

Fundamental Kotlin revised

Mилош Васић

(latin: Miloš Vasić)

Third Edition

www.fundamental-kotlin.com

Fundamental Kotlin revised by Miloš Vasić
Third Edition

Copyright © Miloš Vasić, All rights reserved.
Published by Miloš Vasić,

ISBN: 978-86-920307-2-7
Website: www.fundamental-kotlin.com

Table of Contents

About “Fundamental” book serial 8

What is different compared to the Second Edition? 9

What is this book about? 9

Who is this book for? 9

Fonts used in this book 9

Ubuntu 9

JetBrains Mono 10

About the author 11

Preface 12

What is Kotlin? 13

Some basic concepts explained 14

What is a statically typed programming language? 14

What is Java Virtual Machine or JVM? 14

Java bytecode 14

Basic characteristics of Kotlin 15

Where is it used? 16

Server-side development 16

Android mobile development 16

JavaScript development 17

Native development 17

Kotlin for data science 17

Building programs 20

Installing Kotlin compiler 20

SDKMAN 20

Homebrew 20

MacPorts 21

Compiling Kotlin source code 21

Kotlin to JavaScript 23

Using library 23

Kotlin/Native 24

Installing Kotlin/Native 24

Compiling to native 25

Build automation tools 26

Gradle 26

Maven 27

Apache Ant 27

Griffon 27

Kobalt 28

Creating Kotlin project 29

Creating IDE project 30

Kotlin and Gradle 30

Creating Gradle project 34

Converting Java source code to Kotlin 36

Fundamentals 38

A short history of Java 39

What is Java? 41

Java Runtime Environment 42

What is JVM? 42

What is the Java ecosystem? 43

How Kotlin relates to Java? 43

Lifecycle of the program 43

Basic syntax 45

The lexical structure of Kotlin programs 46

Packages and code organization 51

Importing source code 53

The statements and expressions 54

Constants and variables 56

Working with functions 58

Passing arguments to functions 59

Default arguments 60

Working with exceptions 61

Throwable 62

Try / Catch / Finally block 64

The most frequently used exception types 67

Data type fundamentals 68

Numbers in Kotlin 68

Characters in Kotlin 71

Booleans in Kotlin 72

Arrays 73

Strings in Kotlin 75

String templates 77

Nullability 78

Multiple assignment 84

Type checks and smart casts 85

Operators and expressions 89

Equality 89

Arithmetic operators 90

Assignment operators 92

Unary operators 93

Increment and decrement operators 94

Comparisons 95

Logical operators 96

Operator overloading 98

Conditional expressions 100

If expression 101

When 103

Classes 110

Constructors 111

Secondary constructors 113

Class members 114

Class properties 114

Inheritance 117

Overriding 119

Object-oriented features 121

Data classes 121

Abstraction 123

Object 125

Class companion object 126

Interfaces 133

Properties in Interfaces 137

Interfaces Inheritance 138

Overriding conflicts 139

Functional interfaces 141

Nested classes 142

Inner classes 143

Functions 144

Invoke 145

Higher-order functions 145

Named arguments 147

Single-Expression functions 149

Variable argument functions 150

Spread operator 151

Local functions 153

Infix functions 154

Tail-recursive functions 155

Anonymous functions 156

Inline Functions 157

Lambdas 158

Closures 161

Control flow 161

If expression 162

Loops 163

For 163

While loop 166

Do / While loop 167

Ranges 168

Jump expressions 171

Break operator 171

Continue operator 171

Jump operator labels 172

Return with labels 173

Collections 176

Immutable lists 177

Immutable maps 182

Immutable sets 187

Mutable collections 193

Traversing 196

Predicates 197

Mapping 199

Flattening 200

Combining “map” and “flatMap” 201

Finding maximum and minimum 203

Sorting 204

Sum 204

Grouping 205

Partitioning 205

Folding 206

References 207

Strong references 208

Memory leaks 209

Weak references 213

Soft references 215

Phantom references 216

References summary 216

Atomic references 217

This reference 219

Generic data types 220

Generic functions 222

Generics wildcards 224

Enumeration 225

Sealed classes 229

Annotations 231

Annotation constructors 233

Lambdas in annotations 234

Arrays in annotations 234

Most frequently used annotations 234

How to use annotations 235

Any 238

Unit 239

Nothing 239

Visibility modifiers 241

Extensions 243

Extending class properties 245

Extending objects 246

Extension function literals 248

Scope functions 249

This and It 250

Scope functions return value 250

“Let” scope function 251

“Width” scope function 252

“Run” scope function 253

“Apply” scope function 254

“Also” scope function 255

“takeIf” and “takeUnless” 256

Singleton pattern in Kotlin 257

Lazy initialization 258

Properties with late initialization 260

Delegating behavior 261

Delegating properties 262

Property delegation requirements 264

Observable 265

Builders 266

String builder 266

Map builders 267

Destructuring 268

Mapped properties 269

Concurrency 269

Threads 270

Thread execution 273

Coroutines 275

Coroutine scope building 277

Coroutine job 278

Summary 281

About “Fundamental” book serial

A Fundamental book serial is a book serial to bring readers quickly into
the book's subject and make it possible to relatively easy start working
with the matter. Every book from serial assumes that the reader has at
least some basic knowledge of computer programming and computer
technology in general. Fundamental Kotlin revised is the first book in
Fundamental released in three editions.

What is different compared to the Second Edition?

In this edition of the book, a lot of it has been added. Book has a new
structure and new sections are introduced. In this edition of the book, the
author tried to bring more material to better illustrate Kotlin's everyday
use.

The covers Kotlin programming language version With that in mind
author focused on bringing the latest and the greatest features of the
Kotlin programming language to the readers.

What is this book about?

Fundamental Kotlin revised is a book focused on Kotlin programming
language, on language’s most important features and aspects. All
examples and the code for this book are located on the GitHub repository:

https://github.com/milos85vasic/Fundamental-Kotlin/releases

For all ideas and questions please contact the author by one of the contact
options listed in the the section of this book.

Who is this book for?

This book is for people who are willing to try something new.
Fundamental Kotlin revised (third edition of Fundamental Kotlin book
serial) is imagined not just as a guide to Kotlin for experienced but also
for students or technology So, you are not a senior developer it should not
be a problem. However, some fundamentals of computing are assumed.
The should be familiar with some programming fundamentals, with git
basics and bash shell basic commands.

Fonts used in this book

This book uses two typefaces: Ubuntu and JetBrains Both fonts have been
used for all publication versions of the book.

Ubuntu

All textual content of this book (except code snippets) is styled with
Ubuntu typeface. is an OpenType-based font family and it is licensed
under the Ubuntu Font License:

https://ubuntu.com/legal/font-licence

You can use Ubuntu freely in your products & projects: or digital,
commercial or otherwise.

JetBrains Mono

All code in this book is styled with JetBrains Mono Mono is a typeface
optimized for the display of programming source code. Therefore, it is
mainly used by software developers.

JetBrains Mono is available under the Apache 2.0 license. It and can be
used free of charge, for both commercial and non-commercial purposes.

About the author

Miloš Vasić is a software engineer from Belgrade, Serbia. For most of his
career, he was working as an Android software engineer. Miloš is also
well-skilled in other technologies and other programming languages
besides Kotlin and Android.

Miloš is passionate about software development and ways to make
software better. He to use his software if it is possible and to avoid
introducing unknown code of third parties into projects. Miloš is working
constantly on his various projects like software components or small

When he is not developing he is spending time learning and investigating
new technologies. One such technology was Kotlin. Miloš chose Kotlin as
his primary development language because gave him everything that he to
achieve great flexibility and product quality.

You can reach the author from one of the following

Email: milos85vasic@gmail.com

miloš-vasić-53778682

Milos_Vasic4

milos85vasic

Website: www.milosvasic.net

Preface

Today Kotlin is the main programming language for Android
development. Thanks to its popularity Kotlin became the language for any
other JVM development. For example, many backend developers are
using Kotlin for Spring application We are all witnesses of the increasing
number of Kotlin communities, conferences and workshops that have
been held, many books that have been written, and demand for various
software components. Many of these components have been ported from
Java and some of them continued their development only in pure Kotlin.

Kotlin is powerful. Everything that we did in Java can be raised to a
completely new level. Kotlin a tool for everything, a general-purpose first-
class programming What you will get from Kotlin is less stress, fever
bugs, and more joy while working the best job in the world, begin
software engineer!

Where Kotlin can be used? You can use Kotlin to develop your web
server, to write various programming libraries, or for example to write
plugins. To get into Kotlin read this book carefully, use internet and most
write as much code as you can!

What is Kotlin?

Kotlin is a statically typed programming language running on Java Virtual
web browser, or even native as a binary.

Kotlin is drastically reduces source code boilerplate. It is (almost)
impossible to get NullPointerException (NPE). We will learn about NPEs
in upcoming sections of this book. Kotlin is it is a general-purpose
programming language. it is That means that we can use existing JVM libs
and frameworks in Kotlin, or use Kotlin developed libraries in other JVM
languages.

A team at JetBrains (creators of IntelliJ Idea developed Kotlin, an open-
source language with an army of external contributors.

Kotlin is licensed under Apache 2 Open-Source The version of Kotlin is

Some basic concepts explained

Before we start with Kotlin let’s explain a couple of terms that we have
mentioned in the previous section just in case that you are not yet familiar
with

What is a statically typed programming language?

We said that Kotlin is a statically typed language. We will explain the
meaning of statically typed programming in comparison between
statically typed and dynamically typed programming languages.
Dynamically typed programming languages perform type checking on
runtime. On the other hand, statically typed languages such as Java and
Kotlin perform type checking at compile time. In Kotlin as an example,
variables must be declared before values are assigned to them.

What is Java Virtual Machine or JVM?

If you are not experienced with Java, let’s take a moment to explain what
JVM Virtual is. JVM is software running on your system (engine) that is
responsible for running all Java software. JVM converts Java bytecode
(we will talk more about it soon) into the machine language. Thanks to
this JVM applications are the same on all platforms.

Software developers write JVM applications once for all code is
executable on every operating system. All specificity for the particular
operating system is handled by the version of JVM installed for that
system. So, we have of Java for Microsoft Windows, and so on. It is also
worth mentioning that JVM is part of JRE Runtime

Kotlin fits into this as JVM language, which means, all code that we write
in Kotlin is compiled into Java bytecode and executed on JVM Virtual

Java bytecode

We will spend one brief moment explaining the meaning of bytecode. Java
bytecode represents the instruction set for Our source code of the program
is translated into Java bytecode during compilation by the Java compiler
(Kotlin has its compiler for this Bytecode is then loaded into JVM and its
instructions are executed.

The of a typical JVM program looks like this:

- source code for the program
- compiler creates Java bytecode from program source code
- JVM loads bytecode that has been created by the compiler
- JVM converts bytecode into machine code (language)
- instructions are executed by computer hardware.

If you are not familiar with Java at all we will explain some of its concepts
in the of section of this book.

Basic characteristics of Kotlin

Kotlin has many powerful characteristics. We will highlight some of the
most important ones.

As we previously mentioned Kotlin on JVM Virtual meaning that it is
cross-platform compatible. For you who don’t know, Kotlin is also
available in its Kotlin native and JavaScript That practically means that
we can write the code that will be compiled directly for the execution on
computer hardware or we can write Kotlin programs for the web.

Kotlin is the type of a variable is known at compile time.

Kotlin is too. With functions, can store functions as variables or pass as
parameters to other functions as parameters.

It is guaranteed that the state of an immutable object can’t change over
time.

Kotlin has Thanks to coroutines support Kotlin makes your life easier
when comes to asynchronous or non-blocking programming. We will
cover coroutines in a separate section of this book. previously mentioned
features will be covered in separate as

And last but not least, Kotlin is an programming language that is and If
you are interested to contribute to Kotlin development you can check out
(or fork) GitHub repository:

Where is it used?

As a general-purpose programming language Kotlin can satisfy the needs
of every professional software We will cover some use-cases of Kotlin.

Server-side development

Kotlin is great for developing server-side applications. Kotlin allows you
to write concise and expressive code while maintaining full compatibility
with existing Java-based technology stacks and a smooth learning curve.

So, what are the benefits?

- Expressiveness
- Scalability
- Interoperability
- Easy
- Great
- Easy Curve.

This is the list of some web framework that you can try for web
development:

Ktor, https://ktor.io

Spring, https://spring.io

Vert.x, http://vertx.io

Kotlin DSL for HTML, https://github.com/kotlin/kotlinx.html

Wasabi, https://github.com/hhariri/wasabi

Hexagon, https://github.com/jaguililla/hexagon

and many others.

Android mobile development

Kotlin is the main programming language for writing Android It is
unimaginable by many Android developers to do their regular
programming in anything different than Kotlin. To find out more about
Android you can visit the official Android developer’s page:

On market, some tools go beyond the standard language features. One of
them is Android the set of Kotlin extensions for Android development:

JavaScript development

Kotlin provides us with the ability to produce JavaScript It does so by
translating Kotlin source code to The current implementation targets
ECMAScript 5.1 but there are plans to eventually target ECMAScript
2015

When you choose the JavaScript target, any Kotlin code that is part of the
project as well as the standard library that ships with Kotlin are translated
to excludes the JDK and any JVM or Java framework or library used. Any
file that is not Kotlin will be ignored during compilation.

Native development

Kotlin can be compiled to run directly on computer hardware. For this
purpose team at JetBrains developed Kotlin/Native technology that is
developed side by side with the main Kotlin language. It is really easy to
write Kotlin applications that will be delivered as native platform binaries.
We will talk more about Kotlin/Native in upcoming sections.

Kotlin for data science

Kotlin found its place even in data science. Kotlin supports integration
with some very popular platforms used by data scientists. We will mention
some of the most popular.

Apache Zeppelin shipped with Kotlin

https://zeppelin.apache.org/

Project Jupyter:

https://jupyter.org/

It is also worth mentioning that because of huge popularity developers
community created a significant number of great libraries for data-related
tasks. We will list some of them.

JetBrains’s Lets Plot:

open-source plotting library for statistical data.

Kmath:

a Kotlin-based analog to Python's “numpy” library. In contrast to ”numpy”
and ”scipy” it is modular and has a lightweight core.

Kotlin Statistics:

collection of helpful extension functions to perform exploratory and
production statistics in a Kotlin-idiomatic way.

Krangl:

Kotlin library for data wrangling.

Kravis:

a Kotlin grammar for data visualization.

okAlgo:

Idiomatic Kotlin extensions for ojAlgo with some inspirations from PuLP

Data2viz:

data visualization.

Sparklin:

Kotlin language support for Apache Spark.

Koma:

a scientific computing environment for Kotlin.

Komputation:

a neural network framework for the JVM written in Kotlin and CUDA C.

KotlinNLP:

natural language processing in Kotlin.

Jinx:

an Excel Add-In that enables developers to extend Excel’s capabilities.

Kotlin Algorithm:

implementations of popular algorithms and data structures including
machine learning.

Building programs

Kotlin supports several major technologies: Kotlin running on JavaScript,
or native. To generate the final build from your source code it is required
to have the Kotlin compiler installed. With each Kotlin release, the
standalone version of the compiler is We can download it from GitHub:

https://github.com/JetBrains/kotlin/releases

Unzip the standalone compiler into a directory and optionally add the bin
directory to your system path. The bin directory contains the scripts
needed to compile and run Kotlin on and

Kotlin compiler can be also installed in several other ways.

Installing Kotlin compiler

Below is a couple of nice little ways to install the Kotlin compiler on your
system. Chose the way that most suits you.

SDKMAN

An easier way to install Kotlin on systems such as FreeBSD, and Solaris
is by using SDKMAN. Simply run the following in a terminal and follow
instructions:

$ curl -s https://get.sdkman.io | bash

Next, open a new terminal and install Kotlin by executing the following

$ sdk install kotlin

Homebrew

Alternatively, on macOS, you can install the compiler via

$ brew update
$ brew install kotlin

MacPorts

If you're a MacPorts user, you can install the compiler with:

$ sudo port install kotlin

Compiling Kotlin source code

Let’s see now how the build process works in Kotlin.

All source code is stored in .kt files that are organized in packages
(filesystem directories organized Kotlin compiler analyzes source code
and generates .class files. Then, .class files are packaged. How they are
depends on the kind of project you are working on.

The following example will demonstrate how we can compile Kotlin
source code and execute compiled

Create simple file named “First.kt” with the following content:

package net.milosvasic.fundamental.kotlin

fun main(args: Array) {

 println("My first Kotlin application.")
}

The line of the code tells us under which package resides our program.
More about packages will be discussed in upcoming of the book. Then,
we the main program function. The function and functions, in general,
will be discussed soon as well. For now, it is important to know that
function is the entry point in the execution of our program. Inside the

body of our main function (body of the program), we are executing
function that will print a simple message on our screen.

In two consecutive commands we will compile and run our code from the
source code .kt file:

$ kotlinc First.kt -include-runtime -d First.jar
$ java -jar First.jar

The of the execution is:

$ My first Kotlin application.

Kotlin to JavaScript

The following example illustrates how Kotlin compiles for

Clone Fundamental Kotlin examples from GitHub repository. Open your
terminal and cd to the JavaScript directory. Inside the directory there is
file JsExampleLibrary.kt located with the following

package net.milosvasic.fundamental.kotlin.javascript

fun helloJS() {

 println("Hello from JavaScript!")
}

Compile the library using the JavaScript compiler:

$ kotlinc-js -output library.js -meta-info

After compilation we will have two new files:

library.js
library.meta.js

You can simply distribute two .js files: library.js and The former file
contains translated JavaScript code, the latter file contains some meta-

information about Kotlin code, which is needed by the compiler.

As a possible you can append the content of library.meta.js to the end of
library.js. The file can then be distributed alone.

Also, you can create an archive, which can be distributed as a library:

$ jar cf library.jar *.js

Using library

Let’s see how to use this library. In same directory locate file

package net.milosvasic.fundamental.kotlin.javascript

fun helloJS(count: Int) {
 for (x in 0..count) {
 helloJS()
 }
}

Then, compile it with the library that we just created:

$ kotlinc-js -output use.js -libraries library.meta.js \

“use.js” file is available after compiling.

Both and should be present, because translated JavaScript file contains
meta-information about inlining, which is needed by the compiler.

If you have an archive which contains “library.js” and you can use the
following command:

$ kotlinc-js -output use.js -libraries library.jar \

Kotlin/Native

For cutting-edge performance, you may want to consider the use of
Kotlin/Native is a technology developed by JetBrains that makes it
possible to Kotlin source code into native binaries.

Installing Kotlin/Native

The latest version of Kotlin/Native at the time of writing this book is To
install Kotlin/Native download the proper version from the releases page:

https://github.com/JetBrains/kotlin-native/releases

Once the proper archive is downloaded, extract it to the desired directory.
To be able to use Kotlin/Native it is required to build it. To do so you must
satisfy certain requirements. You must install Java JDK Development
instead of Java JRE Runtime If you are using macOS you must have
Xcode version 11.5 installed on your system. For users, it is required to
have “ncurses-compat-libs” installed. On RedHat based systems such as
Fedora or CentOS installation is performed by executing the following
command:

$ yum install ncurses-compat-libs

Debian based distributions can install “ncurses-compat-libs” by executing
the following command:

$ apt install libncurses5

Once requirements are met we are ready to build Cd into the directory
where you have extracted Kotlin/Native and update dependencies:

$./gradlew dependencies:update

It will take some time for dependencies to be updated. Please wait until
the process is complete. It may take a couple of minutes for this step.
Then, start the build:

$./gradlew bundle

The needed for the build to complete may take more than one hour! After
the build is done add your Kotlin/Native “bin” directory to the system
path. After that, you will be ready to compile your first Kotlin/Native
program.

Compiling to native

In this section, we will demonstrate Kotlin/Native compiling. If you didn’t
clone book examples, please do so.

Cd into ”Native” directory. Inside you will see the file called The of the
file is almost the same as “First.kt” from our first compiling example:

fun main(args: Array) {

 println("My first Kotlin/Native application.")
}

You may notice that we did not define the package for this example. Let’s
compile it. Open a terminal and execute the following command to
compile .kt file:

$ kotlinc HelloNative.kt -o hello -opt

Flag at the end “-opt” stands for optimized compilation. Now run “hello”
program:

$./hello

The of execution will be:

My first Kotlin/Native application.

Build automation tools

Compiling Kotlin programs by directly executing compiler in practical
everyday is not something that software developers are doing really. For
purpose of building and packaging our programs, various build
automation tools are To make our lives easier build automation tools are
automating the creation of executable applications from the source code.

What is automated?

Build automation tools prepare and download all dependencies used by
our projects. For example, all libraries are downloaded and stored for later
use. The does not have to worry about providing dependency files. Build
automation tools perform all custom scripted tasks that users defined such
as copying files or any project-specific activities. Tasks can be executed
before or after compiling the project.

Build automation tools perform compiling and proper packaging of our
projects, executing tests, and finally deploying projects to production
systems.

As we already mentioned you can build your Kotlin code using the Kotlin
compiler. However, it is more convenient to use one of the most popular
build automation tools.

To build Kotlin projects can use various build automation tools that
support Kotlin out of the box. Let’s mention some of them.

Gradle

https://gradle.org/

Gradle is a build automation tool for multi-language software
development. Kotlin is one of the languages that Gradle supports. Gradle
controls the development process in the tasks of compiling, packaging,
testing, deployment, and publishing.

Gradle is licensed under Apache License 2.0 and it is written Java,
Groovy, and Kotlin.

Maven

https://maven.apache.org/

Maven is a build automation tool. It is used primarily for Java However,
Maven supports projects written in C#, Ruby, Scala, and The Apache
Software Foundation hosts the Maven

https://www.apache.org/

Maven was there formerly part of the Jakarta Maven is licensed under
Apache License 2.0 and it is written in Java.

Apache Ant

http://ant.apache.org/

Apache Ant is another Apache Foundation project licensed under Apache
License Ant is a tool for automating software build processes. It from the
Apache Tomcat project. Apache Ant is developed as a replacement for the
Make build tool. It has similarities with however, it is implemented using
pure Java language and requires the Java platform to

Griffon

http://griffon-framework.org/

Griffon is a desktop application development platform for the JVM by the
Grails Griffon is written in Java and licensed under Apache License 2.0
license. Griffon supports programming languages such as Groovy and
Kotlin:

https://github.com/griffon/griffon-kotlin-plugin

Griffon Kotlin plugin enables compiling and running Kotlin code on
Griffon The is written in Groovy and Java and it is licensed under Apache
License 2.0 as Griffon framework

Kobalt

http://beust.com/kobalt/home/index.html

Kobalt is a build automation tool written in pure Kotlin. Kobalt is inspired
by Gradle and build automation While takes some good ideas of them
Kobalt also some new powerful features on its own. As all previously
mentioned build automation tools is licensed under Apache License 2.0.

Creating Kotlin project

In this section, will cover examples of how to create Kotlin project. The
approach that we will present to is quick and easy by using the IntelliJ
Idea IDE project creation The approach will be more complex, it will
present to how to create a Kotlin project from scratch using Gradle build
automation With the latter option, will have more work to do, but also will
have more control over your project configuration, having more
knowledge about files versioned in your code repository and what they are
doing

Creating IDE project

Previous examples were by using only the Kotlin compiler from the
terminal. In the rest of the book, we will be using IntelliJ Idea IDE (an
integrated development environment), developed by creators of the
Kotlin, JetBrains company.

You can and install IntelliJ Idea Community Community Edition of
IntelliJ Idea is the free version of the IDE. When it is open preferences
and install support for Kotlin programming language if it is not installed
After this is done, you are ready to write and run some Kotlin code.

To create a new Kotlin project in IntelliJ IDEA do the

File → New → Project

Then choose:

Kotlin → JVM | IDEA → Next

Name the project, set the file system location, and choose the Java version
from a dropdown list (Project SDK). After you click on the Finish button
new empty Kotlin project will be created.

Now, create your first package, the steps are the same, as you would do in
Java. Right-click on the “src” folder in the project structure tree → New

→ Give some meaningful name to it like:

Finally, create your first Kotlin source code file by right-clicking on a
package you just created and choosing: New → Kotlin File / Give some
name to a file, like for example: A created file will appear in your
package.

Great! We have now an empty Kotlin file. We are ready to add some code!

Kotlin and Gradle

In this section, we will cover the Kotlin project setup with To do that we
need a plain Kotlin Gradle project for the demonstration Locate the
”PlainProject” folder from Fundamental Kotlin examples root directory.
Directory content represents raw ready for and building.

We will import it into IntelliJ IDEA and explain each important file and
directory. Open Idea IDE and then choose:

File → Open

locate this directory, confirm opening by clicking on the Open button.

IntelliJ Idea will show you a dialog titled “Import Project from Then,
select the option: “Use wrapper task By selecting this option Gradle will
be initialized.

Gradle Wrapper is recommended way to execute any Gradle build. It is a
script that invokes a declared version of Gradle configured in our
performing dependencies download if and executing build Because of this
developers can get up and running with a Gradle project quickly without
having to follow manual installation processes.

Confirm by clicking the OK button.

It will take some time for IDE to import files. The dialog you will see is
the dialog with the title: “Gradle Project Data To Select each item and
confirm by clicking

As you can see project consists of several important files and directories.
Inside the root of the project, we see several important files. Let’s take a
look at them.

settings.gradle: file containing a list of project modules that we will build:

include ':WelcomeToKotlin'

This project has one main module named represent of your main Gradle
project. Thanks to this it is possible to better organize the code and
achieve better For example, we may have the main application module
and several additional modules for various purposes, such as libraries or
plugins.

.gitignore: configuration file for it has the purpose of preventing
versioning of trash files

build.gradle: it is located in the root directory of the project. It main
repositories and library (or plugin) that will be used for modules and build
script also defines the version of Kotlin that will be used:

buildscript {
 ext.kotlin_version =

 repositories {

 google()
 mavenCentral()
 }

 dependencies {

 classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"

 }
}

allprojects {

 repositories {

 google()
 mavenCentral()
 }

 apply plugin: "kotlin"

 dependencies {

 api "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"

 }

}

As its name suggests “buildscript” block defines dependencies for the
build script itself. All build script dependencies will be pulled from
“Google” and “Maven Central”. We will use the same repositories for
build dependencies as well.

a look at the ”allprojects” block. This block is used to add configuration
items that will be to all modules and the root project as Besides the
”allprojects” block we may have the ”subprojects” block This can be used
to add configuration stuff for all modules These blocks can be as many
times as we want in the root project (root ”build.gradle” configuration

We will apply the “kotlin” plugin and add the dependency to the standard
Kotlin This will be enough for us to write Kotlin code in all of our
modules. It is important to note that in most cases dependencies can be
added with ”api” and ”implementation” directives. The between “api” and
“implementation” directives is that if you are using “api” all other
modules that depend on the parent module will inherit the dependency. In
the case of it is required to provide your dependency for the particular
library for each

Each Gradle module has its own ”build.gradle” configuration file that
additional plugins that will be applied and dependencies for libraries that
will be used specifically for that module. The applies for ”build.gradle”
configuration located under the directory

apply plugin: 'application'

application {
 mainClassName =

 "net.milosvasic.fundamental.kotlin.WelcomeKt"
}

dependencies {

 // Your dependencies go here
}

You can see from this configuration file that our application module will
use the “application” plugin with the fully-qualified main class name This
is the entry point of our application. We will talk more about fully
qualified in later of the book.

Note:

If you are not familiar with Gradle invest some time to learn it, you will
need it for more advanced project

Expand the ”src” directory until you notice the ”Welcome.kt” source code
file:

package net.milosvasic.fundamental.kotlin

fun main() {

 println("Welcome to Kotlin.")
}

As can see, is another “hello world” program. All Kotlin source code files
are kept in the ”main/kotlin” directory. Java source code is usually located
in the ”main/java”

Right-click on the ”Welcome.kt” file and choose Run. After the program
is should see the following output:

Welcome to Kotlin.

You are now ready to extend this project with your code or to create a new
one from scratch based on this example.

Creating Gradle project

In this section, we will show you how to create a Gradle project from zero
and generate Gradle configuration files. We will demonstrate the use of
the Gradle initialization wizard that will create the Gradle application
project with a flat structure (no additional modules). All configuration
files will be contained in one single directory – the root of the project.

Create a directory where want to initialize your project:

$ mkdir my_funny_project

Cd into the directory:

$ cd my_funny_project

Now invoke Gradle initialization command:

$ gradle init

Note:

To be able to invoke the “gradle” command Gradle must be installed on
your computer and its binaries added to your system path. For more
information on how to install Gradle on your computer take a look at the
official documentation at the following address:

https://gradle.org/install/

Wizard is interactive and it will ask you a couple of questions:

Select type of project to generate:
 1: basic
 2: application
 3: library
 4: Gradle plugin
Enter selection (default: basic) [1..4]

We choose option number 2.

Select implementation language:
 1: C++
 2: Groovy
 3: Java
 4: Kotlin
 5: Swift
Enter selection (default: Java) [1..5]

We choose option number

Select build script DSL:
 1: Groovy
 2: Kotlin
Enter selection (default: Kotlin) [1..2]

This is tricky! We choose option number 1 because previous Gradle
configurations files examples were written in Groovy. Groovy is the
default language for writing Gradle scripts. If you like may Kotlin instead
of

Project name (default: my_funny_project): my_funny_project

Source package (default: my_funny_project): examples

You will be asked to set the project name and the After that Gradle will
perform the initial build:

BUILD SUCCESSFUL in 27s
2 actionable tasks: 2 executed

Your project is initialized and ready. Depending on the version of Gradle
that you have installed and the DSL language that you chose in
initialization wizard generated files may differ when compared to
examples that we have shown previously. Take a look at them closely and
chose the configuration that you more prefer. For the scope of this book,
you must be now ready to write, build and run your code.

Converting Java source code to Kotlin

If you have a legacy project written in Java it is possible to convert code
into Kotlin. Idea offers a very powerful feature: Java to Kotlin
conversion.

For example, paste some Java code into a .kt file IDE will ask you to
perform the conversion. This is great because you do not have to rewrite
the code snippet. All you have to do after conversion is to do some
cleanup and adjust formatting.

Also, if you have a significant amount of Java classes you can convert
them. To do code conversion, locate your Java source code file the chose:

Code -> Convert Java File to Kotlin

Let’s try Import the ”CodeExamples” directory containing book code
examples Kotlin project into your Idea” IDE if you did not already. Locate
the “ConvertMePlease.java” file from Fundamental Kotlin examples:

public class ConvertMePlease {

 private String myFieldToBEConverted;

 public ConvertMePlease(String myFieldToBEConverted) {

 this.myFieldToBEConverted = myFieldToBEConverted;
 }
}

Then right-click to file, choose Code -> Convert Java File to Kotlin

Take a look at the code you have now:

class ConvertMePlease(

 private val myFieldToBEConverted: String

)

Note:

You may be asked by IDE to accept corrections (meaning removing the
.java file and putting .kt file in its place). Feel free to respond to this.

As you can see the code is not just converted, but that the amount of the
code is significantly reduced. This is one of the great treats that Kotlin
gives to We will talk about that in later of this

Fundamentals

From a simple “Hello world” program towards more complex examples,
we will be discovering Kotlin features and functionalities. We will try to
touch not just the fundamentals of Kotlin but the fundamentals (and
history) of JVM (and in general.

In this section, we will introduce you to the very basics of JVM
programming, short history, and move you in direction of Kotlin basic
syntax and data type fundamentals. This time we will write some Kotlin
code for real. Prepare yourself to dive deep into the programming world of
Kotlin!

A history of Java

As probably already know Kotlin is a JVM language and it has strong ties
with the Java programming language because it is based on Java
technology. In this section, we will spend some time on a brief history of
Java with a focus on features that Java brought through its

Java is an old programming language. Java appears the first time in the
year 1995. Since then up to this day it has grown and achieved great
success in the software engineers community. Java is still the most popular
language for software development!

For the last 25 years, Java has had several major versions. Each version
brought some critical major improvements and a set of features to the
language. At the time of writing this book, Java 13 has been released.
However, as you will see soon for some significant periods Java wasn’t
bringing new and significant features to the language. There were years
without any new significant releases and no new features to bring to the

Let’s take a look at the list of significant Java releases and improvements
that have been brought to the language:

Java version 5: released in 2004, this is the version of Java where modern
Java started to emerge. In Java 5 version the following features have been
introduced:

- For-each loop
- Varargs

- Static Import

- Autoboxing and Unboxing

- Support for

- Covariant Return Type

-

- Generics

Java version 6: released in 2006, this version of Java extends what we
consider today the modern Java by introducing:

- Collections framework

- I/O support

- JAR files

- Reflection

- Serialization of Objects

and many more features.

Java version 7: released in 2011, after 5 whole years of waiting brings the
following set of features:

- Caching Exceptions by single catch

- Support for in switch

- Binary Literals

- The try-with-resources

- Underscores in Numeric Literals

Java version 8: released in 2014 years brings a set of features that are still
being used by most IT companies who use Java:

- Lambda Expressions

- Function

- Functional Interfaces

- forEach function

- Type annotations and repeating annotations
- Optional class

- Base64 Encode / Decode

and many other features.

Meanwhile, Kotlin reached maturity status as a programming language
and many developers switched to Kotlin as its development option no. 1.
Kotlin brought cutting-edge features, the lifecycle of a more frequent
release, and great flexibility. Since then Java has been released in a couple
more versions supporting some of the features that Kotlin already had:

Java version 9: released in brings a couple of important things:

- Module system
- JShell

- Private functions

- HTTP/2 support

Java 10 to released between 2018 and brings new modern features to the
table and more frequent release cycle. We will highlight some of the new

- New APIs

- Local-Variable Type Inference

- Removed the Java EE and CORBA modules
- Switch expression
- Smart cast
- Multi-line texts
- Records

- Hidden classes

- The Z Garbage Collector (ZGC)

By bringing new features in versions after Java 10, Java started to run side
by side with JVM languages such as Kotlin, Groovy, and It will be
interesting how Java will compete with its main rivals in upcoming Most
likely, we will cover that in the edition of the Fundamental Kotlin book.

What is Java?

What is Java? Let’s be more precise in defining Java as a programming
language and concept of

Java is a powerful, general-purpose programming Java as we mentioned in
the previous section exists since It comprises the Java programming
language, and the Java Virtual Machine So, we distinguish two separate
parts: language itself and virtual environment In the case of Kotlin, it is
Kotlin as a programming language and JVM as a running environment for
Kotlin programs. A philosophy has been adopted by Microsoft for its
.NET technology.

Java’s ecosystem is a standardized environment controlled and maintained
by Oracle Corporation Thanks to these standards and are that the
technology will be compatible with other components, even if they come
from different technology

It is important to note that since Java version 11 Java Development is
commercially licensed! For free use of Java OpenJDK port is available.
OpenJDK Java Development is open-source implementation of the Java
The implementation is licensed under the GNU General Public License
(GNU GPL) version 2 with a linking exception.

Java is considered to be easy to read and write. Java has solid grammar
and a simple program structure. Java is based on experience with
languages like C and C++. Compared to C and C++ Java simplifies its

features and makes it easier for every-day use for the developers. The
syntax of Java is very similar to C and C++, but it does not have focus on
a low-level

Java programming language is object-oriented, class-based, and designed
to have as few dependencies as possible. The philosophy behind Java is
that developers write code once and run that code everywhere (thanks to
Java programs are compiled to bytecode that can run on any JVM
regardless of the underlying computer architecture.

As we mentioned in the previous section, Java has been released in 14
major releases for the last 25 years bringing the joy of everyday
development to more than 9 million developers who use it every day!

Java

Java is a set of the minimum components necessary to create and run Java
programs and it is a part of a Java

JRE is made up of the Java Java class libraries, and the Java class loader.
The of JDK is to help developers to write Java while JRE has the purpose
of only running

What is JVM?

We can think of JVM as some kind of computer within a computer. The of
JVM is to execute JVM Java, Groovy, Kotlin, and other JVM languages
(its programs) are all executed on

The characteristic of all JVM languages is that its source code gets
compiled to Java and then that bytecode is loaded and executed by Thanks
to this, developers do not need to write different for different platforms.
All platform-specific things are handled by JVM itself. Each particular
host operating system needs its implementation of the JVM and Java
runtime Each of them interprets bytecode the same way though its may be
different due to platform

During program execution, JVM performs garbage Garbage collection is
the process by which JVM automatic memory management for running
programs. All unused objects in memory of JVM used by these programs
are released (cleaned up) at a specific point in time.

JVM is precisely specified by the specification that ensures
interoperability of JVM programs. The collection algorithm used by JVM
and any internal optimization of instructions is not specified.

It is interesting to note that Android compiler converts source code written
in Java or Kotlin into bytecode for the Android Runtime Android does not
have classic JVM and ART work in entirely different ways.

What is the Java

Three basic components that we mentioned until this moment make up the
Java ecosystem and they are:

- Java Virtual Machine

- Java Runtime Environment

- Java Development Kit

These components are core parts that are shipped by Java
implementations. In the next we will check out how Kotlin fits into this.

How Kotlin relates to Java?

Kotlin is a JVM language. Same way as with Java, we will produce
bytecode from our source code. As we already mentioned Java bytecode is
executed equally on all versions of the JVM platform independently from
the platform

Kotlin is completely interoperable with Java. You can easily call Kotlin
code from Java and Java code from Kotlin. Thanks to this adopting Kotlin
in the existing ecosystem is much easier. As we demonstrated in the
previous section of the book, the creators of Kotlin provided us with a tool
for direct code conversion. It is really easy to convert existing source code
into Kotlin.

Lifecycle of the program

Each program that we run has its entry point. The point for every JVM
program is the “main” function. Kotlin typical “main” function looks like
this:

package net.milosvasic.fundamental.kotlin

fun main(args: Array) {

 // Your program starts from here

}

Arguments can be left out:

package net.milosvasic.fundamental.kotlin

fun main() {

// Your program starts from here

}

The function Kotlin must be placed in ordinary .kt file under the package.
Arguments contain everything that we pass to our program from the
command line (terminal). This data can be used later as parameters in our
programs. You will learn more about function arguments in upcoming of
this book. When the main function is entered execution of our program
begins.

After the program finishes with the execution proper exit code is returned
as the result. The return value of every JVM program is zero. Zero means
that the program has been executed with success. Non-zero codes mean
that our program had abnormal termination. Non-zero values can be
positive and negative. Positive values are usually returned from our code
(defined by the user) to indicate a particular exception. Negative status are
error codes. Such error codes are generated as a result of unanticipated
exceptions, system errors, or forced termination of our program.

Take a look at file form book’s code examples:

package net.milosvasic.fundamental.kotlin.lifecycle

import kotlin.system.exitProcess

fun main() {

 println("Exiting with success")
 exitProcess(0)
}

This program prints a message and exits with zero, meaning that it is
completed with success. “exitProcess” function terminates the program
and returns 0 as a result of its execution. Now open
“SystemExitFailure.kt” example file:

package net.milosvasic.fundamental.kotlin.lifecycle

import kotlin.system.exitProcess

fun main() {

 println("Something went wrong!")
 exitProcess(1)
}

Besides different message that is printed out, programs returns as
execution result. This that the program has finished with failure.

Basic

Since we introduced to basic Java legacy and explained to some basics of
Kotlin programs it is time to go further with Kotlin basics. It is time for us
to start with Kotlin programming language syntax.

Programming language refers to the spelling and grammar of a language.
Computers are different than people. They will understand what you type
only if you type it in the exact form that the computer expects. This form
is called the programming language syntax. Every programming language
has its syntax. Some of them are similar, but some of them are different.
Kotlin has similarities with multiple programming languages by which
designers of the Kotlin programming language have been The obvious
syntax similarity comes from Java. However, some other languages
influenced the design and syntax of Kotlin:

- Scala: https://www.scala-lang.org/

- Groovy: https://groovy-lang.org/

- Python: https://www.python.org/

- C#: https://docs.microsoft.com/en-us/dotnet/csharp/

- Gosu: https://gosu-lang.github.io/

- ML:

The structure of Kotlin programs

The lexical structure represents a set of basic rules that define how you
write programs. this section, we will explain the lexical structure of the
Kotlin

We will cover:

- Unicode character set
- Case sensitivity

- Whitespace

- Comments
- Identifiers
- Literals
- Reserved words.

Unicode character set

Unicode represents a standard for the consistent encoding, representation,
and handling of text. Unicode is expressed in most writing systems. Kotlin
programs are written using In Kotlin can use Unicode characters
everywhere. For example for giving names to your constants and
variables, for comments, and so on. What makes Unicode so powerful is
that it can represent virtually every written language in common use on

the planet! To illustrate to that this can be done, we have created one
simple example. Open “unicode_example.kt” the book’s code examples
and take a look at

package net.milosvasic.fundamental.kotlin.lexical_structure

class МојаКласаНаЋирилици {

 val поздрав = "Поздрав на ћирилици!"
}

fun main() {

 val unicodeClass = МојаКласаНаЋирилици()
 println(unicodeClass.поздрав)
}

This example uses Serbian Cyrillic for the class name, for the name of the
class field, and the value of the field itself. If run this program, the
following output will be printed out:

Поздрав на ћирилици!

Even though it is possible to write your code in Serbian Cyrillic or in
Chinese if want, it is recommended to use only ASCII characters for this
purpose. In the case of this code proper warning will be seen (check this
out in your “Non-ASCII characters in an identifier”.

Note:

ASCII is a character encoding standard. ASCII codes are used for
representing content in computers and other devices. ASCII stands for
Standard Code for Information Interchange and consists of (only) 128
characters.

Case sensitivity

Kotlin is case sensitive programming language. That means that if you do
something like this:

val myConstant = 0
val myCONSTANT = 1
val MYconstant = 2

fun main() {

 println("myConstant = $myConstant")
 println("myCONSTANT = $myCONSTANT")
 println("MYconstant = $MYconstant")
}

You have defined three different constants. The of this small program is
the following:

myConstant = 0
myCONSTANT = 1

MYconstant = 2

Based on this, in Kotlin “While” and “while” are not the same thing! First
may be used as a name for the class, or constant, or for the name of the
variable. Later one is reserved keyword by Kotlin programming language.
It cannot be used for the naming of classes, constants, or variables.

Whitespace

Kotlin ignores whitespace. tabs, newlines, and other whitespace are
ignored except when it appears within quoted characters and string
literals.

Comments

Comments are human-readable explanations in the source code. They are
added to make the source code easier for developers to understand.
Comments are ignored by the Kotlin compiler. In the case of there are four
types of comments that programmers can write.

Single line comments: begin with the characters “//” and continue until the
end of the current

// Single-line comment

comments: begin with the characters “/*” and continue, over any number
of lines, until the characters “*/” define its Any text between the opening
and closing characters is ignored by the Kotlin

/* Multi-line
* comment */

Source code comments: begin with “/**”, for documentation multi-line
opening and finish with closing characters: This type of comment is
regarded as a special comment. When you write a Kotlin class or function
that will be delivered to other developers, proper comments is required so
all information is there, such as the purpose of the class (or parameters, or
return data information.

/**
 * Documenting source code.
 *
 * @param file The file to upload.
 * @return Result of the upload.
 * @author Milos Vasic
 */

To generate documentation from source code in some format like HTML
developers use documentation engines. For Kotlin Dokka documentation
engine can be

https://github.com/Kotlin/dokka

Dokka is a documentation engine for Kotlin and it fully supports of
languages and in parallel. Dokka understands standard Javadoc source
code documentation comments for Java source code files and KDoc
comments in Kotlin source code files. output formats are supported:

- Javadoc,

- HTML
- Markdown

Nested multi-line comments: Unlike Java, Kotlin supports nested multi-
line comments. Thanks to this you can comment out large blocks of code
quickly and easily. if the code already contains multiline comments!

/*
* /*
* /*
* // Nested multi-line comment!
* */
* */
*/

Identifiers

Identifiers are the given to constants, variables, classes, and so on. For
example:

val index = 101.1

In this example,”val” is a keyword, and “index” is the name given to it.

There are certain rules and conventions for naming in Kotlin that we must
follow or the Kotlin compiler will

- starts with a letter or followed by zero, letter, and digits

- Whitespaces are not allowed
- An identifier cannot contain special symbols, such as “@”, “#”, “!” and
so on

- As we already mentioned, are case sensitive

Let’s take a look at the list of some valid identifiers:

- book
- myClass
- doorsNo1

Opposite to this list, we have a list of invalid ones:

- class
- while
- 1doorNo
- identifier with some spacing
- @!#name

The two items are invalid because these words are reserved by the Kotlin
programming language. We will talk more about this soon. The one starts
with a number, which is not allowed. As we already mentioned,

whitespaces are not allowed for identifiers so the fourth item is invalid
too. The one contains special characters.

Literals

Literals are sequences of source code characters that directly represent
constant values. Literals appear as is in Kotlin source code. They include
floating-point numbers, single characters within single quotes, strings of
characters within double-quotes. Also reserved ”true” and words for
booleans and null. Let’s take a look at some literals:

100

true
false
null

Reserved words

All words used by the Kotlin programming language consider being
“reserved”. That means that these words cannot be used as identifiers of
your classes, constants, variables, or This is the list of reserved words in
the current version of the Kotlin:

package
as
typealias

class
this
super
val
var
fun
for
null
true
false
is
in
throw
return
break
continue
object
if
try
else
while
do
when
interface
typeof

Packages and code organization

You probably remember our first example: The line of the code in that
example defines belonging to a package:

package net.milosvasic.fundamental.kotlin

A package is a group of similar types of classes, interfaces, and sub-
packages. Packages represent the basic level of organization of our source
code. Every “.kt” file must belong to some package. We should define our
package at the top of our “.kt”

The of directories containing this is the following:

net
 milosvasic
 fundamental
 kotlin

Note:

It is not required to match directories and packages. Placing the source
files in the filesystem can be arbitrary.

Naming for names are the following:

- to avoid conflicts with the names of classes, objects, or interfaces letters
are written in lower case letters

- root package is usually reversed internet domain name, like for example:

com.google

- some cases, reversed internet domain name may not be a valid package
name This can happen if the domain name contains a hyphen or other
special character or if the package name begins with a digit or other
character that is illegal to use or if the package name contains a reserved
keyword. In such situations, it is recommended to use the underscore
character:

Let’s have a look at an example of the organization of the code. Let’s
assume that we have a simple notes application that can create, edit and
delete notes. The package where all code resides could be called:

com.notes

Then, inside this package we will expand our organization hierarchy to
support various code responsibilities:

com.notes.utils

and so on.

Note:

If the package is not specified in the source code the contents of such a
file belong to the default package that has no name.

As you can see, it is not difficult to organize source code. As you gain
more experience with Kotlin programming you will be more clever in
making decisions where to put your source

Importing source code

Source code is imported by using the “import” is used along with
importing name passed to it. We can import a single name or all the
accessible contents of scope, as:

- package
-

- object

and so on.

In Kotlin certain number of packages is imported by default:

- kotlin.*
- kotlin.annotation.*
- kotlin.collections.*

- kotlin.comparisons.*
- kotlin.io.*
- kotlin.ranges.*
- kotlin.sequences.*
- kotlin.text.*

Depending on the targeting platform there are a few additional packages
that are imported. If your project is targeting JVM:

- java.lang.*
- kotlin.jvm.*

Or, if your projects are targeting JavaScript:

- kotlin.js.*

Let’s have a look at some ”import” examples:

// User is now accessible without qualification:

import

// in 'com.example' becomes accessible:

import

If there is a name clash, we can rely on “as” keyword. has a purpose of
locally the clashing entity:

// User is accessible:

import

// TestUser represents now:
import as TestUser

can be also used to import other declarations, such as:

- enum constants
- functions and properties declared in object declarations

- top-level functions and properties.

Note:

If a declaration for the imported entity is marked as it means that it is
”private” to the file in which it declared. We cannot import “private”
entities. We will talk more about and other “visibility modifiers” in
upcoming of this book.

The and expressions

What is a statement? Statement represents a syntactic unit of
programming language that expresses some action to be performed. They
are everything that up a complete unit of execution. We will start with
very basic statements in this section and progress towards more complex
examples.

Let’s have a look at few statements:

val result = 5 * 5

In this example, we have defined a statement in which multiplication
operation is resolved into the value that is assigned to a variable.

Any valid unit of code that resolves to a value represents expression.
Expressions are part of statements.

println(“Hello!”)

var x = 5

val parameter = if > 10 else 100

Al these are statements.

Grouping multiple statements (none or more) between braces “{ }” is
called a block of code. Blocks represent basic scopes in which values are
defined and to which we can access. We will talk more about scopes and
values in the next section.

Let’s make some code blocks (“Blocks.kt” source code

fun main(args: Array) { // <- Main function block
 // start

 if (args.size == 2) { // <-Start of 'if' block

 // Statements:
 print("1st argument: ${args[0]}")
 print("2nd argument: ${args[0]}")

 } // <- End of 'if' block

} // <- Main function block end

Constants and variables

Constants and are the names that you give to computer memory locations
that are used to store the values of a computer program. do not change
their value over time. A variable, on the other hand, changes its value. In
Kotlin we can define a variable and constant values

Each constant or variable belongs to parent scope. The of a variable (or
constant) is the region of a program in which variable (or constant) is
visible. parent scope variables (or constants) are accessible by their name
and can be used. If we try to access outside of their scope compiler will
complain and report an error.

Variables (and constants) can be local or global. A local variable is a
variable that is given local scope. Local variables reference in the function
or a block in which it is declared. Global variables are declared outside
any function, and they can be accessed (used) on any function in the
program.

Let's have a look at some examples. Open ”Values.kt” source code

The example in this section is an example of defining a constant. We will
the value that can be only read:

// We provide the type and the value:
val x: Int = 1

This statement consists of several parts. Reserved word “val” tells the
compiler that we will define a constant, which is followed by the
constant’s name. In our case name of constant is The type of the constant
is specified after the constant’s name with “:” character followed by the
data type. In this case, it is a number (Integer). Finally, we assign the
value like in math: “= 1”. have defined a constant named “x” with the
value of ”1” (which is an Integer data

Value for x cannot be reassigned. We can make this statement simpler
because type be inferred from the value that we are passing to a Let’s
define another constant:

val y = 1

constant follows the same rule. As can see, type is inferred we do not have
to mention it explicitly.

What will happen if we do not provide the type or we do not provide value
for the The following line will produce an error:

val z: Int

And finally, define variable instead of constant (to be mutable), we will
use the “var” word instead of

var m = 1

variable can change its value after it has been initialized:

var m = 1
println("M is: $m")
m = 2
println("M is: $m")
m = 3
println("M is: $m")

The of the code snippet will be the

M is: 1
M is: 2
M is: 3

As just saw, defining constants and variables is Let’s put the scope into
play

fun main() {

 val global = "Global"

 fun {

 val local = "Local"

 // We can access to global scope:
 println("Local: $local")
 println("Global: $global")
 }

 // We access to local scope,
 // compiler would complain:
 // println("Local: $local")
 println("Global: $global")
}

This example illustrates local vs global scope for the Inside the program’s
main function we have defined a constant named “global”. Inside the
function we have defined a constant named “local”. function can access
variables and constants of the outer scope. However, the outer scope
cannot access to local scope.

Working with

Function (or method) is a block of reusable code that is used to perform a
single, related action. Functions provide better modularity for your
application and a high degree of code reusing. The is a named (and
callable) piece of code that can accept zero or more arguments that will be
used inside the function’s block and can (but don’t have to) return a value
as a result of its work.

Functions in Kotlin are declared using the reserved word ”fun”:

val result = execute(25)

In this example, we have called a function with the name “execute” that
accepts one argument of Integer type and returns a result. The of function
execution is assigned to a constant named

Let’s see some functions through examples. Open the file with the name
from the book’s code examples.

This function receives two numbers (Integers) as parameters and returns
the sum of

fun sum(x: Int, y: Int): Int {

 return x + y

}

We can simplify it. Take a look at new version of that function:

fun sumSimplified(x: Int, y: Int) = x + y

We introduced a function with an expression body and inferred return
type.

In the same file we have a function that does not return a value, for that
purpose we use Unit type:

fun printSum(x: Int, y: Int): Unit {

 println("Sum is ${x + y}")
}

Since our function does not return anything, we can leave out the Unit
return type:

fun printSumSimplified(x: Int, y: Int) {

 println("Sum is ${x + y}")
}

Passing to functions

In this section, we will show how to pass arguments to functions. We will
present a couple of simple examples of Open “PassingArguments.kt” from
the book code examples:

// Function 2 Integer arguments and returns
// its multiplication:
fun multiply(a: Int, b: Int) = a * b

// Accepts 2 Integer arguments and returns its division:

fun divide(a: Int, b: Int) = a / b

// Main program function receives arguments from command line:
fun main(args: Array) {

 val x = 5
 val y = 7

 // We are passing values of 'x' and 'y' constants as
 // parameters to 'multiply' function:
 val z = multiply(x, y)

 // We are passing result(s) of 'sum' function as arguments
 // to 'divide' function:
 val m = divide(
 sum(x, y),
 sum(1, 2)
)

 // We are passing String (a word) as a parameter to

 // 'println' function:
 println("Z: $z, M: $m")
}

The output of the program will be:

Z: 35, M: 4

Follow the order and results of execution to verify the final result (value)
of ‘z’ and ‘m’

Default arguments

In Kotlin can define default values for function arguments (parameters).
That means that if we do not pass value for the argument, default value
will be used. Let’s see how it works in the following example
(“DefaultArguments.kt” from book code

 fun calculate(
 a: Int, b: Int = 10, c: Int = 20, d: Int = 30
): Int {

 return a + b + c
 }

 // We will use all default values for parameters
 // (passing value for 'a' is mandatory):
 calculate(10)

 // We will pass value for every argument of the function:
 calculate(1, 2, 3, 4)

 // We will pass values for 'a' and 'c' arguments,
 // all others will use its default values:
 calculate(100, c = 100)

We have defined function with name ‘calculate’. Function accepts four
arguments. First argument (“a”) does not have default value. However,
rest of arguments have default values: 10, 20 and 30 for “b”, “c” and “d”.

As can see in code comments, we may have various combinations in
function In last call of the function we have passed value to the argument
by its name. This is called argument”. We will talk more about named
arguments in upcoming sections of this book.

Working with exceptions

Exception represents the problem that occurs during the execution of a
program. When an Exception occurs the normal flow of the program is
disrupted and our program terminates abnormally. To avoid program
termination exceptions must be handled. The can happen for many various
reasons.

Some exceptions are caused by user error, some others are caused by
programmer error, while the others by physical resources that have failed
in some manner (filesystem access, network, etc).

From book code examples open “Exceptions.kt”:

@Throws(IllegalArgumentException::class)
fun getCarPrice(model: String) = when (model) {

 "Mercedes" -> 100
 "BMW" -> 200
 "Opel" -> 300
 else -> throw

 "We do not recognize '$model' car model"

)
}

val models = listOf("Mercedes", "Opel", "Fiat")

models.forEach {
 try {

 val price = getCarPrice(it)
 println("Price of '$it' is $price")
 } catch (e: IllegalArgumentException) {

 println(e.message)
 }
}

Let’s the code from above. function returns the price of a car based on a
model name. If we do not recognize provided model we are throwing
“IllegalArgumentException”. “IllegalArgumentException” is to indicate
that a function has been passed an illegal or inappropriate argument.
Besides this, a frequently used exception is “IllegalStateException” to
indicate that a function has been invoked at an illegal or inappropriate
time. In other words, our program is not in an appropriate state for the
requested operation.

In this program, we are printing prices for each car model from the
“models” collection. To prevent the program from crashing, we are
catching an exception that may be thrown by “getCarPrice” function.

Let’s run our example:

Price of 'Mercedes' is 100
Price of 'Opel' is 300
We do not recognize 'Fiat' car model

Note:

Unlike Java, Kotlin does not support checked exceptions that are notified
by the compiler at compilation time).

Throwable

In this section, we will focus on the “Throwable” data type (class) and
explain some hierarchy that exists behind this kind of data type (class). In
Kotlin “Throwable” class is the parent class for all “Exception” Every
exception has a message, stack trace (a list of frames that starts at the
current function and extends to when the program started), and an optional
cause. Besides than class, there is another subclass (data type): “Error”.
“Error” is derived from the “Throwable” class

Errors represent the abnormal conditions that can happen in case of severe
failures. They are not handled by programs! Errors are generated to
indicate errors generated by the runtime environment. For example, when
JVM reaches the point when it is out of memory. cannot recover from this
type of errors.

“Exception” data type (class) has two main sub-types

- “IOException” class: that I/O exception of some sort has occurred. It
represents the general class of exceptions produced by faulty or
interrupted I/O operations.

- ”RuntimeException” represents a superclass of exceptions that can be
thrown during the regular operation of the ”RuntimeException” and its
subclasses are unchecked exceptions. Unchecked exceptions do not need
to be declared in a function or constructor's throws clause if they can be
thrown by the execution of the function or constructor and propagate
outside the function or constructor boundary.

Note:

We will talk about classes and subclassing (inheritance) in upcoming of
this book.

From book code examples open “Throwable.kt”:

fun fail(t: Throwable) {

 println(t.message)
 exitProcess(1)
}

@Throws(Throwable::class)
fun process(what: Int) {

 if (what < 0) {

throw Throwable("Error")

 }
 println("Processing: $what")
}

val items = listOf(2, 4, 6, 0, -2, -4, -6)
items.forEach {
 try {

 process(it)
 } catch (t: Throwable) {

 fail(t)
 }
}

This example illustrates the use of the “Throwable” data type. As you can
see, the way we use it and the way we handle it is very similar to the way
that we use the “Exceptions” data type. Executing our program will
produce the following output:

Processing: 2
Processing: 4
Processing: 6
Processing: 0
Error

Note:

The is an expression in Kotlin, so you can use it, for example, as part of an
Elvis expression:

val model = ?: throw

 is

)

Try / Catch / Finally block

The ”try/catch/finally” block in writing the program code which may
throw exceptions in its runtime. By using it us a chance to recover from by
executing alternate program logic or handle the exception gracefully. Most
important, helps in preventing ugly application crashes.

Comparing to there only one a try expression is truly an expression in
That practically means that you can assign its result to a variable.

From book code examples open

@Throws(IllegalArgumentException::class)
fun process(what: Int) {

 if (what < 0) {
 throw IllegalArgumentException(

 "Invalid parameter: $what"

)
 }
 println("Processing: $what")
}

val items = listOf(2, 4, 6, 0, -2, -4, -6)
items.forEach {

 println("Processing started")

try {

 process(it)

} catch (t: {

 println(t.message)

} finally {

 println("Processing completed")
 }
}

Pay attention to the “try/catch/finally” block. If we execute this program
the following output will be produced:

Processing started
Processing: 2
Processing completed

Processing started
Processing: 4
Processing completed

Processing started
Processing: 6
Processing completed

Processing started
Processing: 0
Processing completed

Processing started

Invalid parameter: -2
Processing completed

Processing started
Invalid parameter: -4
Processing completed

Processing started
Invalid parameter: -6
Processing completed

Let’s have a look at example of “try / catch” used as expression:

@Throws(IllegalArgumentException::class)
fun getCarPrice(model: String) = when (model) {

 "Mercedes" -> 100
 "BMW" -> 200
 "Opel" -> 300
 else -> throw IllegalArgumentException(

 "We do not recognize '$model' car model"

)
}

val models = listOf("Fiat", "BMW", "Opel", "Audi")
models.forEach {

 println("Getting price for: '$it'")

val price = try {

 getCarPrice(it)
 } catch (e: IllegalArgumentException) {

 0
 }

 if (price > 0) {

 println("Price obtained: $price")
 } else {

 println("Price is not available")
 }
 println("- - -")
}

As you can see constant “price” will receive the value of the
“getCarPrice” function unless it throws an exception. If that happens, after
we catch the exception, zero is set as the value. Executing this code
snippet will produce the following output:

Getting price for: 'Fiat'
Price is not available
- - -
Getting price for: 'BMW'
Price obtained: 200
- - -
Getting price for: 'Opel'
Price obtained: 300
- - -
Getting price for: 'Audi'

Price is not available
- - -

The frequently used exception types

In this we will highlight some of the most commonly used exceptions and
explain their purposes.

Some of the most commonly used exceptions are:

- IllegalArgumentException
- IllegalStateException

- NumberFormatException: to indicate that the application has attempted
to convert a string to one of the numeric types, but that the string does not
have the appropriate format

- RuntimeException: represents the superclass of those exceptions that can
be thrown during the normal operation of the ”RuntimeException” and its
subclasses are unchecked exceptions. Unchecked exceptions do not need
to be declared in a function or constructor's throws clause if they can be
thrown by the execution of the function or constructor and propagate
outside the function or constructor boundary.

- NoSuchMethodException: when a particular function cannot be found.

- ClassCastException: to indicate that the code has attempted to cast an
object to a subclass of which it is not an instance.

- ParseException: informs that an error has been reached unexpectedly
while parsing is

Data type fundamentals

In upcoming sections, we will be covering fundamental data types that can
use in Kotlin to express information. In everyday development will be
using number data types, data types for presenting textual contents, types
for handling logical states (booleans), arrays, and data with “no data”,
better known as

Basic data types are the foundation for building more complex things and
representation of all your application Therefore it is really important to
have a good understanding of each of them and to know when to use each
of these

Numbers in Kotlin

We will start this section by presenting several literals that Kotlin

1
100
5000000000
-3

-3.3

0.5
1.1f
0x0F

Each of these belongs to a particular Kotlin number class.

1
100
-3

Are decimal numbers, represented with Kotlin’s “Int” (integer) class.
Memory consumption by an integer is 32 bits. Minimal value is: Maximal
value is: 2,147,483,647.

5000000000

Are ”Long” decimal numbers with memory consumption of 64 bits.
Minimal value is: -9,223,372,036,854,775,808. Maximal value is:
 9,223,372,036,854,775,807.

Kotlin also supports ”Short” and ”Byte” data types. ”Short” numbers
consume 16 bits in memory with a minimal value: -32768 and a maximal
value: 32767. “Byte” type consumes only 8 bits with a minimal value of
-128 and maximum: 127.

-3.3

0.5

Are floating point numbers represented by the “Double” Kotlin class. It is
the default class type for floating-point numbers. It consumes 64 bits of
memory.

1.1f

Is an example of a floating-point that consumes 32 bits and it is
represented with 32 bits in the memory. Notice the “f” suffix at the end of
the literal. It tells Kotlin compiler that we want a 32-bit version of a
floating-point number, that is

0x0F

Is an example of a number

Is an example of binary literal.

Note:

Kotlin does no support octal literals.

In Kotlin can use underscores to achieve numbers readability. Take a look
at the “underscoredNumbers” function inside the “Numbers.kt” file from
the book’s code examples:

fun underscoredNumbers() {

 val millions = 5_000_000
 val hexBytes = 0xFF_EE_FF_EE
 val bigOne = 1111_2222_3333_4444L
 val bytes = 0b11001100_11001100_11001100_11001100

}

Check out function too:

fun numbers() {

 val a = 1 // "Int" number type
 val b = a.toLong() // Convert "Int" into "Long"

 println("a: $a") // prints: 1
 println("b: $b") // prints: 1
 print(a == b.toInt()) // We compare "a" and "b",
 // it prints: true,
 // which is Boolean data type.
}

As you can see we have defined two constants with different data types.
Constant “a” is a simple Integer class) with the value of 1. Constant “b” is
“Long” but it is initialized with the value of constant “a”. In this example,
we performed two conversions. We have converted “a” which type is “Int”
into “Long” by calling the “toLong()” and we converted “b” into “Int” by
calling the “toInt()”

So, the conversation between numbers is done by one of the (each Kotlin
number class has

- “toByte()” converts into “Byte” data type

- “toShort()” converts into “Short” data type
- “toInt()” converts into data type

- converts into data type

- converts into data type

- converts into data type

- converts into data type

The type is inferred from the context. Also, the arithmetical operations are
overloaded for appropriate conversions. example:

val x = 1L + 1 // Long + Int = Long

All arithmetical operations are defined as operators defined in number
classes. A set of arithmetical operations is supported, such as “-”, “/”, “*”
etc.

“Int” classes also support bitwise operations provided with proper

- “shl(bits)”: signed shift left
- “shr(bits)”: signed shift right

- unsigned shift right
- “and(bits)”: bitwise and
- “or(bits)”: bitwise or
- “xor(bits)”: bitwise xor
- bitwise inversion

Characters in Kotlin

The data type in Kotlin represents Unicode characters. Characters can be
converted into To convert them use “toInt()” Each literal character goes in
single quotes, for example: and so on. Also, there are some important
escape sequences that we will need: , \b , \n , \r , \' , \" , \\ and Let’s take a
look at the “Characters.kt”

fun characters() {

 val tab = '\t'
 val quotes = '\"'
 val dollar = '\$'
 val character = 'c'
 print("$character$tab$dollar$tab$quotes")
}

Executing this example would give the following output:

c $ "

“c” character, dollar, and quotes are printed separated with tab.

Booleans in Kotlin

Class “Boolean” represents boolean data type. has two possible values:
”true” or ”false” which is the base of logic in computer

There are 3 major operations we can perform on booleans in Kotlin:

“||”, lazy disjunction, for example, a || b

“&&”, lazy conjunction, for example, a && b

“!”, negation, for example: !a || !b

Open “Booleans.kt” from code examples of the book:

fun booleans() {

 val number = 1
 val a = number == 1
 val b = number == 2
 println("a || b -> ${a || b}")
 println("a && b -> ${a && b}")
 println("!a || !b -> ${!a || !b}")
}

Running this example will give the following output:

a || b -> true
a && b -> false
!a || !b -> true

As you will in the upcoming section of the book, booleans are the
foundation of any program’s business logic.

Arrays

Arrays represent data that consist of a collection of elements. element is
identified by at least one array index or key. To understand in Kotlin open
“Arrays.kt” and take a look at simple self-explanatory code. Let’s go
through examples.

The example illustrates the creation of an array that contains five integer
numbers:

val myArray = arrayOf(2, 4, 6, 8, 10)

As can see function crates array that contains members that are all
parameters that we have passed to the The of this array is

To create of 10 members which values are generated by: member index +
100 can achieve like

val a = Array(5, { i -> i + 100 })

In this example, we have created an array named “a” with members: “100,
101, 102, 103, 104”. This example calls class constructor that accepts two
parameters: number of items in the array, lambda function that creates
values for each array member based on the current index. We will talk
more about class constructors and lambda functions in the upcoming parts
of this book.

To print all of “a” array members can use the following function:

fun printArray(array: Array<*>) {

 array.forEachIndexed { index, value ->

 println("$index -> $value")
 }
}

Running this function will give the following output:

0 -> 100
1 -> 101
2 -> 102
3 -> 103
4 -> 104

To the value to 1000 to the element at a position at index 2 do the

a[2] = 1000

As can see, we have access to the third element of “a” array and set a new
value. The element of the array is at the index of 0.

the first member of the array and its value to a constant (named can be
done like

val y = a[0]

has now a value of

Array can have members of various

val b = arrayOf(2, 4, 6, "Some string", "One more string", 8, 10)

Or to have all “nulls” for the value of its members:

val c = arrayOfNulls(5)

In this example, the “arrayOfNulls” function creates an array with five
null elements. The type of members (once we assign something to is ”Int”
(integer). We will talk about the null type soon. For it is enough that
understand that all five members of this array do not have assigned.

And finally, an of integers can be created like this

val d = intArrayOf(10, 100, 1000, 10000)

However, this is not the same as:

val e = arrayOf(10, 100, 1000, 10000)

Since “d” has the type of “IntArray”, while “e” has the type of “Array”.
For arrays of other types, there are like “charArrayOf()”, “longArrayOf()”,
and so on. Or, you can just use the “arrayOf()” for

Strings in Kotlin

String data type represents a sequence of characters. In Kotlin, Strings are
immutable. Elements in one String are characters that can be accessed like
any other

Let’s have a look at the ”Strings.kt” source code We will start with some
simple strings:

val s1 = "Some string"

In this example, we have defined a constant named “s1” with the value of:
“Some

Then, the example is with the escaped character. this example we are
escaping tab

val s2 = "Some\tstring\n"

Printing the value of gives the following output:

Some string

Kotlin supports the definition of multi-line strings

Multiline string:

val s3 = """
 Raw string example ...
 We have multiline here!
 """

Note:

Multiline strings preserve all white spacing we define inside the string. To
avoid that can use the “trimIndent”

val s4 = """
 Raw string example ...

 We have multiline here!
""".trimIndent()

In the case of margin that is formed with the beginning of each line can
use the “trimMargin”

val s5 = """

|Raw string example ...

|We have multiline here!
""".trimMargin()

Printing both and constants will give us the same output:

Raw string example ...
We have multiline here!

Since we already mentioned that can do with strings all that do with any
let’s print each letter of one simple word:

fun stringIsArray(word: String) {

 word.forEach {
 println(it)
 }
}

fun main() =

function will print each character of the word “Elephant”:

E
l
e
p
h

a
n
t

We will work more with strings in upcoming of this book.

String templates

Let’s go back to a file Second.kt and the function called Take a look at the
following:

is ${x +

You will notice that we used the ... }” string template expression. We
reduced the code boilerplate we would have in Java. We avoided String
concatenation with + operator.

The examples will show how powerful string templates are in Kotlin.
Open and take a look carefully into string templates usage:

val firstName = "John"
val lastName =

val title = "We called $firstName $lastName to come."

As you can see, it is really easy to inject values into the text. After $ sign
put the name of the value that you are interested in.

val profession = "captain"

val subtitle = "He is: ${if (firstName == "John") profession else
"sailor"}."

Any expression can be used.

Kotlin supports multiline text. There is no need for escaping when using
multiline text. If you plan to write some regex patterns it may be very
useful you. You don't need to escape a backslash by a backslash too!

Take a look at the example of multiline text. String template entries may
be used here as in previous examples:

val bornDay = 6
val bornYear = 1580
val bornMonth = "June"

val diedDay = 21
val diedYear = 1631
val diedMonth = "June"

val body = """
${profession.capitalize()} $firstName $lastName
($bornDay $bornMonth $bornYear - $diedDay $diedMonth $diedYear),

Admiral of New England, was an English soldier, explorer, and author.
He was knighted for his services to Sigismund Báthory, Prince of
Transylvania, and his friend Mózes Székely.
His books and maps were important in encouraging and supporting
English colonization of the New World.
He gave the name New England to the region and noted:

"Here every man may be master and owner of his own labour and land...
If he have nothing but his hands, he may...by industries quickly grow
rich."
"""

“StringTemplates.kt” from the book code examples will give us the
following output:

We called John Snow to come.
He is: captain.
Captain John Snow
(6 June 1580 - 21 June 1631),
Admiral of New England, was an English soldier, explorer, and author.
He was knighted for his services to Sigismund Báthory, Prince of
Transylvania, and his friend Mózes Székely.
His books and maps were important in encouraging and supporting
English colonization of the New World.
He gave the name New England to the region and noted:
"Here every man may be master and owner of his own labour and land...
If he have nothing but his hands, he may...by industries quickly grow
rich."

Nullability

We have already mentioned in previous sections of this book. Now we
will explain its purpose. Every variable or constant that we create should
point to a certain class Before we go any further we will explain shortly
the meaning of the “class” and the “instance”. A ”class” is the blueprint
(definition) which use to create objects in memory. An object is an
instance of a class. and the “instance” are the same thing, but the word

“instance” indicates the relationship of an object to its class. To better
illustrate this let’s use a example. For example “wolf” is a ”class” of
animals. But, in a herd, every wolf (member) of the herd is one instance of
that

Variables that do not point to anything yet have default ”null” type. Using
constants and variables that do not point to any particular instance can be
dangerous. In Java, it is really easy to have that a null value. Let’s have a
look at the example (“NullExamples.java” from the book’s code

String nullStringVariable;
Boolean b;

Both lines of code produce with null values. However, once we initialize
these variables they do not have null value anymore:

nullStringVariable = “My string”;
b = true;

To make these null again we will assign null to them

nullStringVariable = null;
b = null;

Trying to invoke function on variable that has null value will produce
following code will crash application:

nullStringVariable = null;

int size = nullStringVariable.length();

Calling the “length()” function will crash the application since
“nullStringVariable” is null and does not point to any particular instance
of the

In Kotlin working with is safe. Kotlin's type system protects us from
getting null pointer exceptions.

To get a null pointer exception you must do one of the following:

- Explicitly throw NullPointerException

- Use !! operator (we will talk more about this later) with null variable (or
constant)

- Use Java code that is not guarded against it
- Inconsistence with initialization

In the following example, we are returning a null value by intention. Open

/**
 * This example returns incremented value
 * if passed parameter is positive number
 * otherwise it returns null.
 */
fun incrementPositive(x: Int): Int? {
 return if (x > 0) x + 1 else null

}

The most important part of this example lies in the “Int?” part where we
defined our function return type. This means, the value type is integer but
it may be also If we have defined our function return type as “Int” instead
of “Int?” we could not return null.

type ”optional” type. Every class has its “optional” Optional is a container
class used to contain null or objects. The object is used to represent null
with an absent value. Thanks to facilities that are exposed to the user’s
access to nullable data are safe and guarded.

Look into the next example:

/**

 * s1 - cannot assign null values!
 * s2 - can assign null values
 */
var s1: String = "this variable cannot store null references"
var s2: String? = null

We control whether or not we accept nulls!

Let’s consider the following scenario: if we have or maybe we do not have
null assigned to our variable (or constant) and we are not sure about it?
Well, in that case, we will deal with it like in the last example from

/**
 * If word is not null print it.

 */
fun printer(word: {

word?.let {
 val uppercase = word.toUpperCase()

 println("Word [$uppercase]")
 }
}

The parameter of the function can be null and the expected type of the
parameter is a string, then the type of parameter itself is “String?”, an To
access it safely we will use the (“?:”) operator. Use the ”elvis” operator to
access instance’s members. If the instance is null nothing will happen. will
not enter “let” code block and execution will not be performed.

“Let” is a scoping function that lets declare a variable for a given scope.
There is the most common use of ”let” when applied to a nullable
reference like in our last example. The “?:” (“elvis”) operator lets you
make sure that the code in scope is only executed if the expression is not
null. If we are dealing with variables or function return values that are not
“nullable”, ”elvis” operator is not needed:

/**
 * is not null!
 */
fun String) {

 val uppercase = word.toUpperCase()

 println("Word [$uppercase]")
}

As can see, we do not need the “elvis” operator nor the “let” scoping
function here because the “word” function parameter cannot be null. is
pure String, not an ”optional”.

Let’s rewrite our Java code from the previous section into the Kotlin:

var b: Boolean? = null
var nullStringVariable: String? = null

In this code snippet we have defined two null variables. Now, let’s crash
the app:

// Calling 'length()' function will crash the application:

val size =
println("Length is: $size")

Again, we have tried to access the member of the null instance. As can see
we have used optional types of “Boolean?” “String?”. explicitly access
without using the safe “elvis” operator we will use the not-null assertion
operator: Using “!!” tells the Kotlin compiler that we are sure that it is
safe to access instance members. Doing this may crash the application if
we are wrong! The converts any value to a non-null type. the value is null
it throws an exception. This is why the previous snippet will crash our
program. Let’s get back to the “elvis” operator. What happens if we go
with the safe option and use

// 'size' constant gets Int? type:
val size = nullStringVariable?.length
println("Length is: $size")

As it is mentioned in the comment line, constant “size” will get the
optional type of In this case, running the snippet will make the following
output but it will not crash our

Length is: null

Update the snippet by assigning value to the

nullStringVariable = "Elephant"
val size = nullStringVariable?.length

println("Length is: $size")

The output of this snippet will be:

Length is: 8

In this example, the “size” constant got “Int?” type too.

If we operate pure “Int” type and its ”optional” equivalent will happen?
Take a look at our next example:

nullStringVariable = "House"
val number = 10
val size = nullStringVariable?.length

val sum = size + number

The line of the code snippet will not work! The will complain with the
following

“Operator call corresponds to a dot-qualified call 'size.plus(number)'
which is not allowed on a nullable receiver 'size'”

To make this work we must access operator member on optional type:

// This will work:
val sum =
println("Sum is: $sum")

The of the executed snippet will be:

Sum is: 15

The of constant is “Int?”

To reduce unnecessary code boilerplate Kotlin comes up with more great
features such as null shorthands. Let's take a look at the following
example:

val files = File("./some_directory").listFiles()
?: "empty")

Print function will print “empty” if there are no files, otherwise, it’s size.

In next example, we will assign value if result is not null, otherwise we
throw exception:

val subscribers = data["subscribers"] ?: throw IllegalStateException(
"There is no any subscribers"
)

One more example for not null shorthand use:

val player = getPlayer()
Heep - Easy Livin.mp3")

As you can see, Kotlin simplifies work with instances that can have null
as its value. Comparing to Java this makes the life of a developer much
easier.

Note:

Optional types have been introduced in Java since version 8.

Another useful feature of Kotlin is assignment. Multiple assignment
allows to assign multiple values in one Let’s have a look at examples to
illustrate this. From the book’s code examples open the
“MultipleAssignement.kt” source code file and take a look at the first

val (first, second) = arrayOf(1, 2)

println("First: $first")
println("Second: $second")

The of executed code snippet is:

First: 1
Second: 2

As you can see, “first” and “second” constants have “1” and “2” as
assigned values.

Let’s have a look at the second example:

fun parameters(): List {

 return listOf(3, 5, 7)
}

val (parameter1, parameter2, parameter3) = parameters()
println("Parameters: $parameter1, $parameter2, $parameter3")

Thanks to the same principle we have assigned to constants “parameter1”,
“parameter2”, and

The of executed code snippet is:

Parameters: 3, 5, 7

Type checks and smart casts

To test whether the object is an instance of the specified type check
operator “is” is used. If we are checking an immutable value, there is no
need to do the casting.

Open “TypeCheck.kt” from book code examples. Instance check is
demonstrated in the following example:

/**
 * Power if double data type, otherwise throw exception
 */
@Throws(IllegalArgumentException::class)
fun power(x: Any): Double {

if is {
 return x.pow(2.0)
 }

 throw IllegalArgumentException(

 "This function deals only with doubles"

)
}

Example function accepts arguments of any data type. However, if the
passed value is Double it will return its power, otherwise, it will throw an
exception.

To cast explicitly into desired data type take a look at the second example:

/**
* Casts explicitly into the Double data type
*/
fun powerLogger(value: Any) {

 val converted = value as Double
 try {

 val pow = power(converted)
 println("Power of $converted is: $pow")
 } catch (e: IllegalArgumentException) {

 println("Error: ${e.message}")
 }
}

Value is cast to String data type using “as” cast operator. Logger function
accepts any data type and performs explicit conversion to String data most
upper type for all Kotlin classes is ”Any”. Kotlin class inherits it. We will
talk soon about Kotlin classes and inheritance.

Let’s play a little bit with these two functions:

val a = 2.0

val b = 3
val c = "not a double"

val aa = power(a)
println("a power is: $aa")

try {

 val bb = power(b)
 println("b power is: $bb")
} catch (e: IllegalArgumentException) {

 println("Error: ${e.message}")
}

try {

 val cc = power(c)
 println("c power is: $cc")
} catch (e: IllegalArgumentException) {

 println("Error: ${e.message}")
}

The output of this will be:

a power is: 4.0
Error: This function deals only with doubles
Error: This function deals only with doubles

As you can see only “a” constant will satisfy type check condition. “b”
and “c” will not as they are not of Double data type.

Let’s try out “powerLogger” function:

powerLogger(a)
powerLogger(b)
powerLogger(c)

As most data types can’t be directly cast into the other data types this will
crash our program:

Power of 2.0 is: 4.0
Exception in thread "main" java.lang.ClassCastException:
java.lang.Integer cannot be cast to java.lang.Double ...

If the cast is not possible, operator throws an exception. Because of this,
this approach is not If we fix our code a little bit we can execute our
program without a crash:

/**
* Casting into the Double data type
*/

@Throws(IllegalArgumentException::class)
fun powerLogger(value: Any) {

 val converted = when (value) {
 is Int -> {

 value.toDouble()
 }
 is Double -> {

 value as Double // 'as Double' can be omitted,
 // so no cast needed

 }
 else -> {

 throw IllegalArgumentException(
 "Unsupported data passed: $” +

 "{value::class.simpleName}"
)
 }
}

 val pow = power(converted)
 println("Power of $converted is: $pow")
}

Running a new modified version will give the following output:

try {

 powerLogger(a)
 powerLogger(b)
 powerLogger(c)
} catch (e: IllegalArgumentException) {

 println("Error: ${e.message}")
}

Power of 2.0 is: 4.0
Power of 3.0 is: 9.0
Error: Unsupported data passed: String

The is to use the data type conversion In our case, we have executed the
“toDouble” function that will convert the Integer instance into a Double
data All data types have conversion for other basic data types. You
probably remember that we have already presented this in the in

Let’s have a look at a couple more examples:

if (a is String) // If a is instance of String

if (a !is String) // If a is not instance of String

fun printIfString(a: Any) {

 if (a is String) {
 println(a) // a is automatically cast to String
 }
}

In the last example, don't have to use “as” operator. This for both when-
expressions and while-loops (we will explain both in upcoming sections
of the casts do not work when the compiler can't guarantee that the
variable cannot change between the check and the usage.

Operators and expressions

In upcoming sections, we will be covering Kotlin operators and
expressions. If are not familiar with the meaning of operators let’s explain
it in short terms. represent constructs defined within programming
languages that have functions like behavior. However, operators differ
from functions syntactically or semantically. The common operators are
arithmetic, assignment, and performing

Equality

Kotlin recognizes two types of equality:

- Equality by reference (“===” and “!==” operators)

- Equality by structure (“==” and “!=” operators)

Let’s take a look at ”Equality.kt” example:

data class TestEquality(val a: String, val b: Int) {

}

val a = TestEquality("Some string", 2)
val b = TestEquality("Some string", 2)
val c = a

println("a === b: ${ a === b }")
println("a === c: ${ a === c }")
println("a !== b: ${ a !== b }") // Not equal by reference

println("a !== c: ${ a !== c }") // Not equal by reference

println("a == b: ${ a == b }")
println("a == c: ${ a == c }")

For the data type that we are using, we have defined a data class called
“TestEquality”. We will talk more about data classes later.

Observe the output of program

a === b: false
a === c: true
a !== b: true
a !== c: false
a == b: true
a == c: true

If our class is not a data class comparing using == (equality by structure)
would return us false instead of true.

Arithmetic operators

Kotlin supports the following arithmetic operators:

- Addition (used for string concatenation
- “-”: Subtraction
- “*”: Multiplication

- “/”: Division

- “%”: Modulus

To see how we can use these operators open “Arithmetic.kt” from book’s
code examples:

val a = 1
val b = 2
val c = 3
val hello = "Hello"
val world = "World"

// "+" - Addition:
val sum = a + b + c

println("a + b + c = $sum")

val concatenation = hello + " " + world

// or converted into the template:
// concatenation = "$hello $world"

println(concatenation)

// "-" - Subtraction:
val sub = c - b

println("c - b = $sub")

// "*" - Multiplication:
val multi = b * c

println("b * c = $multi")

// "/" - Division:
val div = 12 / c

println("12 / c = $div")

// "%" - Modulus:
val mod = c % b

println("c % b = $mod")

Running example program will output the following:

a + b + c = 6
Hello World
c - b = 1
b * c = 6
12 / c = 4

c % b = 1

As you can see, using basic arithmetic operators is very simple and
intuitive.

If you are how operators are working we will explain that now. Let’s say
that you are using the addition arithmetic operator to add two numbers and
“b”.

Expression ”a + b” calls ”plus” member function The addition operator is
overloaded to work with String values and other basic data types. Char
and Boolean data types are excluded from If you want to support an
addition operator for your custom data types, all that you have to do is
 overload the “plus” Let’s see this in practice. Open
“ArithmeticOverloading.kt”:

class MyCustomType(val param: Int) {

 operator fun plus(what: MyCustomType): MyCustomType {

 return MyCustomType(param + what.param)
 }
}

We have define our custom data type that defines how addition is Let’s see
this in

val a = MyCustomType(5)

val b = MyCustomType(10)
val c = a + b

println("a + b = ${c.param}")

The of the program will be:

a + b = 15

This is a simple implementation that gives us very powerful possibilities.

Assignment operators

Assignment operators are used for value to a variable or As you probably
remember we have shown how to assign values to variables and constants
in previous sections of the book. So let’s refresh our memory with a few
short examples:

val a = 1
val b = 2

var c = 10
var d = a

And so on.

Besides simple assignment using the “=” operator, there are a few more
assignment operators that we can use. Let’s have a look at

“Assignment.kt” from book code

var a = 3
var b = 5
println("a: $a, b: $b")

a += b // Is equivalent to: a = a + b,

 // translates to: a.plusAssign(b)

println("a += b: $a")

b -= a // Is equivalent to: a = a - b,

 // translates to: a.minusAssign(b)

println("b -= a: $b")

a *= b // Is equivalent to: a = a * b,

 // translates to: a.timesAssign(b)

println("a *= b: $a")

a /= b // Is equivalent to: a = a / b,

 // translates to: a.divAssign(b)

println("a /= b: $a")

a %= b // Is equivalent to: a = a % b,

 // translates to: a.modAssign(b)

println("a %= b: $a")

Running this example will give us the following output:

a: 3, b: 5
a += b: 8
b -= a: -3
a *= b: -24
a /= b: 8
a %= b: 2

Unary operators

Let’s demonstrate unary operators with a simple example. Open
“Unary.kt” source code file from book code examples:

val a = 1
val b = true

val minusA = -1
val notB = !b

println("a: $a, minus a: $minusA")

println("b: $b, not b: $notB")

In this example, we have defined Integer and Boolean constants. By using
unary operators “-” on Integer and “!” (negation) on Boolean we have
inverted its values. If we run this program the following output will be
printed out:

a: 1, minus a: -1
b: true, not b: false

Most common unary operators are:
- “+”: Unary plus, with expression: “+a” that is translated to:
“a.unaryPlus()”
- “-”: Unary minus, with expression: “-a” (inverts sign) that is translated
to:

- “!”: Not, with expression: “!a” (inverts that is translated to:

Increment and operators

To increase or to decrease value by one Kotlin gives two operators:

- Increment with expression: “++a” (or “++a”) that is translated to:

- “- -”, Decrement wit expression: “- -a” (or “- -a”) that is translated to:

Open source code file from book code examples:

var a = 10

println("a: $a")
println("a: ${a++}")
println("a: ${++a}")
println("a: ${a--}")
println("a: ${--a}")

We have defined variable “a” with the value of 10. Then, we will
increment it twice and decrement it twice too. Running this program will
give the following output:

a: 10
a: 10
a: 12
a: 12
a: 10

If the output is not what you have expected it to be, this is because and
“++a” do not have the same “++a” increases the value of a variable first
and then returns it. While, on the other hand, “a++” returns the value of
the variable and then increases it. The applies to the decrease operator.

Comparisons

To compare two of certain data we use comparison operators. Compared
objects (instances) can be equal, object “a” can be smaller than object “b”,
and opposite. Objects can be not equal as well. We will illustrate each of
the commonly used comparison operators with proper Open
“Comparison.kt” from book code examples:

val a = 1
val b = 2
val c = 1

println("a: $a, b: $b, c: $c")
println("a == b: ${a == b}")
println("a == c: ${a == c}")
println("a != b: ${a != b}")
println("a != c: ${a != c}")

println("a > b: ${a > b}")
println("a > c: ${a > c}")
println("a < b: ${a < b}")
println("a < c: ${a < c}")

println("a >= b: ${a >= b}")
println("a >= c: ${a >= c}")
println("a <= b: ${a <= b}")
println("a <= c: ${a <= c}")

Executing our program will give us the following results:

a: 1, b: 2, c: 1
a == b: false

a == c: true

a != b: true
a != c: false
a > b: false
a > c: false
a < b: true
a < c: false
a >= b: false
a >= c: true
a <= b: true
a <= c: true

In this example have defined three constants which are compared each
other. Let’s take a look at all of these comparisons that we have
performed, meaning of each and corresponding (functions):

- Greater than, with expression “a” > “b” that is translated to:

a.compareTo(b) > 0

- Less than, with expression “a” < “b” that is translated to:

a.compareTo(b) < 0

- “>=”: Greater than or equal to, with expression “a” >= “b” that is
translated to: a.compareTo(b) >= 0
- “<=”: Less than or equal to, with expression “a” <= “b” that is translated
to: a.compareTo(b) <= 0
- to, with expression “a” “b” that is translated to:

a?.equals(b) ?: (b === null)

- Not to, with expression “a” “b” that is translated to:

!(a?.equals(b) ?: (b === null))

operators

Kotlin supports two main logic operators:

- “||” known as “or” operator and
- “&&” known as “and” operator.

“Or” operator returns true Boolean if either of the Boolean expression is
true, while on the other hand “And” operator true if all Boolean
expressions are true.

Let’s have a look at examples that will illustrate this for Open from book
code examples:

val a = 1
val b = 2
val c = 3
val d = 4

// 'Or' examples:
val or1 = (a > b) || (c > d)

val or2 = (a < b) || (c < d)
val or3 = (a == b) || (c == d)
val or4 = (a == b) || (c == d) || (a == c)

println("($a > $b) || ($c > $d) -> $or1")
println("($a < $b) || ($c < $d) -> $or2")
println("($a == $b) || ($c == $d) -> $or3")
println("($a == $b) || ($c == $d) || ($a == $c) -> $or4")

// 'And' examples:
val and1 = (a > b) && (c > d)
val and2 = (a < b) && (c < d)
val and3 = (a == b) && (c == d)
val and4 = (a == b) && (c == d) && (a == c)

println("($a > $b) && ($c > $d) -> $and1")
println("($a < $b) && ($c < $d) -> $and2")
println("($a == $b) && ($c == $d) -> $and3")
println("($a == $b) && ($c == $d) && ($a == $c) -> $and4")

// Mixed example
val mixed = ((a < b) || (c < d)) && (a != c)
println("(($a < $b) || ($c < $d)) && ($a != $c) -> $mixed")

Executing the program will give us the following output:

(1 > 2) || (3 > 4) -> false
(1 < 2) || (3 < 4) -> true
(1 == 2) || (3 == 4) -> false

(1 == 2) || (3 == 4) || (1 == 3) -> false
(1 > 2) && (3 > 4) -> false
(1 < 2) && (3 < 4) -> true
(1 == 2) && (3 == 4) -> false
(1 == 2) && (3 == 4) && (1 == 3) -> false
((1 < 2) || (3 < 4)) && (1 != 3) -> true

Please through the example’s source code line by line and compare
expressions with the program’s output result. You will see that the “Or”
and “And” behave exactly as we described Also, you can see that we can
combine them to get more complex expressions like in the last “mixed”
example.

Operator overloading

In Kotlin it is possible to create our implementations for operators.
example for “+” operator, for “-” and so on. To make this it is required to
provide a member function or an extension function with a fixed name, for
the corresponding type. Each function that the operator must be marked
with the “operator” modifier.

Let’s show you a simple example of “+” operator overloading. From book
code examples open

class Example(var value: String) {

operator fun Example {

 return Example("$value, ${what.value}")

 }

operator fun Example {

 return Example("$value, $what")
 }

 override fun toString() = value
}

We have defined the implementation for “+” operator that can work with
“Examples” class type itself and strings. Let’s try it out:

val a = Example("A")
val b = Example("B")
val c = Example("C")

val ab = a + b
val abc = a + b + c

val a2 = a + "Hello"
val a3 = a + "Hello" + "World"

val bc = b + "Hello" + c
val bc2 = b + c + "Hello"

println("a + b = $ab")
println("a + b + c = $abc")

println("a + 'Hello' = $a2")
println("a + 'Hello' + 'World' = $a3")
println("b + 'Hello' + c = $bc")
println("b + c + 'Hello' = $bc2")

If we execute this the following result will be generated:

a + b = A, B
a + b + c = A, B, C
a + 'Hello' = A, Hello

a + 'Hello' + 'World' = A, Hello, World
b + 'Hello' + c = B, Hello, C
b + c + 'Hello' = B, C, Hello

The following list contains pairs of expression name to operator function
name:

+a → a.unaryPlus()
-a → a.unaryMinus()
!a → a.not()
a++ → a.inc()
a-- → a.dec()
a + b → a.plus(b)
a – b → a.minus(b)
a * b → a.times(b)
a / b → a.div(b)
a % b → a.mod(b)
a in b → b.contains(a)
a !in b → !b.contains(a)
a[i] → a.get(i)

a[i, j] → a.get(i, j)
a[i_1, …, i_n] → a.get(i_1, …, i_n)
a[i] = b → a.set(i, b)
a[i, j] = b → a.set(i, j, b)
a[i_1, …, i_n] = b → a.set(a_1, …, a_n, b)
a() → a.invoke()
a(i) → a.invoke(i)
a(i_1, …, a_n) → a.invoke(a_1, …, a_n)
a+=b → a.plusAssign(b)
a-=b → a.minusAssign(b)

a*=b → a.timesAssign(b)
a == b → a?.equals(b) ?: b === null
a !=b → !(a?.equals(b) ?: b ===null)
a>b → a.compareTo(b) > 0
a→ a.compareTo(b) < 0
a>=b → a.compareTo(b) >= 0
a<=b → a.compareTo(b) <= 0

If you ever need to override some other operator rather than “+” in
this you can find the name of the corresponding operator function.

Conditional expressions

Conditional expressions are features that perform different
computations or actions depending on whether a programmer-
specified boolean condition evaluates to true or false.

Let’s examine a simple example from the “Conditional.kt” book code
examples source code

fun compare(x: Int, y: Int): Int {

 if (x > y) {

 return 1
 } else if (x < y) {

 return -1
 }

 return 0

}

This example demonstrates the use of the ”If/Else” The takes two
arguments of the Integer type. If the first parameter is bigger than the
second parameter function will return a value of 1. If it is smaller, it
will return -1. If they are equal to each other function will return 0.

Same function can be simplified as

fun compare(x: Int, y: Int) =
 if (x > y) 1 else if (x < y) -1 else 0

Let’s run this function and see what output it will be

var x = 1
var y = 2

println("Compare $x vs $y: ${compare(x, y)}")

x = 2
y = 1
println("Compare $x vs $y: ${compare(x, y)}")

x = 2
y = 2
println("Compare $x vs $y: ${compare(x, y)}")

Execution of the program

Compare 1 vs 2: -1
Compare 2 vs 1: 1
Compare 2 vs 2: 0

If expression

In Kotlin is an expression and it can return a value. We will examine
the use of “If” on “If.kt” book’s code source

fun getMemberTypeById(id: Int): String {

 return if (id == 0) {
 "Unregistered"
 } else if (id == 1) {
 "Registered"
 } else if (id == 2) {

 "Admin"
 } else {
 "Unknown"
 }
}

We have defined a function that will accept the user’s as an argument
of Integer type and return associated type with that Id. Let’s try it:

val ids = listOf(0, 1, 2, 3, 4)

ids.forEach {

 val memberTyeId = getMemberTypeById(it)
 println("Id: $it -> $memberTyeId")
}

We have defined a list with Ids from 0 to 4. We will iterate through
the list and print member for each of Ids. Executing the program will
give us the following output:

Id: 0 -> Unregistered
Id: 1 -> Registered
Id: 2 -> Admin
Id: 3 -> Unknown
Id: 4 -> Unknown

Same function can be written with less

fun getMemberTypeById(id: Int) = if (id == 0) {

 "Unregistered"
} else if (id == 1) {

 "Registered"
} else if (id == 2) {

 "Admin"
} else {

 "Unknown"
}

or rewritten into “When” expression (Kotlin’s answer to traditional
“Switch/Case”):

fun getMemberTypeById(id: Int) = when (id) {

 0 -> {
 "Unregistered"
 }

 1 -> {
 "Registered"
 }

 2 -> {
 "Admin"
 }

 else -> {
 "Unknown"
 }
}

See “When.kt” from book code examples.

When

Unlike and the statement can have a number of possible execution
paths. The statement replaces the traditional operator that we used in
Java. can be used either as an expression or as a statement.

“When” matches its argument against all branches sequentially.
Matching is performed until a branch condition is satisfied. If it is
used as an expression, the value of the satisfied branch becomes the
value of the overall expression. values of individual branches are
ignored it is used as a statement.

If none of the other branch conditions are satisfied, branch is
evaluated. If ”When” is used as an expression, the branch is
mandatory, unless the compiler can prove that all possible cases are
covered with branch conditions. If many cases should be handled in
the same way, the branch conditions can be combined with a comma.

from book code examples illustrates common use cases of

fun dataTypeRecognizer(what: Any) {

 when (what) {
 is Float -> println("Floating point")
 is Int -> println("Number")
 is String -> println("String")
 is Boolean -> if (what) {

 println("Boolean, true")

 } else {

 println("Boolean, false")

 }

 else -> println("Unknown")
 }
}

The function uses “When” to recognize the data type for provided
argument. Now have a look at the example of the statement that a
value:

@Throws(IllegalArgumentException::class)

fun getCarPrice(model: String) = when (model) {

 "Mercedes" -> 100
 "BMW" -> 200
 "Opel" -> 300

 else -> throw IllegalArgumentException(

 "We do not recognize this model."

)
}

is used to return the price for a particular car model. If none of the
recognized models is found exception is thrown.

More simple examples of “When” use

@Throws(IllegalArgumentException::class)
fun validateUserType(userType: Int) {

 when (userType) {
 0 -> println("Registered user")
 1 -> print("Administrator")
 else -> {

 println("Error recognizing user type")
 throw IllegalArgumentException(

 "Invalid user type: $userType"

)
 }

 }
}

This function illustrates the use of “When” for validating user types
in some imagined system. Something similar is demonstrated with our
next example function (function):

fun validateAccountType(accountType: Int) {

 when (accountType) {
 0, 1 -> println("Welcome")
 else -> println("Permission denied")
 }
}

To illustrate everyday use cases we will build on top of validating
user types example:

fun filterUserType(userType: Int): Int {

 if (userType in 0..1) {
 return userType
 }
 return -1
}

@Throws(IllegalArgumentException::class)
fun validateUserTypeFiltered(userType: Int) {

 when (userType) {
 filterUserType(userType) -> {

 println("Ok")
 validateUserType(userType)
 }
 else -> print("Not ok")
 }
}

And our last example function uses “When” to illustrate how player
hits the target in a computer shooting game:

fun precisionCheck(points: Int) {

 val max = 100
 when (points) {
 in max / 5..max / 4 -> println("PRECISE")
 in (max / 4) until max -> println("VERY PRECISE")
 max -> println("STRAIGHT IN TARGET")
 else -> println("MISSED")
 }
}

Now when we have defined all these functions will play a little bit with
each of them. We will start with the first one, to check data type for
passed

println("Data type recognizer:")
listOf(
 "Hi", "there",
 1, 10, 1.10,
 5 == "5".toInt()

).forEach {

 println("$it is:")
 dataTypeRecognizer(it)

 println()
}

When executed this code snippet will give us the following output:

Data type recognizer:

'Hi' is:
String

'there' is:
String

'1' is:

Number

'10' is:
Number

'1.1' is:
Unknown

'true' is:
Boolean, true

Next example uses “getCarPrice” function to determine and print
price for various car models:

println("Car prices:")
listOf("Mercedes", "BMW", "Opel", "Fiat").forEach {

 try {

 val price = getCarPrice(it)
 println("Price for $it car is: $price")
 } catch (e: IllegalArgumentException) {

 println("$it: ${e.message}")
 }
}

Running the code snippet will print out the following:

Car prices:
Price for Mercedes car is: 100
Price for BMW car is: 200
Price for Opel car is: 300
Fiat: We do not recognize this model

As you can see “When” matched all “supported” models and thrown
exception for the first model that we do not recognize.

Next example that we will play with is with validating user types in
some imagined system:

val user1 = "john.smith"
val user2 = "dr.cooper"
val admin = "root"
val guest = "guest"

val systemUsers = mapOf(user1 to 0, user2 to 0, admin to 1)
val challenges = listOf(user1, user2, guest, admin)

println()
println("Checking users:")
challenges.forEach {

 var userType = -1
 systemUsers[it]?.let { type ->
 userType = type
 }

 println("Checking user: $it")
 try {

 validateUserType(userType)
 } catch (e: IllegalArgumentException) {

 println(e.message)
 }
 println()
}

If we execute this code snippet, we will see that users “john.smith”,
and “root” are recognized as valid in the system, where “guest” user
is not:

Checking users:
Checking user: john.smith
Registered user

Checking user: dr.cooper

Registered user

Checking user: guest
Error recognizing user type
Invalid user type: -1

Checking user: root
Administrator

And last, but not least, our “precisionCheck” example:

println("Precision check:")

listOf(10, 20, 30, 40, 50, 80, 100).forEach { points ->

 println("Points: $points, precision: ")
 precisionCheck(points)
 println()
}

If we run this snippet and validate our points the following result will
be printed out:

Precision check:
Points: 10, precision:
MISSED

Points: 20, precision:
PRECISE

Points: 30, precision:
VERY PRECISE

Points: 40, precision:
VERY PRECISE

Points: 50, precision:
VERY PRECISE

Points: 80, precision:
VERY PRECISE

Points: 100, precision:
STRAIGHT IN TARGET

We have validated points range from 10 to 100 and depending on
“When” conditions matching proper precision status are printed out.

Classes

“Class” represents a "blueprint" for creating objects. Each object is
created by calling the proper class constructor function which returns
an object. In Kotlin class is defined using the “class” word.

Let’s go through from book code examples and see how we can define
a class and instantiate it.

Simple class definition:

class Dummy {}

Main elements that consist the class are the following:

- the class name,
- the class header its type parameters, the primary constructor, and so
- the class body, surrounded by curly braces.

Both the header and the body are optional. If there is no class body
like in the previous we can omit braces:

class NoBody

Having instance of these classes can be performed like this:

val d1 = Dummy()
val d2 = Dummy()
val d3 = Dummy()

val nbd1 = NoBody()
val nbd2 = NoBody()
val nbd3 = NoBody()

In this example, we have created three unique instances of “Dummy”
and “NoBody” classes. For each instantiation, we have called fault
constructor which does not accept any arguments. We will talk about
class constructors in the next section, so let’s see what constructors
are and how to use them.

Constructors

Constructor represents a special function that is used to initialize
objects. The constructor is called when an object of a class is In
Kotlin, the class can have a primary constructor and one or more
secondary constructors. The primary constructor is a part of the class
header. constructor keyword can be omitted If the primary
constructor does not have any annotations or visibility modifiers.

Let’s take a look at a couple of examples. We will continue with the
“Classes.kt” source code

// Class 'Car' with primary constructor
// that accepts one argument:
class Car constructor(val brand: String)

// 'constructor' keyword is omitted for primary constructor:
class brand: String)

Let’s create a few instances of these classes:

val car = Car("BMW")
val car2 = Car("Mercedes")
val plane = Plane("Boeing")

The primary constructor can't contain any code. Initialization code
can be placed in initializer blocks. They are prefixed with the “init”
keyword.

The example illustrates this:

class Calculator(val Int) {

 val Int

init {

= * 2

}

}

This code can be simplified:

class Calculator(
 val Int,
 val Int = * 2
)

Creating a couple of instances of “Calculator” class:

val calc = Calculator(2)
val calc2 = Calculator(3)
val calc3 = Calculator(2, 4)
val calc4 = Calculator(3, 5)

If we print out every instance’s property values:

println("${calc.parameter1}, ${calc.parameter2}")
println("${calc2.parameter1}, ${calc2.parameter2}")
println("${calc3.parameter1}, ${calc3.parameter2}")
println("${calc4.parameter1}, ${calc4.parameter2}")

The following output will be produced:

2, 4
3, 6
2, 4
3, 5

Let’s say that we don't want the class to be constructed publicly, we
can do it the following way:

class NotPublicConstructed
private name: String) {

 // ...
}

Class constructor is now private. That means that it is only accessible
within the class scope and not outside. Private constructors are
usually used in singleton pattern implementations.

Note:

Visibility modifiers are used to restrict the accessibility of objects,
interfaces, constructors, functions, properties, and their setters to a
certain level. There is need to set the visibility of getters. have the
same visibility as the property. Kotlin distinguished four visibility
modifiers:

- public: visible everywhere

- protected: visible inside the same class and its subclasses

- private: visible inside the same class only

- internal: visible inside the same module.

Secondary constructors

In Kotlin can use more with a different set of parameters along with
the primary constructor. We will continue where we left last time and
illustrate the use of secondary constructors. From book code examples
open “Classes.kt”:

class name: String) {

constructor(name: String, year: Int)

: this(name) // ← calls primary constructor

constructor(name: String, year: Int, height: Int)

: this(name) // ← calls primary constructor

}

val person1 = Person("John Smith")
val person2 = Person("John Doe", 1985)
val person3 = Person("John SomeOther", 1987, 190)

The code demonstrates the usage of secondary in Kotlin. If we didn’t
define a primary constructor, the class will have a default–empty
constructor, with no arguments.

We instantiated three instances of the Each with a different
constructor is used for You can also notice that Kotlin does not have
the word “new” for instantiation, unlike

Note:

It is required to call the primary constructor from the secondary
constructor explicitly. It is important to note too that property of the
class can’t be declared inside the secondary constructor.

Class

In Kotlin classes can have the following members:

- Constructors
- Initialization blocks

- Functions
- Properties
- Nested classes
- Inner classes
- Misc object declarations – for example: “companion

We will talk about all of these in the upcoming of this book.

Class properties

One of the most important ideas behind work with classes is the
concept of “encapsulation”. This idea is used encapsulate code and
data into a single entity. A property in a class is declared the same as
declaring a variable with “val” and “var” keywords. A property
declared as var is mutable and thus, can be changed.

Let’s have a look at a simple example that illustrates this. From book
code examples open “Properties.kt”:

class Coordinate {

 var x: Int = 0
 var y: Int = 0
 var z: Int = 0

 fun print() = println("Coordinate(x=$x, y=$y, z=$z)")
}

val center = Coordinate()
center.print()

val location = Coordinate()
location.x = 10
location.y = 20
location.z = 30
location.print()

Properties defined as are mutable. Read-only properties are defined
as

Let’s go one step further. We will define the means for getting and
setting our encapsulated properties. From book code examples
“GetterAndSetter.kt”:

class Coordinate {

 var reposition: Int = 0

 var x: Int = 0

get() = field

set(value) {
 field = reposition(value)
 }

 var y: Int = 0
 get() = field
 set(value) {
 field = reposition(value)
 }

 var z: Int = 0

 get() = field
 set(value) {
 field = reposition(value)
 }

 fun print() = println("Coordinate(x=$x, y=$y, z=$z)")

 private fun reposition(param: Int) = param + reposition
}

“get” and “set” (functions) define how we will write and read the
value of our properties. In this example “set” function performs a
certain “correction” to the passed value, while on the other hand
“get” function just returns the current value of the property. Because
of this, in this case, the “get” function is redundant. We may get rid of
it:

class Coordinate {

 var reposition: Int = 0

 var x: Int = 0
 set(value) {
 field = reposition(value)
 }

 var y: Int = 0
 set(value) {
 field = reposition(value)
 }

 var z: Int = 0

 set(value) {
 field = reposition(value)
 }

 fun print() = println("Coordinate(x=$x, y=$y, z=$z)")

 private fun reposition(param: Int) = param + reposition
}

Let’s try out our new class implementation:

val center = Coordinate()
center.print()

val location = Coordinate()
location.reposition = 100
location.x = 10
location.y = 20
location.z = 30
location.print()

Executing the program will produce the following

Coordinate(x=0, y=0, z=0)
Coordinate(x=110, y=120, z=130)

Inheritance

In this section, we will explain and demonstrate what inheritance is.
Simply put inheritance is the process where one class acquires the
properties and fields) of another.

The class which inherits the properties of is known as “subclass”
(“derived class”, “child class” and so and the class whose properties
are inherited is known as “superclass” (“base class”, ”parent class”).

All classes at the top of the hierarchy are inheriting superclass. From
”Any” class we inherit the following

- “equals”

- “hashCode”
- “toString”

“equals” function

Indicates whether some other object is "equal to" this one.
Implementations must the following requirements:

- Reflexive: for any non-null value x, x.equals(x) should return true.
- Symmetric: for any non-null values x and y, x.equals(y) should
return true if and only if y.equals(x) returns true.
- Transitive: for any non-null values x, y, and z, if x.equals(y) returns
true and y.equals(z) returns true, then x.equals(z) should return true.
- Consistent: for any non-null values x and y, multiple invocations of
x.equals(y) consistently return true or consistently return false,

provided no information used in equals comparisons on the objects is
modified.
- Never equal to null: for any non-null value x, x.equals(null) should
return false.

“hashCode” function

Returns a hash code value for the object. The general contract of
hashCode is:
- Whenever it is invoked on the same object more than once, the
hashCode function must consistently return the same integer,
provided no information used in equals comparisons on the object is
modified.
- If two objects are equal according to the equals() then calling the
hashCode function on each of the two objects must produce the same
integer result.

“toString” function

Returns a string representation of the object.

We will demonstrate inheritance with simple From book code
examples open “Inheritance.kt”:

// Class 'Human' Inherits by default: 'Any':
open class Human

// Class 'Indian' inherits Human:
class Indian :

// Class with non-empty constructor:
open class Vehicle(type: String)

// Class 'Truck' inherits 'Vehicle' and it's constructor:
class Truck(type: String) : Vehicle(type)

// Class 'Train' inherits class 'Vehicle'
// but it has empty constructor.
// Value is passed to the parent constructor:
class Train : Vehicle("Civil")

// Another way to inherit class"
class Bus : Vehicle {

 // Constructor goes here:
 constructor(type: String) : super(type)

 init {

 // Your special initialization code
 // ...
 }
}

Note:

Class can’t be inherited until it is defined as By default, all Kotlin
classes are closed for inheritance. Also, it is possible to inherit only
one superclass. On the other hand, multiple interfaces can be
implemented. We will explain this in upcoming of this book.

Overriding

If a subclass provides the specific implementation of the function that
has been declared by its parent class, this is called function (function)
overriding. overriding is used to provide the specific implementation
of a function that is already provided by its superclass.

Note:

The function must have the same name as in the parent class and it
must have the same parameter as in the parent class

In Kotlin override function in the class we must define it as ”open” in
our “super” (parent) class. Let’s have a look at an example that
illustrates this. From book code examples open

open class Engine(protected val model: String) {

open fun turnOn() = println("$model: Turning on")

open fun turnOff() = println("$model: Turning off")
}

class CarEngine(model: String) : Engine(model) {

override fun turnOn() {

 super.turnOn()
 println("$model: Car is starting")
 }

override fun turnOff() {

 super.turnOff()

 println("$model: Car is stopping")
 }
}

class CustomEngine(model: String) : Engine(model) {

 // We override just 'turnOn' function for this class:

override fun turnOn() {

 // We don't want super class business logic,
 // so we do not call 'super':
 println("$model: Car is starting")
 }
}

Let’s play with these classes:

val carEngine = CarEngine("Fiat")
carEngine.turnOn()
carEngine.turnOff()

val customEngine = CustomEngine("Rocket")
customEngine.turnOn()
customEngine.turnOff()

Executing an example program will produce the following

Fiat: Turning on
Fiat: Car is starting
Fiat: Turning off

Fiat: Car is stopping
Rocket: Car is starting
Rocket: Turning off

Note:

A member function that is marked with ”override” is itself If you
want to prohibit re-overriding, use the “final”

open class TruckEngine(model: String) : Engine(model) {

final override fun turnOn() {

 // something before 'super' business logic:

 println("$model: Preparing")
 super.turnOn()
 println("$model: Engine is running")
 }

final override fun turnOff() {

 println("$model: Preparing")
 super.turnOff()
 println("$model: Engine has stopped")
 }
}

class Scania : TruckEngine("Scania"){

// We cannot override 'turnOn' and 'turnOff' functions

 // since they are marked with 'final override'
}

As you can see from these simple examples, overriding is one of the
most important features of object-oriented development. Overriding
increases the usability of our code and gives us greater flexibility in
development.

Object-oriented features

In this section, we will continue our journey through the world of
object-oriented development. We will demonstrate some very
important Kotlin features such as:

- Data classes

- Basics of abstraction
- Companion object
- Interfaces.

Data classes

Kotlin has a rich set of idioms to offer to developers. One of such is
”data are classes whose main purpose is to hold the data. In such of
some standard functionalities are provided.

”Data are classes marked with the “data” keyword. For “data
classes” the compiler automatically derives members from all
properties declared in the primary constructor. These members are:

- getters and setters

- “equals” and “ hashCode” pair

- implementation that returns “String” in human-readable form

- “componentN” functions corresponding to the properties in their
order of declaration
- “copy”

The following rules must be fulfilled to utilize “data

- The primary constructor must have one or more

- All primary constructor parameters must be marked as the
constants or variables

- “Data classes” cannot be “abstract”, “open”, “sealed” or “inner”

If you need to create some “DTO” (“Data Transfer Objects”) then
”data are ideal for you. Let’s have a look at the example the illustrates
use of “data classes”. From book code examples open

data class User(val name: String, val age: Int)

Let’s instantiate a few “users”:

listOf(

User("John Doe",

User("John Lord",

User("John Smith", 35)

).forEach {

 println("$it")
}

Executing this code snippet will produce the following output:

User(name=John Doe, age=40)
User(name=John Lord, age=45)
User(name=John Smith, age=35)

You may see now that the “toString” function produced the human-
readable form of every “User” class instance.

Abstraction

class” represents the class that cannot be instantiated and can be only
and functions of “abstract class” are non-abstract unless you
explicitly declare them as ”abstract” by using the “abstract” keyword.
Each “abstract” member doesn't have an implementation in its
mother class.

Note:

We do not need to annotate an abstract class or function with an
“open” modifier. comes without saying. The same applies to
“interfaces”. Also, we can override a non-abstract open member with
an abstract one.

Let’s have a look at a simple abstraction example. From book code
examples open

abstract class Animal {

abstract fun walk()
}

open class Cat : Animal() {

override fun walk() {

 println("Cat walks")
 }
}

class Lion : Cat() {

override fun walk() {

 println("Lion walks")
 }
}

Let instantiate our cats and let them walk:

val cat = Cat()
val lion = Lion()

cat.walk()
lion.walk()

Running this code will produce the following output:

Cat walks
Lion walks

As we already Kotlin we can make class fields abstract as well.
Depending on if these fields are val or var we must implement proper
getter or getter with a setter in class that is extending:

abstract class DbProvider {

abstract val database: String
}

class PostgresProvider : DbProvider() {

override val database: String

get() = "Postgres"
}

class MySQLProvider : DbProvider() {

override val database: String

get() = "MySQL"
}

try them:

val databases = listOf(

 PostgresProvider().database,
 MySQLProvider().database
)

databases.forEach {

 println(it)
}

Printing each database value will produce the following output:

Postgres
MySQL

As you can see, overriding abstract properties is very

Object

In the modern development world, one of the most frequently used
design patterns is “Singleton” is an object-oriented design pattern
where a certain class can have only one object (instance).

Kotlin provides an elegant solution for ”singletons”. To create a
“singleton” it is required to use the “object” declaration. Object
declaration is done by using the To better understand this open
“Object.kt” from book code examples:

import java.awt.Image
import java.net.URL

object ImageManager {

 private val images = mutableListOf

 fun download(url: URL): Boolean {

 // Perform image download procedure
 // and add to 'images' collection ...
 return true
 }

 fun getImages() = images
}

Let’s try our ”object” (“singleton”):

val url = URL(

)

// No instantiation needed for the 'ImageManager' data type:

Here we have only one instance of “ImageManager” in our program
memory.

Class companion object

If you need to write a function that can be called without having a
”class” instance but needs access to the internals of a you can write it
as a member of an ”object” declaration inside that If you declare a
“companion object” inside your you’ll be able to call its members
with the same syntax as calling “static” functions in Java, using only
the “class” name as a qualifier.

Let’s take a look at “Companion.kt” from book code

class Greeting {

companion object {

 fun hello() = println("Hello!")
 }
}

Call the static

fun main() {

 // We are accessing to 'hello' function
 // without instantiation needed:

}

Console output:

Hello!

We have access to the “hello” function without making a new instance
of the “Greeting” class.

Sometimes we need to create an instance of a slight modification of
some (abstract) class, without explicitly declaring a new subclass for
it. Kotlin handles this case with object expressions and object
declarations. Let's take a look at our next example. will create a
couple of “anonymous” book code examples open

abstract class Command {

abstract fun execute()
}

class Executor : Command() {

 private val commands = mutableListOf()

 fun addCommand(command: Command) {

 commands.add(command)
 }

 override fun execute() {

 for (command in commands) {

 command.execute()
 }
 }
}

Now when we have defined some basic classes, we will try to define
some “anonymous” objects:

// Let's try it:
val executor = Executor()

val obj = object : Command() { // ← Defining “anonymous”

 // object

override fun execute() {

 println("Starting session.")
 }
}
executor.addCommand(obj)

val obj2 = object : Command() {

override fun execute() {

 println("Logging in.")
 }
}
executor.addCommand(obj2)

val obj3 = object : Command() {

override fun execute() {

 println("Launch app 1")
 }
}

executor.addCommand(obj3)

val obj4 = object : Command() {

override fun execute() {

 println("Launch app 2")
 }

}
executor.addCommand(obj4)

val obj5 = object : Command() {

override fun execute() {

 println("Logging out")
 }
}
executor.addCommand(obj5)

val obj6 = object : Command() {

 override fun execute() {

 println("Stopping session")
 }
}
executor.addCommand(obj6)

executor.execute()

Executing this program will produce the following

Starting session.
Logging in.
Launch app 1
Launch app 2
Logging out
Stopping session

“Class companion object” can have a name. From book code
examples open “NamedCompanion.kt” and have a look:

class Database(val type: String) {

companion object Factory {

 fun createInMemoryDatabase() = Database("InMemory")

 fun createFilesystemDatabase() =

 Database("Filesystem")
 }

 fun describe() = println("This is '$type' database")
}

Let’s create some “Database”

val inMemory =
val filesystem =

which can be simplified to:

val inMemory = Database.createInMemoryDatabase()
val filesystem = Database.createFilesystemDatabase()

Having “companion object” named is mostly important for
interoperability with Java so access to “companion object” is
performed through some friendly name. For example
(“Companions.java” from book code

// This class object is not named:

// Let's try named one:
Database database =
database.describe();

Finally, let’s use our databases:

inMemory.describe()
filesystem.describe()

And see the produced output:

This is 'InMemory' database
This is 'Filesystem' database

We will take a look at another example using From book code
examples open

interface Gpu { // We will talk more about interfaces

 // in upcoming sections of the book

 fun displayImage()
}

interface SoundCard {

 fun playSound()
}

open class Computer(cpuCores: Int, memoryInGigabytes: Int) {

 open val cores: Int = cpuCores
 open val memory: Int = memoryInGigabytes
}

These will represent foundation for defining simple “computer”

val computer1 = object : Computer(4, 32), Gpu, SoundCard {

 override fun displayImage() {

 println("Displaying image")
 }

 override fun playSound() {

 println("Playing sound")
 }
}

val computer2 = object : Computer(8, 64), Gpu, SoundCard {

 override fun displayImage() {

 println("Performing hardware processing")
 println("Displaying image")
 }

 override fun playSound() {

 println("Perform sound equalization")
 println("Playing sound")

 }
}

We have instantiated two unique computer configurations as objects.
Let’s use them now in the rest of our

listOf(computer1, computer2).forEach {

 println("Cpu cores: ${it.cores}, memory: ${it.memory}GB")
 it.displayImage()
 it.playSound()
}

Executing it will produce the following output:

Cpu cores: 4, memory: 32GB
Displaying image
Playing sound

Cpu cores: 8, memory: 64GB
Performing hardware processing
Displaying image
Perform sound equalization
Playing sound

And, but not least objects example, from book code examples will
illustrate access to variables of enclosed

var countLeft = 0
var countRight = 0
val executor = Executor()

val left = object: Command(){

 override fun execute() {

 println("Executing: LEFT")

countLeft++

 }
}

val right = object: Command(){

 override fun execute() {

 println("Executing:

countRight++

 }
}

As you can see “left” and “right” objects can access to “counter”
variables and increase its If we play a little to demonstrate this:

executor.addCommand(left)
executor.addCommand(left)
executor.addCommand(left)

executor.addCommand(right)
executor.addCommand(right)
executor.addCommand(left)

println("Executed left: $countLeft")
println("Executed right: $countRight")
executor.execute()
println("Executed left: $countLeft")
println("Executed right: $countRight")

The following result will be produced:

Executed left: 0
Executed right: 0
Executing: LEFT
Executing: LEFT
Executing: LEFT
Executing: RIGHT
Executing: RIGHT
Executing: LEFT
Executed left: 4
Executed right: 2

Interfaces

“Interfaces” are abstract that are used to specify a behavior that
classes must implement. Interfaces are declared using the ”interface”
keyword, and may only contain function signature and constant
declarations. can contain declarations of abstract as well as function
implementations. What makes them different from abstract classes is
that interfaces cannot store Interfaces can have properties. However,
the properties need to be abstract or to provide accessor
implementations.

Interfaces cannot be instantiated, but rather are implemented. A class
that implements an interface must implement all of the non-default
described in the interface, or be an abstract class.

We will demonstrate the usage of “interfaces” by a simple example.
From book code examples open “Interfaces.kt”:

interface Vehicle {

 fun startEngine()

 fun stopEngine()

 fun drive()
}

We have defined a simple “interface” called “Vehicle”. Each vehicle
can:

- start the engine

- stop the engine
- and drive.

Based on this we can define a class for “Car” as the type of vehicle:

open class Car : Vehicle {

override fun startEngine() {

 println("start")
 }

override fun stopEngine() {

 println("stop")
 }

override fun drive() {

 println("drive")
 }

}

And finally, we will define a concrete car brand called ”Mercedes”:

class Mercedes(private val model: String) : Car() {

override fun startEngine() {

 super.startEngine()
 println("$model: start")
 }

override fun stopEngine() {

 super.stopEngine()
 println("$model: stop")
 }

override fun drive() {

 super.drive()
 println("$model: drive")
 }
}

So, let’s play a bit with our Mercedeses:

val m1 = Mercedes("Mercedes-Benz AMG A 35")

val m2 = Mercedes("Mercedes-Benz AMG C 63")
val m3 = Mercedes("Mercedes-Benz AMG C 63 S")
val m4 = Mercedes("Mercedes-Benz CLA 250")

val scooter = object : Vehicle {

override fun {

 println("Scooter: start")

 }

override fun {

 println("Scooter: stop")
 }

override fun {

 println("Scooter: drive")
 }
}

val vehicles = listOf(m1, m2, m3, m4, scooter)

vehicles.forEach {

 it.startEngine()
 it.drive()

 it.stopEngine()
 println()
}

As you can see we have defined four Mercedeses and a scooter, all of
tehm represent “Vehicle”. If we run our program the following output
will be produced:

start
Mercedes-Benz AMG A 35: start
drive
Mercedes-Benz AMG A 35: drive

stop
Mercedes-Benz AMG A 35: stop

start
Mercedes-Benz AMG C 63: start
drive
Mercedes-Benz AMG C 63: drive
stop
Mercedes-Benz AMG C 63: stop

start
Mercedes-Benz AMG C 63 S: start
drive
Mercedes-Benz AMG C 63 S: drive
stop
Mercedes-Benz AMG C 63 S: stop

start
Mercedes-Benz CLA 250: start
drive
Mercedes-Benz CLA 250: drive
stop
Mercedes-Benz CLA 250: stop

Scooter: start
Scooter: drive
Scooter: stop

Properties in Interfaces

In interfaces, properties can be can be abstract or it can provide
implementations for accessors. It is important to note that declared in
interfaces can't have backing fields. Because of this accessors declared
in interfaces can't reference them.

From book code examples open “InterfaceProperties.kt”:

interface Process {

val cores: Int

 val memory: Int
 get() = 64

 fun execute()

 fun getUsedResources() = "cores=$cores, memory=$memory"
}

As you can see “Process” interface has two properties: “cores” and
both Integer data type. Let’s implement our interface:

class Download(val what: URL) : Process {

override val Int

get() = 4

 override fun execute() {

 println(
 "Downloading: $what, using(${getUsedResources()})"
)
 }
}

class Encrypt(val what: String) : Process {

override val Int

get() = 8

override val Int

get() = 128

 override fun execute() {

 println(
 "Encrypting: $what, using(${getUsedResources()})"
)
 }
}

We have implemented the interface in two classes: “Download” and
“Encrypt”. Overriding “cores” property is mandatory since the
property is abstract. However, for the “memory” property we have a
default value defined which means that we do not have to override it.

Interfaces

In Kotlin interface can inherit from other interfaces. Because of this,
both provide implementations and both declare new properties and
functions. that implement these interfaces are required to define the
missing implementations. Let’s take a look at a proper example that
demonstrates this. From book code examples open

interface Device {

 val model: String

}

interface AudioDevice : Device {

 val brand: String
 val serialNumber: Long

override val String
 get() = "$brand::$serialNumber"

 fun play()
}

class MusicPlayer(
 override val brand: String,
 override val serialNumber: Long
) : AudioDevice {

override fun {

 println("'$model' is playing")
 }
}

is our first ”interface”. It is really simple. It has only one property:
“model”. ”AudioDevice” device inherits “Device” interface, it
overrides the “model” property and introduces two new properties
and “play” function signature. “MusicPlayer” implements all this. It

overrides properties in its constructor and provides “play” function
implementation. Let’s instantiate it and try out instantiated objects:

listOf(

 MusicPlayer("Sony", 1241),
 MusicPlayer("Panasonic", 1001001),
 MusicPlayer("Sony", 1242)
).forEach {

 it.play()
}

Executing this will produce the following output:

'Sony::1241' is playing
'Panasonic::1001001' is playing
'Sony::1242' is playing

Overriding conflicts

If we inherit more than one implementation of the same function we
conflict will From book code examples open “Conflicts.kt”:

interface IDummy1 {

 fun doSomething() {

 val hello = hello()
 println(hello)
 }

 fun hello(): String
}

interface IDummy2 {

 fun doSomething() {

 val hello = hello()
 println(hello.reversed())
 }

 fun hello() = "Hello world"
}

We have defined two interfaces: “IDummy1” and “IDummy2”. Both
interfaces have functions with the same signatures. Then, we will
implement them:

class Dummy1 : IDummy1 {

 override fun hello() = "Lorem ipsum"

}

class Dummy2 : IDummy2

class Dummy3 : IDummy1, IDummy2 {

 override fun doSomething() {

 }

 override fun hello(): String {

 return super.hello()
 }
}

Classes and “Dummy2” do not have any conflicts. However, class
“Dummy3” implements both interfaces and functions conflict
occurred. is that Kotlin has a solution for this. We can decide which
“super” implementation to call:

super.doSomething()
super.doSomething()

In this example, we will use implementation from both parents. Let’s
try our classes:

println("Dummy 1:")
val dummy1 = Dummy1()
dummy1.doSomething()

println("Dummy 2:")
val dummy2 = Dummy2()
dummy2.doSomething()

println("Dummy 3:")
val dummy3 = Dummy3()
dummy3.doSomething()

these and executing the “doSomething” function on each instance will
produce the following results:

Dummy 1:
Lorem ipsum

Dummy 2:
dlrow olleH

Dummy 3:
Hello world
dlrow olleH

Functional interfaces

Interfaces with only one abstract function are called “functional
interfaces”. They can have multiple non-abstract members. Let’s take
a look at a simple example of such an interface.

Declaring “functional interfaces” is done by using the “fun” interface
modifier. From book code examples open “FunctionalInterface.kt”:

fun interface Executable {

 fun execute(what: String?): Boolean
}

As you can see, we have defined a simple interface with only one
abstract member.

You can use a lambda expression of creating a class that implements a
functional interface manually. Based on this, you can write the
following code:

val empty = Executable { it == null || it.isEmpty() }

Let’s play with it:

listOf("", null, "Hello", "World").forEach {

 if {
 println("No data")
 } else {
 println(it)
 }
}

Executing this code snippet will give us the following results:

No data

No data
Hello
World

Nested classes

In Kotlin can be nested the other classes. Let's take a look at the
example from book code examples “Nested.kt”:

class Nested1 {

 val a = 0

 class Nested2 {

 val a = 1

 class Nested3 {

 val a = 2
 }
 }
}

We have defined three classes nested into each other: “Nested1”,
“Nested2”, and “Nested3”. Each class has a constant with the same
name “a”, but with a different value. Let’s instantiate each class and
print the value of the constant:

val n1 = Nested1()

val n2 = Nested1.Nested2()

val n3 = Nested1.Nested2.Nested3()

println("Values: ${n1.a}, ${n2.a}, ${n3.a}")

As you can see, to access nested classes we must go through the parent
ones:

val n3 =

Now, when we execute this code snippet, the following output will be
produced:

Values: 0, 1, 2

Inner classes

In situations when we need access to the members of the outer class,
we should mark our class as The class has a reference to an object of
an outer class. However, using classes is recommended because of
potential memory leaks. Let's take a look at the example. From book
code example open “Inner.kt”:

class A {

 val a = 100

 inner class B {

 val b = a
 }
}

We have defined a class “A” with a member constant “a”. Inside the
“A” class we have defined “inner” “B” class which has a member
constant “b”. The “b” constant takes a value of “A” class “a”
constant. To be able to work with the “inner” class, both instances
must be created. “A” and “B”:

val v = A().B()

If we print the value of “B” “inner” class “b” constant:

println("Value of b is: ${v.b}")

The following output will be produced:

Value of b is: 100

Functions

In upcoming sections, we will regain our learning focus on Kotlin
functions. We will direct our attention to some more advanced
functions related topics, such as:

- Functions invoking
- Understanding functions types
- Using named arguments
- Single-Expression functions
- Variable argument functions
- Use of spread operator
- Local functions
- Infix functions

- Tail-Recursive functions
- Anonymous functions

- Inline functions
- Lambdas and
- Closures.

Invoke

In Kotlin, all objects with an “invoke” operator defined can be
invoked as a function. Open from book code examples:

class Invokable {

 operator fun invoke(): Invokable {

 println("I am invoked")
 return this
 }
}

We have defined the Kotlin class that can be invoked as a function. To
invoke it, we have to create a new instance of the class and execute
(invoke)

val invoker = Invokable()
invoker()

Invoking our class instance will give us the following output:

I am invoked

Higher-order functions

In Kotlin function can be used as a data type and passed as a
parameter to other A can be returned as a result of some other
function as Let's have a look at the example of passing a function as
an argument to

Open from book code

fun calculate(

 a: Int, b: Int,

operation: (Int, Int) -> Int

): Int {

 return operation(a, b)
}

A function that can accept other as a parameter or returns them is
called the ”Higher-Order function”. Instead of usual data types as a
parameter to a function, we will pass other anonymous function or
lambda (we will talk more about lambdas

Let’s try it:

fun sum(a: Int, b: Int) = a + b

fun diff(a: Int, b: Int) = a - b

val a = 1
val b = 2

val calculateSum = calculate(a, b, ::sum)

val calculateDiff = calculate(a, b, ::diff)

println("calculate(a, b, sum) == $calculateSum")
println("calculate(a, b, diff) == $calculateDiff")

We will call the “calculate” function and pass “a” and “b” with values
of 1 and 2 as arguments along with the reference to another function
that will be executed and its value returned as a As you can see we
will try this with “sum” and “diff” that will perform different math
operations on “a” and “b” Running our program will result in the
following output:

calculate(a, b, ::sum) == 3
calculate(a, b, ::diff) == -1

and “::diff” a reference to a function that we are passing as the last
argument to “calculate” of both passed to “calculate” function “(Int,
Int) -> Int”. That means that we are passing a function that expects
two Integer arguments and returns Integer as well.

What if we want to return a function from another function instead of
the usual data As we already mentioned, that can be done too:

@Throws(IllegalArgumentException::class)
fun getCalculationStrategy(strategyId: Int): (Int, Int) -> Int

{

 val strategies = getCalculationStrategies()
 if (strategyId >= strategies.size) {

 throw IllegalArgumentException(

 "No strategy available for id: $strategyId"

)
 }
 return strategies[strategyId]
}

Where is defined like this:

fun getCalculationStrategies() = listOf(::sum, ::diff)

Our function will return us a proper calculation strategy function
based on the ”strategyId” that we provide. If “strategyId” is invalid,
an exception will be thrown.

Let’s try it:

val strategy = getCalculationStrategy(0)
val result = strategy(a, b)
result is: $result")

Executing our program will obtain proper calculation strategy,
perform strategy on “a” and “b” constants and finally print out the

result:

Calculation result is: 3

Named

In Kotlin function parameters can be named. Let's take a look at the
example ”NamedParameters.kt” from book code examples and see
how we can use this in everyday

fun logNewEntry(

date: Date = Date(), who: String, what: String = ""

) {

 val jobPerformer = if (what.isEmpty()) {

 "No job performed"
 } else {

 "Performed: $what"
 }
 println("$date :: $who :: $jobPerformer")
}

This is a simple function that accepts three arguments and based on
them performs some logging. The and last arguments (parameters)

are optional since we have defined default values that will be assigned
to arguments if we do not provide Now we will try this function with
several variations:

val today = Date()
val name = "John Smith"
val cleaning = "Cleaning windows"

logNewEntry(today, name)
logNewEntry(today, name, cleaning)
= today, who = name, what =
= cleaning, date = today, who =
=
logNewEntry(today, who =

As you can see, we can omit arguments that have default values
defined in the function’s signature. Also, what is important for this
example, we can provide function arguments (parameters) by name.
We have bolded and underlined arguments passing by name so you
don’t miss it. Thanks to this, we are not in obligation to follow the
parameters (arguments) ordering since they are passed by their name.
Also, we can combine passing arguments by name with the standard
way of doing this. All arguments that are not passed by name must be
provided exactly in the same as it is in the function’s signature.

If we run this small program the following output will be printed out:

Sun Nov 01 12:50:34 CET 2020 :: John Smith :: No job performed

Sun Nov 01 12:50:34 CET 2020 :: John Smith :: Performed: Cleaning
windows
Sun Nov 01 12:50:34 CET 2020 :: John Smith :: Performed: Cleaning
windows
Sun Nov 01 12:50:34 CET 2020 :: John Smith :: Performed: Cleaning
windows
Sun Nov 01 12:50:34 CET 2020 :: John Smith :: No job performed
Sun Nov 01 12:50:34 CET 2020 :: John Smith :: No job performed

Single-Expression functions

Functions in Kotlin can be declared as single-expression. This can
help reduce our codebase size and make things simpler in some Let’s
have a look at from book code examples. We will start with regular
function implementation and then we will make it simpler in a couple
of steps until we get the simplest single-expression

fun calculate(a: Int, b: Int): Int {

 return a + b
}

fun calculateAsSingleExpression(

 a: Int, b: Int

): Int = a + b

fun calculateAsSingleExpressionShortest(

 a: Int, b: Int

) = a + b

This example illustrates the same function implemented in three
different (similar) ways. The version of the function implements the
calculation function in the usual traditional way. The has a signature
that defines two Integer arguments and a function body that performs
the calculation and returns the result (also Integer type).

The version of the calculation function implements the same thing as
a single expression. Instead of having a full function body, we are
using just an expression that performs the same calculation as in the
former version of the calculation function.

The version of the calculation function removes the return type since
it is deduced from our calculation which makes our codebase even
smaller.

Variable argument functions

a function with a variable number of arguments is one of the features
that have many modern programming languages. Kotlin is not an
exception. “Vararg.kt” illustrates how we can define such functions:

fun args: {

 var sum = 0
 for (x in args) {
 sum += x
 }
 println("Sum: $sum")
}

function accepts the variable number of arguments and accumulates
the total value that is finally printed out. Let’s try it:

sum()
sum(1)
sum(1, 2)
sum(1, 2, 3)
sum(1, 2, 3, 4)

Running this source code snippet will give us the following output:

Sum: 0
Sum: 1
Sum: 3
Sum: 6
Sum: 10

Functions with variable arguments can be combined with standard
arguments too:

fun Int, vararg args: {

 var sum = 0
 for (x in args) {
 sum += x
 }
 val result = sum * multiply
 println("Sum and multiply: $result")
}

This function is very similar to the one from the previous example
with one difference. We have one “fixed” additional parameter. We
will again calculate the sum and then multiply it with the value of the
argument:

val multiply = 100
sumAndMultiply(multiply)
sumAndMultiply(multiply, 1)
sumAndMultiply(multiply, 1, 2)
sumAndMultiply(multiply, 1, 2, 3)
sumAndMultiply(multiply, 1, 2, 3, 4)

Running this source code snippet will give us the following output:

Sum and multiply: 0
Sum and multiply: 100
Sum and multiply: 300
Sum and multiply: 600
Sum and multiply: 1000

Spread operator

Let’s extend the second example from the previous section and make
it more flexible. From book code examples open
“SpreadOperator.kt”. We have modified the “sum” function to return
a value:

fun sum(vararg args: Int): Int {

 var sum = 0
 for (x in args) {
 sum += x
 }
 return sum
}

Instead of having repeated code in the “sumAndMultiply” function,
we will pass all our variable arguments to the “sum” function. Then,
we will multiply the value as we did in the previous

fun sumAndMultiply(multiply: Int, vararg args: {

 val sum =

 val result = sum * multiply
 println("Sum: $sum, and multiply: $result")
}

To pass all variable arguments to other that are also accepting
variable arguments we have used spread operator, prefix parameter
with “*”.

Let’s try new version of the function:

val multiply = 100
sumAndMultiply(multiply)
sumAndMultiply(multiply, 1)
sumAndMultiply(multiply, 1, 2)
sumAndMultiply(multiply, 1, 2, 3)
sumAndMultiply(multiply, 1, 2, 3, 4)

Which will give us the following output when it is executed:

Sum: 0, and multiply: 0
Sum: 1, and multiply: 100
Sum: 3, and multiply: 300
Sum: 6, and multiply: 600
Sum: 10, and multiply: 1000

Let’s have a look at another use case of spread operator:

val numbers = intArrayOf(1, 2, 3, 4,
sumAndMultiply(multiply,

Spread operator can be used with arrays too. If we execute this source
code snippet, the output of the program will be:

Sum: 15, and multiply: 1500

All array members are used as variable arguments by the
“sumAndMultiply” function. As you can see from this example, the
spread operator is a great way to increase your flexibility when it
comes to with functions that are accepting a variable number of
arguments.

Local functions

If we need to define a function inside the scope of one existing
function, we can do it. This is possible to do in Kotlin. To illustrate
how to do this we will examine an example from the
“LocalFunctions.kt” source code file from book code examples:

fun worker(vararg jobs: String) {

 fun doWork(work: String) {

 println("Job '$work' is starting")
 println("Job '$work' is executing")
 println("Job '$work' is completed")
 }

 jobs.forEach {

 doWork(it)
 println("- - - - - - - - - - - - - - - - - -")

 }
}

We have defined the function “work” that accepts a variable number
of arguments that represent jobs. The executes each job by invoking a
local function named “doWork”. “doWork” is local, therefore can be
used only inside the “worker” function scope. If we run this small
program the following output will be printed out:

Job 'Importing user data' is starting
Job 'Importing user data' is executing
Job 'Importing user data' is completed
- - - - - - - - - - - - - - - - - -
Job 'Processing user data' is starting
Job 'Processing user data' is executing
Job 'Processing user data' is completed
- - - - - - - - - - - - - - - - - -
Job 'Exporting user data' is starting
Job 'Exporting user data' is executing
Job 'Exporting user data' is completed
- - - - - - - - - - - - - - - - - -

Infix functions

One of the great features of the Kotlin programming language is Infix
functions. Infix functions give us the ability to call functions with the
name but by omitting the dot and the parentheses for the call followed
by the argument of the function. For Infix functions the following
requirements must be satisfied:

- Infix functions must be member functions or extension functions (we
will talk more about extension functions later in this book)

- They are limited to a single parameter

- Function parameter must not accept the variable number of
arguments (must be without default value

Let’s take a look at a simple example from book code examples. Open
“Infix.kt” source code example:

infix fun Double.powerPI(x: Int): Double {

 return this.pow(Math.PI)
}

function extends “Double” data type with an additional function that
can be used as “Infix”. The accepts the Integer parameter and returns
the power of that parameter by Pi (3.14). Infix functions can be used
like it is illustrated in the rest of this example:

val array = arrayOf(2.0, 4.0, 6.0, 8.0, 10.0)
array.forEach {

 val result = it powerPI 5

 println("$it powerPI: $result")
}

As you can see we have executed our Infix function without dot and
parentheses:

val result = it powerPI 5

One of the most use cases for Infix functions is their use in unit tests.

Tail-recursive functions

Kotlin comes with support for ”Tail-recursion” is a replacement for
loops (comes from the functional programming world). To achieve the
best performance algorithms are implemented However, with there is
a risk of a stack overflow. is is an error that cannot be caught and
which happens when the JVM stack out of space. this is caused when
a recursive function doesn't have the correct termination condition.

Tail recursion is a technique where the compiler can imperatively
rewrite a recursive function, assuming that certain rules are met: the
recursive call must be the last call of the function.

Let's take a look at one simple example that illustrates this. Open
from book code

tailrec fun tailRecursiveExample(word: String) {

 if (word.length == 1) {

 println(word)

 } else {

 println(word)
 tailRecursiveExample(

 word.substring(0..(word.length – 2))

)
 }
}

In each iteration “tailRecursiveExample” function will print out one
letter less of the passed argument. Let’s try

tailRecursiveExample("Hello world")

Which will produce the following output:

Hello world
Hello worl
Hello wor
Hello wo
Hello w
Hello
Hello
Hell
Hel
He

H

Note:

When a function is marked with the ”tailrec” the compiler optimizes
the recursion. As result, we have a fast and efficient loop.

Anonymous

An anonymous function is similar to regular functions except that its
name is omitted. Function’s body can be a block or it can be an

Let's have a look at book code examples for this

// As block:

val f1 = fun(x: Int, y: Int): Int {

 return x + y
}

// As expression:

val f2 = fun(x: Int, y: Int) = x + y

As you can we have created two anonymous functions: “f1” and “f2”.
If we execute them:

val x = f2(1, 2)
val y = f1(3, 4)

println("x: $x")
println("y: $y")

We will get the following output:

x: 3
y: 7

Inline Functions

As you remember we have demonstrated the use of higher-order
functions in the previous section of the book. However, higher-order
functions has certain drawbacks:

- Each function is an object
- It captures a closure
- Memory allocations and virtual calls introduce runtime overhead

To resolve this shortcoming inline functions are used. So, what are
inline functions in Kotlin? Inline functions are Kotlin’s feature where
the compiler inlines the function body. Compiler substitutes the body
directly into occurrences where the function gets called.

Let's take a look at example of inline functions from book code
examples

inline fun () -> {

 function()
}

fun main() {

 fun hello() {

 println("Hello!")
 }

 inlined(::hello)
}

As you can see we have marked our “inlined” function with the
“inline” modifier. Once the code snippet is executed the following
output will be produced:

Hello!

the hood, all compiler magic has been performed and the final result
achieved.

Now, let's consider the following situation: we are using inline
function, which accepts another function that should not be inlined.
Open from book code

inline fun noInlined(f1: () -> Unit, noinline f2: () -> Unit) {

 f1()
 f2()
}

fun main() {

 fun hello() = println("Hello")

 fun world() = println("World")

 noInlined(::hello, ::world)
}

As you can see, by using the “noinline” modifier second argument
function will not be inlined. Executing this simple example will
produce the following output:

Hello
World

As we just saw we ignored inlining using the Again, all magic is done
by the Kotlin compiler.

Note:

The inline modifier affects both the function and the lambda
arguments. Everything will be inlined in the call and it will gain us
better performance.

The Lambda function is essentially an anonymous function that can
be treated as a value. Lambda function can be passed as an argument
to other functions or as a result. In fact, with the lambda function, we
can do that we usually do with a regular object.

So, how do we define lambda function? Let’s give a simple example.
Open source code file from book code examples “Lambda.kt”:

val lambda1: (Int, Int) -> Int = { x, y -> x + y }

Where “(Int, Int) -> Int” is data type for constant “lambda1” and “{
x, y -> x + y }” is lambda function definition.

We can rewrite this a little bit into the second version of the function
that will deduce data type from lambda function:

val lambda2 = { x: Int, y: Int -> x + y }

As you can see we did not specify the data type for constant
“lambda2” explicitly. Both constants can be invoked like any other

function or passed to other as

fun (Int, Int) -> a: Int, b: Int)
 = calculation(a, b)

The function accepts three arguments: lambda function that will be
used to perform calculation, and two integers that will be used by the
calculation.

If we extend this example we can introduce another function that will
give us a calculation mechanism and return us lambda as a result:

@Throws(IllegalArgumentException::class)
fun calculationProvider(type: Int) = when(type) {

0 -> lambda1

 1 -> lambda2

 else -> throw IllegalArgumentException(

 "Unknown type: $type"

)
}

@Throws(IllegalArgumentException::class)
fun calculator2(a: Int, b: Int, calculationType: Int): Int {

 val calculation = calculationProvider(calculationType)

 return calculation(a, b)
}

function accepts numbers that will be used in the calculation
(Integers) and based on which proper calculation will be performed.
Helper function “calculationProvider” is the one that will return the
lambda function based on this id.

Let’s try all this:

val a = 1
val b = 2
val c = lambda1(a, b)
val d = lambda2(a, b)
val e = calculator(lambda1, a, b)
val f = calculator(lambda2, a, b)
val g = calculator2(a, b, 0)
val h = calculator2(a, b, 1)

println("$a + $b with lambda1: $c")
println("$a + $b with lambda2: $d")

println("calculator with $a, $b and lambda1: $e")
println("calculator with $a, $b and lambda2: $f")
println("calculator2 with $a, $b and calculation type 0: $g")
println("calculator2 with $a, $b and calculation type 1: $h")

If we run our little program the following output will be produced:

1 + 2 with lambda1: 3
1 + 2 with lambda2: 3
calculator with 1, 2 and lambda1: 3
calculator with 1, 2 and lambda2: 3
calculator2 with 1, 2 and calculation type 0: 3
calculator2 with 1, 2 and calculation type 1: 3

As you can see using lambda may significantly increase productivity
by giving great flexibility in our everyday development. Take your
time and play a little bit with lambdas as using them can help you a
lot regularly in the future.

Closures

A lambda expression, an anonymous function, a local function, and an
object expression can access its closure. The variables are declared in
the outer scope.

Let's take a look at the following example that perfectly shows this.
From book code examples open “Closures.kt” and observe

val values = listOf(2, 4, 6, 8, 10)

fun calculate(): Int {

var result = 0

values.forEach {

result += it

 }
 return result
}

As you can see calculate function can access its outer scope and iterate
through the “values”. The happens the block. From this block, we can
access to outer scope and modify the “result” variable.

println("Result is: ${calculate()}")

give us the following output:

Result is: 30

Control flow

In this section, we will continue with “control flow”. “Control flow”
represents the order in which individual statements, instructions or
function calls of an application are executed or evaluated. will explain
the most important Kotlin features that are to create logic for our

If expression

As we have already mentioned, in Kotlin ”If” is an expression. In
Kotlin returns value too. Let’s play a little with “If” to remind
ourselves about From the book code example open “If.kt” located the
“control_flow” package:

fun check(x: Int, y: Int) {

 val result = if (x >= y) {

 println("x >= y")
 true
 } else {

 println("x is not >= y")
 false
 }
 println("Result: $result")
}

As you can see “result” constant receives the value from the “If”
expression. If we call the “check” function with the following
parameters:

5)
2)
2)

The following output will be produced thanx to “If” expression’s
logic:

x is not >= y
Result: false
x >= y
Result: true
x >= y
Result: true

Note:

If you choose to use “If” as an expression rather than a statement,
your “If” expression must provide the ”Else” part.

Loops

One of the main control flow features that we will cover is loops.
represent a sequential set of instructions that is repeated until a

certain condition is Once the operation is some condition is checked,
for example, whether a variable has a certain

Kotlin has the following looping mechanisms:

- For
- While
- Do / While.

Each of these has its benefits and use cases. We will present to you
simple examples for each so you get a feeling of how and when to use

For

loop is a statement for specifying iteration, which allows code to be
executed repeatedly. ”For” loop iterates through everything that
provides an “iterator” and has a member, or extension-function
“iterator”. It must be “Iterator” whose return type has a member, or
extension-function “next”, “hasNext” that returns All of these three
functions need to be marked as

In this section, will show some examples of ”for” From book code
examples open

fun counter(to: Int) {

 for (x in {
 println("x: $x ")

 }
}

function counts from zero to the number that we sent as a parameter.
In each iteration, it prints the current So, for the parameter of five:

counter(5)

We get the following output:

x: 0
x: 1
x: 2
x: 3
x: 4
x: 5

If we want to achieve the same without the last number (from zero to
four) we can use the “until” function instead of “..”:

fun counter2(to: Int) {

 for (x in 0 until {
 println("x: $x ")
 }
}

Let’s try this version of the function:

counter2(5)

And get the following output:

x: 0
x: 1
x: 2
x: 3
x: 4

As you can see these simple of For We could use this approach to
count from 0 to the last index of collection and then access each
collection element as we iterate.

If we need only indexes we can do the

fun cars(cars: List) {

 for (index in cars.indices) {
 println("Car '${cars[index]}' index is: $index")
 }
}

This example shows direct access to indexes of collection. However, in
practice, we will need more than that. We usually need more
flexibility. Very frequently we will need to iterate through elements of

some collection and access it more directly. Take a look at the
following example:

fun cities(cities: {

 for (city in cities) {
${city.capitalize()}")
 }
}

“cities” function iterates through the collection using Java’s
“foreach”. Let’s rewrite it Kotlin way:

fun citiesKt(clubs: List) {

 clubs.forEach { city ->

 println("City: ${city.capitalize()}")
 }
}

“citiesKt” function iterates and prints each element:

val cities = listOf("Belgrade", "Rome", "Moscow", "New York")
citiesKt(cities)

Both “cities” and will produce the same output with “cities” collection
passed as argument. If we run it we will see the following output:

City: Belgrade
City: Rome
City: Moscow
City: New York

As you can see, in “citiesKt” have used lambda expression with values
for the item itself. There is also a version of the foreEach as function
without lambda expression:

clubs.forEach(

 Consumer { city ->
 println("City: ${city.capitalize()}")
 }
)

In the function example we got only indexes that we could use to
access items if needed. In the function example we got only items with
no indexes. So, what if we need both? Well, in Kotlin, it is really easy
to have it:

fun players(players: List) {

 players.forEachIndexed { index, item ->
 println("Player $index: ${item.capitalize()}")
 }
}

The function accepts collection of a Then, it iterates using Kotlin
”forEachIndexed” function. We used the lambda expression with
values for item and index. It is important to note that is a version of
the same function without lambda expression

Let’s try the

val players = listOf("John Smith", "John Doe", "Peter Pan")
players(players)

Running it will produce the following output:

Player 0: John Smith
Player 1: John Doe
Player 2: Peter Pan

In the next section, we will take a look at While looping which will us
even more power when it comes to repeated code execution.

While loop

As you may already know loop is a statement that allows code to be
executed repeatedly based on a given condition. is composed of
condition or expression. When condition or expression is evaluated,
and if the condition or expression is true, the code within the block is
executed. This repeats until the condition or expression becomes false.
Because the while loop checks the condition or expression before the
block is executed, the control structure is often also known as a pre-

test loop. Compare this with the do-while loop, which tests the
condition / or expression after the loop has been executed.

Let's see a simple example using the While loop. Open ”While.kt”
from book code examples:

fun counter(to: Int) {

 var x = 0
 while (x <= to) {
$x")
 x++
 }
}

The function will count from zero to a provided argument. It works
by increasing the value of the counter variable “x” by one until “x”
becomes less or equal to provided argument (“to”). Let’s try it:

counter(5)

Running this small program will give us the following output:

x: 0
x: 1
x: 2
x: 3
x: 4
x: 5

Do / While loop

Do / While is very similar to the While loop with one small difference.
Do / While first performs the operation and then checks for the
condition. To better understand this take a look at “DoWhile.kt” from
book code examples:

fun counter(to: Int) {

 var x = 0
 do {

 println("x: $x")
 x++
 } while (x <= to)
}

The function prints the “x” value first and increases the counter, and
then it checks if the condition is fulfilled. If it is, looping is stopped.
This approach guarantees at one execution of the main block. Let’s
try our function:

val numbers = intArrayOf(0, 1, 2)
numbers.forEach {

 println("Counting to: $it")
 counter(it)

println()

}

If we run our program, the following result will be printed out:

Counting to: 0
x: 0

Counting to: 1
x: 0
x: 1

Counting to: 2
x: 0
x: 1
x: 2

Ranges

As you already saw in our previous examples we have defined ranges
to iterate through it. Let’s refine our knowledge on how to create and
use ranges with more examples.

Once again we will iterate through For example, We want to iterate
from zero to the number provided as an argument of the function.
From book code examples open “Ranges.kt”:

fun range(to: Int) {

 for (x in 0..to) println("x: $x")
}

Let’s try it:

range(5)

Which will produce the following output:
x: 0
x: 1
x: 2
x: 3
x: 4
x: 5

Let’s revers our counting:

fun reverseRange(to: Int) {

 for (x in to downTo 0) println("x: $x")
}

Instead of iterating from zero to the number provided as an argument
of the function, we will iterate from the number provided as an
argument to a function towards zero:

reverseRange(5)

Running this example will produce the following output:

x: 5

x: 4
x: 3
x: 2
x: 1
x: 0

And finally, if we want to check if there is (or isn’t) a member in a
range we can check like in our last ranges example:

fun checkInRange(what: Int, to: Int) {

 if (what in 0..to) {
 println("$what is in range between 0 and $to")
 } else {
 println("$what is NOT in range between 0 and $to")
 }
}

Note:

“in” operator can be used to check for (in this case, checking if the
member is not contained in range) by adding “!”

if (what !in 0..to) {
 …
}

function checks if provided function argument “what” is missing in
range between zero and “to”. If we test some candidates:

for (x in -5..10) {

 checkInRange(x, 5)
}

We will get the following output:

-5 is NOT in range between 0 and 5
-4 is NOT in range between 0 and 5
-3 is NOT in range between 0 and 5
-2 is NOT in range between 0 and 5
-1 is NOT in range between 0 and 5
0 is in range between 0 and 5
1 is in range between 0 and 5
2 is in range between 0 and 5
3 is in range between 0 and 5
4 is in range between 0 and 5
5 is in range between 0 and 5
6 is NOT in range between 0 and 5
7 is NOT in range between 0 and 5
8 is NOT in range between 0 and 5
9 is NOT in range between 0 and 5

10 is NOT in range between 0 and 5

Jump expressions

Kotlin has three commonly used jump

- by default it returns a value from the nearest function or anonymous
function
- terminates nearest enclosing loop

- goes to next step of nearest enclosing loop.

Break operator

Let’s illustrate the ”break” jump operator with simple code example.
From book code examples open

for (x in 0..10) {

if (x == 5) {

break

 }
 println("x: $x")
}

As you can see, once “x” gets the value of five, it will break the loop.
Executing this code snippet will produce the following output:

x: 0
x: 1
x: 2
x: 3
x: 4

Continue operator

The “continue” jump operator skips the current iteration of the
enclosing loop and the control of the program jumps to the end of the
loop body. Continue is used to stop the execution of the body and
control goes back to the next iteration of the

From book code examples open “Continue.kt”:

for (x in 0..10) {

if (x % 2 == 0) {

continue

 }
 println("x: $x")
}

In this example, we will print out every “x” value that is odd:

x: 1
x: 3
x: 5
x: 7
x: 9

Jump operator labels

In Kotlin, any expression can be marked with a label that has the
following form:

@label expression

Let’s say that we have a ”for” loop. we name that “for” loop
expression with a label. This makes it possible to use the label name
for the ”for” loop and by doing so whenever we want to call the same
“for” loop. can just call it by the label name.

Let’s try out labels with break. From book code examples open

val x = 10
val y = 3
val z = 2

myLoop@ for (a in 0..x) {
 for (b in 0..y) {

 println("$a, $b ")

 if == z && b == z) {

 // Does not break the current loop,
 // but the one than encloses it:

 }
 }
}

As you can see we will break the enclosing loop once condition is met:

a == z && b == z

Executing code snippet will produce the following output:

0, 0
0, 1
0, 2
0, 3

1, 0
1, 1
1, 2
1, 3
2, 0
2, 1
2, 2

Return with labels

In Kotlin functions can be nested, function literals, local functions,
and object expression. Thanks to returns we can to return from an
outer function. Probably most important use case is returning a value
from a lambda expression.

Let’s take a look at examples from from book code

fun example1(numbers: List, breakAt: Int) {

 numbers.forEach { item ->

if (item == breakAt) {

return

 }
 println("Item: $item")
 }
}

This simple example function iterates through the array of numbers.
If during the iteration it current item has the value of “breakAt”
constant, iteration is stopped by returning from the parent function.

Execute the

numbers = arrayListOf(1, 3, 5, 7, 9)
example1(numbers, 5)

Console output:

Item: 1
Item: 3

Next

fun example2(numbers: List) {

 numbers.forEach item ->
 if (item % 2 == 0) {

return@myNumbers

 }
 println("Item: $item")
 }
}

function returns from the nearest enclosing function. Such non-local
returns are supported only for lambda expressions passed to inline
functions. If we need to return from a lambda expression, we have to
label it and qualify the

Let’s try it:

numbers = arrayListOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
example2(numbers)

Console output is:

Item: 1
Item: 3
Item: 5
Item: 7
Item: 9

We can achieve the same as with ”example2” implementation by
using the default label for Take a look at our next

fun example3(numbers: List) {

 numbers.forEach { item ->
 if (item % 2 == 0) {

return@forEach

 }
 println("Item: $item")
 }
}

Let’s see if it works any different than “example2” function
implementation:

example3(numbers)

Console output:

Item: 1
Item: 3
Item: 5
Item: 7
Item: 9

As you can see we got the completely same result. Finally, one last
possibility when it comes to “returning”, can replace lambda
expression with anonymous function and return from

fun example4(numbers: List) {

 numbers.forEach(

fun(value: Int) {

 if (value % 2 == 0) {
 return
 }
 println("Item: $value")

}

)
}

Let’s try it:

numbers = arrayListOf(1, 3, 5, 7, 9)

Console output:

Item: 1
Item: 3
Item: 5
Item: 7
Item: 9

Collections

A collection represents a group of objects, known as its elements.
Some collections allow duplicate elements and others do not. In
Kotlin, some collections are mutable and some are immutable.
Collections can be ordered or unordered as well.

The most significant categorization in Kotlin is between mutable and
immutable collections.

Differences between mutable and immutable collections are the
easiest to explain in the example of lists. Immutable lists implement
interface “ListT>” which gives the class the following functionalities:
”size” and ”get”, access to elements by Mutable functionalities are
gained by implementing the “MutableList” interface, which gives
”addAll” and ”remove” functionalities.

In upcoming sections, we will give examples of the use of each of these
collections and illustrate some basic operations that can be performed
on them.

Immutable lists

The list represents a generic ordered collection of elements. in its
interface support only read-only access to the list’s members.

Let’s take a look at the instantiation of immutable collections. In the
following examples, we will be using ”Collections.kt” from book code
examples as The example that we are going to show is the
instantiation of immutable lists:

val numbers = listOf(2, 4, 6)
val words = listOf("Some", "Word")

As you can see we have defined two immutable lists. “numbers”,
which contains Integer members, and “words” which contains strings.
Once again, we will note that cannot add new members to immutable
lists.

Let’s have a look at the late initialization example of one immutable
list:

lateinit var doubles: List

variable will be the data type of immutable list (“List”) that contains
Double data type elements. “lateinit” means that late initialization
will be Variable will not consume memory until it is initialized:

doubles = listOf(3.14, 2.16, 1.0)

Accessing immutable list members is performed by its position in the
list:

val number = numbers[0]
val word = words[1]

val double = doubles[2]
val lastNumber = numbers[numbers.lastIndex]

Let’s see what we got:

println("Number: $number")
println("Word: $word")
println("Last number: $lastNumber")

Printing out obtained members of the list will give us the following
output:

Number: 2
Word: Word

Double: 1.0
Last number: 6

Next that will try with immutable lists is to determine its size:

val doublesListSize = doubles.size
val numbersListSize = numbers.size
val wordsListSize = words.size

And will print size for both immutable lists:

println("Doubles list size is: $doublesListSize")
println("Numbers list size is: $numbersListSize")

println("Words list size is: $wordsListSize")

Which will give us the following output:

Doubles list size is: 3
Numbers list size is: 3

Words list size is: 2

Besides these functionalities, there are some others very in everyday
work with lists. We can:

- if the list contains an element

- check if the list contains all elements

- check the position of an element in the list

- check if the list is empty

- get a slice of the list

- get list indices

- get list iterator and perform iteration through all list members.

To better understand these functionalities we will illustrate them one
by one.

Checking if the list contains elements:

for (x in 0..10) {

 if
 println("Numbers collection contains: $x")
 } else {
 println("Numbers collection does not contain: $x")
 }
}

As you can see, we have used the “contains” function that Boolean
true if the function argument is contained in the list. If we execute this
small snippet we will get the following output:

Numbers collection does not contain: 0
Numbers collection does not contain: 1
Numbers collection contains: 2
Numbers collection does not contain: 3
Numbers collection contains: 4
Numbers collection does not contain: 5
Numbers collection contains: 6
Numbers collection does not contain: 7
Numbers collection does not contain: 8
Numbers collection does not contain: 9
Numbers collection does not contain: 10

Checking if list contains all elements:

val toCheck = 4,
val toCheck2 = listOf(1, 3, 5)
val =

println(

 "$toCheck in $numbers:

)
println(

 "$toCheck2 in $numbers:

)

function will check if provided argument’s members are contained in
the “numbers” collection which will produce the output:

[6, 4, 2] in [2, 4, 6]: true
[1, 3, 5] in [2, 4, 6]: false
[4, 6, 4] in [2, 4, 6]: true

Checking position of the element in the list:

numbers.forEach {

 val position =

 println("Position of $it in $numbers is: $position")
}

When we execute this “indexOf” function will produce for elements
the following position values:

Position of 2 in [2, 4, 6] is: 0
Position of 4 in [2, 4, 6] is: 1
Position of 6 in [2, 4, 6] is: 2

Checking if the list is empty (or

val emptyList = listOf()
println("Is 'emptyList' list empty:
println("Is 'numbers' list full:

We have two important functions for this: “isEmpty” and
“isNotEmpty”. The one returns Boolean true if the list is empty, and
the other if it is not. Let’s run this snippet:

Is 'emptyList' list empty: true
Is 'numbers' list full: true

Getting slice of the list:

val slice = 2)

function accepts two arguments: from and to index of Integer data
type. The is a view of the portion of this list between the specified
from and to indexes. The returned list is backed by this list, so non-
structural changes in the returned list are reflected in this list, and
vice-versa. Let’s try to check the “slice”:

println("Slice: $slice")

Which will produce the following output:

Slice: [2, 4]

Getting list

val indices =

collection member represents the Integer range of the valid indexes
for the collection. If we use it with “numbers” list for example:

indices.forEach {

 println("Index: $it -> ${numbers[it]}")
}

We will have the following output:

Index: 0 -> 2
Index: 1 -> 4
Index: 2 -> 6

As you can see we have printed out pairs index – for each of the

list iterator and perform iteration through all list members:

val iterator = numbers.iterator()

while (iterator.hasNext()) {

 val item = iterator.next()
 println("Number: $item")
}

function returns ”Iterator” object which enables sequentially access
to collection elements. We iterate through the collection as long there
is a next element available. Once we have obtained the “item”, we
print out the element’s value. Executing this code snippet will produce
the following result:

Number: 2
Number: 4
Number: 6

Examples that we have shown represent the very basics of work with
lists. The “List” class has many member functions that you can use to

achieve important tasks. A list of all members can be found on official
Kotlin language documentation for lists:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/

There you will see everything that we have mentioned and a lot more.
You don’t have to learn all of these functions at once since you will
probably learn them all as you need them and as you use them in
everyday

Immutable maps

The represents a collection that holds pairs of objects. The one is the
key and the second is the value for each map entry. Map data type
supports efficiently retrieving the value corresponding to each key. All
keys are unique. That means the map holds only one value for each
key. As we are talking about immutable maps, in this interface
support only read-only access to the map. and access is supported
through the ”MutableMap” interface.

Let’s create some immutable maps. Open “Collections.kt” and locate
the following code snippet:

val immutableMap = mapOf("something" to 1, "else" to 2)
val immutableMap2 = mapOf(Pair(1, "Plane"), Pair(2, "Car"))

As you can see we have used two different of instantiating immutable
maps. “mapOf” function creates a read-only map with the specified

content. Both ways that we are using to instantiate map accept a list of
pairs where the first value is the key and the second is the value.

Accessing map elements is performed by key:

val user = "john.smith"
val id =

val credentials =

println("User: $user, Id: $id, Credentials: $credentials")

We have obtained Id and credentials for the user by providing the key
with the value “john.smith” to each of these two maps. Then we have
printed out these values:

User: john.smith, Id: 1, Credentials: 12345

We can check the size of the map the same way as we did with lists:

println("Users count in the system is: ${userIds.size}")

Which will produce the following output:

Users count in the system is: 2

Besides these functionalities, there are some others very in everyday
work with maps that you With maps can:

- check if the map contains key or value

- get all keys or all values of the map

- check if the map is empty

- perform filtering

- perform “+” and “-” operations

To better understand these functionalities we will illustrate them one
by one same as we did for

if map contains a key:

listOf("john.smith", "guest", "john.doe").forEach {

 val hasUser =

 if (hasUser) {
 println("$it is in the system")
 } else {
 println("$it is not in the system")

 }
}

if map contains a value:

val wordPairs = mapOf("Hello" to "World", "Lorem" to "Ipsum")
listOf("Elephant", "Hello", "World", "Car").forEach {

 val containsWord =

 if (containsWord) {
 println("$wordPairs contains value $it")
 } else {
 println("$wordPairs does not contain value $it")
 }
}

In these we have used map member functions “containsKey” and
“containsValue”. The one true if the map contains the specified key.
the map maps one or more keys to the specified value one true.

Let’s run these code For key check we will have the following output
of the program:

guest is not in the system
john.doe is in the system

Value check code snippet

{Hello=World, Lorem=Ipsum} does not contain value Elephant

{Hello=World, Lorem=Ipsum} does not contain value Hello
{Hello=World, Lorem=Ipsum} contains value World
{Hello=World, Lorem=Ipsum} does not contain value Car

As you can see checking maps for keys and values is simple. You do
not have to iterate through the map to find out if the key or value is
contained. You just need “containsKey” and “containsValue”
functions for this

Checking if map is (not) empty:

val maps = listOf(mapOf(), wordPairs)
maps.forEach {

{

 println("Map: $it")
 } else {

 println("Map: empty")
 }
}

Function “isNotEmpty” returns Boolean true if the map contains any
keys with values. Opposite to that “isEmpty” function returns
Boolean true if there are no keys with values in the map.

If we execute this example the following output will be printed out:

Map: empty
Map: {Hello=World, Lorem=Ipsum}

Performing filtering:

userCredentials

.filterKeys { it.contains("smith") }

 .forEach {

 println("Smith: ${it.key}")
 }

We will start by filtering map keys. In this example we will filter our
user credentials map by keys containing the last name “smith” as the
part of the key. The function returns a map containing all key-value
pairs with the values based on matching of the given predicate. In our
case, if the key contains “smith”. Let’s run this simple code snippet:

Smith: john.smith

As you can see only “john.smith” matches our criteria.

To filter values we can use “filterValues”

userCredentials

.filterValues { it.toInt() > 20 * 1000 }

 .forEach {

 println("User ${it.key}, Id: ${it.value}")
 }

This works on exactly the same principle. This time we have filtered
all users whose Id is bigger than “20 000”. Running this will give us
the following output:

User john.doe, Id: 24680

This time “john.doe” is the user that satisfied our filtering criteria.

{

 || > 20 * 100
}.forEach { (key, value) ->

 println("User matched: $key, Id: $value")
}

function operates on the ”Map.Entry” data type which holds key and
value both. Thanks to this we are able to filter all users that contain
“smith” or all users whose Id is bigger “20 000”. Running this source
code snippet will give us the following output:

User matched: john.smith, Id: 12345
User matched: john.doe, Id: 24680

We can do the same with negation using “filterNot” function:

userCredentials

.filterNot { it.key.contains("doe") }

 .forEach {

 println("User '${it.key}' does not contain 'doe'")
 }

This will filter all users whose map key does not contain the word
“doe”:

User 'john.smith' does not contain 'doe'

“+” and “-”

val mix = userCredentials +

 mapOf(

 "somebody.else" to "11111",

 "lorem.ipsum" to "22222"

)

println("'+': $mix")

val diff = mix –

println("'-': $diff")

We have performed addition to the “userCredentials” map by adding
two more entries. Then, from the resulting map, we have subtracted
“userCredentials” which gave us the map that we have added We are
printing out each of the resulting maps. Let’s try this example and see
what output it produces:

'+': {

 john.smith=12345, john.doe=24680,

 somebody.else=11111, lorem.ipsum=22222

}

'-': {somebody.else=11111, lorem.ipsum=22222}

sets

The represents a collection that holds a generic unordered collection
of elements that does not support duplicate elements. Functions in the
interface support only read-only access to the set. For and write
access support, ”MutableSet” interface is

Let’s create some immutable Open “Collections.kt” and locate the
following code snippet:

val numbersSet = setOf(2, 2, 3) // It only has members

 // 2 and 3, no duplicates
numbersSet.forEach(::println) // Will output: 2 and 3

This example creates a set of numbers containing numbers two and
three with no duplicates. Then, we are printing all set members to the
standard output. Pay attention to the “::” operator. As you probably
remember “::” represents direct access to function reference.

Accessing set elements is performed:

- by element position

- by condition

- random.

Accessing set elements by position:

val first =

println("First set element is: $first")

Which will give us the following output:

First set element is: 2

Accessing to the first and the last element of the set:

val first = numbersSet.first()
val last = numbersSet.last()

Accessing set elements by condition:

val cars = setOf("Fiat", "Bmw", "Audi", "Porsche", "Renault")
val findFirst = { it.length == 3 }

val findLast = { it.startsWith("Por") }

We have defined a new set of strings that represent car brand names.
Then, we are accessing the first element that has a length of three
characters and to the last element which name starts with “Por”.
Let’s print out our results:

println("First car that has three letters is: $findFirst")

println("Last car which name starts with $findLast")

Which will produce the following output:

First car that has three letters is: Bmw
Last car which name starts with 'Por': Porsche

As you can see when it comes to work with collections, in this
particular case, Kotlin is extremely powerful! functions throw
exceptions no elements match the predicate. To avoid them, use
“firstOrNull” and “lastOrNull” functions instead: they return null if
no matching elements are found:

var findFirstOrNull = { it.length == 3 }
var findLastOrNull = { it.startsWith("Por") }

println(

 "First car that has three letters is: $findFirstOrNull"

)
println(

 "Last car which name starts with 'Por': $findLastOrNull"

)

findFirstOrNull = { it.length == 10 }

findLastOrNull = { it.startsWith("Cry") }

println(

 "First car that has ten letters is: $findFirstOrNull"
)
println(

 "Last car which name starts with 'Cry': $findLastOrNull"
)

Let’s execute this code snippet:

First car that has three letters is: Bmw
Last car which name starts with 'Por': Porsche
First car that has ten letters is: null

Last car which name starts with 'Cry': null

As you can see our set does not car brands with ten characters in the
name. Also, there is no car brand name that starts with: “Cry”.

You can use the aliases for this functions if that makes more sense to

findFirstOrNull = { it.length == 4 }
findLastOrNull = { it.startsWith("A") }

println(

 "First car that has four letters is: $findFirstOrNull"
)
println(
 "Last car which name starts with $findLastOrNull"

)

If we run this, the following output will be produced as a result:

First car that has four letters is: Fiat
Last car which name starts with 'A': Audi

Accessing set elements randomly:

for (x in 0..5) {

 val random =

 println("Random chosen car model: $random")
}

In this example, we will a car brand randomly five times and print
out its name. Obviously, the function retrieves one of the set members
randomly. If you execute this code you will have output similar (not
the same) like this:

Random chosen car model: Audi
Random chosen car model: Bmw

Random chosen car model: Audi
Random chosen car model: Fiat
Random chosen car model: Audi

Random chosen car model: Porsche

If we execute this program several times in the row, with each
execution we will have different output:

Random chosen car model: Renault
Random chosen car model: Renault
Random chosen car model: Renault
Random chosen car model: Audi
Random chosen car model: Audi
Random chosen car model: Renault

You may notice that the “random” function may return the same item
in consecutive execution.

Besides these functionalities, there are some others very in everyday
work with sets that you With sets can:

- check if the set contains the element

- check if the set contains all

- check if the set is empty

- perform filtering

- perform “+” and “-” operations.

To better understand these functionalities we will illustrate them one
by one.

if set contains element:

val hasRenault =

val hasVolvo =

The function will return Boolean there is a member in the set that we
are checking by the passed function parameter. Let’s check our
results:

println("Has Renault: $hasRenault")
println("Has Volvo: $hasVolvo")

Executing this source code snippet will produce the following output:

Has Renault: true
Has Volvo: false

if set contains all

val checking = listOf(

 listOf("Renault", "Bmw"),
 listOf("Mercedes", "Bmw")
)
checking.forEach { check ->

 val result =

 if (result) {

 println("$check is in $cars")
 } else {
 println("$check is NOT in $cars")
 }
}

In this example, we have created two lists. For each of we are
checking if all members of the collection are contained in our set.
Depending on the result proper output is written:

[Renault, Bmw] is in [Fiat, Bmw, Audi, Porsche, Renault]
[Mercedes, Bmw] is NOT in [Fiat, Bmw, Audi, Porsche, Renault]

As you can see “containsAll” will return Boolean true only if all
elements of the collection that we are passing as argument are
contained in the set.

if the set is empty:

listOf(
 setOf(),
 setOf(""),
 cars
).forEach {

 if
 println("Set: empty")
 } else {
 println("Set: $it")
 }

}

We have defined a list containing three members: one completely
empty set, set with one member – empty string and cars set that we
defined in our previous examples. We will check each and print
message with proper text depending on the state of the set – it is or it
is not empty. Let’s run our program:

Set: empty
Set: []
Set: [Fiat, Bmw, Audi, Porsche, Renault]

The set was empty. Pay attention to the second row, we have printed
one member, empty string, so this set is not empty after all! Finally,
the last one has “visible” members.

filtering:

{ it.length > 3 {

 println("Car (name length > 3): $it")
}

{ it.length > 3 {

 println("Car (name length <= 3): $it")
}

In this example, have filtered all items from the set which have a size
bigger than three and then, all that don’t have a size bigger than three
(they are less or equal to Let’s run this and see what output is
produced:

Car (name length > 3): Fiat
Car (name length > 3): Audi
Car (name length > 3): Porsche
Car (name length > 3): Renault
Car (name length <= 3): Bmw

Perform “+” and “-” operations:

val setA = setOf("Hello", "World", "Who")
val setB = setOf("Who", "Are", "You")

val setC = setA + setB

val setD = setC – setA

Let’s see what do we get when we perform “+” and “-” operations on
two sets:

println("$setA + $setB = $setC")

println("$setC + $setA = $setD")

Which will produce the following output:

[Hello, World, Who] + [Who, Are, You] =

[Hello, World, Who, Are, You]

[Hello, World, Who, Are, You] + [Hello, World, Who] =

[Are, You]

As you can see making a set that contains everything from two or
more sets (addition) is very simple. The applies to the subtraction
operation.

Mutable collections

The difference between immutable and mutable collections is that
mutable collections can change. To illustrate this we will present a
couple of examples for lists, maps, and sets.

The following code snippet will show us how to instantiate them:

val mutableList = mutableListOf(2, 4, 6)
val mutableList2 = mutableListOf("Some", "Word")
val mutableList3 = mutableListOf()

val mutableMap = mutableMapOf("something" to 1, "else" to 2)
val mutableMap2 = mutableMapOf(

 Pair(1, "Plane"), Pair(2, "Car")

)

val mutableSet = mutableSetOf(2, 2, 3)

Let’s modify each collection by adding new items:

5, 7))

"New")
listOf("Hello", "World"))

= -1

= 3

to "Train", 3 to "Boat"))

2, 4))

Since we have added new items into collections (and in some of these
updated existing ones), let’s have a look at the content of each

collection:

println(mutableList)
println(mutableList2)

println(mutableMap)
println(mutableMap2)

println(mutableSet)

Executing this snippet will reveal the following

[2, 4, 6, 3, 3, 5, 7]
[Hello, World, New, Some, Word, Another, One]
{something=-1, else=2, new=3}

{1=Train, 2=Car, 3=Boat}
[2, 3, 4, 5]

Finally, we will perform items removal:

// Remove element position

mutableList2.remove("Word") // Remove object

mutableMap.remove("new") // Remove by map key

mutableSet.remove(4) // Remove object

mutableSet.removeAll(listOf(3, 5)) // Remove all objects

If we print out the content of collections that we have changed by
removing

println(mutableList)
println(mutableList2)
println(mutableMap)
println(mutableSet)

We will have the following data:

[4, 6, 3, 3, 5, 7]
[Hello, World, New, Some, Another, One]
{something=-1, else=2}
[2]

As you can see the content of each collection that we have touched by
proper remove function has been changed.

To remove all items from collection use “clear” function (like in the
following source code

mutableList.clear()
mutableList2.clear()
mutableMap.clear()
mutableSet.clear()

If we print the content of each of these collections:

println(mutableList)
println(mutableList2)
println(mutableMap)
println(mutableSet)

Each of the collections will be empty:

[]
[]
{}
[]

Traversing

As you remember from previous we have traversed (iterated) through
our collections. Let’s do one more example of traversing. We will a list
and a map. Open “Traverse.kt” from book code examples:

fun traverse(map: Map<*, *>) {
 map.forEach { (key, value) ->

 println("$key -> $value")
 }
}

fun traverse(list: List*>>) {
 list.forEach {

 traverse(it)
 if (list.indexOf(it) != list.lastIndex) {
 println("- - -")
 }
 }
}

Both ”traverse” functions iterate through the collection that has been
passed as the function parameter. The version of the “traverse”
function traverses a map. For each keyset, it prints our values for the
kay and for the value. The version of the “traverse” function
traverses through the list of maps and calls “traverse” that will
traverse a map. Let’s define some collections (list and maps):

val maps = listOf(

 mapOf(1 to "First", 2 to "Second"),
 mapOf(
 "John" to "Smith",
 "John" to "Doe",
 "Lorem" to "Ipsum"), // <-- '"John" to "Doe"'

 // overwrites '"John" to "Smith"'

 // pair because of same

 // "John"

 mapOf(1 to true, 2 to false, 3 to false, 4 to true)
)

If we execute the “traverse” function on the “maps”

traverse(maps)

The following program output will be produced:

1 -> First
2 -> Second
- - -
John -> Doe
Lorem -> Ipsum
- - -
1 -> true
2 -> false
3 -> false
4 -> true

Predicates

Predicates are very powerful features of the Kotlin programming
language used in the filtering of Simply said, predicates represent the
lambda function used to filter collection items. We will demonstrate
its usage on examples provided in Let’s open it and go through
examples step by step.

We will first define a function for some kind of check. For example,
will check if the passed number is positive. The will be assigned to a
variable. Check is illustrated by the code

val check: (Int) -> Boolean = { it > 0 }

Then, we will use ”check” to get what is important to us. Let’s assume
that we will be interested if we have at least one positive number as a
member of the list, or if we have all numbers positive or exact number
of positive We would create something like this:

fun atLeastOnePositive(items: List): Boolean

{

return

}

fun hasAllItemsPositive(items: List): Boolean

{

return

}

fun numberOfPositiveNumbers(items: List): Int {

return

}

To try these three we will define simple list of numbers:

val numbers = listOf(-3, -2, -1, 0, 1, 2, 3, 4, 5)

Then, we will obtain results using

val atLeastOnePositive = atLeastOnePositive(numbers)
val hasAllItemsPositive = hasAllItemsPositive(numbers)
val numberOfPositiveNumbers =
numberOfPositiveNumbers(numbers)

As you can see we have obtained information:

- If at least any list member has a positive value

- If the list has all positive values

- Exact number of positive values in the list.

Let’s see what are our results by printing them out:

println("Collection $numbers: ")

println("- has at least one positive: $atLeastOnePositive")
println("- has all items positive: $hasAllItemsPositive")
println("- number of positive numbers:
$numberOfPositiveNumbers")

The following output will be

Collection [-3, -2, -1, 0, 1, 2, 3, 4, 5]:
- has at least one positive: true
- has all items positive: false
- number of positive numbers: 5

Mapping

Mapping is used when we might have to do some operations to modify
a collection according to our requirements using certain conditions.
“map” function a list containing the results of applying a certain set of
to each element in the original collection. To better understand this we
will show you a proper example. Open “Map.kt” from book code
examples:

val numbers = listOf(0, 1, 2, 3, 4, 5)
val squares = { it * it }

This is an easy way to produce a list of squares! Let’s iterate through
the list:

numbers.forEachIndexed { index, it ->

 println("Square of $it is: ${squares[index]}")
}

If we execute our program the following output will be produced:

Square of 0 is: 0
Square of 1 is: 1
Square of 2 is: 4
Square of 3 is: 9
Square of 4 is: 16
Square of 5 is: 25

We will play now with Kotlin flat map. function returns a single list of
all elements yielded from the results of the transform function being
invoked on each element of the original Open ”FlatMap.kt” from
book code examples and take a look at the first

val animals = mapOf(
 0 to "Elephant", 1 to "Lion", 2 to "Snake", 3 to "Ape"
)
val animalsList = { }

As it is obvious we have defined a list that contains a map of Integer
to the name of an animal. Then, we are mapping map values (animal
names) into the list. If we print out the of the map and the list:

println(animals)
println(animalsList)

The following output will be generated:

{0=Elephant, 1=Lion, 2=Snake, 3=Ape}
[Elephant, Lion, Snake, Ape]

Let’s have a look into another example of “flatMap” usage:

val words = listOf(

 "Hello", "World", "Airplane", "Car",
 "Beethoven", "Lorem", "Ipsum"
)

val allLetters = { }

We have created a list of some words. Then, we are mapping each
word’s letter into the “allLettersList”. we print it out:

println(allLetters)

The content of the “allLetters” list is the following:

[
 h, e, l, l, o, w, o, r, l, d, a, i, r, p, l, a, n, e, c,
 a, r, b, e, e, t, h, o, v, e, n, l, o, r, e, m, i, p, s,

 u, m
]

As you can see we have created a list that contains only letters used in
these words. However, there is a lot of duplicates in the list which is
annoying. To get a rid of duplicates we will sort the list (because we
want to have all letters sorted in alphabetical order) and add all
members into the set which will remove our

val letters = mutableSetOf()
val sortedLetters = mutableListOf()

letters.addAll(allLetters)
sortedLetters.addAll(letters)
sortedLetters.sort()

If we print out the content of the set:

println(sortedLetters)

The following output will be produced:

[a, b, c, d, e, h, i, l, m, n, o, p, r, s, t, u, v, w]

Another more easy way to get rid of duplicates is to use “distinct”
function:

val sortedLetters =

Which will produce exactly the same results.

Combining “map” and “flatMap”

In the following example, we will combine “map” and “flatMap”.
From book code examples open “Mapping.kt”. The illustrates how we
can combine both functions in other to achieve the desired

class Vehicle(val name: String)

val cars = listOf(

 Vehicle("Bmw"),
 Vehicle("Mercedes"),
 Vehicle("Toyota")
)

val busses = listOf(

 Vehicle("Solaris"),
 Vehicle("Champion"),
 Vehicle("Ikarbus")
)

val vehicles = listOf(cars, busses)
val manufacturers = {
 it

{
 it.name
}

Last part can be simplified:

val manufacturers = {
 it.name
}

From all collections, in the given collection “flatten” function returns
a single list of all elements.

We will go step by step through the example. First, we defined a
simple class to represent a vehicle entity. The only attribute of the
vehicle is its name.

Then, we have created two lists. The list contains car vehicles, and the
second one bus vehicles. Since we are interested in creating a unique
list of all vehicle names we are putting all vehicles under one hood, the
“vehicles” list list that contains the vehicle list).

The step is mapping everything into a “manufacturers” list that will
contain only names. To achieve this we have used “map” and
“flatMap” (“flatten”) Let’s print out the content of the final list:

println(manufacturers)

Which will produce the following content:

[Bmw, Mercedes, Toyota, Solaris, Champion, Ikarbus]

Finally, we can sort our list:

println(manufacturers.sorted())

And have the following output of program

[Bmw, Champion, Ikarbus, Mercedes, Solaris, Toyota]

Finding and

If we need to determine maximal or minimal value of some list
“maxOrNull” and “minOrNull” functions are used. From book code
examples ”MaxMin.kt” and take a look at the lines:

val items = listOf(2, 4, 6, 8, 10)
val max = items.maxOrNull()
val min = items.minOrNull()

As you can see we have obtained maximal and minimal and it is very
simple. Max function returns the largest element or null (if there are
no elements in the Min returns the smallest element (or null if there
are no elements in the

Let’s see what are our results:

println("For: $items")
println("Max. is: $max")
println("Min. is: $min")

Which will produce the following results

For: [2, 4, 6, 8, 10]
Max. is: 10
Min. is: 2

Sorting

Sorting is a common need for every developer. In Kotlin, sorting
operation on collections is really easy. Open “Sort.kt” from book code
examples:

val numbers = listOf(1, 8, 9, 4, 5, 22, 44, 645,

println("Sorted numbers: $numbers")

val stringNumbers = listOf("1", "-3", "5")

.sortedBy { it.toInt() }

println("Sorted string numbers: $stringNumbers")

val words = mapOf("Yin" to "Yang", "Lorem" to "Ipsum",

 "Hello" to

println("Sorted map: $words")

val set = setOf(2, 4, 4, 2, 0, 1, 3, 6, 4,

println("Sorted set: $set")

val resorted = { it % 2 == 0 }

println("Re-sorted set: $resorted")

To sort these collections we have used two functions:

- “sorted”: a list of all elements that are sorted according to their
natural order
- “sortedBy”: a list of all elements that are sorted according to the
natural order of the value returned by the provided selector function.

Executing our little program will reveal the following results:

Sorted numbers: [1, 4, 5, 8, 9, 22, 44, 67, 645]
Sorted string numbers: [-3, 1, 5]
Sorted map: {Hello=World, Lorem=Ipsum, Yin=Yang}
Sorted set: [0, 1, 2, 3, 4, 5, 6]
Re-sorted set: [1, 3, 5, 0, 2, 4, 6]

Sum

Another easy operation that can be performed on collections is
”sum”. From book code examples “Sum.kt” and take a look at the
example:

val itemsToSum = listOf(1, 3, 5)
val sum =

The “sum” function returns the sum of all elements in the collection.
Let’s print out our sum:

println("Sum of $itemsToSum is: $sum")

Which will produce the following output:

Sum of [1, 3, 5] is: 9

The function groups elements of the original collection by the key
returned by the given ”keySelector” function applied to each element
and returns a map where each group key is associated with a list of
corresponding elements.

The resulting map preserves the entry iteration order of the keys
created from the original collection. To illustrate this we have created

a simple example. Open “GroupBy.kt” from book code examples and
take a look at lines:

val words = listOf("a", "plane", "to", "car", "window")
val grouped = { it.length }

If we print out our results:

println(words)
println(grouped)

The following output will be produced:

[a, plane, to, car, window]
{1=[a], 5=[plane], 2=[to], 3=[car], 6=[window]}

function splits the original collection into pair of lists. First list
contains elements for which predicate is true. Second list contains
elements for which predicate is false. We demonstrate use of
“partition” function in book code examples example:

val numbers = listOf(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
val partitioned = { it % 2 == 0 }

“partitioned” constant is instance of ”Pair” data Let’s print out the
content of original collection and partitioned

println("Original: $numbers")
println("Partitioned: $partitioned")

Which will produce the following output:

Original: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
Partitioned: ([0, 2, 4, 6, 8, 10], [1, 3, 5, 7, 9])

As you can see we have two lists as members of the Members of the
first list are the numbers who satisfied the condition with boolean The
others are on the second list.

function groups elements in a way that the grouping is performed
from the grouping source by key and applies the operation to the
elements of each group sequentially. It the previously accumulated
value and the current element as argument, and stores the results in a
created map.

From book code examples ”Fold.kt”:

val numbers = listOf(2, 4, 6, 8, 10, -20)
val folded = numbers.fold(

 initial = 0,
 operation = { part, element -> part + element }
)

The result will be an with a value of exactly Let’s check

println(numbers)
println(folded)

The following output is produced:

[2, 4, 6, 8, 10, -20]
10

If you still do not understand how these works take a closer look into
he source code of function:

public inline fun R> Iterable.fold(

 initial: R,

 operation: (acc: R, T) -> R

): R {

 var accumulator = initial
 for (element in this) accumulator =

 operation(accumulator, element)

 return accumulator
}

This example uses an inline generic data type. We will talk generics in
upcoming of this book.

References

In this section, we will talk about references. We will explain the
purpose of references and guide you through each type of

References represent data types that contain of dynamically created
objects. Kotlin (and Java) there are four different kinds of references
based on the way how the data is garbage collected:

- Strong references

- Weak references
- Soft references
- Phantom references
- Atomic references are not actually in this group, however, will cover
them because they provide atomic access to wrapped

Strong references

Strong references are the default type of reference object. An object
that has active strong reference can’t be garbage collected by a JVM
garbage This can happen in situation when the variable that is
strongly referenced points to null. Let’s have a look at the example.
From book code example open “Strong.kt”:

data class Wrapper(val what: Any)

val number = 1
val wrapper = Wrapper(100)

var number2: Int? = null
var wrapper2: Wrapper? = null

and “wrapper2” are all strong references. However, and “wrapper2”
have null values.

Working with strong references can sometimes lead to memory leaks.
A leak is a situation when there are objects present in the heap that
are no longer used, but the garbage collector is unable to remove them
from memory. Because of this, they are unnecessarily maintained.

A memory block and memory resources. This degrades system
performance over time and can lead to slack performance or crash of
the application it is not dealt with, the application will at some point
exhaust all resources. the program will with a fatal
”OutOfMemoryError”.

Types of objects that reside in memory

- objects, who have still active references within the program

- objects, who don't have any active references.

The garbage collector removes unreferenced objects periodically. the
garbage never collects the objects that are still being referenced.

Memory leaks

As we mentioned in the previous section, sometimes we can create
memory leaks. In this section, we will provide some of memory
Memory leaks can happen in various ways. Some common memory
leaks are:

- Memory static
- Memory unclosed resources

- Memory ”equals” and “hashCode” functions
- Memory nested

There are more different ways for memory leaks to happen. Let’s give
example for each of these We will start with that are introduced static
(global) Anything static (and global scope) has a life that usually
matches the entire lifetime of the running program. From book code
open and take a look at the code:

val staticList = mutableListOf()

fun main() {

 fun populate() {

 for (x in 0 until 100 * 1000 * 1000) {
 staticList.add(x.toDouble())

 }
 }

 fun printMemoryStats() {

 val heapSize = Runtime.getRuntime().totalMemory()
 println("Heap size: $heapSize")
 }

 printMemoryStats()

 println("Populating static list")
 populate()

 printMemoryStats()

 println("Executing garbage collection")

 printMemoryStats()
}

What this example is illustrating is the following:

- We have created a global mutable list named “staticList”
- We are printing the current size of the heap memory the list is filled
with

- After the list is filled with objects we are printing again heap
memory size

- Then, we are triggering garbage collection explicitly by calling the
“gc” function from runtime. Calling this function suggests that the
JVM effort toward recycling unused objects to make the memory they
currently occupy available for quick reuse. When control returns
from the function call, the virtual machine has made its best effort to
recycle all discarded objects. The virtual machine performs this
recycling process automatically as needed, in a separate thread, even
if the ”gc” function is not invoked explicitly. The “System.gc()” is the
standard way of invoking this
- Finally, we are printing again the size of the heap memory.

As you will see the heap size is increasing through the execution of our
program. Once the program is executed something similar to this will
be generated as the final output:

Heap size: 257425408

Populating static list
Heap size: 3669491712
Executing garbage collection
Heap size: 3669491712

Memory that are introduced unclosed resources:

When opening a new connection (for example to a database) or a new
stream causes new memory allocation. If we to close any of these

resources, this can block the memory. For example, in case of an
exception that prevents the program execution from reaching the
statement that's handling the code to close these resources.

To be sure that we don’t get memory leaks by unclosed connections or
streams, use the “finally” block to close the program’s resources.

Pay attention that code that closes the resources should not itself have
any exceptions. That is meant for the “finally” block too.

Memory that are introduced ”equals” and “hashCode” functions

Not writing overridden for ”equals” and “hashCode” can be a source
of memory leakage. “HashSet” and ”HashMap” data types use these
they're not overridden then they can become a source for potential
memory leak problems.

Let’s start with defining a simple class with one field. From book code
examples open “OverrideLeak.kt”:

class Wrapper(var data: Int)

The next thing that we will do is that we insert duplicate objects into a
map that uses this key. As you probably the cannot contain duplicate
keys.

val word = "Kotlin"
val instances = mutableMapOfInt>()

for (x in 0 until 100) {

 instances[Wrapper(word)] = x
}

In this case, we using as the key. Because the doesn't allow keys, the
numerous duplicate objects that we have inserted as the key should
increase the memory. However, this does not happen!

Because we didn’t proper “equals” function the duplicate objects will
pile up and increase the memory consumption. if we did overridde the
“equals” and “hashCode” properly, there would be only one class
instance in

Let's take a look at the proper of these functions in the “Wrapper”

class Wrapper(var data: String) {

 override fun equals(other: Any?): Boolean {
 if (other === this) {

 return true
 }
 if (other !is Wrapper) {

 return false
 }
 return other.data == data

 }

 override fun hashCode(): Int {

 return Objects.hash(data)
 }
}

If we run this program not, there will be only one instance of the
“Wrapper” class in our map. Let’s check this by printing out the size
of the map:

println(

 "Number of ${Wrapper::class.simpleName} instances is:

${instances.size}"

)

Which will produce the following output:

Number of Wrapper instances is: 1

Memory that are introduced nested

This is a common problem in classic Java. If we are using anonymous
classes (non-static nested classes), its initialization, these classes
always require an instance of the enclosing Every non-static nested
has, by default, an implicit reference to its (its containing So how this
can cause leakage? If we use this nested class instance in our
application, then even after our container class instance goes out of
scope, it will not be garbage

if we just declare the nested class as static our problem is solved.

Both Java and Kotlin support nested classes, but some important
differences are worth keeping in mind. As we have illustrated in the
explanation of this memory leakage type, in Java, nested classes
declare (implicitly) a reference to the surrounding class. On the other
hand, nested classes in Kotlin do not declare any implicit reference to
surrounding So they could be considered safer by default. removing
this reference, we get rid of possible memory leaks and other possible

In Kotlin, if we need to access the external class, we have to apply the
”inner” modifier in the nested class declaration. Let’s illustrate this.
From book code examples open “InnerClassLeak.kt”:

class Wrapper(private var String) {

inner class Inner {

 fun print() {

 // We are accessing to outer

 // class reference and its field:

 println("Data:
 }
 }
}

Nested classes in both programming languages have the same
semantics, but they behave Java, nested classes have access by default
to external classes. On the contrary, Kotlin classes do not have it, so
we apply the ”inner” modifier to get the “default Java behavior” (and
create in our program a potential memory

Weak references

A weak reference is a reference made that is not strong enough to
make the object (instance) remain in memory. So, weak references
can let the garbage collector decide an object’s reachability and
whether the object in question should be kept in memory or not.

Weak references need to be declared explicitly as by default Kotlin
marks a reference as a strong (hard) reference. It means that an
object has neither strong nor soft references pointing to it and can
only be reached by traversing through a weak reference.

If the object is weakly referenced then the garbage collector removes
it from memory which clears up more space and for better memory
management.

After the garbage collector has removed the weak reference, the
reference is placed in a reference queue, and the formerly weak-
reachable objects are finalized.

If the garbage collector determines that an object is weakly reachable.
At that time it will atomically clear all weak references to that object
and all weak references to any other weakly-reachable objects from
which that object is reachable through a chain of strong (hard) and
soft references.

Let’s have a look at the example that illustrates the use of weak
references. From book code examples open “Weak.kt”:

// Referent definition, some 'dummy' class:
class Dummy {

 // Referent's function:
 fun hello() = println("Dummy: ${hashCode()}")
}

// Referent:
val dummy = Dummy()

// We are initializing weak reference
// by passing a referent as a parameter:
val weak = WeakReference(dummy)

// Release weak reference:

weak.get()?.hello()

As you can see we have created a weak reference by calling the
“WeakReference” class constructor with referent as the argument. A
new weak reference that refers to the given object is is an object to
which a new weak reference will refer.

Obtaining access to referent is achieved via the “get” function. The
this reference object's referent. function returns null this reference
object has been cleared, either by the program or by the garbage
collector.

Finally, we are calling “clear”. function this reference object.
Invoking this function will not cause this object to be enqueued. This
function is invoked only by our code. However, when the garbage
collector clears references it does so directly, without invoking this

Let’s run our program:

Dummy: 491044090

As you can see, the “hello” function has been executed only once since
for the second execution there was no referent pointed by our weak
reference.

Soft references

A soft reference object can be cleared by the in response to a a
memory demand. When a Garbage Collector is called, it over all
elements in the heap. GC keeps reference-type objects in a special
type of queue. GC determines which instances should be removed by
removing objects from that queue all objects in the heap have been
checked. It is guaranteed to be cleared references to softly-reachable
objects before a JVM throws an OutOfMemoryError.

Because of the time when a soft reference gets cleared is not
guaranteed or the order in which a set of such references to different
objects cleared.

To demonstrate the practical use of soft references through the code
open ”Soft.kt” from book code examples:

class Dummy {

 fun hello() = println("Dummy: ${hashCode()}")
}

val dummy = Dummy()

// We are initializing soft reference
// by passing a referent as a parameter
// exactly as we did with weak
val soft = SoftReference(dummy)

// Release soft reference:

Phantom references

Phantom references are rarely used in everyday development.
However, it is worth mentioning that references have two major
differences compared to weak and soft references:

- A referent of a phantom reference cannot be The referent is never
accessible directly through the API. Because of this, we need to work
with a

- The Garbage Collector adds a phantom reference to a reference
queue after the finalize function of its referent is executed. It implies
that the instance is still in the memory.

References summary

Listing the reference types from the strongest to the weakest, the
different levels of reachability reflect the life cycle of an object. They
are defined as follows:

- An object is strongly reachable if it can be reached by some thread
without traversing any reference objects. A created object is strongly
reachable by the thread that has created it.

- An object is softly reachable if it is not strongly reachable but can be
reached by traversing a soft reference.

- An object is weakly reachable if it is neither strongly nor softly
reachable. It can be reached by traversing a weak reference. object
becomes eligible for finalization the weak references to a weakly-
reachable object are cleared.

- An object is phantom reachable if it is neither strongly, softly, nor
weakly reachable. The object is phantom reachable if it has been
finalized, and some phantom reference refers to it.

Finally, the object is not reachable in any of the above ways it is
unreachable, and therefore eligible for reclamation.

Atomic references

The reference provides operations on an underlying object reference
that can be read and written Thread-safe code only manipulates
shared data structures in a manner that ensures that all threads
behave properly and fulfill their design specifications without
unintended interaction. Atomic reference contains advanced atomic
(concurrent) operations. The that you will use mostly are “get” and
”set”. “get” and ”set” functions have a purpose of and setting the
Atomic reference should be used in situations where you need to do
simple atomic (thread-safe) operations.

Let’s have a look at the example of “AtomicReference” use in code.
From book code examples open “Atomic.kt”:

// We define some stub class:

class Dummy

val d1 = Dummy()
val d2 = Dummy()

// Atomic wrapper around the
val counter = AtomicInteger()

// Initially it does not point to any
val reference = AtomicReference()

val t1 = Thread {

 println("Time 1: ${System.nanoTime()}")
 // We are setting new reference:

reference.set(d1)

 println("Is d1: ${d1 === reference.get()}")
 println("Is d2: ${d2 === reference.get()}")

 // Increment the counter:

counter.incrementAndGet()

}

val t2 = Thread {

 println("Time 2: ${System.nanoTime()}")
 reference.set(d2)

 println("Is d1: ${d1 === reference.get()}")

 println("Is d2: ${d2 === reference.get()}")
 counter.incrementAndGet()
}

// We will use executor which will ensure that
// t1 completes before t2:
val executor = Executors.newSingleThreadExecutor()

// We are sending threads to be executed sequentially:

executor.execute(t2)

// We until both threads complete
while < 2) {

Thread.yield()

}

// Get the referent:
val instance = reference.get()

println("Time 3: ${System.nanoTime()}")
// Compare by reference:
println("Is d1: ${d1 === instance}")
println("Is d2: ${d2 === instance}")

// Clear the reference:

exitProcess(0)

Follow the source code comments to better understand every step of
this simple example. Executing this program will give us output
similar to this one:

Time 1: 5197247991885
Is d1: true

Is d2: false

Time 2: 5197248336431
Is d1: false
Is d2: true

Time 3: 5197258452231
Is d1: false
Is d2: true

This reference

“this” is a reference variable that refers to the current object. From
book code examples open “This.kt”:

class Wrapper(private val value: Int) {

 fun sum(value: Int) {

 val sum = + value
 println("Sum: $sum")
 }
}

val wrapper = Wrapper(1)
wrapper.sum(3)

In this example, the crucial part is the “sum” function. To
differentiate between function’s argument named “value” and class
constant with the same name we have used “this” reference. Thanks
to that, we are accessing the current object and all current object
members. In this case, “value” is constant.

Executing the program will produce the following output:

Sum: 4

Generic data types

“Generic” data type that the type is parameterized. The value of
“generic” data types is to allow such as “String” and so and user-
defined types as well to be to objects, classes, and interfaces. By data
it is possible to create classes that work with different data types.

Let's take a look at the example that shows us the simple of ”generics”
in Kotlin. From book code examples open

class Container(val data: T) {

 fun describe() {
 println("Data contained: $data")
 }
}

We have defined a class for “generic” data type of some “T”. That
means that we can instantiate the “Container” class and have a
“data” field of any type. The contains a “describe” function that will
print-line string representation of the “data” property. Let’s try it
out:

val data1 = Container(1)
val data2 = Container("Hello world!")
val data3 = Container(true)

Executing our program will produce the following result:

Data contained: 1
Data contained: Hello world!
Data contained: true

Ok, here we demonstrated basic usage of generics. Let’s introduce
more precision into the class types. From book code examples open
the source code

abstract class Car(var model: String) {

 abstract var name: String
}

class Bmw(model: String) : Car(model) {

 override var name: String = "Bmw"
}

class Mercedes(model: String) : Car(model) {

 override var name: String = "Mercedes"
}

“Car”, and “Mercedes” are just simple classes. Now, we will define a
class for car washing that only deals with “Car” types:

class C : Car> {

 fun {

 println("Washing ${car.name} ${car.model}")

 }
}

class works with generic data types that inherit super-type “Car”.
Also, using “in” keyword tells us that we will only consume our
generic type “C”. We will not produce it as a result of our class
operations.

On the other hand, we can define a class that only this data type:

abstract class C : Car> {

 abstract fun forgeCar(model: C

}

For each type of car, we will create a separate factory. One factory for
Bmws, one for Mercedeses:

class BmwFactory : CarFactory() {

 override fun forgeCar(model: String): Bmw {
 return Bmw(model)

 }
}

class MercedesFactory : CarFactory() {

 override fun forgeCar(model: String): Mercedes {
 return Mercedes(model)
 }

}

Let’s try this out:

val bmwFactory = BmwFactory()
val mercedesFactory = MercedesFactory()

val bmw = bmwFactory.forgeCar("M4")
val mercedes = mercedesFactory.forgeCar("AMG GT")

val bmwCarWasher: CarWash = CarWash()
val mercedesCarWasher: CarWash = CarWash()
val generalCarWasher: CarWash = CarWash()

bmwCarWasher.washCar(bmw)
mercedesCarWasher.washCar(mercedes)
generalCarWasher.washCar(bmw)
generalCarWasher.washCar(mercedes)

If we run this and we “wash” our cars, the following output will be
produced by the program:

Washing Bmw M4
Washing Mercedes AMG GT
Washing Bmw M4
Washing Mercedes AMG GT

Generic functions

“Generic functions” are functions capable of working with any data
type (“generic”) or subtypes of some super-type. We will illustrate this
Kotlin feature through a simple example. From book code examples
open “GenericFunctions.kt”:

abstract class Engine {

 abstract val power: Long

 override fun toString(): String {

 return "Engine(power=$power)"
 }
}

class RocketEngine : Engine() {

 override val power: Long

 get() = 1000
}

class TruckEngine : Engine() {

 override val power: Long
 get() = 100
}

We have a few simple classes, basic abstraction with final
implementations: “Engine”, “RocketEngine”, and “TruckEngine”.

Then:

class EngineDiagnostics {

 fun : Engine> {

 println(engine)
 }
}

We have defined another class that contains a “generic function”
capable of dealing with “engines”. “checkEngine” is “generic” and it
is capable of work with all classes that inherit the “Engine” abstract
class. That is data type “T” which inherits “Engine”

Let’s try it out:

val truckEngine = TruckEngine()
val rocketEngine = RocketEngine()
val diagnostics = EngineDiagnostics()

diagnostics.checkEngine(truckEngine)
diagnostics.checkEngine(rocketEngine)

Running “engine checks” on “Engine” instances will produce the
following result:

Engine(power=100)
Engine(power=1000)

wildcards

Generics are used to indicate that or data types are subtypes of some
super-type, which that some type that we use must inherit some other
Let’s have a look at the example that illustrates how we can do this.
From book code examples open “Extends.kt”:

abstract class Airplane {

 abstract fun describe()
}

class Boeing : Airplane() {

 override fun describe() {
 println("Being")
 }
}

class Airbus : Airplane() {

 override fun describe() {
 println("Airbus")
 }
}

class AirplaneDescriptor {

 fun : Airplane> describe(airplane: {
 airplane.describe()
 }

}

We have defined a couple of classes. “Airplane” class is the root
abstraction class for airplanes. “Boeing” and “Airbus” are the
implementation For us, the key class of this example is the
“AirplaneDescriptor” class. The “AirplaneDescriptor” class has only
one function that works with generic data type T which inherits the
“Airplane” abstraction. example, “describes” all airplanes. If we try
to pass other data type to “describe” function compiler will complain.
Let’s try this:

val airplane1 = Airbus()
val airplane2 = Boeing()
val descriptor = AirplaneDescriptor()

descriptor.describe(airplane1)
descriptor.describe(airplane2)

Executing the program will produce the following result:

Airbus
Being

You will sometimes need the data type that can have only certain
values. For this purpose enumeration was introduced. “Enumeration”
represents a named list of constants. In Kotlin “enum” has its
specialized data type which tells us that something has several
possible values.

It is important to note that “enums” are classes. Because of “enums”
can have properties, functions, etc. Each of the “enum” constants acts
as a separate instance of the class which cannot be created by the
These instances are separated by commas.

Let's have a look at some “enums” in Kotlin. From book code
examples open “Enums.kt”:

enum class TIME {

 MICROSECOND,
 MILLISECOND,
 SECOND,
 MINUTE,
 HOUR,
 DAY,
 WEEK,
 MONTH
}

enum class capital: String) {

 SPAIN("Madrid"),
 RUSSIA("Moscow"),
 SCOTLAND("Edinburgh")
}

We have defined two “enums”. The enum “TIME” does not have any
values associated with its constants. On the other hand, our second
example, “COUNTRY” has the associated value.

This is how we could access them:

println("Time unit: ${TIME.MILLISECOND}")
println("Time unit: ${TIME.SECOND}")
println("Time unit: ${TIME.MINUTE}")

println(

 "Country vs capital: ${COUNTRY.ITALY} ->

 ${COUNTRY.ITALY.capital}"

)
println(

 "Country vs capital: ${COUNTRY.SPAIN} ->

 ${COUNTRY.SPAIN.capital}"

)
println(

 "Country vs capital: ${COUNTRY.RUSSIA} ->

 ${COUNTRY.RUSSIA.capital}"

)

Executing this simple code snippet will produce us the following
output:

Time unit: MILLISECOND
Time unit: SECOND
Time unit: MINUTE

Country vs capital: ITALY -> Rome
Country vs capital: SPAIN -> Madrid
Country vs capital: RUSSIA -> Moscow

Let's take a look at the example in which “enums” can have function
implementations. From book code examples open

enum class CAPABILITIES {

 POWER_ON {

override fun execute() {
 println("Powering on")
 }
 },
 POWER_OFF {

override fun execute() {

 println("Powering off")
 }
 },
 MUTE {

override fun execute() {
 println("Muting audio")
 }
 },
 VOLUME_UP {

override fun execute() {
 println("Vol +")
 }
 },
 VOLUME_DOWN {

override fun execute() {
 println("Vol -")
 }
 };

abstract fun execute()

}

We have defined “enum” called “CAPABILITIES” with abstract
function member: “execute”. Because of this, each “enum” constant
must implement it. Let’s try it:

val capabilities = listOf(

 CAPABILITIES.POWER_ON,
 CAPABILITIES.VOLUME_UP,
 CAPABILITIES.VOLUME_UP,
 CAPABILITIES.POWER_OFF
)

for (capability in capabilities) {
 capability.execute()
}

Running this little “enums” program will produce the following
output:

Powering on
Vol +
Vol +
Vol -

Powering off

Our last “enums” example will demonstrate the use of two important
“enum” From book code examples open “EnumConstants.kt”:

enum class PLANETS {

 EARTH,
 MARS,
 PLUTO
}

We start this example by defining simple enum. Then, we try these

// Returns PLUTO enum item:
println("Value of:

try {

 val planetBlah =
 println("Planet: $planetBlah")
} catch (e: IllegalArgumentException) {

 println(e.message)
}

// values() func. returns array containing all enum items:
println("Planets count:

As you can see function returns the “enum” constant by the name. If
there is no such constant defined, “IllegalArgumentException” is
thrown. Lastly, if we ever need an array that all of the “enum”
constants, we can use the “values” function.

If we run our code example the following output will be produced:

Value of: PLUTO

No enum constant
net.milosvasic.fundamental.kotlin.object_oriented.PLANETS.BLAH

Planets count: 3

Sealed classes

For representing restricted class hierarchies classes are used. Sealed
class value can have one of the types defined within a limited set. The
of values for an enum type is also restricted, but each enum constant
exists only as a single instance, whereas a subclass of a sealed class can
have multiple instances which can contain a state.

A sealed class can have subclasses. of them must be nested inside the
declaration of the sealed class.

Note that classes that extend subclasses of a sealed class (indirect
inheritors) can be placed anywhere, not necessarily inside the

declaration of the sealed class.

One of the most frequent use cases for the sealed classes is them in the
expression. The clause is not needed it’s possible to verify that the
statement covers all cases.

From book code examples open “Sealed.kt”:

sealed class Specie {

class Human(val race: String) : Specie()

class Animal(

 val specie: String, val legsCount: Int

) : Specie()

object Bacteria : Specie()
}

We have defined a simple “sealed class” to describe nature’s species.
may be “human”, “animal” or like in our example “bacteria” which is
an

Now we will define a simple function that will work with “species”:

fun describe(specie: Specie) = when (specie) {

 is Specie.Human -> "Human ${specie.race}"
 is Specie.Animal ->

"${specie.specie}, it has ${specie.legsCount} legs."

 is Specie.Bacteria -> "Some micro organism..."
}

Depending of the “specie” type it will return proper description
string. Let’s try it:

val indian = describe(Specie.Human("Indian"))
val asian = describe(Specie.Human("Asian"))

println(indian)
println(asian)

val monkey = describe(Specie.Animal("Monkey", 2))
val horse = describe(Specie.Animal("Horse", 4))

println(monkey)
println(horse)

val bacteria = describe(Specie.Bacteria)
println(bacteria)

Running this small simple example will produce the following

Human Indian
Human Asian
Monkey, it has 2 legs.
Horse, it has 4 legs.
Some micro organism...

Annotations

Annotations represent a feature for attaching metadata to the code.
To declare an annotation it is required to put the ”annotation”
modifier in front of a class.

Annotation can have additional attributes. They can be specified by
annotating the annotation class with meta-annotations such as:

- “@Target”:

This meta-annotation indicates the kinds of code elements that are
possible targets of an annotation. If the target meta-annotation is not
present on an annotation declaration, the annotation is applied to the
following elements:

- CLASS,
- PROPERTY,
- FIELD,
- LOCAL_VARIABLE,
- VALUE_PARAMETER,
- CONSTRUCTOR,
- FUNCTION,
- PROPERTY_GETTER,
- PROPERTY_SETTER.

-

Determines whether an annotation is stored in binary output and
visible for reflection. By default, both are true.

-

Determines that an annotation is applicable twice or more on a single
code element.

-

Determines that an annotation is a part of public API. it should be
included in the generated documentation for the element to which the
annotation is applied.

We will illustrate use of annotations on the example from book code
examples

@Target(
 AnnotationTarget.CLASS,

 AnnotationTarget.CONSTRUCTOR,
 AnnotationTarget.FUNCTION,
 AnnotationTarget.VALUE_PARAMETER,
 AnnotationTarget.EXPRESSION,

 AnnotationTarget.PROPERTY_SETTER,

)
@Retention(AnnotationRetention.SOURCE)
@MustBeDocumented
annotation class Marker

And now we can use it to annotate our classes:

@Marker class Annotated {

@Marker fun who: String): String {

 return "Hello $who")
 }
}

the primary constructor of the class is achievable by adding the
constructor keyword to the constructor declaration and by adding the
annotations before it. Like in this

class Annotated2 @Marker constructor()

To be able to apply the annotation to the constructor it is required
that “AnnotationTarget.CONSTRUCTOR” is present in annotation’s
“@Target” definition.

Property accessors can be also

class Annotated3 {

 var number: Int? = null

@Marker set
}

To be able to apply the annotation to the property accessors it is
required that

“AnnotationTarget.PROPERTY_SETTER”
(or “AnnotationTarget.PROPERTY_GETTER”)

is present in annotation’s “@Target” definition.

Annotation constructors

Annotations can have parameterized constructors. Let’s illustrate this
with a simple example. From book code examples open and take a
look:

annotation class desc:

am a dummy class Dummy

We have defined “Description” annotation which accepts one string
argument in its constructor. Then, we have used our annotation to
“describe” the “Dummy” class.

Annotation constructors can have the following types of parameters:

- Other annotations
- Number data types: ”Int”, ”Long” and others
- Strings
- Classes, for example,
- Enums
- Arrays of any of these data types.

Note:

Parameters cannot have nullable types. JVM does not support this.

Note:

The name of the annotation should not be prefixed with the “@”
character the annotation constructor parameter has the type of
another annotation.

Lambdas in annotations

Lambdas can be annotated Annotation is applied to the function.
function is the function into which the body of the lambda is
generated. We will illustrate this with a simple example. From book
code examples open “AnnotatingLambdas.kt”:

val lambda = @Marker {

 println("Do something ...")
}

As you can see it is really simple to annotate the lambda function.

Arrays in annotations

As we have already mentioned, can be used as the annotation
parameters. Let’s illustrate this with a simple example. From book
code examples open “AnnotationArrays.kt”:

annotation class data:

class Data

As you can see here, the “Meta” annotation accepts the array of
strings as the argument. “Data” class is annotated with “Meta” In this
case array with two strings has been passed as an argument to the
annotation.

Most frequently used annotations

In this section, we will mention a few of the most frequently used
annotations and their purpose in everyday development. As most of
them come directly from Java it is important to note that Java
annotations are completely compatible with Kotlin.

Some of them are:

- ”SuppressWarnings”: used to suppress warnings issued by the
compiler

- used to mark that the function or class are deprecated. prints
warning for all marked classes and main purpose is to inform the
developer that marked function or class may be removed in future
versions of the

- “Generated”: used to mark source code that has been generated. It
can be specified on a class, function, or field. It can also be used to
differentiate user-written code from generated code in a single file.

- used to declare a reference to a resource. It can be specified on a
class, function, or field.

- used to declare a reference to a resource. This acts as a container for
multiple resource declarations.

And many others such as “PostConstruct”, “PreDestroy” etc.

How to use annotations

In this section, we will show you how you can use your annotations.

Note:

To be able to work with your annotation with this one that we will
present in this section’s it is required to add Kotlin reflection
dependency to your “build.gradle” configuration:

dependencies {

 ...

 implementation

}

Or, like in the case of our code examples project (within the main
“build.gradle”

dependencies {

 api "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
 api
}

Without this dependency, your application would crash. With it
present, we are ready to write and try our example code. From book
code examples open

@Target(AnnotationTarget.CLASS)
annotation class Descriptor(val description: String)

We will use this annotation to “describe” items in the online store.
Then, we will define some store products:

abstract class Product

@Descriptor("vehicle")
class Car : Product()

@Descriptor("office device")
class Computer : Product()

@Descriptor("home appliance")
class Tv : Product()

// No annotation for this one:
class VacuumCleaner : Product()

a basic abstraction for the store products. The “Car”, “Computer”,
“Tv” and “VacuumCleaner” are the products that will be available in
the store for purchase. Each of them is “described” with our
annotation except for “VacuumCleaner”. Let’s process products in
one shopping cart and handle our annotation:

class Processor {

 fun process(products: List) {

 products.forEach {

 var described = false

val annotations = it::class.annotations

 annotations.forEach { ann ->

if (ann is {

 described = true
 println(

 "Processing: ${it::class.simpleName},

 }
 }
 if (!described) {

 println("Processing: ${it::class.simpleName}")

 }
 }
 }
}

The class is responsible for processing items in the shopping cart. It
has only one function: to “process”. “process” function iterates

through items in the shopping cart and accesses to annotations
assigned to each item:

val annotations = it::class.annotations

Then, the function iterates through all annotations. Since we are only
interested in “Descriptor” annotation, if the annotation is present we
are obtaining the “description” field value and we are using it further.
All other annotations (if present) are ignored.

Let’s try our processor:

val products = listOf(

 Tv(),
 Car(),
 Computer(),
 VacuumCleaner()
)

val processor = Processor()
processor.process(products)

Executing our program will produce the following output:

Processing: Tv, home appliance
Processing: Car, vehicle
Processing: Computer, office device

Processing: VacuumCleaner

Any

In this section, we will explain the meaning of “Any” data type. “Any”
is a superclass for any class that we may define in our programs, it is
root of the Kotlin class hierarchy.

Besides default “()” (default constructor) “Any” provides mandatory
functionalities that all derived classes are inheriting. We will mention
each.

function

Tells us whether some other object is "equal to" the current one.
Implementations must fulfill the following requirements:

- Reflexive: for any non-null value “x, x.equals(x)” should return true

- Symmetric: for any non-null values ”x” and “y, x.equals(y)” should
return true if and only if y.equals(x) returns true

- Transitive: for any non-null values ”x”, “y”, and ”z”, if “x.equals(y)”
returns true and “y.equals(z)” returns true, then “x.equals(z) ” should
return true.

- Consistent: for any non-null values ”x” and ”y”, multiple
invocations of “x.equals(y)” consistently return true or consistently

return false, provided no information used in equals comparisons on
the objects is modified.

- Never equal to “null”: for any ”non-null” value “x, x.equals(null)”
should return false.

function

Returns a “hash code” value for the object. The general contract of
“hashCode” is:

- The function must consistently return the same integer it is invoked
on the same object more than once

- the ”hashCode” function on each of the two objects must produce
the same integer result the two objects are equal according to the
“equals”

function

Returns a string representation of the object.

Unit

is a special data type. It has only one purpose, it the void return type
as a class. cannot be instantiated since its only constructor is private.

Functions that are returning may be represented like this:

fun Unit {

// ...
}

or

fun {

// ...
}

As you can see the return type declaration is optional.

Nothing

is a special data type (class) in Kotlin. “Nothing” class has no instance
and its main purpose is to be used as a value that never exists. It is
also used to represent a return type from a that will never return For
example, if a function has the return type of “Nothing”, that means
that it never returns and that for example always throws an
exception.

Let’s cover this with a simple example. From book code examples
open “Nothing.kt”:

@Throws(IllegalArgumentException::class)
fun fail(message: Nothing {

 throw IllegalArgumentException(message)
}

As you probably remember in Kotlin “throw” is an expression and
can be used as a part of “Elvis” operator. Here we will nest our
function:

@Throws(IllegalArgumentException::class)
fun printer(vararg what: String?) =
 what.forEach {
 println(
 it ?: fail("Invalid input,

)
 }

So, if we pass at least one of the arguments to the “printer” function
as a “null”, it will trigger the “fail” function, and “printer” will stop.
Let’s try it:

try {

 printer("Hello world", null, "Ok")
} catch (e: IllegalArgumentException) {

 println("${e.message}")
}

Executing our program will produce the following output:

Hello world
Invalid input, stopping

Visibility modifiers

In Kotlin classes, objects, interfaces, constructors, functions,
properties, and their setter functions can have “visibility “visibility
modifiers” are used to set the visibility or access rights. Getter
functions always have the same visibility as the property.

In Kotlin, the following “visibility modifiers” are

- “private”: visible only inside the current scope

- “protected”: visible for the current scope and all that extend it
- “public”: visible everywhere
- “internal”: visible everywhere inside the current module

If not “visibility modifier” is specified, default visibility is used which
is

Let’s demonstrate “visibility modifiers” use. From book code
examples open “VisibilityModifiers.kt”:

open class A {

 fun hello() = println("Hello")

protected fun world() = println("World")

private fun helloWorld() = println("Hello world")

 open fun greeting() {

 helloWorld()

 }
}

class B : A() {

 override fun greeting() {

 hello()
 world()
 }
}

We have defined two classes: “A” and “B”, where “B” inherits “A”.
Both classes define functions with “visibility modifiers”.

“A” class defines the following functions:

- it is publicly visible and can be accessed within its scope, from
inherited classes, and through the class instance.

- it is “protected”, which means that can be accessed within its scope
and from inherited classes.

- it is “private” which means that can be accessed only within its
scope.

- publicly visible, and that means that it has the same rules associated
with it as the “hello” function.

class inherits all functions from class “A” and overrides the
“greeting” function.

Let’s play with these classes:

val a = A()
val b = B()

println("A:")
a.hello()
a.greeting()

println("B:")
b.hello()
b.greeting()

If we run this the following output will be produced:

A:
Hello
Hello world

B:
Hello
Hello

Extensions

Kotlin provides a mechanism for with new without inheriting them or
any type of design pattern such as Decorator. This mechanism is
called “extensions”.

“Extensions” do not modify parent classes. They are just extending it.
Extensions do not insert a new function to a class but create a inside a
class where we are extending.

From book code examples open

class Hello {

 fun world() {

 println("Hello world")
 }
}

fun Hello.everybody() {

 world()
 println("Hello everybody")
}

fun Hello.repeat(count: Int, what: String) {

 for (x in 0 until count) {

 println(what)
 }

}

fun Hello.stranger() {

 println("Hello stranger")
}

We have created the “Hello” class that has only one function:
“world”. Then, we are extending with three additional functions:
“everybody”, “repeat”, and “stranger”. As you can see, the “Hello”
class has been extended without inheritance or the “Decorator”
pattern.

Let’s try these functions:

val hello = Hello()

hello.world()
hello.everybody()
hello.repeat(3, "Woo-hoo")
hello.stranger()
Executing our program will produce the following output:

Hello world
Hello world
Hello everybody
Woo-hoo
Woo-hoo
Woo-hoo
Hello stranger

Let’s see another Imagine that you are working on an Android
application project. Instead of extending some “BaseActivity” class to
give certain functionality to all your activities, you can add
functionality to the “Activity” class itself. Let’s say that you need
functionality to go back to the previous UI location, you can create an
extension for this purpose.

From book code examples open

fun Activity.goBack() {

 // We will pop back stack here...
}

All activities (classes that extend the “Activity” in your application
will have access to the ”goBack”

Let’s take a look at the next example. From book code examples open

fun String.stripDownWithUnderscores(): String {

 return replace(" ", "_")
}

Let’s try it:

listOf(

 "Hello world",
 "Lorem ipsum"
).forEach {

 val stripped = it.stripDownWithUnderscores()

 println(stripped)
}

Which will produce the following output:

Hello_world
Lorem_ipsum

Extending class properties

In this section, we will show how to extend class properties. From
book code examples open “ExetendingProperties.kt”:

class ExtendMe {

 val a = 15
}

val ExtendMe.b: Int
 get() = 25

We have defined simple class “ExtendMe” with one property: “a”.
Then, we have extended it with additional property “b”. Let’s access
these properties:

val extended = ExtendMe()
println("A: ${extended.a}")
println("B: ${extended.b}")

Executing this small code snippet will produce the following output:

A: 15
B: 25

Extending

In same way that we have extended the class properties, we can
extend objects and companion

We will start with the example of companion object extending. We
show you how to do this in the book code example

class Example {

 companion object {

 const val a = 10

 fun printA() {

 println("A: $a")
 }
 }
}

val Example.Companion.b: Int
 get() = 20

fun Example.Companion.printB() {

 println("B: $b")
}

We have defined a simple class called “Example”. “Example” has one
constant “a” and one function that prints the value of “a” called
“printA”. To introduce the constant “b” and “printB” function
without inheritance we are extending the companion object as it is
presented in underlined text.

Let’s access these functions:

Example.printA()
Example.printB()

Executing this code snippet will produce the following output:

A: 10
B: 20

The next that we are going to demonstrate is how to extend objects as
class members. From book code examples open

interface Drawing {

 fun draw()
}

class Objects {

 val circle = object : Drawing {

 override fun draw() {

 println("Circle")
 }

 }
}

val Objects.square: Drawing

get() = object : Drawing {

 override fun draw() {

 println("Square")
 }
 }

We have defined a simple interface “Drawing” which will be
implemented by object class members. Class “Objects” defines one
object called “circle” which implements this interface. Then, we are
extending the “Objects” class with another object member called
“square”. As you can see “square” implements the same interface as
“circle”.

Let’s play with this:

val o = Objects()
with(o) {

 circle.draw()
 square.draw()
}

the example will produce the following output:

Circle

Square

Note:

In this example, we have used the “width” inline function which calls
the specified function block with the given receiver as its receiver and
returns its result. We will present more examples of “with” in
upcoming sections of the book.

Extension

As you probably remember, In Kotlin there are two commonly used
types of function literals:

- Lambdas
- Anonymous functions.

Then you can assume that we can create extensions for the function
This is true. We will illustrate this with a simple example same way as
we did with other extension types. From book code examples open
“ExtendingFunctionLiterals.kt”:

class Printer() {

 fun print(what: String) {

 println(what)

 }
}

val printQuoted: Printer.(what: String) -> Unit = {

 what ->
 print("\"$what\"")
}

We have defined a simple class called “Printer”. “Printer” class has
only one function: “print”. “print” function just prints out the value
of the parameter. However, we want to create a new function that will
print the quoted value of the parameter. For this purpose, we are
extending the “Printer” class with the lambda property which accepts
a string as an argument and then it prints it in quotes. the block of the
lambda, we can access the member function. Also, we have stated that
the return type of the lambda is “Unit” which means that there will be
no return

Let’s try our extension:

val printer = Printer()
printer.print("Hello world")
printer.printQuoted("Lorem ipsum")

Executing our program will produce the following output:

Hello world
"Lorem ipsum"

Scope

Scope functions are functions whose purpose is to execute a block of
code within the context of an object. a scope function on the object
with a lambda expression forms a temporary scope. the temporary
scope, we can access the object without its differ between each other
by the way they refer to the context object and by the return value.

Scope functions in Kotlin are the ”let”, ”run”, “with”, ”apply”, and
”also”.

This and It

Inside the lambda of a scope function, we can access to the context
object by a short reference instead of its actual name. There are two
ways to access the context

- a lambda receiver by “this”
- a lambda argument by using

In both cases same capabilities are available.

Using

Scope functions ”with”, and “apply” access the context object as a
lambda receiver by using the keyword “this”. lambdas of these scope
functions, the object is available the same way as it would be in the
ordinary class functions. you can leave out the “this” keyword when
accessing the members of the receiver object. By so you will simplify
your code.

Using

Scope functions and “also” have their context object as a lambda
argument. If we do specify the argument the object is accessed by the
implicit default name.

Scope return value

One of the differences between functions is by the result they are
returning. “apply” and “also” scope functions are the context object.
Thanks to this, functions can be included in the call chains. “apply”
and “also” scope functions also can be used as return results of
functions that are returning the context object. “let”, “run”, and
“with” scope functions are the lambda result. These functions can be
when assigning the result to a variable or a for chaining of operations
on the result, It is also possible to ignore the return value and use the
function to create a temporary scope for variables.

Based on this you can make the decision depending what you need to
do in your code block.

“Let” scope function

For the scope function context object is available as an argument. The
argument name is “it”. The scope function return value is the lambda
result. Usually can be used to trigger one or multiple functions as a
result of call chains.

Let’s demonstrate how to use the “let” scope function with a simple
example. From book code examples open

fun filterShort(text: String): String? {

 if (text.length 5) {

return text

 }

return null

}

listOf(
 "Hello",
 "world",
 "i",
 "am",
 "here"
).forEach { word ->

 val filtered = filterShort(word)

filtered?.let {

 }
}

We have defined a simple function called “filterShort”. The returns
null or the value of the passed argument depending on its length.
Then, we have created a list of the short word through which we are
iterating. Each element is passed to the ‘filterShort” function. Thanks
to the “let” function we are printing the “filtered” value only if it is
not null.

If we execute this simple program the following result will be
produced:

Hello
world

“Width” scope function

scope function represents a non-extension function. context object of
the scope function is passed as an argument inside the lambda. In this
case, it available as a receiver via “this”. The return value of the scope
function is the lambda result.

Let's see how we can use the scope function to access of some From
book code examples open “With.kt”:

class Human {
 fun walk() {

 println("Walking");
 }

 fun talk() {
 println("Talking");
 }

 fun jump() {
 println("Jumping");
 }

 fun swim() {
 println("Swimming");
 }
}

“Human” is a simple class with several public exposed. We will create
an instance of and access to these using the “with” scope function:

val human = Human()
with(human) {

 walk()
 walk()

 walk()
 jump()
 swim()
 jump()
 walk()
 walk()
 talk()

}

Executing this program will produce the following output:

Walking
Walking
Walking
Jumping
Swimming
Jumping
Walking
Walking
Talking

“Run” scope function

With the “run” scope function context object is available as a receiver.
In this case, it available as a receiver via “this”. The return value of
the “run” scope function is the lambda result. “run” scope function
behaves similar to the “with” scope function. The difference is that it
invokes as “let” scope function, as an extension function of the context
object.

Let’s have a look at an example that illustrates the use of the “run”
scope function. From book code examples open “Run.kt”:

class User {

 var firstName = ""
 var lastName = ""
 var address = ""

 var email = ""
}

val user = User()
user.run {

firstName = "John"

lastName = "Smith"

address = "5th Avenue"

email = "john.smith@example.com"
}

We have defined a simple class called “User” with a couple of publicly
visible variables. Then, we have accessed them using the “run” scope
function and assigned them values. As you can see it is quite simple to
use the “run” scope function.

There is one more application of the “run” function. can use the scope
function as a non-extension function. The “run“ scope function makes
it possible that you execute a block of several statements where an
expression is required:

val example = run {

 val param1 = "Hello world"
 val param2 = "Lorem ipsum"
 val param3 = "Something else"

 "$param1, $param2, $param3"
}

Let’s print the value of the “example”:

println(example)

Which will produce the following output:

Hello world, Lorem ipsum, Something else

“Apply” scope function

With the scope function context object is available as a receiver via
“this”. The return value of the “apply” scope function is the object

itself. The scope function is commonly used for code blocks that don't
return a value.

Let’s have a look at an example of the use of the “apply” scope
function. From book code examples open “Apply.kt”:

class User {

 var firstName = ""
 var lastName = ""
 var address = ""
 var email = ""

 override fun toString(): String {

 return "User(firstName='$firstName',

 lastName='$lastName', address='$address',

 email='$email')"
 }
}

val user = User().apply {

firstName = "John"

lastName = "Smith"

address = "5th Avenue"

email = "john.smith@example.com"
}

We have extended the “User” class from the previous section to print
human-readable of its instance. Then, we have assigned values to each
of the “User” class properties by using the “apply” scope function.
“user” constant has a value of “User” instance with values to its
properties assigned. check them out:

println(user)

Which will produce the following output:

User(firstName='John', lastName='Smith',
 address='5th Avenue', email='john.smith@example.com')

“Also” scope function

With the “also” scope function context object is available as an
argument via The return value of the scope function is the object
itself.

Let’s illustrate the typical use case of the “also” scope function. From
book code examples open

class Hello {

 fun execute() = println("Hello!")
}

Hello()

.also {

 println("Hey!")
 }.execute()

As you can see using the “also” scope function can be observed like
performing certain before the main one. Or simply: “…and also do
the following with the

In this we will print “Hey!” before the “execute” function is triggered.
Executing this code snippet will produce the following output:

Hey!
Hello!

“takeIf” and “takeUnless”

The “takeIf” and “takeUnless” functions allow you to

incorporate checks of the object state in call chains. “takeIf” returns
“this” object if it matches the predicate it is called on an object with a
predicate provided. Otherwise, the function returns null. On the other

hand, the function returns the object if it doesn't match the predicate
and null if it does The object is available as a lambda argument via
“it”.

Let’s see simple example of use for these functions. From book code
examples open

val numbers = listOf(-3, -2, -1, 0, 1, 2, 3)

numbers.forEach {

it.takeUnless { it == 0 }

?.let { nZero ->

nZero.takeIf { nZero > 0 }

?.let { pos ->

 println("Positive, non zero number: $pos")
 }
 }
}

What we are practically doing in this example is filtering of all
positive non-zero numbers. Executing this example will produce the
following output:

Positive, non zero number: 1
Positive, non zero number: 2
Positive, non zero number: 3

Singleton pattern in Kotlin

Singleton pattern is one of the most frequently used design patterns in
modern software development. Singleton pattern depends on a single
class that is responsible to create a class instance object) while it
makes sure that only one instance exists (is

In Kotlin, we can use to create From book code examples open

object Single {

 var value = 0

 fun print() {
 println("Value: $value, Hash: ${this.hashCode()}")
 }
}

As you can see we have a defined object called “Single”. The contains
one variable and one function. Let’s assign it to some constants and
access these object members:

val s1 = Single
val s2 = Single
val s3 = Single

s1.print()
s2.print()
s3.print()

s1.value = 100

s1.print()
s2.print()
s3.print()

Executing this will produce the following output:

Value: 0, Hash: 1872034366
Value: 0, Hash: 1872034366
Value: 0, Hash: 1872034366
Value: 100, Hash: 1872034366
Value: 100, Hash: 1872034366
Value: 100, Hash: 1872034366

You will notice that each constant (“s1”, “s2”, and “s3”) has the same
hash code which means that it points to the same reference. Objects
occupy memory as a single instance which makes them a perfect
candidate for singleton pattern implementation.

Lazy initialization

Lazy initialization represents a delaying of instance creation, the
calculation of a value, or some other expensive process until the first
time it is needed (access to the variable for example).

Kotlin supports lazy initialization. We will illustrate this with two
simple book code examples open our first example of “lazy”
initialization “DbManager.kt”:

object DbManager {

 private const val dbName = "cars"
 private const val dbVersion = 1

val database: SQLiteDatabase by lazy {

 DbHelper(dbName, dbVersion).getWritableDatabase()
 }
}

The “database” field will not be instantiated until the first time it is
accessed. It can be direct access to the field or by any function that
uses the field. Instantiation block will be executed only the first time
when we access “database” field.

have a look at another simple example. From book code examples
open “Lazy.kt”:

class Example {

val hello: String by lazy {

 println("I am initializing this lazy value")
 "Hello"
 }
}

we have to define a simple class with the constant which will be
initialized. Inside its initialization we will print simple “log”
information and return the value that will be assigned to the constant.

Note:

The evaluation of lazy properties is synchronized The value is
produced only in one thread, and all threads will see the same value.

Let’s try our class:

val example = Example()
println(example.hello)

Executing this code snippet will produce the following

I am initializing this lazy value
Hello

Properties with late initialization

Properties can be late-initialized. The difference when it comes to
comparing with lazy initialization is that late-initialized properties are
variables. Let’s take a look at the example and see how properties can
be late-initialized. From book code examples open “LateInit.kt”:

class X {

 init {

 println("I am late initialized")
 }

 fun doSomething() = print("Hello")
}

class Y {

lateinit var x: X

 fun doSomething() {

 x = X()
 x.doSomething()

 print(" World!")
 }
}

Since it is expected that properties are initialized in the constructor,
sometimes that is not what we want. For that particular situation, we
mark our property with the “lateinit” The may be only used with var
properties that are defined in the class body with no custom getter
and setter. The type of property must not be non-null or primitive.

Let’s check how this works:

val y = Y()
y.doSomething()

Executing this small code snippet will produce the following output:

I am late initialized
Hello World!

Delegating behavior

In Kotlin we can delegate class behavior to the other classes. This
functionality comes supported in Kotlin out of the box. The delegation
pattern makes our code more flexible and it is proven when it comes
to finding the perfect alternative to the inheritance.

Let’s take a look at the simple example of behavior From book code
examples open “Delegate.kt”:

interface Flying {

 fun fly()
}

will be our very basic definition of behavior with two
implementations:

class Plane : Flying {

 override fun fly() {
 println("PLANE")
 }
}

class Zeppelin : Flying {

 override fun fly() {
 println("ZEPPELIN")
 }

}

Next that we do is definition of a class that can implement an interface
by delegating all of its public members to a specified

class : Flying by fly

Let’s play with this:

val plane = Plane()
val zeppelin = Zeppelin()

val travelByPlane = Traveling(plane)
val travelByZeppelin = Traveling(zeppelin)

travelByPlane.fly()
travelByZeppelin.fly()

Executing our program will produce the following output:

PLANE
ZEPPELIN

Delegating properties

In Kotlin we can delegate class properties. There are some cases when
we need them, for example when we need the “lazy”

The that we are using to achieve this is very similar to one from the
previous section. From book code examples open
“DelegateProperties.kt”:

class Delegator : ReadWritePropertyInt> {

 var value = 0

override fun

 thisRef: Any, property: Kproperty<*>

): Int {

 println("Value GET: ${property.name} -> $value")
 return value
 }

override fun

 thisRef: Any, property: KProperty<*>, value: Int

) {

 println("Value SET: ${property.name} -> $value")
 this.value = value
 }
}

class Data {

var value: Int by Delegator()

}

The class will be responsible for handling read and write operations
for the integer properties. “Delegator” implements the
“ReadWriteProperty” interface required for this functionality. We
will soon mention the most commonly used delegation interfaces.
Finally, the class contains a “value” variable. Read and write
operations for the variable will be delegated to the instance of the
“Delegator” class.

Delegation syntax is the

val/var name>: by

The expression after by is the delegate. The get() / set() corresponding
to the property will be delegated to its getValue() and setValue()

These are the main delegate types:

Delegates, object Delegates

Standard property delegates:

-

abstract class ObservableProperty :

 ReadWritePropertyT>

Implements the core logic of a property delegate for a read/write
property that calls callback functions when it is changed.

-

interface ReadOnlyPropertyR, out T>

The interface that can be used for implementing property delegates of
read-only properties.

-

interface ReadWritePropertyR, T>

The interface that can be used for implementing property delegates of
read-write properties.

Let’s try now classes from our last example:

val x = Data()
val y = Data()
val z = Data()

x.value = 100
y.value = 200
z.value = 300

println("x's val: ${x.value}")
println("y's val: ${y.value}")
println("z's val: ${z.value}")

Executing example code will produce the following output:

Value SET: value -> 100
Value SET: value -> 200
Value SET: value -> 300
Value GET: value -> 100
x's val: 100

Value GET: value -> 200
y's val: 200
Value GET: value -> 300
z's val: 300

Property

To be able to delegate objects we must fulfill the following
requirements:

- For read-only property delegate has to provide a “getValue”
function that takes parameters: receiver (the same or a super-type of
the property owner) and metadata (“KProperty<*>” or its super-
type).

- For mutable property delegate has to provide one more “setValue”
that takes parameters: receiver (same as above), metadata (same as
above), and new value to be set.

These functions can be provided in two ways:

- As member functions of delegated class
- As extension functions.

Observable

The delegate is one of the most commonly used delegates in everyday
The function of the delegate a property delegate for a read and write
property which calls a specified callback function when changed.
From book code examples open “Observable.kt”:

class Example {

 val default = "No value"

 var value: String by {

property, oldValue, newValue ->

 println(

 "${property.name}: old='$oldValue',

 new='$newValue'"

)
 }
}

Let’s try this delegate and see what will be the final output of the

val example = Example()
example.value = "Hello world!"
example.value = "Lorem ipsum..."
example.value = "And so on…"

Executing the program will produce this:

value: old='No value', new='Hello world!'
value: old='Hello world!', new='Lorem ipsum...'
value: old='Lorem ipsum...', new='And so on...'

Builders

In this section, we will show you the two most frequently used
mechanisms. They are used to build strings and to build maps. We
will cover them through sections:

- String builder
- and

String

String builder is used for multiple string manipulation operations. To
better understand possibilities of the string builder open
“StringBuilder.kt” from book code examples:

val builder = StringBuilder()

world!")

")

val numbers = StringBuilder()

for (number in 1..3) {

 .append(" ")
}

val text = builder.append(numbers)

 .append("\n")
 .append("Lore ipsum...")

.toString()

println(text)

We have created the class instance on which we are chaining
“append” function calls. Since the “append” function returns the
current instance (“this”) chaining is possible. We can append any base
data type such as string, integer, character, and so on. Also, we can
append another builder. We did that with the “numbers” string
builder that concatenated integer numbers. Finally, we have the
builder into the string by calling the “toString” Executing this code
example will produce the following output:

Hello world!
Numbers: 1 2 3
Lore ipsum...

Map

In this section, we will show you five functions that can be used to
instantiate maps.

- “mapOf”, creates an immutable map of the key-value pairs that we
provide as the parameters

- “mutableMapOf”, creates a mutable map of the key-value pairs we
provide as parameters
- “sortedMapOf”, creates a map that is ordered by its keys
- “hashMapOf”, creates a hash table based implementation of the
map

- “linkedMapOf”, creates a “LinkedHashMap” variant of a hash table
implementation.

Let’s try each of these. From book code examples open
“MapBuilders.kt”:

val map1 =

 "hello" to "world", "lorem" to "ipsum", "abc" to "def"

)

val map2 =

 "hello" to "world", "lorem" to "ipsum"

)

= "def"

val map3 =

 "hello" to "world", "lorem" to "ipsum", "abc" to "def"

)
val map4 =

 "hello" to "world", "lorem" to "ipsum", "abc" to "def"

)
val map5 =

 "hello" to "world", "lorem" to "ipsum", "abc" to "def"

)

As you can see we have created by using every of these five functions.
Every function creates a different map. Let’s see the content of each
map:

println("mapOf=$map1")
println("mutableMapOf=$map2")
println("sortedMapOf=$map3")
println("hashMapOf=$map4")
println("linkedMapOf=$map5")

Executing this code snippet will produce the following output:

mapOf={hello=world, lorem=ipsum, abc=def}
mutableMapOf={hello=world, lorem=ipsum, abc=def}
sortedMapOf={abc=def, hello=world, lorem=ipsum}
hashMapOf={lorem=ipsum, hello=world, abc=def}
linkedMapOf={hello=world, lorem=ipsum, abc=def}

Destructuring

In Kotlin it possible to “destructure” class into several variables. For
example:

val (brand, model) = car

This can be very convenient if we want to return multiple results from
the function. Let’s say we define a data class holding values
representing function result, we may use it like this:

val (a, b, c) = myFunction()

Also, we can use the same approach for loops:

for ((a, b) in collection)

or

for((key, value) in map)

As you can see ”destructuring” is one nice little functionality given to
you by Kotlin.

properties

In Kotlin we might want to store our properties in a map. This can be
easily achieved. From the book code examples open
“MappedProperties.kt”:

class Map{

 val firstName: String by map

 val lastName: String by map

 val yearOfBirth: Int by map

}

val e = Employee(

 mapOf(

 "firstName" to "John",
 "lastName" to "Smith",
 "yearOfBirth" to 1985
)
)

Let’s check if values have been assigned properly:

println(

 "Employee: ${e.firstName}, ${e.lastName},

 ${e.yearOfBirth}"

)

Executing this verification code snippet will confirm that everything
has been assigned as we have expected:

Employee: John, Smith, 1985

Concurrency

In this section, we will explain what concurrency is and how
concurrency can be performed in Kotlin. The definition of
concurrency is the ability of different parts of our program to be
executed unordered or at the same time simultaneously or in a partial
order, without affecting the outcome of the Thanks to this our
programs can significantly improve speed on multi-processor and
multi-core

We will demonstrate two approaches to concurrency:

- by “threads”, the classical approach
- and by Kotlin “coroutines”.

We will explain how to use each of these two, what are their strengths
and what their weaknesses are.

Threads

A “thread” represents a thread of execution in our The JVM allows
that our programs run multiple threads at the same time. All threads
of our program have a priority. means that the with high priority are
executed in preference to the lower priority Another thing that is
possible is to mark the thread as a daemon.

When the JVM starts a single non-daemon thread is started. It calls
the main function of our program. the JVM continues to execute our
program threads until one of the conditions happen:

- “exit” function of the “Runtime” class has been called the “security
manager” permitted the exit

- threads that are not daemon threads have died.

We will present you two ways to create and run threads:

- a class as a subclass of the and starting it

- a class that implements the “Runnable” interface which then
implements the “run” function and using it as a parameter to the
“Thread” class constructor.

From book code examples open “Threads.kt”:

class Counter(private val count: Int) : Thread() {

override fun run() {

 for (x in 0..count) {

 println("Count no. $x")
 // Sleep for one second:

sleep(1000)

 }
 }
}

Class “counter” represents the first approach in creating threads. It
extends the “Thread” superclass and it implements the “run”
function which will be executed in the background once the “start”
function is triggered. What our implementation does is simple
counting with pauses of one second in between print lines.

Let’s see how this works:

val counter =

// We will wait until counter finishes:
while {

Thread.yield()

}

Once the “start” function is triggered we will count and append lines
to the output. For all output lines to print out it will take around ten
seconds:

Count no. 0
Count no. 1
Count no. 2
Count no. 3
Count no. 4
Count no. 5
Count no. 6
Count no. 7
Count no. 8
Count no. 9

Count no. 10

We can rewrite this same example to the second approach:

class Counter2(private val count: Int) : Runnable {

override fun run() {

 for (x in 0..count) {

 println("Count no. $x (2)")
 // Sleep for one second:
 Thread.sleep(1000)
 }
 }
}

We have defined the class “Counter2” which inherits the “Runnable”
interface. Everything else is straightforward. The “run” function

performs the same operation as in our previous example. Let’s try it:

val counter2 = Counter2(10)
val thread = Thread(counter2)
thread.start()

// We will wait until counter finishes:
while (thread.isAlive) {

 Thread.yield()
}

As you can see we have created a new object of the “Thread” class
and passed a new counter as the constructor’s parameter. Then,
instead of calling the “start” function on the counter object, we have
called on the thread directly. Executing this code snippet will give us
the same behavior as in the previous example:

Count no. 0 (2)
Count no. 1 (2)
Count no. 2 (2)
Count no. 3 (2)
Count no. 4 (2)
Count no. 5 (2)
Count no. 6 (2)
Count no. 7 (2)
Count no. 8 (2)
Count no. 9 (2)
Count no. 10 (2)

Thread

Creating a new thread is an expensive operation. To create a thread
operating system allocates resources that are for the thread. Let’s say
that you pile up a huge amount of threads that are running at the
same time. This could choke your machine. For this not to happen we
execute threads in a controlled manner. practice “thread are used to
utilize system resources efficiently and gain maximal performance.

The pool does not create new threads when a new task A thread pool
keeps several idle threads. Once the new task has arrived, these
threads are ready to execute. Once a thread finishes, the thread pool
thread does not die. goes back to the idle state in the pool and it waits
for the next task to

Thanks to limits that we can define, we can limit the number of
concurrent threads in the pool that are being executed at the same
time. Thanks to this we can prevent overload and choking of the In
the situation when all threads are busy, the latest arrived tasks are
placed in a queue. Once the thread becomes available the task is taken
from the queue and executed.

There are several types of thread pools commonly used:

- Cached thread pool: it keeps a certain number of alive threads, it
creates new ones if required

- Fixed thread pool: introduces a limit for the maximum of concurrent
threads while newly arrived tasks are waiting in a queue
- Single-threaded pool: has only one thread that executes one task at a
time
- Fork/Join pool: a special thread pool that uses the “Fork/Join”
framework.

We will illustrate the use of thread pools in the example of a single-
threaded pool. From book code examples open “Executors.kt”:

val executor = Executors.newSingleThreadExecutor()

As you can see getting the instance of the single-threaded pool is
straightforward. Besides the “newSingleThreadExecutor” function
there are others as well required to create other types of thread pools:

- “newCachedThreadPool”: a cached thread pool
- “newFixedThreadPool”: a thread pool that reuses a fixed number of
threads.

Let’s schedule some work for our thread pool:

for (x in 0..10) {

executor.execute {

 println("Count no. $x")
 // Sleep for one second:

 Thread.sleep(1000)

 if (x == 10) {

 // We terminate the executor:

executor.shutdown()

 }
 }
}

And let’s wait for it to finish:

// We wait for the executor to be terminated

// and to finish all tasks:
while {

 Thread.yield()
}

Executing our program will count to ten and produce the following
output (writing the output line per second):

Count no. 0
Count no. 1
Count no. 2
Count no. 3

Count no. 4
Count no. 5
Count no. 6
Count no. 7
Count no. 8
Count no. 9
Count no. 10

Coroutines

It is time to face the concurrency in a more Kotlin idiomatic way. We
will demonstrate the use of Kotlin coroutines. represent of that can be
Kotlin coroutines are similar to A coroutine executes a block of code
that runs concurrently with the rest of the On the other a coroutine is
not bound to any particular thread. It can pause the execution in one
thread and resume it some

To be able to use Kotlin coroutines it is required to add coroutines
dependency into your “build.gradle” configuration:

implementation

 "org.jetbrains.kotlinx:kotlinx-coroutines-core:1.3.8"

or

api "org.jetbrains.kotlinx:kotlinx-coroutines-core:1.3.8"

Let’s have a look at a simple coroutine example. From book code
examples open “Coroutines.kt”:

// Coroutine scope (class: 'CoroutineScope'):
runBlocking {

 // Launch a new coroutine and continue:

launch {

 for (x in 0..10) {

 // Non-blocking delay for one second

delay(1000L)

 println("Count no. $x")
 }
 }

 // Main coroutine continues,
 // a previous one is delayed:
 println("Hello Coroutines!")

}

There are several important points to explain in this code snippet:

- “launch” represents a coroutine builder. Coroutine builder launches
a new coroutine that runs concurrently with the rest of the code. The
rest of the code continues to work independently.

- “delay” is a pausing function. It pauses the coroutine for a specific
time in milliseconds. This does not block the underlying thread but it
allows the other coroutines to run.

- “runBlocking” is another coroutine builder that ties the main
program function and the coroutine code “runBlocking” means that
the thread that is currently running is blocked, until all the coroutines
inside “runBlocking” complete their

Let’s run our program:

Hello Coroutines!
Count no. 0
Count no. 1
Count no. 2
Count no. 3
Count no. 4
Count no. 5
Count no. 6
Count no. 7
Count no. 8
Count no. 9

Count no. 10

Coroutines follow a principle of “structured concurrency”. The
“structured concurrency” principle means that new coroutines can be
only launched in a specific coroutine scope (“CoroutineScope” is the
class). The scope determines the lifetime of the coroutine. The
“structured concurrency” makes sure that there is no loss or cannot
complete until all of the children are complete. The “structured
concurrency” also makes ensures that errors that may occur are
properly reported and that they are not lost.

Coroutine scope building

Scope builder is a powerful utility used in any suspending function to
execute concurrent operations. We will illustrate this with a simple
example. From book code examples open
“CoroutinesScopeBuilder.kt”:

fun main() = runBlocking {

 fire()
 println("Completed")
}

// 'suspend' means that coroutine can be suspended

// for the later execution
suspend fun fire() = coroutineScope {

 for (x in 0..3) {

launch {

 for (y in 0..5) {

 delay(1000L)
 println(

 "Job $x, count no. $y at

 ${System.currentTimeMillis()}"

)
 }
 }
 }

 println("Started")
}

In this example, each launch block executes concurrently. A
“coroutineScope” in our “fire” function completes once each “launch”
block has finished. Let’s run it:

Started
Job 0, count no. 0 at: 1621087584784
Job 1, count no. 0 at: 1621087584787
Job 2, count no. 0 at: 1621087584787
Job 3, count no. 0 at: 1621087584787
Job 0, count no. 1 at: 1621087585784

Job 1, count no. 1 at: 1621087585787
Job 2, count no. 1 at: 1621087585787
Job 3, count no. 1 at: 1621087585787

Job 0, count no. 2 at: 1621087586788
Job 1, count no. 2 at: 1621087586788
Job 2, count no. 2 at: 1621087586788
Job 3, count no. 2 at: 1621087586789
Job 0, count no. 3 at: 1621087587792
Job 1, count no. 3 at: 1621087587792
Job 2, count no. 3 at: 1621087587793
Job 3, count no. 3 at: 1621087587793
Job 0, count no. 4 at: 1621087588793
Job 1, count no. 4 at: 1621087588793
Job 2, count no. 4 at: 1621087588793
Job 3, count no. 4 at: 1621087588793
Job 0, count no. 5 at: 1621087589795
Job 1, count no. 5 at: 1621087589796
Job 2, count no. 5 at: 1621087589796
Job 3, count no. 5 at: 1621087589796
Completed

Coroutine job

In this section dedicated to coroutines, we will show you how is used.
The coroutine builder launch returns an instance of the “Job” class.
“Job” represents an access mechanism to the launched coroutine.
Thanks to this it can be used to explicitly wait for execution
completion.

Let’s demonstrate this. From book code examples open

fun main() = runBlocking {

 // We are a new coroutine
 // and keep a reference to coroutine’s “Job”:

val job = launch {

 for (x in 0..5) {

 delay(1000L)
 println("Count: $x")
 }
 }

 println("Start")
 // Wait for coroutine to finish:

 println("End")
}

As you can see the “join” function suspends the coroutine until this
job is complete. This invocation resumes normally when the job is
complete for any reason. Job of the invoking coroutine is still active.
the Job was still in a new state, function also starts the corresponding
coroutine.

The job becomes complete only when all of its children are complete!
This suspending function is cancellable. It always checks for a
cancellation of the invoking coroutine's Job. If the Job of the invoking
coroutine is canceled or completed when this suspending function is
invoked or while it is suspended, this function throws
“CancellationException”.

It means that a parent coroutine invoking join on a child coroutine
that was started using:

launch(coroutineContext) {

 // ...
}

builder throws “CancellationException” if the child had crashed
unless a non-standard “CoroutineExceptionHandler” is installed in
the context.

This function can be used in select invocation with the “onJoin”
clause. Use “isCompleted” to check for the completion of this job
without waiting. Also, is the “cancelAndJoin” function that combines
an invocation of cancel and the join.

Let’s run our program:

Start
Count: 0
Count: 1

Count: 2
Count: 3
Count: 4
Count: 5
End

Summary

In and examples that we have provided in this book, we were focused
on the usage of the Kotlin programming language. The main goal was
to demonstrate how to use it as a tool for a modern developer and to
present its strengths and most valuable functionalities. Most of the
were not focused on the deep theory behind each explained Kotlin
feature but short, clear, and concise code At the end of the day, the
developer needs more than a proper code example?

Miloš Vasić,
Summer

	 Cover
	Fundamental Kotlin revised.pdf

