THE PYTHON SERIES

LEARNING
PROFESSIONAL PYTHON

VOLUME 2: ADVANCED

USHARANI BHIMAVARAPU
JUDE D. HEMANTH

CRC Press

Taylor & Francis Group

A CHAPMAN & HALL BOOK

Learning Professional

Python

Volume 2 of Learning Professional Python is a resource for students who
want to learn Python even if they don’t have any programming knowledge
and for teachers who want a comprehensive introduction to Python to use
with their students. This book helps the students achieve their dream job
in the IT Industry and teaches the students in an easy, understandable
manner while strengthening coding skills.

Learning Professional Python: Volume 2 Objectives

+ Become familiar with the features of Python programming language
« Introduce the object-oriented programming concepts

+ Discover how to write Python code by following the object-oriented
programming concepts

« Become comfortable with concepts such as classes, objects, inheritance,
dynamic dispatch, interfaces, and packages

« Learn the Python generics and collections
 Develop exception handling and the multithreaded applications

« Design graphical user interface (GUI) applications

CHAPMAN & HALL/CRC THE PYTHON SERIES

About the Series

Python has been ranked as the most popular programming language, and
it is widely used in education and industry. This book series will offer a
wide range of books on Python for students and professionals. Titles in the
series will help users learn the language at an introductory and advanced
level, and explore its many applications in data science, AI, and machine
learning. Series titles can also be supplemented with Jupyter notebooks.

Image Processing and Acquisition using Python, Second Edition
Ravishankar Chityala, Sridevi Pudipeddi

Python Packages
Tomas Beuzen and Tiffany-Anne Timbers

Statistics and Data Visualisation with Python
Jestis Rogel-Salazar

Introduction to Python for Humanists
William J.B. Mattingly

Python for Scientific Computation and Artificial Intelligence
Stephen Lynch

Learning Professional Python: Volume 1: The Basics
Usharani Bhimavarapu and Jude D. Hemanth

Learning Professional Python: Volume 2: Advanced
Usharani Bhimavarapu and Jude D. Hemanth

For more information about this series please visit: www.crcpress.com/
Chapman - HallCRC/book-series/PYTH

http://www.crcpress.com/Chapman%E2%80%93HallCRC/book-series/PYTH
http://www.crcpress.com/Chapman%E2%80%93HallCRC/book-series/PYTH

Learning Professional
Python

Volume 2: Advanced

Usharani Bhimavarapu
and Jude D. Hemanth

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A CHAPMAN & HALL BOOK

First edition published 2024
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC
© 2024 Usharani Bhimavarapu and Jude D. Hemanth

Reasonable efforts have been made to publish reliable data and
information, but the author and publisher cannot assume responsibility
for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of
all material reproduced in this publication and apologize to copyright
holders if permission to publish in this form has not been obtained. If
any copyright material has not been acknowledged please write and let us
know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be
reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including
photocopying, microfilming, and recording, or in any information storage
or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this
work, access www.copyright.com or contact the Copyright Clearance
Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or
registered trademarks and are used only for identification and explanation
without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Bhimavarapu, Usharani, author. | Hemanth, D. Jude, author.

Title: Learning professional Python / Usharani Bhimavarapu, D. Jude
Hemanth.

Description: First edition. | Boca Raton : CRC Press, 2024. | Includes
bibliographical references and index.

Identifiers: LCCN 2023007977 | ISBN 9781032539256 (volume 1 ; hbk) |
ISBN 9781032534237 (volume 1 ; pbk) | ISBN 9781003414322
(volume 1 ; ebk) | ISBN 9781032611761 (volume 2 ; hbk) | ISBN
9781032611709 (volume 2 ; pbk) | ISBN 9781003462392 (volume 2 ; ebk)

Subjects: LCSH: Python (Computer program language) | Computer
programming.

Classification: LCC QA76.73.P98 B485 2024 | DDC 005.13/3—dc23/
eng/20230508

LC record available at https://lccn.loc.gov/2023007977

ISBN: 978-1-032-61176-1 (hbk)
ISBN: 978-1-032-61170-9 (pbk)
ISBN: 978-1-003-46239-2 (ebk)

DOI: 10.1201/9781003462392

Typeset in Minion
by Apex CoVantage, LLC

http://www.copyright.com
https://doi.org/10.1201/9781003462392
https://lccn.loc.gov
mailto:mpkbookspermissions@tandf.co.uk

Contents

Preface, ix

Author Biographies, xi

CHapTER 1 = Classes and Objects 1
1.1 CREATING CLASSES 1
1.1.1 Python Self-Parameter 2

1.2 OBJECT CREATION 2
1.3 ACCESSING ATTRIBUTES 4
1.4 CLASS METHOD 5
1.5 RETURN FROM CLASS 13
1.6 CONSTRUCTORS 14
1.7 DELETING OBJECTS 17
1.71 Delete the Object 18

1.8 PYTHON BUILT-IN CLASS FUNCTIONS 21
1.9 BUILT-IN CLASS ATTRIBUTES 23
1.10 INNER CLASS 24
EXERCISE 26
CHAPTER 2 = Inheritance 27
2.1 SINGLE INHERITANCE 27
2.2 MULTIPLE INHERITANCE 28
2.3 MULTILEVEL INHERITANCE 30
2.4 OVERRIDING METHODS 31
2.5 NESTED CLASS INHERITANCE 42
EXERCISE 47

vi m Contents

CHAPTER 3 = Arrays 49
3.1 BYTE ARRAY 49
3.2 NUMPY 51
3.3 RESHAPING ARRAYS 58
3.4 OPERATIONS ON ARRAY 61
EXERCISE 78

CHAPTER 4 = Exception Handling 81
4.1 EXCEPTION HANDLING IN PYTHON 82
4.2 SINGLE TRY MULTIPLE EXCEPT STATEMENTS 84
4.3 SINGLE TRY SINGLE EXCEPT WITH MULTIPLE

EXCEPTIONS STATEMENTS 86
4.4 TRY-EXCEPT-ELSE 88
4.5 THETRY ... FINALLY BLOCK 89
4.6 RAISING EXCEPTIONS 90
4.7 USER-DEFINED EXCEPTIONS 92
4.8 CONSTRUCTORS IN EXCEPTION HANDLING 93

4.8.1 Exception and Inheritance 94
EXERCISE 95

CHAPTER 5 = Multi Threading 97
5.1 MULTIPROCESSING IN PYTHON 97
5.2 MULTI THREADING 99

5.2.1 Starting a New Thread 99
5.3 CREATING THREAD USING THREADING MODULE 99
5.4 SYNCHRONIZING THE THREAD 107
5.4.1 Race Condition 108
5.4.2 Locks 110
5.4.3 Semaphore 112

EXERCISE 115

Contents

CHAPTER 6 = Method Overloading and Operator

® vii

Overloading 117
6.1 INTRODUCTION 117
6.2 METHOD OVERLOADING 118
6.3 OPERATOR OVERLOADING 122
6.3.1 Overloading Arithmetic Operators 123
6.3.2 Opverloading Comparison Operators 130
6.3.3 Opverloading Assignment Operator 133
6.3.4 Overloading Class Operators 135
6.3.5 Opverloading the Unary Operators 140
6.3.6 Overloading of Operators on Lists 142
6.3.7 Operator Overloading on Dictionaries 146

6.4 ELIGIBLE OPERATORS FOR OPERATOR
OVERLOADING 149
EXERCISE 150
CHapTER 7« GUI Programming 151
7.1 TKINTER INTERFACE 151
7.2 LABEL 153
7.3 BUTTON 154
74 MESSAGE BOX 155
7.5 MESSAGE 156
7.6 ENTRY 157
7.7 CHECKBUTTON 158
7.8 RADIOBUTTON 160
7.9 LISTBOX 161
710 SCALE 162
711 SPINBOX 165
712 SCROLLBAR 167
EXERCISE 176

viii m Contents

CHaPTER 8 = File Handling 177
8.1 OPENING A FILE 177
8.2 WRITING TO THE FILES 179

8.2.1 Reading the Files 185
8.2.2 Readlines 185
8.3 THE CLOSE () METHOD 189
8.4 WITH STATEMENT 190
8.5 APPENDING TO THE FILES 191
8.6 FILE POINTER POSITIONS 191
8.6.1 Modifying File Pointer Position 192
8.6.2 Renaming the File 194
8.7 BINARY FILE 194
8.8 RANDOM ACCESS FILES 196
EXERCISE 196

CHAPTER 9 = Database Connectivity 197
9.1 PYTHON WITH MYSQL 198
9.2 PYTHON WITH ORACLE 199
EXERCISE 207

CHAPTER 10 = Case Study 209
10.1 PROGRAM 1: WHATS APP ANALYSER 209
10.2 PROGRAM 2: BREAST CANCER PREDICTION 214
10.3 PROGRAM 3: STOCK PRICE PREDICTION 216
10.4 PROGRAM 4: CHAT BOX 219
10.5 PROGRAM 5: PARKINSON DETECTION 220
10.6 PROGRAM 6: FACE MASK 221
10.7 PROGRAM 7: COVID-19 ANALYSIS 223
10.8 PROGRAM 8: TIME SERIES FORECASTING 225
10.9 PROGRAM 9: FRAUD DETECTION 227

INDEX, 231

Preface

ython is a general-purpose interpreted programming language used

for deep learning, machine learning, and complex data analysis.
Python is a perfect language for beginners as it is easy to learn and under-
stand. This book is intended to teach the reader how to program in Python.
The book aims to get you up to speed fast enough and have you writing
real Python programs in no time at all. It assumes no previous exposure
to the Python language and is suited to both beginners and experienced
programmers. This book gives a comprehensive, in-depth introduction to
the core Python language.

This book helps you in gaining a quick grasp of the fundamentals of
Python programming and working with built-in functions. The book then
moves to help you in exception handling, data wrangling, databases with
Python, regular expressions, NumPy arrays, data frames and plotting.
The Python Programming culminates with how you can continue learn-
ing Python after reading this book and leaves you with a problem to solve,
testing your skills even at the last step.

The book contains approximately 500 tested programs, and all these
programs have been tested using the IDE Anaconda, Google colaboratory,
and Python online compilers compatible to the Windows operating sys-
tem and discussed the appropriate nature of the output. The book further
mentions a summary of the technical aspects of interviewing tips on nego-
tiating the best offer and guiding the best way.

This book is for data analysts, IT developers, and anyone looking to get
started with or transition to the field of software or refresh their knowledge
of Python programming. This book will also be useful for students plan-
ning to build a career in data engineering or IT professionals preparing for
a transition. No previous knowledge of data engineering is required. The
book aims to get you up to speed fast enough and have you writing real
Python programs in no time at all.

X ®m Preface

It contains 10 chapters, with practice exercises given at the end of the
first nine chapters to enable the learners to review the knowledge gained.
Each chapter starts with a brief introduction, top tips, and a review of the
essential library methods, finally followed by broad and thought-provoking
problems.

We are thankful to Taylor and Francis Publications for undertaking the
publication of this book and supporting us in this endeavor. Any sugges-
tions for the improvement of the book will be thankfully acknowledged
and incorporated in the next edition.

Dr. Usharani Bhimavarapu
Dr. Jude D. Hemanth

Author Biographies

Usharani Bhimavarapu is working as an assistant
professor in the Computer Science and Engineering
Department at Koneru Lakshmaiah Education
Foundation at Vaddeswaram, Andhra Pradesh,
India. She has been teaching for the last 14 years with
emphasis on data mining, machine learning, and data

structure. She communicated more than 40 research
papers in SCI, SCIE, and Scopus indexed journals. She
has authored 12 books in programming languages like
CPP, Java, Python, HTML, CSS, and so on.

Dr. Jude D. Hemanth received his BE degree in ECE
& from Bharathiar University in 2002, ME degree in
B communication systems from Anna University in
2006, and PhD from Karunya University in 2013. His
research areas include computational intelligence and
image processing. He has authored more than 230
research papers in reputed SCIE indexed international
journals and Scopus indexed international confer-
ences. His cumulative impact factor is more than 350.
He has published 37 edited books with reputed publishers such as Elsevier,
Springer, and IET.

He has been serving as an associate editor of SCIE indexed interna-
tional journals such as IEEE Journal of Biomedical and Health Informatics
(IEEE-JBHI), IEEE Transactions on Intelligent Transportation Systems, Soft
Computing (Springer), Earth Science Informatics (Springer), IET Image
Processing, Heliyon (Elsevier), Mathematical Problems in Engineering,
Peer] Computer Science, PLOS One, and Dyna (Spain). He also holds the
associate editor/guest editor position with many Scopus journals. He

xi

xii ® Author Biographies

has been serving as the series editor of Biomedical Engineering series
(Elsevier), editorial board member of ASTT series (Springer), and Robotics
and Healthcare series (CRC Press).

He has received a project grant of 35,000 UK pounds from the UK
government (GCRF scheme) with collaborators from the University
of Westminster, UK. He has also completed two funded research proj-
ects from CSIR and DST, the government of India. He also serves as the
research scientist of Computational Intelligence and Information Systems
(CI2S) Lab, Argentina; LAPISCO Research Lab, Brazil; RIADI Lab,
Tunisia; Research Centre for Applied Intelligence, University of Craiova,
Romania; and eHealth and Telemedicine Group, University of Valladolid,
Spain.

He is the NVIDIA university ambassador and NVIDIA certified instruc-
tor for deep learning courses. His name was featured in the “Top 2% Lead-
ing World Scientists” [2021, 2022] list released by Stanford University, USA.
He is an international accreditation member for higher education institu-
tions in Romania [ARACIS] and Slovenia [SQAA] under the European
Commission. Currently, he is working as a professor in the Department of
ECE, Karunya University, Coimbatore, India.

CHAPTER 1

Classes and Objects

1.1 CREATING CLASSES

The class keyword generates a new class definition. The name of the class

instantly follows the keyword class followed by a colon. The class definition
starts with the keyword class. The keyword is followed by a user-defined
class name followed by a colon (:). The code inside the block defines all the
class variable and class functions. The pass keyword fills the class with
nothing, it does not contain any methods and variables.

Syntax

Class class-name:
Class members
Class attributes
Class functions

Example

class test:

val=10

def display(self):
print (“val=",val)

The variable Val is the class variable whose value is allocated among
all the instances of that specified class. Class methods is different from
that of the normal functions, the first argument of the class methods is
the self-argument. Python automatically adds up the self-argument to the

DOI: 10.1201/9781003462392-1 1

https://doi.org/10.1201/9781003462392-1

2 m Learning Professional Python

methods, the programmers need not include the self-argument at the time
of calling the methods.

1.1.1 Python Self-Parameter

The self-parameter describes the current instance of the class and access
the class variables. The self must be the first parameter of the class-related
functions.

1.2 OBJECT CREATION

Creating an object to the class is called instantiation.

Syntax

Object-name= class-name ([arguments])
For example
t=test ()

The different objects of the same class may consist of different proper-
ties. Each object has their own set of data i.e., no objects interfere with
each other. The class method may be invoked without an argument but
not declared without parameters. The first parameter of all the class meth-
ods must be the self-parameter. There is no need to pass the argument for
the self-parameter. Python will automatically the argument for the self-
parameter. If the programmer wants to accept the parameters other than
self, they should be placed after the self in the class method definition. The
self-parameter is used to obtain access to the objects instance and the class
variables. The self-parameter is used to invoke the other class methods
from inside the class.

AN
(‘@)) Note: By modifying the one class data does not affect the remaining
class objects.

Program

Class test:

def new (cls):

print (“creating object”)
def init (self):

print (“initialisation”)

Classes and Objects m 3

test ()
t=test ()

Output

creating object
creating object

The preceding program is for __new__ method. __new__

returns the instance of the class.

Program

class test:

def new (cls):

print (“*creating object”)

return super (test,cls). new (cls)
def init (self):

print (“*initialisation”)

test ()

Output

creating object
initialisation
< main .test at 0x7f£113652b790>

Program

i=“outside class”

class test:

i=“inside class”

def display(self):

i=“inside method”

print (*inside display method:”,1i)
def put (self):

print (*inside put method:”,1i)
t=test ()

t.display ()

t.put ()

print (i)

print (“*class variable from outside class:”,t.1i)

method

4 m Learning Professional Python

Output

inside display method: inside method

inside put method: outside class

outside class

class variable from outside class: inside class

The preceding program is about the creating a variable to the class out-
side the class.

1.3 ACCESSING ATTRIBUTES

To invoke the methods or variables of the class, use the dot notation. The
programmers can retrieve the objects attributes using the dot operator
with object. Class variables can be retrieved using class name, then a dot(.)
operator after the object and specify the desired properties (i.e., variables
or methods). When the class components start with two underscores (__),
means it is private component. The objects of the same class do not contain
the same data.

Syntax for class variables

Object-name. class-variable-name

Syntax for calling class methods

Object-name. class-method-name ([arguments])
For example

To access test class variable Val

test.val

to invoke the class methods

t.display ()

Now combine all code into one part.

class test:

val=10

def display(self):
print (“val=",val)
t=test ()

print (test.val)
t.display ()

Classes and Objects m 5

The programmers can enhance, delete, or alter attributes of classes and
objects at any time.

t£.1i=100
t.i=50
del t.i

The programmers can define the variables outside the class, inside the
class, and inside the method also (Table 1.1).

TABLE 1.1 Variables and its accessibility scope

Variables Defined and Initialized In Outside class Inside class Inside method
Outside class Yes Yes Yes
Inside class No Yes Yes
Inside method No Yes Yes

1.4 CLASS METHOD

A class method in Python is a method that is bound to the class but not to
the instance.

Python consists of decorators @classmethod, @staticmethod.

The class methods can be created in Python by two ways.

1. By using the factory method class method ()

2. By using the @classmethod decorator

The factory method class method () is bound to a class rather than an object.
The class methods can be called by both class and object.

Syntax for factory class method

class-name. function-name=class-method(class-name.
function-name)

class-name. function-name ()

The @classmethod decorator is a built in function
decorator receives the class as the implicit first

argument, especially cls. cls represents the class
that is instantiated.

syntax for classmethod decorator

@classmethod

def function-name(cls, args, . . .)

6 m Learning Professional Python

RN
(‘@)) Note: Instance method takes one parameter self.

Program

class test:

def display(self):
print (“istance method”)
@classmethod

def put(cls):

print (“*class method”)
@staticmethod

def function() :

print (“static method”)
t=test ()

t.display ()

test.put ()
test.function ()

Output

istance method
class method
static method

The preceding program shows how to access the instance method, class
method, and static method.

Class method syntax

@classmethod
def functionname (cls,args):
#class function body

A
((@)) Note: class methods take the parameter cls and a decorator @
classmethod.

Example

class test:
@classmethod

def put(cls):

print (“*class method”)
test.put ()

Classes and Objects m 7

Output

class method

Invocation of class method

classname.classmethodname ()
e.g.: test.put() #put is the class method in the class
test

Static method inside class syntax

class classname:
@staticmethod

def functionname () :
#static method body

Static method invocation

classname.staticmethodname ()

Example

class test:
@staticmethod

def function() :

print (“*static method”)
test.function ()

Output

static method

Program

class test:
i=1

f=1.1
s=“python”
@classmethod
def put(cls):
print (cls.i)
print (cls.f)
print (cls.s)
test.put ()

8 m Learning Professional Python

Output

1
1.1
python

The preceding program using class variables and display using class
method.

Program

class test:
@classmethod

def put(cls,i,f,s):
print (i)
print (f)
print (s)
test.put(1,1.1, “python”)

Output

1
1.1
Python

The preceding program invokes class method with parameters.

Program

class test:

i=10

£=1.10

s="pyhton”

def put (ob7j)

print (obj.1i)

print (obj.f)

print (obj.s)
test.put=classmethod (test.put)
test.put ()

Output

10
1.1
pyhton

Classes and Objects = 9

The preceding program used class method without using decorator@
classmethod and by using factory method classmethod().

Program

class test:

def init (self,i,]j):
self.i=1i

self.j=3

def display(self):

print (“*i=",self.i, “j=",self.j)
tl=test(10,1.1)

t2=test (“python”, “test”)
t3=test (50, “python”)
print (“tl object”)
tl.display ()

print (“t2 object”)
t2.display ()

print (“t3 object”)
t3.display ()

Output

tl object

i= 10 j= 1.1

t2 object

i= python j= test
t3 object

i= 50 j= python

The preceding program demonstrates the managing class variables.

Program: Try except when invalid class variables are invoked (place this
example in exception handling chapter)

class test:
class test:
def init (self,i,j):
gself.i=1
self.j=j3
def display(self):
print (“*i=",self.i, “j=",self.j)

10 m Learning Professional Python

tl=test(10,1.1)

try:

print (tl.1)

print (t1.k)

except Exception as e:
print(e. class)

Output

10
<class ‘AttributeError’s>

Program

class test:

def init (self):

print (“constructor”)

def put (self) :

print (*invoked from class method”)
def display(this object) :

print (“*class method”)

this object.put ()

tl=test ()

tl.display ()

Output

constructor
class method
invoked from class method

The preceding program invokes class method using self-inside the
class.

Program
class test:
pass
tl=test ()

Output: No output

The preceding uses the pass statement in class creation

Program

class test (object):

def f1(self):
pass

def f2(self):

print (“function-2")
t=test ()

t.f1()

t.£2()

Output

function-2

Classes and Objects = 11

The preceding program used the pass statement for the class methods.

Program

class test (object) :
def iter (self):
x =1

yield x

yield x + 1

yield x + 2

t= test ()
for i in t:

print (i)
for i in t:

print (i)

Output

w N BRP W N

The preceding program used the yield statement.

12 = Learning Professional Python

Program

class test:

def display():

print (“static method”)
test.display=staticmethod (test.display)
test.display ()

Output

static method
The preceding program used the static method without parameters.

Program

class test:

def display (i, £f,s):

print (i)

print (£)

print (s)

test.display=staticmethod (test.display)
test.display(10,10.123, “python”)

Output

10
10.123
python

The preceding program used the static method factory method with
parameters.

Program

class test:

@staticmethod

def display(i,f,s):

print (i)

print (f)

print (s)

test.display(10,10.123, “python”)

Classes and Objects = 13

Output

10
10.123
python

The preceding program used the static method decorator method with
parameters.

1.5 RETURN FROM CLASS

The class methods use the cls parameter instead of the self parameter.

Program

from datetime import date
class test:

def init (self, name, age):
self.name = name

self.age = age

@classmethod
def dob(cls, name, y):

return cls(name, date.today() .year - y)

def display(self):

print (self.name + “’'s age is: ” + str(self.age))
t = test(‘usha’, 34)
t.display ()

tl = test.dob(‘rani’, 1987)
tl.display ()

Output

usha’s age is: 34

rani’s age is: 34

The preceding program returns class method using cls.

Program

class test:
def init (self,i,s):

14 m Learning Professional Python

self.i=1

self.s=s
@classmethod

def put(cls,i,s):
1=10+1

s="new "+s

return cls (i, s)
def display(self):
print (self.i)
print (self.s)
t=test.put (10, “python”)
t.display ()

Output

20
new python

The preceding program returns cls object using factory method class
method.

1.6 CONSTRUCTORS

A constructor is a Python function that is employed to set the instance
members of the class.

In Python, the function __init__ () is used for the constructor of the
class. The constructor is called when the class is instantiated, and it takes
the self-keyword as the first parameter, which is applied to access the attri-
butes or methods of the class. Every class in the Python has the default
constructor when the programmer does not provide the explicit construc-
tor. The constructor is of three types:

1. Default constructor
2. Parameter-less constructor

3. Parameterized constructor

Program

class test:
def display(self):
print (*display method”)

Classes and Objects m 15

t=test ()
t.display ()
Output

display method
The preceding program uses the default constructor.

Program

class test:

def init (self):

print (“parameter less constructor”)
def display(self):

print (*display method”)

t=test ()

t.display ()

Output
parameter less constructor
display method

The preceding program used the parameter-less constructor.

Program

class test

def init (self,s=None):

print (“parameterized constructor”)
tl=test (“python”)

Output

parameterized constructor
The preceding program used the parameterized constructor.

Program

class test:
c=0
def init (self):

16 m Learning Professional Python

test.c+=1
t=test ()
tl=test ()
t2=test ()
print (test.c)

Output

3

The preceding program used the count the number of objects in the
class.

Program

class test:

def init _ (self):
print (“constructor-1")
def init (self):
print (“constructor-2 ”)
test ()

Output

constructor-2
< main .test at 0x7f11364a0bl0>

The preceding program is for constructor overloading with two
constructors.

Program: Constructor overloading

class test:

def init (self):
print (“One”)

def init (self):
print (“*Two”)

def init (self):
print (*Three”)

t = test()

Output

Three

Classes and Objects m 17

The preceding program is for constructor overloading with three
constructors.

A constructor can be invoked automatically when the object of the class
is instantiated. If a class has a constructor, then it is invoked automatically.

1. The constructor’s name in Python is always __init__.
2. In Python, the constructor has at least one parameter, that is, self.
3. Constructor does not return values.

4. Constructors cannot be invoked manually either from the object or
from inside the class. Constructors are invoked automatically.

Program: Constructor
RN

((@)) Note: There is the need to place the self-argument at the arguments
list to only class methods and constructors.

1.7 DELETING OBJECTS

Python removes surplus objects inevitably to set free the memory space.
The process by which Python continually recovers blocks of memory that
no longer are in usage is called as garbage collection. Python garbage col-
lector operates during program execution and is activated when an objects
reference count gets zero. An objects reference count modifications as the
number of aliases that point to its shifts. An objects reference count raises
when it is allocated a new name or arranged in another type. The object
reference count reduces when it’s removed using del. When reference is
shifted, it is reassigned or its reference goes out of scope. The program-
mer does not observe when the garbage collector extinguishes the unused
object and recovers its space. The programmer invokes the destructor __
del__ () to destroy the object and reclaims the memory space. This method
cleans up the non-used memory resources utilized by the instance.

Program

class test:

def init (self):
print (‘Object created.’)
def del (self):

18 m Learning Professional Python

print (‘Destructor called, Object deleted.’)
t = test()
del t

Output

Object created.
Destructor called, Object deleted.

The preceding program used the destructor.

1.7.1 Delete the Object
The programmer can delete the object itself by using the del keyword.

Program

class test:

i=10

def display(self):
print (“i=",self.i)
t=test ()
t.display ()

del t

Output

i= 10
The preceding program deleted the class object using the del keyword.

Program

class test:

i=10

j=20

st="python”

def display(self):
print (“i=",self.i, “j=",self.j,
“String=",self.st)
t=test ()
t.display ()

#del t.1
delattr(test, ‘i’)

Classes and Objects = 19

Output

i= 10 j= 20 String= python

The preceding program deleted the class object properties.
If we call t.display() method after deleting the class attribute, then an
error will occur.

class test:

i=10

j=20

st="python”

def display(self):
print (“i=",self.i, “j=",self.j,
“String=",self.st)
t=test ()
t.display ()
delattr(test, ‘i’)
t.display ()

Output

i= 10 j= 20 String= python

AttributeError Traceback (most recent call last)
<ipython-input-1-1£8d0bl195e51> in <module> ()

10 #del t.1

11 delattr(test, ‘i’)

---> 12 t.display()

<ipython-input-1-1£8d0bl195e51> in display(self)

4 st="python”
5 def display(self):
----> 6
print (“i=",self.i, “j=",self.j,
7 “String=",self.st)
8 t=test ()

AttributeError: ‘test’ object has no attribute ‘i’

Program

class test:
sl = “thig”

20 m Learning Professional Python

g2 = “ig”

s3 = “to”

s4 = “test”

s5 = “delete”

t = test()

print (‘test before delattr()--')
print (‘First = ’,t.sl)
print (*Second = ‘,t.s2)
print (*Third = ’,t.s3)
print (*‘Fourth = ’,t.s4)
print (*‘Fifth = ’,t.s5)

delattr(test, ‘'s5’)
print (*‘After deleting fifth attribute--')

print (‘First = ’,t.sl)
print (*Second = ‘,t.s2)
print (*Third = ’,t.s3)
print (‘Fourth = ’,t.s4)
this statement raises an error
print (‘Fifth = ’,t.s5)

test before delattr()--
First = this

Second = is

Third = to

Fourth = test

Fifth = delete

After deleting fifth attribute--
First = this

Second = ig

Third = to

Fourth = test

Before at
AttributeError Traceback (most
recent call last)
<ipython-input-110-e423d99f8079> in <module> ()
25 print (‘Fourth = ’,t.s4)

Classes and Objects = 21

26 # this statement raises an error
---> 27 print (‘Fifth = ’,t.s5)

AttributeError: ‘test’ object has no attribute ‘g5’

The preceding program demonstrated the deleting of the attributes.

1.8 PYTHON BUILT-IN CLASS FUNCTIONS

The predefined built functions of the Python are tabulated in Table 1.2.

TABLE 1.2 Predefined Class Functions

Function Description

getattr(obj, name, default) Used to access the attribute of the object

setattr(obj,name, value) Used to set a particular value to the specific attribute of
the object

delattr(obj,name) Used to delete a specific attribute

hasattr (obj,name) Returns true if the object contains the specific attribute

Program

class test:

def init (self):

print ()

def getattribute (self) :
return self.a,self.b

def setattribute(self,a,b):
self.a=a

self . b=b

t=test ()

t.setattribute (10,100)
print (t.getattribute())

Output

(10, 100)

The preceding program used the getattr and the setattr.

22 m Learning Professional Python

Program

class test:

def init (self):
self.a=0

self.b=0

def getattribute (self) :
return self.a,self.b

def setattribute(self,a,b):
self.a=a

self.b=b

t=test ()

t.setattribute (10,100)
print (t.getattribute())
delattr(t,‘a’)

print (t.b)

Output

(10, 100)
100

The preceding program used delattr method to delete the attributes.

Program

class test:

def _ init_ (self):
self.a=0

self.b=0

def getattribute(self) :
return self.a,self.b

def setattribute(self,a,b):
self.a=a

self .b=b

t=test ()

t.setattribute (10,100)
print (t.getattribute())
delattr(t, ‘a’)

print (hasattr(t.‘'a’))
print (hasattr(t.‘'b’))

Classes and Objects m 23

Output

(10, 100)
False
True

The preceding program used hasattr.

1.9 BUILT-IN CLASS ATTRIBUTES
Python predefined attributes are tabulated in Table 1.3.

TABLE 1.3 Built-In Class Attributes

Attribute Description

_dict__ Contains the class namespaces

__doc__ Class documentation

__name__ Class name

__module__ Module name in which class is defined

__bases___ Tuple containing the base classes of their occurrence
Program

class test:

c =20

def init (self, s, sal):
self.s= s

self.sal = sal

test.c += 1

def dcount (self) :

print (* #:o0bjects %$d” % test.c)
def display(self):

print (*Name : ”, self.salary, “, Salary: ”, self.sal)
print (“test. doc_ :”, test. doc)

print (“test. mname :”, test. name)

print (“test. module :”, test. module)

print (“test. bases :”, test. bases)

print (“test. dict :”, test. dict)

24 m Learning Professional Python

Output

test. doc_ : None

test. name_: test

test. module : main

test. bases : (<class ‘object’s>,)

test. dict : {' module ': ' main ', ‘c’: 0,
‘__init_ ’': <function test._ init at

0x7fc76c755f80>, ‘dcount’: <function test.dcount at
0x7fc76c755950>, ‘display’: <function test.display

at 0x7fc76c755c20>, ' dict ’': <attribute '
dict ' of ‘test’ objects>,’

weakref ’:<attribute’ weakref ‘of ‘test’
objects>,' doc_': None}

The preceding program used the built-in class attributes.

1.10 INNER CLASS

A class defined in another class is known as inner class, or nested class. If
an object is built using inner class, then the object can also be employed by
parent class. A parent class can have one or more inner class.

Advantage: Hide the code.

There are two types of inner class in Python.

1. Multilevel inner class — The class comprises inner class and again
this inner class comprises another inner class.

2. Multiple inner class — Class includes one or more inner classes.

Program

class outer:

s="outer”

def init (self):
self.inn=self.inner ()

print (“outer class constructor”)
class inner:

def init (self):

print (“inner class constructor”)
o=outer ()

i=o.inn

Classes and Objects m 25

Output

inner class constructor
outer class constructor

The preceding program is invoking inner class constructor.

Program

class outer:

def init (self):
self.inn=self.inner ()
self.inn.nes=self.inner.nested()
print (“outer class constructor”)
class inner:

def init (self):

print (“inner class constructor”)
class nested:

def init (self):

print (“*nested class constructor”)

o=outer ()
i=o.inn
n=o0.inn.nes

Output

inner class constructor
nested class constructor
outer class constructor

The preceding program created the nested class called nested in the
inner class.

Program

class outer:

s=“outer”

def init (self):
self.innl=self.innerl ()
self.inn2=self.inner2 ()
self.inn3=self.inner3 ()

print (“outer class constructor”)

26 m Learning Professional Python

class innerl:

def init (self):

print (*first inner class constructor”)
class inner2:

def init (self):

print (“*second inner class constructor”)
class inner3:

def init (self):

print (*third inner class constructor”)
o=outer ()

il=o.innl

i2=0.inn2

i3=0.1inn3

Output

first inner class constructor
gsecond inner class constructor
third inner class constructor
outer class constructor

The preceding program created more than one inner classes in the
single outer class.

EXERCISE

1. Print the instance name of the class.

2. Construct the class named circle and find the area and the perimeter
of the circle.

3. Construct the class named rectangle and compute the area of the
rectangle.

4. Construct the class named string and print the string in the
uppercase.

5. Construct the class student and print the grade of the student.

6. Create the inner class named age in the outer class named student
and find the age of the student as per today’s date.

CHAPTER 2

Inheritance

A child class can override data members and methods from the parent
class. The child class gets the properties and can retrieve all the data prop-
erties and functions specified in the parent class. A child class can support
their own implementations along with the parent class implementations.
The main advantage of the inheritance is the code reusability.

The different types of inheritance are as follows:

1. Single inheritance

2. Multiple inheritance

3. Multilevel inheritance

2.1 SINGLE INHERITANCE

A single child class is derived from a single parent class. The representation
of the single inheritance is illustrated in Figure 2.1.

Parent

FIGURE 2.1 Single inheritance.

DOI: 10.1201/9781003462392-2 27

https://doi.org/10.1201/9781003462392-2

28 m Learning Professional Python

Syntax

class childclassname ({parent-1)

In Python, a child class inherits base class by declaring the base in the
bracket following the child class name.

Program

class Parent:

def funcl (self):

print (“*this is parent”)
class Child(Parent) :
def func2 (self):

print (“this is child”)

ob = Child()
ob.funcl ()
ob.func2 ()

Output

this is parent
this is child

In the preceding program, Parent is the parent class name, whereas
the Child is the child class name. Child class used the single inheritance
concept, so it acquires all the parent class properties. The object ob is
instantiated for the child class because of inheritance. The ob object calls
the parent class function funcl.

2.2 MULTIPLE INHERITANCE

In Python a class can inherit many classes by declaring all base class
within the bracket (Figure 2.2).

o

Child-1 Child-2 Child-n

FIGURE 2.2 Multiple inheritance.

Syntax

class basel:
[class properties and members]
class base2:
[class properties and members]

class baseN:

[class properties and members]
class childclass (basel,base2,
[class properties and members]

Program

Base class

class base:

Constructor

def init (self, name):
self.name = name

To get name

def getName (self) :

return self.name

To check if this person is employee
def isemployee (self):
return “is not a employee”
Derived class

class derived (base) :

True is returned

def isemployee (self):
return “is a employee”

b = base(“usha”)
print (b.getName (), b.isemployee())

d = derived(“rani”)
print (d.getName (), d.isemployee())

Output

usha is not a employee
rani is a employee

Inheritance = 29

30 m Learning Professional Python

2.3 MULTILEVEL INHERITANCE

Multilevel inheritance is deriving a child class not directly from the base

class, that is, child class is derived from another derived class (Figure 2.3).

Intermediate

FIGURE 2.3 Multilevel inheritance.

Syntax

class base:

[class properties and members]
class childl (base) :

[class properties and members]
class child2 (childl) :

[class properties and members]

Child2 is deriving not directly from the direct base class instead deriv-
ing from the childl, which is derived from the base class.

Program

Base class

class base:

def init (self, name):
self.name = name

Intermediate class
class derived (base) :

def init (self, s, name):
self.s = s
base. 1init (self, name)

Derived class

class subderived(derived) :

def init (self,sl, s, name):
self.sl = sl

Inheritance m 31

invoking constructor of derived class
derived. init (self, s, name)

def display(self):

print (‘base name :’, self.name)

print (“*derived name :”, self.g)

print (“*sub derived name :”, self.gl)

ob = subderived(‘Bhimavarapu’, ‘usha’, ‘rani’)
print (ob.name)

ob.display ()

Output

rani

base name : rani

derived name : usha
sub derived name : Bhimavarapu

2.4 OVERRIDING METHODS

When the parent class method is (re)defined in the child class with a few
modifications, then it is method overriding (Table 2.1).

TABLE 2.1 Python Base Overloading Methods

Methods Description

__init_ (selff,args...]) constructor

__del__(self) destructor

__repr__(self) String representation

__str__(self) print string

__cmp__(selfx) comparison
Program

class test:

@classmethod

def put(cls):

print (“parent class method”)
class sample (test) :

pass

sample.put ()

32 m Learning Professional Python

Output

parent class method

The preceding program invokes parent class method using the child
class.

Program

class test:

@classmethod

def put(cls):

print (“parent class method”)
class sample (test) :
@classmethod

def put(cls):

print (*child class method”)
sample.put ()

Output

child class method
The preceding program overriding parent class method.

Program

class test:

@classmethod

def put(cls):

print (“parent class method”)
class sample (test) :
@classmethod

def put(cls):

super () .put ()

print (*child class method”)
sample.put ()

Output

parent class method
child class method

The preceding program overriding parent class methods using super ().

Inheritance m 33

Program

Class test:

@classmethod

def put(cls):

print (“parent class method”)
class sample (test) :
@classmethod

def put(cls):

test.put ()

print (*child class method”)
sample.put ()

Output

parent class method
child class method

The preceding program overriding parent class, class method.

Program

class test:

def put (self):

print (“parent class method”)
class sample (test) :

def put (self):

super () .put ()

print (*child class method”)
gs=gample ()

s.put ()

Output
parent class method
child class method

The preceding program overriding parent class instance method.

Program

class test:
def put (self):
print (“parent class method”)

34 m Learning Professional Python

class sample (test) :

def put (self):

test.put (self)

print (*child class method”)
s=gample ()

s.put ()

Output
parent class method

child class method

The preceding program overriding parent class instance method using
parentclassname.method(self).

Program

class base:

def init (self, s):
self.s = s

class derived (base) :

def init (self, s, n):
base. init (self, s)

self.n = n
d = derived(“python”, 10)
print (d.s)
print (d.n)

Output

python
10

The preceding program invoking the parent class constructor from the
child class.

Program

class A:

def init (self, txt):
print (txt, ‘A Class’)
class B(A):

def init (self, txt):

print (txt,' B class’)

super (). init (txt)
class C(B):

def init (self, txt):
print (txt,' C class’)
super (). init (txt)
class D(B):

def init (self, txt):
print (txt,' D class’)
super (). init (txt)
class E(D, C):

def init (self):

print (' E class’)
super (). init (‘testing ')
d = E()

h = C(‘python’)

Output

E class

testing D class
testing C class
testing B class
testing A Class

python C class
python B class
python A Class

Inheritance m 35

The preceding program invoking the parent class constructor from the

child class using super.

Program

class base:

def show(self) :

print (*Inside base class”)
class derived (base) :

def display(self):
super () .show ()

print (*Inside derived class”)
d = derived()

d.display ()

d.show ()

36 m Learning Professional Python

Output

Inside base class
Inside derived class

The preceding program invoking the parent class method.

Program

Defining parent class
class base() :

Constructor

def init (self):
gself.value = “Inside Parent”
Parent’s show method

def show(self) :

print (self.value)

Defining child class
class derived (base) :

Constructor

def init (self):
self.value = “Inside Child”
Child’s show method

def show(self) :

print (self.value)

obl = base()

ob2 derived()

obl.show/()

ob2.show ()

Output

Inside Parent
Inside Child

The preceding program overrides the parent class method.

Program

class test:
@classmethod

def put(cls,i,f,s):
print (i)

print (f)

Inheritance m 37

print (s)

class sample (test) :

pass

sample.put(1,1.1, “python”)

Output

1
1.1
python

The preceding program used @classmethod for inheritance.

Program

class test:

@staticmethod

def put (i, £f,s):

print (i)

print (f)

print (s)

class sample (test) :

pass

sample.put(1,1.1, “python”)

Output

1
1.1
python

The preceding program used @static method for inheritance with
parameters.

Program

class test:

def display():

print (“*static method”)

class sample (test) :

pass

sample.display=staticmethod (sample.display)
sample.display ()

38 m Learning Professional Python

Output

static method
The preceding program used static factory method inheritance.

Program

class test:

def display(i,f,s):

print (i)

print (f)

print (s)

class sample (test) :

pass

sample.display=staticmethod (sample.display)
sample.display(10,10.123, “python”)

Output

10
10.123
python

The preceding program used static factory method inheritance with
parameters.

Program

class test:
@staticmethod

def display () :

print (“static decorator”)
class sample (test) :

pass

sample.display ()

Output

static decorator

The preceding program used @static method for inheritance without
parameters.

Inheritance m 39

Program

class test:

def new (cls):

print (“parent creating object”)
def init (self):

print (“parent initialisation”)
class sample (test) :

pass

sample ()

Output

parent creating object

The preceding program used the constructor and the new method for
the parent class and anonymous object creation for the child class.

Program

class test:

def new (cls):

print (“parent creating object”)
def init (self):

print (“parent initialisation”)
class sample (test) :

def new (cls):

print (*child creating object”)
def init (self):

print (“*child initialisation”)
sample ()

Output

child creating object

The preceding program used the constructor and the new method for

both the parent and the child classes and anonymous object creation for
the child class.

Program

class test:
def new (cls):

40 m Learning Professional Python

print (“parent creating object”)
def init (self):

print (“parent initialisation”)
class sample (test) :

def new (cls):

print (“*child creating object”)
return test ()

def init (self):

print (*child initialisation”)
sample ()

Output

child creating object
parent creating object

The preceding program used the return test() in the child class new
method. It invokes the parent class new method.

Program

class test:
def new (cls):

print (“parent creating object”)

def init (self):

print (“parent initialisation”)
class sample (test) :

def new (cls):

super (). new_ (cls)

print (“*child creating object”)

def init (self):
print (“*child initialisation”)
sample ()

Output
parent creating object

child creating object

The preceding program invokes the super class new method using the
super().

Inheritance m 41

Program

class test:

def init (self):

print (“parent initialisation”)
class sample (test) :

def init (self):

super (). init ()

print (“*child initialisation”)
sample ()

Output

parent initialisation
child initialisation
<_main .sample at 0x7fc76c815ed0>

In the preceding program the parent class constructor was invoked
from the child class by using the super ().

Program

class test:

def init (self):

print (“parent zero-parameter initialisation”)
def init (self,s):

print (“parent one-parameter initialisation”)
class sample(test) :

def init (self):

super (). init__ ()

print (“*child zero-parameter initialisation”)
def init (self,s):

super (). init (s)

print (“*child one-parameter initialisation”)
sample (“python”)

Output

parent one-parameter initialisation
child one-parameter initialisation
< main .sample at 0x7fc76c7£3d50>

In the preceding program the parent class parameterized constructor
was invoked from the child class by using the super ().

42 m Learning Professional Python

2.5 NESTED CLASS INHERITANCE

The inheritance can be applied to the inner class, nested class, and also the
multiple inner class.

Program

class outer:

def init (self):
self.inn=self.inner ()
self.inn.nes=gelf.inner.nested()
print (“outer class constructor”)
class inner:

def init (self):

print (“inner class constructor”)
class nested:

def init (self):

print (“*nested class constructor”)’

class multi (outer) :
def init (self):

super (). init ()

print (*child constructor”)
o=multi ()

i=o.inn

n=o0.inn.nes

Output

inner class constructor
nested class constructor
outer class constructor
child constructor

The preceding program is about nested class, and inheritance main-
tains the inner class for the parent class and the normal child class.

Program

class outer:

def init (self):
self.inn=self.inner ()
self.inn.nes=gelf.inner.nested()

Inheritance m 43

print (“outer class constructor”)
class inner:
def init (self):

print (“inner class constructor”)
class nested:

def init (self):

print (*nested class constructor”)

class multi (outer) :

def init (self):

super (). init ()
self.childinn=self . multiinner ()
gself.inn.childnes=self.multiinner.multinested ()
print (“*child constructor”)

class multiinner:

def init (self):

print (“*child inner class constructor”)
class multinested:

def init (self):

print (*child nested class constructor”)
o=multi ()

i=o.childinn

n=1i.multinested

Output

inner class constructor

nested class constructor

outer class constructor

child inner class constructor
child nested class constructor
child constructor

The preceding program maintains the inner class for both the parent
class and the child class.

Program

class outer:

def init (self):
self.innl=self.innerl ()
self.inn2=self.inner2 ()

44 m Learning Professional Python

self.inn3=self.inner3 ()

print (“outer class constructor”)

class innerl:

def init (self):

print (*first inner class constructor”)
class inner2:

def init (self):

print (“*second inner class constructor”)
class inner3:

def init (self):

print (“third inner class constructor”)

class multi (outer
def init (self
super (). init ()

print (*child constructor”)
o=multi ()

il=o0.innl

) :
) :

i2=0.1inn2
i3=0.1inn3

Output

first inner class constructor
second inner class constructor
third inner class constructor
outer class constructor

child constructor

The preceding program is with multiple inner class for the parent class
and the normal child class.

Program

class outer:

def init (self):
self.innl=self.innerl ()
self.inn2=self.inner2 ()
self.inn3=self.inner3 ()

print (“outer class constructor”)

class innerl:

def init (self):

print (*first inner class constructor”)

Inheritance m 45

class inner2:

def init (self):

print (“*second inner class constructor”)
class inner3:

def init (self):

print (*third inner class constructor”)

class multi (outer) :

def init (self):

super (). init ()
self.cinnl=self.multiinnerl ()
self.cinn2=self.multiinner2 ()
self.cinn3=self.multiinner3 ()

print (“*child constructor”)

class multiinneril:

def init (self):

print (*first child inner class constructor”)
class multiinner2:

def init (self):

print (*second child inner class constructor”)
class multiinner3:

def init (self):

print (*third child inner class constructor”)
o=multi ()

il=o.cinnl

i2=0.cinn2

i3=0.cinn3

Output

first inner class constructor

second inner class constructor

third inner class constructor

outer class constructor

first child inner class constructor
second child inner class constructor
third child inner class constructor
child constructor

The preceding program is with multiple inner class for both the parent
class and the child class.

46 m Learning Professional Python

Program

class outer:

def init (self):
self.innl=self.innerl ()

print (“outer class constructor”)
class innerl:

def init (self):

print (“*inner class constructor”)

class multi (outer) :

def init (self):

super (). init ()
self.cinnl=self.multiinnerl ()

print (“*child constructor”)

class multiinnerl (outer.innerl) :

def init (self):

super (). init ()

print (“*child inner class constructor”)

o=multi ()
il=o.cinnl

Output

inner class constructor

outer class constructor

inner class constructor

child inner class constructor
child constructor

In the preceding program child inner class inherits parent class inner
class.

Solved examples
Program

class test:
@staticmethod

def display(i,f,s):
print (i)

print (£)

Inheritance m 47

print (s)
class sample (test) :
pass
sample.display(10,10.123, “python”)
Output
10
10.123
python
EXERCISE
1. Print the instance name of the child class.
2. Construct the child class named circle and find the area and the
perimeter of the circle with the radius attribute in the parent class.
3. Construct the child class named rectangle and compute the area of
the rectangle by taking the length and width attributes in the parent
class.
4. Construct the class named multilevel child string and print the string
in the uppercase.
5. Construct the class student, class marks, class grade, and print the
grade of the student.
6. Create the inner class named age in the outer child class named stu-

dent, and find the age of the student as per today’s date.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 3

Arrays

The array in python can be created by importing the array module. Arrays
are mutable. The elements can be changed or added to the array.

Syntax

from array import *

3.1 BYTE ARRAY

Program

a = [2 7 3 7 5 7 7]
b = bytearray(a)
print (b)

Output

bytearray (b’ \x02\x03\x05\x07")

The preceding program created the byte array b, and the output of the
program is the byte array representation.

Program

s = "Python is interesting.”
a = bytearray(s, 'utf-8')
print (a)

DOI: 10.1201/9781003462392-3 49

https://doi.org/10.1201/9781003462392-3

50 m Learning Professional Python

b = bytearray(s, ‘utf-16’)
print (b)

Output

bytearray (b’Python is interesting.‘)

The output of the preceding program is represented in both the utf-8
and utf-16.

Program

n=>5
a = bytearray(n)
print (a)

Output

bytearray (b’ \x00\x00\x00\x00\x00")

bytearray (b’ \xf£\xfeP\x00y\x00t\x00h\x000\x00n\x00
\x001\x00s\x00

\x001\x00n\x00t\x00e\x00r\x00e\x00s\x00t\x001\x00n\
x00g\x00.\x00")

The preceding program takes the n value as 5 so the byte array creates 5
values inutf-8 and utf-16.

Program

a = bytearray ()
print (a)

Output

bytearray (b”)
The preceding program created the empty byte array.

Program

a = bytearray(b”test”)
for 1 in a:
print (i)

Arrays m 51

b = bytearray (b”python testing”)
print (“*Count of t characters is:”, b.count (b”t”))

Output

116
101
115
116
Count of t characters is: 3

In the preceding program the for loop prints the byte form of the string
test, and the print statement prints the number of occurrences of the char-
acter ‘t’ in the string “python testing”.

3.2 NUMPY

NumPy is for creating homogeneous n - dimensional arrays.
The syntax for creating 1D array is as follows:

np.array([list of elements])

The syntax for creating 2D array is as follows:

np.array([list of elements][list of elements])

The main advantage of NumPy array is it takes less amount of memory
when compared to Python lists.

Program

import numpy as np
a=[[1,2],1[3,4]]
arr=np.array(a)
print (arr)

Output

The preceding program initializes the array at the time of creating the
array and then prints the array elements.

52 m Learning Professional Python

Program

import numpy as np
a=np.ones((3,4),dtype=np.intl6)
print (a)

Output

[[1 11 1]
[1 11 1]
[1 11 111

The preceding program initializes array elements to 1.

Program

import numpy as np
a=np.zeros((3,4),dtype=np.intl6)
print (a)

Output

[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]

The preceding program initializes array elements to 0.

Program

import numpy as np
a=np.ones((3,4),dtype=np.float32)

print (a)

Output

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]1]

The preceding program initializes array elements to float 1.0.

Program: Initializing array elements to random numbers

import numpy as np

Arrays ® 53

a=np.random.random((2,2))
print (a)

Output

[[0.80527886 0.4539138]
[0.93771029 0.83952726]]

The preceding program initializes array elements to random numbers.

Program

import numpy as np
a=np.full((3,3),10)
print (a)

Output

[[10 10 10]
[10 10 10]
[10 10 10]]

The preceding program initializes array elements to some specific
element.

Program

import numpy as np

r=int (input (*enter array row size”))
c=int (input (“*enter array column size”))
p=int (input (“enter element”))
a=np.full((r,c),p)

print (a)

Output

enter array row size2
enter array column size3
enter elementl

[[111]

[111]1]

The preceding program initializes array elements to some specific ele-
ment taken at run time.

54 m Learning Professional Python

Program

import numpy as np
a=np.arange(3,30,5)
print (a)

Output

[3 8 13 18 23 28]

The preceding program arranges the array elements in 1D specific form.

Program

import numpy as np
a=np.linspace(3,30,5)
print (a)

Output

[3. 9.75 16.5 23.25 30.]

Program

import numpy as np
a=np.eye(3,3)
print (a)

Output

The preceding program prints the identity matrix in 3 x 3 form.

Program

import numpy as np
a=np.eye(3,5)
print (a)

Output

[[1. 0. 0. 0. 0.]

Arrays ® 55

The preceding program prints the identity matrix in 3 x 5 form.

Program: Identity matrix

import numpy as np
a=np.identity ((3),dtype=np.intlé)
print (a)

Output

The preceding program prints the identity matrix in 3 x 3 form in the
specific form, that is, in specific data type (in integer form).

Program: Identity matrix

import numpy as np
a=np.identity ((5),dtype=np.float32)
print (a)

Output
[

[
[
[
[
[

o O o o -
o O O+ O
o O B O O
O B O O O
H O O O o

The preceding program prints the identity matrix in 5 x 5 form in the
specific form, that is, in specific data type (in float form).

Program

import numpy as np
a=[[1,21,13,4]1]
arr=np.array(a)
print (arr.size)

56 m Learning Professional Python

Output

4

The preceding program prints the total number of elements in the 2D
array.

Program

import numpy as np
a=[[1,2,31,1[4,5,6]]
arr=np.array(a)
print (arr.size)

Output

6

The preceding program prints the total number of elements in the 2D
array.

Program

import numpy as np
a=[[1,2,31,1[4,5,6]]
arr=np.array(a)
print (arr.ndim)

Output

2

The preceding program prints the total number of dimensions of the
2D array.

Program: 3D array

import numpy as np
a=np.zeros((2,2,3),dtype=np.intlé6)
print (a)

Output

([[000]
[000]]

Arrays m 57

[[000]
[000]111

The preceding program fills the 3D array with the zero value.

Program

import numpy as np

a=[[[o, 0, O],
(o, o, oll,

(fo, o, ol,

(0, 0, 0]1]

arr=np.array (a)
print (arr.ndim)
Output

3

The preceding program prints the total number of dimensions of the
initialized array.
Program

import numpy as np
a=np.zeros((2,2,3),dtype=np.intlé)
print (a)

print (“Bytes size”,a.nbytes)

Output
[[[0 0 O]

[0 0 0]]

([0 0 0]
[0 0 0]]]
Bytes size 24

The preceding program prints the byte size of the array, which was filled
with the value zeros.

Program: Length of the array

import numpy as np

58 m Learning Professional Python

a=np.zeros((2,2,3),dtype=np.intlé6)
print (a)
print (“*length”,len(a))

Output

[([[0 0 O]
[0 0 0]]

([0 0 0]
[0 0 0]]]
length 2

The preceding program prints the dimensions of the array, which was
filled with the value zeros.

Program

import numpy as np
a=np.ones((2,2,3),dtype=np.intlé)
print (a)

a.astype (float)

print (a)

(ff1 1 1]
(11 1]]

1]
111]
1]
1]]

HoR R R

[([1 1 1]
(11 1]1]]

3.3 RESHAPING ARRAYS

Reshape changes the shape of the array. By reshaping, the programmers
can add dimensions, eliminate dimensions, or can alter the number of the
elements in every dimension. The shape of an array is the number of the
elements in every dimension.

Arrays ® 59

Program: Reshaping an array into 2D

import numpy as np
a=np.arange (24) .reshape (3, 8)
print (a)

Output

[[01 23456 7]
[8 9 10 11 12 13 14 15]
[16 17 18 19 20 21 22 23]]

The preceding program arranged the 24 elements as the 3 x 8 form, that
is, three rows and eight columns.

Program

import numpy as np
a=np.arange (24) .reshape (3,2,4)
print (a)
Output
[[[0 1 2 3]

[4 5 6 7]]

[[8 9 10 11]
[12 13 14 15]]

[[16 17 18 19]
[20 21 22 23]1]

The preceding program reshaping of total 24 elements as an array of 3D.

Program

import numpy as np
a=np.array([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16])
a.reshape(2,4,2)

Output

array ([[[1, 21,
[3, 41,

60 m Learning Professional Python

[[9, 107,
[11, 12],
[13, 147,
[15, 16111)

The preceding program reshapes total 16 elements into 2 x 4 array.

Program: Reshape the array

import numpy as np
a=np.array([1,2,3,4,5,6,7,8,9,10,11,12])
a.reshape(3,2,2)

Output

array ([[[1, 2],
[3, 411,
[[5, 61,
(7, 811,
[[9, 101,

[11, 12111)
The preceding program reshapes total 12 elements into 3 x 2 array.

Program

import numpy as np
a=np.arange (40) .reshape (4,2, 5)
print (a)

Output
[[[0 1 2 3 4]
[5 6 7 8 9]]

[[10 11 12 13 14]
[15 16 17 18 19]]

[[20 21 22 23 24]
[25 26 27 28 29]]

Arrays ® 61

[[30 31 32 33 34]
[35 36 37 38 39]1]

The preceding program is about to reshape the array.

Program

import numpy as np
a=np.arange (24)
np.hsplit(a,3)

Output

larray ([0, 1, 2, 3, 4, 5, 6, 71),
array ([8, 9, 10, 11, 12, 13, 14, 15]),
array([1l6, 17, 18, 19, 20, 21, 22, 23])]

Horizontal splitting the array into three equally shaped arrays.

Program

import numpy as np
a=np.arange (24)
np.hsplit(a, (3,4))

Output

[array ([0, 1, 2]),

array ([3]),

array ([4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1s6,
17, 18, 19, 20, 21, 22, 231)]

Split the array after the third and the fourth column of the array.

3.4 OPERATIONS ON ARRAY

We can use different operators on the array.

Program

import numpy as np
a=np.array(1l,2])
b=np.array([5,6])
a+b

62 m Learning Professional Python

Output

array ([6, 8])

The preceding program performed binary addition operator on 1D
arrays.

Program

import numpy as np
a=np.array ([[1,2],[3,41])
b=np.array([[5,6],[7,8]])
print (a+b)

Output

[[6 8]
(10 12]]

In the preceding program performed binary addition operator on 2D
arrays.

Program

import numpy as np
a=[[1,2],1[3,4]]
b=[[5,6]1,1[7,8]1]
np.vstack ((a,b))

Output

array ([[1, 21,
[3, 4],
[5, 61,
(7, 811)

The preceding program stacks the array vertically.

Program

import numpy as np
a=[[1,21,13,4]]
b=[[5,61,[7,8]]
np.hstack((a,b))

Arrays ® 63

Output
array([[1l, 2, 5, 61,
(3, 4, 7, 811)

The preceding program stacks the array horizontally.

Program

import numpy as np
a=np.array([[1,2]1,[3,4]1]1)
b=np.array([[5,6],[7,811])
print (a*b)

Output

([5 12]
(21 32]]

The preceding program performed binary multiplication operator on
2D arrays.

Program

import numpy as np
a=np.array([[1,2],[3,411)
print (a*5)

Output

[[5 10]
(15 20]]

The preceding program performed binary addition operator on 2D
array with an integer literal.

Program

import numpy as np
a=np.array ([[1,2],[3,4]1])
print (*min”,a.min())
print (*max”,a.max())
print (“sum”,a.sum())

64 m Learning Professional Python

Output

min 1
max 4
sum 10

The preceding program applied the aggregate operators on the 2D array.

Program

import numpy as np
a=np.array([[1,2,3],[4,5,61,1[7,8,911)
a.transpose ()

Output

array ([[1, 4, 71,
(2, 5, 8],
(3, 6, 911)

The preceding program performs the transpose of the matrix.

Program

import numpy as np
a=np.array([1,2,3,4,5])
b=np.flip(a)

print (b)

Output

[5 4 3 2 1]
The preceding program performs the reverse the array.

Program

import numpy as np
a=np.array ([[1,2],[3,4]1])
b=np.flip(a)

print (b)

Output

[[4 3]
(2 1]]

Arrays m 65

The preceding program performs the reverse the array.

Program

import numpy as np
a=np.array([[1,2,3],[4,5,6],[7,8,9]])
b=np.flip(a)

print (b)

Output

The preceding program performs the reverse the array.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],[10,11,12,13]11)
b=np.flip(a)

print (b)

Output

[[13 12 11 10]
[9 8 7 6]
[4 3 2 111

The preceding program performs the reverse the array.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],([10,11,12,13]11)
b=a.copy ()

b[1l]l=np.flip(all])

print (b)

Output

[[1 2 3 4]
[9 8 7 6]
[10 11 12 13]]

66 m Learning Professional Python

The preceding program performs the reverse the array.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],([10,11,12,13]])
b=np.flip(a,axis=1)

print (b)

Output

[[4 3 2 1]
[9 8 7 6]
[13 12 11 10]]

The preceding program performs the reverse the array.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],([10,11,12,13]11)
b=np.flip(a,axis=0)

print (b)

Output

[[10 11 12 13]
[6 7 8 9]
[1 2 3 4]]

The preceding program performs the reverse the array.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],([10,11,12,13]11)
b[l:,]=np.flip(all:,])

print (b)

Output

[[10 11 12 13]
[13 12 11 10]
[9 8 7 6]l

Arrays ® 67

The preceding program performs the reverse the column at index
position 1.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],([10,11,12,13]])
a.flatten()

Output
array ([1, 2, 3, 4, 6, 7, 8, 9,
10, 11, 12, 13])

The preceding program performs the flatten the array to 1D.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],([10,11,12,13]])
b=a.copy ()

print (b)

b[1] [11=99

print (b)

print (a)

Output
[

=
w

o]

1

=
=
N
=

[

w

=
NN ORI N
[e0]

1

=
[\
=

[

A OO0 OO
w

8

[
[
[
[
[
[
[
[
10 11 12 13

4
9
3
4
9
3
4
9
]

[T A VAN U R T

[

The preceding program performing the modification to the copied will
not reflect on the original array.

Program

import numpy as np

68 m Learning Professional Python

a=np.array([1,2,3,4,5])
print (a)

b=a.ravel ()

b[4]=99

print (b)

print (a)

Output

[1 2 3 4 5]
[1 2 3 4 99]
[1 2 3 4 99]

The preceding program performing the modifications in the copied
array reflects on the original array.

Program

import numpy as np
a=np.array([[1,2,3]])
print (a)
np.swapaxes(a,0,1)

Output

[[123]]
array ([[1],
(21,
[311)

The preceding program performs the swap spaces of the array.

Program

import numpy as np
a=np.arange (12) .reshape (3, 4)
print (a)

np.swapaxes(a,l1l,0)

Output

[[O 1 2 3]
45 6 7]
[8 9 10 11]1]

Arrays ® 69

array ([[0, 4, 8],
[1, 5, 9],
[2, 6, 101,
[3, 7, 1111)

The preceding program performs the swap spaces of the array.

Program

import numpy as np
a=np.array([[[0,1,2],[3,4,5],1[6,7,8],[9,10,11]]11])
print (a)

np.swapaxes(a,0,2)

Output

[[[0 1 2]

[3 4 5]]

[[6 7 8]

[9 10 11111
array ([[[0, 6],
[3, 911,

[(ryx, 71,

[4, 1011,

([2, 8J,
(5, 11]111)

The preceding program performs the swap axes.

Program

import numpy as np
a=np.array([[[0,1,2],[3,4,511,1[[6,7,81,109,10,11111)
print (a)

np.swapaxes(a,0,1)

Output

(f(ro 1 2]
[3 4 5]]
([6 7 8]

70 m Learning Professional Python

array ([[[0, 1, 21,
(6, 7, 811,

The preceding program performs the swap axes.

Program

import numpy as np
a=np.array([[[0,1,2],(3,4,5]]1,[[6,7,8],1[9,10,11111)
print (a)

np.swapaxes (a, 1, 2)

Output

[([fo 1 2]
[3 4 5]]

[[6 7 8]
[9 10 11111
array ([[[0, 3],

[2, 511,
[[6, 91,
[7, 101,
[8, 11111)

The preceding program performs the swap axes.

Program

import numpy as np
a=np.array([[[0,1,2],1[3,4,511,1[[6,7,8]1,19,10,11111)
print (a)

np.swapaxes(a,2,1)

Output

0
[3 4 5]]

Arrays ® 71

[[6 7 8]

[9 10 11111

array ([[[0, 31,
(1, 41,
[2, 511,

[[6, 91,

[7, 10],

[8, 11111)

The preceding program performs the swap axes.

Program

import numpy as np
a=np.array([[1,2],16,7,8,9]1,[1011)
print (a)

Output

[list ([1, 2]) 1list([6, 7, 8, 91) list([10])]
The preceding program performs the jagged arrays.

Program

from numpy import *
n=int (input (“enter array size”))
a=zeros (n,dtype=int)
for 1 in range(n) :
p=int (input (“Number:"))
alil=p
print (a)

Output

enter array size2
Number:1

Number:2

[1 2]

The preceding program takes the user input in the NumPy array.

72 m Learning Professional Python

Program

from numpy import *
r=int (input (“*enter array row size”))
c=int (input (*enter array col size”))
a=[]
for i in range(r) :
m=[]
for j in range(c):
m.append (int (input (“Number:”)))
a.append (m)
for i in range(r):
for j in range(c):
print (al[i] [j],end=" ")
print ()

Output

enter array row size3
enter array col size2
Number:1

Number:
Number:
Number:
Number:

o Ul W N

Number:
12
3 4
5 6

The preceding program takes the user input in the NumPy 2D array.

Program

import numpy as np

r=int (input (*enter array row size”))

c=int (input (“*enter array col size”))

print (“enter”,r*c,” first array elements”)
a=list (map (int, input () .split()))
arr=np.array(a) .reshape(r,c)

print (arr)

print (“enter”,r*c,” second array elements”)
b=1ist (map (int, input () .split()))

Arrays m 73

brr=np.array(b) .reshape(r, c)
print (brr)
arr+brr

Output

enter array row size2
enter array col size3
enter 6 first array elements
123456
[[1 2 3]
[4 5 6]]
enter 6 second array elements
7 8 9 10 11 12

[[7 8 9]
[10 11 12]]
array ([[8, 10, 127,

(14, 16, 1811])
The preceding program performs the NumPy array addition.

Program

import numpy as np

r=int (input (“*enter array row size”))

c=int (input (“*enter array col size”))

print (“enter”,r*c,” first array elements”)

a=list (map (int, input () .split()))

arr=np.array(a) .reshape(r,c)

print (arr)

print (“enter”,r*c,” second array elements”)
b=1list (map (int, input () .split()))

brr=np.array(b) .reshape(r, c)

print (brr)

print (“matrix subtraction result”)

arr-brr

Output

enter array row size?2

enter array col size2

enter 4 first array elements
12 3 4

[[1 2]

74 m Learning Professional Python

[3 4]]
enter 4 second array elements
56 7 8

[[5 6]

[7 81]
matrix subtraction result
array ([[-4, -4],

[-4, -411)

The preceding program performs the matrix subtraction.

Program

import numpy as np

r=int (input (*enter array row size”))

c=int (input (*enter array col size”))

print (“enter”,r*c,” first array elements”)

a=list (map (int, input () .split()))

arr=np.array (a) .reshape (r, c)

print (arr)

print (“enter”,r*c,” second array elements”)
b=1list (map (int, input () .split())) brr=np.array (b).
reshape (r, c)

print (brr)

print (“matrix multiplication result”)

arr*brr

Output

enter array row size2
enter array col size2
enter 4 first array elements
12 3 4

[[1 2]

[3 4]]
enter 4 second array elements
56 7 8

[[5 6]

[7 811
matrix multiplication result
array ([[5, 127,

[21, 3211)

The preceding program performs the matrix multiplication.

Program

import numpy as np
a=np.array([1,2,3,4,5])
b=np.array([1,2,7,8,9])
a==Db

Output

array ([True, True, False, False, False])
The preceding program performs the array equality.

Program

import numpy as np
a=np.array([1,2,3,4,5])
b=np.array([1,2,7,8,9])
np.array_ equal (a,b)

Output

False
The preceding program performs the array equality.

Program

import numpy as np
a=np.array([1,2,3,4,5])
b=np.array([1,2,3,4,5])
np.array_ equal (a,b)

Output

True
The preceding program performs the array equality.

Program

import numpy as np
a=np.array([1,1,0,0,0],dtype=bool)

Arrays ® 75

76 m Learning Professional Python

b=np.array([1,1,0,0,1],dtype=bool)
print (np.logical or(a,b))
print (np.logical and(a,b))

Output

[True True False False True]
[True True False False False]

The preceding program performs the logical operations on NumPy
array.

Program

import numpy as np
a=np.arange (5)
print (np.sin(a))
print (np (a))
print (np.tan(a))
print (np.exp(a))
(np (a))

print (np.log

Output

[O. 0.84147098 0.90929743 0.14112001 -0.7568025]
[1. 0.54030231 -0.41614684 -0.9899925 -0.65364362]
[O. 1.55740772 -2.18503986 -0.14254654 1.15782128]
[1. 2.71828183 7.3890561 20.08553692 54.59815003]
[

-inf 0. 0.69314718 1.09861229 1.38629436]

The preceding program performs the trigonometric functions on
NumPy array.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],([10,11,12,13]])
print (a)

print
print (np.sum(a,axis=0))
print (* horizontal sum”)
print (np.sum(a,axis=1))

“vertical sum”)

(
(
(
(

Arrays ® 77

Output

(L1 2 3 4]
[6 7 8 9]
[10 11 12 13]]

vertical sum
[17 20 23 26]

horizontal sum
[10 30 46]

The preceding program performs the sum on 2D array.

Program

import numpy as np
a=np.array([1,2,3,4,5,6,7,8,9,10,11,12])
print (“mean:”,a.mean())

print (“*‘median”,np.median(a))

Output
mean: 6.5

median 6.5

The preceding program performs the mean and median of array.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],([10,11,12,13]])
print (“mean:”,a.mean())

print (“*median”,np.median(a))

Output
mean: 7.166666666666667

median 7.5

The preceding program performs the mean and median of 2D array.

Program

import numpy as np
a=np.array([[1,2],[6,7]],dtype=complex)
print (a)

78 m Learning Professional Python

Output
[[1.+0.] 2.+0.7]
[6.40.7 7.+40.311

The preceding program represents the array as the complex type.

Program

import numpy as np
a=np.array([(1,2,3,4,5,6,7,8,9,10,11,12])

print (“correlation coefficient:”,np corrcoef (a))
print (“*standard deviation”,np.std(a))

Output
correlation coefficient: 1.0
standard deviation 3.452052529534663

The preceding program performs the aggregate functions.

Program

import numpy as np
a=np.array([[1,2,3,4],[6,7,8,9],[10,11,12,13]11])
print (“correlation coefficient:”,np corrcoef (a))
print (“standard deviation”,np.std(a))

Output

correlation coefficient: [[1. 1. 1.]
[1. 1. 1.]

[1. 1. 1.11

standard deviation 3.8477987935383986

The preceding program performs the aggregate functions.

EXERCISE

1. Count the number of occurrences of the specified element in the

array.

2. Insert the array element at the specified index.

10.

Arrays ® 79

. Convert the array to the list.
. Create a Boolean array.
. Print the odd index elements of the array.

. Replace the array element at the specified position with the new

value.

. Stack three array horizontally.
. Extract the elements of the array within the specified range.

. Compare two arrays.

Reverse the columns of the array.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 4

Exception Handling

An exception is an unusual situation that terminates the execution of the
program. Whenever an exception happens, the program blocks the execu-
tion. There is a way to handle the exception. An exception is the runtime
error that is incompetent to handle to Python program. If there is no code
to deal with the exception, the interpreter doesn’t execute the code that
appears after the exception.

0}
“ Note: Python 3 provides 63 predefined exceptions.

If an exception arises inside the try block, the control jumps to the first
instruction of the except block. There must be at least a single except
for every try statement, and the except statement should not be used
without a preceding try statement. After executing the except block,
the control never jumps back to the try block, and if one except block
is executed, then the remaining except block of the specified try state-
ments will not be executed. If none of the specified except branches
matches the raised exception, the execution remains unhandled. The
unnamed except block should be the last block for the try statement.
If there is no matching except block for the raised exception, then the
compiler takes care and terminates the program. At the time of catch-
ing the exception, the general exception should be placed before the
concrete exceptions.

DOI: 10.1201/9781003462392-4 81

https://doi.org/10.1201/9781003462392-4

82 m Learning Professional Python

4.1 EXCEPTION HANDLING IN PYTHON

The try except statement:

Python offers try blocks to facilitate exception handling. A try block
comprises of keyword try, which includes statements that could cause
exceptions and statements that should be omitted if an exception
occurs. Exceptions may surface beyond unambiguously mentioned
code in a try block, through calls to other functions and through
deeply nested function calls originated by code in a try block.
Exceptions are processed by an exception handler block, which catch
and handle exceptions. At least one except block should immediately
go after each try block. Each catch handler starts with the keyword
except followed by exception parameter that represents the type of
exception the exception handler can handle. When an exception
arises in a try block, the exception handler that implements is the
one whose type fits the type of exception that happened. If an excep-
tion parameter comprises of an optional parameter name, the catch
handler can utilize that parameter name to cooperate with a caught
exception object in the body of the exception handler.

The try block must be followed with the except statement, which com-
prises a block of code that will be executed if there is an exception in the
try block. The except blocks are searched in the same order in which they
appear in the code, and the programmer must not use more than one
except branch with a specified exception name.

O
(‘@)) Note: Placing between a statement between try block and its cor-
responding exception handler is a syntax error.
oS
((@’) Note: Each exception handler can have only a single parameter.
oS
((@’) Note: Catching the same type of error in two distinct exception
handlers following a single try block is a logical error.
RN
((@)) Note: Control never returns to the first statement following the
throw point. With exception handling, a program can continue executing
after dealing the exception.

Exception Handling = 83

oS

(=) . . .
¢ Q) Note: Throwing an exception that has not been stated in the excep-
tion handlers triggers a call to the unexcepted functions.

Syntax-1

try

[suspicious erroneous codel]

except:

[run this code if an exception occurs]

Syntax-2

try

[suspicious erroneous codel

except Exception:

[run this code i1f an exception occurs]

Program

try:

a=int (input (“enter integer”))
b=int (input (“*enter integer”))
print (a/b)

except:

print (“exception occurred”)

Output

enter integerlO
enter integer0
exception occurred

The preceding program using try except statement with no specified
exception.

The except keyword starts a piece of code that will be executed if the
code inside the try block goes wrong.

Program

try:
a=int (input (“enter integer”))
b=int (input (“enter integer”))

84 m Learning Professional Python

print (a/b)
except Exception as e:
print (e)

Output

enter integer5
enter integer0
division by zero

The preceding program uses try except statement with specified
exception.

4.2 SINGLE TRY MULTIPLE EXCEPT STATEMENTS

There may be the possibility that more than one exception can occur in a
single program. This issue can be solved by writing more than one con-
secutive try-except blocks, one for each possible exception.

Syntax

try

[suspicious erroneous codel]

except excedptionl:

[run this code if an exception occurs]
except excedption2:

[run this code if an exception occurs]

Program

try:

i=int (input (“enter integer”))
j=int (input (“*enter integer”))
print (i/73)

except ZeroDivisionError as e:

print (e. class_)
except ValueError as e:
print (e. class_)
except:

print (“error”)
enter integer5
enter integer0
<class ‘ZeroDivisionError’>

Exception Handling m 85

The preceding program uses the single try and multiple exception.

Program

try:

i=int (input (“*enter integer”))
j=int (input (“*enter integer”))
print (i/73)

except:

pass

Output

enter integer5
enter integer0

The preceding program uses writing pass in the exception handler.

No error message is not printed in the preceding program, just used the
pass no statement. Handled the exception but no message has not been
printed because there is no message statement in the except block.

Program

a= [0,0.0,"1"]
for i in a:

try:

print (“*element:”, 1)
print (1/1)

except Exception as e:
print (e. class_)
Output

element: O

<class ‘ZeroDivisionError’ >
element: 0.0

<class ‘ZeroDivisionError’ >
element: 1

<class ‘TypeError’s

The preceding program uses the single try multiple exceptions in single
except statement.

86 m Learning Professional Python

Program

try:

print (“try block”)

print (“*between try and except”)
except:

print (“except block”)

Output

File “<ipython-input-21-3e44f9eab93f>”, line 3
print (“between try and except”)

A

SyntaxError: invalid syntax

The preceding program uses the statement between the try and the
except statement. It throws the error because placed a statement between
the try and except.

Program

try:

i=int (input (“enter integer”))

j=int (input (“*enter integer”))

print (i/73)

except (ValueError,ZeroDivisionError)as e:
print(e. class_)

Output 1

enter integers
enter integer0
<class ‘ZeroDivisionError’ >

The preceding program uses the single try single except but handling
multiple exceptions with single except.

4.3 SINGLE TRY SINGLE EXCEPT WITH

MULTIPLE EXCEPTIONS STATEMENTS
Python permits to declare the multiple exceptions with the except state-
ment. Declaring multiple exceptions is effective in the class when a try
block throws multiple exceptions.

Exception Handling m 87

try

[suspicious erroneous codel]

except (exceptionl, exception2 . . . exception N):
[run this code if an any of the exception occurs]

If an exception is raised inside the function, the exception can be han-
dled either inside or outside the function.

Program

a,b=1,0

try:

print (a/b)

print (*This won’t be printed”)

print (1107+10)

except TypeError:

print (“you added values of incompatible types”)
except ZeroDivisionError:

print (“You divided by 0”)

Output

You divided by 0

The preceding program uses the single try single except with multiple
exceptions statements.

Program

def test():

try:

print (‘try’)

except:

print (*caught exception’)
else:

print (‘no exception raised’)
finally:

print (*finally’)

test ()

Output

try

88 m Learning Professional Python

no exception raised
finally

The preceding program uses the try except else finally program.

Program

def test():

try:

1/0

except:

print (‘caught exception’)
else:

print (‘no exception raised’)
finally:

print (*finally’)

test ()

Output
caught exception

finally

The preceding program handles the exception inside the function.

4.4 TRY-EXCEPT-ELSE

In Python, there is the possibility of using the else statement with the try-
except statement, in which the else block will be executed if no exception
appears in the try block.

Syntax

try:

[suspicious erroneous codel

except:

[run this code if an exception occurs]

else:

[run this code if no except block is executed]

Program

def test(x, y):
try:

Exception Handling m 89

r=x//y
except ZeroDivisionError:
print (*ZeroDivisionError ")

else:

print (*Result:”, r)
test (10,3)

test (5,0)

Output

Result: 3

ZeroDivisionError

The preceding program uses the try-except-else.

4.5 THE TRY ... FINALLY BLOCK

Python supports the optional finally statement, which is applied with the
try statement.

Syntax

try:

[suspicious erroneous codel
finally:

[finally block always execute]

Program: try else finally

try:

print (“inside try”)
except:

print (*error handled”)
else:

print (“*else try block”)
finally:

print (*finally block”)

Output

ingide try
else try block
finally block
The preceding program uses the try-except-else-finally.

90 m Learning Professional Python

Program: try else finally block

try:

i=int (input (“enter integer”))

if i<0:

raise ValueError (“value is negative”)
else:

print (“value:”,1i)

except ValueError as e:

print (e)

Output
enter integer-1

value is negative

The preceding program uses the try-except-else.

4.6 RAISING EXCEPTIONS

An exception can be raised by using the raise keyword in python. To elevate
the exception, the raise statement is used. The exception class name follows
it and an exception that can be presented with a value in the parentheses.

Syntax

raise exception[value]

Program: Raise the exception with the no message
try:

raise

except:

print (“error occurred”)

Output

error occurred

Program

i = int (input (“Enter a positive number: "))

if i<0:
raise Exception(“Please enter only positive value ”)

print (“value = 7, 1)

Exception Handling m 91

Output

Enter a positive number: -5
Exception Traceback (most
recent call last)
<ipython-input-8-27485c90c2d3> in <modules> ()
2
3 1f 1<0:
----> 4 raise Exception(“Please enter only positive

value ")
5
6 print (“value = ", 1)
Exception: Please enter only positive value

The preceding program raises the exception with the message.

oS
((@)) Note: Simply raise the raise without message can be used inside the
function only, otherwise raises (sentence recheck).

An exception

Program: Try except else clause

try:

i=int (input (“enter integer”))

if i<0:

raise ValueError (“*value is negative”)

else:

print (“value:”,1)
except ValueError as e:
print (e)

else:

print (“*else block”)

Output

enter integer-5
value is negative

Program

def test():
try:

92 m Learning Professional Python

raise

except:

print (“*error handled inside function”)
raise

try:

test ()

except:

print (*error handled in main”)

Output

error handled inside function
error handled in main

Program

def test():
i=int (input (“enter integer”))
j=int (input (“*enter integeer”))

print (i/73)

try:

test ()

except Exception as e:

print (“error handled in main”,e._ class_)
Output

enter integer5
enter integeer0
error handled in main <class ‘ZeroDivisionError’>

The preceding program handles the error in main.

4.7 USER-DEFINED EXCEPTIONS

In Python the users have the ability to raise their own exceptions.

Program

class test (Exception) :
pass

try:

raise test (“my exception”)
except test as t:

print (t)

Exception Handling m 93

Output

my exception
The preceding program uses the user-defined exception.

Program

class negative (Exception) :

def init (self,s):
self.s=s

super (). init (self.s)
while (True) :

n=int (input (“enter number”))
try:

if n<=0:

raise negative (“should enter positive number”)
else:

print (“Number:”,n)

break

except negative as e:

print (e)

Output

enter numberO

should enter positive number
enter number-5

should enter positive number
enter number5

Number: 5

The preceding program invoking parent class constructor in user-
defined exceptions.

4.8 CONSTRUCTORS IN EXCEPTION HANDLING

The users can use the exception handling in the class constructors.

Program

class test:
def init (self,n):
try:

94 m Learning Professional Python

if n<0:

raise ValueError (“value is negative”)
else:

self.n=n

except ValueError as e:

print (e)

t=test (100)

print (t.n)

Output

100

The preceding program used the try except in constructor.

Program: Error handling in constructor

class test:

def init (self,n):

try:

if n<0:

raise ValueError (“value is negative”)
else:

print (“value:”,n)

except ValueError as e:

print (e)

t=test (-1)

Output

value is negative

The preceding program used the try except else in constructor.

4.8.1 Exception and Inheritance

Various exception classes in Python can be derived from a common base
called the exception class. Using inheritance with exception enables an

exception handler to catch related error of the subclass exceptions also. If
a catch handler catches a reference to an exception object of a parent class
type, it also catches the references of all the objects of classes derived from

that parent class.

Syntax

class test (exception) :
#test class body

Program

class parent (Exception) :

def init (self, offer):

self.offerName = offer[0]
self.offerType = offer([1]

self.st = self. construct message ()

Exception Handling m 95

super (parent, self). init (self.st)

def construct message(self) :

return ‘parent’.format (self.offerName)

class derived (parent) :

def construct message(self) :

return ‘derived’ .format (self.offerName, self.

offerType)

EXERCISE

1. Write a Python program to catch multiple exceptions in a single

except statement.

2. Write a Python program to raise an exception if number is greater

than 100.

3. Write a Python program to raise an exception if number is negative

number.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 5

Multi Threading

A thread is a flow of execution. Multi threading helps to run multiple tasks
simultaneously.

Advantages of multi threading:

1. Simplifies the code

2. Better utilization of resources

3. Allows and parallel concurrent programming

4. Increases the performance

5. Reduces the response time
Multi threading can be done by three ways in Python:

1. Without class
2. Subclass to thread class

3. Use class concept but not subclass to thread class

5.1 MULTIPROCESSING IN PYTHON

Python provides the multiprocessing module to perform multiple tasks
within the single system.

DOI: 10.1201/9781003462392-5 97

https://doi.org/10.1201/9781003462392-5

98 m Learning Professional Python

Program

from multiprocessing import Process
def £():

print (‘with out arguments’)

p = Process(target=f, args=())
p.start ()

p.join ()

Output

with out arguments

The preceding program performs the multiprocessing without
arguments.

Program: Multiprocessing with arguments

from multiprocessing import Pool
def test(x):

return x*x

with Pool (5) as t:

print (t.map(test, [1, 2, 3, 4, 51))

Output

[1, 4, 9, 16, 25]
The preceding program performs the multiprocessing with arguments.

Program: Number of CPU working

import multiprocessing

import os

print (multiprocessing.cpu count ())
print (os. cpu count ())

Output

2
2

The preceding program calculates the number of CPU running at that
instant.

Multi Threading m 99

5.2 MULTI THREADING

There are two ways to handle threads in Python:

1. The thread module

2. The threading module

5.2.1 Starting a New Thread
Syntax

Thread.start new_thread(function,args[, kwargs])
Parameters:

function-

args-

kwargs-

Program: Starting a new thread

The Threading Module

Methods Description

threading.activecount() Returns count of threads active threads

threading.currentthread() Returns current thread information

run() Activity of the thread

start() Stars the thread

Join([time]) Until the thread that called join() was terminated, the
CPU blocks the remaining threads

isAlive() Checks if the thread is alive or not

getName() Returns the name of the running thread

setName() Sets the name of the thread

threading.enumerate Returns the list of all active threads

5.3 CREATING THREAD USING THREADING MODULE

To apply a new thread using the threading module using the threading module:

1. Define a new subclass of the thread class.
2. Override the __init__(self[,args]) method to add the arguments.

3. Override the run(self[,args]) method to implement what the thread.

100 m Learning Professional Python

When starting the new thread by invoking the start(), which in turn
calls run() method.

Program

import threading
def test():
print (“test method”)

tl = threading.Thread (target=test)
tl.start()

Output

test method
The preceding program is a very simple program to start a thread.

Program

import threading

def test():

print (*inside test function”)
for i in range(5) :

print (“test i=",1i)
tl=threading.Thread (target=test)

tl.start ()

Output

inside test function
test i= 0

test i= 1

test i= 2

test i= 3

test 1= 4

The preceding program creates a single thread without passing arguments.

Program

import threading
def test():
print (*inside test function”)

Multi Threading = 101

for i in range(5) :

print (“test i=",1i)

def sample() :

print (*inside sample fumction”)
for i in range(5) :

print (“sample i=",1)
tl=threading.Thread (target=test)
t2=threading.Thread (target=sample)
tl.start ()

t2.start ()

Output

inside test function

inside sample fumctiontest i=
sample i= 0

test i=
test i=
test i=
test i=
0
sample i=

AW N R

sample i=
sample i=

S W N R

sample i=

The preceding program creates two threads without passing arguments.

Program

import threading

def test(n):

print (*inside test fumction”)

for 1 in range(n) :

print (“test i=",1)

def sample(n):

print (*inside sample fumction”)

for 1 in range(n) :

print (“sample i=",1)

tl=threading.Thread (target=test,args=(5,))
t2=threading.Thread (target=sample, args=(7,))
tl.start()

t2.start ()

102 m Learning Professional Python

Output

ingside test fumction
inside sample fumction
sample i=test i= 0
test i=1

test i=
test i=
test i=
0
sample i=

Bw N

sample i=
sample i=
sample i=
sample i=

o Ul bW N

sample i=
The preceding program creates two threads with passing arguments.

Program

import threading

def test():

print (*inside test fumction”)

print (“thread name:”,threading.current thread() .name)
def sample() :

print (*inside sample fumction”)

print (“*thread name:”,threading.current thread() .name)
tl=threading.Thread (target=test,name="test”)
t2=threading.Thread (target=sample, name="sample”)
tl.start ()

t2.start ()

Output

inside test fumction
thread name: test
inside sample fumction
thread name: sample

In the preceding program the name of the two threads are set and print-
ing the thread name.

Multi Threading = 103

Program

import threading

def test():

print (*inside test function”)
for i in range(5) :

print (“test i=",1i)

def sample() :

print (*inside sample fumction”)
for i in range(5) :

print (“sample i=",1)
tl=threading.Thread (target=test)
t2=threading.Thread (target=sample)

tl.start ()
t2.start ()
tl.join()
t2.join()
Output
ingide test function
test 1= 0
test 1= 1
test 1= 2
test i= 3
test 1= 4

inside sample fumction
sample i= 0

sample i= 1
sample i= 2
sample i= 3
sample i= 4

In the preceding program the join() method is used, which blocks the
remaining threads until the current thread completes its task.

Program

import threading

import time

def test():

print (*inside test function”)

104 m Learning Professional Python

for 1 in range(5) :

print (“test i=",1i)

time.sleep(2)
tl=threading.Thread (target=test)
tl.start()

Output

inside test function
test i= 0

The preceding program used the sleep method to put the thread ideal
for specified time.

Program

import threading

import time

def test():

print (*inside test fumction”)
for i in range(5) :

print (“test i=",1i)

time.sleep(2)

def sample() :

print (*inside sample fumction”)
for i in range(5) :

print (“sample i=",1)
time.sleep(2)
tl=threading.Thread (target=test)
t2=threading.Thread (target=sample)
tl.start()

t2.start ()

Output

ingside test fumction
test i= 0

inside sample fumction
sample i= 0

The preceding program used the threads and the sleep method in those
two threads to put the thread ideal for specified time.

Multi Threading = 105

Program

import threading

import time

class test (threading.Thread) :
def run(self):

for 1 in range(7):

print (*run() method”, i)

for i in range(5) :
print (“*run method”, i)
t=test ()

t.start ()

Output

run method
run method
run method
run method

B w NP o

run method
() method
() method
() method
run () method
() method
() method
() method

o Ul W N R O

The preceding program used the run() method to execute the thread.

Program

import threading

from threading import *
import time

def test(n):

for 1 in range(n) :
time.sleep(2)

def sample(n):
for 1 in range(n) :
time.sleep(2)

start=time.time ()
n=int (input (“enter integer”))

106 m Learning Professional Python

tl=Thread (target=test,args=(n,))
t2=Thread (target=sample, args=(n,))
tl.start ()

t2.start ()

end=time.time ()

print (“time to execute”, (end-start))

Output

enter integer5
time to execute 20.022241592407227

The preceding program calculates the time to start a thread and the
thread execution.

Program

import threading

import time

class test (threading.Thread) :
def run(self):

for 1 in range(5):

print (“test run()”,i)

class sample (threading.Thread) :
def run(self):

for 1 in range(5) :

print (* sample run()”,1)

t=test ()
s=gample ()
t.start ()
s.start ()
t.join()
s.join ()

Output

test run()
test run()
test run()
test run()
test run()
sample run (

sample run(

0
1
2
3
4
) 0
) 1
) 2

sample run(

Multi Threading = 107

sample run() 3
sample run() 4

In the preceding program the join() method is used, which blocks the
remaining threads until the current thread completes its task.

5.4 SYNCHRONIZING THE THREAD

In Python, a lock is started by invoking the lock() method, which returns
the new lock. The release() method of the new lock object is exploited to
release the lock when it is no longer needed.

import threading
import os

def testl():
print (“test 1 assigned to thread:
{}”.format (threading.current thread() .name))
print (*ID of process running test 1:
{}7”.format (os.getpid()))

def test2():

print (“test 2 assigned to thread: {}”.
format (threading.current thread() .name))

print (“ID of process running test 2: {}”.format (os.
getpid()))

if name == " main ”:

print ID of current process
print (*ID of process running main program: {}”.
format (os.getpid()))

print name of main thread
print (*Main thread name:
{}".format (threading.current thread () .name))

creating threads
tl = threading.Thread(target=testl, name=‘tl’)
t2 = threading.Thread(target=test2, name=‘t2’)
starting threads

tl.start ()
t2.start ()

108 m Learning Professional Python

wait until all threads finish
tl.join()
t2.join()

Output

ID of process running main program: 63
Main thread name: MainThread

test 1 assigned to thread: tl

ID of process running test 1: 63

test 2 assigned to thread: t2

ID of process running test 2: 63

© test - Neteans 0E 82 - 8 X
Bl 4 i Nt Souce Rt Bin i Bt Tou ol Window thp T
HEEYDE O TE b B O

ap-wna x = lesor =] =
w 1 [o B BB ARFROIFPELIAUCH M]
| =

1 import threading
@[class test (object):

3 def _ init (self, start = 0):

4 self.lock = threading.Lock ()

5 self.value = start |
6| def inc(self): |
7 self.lock.acquire()

8 trys

9 self.value = self.value + 1

10 finally:

il self.lock.release()

12| ¢ = test()

13 t = threading.Thread(target=c.inc)
Bl t.start()

AL5) print (c.value)

5.4.1 Race Condition

When more than one thread is trying to access the shared variable simul-
taneously, then the race condition will raise.

Step 1: The shared variable is initialized, and it is accessing in the inc()
function

import threading
global variable x
x =0

def inc():

ALIRRRNY

function to increment global variable x

Multi Threading = 109

"o

global x
X += 1

Step 2: Calling the shared variable function

def testl():

task for thread

calls increment function 100000 times.
for in range(100000) :

inc ()

Step 3: Reassigning the shared variable

def test2():

global x

setting global wvariable x as 0
x =0

Step 4: Starting the thread

creating threads

tl threading.Thread (target=testl)
t2 = threading.Thread (target=testl)

start threads

tl.start()

t2.start ()

wait until threads finish their job
tl.join()

t2.join()

Step 5: Calling main and accessing the shared variable

if name == " main ":

for 1 in range(10):

test2()

print (“Iteration {0}: x = {1}”.format (i,x))

Output
Iteration 0: x = 168820
Iteration 1: x = 200000

Iteration 2: x 163939

110 ®m Learning Professional Python

Iteration 3: x = 200000
Iteration 4: x = 200000
Iteration 5: x = 200000
Iteration 6: x = 200000
Iteration 7: x = 200000
Iteration 8: x = 200000
Iteration 9: x = 169937
5.4.2 Locks

To avoid race conditions, locks were introduced.
The functioning of the locks can be done in three ways:

1. First, acquire lock on the shared variable.
2. Process the shared variable.

3. Release the lock.

Step 1: The shared variable is initialized, and it is accessing in the inc()
function

import threading

global variable x
x =0

def inc():

nnn

function to increment global variable x
global x
X +=1

Step 2: Before calling the shared variable function, the lock was acquired,
and after the processing, the lock has been released

def testl(lock):

task for thread

calls increment function 100000 times.
for in range(100000):

lock.acquire ()

increment ()

lock.release ()

Multi Threading = 111

Step 3: Reassigning the shared variable

def test2():

global x

setting global variable x as 0
x =20

Step 4: Starting the thread and the lock

creating a lock
lock = threading.Lock ()

creating threads
tl = threading.Thread (target=testl, args=(lock,))
t2 threading.Thread (target=testl, args=(lock,))

start threads
tl.start ()
t2.start ()

wait until threads finish their job
tl.join()
t2.join()

Step 5: Calling main and accessing the shared variable

if name == " main ":
for i in range(10) :
test2 ()

print (“Iteration {0}: x = {1}”.format (i,x))
Output

Iteration 0: x = 200000
Iteration 1: x = 200000
Iteration 2: x = 200000
Iteration 3: x = 200000
Iteration 4: x = 200000
Iteration 5: x = 200000
Iteration 6: x = 200000
Iteration 7: x = 200000
Iteration 8: x = 200000
Iteration 9: x = 200000

112 m Learning Professional Python

Pooling
Thread pool helps to achieve the concurrency of the execution of the
threads.

Python program to understand the concept of pool
import multiprocessing
import os

def square(n) :

print (“process id for {0}: {1}”.format (n,
os.getpid()))

return (n*n)

f name == " main ":
input list
= [1,2,3,-1,-2]
creating a pool object
= multiprocessing.Pool ()

B H O H -

E

map list to target function
r = p.map (square,a)

print (r)

Output

process id for 1: 369

process id for 3: 369

process id for -1: 369
process id for -2: 369
process id for 2: 370

(1, 4, 9, 1, 4]

5.4.3 Semaphore

Semaphore provides the thread synchronization to use the thread
resources. The operations that are using to use and release the semaphore
is the acquire() and release(). The acquire() methods decrements the sema-
phores values, and the release increments the semaphore value.

Program

importing the modules
from threading import *
import time

Multi Threading = 113

creating thread instance where count = 3
obj = Semaphores (3)

creating instance
def test(s):

calling acquire method
obj.acquire ()

for i in range(5) :

print (‘testing \n’, end = ' ')
time.sleep (1)

print (s)

calling release method
obj.release ()

creating multiple thread
tl = Thread(target = test, args = ('T-1',))
t2 = Thread(target = test, args

I
H
I
N

calling the threads
tl.start()
t2.start ()

Output

testing
testing
T-1
testing
T-2
testing
T-2
testing
T-1
testing
T-1
T-2
testing
testing
T-1
T-2
testing
testing
T-2
T-1

114 m Learning Professional Python

Solved Examples
et R e
PHER DO WO T B O i
Emggst T‘:Zx’“ml&lh--ﬂ'ﬂﬁc"ﬁl Peet ulod ua .;.
1 import threading
2 def msg() :
3 print ('test')
4 t = threading.Thread (target=msqg)
9] t.start ()
6
7
8
9
2183
© ot NepesaDER2 =
s s s s e
PEESDEC HOTHDIBO-
ET.‘"tﬂ,elst ::":"Lv BE-8-QAFRGPe auen L A;;
1 import threading
test 5 z def
test ef msg(): i
Best 3 print ('test')
test 4 for i in range(5):
%) t = threading.Thread (target=msqg)
6 t.start ()
7
8
9
10
3 x
et]
TLEYS = T HA X XY S
Ew.m“ B Enm BE-8-ATFRG|PER (Eulea|tia ;
test 1 import threading i
2/[def msg(s):
3 print (s) i
4 t = threading.Thread(target=msg,args=('test’',))
5 t.start()
6
7
8
9
10
i1l
12
i3]

P @ s

Multi Threading = 115

=

i v 098 & SRE P S8 (BT 0 E G

1 import threading

Jclass test (threading.Thread) :

def _init (self,name):
threading.Thread. init (self)
self.name=name

def run(self):
print (self.name)

8 tl=test ("tl")

9 t=test("L2")

10| tl1.starti

M8 t.sCart ()

~N o O b W

Bl
oy [BE-8-ARFRG(FeBaUlonma

1 import threading

i class test():

3 def msg(self):

4 print ("'test")

5 t=test ()

6 tl=threading.Thread (target=t.msq)
7 tl.start ()

) © 00

........

EXERCISE
1. Set the priorities to the thread.

2. Display all running threads.
3. Print factorial of a number using thread concepts.
4. Print the Fibonacci series using the thread concepts.

5. Program to credit the amount and withdrawal transactions using the
semaphore.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 6

Method Overloading and
Operator Overloading

6.1 INTRODUCTION

Overloading is the ability of a function or an operator to behave in differ-

ent ways based on the parameters that are passed to the function, or the
operands that the operator acts on.
There are two types of overloading in Python:

1. Method overloading

2. Operator overloading
The advantages of using the overload are the following:

1. Reusability

2. Improves code clarity and eliminates the complexity
The disadvantages associated with the overloading is the following:

1. Creates confusion and becomes very cumbersome to manage over-
loaded functions

DOI: 10.1201/9781003462392-6 117

https://doi.org/10.1201/9781003462392-6

118 m Learning Professional Python

6.2 METHOD OVERLOADING

Method overloading is the concept of the compile time polymorphism.
Method overloading can create a method with the same name and can
be called with different arguments. The methods differ with zero, one, or
more parameters. Method overloading concept is used in a single class. The
method arguments differ in number of arguments and types of arguments.

Program 1: Method overloading with zero and one argument methods

class test:
def display(self, s=None) :

if s is not None:
print (“one argument method”)
else:
print (“zero argument method”)
t=test ()
t.display ()
t.display (“python”)

Output

zero argument method
one argument method

In the previous example, the class test defines a method with a single
argument having default value, and it is also called without arguments,
Python programming language uses these default values while executing
the display method. The previous class test contains a method with one
argument having default values as None. The default value of None means
argument has not been explicitly provided a value. The display method
checks the value of these arguments and performs accordingly. An object
t of class test is created to call the display method with a single argument.
If there is no argument, then display function will return zero argument
method, and if we pass one argument to the display method, then it returns
the message one argument method.

Program 2: Method overloading with zero, one, and two argument
methods

class test:
def display(self,a=None, b=None) :
if a is None and b is None:

Method Overloading and Operator Overloading = 119

print (“zero argument method”)

elif a is not None and b is not None:
print (“two argument method”)

elif a is not None or b is not None:
print (“one argument method”)

t=test ()

t.display ()

t.display (“python”)

t.display (“method”, ”"overlaoding”)

Output

zero argument method
one argument method
two argument method

In the previous example, the class test defines a display method with two
arguments having default value, and it is also called without arguments.
Python programming language uses these default values while executing
the display method. The previous class test contains a display method with
two arguments having default values as None. The display method checks
the value of these arguments and performs accordingly. An object t of class
test is created to call the display method with two arguments. If there is no
argument, then display function will return zero argument method mes-
sage, and if we pass one argument to the display method, then it returns
the message one argument method. If we pass two arguments to the dis-
play method, that is, method and overloading parameters, then it returns
the message two argument method.

Program 3: Method overloading with different data types

class test:
def display(self,datatype, *args) :
if datatype==“int”:

s=0

elif datatype==“float”:
s=0.0

elif datatype==“str”:
S=” "

for x in args:
s=s+X
print (“*addition:”,s)

120 m Learning Professional Python

t=test ()

t.display(“int”,1,2,3,4,5)

t.display(“float”,1.1,2,3)

t.display(“str”,”this”,”is”,”to”,"test”) t.display(“st
r”,"python”,”3.8")

Output

addition: 15

addition: 6.1
addition: thisistotest
addition: python3.8

In the previous example, variable arguments with different types of argu-
ments are used. The parameter *args accepts the different number of argu-
ments and different types of arguments with using only one display method.

Program 4: Method overloading with same data type but with number
of arguments

from multiple dispatch import dispatch
@dispatch (int, int)

def sum(a,b) :

print (a+b)

@dispatch(int, int,int)

def sum(a,b,c):

print (a+b+c)
@dispatch (int, int, int, int)

def sum(a,b,c,d):

print (a+b+c+d)
@dispatch(int, int, int, int, int)
def sum(a,b,C,d,e):

print (a+b+c+d+e)

sum(1l, 2)

sum(1l,2,3)

sum(1l,2,3,4)

sum(1l,2,3,4,5)

Output

3
6
10
15

Method Overloading and Operator Overloading m 121

In the preceding program, defined four sum methods as Python sup-
ports many methods with the same name and different arguments. The
dispatcher stores different implementations during runtime by creating an
object for test class and selects the appropriate method as the type and the
number of parameters passed.

Program 5: Method overloading with same data type but with number
of arguments

from multiple dispatch import dispatch
@dispatch(float, float)

def sum(a,b) :

print (a+b)
@dispatch(float, float, float)

def sum(a,b,c):

print (a+b+c)
@dispatch(float, float, float, float)

def sum(a,b,c,d):

print (a+b+c+d)
@dispatch(float, float, float, float, float)
def sum(a,b,c,d,e):

print (a+b+c+d+e)

sum(1l.1,2.1)

sum (1 .4,3.5)

sum (1. .4,3.5,4.7)

sum (1 .0,3.0,4.0,5.0)

1

1

o W
N NN

’

Output

3.2
7.3
11.9
15.0

In the preceding program, defined four sum methods with float data
type as the argument as Python supports many methods with similar
names and various arguments.

Program 6: Method overloading with same number of parameters but
differs with the type of arguments

from multiple dispatch import dispatch
@dispatch (int, int, float)

122 m Learning Professional Python

def sum(a,b,c):

print (a+b+c)
@dispatch(int, float, float)
def sum(a,b,c):

print (a+b+c)
@dispatch(float, int,int)
def sum(a,b,c):

print (a+b+c)
sum(1.1,2,3)
sum(1,2.4,3.5)
sum{1,2,3.5)

Output

oA Oy O
Ul o K

In the preceding program, defined four sum methods accepts three
arguments and with different data type as the arguments.

6.3 OPERATOR OVERLOADING

The ability to sue the same operator against completely different kinds of
data is called operator overloading. The main advantage of using opera-
tor overloading is that it is much easier to read and debug. Operators that
already exist in the Python language can be overloaded. Operator overload-

ing cannot alter either the basic definition of an operator or the precedence

order. The operator overloading can be accomplished by a special function.
The general syntax of operator overloading in Python is as follows:

Syntax

def operatormagicword _ (self,object):

#Body of the function

L/
(¢

allowed to be overloaded.

Rules for overloading operators

®
@)) Note: Only those operators that are predefined in Python are

Rule 1: Only the operators that are predefined in the Python can be
used. The programmers cannot create new operators such as $, etc.

Method Overloading and Operator Overloading m 123

Rule 2: The programmers should not change the original meaning of
the operator. For example, the operator may be overloaded to multi-
ply the objects of the user-defined class.

Rule 3: The programmers should not change the precedence order or
the basic definition of the operator.

6.3.1 Overloading Arithmetic Operators

The special functions that we need to implement the arithmetic operators
are given in Table 6.1.

TABLE 6.1 Overloading Arithmetic Operators

S.No Arithmetic Operator Special Function
1 + _add__

5 R _sub__

3 * ~ mul__

4 / _ truediv__

5 /1 _ floordiv__

6 bt __mod__

7 % __pow__

Program 7: Python program to add two objects with single argument

class test:

def init (self,x):
self .x=x

def add (self,sample):
x=self .x+sample.x

return test (x)

def str (self):
return” {0}” .format (self.x)
tl=test (10)

t2=test (20)

print (t1+t2)

Output

30

In the previous example, using binary + operator between the objects
tl and t2 automatically invokes the magic method __add__. The magic

124 m Learning Professional Python

method __add__ defined method in the class test and binary operator +
work accordingly to the behavior defined in the magic method __add__
and a one int argument is given to the magic method __add__

Program 8: Python program to add two objects with two arguments

class test:

def init (self,x,y):

self.x=x

self.y=y

def add (self,sample):

x=self .x+sample.x

y=self.y+sample.y

return test (x,y)

def str (self):

return” ({0}, {1})".format (self.x,Self.y)
tl=test (1,2)

t2=test (3,4)
print (tl+t2)

Output

(4,6)

Internally t1+t2 converts to tl. __add__(t2). In the previous exam-
ple, using binary + operator between the objects t1 and t2 automatically
invokes the magic method __add__. The magic method __add__ defined
method in the class test and binary operator + work accordingly to the
behavior defined in the magic method __add__ and two integer argu-
ments are used in the magic method __add__

Program 9: Python program to concatenation of strings using operator
overloading

class test:

def init (self,x):

self .x=x

def add (self,sample):
x=self .x+sample.x

return test (x)

def str (self):
return” {0}” .format (self.x)
tl=test (“usha”)

Method Overloading and Operator Overloading m 125

t2=test (“rani”)
print (tl+t2)

Output

usharani

In the previous example, using binary + operator between the objects t1
and t2 automatically invokes the magic method __add__ asworks asa con-
catenation operator as the objects passing the string arguments. The magic
method __add__ defined method in the class test and binary operator +
work accordingly to the behavior defined in the magic method __add__
and a single string argument is used in the magic method __add__

Program 10: Python program to add complex numbers using operator
overloading

class test:

def init (self,x,y):
self.x=x

self.y=y

def add (self,sample):
x=self .x+sample.x
y=self.y+sample.y

return test (x,y)

def str (self):
return” ({0}+i{1})” .format (self.x,self.y)
tl=test (2,2)

t2=test (3,5)

print (tl+t2)

Output
(5+17)
In the previous example, using binary + operator between the objects t1

and t2 automatically invokes the magic method __add__ to perform the
complex addition.

Program 11: Python program to add object and integer using operator
overloading

class test:
def init (self,x):

126 m Learning Professional Python

self.x=x
def add_ (self,y):

x=self .x+y
return test (x)

def str (self) :
return”{0}” .format (self.x)
tl=test (10)

print (t1+10)

Output

20

In the previous example, using binary + operator between the object t1
and an integer automatically invokes the magic method __add__ to per-
form the addition. At the time of creating the object t1, an integer value 10
has been initialized.

Program 12: Python program to add integer and object using operator
overloading

class test:

class test:

def init (self,x):
self.x=x

def radd_(self,y):
x=self .x+y

return test (x)

def str (self):
return” {0}” .format (self.x)
tl=test (10)

print (30+tl)

Output

40

In the previous example, using binary + operator between the integer
and object t1 automatically invokes the magic method __radd__ to per-
form the addition.

Method Overloading and Operator Overloading m 127

Program 13: Python program to subtract two objects using operator
overloading

class test:

def init (self,x,y):

self.x=x

self.y=y

def sub (self,Sample):
x=self.x-sample.x

y=self.y-sample.y

return test (x,y)

def str (self):

return” ({0}, {1})".format (self.x,Self.y)
tl=test (1,2)

t2=test (3,4)
print (t2-t1)

Output

(2,2)

In the previous example, using binary operator between the objects
tl and t2 automatically invokes the magic method __sub__ as works as
a subtraction operator as the objects passing the two integer arguments.
The magic method __sub__ defined method in the class test and binary
operator work accordingly to the behavior defined in the magic method __
sub__ and two integer arguments are used in the magic method __sub__

Program 14: Python program to multiply two objects using operator
overloading with single object argument

class test:

def init (self,x):
self.x=x
def mul (self,sample):

x=self .x*sample.x

return test (x)

def str (self):
return” {0}” .format (self.x)
tl=test (1)

128 m Learning Professional Python

t2=test (3)
print (tl*t2)

Output

3

In the previous example, using binary *operator between the objects t1
and t2 automatically invokes the magic method __mul__ as works as a
multiplication operator as the objects passing a single integer argument.

Program 15: Multiplication of two objects

class test:

def init (self,x,y):
self.x=x

self.y=y

def mul (self,sample):
x=self .x*sample.x
y=self.y*sample.y

return test (x,y)

def str (self):
return" ({0}, {1})".format (self.x,self.y)
tl=test(1,2)

t2=test (3,4)

print (t1*t2)

Output

(3,8)

In the previous example, using binary *operator between the objects t1
and t2 automatically invokes the magic method __mul__ as works as a
multiplication operator as the objects passing two integer arguments.

Program 16: Python program to replicate the string using operator
overloading

class test:

def init (self,x):
self.x=x

def mul (self,Sample):
x=self .x*sample.x

Method Overloading and Operator Overloading m 129

return test (x)

def str (self):
return” {0}"” .format (self.x)
tl=test (3)

t2=test (“python”)

print (t1*t2)

Output

pythonpythonpython

In the previous example, using binary *operator between the integer
and t2 automatically invokes the magic method __mul__ as works as a
replication operator.

Program 17: Python program to divide two objects using operator over-
loading with two arguments in each object

class test:

def init (self,x,y):

self.x=x

self.y=y

def truediv__ (self,sample):
x=self.x/sample.x y=self.y/sample.y
return test (x,y)

def str (self):

return” ({0}, {1})".format (self.x,self.y)
tl=test (4,8)

t2=test (2,2)

print (tl1/t2)

Output

(2.0,4.0)

In the previous example, using binary/operator between the objects t1
and t2 automatically invokes the magic method __truediv__ as works as
a division operator as the objects passing the two integer arguments. The
magic method __truediv__ defined method in the class test and binary
operator/ work accordingly to the behavior defined in the magic method
__truediv__ and two integer arguments are used in the magic method
__truediv__.

130 ®m Learning Professional Python

Program 18: Python program to divide two objects (floor division) of
two objects using operator overloading

class test:

def init (self,x,y):
self.x=x

self.y=y

def floordiv__ (self,sample):
x=self.x//sample.x
y=self.y//sample.y

return test (x,y)

def str (self):

return” ({0}, {1})".format (self.x,self.y)
tl=test (4, 8)

t2=test (2,2)

print (tl//t2)

Output

(2,4)

In the previous example, using binary // operator between the objects t1
and t2 automatically invokes the magic method __floordiv__as works as
a floor division operator as the objects passing the two integer arguments.
The magic method __floordiv__ defined method in the class test and
binary operator// work accordingly to the behavior defined in the magic
method __floordiv__ and two integer arguments are used in the magic
method __floordiv__.

6.3.2 Overloading Comparison Operators

To overload the comparison operators in python, the special functions
that we need to implement are given in Table 6.2.

TABLE 6.2 Overloading Comparison Operators

S.No Comparison Operator Special Function
1 < .

2 <= _le

3 > _gt

4 >= _ge_

5 == _eq__

6

= ne

Method Overloading and Operator Overloading m 131

Program 19: Python program to compare two objects (using less than)
of two objects using operator overloading with single argument

class test:

def init (self,x):
self.x=x

def 1t (self,sample):
return self.x<sample.x
tl=test (2)

t2=test (3)

print (tl<t2)

Output

True

In the previous example, using binary < operator between the objects
tl and t2 automatically invokes the magic method __It__as works as a
less than operator as the objects passing a single integer argument. The
magic method __It__ defined method in the class test and binary operator
< work accordingly to the behavior defined in the magic method __It__
and a single integer argument is used in the magic method __It__

Program 20: Python program to compare two objects (using less than)
of two objects using operator overloading with two arguments

class test:

def init (self,X,y):
self.x=x

self.y=y

def 1t (self,sample):
if self.x<sample.x:
return True

elif self.x==sample.x:
if self.y<sample.x:
return True

else:

return False

else:

return False

tl=test (2,2)

t2=test (3,3)

132 m Learning Professional Python

print (tl<t2)
tl=test (5,5)
t2=test (5,7)
print(t1<t2)
tl=test (5,5)
t2=test (7,3)
prlnt(t1<t2)

Output

True
False
True

In the previous example, using binary < operator between the objects t1
and t2 automatically invokes the magic method __It__as works as a less
than operator as the objects passing two integer arguments.

Program 21: Python program to compare two objects (using equal to) of
two objects using operator overloading with single argument

Equality operator overloading
class test:

def init (self,x):
self.x=x

def eq (self,sample):
return (self.x==sample.x)
tl=test (2)

t2=test (3)

print (tl==t2)

Output
False
In the previous example, using binary comparison =operator between

the objects t1 and t2 automatically invokes the magic method __eq__ as
works as an equal operator as the objects passing a single integer argument.

Program 22: Python program to compare two objects (using less than)
of two objects using operator overloading with single string argument

class test:
def init (self,x):

Method Overloading and Operator Overloading = 133

self.x=x

def eq (self,sample):
return (self.x==sample.x)
tl=test (“python”)

t2=test (“python”)

print (tl==t2)

Output
True
In the previous example, using binary comparison =operator between

the objects t1 and t2 automatically invokes the magic method __eq__ as
works as an equal operator as the objects passing two integer arguments.

6.3.3 Overloading Assignment Operator

The special functions that we require to execute assignment operators are
given in Table 6.3.

TABLE 6.3 Overloading Assignment Operators

S.No Assignment Operator Special Function
1 += __jadd__
2 -= __isub__
3 *= __imul__
4 = _idiv__
5 /= __ifloordiv__
6 %= __imod__
7 = __pow__
8 >>= __irshift__
9 <<= __ilshift__
10 &= __dand__
11 = __ior__
12 A= __ixor__

Program 23: Python program to add two objects (+=) by using the
shortcut addition operator with single argument (operator overloading
with single argument)

class test:

def init (self,x):
self.x=x

def iadd (self,sample):

134 m Learning Professional Python

self.x+=sample.x
return test (self.x)
def str (self):
return” {0}”
tl=test (3)
t2=test (5)
tl+=t2
print (tl)

.format (self.x)

Output

8

In the previous example, using shortcut assignment +=operator between
the objects t1 and t2 automatically invokes the magic method __iadd__ as
works as a shortcut addition operator as the objects passing a single integer
argument.

Program 24: Python program to add two objects (+=) by using the
shortcut addition operator with two arguments

class test:

def init (self,x,y):
self .x=x

self.y=y

def iadd (self,sample):
self . .x+=sample.x
self.y+=sample.y

return test (self.x,self.y)
def str (self):

return” ({0}, {1})".format (self.x,self.y)
tl=test (3,5)

t2=test (5,4)

tl+=t2

print (t1)

Output
(8,9)
In the previous example, using binary assignment +=operator between the

objects t1 and t2 automatically invokes the magic method __iadd__ as works
as a shortcut addition operator as the objects passing two integer arguments.

Method Overloading and Operator Overloading m 135

Program 25: Python program to add two objects (+=) by using the
shortcut addition operator with single two argument and different

types.

class test:

def init (self,x,y):
self.x=x

self.y=y

def iadd (self,sample):
self.x+=sample.x
self.y+=sample.y

return test (self.x,self.y)
def str (self):

return” ({0}, {1})".format (self.x,self.y)
tl=test (3,5.1)

t2=test (5.3,4)

tl+=t2

print (tl)

Output

(8.3,9.1)

In the previous example, using binary assignment +=operator between
the objects t1 and t2 automatically invokes the magic method __iadd__ as
works as a shortcut addition operator as the objects passing three integer
arguments.

6.3.4 Overloading Class Operators

The special functions that we need to implement class operators are given
in Table 6.4.

TABLE 6.4 Overloading Class Operators

S.No Class Operator Special Function
1 getitem() __getitem__

2 setitem() _-setitem__

3 delitem() __delitem__

4 contains () ___contains__
5 str () _str__

6 Call _call__

136 m Learning Professional Python

Program 26: Overloading [] operator using __getitem__

class test:

def getitem {self,i):
return i

t=test ()

t[1]

Output

1

In the preceding program, the [] operator gets the value at an index,
Python manages itr. __getitem__(index), where index is the list index
which the user wants to achieve. [] is invoked with a single argument in
the previous program.

Program 27: Overloading [] operator using __getitem__

class test:

def init (self,a):
self.a=1list (a)

def getitem (self,i):
return self.al[i]

t=test ([1,2,3])

t[1]

Output

2

In the preceding program, the [] operator gets the value at an index,
Python manages itr. __getitem__(index). [] is invoked with two argu-
ments in the previous program.

Program 28: Overloading [] operator using __getitem__

class test:

def init (self,a):
self.a=1list (a)

def getitem (self,i):
return self.al[i]

t=test ([1,2,3])

t[-1]

Method Overloading and Operator Overloading m 137

Output

3

In the preceding program, the [] operator gets the value at an index,
Python manages itr. __getitem__(index). [] is invoked with a three argu-
ment and a negative index in the previous program.

Program 29: Overloading [] operator using __getitem__

class test:

def init (self,a):
self.a=1list (a)

def getitem (self,i):
return self.alil

t=test ([1,2,3])

tl::-11]

Output

(3, 2, 1]

In the preceding program, the [] operator gets the value at an index,
Python manages itr. __getitem__(index). [] is invoked with a three argu-
ment and a negative index with slicing in the previous program.

Program 30: Overloading [] operator using __getitem__

class test:

def init (self,a):
self.a=1list (a)

def getitem (self,i):
return self.al[i]

t=test ([1,2,3])

tll:]

Output
[2, 3]
In the preceding program, the [] operator gets the value at an index,

Python manages itr. __getitem__(index). [] is invoked with a three argu-
ment and a slicing in the previous program.

138 m Learning Professional Python

Program 31: Overloading [] operator using __setitem__

class test:
def init (self,a):
self.a=1list (a)
def setitem (self, index,value):
if len(self.a)>index:
self.al[index]=value
else:

raise IndexError
def getitem (self,i):
return self.al[i]

t=test ([1,2,3])
print (t[1:1)
t[1]=5

print (t[1:1)

Output
(2, 3]
(5, 3]

In the previous program, __setitem__ is used to assign the values. The
__setitem__ (self, index, value) assigns the value to the object at the speci-
fied index. When the statement t [1] =5 executes, the __setitem__ method
is automatically invoked as t1. __setitem__ (5).

Program 32: Overloading [] operator using __delitem__

class test:

def init (self,a}:
self.a=1list (a)

def getitem (self,1):
return self.al[il

def delitem (self, index) :
del self.a[index]
t=test([1,2,3,4,5])
print (£t [0:1)

del t[1]

print (£t [0:1)

Method Overloading and Operator Overloading m 139

(1, 3, 4, 5]

The __delitem __ (self, index) is used to delete or remove the values at
the specified index. The __delitem__ returns the values associated with
the key being connected.

Program 33: Overloading __del__

class test:

def init (self):
print (“constructor”)
def del (self):
print (“destructor”)
t=test ()

del t

Output

constructor
destructor

In the preceding program, __del__ method is invoked when the object
of the class is about to get destroyed.

Program 34: Attribute setting using operator overloading

class test:
def init (self,a):
self.a=a

def get (self,*):
return self.a

def set (self,*):
pass

t=test (10)

print (t.a)

t.a=100

print (t.a)

140 m Learning Professional Python

Output

10
100

In the preceding program, __get__ is used to get the instance of the
class, and this method is called with zero or one argument and __set__
method is used to set the instance of the class with a new value.

6.3.5 Overloading the Unary Operators

The special functions that we require to apply unary operators are given
in Table 6.5.

TABLE 6.5 Overloading Unary Operators

S.No Unary Operator Special Function
1 - __neg__
2 + __pos__
3 ~ __invert__
4 abs () __abs__
5 complex () __complex__
6 int () _int__
7 float () _ float__
8 long () __long
9 oct () _oct__
10 hex () __hex__

Program 35: Python program to perform the negation of the object
using the operator overloading

class test:

def init (self,x):
self.x=x

def neg (self):

return test(-self.x)

def str (self):

return™ ({0})”.format (self.x)
tl=test (3)

print (-tl)

Method Overloading and Operator Overloading m 141

Output
(-3)

In the preceding program, __neg__ method is used to return the nega-
tive value in the test class. Performed the negation on the single value.

Program 36: Python program to get the length of the string argument
of the object using the operator overloading

class test:

def init (self,x):
self.x=1ist (x)

def _ len_ (self):
return len(self.x)
tl=[1,2,3,4,5]

print (len(tl))

Output

5

In the preceding program, __len__ method is used to return the length
of the list values passed as the argument in the test class.

Program 37: Find the absolute value of the object argument using the
operator overloading

class test:

def init (self,x):
self.x=x

def abs (self):
return abs (self.x)
def str (self):

)" .format (self.x)

return" ({0}
tl=test (-3)
print (abs (tl))
Output

3

In the preceding program, __abs__ method is used to return the abso-
lute value passed as the argument to the __abs__ method in the test class.

142 m Learning Professional Python

Program 38: Python program to perform the negation of the object
using the operator overloading with two arguments

class test:

def init (self,x,y):
self.x=x

self.y=y

def invert (self):
x=~self.x

y=~self.y

return test (x,y)

def str (self):
return™ ({0}, {1})".format (self.x,self.y)
tl=test (2,2)

print (~t1)

Output

(-3,-3)

invert__ method is used to return

In the preceding program, __

the negative value in the test class. Performed the negation on the two
values.

6.3.6 Overloading of Operators on Lists

The + operator will perform merging on two lists. Some examples for
operator overloading on list are given in the next section:

Program 39: Merge two list objects using the operator overloading

class test:

def init (self,x):
self.x=1ist (x)

def add (self,sample):
x=self.x.copy ()

X .append (sample.x)
self.x=x

return test (self.x)

def str (self):
return™ ({0})”.format (self.x)
tl=test ([2,2])

t2=test ([1,5,8])

print (t1+t2)

Method Overloading and Operator Overloading = 143

Output

([2, 2, [1, 5, 811)

In the preceding example, by using binary + operator between the
objects t1 and t2, which consists as the data structure list as the argument
automatically invokes the magic method __add__. The magic method __
add__ defined method in the class test and binary operator + work accord-
ingly to the behavior defined in the magic method __add__ and an int
argument is given to the magic method __add__

Program 40: Merge the element to the list object utilizing the operator
overloading with different argument types

class test:

def init (self,x):
self.x=1list (x)

def add (self,sample):
x=self.x.copy ()

X .append (sample.x)
self.x=x

return test (self.x)

def str (self):
return™ ({0})”.format (self.x)
tl=test([2,2])

t2=test ([“usha”])

print (t1+t2)

Output

(2, 2, [‘usha’]])

In the previous example, by using binary + operator between the objects
tl and t2, which consists as the data structure list as the argument automat-
ically invokes the magic method __add__. The magic method __add__
defined method in the class test and binary operator + work accordingly to
the behavior defined in the magic method __add__ and an int argument
and the string is given to the magic method __add__

Program 41: Append the list element to the list object using the opera-
tor overloading

class test:

144 m Learning Professional Python

def init (self,x):
self.x=1list (x)

def add (self,s):
x=self.x.copy ()

X .append (s)

self.x=x

return test (self.x)
def str (self):
return® ({0}” .format (self.x)
tl=test ([2,2])

print (t1l+“usharani”)

Output

([2, 2, ‘usharani’])

In the previous example, by using binary + operator between the objects
tl which consists as the data structure list as the argument and string
“usharani” automatically invokes the magic method __add__

Program 42: Apply the assignment operator on the list object using the
operator overloading

class test:

def init (self,x):
self.x=1list (x)

def iadd (self,sample):
x=self.x.copy ()

x.append (sample.x)

self .x=x

return test (self.x)

def str (self):

return™ ({0})”.format (self.x)
tl=test ([1,2])

t2=test ([3,5,8])

tl+=t2

print (tl)

Output

(fr, 2, [3, 5, 811)

In the previous example, using shortcut assignment +=operator
between the objects t1 and t2, which consists as the data structure list as

Method Overloading and Operator Overloading m 145

the argument, automatically invokes the magic method __iadd__ as works
as a shortcut addition operator as the objects passing an integer argument.

Program 43: Python program to utilize the assignment operator on the
list object using the operator overloading

class test:

def init (self,x):
self.x=1list (x)

def iadd (self,s):
x=self.x.copy ()
x.append (s)

self.x=x

return test (self.x)
def str (self):
return™ ({0})”.format (self.x)
tl=test ([1,2])
tl+=‘testing’

print (tl)

Output

([1, 2, ‘testing’])

In the previous example, using shortcut assignment +=operator between
the objects t1 and t2, which consists as the data structure list as the argu-
ment, automatically invokes the magic method __iadd__ as works as a
shortcut addition operator as the objects passing an integer argument and
a string argument

Program 44: Python program to use the assignment operator on the list
object using the operator overloading

class test:

def init (self,x):
self.x=1ist (x)

def _ iadd_(self,s):
x=self.x.copy ()
s=list (s)

X .append (s)

self . x=x

return test (self.x)
def str (self):

146 m Learning Professional Python

return" ({0}) " .format (self.x)
tl=test ([1,2])

tl+=[3,4,5]

print (tl)

Output

([1I 2[[3I 4[5]])

In the previous example, using shortcut assignment +=operator between
the objects t1 and t2, which consists as the data structure list as the argu-
ment, automatically invokes the magic method __iadd__ as works as a
shortcut addition operator as the objects passing an integer argument.

6.3.7 Operator Overloading on Dictionaries

The examples for concatenation of two dictionaries are given in the next

section:

Program 45: Python program to merge the element to the dictionary

object using the operator overloading

class test:

def init (self,x):
self.x=dict (x)

def add_ (self,sample):
x=gself.x.copy ()

x.update (sample.x)
self.x=x

return test (self.x)

def str (self):
return" ({0}) " .format (self.x)
tl=test ({1:“usha"})
t2=test ({2:“rani"})

print (t1+t2)

Output

({1: ‘usha’, 2: ‘rani’})

In the previous example, by using binary + operator between the objects
t1 and t2, which consists as the data structure dictionary as the argument,
automatically invokes the magic method __add__. The magic method

Method Overloading and Operator Overloading m 147

__add__ defined method in the class test and binary operator + work
accordingly to the behavior defined in the magic method __add__ and
key argument is given to the magic method __add__.

Program 46: Python program to merge the element to the dictionary
object using the assignment operator overloading

class test:

def init (self,x):
self.x=dict (x)

def iadd (self,sample):
x=self.x.copy ()

x.update (sample.x)
self.x=x

return test (self.x)

def str (self):

return“ ({0})”.format (self.x)

tl=test ({1:“usha"})

t2=test ({2:“rani”})

t3=test ({3:“bhimavarapu”})

tl+=t2

tl+=t3

print (tl)

Output

({1: ‘usha’, 2: ‘rani’, 3: ‘bhimavarapu’})

In the previous example, by using shortcut assignment +=operator
between the objects t1, t2, and t3, which consists as the data structure
dictionary as the argument, automatically invokes the magic method __
iadd__ as works as a shortcut addition operator as the objects passing a
key argument.

Program 47: Python program to append the element to the dictionary
object using the assignment operator overloading

class test:

def init (self,x):
self.x=dict (x)

def iadd (self,s):
x=self.x.copy ()

148 m Learning Professional Python

s=dict (s)

x.update (s)

self.x=x

return test (self.x)

def str (self):

return™ ({0})”.format (self.x)
tl=test ({1:“usha"})
tl+=({2:“rani”})

print (tl)

Output

({1: ‘usha’, 2: ‘rani’})

In the previous example, using shortcut assignment +=operator between
the objects t1 and t2, which consists as the data structure dictionary as the
argument, automatically invokes the magic method __iadd__ as works as
a shortcut addition operator as the objects passing a key argument.

Program 48: Python program to merge the element to the dictionary
object using the assignment operator overloading

class test:

def init (self,x):
self.x=dict (x)

def radd_(self,s):
x=self.x.copy ()

s=dict (s)

x.update (s)

self.x=x

return test (self.x)
def str (self):
return" ({0}) " .format (self.x)
tl=test ({1:"“usha"})
print (({2:“rani”})+t1)

Output

({1: ‘usha’, 2: ‘rani’})

In the previous example, using shortcut assignment +=operator between
the objects t1 and t2, which consists as the data structure dictionary as the

Method Overloading and Operator Overloading m 149

argument, automatically invokes the magic method __radd__ as works as
a shortcut addition operator as the objects passing a key argument.

6.4 ELIGIBLE OPERATORS FOR OPERATOR OVERLOADING

The operators that are used for operator overloading are given in Table 6.6.

TABLE 6.6 Overloading Operators
Operator Method Operator Meaning
+ __add__ (self,object) Binary arithmetic ~ Binary addition
- __sub__ (self,object) Binary arithmetic ~ Binary subtraction
* __mul__ (self,object) Binary arithmetic multiplication
@ __matmul__ (self,object) Binary arithmetic multiplication
1 _ floordiv__ (self,object) Binary arithmetic ~ Floor division
/ __div__ (self,object) Binary arithmetic ~ Integer division
% __mod__ (self,object) Binary arithmetic Modulo
divmod() __divmod__ (self,object) Binary arithmetic =~ Modulo
o __pow__ (self,object) Binary arithmetic Power
<< __lIshift__ (self,object) Binary bitwise Left shift
>> __rshift__ (self,object) Binary bitwise Right shift
& __and__ (self,object) Binary bitwise Bitwise and
A __xor__ (self,object) Binary bitwise Bitwise xor
| __or__ (self,object) Binary bitwise Bitwise or
+= __iadd__ (self,object) Binary Assignment Addition assignment
-= __isub__ (self,object) Binary Assignment Subtraction assignment
*= __imul__ (self,object) Binary Assignment Multiplication assignment

= __idiv__ (self,object) Binary Assignment Division assignment
/1= __ifloordiv__ (self,object) Binary Assignment Floor division assignment
%= __imod__ (self,object) Binary Assignment Mod assignment
= __ipow__ (self,object) Binary Assignment Power assignment
<<= __ilshift_ (self,object) Binary Assignment Left shift assignment
>>= __irshift__ (self,object) Binary Assignment Right shift assignment
&= __iand__ (self,object) Binary Assignment Bit wise and assignment
A= __ixor__ (self,object) Binary Assignment Bit wise xor assignment
|= __ior__ (self,object) Binary Assignment Bit wise or assignment
< _ It (self,object) Binary Assignment Less than

__gt__ (self,object) Binary Assignment Greater than

<= __le__(self,object) Binary Assignment Less than equal to
>= __ge__ (self,object) Binary Assignment ~ Greater than equal to
== __eq__ (self,object) Binary Assignment Equal to

__ne__ (self,object)

Binary Assignment

Not equal to

(Continued)

150 m Learning Professional Python

TABLE 6.6 (Continued) Overloading Operators

Operator Method Operator Meaning
- __neg (self,object) Unary Unary minus

+ __pos__ (self,object) Unary Unary positive
abs () __abs__ (self,object) Unary Absolute

~ __invert__ (self,object) Unary Negation(or) complement
complex () __complex__ (self,object) Unary Complex

int () __int__ (self,object) Unary Integer

long () __long__ (self,object) Unary Long

float () _ float__ (self,object) Unary Float

oct () __oct__ (self,object) Unary Octal

hex () __hex__ (self,object) Unary Hexadecimal
index () __index__(self) Unary Index

round () __round__(self) Unary Round

trunc() __trunc__(self) Unary Truncate

floor () _ floor__(self) Unary Floor

ceil () _ceil__(self) Unary Ceil
EXERCISE

1. Write a Python program to find the absolute of a number using oper-
ator overloading.

2. Find the length of the array using operator overloading in Python.

3. Write a Python program to add two hexadecimal numbers using
operator overloading.

CHAPTER 7

GUI Programming

7.1 TKINTER INTERFACE

Python provides many items to develop GUI applications. Out of all these,
tkinter is the most commonly used interface. It is the fastest and easiest
way to create the GUI applications.

To create the tkinter interface:

1. Import the tkinter module
2. Create the main window
3. Attach the widgets to the main window

4. Apply the event trigger on the widgets

We have to use two main methods to create Python GUI:

1.7k ()

Syntax

Tk (screenName, basename, classname, useTk)

Eg:m=tkinter.Tk() ;

2.mainloop () - it runs the application

Eg.m.mainloop

We have a give a simple program for GUI application in
python

DOI: 10.1201/9781003462392-7 151

https://doi.org/10.1201/9781003462392-7

152 m Learning Professional Python

Program
1 import Tkinter
2 top=Tkinter.Tk()
3 top.mainloop ()
4

In the preceding program left side, a window has been opened. It is the
tkinter interface.

Program

FEE% D OTH B -G
B rvormerneniar %

‘au.. oy ([RE-E-QSFRUICLL AU GBI

1 import tkinter -
2 tk = tkinter.Tk()

3 tk.geometry ("500x500")

4

tk.mainloop ()

In the preceding program, interface speciation has been initiated using
the geometry method.

GUI Programming m 153

7.2 LABEL

Labels are used to place the text or images.

Syntax

label=Label ()

TABLE Label Attributes and Its Description

Option Description
bg Background color of the label
bd Width of the border of the label
font Font type of the text
fg Foreground color of the label
height Height of the label
image Image shown as the label
padx Horizontal padding of the text
pady Vertical padding of the text
text Text on the label
width Width of the label

Example 1

Lﬁ test.py - C\Users\klu\AppData‘Local\Programs'\Python'\Python36-32\test.py (3.6.2) = O X

File Edit Format Run Options Window Help

from tkinter import ¥

t = Tk()

label = Label(t, text="Python GUI Programming")
I].abel.pack(]

t.geometry ("500x200")

t.mainloop ()

Ln: 4 Cok: 0

Output

7 - o X
Python GUI Programming

154 m Learning Professional Python

7.3 BUTTON
An action is attached to the button, which happens automatically when the
button is clicked.

Syntax
Button=Button (master,options) ;

Some options to the button is width, height, padx, pady, justify, etc.

TABLE Button Attributes and Its Description

Option Description
activebackground Background color when the button is highlighted
activeforeground Foreground color when the button is highlighted
bg Background color of the button

bd Width of the border of the button

font Font type of the text

fg Foreground color of the button

height Height of the button

image Image shown as the button

padx Horizontal padding of the text

pady Vertical padding of the text

text Text on the label

width Width of the button

TABLE Button Predefined Methods

Method Description
flash() Flashes several times between active and normal colors and ignored if the
button is disabled
invoke() Calls the button’s callback and returns that the function returns
Example
|8 test.py - C:\Users\klu\AppData'Local\Programes\Pythan\\Python36-32\test.py (3.6.2) = m} X
File Edit Format Run Options Window Help
import tkinter ~
t=tkinter.Tk()
b=tkinter.Button(t,text ="submit"”,bg="yellow") .pack()

t.geometry ("500x200")

t.mainloop () v

Ln:6 Cok0

Output

GUI Programming ® 155

#

submit |

7.4 MESSAGE BOX

The message box widget displays the message boxes on the interface. These
message boxes will return values of True, False, OK, Yes, No, None. There
are information message boxes, warning message boxes, and question mes-

sage boxes.

Syntax

< 0N Uk W N

.messagebox.showinfo(title, message, **options)
.messagebox.showwarning (title, message, **options)
.messagebox.showerror (title, message, **options)
.messagebox.askokcancel (title, message, **options)
.messagebox.askquestion (title, message, **options)
.messagebox.askyesno (title, message, **options)
.messagebox.askretrycancel (title, message, **options)

LE; test.py - C:\Users\klu\AppData\Local\Programs\Python\Python36-32\test.py (3.6.2) = m} X
File Edit Format Run Options Window Help
from tkinter import messagebox A
messagebox.showerror ("Error"”, "Error message")
messagebox.showwarning ("Wa ", "Warning m ge”™)
messagebox.showinfo ("Information”, "Informative message™)
v
Ln: 8 Cok:0
Output
Error X 7 Warning X # Information >

Warning message

e Error message |

o Informative message

156 m Learning Professional Python

7.5 MESSAGE

It provides multiline text. The content automatically breaks lines and jus-
tify the contents.

Syntax

msg=Message (master,option, . . .)

TABLE Message Attributes and Its Description

Option Description
bg Background color behind the label
bd Width of the border around indicator
font Font type of the text
fg Text color
height Height of the frame
image Image shown in the label
padx Horizontal padding of the text
pady Vertical padding of the text
text Text to be displayed
width Width of the label in characters
Program
L& *test.py - ChUsers\klu\AppData\Local\Programs\Python\Python36-32\test.py (3.6.2)* = O X

File Edit Format Run Options Window Help

i rt tkinter A
f tkinter import Message

t=tkinter.Tk{)

labe]l = Message (t,text="Python message exxample”, font=("times",6 36))

label.pack()

t.mainloop ()

v
Ln:7 Cok0
Output
7w - o x
Python message
exxample
Example
[test.py - C:\Users\klu\AppData\Local\Programs\Python\Python36-32\test.py (3.6.2) - u] X
ile Edit Format Run Options Window Help
Tt tkinter ~

tkinter import Message
t=tkinter.Tk()
label = Message(t,text="Python message example"”,bg='lightpink',bd=15,font=("times",36),relief="s01id",width=1000)
label.pack()
t.mainloop ()

v
Ln:7 Cok:0

Output

7« - o x

Python message example

7.6 ENTRY

GUI Programming m 157

It accepts single line text from the user.

Syntax

E=Entry (master,options,

TABLE Entry Attributes and Its Description

Option

bg

bd

font

fg
highlightcolor
selectbackground
show
xscrollcommand
selectforeground
textvaraible
width

Description

Background color behind the label
Width of the border around indicator
Font type of the text

Text color

Focus highlight color when cursor is placed in it
Background color to display selected text
Text that appears in the entry

Link entry to scrollbar

Color of selected text

To retrieve current text from entry
Width of the label in characters

TABLE Entry Predefined Methods

Method

delete(first,Jast=None)
get()

index(index)
insert(index,p)
select_to(index)
xview(index)
select_range(start,end)

Description

Deletes characters from first to last index

Returns current text as string

Shifts the contents at the given index

Inserts string p at the given index

Selects all the text from pointer to the given index
Links the entry to scrollbar horizontally

Selects the text from start to end index

158 m Learning Professional Python

Example

0

e .

EEFLL O TE B0

YN I ET I T T -

1 import tkinter

from tkinter import *
t=tkinter.Tk ()
1=Label (t, text="User Name")
1l.pack(side=LEFT)
e=Entry(t,bd=20)

e.pack (side=RIGHT)
t.mainloop ()

(5 - ncwpytbonpreects 82 % =2

0 o OB w N

ma e o® ek e

Example

0

HEES D O THVBH-&-
owout nevpythorsroectzns | s x| revrbareancan ¥ golc e

* o ey R E-E-ARSERG P Eku 0 E B s

N import tkinter
Pw - @ x|
User Namel="""

Password F—

from tkinter import *

t=tkinter.Tk()

l=Label (t, text="User Name", font=("times",28))
ll=Label (t,text="Password", font=("times",28))
1l.grid (row=0,column=0)
11.grid(row=1,column=0)

e=Entry (t,bd=5)

e.grid(row=0, column=1)

e=Entry (t,bd=5, show="*")

e.grid(row=1, column=1)

12 b=Button (t,text="submit", font=("times",28))
13 b.grid(row=2,column=1)

submit

W J o U Ww N

= =
[e Ve

14 t.mainloop ()

gz | i ® =

mag®o®eR e

7.7 CHECKBUTTON

It displays a number of options to the users. The user can select one or
more options by clicking the corresponding button.

Syntax

Ch=Checkbutton (master,options . . .);

GUI Programming m 159

TABLE Checkbutton Attributes and Its Description

Option Description

bg Background color behind the label

bd Width of the border around indicator

font Font type of the text

fg Text color

image Image shown in the label

padx Horizontal padding of the text

pady Vertical padding of the text

activebackground Background color when the button is highlighted
activeforeground Foreground color when the button is highlighted
disbaledforeground ~ Foreground color when the button is disabled
width Width of the label in characters

height Number of lines of text

Highlightcolor Color of focus highlight when the button has focus

TABLE Predefined Methods

Method Description

flash() Flashes several times between active and normal colors and ignored if
the button is disabled

invoke() Calls the buttons callback and returns that the function returns

select() Checks the checkbuton

deselect() Clears the checkbutton

toggle() Clears the checkbuttons

Example 1

g

YN B Y R AR TION =
import tkinter

from tkinter import *

t=tkinter.Tk()

var = IntVar ()

¢ = Checkbutton (t, text="test", variable=var, font=("times",20))
c.pack() |
t.mainloop ()

1
2
3
4
5
6
i
8

Dot e oo ss % ~a
o 1= - o x

T test

p—] s 0

mAa® o6o@e R @

160 m Learning Professional Python

7.8 RADIOBUTTON

It allows the user to choose one of the many options. It contains text or
images.

Syntax

Rd=Radiobutton (master, options)

TABLE Radiobutton Attributes and Its Description

Option Description

bg Background color behind the label

bd Width of the border around indicator

font Font type of the text

fg Text color

image Image shown in the label

padx Horizontal padding of the text

pady Vertical padding of the text

activebackground Background color when the button is highlighted
activeforeground Foreground color when the button is highlighted
disbaledforeground Foreground color when the button is disabled
width Width of the label in characters

height Number of lines of text

highlightcolor Color of focus highlight when the button has focus

TABLE Predefined Methods

Method Description

flash() Flashes radiobutton

invoke() Calls the button callback and returns that the function returns
select() Checks the radiobuton

deselect() Clears the radiobuton

Example

o

PEES D
revmbonpreczay x

CTHI-B-G-

GUI Programming m 161

Sare ey (0 (5B QIR P L B OHIGL D

import tkinter
[def test():

if s==1:

® <N oG As W NP

o

elif s==2:

Boe e
NP o

v=IntVar ()

=
~ W

r.pack ()

t = tkinter.Tk()
s=int (v.get())

sl="u hav

sl="u have

from tkinter import *
from tkinter import messagebox -

selected cpp"

messagebox.showinfo (" ",sl)

r=Radiobutton (t, text="c",variable=v,value=1, command=test, font=("times",20))

15 rl=Radiobutton (t,text="cpp",variable=v,value=2,command=test, font=("times",20))

16 rl.pack()
17 t.mainloop()

el = 3 ®

7.9 LISTBOX

It displays a list of items from which user can select a number of items.

Syntax

Lb=Listbox (master,options) ;

TABLE Listbox Attributes and Its Description

Option

bg

bd

font

fg
selectmode

highlight thickness
selectbackground
xscrollcommand
yscrollcommand
width

height
highlightcolor

Description

Background color behind the label
Width of the border around indicator
Font type of the text

Text color

Determines how many items in the listbox can be selected: browse,
single, multiple, extended

Thickness of highlight

Background color to display selected text

Scroll the listbox horizontally

Scroll the listbox vertically

Width of the label in characters

Number of lines of text

Color of focus highlight when the button has focus

162 m Learning Professional Python

TABLE Listbox Predefined Methods

Method

delete(first,]Jast=None)

get()

index(index)
insert(index,p)
select_to(index)
xview(index)
select_range(start,end)
nearest(p)
xview_scroll(number,what)
yview_scroll(number,what)

Description

Deletes characters from first to last index

Returns current text as string

Shifts the contents at the given index

Inserts string p at the given index

Selects all the text from pointer to the given index
Links the entry to scrollbar horizontally

Selects the text from start to end index

Returns the index of the y coordinate

Scrolls the list horizontally

Scrolls the list vertically

Example 1
4 [o x 1
C
Cpp 2
Java
PHP 3
Python 4
SQL 5
6
7
8
9
kG
fINTs
12

= E emmrthonprorecczoy x|
=] ey | BB-E- QRSBGPS B 0 B

from tkinter import *
import tkinter

iz
Lbl

Lbl.
Lbl.
Lbl.
Lbl.
Lbl.
Lbl.
.pack ()

Lbl

tkinter.Tk()

Iisthox (t; font= (“times" ;30 "bold"))
EserEE (1, "C" i
insert (2, "Cpp")

insert (3, "Java")

insert (4, "PHP")

insert (5, "Python")

insert (6, "SQL")

t.mainloop ()

710 SCALE

It provides a graphical slide that allows the user to select values from a

specific scale.

Syntax

Scale=Scale (master,options, . . .)

GUI Programming m 163

TABLE Scale Attributes and Its Description

Option Description
bg Background color behind the label
bd Width of the border around indicator
font Font type of the text
fg Text color
activebackground The background color when the scale is highlighted
highlight background The color of focus when the scale is not highlighted
selectbackground Background color to display selected text
from_ Scale range
lenght Length of the scale
width Width of the label in characters
repeat delay How long the button has to be held before the slider starts
moving in that direction
slider length Length of the slider
TABLE Scale Predefined Methods
Method Description
set Set scale value
get() Returns scale value
Program
TP T ol TR T W -
“oo0 from tkinter import * |
;223 import tkinter

¢ o

O W J o U Ww N

- =
VR o

def sel():
print (s.get(),sl.get())
t = tkinter.Tk()
s= Scale (t,orient=HORIZONTAL)
s.pack (anchor=CENTER)
sl= Scale(t)
sl.pack (anchor=CENTER)
Button (t, text="Showvalues',command=sel) .pack()
t.mainloop ()

164 m Learning Professional Python

NI il I3 BLCY.

1 from tkinter import *

BhIPee Euon Ba

2 import tkinter

45 - 3 def sel():
. 4 print(s.get(),sl.get())

5 t = tkinter.Tk()

6 s= Scale(t,orient=HORIZONTAL)

¥ s.set(19)

8 s.pack (anchor=CENTER)

9 sl= Scale(t)
10 sl.pack(anchor=CENTER)
11| sl.set (65)
12 Button (t,text='Showvalues',command=sel) .pack()

13 t.mainloop()

i ewpthengreeciasy = &
nevmronpeanctz 42 || sare e 0 GG D Pl B0 0 e ®

from tkinter import *

import tkinter

19 def sel():
rint(s.get(),sl.get())
6sH P g g

s= Scale(t,orient=HORIZONTAL, font=("times", 30))
s.set (19)
s.pack (anchor=CENTER)
9 sl= Scale(t, font=("times",30))

10 sl.pack(anchor=CENTER)

11 sl.set(65)

12 Button (t, text="St

13 t.mainloop()

2
3
4
5 t = tkinter.Tk()
6
il
8

slues ', command=sel) .pack()

[
PEES D OTH - B-6-
e - FjlE=

3« newprmenmacrz e ||| saree ey 13 - 00 G %

i 1 from tkinter import *

Peh Eulontia

2 import tkinter
7o x 37 def sel():

4 print(s.get(),sl.get())
A2 5 t = tkinter.Tk()
6 sl= Scale(t,from =0,to=42, font=("times",30))
i
8

sl.pack (anchor=CENTER)

sl.set (65)
9 t.mainloop()
10
Ll
1L

GUI Programming m 165

o

AEES D
oweuc =1 nepython
nerheoects X ey | S

I B
N N D TN 3]

———p———

a

2 import tkinter }
115 3|def sel(): |
4 printisii.get ()|l !
‘2] 5 t=tkinter.Tk() w
ﬁﬂu 6 sl= Scale(t,from =0,to=200,tickinterval=10,\ ;
=) 7 font:(":imes“,l8),sliderlengthzZO)\

8 sl.pack(anchor=CENTER)
9 Button(t, text='Show',command=sel) .pack() ‘
10 t.mainloop ()
11 [
12 |
|

rerprmersiane | = 2 ®

from tkinter import *

import tkinter

def sel():

print (sl.get())

t=tkinter.Tk ()

sl= Scale(t,from =0,to=200,tickinterval=10, \
font=(“times”,18),sliderlength=20)

sl.pack (anchor=CENTER)

Button (t, text=‘'Show’, command=sel) .pack/()
t.mainloop ()

711 SPINBOX

It is used to select a fixed number of values.

Syntax

Sb=Spinbox (master, option) ;

166 m Learning Professional Python

TABLE Spinbox Attributes and Its Description

Option Description

bg Color of slider

bd Width of the border around indicator

font Font type of the text

fg Text color

activebackground The background color when the slider is highlighted
format Format string

xscrollcommand Horizontal scrollbar

from_ Spinbox range

Repeat interval Controls autobutton together with repeat delay
width Width of the label in characters

repeat delay Controls autobutton

slider length Length of the slider

TABLE Scale Predefined Methods

Method Description

delete(start index,end index) Deletes the range of text

get(start index,end index) Returns a range of text

identify(a,b) Identifies elements at the given location

insert(index, [string], . . .) Inserts text at specified location
Example 1

Ll

. " Import tkinter

Bl t=tkinter.Tk()

5 “ ") 4 s=spinbox (t, from =0, to=10, font=("times",20))
5 s.pack()

6 mainloop ()

7

8

maRae e oM@

GUI Programming m 167

w3

1 from tkinter import *
2 import tkinter

3 t=tkinter.Tk()

4 def sel():

5 print(s.get())
6 s=Spinbox(t, from =0,to=10, command=sel)
7 s.pack ()

8 mainloop ()

el
0

magRae e oM@ e

o (5B RS SR$E N O RES

1 from tkinter import *
2 import tkinter

3 t=tkinter.Tk()

4]def sel ():

5 print (s.get{))

6 s=Spinbox (t,values=("c","ct++","java"), command=sel)
7

8

9

0

1

Z

s.pack()
mainloop ()

magkhae e om® %

712 SCROLLBAR

It provides a slide controller vertically and horizontally on widgets like
listbox, spinbox . . .

Syntax:

Sc=Scrollbar(master,options . . .)

168 m Learning Professional Python

TABLE Scrollbar Attributes

Option

bg

bd

highlight thickness
highlight
activebackground
jump

orient

takefocus

repeat interval
width

repeat delay
troughcolor

Description

Color of slider

Width of the border around indicator
Thickness of focus light

Color of focus when scrollbar has focus

The background color when the slider is highlighted
Control when the user drags slider

Horizontal or vertical orientation

Tab the focus

Controls autobutton together with repeat delay
Width of the label in characters

Controls autobutton

Color of the trough

TABLE Scrollbar Predefined Methods

Method Description

get() Returns the current position of slider

set(first,last) Sets x scroll command or y scroll command
Example

Z
S
4
5
6
7
8
9
0
1

=

T8 -8B
o« nevpriarorcsoy =

from tkinter import *
import tkinter
t=tkinter.Tk ()
s=Scrollbar (t)
s.pack (side=RIGHT, fill=Y)
1=Listbox (t, yscrollcommand=s.set)
for i in range (100) :

l.insert (END,str(i))
1.pack()
s.config(command=1.yview)

mainloop ()

B o BRSS9 %

GUI Programming m 169

g e BB B M sRa e EEeEEg
import tkinter
from tkinter import *
) t=tkinter.Tk()

s.pack (side=LEFT, fill=X)

1
2
B
4 s=Scrollbar(t,orient=HORIZONTAL)
5
6 t.mainloop ()

/.

magRae e om e

O newpymensrorecs X T

(8] masocmmms x
B-8-ReSfRTFfetlanledua

import tkinter

1
2 from tkinter import *

3 t=tkinter.Tk()

4 s=Scrollbar(t,orient=HORIZONTAL)
5 s.pack (fi11=BOTH, expand=1)

6 sl=Scrollbar (t,orient=VERTICAL)
7 sl.pack(fill1=BOTH, expand=1)

8 t.geometry ("300x500™)

9 t.mainloop ()

magkhae e om® e

Program using multiple widgets

import sys

import tkinter

from tkinter import *

class popupWindow (object) :

def init (self,master):
top=self.top=Toplevel (master)
gself.l=Label (top, text="wirte some text below”)
self.l.pack()

170 m Learning Professional Python

self.e=Entry(top)

self.e.pack()

self.b=Button(top, text="0k’, command=self.cleanup)

self.b.pack ()

def cleanup (self):

self.value=self.e.get ()

self.top.destroy ()

class mainWindow (object) :

def init (self,master):

self .master=master

self .b=Button (master, text="click me!”, command=self.
popup)

self.b.pack()

self .b2=Button (master, text="printvalue”, command=1lambda:
sys.stdout.write(self.entryValue()+’'\n’))

self.b2.pack()

def popup (self) :

self.w=popupWindow (self .master)

self.b[“state”] = “disabled”
self .master.wait window(self.w.top)
self.b[“state”] = “normal”

def entryValue (self) :
return self.w.value

if name == " main ":
root=tkinter.Tk ()
m=mainWindow (root)

root.mainloop()

Solved Examples

Example

& test.py - C:\Users\klu\AppData\Local\Programs\Python'\Python36-32\test.py (3.6.2) = O X
File Edit Format Run Options Window Help

from tkinter import ¥ ~
t = Tk}

label = Label(t, borderwidth=5, text="Python GUI Programming",relief="solid")
label.pack()

t.geometry ("500x200")

t.mainloop ()

Ln:6 Col:0|

Output

GUI Programming m 171

File Edit Format

Run Options Window Help

7 tk - O X
IPython GUI Programmingl
Example
Lj; test.py - C:\Users\klu\AppData\Local\Programs\Python'\Python36-32\test.py (3.6.2) = O X

t = Tk()
= Label|(
.pack()
= Label(
.pack()
Label (
-pack(}
= Label(
.pack()
= Label(
.packl()
Label (
.packl)

t.mainloop()

T

=

t'

tr

T

.

t!

from tkinter import %

borderwidth=5, text="Python

borderwidth=5, text="Python G

borderwidth=5, text="Python

borderwidth=5, text="Python GU

borderwidth=5, text="Python G

t.geometry ("500x200™)

Programming”, relief="s0l1id")

Programming”, relief="raised")

Pro

gramming”, relief="sunken")

Programming”, relief="ridge")

Programming”, relief="groove”)

Programmi

g",relief="flat")

Ln:5 Cok0

172 m Learning Professional Python

Output
7 tk - O X
IF‘ython GUI Programming
Python GUI Programming
Python GUI Programming
IPython GUI Programming
Python GUI Programming
Python GUI Programming
Example
L@ test.py - C\Users\klu\AppData\Local\Programs'\Python'\Python36-32\test.py (3.6.2) = O x
File Edit Format Run QOptions Window Help
from tkinter import ¥ A
t = Tk()
11 = Label (t, text="Python GUI Ercgrmlng",font=("3elvet‘_ca",26))l
11.pack()
t.geometry ("500x200™)
t.mainloop ()
v
Ln:3 Col: 65
Output
7w - o X
Python GUI Programming
Example
@ test.py - C\Users\klu\AppData‘\Local\Programs'\Python'\Python36-32\test.py (3.6.2) -] x
File Edit Format Run Options Window Help
~

from tkinter import ¥
t = Tk()
11 = Label (t,text="Python GUI Programming”).pack()

t.geometry ("500x50")
t.mainloop ()
v

Ln:4 Col: 20

GUI Programming m 173

Output

7 tk

Python GUI Programming

Example

Li test.py - C\Users\klu\AppData‘\Local\Programs'\Python'\Python36-32\test.py (3.6.2)
File Edit Format Run Options Window Help

from tkinter import ¥

t = Tk()

11 = Label (t,text="Python GUI Programming”,bg="pink") .pack()
t.geometry ("500x100™)

t.mainloop(}l

v
Ln:5 Col: 12

Output

7 tk

Python GUI Programming

Example

L% test.py - C\Users\klu\AppData‘\Local\Programs'\Python'\Python36-32\test.py (3.6.2)
File Edit Format Run Options Window Help

import tkinter

t=tkinter.Tk()

b=tkinter.Button (t, text ="submit",bd=15) .pack()
t.geometry ("500x200™)

t.mainloop (}

v
Ln: 5 Cok O

Output

—

submit

174 m Learning Professional Python

Example

L& test.py - C\Users\klu\AppData‘\Local\Programs'\Python'\Python36-32\test.py (3.6.2) = O x

File Edit Format Run QOptions Window Help
t tkinter
tkinter import messagebox
t=tkinter.Tk()
def teat():
messagebox.showinfo ("submit®, "Button testing”™)
b=tkinter.Button (t,text ="submit"”, font=("arial", 32), command=test) .pack()
t.geometry ("500x150")
t.mainloop ()

v
Ln:9 Cok0

Output

(a3 - o X

submit

submit X

0 Button testing

Example

L% test.py - C:\Users\klu\AppData\Local\Programs\Python'\Python36-32\test.py (3.6.2) - O X

File Edit Format Run QOptions Window Help
import tkinter
from tkinter import messagebox
t=tkinter.Tk()
def teat():
print t"buttonclicked"}l
b=tkinter.Button(t,text ="submit", font=("arial",b32),command=test) .pack()
t.geometry ("500x150")
t.mainloop (}

v
Lm:5 Col: 25

GUI Programming m 175

Output
7 ~ o «x
submit
| & *Python 3.6.2 Shell* - m] X
File Edit Shell Debug Options Window Help
== RESTART: C:\Users\klu\AppData\Local\Programs\Python\Python36-32\test.py == o
2>
|= RESTART: C:\Users\klu\ZAppData\Local\Programs\Python\Python36-32\test.py ==
buttonclicked
buttonclicked
buttonclicked W
Ln: 23757 Cok 0
Example
| test.py - C:\Users\klu\ AppData\Local\Programs\Python\Python36-32\test.py (3.6.2) — [m] X
File Edit Format Run Options Window Help
rt tkinter A
tkinter in t PhotoImage
print ("b t
photo=PhotoImage (fil y.gif™)
p=tkinter.Butten(t,image=photo, height=150, width=250,command=test,text="submit”).pack()
t.geometry ("500x150")
t.mainloop ()
v
Ln:7 Cok:0

Output

ell* — O

(& *Python 3
File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5fd33b5, Jul & 2017, 04:14:34) [M5C v.1300 32 bit (Intel)]
on win32

Type "copyright™, "credits"™ or "license ()" for more information.

o or g

== RESTART: C:\Users\klu\AppData\Local\Programs\Python\Python36-32\test.py ==
button clicked

button clicked

button clicked

button clicked

e Cok: 0

176 m Learning Professional Python

Example 2

x B reovborsonczos x oolc el
P -H- AP REIFL Y 08 L ®

from tkinter import *
import tkinter
t=tkinter.Tk()
Lbl=Listbox (t, font=("times", 30, "bold") ,height=3)
Thl .ifigerE (1,"C")
Ibl.insert (2, "Cpp")
Lbl.insert (3,"Java")
Ibl.insert (4, "PHP")
Lbl.insert (5, "Python")
Lbl.insert (6, "SQL")
Lbl.pack()

t.mainloop ()

W 3 o s W N

e
w N = o W

EXERCISE

1. Write a Python program to enter the student details and calculate
percentage using widgets.

2. Write a Python program to design a calculator.

3. Write a Python program to design the digital watch.

CHAPTER 8

File Handling

The variables, lists, tuples, sets, and dictionaries store the data temporar-
ily (volatile). That is, the stored value erases when the program execu-
tion completes. To store the data permanently, the file handling plays an
important role. A file is a named location on disk to store the information.

The file data is nonvolatile. In Python, files are processed in two modes
as text or binary. The file may be in the text or binary format, and each line
of a file is concluded with a special character.

Some file operations of Python are as follows:

o Openafile
o Read or write to/from a file

o Close the file

8.1 OPENING A FILE

The Python open () function opens the text file. The open () function
accepts two arguments, file name and the access mode in which the file is
associated. The function returns a file object that can be utilized to execute
various operations like reading, writing, etc.

Syntax

File-object=open (fieldname, access-mode, buffering)

DOI: 10.1201/9781003462392-8 177

https://doi.org/10.1201/9781003462392-8

178 m Learning Professional Python

1. The first parameter specifies the name of the file to be associated with
the stream.

2. The second parameter specifies the open mode used for the stream.

3. The third parameter specifies the encoding type.

4. The open file should be the first operation performed on the stream.

5. If the mode string ends with a letter t, the stream is opened in the text
mode.

6. If the mode string ends with a letter b, the stream is opened in the
binary mode.

7. When no mode specifier is used, the default mode is the text.

The files can be accessed using various modes like read, write, or append.
The following table discusses about the access mode to open a file. Various
modes and the predefined methods of file are tabulated in Table 8.1 and

Table 8.2
TABLE 8.1 Various Modes of File
Access mode Description
r Read

rb
r+
rb+

wb
W+
wb+

ab
a+
ab+

Reading only in binary format

Both reading and writing

Both reading and writing in binary format
Write

Writing only in binary format

Both reading and writing

Both reading and writing in binary format
Append

Appending in binary format

Both appending and reading

Both appending and reading in binary format

File Handling m 179

TABLE 8.2 Predefined Methods for File Handling

Method

close()

detach()

fileno()

flush()

read(n)

readable()

readline(n=-1)
readlines(n=-1)
seek(offset,from=SEEK_SET)
seekable()

tell()

truncate(size=No
ne)

writable()
write(s)
writelines(lines)

Description

Closes an opened file

Returns binary buffer from the TextIOBase
Returns a number of the file

Flushes the write buffer

Reads at most n characters from the file
Returns True if the file can be read from
Reads and returns one line from the file
Reads and returns a list of lines from the file
Changes the file position to offset bytes

Returns True if the file stream supports random
access

Returns the current file location
Resizes the file stream to size bytes

Returns True if the file stream can be written to
Writes the string s to the file
Writes a list of lines to the file

8.2 WRITING TO THE FILES

Syntax

File-object=open (“filename”, “w”)

Program

main.py test.txt H

T ("test.txt","w")

a=["this is to test

"file witelines example
"in python and this is

"my first example”]
f.writelines(a)

f.close()

main.py test.ixt H

this to test

file witelines example
python this

my first example

The preceding program writes multiple lines using wirelines ().

180 m Learning Professional Python

Program

main.py

e

The preceding program writes the contents to the file.

Program

test bxi :
to test

The preceding program writes content to file using with statement.

Program

f.write("t is cond line in my
f.close
testixt

this to test
this the second line my file

The preceding program writes string to a file.

Program

(7 ("test
i
f.write(str(i))
f.close()

main.py test txt

The preceding program writes numbers to a file.

File Handling m 181

Program

test txt
pickle
test(i
__init (self, name):
self.name = name

('test.txt', 'wb") oliz

obj1 = test("usha™)
pickle.dump(obj1, f, pickle.HIGHEST PROTOCOL)

obj2 = test("rani”)
pickle.dump(obj2, f, pickle.HIGHEST PROTOCOL)

obj1

obj2

('test.txt', 'rb") THLE
objl = pickle.load(f1)
(obj1.name)
obj2 = pickle.load(f1)
(obj2.name)

The preceding program writes object to file.

Program

main.py
a [*this', "is’, *to', ‘test']

("test.txt’, 'w") +£:
p ER
f.write('%s\n" p

Test.txt

182 m Learning Professional Python

main.py test.txt H

The preceding program writes list data to file.

Program

| stotesttuple

The preceding program writes tuple data to file.

Program

pickle. dump(s, 1),

The preceding program writes sets to file.

Program

main.py test.txt H
d={"'Name' : "ush
'Age' : 5
‘Degree’ : "P.hD",
'University' : "KLEF"}

("test.txt", 'w') 178
k, v d.items():

f.write('%s:%s\n’ (k, v))

main.py test.txt

Name:usha

Age:
Degree:P.hD
University:KLEF

The preceding program writes dictionary data to file.

File Handling = 183

Program

main.py
d={'Name' : "usha",
'Age’ : 5
'Degree’ : "P.hD",
'University' : "KLEF"}

("test.txt','w") cf
c.write((d))

{'Degree': 'P.hD’,
2 ‘'University': 'KLEF',
'Name': 'usha’,

The preceding program writes dictionary data to file.

Program

Writing to an excel

sheer using python
import xlwt

from xlwt import Workbook

Workbook is created
wb = Workbook ()

add sheet is used to create sheet.
sl = wb.add sheet(‘testl’)

sl.write (1, 0, ‘this’)
sl.write(2, 0, ‘is’)
sl.write(3, 0, ‘to’)
sl.write(4, 0, ‘test’)
sl.write(5, 0, ‘excel’)
sl.write(0, 1, 10)
sl.write (0, 2, 20)
sl.write (0, 3, 30)
sl.write (0, 4, 40)
sl.write (0, 5, 50)

wb.save (‘test.xls’)

184 m Learning Professional Python

a G B
[+ I
£ B sample_data
B testxls
3
AutoSave (@ off) test - Compatibility Mode - Excel
File Home Insert Page Layout Formulas Data Review View Help
Al kil Je
A B | € | D | E | F_ | G | H | | |
1| 1 10 20 30 40 50
2 |this
3 |is
4 |to
5 |test
6 |excel
L

The preceding program writes data to excel file.

Program

AutoSave (@ off) [H] test - Compatibility Mode - Excel
File Home Insert Page Layout Formulas Data Review View Help
Al e Fe
A B | € | D | E | F | G | H | | [
il | 10 20 30 40 50
2 |this
3 |is
4 |to
5 |test
6 |excel
LN

import xlrd

Define the location of the file
p = (“test.xlg”)

To open the Workbook
wb = xlrd.open workbook (p)
s = wb.sheet by index(0)

File Handling = 185

For row 0 and column 0
s.cell value(0, 5)

50.0

Th preceding program retrieves the value at a specific cell from the excel
file.

8.2.1 Reading the Files
Syntax

File-object=open (“filename”, “r”)

Program

main.py test.txt H
test.txt","r")
(f.read())

main.py test.txt H
1 this to test

Output

his is to test

The preceding program reads contents of the file.

8.2.2 Readlines

The readline () method reads the lines of the file from the starting of the
line.

Program

("test.txt") :
d=f.readlines()
line d:
w=line.split()

(w)

main.py test.txt H

this to test

this file example

this to test the file pyhton
this a simple example readlines

186 m Learning Professional Python

Output

[HE el - 'to"', '"test'l

[[ViEEis - 'file', 'example']
'to', "test', "the", "file', '"in', "pyhton']
'a', '"simple', 'example', 'for', 'readlines']

The preceding program reads multiple lines from file.

Program

main.py

("test.txt") as f:
("f.read(1):",f.read(1))
“("f.read(5):",f.read(5))
("f.read(25):",f.read(25))

5 ("f.read(100):",f.read(1
to test
file example
to test the file pyhton
a simple example readlines

Output

f.read(1l): t
f.read(5): his i
f.read(25): s to test
this is file ex

f.read(100) : ample
this is to test the file in pyhton
this is a simple example for readlines

The preceding program reads file content using read ().

Program

main.py test.txt H

("test.txt")
(f.read())

main.py test.txt H

A

1 this is to test

Output

his is to test

File Handling m 187

The preceding program reads file contents using with statement.

Program: Number read

i kR (‘test.txt’, 'r')
content = f.readlines()
line content:

i line:

i.isdigit()

: i
main.py test.txt H
1 this 1 test

Output

Program: Reading list data from file

main_py

a.append(t)

1 this to test

Output
["this is to test']

The preceding program reads the file content and stored in the list.

Program

main.py test.txt H

("test.txt', 'r")

p ifi

s = p[:-1]

a.append(s)
(a)

188 m Learning Professional Python

main.py test.txt H

1 this

file

example

Output

[*this ', 'is ', 'file', 'list', 'example',

The preceding program reads data from file using loops.

Program

re
p="\((\d+,\d)\)"
("test.txt','r")
m 178
n=re.findall(p,m)
r=[tuple (map(x:int(x),
m.split(’,")))

The preceding program reads tuple data from file.

Program

main_py test bd :

pickle
('test.txt','rb")

my set = pickle.load(f)
(my_set)

File Handling = 189

The preceding program reads sets from file.

Program

main.py test.txt H

ast
("test.txt", "r")

f.read()
ast.literal_eval(c)

f.close()

(d)

main.py test.ixt H

1 {'a': q TlBte }

Output
{'b': 200, 'a': 100}

The preceding program reads dictionary data from file.

Program

main.py
("test.txt") s

(f.readlines())

The preceding program reads file content using readlines ().

8.3 THE CLOSE () METHOD

Syntax

fileobject.close()

Program: Close () method

main_py test txt H

f ("test.txt™, "r")

("Name of the file: ", f.name)
f.close()

190 m Learning Professional Python

main.py test txt H
1 this to test

Output

[Name of the file: test.txt

8.4 WITH STATEMENT

The with statement is useful in case of modifying the contents of the files.

Syntax

with open (file name, access mode) as file pointer:

Program

main.py test.txt H

("test.txt","r")
(f.read())

this is to test

The preceding program reads file content using with statement.

Program

main.py
("test.txt")
line gi=
(line)

e =
is file example

to test the file in pyhton

a simple example for readlines

File Handling m 191

8.5 APPENDING TO THE FILES
Python can append the content to the already existing file.

Program

this to test
¢

main.py

","a") 178

an appended line")

main.py test.txt H

this to test
this an appended line

The preceding program appends content to already existing file using
with statement.

Program

main.py test.txt :

this to test

main.py test.ixt

a")
is appended text"))

The preceding program prints the file size of the appended user-defined
file.

8.6 FILE POINTER POSITIONS

Python offers the tell () method, which is exploited to print the byte num-
ber at which the file pointer currently exists.

Program: Using tell ()

("test.txt", "r")
(f.tell())

main._py test ixt :

this to test

192 m Learning Professional Python

Output

main._py

os.rename("test.tx

Program

this to test

iF ("test. ,'r")
(f.readline())
(f.tell())

8.6.1 Modifying File Pointer Position

Python provides the seek () method to alter the file pointer position
externally.

Syntax

Fileobject.seek (offset, from)
Program: Using seek ()

Parameters:

offset

from:

(f.seek(4))
(f.readline())

1 this to test

("test.txt")

("f.read(1):",f.read(1))
f.seek(9)
("f.read(5):",f.read(5))
f.seek(0)
("f.read(25):",f.read(25))
f.seek(0)
("f.read(100):",f.read(160))

to test

file example

to test the file pyhton

a simple example readlines

f.read(1l): t

f.read(5): this

f.read(25): this is to test

1H Ak At a8

f.read(100): this is to test

this is file example

this is to test the file in pyhton
this is a simple example for

Program

main.py test.txt :

("test.txt") f:

("f.read(1):",f.read(1))

("Cursor at:",f.tell())
f.seek(@)

("f.read(5):",f.read(5))

("Cursor at:",f.tell())
f.seek(©)

("f.read(25):",f.read(25))

("Cursor at:",f.tell())
f.seek(@)

("f.read(100):",f.read()

("Cursor at:",f.tell())

File Handling = 193

194 m Learning Professional Python

il

this

5

SR ESEEISEREOREES T

Cursor at: 26

f.read(100): this is to test

this is file example

this is to test the file in pyhton
this is a simple example for

ursor at: 103

The preceding program uses the tell and the seek methods to display
and set the current file location.

8.6.2 Renaming the File

Python provides the rename () method to rename the specified file to a
new name.

Syntax

rename (oldname, new name)

Program
1 os
2 os.rename('test.txt’,'sample.txt")

8.7 BINARY FILE

Program

1 i ("test.txt","wb™)

2 f.write(b"this is to test a sample”)

File Handling = 195

Output

main.py

this to test a sample

The preceding program writes the contents to the user-defined file using
binary mode.

Program

main.py test bxt :

numpy np
np.savetxt("test.txt", np.array([[1, 2], [3, 4]]), fmt="%s")

main_py test txt :

The preceding program writes the byte array data in the binary file.

Program

main.py

Output

b'this is to test\r\n\r\n'

The preceding program reads the file contents in the binary mode.

texts
X texts:
f.write(x)

s.close()

f.close()

¢ ("sample.txt", "r")
(f.read())

f.close()

196 m Learning Professional Python

Output

his is to test

The preceding program copies the contents of one file to another file.

8.8 RANDOM ACCESS FILES

Program: Random access file

main.py test.txt

("test.txt","w")
.write("this is to test")
.seek(9,0)

.write("example™)

.seek(@,2)

.write("python file example")
.seek(9,1)

write(" sample)

example to testpython file examplesample

EXERCISE
1. Program to print the first five lines of the file.

.F
f
.F
.F
f
ot
f
.F

2. Program to print last five lines of the file.
3. Extract the numbers form the file and store it in array.

4. Extract the numbers form the file and calculate the sum of those
numbers.

5. Count the number of lines of the file.
6. Print the frequent occurrences of the word in the file.
7. Remove the non-alpha characters from the file.

8. Sort the contents of the file in lexicographic order.

CHAPTER 9

Database Connectivity

A database connection allows client software to connect to the database
server. A connection is required to send or receive commands to the data-
base. The Python programs can access the MYSQL and Oracle database.
The users can connect and run queries for MYSQL or Oracle using python.
To communicate to the database, the users have to install the specific data-
base system in their computer. Later the users verify the their Python ver-
sion is supporting the MYSQLdD. Figure 9.1 shows the MYSQL driver in

the Python shell.

74 Python Shell = O X

File Edit Shell Debug Options Windows Help

MultiStatusBar anydbm keybindingDialog subprocess :I

MyS5QLdb argparse keyword sunau

ObjectBrowser array lib2to3 sunaudio

CutputWindow ast linecache symbol

ParenMatch asynchat locale symtable

PathBrowser asyncore logging sys

Percolator atexit macosxSupport sysconfig

PyParse audiodev macpath tabbedpages

PyShell audioop macurlZpath tabnanny

Queue baseg6d mailbox tarfile

RemoteDebugger bdb mailcap telnetlib

RemoteCbjectBrowser binascii markupbase tempfile

ReplaceDialog binhex marshal test —

RstripExtension bisect math testl

CrmwmdmeDS e AdsS me T A el - Bud
Ln: 961|Col: 0

FIGURE 9.1 MYSQLdb in Python shell.

DOI: 10.1201/9781003462392-9

197

https://doi.org/10.1201/9781003462392-9

198 m Learning Professional Python

9.1 PYTHON WITH MYSQL
Steps to connect the Python application to the database:

1. Import mysgl.connector module

2. Create the object for the connection class to establish the connection
between the Python program and Oracle database

3. Create the object for the cursor class to execute the query

4. Execute the user-specified query

Figure 9.2 shows the overall architecture of the Python program interac-
tion with MYSQL database.

Python Database

Connect Request
Python Cursor] S'\gl_ \i Connected
Application execiite &ConneCtor results

MYSQL

FIGURE 9.2 MYSQL database connection with MYSQL.

Syntax for connecting to database

db=mySQLdb.connect (*localhost”, "username”, "password” ,b”

databasenameinmysqgl”)

Database Connectivity m 199

Sample database program

% S =
S oy |[RE-E-QAVFRNH FLT /AU 0E B =
1 import MySQLdb

2| db = MySQLdb.connect ("localhost","root", "python","test")

3 cursor = db.cursor ()

4 cursor.execute ("SELECT VERSION()")

5 data = cursor.fetchone ()

6 print "Database version : %s " % data

5

8

db.close()

" Database version : 5.5.16

@ w e

The connect () method in the MYSQL module creates the connection
between MYSQL and the Python program. In the preceding program, the
parameters to the connect method are the hostname and username, pass-
word of the MYSQL database. The cursor () allows the user to perform
multiple operations row by row against the result set. In the previous sec-
tion we are printing the MYSQL database version.

9.2 PYTHON WITH ORACLE

The Python programs can access the data of the Oracle database. To com-
municate to the Oracle database the users have to the install the Oracle
database system in their computer. Later the users verify the their Python
version is supporting the Oracle driver. Figure 9.3 shows the Oracle driver
in the Python shell.

74 Python Shell — O X

File Edit Shell Debug Options Windows Help

WindowList contextlib os traceback LI

ZoomHeight cookielib os2emxpath ttk

_LWPCookiedar copy parser tty

_MozillaCookiedar copy_reg pdb turtle

_ builtin cav pickle types

_ future ctypes pickletools unicodedata

_abcoll curses pipes unittest

_ast cx Oracle pkgutil urllib

_bisect datetime platform urllib2

_bsddb dbhash plistlib urlparse

_codecs decimal popen2 user

_codecs_cn difflib poplib uu

_codecs_hk dircache posixfile uuid

_codecs_iso2022 dis posixpath warnings —

radera &GN Aiatntila hrint wraTe x

Ln: 1004|Col: 30

FIGURE 9.3 Oracle driver.

200 m Learning Professional Python

Steps to connect the Python application to the Oracle database:

1. Import cx_Oracle module

2. Create the object for the connection class to establish the connection
between the Python program and Oracle database

3. Create the object for the cursor class to execute the query

4. Execute the user-specified query

Syntax

connection = cx Oracle.connect (‘userid/passworde
hostname: PORT/SID")

Figure 9.4 shows the overall architecture of the python program inter-
action with Oracle database

Python Database
API

Connect Request
Python RANEOr Z Oracle \ Connected
Applicati Connector
PRSI execute & 1 results

Oracle

FIGURE 9.4 Oracle database connection with MYSQL.

Program: Printing the version of the Oracle

import cx Oracle

con = cx_Oracle.connect (‘system/python’)
print (con.version)

con.close()

Output

10.2.0.1.0

Database Connectivity m 201

The connect () method in the cx_Oracle module creates the connection
between Oracle and the Python program. In the preceding program the
parameters to the connect method are the hostname and username, pass-
word of the MYSQL database. In the previous section, we are printing the
Oracle database version.

Solved Examples

Program: Retrieving the data from the Oracle database

import cx Oracle

con = cx_Oracle.connect (‘'system/python@localhost’)
cur = con.cursor ()

cur .execute (‘select*from test’)

res = cur.fetchall ()
for r in res:
print (r)

cur.close ()
con.close ()

Output

)
)
)
)
)

7

(
(
(
(
(

U w NN

7

Program: Display table data from MYSQL

o

CCEIRE alenna -
import MySQLdb

db = MySQLdb.connect ("localhost","root", "python", "mysqgl")
cursor = db.cursor ()

cursor.execute ("SELECT *from test")

data = cursor.fetchall ()

for row in data:

print row[0]

db.close()

o w oy s W N e

B 10
15
25

202 m Learning Professional Python

Program: Create table in MYSQL

q @
(2] 2 ‘ e b _
import MySQLdb
db = MySQLdb.connect ("localhost", "r« v "python"," sql"™)

1
2
3
4
5
6
7

cursor = db.cursor ()
cursor.execute ("c

print "table o
db.close ()

= table created

°
1 import MySQL
2 db = MySQLdb.connect ("localhost","root", "python", "mysqgl
3| cursor = db.cursor()
4 cursor.execute("inser
5 print ('row inserted') |
6 db.commit ()
7 db.close()
8

W
row inserted

Database Connectivity m 203

Program: Delete data from MYSQL

5-8-A9FUAFLL Hc Al .
import MySQLdDb I
db = MySQLdb.connect ("localhost","root", "python", "mysqgl"™)
cursor = db.cursor ()

cursor.execute ("delete from testl where name='test'")

print ('row deleted')
db.commit ()
db.close () mysql> select * from testil;
Empty set (0.00 sec)

 row deleted mysq1>

row updated

i

(o} i o

© 0 o U W N

T® b-B-

BB B RS PRSIPLLEH e 5
import MySQLdb

db = MySQLdb.connect ("localhost","root","python", "mysqgl"™)
cursor = db.cursor()

cursor.execute ("update es set name='hi' where name='test'"

print ('row update
db.commit ()
db.eclose ()

204 m Learning Professional Python

Program: Prepared statement in MYSQL

import MySQLdb

db=MySQLdb.connect (" a 3 E" , Yoot " pythean , *mysgl ™)
c=db.cursor ()

data=str (input ("enter int"))

c.execute("insert into tes (n)values (%s)", (data,))
prainti{’ J ‘
db.commit ()
db.close ()

il
2
3
4
5
6
i
8

% enter int4

row inserted

o |RE-E-ABTBG PRI

import MySQLdb

1
2 db=MySQLdb.connect ("localhost", "root", "python", "mysql™)
3 c=db.cursor ()
4 c.callproc("sample", ())
5 result=c.fetchall ()
j i = o et create procedure sample()
i print r .
8 c.close() begln
ol . select * from test;
o) end //
(41,) Query OK, @ rows affected (0.00 sec

Database Connectivity m 205

Program: Stored procedure with parameters

b

import
db=MySQLdb.connect ("localhost™, "root", "python", "mysql™)

MySQLdb
c=db.cursor ()

ik
2
&
4 r=c.callproc("sg", (10,0))
5 c.execute ('SELECT @ sq 1"')
6 r=c.fetchone()

7 prinL(r”

8

c.close()

= (100L,)

delimiter //
create procedure sq(in nl int,out n2 int)
begin
set n2:=nl1 * nil;
end //
Query OK, @ rows affected (0.00 sec)

mysql> delimiter ;

PO IS

[} |9 6 8B 9 9 —

Program: Retrieving the data from the Oracle database

import cx Oracle

uid="“system”

pwd="python”

service="1localhost”

db = cx_Oracle.connect (uid + “/” + pwd + “@”"+ service)
cursor = db.cursor ()

cursor.execute (“select * from test”)
rows = cursor.fetchall()

print (“#-records:”, cursor.rowcount)
for i in range (0, cursor.rowcount) :
print (rows([i])

cursor.close ()

206 m Learning Professional Python

Output

#-records: 5

Program: Inserting rows to the Oracle database

import cx Oracle
con = cx_Oracle.connect (‘system/python@localhost’)

rows = [(1,“one”), (2,“two”), (3,“three”), (4,“four”),
(5,“five”), (6,“six”), (7,%“seven”), (8,%eight”)]
cur = con.cursor()

cur.executemany (“insert into testl(id, data) wvalues
(:1, :2)", rows)
con.commit ()

cur2 = con.cursor ()
cur2.execute (‘select * from testl’)
res = cur2.fetchall()

for row in res:
print (row)
cur.close()
cur2.close()
con.close()

Output

‘one’)
‘two’)
‘three’)
‘four’)

‘five’)

‘six’)

‘seven’)
‘eight’)

ww J 0 Ul b W N

Program: Prepared statement when more than one value in Oracle

import cx Oracle
con = cx_Oracle.connect (‘system/python@localhost’)

Database Connectivity m 207

cur = con.cursor ()

row= []

val=raw_ input (“enter integer”)

vall=raw_input (“enter string”)

r=(val,vall)

row.append (r)

cur.prepare (*INSERT INTO testl (id,data) VALUES
(:1,:2)")

cur.executemany (None, row)

con.commit ()

cur.close ()

con.close()

Output
74 Python Shell — O X
File Edit Shell Debug Options Windows Help
7 REDIANKL g

>5>
enter integer8

enter stringeight
b>> |
Ln: 925|Col: 0

EXERCISE

1. Create the bakery table (id, item, cost, weight) in MYSQL and insert
rows in that table using Python program.

2. Update the cost in the previous step and create bakery table using
Python program.

3. Create the student table (ID, sname, branch, percentage) in Oracle
database and insert rows in that table using Python program.

4. Fetch all the computer students from the previous step and create
student table using Python program.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

CHAPTER 10

Case Study

This chapter discusses different case studies uisng Python.

10.1 PROGRAM 1: WHATS APP ANALYSER

This program gives the feature of retreving the chat information from dif-
ferent users and also from different devices.

Step 1: Import all the required libraries and modules.

import re

import regex

import pandas as pd

import numpy as np

import emoji

import plotly.express as px
from collections import Counter
import matplotlib.pyplot as plt
from os import path

Step 2: The definition starts with data and time android () extracts all
the chat file by using the library regex.

S
def startsWithDateAndTimeAndroid(s) :
pattern = ‘**([0-91+) (\/) ([0-91+) (\/) ([0-9]+), ([O-

91+):([0-9]+) []?(AM|PM|am|pm)? -’

DOI: 10.1201/9781003462392-10 209

https://doi.org/10.1201/9781003462392-10

210 m Learning Professional Python

result = re.match(pattern, s)
if result:

return True

return False

Step 3: The method find author () detects the author by identtifying the
new messages with data and time components. In this method also reg-
ular expression matching is used.

def FindAuthor(s) :
s=g.split(™:")

if len(sg)==2:
return True

else:

return False

Step 4: The method get data point android () extracts the data from the
android, which was identified by the date, time, author, and the mes-
sage. Splits the each line based on the tokens like commas, hyphens,
colons, and spaces. The author information and the data information
are stored in the data frames.

def getDataPointAndroid(line) :
splitlLine = line.split(* - 7)
dateTime = splitLine[0]

date, time = dateTime.split (', ')
message = ' ' .join(splitLine[1l:])
if FindAuthor (message) :
splitMessage = message.split(‘:’)
author = splitMessage[0]

message = ' ' .join(splitMessage([1l:])
else:

author = None

return date, time, author, message

Step 5: The method get data point android () extracts the data from the
I0S, which was identified by the date, time, author, and the message.
Splits each line based on the tokens like commas, hyphens, colons, and
spaces. The author information and the data information are stored in
the data frames.

def getDataPointios(line) :
splitLine = line.split (‘] ')

Case Study = 211

dateTime = splitLine[O0]

if ',’ in dateTime:

date, time = dateTime.split(‘,’)
else:

date, time = dateTime.split (‘' ')
message = ' ‘.join(splitLine[1:])

Step 6: Calling the find author () method, which detects the author-
based messages. If there exists special author, then that author’s mes-
sage will be retreived. After retreving the specific author’s information,
the information will be processed. Splits each line based on the tokens.

if FindAuthor (message) :
splitMessage = message.split(‘:’)
author = splitMessage[0]

message = ' ‘.join(splitMessage[1l:])
else:

author = None

if time[5]==":":

time = time[:5]+time[-3:]

else:

if “AM’ in time or ‘PM’ in time:
time = timel[:6]+time[-3:]

else:

time = timel[:6]

return date, time, author, message

Step 7: The method split count () detects the emoijis in the messages.

def split_ count (text) :

emoji list = []

data = regex.findall (r‘\X’, text)

for word in data:

if any(char in emoji.UNICODE EMOJI for char in word) :
emoji list.append (word)

return emoji list

212 m Learning Professional Python

Step 8: Parsing the data and handles the messages that existed on mul-
tiple line and also the mutliple messages from the same user and also
from the different users.

parsedData = [] ‘'

conversationPath = data.txt’

with open (conversationPath, encoding=“utf-8”) as fp:
device=""’

first=fp.readline ()

print (first)

if Y[’ in first:

device=‘ios’

else:

device="“android”

fp.readline ()

messageBuffer = []

date, time, author = None, None, None

Step 9: Parsing the data and handles the messages from different device
platforms.

while True:
line = fp.readline()
if not line:

break
if device==“iog”:
line = line.strip()

if startsWithDateAndTimeios (line) :
if len(messageBuffer) > O0:
parsedData.append ([date, time, author, -
‘.join (messageBuffer)])
messageBuffer.clear ()
date, time, author, message = getDataPointios(line)
messageBuffer.append (message)
else:
line= (line.encode(‘ascii’, ‘ignore’)) .decode (“utf-8")
if startsWithDateAndTimeios (line) :
if len(messageBuffer) > 0:
parsedData.append([date, time, author,
' .join (messageBuffer)])
messageBuffer.clear ()
date, time, author, message = getDataPointios(line)

Case Study m 213

messageBuffer.append (message)
else:
messageBuffer.append(line)

Step 10: Processing the data by removing the null values from the data
set.

df = df.dropna() #drops all null values

Step 11: Extracts all the chat file by using the library regex.

URLPATTERN = r ' (https?://\S+)’ #regex pattern
matching with start with https

df [‘urlcount’] = df.Message.apply(lambda x:

re.findall (URLPATTERN, Xx)).str.len()

links = np.sum(df.urlcount) #sumup all the links

print (1inks)

Step 12: Prints the different author messages, the count of the messages
sent by a single author, and the average number of the words of the mes-
sage for each user.

frnds = messages_df.Author.unique ()

for 1 in range(len(frnds)) :

Filtering out messages of particular user

req df= messages_df [messages df [“Author”] == frnds[il]

req df will contain messages of only one particular
user print (f‘Stats of {frnds[il} -')

shape will print number of rows which indirectly
means the number

print (‘Messages Sent’, req df.shapel(0])

#Total Messages will yield words per message

Words per message = (np.sum(req df[‘Word Count’]))/
req_df.shape[0]

Stats of +91 93754 74744 -

Messages Sent 7

Words per message 8.571428571428571
Stats of +91 80961 54510-

Messages Sent 8

Words per message 6.875

Stats of +91 98485 56739-

214 m Learning Professional Python

Messages Sent 37

Words per message 20.81081081081081
Stats of +91 95427 58153-

Messages Sent 1

Words per message 19.0

10.2 PROGRAM 2: BREAST CANCER PREDICTION

Step 1: Import all the required libraries and modules.

import pandas as pd
import numpy as np
import sklearn

Step 2: Uploading the data set.

from sklearn.datasets import load breast cancer
dataset = load breast cancer ()

Step 3: Processing the data and explores the data.

dt = pd.DataFrame.from dict (dataset[“data”])
dt.columns = dataset[“feature names”]
dt [“target”] = dataset[“target”]

Step 4: Split the data set as the train and test data sets. Here we consid-
ered 70% for training set and 30% as testing set.

Train Test Split

from sklearn.model selection import train test split

X = dt.drop(‘target’, axis=1)

y = dt[‘target’]

X train, X test, y train, y test = train test split (X,
y, test size=0.3, random state=0)

Step 5: Import all the required libraries and modules to perform the
classification and perform the measures.

from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_ score

Case Study m 215

from sklearn.model selection import cross val score
import matplotlib.pyplot as plt
$matplotlib inline

Step 6: The method k_acc_plot () peforms the classification and calu-
lates the accuracy.

cross-validation accuracy plot with various k
values

def k_acc _plot(start: int, end: int, X t, y t, method:
str) :

Set k range and initialize lists

k _range = range(start, end)

k scores = []

train acc = []

for k in k_range:

knn = KNeighborsClassifier (n neighbors=k)

knn.fit (X_t, y_t)

accuracy = accuracy score(y t, knn.predict (X t))

scores = cross val score(knn, X t, y t, cv=5,
scoring=‘accuracy’)

k_scores.append (scores.mean())

train acc.append (accuracy.mean())

Step 7: Plots the accuracy.

Plot mean CV accuracies for k

plt.title('Mean Training and CV Accuracies vs. k
after ’ + method)

plt.plot (k_range, k scores, label=“CV Accuracy”) plt.
plot (k_range, train acc, label=“Training Accuracy”)
plt.legend ()

plt.xlabel (*Value of k for kNN’)

plt.ylabel (*Mean Accuracy’)

plt.show ()

216 m Learning Professional Python

Mean Accuracy

= =2 =

w W w

(] = o
i i i

0.90 1

T
1] 20 40 B0 a0 100
Value

Step 8: Calling the k_acc_plot () to perform the classification.

plot accuracies vs. K values
k _acc plot(l, 101, X train, Y train, “Initial Split”)

10.3 PROGRAM 3: STOCK PRICE PREDICTION

The stock price prediction involves analyzing the future profitability based
on the current environment and the finance. This program deals with
identifying the trends in the stock market.

Step 1: Import all the required libraries and modules.

import numpy as np

import scipy as sp

import pandas as pd

from subprocess import check output
import time, json

from datetime import date

import time

import math

import sklearn.preprocessing as prep
import matplotlib.pylab as plt
$matplotlib inline

from matplotlib.pylab import rcParams

Case Study m 217

Step 2: Loading the data set.

df= pd.read csv(‘'stock.csv’)
df4=df.set_ index(“Code”)

Step 3: Retreiving the unique values of the column code.

uniqueVals = df [“code”] .unique ()

Step 4: Process the data and calulate the mean of the data.

grouped df=pd.DataFrame ()
for 1 in uniqueVals:
df5 = (df4.loc[i, :]) .groupby(['Code’, ‘Date’]) .mean()
store DataFrame in list
grouped df=grouped df.append (df5)
grouped df.reset index()
del dfs

Step 5: Process the data

dfl=grouped df.loc[“8KMILES”, :]
df2=dfl.reset index()
label=df2[‘'Date’] .values.tolist ()
trainset=df2[‘'Open’] .values.tolist ()
df2

Step 6: Import all the required libraries and modules to perform.

from sklearn.preprocessing import
StandardScaler,MinMaxScaler
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import
r2 score,mean_squared error

Step 7: Create_dataset() splits the data set.

def create dataset (dataset,past=1):
dataX, datay = [], []

for 1 in range(len(dataset) -past-1):
j = dataset[i: (i+past), 0]
dataX.append(j)

dataY.append (dataset [1 + past, 0])

218 m Learning Professional Python

Step 8: Test and train () transforms the data set.

from sklearn.preprocessing import MinMaxScaler
def testandtrain(prices):
scaler = MinMaxScaler (feature range=(0, 1))

prices = scaler.fit transform(prices)
trainsize = int(len(prices) * 0.80)
testsize = len(prices) - trainsize

train, test = prices[0:trainsize,:], prices|[trainsize
len (prices), :]
print (len(train), len(test))

Step 9: Performing the train test split and then tranforms the data by
calling the methods create_dataset () and test and train ().

X _train,y train = create dataset (train,1)
X test,y test = create dataset(test,1)

x _train = scaler.fit transform(x train)
x_test = scaler.fit transform(x_ test)

#y test =scaler.fit transfonm(y_ test)

#y train=scaler.fit transfonm(y train)
return x train,y train, x test,y test

Step 10: The close repesents the final price for the stock trades on a spe-
cific day.

prices = df2['Close’] .values.astype(‘float32’)
Obtaining the values of closing data each day
prices = prices.reshape(len(prices), 1)
prices.shape

Step 11: Calling the testandtrain () to transform the data.

trainX, trainY, testX, testY=testandtrain(prices)

randomforest = RandomForestRegessor (random
state=2017,verbose,n jobs=5)

randomforest.fit (trainX, trainY)

test=1[]

test= randomforest.predict (trainX)

Case Study = 219

Step 12: Plotting the data.

plt.plot (test, color="blue”)
plt.plot (testY, color=‘red’)
plt.show ()

10 1

0.8 1

06 -

04 -

0.2 1

0.0 4

-
g
.

10.4 PROGRAM 4: CHAT BOX

A purpose of the chat box is to communicate an instant message to client.

Step 1: Import all the required libraries and modules.

from chatterbot import ChatBot

Step 2: Initialization

bot = ChatBot (

‘usha’,

Logic_adapters=|
‘chatterbot.logic.BestMatch’,
‘chatterbot.logic.TimeLogicAdapter’],
)

Step 3: Import the libraries

From chatterbot. trainers import
ChatterBotCorpusTrainer

220 m Learning Professional Python

Step 4: Process the data

trainer = ChatterBotCorpusTrainer (bot)

Step 5: Training the data

trainer. train(‘chatterBot.corpus.english’)

Step 6: Input and displaying the data

name=input (“Enter Your Name: ")

print (*Hi ”+name+”, May I help you?”)
while True:

request=input (name+’ :"’)

if request==‘Bye’ or request ==‘bye’:

print (‘Usha: Bye’)

break

else:

response=bot.get response (request)

get responses() is a method of chatbot instance
print (*Usha:’, response)

Enter Your Name: usha
Hi usha,how can I help you?

10.5 PROGRAM 5: PARKINSON DETECTION

Parkinson is a central nervous system disorder affecting the neurons in
the brain.

Step 1: Import all the required libraries and modules.

import numpy as np

import pandas as pd

import os, sys

from sklearn.preprocessing import MinMaxScaler

from xgboost import XGBClassifier

from sklearn.model selection import train test split
from sklearn.metrics import accuracy_ score

Step 2: Reading the data into the data frame.

df=pd.read csv(‘parkinsons.csv’)
df .head ()

Case Study = 221

Step 3: Obtain all the features and labels from the data frame. Retrieve
all features except the status feature.

features=df.loc[:,df.columns!='status’] .values([:,1:]
labels=df.loc|[:, ‘status’] .values

Step 4: Normalizes the features and then transforms by scaling to a spe-
cific range. The fit_transforms data transforms the data.

scaler=MinMaxScaler((-1,1))
X=scaler.fit transform(features)
Y=1abels

Step 5: Split the data set. The test data size is taken as the 20%.

X _train,x test,y train,y test=train test split(x, vy,
test size=0.2, random state=7)

Step 6: Train the data set using the XGBoost classifier.

model=XGBClassifier ()
model.fit (x train,y train)

Step 7: Generate the predictions and calculate the accuracy.

Y pred=model.predict (x_test)
Print (accuracy score(y_test, y pred)*100)

94.8717

10.6 PROGRAM 6: FACE MASK

Step 1: Import all the required libraries and modules.

from keras.optimizers import RMSprop

from keras.preprocessing.image import
ImageDataGenerator

import cv2

from keras.models import Sequential

from keras.layers import Conv2D, Input

from keras.layers import ZeroPadding2D,
BatchNormalization

from keras.layers import Activation, MaxPooling2D

222 = Learning Professional Python

from keras.layers importFlatten, Dense,Dropout

from keras.models import Model, load model

from keras.callbacks import TensorBoard,
ModelCheckpoint

from sklearn.model Selection import train test split

from sklearn.metrics import fl1 score

from sklearn.utils import shuffle

import imutils

import numpy as np

Step 2: Conv2D is the convolution layer. MAxPooling2D is the max
pooling layer. These two layes are used to extract the features from the
image that is taken as input. Flaten layer converts the 2D data to the 1D
data and drop out takes care of overfitting. The dense layers are used for
classification.

model = Sequential ([

Conv2D (100, (3,3), activation=‘relu’, input
shape= (150, 150, 3)),

MaxPooling2D(2,2),

Conv2D (100, (3,3), activation=‘relu’),

MaxPooling2D(2,2),

Flatten(),

Dropout (0.5),

Dense (50, activation=‘relu’),

Dense (2, activation=‘softmax’)

1)

model.compile (optimizer=‘adam’, loss=‘binary
crossentropy’, metrics=[‘acc’])

Step 3: Performed the augmentation uisng the Image Data Generator.

train datagen = ImageDataGenerator (rescale=1.0/255,

rotation range=40,

width shift range=0.2,

height shift range=0.2,

shear range=0.2,

zoom_range=0.2,

horizontal flip=True,

fill mode=‘nearest’)

train generator = train datagen.flow from directory(/
training,

Case Study m 223

batch size=10,

target size=(150, 150))

validation datagen = ImageDataGenerator (resc
ale=1.0/255) validation generator = validation
datagen.flow/from directory(/testing,

batch size-10,

target size- (150, 150))

Step 4: Train the model.

history = model.fit generator (train generator,
epochs=10,

validation data=validation generator,
callbacks=[checkpoint])

10.7 PROGRAM 7: COVID-19 ANALYSIS

Step 1: Import all the required libraries and modules.

import numpy as np

import pandas as pd

import io

import requests

import matplotlib.pyplot as plt

Step 2: Read the data from the specified file.

url="“covid.csv”
s=requests.get (url) .content

Step 3: Read the data into the pandas data frame.

df = pd.read csv(io.StringIO(s.decode(‘utf-8")))

Step 4: Converts the data into the datetime format.

df [‘date’] = pd.to datetime(df[‘date’],
format="'%y%m%d’)

Step 5: Removes the unnecessary features from the data set.

df .drop ([‘dateChecked’],axig=1, inplace=True)

224 m Learning Professional Python

Step 6: Converts the data feature to the string data type.

df [‘state’]=df [‘state’] .apply (str)

Step 7: Replacing the NAN values with - 1.

df.fillna(value=-1, inplace=True)
Step 8: Plotting the hospitalized data.
plot xy(‘hospitalized’, ‘death’, ‘IN’)

Plot of "hospitalized" vs. "death" for GA

00
1200 00°
R
1000 - o®
(o]
800 o©
600 o e2
o 0®
400 o 0O
200 ;di9
a®©
ol —8
o o o o) o o
S) S N S I
S ° - ® & &

Step 9: Plotting the test positive chart.

states = [‘CA’ ,NY’,‘MI’,‘MA’,‘PA’,‘IL’]

tp,x =1[1,11]

for s in states:

data = positiveTest ratio(s)

if datal=-1:

tp.append (data)

x.append (s)

plt.figure(figsize=(8,4))

pit.title(“Test-positive ratio chart”, fontsize=18)
plt.xticks (fontsize=14)

plt.yticks (fontsize=14)

plt.bar (x=x,height=tp,color="blue’,

edgecolor="k’,linewidth=2)

plt.show()

Case Study m 225

Test-positive ratio chart

0.30 1

0.25

0.20 1

0.15

0.10 1

0.05 1

0.00 -

CA NY Mi MA PA IL

10.8 PROGRAM 8: TIME SERIES FORECASTING

To forecast the future and to determine the long-term trend, we use the
time series forecasting.

Step 1: Import all the required libraries and modules.

import pickle

import warnings

from math import sqgrt

import lightgbm as 1lgb

import matplotlib as mpl

import numpy as np

import pandas as pd

import tensorflow as tf

import xgboost as xgb

from matplotlib import pyplot as plt

from sklearn.metrics import make scorer, mean squared
error from sklearn.preprocessing import
StandardScaler

from utils.metrics import evaluate

Step 2: Initialization

seed = 42

tf.random.set seed(seed)
np.random. seed (seed)
plt.style.use(‘bmh’)

mpl.rcParams [‘axes.labelsize’] = 14
mpl.rcParams [‘xtick.labelsize’] = 12

226 m Learning Professional Python

mpl.rcParams [‘ytick.labelsize’] = 12
mpl.rcParams [‘text.color’] = ‘k’
mpl.rcParams [‘figure.figsize’] = 18, 8

Step 3: Reading the data and then parse the data set.

d = pd.read _csv(‘data.csv’, parse dates=[‘date’])
d.set _index(‘date’, inplace=True)

Step 4: Splitting the data set to evaluate the model.

We split our dataset to be able to evaluate our
models

resultsDict = {}

predictionsDict = {}

d = pd.read csv(‘data.csv’, parse dates=[‘date’])
d.set _index(‘date’, inplace-True)

split date = ’2021-01-01"

df training = d.loc[d.index <= split date]

df test = dn.loc[d.index > split date]
print (E%{len(df training)} days of training data \n
{len(df test)} days of testing data ")

Step 5: Converting the train and test data to the CSV form.

df training.to csv(‘datasets/training.csv’)
df test.to csv(‘datasets/test.csv’)

Step 6: Perform the mean of the data and then evaluate the model.

Also add the naive mean average value

mean = df training.pollution today.mean/()

mean = np.array([mean for u in range(len(df test))])

resultsDict ['Naive mean’] = evaluate(df test.
pollution today, mean)

predictionsDict ['Naive mean’] = mean

resultsDict [‘'Yesterdays value’] = evaluate(

df test.pollution today, df test.pollution yesterday)
predictionsDict ['Yesterdays value’] = df test.
pollution yesterday.values

Case Study m 227

Step 7: Evalute the model using the XGBoost.

reg = xgb.XGBRegressor (objective='reg:squarederror’,
n _estimators=1000)

reg.fit (X train, y train,

verbose-False) # Change verbose to True if you want to
see it train

vhat = reg.predict (X test)

resultsDict ['XGBoost’] = evaluate(df test.pollution_
today, yhat)
predictionsDict ['XGBoost’] = yvhat

Step 8: Plotting the time series.

plt.plot (df test.pollution today.values,
label="0Original’)

plt.plot (yhat, color=‘red’, label='XGboost’)

plt.legend()

400 -

300 -

100 -

100 150 200 250 300 350

o
8

10.9 PROGRAM 9: FRAUD DETECTION

To detect online frauds to prevent financial loss.

Step 1: Import all the required libraries and modules.

import pandas as pd

from sklearn.ensemble import RandomForestClassifier

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten,
Activation

from sklearn.metrics import roc_ curve

from sklearn.metrics import auc

228 m Learning Professional Python

import matplotlib as mpl
import matplotlib.pyplot as plt

Step 2: Setting the size of the figures.

#configure plot size and colors

mpl.rcParams [‘figure.figsize’] = (10, 10)

colors = plt.rcParams|[‘axes.prop cycle’] .by key()
[‘color’].

Step 3: Read the data and then drop the nan values from the features of
the data set.

#load data

df = pd.read csv(‘'frauddata.csv’)

#drop NULL values

df = df.dropna ()

#drop Time column (contains limited useful
information)

df = df.drop(‘'Time’, axis = 1)

Step 4: Each transaction is marked as either fraud or not fraud.

#group data by Class

groups = df.groupby(‘'Class’)

fraud = (groups.get group(1l) .shape[0] / df.shape[0]) *
100

non_fraud = (groups.get group(0).shape[0] /
df .shape[0]) * 100

#print class percentage

print (‘Percent Fraud: ' + str(fraud) + ‘%’)

print (‘Percent Not Fraud ' + str(non fraud) + ‘%’)

Step 5: Transform the data on the test data to prevent over biasing.

df size = df.shape[0]

test size = int (df size * .3)

train size = df size - test size
train df = df.head(train size)

test df = df.tail(test_size)

X _train = train df.drop(‘Class’, axis
Y train = train df[‘Class’]

X _train = train df.drop(‘Class’, axis = 1)
Y train = test_df[‘Class’]

Il
=

Case Study = 229

Step 6: Transforming the data set.

for feat in X train.columns.values:

ss = StandardScaler ()

x _train[feat] = ss.fit transform(X train[feat] .values.
reshape (-1,1))

x _test[feat] = ss.transform(X test[feat] .values.
reshape (-1,1))

Step 7: Fitting the data using the RandomForest model and later find
the prediction probabilities.

#icreate Random Forest Model

rf = RandomForestClassifier ()

#fit to training data

rf.fit (X train, Y train)

#get class probabilities

probabilities = clf.predict proba (X test)
y pred rf = probabilities[:,1]

Step 8: Plotting the ROC graph.

plt.plot (100*fpr rf, 100*tpr rf, label=
‘Random Forest (area = {:.3f})’.format (auc rf),
linewidth=2, color = colors([0])

plt.xlabel (‘False positives [%]')

plt.ylabel (*True positives [%]’)

plt.x1im([0,30])

plt.ylim([60,100]1)

plt.grid(True)

ax = plt.gcal()

ax.set aspect(‘equal’)

plt.title(*Random Forest Model Performance’) plt.
legend (loc="best’)

230 m Learning Professional Python

Random Forest Model Performance

100
— Random Forest (area = 0.928)

True positives [%]
3

70 1

m T L] T T T
0 5 10 15 20 5

False positives [%]

Index

A

abs__, 141

abs function, 140
anonymous object, 39
append method, 72
arguments (self), 17
arrays, 49

Attribute Error, 10

B

Base class, 29

bases__, 23

binary files, 194-195
binary-mode files, 178, 195
Built-In Class Attributes, 23
built-in class functions, 21
byte array, 49

C

constructor method, 10
default constructor, 15
init, 9
parameterized constructor, 15
parameter—less constructor, 15
constructor overloading, 16

D

database programming, 197
decorators, 5
default exception handler, 83
def statement, 1
deleting objects, 17
__delitem __, 139
del statement, 5

del method, 17

get method, 139

set method, 139
destructor method, 17

E

classes, 179
class decorators, 5
class hierarchies, 27
class instances, 33
class method calls, 2
extending, 29
parent classes, 28
subclassing, 29

class method function, 5

class methods, 1

class properties, 29

class statement, 1

error exceptions
raise statement, 90
raising exceptions, 90
TRY ... FINALLY, 89
try statement, 84
user-defined exceptions, 92
error handling, 82
error handling in constructor, 94
except clause, 86
exception class, 83
exception handling, 82
exceptions, 10

231

232 m Index

F R

file, 177 raise, 90
examples of usage, 179 range, 221
opening, 179 read, 179
predefined methods, 179 readlines, 179
with statement, 190 return, 179

text and binary files, Python, 177
finally clause, 89
from clause (raise statement), 1

G

global variable, 108-111

H

handlers, 82

inheritance, 27
instance methods, 6
instances, 6

M

__module__, 20
multiple inheritance, 28
multiprocessing, 97-98
multi threading, 99

(@)

object, 2
object-oriented language, 1
operator overloading, 117

P

pickle module, 225
polymorphism, 118

runtime error, 81

S

self-argument, 2
static methods, 5
sub classes, 99
super class, 40

T

text-mode files, 177
tkinter, 151

try/else clause, 88
try/finally statement, 89
try statement, 82

u

user-defined classes, 1
user-defined exceptions,
92-93

\

variable, 8

W

with statement, 190
write, 179
write lines, 179

	Cover
	Half Title
	Series
	Title
	Copyright
	Contents
	Preface
	Author Biographies
	Chapter 1 ◾ Classes and Objects
	1.1 Creating Classes
	1.1.1 Python Self-Parameter

	1.2 Object Creation
	1.3 Accessing Attributes
	1.4 Class Method
	1.5 Return from Class
	1.6 Constructors
	1.7 Deleting Objects
	1.7.1 Delete the Object

	1.8 Python Built-In Class Functions
	1.9 Built-In Class Attributes
	1.10 Inner Class
	Exercise

	Chapter 2 ◾ Inheritance
	2.1 Single Inheritance
	2.2 Multiple Inheritance
	2.3 Multilevel Inheritance
	2.4 Overriding Methods
	2.5 Nested Class Inheritance
	Exercise

	Chapter 3 ◾ Arrays
	3.1 Byte Array
	3.2 NumPy
	3.3 Reshaping Arrays
	3.4 Operations On Array
	Exercise

	Chapter 4 ◾ Exception Handling
	4.1 Exception Handling in Python
	4.2 Single Try Multiple Except Statements
	4.3 Single Try Single Except with Multiple Exceptions Statements
	4.4 Try-Except-Else
	4.5 The Try . . . Finally Block
	4.6 Raising Exceptions
	4.7 User-Defined Exceptions
	4.8 Constructors In Exception Handling
	4.8.1 Exception and Inheritance

	Exercise

	Chapter 5 ◾ Multi Threading
	5.1 Multiprocessing in Python
	5.2 Multi Threading
	5.2.1 Starting a New Thread

	5.3 Creating Thread Using Threading Module
	5.4 Synchronizing The Thread
	5.4.1 Race Condition
	5.4.2 Locks
	5.4.3 Semaphore

	Exercise

	Chapter 6 ◾ Method Overloading and Operator Overloading
	6.1 Introduction
	6.2 Method Overloading
	6.3 Operator Overloading
	6.3.1 Overloading Arithmetic Operators
	6.3.2 Overloading Comparison Operators
	6.3.3 Overloading Assignment Operator
	6.3.4 Overloading Class Operators
	6.3.5 Overloading the Unary Operators
	6.3.6 Overloading of Operators on Lists
	6.3.7 Operator Overloading on Dictionaries

	6.4 Eligible Operators For Operator Overloading
	Exercise

	Chapter 7 ◾ GUI Programming
	7.1 Tkinter Interface
	7.2 Label
	7.3 Button
	7.4 Message box
	7.5 Message
	7.6 Entry
	7.7 Checkbutton
	7.8 Radiobutton
	7.9 Listbox
	7.10 Scale
	7.11 Spinbox
	7.12 Scrollbar
	Exercise

	Chapter 8 ◾ File Handling
	8.1 Opening a File
	8.2 Writing to the Files
	8.2.1 Reading the Files
	8.2.2 Readlines

	8.3 The Close () Method
	8.4 With Statement
	8.5 Appending to the Files
	8.6 File Pointer Positions
	8.6.1 Modifying File Pointer Position
	8.6.2 Renaming the File

	8.7 Binary File
	8.8 Random Access Files
	Exercise

	Chapter 9 ◾ Database Connectivity
	9.1 Python with MYSQL
	9.2 Python With Oracle
	Exercise

	Chapter 10 ◾ Case Study
	10.1 Program 1: Whats App Analyser
	10.2 Program 2: Breast Cancer Prediction
	10.3 Program 3: Stock Price Prediction
	10.4 Program 4: Chat Box
	10.5 Program 5: Parkinson Detection
	10.6 Program 6: Face Mask
	10.7 Program 7: Covid-19 Analysis
	10.8 Program 8: Time Series Forecasting
	10.9 Program 9: Fraud Detection

	Index

