this gives us two natural forms to integrate: J F A F and j F A *F, respectively. The 
absence of a metric in the first one hints at a topological origin of this “action.” The 
second is metric and non-topological. For a physical discussion, see section 10.2.1. Note 
that in (2 + 1) dimensions, FA F is not defined. However, FA *F still is, and it defines
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the canonical action of (2 + 1)-dimensional electrodynamics. (As an instructive exercise, 
compute the Cartesian coordinate representation of this action.)

EXAMPLE In differential-form language, current 
flow in d-dimensional systems is described by a cur­
rent density form of degree d - 1. With

j = (d - 1)! ji 1,••• ,id-idxi 1 A • • • A dxid-1 

it is defined such that its application to d - 1 vec­

tors in a hyperplane yields the current through the 
generalized parallelepiped spanned by these vec-

current 
density

tors. For example, in d = 3 and di = Ax'"dx,, i = 1, 2, two vectors in the 12-plane, 
j(d 1 ,d2) = j 12Ax 1Ax2 is equal to the coefficient j 12 times the area spanned by the two 
vectors. In theories with d space-time dimensions, and coordinates x = (x0,...,xd-1), 
the component j1,...,d-1 defines the charge density, and the application of j to the spatial 
vectors, d 1,..., dd, gives the charge AQ = j 1,... ,dAx1 • • • Axd contained in the volume 
spanned by them. When applied to temporal and spatial vectors, j (d0 ,j 1, ••• jd-1) = 
j0,1,... ,d-1 AtAx 1 • • • Axd-1 equals the charge in time At flowing through a surface area 
Ax 1 • • • Axd-1 in the 12 • • • (d — 1) hyperplane (see figure for the current flow through the 
1-line in 2 + 1 dimensions). Of course, the application of j generalizes to argument vectors 
that are not perpendicular to each other.

SYNOPSIS This section contains a review of the elements of probability theory required 
in this text, especially in chapters 11 and 12.

Application of the Hodge star yields a one-form * j whose d components are given by

(*j)i = 1 ji 1 ,...,id -1 

d — 1 j ei 1 ,...,id-1,i.

The current vector commonly used in physics has components jpi = gik jk . If the metric is 
trivial, gij = Sij, the current vector and the current differential form are related to each 
other by a straightforward relabeling of components. For example, in d = 3, j12 = j3 , the 
physics reading is that current flow through the 12-plane is described by a current density 
vector with components normal to that plane (see figure for an illustration).

The advantage of the differential-form approach is that it is based on a measurement 
protocol. For example, a water current is measured by recording the flow of water through 
a geometric area per unit time. The translation to a vector normal to that plane requires 
the excess baggage of a scalar product. In theories where a trivial scalar product is implicit, 
this is no problem. However, in cases where there is no natural scalar product (topological 
cases), or the scalar product is center stage (as in the case of gravity), the differential-form 
approach to current description is more natural.

A.2 Elements of Probability Theory
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probability 
distri­
bution

random 
variable

multivariate 
distri­
bution

conditional 
probability

Assume that the probability for a variable X to assume the value xi, i = 1, . . . , N 
(or continuous values x G [a, b]) in a large number of measurements is known. We 
represent this knowledge in terms of a probability distribution,

N

discrete: pi = P(X = xi), pi > 0, P^=Pi = 1,

continuous: p(x)dx = P(x < X < x + dx), p(x) > 0, I p(x) dx = 1.
a

Variables whose properties are defined via distributions are called random 
variables. To avoid discrete/continuous case distinctions, we will express the distri­
bution of a discrete random variable in continuum form as p(x) dx = ^2i ^ (x - xi) dx•

An n-component vector of random variables (Xn, . . . , X1) is described by a mul­
tivariate distribution p(xn, . . . , x1). In applications, one often aims to relate 
bivariate probabilities p(x2, x1) to known information on a monovariate probability 
p(x1). The information bridging between p(x1) and p(x2, x1) is the conditional 
probability p(x2|x1), which answers the question, “what is the probability of ob­
taining x2 provided x1 has been observed?” It is defined implicitly by

p(x2, x1) = p(x2|x1)p(x1). (A.21)

Summing over all possible realizations of the random variable X1 , we get the mono­
variate distribution of X2, dx1 p(x2, x1) = p(x2), or

p(x2) = dx1 p(x2|x1)p1(x1).

Considering the case where x 1 is a composite variable in its own right, x2 ^ xn 

and x 1 ^ (rxn-1,... ,x 1), we may iterate Eq. (A.21) to obtain

p (xn, ...,x 1) = p (xn | xn-1,..., x 1) p (xn-1| xn-2, ...,x 1) • • • p (x 2| x 1) p 1( x 1).
(A.22)

This relation plays an important role, e.g., in the description of discrete time series 
of mutually dependent events.

A.2.1 Expectation values

Expectation values of functions f(X) depending on a random variable are 
defined as

E(f (X)) = Ef (X) = (f (X)) = j dxp(x) f (x).

The E-notation is prevalent in the mathematical and quantum information litera­
ture. However, in this text, we will stick to (...). Important examples of expectation 
values include:
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Fig. A.1 Schematic of a probability distribution defined via a histogram containing the count fre­
quency of measurements in a fictitious experiment. To a first approximation, the shape of 
the distribution is described via its mean, width, skewness, and kurtosis.

moments

cumulants

cumulant 
generating 

function

> the mean value (X) = f dxp(x)x of the distribution and its moments Xn = 
(Xn) = f dxp(x)xn. Notice that the moments of distributions need not neces­
sarily exist. For example, the Lorentzian distribution p(x) = 1 a2+x2 does not 
have moments at all.

> The cumulants

M1 = X1,
M2 = X2 - X2,

M3 = X3 - 3X1X2 + 2X13 , (A.23)

M4 = . . . ,

describe how moments differ from the products of moments of lesser degree: the 
first cumulant gives the average value of the distribution, and the second its 
width. The third cumulant measures the skewness of the distribution relative 
to its center, and the fourth its kurtosis. High kurtois means a sharply peaked 
distribution with fat tails; low kurtosis a softer distribution, with broader shoul­
ders. The central limit theorem implies a tendency for the distributions p(y) of 
variables Y = a Xa obtained by the superposition of a large number of “mi­
croscopic” variables (a macroscopic current obtained by superposition of micro­
scopic single-electron currents, etc.) to become Gaussian (see the next section). 
This means that cumulants beyond the second are usually small, but all the 
more interesting.

A systematic way to define cumulants is by expansion of the cumulant gen­
erating function:

ln(exp(itX)) = (—y-Mn.
n!

i=1

> The probability distribution itself may be represented as the expectation value 
of a 5-distribution,

p (x) = (5 (x — X)).
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This representation is quite useful in practice. It often defines the most efficient 
way to obtain the distribution of variables Y = F(X) depending on a fundamen­
tal random variable, X. Using the 5-representation, the probability distribution 
p(y) is obtained from p(x) as

P(y) = (5(y - Y)) = dxp(x)5(y - F(x)) = p(x(y))
dx
dy x=x(y) '

where we assume a unique functional relation y = F (x). Alternatively, this 
relation may be obtained by direct transformation of the probability measure, 
p(x)dx = p(x(y))| dx |dy = p(y)dy. However, the 5-representation is often more 
convenient to use, especially when x is not just a simple scalar variable but a 
vector, or even a field with random components.

> The full set of information on a random variable is contained in the expectation 
value

g (t) = (exp( itX)). (A.24)

moment 
generating 

function

information 
entropy

From this moment generating function (or characteristic function) of a 
distribution, all moments can be obtained by power series expansion and all 
cumulants by expansion of the cumulant generating function, ln g(t):

g (t ) = E (itn Xn, ln( g (t )) = E (iT ^.
n! n!

n=0 n=0

The full probability distribution is obtained (exercise) from the generating func­
tion g(t) by Fourier transformation,

p(x )= / dte - itxg(t).
2 2 n

> An important hallmark of a probability distribution is its (information) en­
tropy

S = — j dxp(x) ln(p(x)) = -(ln(p)). (A.25)

The rationale behind this expression is best understood in a discrete setting, 
S = — ]Ei pi ln(pi). An event of low probability pi 1 (such as a lottery win) 
conveys essential information. No information is gained from pi = 1 events (“sun 
will set tonight”). The information entropy provides a logarithmic measure for 
this difference via — ln(pi) 1 versus — ln(1) = 0. In this way, ln(pi) becomes 
a random variable whose average, S, describes the information stored in the 
distribution. Don’t be confused that “high information entropy” means “broad” 
or “unstructured.” Also note that the information entropy of the thermal dis­
tribution P = p = exp(—flH)/Z coincides with the thermodynamic entropy, S, 
defined via the free energy F = —(T/fl) ln Z = E — TS.
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A.2.2 Examples of distributions

Gaussian

central 
limit 

theorem

For later reference, we introduce here a few distributions frequently occurring in 
practice. The Gaussian distribution is defined by

p(x)dx = e exp f— (---------J 1) dx. (A.26)
V2 nj 2 \ 2 J 2 J

It often realized as the probability of large sums X = ^nN=1 Xn where the distri­
bution of the ‘microscopic” random variables Xn has as first two cumulants J1 and 
J2. In this case, the central limit theorem states that the distribution of X is 
given by Eq. (A.26), with first and second cumulant j 1 = NJ1 and j2 = NJ2, 
respectively. (All higher cumulants of the Gaussian distribution vanish. Exercise: 
Verify this statement by showing that the generating function of the Gaussian dis­
tribution is again a Gaussian.) The ubiquity of additive random variables in nature 
explains the importance of the Gaussian distribution in science.

INFO The central limit theorem is proven by a variant of the large-N expansion 
methods introduced in section 4.3.2:

p (x) = {S (x —
t xn )>=n j 

n=1 n=1

dxn p(xn) dk eik(xn-x)

dk exp N ln dx p(x)eikx — ixk = dk exp (N ln g(k) — ixk)

dk exp (N [ik(p 1 — x/N) — k2p2/2 + O(k3)]) ~

5 Two random variables X and Y are uncorrelated if {XY} = {X} {Y}. The correlation obvi­
ously vanishes if X and Y are independent random variables, i.e., if p(x, y) = px (x)py (y). 
(The opposite statement “lack of correlation ^ independence” is not true in general.)

1 / (x — Np 1)2 \
—, exp ----- 7777------- ,/2 n\2 2 y 2 Np 2 J

where in the first line we used the Fourier representation of the S-function, g in the second 
line is the generating function of the distribution p, and in the crucial last equality we 
noted that anharmonic corrections to the quadratic k-exponent vanish in the large-N 
limit.

binomial 
distri­
bution

Poisson 
distri­
bution

The binomial distribution P (m) describes the probability of observing n events 
in n > m trials when the events are mutually uncorrelated5 and occur with indi­
vidual probability p (think of a coin toss, where p = 1/2). Straightforward combi­
natorics yields

P (m) = n pm(1 — p)n-m. (A.27)
m

The binomial distribution has average j1 = np and variance j2 = np(1 — p).
In the case where the probability of individual events becomes small, p 1, 

and we try many times, n m, the binomial distribution asymptotes towards the 
Poisson distribution,

P(m) = npm exp(—np). (A.28)
m!
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Lorentzian 
distri­
bution

The Poisson distribution has identically equal cumulants pl = np.

EXERCISE Obtain the Poisson distribution from the binomial distribution. Show that, 
in the limit n ^ to and p ^ 0 at fixed np, the derivation becomes exact. Show that, for 
n ^ to at fixed p, the variable m becomes Gaussian distributed instead.

The Lorentzian distribution or Breit-Wigner or Cauchy distribution is 
defined by

1a
p(x) = n (x - x0)2 + a2 * * * . (A.29)

SYNOPSIS Conformal field theory (CFT), and especially two-dimensional conformal
field theory, is a key concept of modern theoretical physics. Two-dimensional conformal
field theories possess an infinite number of symmetries giving them a much higher degree 
of structure and solvability than generic theories. At the same time, critical field theories
are almost always conformal, which makes CFT crucially important in understanding the 
physics of two-dimensional phase transitions. CFTs are usually described in languages dif­
ferent from those of the functional field theories central to this text. They possess so many 
symmetries that it becomes more rewarding to study directly the constraints imposed by 
these on correlation functions. This methodological orthogonality is one reason why we 
have not included an extended discussion of CFT in this introduction to field theory. The 
other is that CFT is a deep subject and that any halfway-complete introduction would 
require another textbook - adding to the list of excellent treatises that are already out 
there.6

6 CFT can be looked at from different perspectives, all represented via excellent texts in the 
literature. Here is an incomplete list of suggested references. The “bible” of CFT, called the 
“yellow pages” for its volume and the color of the book cover, P. Di Francesco, P. Mathieu, and 
D. Senechal, Conformal Field Theory (Springer-Verlag, 1997) covers everything; G. Mussardo, 
Statistical Field Theory: An Introduction to Exactly Solved Models in Statistical Physics (Ox­
ford University Press, 2020) has a friendly statistical mechanics-oriented introduction in part 
III; and J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University 
Press, 1996) is a concise and authoritative introduction by one of the architects of the field. Orig-

In physics, the Lorentzian distribution describes the energy dependence of scatter­
ing resonances, the broadening of many-particle spectral functions by interactions, 
the line-shape distribution of damped electromagnetic modes, and many other phe­
nomena governed by an interplay of driven, oscillatory and damping behaviour. As 
mentioned above, its moments are undefined. The distribution is centered around 
x0 , has width a, and is exceptionally broad.

EXERCISE Compute the characteristic functions (A.24) for the Gaussian, binomial, 
Poisson, and Lorentzian distribution. From these results, verify the above statements about 
the cumulants of the respective distributions.

A.3 Conformal Field Theory Essentials
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conformal 
map

At the same time, CFT is too important to be left out completely. This appendix 
contains a synopsis of CFT concepts that the authors believe are so essential that they 
should be common knowledge. We will skip over technical derivations and details in favor 
of brevity. Ideally, this mini-introduction will make readers curious and motivate them to 
delve deeper into this exceptionally beautiful theory.

From the self-similarity of critical theories follows scale invariance, which has been a 
major theme in this text. However, self-similarity actually implies* 7 invariance under 
the larger set of conformal transformations introduced in section 1.6.2. Transforma­
tions of coordinates xu = y^(x) are conformal if they are angle preserving: curves 
intersecting at a certain angle are mapped onto image curves intersecting at the 
same angle. A more compact and equivalent statement is that the local metric 
g.JV(y(x)) = Q(x)g^v(x) may change by a local stretching factor at most. Intu­
itively, such conformal maps leave geometric structures local ly form invariant. 
(For example, the figure on page 34 shows the conformal image of a rectangular 
tiling of the plane.) Conformal maps define a group, the conformal group, which 
in generic dimensions is finite-dimensional. (Besides dilatations and rotations, it 
contains the so-called special conformal transformations, roughly angle-preserving 
inversions of space; see the discussion in section 1.6.2.) Why aren’t these transfor­
mations more prominently addressed in field theory texts?8 The reason is that scale 
transformations (x1' = by^, g,iV(x) = b-2g,iV(y(x))) suffice to assess the operator 
content of a field theory, and this in most cases provides sufficient information to 
describe the behavior of physical observables.

However, conformal symmetry in two dimensions is special. First, d = 2 is the lower 
critical dimension of many theories in statistical and condensed matter theory and 
is therefore of interest per se. Second, the group of two-dimensional conformal 
transformations is infinite dimensional, and therefore provides critical theories with 
an enormous reservoir of symmetries. In the rest of this section, we introduce the 
representation of these symmetries in complex coordinates - the standard language 
of the field - and define what is meant by the conformal symmetry of a theory.

inal papers are often surprisingly pedagogical, and CFT is no exception in this regard: see, e.g., 
A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two- 
diemensional quantum field theory, Nucl. Phys. B. 241 (1984). A quite pedagogical introduction 
with a barely noticeable tilt towards string theory applications is provided by D. Tong, Intro­
ducing conformal field theory, online lecture notes damtp.cam.ac.uk/user/tong/string/four.pdf.

7 While there seem to be only a few exceptions, the question under which conditions scale invari­
ance implies conformal invariance is a subject of ongoing research.

8 A notable exception is the emerging field of holographic principles, which establishes connections 
between bulk gravitational theories in d + 1 dimensions and conformal field theories at their 
d-dimensional boundaries.

A.3.1 Conformal invariance in two dimensions
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Conformal group in d = 2

Consider the two-dimensional plane (x, y) parameterized in complex coordinates, 
z = x + iy. The striking feature of d = 2 is that any any holomorphic function z ^ 
w(z) = u(z) + iv(z) defines a conformal transformation. The infinite dimensionality 
of the conformal group follows from the existence of infinitely many holomorphic 
functions.

EXERCISE To understand the statement above, recall the Cauchy-Riemann differential 
equations dxu = dyv, dxv = — idyu and discuss why they define an angle-preserving map 
(x,y) H- (u,v) of the two-dimensional plane. (Hint: Interpret dxu, etc. as components of 
tangent vectors.)

EXAMPLE One of the most important 
conformal transformations is the logarith­
mic transformation mapping the plane 
onto a cylinder, z = ew . (The figure on 
page 34 shows contour lines, (Re(w), Im(w)), 
of this transformation. They intersect at 90 
degree angles locally respecting the rectan­
gular structure of the argument lines z = 
x + iy.) 

timespace
For z = r exp(if) spanning the plane, 

w = if + ln r = ix + t covers a cylinder 
(see the figure). Conformal field theories of finite-size systems are often quantized in the
w-language. In that context, w is a space-time cylinder; the circumferential coordinate 
f e [0, 2n] parameterizes real space (with periodic boundary conditions) and t e [—to, to] 
parameterizes time. In the z-language, time progresses from the distance past at the origin 
to the future at radial infinity, and the circles represent equal-time spatial contours.

We also note that a cylinder of finite circumference 2n is easier to implement on a 
computer, which makes the logarithmic transformation an asset in the numerical approach 
to CFTs.

complex 
coordinates

INFO As indicated above, CFT is is usually described in complex coordinates. For 
the convenience of the reader, the translation to complex language from a language with 
real coordinates x^ = (x,y) and Euclidean signature9 gxv = S^v is summarized here:

9 In condensed matter applications, x = x is usually real space and y = t imaginary time.

z = x + iy, z = x — iy, x = — (z + z), 

dx = dz + dz, dy = idz — idz, dz = d = 
g = dxdx + dy dy, g = dz dz.

y=2i (z—z),

2( dx — idy ) , dz = d=1( dx + idy ) ,

(A.30)

A word of caution: in CFT, we need to be careful about the difference between generic 
functions of the complex coordinate, such as f (z, z) = |z|2, holomorphic functions such 
as g(z) = z2, and anti-holomorphic functions such as z(z) = z2. Following standard 
conventions, we distinguish between these alternatives through the function arguments 
indicated, although z and z in f (z, z) remain dependent variables.
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Conformal invariance

Intuitively, a system has conformal invariance if changes of length scale, including 
local changes, are irrelevant as long as angular proportions are left intact. However, 
how can this feature be defined in more concrete terms? The question is not easy 
to answer in general. For a given quantum field theory, establishing conformal in­
variance requires knowledge of the behavior of all its constituents - fields, action, 
measure - under arbitrary conformal transformations. There are different ways to 
sidestep this complication. One is to shift the focus from the field-theoretical parti­
tion sum to its correlation functions. In fact, one may define a CFT axiomatically 
as a set of all possible correlation functions constrained by the infinitely many 
conditions following from conformal invariance. A related approach focuses on the 
fields themselves and on their representation as operators in the Hilbert space of 
the theory. Either way, the focus in CFT shifts from functional integrals to fields 
and their correlations functions.

fields 
of CFT

INFO Consider a theory with local degrees of freedom fi = {fia}, where fi = fia(x,y) = 
fia(z, z). In the parlance of CFT, fields are arbitrary local expressions built from fi. This 
includes functions such as fin or exp(ifi), and derivatives dfi, dfi, ddfi, ....

Instead of addressing conformal invariance in general, let us consider the example of 
free boson the free boson with action S[fi] = 4n \ d2x(d^fi)2. (This theory will be our guinea 

pig for the exemplification of various features of CFT throughout the section.) In 
complex coordinates, this assumes the form (verify)

S[fi] = — d dzdz dfidfi. (A.31)
2 n J

This theory is critical (why?) and we expect conformal invariance. To see how this 
comes about, consider the action as an ordinary two-dimensional integral over a 
function fi(z, z) and apply a holomorphic change of variables z ^ w(z), w ^ w(z) 
in the sense of calculus. With the substitution

fi z( w, w) = fi (z (w) ,z( w)), (A.32)

we have dzfi(z, z) = dwdwfi'(w, w), where the prefactor cancels the change in the 
measure dz = -dW dw. The same cancellation happens in the z sector, so that the 
action looks the same in the old and the new variables. The way to read this 
observation as a symmetry is to say that S [fi] = S [fi'], where the field fi' is a map 
defined by Eq. (A.32).

In this way, the conformal symmetry of the free boson is established. Notice that 
the construction relies on the holomorphy w = w(z) and will not work for a general 
function w = w(z, zD). The symmetry also goes lost in the presence of a mass term, 
mfi2. In essence, it is based on a cancellation of the scaling dimension —1 of the 
derivative operators against the dimension +1 of the measure factors. Finally notice 
that inspection of the action suffices to establish conformal invariance only in the 
case of simple free field theories. For example, we know that, in interacting theories, 
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stress—
energy
tensor

the integration over UV fluctuations may change the naive dimension of operators 
by anomalous dimensions. Theories may also show anomalies, where the “classical” 
conformal symmetry of an action is spoiled by quantum fluctuations.

INFO These comments indicate that in CFT one must distinguish carefully between the 
classical and the quantum theory. As usual, “classical” means structures applying 
to variational solutions of effective actions, while “quantum” includes fluctuations. As an 
example, consider the variational equation of the free boson theory, ddfl(z,z) = 0, with 
solutions

fl(z, z) = fl(z) + fl(z) (A.33)

(i.e., the complex representation of left- and right-propagating solutions of a wave equa­
tion). The classical field thus splits into a holomorphic and an anti-holomorphic compo­
nent. However, this feature does not generalize to the quantum level. Texts on CFT do 
not always emphasize this distinction and one must be careful not to miss it.

A.3.2 Stress tensor, operator product expansion, and primary fields

As mentioned above, CFT places emphasis on the correlation functions of its opera­
tors. The most important operator in the study of CFTs is the stress-energy tensor. 
In the next section, we define this operator and then discuss how it is employed to 
describe the general operator contents of a CFT.

Stress-energy tensor

In section 1.6.2, we defined the stress-energy tensor as the Noether current as­
sociated with the translational invariance of a theory. Translations are conformal 
transformations and it is therefore not surprising that this operator features in 
CFTs. However, what may not be evident is just how important it is.

A priori, the energy-momentum tensor, stress-energy tensor, or just 
stress tensor, T1V, of a theory with coordinates x1 is a matrix field whose invari­
ance is expressed under translations x1 ^ x1 + a1. In problem 1.8.5, we showed 
that it is conveniently obtained from its action as T1V = —4n8g^v S by variation 
in the elements of the metric, where the factor —4n is a matter of convention and 
we assume a unit determinant ^g = 1. In the classical theory, the tensor T1V 

is evaluated on solutions of the variational equations of the theory. Translational 
invariance implies the conservation laws d1T1v = 0. However, the stronger condi­
tion of conformal invariance imposes additional conditions. In complex coordinates, 
where Tazi(z,z), a, fl = z,z, is a two-dimensional matrix, it can be shown to be 
diagonal, T'zz = 0, with holomorphic entries Tzz (z, z) = T(z) and anti-holomorphic 
entries Tzz(z, z) = T(z).

EXERCISE As an example illustrating the above features, consider the free boson. Derive 
the stress tensor of the free boson by variation of the metric, g ^ g + Sg. Realize this 
variation in either one of two representations. The first involves performing the variation 
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of the Euclidean metric, g = SIJV, and transcribing the result to complex coordinates. The 
second involves working in complex coordinates from the beginning, where gzz = g.. = 0 
and gzz = gzz = 1 /2, and performing the variation in that language. Show that either 
procedure leads to the result

T (z ) = - d^ (z) d^ (z), T( z) = - d <£( z) d<Z( z), (A.34)

where on the right-hand sides we have the holomorphic and the anti-holomorphic compo­
nents of the classical field.

Recall that the component T00 defines the energy density associated with trans­
lational invariance in time. Interpreting y = t as time, and using Eq.(A.30) to 
transform to the complex language, we find that — (T(z) + T(z)) defines the en­
ergy density of the theory. Also recall that the “conserved charge” associated with 
a symmetry is obtained by integrating the zero-component of its conserved current 
over space. Presently, this means that the energy of a system with confor­
mal invariance is given by the integral of the above sum over a space-like surface 
y = t = const. We will come back to this point in section A.3.2.

operator 
product 

expansion

Operator product expansion

As indicated above, CFT places emphasis on the study of field correlation functions. 
Conformal symmetry implies scale invariance, which in turn implies power law 
singularities (^(z,Z)^(w, w)) ~ |z — w|-a as fields come close to each other. This 
observation motivates one of the most important concepts of CFT, the operator 
product expansion (OPE). Let {Oi} be a container symbol for all the different 
fields appearing in a given CFT (we will soon be more concrete). When two of these 
fields appear in close proximity in a correlation function (• • • Oi(z, Z)Oj(w, w) • • •), 
where |z — w| is much smaller than the separation of any other field coordinate, we 
expect two things to happen: power law singularities in |z — w|, and the option to 
represent the “regular contents” OiOj as a linear combination in other operators 
Oj . This anticipation defines the OPE of two operators as

(A.35)Oi(z, zZ)Oj (w, wZ) = Cikj(z — w, zZ — wZ)Ok(z, zZ) + • • •

where Cikj are singular functions of their arguments 
and the ellipses denote non-singular contributions dis­
regarded in the expansion. As it stands, this is a sym­
bolic representation and some fine print is required to 
make it concrete: as with many expressions in CFT, 
Equation (A.35) makes sense only as an insertion in a 
correlation function. Think of it as being plugged into
(•••), where the angle-brackets stand for functional averaging over an action and 
Oi , Oj are fields in the sense defined above. This reading indicates that the OPE 
is a concept of the quantum theory, fluctuations around stationary configurations 
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included. Thinking of Oi as functional representatives of quantum operators, the 
correlation functions are evaluated subject to a time ordering prescription. How­
ever, this aspect will not play a crucial role in our introductory discussion and we 
refer to the literature for precise definitions.

In practice, the OPE of two operators Oi , Oj is computed by representing them 
in terms of “elementary operators,” which are then contracted by Wick’s theorem. 
In doing so, we must be careful to avoid hard divergences. For example, a product of 
two fields $ (z) $ (z) has divergent Wick contraction ($ (z) $ (z)) ~ 0 .To avoid these 
contractions at coinciding points, operators in CFT are understood as normal 
ordered, which in practical terms means that self-contractions of the operators Oi 

do not enter the Wick protocol.

EXAMPLE In problem 3.8.10, we considered the regularized correlation function of the 
free boson, which in complex notation assumes the form

($(z, z)$(w, w)) = —ln(|z — w12) + const., (A.36)

with a formally divergent constant. Splitting the logarithm as ln(|z - w|2) = ln(z -w) + 

ln(z — w), we find (dz$(z, z)dw$(w,w)) = — 1 (z -w)2. The holomorphic form of this corre- 
ation function motivates the following (somewhat symbolic) representation of the OPE:

(dz $(z) dw $(w)) = — |-(A.37) 
2 (z — w)

for the holomorphic field dz$(z, z) = dz$(z).
Most OPEs in CFT involve the stress tensor. As an example, consider the OPE of 

the holomorphic stress tensor T(z) = — d$(z)d$(z) of the free boson with dw$(w). Wick 
contraction using Eq. (A.37) leads to

T(z)d $(w) = dz$(z) = dw$(w) + dw$(w) + (A38)
T (z) dw $(w)   / \O   / \O + + . . . , (A.38)(z — w)2 (z — w)2 z — w

where we have Taylor expanded, disregarding all non-singular terms. We emphasize again 
that all these expressions must be understood as building blocks in correlation functions.

Primary fields
primary 

field
The structure of the OPE (A.38) gives rise to the definition of a primary field, or 
just “primary,” as a field 9(z) whose OPE with the stress tensor assumes the form

^ 9(w,w) dw9(w, wj)
T'(z)9(w, w) =h , 2+ —

(z - w)2 z-w
- 9(w, w) dw9(w, tv)

T(z)9(w, w) =h +
(z - w)2 z — w

(A.39)

where (h, h) define the dimensions of the field. For example, from (A.38), we infer 
that dz^(z) is a primary of the free boson theory with dimensions (1, 0).10

10 The statement must be taken with a grain of salt. The vanishing of the dimension h means that 
the OPE of the holomorphic do with the anti-holomorphic T is empty, including the second 
(nominally h-independent) term.
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As written, the definition (A.39) is quite formal and does not explain the meaning 
of primary fields. While an appropriately detailed explanation is beyond the scope 
of this synopsis, let us summarize the main ideas:

Ward 
identity

> We first note that Eq. (A.39) is a symmetry relation in disguise. To understand 
why, ask how the functional representation of a correlation function (• • • O • • •) = 
f Do exp(-S[$])(• • • O[^] • • •) changes under a small change of variables ^ ^ 
^ + e8^. Of course, the answer is that it remains unaltered; a transformation of 
variables does not change an integral. However, both the action, S ^ S + e8S, 
and operator representations O ^ O + e8O may change individually,  and the 
resulting total change 0 = e(• • • (8SO + 8O) • • •) = 0 can lead to interesting 
representations of zero known as Ward identities.

11

Depending on the realization of the transformation, the measure D$ ^ Do + edD$ may be 
affected too.

In the present context, the natural “small changes of variables” are infinites­
imal holomorphic and anti-holomorphic transformations, z ^ w(z) = z + e(z), 
and z ^ w(z) = d + e(d), where the notation e(z) indicates holomorphy through 
the argument (z) and smallness through e. Primary fields are distinguished by 
their change under such transformations, 9 ^ 9 + 89 + 89, with

89(w, w) = — [h—-—- + e(w)d^ 9(w, w), 
dw

89(w, w) = — h^~T~ + d(w)3i«^ 9(w, w),
\ dw 1

(A.40)

where the notation emphasizes that, after the change of variables, we are working 
in the w-language. Note that, to first order in e, we have z(w) = w — e(w) 
and e (w) = e (z). This representation reveals the meaning of the parameters h 
as “dimensions.” To see why, consider the particular case e(z) = ez of a scale 
transformation, z ^ z/b, b =1 — e. The second term in Eq. (A.40) represents 
the change of arguments, O(z, d) ^ O(z(w),z(w)) = O(w — ew,w — ew) = 
O(w, w) — (ewdw + dwdw))O(w, w).

However, we know from our discussion of renormalization that the actual 
change in an operator under a scale transformation contains afactor reflecting 
its physical dimension. For example, in the free boson theory f d2x(d^)2, the 
field ^ has engineering dimension zero and d^ dimension —1 owing to the 
derivative. In a scaling transformation, this dimension shows as a factor d^ ^ 
bd^ = (1 — e)dpb. The first term in Eq. (A.40) is the complex coordinate 
representation of this factor and, in combination with the second, it describes 
the full change in the field.

> We have just seen that primaries are generalizations of fields with definite scal­
ing behavior to fields subject to conformal transformations. This interpretation 

11
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becomes even more evident when we generalize Eq. (A.40) to finite transforma­
tions z ^ w (z). The primary field then transforms as

O(z, z) ^ O(w, w) =
dw(z) 

dz

-h -h

O(z(w), z(w)). (A.41)

As an exercise, think of the transformation as segmented into many infinitesimal 
steps and in this way convince yourself that this is the proper finite generalization 
of Eq. (A.40). Consistency with this relation implies strong constraints on the 
correlation functions of primary fields. Specifically, the two-point function 
of two primaries has the form

&h,h' & h,h'
(O(z,z)O'(z',z'")') ~

| z - z '12 h | D - z/\2h
(A.42)

once more underpinning the meaning of h as a dimension. Equation (A.37) 
illustrates this behavior for the example of the (h, h') = (1, 0) primary dz^ 
of the free boson. Two remarks on the general formula (A.42): first, it states 
that correlation functions of fields with non-integer dimensions, 2h / Z, have 
branch cuts in the complex plane, indicating a connection to the anyon statistics 
discussed in section 8.6.1. Second, as with the OPE, Eq. (A.42) describes the 
leading short-distance singularities of the correlation function.

EXERCISE Consider the free boson primary in the w and z representations of the 
logarithmic transformation w = ln z, using Eq. (A.41). In either language, the corre­
lations are locally described by Eq. (A.42). However, that short-distance asymptotic 
does not know about the periodicity of the theory in Im(w). It is instructive to play 
with Eqs. (A.41) and (A.42) and explore this point in detail.

operator—
state corre­

spondence

> Think of CFT as the field integral representation of a (1 + 1)-dimensional quan­
tum theory. In this reading, fields represent quantum states created by the action 
of operators out of the vacuum. Within the framework of this operator-state 
correspondence, primary fields correspond to a distinguished class of states, 
roughly equivalent to the highest z-angular momentum states in a representa­
tion of spin. All other states in the representation can be generated from the 
primaries via the action of “lowering operators.” We will return to this point in 
section A.3.3.

Identifying primaries and their associated dimensions is one of the most important 
steps in the characterization of a CFT. The info block section below illustrates that 
this identification can be non-obvious, even in simple field theories.

EXERCISE We have already identified dn and du as primaries of the free boson 
theory. Are there more? First, the field $ itself is not a primary. This follows from its 
OPE with the stress-energy tensor, which violates the structure Eq. (A.39) (think why).
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For the same reason, higher derivatives dz dZ" $ are not primary either. One might think 
that this exhausts the field contents of the theory, but this is not so; consider the operator

^(z, z) = exp[ia$(z, z)]. (A.43)

Expand in $ to show that the contraction with the stress tensor T(z) = — dz$(z, z)dz$(z, z) 
gives T(z)^(w, w) = iadz$(zzZ^Zw,w) + ‘'.ZWw) . Rearranging terms and noting that, to 
leading order, iadz$^ = dw VK we obtain the OPE

T(z)^(w, w) =
a2 ^(w, w)
4 (z — w)2

+ dm ^( w,w) 
(z — w)

and an analogous expression for T(z). This demonstrates that ^ is a primary with dimen­
sion h = h = a2/4. In hindsight, the discovery of this transcendental primary may be not 
too surprising: we know from the discussion in section 3.6.2 that the free boson is dual to 
the free fermion, and that the latter is represented through an exponential construction 
as Eq. (A.43). Our finding reflects the hidden presence of fermions as basic fields in the 
theory.

Central charge

Perhaps surprisingly, the most important field of the theory, its stress tensor, is not 
a primary field. Rather the OPE with itself assumes the form

T(z)T(w) =
2T (w) dw T (w)

2(z w)4 (z w)2
(A.44)

c
+ + z w

central 
charge

Schwarzian 
derivative

with an analogous formula for T(z), where the real constant c is the central charge 
of the theory. How can we understand the structure of this expansion? First, the 
stress tensor has physical dimension [z ]-2 (think why). Its OPE with itself can 
therefore include terms up to O(z - w)-4, and the formula shows that, for non­
vanishing c, this is what happens. The remaining terms have the same dimension, 
are of lesser singularity, and respect the exchange symmetry z o w.

The central charge is the single most important number characterizing a CFT. It 
affords different interpretations, only one of which we address in this synopsis: the 
central charge is a measure of the number of degrees of freedom of a CFT. 
Beware that this number need not be integer. For example, the free field theory of 
the Majorana fermion - essentially half a fermion - has c = 1 /2.

If the stress tensor is not primary, then how does it transform under confor­
mal transformations? The answer is found from Eq. (A.44) by methods similar to 
those determining the transformation of primaries from their OPE with T: under 
a conformal transformation z ^ w(z), the stress tensor changes as

m/ d dw(z )A c
T(z) ^ T(w) = 1 -d^ ) (T(z(w)) - 12{w,zIJ , (A.45)

where the Schwarzian derivative is defined as

w
{ w,z } w'

3 w"2
2 w72,

dw(z) 
w = dz (A.46)
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EXERCISE Consider the mapping w = ln z from the z-plane to the w-cylinder. Compute 
the Schwarzian derivative to show that

Tcyi(w) = z2 Tpl (z) - 24 (A.47)

The constant appearing on the right affords an interpretation as a Casimir energy of the 
cylindrical geometry. Thinking of the quantum states of a CFT as extended and wave-like, 
a transformation of these states from an infinite planar space-time geometry to a that of a cylinder confines these states and should invoke Casimir pressure (see page 29). For free 

field theories, the corresponding contribution to the ground state energy can be worked 
out explicitly and is compatible with the constant appearing in the above transformation. 
Consult the literature for further discussion of this point.

A.3.3 Quantum theory

In this section, we briefly discuss the structure of the (1 + 1)-dimensional quantum 
theories described by functional integrals with conformal symmetry. The main result 
will be the identification of a powerful mathematical object, the Virasoro group. 
The latter is to the quantum mechanics of conformal symmetry what SU(2) is to 
spin rotation symmetry.

Recall the physics of spin rotation invariance: it starts with the identification 
of the relevant symmetry group, SU(2), and that of its irreducible representations 
in Hilbert space, i.e., spaces of definite angular momentum, l. In each space, we 
then identify states of maximal angular momentum component in one direction, 
m = l. From these “maximum weight states,” a complete set of basis states with 
angular momenta l, l - 1, . . . , -l is obtained by application of lowering operators. 
The algebraic approach to conformal symmetry is essentially similar, except that 
three-dimensional rotation symmetry is replaced by infinite-dimensional conformal 
symmetry.

The first thing that we need in defining a quantum theory from the field integral 
formulation is an identification between the fields of the latter and the states of 
the former (i.e., the path integral construction in reverse). This is best carried out 
in the radial representation of space-time introduced in the example on page 787. 
There, we mapped a base space comprising a compact circular space coordinate 
and an infinite time coordinate to a representation where time is ordered along the 
radial coordinate. Specifically, the infinite past corresponds to the origin z = z = 0 
of the plane, and a time-ordered correlation function lim z,z .O-. ...^ (z, z)) should 
be interpreted as one involving the action of the quantum operator represented 
by $ on the vacuum state of the theory. In this sense, one may think of fields as 
operators. Commutators between operators are computed by comparing fields at 
slightly different radial coordinates. (The presence of non-vanishing commutators 
follows from the short-distance singularities of the OPE expansion.)
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Virasoro algebra

Let us investigate the commutation relations characterizing the most important 
operator of the theory, the stress tensor. In the radial framework, time is measured 
by distance to the origin, and circular contours are equal-time contours. This is 
conveniently described in a representation where the stress tensor is expanded in a 
Laurent series,

T (z )= it L^~,, 
zn+2

Ln = 2^ / dzT (z) zn+1 (A.48)

In these expressions, the Laurent coefficients are interpreted as operators of the 
quantum theory. Recall that CFT formulae are to be understood as insertions in 
correlation functions. The contour integral on the right extracting the operator Ln 

from T must then be performed around contours that do not contain dangerous 
(non-holomorphic) operator insertions.

On this basis, we can ask, what are the com­
mutator relations [Ln, Lm]? The strategy of this 
computation is determined by Eq. (A.48) and 
the OPE (A.44): we represent both Ln and Lm 

as in Eq. (A.48). Here, the radii of the contours 
is set by the time at which the operators act. 
Assuming time ordering, building the difference 
[Ln, Lm] = LnLm — LmLn amounts to a comparison of the Ln contour as slightly 
larger and smaller than the Lm contour. Denoting the integration variable entering 
the computation of Ln and Lm by z and w, respectively, and considering the double
integral at fixed w, we have the situation indicated in the figure. The difference of 
the two z-contours for a z-integrand that is holomorphic except for potential singu­
larities at z = w equals an integral performed over a small circle around w. At this 
stage, the factors T(z) and T(w) enter the integral at close-by coordinates, and the 
principles of the OPE apply. Inserting Eq. (A.44) and performing the integral by 
the theorem of residues (exercise), we find

[Ln,Lm] — (n m)Ln+m + 12n(n 1)6n+m,0 (A.49)

Virasoro 
algebra

Equation (A.49) defines the famous Virasoro algebra. To understand the meaning 
of this expression, let us first ignore the c-dependent piece. The commutation rela­
tions then assume a form resembling that of the su(2) algebra ([Li, Lj] — 2eijkLk)), 
indicating that in the quantum physics of conformal symmetry, the Virasoro alge­
bra plays a role analogous to that of the angular momentum algebra in rotationally 
symmetric quantum mechanics.

To understand the interpretation of the Ln as generators of a symmetry algebra, 
recall that our story started with the study of the z ^ w (z) as elements of the 
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Hamiltonian 
operator

conformal group, and of their infinitesimal version z ^ z + e(z). Laurent-expanding 
e(z) =52 enzn, such transformations act on functions as f (z) ^ f (z + e(z)) ~ 
f (z) +52 endf (z), suggesting an interpretation of the Ln = zn +1 d as generators 
of the conformal symmetry transformation. A straightforward computation shows 
that [Ln, Lm] = (m - n)Ln+m, in agreement with the first term in Eq. (A.49). In 
mathematics, the Ln with these commutator relations are known as the generators 
of the Witt algebra.

At this point, we have identified the (Witt) algebra of the conformal group. This 
group describes the conformal symmetry on the “classical level,” i.e., its represen­
tation in the action functional. However, our actual theory is quantum; it involves 
an action functional integrated over fluctuations. We know that such fluctuations 
may interfere with the representation of symmetries via anomalies (see section 9.2) 
generated by UV singularities. The strongest UV singularity we encountered in 
the present context was the (z - w)-4 contribution to the OPE of the stress ten­
sor (A.44). At the same time, the stress tensor probes the conformal invariance 
of the theory. These observations suggest an interpretation of the second term in 
Eq. (A.49) as an anomaly making the Virasoro symmetry algebra on the quantum 
level different from the classical Witt algebra.12

INFO The low-lying Virasoro generators {L, L± 1} have individual physical meaning. As 
an example, consider the conserved energy of a conformal quantum system on the space­
time cylinder. It is defined as the energy density (see section A.3.2) E = -i dw (T (w) + 
T(w)) integrated over the spatial coordinate in w = ix +t at arbitrary t. Let us transform 
this expression to the plane to let the Virasoro generators enter the stage. Recalling 
Eq. (A.47), we find that

E = i (f) dz —j— (z Tpi (z) + z Tpi(z) — c} , 
dz

where the integral is over a circle whose radius is set by the time coordinate. With 
Eq. (A.48) and dw/dz = 1 /z, we find E = 2n(L0 + L0) + nc, which is independent of the 
radius, as expected. This result shows that, in the radial framework, the Hamiltonian 
operator of the theory is given by

H = L 0 + L 0,

where we have absorbed the factor 2n in a rescaling of energy units, and ignored the 
c-number Casimir energy. Notice that, in the classical theory, the generators act as L0zdz. 
With Eq. (A.30), we find H = xdx + ydy = rdr = dlnr = dt, where we have used the 
identification of time as ln r = t. In the spirit of Noether’s theorem, we read this finding 
as: energy, H , is the conserved charge of translational invariance in time. This charge 
acts as the infinitesimal generator of the symmetry transformation, dt. (Think about this 
interpretation.)

-2 In mathematical terms, the Virasoro algebra is a central extension of the Witt algebra. Roughly, 
a central extension is constructed by including a c-number, c, as an element of the operator 
algebra, {Ln} ^ {Ln,c}. It commutes with all other elements, but appears on the right-hand 
side of the commutator expansion via the “structure constants” specified by Eq. (A.44).
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vacuum 
state

primary 
states

EXERCISE Consider the Laurent coefficients Ln and the primaries 0(z, z) as operators 
of the theory. Following the same logic as in the computation of the commutators [Ln , Lm], 
we have the representation

[Ln,0(w,w)] = (j) dzT(z)zn+1 0(w, w).

Insert the OPE (A.39) to obtain

[Ln ,0(w,w)] = h(n + 1)wn0(w, w) + wn+1 dw0(w, w), (A.50)

and an analogous relation for Ln.

Hilbert space

Assume we have a CFT characterized in terms of a stress tensor, and its primary 
fields. On the basis of this data, we would like to construct a Hilbert space of states 
with definite behavior under the symmetry generators Ln . Note that this program 
implies a passage from the correlation function representation emphasized so far to a 
more algebraic representation of CFT. Also note the similarity to SU(2)-symmetric 
quantum mechanics, where Hilbert space is organized in representation spaces of 
the angular momentum symmetry operators, Li .

As an additional assumption, we require the presence of a vacuum state, |0), 
implicitly defined as the state to the right in correlation functions • • • O 1 O2 • • •|0). 
We work in the radial framework, where operator ordering is determined by the 
proximity to the origin. Of the vacuum state, we will not require much, only that it 
behaves regularly under application of the stress tensor and the primaries. (How­
ever, in view of the partially singular structure of OPEs and Laurent expansions, 
this assumption contains more information than one might think.)

Picking up on the last remark, consider the state limz.00 T(z)|0). Inserting the 
Laurent expansion (A.48) and requiring regularity, we find

Ln|0) = Ln |0) = 0, n >—1. (A.51)

Note in particular that the vacuum is a zero-energy state in the sense that (L0 + 
Lo)|0) = 0. Next in line in our study of quantum states are the primary states 
defined as

|h, h}= lim 0(z, i)|0>, (A.52)
z,z^0

where the notation anticipates that the properties of these states are fixed by their 
conformal dimensions. We now combine Eqs. (A.50) and (A.51), and use the regular­
ity of the vacuum state, limw,w^0 wm$(w, w) |0) = limw,w^0 wmdwo(w, w)|0) = 0, 
n > 0, to obtain a number of operator relations characterizing the primary states:

l 0| h,h = h | h, h), L0| h, h) = h| h,h},

Ln |h,h) =0, Ln |h, h} = 0, n> 0.

The first line shows that the primary states are eigenstates of the Hamiltonian 
— (h + h). Interpreting the operators Ln,n > 0, as the analog of the angular mo­
mentum lowering operators L- = Lx - iLy , the second line indicates an analogy to 
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the minimum weight states 11, m = — l) in theories with SU(2) symmetry. The same 
analogy suggests considering sequences of states (corresponding to 11, m)) defined 
by the action of raising operators on those states. In the present context, the role 
of the raising operators is taken by the Virasoro generators Ln , n < 0. The states 
L-i| h,h) ,L -1| h,h) ,L-21 h,h),... constructed in this way are called the descen- 

descendants dants of the primary state. Reflecting the infinite dimensionality of the Virasoro 
algebra, the conformal tower of states obtained in this way is of course more 
complicated than the 2l + 1 angular momentum states in a definite representation 
sector of SU(2). However, as in that case, key properties of the descendants are 
fixed by the algebra commutation relations. For example, application of Eq. (A.49) 
to the case m = 0 shows that the descendants are energy eigenstates with

L0 Ln | h, h) = (h — n) Ln | h, h), n < 0.

We thus get the whole sequence of eigenstates for free!
However, the situation is not quite as simple as the discussion above might sug­

gest: not all states in the conformal tower need to be linearly independent, indicat­
ing that there can be finite- and infinite-dimensional representation spaces of the 
symmetry. How can they be classified? What concrete form do the primary states 
and their descendants assume for a specific CFTs? Are the operators introduced so 
far on a purely algebraic basis necessarily unitary? For the discussion of these and 
many other fascinating questions revolving around the quantum physics of CFT, 
we refer to the literature.

A.4 Fourier and Wigner Transforms

For the convenience of the reader, here we summarize the Fourier transform con­
ventions favored in this text. We also discuss the Wigner transform frequently 
applied as a partial Fourier transform to quantities depending on two space-time 
arguments.

A.4.1 Spatial transform

For finite systems with a spatially continuous variable, we favor a convention 
in which a volume factor stands in front of the momentum sum:

f (x) = Ld E eikx fk, fk = d ddx e-ikx f (x),

k

where momentum components ki are summed over multiples of 2n/L, and we as­
sumed a cubic geometry (Li = L) for simplicity. In this way, the limit of infinite 
systems assumes the form

f (x) = / (2ndeikx f (k), f (k) = / ddxe-ik x f W'
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We write fk for functions of a discrete Fourier variable, and f (k) in the con­
tinuum. In cases, where momentum integrals appear in clusters, we often use the 
compactified notation

z ■ —1 (-).

For lattice systems with spacing a and f (x) ^ fv with vi G aZ, we use 

fv = N E eik'v f k’ f k = E e-ik'x f v,

where the momentum sum now runs over ki G [—n/a, n/a), and N = (L/a)d is the 
total number of sites. (For an infinite lattice system, the sum again turns into an 
integral, N-1 ^k ^ ad f (dk).)

While these are our preferred conventions, they sometimes need to be modified. 
For example, for a finite-size system, the unit normalized plane wave states (k|k') = 
6kk' have the real space representation (x|k) = L-d/2 exp(ik • x). In this case, the 
representation change ^(x) — (x|^} = ^k(x|k)(k|^} = L-d/2 ^kexp(ik • x)^k 
leads to a Fourier transform with L-d/2-normalization.

A.4.2 Temporal transform

For the transform to a real temporal variable, we use* 13

r\c • i i • i i i • i i i de i • \ v \ i i •Often in this text, we work with operators (or functions) X = X(x1, x2) depending 
on two coordinates in such a way that the dependence on the center coordinate

13 Note the sign difference relative to the spatial transform. In spatio-temporal transforms, we 
then encounter combinations i(— wt + k • x) = ik^x^, consistent with the covariant contraction 
of a four-momentum kIJ' = (w, k) with the coordinate xIJ' = (t, x) under the Minkowski metric 
Eq. (9.1).

14 However, it would be more natural to use a sign convention opposite to that of the real-time 
formalism. In that case, i(wri,T + k • x) = kjXj would turn into the Euclidean scalar product of 
four vectors. Thermal field theory in particle physics sometimes uses this convention. It appears 
not to be standard in condensed matter.

f (t) = / 2^-i^tf (' '), f (' ') = / dteiWtf (t).

Again, we may use the compact abbreviation J -2^- ^ f (dw).
In imaginary-time field theory we have a temporal variable t G [0, T-1] and 

f (t ) = T E e -i“nT fn, f“n = / dTei^n T f (t ),

with bosonic (wn = 2nnT) or fermionic (wn = 2(n + 1)nT) Matsubara frequencies. 
This is the convention prevalent in condensed matter physics, and we will stick to 
it in this text.14

A.4.3 Wigner transform
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Wigner 
transform

Moyal 
product

x = (x 1 + x2)/2 is smooth, but that on the difference coordinate Ax = x 1 — x2 is 
rapid. (Consider a fermion Green function in the presence of a smoothly varying 
external field as an example.) In such cases, it is often convenient to pass from 
the coordinates (x1, x2) to (x, p), where the Fourier argument, p, is conjugate to 
Ax. In the following, we discuss the implementation of this Wigner transform 
separately for the temporal and the spatial coordinate dependences of the theory. 
Temporal Wigner transform: Focusing on the time-like arguments, X(t1 , t2), 
we define t = (t1 + t2)/2, and define the temporal Wigner transform as

X(e,t) = d dAteiAteX(t + At/2,t — At/2),

(A.53)
e-i(t 1-t2)ex (e

In applications, we often need to know the Wigner representation of the product of 
two operators, XY. Using the definition above, it is straightforward to derive the 
Moyal product identity

(X Y)( e,t )= e - i~ (dt 1d 2 - d 1dt 2 )| x = =e X (£ 1 ,t 1) Y (£ 2 ,t 2)
t11=t22=t

= X(£, t)Y(£, t) — — (dtX(£, t)deY(£, t) — 3eX(e, t)dtY(e, t)) + O(~2d^t) 

XY — 2 {X,Y} + O(~2 d2t)}(e,t), (A.54)

/de
2n

where in the third line we have introduced the Poisson bracket in temporal variables

{X, Y} = dtXdeY — deXdtY. (A.55)

In Eq. (A.54) we have temporarily reintroduced ~ to indicate that higher-order 
terms contain Planck’s constant in comparison with higher-derivative combinations. 
Spatial Wigner transform: Similar reasoning applied to the space-like coordinate 
dependence defines the spatial Wigner transform

X(r, p) = j dAr e-iAr^pX(r + Ar/2, r — Ar/2),

X(r,, r2) = f (2Y e(--r2)-pX(r, p),
(A.56)

where the choice of signs in the exponent reflects the conventions standard in spatial 
and temporal Fourier transforms, respectively.

For later reference, a number of Wigner transform identities are summarized in 
table A.1, where the spatial analog of Eq. (A.55) is defined as {f, g} = dr fdpg — 
dp fdr g.
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Table A.1 Wigner transform identities.

Temporal Spatial
Operator Wigner representation Operator Wigner representation
X())
X( e) = X( idt) r z. z. ,
[ Y,d(] 
tr( Xi)

X (t)
X (e)
—i { Y, X } + ...
f d2dtX (e,t)

X(r)
X(p) = X(—idr) 
[ Y,d(] 
tr( Xi)

X (r)
X (p)
i {Y,X } + ...
f dd rddp X (r n)
( (2n)d X (r’ P)

Finally, it is often convenient to combine temporal and spatial transforms into a 
spatio-temporal Wigner transform,

X (x,p) = d d A xeiA x npX (x + A x/2 ,x — A x/2),

(A.57)
X (x 1 ,x 2 )= dpe - i (x 1-x 2)T npX (x,p),

where x = (t, x)T = (x 1+ x2)/2, p = (e, p)T, the Minkowski metric n = diag(1, —1 d), 
and dx = dtddx, dp = deddp/(2n)d +1.

Notice that the Wigner transform represents operators X as functions of a single 
phase space coordinate X(r, p), rather than through matrix elements X(r1, r2). 
This makes it an optimal representation for semiclassical approximation schemes.
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