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Preface

Pregnancy is a critical time for the health of mother and fetus, with significant risks 
for both. Early prenatal diagnosis can enable therapeutic interventions in utero or 
postpartum (or childbirth programming through cesarean section) in order to mini-
mize risks for the fetus in the short and long term. Tools for pregnancy monitoring 
can as well be adopted to follow the mother and baby throughout gestation, up to 
labor and more, in case something goes wrong. In particular, the perinatal period, 
spanning from the third trimester of pregnancy up to 1 month after birth, is most 
critical for the baby. For this reason, in the last decades, biomedical engineering sup-
ported and fostered scientific research towards identification of new models, param-
eters, algorithms, and tools that can improve the quality of fetal monitoring, predict 
the outcomes, and allow physicians to intervene in an appropriate manner to ensure 
a healthy future for the baby. This research led to important successes in the envi-
sioning and designing of medical devices (including software algorithms) to support 
the clinicians in the diagnostics and monitoring of perinatal life critical conditions.

In this context, instrument development and signal processing research interpen-
etrate, and specific advanced competences are required of the professionals able to 
operate in this field. Even though the interest is huge, and there is a significant 
amount of scientific papers discussing specific aspects related to technologies and 
signal processing in perinatal medicine, there is a lack of comprehensive books 
presenting such topics with a clear educational purpose and consequently a didactic 
approach. This book comes from the experience at the First International Summer 
School on Technologies and Signal Processing in Perinatal Medicine, which was 
held in Pula, Italy, from July 2 to 6, 2018. The School was realized thanks to the 
collaboration and financial contribution of the Regione Autonoma della Sardegna 
and of Sardegna Ricerche and attracted students from all over the world. The book’s 
content reflects some of the most important master lectures provided in that context 
by eminent scientist, expert clinicians, and technologists.

As such, it is interesting in particular for students and young researchers 
approaching this topic for the first time and looking for a clear introduction. 
Nevertheless, any researcher already active in the field could find in this book a 
clear representation of the presented themes, an invaluable source of references, and 
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a stimulating analysis of different techniques presented by recognized experts in the 
field. By finding all the presented themes in one book, the reader has a clear intro-
duction to the topic, including the updated references representing the state of the 
art in the field.

This book aims to enable the reader to operate in the context of technologies for 
perinatal medicine by creating product innovation through scientific research. In par-
ticular, two main technologies are considered: those descending from the adoption of 
ultrasounds and those based on the acquisition of electro-physiological signals.

Ultrasounds in pregnancy have been widely used in clinical practice and repre-
sent today’s leading technology for antenatal diagnostics and monitoring. The key 
aspects related to their physics and technologies for imaging in clinical settings are 
presented along with their different application fields throughout the pregnancy. The 
complexity associated to the correct interpretation of fetal images, in particular 
when small morphological details such as those of the fetal heart are being studied, 
makes this tool strongly operator-dependent. As such, the development of frame-
works for remote real-time consulting is of paramount importance for the provision 
of correct diagnoses in a timely manner. Moreover, the identification of ultrasound-
based markers can be useful for the objective assessment of the fetus against the 
occurrence of several life-threatening conditions, such as intrauterine growth 
restriction, cardiovascular disease, endothelial dysfunction, etc. Ultrasound is also 
the basis for the most widespread technology for fetal monitoring, that is, computer-
ized cardiotocography, whose technical aspects and underlying physiological prin-
ciples behind heart rate variability are presented from a biomedical engineering 
perspective, along with clinical applications.

From the other side, technologies based on the recording of electro-physiological 
signals from the baby represent a long-standing research topic that is progressively 
entering clinical practice. The principles behind fetal electrocardiography are pre-
sented along with the signal processing issues associated with non-invasive measure-
ment of this elusive signal. On this basis, several innovative devices for multimodal 
fetal monitoring have been developed and are presented. Advanced signal processing 
methods can then be developed to analyze such signals for the identification of subtle 
patterns which predict sudden fetal deaths, as for the case of T-wave alternans. When 
something goes wrong during pregnancy or labor, the newborn is in a high-risk con-
dition and admission to neonatal intensive care unit could be the last chance to save 
the baby. Advanced engineering and mathematical methods that could potentially 
provide effective assisting technology in this context are also presented.

Finally, a completely different perspective is introduced in the last chapter of the 
book, which opens to new frontiers metabolomics and perinatal programming, that 
is, the response by the developing organism to a specific challenge altering the tra-
jectory of development with resulting persistent effects on phenotype.

Cagliari, Italy�   Danilo Pani
Eindhoven, The Netherlands�   Chiara Rabotti
Milan, Italy�   Maria Gabriella Signorini
Ancona, Italy�   Laura Burattini
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1.1  �Ultrasound Physics

1.1.1  �Ultrasound Generation

Ultrasound refers to pressure waves propagating through a medium. They are simi-
lar to audible sound waves, but at higher frequency beyond 20  kHz. In clinical 
diagnostic applications, frequencies between 1 and 10 MHz are typically employed. 
Ultrasound waves are generated by an ultrasound transducer, which makes the elec-
tromechanical conversion between pressure and electrical potential. Pressures from 
10 to 1000 kPa are typically generated for diagnostic applications.

The electromechanical conversion is made by piezoelectric crystals. These can 
be viewed as charge generators. The generated electrical charge, q, is related to the 
mechanical force applied to the crystal surface, F, by the linear relationship q = kpF, 
with kp being the piezoelectric constant. The value of kp ranges from 2.3 pC/N for 
quartz up to over 200 pC/N for PZT ceramics, which are typically employed in 
ultrasound transducers due to their efficient conversion.

Recalling the elastic law (or Hooke’s law), and with reference to Fig. 1.1, the 
applied force F is a function of the crystal deflection, x, defined by F = kex, with ke 
being the elasticity constant. We may therefore write q = Kx, with K = kekp. The 
crystal can also be modeled as a plane capacitor, whose relationship between elec-
trical potential, V, and electrical charge, q, is defined by the capacitance 
C  =  q/V. Therefore, combining all together, the relationship between electrical 
potential and crystal deflection reads as

	
V

Kx

C
= .

	
(1.1)

Accounting for electrical leakage through the crystal and capacitive effects, 
which are also introduced by the cables to the frontend amplifier, the transfer func-
tion in Eq. (1.1) shows frequency dependency. As a result, the electromechanical 
conversion can be described by a first-order system [1]. However, this frequency 
dependency is typically overcome by the employment of a charge amplifier, re-
establishing the ideal (zero-order) transfer function in Eq. (1.1).

Fig. 1.1  Schematic representation of an ultrasound transducer made of a piezoelectric crystal of 
thickness dc, performing the electromechanical conversion between electrical potential, V, and 
force normal to the crystal surface, F, which is related to the crystal deflection, x

M. Mischi and J. van Laar
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Eventually, also accounting for the mechanical behavior (resonance) of the crys-
tal, the full electromechanical conversion is well represented by a second-order sys-
tem, showing resonance and anti-resonance frequencies. These frequencies provide 
full characterization of the ultrasound transducer. A simple approximated rule to 
determine the (mechanical) resonance frequency relies on the velocity, cc, of ultra-
sound traveling through the crystal. For a crystal of thickness dc, the resonance fre-
quency f0 can be derived as

	
f

c

d0 2
= c

c

,
	

(1.2)

i.e., the ultrasound wavelength through the crystal, λ = cc/f0 = 2dc.
Most diagnostic applications require short ultrasound pulses of few oscillations. 

Therefore, epoxy baking is used in the transducer to dampen the crystal oscillations 
and permit the generation of short pulses.

The generated pulses are transmitted inside the body by positioning the ultra-
sound transducer on the skin. In order to optimize the transmission of the generated 
ultrasound waves into the body, it is important to reduce the mismatch in acoustic 
impedance between piezoelectric crystal and skin. To this end, the transducer sur-
face is covered by a matching layer with thickness equal to λ/4 and acoustic imped-
ance, Zm, between that of the skin, Zs, and the piezoelectric crystal, Zc. The acoustic 
impedance, conventionally indicated with the symbol Z, provides the acoustic char-
acterization of a medium; it is given as

	 Z c= r0 0 , 	 (1.3)

with ρ0 the medium density and c0 the speed of sound. A typical value employed for 
the acoustic impedance of the matching layer is Z Z Zm s c=  [2].

1.1.2  �Ultrasound Propagation

Assuming a linear medium, the ultrasound propagation velocity, c0, can be approxi-
mated as c B0 = / r0 , with B [Pa] and ρ0 [kg/m3] being the bulk modulus and 
density of the medium, respectively. Therefore, the propagation velocity of ultra-
sound differs for different media, with an average value of 1540 m/s in tissue. This 
results in typical values of the acoustic impedance, Z, ranging from 1.67 MRayls in 
blood to 7.9 MRayls in bone tissue. Notice that the acoustic impedance is measured 
in Rayls, with 1 Rayl = 1 Kg m−2 s−1. Assuming the generated pressure wave to be 
well represented by a plane wave, its propagation can be described by the wave 
equation as

1  Ultrasound in Pregnancy – From Ultrasound Physics to Morphological…
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where z is the propagation axis, t is time, and p is the pressure amplitude. With refer-
ence to Fig. 1.2, the pressure p is related to the molecule displacement, u, induced 
by the oscillating surface of the transducer (deflection x), by the relation

	
p c

u

t
c v= =r

¶
¶

r0 0 0 0 ,
	

(1.5)

with v being the molecule velocity. Eq. (1.4) can simply be derived by the combina-
tion of the momentum and the continuity equations, neglecting second order terms 
and making use of the following linear relationship:

	
r rz t

p z t

c
,

,
.( ) = +

( )
0

0
2

	
(1.6)

For a linear, lossless medium, a solution of Eq. (1.4) is given as

	
p t z p e jk c t z, ,( ) = -( )

0
0

	
(1.7)

with j = -1 , p0 the maximum pressure amplitude, and k = ω0/c0 the wave number, 
where ω0  =  2πf0. Usually the real part of the solution in Eq. (1.7), Re[u]  =  u0 
cos(k(c0t − z)), is used to represent ultrasound waves.

In the presence of viscous media, the acoustic pressure decays with the distance 
as the ultrasound energy is partly transformed into other forms, such as heat. This 
condition, referred to as absorption, can be represented by introducing a complex 
wave number k = (ω0/c0)-ja. The solution of the wave equation is then given as [3].

	

p t z Re p e p Re ej t kz
j t

c
ja z

,( ) = é
ë

ù
û =

-( )
- -
æ

è
çç

ö

ø
÷÷

æ

è
çç

ö

ø
0 0

0
0

0

0w
w

w
÷÷÷ -

é

ë

ê
ê

ù

û

ú
ú
= -

æ

è
ç

ö

ø
÷e p t

c
zaz

0 0
0

0

cos w
w

.

	

(1.8)

The presence of the negative exponential, e-az, represents the attenuation effect.

Fig. 1.2  Generation and 
propagation at velocity c0 
of an ultrasound wave, 
evidencing the pressure 
variation, p(z,t), as a 
function of molecular 
displacement u. The 
wavelength, λ, is also 
indicated

M. Mischi and J. van Laar
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In reality, the wave number also shows frequency dependency, which translates 
into frequency-dependent attenuation, a(ω), and speed of sound, c(ω). The latter is 
referred to as dispersion. These dependencies are defined by the Kramers-Kronig 
relation as

	

k
c

a z
n z

ja z
n z n z

= + ( ) ( )é

ë
ê

ù

û
ú - ( )( )- ( )w p
w w w

0

1

2
tg ,

	

(1.9)

with n real positive number in [1, 2]. In addition to the energy loss due to absorp-
tion, also energy scattering contributes to a decay of the acoustic intensity. 
Altogether, these phenomena are taken into account by the attenuation coefficient, 
a, describing the exponential decay of the acoustic intensity over propagation dis-
tance, z, and frequency, f = ω/2π, as

	 p z p e azf n( ) .= -
0 	 (1.10)

The attenuation coefficient is typically represented in [dB cm−1 Hz−1] by the coef-
ficient adB = 20log10(p/p0). By simple exponential and logarithmic transformations, 
we can write

	 p z p e a zf n( ) ..= -
0

0 115 dB

	 (1.11)

It is clear that attenuation is proportional to the ultrasound frequency. This relation 
has important implications for ultrasound imaging. While higher resolution requires 
imaging at higher ultrasound frequency, leading to a shorter wavelength, λ, the 
achievement of good penetration for the investigation of deeper tissue requires 
imaging at lower frequency. The optimal compromise is application-dependent. 
While a transvaginal probe can operate at frequencies as high as 9 MHz, being in 
contact with the cervix and in close vicinity with the fetus, transabdominal ultra-
sound operates at lower frequencies of 2–4 MHz due to the higher distance from 
the fetus.

The energy carried by ultrasound waves is defined by the acoustic intensity, I, 
which represents the power across a unitary surface [W/m2] at a certain distance z0 
from the transducer, and can be derived as

	
I z

T
pv dt

T

p z t

Z
dt f t kz dt

p

ZT T T

0

2
0 2

0 0
0
21 1

2
2

( ) = =
( )

= -( ) =ò ò ò
,

cos ,p
	

(1.12)

with f0 being the ultrasound frequency, p(z0,t) = p0 cos(2πf0t –kz0), and T = 1/ f0.

1  Ultrasound in Pregnancy – From Ultrasound Physics to Morphological…
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1.1.3  �Ultrasound Echo

Ultrasound echo, which is the basis of echography, is the result of scattering and 
reflection. The medium where ultrasound propagates, in our case tissue, is made of 
a distribution of acoustic scatterers with dimension smaller than the wavelength λ. 
In typical clinical applications, λ is a fraction of a millimeter. Smaller scatterers, 
such as red blood cells (6–8 μm), will produce scattering of the incident ultrasound 
wave in all directions, which is referred to as Rayleigh scattering. For imaging pur-
poses, we are mainly interested in the acoustic intensity that is scattered back to the 
ultrasound transducer, where the electromechanical conversion is performed. This 
scattering phenomenon is referred to as backscattering. The specific distribution of 
scatterers in tissue produces a combination of constructive and destructive interfer-
ences among the scattered waves, producing a typical texture in the reconstructed 
image, referred to as speckle (Fig.  1.3). The presence of speckle is a distinctive 
characteristic of ultrasound images with respect to other imaging modalities.

When the distribution of scatterers is organized according to a macroscopic 
geometry with size larger than λ, the backscattering translates into a reflection phe-
nomenon, referred to as acoustic echo. Reflection occurs at the interface between 
different tissues and permits recognizing the boundary between different anatomi-
cal structures. By imposing the continuity of molecule displacement, u, and pres-
sure amplitude, p, across the interface between tissues with different acoustic 
impedance, Z1 and Z2, the laws regulating reflection and transmission across an 
interface can be derived as

	

p

p

Z Z

Z Z

p

p

Z

Z

r

i

i t

i t

t

i

i

=
-
+

æ

è
ç

ö

ø
÷

=

2 1

2 1

2

2

2

cos cos

cos cos
,

cos

c

q q
q q

q
oos cosq qi t

,
+

æ

è
ç

ö

ø
÷

Z1 	

(1.13)

with θi the incident angle and θt the transmission (refraction) angle [4]. The symbols 
pi, pr, and pt represent the pressure amplitude of the incident, reflected, and transmit-
ted wave, respectively (Fig. 1.4).

Fig. 1.3  Example of 
speckle pattern

M. Mischi and J. van Laar
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The relations in Eq. (1.13) can also be derived for the intensity, I, by using  
Eq. (1.12). The angles between incident, reflected, and transmitted wave are simply 
related according to Snell’s law as

	

cos cos cosq q qi r t ,
c c c1 1 2

= =
	

(1.14)

with θr representing the reflection angle, and with c1 and c2 being the speed of sound 
in tissue 1 and 2, respectively.

1.2  �Ultrasound Imaging Technology

1.2.1  �Ultrasound Beam Profile

Echography is based on the analysis of echoes resulting from the reflection of ultra-
sound short pulses (usually few wave cycles) that are transmitted inside the body. As 
from Eq. (1.13), discontinuities in acoustic impedance, Z, produce echoes at the 
interface between different tissues or organs. Relevant information results also from 
the backscatter generated within the same tissue, which produces a deterministic 
speckle pattern that is specific for a certain tissue structure (Fig. 1.3).

The time delay, Δt, between a transmission event and the arrival time of the 
received echoes provides information about the depth, d, where echoes are gener-
ated (Fig.  1.5). This is based on the assumption of a fixed speed of sound 
c0 = 1540 m/s, such that d = c0Δt/2. The longitudinal resolution is determined by the 
pulse envelope as Nλ/2, with N being the number of cycles in a pulse and λ = c0/f0 
the wavelength for a chosen ultrasound frequency f0.

The lateral resolution is related to the ultrasound beam profile, being a measure 
or the narrowness of the ultrasound beam. It can be derived by applying the Huygens 
principle, integrating over infinite point sources distributed over the emitting sur-
face of the transducer (S in Fig. 1.6). Before applying the Huygens principle, the 

Fig. 1.4  Reflection and 
transmission of an 
ultrasound wave across a 
discontinuity in acoustic 
impedance (from Z1 to Z2). 
The incident, reflected, and 
transmitted pressure are 
indicated with the symbols 
pi, pr, and pt, respectively

1  Ultrasound in Pregnancy – From Ultrasound Physics to Morphological…
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Fig. 1.5  Schematic representation of two echoes produced by two Z (acoustic impedance) discon-
tinuities in water. The distance, d, of the discontinuities from the transducer is related to the delay 
at which the echoes are received. The envelope of the reflected pulses is also shown, which is used 
to represent the echo signal and determines the longitudinal resolution

Fig. 1.6  On the left, application of the Green’s function to calculate the pressure at point r ,  
p( r ,t), generated by a source point on the emitting surface S. By integration of all contribution 
from the emitting surface S, based on the Huygens principle, the pressure field can be determined. 
On the right, integrating on the aperture (Lx) only, the pressure field at distance z from the trans-
ducer, px(x,z), is determined along the lateral direction x. In the far field, this is approximated by a 
sinc(.) function, showing a main lobe of angle θ0 surrounded by side lobes

M. Mischi and J. van Laar
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ultrasound pressure field generated by a point source should be determined. To this 
end, we derive the Green’s function G( r ,t) in space, r x y z= ( ), , , and time, t, which 
solves the 3D wave equation as

	

Ñ ( ) -
¶ ( )

¶
= - ( ) ( )

( ) =
-

æ

è
çç

ö

ø
÷÷

2

0
2

0

1
G r t

c

G r t

t
r t

G r t

t
r

c

,
,

with ,

d d

d

,

44p r
.

	

(1.15)

In Eq. (1.15), d r( )  and δ(t) represent the Dirac impulse in space and time, 
respectively. Therefore, the Green’s function can simply be interpreted as the spa-
tiotemporal impulse response of the system, and the pressure field generated by a 
point source producing harmonic pressure variations at frequency f0 can be derived as

	
p r t G r t r f tr t, , ,( ) = ( )* ( ) ( ), cosd p2 0 	

(1.16)

with the symbol ∗ being the convolution operator. A solution for a homogeneous 
medium is given as

	

p r t Re
p e

r

p f t k r
f t

r

c

,( ) =
é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=
-

-
æ

è
çç

ö

ø
÷÷

0

2

0 0

0
0

4

2
p

p

pcos(( )
4p r

.

	

(1.17)

The pressure field generated by an emitting surface (transducer element) can be 
derived by the Rayleigh-Sommerfeld integral. As shown in Fig. 1.6, this corresponds 
to the application of the Huygens principle integrating over a distribution of point 
sources (x0,y0) over the emitting surface. The contribution of each point source is 
described as in Eq. (1.17). For a detailed derivation of the integral solution for a 
rectangular emitting surface, the reader may refer to [5].

Assuming a large distance from the emitting surface, Fraunhofer approximation 
for the so-called far field (λz ≫ x2 and lz x 0

2 ), the pressure field can be approxi-
mated as the 2D Fourier inverse transform of the emitting geometry. For a rectangu-
lar geometry, the Fourier integral can be separated in the two directions, x0 and y0, 
referred to as aperture and elevation. With focus on the aperture, represented by the 
rectangle 
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with Lx being the transducer aperture (length in the x0 direction) and z the distance 
from the transducer (depth). The Fourier integral in Eq. (1.18) formulates the trans-
formation from the variable x0 to x/λz. In the far field, x/z can be approximated by  
sin θ0, where θ0 indicates the aperture angle with respect to the longitudinal axis z. 
The first zero-crossing of the sinc(.) function in Eq. (1.18), given for x/z = λ/Lx, pro-
vides the size of the ultrasound main lobe, which increase for increasing depth as 
described by the angle θ0 = sin−1(λ/Lx). Often the −6 dB full width of the lobe, typi-
cally referred to as full-width half-maximum (FWHM), is derived from Eq. (1.18) 
and used to derive the lateral resolution as

	
FWHM

x

= 1 206. .
lz
L 	

(1.19)

It is clear that an increase in the central frequency f0 of the ultrasonic pulses, result-
ing in shortening of the wavelength λ = c0/f0, produces an increase in both lateral 
and axial resolution. However, higher frequencies are also subjected to higher atten-
uation. Improved lateral resolution can also be obtained by extending the aperture 
of the transducer. Unfortunately, many applications, such as transvaginal ultra-
sound, pose important constraints to the transducer size, which must be kept limited.

Until now we have discussed only on the main lobe described by the first zero-
crossing of the sinc(.) function in Eq. (1.18). However, the additional side lobes, 
described by the following zero-crossings for x/z > λ/Lx, should also be taken into 
account as they may introduce image artifacts from directions that are different 
from the main lobe. Reduction in the side lobes can be obtained by apodization, i.e., 
by replacing the rectangular function in Eq. (1.18) with a window function, such as 
Hamming or Hanning [6], which is designed to reduce the side lobes at the cost of 
a lower lateral resolution. This approach is similar to the windowing approach used 
in time series, but then in space domain.

The provided description of the beam profile is valid in the so-called far-field 
approximation, i.e., for large distance from the transducer. As shown in Fig. 1.7, two 
different zones can be distinguished depending on the distance from the transducer, 
namely, the Fresnel and Fraunhofer zone. For a circular transducer of radius R, the 

Fig. 1.7  Pressure field (maximum pressure p0) produced by a circular transducer of radius R as a 
function of distance z from the transducer. The last zero and the focal distance are also indicated, 
along with near (Fresnel) and far (Fraunhofer) zone
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transition between the Fresnel and Fraunhofer zone occurs at distance z = R2/λ from 
the transducer. This distance also corresponds to the maximal lateral resolution 
(approximately equal to R) and natural focus of the beam, showing the maximum 
amplitude because of the constructive interference of the emitted waves. As the 
depth increases, in the Fraunhofer zone, the lateral resolution decreases.

1.2.2  �Array Beam Forming

Up until now we have described the pressure field generated by a single element. 
However, in order to create images, arrays of multiple elements are typically 
employed. In an array transducer, the emitting surface of aperture Lx is made of a 
finite number of rectangular elements adjacent to each other, each with aperture w. 
The distance d between the centers of the adjacent elements is constant and is 
referred to as pitch. The emitting surface can thus be described as a train of Dirac 
impulses of period d, convolved with a rectangular function of size w. The pressure 
field can then be derived according to Eq. (1.18) by application of the inverse 
Fourier transform, F (.), as
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with m the element index in the array and x0 representing the x direction on the array 
transducer surface. By application of the sampling theorem, Eq. (1.20) yields
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(1.21)

which represents the pressure field along the x direction at distance z from the trans-
ducer array. With the approximation x/z = u = sin(θ), Eq. (1.21) can also be inter-
preted as the pressure field for varying azimuth angle θ.

Two main components characterize the derived pressure field. First, the profile 
given by each individual element, sinc(πwλu), which introduces a smooth weighting 
function over the full pressure profile because of the small element size, w. Secondly, 
the train of functions, sinc[πLx(u-mλ/d)/λ], caused by the full array of length Lx 
sampled at the spatial period d (pitch). These spectral replicates, resulting from the 
application of the sampling theorem, introduce artifacts in the image which are 
referred to as grating lobes (Fig. 1.8). In fact, at angles θg = sin–1(mλ/d), the main 
lobe along with the side lobes is repeated, investigating directions in the field of 

1  Ultrasound in Pregnancy – From Ultrasound Physics to Morphological…



12

view that are different from the intended main lobe. To avoid grating lobes in the 
field of view, the condition d < λ must be met.

The possibility of driving independently the individual array elements facilitates 
the implementation of apodization functions for reduction of the side lobes by using 
different weights for the signals driving different elements. It also permits electronic 
steering the beam in different directions, as well as electronic focusing at distances 
that differ from the natural focus of the array, as shown in Fig. 1.9.

These features are implemented by delay-and-sum operations, adjusting the 
delays between signals corresponding to different transducer elements. In particu-
lar, steering by an angle θs is obtained by introducing delays Δt between adjacent 
elements such that

Fig. 1.8  Schematic 
representation of the 
pressure field produced by 
a linear array transducer 
(aperture = Lx and 
pitch = d) along the lateral 
direction. Because of 
spatial sampling, the sinc(.) 
function in Fig. 1.6 is 
repeated multiple times, 
forming the so-called 
grating lobes at angles that 
are multiple of θg

Fig. 1.9  Schematic representation of electronic steering and focusing by adjusting the delay 
between the pulses fired from different channels. The reader should notice that this procedure can 
be implemented both in transmit and receive
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Beam steering is also reflected on the grating lobes, which will be steered by the 
same steering angle θs. To avoid grading lobes appearing in the field of view up to a 
maximum (unrealistic) steering angle θs = 90 degrees, the array pitch must meet the 
condition d < λ/2. Both electronic focusing and beam steering can be implemented 
in transmit and/or receive.

In fact, up until now we have discussed the amplitude of the transmit pressure 
profile only. The same description applies to the receive profile. Eventually, an 
echographic image results from the convolution of the full impulse response of the 
imaging system (transmit and receive) with the impulse response characterizing tis-
sue backscatter and attenuation. This impulse response should also account for the 
pressure variations in time domain, which depend on the transmitted ultrasound 
pulse [5].

Following a similar derivation as for Eq. (1.18), the full spatiotemporal response 
of an ultrasound imaging system, accounting for the aperture direction only, can be 
described as
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Fig. 1.10  Different types of array transducers and corresponding fields of view
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In Eq. (1.23), hx(x,z,t) represents the full spatiotemporal impulse response of the 
ultrasound imaging system along the aperture, with v(x0,t) the displacement velocity 
of the emitting surface of the transducer element, typically corresponding to a 
Gaussian pulse of amplitude v0 and bandwidth σω. To obtain the full response of the 
system in 3D, an additional convolution with the impulse response along the eleva-
tion direction, hy(y,z,t), should be included.

Ultrasound imaging is realized by covering a field of view with different scan 
lines (Fig. 1.10), determined by the main lobe. Depending on the array size and 
shape, these lines can be realized by activating adjacent subsets of elements along 
the array or by steering the beam in different directions (phased array). For each 
line, one pulse is transmitted and the resulting echoes received back. In order not to 
confuse reflections coming from different pulses, one pulse is transmitted only after 
all reflections from the previous pulse have been received, at least up to the maxi-
mum depth that should be investigated. Therefore, the frame rate of ultrasound 
imaging is inherently limited by the speed of sound. As an example, imaging a 
frame made of 200 lines that are 10-cm deep will take 26 ms, leading to a frame rate 
of about 38 Hz.

Nowadays, enabled by increased computational power, ultrafast ultrasound 
imaging solutions are becoming available that allow increasing the frame rate up to 
several thousands of frames per second, beyond any other imaging modality [7]. To 
this end, plane or diverging waves are transmitted in order to insonify the full field 
of view. The image is then reconstructed in receive only, typically resulting in poor 
quality. In order to improve the image quality, several transmissions can be per-
formed at different steering angles, and the resulting echo images combined. This 
approach is referred to as spatial (coherent) compounding [8]. As a result, the frame 
rate is reduced by the number of transmissions that are used for compounding.

Compounding can also be used in standard focused imaging for further improv-
ing the image quality and reducing speckle noise. Not only spatial compounding, 
but also frequency compounding can be used for improving the image quality. 
Improvement of the image quality can also be obtained by the implementation of 
the so-called synthetic aperture [9]. Instead of firing and receiving with each ele-
ment (or subset of elements), all elements are used to receive the echoes from the 
transmission of each separate element in sequence. All the resulting low-quality 
images are then combined together to form a high-quality image. Depending on the 
exact implementation, the frame rate is similar to that of standard focused beam-
forming, but with the advantage of focusing in transmit and receive over the full 
field of view.

1.2.3  �Ultrasound System

The ultrasound system implements the full imaging chain from ultrasound electro-
mechanical conversion to image formation and display. The main elements of an 
ultrasound system are the following:
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•	 The ultrasound transducer, executing the electromechanical conversion.
•	 The frontend that interfaces the transducer, comprising the transmit/receive 

amplifiers and switches, along with the analog-to-digital (and vice versa) con-
verters. The receive amplifiers implement time gain compensation (TGC), i.e., 
the received signals may undergo varying amplification depending on their time 
delay, corresponding to the depth where the received echoes are originated. This 
allows compensating for ultrasound attenuation, described by Eq. (1.10).

•	 The scanner, comprising the transmit/receive beamformers along with the master 
clock timing the full system.

•	 The backend, comprising the core processing unit that controls the image forma-
tion chain, along with the digital scan converter and post-processing units for 
image analysis, enhancement, compression, and display.

•	 The user interface, comprising display and keyboard, along with all the control-
lers for adjusting the image acquisition parameters and for optimizing the image 
quality. A number of predefined settings are usually available to the user.

Several steps are taken in order to generate an image, and the sonographer is 
given the opportunity to optimize the image quality by adjusting a number of param-
eters through specific controllers to be properly set. This requires experience and 
understanding of the imaging chain. The main steps leading to the formation of an 
ultrasound image are summarized hereafter.

The transducer elements convert the received echoes in electrical signals, which 
are amplified according to the gain and TGC controllers. Besides the receive ampli-
fiers, controlled by gain and TGC, the user can also set the pressure amplitude of the 
transmitted pulses, which also determines the amplitude of the received echoes. 
There are however limitations to the amount of acoustic intensity (see Eq. (1.12)) 
that can be delivered to tissue, determined by safety guidelines [10].

The amplified signals form scan lines through the delay-and-sum operation. The 
selected elements and delays determine the scan line direction and focus (Fig. 1.9). 
The latter, as well as the spanned field of view, can be determined by the user. Each 
line investigates a different direction in the field of view. On each line, 

Fig. 1.11  Logarithmic 
compression mapping the 
dynamic range onto 256 
gray levels

1  Ultrasound in Pregnancy – From Ultrasound Physics to Morphological…



16

demodulation is applied in order to extract the signal envelope, whose amplitude 
relates to the echo intensity (Fig. 1.5). As shown in Fig. 1.11, log-like compression 
is then applied to the demodulated lines in order to map the dynamic range of the 
signal onto a range that is quantized in 256 gray levels, coded by 8 bits rendered by 
the display [11].

For proper image visualization, it is important to set the dynamic range such that 
the resulting image is well distributed over the 256 gray levels, not too dark and not 
too bright (signal saturation) [11]. Additional refining can be applied in post-pro-
cessing, by the employment of nonlinear maps that allow improving contrast in the 
required intensity range.

Digital images, either for display or for storage, are based on a Cartesian grid of 
pixels. Therefore, especially for diverging scan lines (due to either beam steering or 
probe convexity, as shown in Fig. 1.10), these must be interpolated in order to form 
a regular Cartesian grid. This operation, referred to as scan conversion, also deter-
mines the image resolution. Especially for diverging scan lines originating from 
convex probes, scan conversion dominates the lateral resolution over the beam pro-
file described in Eq. (1.18).

The formed image, as discussed in Sect. 1.1.3, presents a typical speckle texture 
which results from the interference of the backscattered ultrasound waves (Fig. 1.3). 
The statistics of the speckle amplitude is well described by a Rayleigh probability 
density function (PDF) as
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with A being the signal envelope and σ the mean scattering strength [12]. In spite of 
the statistical description of its amplitude, the speckle presents a deterministic pat-
tern that depends on the spatial distribution of the (tissue) scatterers and on the 
adopted ultrasound frequency. This pattern moves along with tissue, giving the 
opportunity to image and analyze tissue deformation and strain by speckle-tracking 
techniques [13].

The fundamental modes in which an ultrasound system is used are distinguished 
in A-mode, M-mode, and B-mode, which define the generation of a single scan line, 
the dynamic (repeated) generation of the same scan line, and the generation of mul-
tiple scan lines to form a (gray-level) image, respectively. M-mode ultrasound is 
especially indicated for fast-moving structures, such us cardiac structures, which 
must be investigated at higher rate (temporal resolution). Nowadays, B-mode ultra-
sound is also extended to 3D by using either electromechanical wobbling probes or 
electronic steering with matrix probes (Fig.  1.12). Although the achieved frame 
rates and resolutions are lower than by standard B-mode ultrasound, 3D visualiza-
tion may provide a valuable aid for the identification of fetal abnormalities. 
Moreover, spatio-temporal image correlation (STIC) post-processing allows for the 
reconstruction of ultrasound volume loops at B-mode frame rates by acquisition of 
a 2D sweep or “stitching” together multiple 3D acquisitions [14]. In the future, the 
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development of ultrafast imaging presented in Sect. 1.2.2 is expected to provide new 
solutions to achieve 3D real-time imaging of the fetus at high volume rates.

1.3  �Ultrasound Doppler Technology

1.3.1  �Doppler Principle

Doppler ultrasound is among the fundamental operational modes of an ultrasound 
system, next to A-mode, M-mode, and B-mode ultrasound. It is based on the 
Doppler effect, a frequency shift that is induced in the received signal by moving 
scatterers. This principle can be used to estimate blood velocity as shown in 
Fig. 1.13.

A transmitter (Tx) and a receiver (Rx) are integrated in the same probe. The 
intersection between the transmit and receive beams forms the sample volume, 
which contributes to the received signal. Blood flow velocity in the sample volume 
produces a shift in the received ultrasound frequency. This is induced by blood cells 
in motion (flow), which act as moving scatterers. The focal depth, determining the 
position of the sample volume, is determined by the angle β, which depends on the 
transducer geometry and, in some systems, can be mechanically adjusted.

A continuous ultrasound wave is transmitted by the Tx element at frequency ft. 
The moving scatterers introduce a frequency shift in the reflected wave, such that 
the received frequency, fr, at the receiver Rx is given as

Fig. 1.12  Transabdominal 
3D ultrasound image 
showing the face of a fetus. 
Details of the facial 
morphology are 
clearly visible
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with vb being the blood velocity and c0 the speed of sound. The angle α represents 
the angle between ultrasound beam and blood velocity. For small β and vb << c0, the 
frequency shift Δf = ft − fr, known as the Doppler frequency, can be approximated as
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Therefore, since the transmit frequency, ft, and ultrasound speed, c0, are known, the 
Doppler frequency Δf is directly proportional to the blood velocity, vb. Interestingly, 
one can notice that the Doppler frequency for physiological blood velocities falls 
within the human audibility range. Therefore, a loudspeaker is typically used as 
interface of a Doppler system; gynecologists and sonographers are trained to inter-
pret the produced sound tones in relation to blood velocity and turbulence.

Equation (1.26) clearly shows the dependency between Doppler frequency and 
incident angle α. This makes estimation of the absolute velocity restricted to a few 
applications where α is known. In fact, such controlled condition does not easily 
occur in pregnancy monitoring.

Fig. 1.13  Use of the ultrasound principle for measuring blood velocity. A transmitter (Tx) and a 
receiver (Rx) are used to transmit and receive ultrasound. The angle α determines the angle 
between blood velocity (vb) and the transmitted ultrasound beam, while the angle β determines the 
angle between the transmitted and received beams. The received signal integrates all the backscat-
ter occurring in the sample volume
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1.3.2  �Receiver Architecture

To calculate Δf, the received signal is demodulated by a mixer that multiplies it by 
the transmitted signal. With St  =  atcos(2πftt) being the transmitted signal and 
Sr = arcos(2πfrt) the received signal, the product of St by Sr gives St·Sr = atar[cos(2π 
(ft −  fr)t)  +  cos(2π(ft  +  fr)t)]/2. After suppressing the high-frequency component 
(ft + fr) by low-pass filtering, the remaining signal is the Doppler signal at frequency 
∆f = ft – fr.

The lower frequencies in the Doppler signal typically represent noise introduced 
by slow tissue motion rather than blood flow. These low-frequency components, 
which deteriorate the Doppler estimates, are referred to as clutter. Clutter may for 
instance be caused by the cyclic pulsation of vessel walls which are included in the 
sample volume. In order to suppress clutter noise from the received signals, a high-
pass filter, referred to as clutter filter (or wall filter), is applied to the signals.

A limitation of the presented demodulation strategy resides in the inability to 
distinguish forward from reverse blood flow. To make this distinction feasible, a 
quadrature demodulation architecture is used instead. This allows separating the 
in-phase, SI, from the quadrature, SQ, component of the received signal by the 
employment of two mixers multiplying the received signal by the transmitted signal 
and by a 90-degree phase-shifted version of it. From the generated SQ and SI com-
ponents, a complex Discrete Fourier Transform (DFT) of the received echoes can be 
computed. The resulting frequency spectrum may be asymmetric, resulting in sepa-
rable positive and negative frequency shifts. This output signal is usually visualized 
by a time-frequency representation, referred to as spectral Doppler. Alternatively, a 
two-channel filter can be employed to separate measurements of reverse (toward the 
probe) and forward blood (away from the probe) flow velocities. These two compo-
nents, in the audio range, can be directed to the left and right channels of an audio 
headset.

1.3.3  �Continuous and Pulsed Doppler

The system described until now is referred to as Continuous Wave (CW) Doppler. 
Ultrasound is continuously transmitted and all the signal backscattered in the focal 
region (sample volume) is continuously received and analyzed.

CW Doppler is however limited by the fact that it does not allow discriminating 
different moving scatterers, but integrates all the signal originating from the sample 
volume, which is determined by the focus. This limitation is overcome by Pulsed 
Wave (PW) Doppler, typically performed with standard array transducers. Each ele-
ment of the transducer is used both as a transmitter and a receiver, similar to ultra-
sound imaging; a time sequence of short pulses is transmitted and received at the 
maximum pulse repetition frequency (PRF). The maximum PRF is determined by 
the investigated depth. It is therefore possible to define a specific target area where 
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the Doppler shift is estimated. To this end, a time window corresponding to a depth 
interval of interest, referred to as gate, is positioned to extract the segment of 
received signal where the Doppler shift is estimated (Fig. 1.14). This can also be 
performed manually by positioning a so-called “caliper” on the image. This proce-
dure can be repeated automatically for multiple depth intervals and the decomposed 
signals processed concurrently into different channels. This technique, referred to 
as multi-gate pulsed Doppler, enables reconstructing the velocity profile by combi-
nation of the estimated Doppler shift from each channel.

Similarly to standard ultrasound imaging, the achievement of a high longitudinal 
resolution with PW Doppler requires the transmission of short pulses. However, 
together with the pulse duration, also the gate duration determines the longitudinal 
resolution, which translates into the length of the sample volume. The lateral resolu-
tion, which translated into the width of the sample volume, is determined by the 
beam profile as described in Sect. 1.2.1. In general, the sample volume of a PW 
Doppler system is much smaller than that of a CW Doppler system.

Figure 1.15 shows a representation of how a PW Doppler system works. A train 
of pulses is transmitted at maximum PRF, given by c0/2d, where d is the maximum 
depth to be investigated. As the target scatterer moves between two pulses by ∆d 
(∆d = vb/PRF), the subsequent received pulse (from a certain gate) is time-shifted 
by 2∆d/c0. The received pulses are represented in the so-called fast-time domain. As 
the full system is synchronized at the PRF, only one sample is taken from each 
pulse. The collection of all these samples forms the output signal, represented in the 
so-called slow-time domain. It can be easily proven that the frequency content of the 
output signal reconstructed in the slow-time domain corresponds to the frequency 
shift derived with Eq. (1.26). It is therefore equivalent to the Doppler signal.

Compared to CW Doppler, PW Doppler comprises a sampling process, which 
may therefore introduce aliasing effects. In order to avoid this, the Nyquist relation 
PRF > 2Δf must be satisfied, where Δf is the peak Doppler frequency associated 

Fig. 1.14  Schematic representation of a pulsed wave (PW) Doppler system with the positioning 
of a gate between the near and far wall of a vessel
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with the peak blood velocity, vp. Recalling Eq. (1.26), the Nyquist limit translates 
into the following condition for the maximum observable velocity without aliasing:
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Equation (1.27) shows that for a shorter distance d, and hence a higher PRF, the 
maximum detectable velocity without aliasing is higher. Lower transmit frequency, 
ft, also results in higher vp. However, with reference to Eq. (1.26), lower ft reduces 
the sensitivity of the Doppler system.

1.3.4  �Velocity Estimators

In CW Doppler, the velocity estimation is directly derived by Eq. (1.26) from the 
Doppler frequency spectrum, Δf, estimated after quadrature demodulation. The 
same approach can be taken with PW Doppler based on the slow-time domain. As 
already discussed, a time-frequency representation of the signal (spectral Doppler) 
can be displayed that represents the velocity distribution in the sample volume.

PW Doppler signals can also be processed in the fast-time domain; the delay 
between subsequent reflected pulses, which can be determined by the peak of their 
cross-correlation, is related to the blood velocity, vb, as

Fig. 1.15  Schematic representation of a pulsed Doppler system. Pulses are fired at the pulse rep-
etition frequency (PRF) and their echoes (fast time) sampled at the PRF. With the scatterer moving 
at velocity vb away from the transducer, each received echo will show a delay equal to 2vb/PRFc0, 
corresponding to the displacement of the scatterer by a distance ∆d = vb/PRF. The resulting sam-
pled signal in the slow time shows a frequency corresponding to the Doppler shift
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As c0 and the PRF are known, the estimation of ∆t by cross-correlation allows esti-
mating the blood velocity, vb, by Eq. (1.28) [15].

Because of spectral broadening, the estimated Doppler spectrum is not concen-
trated in a single spectral line, but is rather distributed over several frequencies, 
corresponding to a velocity distribution. Several factors contribute to spectral broad-
ening. An important contribution to spectral broadening derives from the size of the 
sample volume, which integrates different velocity amplitudes (in the presence of 
velocity gradients) and directions (in the presence of turbulence). An additional 
contribution is given by velocity accelerations or decelerations during the time seg-
ment (ensemble) adopted to estimate the Doppler spectrum. Geometric spectral 
broadening also occurs which is determined by the size and geometry of the trans-
ducer element. Application of the Huygens’s principle results in the integration of 
Doppler shifts that derive from a distribution of incidence angles, α, which show 
slight variation depending on the size of the transducer.

Although spectral broadening also carries diagnostic information, e.g., in rela-
tion to turbulence, in several applications the estimation of a single value of velocity 
is preferred. To this end, dedicated strategies have been developed to estimate the 
mean frequency of the Doppler spectrum, Δfm, which translates into mean velocity 
by Eq. (1.26). As proposed by Kasai et al. [16], Δfm corresponds to the first statisti-
cal moment of the Doppler power spectrum, Sff(f), which can be estimated by the 
autocorrelation function of the Doppler signal, R(t), and its derivative, R’(t), calcu-
lated at time t = 0. Therefore, Δfm can be derived as
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Loupass et al. proposed an implementation of Kasai’s autocorrelator based on the 
in-phase and quadrature components, SI and SQ [17]. Given an ensemble of N sub-
sequent samples from a certain depth, Δfm can be estimated as
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1.3.5  �Color and Power Doppler

The PW Doppler technique can be generalized in 2D by applying multi-gate PW 
along multiple scan lines generated with an array transducer. Obviously, the result-
ing PRF will decrease by the number of scan lines. This solution allows investigat-
ing an entire region of interest. The estimated velocities are mapped into a 
color-coded image; therefore, this Doppler imaging technique is referred to as color 
Doppler. Forward and reverse flows are represented in red and blue colorization, 
respectively. The absolute velocity is then given by the color luminance. The color 
coding is displayed in a color bar next to the color Doppler image (Fig. 1.16).

The color Doppler image is typically superimposed on the B-mode image. This 
solution, referred to as duplex scanner, allows simultaneous visualization and inves-
tigation of morphology and flow, aiding the sonographer with positioning the trans-
ducer and with the interpretation of the images. Unfortunately, a duplex scan also 
results in further reduction of the frame rate. The lower PRF may result in the pres-
ence of aliasing, which shows as abrupt transition from red to blue in the color 
maps. When higher frame rates are required, the region for the estimation of color 
Doppler can be limited to a smaller box, referred to as Doppler box, defined on the 
display.

Low sensitivity and high noise levels make color Doppler unsuitable to visualize 
and investigate low blood flow and perfusion. Power Doppler imaging was devel-
oped to circumvent this problem [18]. Different from color Doppler, where the 
Doppler frequency shift, Δf, is color coded, with Power Doppler the color scale 

Fig. 1.16  Color Doppler image of the middle cerebral artery of a fetus in the second trimester. A 
box is visible that defines a specific region of interest to derive and display the color Doppler 
image, overlaid over the B-mode image (duplex scanner). A gate is also positioned and displayed 
on the image where spectral Doppler is estimated. The time-frequency representation of the esti-
mated spectral Doppler is displayed on the bottom
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relates to the total power of the Doppler signal. By integrating the contribution of all 
the Doppler frequency components, power Doppler shows increased sensitivity to 
low velocities. Moreover, power Doppler is not subject to aliasing artifacts. On the 
other hand, any information on the flow direction is lost. Power Doppler is espe-
cially useful for analyzing low flow in small vessels and tissue perfusion, where the 
blood volume fraction is low. Typical applications in pregnancy monitoring relate to 
the assessment of fetal brain perfusion.

1.4  �Ultrasound in Pregnancy

1.4.1  �First Trimester Scans

The Yolk sac, with a size of about 2 mm, is the first structure that is visible with 
ultrasound at five-week gestation. This is an extra-embryonic membrane within the 
chorionic cavity that plays a role in early embryonic blood supply. Next to the Yolk 
sac, an echogenic area is also visible which corresponds to the embryo (Fig. 1.17). 
At 6–7 week gestation, the embryo shows a growth in size to over 4 mm [19]. The 
size of the embryo is determined by the crown-rump length (CRL), as shown in 
Fig. 1.18. At this stage, also the amniotic sac becomes visible on ultrasound as a thin 
membrane. The inner of this membrane, referred to as amnion, encloses the amni-
otic cavity, containing the amniotic fluid and the embryo. The outer membrane, the 
chorion, forms the chorionic cavity that contains both amnion (surrounding the 
embryo) and yolk sac (Fig. 1.17). On the outer side, the amniotic sac is connected 
to the yolk sac. Irregularities in the shape and size of these structures may suggest a 
higher risk of abnormalities.

Fig. 1.17  Transvaginal ultrasound images showing a longitudinal (left side) and transversal (right 
side) view of a chorionic cavity including both yolk sac and embryo. The dashed line on the longi-
tudinal view represents the plane shown in the transversal view
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At this early stage, the key investigation to assess the condition of the embryo 
makes use of ultrasound in order to find the heartbeat and determine the heart rate. 
PW Doppler can be employed with the caliper (gate), determining the sample vol-
ume, positioned on the embryo in order to generate a spectral Doppler trace 
(Fig. 1.19). This way, any moving structure of the embryonic heart contributes to 
the signal.

The main ultrasound determinant of the risk of chromosomal abnormalities, such 
as trisomy 13, 18, and 21, is the nuchal translucency (NT, see Fig. 1.20). This is 
measured between 11 and 14 weeks of gestation. NT larger than 3.5 mm indicates a 
higher risk of chromosomal defects, fetal death, and major fetal abnormalities [20]. 
Values larger than 6 mm may also indicate fetal hydrops, i.e., the accumulation of 
excessive fluid in some compartments of the fetus [21]. The NT measurement is 
combined with the CRL assessment, which provides an accurate estimation of the 
gestational age, and the evaluation of the presence and size of the nasal bone 
(Fig. 1.20). Altogether, along with the mother’s age and the maternal serum concen-
tration of PAPP-A and Beta-HCG, these measurements are used to feed a predictive 
model for risk assessment [22]. All these early-stage measurements require high 

Fig. 1.18  Crown-rump 
length (CRL) measurement 
in an embryo of 7 weeks

Fig. 1.19  Spectral 
Doppler with the caliper 
(gate) positioned on the 
cardiac structures of a 
7-week embryo
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resolution; therefore, they are performed by high-frequency (7–9 MHz), transvagi-
nal ultrasound.

1.4.2  �Second Trimester Scans

Week 14 marks the start of the second trimester. We are no longer referring to an 
embryo, but rather to a fetus that is rapidly developing in its anatomy and function.

All organs are developing, bones are getting stronger, and fat is starting to accu-
mulate. At this stage, it is possible to evaluate the fetal development and condition 
in detail by transabdominal ultrasound. Such evaluation is usually carried out 
around 19 weeks of gestation throughout the so-called structural ultrasound scan. 
This extensive examination combines several measurements that are detailed in the 
following.

1.4.2.1  �Fetal Biometry

B-mode transabdominal ultrasound with a convex array is usually employed to 
image and measure the fetal organs. A number of measurements are performed and 
the results compared to the normal values, indicating good development of the fetus. 
The main measurements are listed hereafter:

•	 Biparietal diameter (BPD): this is the maximum distance across the scalp in the 
lateral direction (Fig. 1.21).

•	 Head circumference (HC): this is the approximation of the head circumference 
made by an overlaid ellipse (Fig. 1.21). Additional structures in the fetal head are 
also evaluated, such as the anterior and posterior horns, the choroid plexuses, the 
cavum septum pellucididum (CSP), the fetal cerebellum, and the cisterna magna 
(Fig. 1.21).

Fig. 1.20  Fetal ultrasound images presenting a measurement (left image) of nuchal translucency 
(NT) with evaluation of the nasal bone (NB), along with a measurement (right image) of crown-
rump length (CRL) to assess the gestational age
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Fig. 1.21  Ultrasound images of the fetal head (orientation: nuchal side on the left and frontal side 
on the right) across two different planes. On the left image, the measurement of the biparietal 
diameter (BPD) and the head circumference (HC) are shown, along with the measurement of the 
lateral ventricle and the cavum septum pellucididum (CSP). Several structures can also be recog-
nized in this view that are reported on the image. On the right image, a different plane is shown that 
is adopted for the measurement of the cerebellum and the cisterna magna

Fig. 1.22  Ultrasound view 
for the measurement of the 
abdominal circumference 
(AC). In this view, the 
stomach, the umbilical 
vein, the aorta (Ao), and 
the spine are also visible

Fig. 1.23  Ultrasound 
image showing the 
measurement of the 
femoral length (FL)
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•	 Abdominal circumference (AC): the abdominal circumference is estimated by 
overlying an ellipse on the largest abdominal contour (Fig.  1.22). Additional 
structures visible and evaluated in this plane are the stomach and the umbilical 
vein (Fig. 1.22).

•	 Femur length (FL): the length of the femoral bone (Fig. 1.23) is an important 
determinant of the fetal growth. Typical values at 20 weeks are between 30 and 
35 mm. Shorter FL may indicate an elevated risk of abnormalities.

Next to these listed measurements, and the evaluation of the fetal heart presented 
in the next sections, other structures and organs are also investigated during a struc-
tural scan. Figure 1.24 shows two ultrasound images where kidneys, bladder, gall-
bladder, and diaphragm are visualized and evaluated. Typically, as shown in 
Fig. 1.25 and Fig. 1.26, spine, face (nose and lips), and limbs are also investigated, 
along with the bowel. The sex of the fetus can also be determined at this stage of 
gestation (Fig. 1.26).

Fig. 1.24  Ultrasound images showing the evaluation of other organs and structures, namely, kid-
ney, bladder, liver, gallbladder (GB), stomach, and diaphragm. The heart is also visible

Fig. 1.25  Ultrasound images showing spine, nose, and lips (upper lip) of a fetus

M. Mischi and J. van Laar



29

The localization of the placenta is an additional test that is performed during the 
structural scan. Its position in relation to the cervix is especially relevant in the third 
trimester. In case the placenta covers the cervix, a cesarean section will be performed.

1.4.2.2  �Morphological Evaluation of the Fetal Heart

The circulatory system of a fetus differs from that of an adult in several aspects. 
Blood is oxygenated through the placenta, which exchanges oxygen and nutrients 
with the maternal blood. The umbilical vein carries oxygenated blood from the pla-
centa to the right ventricle of the fetus via the inferior vena cava. Along this path, 
the semifunctional liver is bypassed through the ductus venosus. From the right 
atrium, oxygenated blood goes into the right ventricle as well as into the left atrium 
through the foramen ovale (Fig. 1.27). This results into two blood streams, produced 
by the right and the left ventricle. These streams join back in the aorta, as the pul-
monary artery is connected to the aorta via the ductus arteriosus, which shunts blood 
away from the pulmonary circulation into the aorta. Deoxygenated blood is carried 
back to the placenta via the umbilical arteries, which are wrapped around the umbil-
ical veins. In conclusion, both ventricles support the systemic circulation, while the 
transpulmonary circulation is bypassed.

Fig. 1.26  Ultrasound images showing sex and limbs of a fetus

Fig. 1.27  Ultrasound 
image showing a 
4-chamber view of the 
fetal heart. Several 
structures are visible: right 
ventricle (RV), left 
ventricle, right atrium 
(RA), left atrium (LA), 
foramen ovale (FO), 
intraventricular septum 
(IVS), moderator band, 
descending aorta (Ao), the 
spine, and the pulmonary 
veins (PVs)
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The morphology of the fetal heart can be evaluated in different ultrasound views. 
The most common, highlighting all the main structures and compartments, is the 
4-chamber view (Fig.  1.27). All the 4 cardiac chambers can simultaneously be 
observed in this view, including the foramen ovale and the descending aorta. The 
moderator band is often used to guide toward a proper view of the right ventricle. 
Besides the blood pools, this view also permits assessment of the wall thickness in 
order to diagnose cardiac hypertrophy. To evaluate the ventriculoarterial connec-
tions, the left and right cardiac outflow tracts are visualized (Fig. 1.28). The final 
plane to assess the cardiac outflow is the so-called three-vessel view (Fig. 1.29). In 
this view, the size and position of the pulmonary artery the aorta and the superior 
vena cava are evaluated.

For a better assessment of the vascular structures, the aortic arch is also investi-
gated (Fig. 1.30a). This view presents all three neck and head vessels, which depart 
from the aortic arch. Heart and spine are also visible. Further investigation involves 
a functional assessment by Doppler ultrasound and, in particular, color Doppler 

Fig. 1.28  Ultrasound image showing the fetal left ventricle outflow tract (LVOT) and the right 
ventricle outflow tract (LVOT). The aortic valve (AV) and pulmonary valve (PV) are also visible

Fig. 1.29  Fetal cardiac 
outflow assessment by the 
three-vessel view (3VV), 
showing the superior vena 
cava (SVC), the aorta (Ao), 
and the pulmonary 
artery (PA)
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analysis. Figure 1.30b shows a corresponding color Doppler image of the aortic 
arch, but several relevant views are used for functional assessment of the fetal heart 
(next section).

The morphological analysis of the fetal heart, followed by the functional analysis 
(next section), are especially intended to diagnose congenital heart disease. This is 
the most common cause of major congenital anomalies, with a live birth incidence 
of about 1% [23]. In almost 10% of cases, congenital heart disease is associated 
with chromosomal abnormalities, such as trisomies [24].

1.4.2.3  �Functional Evaluation of the Fetal Heart

The cardiac function is mostly associated with the produced blood flow. Therefore, 
Doppler ultrasound is the leading technology for functional assessment of the fetal 
heart. In particular, color Doppler is employed in a transversal plane to assess the 
interventricular septum for defects (Fig. 1.31a). Visualization of the blood flow in 
the different chambers is obtained by a 4-chamber view (Fig. 1.31b), similar to that 

Fig. 1.30  Ultrasound view of the aortic arch in B-mode (a) and color Doppler (b)

Fig. 1.31  Color Doppler of a fetal heart in a transversal view (a), with focus on interventricular 
septum, and in a 4-chamber view (b), with visualization of the flow pattern across all the four 
chambers
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adopted for the morphological investigation. This view is especially used to evalu-
ate possible turbulence and regurgitation from the cardiac valves. The total flow or 
cardiac output can instead be evaluated through the aortic arch view (Fig. 1.30b). 
More detailed assessment of the flow generated by the two ventricles can be obtained 
by separate visualization of the outflow tracts of the right and left ventricles.

Next to flow and perfusion measurements, the cardiac function can directly be 
assessed in terms of wall motion. This can be investigated by M-mode ultrasound, 
which is especially suitable to analyze fast-moving structures like the myocardium 
and the cardiac valves. M-mode ultrasound can also be used for accurate assessment 
of the fetal heart rhythm.

1.4.2.4  �Liquor Volume

Estimation of the liquor volume is a fundamental step in the assessment of fetal 
condition. The amniotic fluid that bathes the fetus is necessary for its proper devel-
opment. The average volume increases with gestational age, peaking at 0.4–1.2 L 
during the third trimester (weeks 34–38 of gestation) [25]. An inadequate volume of 
amniotic fluid is referred to as oligo- or anhydramnios (depending on the amount of 
amniotic fluid). This condition, often caused by impaired placental function, can 
result in poor development of the lungs and the limbs. On the contrary, an excess of 
amniotic fluid, referred to as poly-hydramniosis, may be associated with possible 
genetic disorders, fetal abnormalities, such as esophageal or duodenal atresia or 
maternal disease such as (gestational) diabetes.

Besides a subjective assessment of liquor volume, favored by the hypoechoic 
nature of the amniotic fluid, some indexes are generally adopted for a quantitative 
assessment. The maximum deepest pool (MPD) is the longest distance between the 
fetus or placenta and the uterine wall (Fig. 1.32). The amniotic fluid index is an 

Fig. 1.32  Assessment of 
liquor volume by 
measurement of the 
maximum deepest 
pool (MPD)
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additional measure of liquor volumes that accounts for multiple sides. This is calcu-
lated as the sum of the deepest pool in each quadrant of the uterus. These values are 
used to evaluate the liquor volume as compared to normal values.

1.4.3  �Third Trimester and Labor

1.4.3.1  �Cardiotocography (CTG)

As shown in Fig. 1.33, cardiotocography (CTG) is the simultaneous and continuous 
recording of fetal heart rate and uterine contractions [26]. It is performed antena-
tally to determine the optimal timing and mode of delivery in pregnancies that are 
considered at risk. It is also performed during labor to monitor the fetal condition 
[27]. Indeed, it has been shown that the use of the CTG is associated with a decrease 
in neonatal mortality [28].

Continuous CTG recording of the fetal heart rate makes use of Doppler ultra-
sound, where the ultrasound probe is positioned on the maternal abdomen and 
maintained in a fixed position by means of an elastic belt (Fig. 1.33). The main 
contribution to the extracted Doppler signal originates from moving cardiac struc-
tures rather than flow. The resulting Doppler signals often show poor signal-to-noise 
ratio, making the interpretation of the Doppler recordings very challenging. This is 
especially severe for premature deliveries, high body-mass-index (BMI) mothers, 
multiple pregnancies, and during the second stage of labor [26]. As a result, the 
extracted Doppler signal requires dedicated algorithms for robust estimation and 
interpretation of the heart rate [29]. This usually requires the definition of a time 
window where an average heart rate is estimated.

Despite the employment of advanced signal processing, frequent periods of sig-
nal loss can still be observed due, e.g., to fetal movements or probe displacement. 
As a result, the Federation of Gynecology and Obstetrics (FIGO) recommends to 
only use signals for clinical analysis when no more than 20% of the recording time 

Fig. 1.33  Cardiotocographic registration by means of Doppler ultrasound and tocography to esti-
mate fetal heart rate and the uterine contractions
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is lost [30]. This situation demands continuous attention by the operators who need 
to optimally reposition the probe as soon as signal loss is experienced.

In order to increase the field of view and achieve better coverage of the cardiac 
structures, the CTG Doppler probe is commonly made of multiple single-element 
transducers of 1 cm in diameter, which are all connected together. A typical geom-
etry consists of a central element surrounded by multiple elements in a circular 
fashion [31, 32]. The resulting sample volume is rather large, whereas the pressure 
field is complex and irregular [26]. Recent research has shown the development of 
systems for continuous tracking of the fetal heart, with the aim of reducing the need 
for operator interaction as well as for improving the signal quality while minimizing 
the acoustic energy transferred to the fetus [33, 34].

1.4.3.2  �Umbilical Cord Doppler

Ultrasound Doppler of the umbilical artery (Fig. 1.34) may be used for monitoring 
the fetal well-being in the late second and third trimester of pregnancy. It is espe-
cially indicated in case of fetal growth restriction, along with the Doppler investiga-
tion of the middle cerebral artery (Fig.  1.16). Abnormal blood flow through the 
umbilical artery or the middle cerebral artery in case of fetal growth restriction is a 
sign of placental insufficiency.

As shown in Fig. 1.34, spectral Doppler is adopted for this investigation, fol-
lowed by analysis of the resulting waveform in order to extract a number of param-
eters of diagnostic value. The most common parameters are the ratio between 
systolic and diastolic velocity, the pulsatility index, calculated as the difference 
between peak systolic velocity and end diastolic velocity normalized with respect to 
the time-averaged velocity, and the resistive index, calculated as the difference 

Fig. 1.34  Color Doppler map and spectral Doppler (below) of the umbilical cord
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between peak systolic velocity and end diastolic velocity normalized with respect to 
the peak systolic velocity. Color or power Doppler can be used to guide for correct 
positioning of the caliper (gate) to perform spectral Doppler analysis. In case of 
abnormal umbilical artery Doppler, further investigation is indicated in order to 
assess the degree of placental insufficiency.

1.4.3.3  �Fetal Orientation

Toward the end of pregnancy, most fetuses move into a position that favors delivery. 
Normally, the presentation of a fetus is head first (cephalic presentation), facing 
backward (occiput anterior) with face and body angled to one side and the neck 
flexed. Abnormal presentations include breech and shoulder, depending on the ana-
tomical part facing the birth canal through the pelvic bones. The fetal position may 
also be abnormal, e.g., when the fetus is facing forward (occiput posterior).

In preparation for delivery, the exact fetal presentation and position must be 
determined, such that proper decision making can be made in relation to the proce-
dure adopted for delivery. Therefore, transabdominal ultrasound imaging can be 
performed in order to determine the fetal position relative to the spine and the pelvic 
bones. Dedicated image analysis tools have also been developed that can assist with 
the interpretation of the ultrasound images and assessment of the fetal descent 
through the birth canal [35].

1.4.3.4  �Cervical Length

The cervix undergoes a progressive shortening toward labor, ending with its open-
ing during labor, which favors the passage of the baby’s head through the birth canal 
into the vagina. Therefore, the measurement of the cervical length is a fundamental 
test in order to assess the risk of preterm delivery. A cervical length that is shorter 
than 30 mm before 34 weeks of gestation is considered to be associated with an 

Fig. 1.35  Measurement of 
the cervical length by 
transvaginal ultrasound

1  Ultrasound in Pregnancy – From Ultrasound Physics to Morphological…



36

increased risk of preterm labor [36]. As shown in Fig. 1.35, assessment of the cervi-
cal length is usually performed by (high-frequency) transvaginal ultrasound imag-
ing, as the probe can directly be positioned on the side of the cervix, producing 
high-quality and high-resolution images.
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2.1  �Introduction

Telemedicine is generally considered to be a promising approach to improve the 
quality and uniformity of clinical care, at national and international levels [1–7]. 
The application of telemedicine is also seen as a valid strategy to decrease the costs 
of medical services, for example, supporting organisational paradigms such as the 
hub-and-spoke model [8–10], where services are delivered into networks consisting 
of a main specialised centre (hub), complemented by several secondary territorial 
centres (spokes). The origins of telemedicine can be traced back to the first experi-
ments in transmitting biomedical signals and data via telegraph, followed by the use 
in situations where remote assistance was the only way to obtain medical support, 
such as long sea crossings or space travels [11]. At present, a wide range of different 
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applications falls under the telemedicine “umbrella”, for example, home monitoring, 
remote surgical operations or second opinion consultations. This variety is reflected 
in the difficulty in providing a single definition of telemedicine, resulting in broad 
sets of definitions coined over the years. In 1971, the first formal and published defi-
nition characterised telemedicine as “the practice of medicine without the usual 
physician-patient confrontation...via an interactive audio-video communications 
system” [12]. The World Health Organization has adopted in 1998 the following 
broad description [13]: “The delivery of health care services, where distance is a 
critical factor, by all healthcare professionals using information and communica-
tion technologies for the exchange of valid information for diagnosis, treatment and 
prevention of disease and injuries, research and evaluation, and for the continuing 
education of health care providers, all in the interests of advancing the health of 
individuals and their communities”. Afterwards, many attempts have followed to 
delineate more precisely scopes and boundaries of telemedicine, up to arriving to 
104 different peer-reviewed definitions compared in a study in 2007 [14], mapping 
different contexts and perspectives. The difference between telemedicine and tele-
health was also analysed, indicating the former as focusing mainly in the clinical 
aspects, such as the delivering of clinical care and medical professional education, 
while the latter as a wider area covering a greater number of application, not neces-
sarily clinical, such as the sharing of administrative information or social aid 
[15, 16].

From a technological point of view, three main categories can be considered, 
according to the types and configurations of transmission [17, 18]:

•	 Store and forward: also called asynchronous, it consists in the acquisition of the 
data during an examination followed by their further sharing with healthcare 
professionals.

•	 Real-time: also called synchronous, it enables the live interaction between the 
operators during the clinical evaluation.

•	 Remote monitoring: where sensors and devices are used to track and control 
health and vital signs of a person, in a synchronous or asynchronous way.

The technological choices must follow the needs expressed by the clinical use 
cases. For example, in situations of second opinion related to standard diagnostic 
techniques (e.g. laboratory tests, radiological images), store and forward should be 
preferred, while remote monitoring is widely used for patients affected by chronic 
diseases. On the other hand, real-time telemedicine is required when the communi-
cation between the remote participants has to be continuous. Typical cases are all 
the operator-dependent diagnostic techniques, which require a specific competence 
of the operator who performs the examination as a necessary condition to obtain a 
correct diagnosis. Real-time transmission, though, can be costly and generally 
needs dedicated networks and/or commercial solutions, which are often proprietary, 
closed and expensive [19].

In this chapter, we will illustrate CRS4 Telemed, the telemedicine application we 
developed, and its evolution in over 10 years. The system is based on low-cost hard-
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ware and open-source software and enables a specialist to guide a remote examina-
tion in real-time, supporting the direct interaction between the clinicians involved.

2.2  �CRS4 Real-Time Telemedicine System

CRS4 Telemed is a system that allows two clinicians, a sonographer and a specialist, 
to collaborate remotely in performing a real-time ultrasound examination on a 
patient. The sonographer can be an operator with no experience in the specific field 
or a specialist who needs to discuss a particular case with a remote colleague. The 
sonographer operates the ultrasound device, while the specialist is geographically 
far from the patient. The system enables the communication between the doctors via 
a VoIP system and allows the specialist to watch, using a pc or a tablet, the audio/
video streams of the ultrasound machine and of a webcam that films the scene of the 
examination. In this way, the specialist can instruct the sonographer on how to per-
form the examination as if they were in the same room with the patient. CRS4 
Telemed has been developed using COTS (Commercial Off the Shelf) technologies, 
which can facilitate the adoption of the system in centres with limited economic 
resources. The steps to require and perform a teleconsultation are depicted in 
Fig. 2.1. A series of videos on CRS4 YouTube channel illustrates the functioning of 
the system.1,2

2.2.1  �Evolution

Three main milestones can be identified in the development of the system:

•	 First prototype (2009): it was a proof-of-concept that demonstrated the feasibil-
ity of supporting effectively the audio/video communication with a prototype 
obtained assembling hardware not specifically designed for that kind of applica-
tions. In this version, both the specialist and the sonographer were equipped with 
a notebook. These initial tests revealed a bandwidth requirement of 700 kb/s, 
proving that the prototype and the network infrastructure at that time could sup-
port an audio/video streaming with quality sufficient to perform a diagnosis [20].

•	 Complete desktop platform (2010–2014): we evolved the prototype developing a 
more sophisticated version composed of two softwares: a Mac OS X desktop 
application, used by the specialist to watch the streams and talk to the sonogra-
pher, and an iOS app for the sonographer to communicate with the specialist. In 
addition, a central server is responsible for handling the communication between 
the clinicians and for the configuration of the system. This version was clinically 
tested in paediatric cardiology [21] and in emergency department [22].

1 https://www.youtube.com/watch?v=9ynwy28kKnQ
2 https://www.youtube.com/watch?v=xSfEtZKyyHc
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•	 Mobile connectivity and augmented reality (2014–2018): in this phase we moved 
the implementation to mobile technologies with the development of an Android 
application for tablets and smartphones. This version of the system was success-
fully tested in conditions of total mobility using the Long Term Evolution (LTE) 
networks. We also explored the use of augmented reality [23] to test if the state-
of-the-art technologies in this field could improve the communication between 
the clinicians. Our use case considered the effect in the interaction when the 
sonographers were equipped with smartglasses, enabling them to see a pointer 
guided by the specialist to indicate some regions of interest.

2.2.2  �Video Acquisition and Streaming

As mentioned before, the specialist guides the sonographer by watching two 
streams: the output of the ultrasound machine and the video of a network camera 
that records the scene, as shown in Fig. 2.2.

The first stream allows the specialists to see the ultrasound machine output as if 
they were performing the examination, while the camera video helps the specialist 
to control several external factor, such as how the operator is moving the probe, the 

Fig. 2.1  The clinical process supported by the system includes all the steps to require a telecon-
sultation, perform it and compile a structured report about the examination
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exact position of the patient and their external look. These streams are generated by 
COTS hardware: a video encoder and a network camera. The first one is a device 
that acquires, optionally digitises (in case of devices with analog output), encodes 
and transmits the output from the ultrasound machine. The acquisition depends on 
the output supported by the ultrasound (VGA, composite, HDMI, etc.): older 
machines usually use composite output, while modern ones support HDMI. The 
network camera is a simple video camera, like those used for video surveillance, 
that streams the scene of the exam. Both types of devices can support, depending on 
the model chosen, different encoding formats (M-JPEG, MPEG, H.264, H.265), 
resolutions (640 × 480, 720p, 1080p, etc.) and streaming protocols (RTSP, HTTP). 
For our purpose, the images, especially those coming from the encoder, must guar-
antee a quality sufficient to the specialist to make a diagnosis.

2.2.3  �Architecture

CRS4 Telemed has been designed to support the hub-and-spoke collaboration 
model implemented via a variety of network configurations, such as wide geograph-
ical areas between different clinical centres connected via the Internet or different 
departments within the boundaries of the same hospital’s LAN. The system is logi-
cally divided in three main subsystems, as depicted in Fig. 2.3:

•	 Ultrasound station: it is the subsystem that asks a remote teleconsultation and 
transmits the audio/video streams.

Fig. 2.2  Desktop interface of the specialist application
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•	 Specialist station: it is the component supporting the specialist to perform the 
teleconsultation.

•	 Server: it is the core of the system, responsible for the configurations (e.g. users, 
patients, streaming devices, ultrasound stations) and for the VoIP communica-
tions establishment and handling.

2.2.3.1  �Ultrasound Station

The ultrasound station is associated to the room where the examination is held. It 
has both hardware and software components, which are as follows:

•	 Network audio/video encoder: it is the device connected to the ultrasound 
machine that exposes the audio/video stream in the network.

•	 Network camera: it is the camera that films the scene. Depending on the model 
used, it is possible to control the framing and the zoom remotely.

•	 Sonographer mobile application: it is the application used by the sonographer to 
request and perform a teleconsultation. During the teleconsultation, the sonogra-
pher uses the smartphone to talk via VoIP to the specialist and to see the output 
of the camera, in order to be aware of what the specialist is viewing. It was first 
implemented as an iOS app and then developed for Android.

The system can support several ultrasound stations, enabling to require telecon-
sultation from different examination rooms.

2.2.3.2  �Specialist Station

The specialist station is the hw/sw component, enabling the specialist to respond to 
requests for consultations and to see the streams of the examination. The software 
application presents a list of pending teleconsultation requests, which can be 
selected by the specialist to initiate the audio and video communication with the 
sonographer. The first version of the software was a Mac OS X Desktop application, 
which also allowed the specialist to move or zoom the framing of the camera, if the 
ultrasound station supported the feature.

Fig. 2.3  Components of CRS4 Telemed
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The second version has been implemented for Android tablets (Fig. 2.4), also 
adding new features, such as video resizing and network camera stream deactiva-
tion. This feature is particularly important to reduce the required bandwidth in case 
of poor connection or to hide the patient identity when the system is used for edu-
cational purposes. In the last version of the system, the specialist station also 
includes the possibility of indicating regions of interest to be displayed to the opera-
tor as augmented reality indications.

2.2.3.3  �Server

The server has two main subcomponents. The first is responsible for the audio com-
munication, as it is an IP PBX and VoIP gateway, that is a system which establishes, 
manages and terminates audio communications using the Session Initiation Protocol 
(SIP) [24]. The second component is the Application Server, managing the main 
configurations of the system, which are:

•	 User Authentication: the sonographers and the specialists are registered into the 
system in order to login into the apps. This section configures the accounts of the 
user. The protocol used for authentication is oAuth [25].

•	 Stations Management: for every Ultrasound Station, this section contains the 
parameters of the video encoder and the network camera, such as the IP address, 
the URL of the stream and the authentication configuration to access the stream.

•	 Scheduling: this section contains data related to teleconsultations, such as the 
sonographer and the specialist involved, the transmitting ultrasound station and 
the status of the teleconsultation (e.g. requested, established and terminated).

•	 SIP: this section contains the configuration of the SIP server and users. Each user 
of the system has an associated account for the IP PBX server, which is neces-
sary to route the voice communication correctly.

•	 Augmented Reality: this section configures parameters for the augmented 
reality.

Fig. 2.4  Specialist’s 
mobile app
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2.2.3.4  �Workflow

The basic flow to establish and perform a teleconsultation is shown in Fig. 2.1.

	1.	 The sonographer logs into the app on the smartphone.
	2.	 The sonographer creates a teleconsultation request by selecting the Ultrasound 

Station from the list provided by the Application Server and entering the patient’s 
demographic data. After that, the waiting for the specialist’s answer starts.

	3.	 The specialist logs into the app in the tablet, which displays the list of telecon-
sultation requests. By selecting one of them, the app shows the teleconsultation 
page where the user can initiate the VoIP call. When the sonographer answers the 
call in the app the examination can proceed.

	4.	 The specialist’s app displays the video streams and the teleconsultation is held 
by the clinicians until one of them finishes the VoIP communication.

	5.	 After the examination, the specialist can compile a report with the outcomes.

2.2.3.5  �Augmented Reality

The clinical trials, better described in Sect. 2.3, showed that the system is able to 
support an efficient interaction during teleconsultation, but also highlighted that 
communication occasionally can suffer from a lack of visual assistance, especially 
with sonographers not experienced in the specific clinical domain. In some cases, 
the specialists try to indicate a particular region of the screen, even knowing that the 
sonographer can’t see their movements. These experimental observations motivated 
us to explore the usage of Augmented Reality (AR) to improve communication 
between the clinicians. AR adds virtual objects to the real world by overlaying them 
in real-time to the view of smartphones, PC or smartglasses. The position of the 
super-imposed object can be obtained by considering different factors, such as geo-
location indications [26, 27], sensors on the device, such as accelerometer, magne-
tometer and gyroscope [27] or by using markers [28]. The markers are distinctive 
images that are added to the scene, and can be recognised by the device’s camera 
and used to calculate the position of the virtual object in the space.

We applied a marker-based augmented reality solution to our system, introduc-
ing two markers on the sides of the screen of the ultrasound and one near its key-
board, as shown in Fig. 2.5. In the AR solution, the sonographer uses smartglasses3 
(which makes the virtual objects appear on the lenses) instead of the smartphone. 
The markers on the sides of the screen have been added to enable the specialist to 
attract the operator’s attention on precise regions of the ultrasound images. In fact, 
when the specialist selects a point in the ultrasound machine output displayed on 

3 The model used is the Android based Epson Moverio BT-200
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the tablet, an indicator appears on the smartglasses of the remote operator, superim-
posed to the indicated region. The marker associated to the keyboard has been 
added as, during the initial tests, we noticed that sometimes inexperienced sonogra-
phers could not find the required buttons in the ultrasound keyboard. We have intro-
duced, then, an additional marker for the keyboard, adding to the specialist’s app 
the ability to select a button. When the specialist indicates a button in the tablet app, 
represented in Fig. 2.6, a pointer appears in the sonographer’s smartglasses at the 
position of this button on the keyboard. The complete AR setup is represented in 
Fig. 2.7.

The tests showed that the solution was considered as valuable by users, but some 
critical points were also highlighted. First of all, some additional training is neces-
sary to use smartglasses properly, because the positioning of the operator with 
respect to the markers is not intuitive. Secondly, for each user, a specific calibration 
of the device is necessary to overcome some alignment problems between the user’s 
eyes, the virtual objects and the real world. Finally, great attention has to be paid to 
the ergonomic factors during the device selection, as the smartglasses were consid-
ered uncomfortable, especially if used for a long time.

Fig. 2.5  An examination 
performed using the AR 
solution. Notice the 
markers on the side of the 
display and near the 
keyboard
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2.3  �Evaluating the System: Clinical and Economical 
Perspectives

In this section, we describe the use cases in which the system has been applied and 
successfully tested. A preliminary cost-benefit analysis for the use of the system in 
a regional context will be also presented.

Fig. 2.6  Specialist tablet view. (Reproduced from Del Rio et al. 2018)

Fig. 2.7  Augmented reality setup
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2.3.1  �Paediatric Cardiology

Paediatric Cardiology is the use case which inspired the creation of the system, 
thanks the collaboration with Dr Roberto Tumbarello, Dr Sabrina Montis and the 
staff of the Paediatric Cardiology Unit at Azienda Ospedaliera “G.  Brotzu” in 
Cagliari (Italy) [20, 21]. Paediatric Cardiology is a perfect example of an operator-
dependent diagnostic technique, as in this field, without a specific expertise, even an 
expert cardiologist could have difficulties in performing effectively the sonographic 
examination. In 2013, we conducted a clinical trial in the Italian region of Sardinia, 
to test the system in the support of specialised consultation for Congenital Heart 
Diseases (CHD), the most common congenital disorders, affecting 6 ‰ to 13‰ 
[29–32] live-born children. In face of a population of about 1,600,000 citizens in a 
territory of 24,090 km2, with a high presence of CHDs, in Sardinia, there is only one 
specialised centre in Cagliari. Many children from other parts of the island with 
suspected CHD need to be transferred to the main centre to perform a specialised 
examination, increasing the required intervention times to start a treatment. The 
clinical trial protocol considered 42 cases of children between 6 and 18 years, two 
expert paediatric cardiologists and an operator acting as sonographer. Each patient 
was examined twice: the first time by one of the specialists who remotely guided an 
operator with the telemedicine system, the second time directly by the other special-
ist. The two clinicians performed the same number of ultrasound examinations, 
alternating traditional and teleconsultation approach and guiding the same sonogra-
pher in the second case. The study showed a 97.6% agreement rate on diagnosis 
obtained using the teleconsultation system or directly examining the patient.

Total mobility tests were also performed in an educational context, during the 
2nd Course of Fetal Echocardiography and Perinatal Cardiology (2016) in Cagliari: 
in this case, the system was used to connect the conference venue with the ultra-
sound station at Brotzu Hospital. Both clinicians were specialists in Paediatric 
Cardiology and used the system to perform a collaborative diagnosis on very diffi-
cult cases. The screen of the specialist’s tablet was projected in the conference room 
to enable the students to follow each step of the examination. In order to respect the 
privacy of the patients, the network camera was obscured. The tests showed that the 
system is able to support effectively a remote consultation also using LTE networks.

2.3.2  �Point-of-Care Ultrasonography

A second study [22] was guided by Dr Floriana Zennaro and involved the Radiology 
and the Emergency Departments of the Institute for Maternal and Child Health 
IRCCS Burlo Garofolo. The study aimed to evaluate the diagnostic accuracy of the 
Point-of-care Ultrasonography (POC US) examination of children accessing the 
emergency department, when performed by paediatricians under the remote guid-
ance of expert radiologists.
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The study was conducted on a cohort of 52 children aged from 0 to 18 years old, 
with a total of 170 examinations, and involved 4 paediatric consultants and 5 paedi-
atric radiologists. The protocol envisaged three ultrasound examinations for each 
case. The first was carried out by a paediatrician in the emergency room telemen-
tored by a senior paediatric radiologist using the telemedicine system (TELE POC); 
the second was performed by the same senior radiologist (UNBLIND RAD) and the 
third by a second senior paediatric radiologist who didn’t know the results of the 
first two examinations (BLIND RAD).

The research showed one false negative when comparing TELE POC vs 
UNBLIND RAD and two false negatives contrasting TELE POC with BLIND 
RAD. The inter-rater agreement [33] among the 9 clinicians that participated in the 
study reached an excellent value of 0.97. The quality of the transmission was never 
rated as poor by the users.

2.3.3  �Preliminary Cost-Benefit Analysis

The system was also evaluated from an economical point of view, with a prelimi-
nary cost-benefit analysis of the potential savings in transfer costs, supposing the 
system was applied to the Paediatric Cardiology use case at a regional level, for 
1 year, in Sardinia [34]. The study simulated the creation of a regional hub-and-
spoke network, with Brotzu Hospital acting as the hub providing specialised consul-
tancy, via the telemedicine system, to 8 centres in the main hospitals of the island. 
The study considered two situations: emergencies, when the patient is transferred 
from a secondary health facility to the main centre by ambulance, and routine visits, 
when the patient reaches the specialised centre by private car. The analysis took into 
account the real data for the consultations on CHD required by other structures to 
Brotzu in 2012. To calculate the costs without the telemedicine system, we took into 
account the costs of the vehicle (fuel + fixed costs) and, in case of emergencies, the 
cost of the ambulance team. We also evaluated the amount of money that could have 
been saved by avoiding unnecessary transportation, that is, the ones where the 
patient was negative for CHD. The study estimated potential savings of about 66% 
of the transfer costs, showing that the effects are significant even considering only a 
very specific component of the potential savings.

2.4  �Discussion

The initial motivations for the prototype development included the need of a solu-
tion with limited costs, working in absence of dedicated network and based on tech-
nologies, easy to be integrated with the hospital technical equipment. When we 
started the feasibility study, a typical teleconference system enabling a real-time 
interaction had a cost about ten times higher than our system [34, 35]. In the years, 
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the offer of telemedicine services increased and improved; therefore, at present, a 
series of solutions could be analysed and compared to our system to evaluate the 
most suitable to the requirements on the specific use case [36–38].

During its evolution, the system has been updated and adapted to exploit the 
potential offered by the technological advancement and to improve its usability, 
according to the positive and negative feedback from the clinical personnel. For 
example, the first prototype suffered from ergonomics issues in the sonographer 
station, as the used notebook was difficult to place close to the ultrasound machine. 
Also the audio communication presented some issues, since the sonographer had to 
use the internal microphone of the notebook and this sometimes caused interference 
with the audio of the ultrasound and the audio returns from the specialist side. These 
problems were solved with the adoption of smartphone and headphones, which did 
not affect the mobility of the sonographer during the exam. Some doubts were also 
related to the usage of tablets for diagnostic purpose, but, at present, several studies 
have reported that the use of tablet displays does not decrease the accuracy of radio-
logical diagnosis [39, 40], even if there is still a gap in the legislation to be covered 
regarding the adoption of mobile devices in radiology.

The issues associated to the usage of the system are not only technological: for 
example, from a legal point of view, using the system in a real clinical environment, 
all the chain of responsibilities should be clarified to trace the boundaries between 
the responsibility of the operator performing the examination and the remote spe-
cialist [41].

The results obtained by this prototype demonstrated its validity as an economic 
solution to improve the quality of care quality and the coverage of specialised diag-
nostic service across a regional territory. The next natural steps to translate the 
results of our research to clinical practice are the certification and the industrialisa-
tion of the prototype, which require the presence of an industrial partner. This could 
be, for example, an additional service that companies producing ultrasound 
machines could offer to their customers. As the whole platform is available open-
source, also a public institution, like the government of a Region, or a network of 
health institutions could start from the results obtained, certifying the solution and 
using the platform. From the research point of view, further trials of the platform 
wouldn’t improve significantly the evidence of the validity of the system, and, 
therefore, our next plans don’t include further developments or validation studies 
without a partner interested in covering the last mile to move the system to a real 
clinical environment.

2.5  �Conclusion

In this chapter, we presented CRS4 Telemed, a real-time telemedicine system to 
perform collaborative ultrasound examinations at a distance. The system is based on 
open-source software and low-cost technology, it was clinically validated in two 
specific disciplines—paediatric cardiology and emergency radiology—and can be 
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used in all the diagnostic procedures which require direct consultation during the 
examination of a video stream. The system can also be used for educational pur-
poses, avoiding the presence of many students in an examination room during a 
clinical evaluation. After a 10-year evolution, the research activities connected to 
the system are finished and, at present, the platform is ready for an industrialisation 
process, which could be carried on by private or public subjects, with our direct sup-
port. The system is available open-source at https://github.com/crs4/crs4-telemed
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3.1  �Developmental Origins Hypothesis

Intrauterine growth restriction (IUGR) is defined as an estimated fetal weight or an 
abdominal circumference below the 3th or 10th percentile for gestational age, in the 
base of a normal or abnormal fetal or maternal Doppler [1]. The term IUGR pres-
ents a prevalence of 1–3% and is correlated to higher mortality and morbidity than 
appropriate for gestational age fetuses (AGA) [2, 3].

Large epidemiologic studies have long suggested a strong correlation between 
IUGR and increased cardiovascular and metabolic events in adulthood. In particu-
lar, a new “developmental” model (Barker’s theory) postulates that people, who 
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develop chronic disease, including coronary heart disease, stroke, high blood 
pressure, and type 2 diabetes, grow differently from other people during fetal life 
and childhood [4]. This could be connected to the concept of developmental plastic-
ity, a critical window during development when a system is plastic and sensitive to 
nutritional, hormonal, and metabolic environment. For most organs and systems, 
the critical period occurs in utero and may give rise to a range of different physio-
logical or morphological states in response to different conditions during develop-
ment [5]. The ability of a human mother to nourish her fetus is partly determined by 
her own experience in utero, and her childhood growth, so the human fetus responds 
not only to conditions at the time of the pregnancy, but also occurring potentially 
several decades before [6]. In presence of a malnutrition, the fetus responds through 
some adaptations, increasing allocation of energy to the development of brain, 
heart, and adrenal glands, reducing blood flow in other organs, and producing life-
long changes in blood pressure and metabolism [9]. Well-established animal models 
have shown this mechanism by induced hypoxic-ischemia, maternal diabetes, and 
fetal exposure to glucocorticoids [7]. Furthermore, the “thrifty phenotype hypothe-
sis”, a constellation of metabolic and vascular fetus adaptations, could help to 
explain the link between IUGR and obesity, hypertension, osteopenia, diabetes, and 
cardiovascular disease (CVD). A central role seems to be played by insulin 
resistance.

Low birth weight (LBW) infants are known to have adipocytes that demonstrate 
increased numbers of insulin receptors, glucose uptake, and basal and insulin-
stimulated insulin receptor substrate 1-associated phosphatidylinositol 3-kinase. 
Moreover, these adipocytes are resistant to insulin, resulting in a state of anti-
lipolysis. An increased central adiposity is associated with increased free fatty acids, 
which stimulate the production of cholesterol and glucose, which in turn decrease 
insulin sensitivity. As fat deposition progresses in the liver, permanent structural 
hepatic changes occur. This molecular “switch” in insulin signaling “protects” the 
LBW fetus and neonate by promoting the storage of fat [8]. Finally, the “catch up 
growth theory”, an undernutrition in utero followed by rapid childhood growth, 
seems to affect the onset of later diseases. Developing a high body mass during 
childhood, these children may have a disproportionately high-fat mass in relation to 
lean body mass, which will lead to insulin resistance, establishing a back and for-
ward circle [9].

3.2  �Impact of CVD

CVD is the leading cause of mortality, morbidity, and hospitalization, in both gen-
ders, and accounted for over 17,9 millions of deaths worldwide [WHO 2017]. CVD 
evolves gradually and may interfere with quality of life, physical disability, and 
lifelong dependence on health services and medications. Diabetes type II is recog-
nized as an independent risk factor for CVD even when under glycemic control, and 
endothelial cell (EC) dysfunction is associated with both diabetes and the 
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pathogenesis of CVD [10]. Moreover, in the USA, obesity has more than doubled 
among children and adolescents increasing actually from 5% to 17.6% [Atlanta GA, 
Centers for Disease Control and Prevention. Prevalence of Obesity Among 
U.S. Children and Adolescents (Aged 2–19 Years) National Health and Nutrition 
Examination Surveys, NHANES (1976–1980 and 2003–2006). 2009] and hyperten-
sion in childhood is a strong risk factor for later cardiovascular disease and is con-
sidered an indication for lifestyle modifications. Establishing the mechanisms 
linking these factors, already in the prenatal period, it could provide essential 
insights and inform novel therapeutics. An appropriate perinatal selection of IUGR 
fetuses at risk of future CVD (gestational age at onset or fetoplacental Doppler 
changes) would allow an efficient approach to detect those cases who may later 
benefit from early screening and intervention in infancy [11].

The most important cardiovascular markers in the neonatal or pediatric age are 
some fetal echocardiographic measures (diastolic function, strain parameter), mean 
blood pressure, endothelial function, urinary proteinuria, weight gain, and the pro-
portion of body fat mass.

3.3  �Endotelial Dysfunction

Vascular endothelial cells line the inner surface of blood vessels and act as a meta-
bolically active monolayer, which is constantly exposed to both biochemical and 
biomechanical stimuli. It is well established that the transduction of these stimuli, 
alone or in combination, by the endothelium determines the physiology or pathol-
ogy of the cardiovascular system. As a major regulator of local vascular homeosta-
sis, the endothelium maintains the balance between vasodilatation and 
vasoconstriction, inhibition and promotion of the proliferation and migration of 
smooth muscle cells, prevention and stimulation of the adhesion and aggregation of 
platelets, as well as thrombogenesis and fibrinolysis [12]. The term “endothelial 
dysfunction” was coined by Furchgott and Zawadzki who discovered that acetyl-
choline requires the presence of the endothelial cells to relax the underlying vascu-
lar smooth muscle. Mediators responsible for dilatator mechanisms include agents 
such as nitric oxide (NO), prostacyclin, and endothelium-derived hyperpolarizing 
factor substances [13].

Given the vast range of vasoprotective effects of NO, the term endothelial dys-
function generally refers to reduce NO bioavailability, through decreased eNOS 
expression, cause of an enhanced vasoconstrictor responses, and an impaired 
endothelium-dependent vasodilation, respectively.

Although endothelial dysfunction occurs in many different disease processes, 
oxidative stress can be identified as a common denominator. ROS play a central role 
in vascular physiology and their overproduction is of particular relevance to vascu-
lar pathologies [14]. Endothelial cells in areas of high shear stress have shown an 
increase in lipid uptake, monocyte adhesion, apoptotic rates, and revealed distinc-
tive patterns of upregulated gene expression not previously observed in EC, such as 
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the endothelial isoform of nitric oxide synthase (ecNOS), the inducible isoform of 
cyclooxygenase (COX-2), and manganese-dependent superoxide dismutase. These 
enzymes can exert potent antithrombotic, anti-adhesive, anti-proliferative, anti-
inflammatory, and antioxidant effects both within the endothelial lining and in inter-
acting cells, such as platelets, leukocytes, and smooth muscle (“athero-protective 
gene hypothesis”) [15].

The mechanisms that relate fetal programming to LBW and endothelial dysfunc-
tion in utero are still largely unknown and different explanations have been pro-
posed [9]. Many animal studies have described the presence of vascular structural 
alterations in the offspring of protein and caloric restricted dams, such as remodel-
ing of aorta and mesenteric arteries, capillary rarefaction, increased arterial stiff-
ness, alterations in the composition and structure of the extracellular matrix of the 
vessels, decreased angiogenesis and an increase of blood pressure [16]. Moreover, 
the role of glucocorticoids in the fetal programming seems to be important; in the 
condition of placenta insufficiency there is a decreased activity of 11b-hydroxysteroid 
dehydrogenase-2, which metabolizes in the placenta corticosterone to the inert 
11-dehydrocorticosterone, which would in turn increases access of endogenous 
maternal cortisone to the fetus and leads to the LBW and elevate blood pressure into 
adult life [17].

Alterations in maternal lipid profile may also be involved in the process. Aortas 
from spontaneously aborted fetuses and from died children aged 1–13 years of 
hypercholesterolemic mothers contained significantly more and larger fatty streaks 
than those of normocholesterolemic mothers, demonstrating an involvement of lipid 
peroxidation and the influence of the maternal environment over the onset of athero-
sclerosis. Oxidized low-density lipoproteins (OxLDL) interference with intracellu-
lar signaling pathways regulating the expression of many genes that determine the 
recruitment of cells, their proliferation and differentiation, metabolic and secretory 
activity, and death. OxLDL is rapidly internalized by macrophages within athero-
sclerotic lesions, which leads to foam cell formation, a key event in fatty streak 
formation, and also promotes further LDL oxidation. An imbalance between oxi-
dants/antioxidants resulting in higher oxidative stress has been suggested as one of 
the mechanisms responsible for the detrimental effect of high-fat diet [18]. Figure 3.1 
summarizes it.

The fetal insulin hypothesis offers an alternative explanation for the consistent 
association between impaired fetal growth, insulin resistance, and the link with 
hypertension and vascular disease. Monogenic diseases determined insulin resis-
tance could result in low insulin-mediated fetal growth in utero as well as insulin 
resistance in childhood and adulthood. Angiogenesis could be impaired in insulin-
resistant fetal tissues where the generation of nitric oxide might be deficient, result-
ing in impaired vasodilation, hence decreased blood flow, a poorly developed 
capillary circulation in vulnerable organs and a deficient endothelium-dependent 
vasodilation [19].
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3.4  �Vascular Function Evaluation

It is well known that atherogenesis begins in early life. Autopsies on children 
(2–15 years of age) who died from circumstances unrelated to CVD report fatty 
streaks and fibrous plaque lesions in the aorta, suggesting arterial wall damage may 
begin during childhood [20]. Recently, the improvement of imaging in health care 
allowed studying and analyzing the structure, thickness, and functionality of several 
vessels. It is well known that carotid intima-media thickness (cIMT) and arterial 
stiffness are clinical indicators of atherosclerosis and increased CVD in the general 
adult population and in at-risk individuals [21]. More recently, ultrasound-based 
measurement of aorta intima-media thickness (aIMT) in children has become a fea-
sible, accurate, and sensitive marker of atherosclerosis risk [22].

The measure of aIMT was from 2009 possible also in utero. Cosmi et al. pub-
lished an article, in which the higher ultrasonographic resolution was able to assess 
early vascular changes that may be linked to atherosclerosis. Early endothelial dys-
function, as an impairment of arterial vasodilatory function, may play an important 
role in premature stiffening of the aortic vessels, which predisposes these individu-
als to hypertension, stroke, nephropathies, and metabolic syndrome. Infants who 
had IUGR, as Skilton demonstrated, have at birth a thicker aorta, suggesting that 
prenatal events (e.g., impaired fetal growth) might be associated with structural 
changes, in the main vessels, which probably highlighted in utero.

IMT and diameter were measured in a coronal or sagittal view of the fetus at the 
dorsal arterial wall of the most distal 15 mm of the abdominal aorta, sampled below 
the renal arteries and above the iliac arteries, as previously described [23]; gain set-
tings were used to optimize image quality. aIMT was defined as the distance between 
the leading edge of the blood–intima interface and the leading edge of the media-
adventitia interface on the far wall of the vessel [24]. This vessel was selected 

Fig. 3.1  Endothelial 
pathways in the balance 
between vasodilatation and 
vasoconstriction, inhibition 
and promotion of the 
proliferation and migration 
of smooth muscle cells, 
prevention and stimulation 
of the adhesion and 
aggregation of platelets, as 
well as thrombogenesis 
and fibrinolysis
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because it is reported to be the first involved in the atherosclerotic process, in 
particular the dorsal arterial wall, which is the most lesion-prone site seen in autopsy 
samples. Three measurements were taken, and the arithmetic mean aortic intima-
media thickness was considered for the study (Fig. 3.2). Aortic diameter was mea-
sured at the same level of aortic intima-media thickness, from the inner wall to the 
wall edges.

Furthermore, Doppler studies of the fetal circulation in IUGR and hypoxia have 
demonstrated increased resistance to flow in the umbilical arteries and redistribu-
tion in the fetal circulation, with a decreased afterload at the level of the left ven-
tricle due to the brain-sparing effect, resulting in reduced cerebral impedance and 
increased resistance in the descending aorta [25].

In mammals, the large arteries, such as the human aorta, provide an important 
energy-storage and pulse-dampening function. The energy from the pressure of 
ejecting blood during systole is stored as strain energy in the distended artery wall. 
This strain is returned during diastole when the arteries return to their original 
dimensions. During diastole the aortic valve is closed, preventing blood from return-
ing to the left ventricle and instead allowing the blood flow to move further down 
the arterial tree with a dampened pulse wave. The major component is the elastin 
protein that provides the elasticity necessary for cyclic deformation of the arterial 
wall and is mainly located in the tunica media of the arterial wall [26].

In the smooth muscle cells of the arterial wall that are responsible for the extra-
cellular matrix composition, elastin expression occurs over a short period during 
development from mid-gestation and continuing through the postnatal period at 
high levels [27, 28]. However, the expression of elastin in the aorta decreases rap-
idly when the physiological rise in blood pressure stabilizes postnatally, and there is 
minimal elastin synthesis in the adults. This explains why the repair of elastic fibers 
is incomplete and elastin protein has a long half-life in adults [27]. The extracellular 
matrix in great vessel walls in mammals has multiple functions, i.e., providing 
mechanical and structural properties and instructional signals, that control vascular 

Fig. 3.2  Fetal aIMT 
measurement
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cell phenotypes and function (e.g., influencing smooth muscle cell gene expres-
sion). This reciprocal interaction between the extracellular matrix and smooth mus-
cle cells of the arterial wall is of paramount importance for directing the 
developmental transitions that occur in embryogenesis, in postnatal development, 
and in response to injury [27].

In absence of the possibility to know the intravascular fetal pressure, the study of 
the aortic fetal diameter permits to investigate the vessel’s stiffness, a possible 
marker of aortic atherosclerosis. The diameter is measured at the same level as the 
aIMT, from the inner wall to the wall edges, taking at a maximal systolic and a mini-
mal diastolic diameter. It is measured using the cine-loop capability of the ultra-
sound machine, once the images of the entire cardiac cycle were frozen. The vessel 
was visualized in a longitudinal view of the fetus. The transducer was tilted to obtain 
an angle of insonation as close to 0° as possible and always less than 30°; the high-
pass filter was reduced to the minimum. Each measurement was taken during fetal 
apnea after three consecutive, similar waveforms were obtained (Fig. 3.3).

The observations [29] show that the change between the systolic and diastolic 
fetal abdominal aorta diameters was significantly greater in IUGR fetuses than in 
controls, as the change between the systolic and diastolic velocity. An important 
function of the human aorta is to store strain energy in the distended aortic wall dur-
ing systole. The main component of strain energy storage is the extracellular matrix 
of the tunica media. The composition of the extracellular matrix depends on differ-
ent stimuli such as blood pressure and flow that could both be modified by increased 
peripheral resistance to flow. In the IUGR fetuses, an increased aIMT could reflect 
a different extracellular matrix composition, as a different aorta compliance and 
distensibility. A significant increase in systolic and diastolic abdominal aorta diam-
eters in IUGR fetuses that could reflect a compensatory mechanism secondary to 
several changes at the level of fetal aorta involving, among other things, increased 
peripheral resistances associated with brain-sparing mechanisms. Generally, vessels 
with distensible elasticity present a universal vessel wall elastic modulus that applies 
across species and in vessels with a different extracellular matrix composition. This 

Fig. 3.3  Fetal aortic 
diameter measurement
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suggests strong evolutionary pressure to ensure that all elastic arteries have similar 
mechanical properties at each organism’s mean physiological blood pressure. This 
universal elastic modulus probably reflects a target mechanical property that is best 
able to operate in a pulsatile circulatory system [27]. There is evidence in the litera-
ture that organisms are able, especially during fetal life, to adjust the mix of extra-
cellular matrix components in the vessel wall to produce the mechanical properties 
appropriate for different hemodynamic variables to achieve the universal elastic 
modulus and IUGR fetuses could be one of these examples.

3.5  �Cardiac Function

During pregnancy, there are many physiological changes due to the increased meta-
bolic demand of the mother-fetus couple, which requires an adequate utero-placental 
circulation. Impairment of these mechanisms of adaptation can cause a fetal or 
maternal disease, such as growth retardation and preeclampsia, or unmask an under-
lying cardiac disease. Pregnancy is associated with an increase in heart rate, which 
starts in the first trimester, peaks in the third trimester (15–25% increase over the 
baseline heart rate), and returns to pre-conceptional values by 10  days postpar-
tum [30].

Echocardiography is the most frequently used imaging technique to assess car-
diac function and hemodynamic. It allows a rapid assessment of systolic and dia-
stolic function of cardiac chambers, regional wall motion and valve anatomy and 
function. Due to the safety of ultrasounds, the wide availability of the technique, 
and its portability and repeatability, echocardiography is very useful to assess the 
cardiovascular system of pregnant women with suspected or confirmed heart dis-
ease [31]. This technique is actually used also in prenatal diagnosis to investigate 
the myocardial function, especially in the presence of intrauterine growth restric-
tion. Several are the methods used.

Deformation imaging is an echocardiographic technique used to assess myocar-
dial function by measuring the actual change in length of the myocardium through 
the cardiac cycle. Myocardial deformation may be evaluated through two methods: 
the first, tissue velocity imaging (TDI), is a Doppler-based method, whereas the 
second, speckle-tracking echocardiography (STE), is based on the analysis of con-
ventional two-dimensional grayscale images. Strain and strain rate, indices of myo-
cardial deformation, can be obtained with both TDI and STE.  Since TDI is a 
Doppler-based method and velocity can only be measured along the direction of the 
ultrasound beam, only a limited number of strain components can be measured by 
TDI [32]. Conversely, STE is based on the detection of 2D images of the motion of 
acoustic markers (called “speckles”) generated by the interaction of ultrasounds 
with the myocardium. The position of the speckles can be tracked during the cardiac 
cycle by using specific software packages. The movement of speckles can be used 
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to measure strain and calculate strain rate. To analyze the different components of 
myocardial deformation (strain) with STE it is necessary to acquire several views: 
4-chamber, 2-chamber, and apical long-axis views to compute global longitudinal 
strain (GLS) and short-axis views for circumferential and radial strains [33].

Moreover, since it measures directly myocardial function, deformation imaging 
can detect subclinical myocardial dysfunction, when ejection fraction or other 
chamber function parameters are still in the normal range because the heart has 
activated its compensatory mechanisms. Since, during pregnancy, there is a continu-
ous variation of the loading conditions of the heart, the use of STE can be particu-
larly useful to study the changes occurring in the myocardial function during either 
normal or pathological pregnancy (Figs. 3.4 and 3.5).

To obtain images to be analyzed with the STE software package, it is recom-
mended to optimize image quality by using a grayscale second-harmonic 2D imag-
ing technique with careful adjustment of image contrast. The gain settings should be 
optimized, the depth should be reduced, and the focus should be in the middle of the 
left ventricle. Finally, images should have an adequate temporal resolution (50–90 
frames per second). Lower temporal resolutions will not allow a sufficient number 
of systolic frames to track the motion of the kernels. Higher temporal resolution will 
impact the spatial resolution of the images by reducing the number of scan lines 
[34]. Moreover, it is essential to optimize the left ventricle border visualization. 
Care must be taken to avoid left ventricle foreshortening and image acquisition 
should be performed during breath-hold to minimize respiratory interference. It is 
essential that the electrocardiographic trace is stable to avoid artifacts during the 
evaluation and at least three cardiac cycles should be acquired for each loop. 
Artifacts, such as reverberation or shadowing, could affect strain computation and 
provide wrong strain values, which might erroneously suggest cardiac dysfunction 
[35] (Fig. 3.6).

Fig. 3.4  The image shows 
the three main components 
of myocardial deformation: 
longitudinal, radial, and 
circumferential
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Fig. 3.5  The figure shows speckle-tracking analysis and the main components of myocardial 
deformation: radial (a), circumferential (b), and longitudinal (c)

Fig. 3.6  Three-dimensional speckle-tracking echocardiography. The software package calculates 
simultaneously the longitudinal (a), the circumferential (b), and the radial (c) components of myo-
cardial deformation, plus a composite parameter (area strain) (d)
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3.6  �Clinical Applications of Deformation Imaging 
in Pathological Pregnancies

3.6.1  �Maternal Cardiac Study in Preeclampsia

Preeclampsia is a hypertensive complication that affects 5–7% of pregnancies and 
is one of the most common causes of maternal morbidity and mortality [36]. In fact, 
it is considered a complex multiorgan disease potentially involving the kidney, liver, 
and cardiovascular and hematologic systems, as well as the brain. Autopsy data 
have shown a tenfold prevalence of myocardial contraction band necrosis in pre-
eclamptic patients if compared with pregnant women that died from other causes 
[37]. Some studies have demonstrated persistent maternal cardiac impairment and 
hemodynamic changes years after delivery. Valensise et al. demonstrated that signs 
of left ventricular diastolic dysfunction and persistent heart remodeling persist in 
non-pregnant women before a second pregnancy with recurrent preeclampsia. 
These findings could raise an issue concerning preeclampsia as a cause or effect of 
heart remodeling [38, 39].

The majority of published papers about echocardiographic assessment of mater-
nal heart in preeclamptic women have used conventional parameters of cardiac 
function and remodeling [40, 41]. In preeclamptic patients, the use of TDI and 2D 
STE demonstrated a reduction of both left and right ventricular diastolic and sys-
tolic function, also in preclinical stages of the disease, when cardiac output and EF 
are still preserved. LV-mass, LV-mass index, and LV wall thickness in preeclamptic 
women are higher than in healthy controls, reflecting the increase in LV afterload. 
Myocardial performance index (MPI), an index of reduced cardiac systolic and dia-
stolic function, also increased. An impairment of right ventricular systolic function 
has been also described, reflecting the increase of pulmonary resistance secondary 
to LV diastolic dysfunction [42].

Moreover, several authors agree that longitudinal, radial, and circumferential 
strains are impaired in preeclampsia and may remain impaired also for months after 
the delivery, even in patients with preserved cardiac output and ejection fraction. An 
interesting consideration is that coexisting left ventricle hypertrophy and regional 
longitudinal systolic dysfunction could reflect a regional subendocardial impair-
ment, probably due to subendocardial ischemia and/or fibrosis [43]. Currently, new 
parameters based on 3D STE are emerging, showing an increased ability to detect 
subclinical myocardial impairment and early systolic and diastolic cardiac dysfunc-
tion. Myocardial dysfunction precedes chamber impairment and 3D STE can pro-
vide an assessment of global and regional LV function. Furthermore, some authors, 
using 3D STE, demonstrated that early-onset preeclamptic patients presented worse 
cardiac remodeling than late-onset preeclamptic patients, underlining the clinical 
relevance of detecting earlier and subtler cardiac dysfunction signs. Other authors 
distinguish between preeclamptic and non-proteinuric hypertensive women, show-
ing less impairment of longitudinal, circumferential, and radial strain in the latter. 
These findings could mean that hypertension may not be the only cause of 
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preeclamptic heart impairment, although women with no proteinuric hypertension 
presented a worse cardiac function than healthy patients [44].

3.6.2  �Maternal Cardiac Study in Intrauterine Growth 
Restriction Disease

Knowledge of heart disease in women is constantly evolving and emerging data 
show that complications of pregnancy such as preeclampsia and intrauterine growth 
restriction (IUGR) are predictors for the development of heart disease later in life. 
Up to 10% of all pregnancies are affected by IUGR and its definition is controver-
sial. The main reasons of IUGR are placental insufficiency and defective tropho-
blastic invasion, currently evaluated by the estimated fetal weight and umbilical 
artery Doppler flow velocity. Fetal Doppler evaluation is a useful method to predict 
fetal compromise and permits distinguishing between severe IUGR and small for 
gestational age fetuses. However, different classifications are also reported in the 
literature and they could generate confusion in the definition of both maternal and 
fetal risk [45].

While maternal cardiac modifications occurring during normal pregnancy are 
well known, in normotensive IUGR pregnancies, there are contradictory lines of 
evidence about maternal hemodynamic. Some authors reported reduced cardiac 
output and left ventricular compliance, whereas others reported reduced maternal 
systolic cardiac function and increased total vascular resistance, without alterations 
of left diastolic function compared to physiological pregnancies [46, 47].

Moreover, IUGR patients, compared with preeclamptic pregnancies, seem to 
present lower cardiac index, left ventricular diastolic dysfunction, and higher total 
vascular resistance index. Unlike preeclampsia, cardiac geometry and intrinsic 
myocardial contractility were reported to be preserved, but a third of IUGR patients 
present reduced diastolic reserve and an overt diastolic chamber dysfunction, 
despite a normal ejection fraction [48]. This suggests that the cardiovascular 
response is similar to that seen in preeclamptic patients, though less severe. Lack of 
physiological adaptation to the pregnancy, assimilating IUGR patients to a non-
pregnant hemodynamic condition, could explain the reason of high resistance, low 
blood volume, and hypotensive condition, which characterized IUGR patient’s con-
dition The introduction of TDI and 2D STE techniques for analysis of myocardial 
deformation might allow an earlier diagnosis and better grading of cardiac dysfunc-
tion [49]. While several authors described the feasibility of STE in studying fetal 
heart function and morphology, in particular, the segmental and global systolic and 
diastolic velocities, strain, and strain rate values, few studies described its applica-
tion for the evaluation of IUGR patients. Krause et al. investigated maternal longi-
tudinal mechanical dyssynchrony, a useful tool used for the evaluation of LV 
function, finding that pregnancies complicated by IUGR recorded significantly 
higher degrees of inter- and intraventricular dyssynchrony than those of normal 
controls [50].
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Reduced maternal cardiac function in pregnancies that are complicated by 
preeclamptic and intrauterine growth restriction is the result of both reduced intrin-
sic myocardial contractility and reduced diastolic filling. Myocardial dysfunction 
can be present even in the presence of a normal ejection fraction, with significant 
decreases in radial, circumferential, and longitudinal strain values.

The use of 2D and 3D STE techniques to evaluate ventricular mechanics may 
help detect subclinical left ventricular dysfunction in women affected by obstetrical 
pathologies as preeclampsia and intrauterine growth restriction. Early detection of 
left ventricular dysfunction with the institution of appropriate treatment may reduce 
the risk of future CVD.

3.6.3  �Fetal Cardiac Study in Intrauterine Growth Restriction 
Disease

The heart is a central organ in the fetal adaptive mechanisms to placental insuffi-
ciency and cardiac dysfunction in utero is recognized among the essential patho-
physiologic features in the presence of intrauterine growth restriction. Usually, the 
cardiac fetal study considers the cardiac morphometry, the diastolic, and the systolic 
function. The cardiac geometry includes left and right sphericity index (defined as 
base-to-apex length divided by basal diameter) measured on an end-diastolic 2D 
apical 4-chamber view. Left ventricular end-diastolic diameter and septal and pos-
terior wall thickness were measured by M-mode on a parasternal long-axis paraster-
nal view and relative wall thickness, calculated as posterior wall plus interventricular 
septum thickness divided by left ventricular diameter.

Systolic function evaluation includes cardiac output, left ejection fraction, left 
ventricular thickening, mitral/tricuspid annular displacement (MAPSE/TAPSE), 
and systolic annular peak velocity. Diastolic function was evaluated by peak early 
and late transvalvular filling (E/A) ratio, deceleration time of E velocity, isovolu-
metric relaxation time (IRT), early (E=) and late (A=) diastolic annular peak veloci-
ties, and E/E = ratio.

The more recent literature shows that fetuses and children with IUGR present 
more globular hearts, decreased stroke volume compensated by an increased heart 
rate, subclinical systolic dysfunction, diastolic changes, and increased blood pres-
sure and vascular wall thickness [51]. The postnatal globular cardiac shape is most 
likely the result of changes in cardiac development, induced by sustained pressure 
increase. Although in normal conditions the resulting increased wall stress on the 
developing myocardial fibers should trigger a compensating hypertrophic response, 
sustained hypoxia and undernutrition might render the myocardium unable to 
develop hypertrophic changes. In these circumstances, increased wall stress can be 
compensated for only by increasing the local radius of curvature, resulting in dilata-
tion and a more spherical cavity. The different types of intrauterine growth restric-
tion (early and late, if below or not 32  weeks of gestation) could influence the 
cardiac remodeling response to intrauterine under-nutrition and hypoxia. In particu-
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lar, late-onset IUGR, being exposed to a milder prenatal insult, can compensate 
compromised longitudinal fibers by increasing radial contractility. Longitudinal 
dysfunction compensated by increased radial function without evident myocardial 
hypertrophy has been described as a common feature of early-stage cardiac com-
promise in ischemic myocardial disease and hypertensive and athletes’ hypertro-
phic cardiomyopathy [52]. In contrast, early IUGR cannot compensate similarly 
because the insult is more severe and needs to increase heart rate to maintain car-
diac output. Indeed, endocardial longitudinal fibers are the farthest ones from the 
epicardial blood supply and consequently the most sensitive under milder degrees 
of hypoxia. Conversely, radial fibers constitute the middle layer of the myocardial 
wall and are affected in advanced stages of hypoxia. These findings add to the body 
of evidence indicating important pathophysiological differences in early- and late-
onset IUGR, which may help to understand the differences in natural history and 
outcome.

3.7  �Conclusions

After Barker’s hypothesis, an increasing number of subsequent epidemiological 
studies confirmed the link among low birth weight, rapid weight gain in the first 
years of life, obesity in adolescent period, and increased risk of CVD, stroke, glu-
cose intolerance, and type II diabetes in adult life [53]. Studies conducted in fetuses, 
neonates, children, and adolescents born IUGR point to the possibility that endothe-
lial dysfunction, evaluated by aIMT, cIMT, carotid stiffness, central pulse wave 
velocity, brachial artery flow-mediated dilation, endothelium-dependent microvas-
cular vasodilatation, echocardiographic evaluation, and arterial blood pressure, may 
be an inborn characteristic of subjects with LBW that persists in childhood into 
adult life [22, 54–56]. Already in 1997, one of the largest cohort studies of almost 
150.000 adolescents in Sweden showed that systolic blood pressure was signifi-
cantly higher in young men who had the lowest birth weight, thus supporting the 
notion of a programming effect of IUGR in utero on hemodynamic regulation in 
early adult life [57].

IUGR is a very complex and multifactorial disorder with long-term persistence 
of CVD older in patients who suffered IUGR early in life. Whereas the dominant 
focus of experimental studies to date has been on defining the phenotypic conse-
quences of perturbations of maternal nutrition, the emphasis has now shifted to 
determining those initiating mechanisms through which early nutrition and associ-
ated growth patterns result in cardiovascular and metabolic dysfunction. There is a 
clear requirement to reconcile the balance of contribution of the “thrifty pheno-
types” and “thrifty genotypes”, investigating by experimental and epidemiological 
studies the impact of relative under and over-nutrition in prenatal life. Molecular 
and epigenetic mechanisms of programming, after different initial insults through 
animal models and in  vitro techniques, might consent to understand common 
mechanisms leading to CVD, preventing or alleviating CVD and renal effects of 
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programming in adulthood. Innovative interdisciplinary research in the areas of 
nutrition, reproductive physiology, and vascular biology will play an important role 
in developing new strategies of intervention. Future pharmaceutical therapies and 
innovative alternative nutritional/environmental strategies even could maximize 
population-based well-being.

The prenatal and postnatal vascular modifications showed in several human and 
animal studies by blood pressure and cardiac modifications in IUGR, which appear 
small, seem to be clinically relevant and/or a major contributor to Barker’s hypothesis 
association of birth weight with ischemic heart disease. Whether the American Heart 
Association and the European guidelines on CVD prevention in clinical practice 
encourage the clinical follow-up of patients with a high risk of CVD, current clinical 
pediatric guidelines do not include IUGR as a risk factor and several studies are still 
needed to understand its role, the importance of long-term cardiovascular follow-up 
and the correct lifestyle of patients who suffered early or late IUGR in utero [11].
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4.1  �Introduction

The main goal of any kind of fetal monitoring is to assess fetus well-being condition 
in order to minimize risks of fetal morbidity and mortality, to identify “at-risk” 
fetuses, and to evaluate the optimal time of delivery. Among the indirect informa-
tion that can be detected during pregnancy and labor, the fetal heart rate (FHR) 
signal is certainly one of the most reliable sources on the health status of the fetus. 
Various measurement techniques have been used to detect the FHR (indirect elec-
trocardiographic, ultrasonocardiographic, phonocardiographic); however, the 
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ultrasound technique with a Doppler probe is the one that has found wider use in 
clinical practice both for its characteristics of easy usability and for its wide range 
of applicability.

Why is it fundamental to check FHR to assess fetal well-being? It is known that 
the fetal brain modulates the FHR through an interplay of sympathetic and para-
sympathetic actions of the autonomous nervous system. Thus, FHR monitoring can 
be used to determine if the fetal brain is well oxygenated. In case of fetal distress 
during labor, the FHR shows some morphological anomalies. If FHR does not show 
anomalies, chances are high that the fetus can stand the labor.

Moreover, several conditions such as hypoxia, acidemia, and drug induction pro-
duce noticeable variations of FHR, which are visible even by simple eye inspection. 
As a general consideration, we can affirm that fetal distress is preceded by altera-
tions in the RR intervals time series before any pathological change in fetal condi-
tion definitely occurs.

The cardiotocography (CTG) is nowadays the most used technique in the devel-
oped countries to monitor fetal condition through the measurement of FHR during 
the antepartum period and during the labor (more than 90% of pregnant women are 
monitored at least once during the pregnancy and almost all are monitored during 
labor). The CTG consists of the simultaneous recording of fetal heart rate (FHR) 
and uterine contractions (tocogram) in order to check the FHR variations in con-
junction with the forces exerted by the contractions, which can modify the FHR.

Since the introduction in the clinical practice of the first commercial cardiotoco-
graph in Europe, thanks to Hammacher in 1968 [1], a great scientific commitment 
and a lot of enthusiasm have been lavished on this technology, which seemed to give 
a concrete possibility of “understanding” when and why it occurred a deterioration 
of fetal health, and therefore to intervene more effectively. Cardiotocographic moni-
toring (CTG), or cardiotocography, starting from the ‘70s, has had a considerable 
diffusion in clinical practice, so that it remains, to date, the most widely used method 
for checking fetal condition over time, despite the advent of other more recent 
techniques.

Various studies have shown the validity of CTG in the first period of labor during 
delivery in predicting fetal hypoxia. Taking into account the large amount of moni-
tored childbirths, it can be reasonably concluded that a “normal” CTG pattern is a 
good indicator of fetal well-being, while a pattern showing a low FHR variability 
can indicate a fetal sufferance, although only in 50% of cases [2].

On the other hand, the effectiveness of antepartum cardiotocography, or non-
stress test, in identifying fetal distress during pregnancy presents characteristics that 
are more controversial. The main limitations are not so much due to the technique 
itself, but to the difficulties in reading and interpreting the FHR signal, whose varia-
tions originate from the interaction of numerous and complex physiological mecha-
nisms. The intrinsic complexity of the FHR signal, combined with a qualitative 
analysis, inevitably led to considerable difficulties in formulating homogeneous 
judgments among different clinicians and to scarce results in terms of diagnostic 
forecasting. There are numerous physiopathological and technical factors, which, if 
not correctly taken into consideration in the evaluation of the CTG trace, lead to 
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inconsistencies between the result of a CTG test and the neonatal outcome, with 
consequent incorrect patient management. The major problem is the lack of general 
agreement regarding the reading and interpretation criteria of CTG tracings. In fact, 
since the introduction of the CTG technique in clinical practice, a lot of visual read-
ing methodologies have been proposed, none of which has clearly established itself 
as a clinical “golden” standard, despite the indications given by the most diffused 
obstetrical associations (ACOG, FIGO, etc.). Indeed, several studies have shown 
that, even in centers that adopt the same rules, individual observers rarely agree on 
the evaluation of the same tracing [3, 4]. Furthermore, there is great evidence that 
the visual examination of the CTG trace is not able to extract all the cardiac vari-
ability information contained in the FHR signal. Features such as the magnitude of 
the periodic components of the signal generated by the cardiac pacemaker, the non-
linearity of the FHR control system, or even the short-term variability by them-
selves cannot be grasped by a simple eye inspection of the CTG tracing.

Although cardiotocography (CTG) has been used since the 1970s as a non-
invasive method to monitor the status of the fetus and has allowed a drastic reduc-
tion in early intrapartum and neonatal mortality, its diagnostic accuracy is still far 
from being fully satisfactory [5].

In response to these problems, the use of numerical systems for automated analy-
sis of fetal heart rate was introduced first as an experimental method and currently 
also in clinical practice. Numerous centers in the world have developed and pro-
posed different computerized systems, some of which have also reached commer-
cialization and have been extensively tested at the level of multicentric research.

In this chapter we will illustrate the basic principles of the computerized CTG 
technique and the methodologies of FHR analysis, taking into account our experi-
ence acquired in almost 20 years of research.

4.2  �Computerized Cardiotocography

A system for numerical (or computerized) cardiotocography is logically and struc-
turally composed of two devices, the cardiotocograph, by which the FCF and toco-
dynamometry (toco) signals are detected, and a computer by which the signals are 
analyzed. The two devices can be physically separated in different containers, as 
represented in Fig. 4.1 or they can be industrially assembled in a single case.

In CTG systems, the FHR is derived from the time series of the beat-beat inter-
vals identified by the cardiotocograph and computed in milliseconds. Its value in 
beats per minute (bpm) is calculated by the inversion of the interbeat value T accord-
ing to the formula FHR (bpm) = 60,000/T(ms). The frequency at which the car-
diotocograph updates the FHR values differs from system to system and varies from 
10  Hz to about 0.2  Hz. The most diffused cardiotocographs, derived from the 
Hewlett Packard series 135X (Agilent, Philips, General Electric-Corometrics, etc.), 
adopt the same protocol and give an FHR value each 250 ms (4 Hz). This update 
time depends on the firmware installed on the cardiotocograph. As a matter of fact, 
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in Doppler detection systems, the recognition of the interbeat interval is carried out 
through the autocorrelation of the received echo signal, which is affected by varia-
tions also due to small movements of the fetus or mother. The use of the autocorrela-
tion function represents a compromise between accuracy in identifying the beat-beat 
interval and measurement reliability. It was introduced in order to improve the sig-
nal/noise ratio when the quality of the return echo is poor and to eliminate the arti-
facts caused by the different moving structures of the fetal heart. The autocorrelation 
allows to identify a single peak within the Doppler signal of a heartbeat and there-
fore does not present ambiguity in the determination of the beat-beat interval. In 
case of low signal/noise ratio, the autocorrelation function allows to extrapolate the 
temporal position of the peak to be used for the calculation of the FHR considering 
the beat-beat intervals previously recorded and superimposing them on the poor 
quality signal that is received at that moment. This extrapolation allows in most 
cases to still provide an FHR value close to the true, but obviously non-existent as 
obtained from the average of previous values.

Therefore, the FHR values obtained with the autocorrelation are unable to follow 
the sudden changes in the FHR (low-pass filtering effect of cardiac variability).

In order to give technical data about the Doppler probe and the autocorrelation 
procedure, we report here the specifications of the HP -series 135X 
cardiotocographs:

Hardware – The US transducer transmits 998.4 kHz ultrasound bursts. The burst 
widths are controlled by firmware. The repetition rate is 3.2 kHz. The received 
echo signal is amplified by a high-frequency amplifier with a gain of 120. The 
demodulator is controlled by software in its receive window. The demodulated 
LF signal is bandpass filtered (100–500  Hz) and amplified by a software-
controlled gain.

Software – The Series 50 fetal monitors (M1350A/B/C, M1351A, M1353A) use an 
autocorrelation technique to compare the complete ultrasound Doppler signal of 
a heartbeat with the next one. A peak detection software then determines the 
heart period from the autocorrelation function. The Doppler signal is sampled 

Fig. 4.1  A 
cardiotocograph Agilent 
FM-2 connected with an 
HP laptop

G. Magenes and M. G. Signorini



77

with 200 Hz (5 ms). With a peak position interpolation algorithm, the effective 
resolution is better than 2 ms.

In Fig. 4.2, an example of the identification of beat-beat interval through autocor-
relation on the demodulated Doppler signal is shown.

The detection of the activity of the autocorrelation function at each FHR value 
provided by the cardiotocograph is therefore very useful for the clinician to estab-
lish how real or reconstructed the signal is. In some systems the signal actually 
measured is highlighted on the screen in green, while the one reconstructed 
in yellow.

A parameter closely related to the previous one, and equally important, is the 
quality of the recording, expressed numerically as a percentage of “lost”, or unreg-
istered, beats on the entire track. It is known that the quality of CTG registration by 
Doppler is in inverse correlation with the gestational age: in fetuses of gestational 
age of less than 30 weeks, i.e., those who in case of growth retardation or other 
pathologies will mostly meet perinatal outcomes, the percentage of signal loss can 
reach 20% of the total, thus invalidating the reliability of the method. The loss of 
signal (when even the autocorrelation function cannot obtain an extrapolated FHR 
value) is normally highlighted on the screen in red.

Commercially available computerized systems generally use relatively low 
updating rates, up to 3.75 seconds of the Sonicaid System 8000–8002. In general, it 

Fig. 4.2  Comparison of beat-to-beat intervals computed with peak detection techniques and with 
autocorrelation. The Envelope Doppler signal (upper trace) was derived from the demodulated 
Doppler signal (second trace) In the lower trace, four possible heart periods T1–T4 can be identi-
fied by peak detection. Symbolized by the two circles the heart rate interval is correctly calculated 
by autocorrelation of the waveform complexes
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is not necessary to increase the updating frequency, because the Doppler detection 
of the FHR signal by means of an autocorrelation function entails, as already men-
tioned, a limitation in the frequency band of the beat-beat variability [6]. However, 
from comparisons made experimentally among different cardiotocographs (HP, 
Sonicaid, Corometrics, Nihon Koden, Wakeling), it has been noted that the accuracy 
in chasing the variation of beat-beat intervals is very different in the various models 
of cardiotocograph [7] and, while in some cases it would not have meant increasing 
the sampling frequency, in others it is also possible to reach 4 Hz.

In essence, using a cardiotocograph with FHR Doppler measurement, it is not 
useful to sample the FHR at intervals lower than the amplitude of the time interval 
on which the autocorrelation function acts, which is carried out differently in the 
various cardiotocographs; this time can vary from 250 msec to more than 1 second 
depending on the model [8].

In our system (2CTG2 system) or experimental systems, a useful band of at least 
1 Hz is considered so as to allow a fairly precise assessment of the “real” beat-to-
beat variability and the use of advanced analysis techniques such as spectral analy-
sis or the study of FHR regularity [9].

The sampling of the signal relating to the uterine tone (“toco” channel) is nor-
mally carried out at the same frequency as the FHR signal in order to have a correct 
alignment of the data (for each FHR value there is a corresponding toco value), even 
if the band of toco signal frequencies is lower than that of cardiac variability.

It is also possible to monitor fetal motor activity, displaying fetal movements on 
the CTG tracing and allowing their visual and automated correlation with FHR 
events (accelerations, decelerations, variability). Motor activity can be recorded 
with a subjective detection method, by making the mother operate a button every 
time she hears the fetus move, or automatically by the cardiotocograph through 
ultrasound detection and use of different mathematical algorithms for fetal move-
ment identification [10].

Most cardiotocographs transmit through a serial line (RS-232, RS-485, USB, 
etc.) the following digital information to the computer, with an asynchronous proto-
col (usually the standard is Hewlett Packard protocol):

•	 FHR values expressed in bpm
•	 Toco values expressed in arbitrary units
•	 Quality of the signal (defined as a number)
•	 Presence of fetal movements as time marks.

In the HP protocol, all values are represented by text ASCII characters.
The computer must be equipped with a software program capable of reading the 

FHR and toco digital signals, making changes and calculations on them (eliminat-
ing noise or artifacts, checking the quality of the signal, etc.), mathematically ana-
lyzing the tracings by extracting the significant parameters and storing the data on 
magnetic media, generally in the form of “records” of a database also containing the 
main registry and clinical information relating to the patient under study. The newly 
developed software allows a quasi-real–time visualization of the cardiotocographic 
trace and the analysis results directly on the screen, updating the calculations while 
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the CTG (“real–time monitoring”) recording is in progress. Since the track is stored 
on the computer, at the end of the recording it is possible to re-analyze it also by 
going to select portions of the same, chosen by the user.

Finally, it should be emphasized that the latest generation computers are poten-
tially capable of acquiring multiple CTG exams at the same time, i.e., it is possible 
to connect several cardiotocographs to the same computer at the same time. 
Obviously, the software must provide for the management of several contempo-
rary exams.

Both FHR and toco signals are submitted to various algorithms in order to extract 
the relevant morphological events and/or the parameters of FHR, specific of each 
CTG system. Unfortunately, there is no agreement on a unique methodology to 
extract this information, because most morphological features are identified by try-
ing to reproduce the “eye-inspection” criteria reported by the Obstetrical 
Associations, which are by definition based on a qualitative interpretation of the 
tracings. In the following paragraphs, we illustrate how our CTG system computes 
a set of morphological features (baseline, accelerations, and decelerations) and 
parameters related to the time domain characteristics of the FHR, with those in the 
frequency domain and with the nonlinear nature of the heart rate variability.

The software was developed in collaboration with Hewlett Packard Italy starting 
at the beginning of the year 2000 [11] and it is now used for research purposes on 
antepartum CTG in our group and in several Italian clinical centers.

4.3  �FHR Morphological Analysis

4.3.1  �Baseline FHR and Baseline Measurements

The NICHD (National Institute of Child Health and Human Development) nomen-
clature [12] defines baseline fetal heart rate as: “the baseline FHR is determined by 
approximating the mean FHR rounded to increments of 5 beats per minute (bpm) 
during a 10-minute window, excluding accelerations and decelerations and periods 
of marked FHR variability (greater than 25 bpm). There must be at least 2 minutes 
of identifiable baseline segments (not necessarily contiguous) in any 10-minute win-
dow, or the baseline for that period is indeterminate. In such cases, it may be neces-
sary to refer to the previous 10-minute window for determination of the baseline. 
Abnormal baseline is termed bradycardia when the baseline FHR is less than 110 
bpm; it is termed tachycardia when the baseline FHR is greater than 160 bpm”.

In practice, the baseline identifies a hypothetical average (sinus) trend of the 
FHR signal, once it has been purified of events capable of altering its behavior.

In the design of a computerized CTG system, a reproducible and reliable deter-
mination of the baseline is a fundamental starting point, because it influences the 
correct identification of accelerations and decelerations. Several attempts in this 
direction have been made starting from the work of Dawes et al. [13]. In our 2CTG2 
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system we followed the algorithm suggested by Mantel et al. [14], but we tuned the 
parameters of the algorithm, to make the outcome fully compliant also with the 
opinions of our team of clinicians, expert on CTG analysis. The algorithm is very 
complex, and a full description can be found in the cited reference. The result of this 
analysis is a numerical signal, indicated as the baseline FHR (expressed in beats/
minute, bpm) starting from which the accelerations and decelerations are identified.

In particular, any overestimation of the baseline is reflected in a significant 
underestimation of the number of accelerations while the number of decelerations 
will be overestimated. This error certainly affects the visual evaluation but also, in 
part, the analysis carried out by the computerized systems and is more frequently 
found in traces that are characteristic of the fetus in the active waking phase. The 
consequence is a possible excess of invasive assessments until the unjustified com-
pletion of the birth (false positive).

The dual error, i.e., that of underestimation, occurs more rarely. In this case, there 
would be an estimate by default of the number of decelerations, with a consequent 
lack of necessary diagnostic and/or therapeutic intervention (false negative) with 
possible serious consequences.

In recent systems, the baseline is estimated incrementally, as registration pro-
ceeds, by means of a multi-pass digital filter that can be implemented in various 
configurations.

4.3.2  �Accelerations and Decelerations

Accelerations are events on the CTG track during which the FHR expressed in bpm 
remains persistently above the estimated baseline value, for a prolonged period (in 
seconds). Both the minimum amplitude, above which the FHR must remain, and the 
residence time are variable parameters according to the system used.

The NICHD definition [12] of acceleration is: “a visually apparent abrupt 
increase in fetal heart rate. An abrupt increase is defined as an increase from the 
onset of acceleration to the peak in less than or equal to 30 seconds. To be called an 
acceleration, the peak must be greater than or equal to 15 bpm, and the accelera-
tion must last greater than or equal to 15 seconds from the onset to return to base-
line [15]. A prolonged acceleration is greater than or equal to 2 minutes but less than 
10 minutes in duration. An acceleration lasting greater than or equal to 10 minutes 
is defined as a baseline change. Before 32  weeks of gestation, accelerations are 
defined as having a peak greater than or equal to 10 bpm and a duration of greater 
than or equal to 10 seconds.

A further subdivision of the accelerations is obtained by establishing different 
threshold criteria to quantify the increase in the FHR in bpm with respect to the 
estimated value for the baseline: a subdivision into small and large accelerations is 
thus obtained. For example, an increase in the FHR above the baseline greater than 
15 bpm for at least 15 seconds is the definition of great acceleration according to 
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Arduini et al. [16]. Depending on the threshold value and the selected time window, 
the different systems will produce a different quantification of the events.

In a completely analogous way, the identification of the decelerations is obtained.
CTG systems usually provide the number of accelerations and decelerations, 

normalized to 60 minutes of tracing, and for each event, the duration, the maximum 
distance from the baseline, the area of acceleration or deceleration expressed in 
beats per minute, and, as regards decelerations, the distance of the nadir from the 
peak of the previous contraction (lag time).

Normally the computerized system, before identifying an acceleration or decel-
eration as real, verifies that the quality control of the recorded signal, previously 
described, has given a positive result [17].

4.4  �Analysis of FHR Variability

The indices just described are basically the reproduction of the criteria used for 
visual analysis, the implementation of which has not introduced elements of sub-
stantial novelty except the decrease of the analysis time of the tracings and the 
removal of interobserver variability.

Both the importance and novelty of automatic computerized analysis lie in the 
significant improvement in extracting the information content from the FHR vari-
ability signal. In fact, the duration of the heartbeat varies physiologically over time 
through the action of complex mechanisms both spontaneous and activated by dif-
ferent stimuli. As depicted in Fig. 4.3, a lot of quantitative indices can be computed 
on the FHR signal, which contains information on the nervous control mechanisms 
that generated it, determining its characteristics both in the short and long term.

As observed in adults, the sympathetic branch of the autonomic nervous system 
acts by inducing an increase in heart rhythm through vasomotor control and barore-
ceptive reflex [17]. The action of the parasympathetic branch (which for the heart 
coincides with the vagus nerve) regulates the slowing down of the heart rate. The 
two systems work synergistically to ensure cardiac response in different physiologi-
cal conditions and at different time scales. Observations on animals and humans in 
borderline conditions (e.g., after cardiac transplantation [18] have shown that, after 
the suspension of vagal and sympathetic efferences, the heart beats in constant sinus 
rhythm, with variability heart rate almost absent.

In the fetus, the nervous system has yet to complete the development phase. 
Nevertheless, the variability of the FHR, or the sequence of estimated time duration 
values between two successive heartbeats, is an indication, in a healthy fetus, of the 
action of regulation of the sympathetic and parasympathetic nervous system on the 
sinus node.

The ability and rapidity of variation of the heart rate are related to the adaptabil-
ity of the fetal heart and are therefore of great clinical importance.

In addition to the synergistic activity of the autonomic sympathetic and vagal 
nervous system, various physiological factors have an influence on the variability of 
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FHR. The amplitude of the variability is therefore conditioned by the interaction 
between respiratory influences (mediated by the action of the vagus nerve) and 
behavioral and motor influences in which the control mechanism is mainly that of 
the sympathetic system. The activity of fetal respiratory movements (when present) 
modulates the heart rate signal and modifies its variability [19]. Another mechanism 
is the maternal breath which influences the fetal heart rate so that frequency compo-
nents identify frequency components fetal heart rate related to maternal respiratory 
rate [20].

Fetal body movements also introduce components into the FHR signal. Activities 
such as movements of the mouth (attempts to suck), limbs, and facial grimaces are 
all correlated with an increase in the sympathetic contribution to the variabil-
ity of FHR.

Variability changes with gestational age, both in terms of the temporal duration 
of the phases and in the number of accelerations [21].

Furthermore, FHR variability increases as a result of vibroacoustic stimulation 
of the fetus with laryngophone on the maternal abdomen [22]. This behavior is also 
documented in the literature for other types of sensory stimulation [23].

Pathological conditions, such as hypoxia and anoxia, taking drugs with central 
sedative action, the immaturity of the hypothalamic and medullary centers, and 
brain malformations, can affect the vasomotor center and the medullary nuclei of 
the vagus with a consequent alteration (reduction) of FHR variability.

The analysis of such complex interactions can be carried out only by means of 
the tools made available by the computerized analysis.

Fig. 4.3  Screenshot of a CTG exam from the 2CTG2 system. The FHR baseline (in blue) is drawn 
by means of the Mantel’s algorithm; small black arrows indicate accelerations. The time duration 
of accelerations and contractions is depicted respectively with green and blue rectangles. The vari-
ous CTG parameters are reported in the bar below the Menu of the software
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Heart rate variability is a phenomenon that can be assessed at different time 
scales. We therefore speak of short, medium, and long-term variability according to 
the number of samples of the heart rate signal which is necessary for measuring the 
parameter.

The measurement of the difference between successive FHR values is the basis 
for calculating variability indicators in the short term (over a few beats or for a few 
seconds) whose value can be expressed in beats per minute (bpm), milliseconds 
(msec) or using dimensionless indices.

4.4.1  �Classical Time Domain Variability Indices

In many CTG systems, each FHR value coming from the cardiotocograph is trans-
formed in equivalent RR interval and expressed in milliseconds for the computation 
of time domain parameters. In the following, we will make reference to the algo-
rithms adopted by our 2CTG2 system for computing the FHR variability indices.

Short-Term Variability (STV) [ms]: it quantifies FHR variability on a short time 
scale. Considering an interbeat sequence of 1-minute duration, STV is defined as:
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where T is the average FHR computed by dividing the FHR recording in 
non-overlapping windows of 5 consecutive FHR values (2.5 s for a sampling fre-
quency of 2 Hz). STV is computed in a window of 1-minute duration so that 24 T 
values are obtained for each window. The corresponding STV estimate is obtained 
by averaging the differences between adjacent T(i) values, having accelerations and 
deceleration excluded.

Interval Index (II): it provides an estimate of short-term variability scaled by 
STV, defined as:
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where i = 1, …, 23 are the total number of T FHR values recorded in 1 minute.
Delta [ms]: considering a window in time of 1-minute duration, Delta is 

defined as:

	
Delta = ( )( ) - ( )( )max minT i T i

	

where i = 1, …, 24 which are the total number of T FHR values recorded in 1 minute.
Long-Term Irregularity (LTI) [ms]: is defined as the interquartile range of the 

distribution m(j) which is defined as:
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where j = 1, …, 71 which are the total number of T FHR values in a 3-minute win-
dow. LTI quantifies FHR variability on a longer time scale with respect to the previ-
ously reported time domain indices excluding accelerations and decelerations.

All these time domain parameters are computed following the indications of 
Arduini et al. [16].

4.5  �The Need for a Novel Approach

As already described in the previous paragraph, time domain variability indices are 
the history of the FHR analysis. Short-time variability (STV), long-term irregularity 
(LTI), Delta, and interval index (II) represent a quantification of the qualitative read-
ing by eye inspection.

Furthermore, heart rate analysis in adult subjects, both healthy and affected by 
diseases, has taken a different path with important findings about the possibility to 
quantify autonomic nervous system mechanisms and their impairment in dis-
ease states.

As the development of the ANS is in progress even in the fetal growth, the exten-
sion to FHR of the analysis methods, that already demonstrated usefulness in adults, 
opened new perspectives on the fetal diagnosis and the assessment of fetal 
well-being.

These novel parameters should consider FHR time series as complex signals in 
which different, time, frequency, and even nonlinear mechanisms contribute. In 
fact, all these contributions produce effects that can be captured by methods and 
parameters extracted in different domains.

The point is to go beyond the traditional time domain by adding features in fre-
quency, nonlinear, and complexity sphere, which are not available without advanced 
computational capabilities.

This is a new route to classify the FHR signal that takes advantage of novel signal 
processing methods, whose features can be associated with specific pathophysio-
logic events in the heart control mechanisms.

Our work during the last 20 years was devoted to the applications of this novel 
set of indices to the analysis of the FHR signal.

4.5.1  �FHR Features in Frequency Domain

Other HR variability parameters are calculated in the frequency domain following 
the Task Force indications by Power Spectral Density (PSD) [17]. PSD can be esti-
mated using the Fourier transform (usually through FFT algorithm) obtaining 
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non-parametric estimations based on the direct estimation of the Periodogram in the 
FHR. Parametric methods instead estimate PSD models from FHR and evaluate the 
related parameters. Autoregressive power spectrum estimation belongs to this sec-
ond group.

Some of them in specific frequencies show a relationship with ANS components 
whose activity can be quantified through frequency and power (contribution in the 
signal variance) values. For the HRV signal, main variability rhythms are LF 
(0.1 Hz – cardiovascular control) and HF (0.25 Hz –breathing).

In the context of FHR analysis, modification of standard analysis bands for HRV 
is required. Thus frequency domain parameters are the power percentage of the fol-
lowing frequency band ranges: LF [ms2/Hz] in (0.04–0.15  Hz), connected with 
sympathetic nervous system; MF (movement frequency [ms2/Hz]) in (0.15–0.5 Hz, 
not present in adult human subjects) which is associated with maternal breathing 
and fetal movements; HF power [ms2/Hz] in (0.5–1.0 Hz) linked to parasympathetic 
nervous system and fetal respiration-like activity. LF/(MF + HF) ratio provides the 
estimation of sympathovagal balance [9].

Each FHR value coming from the fetal monitor (in our case HP series 1351A) 
was transformed in equivalent RR interval and expressed in milliseconds for the 
computation of frequency domain parameters.

PSD is a widely employed tool for HRV frequency analysis as it can quantita-
tively measure the periodic oscillations related to neural control activity, namely 
autonomic nervous system (ANS) modulation over the cardiac system.

In the context of this analysis, the PSD estimation for FHR was performed based 
on autoregressive (AR) modeling (parametric spectral estimation). The AR model 
utilized to mimic FHR dynamic is defined as:
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where wj~WGN(0, σ2) (white Gaussian noise), p is the model order (from 8 to 12), 
and ai are the model parameters. The modeled FHR windows ( FHRˆ j( ) ) are of 
duration equal to 3 minutes (j = 1, …, 360).

Model parameters are calculated recursively by means of the Levinson-Durbin 
algorithm. Once the proper model order is defined, so that the model parameters are 
determined, PSD is defined as:
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where Δ is the mean value of FHRˆ j( )  in seconds and A(z) is the z-transform of the 
transfer function of the AR process previously defined. Through this parametric 
approach, FHR signal undergoes an automatic decomposition into a sum of 
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sinusoidal contributions, themselves identified by their corresponding central fre-
quencies and the associated power [24].

AR model estimation of HR interval series decomposes the power in harmonic 
components each one characterized by its central frequency and an associated 
amount of power. The order of the model (p) identifies the number of harmonic 
components that are necessary to explain the power (variance) content of the signal 
in the frequency domain.

4.5.2  �Nonlinear Domain Parameters

Not only frequency and time domain parameters explain the variety of behaviors 
that can be observed in FHR, it is now assessed that nonlinear mechanisms are 
involved in the variability generation.

For this reason, it is useful to add features derived from nonlinear analysis meth-
ods. Among them, measure of complexity rate in the FHR signal and the evaluation 
of periodic unstable oscillations provide powerful parameters improving discrimi-
nation and classification ability. In the context of a novel monitoring approach, 
these features play an important role.

Entropy estimators measure the signal regularity. Regularity has some correla-
tions with complexity of the system generating the signal. An irregularity increase 
characterizes a shifting of the system toward a random behavior. Irregularity 
decrease indicates a loss of system complexity (presence of pathological reduction 
of the variability, i.e., sudden cardiac death, gait failure, elderly condition, etc.).

The entropy estimators adopted in this work are the approximate entropy [25] 
and the sample entropy [26].

Entropy indices can be calculated both on very short periods (few minutes, at 
least 300 samples) and longer intervals. These statistics depend on parameters r and 
m: m is the detail level at which the signal is analyzed, and r is a threshold, which 
filters out irregularities. The adopted values are m = 2 and r = 0.15*SD, where SD 
is the standard deviation of the original signal.

The multiscale entropy (MSE) captures the fluctuations at different degrees of 
resolution, i.e., in a multiscale manner [27], allowing the study of the signals struc-
ture. The method creates coarse-grained time series {yτ}. The length of these series 
is the ratio between the length of the original series and τ. The coarse-grained time 
series are constructed by averaging consecutive τ samples. For each coarse-grained 
time series, an entropy measure is estimated.

Each FHR value coming from the CTG monitor (HP –series 1351A) was trans-
formed in equivalent RR interval and expressed in milliseconds for the computation 
of approximate entropy and Lempel and Ziv complexity.

Approximate Entropy (ApEn) [bits]: quantifies a signal regularity by assessing 
the occurrence rate of patterns by comparing the patterns themselves to a reference 
one of length m. Pattern similarity is defined based on a threshold r [4].
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Given a sequence of N data points u(i), i  =  1, …, N, the algorithm creates 
sequences xm(i) (based on window length m) and it computes for each 
i ≤ N − m + 1 the quantity expressed as:
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Approximate entropy (ApEn) is defined as:
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In the context of finite time series of length N as for FHR, ApEn can be written as:
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In this work, ApEn was estimated by considering non-overlapping windows of 
duration equal to 3 minutes, with the following parameter setting: m = 1, r = 0.1, 
N = 360 and named ApEn(1,0.1) [28, 29].

Lempel and Ziv complexity (LZC) [bits]: it quantifies the rate of new patterns 
developing with the evolving of the signal [30]. LZC is a method originally pro-
posed to assess the algorithmic complexity. Its value increases as the gradual 
increase of new patterns along the sequence. The algorithmic complexity is defined 
by the information theory as the minimum quantity of information needed to define 
a binary string. For example, the algorithmic complexity of a random string is the 
length of the string itself. In this case, any compression effort will produce an infor-
mation loss.

The first step toward its formulation encompasses the definition of the quan-
tity c(n) which measures the number of different substrings and the rate of their 
recurrence in a given time series. According to the information theory, in turn it 
assesses the minimum quantity of information needed to define a binary string. LZC 
quantifies the rate of new patterns arising as signal evolves [30].

Suppose the number of symbols in the alphabet A is α and the length of sequence 
is equal n. The upper bound for c(n) is given by:
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and log(x) means the logarithm of x to the base α.
When n is large enough (n → ∞), εn → 0 so as a result:
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where b(n) is the asymptotic behavior of c(n) for a random string.
The normalized complexity is thus defined as:
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In order to obtain LZC estimation for FHR time series, the latter requires to be 
transformed into a symbolic sequence according to a binary and/or a ternary coding 
procedure.

Binary coding: given an FHR series x(N), the sequence y(N) is built by assigning 
1 when the condition x(n + 1) > x(n) is verified for n = 1, …, N. On the opposite case 
of signal decrease, y(n) is assigned to 0 when the condition x(n + 1) ≤ x(n) is met.

Ternary coding: given an FHR series x(N), the sequence y(N) is built as in the 
binary coding case with the additional condition of signal invariance which is 
defined as x(n + 1) = x(n) and coded with the symbol 2.

Additionally, in the context of recorded time series, a factor p is introduced to 
define the minimum quantization level for a symbol change in the coded string (e.g. 
y(n) = 1 if x(n + 1) > x(n) + x(n) · p).

In this work, LZC was estimated by considering non-overlapping windows of 
duration equal to 3 minutes, with the following parameter setting: binary coding and 
p = 0 and named LZC(2,0). The choice of p = 0 reflects the current value for the 
quantization level, which is actually ±0.5 bpm [31].

4.5.3  �Phase-Rectified Signal Averaging

PRSA quantifies quasi–periodic oscillations in non-stationary signals affected by 
noise and artifacts, by synchronizing the phase of all periodic components [32].

It requires a time series I = 1,…,N, characterized by periodicities and correla-
tions, containing non-stationary and noise events. The first step is the computation 
of anchor points (AP) selected based on the average value of the signal before and 
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after a certain instant k within a selected time window. AP are identified as points 
that mark a signal increase. Similar inequality for signal decrease (< symbol). In an 
experimental time series as the HRV, about half of the signal points are anchor 
points. Features are denoted as acceleration and deceleration phase-rectified slope 
(APRS and DPRS) such as the slope of the PRSA curve in its AP (1).

We define the acceleration (deceleration) phase-rectified slope (APRS or DPRS) 
as the slope of the PRSA curve computed in the anchor point. The two parameters 
describe both the average increase (decrease) in FHR amplitude (absolute change of 
heart frequency) and the time length of the increase (decrease) event.

Each FHR value coming from Hewlett Packard CTG fetal monitors (series 
1351A) was expressed in bpm for the computation of acceleration phase-rectified 
slope and deceleration phase-rectified slope in order to be concordant with the com-
mon definition of acceleration and deceleration in fetal heart rate monitoring.

Acceleration Phase-Rectified Slope (APRS) [bpm]: the computation of phase-
rectified signal averaging (PRSA) curve (which APRS is extracted from) starts from 
considering a time series xi of length N (i = 1, …, N) as FHR in this work. The first 
step toward PRSA computation is the determination of the so-called anchor point 
(aPs). In this context, aPs are defined as the time series points xi fulfilling the follow-
ing inequality:
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where the parameter M is employed as the upper frequency bound for the periodici-
ties to be detected by PRSA method.

After aPs being detected, windows of length 2L are built symmetrically with 
respect to each AP. Given the fact that the majority of aPs are temporally close one 
each other, the resulting windows are effectively overlapping. An additional speci-
fication for the parameter L is that it should be larger than the period of slowest 
oscillation to be detected [33].

The PRSA curve Xi is obtained by averaging the derived windows synchronized 
in their aPs. After obtaining the PRSA curve, it is useful to summarize its character-
istics by extracting different parameters. An example of such is APRS defined as:
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The parameter APRS is a descriptor of the average increase in FHR amplitude and 
the time span of such increased event.

In this work, the considered signals xi is the whole available FHR recording, thus 
resulting in a single APRS value. The parameters M and L are equal 40 and 200 
respectively [34].

Deceleration Phase-Rectified Slope (DPRS) [bpm]: the computations are analo-
gous of those previously reported for APRS apart from the definition of aPs which 
are defined as the time series points xi fulfilling [33]:
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The use of these advanced methods allows collecting a set of features that analyze 
different properties of the FHR variability signals.

Table 4.1: Indices applied in FHR analysis. Each method is associated with 
details on application as well as hypothesis of physiological correlates to mecha-
nisms performing control of the FHR signal.

Table 4.1  Analysis techniques in FHR

Method Parameters Length Hypothesis

Frequency analysis
AR model estimation from 
data and measurement of 
spectral components in 
defined frequency bands.

% of PSD (msec2) in 
frequency bands:
 � LF: 0.03–0.15 Hz
 � MF: 0.15–0.5 Hz
 � HF: 0.5–1 Hz
 � LF/(MF + HF)

3 min
360 values

Quantification of the 
activity of the autonomic 
nervous system.

Time analysis: 
morphological HR 
modification and 
variability

STV (msec)
7000II

70000 min
1200 
values

Variability in the short 
period

Delta
FHR avg (msec)
LTI (msec)

3 min
360 values

Variability in the long 
period

Approximate
Entropy and sample 
entropy

ApEn (m,r,N)
SampEn (m,r,N)

3 min
360 values

Presence of recurrent 
patterns in a single scale

Multiscale entropy MSE: entropy estimator as 
a function of a scale factor 
τsf

7000 
values

Investigation of signal 
structure: repetitive 
patterns are present at 
different time scales

Detrended fluctuation 
analysis (DFA)

DFA scaling exponent: 
linear relationship between 
the detrended integrated 
time series F(n) and the 
time scale on a log-log plot

1200 
values

Quantification of 
long-range correlations 
in time series. Presence 
of power law (fractal) 
scaling
Differences activity vs. 
quiet state

Lempel Ziv complexity 
(LZC)

LZC binary coding 7000 
values

Rate of new patterns 
arising with the evolving 
of the signal

Phase-rectified signal 
averaging (PRSA)

APRS, DPRS 3–30 min Detect quasi-periodicities 
in noisy, non-stationary 
signals
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4.6  �Application of Linear and NonLinear Analysis:  
Example of IUGR Detection

As an example of this novel solution in the monitoring of FHR, we present results 
in two selected populations: normal fetuses and i–tra-uterine growth restricted 
(IUGR) fetuses. IUGR is a metabolic dysfunction which does not allow the fetus to 
achieve its genetically predetermined size. The fetus is at risk of hypoxia and this 
condition is often associated with increased perinatal mortality and morbidity (mor-
bidity 8%, incidence 4–7% in general population (15–20% in twins)). IUGR condi-
tion can bring to consequences either during pregnancy, till the fetal death and in the 
neonatal life with increased difficulties for the baby to achieve a normal development.

Monitoring the fetal growth, early in pregnancy, is essential, but the interpreta-
tion of clinical data in the very preterm period is very difficult and evidence-based 
guidelines are lacking. Even indices coming from new techniques (echo, Doppler 
fluximetry, etc.) did not solve the problem. As a matter of fact, the introduction of 
non-invasive ultrasound techniques allows assessing with high resolution the fetal 
biometry, i.e., identify the small fetuses. However a small fetus is not necessarily an 
IUGR fetus, but it can be only an SGA (small for gestational age). In this last case 
the fetus is small, but perfectly healthy unless its anatomic parameters are smaller 
than expected for its gestational age. SGA, in fact, is defined for the fetus with a 
biometric size <10° percentile. It would be very important to classify physiological 
cases of reduced dimensions from really pathological situations (IUGRs).

Cases of intrauterine growth restriction (IUGR) require different attention and 
management. There are no therapies and no definitive guidelines in IUGR. The pre-
natal management is aimed primarily at determining ideal timing and mode of 
delivery. Furthermore, no agreement was found in the definition of what is the 
expected growth potential for a fetus and who can be considered pathologi-
cally small.

This paragraph has the goal to provide an overview on how a set of quantitative 
indices from FHR analysis obtained from cardiotocographic recordings, during pre-
natal monitoring, can identify the fetal status during pregnancy including the 
IUGRs, separating them from the healthy SGAs.

The core summary of our contribution to the classification of the FHR signal can 
be described by some key steps. The first point is certainly the identification of a set 
of indices strictly related to the physiological mechanisms responsible for heart rate 
control in the fetus. The second step is to obtain relationships between these param-
eters and the condition of the fetus (normal or IUGR) through a multivariate 
approach. The physio–ogical-based features are then used as input of a simple mul-
tivariate classification model to early identify IUGR conditions during the antepar-
tum period. All these findings open the possibility to introduce these novel estimators 
in the clinical practice.

The features extracted from methods previously described showed their capabil-
ity in classifying different variability patterns in FHR.
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The history of our analysis began with the application of frequency analysis 
methods in normal fetuses. This allowed us to verify that physiological develop-
ment during gestation is marked by increasing fetal nervous system maturity which 
is measurable in the patterns of HRV signal. Even if the ANS is still developing its 
activity can be enhanced through spectral analysis parameters.

Low frequency, movement frequencies, and high frequency power components 
quantify the sympathetic and parasympathetic effect on the fetal heart regulation.

Here, we want to underline how features describing FHR variability can open 
new routes toward clinical evaluation. Tracking healthy fetus development is the 
first step to design an effective monitoring system [9].

Results were translated in an updated version of the 2CTG2 software.
The same approach was used for ApEn. Once it has been established that this 

entropy estimator was able to capture differences in fetal variability, these results 
opened to the use of this novel parameter in FHR analysis. The 2CTG2 software 
was upgraded with ApEn tool as this feature became well known even in the clinical 
obstetric world.

By the development of the research in nonlinear classifiers, novel parameters 
improving the entropy estimation were proposed. Sample entropy improved the 
consistence of the ApEn estimator, thus providing more robust measurements.

Comparison among different entropy estimators confirmed the usefulness of 
these features even in the classification of IUGR pathological fetal conditions [28]. 
The feature set produced by old and novel approaches provided multiparameter set-
tings of FHR by different perspectives (time, frequency, complexity, regularity, etc.)

Differences among healthy and IUGR were enhanced by different parameters as 
the pregnancy progressed.

A step forward was moved by applying the entropy estimators (ApEn and 
SampEn) in a multiscale context.

Not only the variability of the FHR contains useful information that can be cap-
tured by regularity and complexity estimators, but these features can be calculated 
even at different scales (which means to consider coarse-grained versions of the 
original FHR signal).

The paper by [35] shows how MSE applied to a population of fetuses including 
normal, not severe, and severe IUGR provides a slope parameter at scale 1 and 2 
that classifies the three groups as different each other.

Introduction of the LZC complexity [31] added a new and different index to FHR 
analysis. Even in this case, results show that a separation between healthy and IUGR 
fetuses is possible with statistic evidence.

New samples in FHR can bring new information and contribute to information 
enrichment in the signal. This enrichment can be connected to the development of 
an organized neural system that improved in time its control abilities till the birth 
and after it.

The role of physiological oscillation in FHR has always been considered the 
outmost importance for prenatal diagnosis. Acceleration and decelerations are signs 
of reactivity and sufferance, respectively, in most cases.

G. Magenes and M. G. Signorini



93

Phase-rectified signal averaging provides features that are related to the oscilla-
tory component of the signal. Without hypothesis about periodicity PRSA analysis 
quantifies the incidence of positive (acceleration) and negative (deceleration) 
changes in the FHR signal.

APRS and DPRS parameters from phase-rectified signal averaging method con-
tribute to the separation of healthy and IUGR fetuses with high statistical 
significance.

One reason for their performance is they are almost uncorrelated to other classi-
cal features in FHR analysis. This result reinforces the goodness of choosing fea-
tures measuring different aspects of the FHR signal.

Once again, oscillations are mediated by nervous autonomic control as well as 
breathing-like influences. The optimal performance of these features is an indirect 
confirmation of their pathophysiological complex connections.

By looking at the performances of each single feature in the classification trial, 
results confirm an appreciable capability of each single parameter in separating fetal 
classes of healthy vs IUGR subjects [34].

However, in the recent years, it has become clear that a single index, although 
representative of a complex behavior, cannot be descriptive of all pathophysiologi-
cal processes of pregnancy by itself, either it being computed in time, frequency, or 
nonlinear domain.

Despite the large availability of FHR quantitative indicators, very few fetal-
related literature addressed the issue of how to adopt multivariate approaches in 
fetal surveillance. In the past, the availability of data was scarce. Recent years 
instead have seen a formidable growth in data generated during the care process. 
Moreover, data from fetal monitoring benefit from both technological advance-
ments and novel available parameters which generate data increase.

As this chapter clearly illustrated, new features contribute to a better understand-
ing of the fetal physiological system. They are also able to distinguish healthy from 
disease states. What is clear also is the increase in the computational complexity. 
Ranking and interpreting the results become a difficult job.

Thus, the need for a multimodal and multivariate analysis of FHR emerged as 
evident. Such novel integration should start from consolidated parameters toward 
the aim of integrating indices in a more comprehensive framework.

Our research group already proposed a bivariate approach to discriminate 
between healthy and IUGR fetuses [36]. Despite the interesting results, a two-
dimensional space did prove not to be sufficient and it actually limits the investiga-
tion of a complex pathological condition on a reduced subset of features.

In this context, machine learning methods were adopted as their capability to find 
relationship in large and complex datasets. By submitting a large amount of raw 
data to ML classifiers, a low dimension model can be obtained explaining the larg-
est amount of variance in the process and providing classification results.

This analysis was designed to search for an optimal decision rule in the multidi-
mensional space of the parameters to predict the class of interest, namely healthy 
and IUGR. The classification rule is usually seen as a discrimination surface sepa-
rating the multidimensional space into regions with homogeneous classes.
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Different multivariate models were explored to identify several informative pre-
dictors of IUGR condition and to ultimately compare their discriminative perfor-
mances: logistic regression (LR) [37], logistic regression stepwise (LR-SW) [38], 
naïve Bayes (NB) [39], classification trees (CT) [40], random forests (RF) [41], and 
support vector machines (SVM) [42].

The two machine learning techniques which outperformed, showing the best dis-
criminative performances, were: RF (mean CA = 0.855, 95% CI = 0.794–0.916) 
and LR-SW (mean CA = 0.833, 95% CI = 0.759–0.908) which showed the best 
classification accuracy (CA) among the proposed machine learning models [43]. 
Although this study was carried out on a limited population (60 normals and 60 
IUGRs), it constitutes a proof of concept that multivariate analysis on a set of phys-
iopathological parameters can face complex diagnostic problems as the early iden-
tification of IUGRs and should be introduced on large scale in the clinical practice.

Once again, having some features in FHR which are linked to physiological 
mechanisms helps the interpretation and can guide the consequent clinical 
intervention.

This is the reason why, in our study, a two-step methodology for the early iden-
tification of the intrauterine growth restriction (IUGR) has been implemented, by 
deriving features from antepartum CTG traces. Methods were advanced signal ana-
lytics. The different machine learning techniques were trained with physiology-
based FHR features: it made available a tool capable of providing an interpretable 
link between the machine learning results and the physiological mechanisms of 
fetal regulation.

4.7  �Conclusions

As already pointed out at the beginning of the chapter, the aim was to provide the 
reader with information on the computerized systems for reading the CTG tracing, 
so that on the one hand there are no false expectations or illusions of absolute effec-
tiveness, and on the other hand that techniques and numerical methods are cor-
rectly used.

The possibility of quantifying the analysis of the FHR through information tech-
nology and methodologies has allowed to overcome the main problem that plagued 
the traditional cardiotocographic technique, which is the subjective interpretation of 
the layout. The development of reliable algorithms for the identification of the vari-
ous linear and time domain parameters extracted from the FHR signal has intro-
duced the use of this approach in the clinical practice, even if the simple quantification 
of morphological analysis criteria (quantitative reproduction of the analysis by eye 
inspection) is not sufficient to highlight complex FHR alteration phenomena.

An advanced analysis that uses parameters more tied to a physiopathological 
meaning and more sophisticated classification methodologies, in addition to the 
advantage of providing objectivity and reproducibility to the cardiotocographic 
method, allows to highlight and study variation phenomena of the FHR correlated 
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with the control function of the autonomic nervous system on local cardio-regulatory 
mechanisms. The possibility of being able to access these new assessments must be 
taken into consideration when assessing the importance of a computerized approach.

Furthermore, the use of classification tools, such as machine learning approaches, 
can lead to a further increase in the effectiveness of FHR analysis in the near future. 
The ability to learn general behaviors from available examples makes them particu-
larly suitable for finding relationships that are not evident within sets of data, when 
causal knowledge is not well defined.

It is clear that it would be absolutely wrong from a clinical point of view to rely 
on the only abnormal result of a computerized CTG examination to decide, for 
example, the completion of childbirth in an IUGR fetus, but the global situation of 
the fetus and the mother must be considered; in fact, the data deriving from the 
computerized analysis of the CTG is a single clinical data and must be entered in a 
wider context.

In conclusion, the development of techniques and numerical methods for CTG 
analysis can constitute the future of fetal monitoring, especially for the early and 
reliable identification of states of suffering thanks to the integration of new knowl-
edge of maternal-fetal pathophysiology with the extraction of significant parameters 
and with advanced classification methods.
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5.1  �Introduction

The early assessment of fetal well-being is the major objective of fetal monitoring 
during pregnancy and labor. The latter is specifically useful for identifying fetuses 
at risk of hypoxia (oxygen deficiency) during labor. In this context, fetal electrocar-
diography is one of the emerging technologies, which dates back to 1906 [27] but 
has gained much more attention during the past two decades. The technology has 
significantly evolved throughout the past 50 years, from naive visual inspection to 
multichannel automatic methods of noninvasive fetal electrocardiogram (fECG) 
extraction, using advanced signal processing methods [41, 77]. The method has 
become more popular in recent years due to its relatively low cost and advances in 
the required signal acquisition and signal processing techniques. In this context, 
both invasive methods used after amniotic sac rupture during labor and noninvasive 
methods using maternal abdominal leads throughout pregnancy (especially during 
the third trimester) have been used. Although invasive fECG recording using fetal 
scalp leads has a higher signal-to-noise ratio (SNR) and requires less processing as 
compared with noninvasive signals captured from the maternal abdomen, due to the 
potential risks of invasive methods for both the mother and the fetus(es), it is not so 
popular. On the other hand, despite its advantages, noninvasive fECG extraction is 
hampered by many practical challenges including (1) the significantly lower SNR of 
the fECG as compared with the maternal ECG (mECG), which superposes over the 
abdominal leads; (2) device and measurement issues related to noninvasive fECG 
acquisition using single or multiple maternal abdominal sensors; (3) the indirect 
access to the fetal heart through multiple maternal body layers, which act as a vol-
ume conductor; (4) artifacts and variations in fECG shape due to fetal movements; 
(5) baseline wanders of the data due to maternal respiration; and (6) measurement 
and environmental noises such as maternal muscle and uterine contractions, power-
line noise, and artifacts due to other bedside monitors and devices such as the infu-
sion pumps. Most of these noises overlap with the fECG in time, frequency, and 
space (leads), making fECG extraction a nontrivial challenge, which requires 
advanced signal processing.

To date, various methods have been developed for fECG extraction with various 
degrees of success, including adaptive filtering [7, 32, 56, 59, 67, 69, 89, 97, 104], 
Kalman filtering [65, 82, 84], singular value decomposition [45], blind and semi-
blind source separation using independent and periodic component analyses [28, 
74, 83, 108], and wavelet transforms [47, 55, 101]. Some of these techniques, such 
as Kalman filters, singular value decomposition, wavelets, and adaptive filters (used 
in line-enhancement mode) have been applied to both single and multichannel 
abdominal ECG recordings. In contrast, other techniques such as independent com-
ponent analysis or adaptive noise cancellation using an external reference require 
two or more channels of measurements. Multichannel techniques based on blind 
and semi-blind source separation have proved to be very effective to overcome the 
aforementioned challenges. Nevertheless, various aspects of noninvasive fECG 
extraction are still open problems and require further studies—for example, issues 
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related to long-time online fECG monitoring (required for fetal Holter monitoring), 
problems due to fetal movements during signal acquisition, variations in fECG mor-
phology (again due to fetal motion and fetal positioning with respect to the body 
surface leads), and fECG extraction in low SNR using few numbers of channels. 
There are also several post-fECG extraction issues including fetal R-peak detection, 
heart rate (HR) calculation, fECG morphology extraction, and clinical parameter 
extraction (QT interval, ST-level calculation, etc.) from noisy fECG signals. From 
the clinical and industrial perspective, the size and cost of the device, the technol-
ogy, and the number of maternal abdominal leads (preferably only a few leads 
placed close together in a patch of electrodes) are also of great importance.

In this chapter, the major signal processing techniques, which have been devel-
oped for the modeling, extraction, and analysis of the fECG from noninvasive 
maternal abdominal recordings over the past 50 years, are reviewed and compared 
with one another in detail.

5.2  �Noninvasive Fetal Electrocardiography Data Model

5.2.1  �Volume Conductor Model

The physics of the problem of noninvasive fECG measurement from the maternal 
abdomen follows the general principles of volume conduction theory [43]. The 
properties of the propagation media from the fetal heart to the maternal abdomen 
have been explored in previous studies [66, 74]. The major aspects of the problem, 
which influence the fECG data model and extraction techniques, can be summa-
rized as follows [41]:

	1.	 Negligible electric displacement current: The electromagnetics of the problem is 
quasi-static. Therefore, the electric and magnetic fields are decoupled, the elec-
tric field is proportional to the gradient of the electric scalar potential, and the 
divergence of the current density is zero.

	2.	 Linear propagation media: Superposition holds for the electrical potentials due 
to the maternal heart, fetal heart, and other sources of biopotentials.

	3.	 Negligible capacitive component of the body tissues’ electrical impedance: Due 
to the relatively low frequency range of interest (below 10 kHz), the tissues are 
to a very good approximation resistive and the capacitance is negligible.

	4.	 Spatial distribution of the heart: The source signals are non-punctual, and differ-
ent lead configurations provide different views of the heart, conveying differ-
ent— although rather redundant and correlated— information. Therefore, the 
cardiac source may only be approximated by a current dipole in the far-field.

	5.	 Non-homogeneous volume conductor: Low-conductivity layers, such as the ver-
nix caseosa, which form throughout pregnancy (mainly between weeks 28 and 
32 of gestation [77]), can change the preferred electrical propagation pathways, 
resulting in morphological variations on the maternal body surface [66, 94].

5  Noninvasive Fetal Electrocardiography: Models, Technologies, and Algorithms



102

	6.	 Morphological variability: During a signal recording session, although the fECG 
morphology is consistent with respect to the fetal body (as in adult ECG)—due 
to fetal motions such as rotations, movements of extremities, and hiccups—the 
extracted fECG morphology can change with respect to the maternal body coor-
dinate system and the maternal body surface sensors. Moreover, minor fetal and 
maternal movements, such as maternal respiration, somehow modulate the fetal 
cardiac signals acquired from the maternal abdomen.

These properties imply that temporal parameters such as the R-peak locations, heart 
rate, and PT and QT intervals can be very accurate, but parameters, such as the 
R-wave amplitudes and T-to-R ratios, which rely on amplitudes and ratios of ampli-
tudes are totally unreliable since they can easily change with fetal positioning, ges-
tation age, or a change of lead configurations. Nevertheless, relative variations of 
amplitude-based parameters can still be accurate between successive fetal heart 
beats and during real-time monitoring. For example, phenomena such as T-wave 
alternans (TWA) which require the comparison of the T-wave amplitudes between 
successive beats are still reliable (up to the signal quality).

Note that items 1–4 listed above are also applicable to adult ECG and the mECG 
that superposes over the abdominal leads. Based on these properties, the problem of 
noninvasive fECG acquisition from an array of maternal abdominal sensors can be 
mathematically formulated as follows:

	
x H s H s H v nt t t t tm m f f v( ) = ( ) + ( ) + ( ) + ( ) 	

(5.1)

where x(t) ∈ ℝn is the n channel of maternal body surface measurements acquired 
differentially with respect to one or more reference channels, sm(t) ∈  ℝm is the 
mECG source component, sf(t) ∈ ℝl is the fECG source component, v(t) ∈ ℝk rep-
resents the structured (correlated or low-rank) noise corresponding to other biopo-
tential sources (such as maternal muscle contractions) or device noise, and n(t) ∈ ℝn 
is the unstructured (full-rank) measurement noise, which corresponds to sensor-
wise noise that is uncorrelated from the other signals and structured noises. In the 
data model (5.1), Hm ∈ ℝn × m, Hf ∈ ℝn × l, and Hv ∈ ℝn × k are the lead-field matrices, 
which map the source components to the body surface electrode recordings. The 
model may be further extended to consider minor maternal body motions (e.g., due 
to respiration) and fetal movements by considering Hm, Hv, and Hf to be the func-
tions of time. Also in multiple pregnancies, similar terms can be added to (5.1) for 
the other fetuses [81].

The spatial distribution of the cardiac source implies that in (5.1), m and l theo-
retically tend to be infinity. However, as we get farther from the cardiac sources, 
far-field approximations are applicable and the cardiac sources behave more like 
dipoles [58]. Therefore, in practice, each of the cardiac sources can be approxi-
mated up to finite effective number of dimensions [88]. In [80], it was quantitatively 
shown that for adult ECG, taking m between 5 and 6, and for fetal ECG, assuming 
l between 1 and 3, are sufficient to retrieve the major energy fraction of the maternal 
and fetal ECG components (from the maternal abdominal lead recordings). 
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Apparently, the effective number of dimensions also depends on the sensor position 
with respect to the maternal and fetal hearts. For example, if the maternal abdominal 
leads are placed rather distanced from the maternal chest, or if the fetal position is 
such that the shortest conductive path between the differential sensor pairs does not 
pass through the fetal heart (i.e., the fetal cardiac electrical fields do not result in 
significant potential differences between the recording differential pair leads), the 
effective number of dimensions reduces. In this case, the fECG is not retrievable 
from the abdominal leads, even by using the most advanced signal processing tech-
niques. It is later shown that the effective number of dimensions and the number of 
maternal body sensors are specifically important for multichannel fECG extraction 
algorithms. Some general guidelines for selecting the sensor locations for better 
fECG retrieval are presented in Sect. 5.3.3.

5.2.2  �Morphological Model

5.2.2.1  �Template-Based Models

Mathematical modeling of the ECG waveform has vast applications in ECG device 
test instruments and for educational purposes. To date, the beat-wise ECG morphol-
ogy has been modeled by various mathematical functions including Bessel func-
tions [93], Hermite polynomials [48], and Gaussian functions [39, 61]. The latter 
has an intrinsic dynamic mechanism for generating continuous ECG waveforms, 
which will be later discussed in details. Other wave-based models can generate a 
continuous ECG by replicating a fixed waveform that resembles the beat-wise ECG 
morphology. Accordingly, a single-channel ECG can be modeled as follows:

	
ecg t h t T T nT

n
n n n n( ) = å -( ) = +; ,g h

	
(5.2)

where Tn denotes the R-peak locations, T is the average RR-interval, ηn is the 
RR-interval deviation, h(t; ⋅) is the ECG morphology, and γn denotes the beat-wise 
variations of the ECG morphology considered as a model parameter. It is shown in 
the sequel that this simple pseudo-periodic model can be used for removing mECG 
interferences from the fECG. The limitation of this model is that the natural beat-
wise variations of the heart rate, which result in the shortening or prolongation of 
certain segments of the ECG, are not explicitly considered in this model. In fact, a 
more accurate model should permit the compression and expansion of the ECG 
morphology, as the heart rate evolves over time. Based on this requirement, the 
notion of cardiac phase has been introduced for modeling and development of ECG 
filtering and later used for mECG cancellation and fECG extraction from multi-
channel abdominal recordings.
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5.2.2.2  �The Notion of Cardiac Phase

The cardiac cycle, or the period from one sinoatrial (SA) node activation to the next, 
consists of a period of relaxation (diastole), during which the heart is filled with 
blood, followed by a period of contraction (systole), as shown in Fig. 5.1. For a 
normal heart, the contraction and relaxation phases are subject to continuous 
change, controlled by the autonomic nervous system, and these changes do not nec-
essarily take place “linearly” along the beats. In other words, when the heart rate 
changes, the different segments of the ECG are not scaled to the same extent. 
Specifically, it is believed that when the heart rate increases, e.g., due to physical 
activity, tachycardia, and bradycardia, the duration of the action potentials and the 
period of the systolic phase also decrease, but not as much as the variations of the 
diastolic phase of the ECG [36]. Alternation in the cardiac cycle duration depends 
on various physiological factors, which can be modeled using the notion of cardiac 
phase. As proposed in [83], the cardiac phase θ(t) ∈ [−π, π] (or alternatively [0, 2π]) 
can be used as a variable for the mathematical representation of the pseudo-periodic 
behavior of the heart over different beats. As illustrated in Figs. 5.2 and 5.3, each 
electrophysiological state of the heart over a full cardiac cycle can be mapped to a 
unique value between [−π, π]. In other words, the linear phase θ(t) provides a means 
of phase-wrapping the RR-interval onto the [−π, π] interval. Therefore, the ECG— 
regardless of its RR-interval deviations— is converted to a polar representation, in 
which the ECG components in different beats, such as the P, Q, R, S, and T-waves, 
are more or less phase-aligned with each other, especially over the QRS segment 
(Fig.  5.4). As a result, identical contraction or relaxation states of the heart are 
mapped to identical values of θ(t). For example, by convention, the peak of the sys-
tole (the R-peak) can be fixed to θ(t) = 0. This convention maps the ventricular 
diastolic state of the heart to negative phases and the ventricular systolic state to 
positive phases. In this case, the phase-wrapping from −π to π takes place just after 

Fig. 5.1  The cardiac states across successive beats versus the ECG
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the T-wave offset, and at the beginning of the relaxation period of the heart, where 
the ECG level is at its isoelectric point or baseline (cf. Figs. 5.1 and 5.2).

From the cardiac phase signal, some other quantities can be calculated, which 
have been extensively used in the literature, for modeling and denoising adult and 
fetal ECG signals:

•	 Cardiac angular frequency and instantaneous heart rate: The cardiac angular 
velocity ω(t) in rad/s and the instantaneous heart rate in Hz are defined as 
follows:

	
w p

q
t f t

d t

dt
( ) = ( ) = ( )

2
	

(5.3)

•	 Therefore, the conventional RR-interval can be considered as the average of the 
reciprocal of f(t), over one beat. Note that both f(t) and ω(t) are rather abstract 
quantities for conventional ECG analysis, in the sense that only the RR-interval 
is known as a clinical index (the duration between the onsets of successive 

Fig. 5.2  The cardiac cycle 
phase-wrapped on the unit 
circle using the phase 
signal. The heart sounds S1 
and S2 are also 
demonstrated for reference 
to the mechanical activity 
of the heart

Fig. 5.3  The cardiac phase using a linear phase. (Adapted from [83])
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ventricular systoles). Nevertheless— again in an abstract sense—f(t) and ω(t) 
can be considered as the speed of cardiac dipole rotation in the myocardium.

•	 Time-varying cardiac period: In each ECG cycle, the sample at the time instant 
t has a dual sample in other beats, which have the same phase value. We define 
the distance between sample t and its dual sample in the previous beat as the 
time-varying period, which is denoted by τt and mathematically defined as 
follows:

	
t q t q

tt t t= -( ) = ( ){ }
>

argmin
0 	

(5.4)

5.2.2.3  �Dipolar Models

According to dipolar models of the heart [57, 58], the signals acquired from differ-
ent body surface leads are projections of the cardiac dipole vector onto the record-
ing electrode axes. Due to the properties of the fetal and maternal body volume 
conductors, detailed in Sect. 5.2.1, the signals acquired by all body surface leads are 
quasi-periodically time synchronous with the cardiac phase. These properties have 
been used in the literature to develop synthetic models for generating maternal and 
fetal cardiac waveforms. The first modeling framework, explicitly focused on the 
fECG, was developed in [66]. This study was based on maternal body surface poten-
tials modeling using finite elements methods and assuming a dipolar model for the 
fetal heart. Another popular model is based on the single-channel ECG model pro-
posed by McSharry and Clifford [18, 19, 61, 79], which was later extended to the 
fECG in [81]. Accordingly, the following dynamic model has been proposed for 
simulating the three dipole coordinates of the vectorcardiogram (VCG), which is 
denoted by s(t) = [x(t), y(t), z(t)]T:.
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where Dq q q pi
x

i
x= -( ) ( )mod 2 , Dq q q pi

y
i
y= -( ) ( )mod 2 , 

Dq q q pi
z

i
z= -( ) ( )mod 2 ,  ω = 2πf are the cardiac angular velocities and f is the 

instantaneous heart rate, as defined in (5.3). Mathematically, the first equation in 
(5.5) generates a circular trajectory, which rotates with the frequency of the heart 
rate. In other words, each cycle of θ sweeping from 0 to 2π corresponds to one car-
diac cycle, and the other equations model the dynamics of the three coordinates of 
the source vector s(t) as a summation of Gaussian functions with amplitudes ai

x , 
ai

y , and ai
z , widths bi

x , bi
y , and bi

z , each located at rotational angles qi
x , qi

y , and 
qi

z . The intuition behind this set of equations is that the baseline of each of the 
dipole coordinates is pushed up and down, as the trajectory approaches the centers 
of the Gaussians, resulting in a moving vector in the (x, y, z) coordinate space. In 
practice, by adding some deviations to the parameters of (5.5), for example by con-
sidering them as random variables rather than deterministic constants, more realistic 
ECG with inter-beat variations can be generated.

The above model of the rotating dipole vector is rather general, since due to the 
universal approximation property of Gaussian mixtures, any continuous function 
such as the dipole vector coordinates can be modeled with a sufficient number of 
Gaussian functions, up to an arbitrarily close approximation [11]. Moreover, the 
model is a very good choice for ECG signals of both adults and fetuses, for which 
the Gaussian kernels can be eventually related to clinical parameters of the 
ECG. Equation (5.5) can also be thought as a model for the orthogonal lead VCG 
coordinates, with an appropriate scaling factor for the attenuations of the volume 
conductor. This analogy between the orthogonal VCG and the dipole vector was 
used in [81] to estimate the parameters of (5.5) from the three Frank-lead VCG 
recordings.

By placing the resulting cardiac source models of the maternal and fetal cardiac 
dipoles in (5.1), realistic mixtures of maternal abdominal signals are obtained. In 
Figs. 5.5 and 5.6, a sample signal corresponding to the cardiac dipole coordinates 
and the resulting three-dimensional vectorcardiogram loop are shown for illustra-
tion. A multichannel signal generated by this technique plus synthetic noise is also 
shown in Fig.  5.7. The functions required for generating synthetic maternal 
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abdominal signals are available online in the website mentioned in [76], with the 
parameter set listed in [81]. Accordingly, the number of the Gaussian functions used 
for modeling the maternal and fetal ECG are not necessarily the same for the differ-
ent channels and they can be selected according to the shape of the desired channel. 
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Fig. 5.5  Synthetic ECG signals generated by the VCG model in (5.5)

Fig. 5.6  Typical synthetic VCG loop. Each clinical lead is produced by mapping this trajectory 
onto a one-dimensional vector in this three-dimensional space
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Databases of synthetic maternal and fetal cardiac signals generated by this method 
are available online for algorithm evaluation [2, 76].

5.3  �Digital Noninvasive Fetal ECG Acquisition

5.3.1  �Acquisition Front-End Requirements

To date, there are no standards or widely accepted protocols for fECG acquisition. 
Nevertheless, the common properties of the fetal and adult ECG and the existing 
open-access fECG databases can be used to set some baselines. It is known that the 
effective bandwidth of adult ECG is between 0.05 and 150 Hz, with a maximum 
span of ±5 mV in magnitude, besides the common-mode and electrode offset volt-
ages, as shown in Fig. 5.8. It is recommended that the front-end noise of adult ECG 
devices should be below 30 μV in root mean square (RMS) [24]. On the other hand, 
in the currently available maternal abdominal datasets, the fECG can be10–20 times 
smaller than the mECG. At the same time, due to the sharper QRS and higher heart 
rate of the fetus as compared with the adult ECG, the fECG is wider in bandwidth. 
As a baseline, a bandwidth between 0.05 and 250 Hz covers the dominant band-
width of the fECG. In this range, the most informative band is from 10 to 70 Hz, 
which is used for fetal heart rate detection, while the full bandwidth is recommended 
for fECG morphological analysis.

According to the sampling theorem, the sampling frequency of a signal should 
be above twice the maximum frequency of the input signal (known as the Nyquist 
rate) to avoid aliasing and to guarantee information retrieval. But for biomedical 
applications, signal visualization is an integral aspect of the analysis, and sampling 
at the minimal Nyquist rate does not result in visually agreeable signals. Therefore, 
biomedical signals are commonly over-sampled above the Nyquist rate for better 
visualization and possible SNR improvement during post-processing.

As for the amplitude, fECG acquisition systems should have a broad dynamic 
range to permit fECG acquisition without overflow or saturation due to interfering 
signals such as the mECG and power-line noise, as demonstrated in Fig. 5.9. In 
Fig. 5.10, the amplitude and frequency range of the fECG are compared with other 

Fig. 5.7  Typical multichannel ECG generated by a synthetic maternal-fetal ECG generator
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biosignals and artifacts. Accordingly, the fECG spectrally overlaps with the inter-
fering biosignals and is significantly weaker in amplitude. Therefore, classical fre-
quency domain filtering is ineffective, especially for the mECG, which is the 
dominant biomedical interfering signal for the fECG.

5.3.2  �Analog-to-Digital Conversion Requirements

The procedure of analog-to-digital signal conversion inevitably adds quantization 
noise to the signal and reduces the signal-to-noise ratio (SNR). It is therefore impor-
tant to keep the quantization noise below or at the same level as the analog signal 
noise level to avoid significant signal quality degradation. The SNR due to the quan-
tization procedure can be calculated from the standard equation:

	
SNR dB OSR( ) = + + ( )6 02 1 76 10 2. . logb

	
(5.6)
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Fig. 5.8  The dynamic range of analog ECG frontends. (Adapted from [98])
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where b is the number of analog-to-digital converter (ADC) bits and OSR = fs/BW 
is the over-sampling ratio, which is the ratio of the sampling frequency fs and the 
bandwidth (BW) of the input signal. The SNR improvement due to the OSR term in 
(5.6) is only obtained by post-filtering if the signal is sampled above the minimal 
Nyquist rate. Note that the standard SNR equation (5.6) is based on the assumption 
of a sinusoidal input signal with close- to full-scale amplitude range (typically 1 dB 
below the ADC full-scale level) applied to a symmetric voltage referenced ADC 
with uniform quantization levels and assuming that the quantization noise is uni-
formly distributed over the entire Nyquist bandwidth [46]. This standard procedure 
enables the manufacturers and circuit designers to have a unified comparison 
between different ADC devices.

It should also be noted that in digital electronics circuits design, the maximum 
SNR expected from the nominal number of ADC bits is not achievable. In fact, 
depending on the ADC technology, sampling frequency, and the printed circuit 
board (PCB) design and quality, the effective number of bits (ENOB) is what is 
obtained in practice:

	
b =

-SNR dBreal 1 76

6 02

.

. 	
(5.7)

where SNRreal is the SNR that is obtained in practice and b  is the ENOB, which is 
not necessarily an integer value. For example, an ADC with 16 nominal bits may 
practically have 13.5–14 ENOBs. The ENOB is one of the standard properties of all 
ADC, which is documented in the datasheets of ADC devices by the manufacturers. 

Fig. 5.10  The amplitude and frequency range of the maternal electrocardiogram (mECG), electro-
encephalogram (mEEG), electrooculogram (mEOG), electromyogram (mEMG), electrohystro-
gram (mEHG), and the fetal ECG (fECG). Accordingly, different biosignals interfere with the fetal 
ECG [31, 81, 91, 102]. Note that the fECG amplitude depends on the sensor position, fetal posi-
tioning, and age
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Considering that beyond the ADC chip technology the ENOB also depends on the 
circuit design quality, it is measured in practice by sweeping close- to full-scale 
sinusoidal signals within the Nyquist band of the manufactured circuit front-end (by 
applying a signal generator to the ADC front-end) and by logging the samples 
acquired by the ADC. The real SNR (SNRreal) can be eventually calculated by ana-
lyzing the sampled signals in software. This is a standard procedure that is per-
formed during the design and quality control of all (including medical) equipment. 
The overall recommended front-end specifications for noninvasive fECG acquisi-
tion are summarized in Table 5.1.

5.3.3  �Sensor Placement

In order to maximize the chance of retrieving the fECG from maternal abdominal 
leads, it is common to use multiple leads spread over the abdomen, lower back, and 
the two sides of the maternal body. The sensors should ideally be close to the fetus 
and the referencing of the leads should be such that the electrical fields due to the 
fetal heart pass through the differential pairs used for acquisition. To date, the num-
ber of abdominal channels used for research and clinical usage are very diverse, 
ranging from as few as one to as many as 144 abdominal channels. From the elec-
tronic and manufacturing perspective, using a few leads placed close together in a 
patch of disposable or reusable electrodes is very advantageous, as compared with 
using numerous electrodes distributed all over the maternal abdomen and back. 
However, as explained throughout this chapter, a group of sensors placed close to 
each other are prone to becoming highly dependent and result in mathematically 
low-rank and non-invertible mixture of signals, which is inappropriate for multi-
channel fECG extraction. Therefore, there is a compromise between the simplicity 

Table 5.1  The recommended front-end specifications for fetal ECG acquisition

Property Range

Bandwidth (−3 dB cutoff 
frequency)

Acceptable: 0.05–250 Hz
Preferred: 0.05 Hz to 1 kHz (for better fECG-noise 
separability)

Amplified analog voltage range 3–5 V (preferably differential pairs)
Analog-to-digital resolution Low resolution: 16 bits

High resolution: 24 bits
Sampling frequency Minimum: 500 Hz

Acceptable: 1 kHz
High resolution: 5–10 kHz

Sampling sequence Preferred: simultaneous
Acceptable: sequential (multiplexed); only at high sampling 
frequencies

Number of channels Between 8 and 32 with dedicated mECG channels used as 
reference
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of the acquisition system and the robustness to fetal positioning. The major fECG 
acquisition technologies use between 8 and 32 channels, including one or more 
reference leads for the mECG acquired from maternal chest leads.

5.4  �Single-Channel Fetal Electrocardiogram Extraction

Single-channel fECG extraction algorithms refer to the category of methods that use 
a single maternal abdominal channel and possibly a set of reference electrodes for 
acquiring the mECG from the maternal chest. An interesting comparative survey on 
the advantages and limitations of these methods was conducted in [8]. In this sec-
tion, some of the major algorithms of this class of techniques are reviewed in fur-
ther detail.

5.4.1  �Naive Fetal Electrocardiogram Detection and Extraction

Before the advances in digital signal processing in recent decades, fECG detection 
was performed over raw paper prints of abdominal recordings, without any process-
ing. For instance in [50], by visual inspection, several cases were reported in which 
due to the vertex presentation of the fetus, the fetal R-peaks appeared as positive 
peaks while the maternal R-peaks had negative peaks. It is evident that such studies 
remained discrete and subjective, since due to the low SNR, fECG detection by 
visual inspection is not always applicable and highly dependent on the fetal presen-
tation and gestational age. Nevertheless, visual inspection remains as the first intui-
tive test for machine-based fECG extraction algorithms.

5.4.2  �Template Subtraction and Cyclostationary Random 
Process Theory

Template subtraction is the most basic method for mECG cancellation from mater-
nal abdominal recordings [1, 54]. Despite its simplicity, it was shown in [41] that 
using the theory of cyclostationarity, this technique can be the optimal cyclostation-
ary Wiener filter, when applied properly by compensating the inter-beat variations 
of the mECG. The proof was inspired by the problem of pulse amplitude demodula-
tion, a well-known method in the context of telecommunications [35, Ch. 4].

Let us consider the signal x(t) = ∑ncng(t − nT), where g(⋅) is an arbitrary known 
function and cn is a stationary time-sequence. It can be shown that the problem of 
optimal filtering of x(t), which is a wide-sense cyclostationary random process, 
from the additive mixture z(t) = x(t) + η(t) (where η(t) is a stationary noise) reduces 
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to the problem of minimum mean square estimation of cn and repeating g(⋅) at mul-
tiples of T, using the estimated amplitude [35, p. 253], [41].

The above example is closely related to ECG denoising using a data model of the 
form (5.2). Accordingly, if the inter-beat variations of the ECG were negligible, an 
ECG would be a wide-sense cyclostationary process. In that case, one could opti-
mally— in the Wiener filtering sense— filter the ECG as demonstrated in Fig. 5.11: 
(1) detect the R-peaks, (2) perform synchronous averaging (or robust weighted 
averaging [52]) to find the average ECG beat, and (3) reconstruct the denoised ECG 
by repeating the average beat at the R-peak locations [41]. Now suppose that 
z(t) = x(t) + η(t) is a signal acquired from a maternal abdominal lead, x(t) is the 
mECG and we are interested in the background signal η(t), which is the fECG plus 
other noises. In this case, the above algorithm simply reduces to template subtrac-
tion: construct a maternal ECG template and subtract this template by aligning it 
under the maternal R-peaks of the abdominal leads. However, since in reality the 
ECG has RR-interval deviations and morphological variations, instead of simple 
template subtraction that does not account for beat-wise heart rate and morphologi-
cal variations, it is better to make the procedure beat-wise adaptive to compensate 
the beat-wise variations of the ECG (parametrized by γn in the data model (5.2)).

For example, the cardiac phase signal introduced in Sect. 5.2.2 can be used to 
compensate the RR-interval deviations by time-warping [83]. The minor beat-wise 
variations can further be compensated using classical beat alignment techniques [5, 
92]. The template subtraction may also be made beat-wise adaptive, using Kalman 
filtering schemes as detailed in Sect. 5.4.4. In fact, by applying such beat alignment 
techniques, the beat-wise deviations parametrized by γn in (5.2) are compensated 
and the resulting signal would become cyclostationary. As a result, the optimal 
cyclostationary Wiener filter for removing the mECG from maternal abdominal 
recordings is basically a template subtraction in the transformed domain (after com-
pensating the beat-wise deviations of the mECG).

Fig. 5.11  Demonstration of the concept of optimal cyclostationary Wiener filtering for mECG 
cancellation

R. Sameni



115

5.4.3  �Adaptive Filters for fECG Extraction

Adaptive filters are one of the popular filters used for mECG cancellation and fECG 
extraction. The procedure consists of training an adaptive filter for either removing 
the mECG using one or several maternal reference channels [67, 104] or directly 
training the filter for extracting the fetal QRS waves [32, 69]. Ad hoc, adaptive fil-
ters such as partition-based weighted sum filters [89] and least square error fittings 
[59] have also been used for this purpose. A comparative study of template subtrac-
tion and several adaptive filters including the least mean squares (LMS), recursive 
least squares (RLS), and an ad hoc filter coined echo state neural network (ESN) 
was reported in [7, 8].

As demonstrated in Fig.  5.12, adaptive filtering methods for mECG removal 
either require a reference mECG channel that is morphologically similar to the con-
taminating waveform or require several channels to approximately reconstruct any 
morphological shape from the reference channels using adaptive [104], neural net-
works or neuro-fuzzy inference systems [4]. Both of these approaches are practi-
cally inconvenient and have limiting performance since the morphology of the 
mECG contaminants highly depends on the electrode locations, and it is not always 
possible to reconstruct the complete mECG morphology from a (linear) combina-
tion of the reference electrodes, especially due to the limitations of finite dimen-
sional dipole model of the heart, detailed in Sect. 5.2.1.

5.4.4  �Kalman Filters for fECG Extraction

Adaptive methods of mECG cancellation should ideally not rely on the electrode 
placement and the mECG morphology of the reference channel. This objective has 
motivated the development of Kalman filters for fECG extraction [63, 64, 74, 82, 

Fig. 5.12  Adaptive filters for maternal ECG cancellation. (Concept adapted from [4])
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84]. The Kalman filter and its extensions are adaptive in their nature and are there-
fore ideal for ECG signals with beat-wise morphological variations.

In [82], an extended Kalman filter (EKF) was suggested for denoising ECG sig-
nals recorded from noisy data. The process model required for this EKF was based 
on an extension of the McSharry-Clifford synthetic ECG model [61, 79]. The EKF 
formulation was later used in [74, 84] for removing mECG artifacts from maternal 
abdominal recordings. Accordingly, following the volume conduction and dipolar 
data models (5.1) and (5.5), we can assume that the maternal abdominal signals 
consist of the mECG sm(t), fECG sf(t), and background noise ν(t). For normal ECG, 
the mECG and fECG components are pseudo-periodic random processes, which 
can be described by a set of dynamic equations. For example, by using the nonlinear 
state-space model proposed in [82] for mECG modeling, the following set of pro-
cess and observation equations can be written for the maternal body surface recorded 
signals x(t):

•	 Process equations:
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•	 Observation equations:
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(5.9)

where q q q p
˜

modi it t( ) = ( ) -éë ùû ( )2  and ωm(t) = 2πfm(t)/fs are the maternal nor-
malized angular velocities, fm(t) is the instantaneous maternal heart rate in Hertz, fs 
is the sampling frequency in Hertz, αi, bi, and θi are the amplitude, width, and center 
parameters of the ith Gaussian kernel, and k is the number of Gaussian kernels used 
for modeling the mECG morphology. In (5.8) and (5.9), θ(t) and sm(t) are the state 
variables, ϕ(t) is the cardiac phase measurement obtained by maternal RR-interval 
calculation and a linear phase map as demonstrated in Fig. 5.3, x(t) is the maternal 
abdominal ECG measurement, w(t) denotes the process noise, ν(t) is the phase 
measurement noise, and η(t) is the ECG measurement noise. According to the pro-
cedure detailed in [82], this model can be used in an EKF for estimating the mECG 
ˆ .s tm ( )  At the same time, the residual signal x t s tm( ) - ( )ˆ  (known as the innovation 

process of the Kalman filter) is an estimate of sf(t) + η(t). The source codes required 
for implementing this method— and the other methods detailed in this chapter— 
are available online in the open-source electrophysiological toolbox (OSET) [76].

An advantage of the Kalman filtering framework is that, besides signal estimation 
and denoising, it intrinsically provides confidence intervals for the estimations as well. 
By defining x(t) = [θ(t), s(t)]T as the state vector at instant t and x̂ t( )  as the posterior 
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estimate of x(t), the posterior error of the estimation is defined as e x xt t t( ) = ( ) - ( )ˆ  

with a covariance matrix P e e e et t t t t T( ) = ( ) - ( ){ }( ) ( ) - ( ){ }  ( { ) . The matrix 

P(t) is an essential part of all the different variants of the Kalman filter and is calculated 

and updated as the filter propagates in time. The eigenvalues of this matrix can be used 
to form an error likelihood ellipsoid (also known as concentration ellipsoid [100]) 
that represents the region of highest likelihood for the true state vector x(t). This 
likelihood ellipsoid provides a confidence region for the estimated signals.

The overall procedure for removing mECG signals by using the Kalman filtering 
framework is illustrated in Fig. 5.13 and may be summarized as follows:

	1.	 Baseline wander removal. For the reliable extraction of the average mECG tem-
plates, the baseline wander of the noisy records should be removed beforehand.

	2.	 mECG R-peak detection. These peaks are required for constructing the phase 
signal θ(t), which in turn is needed for synchronizing the noisy ECG with the 
dynamic model in (5.8). They are also used for extracting the mean mECG by 
synchronous averaging over the maternal heart beats. Depending on the power of 
the contaminating mECG, as compared with the background signals and noise, 
the maternal R-peaks may be detectable from the noisy recordings or from an 
arbitrary chest lead or abdominal channel synchronously recorded with the noisy 
dataset.

	3.	 mECG template extraction. Using the R-peaks, the ensemble average (EA) and 
standard deviation of the mECG are extracted through synchronous averaging. 
Several methods have been proposed in the literature for synchronous averaging. 
One of the most effective approaches is the robust weighted averaging method 
[51], which outperforms conventional EA extraction methods and is useful for 
noisy nonstationary mixtures.

	4.	 Model fitting. As proposed in [20, 82], by using a nonlinear least square estima-
tion, the parameters of the Gaussian kernel defined in (5.8) are found, such that 
the model will best fit the mean mECG waveform.

	5.	 Covariance matrix calculations. The standard deviation of the average mECG is 
used to find the entries of the process and observation noise covariance matrices, 
as required for (extended) Kalman filtering.

x ( t)

ŝm ( t) v̂( t)

θk

Fig. 5.13  The overall denoising scheme. As shown in this figure, the R-peaks of the contaminating 
signals (CC) may be detected either from an arbitrary reference ECG or from the noisy biosignal 
after baseline wander (BW) removal. (Adapted from [84])
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	6.	 Filtering. Having the required model parameters, the mECG may be estimated 
by the EKF framework and the desired background signal (fECG plus noise) is 
found from ˆ ˆv t x t s tm( ) = ( ) - ( ) .

	7.	 fECG post-processing. The residual signals containing fECG and noise are post-
processed for improving the fECG signal quality. Various methods such as an 
adaptive filter, a wavelet denoiser, or even a secondary EKF stage (this time 
customized for fECG denoising) can be used in this stage.

Note further that for online applications or denoising long nonstationary datas-
ets, all the dynamic model parameters and the covariance matrices can be updated 
over time, by recalculating them from the most recent cardiac beats. Further details 
regarding the Kalman filter–based approach and its extensions such as the extended 
Kalman smoother (EKS), unscented Kalman filter (UKF), and H-infinity filter can 
be followed from [42, 63, 82, 84].

In Fig. 5.14a, the first channel of the DaISy fECG dataset is used for illustration 
[29]. The mECG estimate and the fetal residual components are depicted in 
Fig. 5.14b, c. As a post-processing step, the extended Kalman filtering algorithm is 
applied to the residual fetal components, this time by training the filter parameters 
over the fECG. The post-processed fECG are depicted in Fig. 5.14d. From these 
results, it is seen that the Kalman filter is very effective for the extraction of fECG 
components from noisy maternal abdominal mixtures, even from as few as a single 
channel. However, as noticed from Fig. 5.14d, between t = 6 s and t = 7 s, the filter 
has failed to discriminate between the maternal and fetal components when the 
ECG waves of the mother and fetus have fully overlapped in time. The reason is that 
when the maternal and fetal components coincide in time, there are no other a priori 
information for separating the maternal and fetal components. This is in fact an 
intrinsic limitation of single-channel methods, which motivates the application of 
multichannel recordings.

As noted before, an important feature of Bayesian filtering is the ability of pre-
dicting the accuracy of the estimates. For the Kalman filter, this is readily achieved 
through the calculation of the error covariance matrix P(t). Suppose that the entry of 
the covariance matrix P(t) corresponding to the ECG estimate is denoted as σ(t)2 
and the ECG estimation error is Gaussian, then the estimated ECG is bounded 
within the ±σ(t) envelope in 68% of the sample points. This is due to the fact that 
approximately 68% of the values drawn from a Gaussian distribution are within one 
standard deviation away from the mean, about 95% of its values are within two 
standard deviations, and about 99.7% lie within three standard deviations. These 
probabilities are different for non-Gaussian errors obtained by a nonlinear estimator 
such as the EKF. However, the ±σ(t) envelope can still be used as an approximate 
measure of error spread [100, p. 79]. In Fig. 5.15, several beats of the fECG before 
and after post-processing by an extended Kalman filter, together with their corre-
sponding ±σ(t) and ±3σ(t) envelopes, are plotted. It is seen that the error envelopes 
provide the confidence region of the denoised fECG.
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Fig. 5.14  The first channel of the DaISy dataset [29], recorded from a maternal abdominal lead 
before and after the EKF procedure. (Adapted from [74]). (a) Original. (b) EKF of the maternal 
ECG. (c) Residual fetal signal. (d) Fetal signal after post-processing
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5.5  �Multichannel Fetal Electrocardiogram Extraction

Due to the limitations of single-channel fECG analysis detailed in the previous sec-
tion, advanced fECG extraction algorithms are commonly multichannel. Some of 
the advantages of multichannel fECG acquisition and analysis are as follows:

•	 Improved SNR due to spatial filtering and joint analysis of multiple channels
•	 Robustness to fetal position and displacement due to the spatial diversity of 

the leads
•	 Robustness to the possible detachment of a few of the electrodes
•	 Ability to extract the fECG even during overlapping of ECG waves of the mother 

and fetus
•	 Obtaining multiple perspectives of the fetal heart

Reconsidering the maternal abdominal recordings data model (5.1), in the multi-
channel case, it can be represented in the following matrix form:
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(5.10)

where p ≜ m + l + k is the total effective number of sources due to the maternal and 
fetal ECG and structured noises, A = [a1, …, ap] ∈ ℝn × p is the overall source-sensor 
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Fig. 5.15  Several fetal ECG beats adapted from Fig. 5.14, before and after the post-processing 
EKF, together with the ±σ(t) and ±3σ(t) confidence envelopes. (Adapted from [74])
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mixing matrix (or the lead-field matrix), and s(t) = [s1(t), …, sp(t)] ∈ ℝp contains all 
the cardiac sources and structured noise components.

The objective of multichannel analysis is to recover an estimate of s(t) (or more 
specifically sf(t)) from x(t), using the available assumptions regarding the mECG, 
fECG, and noises. A classical approach to solving this problem is to estimate the 
matrix B ∈ ℝp × n, such that BA = I. Therefore,

	
y Bx s Bnt t t t( ) = ( ) = ( ) + ( ) 	

(5.11)

which is a noisy estimate of the source vector s(t). Since both the source vector s(t) 
and the mixing matrix A are unknown, the problem is categorized as a blind or 
semi-blind source separation (BSS) problem [26]. In this problem, if the number of 
observed channels is equal to or greater than the effective number of sources, i.e., 
n ≥  p, and A is non-singular, then the observed mixture is determined or over-
determined. Therefore, noting that sm(t), sf(t), and v(t) can be considered as groups 
of statistically independent sources with inter-independence and intra-dependencies, 
BSS algorithms such as (noisy) independent component analysis (ICA) [13, 28, 
108], semi-blind source separation algorithms such as periodic component analysis 
(πCA) [83], and more recently nonstationary component analysis (NSCA) [42] have 
been effectively used to solve this problem. The general challenges of this problem 
are as follows:

	1.	 Amplitude and sign ambiguity: An intrinsic ambiguity of the multichannel data 
model (5.10) is that the source vector amplitude and sign may not be retrieved 
merely from the measurements x(t). This can be explained by the fact that 
exchanging an arbitrary non-zero scaling factor α and 1/α between the kth col-
umn of the matrix A and the source sk(t) does not change the measurements. 
Therefore, there is no way to retrieve the source amplitudes and sign from the 
measurements alone.

	2.	 Estimated source order: Retrieving the order of sources is another limitation that 
may not be resolved from the measurements alone (without other priors or con-
straints). The reason is that taking an arbitrary permutation matrix P, As(t), and 
APPTs(t) is identical.

	3.	 Noisy mixtures: It is clear from the right-hand side of (5.11) that even if the sepa-
ration matrix B is perfectly estimated, i.e., BA = I, due to the noise term Bn(t), 
then the resulting mixture can remain noisy, except for the non-probable special 
case that the observation noise lies in the null space of the separation matrix B, 
resulting in Bn(t) = 0. Otherwise, the noise can even be amplified and the desired 
components, such as the fECG, may in cases be totally obscured by noise. In 
fact, the problem due to full-rank observation noise is twofold. On the one hand, 
the noise hampers the estimation of the separation matrix. On the other hand, it 
remains or is even amplified during source separation. Therefore, whenever pos-
sible, it is better to minimize or remove the channel-wise full-rank noise before 
source separation. In the latter case (channel-wise noise removal), any process-
ing of the multichannel data should be performed by using filters that 
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approximately have a linear phase (constant group delay) over the bandwidth of 
interest. Moreover, the difference between the group delays of the filters applied 
to different channels should be negligible, as compared with the sampling time 
of the data, to avoid the displacement of the components of different channels 
during preprocessing. This is a fundamental requirement for synchronous multi-
channel analysis, which has been underemphasized in the literature.

	4.	 Non-punctual sources: The heart is not a punctual source. This fact has several 
implications on fECG extraction, including the following: (1) the fECG mor-
phology can change as the fetus moves with respect to the maternal body surface 
leads; (2) during source separation, depending on the heart-sensor distance and 
the SNR of the measurements, more than one source is associated with the 
mother and the fetus. The notion of effective number of sources detailed in Sect. 
5.2.1 corresponds to this fact. It has been previously shown that even though, 
among the extracted sources, only a few might visually resemble the fECG, 
when one applies synchronous averaging to the different channels extracted by 
BSS algorithms (by aligning the R-peak positions and averaging over several 
beats), the fECG emerges from all channels. This point was first illustrated in 
[80] and justified in [74] using multi-pole expansion of body surface potentials. 
An example of adult and fetal ECG obtained by synchronous averaging after 
applying a typical ICA algorithm is shown in Fig. 5.16. This implies that for non-
punctual sources, perfect separation of the sources (maternal and fetal ECG) is 
not fully achieved. However, in practice, the number of cardiac source signals 
extracted from multichannel ECG— including maternal abdominal recordings— 
are limited by the number of channels, distance to the heart, and the SNR of the 
recordings.

	5.	 Low-rank measurements: If the number of abdominal channels are insufficient 
(n < p) or when the maternal-fetal mixture is singular (e.g., due to the closeness 
of the sensors or special fetal positioning in the womb), the signal mixture is 
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Fig. 5.16  An illustration of the concept of non-punctuality of the cardiac sources resulting in 
multidimensionality of the components extracted from adult and fetal ECG. Synchronous averag-
ing has been performed over the different channels extracted by independent component analysis 
to demonstrate the existence of the ECG components in all channels. (a) Adult ECG. (b) Fetal ECG
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under-determined. In this case, due to the rank-deficiency of the mixture, linear 
transforms are unable to separate the maternal and fetal subspaces [41, 86].

	6.	 Time-variant mixtures: When the mixing matrices Hm and Hf are functions of 
time, e.g., due to fetal movement during signal acquisition, the sources may no 
longer be retrieved by stationary source separation algorithms. In this context, 
adaptive source separation algorithms are required [16]. These methods have 
also been specifically used for online fECG extraction [33, 41].

In the sequel, some of the different approaches of fECG extraction from multi-
channel recordings are reviewed.

5.5.1  �Independent Component Analysis

Independent component analysis (ICA) is the most common class of algorithms for 
solving blind and semi-blind source separation (BSS) problems such as (5.10), 
where both the mixing matrix A and the source vector s(t) are unknown (with or 
without noise) [26]. The problem of retrieving the sources and mixing matrix at the 
same time is clearly ill-posed. Therefore, additional assumptions and priors about 
the source and/or mixture are required. In ICA, one seeks linear mixtures of the 
form y(t)  =  Bx(t), which maximize some measure of statistical independence 
between the estimated sources, also known as a contrast function.

Many ICA algorithms attempt to solve the problem in several phases, for exam-
ple by first pre-whitening and sphering the data by principal component analysis 
(PCA) (Fig. 5.17). Pre-whitening acts as an intermediate step for achieving inde-
pendence and only leaves the estimation of a rotation matrix to achieve 
independence.

An algebraic approach to ICA is to seek the separation matrix B, such that it 
diagonalizes a set of matrices containing second- or higher-order statistics derived 
from the multichannel recordings [26]. For signals with temporal structure, there 
are various algorithms that use this algebraic approach. Considering that no more 
than two matrices can be simultaneously diagonalized by using a single linear trans-
form, many algebraic algorithms have been developed for the approximate joint 
diagonalization of such matrices. The first and most widely used algorithm in this 
context is known as joint approximate diagonalization of eigenmatrices (JADE) 
[15, 17]. To date, fECG extraction has been one of the classical biomedical applica-
tions for testing and comparing various ICA algorithms. Some of the pioneer con-
tributions in this area include the following studies: [13, 28, 108].

Fig. 5.17  General scheme of ICA algorithms with spatial pre-whitening
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5.5.2  �Independent Subspace Analysis

Independent subspace analysis (ISA) has been introduced as a variant of ICA for 
problems in which one deals with groups of signals having inter-group indepen-
dence and intra-group dependencies. ISA was first introduced in [25] and mathe-
matically developed in [13], where the notion of ICA was generalized to the notion 
of multidimensional ICA. Accordingly, ISA relies on the idea of vector-valued com-
ponents rather than scalar source signals. The first—and most commonly studied—
application of ISA has been for fECG extraction. Throughout the chapter, we have 
learned that the cardiac signals of either the mother or the fetus are generally multi-
dimensional. Therefore, the maternal and fetal ECG components form signal sub-
spaces with internal dependencies, while the components of the maternal and fetal 
subspaces are independent from each other.

ISA may be realized by applying an initial ICA step on mutichannel observations 
and then empirically regrouping the independent components that belong to the 
same subspace from prior knowledge of the subspace structures to achieve a canoni-
cal representation of each subspace. In fact, there is an intrinsic ambiguity in 
retrieving the components inside the subspaces, which may not be resolved with the 
same measure of independence used for subspace separation. In other words, from 
the source separation viewpoint, no representation of the extracted mECG and 
fECG components inside their signal subspaces can be considered to be better than 
the other. Therefore, the components that belong to the same subspace are regrouped 
after the initial ICA step. However, the challenges of ISA are as follows:

	1.	 Finding the dimensions of each subspace [13]
	2.	 Automatic regrouping of the components [6, 95, 103]
	3.	 Studying  the impact of subspace distances and noise on the stability of the 

extracted subspaces [37, 62].

For fECG extraction, previous studies have focused on the feasibility of extracting 
the independent subspaces [13, 28] and regrouping strategies [6].

5.5.3  �Generalized Eigenvalue Decomposition

Although ICA and ISA are very effective for fECG extraction, they do not make 
explicit use of the pseudo-periodicity of the maternal and fetal ECG and the fact that 
multiple sources may correspond to the mECG and the fECG (due to the non-
punctuality of the cardiac sources detailed before). In order to be used in fully auto-
mated algorithms, it is also convenient to be able to rank the extracted sources 
corresponding to the mECG and/or fECG automatically. These requirements 
resulted in the development of source separation algorithms, which are specifically 
customized for cardiac signals. Algorithms such as periodic component analysis 
(πCA) [83] and nonstationary component analysis [42] were developed for this 
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purpose. These methods are based on an algebraic transform known as generalized 
eigenvalue decomposition, which was previously used in one of the basic source 
separation algorithms known as AMUSE [99].

For real symmetric matrices A, B ∈ ℝn × n, generalized eigenvalue decomposition 
(GEVD) of the matrix pair (A, B) consists of finding W ∈ ℝn × n and Λ ∈ ℝn × n, 
such that
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(5.12)

where Λ =  diag (λ1, …, λn) contains the generalized eigenvalues corresponding to 
the eigenmatrix W = [w1, …, wn], with real eigenvalues sorted in descending order 
on its diagonal. Symmetric positive definite matrix pairs have real positive eigenval-
ues and the first eigenvector w = w1 maximizes the Rayleigh quotient [96]:
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It can be shown that all ICA methods based on pre-whitening can be eventually 
converted into a GEVD problem of two (problem-specific) matrices [83]. Therefore, 
in semi-blind source separation problems, in which prior knowledge regarding the 
underlying components exists, the problem of source separation can be considered 
as a matrix design problem. The performance of GEVD-based source separation 
and generic methods for choosing the proper matrix pair have been addressed in 
previous research works [105, 107].

GEVD can, for example, be used for the separation of temporally correlated (or 
periodic) sources from other signals. For example, for a zero-mean wide-sense sta-
tionary or cyclostationary real observation vector x(t), the covariance matrix is:

	
C x xx t

T
t tt t( ) = +( ) ( ){ }

	
(5.14)

where t ×{}  indicates averaging over t. The AMUSE algorithm is a source separa-
tion algorithm that jointly whitens the data and diagonalizes Cx(τ) for some arbi-
trary τ, i.e., the solution of the GEVD problem of the matrix pair (Cx(τ), Cx(0)) [70, 
99]. What hampers the performance of GEVD for source separation is the fact that 
real-world sources are rarely fully periodic. Therefore, more advanced source sepa-
ration algorithms use (approximate) joint diagonalization of more than two matri-
ces, which are more robust to data outliers and computational errors as compared 
with AMUSE [10, 14]. In this context, the second-order blind identification (SOBI) 
algorithm is an example of a time-domain algorithm that whitens the data and 
approximately diagonalizes Cx(τ) for several time-lags τ [10]. Similar time-domain 
methods have also been proposed for cyclostationary sources, in which the data is 
again pre-whitened and matrices corresponding to cyclostationary statistics of the 
dataset are (approximately) diagonalized [34]. An alternative approach is to use 
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signal priors such as the pseudo-periodicity and “bumpy” shape of the ECG, as 
detailed below.

5.5.4  �Periodic Component Analysis

In (pseudo-)periodic component analysis (πCA),1 the matrix pair (C1, C0) is jointly 
diagonalized by GEVD, where C0 = Cx is the covariance matrix of x(t) and C1 is the 
variable-period version of the lagged-covariance matrix (5.14), using the time-
varying period of the ECG defined in (5.4):

	
C x x1 = +( ) ( ){ }t t

T
t tt

	
(5.15)

In order to assure the symmetry of C1 and the realness of its eigenvalues, the follow-
ing step is applied before GEVD:
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(5.16)

Next, considering W as the joint diagonalizer of the matrix pair (C1, C0), the linear 
transform

	
y W xt tT( ) = ( ) 	

(5.17)

extracts uncorrelated sources y(t) = [y1(t), …, yn(t)]T with maximal correlation at 
time-variant periods τt, which is the heart rate of interest. Therefore, y(t) ranks the 
sources in order of similarity with the desired heart rate. In other words, y1(t) is the 
most periodic component and yn(t) is the least periodic with respect to the R-peaks 
of the ECG. This method is flexible in the cardiac period used for source separation. 
For instance, for fECG extraction, let θm(t) and θf(t) be the maternal and fetal ECG 
phases found from the maternal and fetal R-peaks (as defined in Sect. 5.2.2.2) and 
Cm and Cf represent the lagged covariance matrices of the maternal and fetal heart 
rates found by averaging (5.15) over the maternal and fetal periods t t

m  and t t
f , 

respectively. Then different variants of GEVD are obtained if the matrix C1 used in 
GEVD is set to any of the following matrices [83]:

	
C C C C1 0, ,( ) = ( )m x 	

(5.18a)

	
C C C C1 0, ,( ) = ( )f x 	

(5.18b)

1 The term πCA was originally coined in [87], for extracting periodic signals, which resulted in 
GEVD of a pair matrices as in AMUSE [99].
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C C C C1 0, ,( ) = ( )m f 	

(5.18c)

If we assume the data to be pre-whitened, the diagonalization of the matrices defined 
in (5.18) is respectively equivalent to finding (a) the most periodic components with 
respect to the mECG, (b) the most periodic components with respect to the fECG, 
and (c) the most periodic components with respect to the mECG while being the 
least periodic components with respect to the fECG. In this latter case, the extracted 
components should gradually change from the mECG to the fECG, from the first to 
the last component, but the components are not necessarily uncorrelated. It should 
of course be noted that the last two cases are difficult to implement in practice, as 
they require the prior extraction of the fetal R-peaks to form the Cf matrix. Another 
reservation is for abnormal maternal cardiac signals, for which the signals are no 
longer regular or pseudo-periodic and a measure of pseudo-periodicity can fail for 
mECG and fECG source separation.

5.5.5  �Nonstationary Component Analysis

The reservations regarding possible abnormal mECG and the difficulty of fECG 
R-peak identification in noise have motivated source separation algorithms that are 
merely based on rather regular spiky or bumpy shapes of the maternal and fetal 
ECG. The theory is based on source separation algorithms for variance-nonstationary 
source mixtures, which is a special case of methods known as nonstationary com-
ponent analysis (NSCA) [42, 71, 106]. Accordingly, let us consider multivariate 
signals x(t) ∈ ℝn ( t Î ), where   denotes the set of available discrete-time sam-
ples and P TÌ  is a subset of these samples, which are considered as being non-
stationary or odd events that do not follow the (average) background model in 
certain aspects. For our application, they can correspond to the maternal or fetal 
QRS complexes. In this case, a sample-wise hypothesis test can be performed for 
the identification of the temporally nonstationary events:
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(5.19)

Denoting the subset of samples that satisfy the alternative hypothesis ℋ1 with ,  a 
special case of GEVD is obtained by finding the matrix W, which satisfies (5.12) for 

A x x= ( ) ( ){ }u

T
u u  and B x x= ( ) ( ){ }t

T
t t , where t ×{}  and u ×{}  denote 

averaging over all time samples t Î  and uÎ,  respectively. Using this matrix, 
the linear transform y(t) = WTx(t) extracts n uncorrelated channels with maximal 
energy over the subset of time samples uÎ.  Applying this method for ECG 
extraction, W retrieves uncorrelated linear mixtures of x(t) with maximal energy 
during the QRS complex.
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As detailed in [42], in the simplest case, the nonstationary sample set   can be 
identified by thresholding the time-varying power of an arbitrary reference channel 
r(t) (which can even be one of the channels of x(t), or a mixture of them) over a 
sliding window of length w:
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(5.20)

The ratio of Pw(t) for two windows of lengths w = w1 and w = w2 (w2 ≫ w1) can be 
used as a measure for detecting fast local nonstationary epochs within a slowly 
varying (or stationary) background activity:
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(5.21)

which is the local power envelope (LOPE) of the reference channel. For a global 
measure, the denominator P tw2

( )  can be replaced with the average signal power 
P∞. The values of ρ(t) significantly smaller or larger than 1 correspond to time 
epochs that are different (nonstationary) from the background activity. The rationale 
behind the above definition is that a stationary signal, such as the non-ECG back-
ground signals and noises, has a consistent energy profile over time, and notable 
deviations of the LOPE from unity (with appropriate window lengths w1 and w2) are 
indicators of nonstationary epochs such as the maternal and fetal QRS complexes. 
Therefore, the LOPE can be used to extract the time epochs of the maternal or fetal 
QRS as follows:

	
q r z r zLPE or= ( ) ³ ( ) £ Î{ }t t t tu l| , 

	
(5.22)

where ζu and ζl are predefined upper and lower thresholds satisfying ζu > 1 > ζl ≥ 0. 
In [42], other indexes based on the innovation process of an extended Kalman filter 
trained over the mECG were proposed for the identification and extraction of 
the fECG.

5.5.6  �Approximate Joint Diagonalization Using 
ECG-Specific Priors

Maternal and fetal ECG source separation from background noise can benefit from 
the advantages of methods such as πCA and NSCA at the same time. Suppose that 
the matrices Ci (i = 1, …, K) are positive semi-definite matrices containing second- 
or higher-order statistics regarding the maternal and fetal ECG. For example, the 
matrices can be the lagged-covariance matrices corresponding to the maternal or 
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fetal heart, or the covariance matrices obtained by energy thresholding, as in 
NSCA. We may now seek the joint approximate diagonalizer W ∈ ℝn × n, such that 
the matrices

	 W C WT
i i i K= = ¼L , , ,1 	 (5.23)

are “as diagonal as possible.” It is known that for K > 2, the diagonalization is only 
achieved approximately by using different variants of approximate joint diagonal-
ization (AJD). Depending on the application and diagonalization algorithm, in order 
to achieve uncorrelated sources, the total covariance matrix 
C x m x mx x x

T
t t= ( ) -( ) ( ) -( ){ }  (m xx t= ( ){ } ) may also be among the set of 

matrices to be diagonalized.2 The approach based on AJD is more robust as com-
pared with πCA and NSCA, which only work with two matrices. It is also more 
effective than JADE and other generic ICA algorithms, as it uses specific features of 
the ECG of the mother and the fetus. However, the order of sources is no longer 
guaranteed in AJD.

5.5.7  �Illustration

The DaISy fECG dataset is used for illustration [29]. This sample data consists of 
five abdominal and three thoracic channels recorded from the abdomen and chest of 
a pregnant woman at a sampling rate of 250 Hz. The eight channels of the dataset 
are depicted in Fig. 5.18.

The result of applying independent subspace decomposition [13], using the 
JADE algorithm [15, 17], is depicted in Fig. 5.19. Accordingly, the first, second, 
third, and fifth components correspond to the mECG subspace, the fourth and eighth 
components correspond to the fECG, and the sixth and seventh components 
are noise.

By performing R-wave detection on the last maternal thoracic channels of 
Fig. 5.18 (channel eight), the mECG phase θm(t) is calculated as detailed in Sect. 
5.2.2.2. Next, the time-varying mECG period t t

m  is calculated, from which the 
matrix Cm and the generalized eigenmatrix W (the joint diagonalizer) of the (Cm, 
Cx) pair are found and their columns are sorted in descending order of the corre-
sponding eigenvalues. The resultant periodic components calculated from (5.17) are 
depicted in Fig. 5.20. Accordingly, the first component, which corresponds to the 
largest eigenvalue, has the most resemblance with the mECG, while as the eigenval-
ues decrease, the signals become less similar to the mECG. Although two of the 
extracted components (components six and seven) are the fetal components, the 

2 Enforcing the diagonalization of Cx guarantees decorrelation of the extracted sources at a cost of 
consuming n(n − 1)/2 degrees of freedom of the matrix W. This is why some BSS algorithms do 
not enforce whitening or sphering but rather include the covariance matrix among the approxi-
mately diagonalized set of matrices at a cost of reduced performance [49].
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extraction of the fECG has not been explicitly enforced by the algorithm. This can 
be explained by considering that πCA is ranking the extracted components accord-
ing to their resemblance with the mECG period, while the fetal components do not 
resemble the mECG  when they are averaged synchronously with respect to the 
maternal R-peaks. Therefore, the order of appearance of the fECG among the 
extracted components is unprecedented,  merely as components that are uncorre-
lated with the mECG and the other signals.

As explained in Sect. 5.5.4, it is also possible to consider the fECG periodicity in 
the matrix Cf, which requires the fetal R-peaks for extracting the time-varying fetal 
period t t

f . To illustrate this case, the fECG component extracted by JADE in the 
fourth channel of Fig. 5.19 is used for fetal R-peak detection and phase calculation. 
Having calculated the fECG phase θf(t), GEVD is applied to (Cf, Cx) to extract the 
periodic components of the fECG. The resultant periodic components are depicted 
in Fig. 5.21. In this case, it is observed that the extracted components are ranked 
according to their resemblance with the fECG.

The next results correspond to the last type of covariance matrix defined in (5.18) 
by performing GEVD over the matrix pair (Cm, Cf) and calculating the periodic 
components from (5.17). The resulting components are depicted in Fig. 5.22. As 
expected, the first component mostly resembles the mECG, the last component the 
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Fig. 5.18  The DaISy dataset consisting of five maternal abdominal and three thoracic chan-
nels [29]
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fECG, and the intermediate components are blended from the maternal to fetal ECG 
plus noise. Note that in this case, the extracted components are no longer uncorre-
lated, since the covariance matrix of the data has not been diagonalized.

The next illustration corresponds to the NSCA algorithm. In this case, the local 
power envelope index detailed in Sect. 5.5.5 is used to detect the local power enve-
lope from the first channel of Fig. 5.18. Considering a typical fetal QRS length of 
approximately 50 ms, the sliding window lengths of the nonstationarity detector in 
(5.21) were set to w1 = 10 ms and w2 = 200 ms. The local power envelopes detected 
by these window lengths can belong to either the mECG or fECG. Therefore, the 
local peak envelopes of the mECG were independently detected from the last mater-
nal thoracic channel (as a channel which does not have any dominant fetal R-peak 
due to the electrode location). For this channel, the sliding window lengths were set 
to w1 = 20 ms and w2 = 400 ms, which are adapted for detecting the mECG segments 
by thresholding. Next, according to the fusion technique explained in [42], the tem-
porally nonstationary epochs of channel one were excluded from the nonstationary 
epochs of channel eight, resulting in time instants, which mainly correspond to the 
fECG and not the mECG. The resulting nonstationary time epochs were used to 
calculate the required NSCA covariance matrix according to the hypothesis test 
(5.19). Finally, GEVD was performed on the covariance matrices and the sources 
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Fig. 5.19  Independent components extracted from the dataset of Fig. 5.18, using the JADE algo-
rithm. Notice that components 1, 2, 3, and 5 correspond to the maternal subspace and components 
4 and 8 to the fetal subspace
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were obtained from (5.17). The results of this method together with the detected 
nonstationary time epochs are shown in Fig.  5.23, where it is observed that the 
fECG is successfully extracted and the components are ranked from top to bottom 
according to their similarity to the fECG. Furthermore, it is seen that the method has 
been able to extract the fECG even during the temporal overlaps of the mECG and 
fECG, despite the fact that some of the fetal QRS peaks have not been considered 
among the temporally nonstationary epochs (notice the missed fetal R-peaks at 
t = 1.0, 1.8, 4.0, and 4.8 seconds in the nonstationary epochs of Fig. 5.23a). Further 
details regarding this example can be found in [42].

5.6  �Advanced Methods for Fetal ECG Extraction

In this section, some of the advanced methods, which have been developed in the 
literature for fECG extraction under special circumstances, such as low-rank and 
time-variant mixtures are reviewed.
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Fig. 5.20  Periodic components extracted by πCA, from the dataset of Fig. 5.18, with maternal 
ECG beat synchronization. The maternal ECG contribution has reduced from top to bottom

R. Sameni



133

5.6.1  �Low-Rank Measurements and Nonlinearly Separable 
Fetal and Maternal ECG

As noted throughout the chapter, due to the number and placement of the electrodes, 
and also the fetal positioning, the maternal abdominal recordings can become rank 
deficient. As a result, in some cases, the fetal and maternal ECG may remain insepa-
rable using any of the aforementioned linear transforms. In these cases, nonlinear 
methods can be used to separate the maternal and fetal subspaces, or additional 
synthetic channels can be added to compensate the rank deficiency of the mixtures.

In order to solve the non-separability of the mECG, it has been proposed to syn-
thetically generate q excess “clean” mECG channels—i.e., synthetic channels that 
resemble the mECG, but do not have any fECG—and to augment the excess chan-
nels as auxiliary channel(s) xa(t) ∈ ℝq with the original measured signals [41]:
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(5.24)

where x t n q( )Î + . It was shown in [41] that the q additional synthetic channels 
amend the rank deficiency of the problem and help in obtaining a determined or 
over-determined mixture from which the fECG could be extracted using conven-
tional ICA, πCA, or NSCA algorithms. Apparently, the auxiliary channel 
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Fig. 5.21  Periodic components extracted by πCA, from the dataset of Fig. 5.18, with fetal ECG 
beat synchronization. It is observed that the fetal ECG contribution reduces from top to bottom
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generation and augmentation is a nonlinear procedure, which utilizes the maternal 
signals’ null space. To implement this method, a channel that resembles the mater-
nal abdominal leads, but is not exactly the same as the other abdominal recorded 
channels, is needed, which at the same time prevents the multichannel data from 
becoming singular and does not contain any traces of the fECG.

The ECG cyclostationarity detailed in Sect. 5.4.2, together with the realistic 
ECG generator described in 5.2.2, provides the means of constructing the required 
synthetic maternal abdominal ECG. For this, a set of reference channels are selected. 
Next, the average mECG morphology is calculated by weighted averaging [52]. 
Either the average morphology is repeated directly at the positions of the maternal 
R-peaks to construct a synthetic auxiliary channel (according to Sect. 5.2.2) or the 
mECG is extracted by single-channel adaptive or extended Kalman filtering, as 
detailed in Sects. 5.4.3 and 5.4.4. The resulting mECG channels are next augmented 
with the original channels according to (5.24). The augmented data is finally given 
to multichannel source separation algorithms to recover the maternal and fetal ECG 
components. Note that this technique may not generally be proved to resolve the 
problem of rank deficiency, as it is data dependent. However, as demonstrated in 
[41], it has been shown to resolve the rank deficiency of some of the most popular 
fECG datasets available online, which have few number of channels and conven-
tional multichannel BSS algorithms have failed [72, 73]. For illustration, a sample 
data adapted from the abdominal and direct fetal electrocardiogram (ADFECG) 
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database [72] is shown in Fig. 5.24. As shown in this figure, the maternal and fetal 
ECG were not fully separable by applying JADE on the original four channels, 
since traces of the mECG exist in the fECG component. However, by adding an 
auxiliary channel according to the procedure detailed in [41], JADE has achieved in 
fully separating the mECG and fECG.
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epochs (bottom panel). The nonstationary epochs are shown as red pulses. (b) The NSCA result. 
(Adapted from [42])
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5.6.2  �Maternal-Fetal Subspace Decomposition by Deflation

In [74, 85, 86], a deflation-based procedure, known as denoising by deflation 
(DEFL), was proposed for the general problem of rank-deficient and noisy source 
separation, with special interest in noninvasive fECG extraction. DEFL is a sub-
space denoising algorithm, which separates the undesired signals of multichannel 
noisy data using a sequence of linear decomposition, denoising, and linear re-
composition in successive iterations. The overall block diagram of DEFL for mECG 
cancellation is shown in Fig. 5.25. Accordingly, the linear decomposition unit is 
generally a GEVD procedure such as πCA (or NSCA), using the R-peaks of the 
mother. The outputs of this unit are ranked in descending (ascending) order of 
resemblance with the signal (noise) subspace. This block concentrates the compo-
nents of the maternal subspace in the first few components of its output. The unit is 
followed by a linear or nonlinear monotonic denoising filter that is applied to the 
first L components (1 ≤ L < N) of the previous block. This filter can be any of the 
single-channel filters detailed in Sect. 5.4, applied to each channel separately, or a 
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Fig. 5.24  (a) A segment of four abdominal channels of the ADFECG database; (b) the result of 
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multichannel filter applied to the first L components together. However, such denois-
ing could have been directly applied to the original data x(t), but by applying it after 
the linear decomposition step, we benefit from the improved signal quality of the 
first few components extracted by the linear decomposition block. This improve-
ment is the direct consequence of maximizing the πCA or NSCA cost functions 
during the GEVD procedure. Finally, the residual signals of the L denoised compo-
nents and the other N − L unchanged components are transformed back to the obser-
vation space, using the inverse of the linear decomposition matrix. In each iteration 
of the algorithm, portions of the mECG, fECG, and noise subspaces are separated, 
and the procedure is repeated until the output signals satisfy some predefined mea-
sure of signal/noise separability.

According to Fig. 5.25, each iteration of DEFL can be summarized as follows:

	
y W G W xi i

T
i
T

it t L( ) = ( )( )- ;
	

(5.25)

where xi(t) is the input data of the ith iteration (x1(t) = x(t)), yi is the output of the 
iteration, G(⋅; L) is the denoising operator applied to the first L channels of the 
input, and Wi is the spatial filter (πCA or NSCA).

The concept behind (5.25) is analogous to wavelet shrinkage used for single-
channel denoising. An important property of the DEFL algorithm is that, unlike 
most ICA-based denoising schemes, the data dimensionality is preserved. Moreover, 
due to the denoising block between the linear projection stages, it overall performs 
as a nonlinear filtering scheme, which can deal with full-rank and even non-additive 
noise mixtures. An adaptive version of this algorithm has also been developed for 
online fECG extraction [33].

5.6.3  �Block-Wise and Online Fetal ECG Extraction

For long multichannel data records, the batch processing requires a huge amount of 
memory and processing time. Moreover, during long recording sessions, it often 
happens that the fetus moves, which means that the fetal position changes with 
respect to the fixed maternal abdominal sensors. Therefore, stationary source 

Fig. 5.25  The DEFL algorithm for separating the mECG from abdominal recordings in highly 
noisy and rank-deficient scenarios [85, 86]
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separation algorithms, which as in (5.10) assume a constant mixing matrix A, will 
fail or result in partial fECG source separation. To resolve this issue, the data is 
partitioned and processed block-wise, or algorithms specific for online processing 
are used.

5.6.3.1  �Block-Wise Analysis

Depending on the application, the maternal abdominal data can be partitioned into 
overlapping or non-overlapping blocks, and any of the fECG extraction schemes 
detailed in previous sections is applied to each block. This is the most popular 
method, as it does not require any change in the algorithms used for fECG extrac-
tion. However, the challenge is how to automatically identify and recombine the 
extracted fECG of successive blocks. Especially, as noted in Sect. 5.5, ICA algo-
rithms, which are one of the most popular methods for fECG extraction, do not 
guarantee to preserve the order and amplitude of the sources over different data 
blocks. As a result, for non-supervised algorithms, a post-fECG extraction unit is 
required, which automatically detects, normalizes, and aligns the fECG of succes-
sive blocks. Automatic signal quality indexes have been proposed in the literature 
for adult ECG signal quality assessment [3, 22, 53]. In [41], several signal quality 
indexes were specifically proposed for the fECG and successfully tested over sev-
eral available datasets.

5.6.3.2  �Online Source Separation

An alternative solution for processing long fECG data records is to use sample-wise 
online source separation algorithms. Adaptive source separation algorithms are well 
known in the blind source separation literature. One of the most popular algorithms 
in this context is known as equivariant adaptive source separation via indepen-
dence (EASI) [16]. In this method, the separating matrix at time instant t, denoted 
by B(t), is adaptively updated using an equivariant serial update:

	
B B H y Bt t t t t+( ) = ( ) - ( ) ( )( ) ( )1 l

	
(5.26)

where λ(t) is an update factor, y(t) = B(t)x(t) is the adaptive estimate of the indepen-
dent sources, and H(⋅) is a nonlinear function of the estimated sources cumulants 
[16]. For time-varying mixtures, the mixing matrix A defined in (5.10) becomes 
time-variant and the algorithm seeks the demixing matrix such that B(t)A(t) 
approaches identity, i.e., where ∥H(y(t)) ∥  → 0. This approach also works for the 
cases, in which the variations are due to the sources rather than the mixture. For 
instance, suppose that the mixing matrix A(t) = A is constant, but the sources are 
nonstationary. As a result, the function H(⋅) deviates from zero as the recursion 
reaches the nonstationary epochs of the signals. Various source separation 
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algorithms, which use sample-wise updates (instead of global averaging), can be 
used for online fECG extraction [38, Ch. 3.2], [26, Ch. 4.5].

Finally note that for an online implementation of GEVD-based algorithms (such 
as πCA and NSCA), the covariance matrices Cx and Cm are both updated in time, i.e.,
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where α, β ≤  1 are forgetting factors and τt is the time-variant heart-rate period 
defined in (5.4). Further details regarding the various online variants of fECG 
extraction algorithms can be followed from [12, 33, 41].

5.7  �Fetal ECG Post-processing

5.7.1  �Fetal R-Peak Detection

After extracting the fECG from maternal abdominal recordings, the next step is to 
extract clinical parameters from the fECG. The fetal heart rate (fHR) is the first and 
most commonly used parameter, which in turn requires the detection of the fECG 
R-peaks. In this context, classical R-peak detectors, such as local peak search over 
sliding windows or the well-known Pan-Tompkins method used in adult ECG [68], 
are the most common. However, considering the relatively low SNR of the fECG 
and its limited morphological shapes, specific fetal R-peak detectors have been 
developed that are robust to noise [12, 41]. These methods are based on a matched 
filter using fixed or adaptive QRS-like templates. A wide range of these techniques 
were studied and compared with one another during the annual Physionet/
Computing in Cardiology Challenge 2013 [90].

After fetal R-peaks, the fHR time series is commonly post-processed to refine 
the calculated heart rate time series and to correct the excess and missing R-peaks. 
These corrections have been commonly performed by rule-based methods, which 
correct the outlier R-peaks (and the corresponding heart beats), while keeping the 
normal beats unchanged [30, 40, 90].

5.7.2  �Fetal ECG Enhancement

Depending on the signal quality, after mECG cancellation, the fECG might be 
directly detectable from one or more of the residual channels, or additional stages 
may be required for extracting the fECG from the residual background noise. As 
detailed in Sect. 5.4, numerous techniques have been proposed for ECG denoising, 
including Kalman filters [78, 79, 82], wavelet denoisers [44, 75], filtering using 

5  Noninvasive Fetal Electrocardiography: Models, Technologies, and Algorithms



140

piecewise smoothness priors [75], etc. An example of such post-processing for 
fECG enhancement is demonstrated in Fig. 5.14.

For morphological analysis due to the relatively low SNR of fECG signals— 
even after mECG and background noise cancellation— the SNR improvement 
obtained by post-processing filters can still be insufficient for reliable fECG param-
eter extraction. In this case, an effective approach is to use synchronous weighted 
averaging of successive beats [52]. This procedure is known to improve the SNR by 
a factor of K, where K is the number of averaged beats.

5.7.3  �Fetal ECG Morphological Parameter Extraction

To date, the morphological parameters of the fECG and their relationship with the 
well-being of the fetus are still under study. Researchers have extracted parameters 
such as the QT-interval [7, 9, 23] and the ST-segment [21, 60]. The typical bench-
mark for these studies is commonly the invasive fECG obtained from the fetal 
scalp electrodes acquired during labor. However, it is currently difficult to evaluate 
the fECG parameters independently since there are very few open-access fECG 
databases with expert annotations. Considering that the technology of fECG acqui-
sition and processing is emerging as a standard procedure, it is foreseen that fetal 
ECG-based parameter extraction will be the main focus of research in future 
studies.

5.8  �Conclusion

In this chapter, some of the major technologies and algorithms used for the acquisi-
tion and noninvasive processing of fetal electrocardiogram signals from maternal 
abdominal recordings were reviewed. The recent advances in this domain, espe-
cially during the past decade, demonstrate that the technology is emerging as a sta-
ble and reliable alternative for invasive methods. A promising future trend is to 
combine this technology with other low-cost fetal cardiac monitoring modalities 
such as the phonocardiogram (PCG) and the Doppler technology. The extension of 
these technologies to multiple pregnancies and pathological cases and its combina-
tion with other vital aspects such as the development of the fetal central nervous 
system (CNS) and cerebral growth are among the future challenges of this domain. 
The availability of open-access data with clinical annotations and open-source 
devices and algorithms are among the requirements that can significantly accelerate 
the development of this technology.
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Chapter 6
Innovative Devices and Techniques 
for Multimodal Fetal Health Monitoring
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6.1  �Introduction

Over the last couple of decades, a clear trend in clinical care is visible, in which care 
is moved from the hospital and healthcare centers to an at-home setting [1]. This is 
in part driven by the need to reduce healthcare costs, where new ambulatory moni-
toring techniques, combined with telehealth, could help hospitals and healthcare 
providers bend the cost curve [2]. In addition, locating services in a patient’s home 
makes care easily accessible and it leads to more comprehensive and effective care, 
moving the emphasis towards early diagnosis and healthcare rather than disease 
care. Or, in the words of Mark Bertolini, CEO of the US-based insurance company 
Aetna: “If you have to go to the hospital, we have failed you.”

In recent years, this trend of moving toward at-home care has accelerated with 
the availability of new and better healthcare technologies suitable for at-home use. 
Personalized healthcare coaching smart apps such as Sanitas’ HealthCoach are 
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becoming more popular, and medical diagnostics apps such as Insight Optics and 
FibriCheck are already gaining traction. This is a trend which can only benefit from 
platforms such as Apple’s HealthKit, the ongoing developments in artificial intelli-
gence, and the increasing presence of personal health sensors and devices. Figure 6.1 
shows an overview of personal connected devices for home use, which allow cap-
turing one or more health-related parameters and, combined, can give insight into 
the user’s health. The use of these types of devices is now commonplace and both 
accepted and utilized by the medical community to improve healthcare [3].

Home monitoring of fetal health as part of standard care, however, is currently 
limited to maternal perception and counting of fetal movements [4], as currently, 
continuous fetal monitoring devices are only available for high-risk pregnancies and 
require interpretation by a medical professional to give any insight into the fetal 
health. Instead, pregnancy monitoring is currently performed intermittently in a 
hospital environment, despite increasing preference of pregnant women for moni-
toring at home and potential benefits for the mother and healthcare system [5, 6]. As 
a result, the obtained fetal health information is very sparse, unless the patient is 
admitted to a care center for a prolonged period of time.

As an increase in high-risk pregnancies can be observed in industrialized coun-
tries, in part because of the increasing age at which women decide to get pregnant 
[7], various groups are working on changing the options to improve prenatal fetal 
monitoring and care. Universities, start-ups, and big tech invest in research and 
technology in preparation for a transformation of prenatal care to new technologies 

Fig. 6.1  An overview of commonly used smart sensors, including smart-watches with heart-rate 
and activity tracking, an activity tracking jewel, a blood pressure cuff, stethoscope, scales, glucose 
meter, pulse-oximeter, and body thermometer, all of which allow for at-home health monitoring
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and toward an at-home setting [8–10], with a number of potential big improvements 
over current clinical practice:

	1.	 Continuous monitoring, instead of intermittent observations at a care center.
	2.	 Earlier detection of possible issues enabling a preventative style of medicine.
	3.	 Lower load on the hospital and medical personnel.
	4.	 Reduction of overall healthcare cost, while improving outcomes.

In the remainder of this chapter, we will first go over the currently available fetal 
health monitoring techniques and see a shift toward new measurement techniques. 
In addition, an overview is provided of the devices currently available for home 
monitoring of fetal health features. Next, focusing on fetal motion detection, we 
will have a look at current research toward fetal monitoring and how to approach the 
signal processing and data analysis issues when developing a fetal monitor-
ing device.

6.2  �Current Fetal Health Monitoring Techniques

Currently, detection of fetal health during pregnancy is limited to the measurement 
of a couple of features, which can be obtained using a number of different measure-
ment techniques. The most common and most important features used for fetal 
health assessment are the fetal heart rate (FHR) and counting of fetal movements 
[11]. Accurate FHR recordings allow determination of fetal development, fetal 
maturity, and the existence of fetal distress or congenital heart disease [12]. A reduc-
tion in fetal movements, on the other hand, is associated with a wide variety of 
pregnancy pathologies, ranging from intrauterine growth restriction to anomalies 
affecting neurological systems, brain injuries, and death [13]. In addition, assess-
ment of fetal growth and anatomy abnormalities and, in some cases, information 
from fetal (scalp) blood sampling can provide extra insight into the fetal well-being.

6.2.1  �Devices in Clinical Fetal Health Monitoring

One of the most commonly used devices in fetal health monitoring throughout preg-
nancy is the Doppler ultrasound (US) monitor, which was introduced in 1958 by 
Edward Hon, MD [11]. In Doppler US measurements, ultrasonic waves generated 
by a transducer are transmitted into the body, where they experience a shift in fre-
quency when backscattered by moving targets with a different density. The magni-
tude and direction of the recorded shift in frequency of the backscattered waves, 
known as the Doppler effect, contains information about the motion of the scatter-
ers. This way, the Doppler effect can be used to non-invasively track the movements 
of the fetal heart and valves. Fast shifts of these body parts can be tracked to deter-
mine the averaged FHR over time. In a similar way, slow shifts in frequency and 
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direction can be retraced to fetal body movements. Figure 6.2 shows a Doppler US 
system in use in the clinic. A more recent M-mode Doppler US allows measurement 
of tissue deformation and fluid flow and, as a result, the assessment of types of 
arrhythmia based on the contractile and flow behavior in the atria and ventricles.

The accuracy of the average FHR detection by Doppler US is good, although 
even recent Doppler US techniques are not able to provide the FHR signal accuracy 
required for reliable quantitative evaluation of FHR variability or detection of the 
presence of arrhythmias [14]. Detection of fetal motion using Doppler US is limited 
to strong limb and full body movements, which can be detected with an accuracy of 
around 94% [15, 16]. The above results assume the probe to be accurately aimed at 
the fetal heart, which requires the occasional attention of trained medical personnel 
to adjust the probe position and orientation. In addition, the Doppler US introduces 
energy into the body of both mother and fetus, which might pose a health risk with 
prolonged exposure, which makes Doppler US measurements unsuitable for long-
term observation [17, 18]. Therefore, Doppler US is mostly used for intermittent 
checks of the FHR throughout delivery, often in conjunction with recordings of 
uterine activity as part of the cardiotocogram (CTG).

By using an US probe with an array of densely packed transducers, the location 
and movement of scatterers can be tracked over a two- or three-dimensional area, 
and the received backscattered signals can be converted into images or video. 
Imaging and video are typically made by trained medical personnel to check on the 
fetal growth and development. US video allows the clinician to determine the gen-
der of the fetus, estimate its size and weight, and check for any anatomical deforma-
tions. Continuous US imaging is currently the most reliable and accurate method to 
monitor fetal movement when identification of the fetal movements is performed 
manually by a medical expert [15]. In addition, it allows for discrimination between 
different types of fetal movement, such as fetal breathing, hiccups, and limb and full 
body movements [15]. It is, therefore, considered the gold standard in fetal move-
ment monitoring. However, both the recording and annotation processes are very 
labor-intensive; they require the continuous attention of a trained physician to han-
dle the US probe and analyze the recorded video images. Because of this, and the 
energy introduced in the body, which is higher than that of the Doppler method, US 

Fig. 6.2  Current CTG machine with Doppler US probe for FHR monitoring (left) and ultrasound 
imaging (right)

M. J. Rooijakkers



151

imaging is not suitable for regular or long-term monitoring. Also, depending on the 
gestational age (GA) and the limited field of view, only part of the fetus can be 
visualized, which can result in missing or mislabeling of fetal movements.

A very accurate way to record the fetal heart rate is by means of the fetal electro-
cardiogram (ECG), which measures the changing electrical field generated by the 
fetal heart [19]. Classically, the fetal ECG is recorded, while the cervix is dilated 
using a measurement electrode directly connected to the fetal head, with a reference 
electrode on the thigh of the mother, as shown in Fig. 6.3. This results in a clean 
gold standard fetal ECG signal, which not only allows for FHR extraction but also 
enables a detailed analysis of the fetal ECG morphology. Detailed analysis of the 
fetal ECG can be used to detect adverse events such as prolonged oxygen depriva-
tion using ST-segment analysis, although the reliability of this method is controver-
sial [21]. As the measurement electrode needs to be screwed directly into the fetal 
scalp, this is a very invasive technique which requires the membranes to be rup-
tured. As such, a direct fetal ECG using a scalp electrode can only be performed 
during delivery and is typically only performed in case of possible fetal distress, if 
no trustworthy FHR signal can be obtained using alternative methods.

A method closely related to the fetal ECG is the fetal magnetocardiogram 
(MCG), which measures the magnetic field produced by electrical currents in the 
fetal heart as a result of the propagating action potentials. The MCG is a non-
invasive method, which allows for detection of the FHR and analysis of the signal 
morphology as early as in the 21st week of gestation [22]. Although fMCG has 
shown to provide clinically accurate information suitable for, for example, fetal 
arrhythmia detection, it is not commonly used. As the magnetic fields emanating 
from the fetal heart are extremely small, the recording has to be performed using a 
bulky biomagnetometer in a magnetically shielded room, which makes the method 
only suitable for short-term observations in the hospital.

Fetal health monitoring is also possible using auscultation, by listening to the 
sounds of the fetal heart from the abdominal wall using a stethoscope, which, when 
recorded, is called a fetal cardiophonograph (CPG). Such a CPG can be used much 
in the same way as a Doppler US recording, although the signal-to-noise ratio 

Fig. 6.3  Picture of fetal scalp electrode and graphic depiction of its placement. (Modified 
from [20])
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(SNR) is typically worse due to the presence of extraneous sounds. It has, therefore, 
become a lot less popular with the advent of Doppler US [11].

A final method worth mentioning to get insight into fetal health is maternal per-
ception, as it is not only the oldest, but also still the most commonly used method to 
assess fetal well-being. It is often used as a first indicator of fetal health, where a 
strong reduction of the amount of fetal movement felt by the mother is considered 
as a strong indicator for reduced fetal health [13]. Despite the availability of alterna-
tive methods to record fetal movements in the hospital, manual annotation in the 
hospital is also still common practice during CTG recordings, as shown on the left 
of Fig. 6.2.

6.2.2  �New Measurement Techniques 
in the Clinical Environment

Recently, a shift to compacter and less invasive systems in fetal health monitoring 
has started. These new systems allow for longer unsupervised recordings, while 
providing caregivers with more information about the current fetal health state. 
Most noticeably, a clear trend toward the use of abdominal electrodes is visible, 
which allow recording of the fetal ECG and analysis of the FHR throughout 
pregnancy.

6.2.2.1  �Fetal Heart Rate Monitoring

As mentioned in Sect. 6.2.1, the current gold standard for FHR monitoring uses the 
fetal ECG with a scalp electrode. An alternative way to obtain the fetal ECG is by 
means of electrodes placed on the maternal abdomen. This allows for recording of 
the fetal ECG and extraction of the FHR and morphological information noninva-
sively throughout all stages of pregnancy [23]. This method was used for the first 
time over a century ago, but the low SNR of the recorded signals has, until recently, 
limited its use as a diagnostic tool [17]. With improvements in electronics and espe-
cially the accurate conversion of the recorded signals to the digital domain and 
improvements in digital signal processors (DSP), powerful processing techniques 
have become available to significantly increase the SNR.  Source separating and 
filtering techniques can now be applied in real time to multi-channel recordings to 
provide signals with an SNR rivaling those recorded using the fetal scalp electrode, 
while offering multi-lead derivations, resulting in improved interpretability of the 
fetal ECG [23]. It should be no surprise that recent years have seen the first couple 
of abdominal fetal ECG monitoring devices being approved for medical use in the 
clinic by the U.S. Food and Drug Administration (FDA); for example, the Monica 
AN24 monitor and Novii Wireless Patch System by GE Healthcare (Chicago, IL, 
USA), the Meridian M110 from MindChild Medical (North Andover, MA, USA), 
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and the Nemo Fetal Monitoring System by Nemo Healthcare (Veldhoven, NL), 
shown in Fig. 6.4.

The use of fetal pulse oximetry, which allows noninvasive monitoring of the 
oxygen saturation in the arterial blood of the fetus, is currently in the research and 
development stage. The pulse oximeter (POM) can be applied either on the maternal 
abdomen for a trans-abdominal measurement or on the fetal scalp for a direct 
recording. The trans-abdominal method is noninvasive but hard to calibrate and suf-
fers from motion artifacts. The latter method is partially invasive, as it requires 
secure placement of the sensor on the fetus and hence dilation and rupturing of the 
membranes, limiting its use to labor, although no skin perforation is required like 
with the fetal scalp electrode [24]. Both versions of fetal POM offer continuous 
insight in both FHR and blood oxygenation, which promises a reduced need for 
caesarean sections.

6.2.2.2  �Fetal Movement Monitoring

New developments in fetal movement detection are mostly limited to the research 
stage, where a number of different measurement techniques are explored in an effort 
to overcome the various limitations of the fetal movement detection methods 

Fig. 6.4  Pictures of approved new-style medical devices for fetal health monitoring in a clinical 
setting, with (a) Novii Wireless Patch System by GE, (b) Nemo Fetal Monitoring System by Nemo 
Healthcare, and (c) Meridian M110 from MindChild Medical
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currently available in clinical practice. These new methods are based on measure-
ment of abdominal skin deformation and acceleration [25], optical flow displace-
ment [26], the fetal phonogram [27], FHR accelerations [28], and morphological 
changes in the fetal ECG [29, 30]. So far, however, none of this research has resulted 
in a product suitable for clinical use.

6.2.3  �At-Home Fetal Monitoring Devices

In current clinical practice, even with the use of the new generation of monitoring 
devices, pregnancy monitoring is performed intermittently, as the patient has to go 
to a care center for observation. As a result, the obtained information is relatively 
sparse unless the patient is admitted to the hospital for a prolonged period of time. 
Some of the previously mentioned measurement techniques, which show a clear 
move to more compact devices for fetal health monitoring, could allow for long-
term, continuous monitoring of the relevant features indicative of fetal well-being in 
an ambulatory at-home setting. As a result, the trend of moving toward home moni-
toring is also taking hold in the field of fetal health monitoring, with numerous 
products appearing for at-home fetal monitoring. Figure 6.5 shows an overview of 
the various devices.

Evidently, a large number of at-home fetal monitoring devices exists and, from 
Fig. 6.5, it is also clear that most devices target recording of the FHR. On closer 
examination, we can see that the majority of the devices require either continuous 
manual operation or regular adjustments to function correctly. In addition, a number 
of these devices use an active sensing method, which introduces energy in the 
maternal and fetal tissues. This means that, although these devices enable recording 
fetal health features on a regular basis, not all are suitable for continuous long-term 
monitoring.

6.3  �Toward Clinically Relevant At-home Fetal Health 
Monitoring: Fetal Motion Detection

In this chapter, we will have a closer look at the methods used and the trade-offs 
made in development of a fetal health monitoring device suitable for continuous 
unobtrusive monitoring. Because the amount of research into and the number of 
available devices for unobtrusive at-home FHR monitoring is much greater than 
those for fetal movement monitoring, while the latter is currently the most com-
monly used feature for at-home fetal health estimation, this chapter will focus on 
fetal motion detection.
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Fig. 6.5  Overview of both consumer and clinical grade devices suitable for at-home monitoring 
of fetal health related features. From the left top, in clockwise direction: (a) ECG patch-based 
Bloomlife Beatle prototype* (bloomlife.com), two ECG wearable belt systems (b) Nuvo Invu* 
(nuvocares.com) and (c) Owlet pregnancy band* (owletcare.com), (d) Babywatcher ultra-sound 
video (mybabywatcher.com), (e) a consumer Doppler US, (f) HeraMED HeraBEAT™** and (g) 
EchoBEAT™* wireless Doppler US (hera-med.com), (h) Sense4baby portable CTG monitor 
(sense4baby.nl), (i) the Modoo* (modoo-med.com) and (j) XinKaishi** (mykaishi.com) 
Bluetooth-connected fetal stethoscopes, (k) a digital stethoscope for fetal CPG recordings, and (l) 
eMotion accelerometer-based fetal movement detector*
*These devices are, at the time of writing, still under development
**These devices have, at the time of writing, a limited geographical availability
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6.3.1  �Selection of Measurement Modalities

Before one or more measurement methods can be selected for detection of fetal 
motion, it is important to weigh the pros and cons of all possible measurement 
methods. To this end, Table 6.1 shows an overview of all methods for detection of 
fetal motion found in literature. Since the monitoring method should be suitable for 
long-term at-home use, some methods can be eliminated immediately based on one 
or more of their characteristics. Maternal sense, which is the current de facto stan-
dard, requires constant attention by the mother. The biomagnetometer is a very large 
and expensive device requiring a magnetically shielded environment. Ultrasound 
video requires constant attention of a trained professional and long-term use is not 
advised due to the energy being transmitted into the body [32]. Both Doppler ultra-
sound- and the fetal phonogram-based methods require regular adjustments to keep 
the sensor aimed at the fetal heart. The remaining modalities, based on a skin stretch 
sensor, accelerometer, or abdominal ECG, are all small, passive, and can be used 
long-term without the need for user attention.

Skin-stretch and accelerometer sensors both try to capture the same signal, which 
is the motion of the fetus mechanically transmitted through the maternal abdominal 
tissues to the mother’s abdominal wall. The abdominal ECG, on the other hand, 
measures the electrical activity of the fetal heart and fetal movement might be 
detected by looking at morphological changes of the measured ECG waveforms 
[29]. Choosing which sensor to use will also depend on the types of fetal motion it 
is able to detect. Table  6.2 gives a classification of the various types of motion 
observed in a fetus. We have opted here to pursue the use of accelerometers to try 
and capture limb movements or kicks and hiccups, as these should result in discrete 
short abdominal movements, and the abdominal ECG to detect rolling and stretch-
ing movements by looking at the effect of the slow fetal rotational and translational 
movement with respect to the electrodes on the ECG morphology.

Table 6.1  Different measurement methods capable of fetal movement detection including their 
main characteristics [24, 31]

Measurement method Invasiveness Size Detectability Attention Max duration

Maternal sense None – High Continuous –
Biomagnetometer Low Very large High None Hour
Ultrasound video Low Average Very high Continuous Hours
Doppler ultrasound Low Average Medium Regular Day
Fetal phonogram None Average Low Regular –
Skin stretch sensor None Small Medium None –
Accelerometer None Very small Medium None –
Abdominal ECG None Small Medium None –
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6.3.2  �Recording a Reference Data Set

Any algorithm development, model training, or analysis of detection accuracy 
requires a representative dataset with accurate reference annotations. To this end, 
measurements were performed using two devices. Firstly, a Porti7 device from 
Twente Medical Systems International (TMSi) was used. The TMSi Porti7 was con-
figured to record data from six triaxial accelerometers and six abdominal electrodes 
at 2048 Hz. Five of the TMSi accelerometer sensors were positioned on the abdo-
men with the navel serving as central marker. The sixth accelerometer was placed 
on the back as reference for maternal movement, as shown in Fig. 6.6. Secondly, a 

Table 6.2  Different types of fetal movements and their defining characteristics

Movement type Characteristics

Rolling 
movement

Rolling or rotating movements, possible change in fetal position

Stretching Big movements of the fetal thorax without rolling motion
Limb movements Single or repeated movement of one or more fetal limbs
Hiccups Rhythmic twitching of the fetal body as a result of involuntary diaphragm 

movements
Fetal breathing In- and exhalation of amniotic fluid

Fig. 6.6  On-body placement of the used sensors. The TMSi Porti7 sensors consist of 5 accelerom-
eters placed on the abdomen, with a sixth accelerometer placed on the back (not visible) and 6 
electrodes used to acquire abdominal ECG data. The Bloomlife sensor with built-in accelerometer 
and electrodes is placed directly below TMSi accelerometer 1
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research version of the Bloomlife wearable was used to acquire two-channel elec-
trophysiological (ExG) data at 4096 Hz together with data from a single triaxial 
accelerometer at 128 Hz. Using this setup, 114 recordings of at least 20 minutes 
were collected from 57 pregnant women at gestational ages from week 30 onwards. 
All the women were lying in a hospital bed and were given a hand-held button, 
which they pressed when feeling fetal movement to generate a first reference for 
fetal movements. Short presses were used for kicks, while the button was continu-
ously pressed for longer full-body movements.

After some initial preprocessing to limit the frequency content of the data to a 
range expected to contain information on fetal movements, by for example, band-
pass filtering the accelerometer data between 1 and 20  Hz with a second-order 
Butterworth IIR filter, and high-pass filtering of the ExG data at 0.5 Hz, we can have 
a first look at the data. Figure  6.7 shows two accelerometer channels and one 
abdominal ECG channel over the first 10 minutes of a recording, as well as manual 
annotations of fetal movements by the mother and maternal movements by an 
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Fig. 6.7  Example accelerometer and abdominal ECG signal segments of 11 minutes (left) and 
15 s (right). The top plots show RMS energy of accelerometer channels 2 and 6 with added offset 
in blue and red, respectively, as well as the maternal button presses (gray lines), annotated maternal 
motion (black box) and the official start of the measurement (black line). The bottom plots show 
the abdominal ECG for channel 2 after high-pass filtering at 0.5 Hz. Notice that segments with 
increased accelerometer energy always precede the manual button presses
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external observer. We notice that all short button presses by the mother are preceded 
by an increase in accelerometer RMS energy in channel 2, but not in channel 6 (on 
the back), by approximately 1–2 s. To compensate for this varying offset, manual 
alignment of button presses with closely preceding RMS energy spikes was per-
formed as an annotation post-processing step. In Fig. 6.7, we can also observe that 
segments marked as maternal motion typically show an increase in RMS energy in 
both accelerometer channels.

6.3.3  �Accelerometer-Based Fetal Motion Detection

The first measurement method we will look into for detection of fetal movement is 
the use of accelerometers, which should allow for detection of “faster” fetal move-
ments such as kicks. The general method of fetal movement detection will, in this 
case, be machine-learning based and follow the work in [25, 33]. A machine learn-
ing method was chosen because we face a classification problem where we want to 
determine for each moment in time whether the fetus moved or did not move. In 
addition, we have a large and accurately annotated dataset of representative record-
ings, which is a requirement for Machine learning techniques even more than for 
classical signal processing methods.

6.3.3.1  �Base Method

Although machine learning offers a semi-automatic design methodology, several 
design choices need to be made, ranging from feature computation to selecting the 
proper performance metrics. Therefore, we will have a look at the design choices 
and validation techniques before we can analyze trade-offs in, for example, the 
number and positioning of sensors.

Features  Features are calculated on 0.5 s windows, given the short duration of fetal 
kicks as observed in Fig. 6.7. Experimentation using longer time windows showed 
an averaging effect on the accelerometer signal. The selected features were: mean, 
standard deviation, inter-quartile range, correlation between axis of each sensor, and 
correlation with the reference sensor based on RMS energy. All features were com-
puted for each sensor and each axis, for a total of 83 features.

The chosen performance metric  The chosen performance metric is the F-score, 
which is defined as:

	
F1 2� �

�
�

Se PPV

Se PPV
,
	

(6.1)
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where Se and PPV are the sensitivity and positive predictive value, respectively. The 
Se and PPV are in turn defined based on the number true positive (TP), false positive 
(FP) and false negative (FN) detections as Se = TP “TP ‚ FN” (fraction of kicks that 
is correctly identified as such) and PPV = TP “TP ‚ FP” (fraction of detected kicks 
that are actually kicks). The TP, FP, and FN were calculated using the short anno-
tated fetal movement events after time correction, as shown in Fig. 6.8.

The classifier  The classifier was selected to be a random forest, as it offers conve-
nient ways to deal with class imbalance by selecting a subset of the majority class 
at each iteration, similar to selecting a subset of features at each iteration. This, 
therefore, allows us to train our model on balanced data without discarding relevant 
information. After optimizing for F1 score, we found an optimal balance for our 
dataset, including all data from the minority class (kicks) and one fifth of the major-
ity class data.

Initial results  Initial results using only a single sensor show both a Se and PPV of 
0.51 for all sensors with the exception of reference sensor 6, which gave a Se and 
PPV of 0.0, highlighting how the latter is optimal to distinguish between maternal 
and fetal movements. These results are not great, as only about half of the fetal 
movements are captured, while the kicks which were detected have a 49% chance 
of having been detected erroneously.

6.3.3.2  �Detection Improvements

Various techniques to improve on the initial results can be made. Some possible 
improvements are discussed below, including the obtained results.

Using multiple sensors  Using multiple sensors at the same time might improve 
detections. The TMSi Porti7 recordings in the used measurement setup contain the 
data of six simultaneously sampled triaxial accelerometers, while so far we have 
only used a single accelerometer at a time. Instead of using only a single accelerom-
eter, features of multiple accelerometers can be combined to detect movements 
more accurately. This way, the mean Se and PPV gradually increase with the num-
ber of used sensors, as shown in the “No reference” columns in Table 6.3, from 
which we can observe a clear improvement in especially Se. The increase in Se can 
be explained as a reduction in missed fetal kicks, since a larger portion of the mater-

Fig. 6.8  Example of the used evaluation strategy
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nal abdomen is covered, making sure kicks, which only result in local abdominal 
movements, are captured. Despite a significant increase in Se, the PPV has remained 
low, indicating that many maternal movements were mistaken for fetal movements.

A reference sensor  A reference sensor which cannot capture any fetal movements 
might be used to distinguish between maternal and fetal movements. As can be seen 
in the “With reference” columns in Table 6.3, including features from the reference 
accelerometer on the back does indeed improve detection results in a more balanced 
way. In general, the overall improvement when adding the single reference channel 
is larger than including an additional abdominal sensor. The best model is now able 
to detect 75% of all fetal kicks, where we are 65% sure about the correctness of any 
detected kick.

Additional signal processing  Additional signal processing might allow for a fur-
ther improvement by including additional features which can capture, for example, 
time scale or amplitude variations. To help distinguish between the different dynam-
ics of maternal and fetal movement, features calculated on a window of 4 s in addi-
tion to the 0.5 s window. The rationale is that short fetal movements should average 
out over the 4 s windows, but are captured by the 0.5 s ones, while maternal move-
ments should appear in both. The longer window was set to 4  s, as this is long 
enough to average out accelerations due to fetal kicks while being short enough to 
limit processing delays. In addition, new features to better capture acceleration 
amplitude were added in the form of the sum, min, max, and magnitude of the win-
dowed signals for all sensors and channels. Finally, all of the previously discussed 
features were also calculated on a single channel of the measured abdominal ExG 
after band-pass filtering between 0.1 and 3 Hz, which should capture any electrode 
motion artifacts as a result of skin stretching due to fetal kicks.

In Table 6.4, we can observe that adding the additional amplitude-based features 
improved fetal movement detection, especially in case of a single accelerometer. 
Including features on a 4 s window improved the PPV, again most noticeably in the 
single channel device, which does not benefit from a reference sensor to reject 
maternal motion. Finally, the addition of ExG features did not significantly improve 
the detection result.

Table 6.3  The influence of the numbers of used sensors on fetal movement detection [25]

# Sensors No reference With reference
Se PPV Se PPV

1 0.51 0.51 0.57 0.56
2 0.63 0.54 0.68 0.61
3 0.69 0.57 0.70 0.63
4 0.70 0.58 0.75 0.65
5 0.70 0.58 0.75 0.65
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6.3.3.3  �Discussion

The above results show that detecting individual movements remains challenging 
using accelerometers, even under optimal (hospital) conditions. Especially using 
only a single accelerometer it might be very hard to attain a detection quality which 
allows for reliable detection of each individual fetal kick. From a clinical perspec-
tive it is, however, not required to count every individual kick, as long as we can 
gain insight into the activity level of the fetus. This can be achieved by looking at 
the number of detected peaks over a longer time period, e.g. 5 or 20 minutes. In 
Fig. 6.9, which shows the total number of detected kicks over a 20-minute period, 
we can see a clear correlation between the number of annotated and detected kicks 
for both systems. Therefore, clinically relevant insight in the amount of fetal move-
ment can be identified with reasonable accuracy when using 5–20 minute long seg-
ments, e.g. using movement categories.

6.3.4  �Fetal ECG Based Fetal Motion Detection

As we have found above, an accelerometer-based system is reasonably well-suited 
for detection of fetal kicks and hiccups, due to the shorter forceful type of fetal 
movements, but has a hard time detecting slower full-body fetal movements. 
Various methods have been proposed using analysis of the abdominal fetal ECG 
based on variations in shape and amplitude of the fetal QRS complex [29, 34, 35]. 
These methods build on the premise that the fetal ECG waveform as observed from 
the electrodes on the maternal abdomen changes as a result of a shift of the fetal 
cardiac vector with each movement of the fetal thorax [36]. A change in fetal QRS-
wave height and shape can, therefore, be used to give an indication of the fetal 
motility.

Table 6.4  Effect of additional features, window sizes, and signal sources on fetal movement 
detection.

Included features TMSi Porti7 BLoomlife
Se PPV Se PPV

Base 0.75 0.65 0.51 0.51
+ additional features 0.76 0.71 0.65 0.65
+ 4 s window 0.75 0.76 0.64 0.75
+ ExG features 0.75 0.77 0.64 0.76

Here the TMSi Porti7 uses all six accelerometers, including one reference on the back, while the 
Bloomlife sensor only uses a single accelerometer [33]
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6.3.4.1  �Fetal QRS Extraction

Before analysis of the fetal QRS complex can be performed, it has to be extracted 
from the abdominal ExG, which in itself can be a challenging task due to the low 
signal amplitude and relatively high amplitude of interferers. The maternal ECG is 
typically the main interferer, and to remove it first all maternal R-peak locations are 
determined using the R-peak detection algorithm presented in [37], followed by 
removal of the detected maternal QRS-complexes by blanking, as shown in 
Fig. 6.10. Blanking reduces the number of fetal QRS-complexes whose shape might 
be affected by the maternal QRS enabling fetal R-peak detection. More complex 
methods such as those listed in [35] or [38] are possible and will increase the num-
ber of detected fetal peaks. However, these additional peaks likely contain residual 
errors from the maternal QRS removal which, unless removed, might introduce 
errors in template generation.

Fetal R-peak detection can be performed, using e.g. the method proposed in [37], 
on the abdominal ECG after maternal ECG removal. Cleaning of any detected fetal 
QRS complexes is important, as the amplitude of the fetal QRS is very low and any 
interference by artifacts or noise seriously impacts the fetal QRS waveform. 
Therefore, cleaned QRS-complexes are calculated by averaging the time-aligned 
fetal QRS waveforms within a 5 s interval after removing outliers which differ most 
in shape from the calculated average QRS complex. A 5 s window is used as a trade-
of between the ability to clean and improve the QRS shape and the risk of suppress-
ing short fetal-movement-induced changes of the QRS waveform. Figure  6.11 
shows an example of the QRS complex averaging, where changes over time in the 
averaged fetal QRS-complex can now be used for fetal movement detection.

Fig. 6.9  Number of kicks detected versus number of annotated kicks for each analyzed 20-minute 
recording using the TMSi Porti7 (left) and Bloomlife sensor (right) using the improved models
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6.3.4.2  �Fetal Movement Detection

Fetal movements are detected based on the premise that changes in QRS amplitude 
and shape are associated to translational and rotational movement of the fetus, 
respectively. Therefore, translational movements of the fetus with respect to the 
electrodes can be detected by changes in the fetal QRS amplitude over time. The 
translational movement feature M is calculated as the root mean squared value of all 
peak-to-peak fetal QRS amplitudes over a period of 10 s. A rotational movement of 
the fetus relative to the abdominal electrodes can be detected by calculating the cor-
relation coefficient between consecutive QRS complexes, as it provides a measure 
of similarity in signal morphology. The feature for rotational movement M is, there-
fore, defined as the correlation coefficient between cleaned QRS complexes spaced 
10 s apart [29].

Fetal movements are detected using a simple linear model and threshold which 
was obtained by training a linear regression model to find optimal feature weights. 
Different from the training and validation method for kick detection, the detected 
fetal movement class is compared with the reference annotations on a second-by-
second basis, as the duration of fetal movements can vary greatly. The detection 
accuracy (Ac) defined as

Fig. 6.10  Example of an abdominal ECG signal recorded using a single bi-polar electrode pair 
after basic filtering. The shaded region around each maternal R-peak (r) indicates the part of the 
signal which is blanked before detection of the fetal R-peaks indicated by a triangle. The diamond 
indicates a fetal peak which is not detected due to the blanking procedure

Fig. 6.11  Example of 
multiple aligned fetal 
QRS-complexes (thin gray) 
and a clean averaged fetal 
QRS-complex (thick black)
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was chosen as the performance metric, as it indicates a degree of closeness of the 
detections to the reference annotations. Table 6.5 shows the results of the fetal QRS 
shape based fetal movement detection algorithm using patient specific optimiza-
tions and features optimized for each GA age group as well as for the dataset as a 
whole using cross-validation.

6.3.4.3  �Discussion

The patient-specific results in Table  6.5 show the optimal results we can expect 
using the currently used features, while the cross validation results on the whole 
dataset show how the algorithm would preform on a general population when using 
a single model. The overall Se (64%), Sp (70%), and Ac (68%) for patient opti-
mized classification are reasonable, especially for recordings in the last weeks of 
gestation with an Se of 78% [39]. When training on the whole dataset, the results 
give an indication of the expected performance when applying the method on a new 
patient without training, in which case a clear drop in detection quality can be 
observed, especially in the Se and in recordings later during pregnancy. This might 
be an effect of the characteristics of the fetal movements or the ECG signal used to 
detect them changing with GA. Independent of the exact source of the GA-based 
effect, we can verify in Table 6.5 that training the model on two separate datasets 
split by GA markedly improves the detection results. Further improvements might 
be obtained by splitting the dataset in a more fine-grained manner to get GA-specific 
feature weights, although care has to be taken that sufficient representative data 
remains in each part of the dataset for both training and validation.

Further improvement of the ExG-based fetal movement detection might be pos-
sible by including additional features and use a machine-learning approach similar 
to the accelerometer-based method to perform feature selection. Another clear 
improvement option consists in using features extracted from multiple ExG leads, 
as currently only a single fixed lead is used. Using multiple leads might improve 
maternal ECG removal, the accuracy of fetal QRS detection, and improve the quan-
tity and quality of the information contained in the extracted features. Multi-lead 

Table 6.5  Fetal body movement detection quality using changes in the fetal QRS shape observed 
from a single vertical bi-polar abdominal ExG lead for a model trained for each patient, for all 
patients in a GA group (GA), and for all patients in the dataset (all)

Patient specific Cross validation (GA) Cross validation (all)
GA Se Sp Ac Se Sp Ac Se Sp Ac

>35 weeks 0.78 0.70 0.70 0.74 0.68 0.69 0.65 0.63 0.57
<35 weeks 0.58 0.70 0.67 0.56 0.70 0.64 0.53 0.70 0.65
All 0.64 0.70 0.68 0.62 0.69 0.67 0.56 0.68 0.63
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feature extraction might, in addition to fetal movement detection, also offer the pos-
sibility to determine the position and orientation of the fetus using, for example, 
vectorcardiographic loop alignment [35].

Finally, the fetal ECG-based fetal motion detection method might be used in 
conjunction with the previously presented accelerometer-based method to provide a 
complete picture of fetal motility. This would allow to move from movement count-
ing to tracking of movement patterns and changes in the type and amount of move-
ments, providing deeper insight into the fetal health.

6.4  �Conclusion

New digital health technologies for fetal health monitoring are becoming available 
in obstetric care, enabling an improvement in the quality of care by improving the 
quality of measured fetal health features and increasing patient comfort. At the same 
time, a second wave of improvements in measurement technology is underway 
which promises to enable unobtrusive continuous fetal monitoring from the comfort 
of the home. This trend might provide a number of key benefits for all parties 
involved. Continuous monitoring will result in improved pregnancy outcomes by 
enabling timely intervention in case of any adverse events. At-home monitoring will 
improve patient comfort, while reducing the strain on the healthcare system by 
moving patients out of the hospital. In addition, these new techniques allow putting 
more information in the hands of pregnant women, offering an opportunity to reduce 
anxiety and allow them to make choices during pregnancy without second-guessing. 
However, care has to be taken to avoid over-information while addressing the wom-
en’s needs and delivering clinical value to improve care. Finally, the large amount 
of previously unavailable longitudinal data might accelerate scientific and clinical 
research and lead to new insights in fetal health.

References

	 1.	Penner, S.: Following the Trend from Inpatient to Outpatient Care. Springer: New York (2013)
	 2.	Buysse, H., De Moor, G., Van Maele, G., Baert, E., Thienpont, G., Temmerman, M.: Cost-

effectiveness of telemonitoring for high-risk pregnant women. Int. J.  Med. Inform. 77(7), 
470–476 (2008)

	 3.	Haluza, D., Jungwirth, D.: ICT and the future of healthcare: aspects of pervasive health moni-
toring. Inform. Health Soc. Care. 43(1), 1–11 (2018)

	 4.	Sheikh, M., Hantoushzadeh, S., Shariat, M.: Maternal perception of decreased fetal move-
ments from maternal and fetal perspectives, a cohort study. BMC Pregnancy Childbirth. 14(1), 
286 (2014)

	 5.	Crawford, A., Hayes, D., Johnstone, E.D., Heazell, A.E.P.: Women’s experiences of continu-
ous fetal monitoring – a mixed-methods systematic review. Acta Obstet. Gyn. Scan. 96(12), 
1404–1413 (2017)

M. J. Rooijakkers



167

	 6.	Schramm, K., Lapert, F., Nees, J., Lempersz, C., Oei, S.G., Haun, M.W., Maatouk, I., Bruckner, 
T., Sohn, C., Schott, S.: Acceptance of a new non-invasive fetal monitoring system and attitude 
for telemedicine approaches in obstetrics: a case–control study. Arch. Gynecol. Obstet. 298(6), 
1085–1093 (2018)

	 7.	Goldenberg, R.L., Culhane, J.F., Iams, J.D., Romero, R.: Epidemiology and causes of preterm 
birth. Lancet. 371(9606), 75–84 (2008)

	 8.	Alves, D.S., Times, V.C., da Silva, É.M.A., Melo, P.S.A., de Araújo Novaes, M.: Advances in 
obstetric telemonitoring: A systematic review. Int. J. Med. Inform. 134, 104004 (2019)

	 9.	HITC: GE healthcare acquires fetal monitoring technology Monica healthcare to expand digi-
tal maternal-infant care footprint, 2017

	10.	Jonathan Shieber. Electronics Giant Philips Invests in Monitoring an Infomation Platform for 
Expecting Mothers, 2019

	11.	Gibb, D., Arulkumaran, S.: Fetal Monitoring in Practice. Elsevier Health Sciences (2017)
	12.	Hasan, M.A., Ibrahimy, M.I., Reaz, M.B.I.A.N.D.: An efficient method for fetal electro-

cardiogram extraction from the abdominal electrocardiogram signal. J.  Comput. Sci. 9(5), 
619–623 (2009)

	13.	Heazell, A.E.P., Frøen, J.F.: Methods of fetal movement counting and the detection of fetal 
compromise. J. Obstet. Gynaecol. 28(2), 147–154 (2008)

	14.	Jezewski, J., Wrobel, J., Horoba, K.: Comparison of doppler ultrasound and direct electrocar-
diography acquisition techniques for quantification of fetal heart rate variability. IEEE Trans. 
Biomed. Eng. 53(5), 855–864 (2006)

	15.	Besinger, R.E., Johnson, T.R.B.: Doppler recordings of fetal movement: Clinical correlation 
with real-time ultrasound. Obstet. Gynecol. 74(2), 277–280 (1989)

	16.	DiPietro, J.A., Costigan, K.A., Pressman, E.K.: Fetal movement detection: comparison of the 
toitu actograph with ultrasound from 20 weeks gestation. J. Matern. Fetal Neonatal. Med. 8(6), 
237–242 (1999)

	17.	Peters, M., Crowe, J., Piéri, J.-F., Quartero, H., Hayes-Gill, B., James, D., Stinstra, J., 
Shakespeare, S.: Monitoring the fetal heart non-invasively: a review of methods. J. Perinat. 
Med. 29(5), 408–416 (2001)

	18.	Barnett, S.B., Maulik, D.: Guidelines and recommendations for safe use of doppler ultrasound 
in perinatal applications. J. Matern. Fetal Med. 10(2), 75–84 (2001)

	19.	Cremer, M.: Über die direkte ableitung der aktionsströme des menschlichen herzens vom 
oesophagus und über das elektrokardogramm des fötus. Lehmann, 1906

	20.	Burkman, R.T.: Williams Obstetrics, vol. 24, 24th edn. American Medical Association (2010)
	21.	Vullings, R., Verdurmen, K.M.J., Hulsenboom, A.D.J., Scheffer, S., de Lau, H., Kwee, A., 

Wijn, P.F.F., Amer-Wåhlin, I., van Laar, J.O.E.H., Oei, S.G.: The electrical heart axis and st 
events in fetal monitoring: A post-hoc analysis following a multicentre randomised controlled 
trial. Plos One. 12(4), 1–11 (2017)

	22.	van Leeuwen, P., Halier, B., Bader, W., Geissler, J., Trowitzsch, E., Grönemeyer, D.H.W.: 
Magnetocardiography in the diagnosis of fetal arrhythmia. BJOG Int. J.  Obstet. Gynaecol. 
106(11), 1200–1208 (1999)

	23.	Vullings, R.: Non-invasive fetal electrocardiogram: analysis and interpretation. PhD thesis, 
Doctoral Dissertation (2010)

	24.	Tiwari, A.K., Chourasia, V.: A review and comparative analysis of recent advancements in fetal 
monitoring techniques. Crit. Rev. Biomed. Eng. 36(5–6), 335–373 (2008)

	25.	Altini, M., Mullan, P., Rooijakkers, M., Gradl, S., Penders, J., Geusens, N., Grieten, L., 
Eskofier, B.: Detection of fetal kicks using body-worn accelerometers during pregnancy: 
trade-offs between sensors number and positioning. In: Engineering in Medicine and Biology 
Society (EMBC), 2016 IEEE 38th Annual International Conference of the, pp. 5319–5322. 
IEEE, 2016

	26.	Surlea, C., Kurugollu, F., Milligan, P., Ong, S.: Foetal motion classification using optical flow 
displacement histograms. In: Proceedings of the 4th International Symposium on Applied 

6  Innovative Devices and Techniques for Multimodal Fetal Health Monitoring



168

Sciences in Biomedical and Communication Technologies, ISABEL ’11, pp.  156:1–156:5, 
New York, 2011. ACM

	27.	Kovács, F., Horváth, C.: Ádám T Balogh, and Gábor Hosszú. Fetal phonocardiography—past 
and future possibilities. Comput. Methods Prog. Biomed. 104(1), 19–25 (2011)

	28.	DiPietro, J.A., Hodgson, D.M., Costigan, K.A., Hilton, S.C., Johnson, T.R.B.: Development of 
fetal movement - fetal heart rate coupling from 20 weeks through term. Early Hum. Dev. 44(2), 
139–151 (1996)

	29.	Rooijakkers, M., Rabotti, C., de Lau, H., Oei, S., Bergmans, J., Mischi, M.: Feasibility study of 
a new method for low-complexity fetal movement detection from abdominal ECG recordings. 
IEEE J Biomed Health Inform. 20, 1361–1368 (2016)

	30.	Biglari, H., Sameni, R.: Fetal motion estimation from noninvasive cardiac signal recordings. 
Physiol. Meas. 37(11), 2003–2023 (2016)

	31.	Abdulhay, E.W., Oweis, R.J., Alhaddad, A.M., Sublaban, F.N., Radwan, M.A., Almasaeed, 
H.M.: Review article: Non-invasive fetal heart rate monitoring techniques. Biomed. Sci. 2(3), 
53–67 (2014)

	32.	U.S. Food & Drug Administration. Avoid fetal “keepsake” images, heartbeat monitors, 2014
	33.	Altini, M., Rossetti, E., Rooijakkers, M., Penders, J., Lanssens, D., Grieten, L., Gyselaers, 

W.: Variable-length accelerometer features and electromyography to improve accuracy of 
fetal kicks detection during pregnancy using a single wearable device. In: 2017 IEEE EMBS 
International Conference on Biomedical & Health Informatics (BHI), pp. 221–224. IEEE, 2017

	34.	Crowe, J.A., James, D., Hayes-Gill, B.R., Barratt, C.W., Pieri, J.-F.. Fetal surveillance, 
May 2005

	35.	Vullings, R., Mischi, M., Oei, S.G., Bergmans, J.W.M.: Novel Bayesian vectorcardiographic 
loop alignment for improved monitoring of ECG and fetal movement. I.E.E.E. Trans. Biomed. 
Eng. 60(6), 1580–1588 (2013)

	36.	Oostendorp, T.F.: Modelling the Fetal ECG. Katholieke Universiteit te Nijmegen, 1989
	37.	Rooijakkers, M.J., Rabotti, C., Oei, S.G., Mischi, M.: Low-complexity R-peak detection for 

ambulatory fetal monitoring. Physiol. Meas. 33(7), 1135–1150 (2012)
	38.	Zhong, W., Liao, L., Guo, X., Wang, G.: A deep learning approach for fetal qrs complex detec-

tion. Physiol. Meas. 39(4), 045004 (2018)
	39.	Frederik Frøen, J., Heazell, A.E.P., Tveit, J.V.H., Saastad, E., Fretts, R.C., Flenady, V.: 

Fetal movement assessment. Semin. Perinatol. 32(4), 243–246 (2008). Antenatal Testing: A 
Re-Evaluation

M. J. Rooijakkers



169© Springer Nature Switzerland AG 2021
D. Pani et al. (eds.), Innovative Technologies and Signal Processing in Perinatal 
Medicine, https://doi.org/10.1007/978-3-030-54403-4_7

Chapter 7
T-Wave Alternans Identification in Direct 
and Indirect Fetal Electrocardiography

Laura Burattini, Ilaria Marcantoni, Amnah Nasim, Luca Burattini, 
Micaela Morettini, and Agnese Sbrollini

Contents

7.1  �What Is T-Wave Alternans?�   169
7.2  �Direct and Indirect Fetal Electrocardiography�   171
7.3  �T-Wave Alternans in Fetal Electrocardiography�   172

7.3.1  �Why Measuring T-Wave Alternans in Fetal Electrocardiography?�   172
7.3.2  �Improved Fetal Pan-Tompkins Algorithm for Automatic Detection of Fetal R 

Peaks�   173
7.3.3  �Segmented-Beat Modulation Method for Electrocardiographic Filtering�   174
7.3.4  �Heart-Rate Adaptive Match Filter Method�   175
7.3.5  �A Clinical Study�   178

7.4  �Final Remarks�   180
�References�   184

7.1  �What Is T-Wave Alternans?

The electrocardiogram (ECG) is the recording of the heart electrical activity. In 
order to acquire this signal, clinical noninvasive electrocardiography implies the 
placement of electrodes on the skin of chest and limbs according to a conventional 
configuration that ensures standardization of the acquisition leads. By its nature, the 
ECG is a pseudo-periodic signal, each period of which represents a cardiac cycle. 
Three main waveforms are identified: the P wave, which represents the depolariza-
tion of atria; the QRS complex, which represents the depolarization of ventricles; 
and the T wave and U wave, if present, which represent the repolarization of ven-
tricles. Anomalies affecting the T wave often indicate severe cardiovascular dis-
eases and heart instability since reflecting ventricles abnormalities, which are 
recognized among the most critical conditions for the heart. Specifically, anomalies 
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concerning ventricular repolarization showed to be strongly correlated to life-
threatening ventricular tachyarrhythmias and high risk of sudden cardiac death at 
any age.

T-wave alternans (TWA, depicted in Fig. 7.1) is an electrophysiological phenom-
enon that may affect the ECG: it consists in a beat-to-beat fluctuation of the mor-
phology (amplitude, shape, and/or polarity) of the electrocardiographic T wave 
occurring at a stable heart rate (HR). TWA is non-stationary [1] (since its amplitude 
and duration generally vary with time) and lead-dependent [2] (since its amplitude 
depends on the ECG leads). It originates from anomalies in the timing of repolariza-
tion at the level of the ventricle cells. Traditionally, two classes of TWA are consid-
ered: the macroscopic TWA, visually noticeable at standard display scales; and the 
microscopic TWA, not visually noticeable at standard display scales.

For the first time observed by Hering in 1908, macroscopic TWA was initially 
considered as a curiosity of the ECG morphology. In 1975 Schwartz and Malliani 
discovered its association with the long QT syndrome, and in 1984 Adam et  al. 
showed the existence of microscopic TWA. Unlike macroscopic TWA, microscopic 
TWA requires specifically designed automatic methods to be detected and quanti-
fied [1, 3, 4].

TWA importance is grounded on its recognized role as a noninvasive risk marker. 
Specifically, many experimental and clinical studies indicate TWA as a reliable risk 
index of severe cardiac arrhythmic events, especially life-threatening arrhythmias 
and sudden cardiac death. Certainly, macroscopic TWA is a marker of severe heart 
instability, but also microscopic TWA is clinically significant and deserves even 
more attention because more frequently observed. TWA is known to be HR-dependent 
and is often visible only at high HR. Moreover, TWA identification requires HR 
stability, otherwise the changes in the T-wave amplitude may be HR-driven. 
Therefore, in many studies presented in the literature, TWA is usually detected 
under pacing conditions or during exercise, when HR is higher and less affected by 
heart-rate variability (HRV). In these studies, TWA showed to be a promising risk 
stratifier for ventricular arrhythmic events in several pathological heart conditions, 
like ischemic and non-ischemic cardiomyopathy, long QT syndrome, myocardial 
infarction, congestive heart failure and coronary heart disease [5, 6]. Some studies 
also reported a certain level of TWA in healthy subjects, even if always lower than 
in patients, suggesting the existence of physiological levels [5, 7, 8]. Nevertheless, 
the universal definition of threshold values at the verge of abnormal conditions is 
difficult to be assessed because they depend on automatic methods used to detect 
TWA [8].

Fig. 7.1  Example of an ECG affected by macroscopic TWA
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7.2  �Direct and Indirect Fetal Electrocardiography

Fetal electrocardiography is the recording of the electrical activity of the fetal heart. 
Morphologically, the fetal ECG (FECG) shows the standard P-QRS-TU pattern also 
present in adult ECG [9] but with different HR values. Specifically, fetal HR, typi-
cally around 120–160 bpm in normal conditions [10], is two to three times higher 
than adult HR [11].

There are mainly two techniques currently used for FECG acquisition: the direct/
internal one (Fig. 7.2, upper panel) and the indirect/external one (Fig. 7.2, lower 
panel) [12]. The direct fetal electrocardiography consists in the placement of a spi-
ral wire electrode on the fetal scalp to directly record the FECG (DI_FECG). It is 
applicable only during the delivery, when rupture of the chorioamniotic membrane 
has occurred and there is enough dilatation of the uterine cervix for the electrode 
placement [9]. This technique is invasive and may provoke the risk of infection for 
the mother, and a mark or a small cut on the fetus’s head. Thus, it is recommended 
only in cases of a risky pregnancy [12]. DI-FECG signal quality is high: it has a high 
amplitude (about hundreds of μV) with a good signal-to-noise ratio (SNR), making 
the signal processing easy.

The indirect fetal electrocardiography consists in the placement of surface elec-
trodes on the mother’s abdomen to indirectly record the FECG (IN-FECG). 
Specifically, surface electrodes are placed around the navel of the mother and a 
reference electrode is placed above the symphysis pubica. It is applicable in early 
pregnancy or during the late pregnancy, when the vernix caseosa (an anatomical 
layer that electrically shields the fetus), the progressive formation of which pro-
duces a thick layer around 30 weeks of gestation, slowly dissolves [9]. Indirect fetal 
electrocardiography is a nonstress and noninvasive test and no risks for both mother 
and fetus have been reported. IN-FECG quality is low: it has a low amplitude (about 

Fig. 7.2  Internal (upper panel) and external (lower panel) fetal electrocardiography
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tens of μV) and is affected by a high level of noise, often hiding the signal of inter-
est. Indeed, the surface electrodes also record the maternal ECG, maternal and fetal 
muscular noise, and other kinds of maternal internal noises [10, 12, 13]. This results 
in low SNR and the need of complex signal processing procedures.

7.3  �T-Wave Alternans in Fetal Electrocardiography

7.3.1  �Why Measuring T-Wave Alternans 
in Fetal Electrocardiography?

Health and well-being of a nation is often estimated through infant mortality, since 
factors inducing infant mortality have an impact on the health of the general popula-
tion [14]. Infant death is often related to genetic irregularities in the ion-channel 
function elected to regulate cardiac repolarization [15]. It is significantly important 
to have a risk index that could be used to highlight possible severe and dangerous 
abnormalities of the cardiac repolarization in order to take action in time. One of the 
risk markers used for the adult population is TWA. TWA could be exploited to pre-
dict and prevent malignant ventricular repolarization irregularities also in the fetal 
population in order to decrease infant deaths in the future. However, TWA is much 
more difficult to be detected in fetuses than in adults; it manifests spontaneously, 
with variable duration and occurrence rate, even if it can occur continually in severe 
situations. Knowledge on the etiology of TWA in utero is very limited [15, 16].

A deeper evaluation of electrophysiology of repolarization characteristics before 
birth is important because it may make possible to evaluate the electrophysiology of 
fetuses at higher risk for sudden death [17, 18]. Fetuses with repolarization abnor-
malities frequently go to suboptimal outcome, infant death, or in utero death. The 
hormonal mother state during pregnancy differently affects the electrophysiologic 
substrate of both mother and fetus. Specifically, high levels of estrogens can stabi-
lize maternal heart ion channels but not the fetal ones. Moreover, hemodynamic 
changes concurrent with arrhythmias or heart failure can be due to anomalous oxy-
gen arrival at the immature myocardium. Both the timing and the level of hypoxia 
may influence the fetal electrophysiological substrate, especially in the case of car-
diac anomalies [17]. Sudden death incidence is higher in utero than in other phases 
of life cycle. The reason for this is almost unknown, even if several studies found it 
in the QT prolongation, which is correlated to increased risk of ventricular tachyar-
rhythmias. Indeed, long QT was found to be more frequent in fetuses with poor 
outcomes; moreover, it is often associated with concomitant TWA [15]. TWA pos-
sibly puts fetuses at high risk of ventricular tachycardia and its detection makes 
genetic ion channelopathies research necessary, as well as investigation of mother 
levels of magnesium, calcium, and D vitamin [16]. An accurate investigation on 
repolarization-function quality, which can be performed through TWA detection 
and quantification, could allow an effective in-utero pharmacological treatment to 
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restore regular cardiac activity and avoid premature delivery and so allow well-
timed neonatal care. The possibility of assessing repolarization prenatally adds 
value and reliability to fetal genetic screening and could prove lifesaving [15, 18]. 
Therefore, being the possible cause of some unexplained fetal deaths, fetal TWA 
investigation might become the right approach to solve many currently unexplained 
fetal problems [15].

7.3.2  �Improved Fetal Pan-Tompkins Algorithm for Automatic 
Detection of Fetal R Peaks

Any fetal TWA investigation starts with automatic identification of fetal R peaks 
and FECG filtering, followed by the application of a proper algorithm for TWA 
detection. The Pan-Tompkins algorithm (PTA, upper panel of Fig.  7.3) [19] is a 
well-known algorithm for adult R-peak identification. Briefly, it is composed of four 
steps that are a bandpass filtering step (cut-off frequencies of 5 Hz and 15 Hz), a 
25 ms differentiation step, a squaring operation step, and a 150 ms moving-window 
integration step. To correctly identify the R-peak positions, two adaptive thresholds 
(Sf and Si) are considered to validate the local maxima detected from the filtered 
ECG (filtECG, obtained after the first step) and the integrated ECG (intECG, 
obtained after the fourth step) signals. If a local maximum is present in both filtECG 
and intECG signals, it is confirmed as R peak; otherwise it is rejected.

In order to use the PTA algorithm for fetal R-peak identification, PTA was 
recently adapted to FECG features [20]. The adapted algorithm is called the 
improved fetal Pan-Tompkins algorithm (IFPTA, lower panel of Fig. 7.3). By con-
sidering that FECG has the same morphology of adult ECG but is characterized by 
higher (about double) HR, the first and the fourth steps of PTA needed adaptation. 
Specifically, the cut-off frequencies of the bandpass filtering step become 9 Hz and 
27 Hz, and the moving-window integration step is performed over an 80 ms win-
dow. Finally, in order to remove the false-positive and false-negative peaks, a fetal 
R-peak corrector is added in cascade. The corrector extracts a 9-beat window 
around each selected R-peak position and computes the mean RR interval and the 
mean fetal QRS complex in the window. If the RR interval associated with the 
selected R-peak position is significantly shorter or longer than the mean RR inter-
val, or the correlation between the QRS complex associated with the selected 
R-peak position and the mean QRS complex is weak, the selected R-peak position 
is corrected. Details about the fetal R-peak corrector can be found in [20]. Briefly, 
false-positive detections, identified by short RR intervals and possibly low correla-
tions, are eliminated; instead, false-negative detections, identified by long RR inter-
val, are added.
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7.3.3  �Segmented-Beat Modulation Method 
for Electrocardiographic Filtering

The segmented-beat modulation method (SBMM) [21, 22] is a template-based 
noise cancellation procedure aimed at increasing the clinical utility of an ECG 

Fig. 7.3  Block diagrams of the PTA (upper panel) and of the IFPTA (lower panel)
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affected by high levels of noise. The block diagram of the SBMM algorithm is 
depicted in Fig.  7.4. The SBMM considers a noisy ECG and its corresponding 
R-peak sequence as inputs and provides a clean ECG as output. The input R peaks 
are used to identify all cardiac cycles (CCs): each CC is defined as the noisy ECG 
segment included between Δ ms before an R peak and Δ ms before the next one. All 
CCs are then segmented into QRS segments (from the beginning of each CC to Δ 
ms after its R peak) and TUP segments (Δ ms after the R peak to the end of each 
CC). Duration of cardiac ventricular depolarization (QRS segments) is assumed to 
be constant (2∙Δ ms), while the rest of CCs (TUP segments) are assumed to be 
RR-dependent (TUP = RR-2∙Δ). Thus, after CC segmentation, a modulation (com-
pression/stretch) of TUP segments is performed to match the median TUP segment, 
directly computed from the median RR. All QRS and TUP segments are then recon-
structed in order to obtain all equally long CCs. A median operation over all CCs is 
performed to compute a template beat: thanks to the median operation properties, 
the template beat appears denoised. The template beat is then segmented into 
median QRS segment and median TUP segment. The median TUP segment 
(repeated for each beat) is demodulated (stretch/compression) back to the original 
TUP segment lengths. Lastly, the median QRS segment (repeated for each beat) and 
the demodulated TUP segments are concatenated to construct the demodulated 
CCs, which are in turn concatenated to obtain the clean ECG. Thanks to the demod-
ulation procedure, the clean ECG maintains the same HRV properties of the original 
noisy ECG.

7.3.4  �Heart-Rate Adaptive Match Filter Method

The detection of microvolt TWA can be performed only through automatic methods. 
One of the methods that can be used to investigate microvolt TWA is the heart-rate 
adaptive match filter (HRAMF) [1]. The HRAMF-based procedure for TWA identi-
fication and quantification is described through the block diagram in Fig. 7.5.

Before the application of the method, a preprocessing of ECG is needed. Initially, 
ECG windows are recursively extracted [15] (window features are application-
dependent). Each window is low-pass filtered (cut-off frequency: 35 Hz) to remove 
high frequency. The filter is a sixth-order bidirectional Butterworth filter that pre-
vents filtering delay and oscillation in the filtering passing band. Considering the 
related R peaks, subtraction of baseline, computed as a third-order spline interpola-
tion, is performed. The further analysis takes into consideration the extracted win-
dow, set as the part of the ECG window that includes the M central heartbeats 
(numerical value of M is application-dependent). These beats are used to compute 
the mean RR interval, the RR standard deviation, and the TWA frequency (FTWA); 
which is defined as half of mean RR interval reciprocal. Moreover, in each extracted 
window the median beat is estimated and its correlation with each present beat is 
evaluated: if correlation is weak, the beat is classified as ectopic or noisy and so 
replaced by the median one [15].
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Fig. 7.4  Block diagram of the SBMM
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After preprocessing, the extracted window has to be tested in terms of suitability 
for TWA detection. Particularly, if RR standard deviation does not overcome 10% 
of mean RR interval and replaced heartbeats are less than 10% of M, the extracted 
window goes to analysis of HRAMF; if not, it is rejected [15]. The HRAMF, the 
block diagram of which is depicted in Fig. 7.6, exploits FTWA to design a bandpass 
filter with a central frequency corresponding to FTWA and a passing band that is very 
narrow (0.12 Hz-wide).

The limited width of the filter is able to respect physiological HRV (computed as 
RR standard deviation) and, in the same time, to maintain frequency band pertain-
ing only to TWA phenomenon. Specifically, the filter is designed as a cascade of a 
sixth-order bidirectional Butterworth low-pass filter (LPF; cut-off frequency 
fLPF = FTWA + 0.06 Hz) and a sixth-order bidirectional Butterworth high-pass filter 
(HPF; cut-off frequency fHPF = FTWA − 0.06 Hz). Its squared module is given by the 
following equation [5]:

Fig. 7.5  Block diagram of 
HRAMF-based procedure 
for TWA identification and 
quantification

Fig. 7.6  Block diagram of the HRAMF
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(7.1)

The extracted window in input to the HRAMF undergoes filtering and then 
becomes an amplitude modulated pseudo-sinusoidal signal. If TWA is present, the 
pseudo-sinusoidal signal has its maxima and minima over the T waves and twice its 
amplitude is quantification of TWA amplitude. If TWA is not present, the pseudo-
sinusoidal signal is actually a constant and TWA amplitude is zero [15].

7.3.5  �A Clinical Study

The reported clinical study presents an example of fetal TWA extraction from 
simultaneously acquired DI-FECG and IN-FECG.

Data  Data consisted in FECG recordings, available from the open source Physionet 
(www.physionet.org) [23], collected in the “Abdominal and Direct Fetal 
Electrocardiogram Database” [24] by the research team of Department of Obstetrics 
at the Medical University of Silesia. FECG signals were acquired from 5 pregnant 
women (between 38th and 41st week of gestation) by internal and external monitor-
ing. For each fetus, one DI-FECG and four IN-FECG were simultaneously recorded 
(sampling rate: 1  kHz; duration: 5  min). Thus, a total number of 25 FECG (5 
DI-FECG and 20 IN-FECG) from 5 fetuses were collected.

Methods  Figure 7.7 depicts the procedures for TWA extraction from DI-FECG 
(Fig. 7.7A) and IN-FECG (Fig. 7.7B) [15, 25]. Firstly, TWA was detected by the 
HRAMF-based procedure (window length: 35 s; moving step for window extrac-
tion: 1 s; M: 32) from DI-FECG, considering its fetal R peaks extracted by IFPTA 
[20]. Secondly, considering the high level of noise, IN-FECG was denoised from 
maternal ECG (MECG) interference before TWA extraction. SBMM was applied in 
order to obtain MECG, after the maternal R-peaks identification by standard PTA 
[19]. By subtraction, MECG was removed from the original recording, obtaining a 
denoised IN-FECG.  By considering the difference in amplitude in relation to 
DI-FECG, IN-FECG was amplified by a 4.8 scale factor [25]. Finally, TWA was 
detected by HRAMF procedure (window length: 35  s; moving step for window 
extraction: 1  s; M: 32) from denoised IN-FECG, considering its fetal R peaks 
extracted by IFPTA [20].

Quality of FECG was quantified in term of SNR, computed as:

L. Burattini et al.
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where FECGAmplitude was obtained as the mean peak-to-peak amplitude over beats 
and FNOISEAmplitude was obtained as four times standard deviation of the fetal noise. 
FECG and FNOISE were separated by SBMM [13].

Fig. 7.7  Procedure for 
TWA extraction from 
DI-FECG (panel A) and 
from IN-FECG (panel B)
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For each FECG, the number of suitable windows (NW) was considered. For each 
window, FECG features and TWA features were extracted. Considered FECG fea-
tures are the fetal HR, the fetal mean RR interval and the fetal HRV, while consid-
ered TWA features are the mean TWA frequency (FTWA), the mean TWA amplitude 
(MTWA), the maximum TWA amplitude (MAXTWA), and the standard deviation of 
TWA amplitude (SDTWA).

In order to compare TWA in DI-FECG and IN-FECG, only one lead of IN-FECG 
was selected. The selection criteria are: I) the selected lead must have the highest 
value of MAXTWA among all leads; and II) the selected lead must have NW higher 
than 15% and higher than NW of all the other leads. The comparison of DI-FECG 
and IN-FECG was performed computing the Pearson’s correlation coefficient (ρ) 
and the regression line between MAXTWA and HR (statistical significance level at 
0.05) computed in DI-FECG and selected IN-FECG.

Results  FECG features and TWA features were extracted from all FECG record-
ings and they are reported in Table 7.1 [15, 25]. Overall, all DI-FECG were suitable 
for TWA analysis, while 9 out of 20 IN-FECG were rejected. The suitability assess-
ment can be quantified by NW, linked to SNR. NW (69 ± 29%) and SNR (−1 ± 8 dB) 
of DI-FECG are higher than NW (17 ± 18%) and SNR (−4 ± 5 dB) of IN-FECG. HR 
(129 ± 3 bpm for DI-FECG; 130 ± 5 bpm for IN-FECG), RR (467 ± 10 ms for 
DI-FECG; 461 ± 17 ms for IN-FECG), and consequently FTWA (1.07 ± 0.02 Hz for 
DI-FECG; 1.09 ± 0.04 Hz for IN-FECG) were homogenous among fetuses in both 
DI-FECG and IN-FECG.

TWA features computed from DI-FECG and IN-FECG have the same order of 
magnitude: MTWA distribution is 9 ± 2 μV for DI-FECG and 11 ± 5 μV for IN-FECG; 
MAXTWA distribution is 30 ± 11 μV for DI-FECG and 21 ± 12 μV for IN-FECG; 
and, SDTWA distribution is 6 ± 2 μV for DI-FECG and 7 ± 3 μV for IN-FECG. Moreover, 
SDTWA presented the same order of magnitude as MTWA, highlighting a great TWA 
variability in both DI-FECG and IN-FECG.

In order to perform the comparison between DI-FECG and IN-FECG, the 
selected IN-FECG leads are the lead 4 from fetus 1, the lead 4 from fetus 4, and the 
lead 1 from fetus 5 (leads with ‘a’ in Table 7.1). Pearson’s correlation coefficients 
between MAXTWA and HR were moderate for DI-FECG (ρ = 0.64; P = 0.24) and 
very high for IN-FECG (ρ  =  0.99; P  =  0.02). Regression lines are depicted in 
Fig. 7.8.

7.4  �Final Remarks

The identification and quantification of TWA was successful in both DI-FECG and 
IN-FECG. Even if the first one is more suitable for TWA detection, because less 
affected by interferences, it is in the same time almost not practicable in clinical 
practice, because of its invasiveness. Moreover, the IN-FECG has to deal with the 
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dependency of TWA from acquisition lead, while the DI-FECG is unavoidably con-
ditioned by the stressful status of the fetus during delivery [15].

According to our experience, HRAMF is a good method for TWA extraction. 
Thanks to its theoretical approach, HRAMF is robust against noises and interfer-
ences in many frequency bands, avoiding false positives; moreover, it allows a reli-
able interpretation of TWA, since it respects the non-stationary nature of the 
phenomenon. These advantages make HRAMF particularly suitable in the case of 
fetal electrocardiography, because FECG is more affected by noises and interfer-
ences and, if present, fetal TWA is highly variable in duration and amplitude [16].

The main finding from TWA analysis on fetal electrocardiography is that fetuses 
show TWA, even if they are healthy, while in adult applications TWA manifestation 
is typically associated with a pathological condition. Another aspect to keep in con-
sideration is that FECG has a different amplitude with respect to adult ECG and this 
can influence the quantification of TWA; consequently, if a certain value of TWA is 
considered physiologic in healthy adults, the same value could assume a different 
meaning in case of fetuses. At the same time, values of TWA evaluated as high if 
referred to ECG amplitude may be affected by the high HR, which is typical in 
fetuses [15]. Still, threshold or reference values of TWA are difficult to be defined 
for both adults and fetuses, also because they depend on the used TWA identifica-
tion method [26].

As reported in existing literature, TWA is strongly variable in time [15]. 
Moreover, comparable results about TWA evaluation and characterization were 
found when the HRAMF was applied on DI-FECG and IN-FECG, but it is neces-
sary to consider an amplitude-correction factor so that amplitude of both kinds of 
acquisition is of the same order.

Fig. 7.8  Regression lines between MAXTWA and HR computed in DI-FECG (blue circles and 
dashed black line) and selected IN-FECG (red triangles and grey solid line)

7  T-Wave Alternans Identification in Direct and Indirect Fetal Electrocardiography
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Finally, it is remarkable the fact that TWA detection is reliable also considering 
IN-FECG, even if it implies having many more artifacts and interferences to deal 
with [25].
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8.1  �Introduction

At the core of understanding advanced engineering and mathematical methods that 
can provide effective assisting technology in intensive care, the main role of the 
biomedical engineer is to approach the patients’ monitored clinical state with the 
mathematical principles devised along these last centuries to characterize a dynamic 
physical system. As with many nonlinear dynamic systems, information indicating 
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the underlying parameters or state of a system can be well hidden within the 
observed signals (i.e., all the clinical variables monitored in the intensive care unit). 
In physiological systems, disentangling these underlying parameters can be compli-
cated by the interaction of multiple subsystems.

In the neonatal intensive care unit (NICU), a critical step is to develop statistical 
techniques for the assessment of cardiovascular dynamics, cardiorespiratory inter-
actions and respiratory instabilities in preterm infants, and more in general for the 
identification of any physiological state. The details of measurement modalities, 
time scales, and performance requirements may all differ significantly from one 
physiological problem to the next. However, it is likely that the insights and the 
stochastic-dynamic framework developed for a given problem help significantly in 
developing approaches for identification of other distinct physiological problems. 
Consequently, it is reasonable that a significant outcome of this research line will 
ultimately contribute a richer set of statistical tools and frameworks applicable to a 
wide range of physiological state identification problems.

8.2  �Clinical Background

8.2.1  �The Neonatal Intensive Care Unit

The term “neonatal” refers to the first 28 days of life. A neonatal intensive care unit 
(NICU), also known as an intensive care nursery (ICN), is an intensive care unit 
specializing in the care of ill or premature newborn infants. NICUs concentrate on 
treating very small, premature, or congenitally ill babies. Thanks to increasing tech-
nology, neonatology and NICUs have greatly increased the survival of very low 
birth-weight and extremely premature infants

One in 8 live births in the United States is preterm (<37 weeks post conception) 
and these high-risk births require specialized monitoring and treatment in NICUs. 
Apneic pauses causing transient hypoxia and associated bradycardia – often referred 
to as “cardiorespiratory events”  – are common in preterm infants, with severity 
ranging from presumably benign periodic apnea with mild oxygen desaturations 
and cardiac decelerations to severe life-threatening apnea that requires mechanical 
ventilation. Although the severity and duration of cardiorespiratory events that 
require treatment are not established, prospective studies have linked intermittent 
hypoxia with the infant’s current level of maturation, as well as a number of acute 
and long-term complications, including multiorgan dysfunction, retinopathy, devel-
opmental delays, and neuropsychiatric disorders. It is clear that apnea of prematu-
rity is a major factor in prolonging hospitalization as well as raising concerns for 
subsequent risk of apparent life-threatening events and sudden infant death syn-
drome (SIDS) at home.
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A major challenge for clinicians caring for preterm infants is that, while there is 
a multitude of physiological signals streaming across current NICU monitoring 
systems, there are very few techniques able to translate these signals into validated 
indices that define pathological states requiring treatment. Therefore, in the broad-
est sense, the critical role of the biomedical engineer is to develop and validate 
computational tools to embed in monitors that can provide real-time indices of car-
diorespiratory stability and that can be linked to individualized time-sensitive inter-
ventions. Such monitoring system could be tailored to individual infants through a 
statistical framework that will quantify cardiorespiratory variability and infant vul-
nerability. The critical technical barriers are related to the development of parameter 
estimation techniques (discussed in methods). While preliminary results provide 
strong evidence that it is possible to monitor cardiorespiratory stability, the current 
understanding of the stochastic parameters is not sufficiently robust and accurate for 
a clinical setting. In order to refine these promising techniques, a rich and thorough 
long-term investigation is still required.

8.2.2  �Common Diagnoses and Pathologies in the NICU

For sake of conciseness, here is a list of the main diagnoses and pathologies that 
have been observed in the NICU: anemia, apnea, bradycardia, bronchopulmonary 
dysplasia (BPD), hydrocephalus, intraventricular hemorrhage (IVH), jaundice, nec-
rotizing enterocolitis (NEC), patent ductus arteriosus (PDA), periventricular leuko-
malacia (PVL), infant respiratory distress syndrome (RDS), retinopathy of 
prematurity (ROP), neonatal sepsis, and transient tachypnea of the newborn (TTN). 
We here focus on two main categories in connection with the main physiology that 
the chapter is aimed at outlining, i.e., cardiovascular control and control of breathing.

Life-threatening events are due to instabilities and malfunctioning of the cardio-
vascular and cardiorespiratory control system. It is believed that apneic events and 
poor respiratory function may also be contributing factors to sudden infant death 
syndrome. They also may have adverse consequences such as lengthening hospital 
stays, delaying development, or even irreparable damages that may affect the indi-
vidual for his/her entire lifespan. 

Relevant aspects related to this section can be found in [1–14].

8.3  �Physiology of Cardiorespiratory Control in Infants

Life threatening events in the NICU are mainly due to instabilities and malfunction-
ing of the infant’s cardiorespiratory control system. In preterm infants, decreases in 
heart rate (bradycardias) result in reduced cerebral blood velocity and delivery of 
oxygenated hemoglobin, as well as reduced clearance of metabolic byproducts. The 
total result of adverse cardiorespiratory events is hypoxic, i.e., there is an ischemic 
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injury in tissue with high-metabolic demands. Intermittent hypoxia in preterm 
infants is associated with a range of complications including retinopathy, develop-
mental delays, and neuropsychiatric disorders.

Heart rate is regulated by a feedback control system: blood pressure fluctuations 
are sensed by carotid sinus baroreceptors sending afferent impulses to the brainstem 
and the suprabulbar circuits. The consequent autonomic response regulates heart 
rate through vagal-sympathetic efferent nerves that affect the cardiac pacemaker. In 
pathological circumstances, the heart rate control system may be dysregulated, 
resulting in episodes of vagally mediated bradycardia.

The alternation and cyclicity of behavioral states in infancy is of particular inter-
est since it provides an index of functioning and coordination of multiple neurologi-
cal subsystems. In particular, sleep state plays a crucial role in autonomic control 
and maturation of the cardiorespiratory system. Within sleep epochs, it is possible 
to define distinct states characterized by different patterns of respiration, heart rate, 
electroencephalographic activity, eye and body movements, etc.

Since neonates spend the majority of their time sleeping, their sleep patterns are 
markedly different from the ones of older infants and adults. In early infancy, sleep 
states are classified as active sleep and quiet sleep, which can be seen as a first rudi-
mentary version of the adult REM and non-REM sleep states, respectively.

In both sleep states, the respiratory rhythm is governed by neural circuits within 
the brainstem that signal the timing and depth of each breath. Continuous ventila-
tion results from recurrent bursts of inspiratory neuronal activity that controls the 
diaphragm via discrete phrenic motor neuron activations. Infants with post-
conceptional age of less than 36 weeks commonly have irregular breathing patterns 
with apneic events (periodic pauses in breathing). Preterm infant breathing patterns 
are highly non-stationary, with rapid changes in measures of breathing such as the 
time interval between breaths, called the inter-breath-interval (IBI), which is there-
fore an important measure for understanding irregularity of the breathing patterns.

Relevant aspects related to this section can be found in [15–35].

8.4  �Methodology

A current line of work in the clinical intensive care unit (ICU) setting focuses on 
devising monitoring devices based on noninvasive recordings and able to character-
ize critical physiological mechanisms associated with cardiovascular control, the 
autonomic nervous system, and respiratory physiology, as well as to timely diag-
nose and possibly predict pathological states leading to disease.

When dealing with infants staying in the NICU, the main goal of the biomedical 
engineer is to provide mathematical methods and algorithms that use the instanta-
neously monitored physiological signals for predicting the occurrence of a life-
threatening event (e.g., apnea, bradycardia, or neonatal sepsis). We here focus on 
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specific methodologies that use the electrocardiogram (ECG), pulse plethysmogram 
and respiratory waveforms to extract meaningful information related to the physio-
pathological state of the individual.

8.4.1  �Methods for Cardiorespiratory Control Assessment: 
Heart Rate Variability in Adults

Despite the valuable research devoted to the study of cardiovascular mechanisms, 
there is still a need for specifically target standards and methods to assess the car-
diorespiratory functions in the early stages of life.

Mathematical tools have been quite successful in quantifying important cardio-
vascular control mechanisms in adults. In particular, application of frequency 
domain methods to peak-to-peak series detected from the electrocardiogram (ECG) 
signal alone and together with cardiovascular covariates such as respiration and 
blood pressure have led to highly refined models and analysis tools, as well as suc-
cessful efforts in defining specific standards, all now traditionally classified as 
“heart rate variability studies”.

Heart rate is the number of R-wave events (heartbeats) per unit time. Heart rate 
variability is defined as the variation in either the R-R intervals (times between 
R-wave events) or heart rate with time. Heart rate variability is generated by auto-
nomic control of the heart. Heart rate variability reflects healthy cardiovascular 
functions. Significant decreases in HRV has been reported in specific diseases like 
myocardial infarction, diabetic neuropathy, cardiac transplantation, hypertension, 
congestive heart failure, and fetal distress during labor.

As reported in 1996 by the seminal paper from the Task Force of the European 
Society of Cardiology and the North American Society of Pacing and 
Electrophysiology, from the R-R interval series we can compute simple time domain 
indices, like the mean NN interval, the mean heart rate, and the difference between 
the longest and shortest NN interval. More complex statistical time domain mea-
sures are also computed, which have been demonstrated to be useful in the study of 
HRV. Among these quantities are the standard deviation of all NN intervals (SDNN), 
the number of pairs of adjacent NN intervals differing by more than 50 ms divided 
by the total number of NN intervals (pNN50), and the square root of the mean of the 
sum of the squares of differences between adjacent NN intervals (rMSSD).

Traditional spectral HRV analysis is commonly carried out via periodogram 
analysis or autoregressive moving average (ARMA) estimation. Three main 
spectral components can be distinguished in a spectrum calculated from short-
term recordings ranging from 2 to 20  minutes: very low frequencies (VLF: 
0–0.04  Hz), low frequencies (LF: 0.04–0.15  Hz), high frequencies (HF: 
0.15–0.4 Hz). The measurement of the spectral components is usually made in 
absolute values of power. LF and HF may also be measured in normalized units 
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to emphasize the controlled and balanced behavior of the two branches of the 
autonomic nervous system. Vagal activity is the major contributor to the HF com-
ponent, whereas disagreement exists with respect to the LF component. Some 
studies suggest that LF, when expressed in normalized units, is a quantitative 
marker of sympathetic modulations, while other studies have found that LF 
reflects both sympathetic and vagal activity. Consequently, the task force pro-
posed the LF/HF ratio to mirror the synergic action of the sympatho-vagal 
balance, and thousands of published studies after their recommendation proved 
this index to provide the most indicative measure to quantify autonomic state.

When associating cardiovascular state with respiratory dynamics, the coherence 
function has been considered as a reasonable quantitative measure reflecting the 
strength of the linear interaction between HRV and respiration in adults. Coherence 
is traditionally calculated as the cross-spectral density between HRV and respiration 
normalized by the corresponding auto-spectral density functions. The coherence 
function takes values between zero, indicating absence of linear interactions, and 
one, indicating exclusive linear interactions. However, it has been pointed out that 
the estimation of coherence using cross-spectral density does not account for cau-
sality between the two variables considered, leading to the use of measures of 
Granger causality to assess directional influences.

Another possible source of information flow from HRV to respiratory control of 
ventilation could relate to neural reflexive baroreceptor influences on central neural 
respiratory activity. As a result, even with a non-negligible information flow in the 
opposite direction any interactions estimated using open loop paradigm can signifi-
cantly differ from the actual interactions occurring in the closed loop. Such effect 
has been demonstrated in the interactions between heartbeat variations and systolic 
blood pressure values in adults.

To determine the significant interactions between HRV and respiration, a thresh-
old level of coherence has been generally set either arbitrarily or based on statistical 
criteria derived from the sampling distribution. Any value of coherence above the 
threshold is considered as significant. Methods that are able to compute more appro-
priate coherence thresholds, theoretically or experimentally derived by the knowl-
edge of estimator and signals under investigation, can avert discretionary use of a 
threshold not based on theoretical model or empirical approach.

To obtain frequency domain measures, both the R-R intervals and respiration are 
considered as output variables of a multivariate autoregressive model. The coeffi-
cients of the model are determined by solving the extended Yule-Walker equations 
and corresponding autospectra, coherence and gain are derived in the frequency 
domain from these coefficients. The statistical significance of the coherence for 
each infant is then determined by surrogate data analysis. Altogether, this approach 
provides a quantification of the linear relationship between R-R intervals and respi-
ration, as well as its significance, defined along the entire range of frequencies. 
Consequently, specific indices for each of the LF and HF bands defined above can 
be derived from the spectral estimates. 

Relevant aspects related to this section can be found in [36–50].
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8.4.2  �Methods for Cardiorespiratory Control Assessment: 
Heart Rate Variability in Infants

In infants, cardiorespiratory interactions are considered as an important indicator of 
the level of maturation of vagally mediated autonomic influence on the heart, 
although the precise relationship between HRV and respiration in preterm infants 
remains unknown.

The standard low frequency (LF: 0.04–0.15  Hz) and high frequency (HF: 
0.15–0.4 Hz) ranges classified for adult HRV analysis do not apply to the analysis 
of HRV in infants. Attempts have been made to adapt new standards to newborn 
physiology. Different frequency ranges within 0.01  Hz–1.5  Hz are used for fre-
quency domain analysis of HRV in preterm infants. Generally, any frequency above 
0.2 Hz has been classified as HF in the case of infant HRV. However, a standard 
classification for infants has not yet been established.

As frequency domain indices have been established for adults by defining spe-
cific frequency ranges of interest according to breathing patterns, a critical point is 
to establish a similar classification of frequency ranges for infants. Starting from the 
observation that preterm infants have a predominant breathing frequency ~ 1 Hz, it 
makes sense to introduce a more refined characterization of the respiratory range, 
thereby classifying four different frequency ranges: the low frequency (LF: 
0.01–0.15  Hz) and three high frequency ranges as (HF1: 0.15–0.45  Hz, HF2: 
0.45–0.7 Hz, and HF3: 0.7–1.5 Hz). HF3 is generally at the frequency range corre-
sponding to the eupneic respiratory rhythm of preterm infants.

The spectral coherence method assumes that the two signals interact in an open 
loop in which respiration has a unidirectional influence on the HRV whereas there 
may be information flow from HRV to respiration in preterm infants. For example, 
fluctuations in ventilation results in fluctuations in arterial pH and pCO2, which in 
turn affect ventilatory drive via the central and peripheral chemoreceptors. The 
time delay and dynamics in this feedback system is modified by fluctuations in 
systemic and cerebral circulations, which are influenced by HRV. Correlated fluc-
tuations in heart rate, arterial pressure cerebral circulation have been recorded in 
infants, and have been related to variability in breathing patterns of preterm 
infants. Therefore, information flow from HRV to respiration could be important 
in some infants making the interactions between HRV and respiration bi-direc-
tional and closed loop. In preterm infants, as cardiorespiratory interactions are 
weaker (or even absent) than adults, it is even more important to establish a solid 
statistical criterion to assess a reliable significance threshold for the coherence 
function.

The normal respiratory rate of infants is approximately 60 breaths per minute 
(1  Hz). However, most preterm infants have irregular breathing patterns with 
periodic breathing and pauses in breathing (apnea) that introduces frequencies 
lower than the normal range. As a result, the respiratory modulation of heart rate, 
if any, will be occurring at various ranges of frequencies, from ~1 Hz (normal 
breathing) and below. Hence, in preterm infants, the signature of RSA (i.e., the 

8  Advanced Signal Processing Algorithms for Cardiorespiratory Monitoring…



194

peak in the power spectrum of HRV at the normal breathing frequency of ~1 Hz) 
may not be observed in the HRV spectrum due to irregularity in breathing. 
Notably, a further complication in relying on traditional spectral analysis is that 
heart rate fluctuations may exist at the respiratory frequencies even in the absence 
of respiration.

Relevant aspects related to this section can be found in [51–63].

8.5  �Exemplary Methodology: A Statistical Approach

The requirement of stationarity makes it more challenging to track changes in the 
temporal dynamics of heartbeat intervals. When dealing with non-stationarities, we 
may employ a time-varying moving window approach for a semi-continuous assess-
ment of the time and frequency domain variables. These techniques try to approxi-
mate stationarity conditions by using specific filters and introducing concepts such 
as the forgetting factor.

Point process modeling provides a method to model the dynamic and stochastic 
processes of continuous systems defined by discrete observable events. A point-
process is a stochastic process able to continuously characterize the intrinsic proba-
bilistic structure of discrete events. It has been successfully applied to study a wide 
range of phenomena, analyzing data such as earthquake occurrences, traffic model-
ing, and neural spiking activity. In the case of respiration, the discrete events defin-
ing a point process framework are governed by neural circuits within the brainstem 
that signal the timing of each breath. Continuous ventilation results from recurrent 
bursts of inspiratory neuronal activity that control the diaphragm via discrete phrenic 
motor neuron activations. In the case of the heartbeat, the discrete events correspond 
to the electrical impulses from the heart’s conduction system initiating ventricular 
contractions. The heartbeat generation mechanism can be modeled as a point pro-
cess where ventricular contractions are discrete neuronal bursts governed by a com-
plex control system involving the autonomic nervous system and the cardiac 
muscular system.

8.5.1  �Basic Principles of Point Process Modeling

A temporal point process is a stochastic time-series of events that occurs in continu-
ous time. A point-process can be represented by the timing of the events, by the 
waiting times between events, using a counting process, as a set of 1s and 0s, very 
similar to binary (if time is discretized enough to ensure that in each window only 
one event has the possibility of occurring, that is to say one time bin can only con-
tain one event).
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In the binary representation, the point process can only take on two values at 
each point in time, indicating whether or not an event has actually occurred. In this 
way, what carries the actual event generation information is the occurrence of an 
event, as well as the time between successive events. Using this approach, it is pos-
sible to retrieve the flow of information from the autonomic pathways through an 
observation period.

The rate function λ of a Poisson process (the fixed mean rate of the event occur-
rence) defines events occurring in non-overlapping intervals that are independent. In 
this case, the inter-event-interval (IEI) probability density is the exponential proba-
bility density. In inhomogeneous Poisson processes the rate function is time-varying 
(λ = λ(t)). Also in the inhomogeneous case, if events occurring in non-overlapping 
intervals are independent, the inter-event-interval probability density is the expo-
nential probability density.

Generalizing the simple Poisson model  The Poisson process is limited in that it is 
memory-less. It does not account for any event history when calculating the current 
occurrence probability. Biological events exhibit a fundamental (biophysical) his-
tory dependence by way of their relative and absolute refractory periods.

There are two ways to generalize a simple Poisson process in order to construct 
more accurate models underlying the event generation:

•	 Generalize the rate function to get an inhomogeneous poisson process defined by 
a conditional intensity function.

•	 �Generalize the  inter-event-interval distribution to  obtain the  inhomogeneous 
poisson process as a renewal process

The conditional intensity function  To address history dependence, a conditional 
intensity function is used to represent the probability of an event occurrence, condi-
tioned on its own history. The conditional intensity function expresses the instanta-
neous occurrence probability and implicitly defines a complete probability model 
for the point process. It defines a probability per unit time. If this unit time is taken 
small enough to ensure that only one event could occur in that time window, then 
our conditional intensity function completely specifies the probability that a given 
event occurs at a specific time.

Any probability density satisfying f(t) > 0 for t >0 can be considered as a renewal 
probability density. Probability models used as renewal processes are so common 
that exhaustive related information can be found on Wikipedia. They include:

The Exponential Distribution  Probability distribution that describes the time 
between events in a Poisson process, i.e., a process in which events occur continu-
ously and independently at a constant average rate. It is a particular case of the 
gamma distribution. It is the continuous analog of the geometric distribution, and it 
has the key property of being memory-less.
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The Gamma Distribution  The gamma distribution is a two-parameter family of 
continuous probability distributions. The common exponential distribution and chi-
squared distribution are special cases of the gamma distribution. There are three 
main parametric representations of the distribution:

With a shape parameter k and a scale parameter θ
With a shape parameter α = k and an inverse scale parameter β = 1/θ, called a rate 

parameter
With a shape parameter k and a mean parameter μ = k/β

The Log-Normal Distribution  A log-normal (or lognormal) distribution is a con-
tinuous probability distribution of a random variable whose logarithm is normally 
distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) 
has a normal distribution. Likewise, if Y has a normal distribution, then X = exp(Y) 
has a log-normal distribution. A random variable which is log-normally distributed 
takes only positive real values.

The Inverse Gaussian Distribution  The inverse Gaussian distribution is a two-
parameter family of continuous probability distributions with support on (0, ∞). 
The first parameter is the mean of the distribution, the second parameter is a shape 
parameter K > 0. As K tends to infinity, the inverse Gaussian distribution becomes 
more like a normal (Gaussian) distribution. The inverse Gaussian has several prop-
erties analogous to a Gaussian distribution. The name can be misleading: it is an 
"inverse" only in that, while the Gaussian describes a Brownian motion's level at a 
fixed time, the inverse Gaussian describes the distribution of the time a Brownian 
motion with positive drift takes to reach a fixed positive level. For this reason, the 
inverse Gaussian distribution is the link between deterministic and stochastic mod-
els of neural spiking activity because it can be derived from an integrate and fire 
model defined as a random walk with drift where the additive noise is a Wiener 
process (Brownian motion).

The Local Maximum Likelihood Approach  To calculate the local maximum likeli-
hood estimate of all the parameters (summarized within a general vector θ), we 
define the local joint probability density associated with f(ut − l : t| θt) within the length 
of the local likelihood observation interval. If we observe nt peaks within this inter-
val as u u u tnt1 2� � ��� � �, ,  and if the paramenter in θ are time varying, then at 
time t, we estimate the maximum likelihood estimate of θ̂t  to be the estimate of θ in 
the interval l. Considering the right censoring, the local log likelihood is obtained as
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where w(t) is a weighting function to account for faster updates to local likelihood 
estimation and we selected as w(t) = e−α(t − u) with α as the weighting time constant 
that assigns the influence of a previous observation on the local likelihood at time 
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t. Since θ can be estimated in continuous time, we can obtain the instantaneous 
estimate of μ, the mean, using the autoregressive representation. Similarly, the local 
likelihood estimate can also provide the instantaneous estimate of the second 
moment of the distribution.

Model Goodness-of-Fit  The IBI probability model along with the local maximum 
likelihood method provides an approach for estimating the instantaneous mean and 
instantaneous variance of the IBI. These measures provide information about the 
changes in the characteristics of the distribution, possibly due to the irregularity of 
breathing. However, it is also essential to evaluate how well the model represents 
the IBI.  To obtain a goodness-of-fit measure we compute the time-rescaled IBI 
defined as

	 � � �k u
u

tk

k t H dt� � � �
�1

| , t

�

	

where the uk represent the breathing events observed in (0,T) and � �t Ht| , t

�� �  
is the conditional intensity function defined as
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The conditional intensity is the history-dependent rate function for a point pro-
cess that generalizes the rate function for a Poisson process. According to the Time 
Rescaling Theorem, any set of observations from a point process that has a condi-
tional intensity function can be transformed into a sequence of independent expo-
nential random variables with a rate of 1.

Therefore, the τk values are independent, exponential random variables with a 
unit rate. With a transformation zk = 1 −  exp (−τk), the zk values become indepen-
dent, uniform random variables on the interval (0,1]. Thus, we can employ a KS test 
to assess the agreement between the transformed zk values and a uniform probability 
density. If there is close agreement between the point process model and the IBI 
data series, then the transformed zkvalues plotted against the uniform density will 
have close agreement if the plot is closer to the 45 degrees diagonal (KS plot). The 
KS distance measures the largest distance between the cumulative distribution func-
tion of the IBI transformed in the interval (0,1] and the cumulative distribution func-
tion of a uniform distribution on (0,1]. The smaller the KS distance, the better the 
model in terms of goodness-of-fit.

Relevant aspects related to this section can be found in [64–75].

8.5.2  �A Point Process Model of Cardiovascular Dynamics

More recently the utility of point process theory has been validated as a powerful 
tool to estimate heartbeat and respiratory dynamics, including instantaneous 
measures of variability and stability, and in short recordings under nonstationary 
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conditions. In contrast, the commonly used standard methods are primarily 
applicable for stationary data or provide only approximate estimates of the dynamic 
signatures that are not corroborated by goodness-of-fit methods. The few methods 
available for time-frequency analysis for nonstationary data (e.g., Hilbert-Huang 
and Wavelet transforms) need to be applied to short batches of data, making them 
less suitable for tracking dynamics in real time. Finally, the point process frame-
work allows for inclusion of any covariate at any sampling rate, and this property 
can be used to generate instantaneous indices of cardiovascular and respiratory 
variability.

The R-R interval is the time interval between successive heart contractions, 
which are depicted as the R peaks of the QRS complex on the ECG. If we consider 
a data collection interval [Ta, Tb], the R-R peaks within this window are given by:  
Ta ≤ u1 < u2 < … < ui < … < uk ≤ Tb, where each ui is the time of the ith R peak. Thus, 
the corresponding R-R time interval at time k is given by the set Hk = {wk, wk − 1, …, 
wi, …., wk − p + 1}, where wk = uk − uk − 1 and p ≤ i ≤ k.

Because cardiac contraction is a serial procedure where the occurrence of a 
heartbeat may be influenced by previous contractions (e.g., action potential and 
muscle contraction refractory times), we can attempt to model a heartbeat at time k 
with a p-order autoregressive process:

	
� � � �H wk o j

p
j k j k,� � � � � �� � �1 1  	

where θ = {θo, …, θj, …, θk} is the estimation vector of optimized model param-
eters and ϵk. Is usually defined as Gaussian white noise.

There are two facts that suggest a more refined statistical approach. First of all, 
heartbeat intervals are the times between two events (the R-wave events). These 
events correspond to the electrical impulses from the heart’s conduction system, 
which initiate ventricular contractions. Therefore, R-wave events are a sequence of 
discrete occurrences in continuous time and hence, they form a point process. 
Secondly, the autonomic nervous system is the principal dynamic system that mod-
ulates the dynamics of the heartbeat intervals. These facts taken together suggest 
that heartbeat interval measurements can be analyzed meaningfully using a more 
complex probabilistic model of a dynamical system observed through a point pro-
cess. In this model, the observation equation summarizes the stochastic properties of 
the observed heartbeat point process, whereas the essential features of the parasym-
pathetic and sympathetic activity will be concisely summarized in a history-depen-
dent, time-varying structure (that can be for example the regression formulated above).

Since the probability density description that arises from the model characterizes 
the stochastic properties of the R-R interval, we use it to formulate precise defini-
tions of heart rate and heart rate variability. Instantaneous heart rate is often defined 
as the reciprocal of the R-R intervals. Hence, for any particular point in time, we 
define the associated instantaneous heart rate as the inverse of the waiting time until 
the next R-wave event up to a constant that converts the R-R interval measurements 
recorded in milliseconds into heart rate measurements reported in beats per minute 
(bpm). We can derive the probability density of the instantaneous heart rate from the 
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R-R interval probability density by using the change-of-variable formula from 
elementary probability theory. This density then defines the stochastic properties of 
heart rate.

To use this model in real data analysis, heart rate should be a representative value 
from the instantaneous heart rate probability density. Therefore, we define heart rate 
as the mean of this density, and heart rate variability as the standard deviation. 
Instantaneous assessment of these indices can be performed using either a local 
likelihood algorithm, or an adaptive point process filter.

Our instantaneous measurements can be computed simultaneously from a single 
statistical framework, they are computed in continuous time, and they can be 
extracted at any time resolution. Previous methods compute similar estimates either 
on a beat-to-beat basis, or in continuous time by preprocessing and filtering of the 
original R-R interval series not justified by a physiological model of heartbeat gen-
eration as in our case. Our previous studies also suggest that summaries comparable 
to SDNN and LF/HF analyses can be performed with heart rate series derived from 
our history-dependent inverse Gaussian (HDIG) model. These results coupled with 
the goodness-of-fit analyses, which demonstrated that point process models offer an 
accurate description of the stochastic structure in the heartbeat interval series, sug-
gest that static and dynamic measures derived from point process methods may be 
a more accurate description of these quantities.

The Point Process Model  We assume that given any R-wave event uk,, the waiting time 
until the next R-wave event, or equivalently, the length of the next R-R interval, 

obeys a HDIG probability density f t Huk
| ,�� � , where t is any time satisfying t > uk, 

Huk  is the history of the R-R intervals up to uk, and θ is a vector of model parame-
ters. The model is defined as 
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where Hk = {uk, wk, wk − 1, …, wi, …., wk − p + 1}, wk = uk − uk − 1 is the Kth R-R interval,

	
� � � �H wk o j

p
j k j,� � � � � � � �1 1 	

is the mean, θp + 1 > 0 is the scale parameter, and θ = { θo, …, θj, …, θk}. This model 
represents the dependence of the R-R interval length on the recent history of para-
sympathetic and sympathetic inputs to the sinoatrial node by modeling the mean as 
a linear function of the last p R-R intervals. If we assume that the R-R intervals are 

independent (i.e., p  =  0), then � � �Huk
,� � � 0 , f t H f t uu k ok

| , | , ,� � �� � � � �1 , and 

the equation simplifies to a renewal inverse Gaussian (RIG) model. The mean and 
standard deviation of the R-R interval probability model are respectively,
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� � �RR ,� � �Huk 	
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Because our probability density characterizes the stochastic properties of the R-R 
intervals, we use it to formulate precise definitions of heart rate and heart rate 
variability. As mentioned in the task force report, heart rate is often defined as the 
reciprocal of the R-R intervals. Hence, for any t > uk, t − uk, is the waiting time until 
the next R-wave event, and we can define r = c(t − uk)4, as the heart rate random 
variable, where c = 6 ∗ 104, msec/min is the constant that converts the R-R interval 
measurements in milliseconds into heart rate measurements in beats per minute 
(bpm). Therefore, because r is a one-to-one transformation of t − uk, we use the 
standard change-of-variables formula from elementary probability theory (Ross 

1997) and derive from the R-R interval probability density in, f r Huk
| ,�� � , the 

heart rate probability density defined as
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where � � � �� �� � � � �H c Hu uk k
, ,1

 and � �p pc�
� �

��1
1

1 . The mean and standard devia-
tion of the heart rate probability density are respectively:
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Our R-R interval probability model provides an approach for estimating instan-
taneous mean R-R interval, heart rate, R-R interval standard deviation, and heart rate 
standard deviation from a time-series of R-R intervals. Therefore, our framework 
provides new ways for estimating heart rate and heart rate variability and for assess-
ing model goodness-of-fit by considering formally the point process structure in 
the data.

Embedding the Autoregressive Model on the R-R Intervals  Computational 
procedures based on a comparison of the prediction power of linear and nonlinear 
models of the Volterra-Wiener form have been applied to continuous time series to 
measure deterministic and chaotic dynamics of heartbeats. Including nonlinear 
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terms of past R-R intervals usually improves our model fits. The mean of the 
probability function in this case is redefined as

	 � � � � �H w w wu
j
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ij k i k jk
,� � � � � � � � �

�
� �

� �
� � � �0

1
1

1 1
1 1 0 	

This formulation can also be interpreted as a discrete Volterra-Wiener-Koremberg 
series of degree of nonlinearity d = 2 and memory h =  max (p, q). Both the local 
maximum likelihood and the adaptive filter algorithms will be applied for model 
fitting. The importance of the nonlinear parameters in comparison with the linear 
terms, together with goodness-of-fit measurements, will give a measure of nonlin-
earity of the point process generating the heartbeats. The linear and nonlinear 
indices of HRV will be defined as a function of the parameters θ = {θo, …, θj, …, 
θk} and ϕ = {ϕ11…ϕqq} respectively. Application of this paradigm will allow us to 
investigate if the degree of nonlinearity is dependent on the physiological state of 
the cardiovascular system.

Including other Cardiovascular Variables as Covariates  We can also describe a 
more complete model if we include dependence not only from past beat intervals, 
but also on external covariates involved in cardiovascular control. The mean of the 
probability function becomes
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where the number of covariates may be more than one. Since they are considered 
together with autoregressions on the R-R intervals, their values are sampled in cor-
respondence to the beat series. A similar formulation with the autoregression on the 
mean R-R intervals will allow for consideration of covariate time series.

Point process modeling techniques have been indeed used to investigate infant 
physiology. Results have shown that the lognormal probability distribution is 
sufficient in modeling the instabilities in underdeveloped infant cardiovascular 
physiology. Therefore, we assume that a collection of R-R intervals is a log-normally 
distributed random variable. At any given peak, uk, we model the waiting time until 
the next heartbeat, uk + 1, with a lognormal probability density:
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Where, for a given time t < uk + 1, Hk is the set of all R-R intervals prior to uk, and 
μ(Hk, θ) and σ represent the logarithmic form of the mean and standard deviation 
of the sample distribution. All parameters (and consequent indices) can be then 
estimated over time as shown in Sect. 8.5.4.
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8.5.3  �A Point Process Model of Respiratory Dynamics

A basic assumption of a statistical model for breathing is that the peak of inspira-
tion, marked by the peak of inhalation recorded non-invasively, is a discrete event 
that marks the timing of neuronal inspiratory bursts. An additional assumption 
needed to use a point process paradigm is that IBI dynamics are governed by con-
tinuous processes under the regulation of multiple feedbacks and loops acting upon 
the respiratory oscillator.

As a starting point, we hypothesize that the IBI of the infant follows a power law 
distribution, and the characterizing parameters of the distribution are found to be 
sensitive to age (maturation) [4]. We considered in an observation interval (0, T], 
successive peaks of the respiratory signal, 0  <  u1  <  u2  <  , ………,  <  uk  <  , 
………, < uK ≤ T. Then, we assume that at any given peak uk, the waiting time until 
the next peak obeys a history-dependent lognormal probability density f(t| Hk, θ) as
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where t is any time, t > uk, Hk is the history of IBI up to uk represented as Hk = {uk, 
wk, wk − 1, …., wk − p + 1} with wk = uk − uk − 1is the kth IBI and θ is a vector of model 
parameters. The instantaneous mean is modeled as a p-order autoregressive process 
as � � � �H wk o j

p
j k j,� � � � � � � �1 1 . The probability density in the equation defines the 

IBI distribution with μ and σ as the characterizing parameters. At each instant of 
time t, to estimate θ and σ, we can employ the local maximum-likelihood approach 
defined in Sect. 8.5.4

8.5.4  �A Statistical Model of Cardio-Respiratory Dynamics

Bivariate Autoregressive Analysis of HRV and Respiration  A bivariate autore-
gressive model is employed to study the interaction between RR and respiration 
(RP). The model is defined as

	
X n A k X n k w n

k

M
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�1

.
	

	 n N� ���1 2 3, , .., 	

where M is the order and is set at 32, N is the total number of data points,

R. Barbieri



203
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and
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where w(n) represents the white noise and aij(k) represents the autoregressive coef-
ficients. Clearly, this formulation provides the most simple statistical structure 
where the uncertainty of the outcome is modeled as a Gaussian noise and the first 
two moments of the distribution univocally define the distribution function of the 
model uncertainty.

Of note, we can use a recursive algorithm to determine the coefficients of the 
autoregressive model; spectral components are determined from these coeffi-
cients [15].

In the frequency domain,n the model is represented as:
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 with i, j = 1, 2 and l � �1 , a complex quantity
The equation can be reformulated as:
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The coherence γ2 at a specific frequency f is evaluated using the classical defi-
nition as

	

� 2
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where PRR(f) and PRP(f) are the auto-spectral density functions of RR and RP respec-
tively. PCROSS(f) is the cross-spectral density between RR and RP.  The auto-and 
cross-spectral density functions are evaluated as
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The causal coherence is calculated using the same Eq. (8.3) with the correspond-
ing loop set to zero, thus for the respiration to RR causal coherence (RP → RR), we 
set h21 = 0 and for RR to respiration causal coherence (RR → RP) h12 = 0. Similarly, 
corresponding gains are calculated as
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It has to be noted that these estimated causal gains are relevant only if the cor-
responding causal coherence values are significant. Hence detecting the significant 
coherence values between RR and respiration is an important step in establishing 
the presence of interactions in preterm infants.

As both coherence and gain are estimated along the entire frequency range up to 
the Nyquist frequency, we can further compute the maximum coherence and the 
corresponding gain in each of the defined frequency band (LF, HF1, HF2, or HF3). 

Relevant aspects related to this section can be found in [76–88].
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In God we trust. All the others please bring data (W.E. Deming)

9.1  �Introduction

The concept of big data introduces to the era of data-driven medicine. The medicine 
of the future will provide infinite possibilities, both depending on the introduction 
of several innovative technologies, and on the step toward artificial intelligence.

Looking at the new progresses in medical field, we could propose numerous 
questions requiring deep reflections:

–– “From contact lenses to heart valves: are we already cyborgs?”
–– “Will bioengineering create a new race of humans?”
–– “What if artificial intelligence knew what you wanted before you did?”
–– “Would you have an intimate relationship with a robot?”
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–– “Are humans the reproductive organs of technology?”
–– “To what extent should we genetically manipulate living organism?”
–– “Should parents be allowed to choose their children?”

These are arguments that we would never thought a few years ago, and are the 
sign of the evolution of technologies applied to medical research.

In the last century, we assisted at the transition from intuition-based medicine to 
evidence- and precision-based medicine. In this evolution, the holistic view of 
human being as a system biology and the introduction of “omics” technologies gave 
a significant contribution.

Biomedicine reached an inflection point with the introduction of “omics” tools 
and big data, implying a dramatic increase in our knowledge; in fact, we are moving 
from a descriptive and reductive approach to an integrated approach that will inter-
pret massive data networks obtained from huge patients’ cohorts, healthy patients, 
and experimental organisms to determine physiologic and pathologic processes spe-
cific for each individual [53]. This will mean the introduction of “artificial intu-
ition”, decoding the “black box” of medicine.

In the era of “imprecision medicine”, where it has been evidenced that in the 
USA, the second most used drug is effective only in one out of twenty-five patients 
[82], metabolomics could offer accuracy and precision.

A holistic view cannot be obtained without integrating information from genome, 
transcriptome, proteome, metabolome, microbiome, epigenome, exposome, etc.

In the last years, “omics” technologies provided an exceptional tool to investi-
gate the composition of many fluids and tissues. These technologies allowed a 
detailed description of selective gene expression, microbiota characteristics, multi-
potent stem cells, and dynamic changes in biofluids.

The importance of epigenetics (“epi” = being over; “genetics” = genetics), mean-
ing what can influence genic expression, is highlighted by the observation that iden-
tical twins are not identical! Despite an identical genome, the influence played by a 
different epigenome determines a different phenotype.

Recognized the importance of microbiome, currently investigated through 
numerous research and scientific publications, the role of less known acetylome, 
methylome, virome, fungome, cytokinome, chimerismome, etc. will be, in the 
future, better clarified.

9.2  �Perinatal Programming

The concept of perinatal programming is defined as the response by a developing 
organism to a specific challenge during a critical time window that alters the trajec-
tory of development qualitatively and/or quantitatively with resulting persistent 
effects on phenotype. In the last years, according to such concept, it has been evi-
denced that an inadequate intrauterine and early perinatal environment can affect 
fetal and neonatal life and can also determine long-term negative consequences.
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Recent and intriguing titles were published on this topic, such as

–– “Individualized medicine from prewomb to tomb” [88]
–– “From the cradle to the grave: the early-life origins of chronic obstructive pulmo-

nary disease” [83]
–– “David Barker: the revolution that anticipates existence” [46]

According to the concept of pre- and perinatal programming, health and disease 
would be influenced by factors such as pre- and peri-conceptional environment, 
preterm birth, intrauterine growth restriction (IUGR), maternal gestational diabetes, 
hyperoxia during postnatal life in addition to the events associated with child and 
adult life, including stress and senescence. Many pre- and perinatal events, not fully 
known up to now, can determine epigenetic changes on DNA, such as methylation, 
deacetylation, etc. [50].

There are really interesting concepts, since it is well known that most of the dis-
eases are multigenic and multifactorial, and epigenetics is a highly influenc-
ing factor.

It has been observed that specific perturbations (i.e., caloric restriction) occur-
ring during the first, second, or third trimester of pregnancy can be associated with 
different health outcomes later in life, involving well-defined organs or apparatus 
according to the time of occurrence (i.e., cardiovascular and metabolic disorders in 
the first trimester, pulmonary and renal diseases in the second trimester, and neuro-
psychiatric disorders in the last trimester of pregnancy) [79]; thus, this can be seen 
in a different perspective, underlining that each window of vulnerability, if well 
faced and sustained with the right interventions, could be transformed in a window 
of opportunity to improve the development and the whole life.

And therefore, can the fetus be considered the father of the man? Does the pla-
centa (organ representing the surface of exchange between mother and offspring) be 
considered the center of the chronic Universe? [86]

It is now clear that the development of several organs is influenced by the early 
moments of life.

According to Santiago Ramon y Cajal, Spanish pathologist, histologist, neuro-
scientist, and Nobel laureate, the father of modern neuroscience, “The total arbori-
zation of a neuron represents the graphic history of conflicts suffered during the 
developmental life”, since these cells do not undergo regeneration.

Moreover, also in animal models, it has been shown that the suckling pigs’ duo-
denum gains 42% of its weight during the first 24 hours of life [3].

The effects of maternal caloric restriction have also been elegantly described in 
the review “I’m eating for two”, which investigates the effects of uteroplacental 
insufficiency on the reduction in oxygen and energy supply in the fetus, leading to 
an activation of fetal mitochondria (energetic stations of the cells) to satisfy the cel-
lular need of energy. This determines an increase in cellular oxidative stress and 
mitochondrial dysfunction and, subsequently, to long-term problems in the func-
tioning of several organs.

Recently, it has been also evidenced that human brains undergo fetal modifica-
tions potentially predisposing to neurodegenerative diseases in adulthood [32].
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Fetal brain is highly susceptible, especially in the third trimester of pregnancy, 
when the main cerebral development occurs. In fact, at 35 weeks of gestational age, 
it weights about 2/3 of the mature brain.

Factors affecting brain development in fetal and early postnatal life are also rep-
resented by alcohol, smoke and aluminum exposure (i.e., through soy-milk formu-
las, vaccines, infusions for parenteral nutrition, etc.) [35].

Perinatal programming also influences hearth development, as reported in sev-
eral studies, especially investigating IUGR and prematurity as predisposing factors 
for cardiovascular long-term homeostasis [33, 67] and kidney maturation, influenc-
ing the number of nephrons at birth and therefore neonatal susceptibility to renal 
disease (up to failure) and susceptibility to nephrotoxic drugs in the future life 
[34, 43].

In this context, we can also affirm the existence and the power of breast milk-
associated perinatal programming. In fact, in the first weeks of life, breast milk 
(BM) is able to change the fate of newborns’ metabolism [25].

In pathological conditions, BM could interfere with neonatal development and 
can increase the risk of impaired function of several organs in the early life. Such 
concept seems particularly evident in BM of obese mothers, potentially affected 
also by gestational diabetes mellitus [49].

Thus, great interest concerns the peculiar role and the characteristics of BM in 
newborn nutrition and development, influencing his whole life.

Several studies have been already performed in order to evaluate the features of 
the biofluid naturally predisposed to neonatal growth during the first moments of 
life, sustaining the delicate phase of adaptation to postnatal life.

In our opinion, the “omics” approach is the best tool to evaluate breast milk 
mediators in a detailed and dynamic way. Metabolomics, in recent years, highly 
improved the comprehension of its composition and properties. BM is different 
among mothers and can modulate its composition according to each newborn’s 
requirements. BM is highly beneficial in the vulnerable category of premature 
babies [9, 15, 84].

9.3  �Metabolomics

Metabolomics is an analytical profiling technique for measuring and comparing 
large numbers of metabolites of low molecular weight present in biological sam-
ples. The terms “metabolism” and “metabolomics” share as their root the ancient 
Greek word, metabol, which means change, and obviously both terms are equally 
applicable to cell, tissue, or whole organism.

Object of metabolomics investigation is the total repertoire of small molecules 
present in cells, tissues, organs, or biological fluids, such as sugars, lipids, small 
peptides, vitamins, and amino acids.

If genetics is the description of “what could happen” and proteomics and tran-
scriptomics of “what is happening”, metabolomics is a unique description of “what 
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really and effectively happened” in that organism/cell or tissue. Studying metabolo-
mics is how to investigate in a personal dumpster.

Environment (lifestyle, age, drugs, etc.) can represent epigenetics influencer 
modifying metabolome [30].

The traditional laboratory methodologies offer late markers that are not enough 
sensitive or specific to diagnose a disease.

“Omics” technologies (genomics, transcriptomics, proteomics, and metabolo-
mics) are able to detect the complexity of biological systems, through the simulta-
neous, and often noninvasive analysis of a large amount of data (the so-called “direct 
intelligence of data”).

Since the year 2000 and due to these technologies we assisted to an evolution/
revolution that completely changed our approach to scientific data.

Technologies used in metabolomics are nuclear magnetic resonance spectrome-
try (1H-NMR), gas chromatography-mass spectrometry (GC-MS,) and liquid 
chromatography-mass spectrometry (LC-MS).

More than 27.500 articles dealing with metabolomics can be found on PubMed. 
It is considered one out of the ten technologies that will change the world and, in 
2018, 1 Euro out of 18 were spent in medical research for metabolomics.

The link between metabolomics and clinical research has been highlighted by 
several authors:

Metabolomics: Bridging the gap between pharmaceutical development and population 
health [87].

Bridging the gap between clinicians and system biologists: from network biology to trans-
lational biomedical research [51]

How a metabolomics study can be performed? It should be accurately programmed, 
regarding the setting, the patients, and the types of samples. The experimental 
design should include at least an experimental group and a control group. The kind 
of samples under evaluation should be correctly stored and undergoes processing 
(1H-NMR, MS). Then, a multivariate statistical analysis is applied and the results 
are interpreted (scale-free networks) to individuate significant associations [71].

Patti et al. explain how we can obtain results with targeted or untargeted metabo-
lomics. In the first case, we suppose “a priori” the association of a metabolite varia-
tion and we confirm or refuse it. On the contrary, untargeted metabolomics 
investigates all the metabolites, to state “a posteriori” hypotheses from obtained 
results.

Samples potentially used in prenatal and perinatal metabolomics analysis can be 
collected from mothers (amniotic fluid, placenta, blood, urine, breast milk, erythro-
cytes, hair, and vaginal secretions) or from the neonate (urine, blood, saliva, bron-
choalveolar fluid, exhaled air condensate, stools, and umbilical cord) [71].

In the last years, our research group applied metabolomics in a large number of 
studies, including the first study available in the literature evaluating BM metabo-
lome and the first review on this topic. Moreover, we investigated urinary metabolic 
profiles in several obstetrical conditions (maternal obesity, gestational diabetes 

9  Back to the Future: Prenatal Life and Perinatal Programming



214

mellitus, intrauterine growth restriction, chorioamnionitis, congenital CMV infec-
tion), perinatal conditions (vaginal delivery, prematurity, nutrition regimen, perina-
tal asphyxia, sepsis, necrotizing enterocolitis, bronchopulmonary dysplasia, patent 
ductus arteriosus), and pediatric diseases (autism and nephrourinary disorders).

Below, we report the main results of our experience.

9.3.1  �Prenatal Conditions

Metabolomics seems promising in the detection of intrauterine disorders. A restric-
tion in intrauterine growth (IUGR) can highly impair fetal outcome.

Our research group applied metabolomics to investigate and compare urinary 
samples at birth among IUGR, appropriate for gestational age (AGA) and large for 
gestational age (LGA) neonates (often associated with diabetic mothers). Different 
metabolites characterized the urines of these categories. In detail, an increase in 
myoinositol was reported in IUGR neonates [7, 23], and was also confirmed at four 
days of life [22], and at one week [16]. Variable products are correlated to energy 
production, antioxidant activity, and brain development.

Metabolic profiles of IUGR and LGA resulted similar at birth, although they 
represent opposite phenotypes: a reduced and an excessive fetal nutrition, influ-
enced by maternal nutrition, seem associated with the same metabolic footprints, 
potentially leading to similar metabolic long-lasting effects [16, 23].

Maternal obesity seems to influence neonatal metabolism too. We evaluated this 
effect through the analysis of maternal placental samples on normal-weight mothers 
versus obese mothers. As a result, several metabolites resulted different, also taking 
into account maternal gestational diabetes mellitus. These metabolites were mostly 
involved in antioxidant activity and energy production. In obese mothers, there was 
a reduction in lipids for fetal development, impairing its metabolism [49].

Intra-uterine infections can affect neonatal development and outcome, being also 
associated with premature delivery. Our group evaluated urinary samples from neo-
nates born from mothers affected by chorioamnionitis, demonstrating that the 
inflammatory state influenced metabolic pathways, especially in relation to mito-
chondrial dysfunction [48].

Maternal infection by human cytomegalovirus (HCMV) can be congenitally 
acquired by the fetus during intrauterine life, and potentially leads to fetal damage 
or even death [39]. With metabolomics, we were able to separate urinary samples, 
at birth, of those neonates showing clinical signs of HCMV after fetal infection. In 
detail, symptomatic patients showed an increase in metabolites representing inter-
mediates of compensative mechanisms to face infection-related energy deficiency, 
metabolites involved in cell volume regulation and in viral metabolism [39].

Moreover, HCMV infection also seems to influence amniotic fluid (AF) meta-
bolic composition, as highlighted by a more recent study. In fact, metabolomics 
allowed the separation of AF samples from mothers who transmitted HCMV to their 
fetuses than those who have not transmitted it and healthy controls, also allowing 
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the individuation of those congenitally infected newborns showing clinical signs at 
birth [47].

These findings, although preliminary, evidence that metabolomics is a reliable 
and promising tool to individuate those neonates congenitally infected or more sus-
ceptible to develop clinical manifestations, improving a precocious diagnosis of 
such infection [8, 11, 47, 59].

Metabolomics has been also applied in obstetrical conditions, helping in the 
detection of the relations between premature rupture of membranes (PROM) and 
labor onset, through maternal urinary samples [66].

9.3.2  �Perinatal Conditions

Interesting findings have been also obtained applying metabolomics in the analysis 
of the delivery mode. This is useful to investigate the peculiar physiology associated 
with birth modality and potentially influencing extra-uterine life adaptation and 
neonatal outcome.

Urinary profiles of neonates born by cesarean section (CS) were different than 
vaginal delivery (VD), especially regarding metabolites involved in thermoregula-
tion at birth and energy metabolism, and metabolites of bacterial origin (due to a 
different bacterial colonization in the two different delivery modalities) [65].

In the field of premature birth, condition that highly impairs neonatal outcome 
especially according to prematurity degree, our research group performed several 
studies.

Urinary samples collected at birth have been compared among full-term and pre-
term babies, detecting different metabolic profiles potentially associated with pre-
term birth and impairing the future outcome.

As a result, amino acid’s metabolism seems the most involved in postnatal devel-
opment and is different according to maturity at birth [5].

According to a more recent study, prematurity determined an increase in fat mass 
percentage and most varying metabolites were those associated with energy produc-
tion and antioxidant activity [68].

Among the causes of neonatal death or severe disability (up to cerebral palsy), 
perinatal asphyxia is common [60]. According to our results, metabolomics seems 
promising to distinguish urinary samples in relation to the asphyxia-related out-
come. This has been shown on a small sample of three patients, highly different 
according to cerebral damage and outcome [41]. Successively, on larger groups, 
metabolomic urinary differences were reported after 48  hours of life (especially 
metabolites involved in energy demand, kidney damage, and deficient oxidative 
metabolism) [61], and at the end of hypothermic treatment (72 hours), at a week and 
a month after birth, well describing the damage progression [60, 76].

Neonatal sepsis can be caused by viral, fungal, or bacterial infections. It is par-
ticularly dangerous, especially in premature neonates. “Early-onset” sepsis (EOS) 
occurs within 72 hours of life, while “late-onset” sepsis (LOS) between 72 hours 
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and 6 days of life. An early diagnosis can improve management, survival, and out-
come; even if, currently, precocious and sensible biomarkers are still lacking [62, 
73, 81, 85] and metabolomics could improve the diagnosis and the monitoring of 
antibiotic therapy [24, 70, 74].

We reported significant differences between urinary samples of neonates affected 
by sepsis (EOS and LOS) and healthy controls [40], even in fungal sepsis, where 
D-serine level variation also helped in predicting therapy response [24]. The increase 
in some amino acids could be related to hypermetabolic and hypercatabolic state 
during sepsis, determined by the increase in energy demand.

Studies on sepsis have been also performed on pediatric patients. The objectives 
of metabolomics in sepsis are the specific individuation of etiology, the prediction 
of the severity, the potential individuation of therapy responders, and monitoring of 
drug toxicity.

9.3.3  �Post-Natal Period

Among the diseases affecting neonates and potentially impairing their outcome, we 
focused our studies on necrotizing enterocolitis (NEC), bronchopulmonary dyspla-
sia (BPD), and patent ductus arteriosus (PDA).

NEC is a severe bowel inflammation that can occur in premature neonates. Its 
pathogenesis is not fully clarified and symptoms can be not specific. The detection 
of precocious and reliable biomarkers could be very useful [26, 77].

Thus, through the application of metabolomics, we described specific urinary 
pathways few days before and at the moment of the disease clinical onset (instead 
of healthy controls), suggesting the existence of precocious biomarkers [21, 77]. In 
detail, since gluconic acid and variations in carbohydrates’ metabolism were the 
characterizing metabolite increased in patients affected by NEC, metabolomics 
seems useful in the comprehension of NEC and in the early detection of the onset 
and progression of the disease.

BPD, which is the supplemental oxygen requirement at 36  weeks of post-
menstrual age, represents a severe lung disease impairing pulmonary development 
of premature neonates [6, 57], frequently leading to death of very low birth weight 
neonates [78].

In this field, we speculated the characterization of different metabolomic path-
ways in the urines, at birth, of those premature newborns subsequently developing 
BDP.  Among three studies, our research group demonstrated a clear separation 
between BPD patients and healthy controls, both at birth and in the first week of life, 
potentially anticipating the individuation of BDP susceptibility and underlying that 
BDP pathogenesis could start in the early postnatal life [42, 63, 78].

It could be very useful to individuate specific biomarkers correlating with clini-
cal features and prognosis of mild, moderate, and severe BPD potentially predicting 
the outcome and therapy response, with the aim of an individualized treatment.
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9.3.4  �Breastfeeding

The first metabolomic study investigating BM composition was performed by our 
group in 2012. We evaluated samples collected from mothers delivering preterm 
(26–36 weeks of gestational age) and full-term neonates during lactation and com-
pared them with commercial formula milk (FM).

BM showed more lactose, while maltose was higher in FM. Some differences 
also characterized fatty acids and a progressive metabolic change characterized BM 
maturation, especially regarding carbohydrate profile and lactose, that increased 
during lactation (milk maturation) [15].

Among BM components, a pivotal role is played by BM’s oligosaccharides 
(HMO), resulting beneficial for several functions. They can modulate gut neonatal 
microbiome (increasing commensal species), immune response and can reduce the 
susceptibility to numerous pathologies [10, 44]. BM oligosaccharides (levels and 
quality) are influenced by several factors. Among these, the most relevant is mater-
nal genetics; in detail, the expression of two specific genes (Se and Le genes) deter-
mines the secretory phenotype (Se+) or non-secretory (Se-). Consequently, BM 
from Se + mothers contains some fucosylated oligosaccharides that can protect the 
newborn from infections and necrotizing enterocolitis (NEC), and therefore improve 
neonatal health [44]. Our group studied BM metabolomic profile and demonstrated 
a clear separation between BM samples from Se + mothers and Se- mothers. Such 
an analysis, if currently performed, could help in the individuation of newborns 
more susceptible to infections (according to maternal genetic factors), since they are 
less protected by maternal HMOs. This could potentially improve BM supplemen-
tation strategies [27].

We also published interesting results on neonatal urinary metabolome according 
to the neonatal nutrition regimen. Neonatal urines were evaluated during the first 
week of life and the diet with BM or FM was reported. In detail, at birth urinary 
metabolome was comparable in neonate born too small and too large, characterized 
by the increase of mediator myoinositol and by the laboratory finding of serum 
hypoglycemia. Subsequently, it has been shown that, after a week of life, the urinary 
metabolome was influenced by the milk assumed, independently by the weight 
showed at birth [25]. It can be deduced that BM in the first week of life can totally 
change neonatal metabolism and modulate organ development. Similar findings 
were also reported at 130 days of postnatal life, because of the changes in urinary 
metabolome according to the dietary regimen [17].

Metabolic urinary variations mostly regarded energy production, antioxidant, 
brain and pulmonary development, and gut microbe-derived metabolites.

In a recent study, our group detected significant differences among BM samples 
from mothers delivering preterm twins or triplets instead of preterm singletons; the 
higher protein content (and the reduced lactose) found in BM from mothers deliver-
ing preterm multiples could face the needs of such vulnerable category, promoting 
and sustaining growth and organ development [20].

Metabolomics can also individuate drugs in maternal milk [38].
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Finally, breast milk has been identified as an incredible source of maternal stem 
cells, able to be transmitted to the neonatal gut via breastfeeding and able to migrate 
in neonatal organs, especially the brain, becoming cerebral cells [52, 55].

These studies underline the importance of breastfeeding short- and long-term 
health, and therefore the importance of a targeted diet in the early stages of life.

Perinatal programming is a field requiring deep investigations, since pediatric 
health starts in intrauterine and perinatal life.

9.3.5  �Children

The group of autistic spectrum disorders (ASD) includes various psychiatric ill-
nesses determined by a genetic predisposition in addition to numerous epigenetic 
components.

Despite a great increase in the diagnosis of such disorders in recent decades, 
unique biological markers are not currently available, and the diagnosis is still 
largely based on the patient’s symptoms.

According to recent metabolomics studies, relevant epigenetic factors would be 
constituted by oxidative mechanisms as well as by some peculiar modifications of 
the intestinal microbiome of affected patients, which would involve changes in the 
gut-brain interaction axis. In this sector, our group, along with other researchers, has 
highlighted peculiar profiles in the urinary metabolomics of autistic patients, paving 
the way to what could be an innovative approach to this psychiatric disorder. 
Moreover, it could provide a metabolic footprint characterizing the aforementioned 
condition, helping to understand its pathogenesis, potentially favoring early and 
sensitive diagnoses, a possible monitoring of disease progression and suggesting 
new potential therapeutic targets.

In detail, autistic children showed a urinary increase in metabolites involved in 
oxidative mechanisms, products of carbohydrate metabolism, bacterial metabolites 
suggesting an increase in Clostridia spp. and changes in the levels of precursors of 
neurotransmitters. As a result, the importance of the diet in these children is under-
lined [64, 75].

Moreover, we characterized the metabolite patterns associated with nephrourop-
athies, through urine samples obtained from children affected by nephrouropathies 
compared to healthy controls. As a result, the urine metabolite profiles seem a prom-
ising, non-invasive tool in this field, correlating to nephrourological disorders [4].

9.3.6  �Adults

Our group also performed a metabolomics study in adult patients (mean age 
24 years), comparing the samples of those who were born at term and those born 
showing extremely low birth weight. The differences detected in the two groups 
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were mostly related to the alterations in the arginine and proline metabolism, in the 
purine and pyrimidine metabolism in the hystidine, beta-alanine metabolism, and in 
the urea cycle [36].

Promising results have been obtained also in oncology and in other fields of 
adults’ medicine [72].

9.4  �Microbiomics

Metabolomics is also defined as the “Rosetta Stone” of Microbiomics, meaning that 
metabolites detected are often produced by bacteria and can help in decoding the 
interactions occurring by bacterial species and the host.

The concept that “We live in the Age of Bacteria (as it was in the beginning, is 
now, and ever shall be, until the world ends” (Stephen Jay Gould, Cambridge, MA, 
1993) is known since long time.

The Nobel Prize in Medicine 1958 was assigned to Joshua Lederberg “for his 
discoveries concerning genetic recombination and the organization of the genetic 
material of bacteria (microbiome)”.

Moreover, Jaroes Raes (The Flanders Institute of Biology) introduced the con-
cept of HOMO BACTERIENS, since in his opinion “You are not human, you are a 
walking bacterial colony”.

Currently, a quick search for “Microbiome” in scientific journals online demon-
strates how significantly this field of research has been growing over the past 
10 years.

Giving some numbers, gut microbiota can weight about 1–2 Kg, 95% of bacteria 
are located in the gut and intestinal surface is about 400 m2.

Heinz et  al. introduced the concept of superorganism (Man + Microbes) and 
superorgan (Gut + Microbiota), allowing the thought that we are What we Host! [54].

The current opinion describes the brain and the gut as the first and the second 
brain of our body. These structures seem communicate through biological signals 
(mostly short chain fatty acids – SCFAs).

Intestinal microbiota is mostly represented by 3 phyla: Bacteroidetes, 
Actinobacteria, and Firmicutes [69] in different percentages; thus, our microbiota is 
a unique fingerprint.

Some species are associated with several diseases, such as Clostridium spp. that 
seems involved in preeclampsia, NEC, inflammatory bowel diseases, autism, 
and stroke.

Modifications in the microbiome have been also associated with the onset of 
sepsis [2].

This should make us reflect on the consequences of uncontrolled antibiotic 
use [13].

Germ-free rats do not gain fat and assume the microbiome of the donor [19]. 
Microbiota modifications during life are due to pre- and perinatal factors, lifestyle, 
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habits, nutrition, antibiotics, and many others environmental factors (in addition to 
development itself and hormonal changes).

The womb is sterile? In the last years appeared the evidence of a placental micro-
biome [1], which seems similar to maternal oral microbiome (periodontitis). In fact, 
such inflammatory situation could be linked to preterm birth.

Even mode of delivery can influence neonatal microbiome [14, 28, 80]. Neonates 
born by cesarean section seem associated with a higher level of Clostridia spp., less 
bifidobacteria, bacteroides, and lactobacilli [80].

According to Dominguez-Bello, neonates born by CS show maternal skin micro-
biome, while those born by vaginal delivery are colonized by the maternal vaginal 
microbiome.

A lactating neonate assumes about 800  ml of BM daily, ingesting 
100.000–10.000.000 bacteria (Lactobiome).

This influences neonatal gut microbiome ([29], Le Doare et al. [58], Bazanella 
et al. [12], [18], Fanos [38], Reali 2018), potentially influencing neonatal health [31].

In the future, several beneficial applications will be obtained by fecal microbi-
ome transplantation. This consists in the infusion of feces from a healthy donor into 
the gut of a recipient to cure a specific disease (by nasogastric or nasoduodenal tube, 
colonoscope, enema, or capsule). The high success rate and safety in the short term 
is reported for recurrent C. difficile infection. It could be beneficial for a wide range 
of disorders, including Parkinson’s disease, fibromyalgia, chronic fatigue syndrome, 
myoclonus dystopia, multiple sclerosis, obesity, insulin resistance, metabolic syn-
drome, and autism. Even if there are many unanswered questions [56].

9.5  �Conclusions

Genome is highly influenced by several factors. Among them, we underline the role 
of nutrition and drugs, open the way to nutrimetabolomics, nutrimicrobiomics, 
pharmametabolomics, etc.

We believe that the translational power of metabolomics in the next future will 
be represented by the whole comprehension of the meaning of each metabolite sig-
nificant variation, understanding the cause of variation, the effects played on fetus 
and newborn, and if metabolites could become therapeutic targets. Moreover, cor-
relating metabolites’ levels with neonatal specific pathways and health outcome 
will help to adequate supplementation of nutrition strategies in the most vulnerable 
category, supplying to each neonate specific deficiency, in the perspective of a per-
sonalized nutrition.

In conclusion, all the organisms show a great interindividual variability (basal 
and after stimulus) and each one is characterized by an intrinsic fragility and 
resilience.

It will be useful to individuate the mostly varying metabolites in neonatology 
[45]. Thanks to such specific and precise information, innovative tools could be 
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introduced, such as simple urinary sticks coupled to metabolomics detection to per-
form rapid diagnosis.

Metabolomics and microbiomics could bring to the medicine of the future [37] 
and to the 10P pediatrics:

•	 Personalized
•	 Prospective
•	 Predictive
•	 Preventive
•	 Precise
•	 Participated
•	 Patient-centered
•	 Psycocognitive
•	 Postgenomic
•	 Public
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