
Ying Bai

SQL Server
Database
Programming
with Java
Concepts, Designs and Implementations

SQL Server Database Programming with Java

Ying Bai

SQL Server Database
Programming with Java
Concepts, Designs and Implementations

The additional materials will be available on: sn.pub/lecturer-material

ISBN 978-3-030-92686-1 ISBN 978-3-031-06553-8 (eBook)
https://doi.org/10.1007/978-3-031-06553-8

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Ying Bai
Charlotte, NC, USA

https://doi.org/10.1007/978-3-031-06553-8

This book is dedicated to my wife, Yan Wang,
and my daughter, Xue (Susan) Bai.

vii

Preface

Databases have become an integral part of our modern-day life. We are in an
information- driven society today. Database technology has a direct impact on all
aspects our daily lives. Decisions are routinely made by organizations based on the
information collected and stored in databases. A record company may decide to
market certain albums in selected regions based on the music preference of teenag-
ers. Grocery stores display more popular items at the eye level and reorders are
based on the inventories taken at regular intervals. Other examples include patients’
medical records in hospitals, customers’ account information in banks, book orders
by the libraries or bookstores, club memberships, auto part orders, winter cloth
stock by department stores, and many others.

In addition to database management systems, in order to effectively apply and
implement databases in real industrial or commercial systems, a good graphic user
interface (GUI) with an appropriate programming language is needed to enable
users to access and manipulate their records or data in databases. NetBeans IDE
with Java is an ideal candidate to be selected to provide this GUI with programming
functionality. Unlike other programming languages, Java is a kind of language that
has advantages such as being easy to learn and easy to understand with little learn-
ing curves. More importantly, Java is a truly Object Oriented Programming (OOP)
language compared with other popular programming languages, such as C++ and C#.

Beginning from Java 1.0, Sun has integrated a few programming languages such
as C++, JavaFX, and PHP with some frameworks into dynamic models that make
Internet and Web programming easier and simpler, and any language integrated in
this model can be used to develop professional and efficient Web applications that
can be used to communicate with others via the Internet.

This book is mainly designed for college students and software programmers
who want to develop practical and commercial database programming with Java
and relational databases such as Microsoft SQL Server. The book provides a detailed
description about the practical considerations and applications in database program-
ming with Java and authentic examples as well as detailed explanations. More spe-
cially, some advanced Java Web related topics, such as Java Web Applications and
Java Web Services, are discussed with quite a few of real project examples in this

viii

book, to provide readers with a clear picture as how to handle the database program-
ming issues in NetBeans IDE environment.

The outstanding features of this book include, but no limited to, the following:

 1. A real sample database, CSE_DEPT, which is built with Microsoft SQL Server
2019 Express, is provided and used for the entire book. Step by step, detailed
illustration and description about how to design and build a practical relational
database are provided.

 2. Both fundamental and advanced Java database-programming techniques are
covered to aide both beginning students and experienced programmers.

 3. Updated Java database-programming techniques, such as Java Enterprise Edition
7, JavaServer Pages, JavaServer Faces, and Enterprise Java Beans, are discussed
and analyzed with real projects to provide readers a clear picture and an easy-to-
learn path for Java database applications.

 4. Thirty (30) real database programming projects are covered in the book with
detailed illustrations and explanations to help students understand key tech-
niques and programming technologies.

 5. Various actual JDBC APIs and JDBC drivers are discussed and presented with
the coding explanations for real example projects. The working structure and
principle of using JDBC driver to establish a valid database connection, and
build an SQL statement and process the query results, are introduced in detail
with example codes. One of the useful tools, JDBC RowSet, is also discussed
and analyzed with some example codes.

 6. Homework and selected solutions are provided for each chapter to strengthen
and improve students’ learning and understanding of topics they studied.

 7. PowerPoint teaching slides are also provided to help instructors with their teach-
ing and organizing of their classes.

 8. A Good textbook for college students, and a good reference book for program-
mers, software engineers, and academic researchers.

I sincerely hope this book can provide useful and practical help and guidance to
all readers or users who adopted this book, and I will be more than happy to know
that you would be able to develop and build professional and practical database
applications with the help of this book.

Preface

ix

Copyrights and Trademarks

• Apache®, Apache NetBeans, NetBeans, and the NetBeans logo are either regis-
tered trademarks or trademarks of the Apache Software Foundation in the United
States and/or other countries. No endorsement by The Apache Software
Foundation is implied by the use of these marks.

• Microsoft Visual Studio® is a registered trademark of Microsoft Corporation in
the United States and/or other countries.

• Microsoft Visual Basic® is a registered trademark of Microsoft Corporation in
the United States and/or other countries.

• Microsoft SQL Server® is a registered trademark of Microsoft Corporation in the
United States and/or other countries.

• DevExpress® is a trademark or registered trademark of Developer Express Inc.
• Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other

names may be trademarks of their respective owners.
• Java JDK and JDBC are copyrighted by Oracle and its affiliates. Used with

permission.

xi

Acknowledgment

First and foremost, special thanks go to my wife, Yan Wang. I would not have fin-
ished this book without her sincere encouragement and support.

Special thanks go to Dr. Satish Bhalla who made great contributions to Chap. 2.
Dr. Bhalla is a specialist in database programming and management, especially in
SQL Server, Oracle, and DB2. Dr. Bhalla spent a lot of time to prepare materials for
the first part of Chap. 2, and he deserves to be acknowledged.

Many thanks go to Ms. Susan Lagerstrom who made this book available to the
public. This book would not have found its place in today’s market without Susan’s
deep perspective and hard work. The same thanks are extended to the editorial team.
Without their contributions, it would have been impossible to publish this book.

Thanks should also be extended to the following book reviewers for their pre-
cious opinions on this book:

• Dr. Jiang Xie, Professor, Department of Electrical and Computer Engineering at
the University of North Carolina at Charlotte

• Dr. Daoxi Xiu, Application Analyst Programmer at North Carolina Administrative
Office of the Courts

• Dr. Dali Wang, Professor, Department of Physics and Computer Science at
Christopher Newport University

• Dr. Nailong Guo, Associate Professor, Department of Mathematics and Computer
Science at Benedict College

Finally, I thank all those who support me to finish this book.

https://doi.org/10.1007/978-3-030-92686-1_2
https://doi.org/10.1007/978-3-030-92686-1_2

xiii

Contents

 1 Introduction . 1
 1.1 Outstanding Features About This Book . 2
 1.2 Who This Book Is For . 3
 1.3 What This Book Covers . 3
 1.4 How This Book Is Organized and How to Use This Book 5
 1.5 How to Use the Source Codes and the Sample Database 6
 1.6 Instructors Materials and Customers Supports 7

 2 Introduction to Databases . 11
 2.1 What Are Databases and Database Programs? 12

 2.1.1 File Processing System . 12
 2.1.2 Integrated Databases . 13

 2.2 Develop a Database . 14
 2.3 Sample Database . 15

 2.3.1 Relational Data Model . 19
 2.3.2 Entity-Relationship Model (ER) . 20

 2.4 Identifying Keys . 21
 2.5 Define Relationships . 22
 2.6 ER Notation . 25
 2.7 Data Normalization . 26

 2.7.1 First Normal Form (1NF) . 27
 2.7.2 Second Normal Form (2NF) . 28
 2.7.3 Third Normal Form (3NF) . 29

 2.8 Database Components in Some Popular Databases 30
 2.8.1 Microsoft Access Databases . 31
 2.8.2 SQL Server Databases . 33
 2.8.3 Oracle Databases . 36

 2.9 Create Microsoft SQL Server 2019 Express Sample Database 39
 2.9.1 Create the LogIn Table . 41
 2.9.2 Create the Faculty Table. 42
 2.9.3 Create Other Tables . 44

https://doi.org/10.1007/978-3-030-92686-1_1
https://doi.org/10.1007/978-3-030-92686-1_1
https://doi.org/10.1007/978-3-030-92686-1_1#Sec1
https://doi.org/10.1007/978-3-030-92686-1_1#Sec2
https://doi.org/10.1007/978-3-030-92686-1_1#Sec3
https://doi.org/10.1007/978-3-030-92686-1_1#Sec4
https://doi.org/10.1007/978-3-030-92686-1_1#Sec5
https://doi.org/10.1007/978-3-030-92686-1_1#Sec6
https://doi.org/10.1007/978-3-030-92686-1_2
https://doi.org/10.1007/978-3-030-92686-1_2
https://doi.org/10.1007/978-3-030-92686-1_2#Sec1
https://doi.org/10.1007/978-3-030-92686-1_2#Sec2
https://doi.org/10.1007/978-3-030-92686-1_2#Sec3
https://doi.org/10.1007/978-3-030-92686-1_2#Sec4
https://doi.org/10.1007/978-3-030-92686-1_2#Sec5
https://doi.org/10.1007/978-3-030-92686-1_2#Sec6
https://doi.org/10.1007/978-3-030-92686-1_2#Sec7
https://doi.org/10.1007/978-3-030-92686-1_2#Sec8
https://doi.org/10.1007/978-3-030-92686-1_2#Sec9
https://doi.org/10.1007/978-3-030-92686-1_2#Sec10
https://doi.org/10.1007/978-3-030-92686-1_2#Sec11
https://doi.org/10.1007/978-3-030-92686-1_2#Sec12
https://doi.org/10.1007/978-3-030-92686-1_2#Sec13
https://doi.org/10.1007/978-3-030-92686-1_2#Sec14
https://doi.org/10.1007/978-3-030-92686-1_2#Sec15
https://doi.org/10.1007/978-3-030-92686-1_2#Sec16
https://doi.org/10.1007/978-3-030-92686-1_2#Sec17
https://doi.org/10.1007/978-3-030-92686-1_2#Sec18
https://doi.org/10.1007/978-3-030-92686-1_2#Sec19
https://doi.org/10.1007/978-3-030-92686-1_2#Sec20
https://doi.org/10.1007/978-3-030-92686-1_2#Sec21
https://doi.org/10.1007/978-3-030-92686-1_2#Sec22

xiv

 2.9.4 Create Relationships Among Tables 50
 2.9.5 Store Images to the SQL Server 2019 Express Database . . 58

 2.10 A Short-Cut: How to Use the Sample Database
without Building It . 66

 2.11 Chapter Summary . 66

 3 JDBC API and JDBC Drivers . 71
 3.1 What Are JDBC and JDBC API? . 71
 3.2 JDBC Components and Architecture . 72
 3.3 How Does JDBC Work? . 74

 3.3.1 Establish a Connection . 74
 3.3.2 Build and Execute SQL Statements 76
 3.3.3 Process Results. 77

 3.4 JDBC Driver and Driver Types . 78
 3.4.1 Type I: JDBC-ODBC Bridge Driver 79
 3.4.2 Type II: Native-API-Partly-Java Driver 80
 3.4.3 Type III: JDBC-Net-All-Java Driver 81
 3.4.4 Type IV: Native-Protocol-All-Java Driver 82

 3.5 JDBC Standard Extension API . 82
 3.5.1 JDBC DataSource . 83
 3.5.2 JDBC Driver-Based Connection Pooling. 85
 3.5.3 Distributed Transactions . 88
 3.5.4 JDBC RowSet . 90

 3.6 Chapter Summary . 92

 4 JDBC Application and Design Considerations 97
 4.1 JDBC Application Models . 97

 4.1.1 Two-Tier Client-Server Model . 97
 4.1.2 Three-Tier Client-Server Model . 98

 4.2 JDBC Applications Fundamentals . 100
 4.2.1 Loading and Registering Drivers . 100
 4.2.2 Getting Connected . 102
 4.2.3 Executing Statements . 108
 4.2.4 Retrieving Results . 127
 4.2.5 Using JDBC MetaData Interfaces . 133
 4.2.6 Closing the Connection and Statements 138

 4.3 Chapter Summary . 139

 5 Introduction to Apache NetBeans IDE . 143
 5.1 Overview of the Apache NetBeans 12 . 144

 5.1.1 The Apache NetBeans Platform . 147
 5.1.2 The Apache NetBeans Open-Source IDE 147

 5.2 Installing and Confirming the Apache NetBeans IDE 149
 5.3 Exploring Apache NetBeans IDE 12 . 150

 5.3.1 An Overview of Apache NetBeans IDE 12 GUI 151
 5.3.2 Build a New Java with Ant Project 153
 5.3.3 Build a Java Web Application Project 175

 5.4 Chapter Summary . 175

Contents

https://doi.org/10.1007/978-3-030-92686-1_2#Sec23
https://doi.org/10.1007/978-3-030-92686-1_2#Sec29
https://doi.org/10.1007/978-3-030-92686-1_2#Sec30
https://doi.org/10.1007/978-3-030-92686-1_2#Sec30
https://doi.org/10.1007/978-3-030-92686-1_2#Sec31
https://doi.org/10.1007/978-3-030-92686-1_3
https://doi.org/10.1007/978-3-030-92686-1_3
https://doi.org/10.1007/978-3-030-92686-1_3#Sec1
https://doi.org/10.1007/978-3-030-92686-1_3#Sec2
https://doi.org/10.1007/978-3-030-92686-1_3#Sec3
https://doi.org/10.1007/978-3-030-92686-1_3#Sec4
https://doi.org/10.1007/978-3-030-92686-1_3#Sec7
https://doi.org/10.1007/978-3-030-92686-1_3#Sec8
https://doi.org/10.1007/978-3-030-92686-1_3#Sec11
https://doi.org/10.1007/978-3-030-92686-1_3#Sec12
https://doi.org/10.1007/978-3-030-92686-1_3#Sec13
https://doi.org/10.1007/978-3-030-92686-1_3#Sec14
https://doi.org/10.1007/978-3-030-92686-1_3#Sec15
https://doi.org/10.1007/978-3-030-92686-1_3#Sec16
https://doi.org/10.1007/978-3-030-92686-1_3#Sec17
https://doi.org/10.1007/978-3-030-92686-1_3#Sec20
https://doi.org/10.1007/978-3-030-92686-1_3#Sec21
https://doi.org/10.1007/978-3-030-92686-1_3#Sec24
https://doi.org/10.1007/978-3-030-92686-1_3#Sec27
https://doi.org/10.1007/978-3-030-92686-1_4
https://doi.org/10.1007/978-3-030-92686-1_4
https://doi.org/10.1007/978-3-030-92686-1_4#Sec1
https://doi.org/10.1007/978-3-030-92686-1_4#Sec2
https://doi.org/10.1007/978-3-030-92686-1_4#Sec3
https://doi.org/10.1007/978-3-030-92686-1_4#Sec4
https://doi.org/10.1007/978-3-030-92686-1_4#Sec5
https://doi.org/10.1007/978-3-030-92686-1_4#Sec6
https://doi.org/10.1007/978-3-030-92686-1_4#Sec12
https://doi.org/10.1007/978-3-030-92686-1_4#Sec32
https://doi.org/10.1007/978-3-030-92686-1_4#Sec37
https://doi.org/10.1007/978-3-030-92686-1_4#Sec41
https://doi.org/10.1007/978-3-030-92686-1_4#Sec42
https://doi.org/10.1007/978-3-030-92686-1_5
https://doi.org/10.1007/978-3-030-92686-1_5
https://doi.org/10.1007/978-3-030-92686-1_5#Sec1
https://doi.org/10.1007/978-3-030-92686-1_5#Sec2
https://doi.org/10.1007/978-3-030-92686-1_5#Sec3
https://doi.org/10.1007/978-3-030-92686-1_5#Sec4
https://doi.org/10.1007/978-3-030-92686-1_5#Sec5
https://doi.org/10.1007/978-3-030-92686-1_5#Sec6
https://doi.org/10.1007/978-3-030-92686-1_5#Sec7
https://doi.org/10.1007/978-3-030-92686-1_5#Sec23
https://doi.org/10.1007/978-3-030-92686-1_5#Sec24

xv

Part I Building Two-Tier Client-Server Applications

 6 Query Data from Databases . 181
 6.1 Setup Connection Between Microsoft SQL Server Database

and Java Classes . 181
 6.1.1 Download and Install Microsoft SQL Server

JDBC Driver . 182
 6.1.2 Configure TCP/IP Protocol and Setup for SQL Server

Express . 183
 6.1.3 Configure Authentication Mode for SQL Server 2019

Express . 185
 6.1.4 Use the New Database Connection in Apache NetBeans

to Setup a Connection . 187
 6.2 Introduction to Runtime Object Method . 193
 6.3 Create a Java Application Project to Access the SQL Server

Database . 193
 6.3.1 Create Graphic User Interfaces . 194
 6.3.2 Use a JDialog as a MessageBox . 198
 6.3.3 Perform the Data Query for the LogIn Table 201
 6.3.4 Develop the Codes for the SelectionFrame Form 213
 6.3.5 Perform the Data Query for the Faculty Table 217
 6.3.6 Perform the Data Query for the Course Table 233
 6.3.7 Query Data from the Student Table Using the

Java RowSet Object . 254
 6.4 Chapter Summary . 267

 7 Insert, Update, and Delete Data from Databases 275
 7.1 Perform Data Manipulations to SQL Server Database

Using Java Runtime Object . 275
 7.2 Perform Data Insertion to SQL Server Database Using

Java Runtime Object . 276
 7.2.1 Develop the Codes for the Insert Button Event Handler . . . 277
 7.2.2 Develop a Method for Data Checking Prior to Data

Insertion . 279
 7.2.3 Develop a Method for Selecting a Valid Faculty Image . . . 280
 7.2.4 Find a Way to Enable the Insert Button to Begin

a New Data Insertion . 281
 7.2.5 Develop a Method for Clearing Original Faculty

Information . 282
 7.2.6 Develop the Codes for the Validation

of the Data Insertion. 282
 7.2.7 Build and Run the Project to Test the Data Insertion 283

 7.3 Perform Data Updating to SQL Server Database Using
Java Runtime Object . 285
 7.3.1 Modify the Codes Inside the FacultyFrame Constructor . . . 285
 7.3.2 Develop the Codes for the Update Button Event Handler . . 287
 7.3.3 Build and Run the Project to Test the Data Updating 288

Contents

https://doi.org/10.1007/978-3-030-92686-1_6
https://doi.org/10.1007/978-3-030-92686-1_6
https://doi.org/10.1007/978-3-030-92686-1_6#Sec1
https://doi.org/10.1007/978-3-030-92686-1_6#Sec1
https://doi.org/10.1007/978-3-030-92686-1_6#Sec2
https://doi.org/10.1007/978-3-030-92686-1_6#Sec2
https://doi.org/10.1007/978-3-030-92686-1_6#Sec3
https://doi.org/10.1007/978-3-030-92686-1_6#Sec3
https://doi.org/10.1007/978-3-030-92686-1_6#Sec4
https://doi.org/10.1007/978-3-030-92686-1_6#Sec4
https://doi.org/10.1007/978-3-030-92686-1_6#Sec5
https://doi.org/10.1007/978-3-030-92686-1_6#Sec5
https://doi.org/10.1007/978-3-030-92686-1_6#Sec6
https://doi.org/10.1007/978-3-030-92686-1_6#Sec7
https://doi.org/10.1007/978-3-030-92686-1_6#Sec7
https://doi.org/10.1007/978-3-030-92686-1_6#Sec8
https://doi.org/10.1007/978-3-030-92686-1_6#Sec9
https://doi.org/10.1007/978-3-030-92686-1_6#Sec10
https://doi.org/10.1007/978-3-030-92686-1_6#Sec19
https://doi.org/10.1007/978-3-030-92686-1_6#Sec21
https://doi.org/10.1007/978-3-030-92686-1_6#Sec36
https://doi.org/10.1007/978-3-030-92686-1_6#Sec51
https://doi.org/10.1007/978-3-030-92686-1_6#Sec51
https://doi.org/10.1007/978-3-030-92686-1_6#Sec58
https://doi.org/10.1007/978-3-030-92686-1_7
https://doi.org/10.1007/978-3-030-92686-1_7
https://doi.org/10.1007/978-3-030-92686-1_7#Sec1
https://doi.org/10.1007/978-3-030-92686-1_7#Sec1
https://doi.org/10.1007/978-3-030-92686-1_7#Sec2
https://doi.org/10.1007/978-3-030-92686-1_7#Sec2
https://doi.org/10.1007/978-3-030-92686-1_7#Sec3
https://doi.org/10.1007/978-3-030-92686-1_7#Sec4
https://doi.org/10.1007/978-3-030-92686-1_7#Sec4
https://doi.org/10.1007/978-3-030-92686-1_7#Sec5
https://doi.org/10.1007/978-3-030-92686-1_7#Sec6
https://doi.org/10.1007/978-3-030-92686-1_7#Sec6
https://doi.org/10.1007/978-3-030-92686-1_7#Sec7
https://doi.org/10.1007/978-3-030-92686-1_7#Sec7
https://doi.org/10.1007/978-3-030-92686-1_7#Sec8
https://doi.org/10.1007/978-3-030-92686-1_7#Sec8
https://doi.org/10.1007/978-3-030-92686-1_7#Sec9
https://doi.org/10.1007/978-3-030-92686-1_7#Sec10
https://doi.org/10.1007/978-3-030-92686-1_7#Sec10
https://doi.org/10.1007/978-3-030-92686-1_7#Sec11
https://doi.org/10.1007/978-3-030-92686-1_7#Sec12
https://doi.org/10.1007/978-3-030-92686-1_7#Sec13

xvi

 7.4 Perform Data Deleting to SQL Server Database Using
Java Runtime Object . 290
 7.4.1 Develop the Codes for the Delete Button Event Handler . . 291
 7.4.2 Build and Run the Project to Test the Data Deleting 292

 7.5 Perform Data Manipulations Using Updatable ResultSet 294
 7.5.1 Introduction to ResultSet Enhanced Functionalities

and Categories . 295
 7.5.2 Perform Data Manipulations Using Updatable

ResultSet Object. 296
 7.6 Perform Data Manipulations Using Callable Statements 309

 7.6.1 Insert Data to the Course Table Using Callable
Statements . 309

 7.6.2 Update Data to the Course Table Using Callable
Statements . 317

 7.6.3 Delete Data from the Course Table Using Callable
Statements . 323

 7.7 Chapter Summary . 328

Part II Building Three-Tier Client-Server Applications

 8 Developing Java Web Applications to Access Databases 337
 8.1 A Historical Review About Java Web Application Development . . 337

 8.1.1 Using Servlet and HTML Web Pages for
Java Web Applications . 338

 8.1.2 Using JavaServer Pages Technology for
Java Web Applications . 340

 8.1.3 Using Java Help Class Files for Java Web Applications . . . 344
 8.1.4 Using the JSP Implicit Object Session for

Java Web Applications . 350
 8.1.5 Using Java Beans Technology for Java Web

Applications . 357
 8.1.6 Using JavaServer Faces Technology for

Java Web Applications . 364
 8.2 Java EE Web Application Model . 377

 8.2.1 Java EE Web Applications with and Without EJB 378
 8.3 The Architecture and Components of Java Web Applications 379

 8.3.1 Java EE Containers . 381
 8.3.2 Java EE 8 APIs . 382
 8.3.3 Java Web Application Life Cycle . 387
 8.3.4 Java Web Modules . 387
 8.3.5 Java Web Frameworks . 389

 8.4 Build Java Web Project to Query SQL Server Database 391
 8.4.1 Create Five Web Pages Using Microsoft Office

Publisher 2007 . 391
 8.4.2 Setup Environments for NetBeans IDE to Build

Java Web Applications . 403

Contents

https://doi.org/10.1007/978-3-030-92686-1_7#Sec14
https://doi.org/10.1007/978-3-030-92686-1_7#Sec14
https://doi.org/10.1007/978-3-030-92686-1_7#Sec15
https://doi.org/10.1007/978-3-030-92686-1_7#Sec16
https://doi.org/10.1007/978-3-030-92686-1_7#Sec17
https://doi.org/10.1007/978-3-030-92686-1_7#Sec18
https://doi.org/10.1007/978-3-030-92686-1_7#Sec18
https://doi.org/10.1007/978-3-030-92686-1_7#Sec19
https://doi.org/10.1007/978-3-030-92686-1_7#Sec19
https://doi.org/10.1007/978-3-030-92686-1_7#Sec23
https://doi.org/10.1007/978-3-030-92686-1_7#Sec24
https://doi.org/10.1007/978-3-030-92686-1_7#Sec24
https://doi.org/10.1007/978-3-030-92686-1_7#Sec27
https://doi.org/10.1007/978-3-030-92686-1_7#Sec27
https://doi.org/10.1007/978-3-030-92686-1_7#Sec30
https://doi.org/10.1007/978-3-030-92686-1_7#Sec30
https://doi.org/10.1007/978-3-030-92686-1_7#Sec33
https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_8#Sec1
https://doi.org/10.1007/978-3-030-92686-1_8#Sec2
https://doi.org/10.1007/978-3-030-92686-1_8#Sec2
https://doi.org/10.1007/978-3-030-92686-1_8#Sec3
https://doi.org/10.1007/978-3-030-92686-1_8#Sec3
https://doi.org/10.1007/978-3-030-92686-1_8#Sec4
https://doi.org/10.1007/978-3-030-92686-1_8#Sec5
https://doi.org/10.1007/978-3-030-92686-1_8#Sec5
https://doi.org/10.1007/978-3-030-92686-1_8#Sec9
https://doi.org/10.1007/978-3-030-92686-1_8#Sec9
https://doi.org/10.1007/978-3-030-92686-1_8#Sec12
https://doi.org/10.1007/978-3-030-92686-1_8#Sec12
https://doi.org/10.1007/978-3-030-92686-1_8#Sec20
https://doi.org/10.1007/978-3-030-92686-1_8#Sec21
https://doi.org/10.1007/978-3-030-92686-1_8#Sec22
https://doi.org/10.1007/978-3-030-92686-1_8#Sec23
https://doi.org/10.1007/978-3-030-92686-1_8#Sec24
https://doi.org/10.1007/978-3-030-92686-1_8#Sec31
https://doi.org/10.1007/978-3-030-92686-1_8#Sec32
https://doi.org/10.1007/978-3-030-92686-1_8#Sec33
https://doi.org/10.1007/978-3-030-92686-1_8#Sec34
https://doi.org/10.1007/978-3-030-92686-1_8#Sec35
https://doi.org/10.1007/978-3-030-92686-1_8#Sec35
https://doi.org/10.1007/978-3-030-92686-1_8#Sec41
https://doi.org/10.1007/978-3-030-92686-1_8#Sec41

xvii

 8.4.3 Access and Query the LogIn Table Using
JavaServer Pages and Help Class Files 407

 8.4.4 Develop the Codes for the Selection Page 418
 8.4.5 Query the Faculty Table Using JavaServer Pages

and JSP Implicit Session Object . 421
 8.5 Build Java Web Project to Manipulate SQL Server Database 432

 8.5.1 Modify the Faculty.jsp Page by Adding
A File Selection Function . 433

 8.5.2 Insert New Records to the Faculty Table Using
JavaServer Pages and Java Beans . 434

 8.5.3 Update and Delete Data from the Faculty Table
Using JSP and Java Beans Techniques 442

 8.6 Chapter Summary . 455

 9 Developing Java Web Services to Access Databases 461
 9.1 Introduction to Java Web Services . 462

 9.1.1 REST-Based Web Services . 462
 9.1.2 SOAP-Based Web Services . 464

 9.2 The Structure and Components of SOAP-Based Web Services . . . 465
 9.3 The Procedure of Building a Typical SOAP-Based Web

Service Project . 466
 9.3.1 Create a New Java Web Application Project

WSTestApplication . 467
 9.3.2 Create a New Java SOAP-Based Web Service

Project WSTest . 469
 9.3.3 Add Desired Operations to the Web Service 471
 9.3.4 Deploy and Test the Web Service on the Selected

Container . 473
 9.3.5 Create Web Service Clients to Consume

the Web Service . 475
 9.4 Getting Started with Java Web Services Using NetBeans IDE 479
 9.5 Build Java Web Service Projects to Access SQL Server

Database . 480
 9.5.1 Create a New Java Web Application Project

WebServiceSQLApp . 481
 9.5.2 Create a New Java SOAP-Based Web Service

Project WebServiceSelect . 481
 9.5.3 Add New Operations to Our Web Services

to Perform Data Query . 482
 9.5.4 Add Another Operation to Our Web Service

to Query Faculty Image . 485
 9.5.5 Build the User-Defined Method DBConnection() 488
 9.5.6 Deploy the Web Service Project and Test the

Data Query Function . 489

Contents

https://doi.org/10.1007/978-3-030-92686-1_8#Sec44
https://doi.org/10.1007/978-3-030-92686-1_8#Sec44
https://doi.org/10.1007/978-3-030-92686-1_8#Sec52
https://doi.org/10.1007/978-3-030-92686-1_8#Sec53
https://doi.org/10.1007/978-3-030-92686-1_8#Sec53
https://doi.org/10.1007/978-3-030-92686-1_8#Sec57
https://doi.org/10.1007/978-3-030-92686-1_8#Sec58
https://doi.org/10.1007/978-3-030-92686-1_8#Sec58
https://doi.org/10.1007/978-3-030-92686-1_8#Sec59
https://doi.org/10.1007/978-3-030-92686-1_8#Sec59
https://doi.org/10.1007/978-3-030-92686-1_8#Sec62
https://doi.org/10.1007/978-3-030-92686-1_8#Sec62
https://doi.org/10.1007/978-3-030-92686-1_8#Sec67
https://doi.org/10.1007/978-3-030-92686-1_9
https://doi.org/10.1007/978-3-030-92686-1_9
https://doi.org/10.1007/978-3-030-92686-1_9#Sec1
https://doi.org/10.1007/978-3-030-92686-1_9#Sec2
https://doi.org/10.1007/978-3-030-92686-1_9#Sec3
https://doi.org/10.1007/978-3-030-92686-1_9#Sec4
https://doi.org/10.1007/978-3-030-92686-1_9#Sec5
https://doi.org/10.1007/978-3-030-92686-1_9#Sec5
https://doi.org/10.1007/978-3-030-92686-1_9#Sec6
https://doi.org/10.1007/978-3-030-92686-1_9#Sec6
https://doi.org/10.1007/978-3-030-92686-1_9#Sec7
https://doi.org/10.1007/978-3-030-92686-1_9#Sec7
https://doi.org/10.1007/978-3-030-92686-1_9#Sec8
https://doi.org/10.1007/978-3-030-92686-1_9#Sec9
https://doi.org/10.1007/978-3-030-92686-1_9#Sec9
https://doi.org/10.1007/978-3-030-92686-1_9#Sec10
https://doi.org/10.1007/978-3-030-92686-1_9#Sec10
https://doi.org/10.1007/978-3-030-92686-1_9#Sec11
https://doi.org/10.1007/978-3-030-92686-1_9#Sec12
https://doi.org/10.1007/978-3-030-92686-1_9#Sec12
https://doi.org/10.1007/978-3-030-92686-1_9#Sec13
https://doi.org/10.1007/978-3-030-92686-1_9#Sec13
https://doi.org/10.1007/978-3-030-92686-1_9#Sec14
https://doi.org/10.1007/978-3-030-92686-1_9#Sec14
https://doi.org/10.1007/978-3-030-92686-1_9#Sec15
https://doi.org/10.1007/978-3-030-92686-1_9#Sec15
https://doi.org/10.1007/978-3-030-92686-1_9#Sec16
https://doi.org/10.1007/978-3-030-92686-1_9#Sec16
https://doi.org/10.1007/978-3-030-92686-1_9#Sec17
https://doi.org/10.1007/978-3-030-92686-1_9#Sec18
https://doi.org/10.1007/978-3-030-92686-1_9#Sec18

xviii

 9.6 Build a Window-Based Client Project to Consume
the Web Service . 491
 9.6.1 Copy the FacultyFrame and MsgDislog Components

as GUIs. 491
 9.6.2 Create a Web Service Reference for Our

Window-Based Client Project . 493
 9.6.3 Develop the Codes to Call Our Web Service Project 494
 9.6.4 Build and Run Our Client Project to Query Faculty

Data via Web Service . 498
 9.7 Build a Web-Based Client Project to Consume the Web Service . . 499

 9.7.1 Create a Web-Based Client Project WebClientSelect 500
 9.7.2 Create a Java Managed Bean FacultyBean 501
 9.7.3 Create a Web Service Reference for Our

Web-Based Client Project . 502
 9.7.4 Build the Codes to Call the Web Service

to Perform Data Query . 503
 9.7.5 Build and Run Our Client Project to Query Faculty

Data via Web Service . 507
 9.8 Build Java Web Service to Insert Data into the SQL Server

Database . 508
 9.8.1 Add a New Operation InsertFaculty() into

Our Web Service Project . 508
 9.8.2 Deploy the Web Service Project . 511

 9.9 Build a Window-Based Client Project to Consume
the Web Service . 512
 9.9.1 Refresh the Web Service Reference for Our

Window- Based Client Project . 513
 9.9.2 Modify the Design View and Develop the Codes

to Call Our Web Service Project . 515
 9.9.3 Build and Run Our Client Project to Insert Faculty

Data via Web Service . 517
 9.10 Build a Web-Based Client Project to Consume the Web Service . . 519

 9.10.1 Add a Web Service Reference to Our Web-Based
Client Project . 520

 9.10.2 Develop the Codes to Call Our Web Service Project 521
 9.10.3 Build and Run Our Client Project to Insert

Faculty Data via Web Service . 523
 9.11 Build Java Web Service to Update and Delete Data from

the SQL Server Database . 526
 9.11.1 Add a New Operation UpdateFaculty() to Perform

Faculty Data Updating . 526
 9.11.2 Add a New Operation DeleteFaculty() to Perform

Faculty Data Deleting Action . 530
 9.11.3 Deploy and Test the Web Service Project 532

Contents

https://doi.org/10.1007/978-3-030-92686-1_9#Sec19
https://doi.org/10.1007/978-3-030-92686-1_9#Sec19
https://doi.org/10.1007/978-3-030-92686-1_9#Sec20
https://doi.org/10.1007/978-3-030-92686-1_9#Sec20
https://doi.org/10.1007/978-3-030-92686-1_9#Sec21
https://doi.org/10.1007/978-3-030-92686-1_9#Sec21
https://doi.org/10.1007/978-3-030-92686-1_9#Sec22
https://doi.org/10.1007/978-3-030-92686-1_9#Sec23
https://doi.org/10.1007/978-3-030-92686-1_9#Sec23
https://doi.org/10.1007/978-3-030-92686-1_9#Sec24
https://doi.org/10.1007/978-3-030-92686-1_9#Sec25
https://doi.org/10.1007/978-3-030-92686-1_9#Sec26
https://doi.org/10.1007/978-3-030-92686-1_9#Sec27
https://doi.org/10.1007/978-3-030-92686-1_9#Sec27
https://doi.org/10.1007/978-3-030-92686-1_9#Sec28
https://doi.org/10.1007/978-3-030-92686-1_9#Sec28
https://doi.org/10.1007/978-3-030-92686-1_9#Sec29
https://doi.org/10.1007/978-3-030-92686-1_9#Sec29
https://doi.org/10.1007/978-3-030-92686-1_9#Sec30
https://doi.org/10.1007/978-3-030-92686-1_9#Sec30
https://doi.org/10.1007/978-3-030-92686-1_9#Sec31
https://doi.org/10.1007/978-3-030-92686-1_9#Sec31
https://doi.org/10.1007/978-3-030-92686-1_9#Sec32
https://doi.org/10.1007/978-3-030-92686-1_9#Sec33
https://doi.org/10.1007/978-3-030-92686-1_9#Sec33
https://doi.org/10.1007/978-3-030-92686-1_9#Sec34
https://doi.org/10.1007/978-3-030-92686-1_9#Sec34
https://doi.org/10.1007/978-3-030-92686-1_9#Sec35
https://doi.org/10.1007/978-3-030-92686-1_9#Sec35
https://doi.org/10.1007/978-3-030-92686-1_9#Sec36
https://doi.org/10.1007/978-3-030-92686-1_9#Sec36
https://doi.org/10.1007/978-3-030-92686-1_9#Sec37
https://doi.org/10.1007/978-3-030-92686-1_9#Sec38
https://doi.org/10.1007/978-3-030-92686-1_9#Sec38
https://doi.org/10.1007/978-3-030-92686-1_9#Sec39
https://doi.org/10.1007/978-3-030-92686-1_9#Sec40
https://doi.org/10.1007/978-3-030-92686-1_9#Sec40
https://doi.org/10.1007/978-3-030-92686-1_9#Sec41
https://doi.org/10.1007/978-3-030-92686-1_9#Sec41
https://doi.org/10.1007/978-3-030-92686-1_9#Sec42
https://doi.org/10.1007/978-3-030-92686-1_9#Sec42
https://doi.org/10.1007/978-3-030-92686-1_9#Sec43
https://doi.org/10.1007/978-3-030-92686-1_9#Sec43
https://doi.org/10.1007/978-3-030-92686-1_9#Sec44

xix

 9.12 Build a Window-Based Client Project to Consume
the Web Service . 535
 9.12.1 Refresh the Web Service Reference for

Our Window- Based Client Project . 536
 9.12.2 Build the Codes to Call the UpdateFaculty() Operation . . . 537
 9.12.3 Build the Codes to Call the DeleteFaculty() Operation 539
 9.12.4 Build and Run Our Client Project to Update

and Delete Faculty Record via Web Service 540
 9.13 Build a Web-Based Client Project to Consume the Web Service . . 543

 9.13.1 Add a Web Service Reference to Our Web-Based
Client Project . 544

 9.13.2 Develop the Codes to Call Our Web Service
Operation UpdateFaculty() . 545

 9.13.3 Develop the Codes to Call Our Web Service
Operation DeleteFaculty() . 547

 9.13.4 Build and Run Our Client Project to Update
and Delete Faculty Record via Web Service 549

 9.14 Build Java Web Service Projects to Access Course Table
in Our Sample Database . 551
 9.14.1 Create a New Java Web Application Project

WebServiceCourseApp . 551
 9.14.2 Create a New Java SOAP-Based Web Service

Project WebServiceCourse . 552
 9.14.3 The Organization of Web Service Operations 553
 9.14.4 Create and Build Web Service Operations 553

 9.15 Build Windows-Based Project to Consume the
Web Service Project . 569
 9.15.1 Develop the Codes to Query Course Information

from our Web Service Project . 570
 9.15.2 Build Codes for the Select Button Event Handler

to Query CourseIDs . 571
 9.15.3 Build Codes for the CourseListValueChanged()

Method to Get Course Details . 573
 9.15.4 Build Codes for the Insert Button Event Handler

to Insert a New Course . 576
 9.15.5 Build Codes for the Update Button Method

to Update Course Records . 579
 9.15.6 Build Codes for the Delete Button Method

to Delete Course Records. 582
 9.16 Build a Web-Based Project to Consume the Web Service

Project WebServiceCourse . 584
 9.16.1 Create a Web-Based Client Project WebClientCourse 584
 9.16.2 Add a Web Service Reference to Our Web-Based

Client Project . 584
 9.16.3 Modify the Course.jsp Page . 586

Contents

https://doi.org/10.1007/978-3-030-92686-1_9#Sec45
https://doi.org/10.1007/978-3-030-92686-1_9#Sec45
https://doi.org/10.1007/978-3-030-92686-1_9#Sec46
https://doi.org/10.1007/978-3-030-92686-1_9#Sec46
https://doi.org/10.1007/978-3-030-92686-1_9#Sec47
https://doi.org/10.1007/978-3-030-92686-1_9#Sec48
https://doi.org/10.1007/978-3-030-92686-1_9#Sec49
https://doi.org/10.1007/978-3-030-92686-1_9#Sec49
https://doi.org/10.1007/978-3-030-92686-1_9#Sec50
https://doi.org/10.1007/978-3-030-92686-1_9#Sec51
https://doi.org/10.1007/978-3-030-92686-1_9#Sec51
https://doi.org/10.1007/978-3-030-92686-1_9#Sec52
https://doi.org/10.1007/978-3-030-92686-1_9#Sec52
https://doi.org/10.1007/978-3-030-92686-1_9#Sec53
https://doi.org/10.1007/978-3-030-92686-1_9#Sec53
https://doi.org/10.1007/978-3-030-92686-1_9#Sec54
https://doi.org/10.1007/978-3-030-92686-1_9#Sec54
https://doi.org/10.1007/978-3-030-92686-1_9#Sec55
https://doi.org/10.1007/978-3-030-92686-1_9#Sec55
https://doi.org/10.1007/978-3-030-92686-1_9#Sec56
https://doi.org/10.1007/978-3-030-92686-1_9#Sec56
https://doi.org/10.1007/978-3-030-92686-1_9#Sec57
https://doi.org/10.1007/978-3-030-92686-1_9#Sec57
https://doi.org/10.1007/978-3-030-92686-1_9#Sec58
https://doi.org/10.1007/978-3-030-92686-1_9#Sec59
https://doi.org/10.1007/978-3-030-92686-1_9#Sec66
https://doi.org/10.1007/978-3-030-92686-1_9#Sec66
https://doi.org/10.1007/978-3-030-92686-1_9#Sec67
https://doi.org/10.1007/978-3-030-92686-1_9#Sec67
https://doi.org/10.1007/978-3-030-92686-1_9#Sec68
https://doi.org/10.1007/978-3-030-92686-1_9#Sec68
https://doi.org/10.1007/978-3-030-92686-1_9#Sec69
https://doi.org/10.1007/978-3-030-92686-1_9#Sec69
https://doi.org/10.1007/978-3-030-92686-1_9#Sec70
https://doi.org/10.1007/978-3-030-92686-1_9#Sec70
https://doi.org/10.1007/978-3-030-92686-1_9#Sec71
https://doi.org/10.1007/978-3-030-92686-1_9#Sec71
https://doi.org/10.1007/978-3-030-92686-1_9#Sec72
https://doi.org/10.1007/978-3-030-92686-1_9#Sec72
https://doi.org/10.1007/978-3-030-92686-1_9#Sec73
https://doi.org/10.1007/978-3-030-92686-1_9#Sec73
https://doi.org/10.1007/978-3-030-92686-1_9#Sec74
https://doi.org/10.1007/978-3-030-92686-1_9#Sec75
https://doi.org/10.1007/978-3-030-92686-1_9#Sec75
https://doi.org/10.1007/978-3-030-92686-1_9#Sec76

xx

 9.16.4 Build the Transaction JSP File CourseProcess.jsp 588
 9.16.5 Build the Java Bean Class File CourseQuery.java 590
 9.16.6 Build and Run Our Client Project to Query Course

Record via Our Web Service . 595
 9.16.7 Build Our Client Project to Insert New Course Records

via Our Web Service . 596
 9.16.8 Build Our Client Project to Update Course

Records via Our Web Service . 601
 9.16.9 Build Our Client Project to Delete Course

Records via Our Web Service . 606
 9.17 Chapter Summary . 609

Appendices . 615

 Index . 665

Contents

https://doi.org/10.1007/978-3-030-92686-1_9#Sec77
https://doi.org/10.1007/978-3-030-92686-1_9#Sec78
https://doi.org/10.1007/978-3-030-92686-1_9#Sec79
https://doi.org/10.1007/978-3-030-92686-1_9#Sec79
https://doi.org/10.1007/978-3-030-92686-1_9#Sec80
https://doi.org/10.1007/978-3-030-92686-1_9#Sec80
https://doi.org/10.1007/978-3-030-92686-1_9#Sec81
https://doi.org/10.1007/978-3-030-92686-1_9#Sec81
https://doi.org/10.1007/978-3-030-92686-1_9#Sec82
https://doi.org/10.1007/978-3-030-92686-1_9#Sec82
https://doi.org/10.1007/978-3-030-92686-1_9#Sec83

xxi

About the Author

Ying Bai is a professor in the Department of Computer Science and Engineering at
Johnson C. Smith University. His special interests include artificial intelligences,
soft-computing, mix-language programming, fuzzy logic and deep learning, robotic
controls, robots calibrations, and database programming.

His industry experience includes positions as software engineer and senior soft-
ware engineer at companies such as Motorola MMS, Schlumberger ATE Technology,
Immix TeleCom, and Lam Research.

Since 2003, Dr. Bai has published 17 books with publishers such as Prentice
Hall, CRC Press LLC, Springer, Cambridge University Press, and Wiley IEEE
Press. The Russian translation of his first book titled Applications Interface
Programming Using Multiple Languages was published by Prentice Hall in 2005.
The Chinese translation of his eighth book titled Practical Database Programming
with Visual C#.NET was published by Tsinghua University Press in China in 2011.
Most books are about artificial intelligence and soft computing, software interfacing
and serial port programming, database programming, fuzzy logic controls, micro-
controller programming, as well as classical and modern controls.

During recent years, Dr. Bai has also published more than 65 academic research
papers in IEEE Trans. journals and international conferences.

1© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_1

Chapter 1
Introduction

For some years when I taught database programming-related courses in my college,
I found that it is so hard to find a good textbook for this kind of topic that I have to
combine a few of different professional books as references to teach this course.
Most of those books are specially designed for database programming software
engineers or programmers, in which a lot of database programming strategies and
huge blocks of codes are involved, and which is a terrible headache to the college
students or beginning programmers who are new to the Java-related tools, such as
NetBeans IDE, and database programming-related applications. In most times, I
have to prepare the class-related presentations and figure out all homeworks as well
as exercises or projects myself for my students. I once dreamed that one day I can
find an appropriate textbook that is good and suitable for the college students or
beginning programmers and help them to learn and master the database program-
ming with Java easily and conveniently. After a long time waiting, eventually I
decided that I need to do something for this dream myself.

Another reason to write this book is the job market. As we know, most operating
companies or businesses in the United States, either industry or commerce, belong
to database applications or implementations-related businesses, such as manufac-
tures, banks, hospitals, hotels, airports, and retails. The majority of them need pro-
fessional technicians or engineers to develop and build database-related applications,
instead of building database management and design systems. To enable our college
graduates to become good and qualified candidates, and to be able to handle those
database-related programming jobs for those companies, we need to create a good
book like this one.

There are so many different database programming books available on the mar-
ket, but most of them are written for software engineers or programmers, starting

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_1].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06553-8_1&domain=pdf
https://doi.org/10.1007/978-3-031-06553-8_1

2

from theoretical introduction to some coding developments with few actual exam-
ples. This kind of writing style made big headache and huge learning curve for col-
lege students who are new to database programming and applications. Without a
complete and detailed introduction to database development environment and
related tools, it is very hard to enable students to learn and understand related topics
easily and quickly. Rarely can you find a book like this one, it starts from an intro-
duction and discussion about database structures and principles, detailed analysis
on database programming-related environment or integrated development environ-
ment (IDE – NetBeans IDE), discussions about various tools, such as Java Database
Connection (JDBC) components, JDBC API, JDBC Data Sources, JDBC Drivers,
two and three-tier client-server models, then more detailed implementations of
using that IDE to build various database programming project examples with differ-
ent components, such as Java Beans, Java Server Pages (JSP), and Java Enterprise
Edition (Java EE), are provided. More importantly, the Java Web Applications and
Java Web Service-related database programming techniques are also included in
this book with some updated technologies, such as Enterprise Java Beans (EJB),
REST-Based Web Services, and SOAP-Based Web Services. Two kinds of popular
Web servers, Glssfish and TomCat, are also discussed and implemented in those
related projects.

The most updated NetBeans IDE, Apache NetBeans IDE 12, is adopted and used
in most database programming examples in this book. These implementations are
discussed and introduced in Chaps. 5, 6, and 7. Starting from Chaps. 8 and 9,
NetBeans IDE 8.2 is adopted to match the current versions of some tools, such as
Glassfish and TomCat Web servers, to enable users to develop and build example
projects successfully.

1.1 Outstanding Features About This Book

 1. Covered both fundamental and advanced Java database programming techniques
to convenience both beginning and experienced students as well as
programmers.

 2. A sample database, CSE_DEPT, which is equivalent to a Computer Science
Department and built with Microsoft SQL Server 2019 Express, is used for all
program examples developed in the entire book.

 3. Different types of database projects, including the standard Java desktop appli-
cations, Java with Ant, Java class library, Java EE7 applications, Java Web
Applications, and Java Web Services, are discussed, analyzed, and implemented
in actual projects with line-by-line explanation.

 4. Updated Java database programming techniques, such as Java Enterprise Edition
7, JavaServer Pages, Java Beans, Enterprise Java Beans, Glassfish, and TomCat
Web servers, are discussed and analyzed with real projects to enable readers to
have a clear picture and easy-to-learn path for Java database applications.

 5. A detailed introduction and discussion to Apache NetBeans IDE 12 are provided
in Chap. 5. Starting from a simple Java application, all different project types

1 Introduction

https://doi.org/10.1007/978-3-030-92686-1_5
https://doi.org/10.1007/978-3-030-92686-1_6
https://doi.org/10.1007/978-3-030-92686-1_7
https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_9
https://doi.org/10.1007/978-3-030-92686-1_5

3

built in NetBeans IDE are discussed and presented to give readers a detailed but
global picture about the working structure and operational principles of
NetBeans IDE.

 6. Thirty (30) real sample database programming projects are covered in the book
with detailed illustrations and explanations to help students to understand key
techniques and programming technologies.

 7. Homework and selected solutions are provided for each chapter to strengthen
and improve students’ learning and understanding abilities for topics they
studied.

 8. PowerPoint teaching slides are also provided to help instructors for their teach-
ing and organizing their classes.

 9. Good textbook for college students, good reference book for programmers, soft-
ware engineers, and academic researchers.

1.2 Who This Book Is For

This book is designed for college students and software programmers who want to
develop practical and commercial database programming with Java and relational
database such as Microsoft SQL Server 2019 Express. Fundamental knowledge and
understanding about Java language and Java programming techniques are required.

1.3 What This Book Covers

Nine chapters are included in this book. The contents of each chapter can be sum-
marized as below.

• Chapter 1 provides an introduction and summarization to the entire book.
• Chapter 2 provides detailed discussions and analyses of the structures and com-

ponents about relational databases. Some key technologies in developing and
designing database are also given and discussed in this part. The procedure and
components used to develop a practical relational database with Microsoft SQL
Server 2019 Express is analyzed in detail with some real data tables in our sam-
ple database CSE_DEPT.

• Chapter 3 provides discussions on JDBC APIs and JDBC drivers. A detailed
introduction to components and architecture of JDBC is given with step-by-step
illustrations. Four popular types of JDBC drivers are discussed and analyzed
with both their advantages and disadvantages emphasized in actual database
applications. The working structure and operational principle of using JDBC
drivers to establish a valid database connection, build a SQL statement, and pro-
cess the query result are also discussed and presented in detail. One of the most
useful tools, JDBC RowSet, is also discussed and analyzed with some exam-
ple codes.

1.3 What This Book Covers

https://doi.org/10.1007/978-3-030-92686-1_1
https://doi.org/10.1007/978-3-030-92686-1_2
https://doi.org/10.1007/978-3-030-92686-1_3

4

• Chapter 4 provides a detailed discussion and analysis about JDBC design and
actual application considerations. Fundamentals of using JDBC to access and
manipulate data against databases are discussed and introduced with example
codes. Different JDBC interfaces, including the ResultSet, ResultSetMetaData,
DatabaseMetaData, and ParameterMetaData, are introduced and discussed with
example codes.

• Chapter 5 provides a detailed description about the Apache NetBeans IDE 12,
including the components and architecture. This topic is necessary for college
students who have no knowledge of NetBeans IDE. Starting from an introduc-
tion to installing the Apache NetBeans IDE 12, this chapter goes through each
aspect of NetBeans IDE 12, including the NetBeans Platform, NetBeans Open
Source, and all plug-in tools. Different projects built with NetBeans IDE are also
discussed and presented in detail with three example projects.

• Starting from Chapter 6, the real database programming techniques with Java,
query data from database, are provided and discussed. This chapter covers the
so-called runtime object method to develop and build professional data-driven
applications. Detailed discussions and descriptions about how to build profes-
sional and practical database applications using this runtime method are pro-
vided combined with a real project. In addition to basic query techniques,
advanced query methods, such as PreparedStatement, CallableStatement, and
stored procedure, are also discussed and implemented in this chapter with a real
sample project.

• Chapter 7 provides detailed discussions and analyses on how to insert, update,
and delete data from the popular databases – Microsoft SQL Server 2019. This
chapter covers some techniques to manipulate data in our sample database using
runtime object method. Nine real projects are used to illustrate how to perform
the data manipulations against our sample database: Microsoft SQL Server 2019
Express. Professional and practical data validation methods are also discussed in
this chapter to confirm the data manipulations. Some advanced data manipula-
tion techniques and methods, such as Updatable ResultSet and Callable
Statements, are introduced and discussed in this Chapter with some real projects.

• Chapter 8 provides introductions and discussions about the developments and
implementations of three-tier Java Web applications in NetBeans IDE 8.2 envi-
ronment. At the beginning of this chapter, a detailed and completed historical
review about Java Web application development is provided, and this part is
especially important and useful to college students or programmers who do not
have any knowledge or background in the Java Web application developments
and implementations. Following the introduction section, different techniques
used in building Java Web applications are introduced and discussed in detail.
The target database, Microsoft SQL Server 2019 Express, is utilized as the objec-
tive databases for those development and building processes. JavaServer Pages
and Java Beans techniques are also discussed and involved in those real Web
application projects.

• Chapter 9 provides introductions and discussions about the developments and
implementations of Java Web Services in NetBeans IDE 8.2 environment. A

1 Introduction

https://doi.org/10.1007/978-3-030-92686-1_4
https://doi.org/10.1007/978-3-030-92686-1_5
https://doi.org/10.1007/978-3-030-92686-1_6
https://doi.org/10.1007/978-3-030-92686-1_7
https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_9

5

detailed discussion and analysis about the structure and components of the Java
Web services is provided at the beginning of this chapter. Each Web service con-
tains different operations that can be used to access different databases and per-
form the desired data actions such as Select, Insert, Update, and Delete via the
Internet. To consume those Web services, different Web service client projects
are also developed in this chapter. Both Windows-based and Web-based Web
service client projects are discussed and built for each kind of Web service listed
above. Totally twelve (12) projects, including the Web service projects and the
associated Web service client projects, are developed in this chapter. All projects
have been debugged and tested and can be run in any Windows compatible oper-
ating systems such as Windows 10.

1.4 How This Book Is Organized and How to Use This Book

This book is designed for both college students who are new to database program-
ming with Java and professional database programmers who have some experience
on this topic.

Chapters 2 and 3 provide the fundamentals on database structures and compo-
nents, JDBC API, and related components. Chapter 4 covers an introduction to
JDBC design and application considerations. Chapter 5 provides a detailed intro-
duction to Apache NetBeans IDE 12 and its working environment with some actual
project examples. Starting from Chaps. 6 and 7, the runtime object method is intro-
duced with detailed coding developments for some real projects to perform different
data actions against our sample SQL Server database, such as data query, data inser-
tion, data updating, and deleting. All projects discussed in these two chapters belong
to Java Ant Applications or Java Desktop database applications.

Chapters 8 and 9 give a full discussion and analysis about the developments and
implementations of Java Web applications and Web services. These technologies
are necessary to students and programmers who want to develop and build Web
applications and Web services to access and manipulate data via Internet.

Based on the organization of this book as we described above, this book can be
used as two categories, such as Level I and Level II, which are shown in Fig. 1.1, in
the following ways.

• For undergraduate college students or beginning software programmers, it is
highly recommended to learn and understand the contents of Chaps. 2, 3, 4, 5, 6
and 7 since those are fundamental knowledge and techniques used in database
programming with Java. For Chaps. 8 and 9, they are optional to instructors and
depend on the time and schedule.

• For experienced college students or software programmers who have already had
some knowledge and techniques in database programming and Java language, it
is highly recommended to learn and understand the contents of Chaps. 4, 5, 6, 7,
8 and 9 since the run-time data objects method and some sophisticated Web

1.4 How This Book Is Organized and How to Use This Book

https://doi.org/10.1007/978-3-030-92686-1_2
https://doi.org/10.1007/978-3-030-92686-1_3
https://doi.org/10.1007/978-3-030-92686-1_4
https://doi.org/10.1007/978-3-030-92686-1_5
https://doi.org/10.1007/978-3-030-92686-1_6
https://doi.org/10.1007/978-3-030-92686-1_7
https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_9
https://doi.org/10.1007/978-3-030-92686-1_2
https://doi.org/10.1007/978-3-030-92686-1_3
https://doi.org/10.1007/978-3-030-92686-1_4
https://doi.org/10.1007/978-3-030-92686-1_5
https://doi.org/10.1007/978-3-030-92686-1_6
https://doi.org/10.1007/978-3-030-92686-1_7
https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_9
https://doi.org/10.1007/978-3-030-92686-1_4
https://doi.org/10.1007/978-3-030-92686-1_5
https://doi.org/10.1007/978-3-030-92686-1_6
https://doi.org/10.1007/978-3-030-92686-1_7
https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_9

6

 database programming techniques such as Java RowSet object, Callable
Statements, stored procedures, Java Beans, JSP and EJB are discussed and illus-
trated with real examples.

1.5 How to Use the Source Codes and the Sample Database

All source codes of each real class project developed in this book are available. All
projects are categorized into the associated chapters that are located at the folder
Class DB Projects that is located under the Students folder at the Springer ftp site
https://doi.org/10.1007/978-3-031-06553-8_1. You can copy or download those
codes into your computer and run each project as you like. To successfully run those
projects on your computer, the following conditions must be met:

• Apache NetBeans IDE 12, JDBC 8, and JDK 14 must be installed in your com-
puter for all projects categorized in Chaps. 2, 3, 4, 5, 6 and 7. NetBeans IDE 8.2,
JDBC 4.2, and JDK 8 must be installed in your computer for all projects catego-
rized in Chaps. 8 and 9.

• A SQL Server database management systems, Microsoft SQL Server
Management Studio 18, must be installed in your computer.

Chapter 2

Chapter 3

Chapter 5

Chapter 6

Chapter 8

Chapter 9

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Optional

Level I

Level II

Chapter 7

Chapter 4

Chapter 4

Fig. 1.1 Two possible teaching levels used for this book

1 Introduction

https://doi.org/10.1007/978-3-030-92686-1_2
https://doi.org/10.1007/978-3-030-92686-1_3
https://doi.org/10.1007/978-3-030-92686-1_4
https://doi.org/10.1007/978-3-030-92686-1_5
https://doi.org/10.1007/978-3-030-92686-1_6
https://doi.org/10.1007/978-3-030-92686-1_7
https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_9

7

• A sample SQL Server database, CSE_DEPT.mdf, must be installed in your com-
puter in the appropriate folder. Refer to Appendix D to get more details about
how to use this sample database.

• To run projects developed in Chaps. 8 and 9, in addition to conditions listed
above, a Web server such as Glassfish v4 and a J2EE must be installed in your
computer.

The following appendices are useful when one needs some references and practi-
cal knowledge to install database management systems and develop actual database
application projects:

Appendix A: Install and Configure SQL Server 2019 Express Database and SQL
Server Management Studio

Appendix B: Download and Install JDK 14 and Apache NetBeans IDE 12
Appendix C: Download and Install DevExpress .NET UI Controls
Appendix D: How to Use Sample Database
Appendix E: Data Type Mappings Between SQL Statements and Java Applications
Appendix F: Download and Install Java JDK 8
Appendix G: Download and Install JDBC 4.2
Appendix H: Download and Install NetBeans IDE 8.2 and Glassfish Server
Appendix I: Modify the HTTP Port Number for Tomcat Server

All of these appendices can be found from a folder Appendix that is located
under the Students folder at the Springer ftp site https://doi.
org/10.1007/978-3-031-06553-8_1.

A sample database file, CSE_DEPT.mdf, is located at a folder Sample Database
that is located under the Students folder at the Springer ftp site https://doi.
org/10.1007/978-3-031-06553-8_1. To use these databases for your applications or
sample projects, refer to Appendix D.

The detailed distributions of above teaching and learning materials located at the
Springer ftp site are shown in Fig. 1.2 on next page. Refer to that figure to get more
details about them.

1.6 Instructors Materials and Customers Supports

All teaching materials for all chapters have been extracted and represented by a
sequence of Microsoft PowerPoint files, each file for one chapter. The interested
instructors can find those teaching materials from a folder Teaching PPT, which is
located under the Instructors folder at the Springer ftp site sn.pub/lecturer-material.
These teaching materials are password protected and only available to instructors
who adopted this book as their textbook. All of these materials can be requested
from the book’s listing on the Springer ftp site sn.pub/lecturer-material.

The homework solutions are provided and they are divided into two parts:
Project Solutions and Question Solutions. At the end of each chapter, a related

1.6 Instructors Materials and Customers Supports

https://doi.org/10.1007/978-3-030-92686-1_8
https://doi.org/10.1007/978-3-030-92686-1_9
sn.pub/lecturer-material.
sn.pub/lecturer-material

8

homework is assigned with two parts: Question Answering part and Project
Development part. Therefore the solutions are also divided into two parts. For solu-
tions to Question part, they are located under a folder HW Question Solutions, and
for solutions to Project part, they are located under a folder HW DB Project
Solutions. Both folders are under a folder Instructors located at the Springer ftp
site. The selected homework solutions are available upon request from the book’s
listing on Springer ftp site sn.pub/lecturer-material.

The Book Related Materials on the Web Sites

FOR INSTRUCTORS:

Instructor materials are available upon request from the book’s listing on sn.pub/lecturer-material

FOR STUDENTS:

https://doi.org/10.1007/978-3-031-06553-8_1

CSE_DEPT.mdf

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Class DB Projects Teaching PPT

Chapter 1.ppt

Chapter 2.ppt

Chapter 3.ppt

Chapter 4.ppt

Chapter 5.ppt

Chapter 6.ppt

Chapter 7.ppt

Chapter 8.ppt

HW Solution.pdf

Chapter 2

Chapter 9.ppt

Images

14-Faculty

Images

8-Student

Images

Sample

Database

Appendix

2 Projects

3 Projects

3 Projects

12 Projects

9 Projects

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendix G

Appendix H

Appendix I

Chapter 9

1 Project

Faculty

Students

HW DB Project Solutions

HW Question Solutions

Chapter 5

1 Project

Chapter 6

Chapter 7

Chapter 8

Chapter 9

4 Projects

2 Projects

1 Project

4 Projects

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix HTML & JSP Pages

5 HTML Pages

Appendix G

Appendix H

Appendix I

CSE_DEPT.mdf

Sample Database Class DB Projects

Chapter 2

2 Projects

3 Projects

3 Projects

12 Projects

9 Projects

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

1 Project

Images

14-Faculty

Images

8-Student

Images

Faculty

Students

5 JSP Pages

Fig. 1.2 Book-related materials on the web sites

1 Introduction

sn.pub/lecturer-material.

9

E-mail support is available to all readers of this book. When you send e-mail to
us, please provide the following information:

• The detailed description about your problems, including the error message and
debug message as well as the error or debug number if it is provided.

• Your name, job title, and company name.

Please send all questions to the e-mail address: ybai@jcsu.edu.

1.6 Instructors Materials and Customers Supports

ybai@jcsu.edu

11© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_2

Chapter 2
Introduction to Databases

Databases have become an integral part of our modern-day life. Today we are an
information-driven society. Large amounts of data are generated, analyzed, and con-
verted into different information at each moment. A recent example of biological
data generation is the Human Genome project that was jointly sponsored by the
Department of Energy (DOE) and the National Institute of Health (NIH). Many
countries participated in this venture for more than ten years. The project was a
tremendous success. It was completed in 2003 and resulted in generation of huge
amount of genome data, currently stored in databases around the world. The scien-
tists will be analyzing this data in years to come.

Database technology has a direct impact on our daily lives. Decisions are rou-
tinely made by organizations based on the information collected and stored in the
databases. A record company may decide to market certain albums in selected
regions based on the music preference of teenagers. Grocery stores display more
popular items at the eye level, and reorders are based on the inventories taken at
regular intervals. Other examples include book orders by the libraries, club mem-
berships, auto part orders, winter cloth stock by department stores, and many others.

Database management programs have been in existence since the sixties.
However, it was not until the seventies when E. F. Codd proposed the then revolu-
tionary Relational Data Model that database technology really took off. In the early
eighties it received a further boost with the arrival of personal computers and
microcomputer- based data management programs like dBase II (later followed by
dBase III and IV). Today we have a plethora of vastly improved programs for PCs
and mainframe computers, including Microsoft Access, SQL Server, IBM DB2,
Oracle, Sequel Server, MySQL, and others.

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_2].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06553-8_2&domain=pdf
https://doi.org/10.1007/978-3-031-06553-8_2

12

This chapter covers the basic concepts of database design followed by the imple-
mentation of a specific relational database to illustrate the concepts discussed here.
The sample database, CSE_DEPT, is used as a running example. The database
creation is shown in detail by using Microsoft Access and Microsoft SQL Server.
The topics discussed in this chapter include:

• What are databases and database programs?

 – File Processing System
 – Integrated Databases

• Various approaches to developing a Database
• Relational Data Model and Entity-Relationship Model (ER)
• Identifying Keys

 – Primary Keys, Foreign Keys, and Referential Integrity
• Defining Relationships
• Normalizing the Data
• Implementing the Relational Sample Database

 – Create Microsoft SQL Server 2019 Express Sample Database

2.1 What Are Databases and Database Programs?

A modern-day database is a structured collection of data stored in a computer. The
term structured implies that each record in the database is stored in a certain format.
For example, all entries in a phone book are arranged in a similar fashion. Each
entry contains a name, an address, and a telephone number of a subscriber. This
information can be queried and manipulated by database programs. The data
retrieved in answer to queries become information that can be used to make deci-
sions. The databases may consist of a single table or related multiple tables. The
computer programs used to create, manage, and query databases are known as a
DataBase Management Systems (DBMS). Just like the databases the DBMSs vary
in complexity. Depending on the need of a user one can use either a simple applica-
tion or a robust program. Some examples of these programs were given earlier.

2.1.1 File Processing System

File Processing System (FPS) is a precursor of the integrated database approach.
The records for a particular application are stored in a file. An application program
is needed to retrieve or manipulate data in this file. Thus various departments in an
organization will have their own file processing systems with their individual pro-
grams to store and retrieve data. The data in various files may be duplicated and not
available to other applications. This causes redundancy and may lead to inconsis-
tency meaning that various files that supposedly contain the same information may

2 Introduction to Databases

13

actually contain different data values. Thus duplication of data creates problems
with data integrity. Moreover, it is difficult to provide access to multiple users with
the file processing systems without granting them access to the respective applica-
tion programs, which manipulate the data in those files.

The FPS may be advantageous under certain circumstances. For example, if data
is static and a simple application will solve the problem, a more expensive DBMS
is not needed. For example, in a small business environment you want to keep track
of the inventory of the office equipment purchased only once or twice a year. The
data can be kept in an Excel spreadsheet and manipulated with ease from time to
time. This avoids the need to purchase an expensive database program, and hiring a
knowledgeable database administrator. Before the DBMSs became popular, the
data was kept in files and application programs were developed to delete, insert, or
modify records in the files. Since specific application programs were developed for
specific data, these programs lasted for months or years before modifications were
necessitated by business needs.

2.1.2 Integrated Databases

A better alternative to a file processing system is an integrated database approach.
In this environment all data belonging to an organization is stored in a single data-
base. The database is not a mere collection of files, there is a relation between the
files. Integration implies a logical relationship, usually provided through a common
column in the tables. The relationships are also stored within the database. A set of
sophisticated programs known as Database Management System (DBMS) is used to
store, access, and manipulate the data in the database. Details of data storage and
maintenance are hidden from the user. The user interacts with the database through
the DBMS. A user may interact either directly with the DBMS or via a program
written in a programming language such as Visual C++, Java, Visual Basic, or Visual
C#. Only the DBMS can access the database. Large organizations employ Database
Administrators (DBAs) to design and maintain large databases.

There are many advantages to using an integrated database approach over that of
a file processing approach:

 1. Data sharing: The data in the database is available to a large number of users
who can access the data simultaneously and create reports, manipulate the data
given proper authorization and rights.

 2. Minimizing data redundancy: Since all the related data exists in a single data-
base, there is a minimal need of data duplication. The duplication is needed to
maintain relationship between various data items.

 3. Data consistency and data integrity: Reducing data redundancy will lead to
data consistency. Since data is stored in a single database, enforcing data integ-
rity becomes much easier. Furthermore, the inherent functions of the DBMS can
be used to enforce the integrity with minimum programming.

2.1 What Are Databases and Database Programs?

14

 4. Enforcing standards: DBAs are charged with enforcing standards in an organi-
zation. DBA takes into account the needs of various departments and balances it
against the overall need of the organization. DBA defines various rules such as
documentation standards, naming conventions, update and recovery procedures,
etc. It is relatively easy to enforce these rules in a Database System, since it is a
single set of programs which is always interacting with the data files.

 5. Improving security: Security is achieved through various means such as con-
trolling access to the database through passwords, providing various levels of
authorizations, data encryption, providing access to restricted views of the data-
base, etc.

 6. Data independence: Providing data independence is a major objective for any
database system. Data independence implies that even if the physical structure of
a database changes the applications are allowed to access the database as before
the changes were implemented. In other words the applications are immune to
the changes in the physical representation and access techniques.

The downside of using an integrated database approach has mainly to do with
exorbitant costs associated with it. The hardware, the software, and the maintenance
are expensive. Providing security, concurrency, integrity, and recovery may add fur-
ther to this cost. Furthermore, since DBMS consists of a complex set of programs,
trained personnel are needed to maintain it.

2.2 Develop a Database

Database development process may follow a classical Systems Development
Life Cycle.

 1. Problem Identification – Interview the user, identify user requirements. Perform
preliminary analysis of user needs.

 2. Project Planning – Identify alternative approaches to solving the problem. Does
the project need a database? If so define the problem. Establish scope of the
project.

 3. Problem Analysis – Identify specifications for the problem. Confirm the feasi-
bility of the project. Specify detailed requirements

 4. Logical Design – Delineate detailed functional specifications. Determine screen
designs, report layout designs, data models, etc.

 5. Physical Design – Develop physical data structures.
 6. Implementation – Select DBMS. Convert data to conform to DBMS require-

ments. Code programs; perform testing.
 7. Maintenance – Continue program modification until desired results are

achieved.

An alternative approach to developing a database is through a phased process
which will include designing a conceptual model of the system that will imitate the

2 Introduction to Databases

15

real-world operation. It should be flexible and change when the information in the
database changes. Furthermore, it should not be dependent upon the physical imple-
mentation. This process follows the steps shown below:

 1. Planning and Analysis – This phase is roughly equivalent to the first three steps
mentioned above in the Systems Development Life Cycle. This includes
 requirement specifications, evaluating alternatives, determining input, output,
and reports to be generated.

 2. Conceptual Design – Choose a data model and develop a conceptual schema
based on the requirement specification that was laid out in the planning and
analysis phase. This conceptual design focuses on how the data will be organized
without having to worry about the specifics of the tables, keys, and attributes.
Identify the entities that will represent tables in the database; identify attributes
that will represent fields in a table; and identify each entity attribute relationship.
Entity-relationship diagrams provide a good representation of the concep-
tual design.

 3. Logical Design – Conceptual design is transformed into a logical design by
creating a roadmap of how the database will look before actually creating the
database. Data model is identified; usually it is the relational model. Define the
tables (entities) and fields (attributes). Identify primary and foreign key for each
table. Define relationships between the tables.

 4. Physical Design – Develop physical data structures; specify file organization,
and data storage, etc. Take into consideration the availability of various resources
including hardware and software. This phase overlaps with the implementation
phase. It involves the programming of the database taking into account the limi-
tations of the DBMS used.

 5. Implementation – Choose the DBMS that will fulfill the user needs. Implement
the physical design. Perform testing. Modify if necessary or until the database
functions satisfactorily.

2.3 Sample Database

We will use a sample database CSE_DEPT to illustrate some essential database
concepts. Tables 2.1, 2.2, 2.3, 2.4 and 2.5 show sample data tables stored in this
database.

The data in CSE_DEPT database is stored in five tables – LogIn, Faculty, Course,
Student, and StudentCourse. A table consists of rows and columns (Fig. 2.1). A row
represents a record and a column represents a field. A row is called a tuple and a
column is called an attribute. For example, Student table has seven columns or
fields – student_id, name, gpa, major, schoolYear, and email. It has five records
or rows.

2.3 Sample Database

16

Table 2.1 LogIn table

user_name pass_word faculty_id student_id

abrown america B66750
ajade tryagain A97850
awoods smart A78835
banderson birthday A52990
bvalley see B92996
dangles tomorrow A77587
hsmith try H10210
terica excellent T77896
jhenry test H99118
jking goodman K69880
dbhalla india B86590
sjohnson jermany J33486
ybai come B78880

Table 2.2 Faculty table

faculty_
id

faculty_
name title office phone college email fimage

A52990 Black
Anderson

Professor MTC-
218

750-
378-
9987

Virginia Tech banderson@
college.edu

NULL

A77587 Debby
Angles

Associate
Professor

MTC-
320

750-
330-
2276

University of
Chicago

dangles@
college.edu

NULL

B66750 Alice
Brown

Assistant
Professor

MTC-
257

750-
330-
6650

University of
Florida

abrown@
college.edu

NULL

B78880 Ying Bai Associate
Professor

MTC-
211

750-
378-
1148

Florida
Atlantic
University

ybai@college.
edu

NULL

B86590 Davis
Bhalla

Associate
Professor

MTC-
214

750-
378-
1061

University of
Notre Dame

dbhalla@
college.edu

NULL

H99118 Jeff Henry Associate
Professor

MTC-
336

750-
330-
8650

Ohio State
University

jhenry@
college.edu

NULL

J33486 Steve
Johnson

Distinguished
Professor

MTC-
118

750-
330-
1116

Harvard
University

sjohnson@
college.edu

NULL

K69880 Jenney
King

Professor MTC-
324

750-
378-
1230

East Florida
University

jking@
college.edu

NULL

2 Introduction to Databases

banderson@college.edu
banderson@college.edu
dangles@college.edu
dangles@college.edu
abrown@college.edu
abrown@college.edu
ybai@college.edu
ybai@college.edu
dbhalla@college.edu
dbhalla@college.edu
jhenry@college.edu
jhenry@college.edu
sjohnson@college.edu
sjohnson@college.edu
jking@college.edu
jking@college.edu

17

Table 2.3 Course table

course_
id course credit classroom schedule enrollment

faculty_
id

CSC-
131A

Computers in Society 3 MTC-109 M-W-F:
9:00-9:55 AM

28 A52990

CSC-
131B

Computers in Society 3 MTC-114 M-W-F:
9:00-9:55 AM

20 B66750

CSC-
131C

Computers in Society 3 MTC-109 T-H: 11:00-12:25
PM

25 A52990

CSC-
131D

Computers in Society 3 MTC-109 M-W-F:
9:00-9:55 AM

30 B86590

CSC-
131E

Computers in Society 3 MTC-301 M-W-F:
1:00-1:55 PM

25 B66750

CSC-
131I

Computers in Society 3 MTC-109 T-H: 1:00-2:25
PM

32 A52990

CSC-
132A

Introduction to
Programming

3 MTC-303 M-W-F:
9:00-9:55 AM

21 J33486

CSC-
132B

Introduction to
Programming

3 MTC-302 T-H: 1:00-2:25
PM

21 B78880

CSC-230 Algorithms &
Structures

3 MTC-301 M-W-F:
1:00-1:55 PM

20 A77587

CSC-
232A

Programming I 3 MTC-305 T-H: 11:00-12:25
PM

28 B66750

CSC-
232B

Programming I 3 MTC-303 T-H: 11:00-12:25
PM

17 A77587

CSC-
233A

Introduction to
Algorithms

3 MTC-302 M-W-F:
9:00-9:55 AM

18 H99118

CSC-
233B

Introduction to
Algorithms

3 MTC-302 M-W-F:
11:00-11:55 AM

19 K69880

CSC-
234A

Data Structure &
Algorithms

3 MTC-302 M-W-F:
9:00-9:55 AM

25 B78880

CSC-
234B

Data Structure &
Algorithms

3 MTC-114 T-H: 11:00-12:25
PM

15 J33486

CSC-242 Programming II 3 MTC-303 T-H: 1:00-2:25
PM

18 A52990

CSC-320 Object Oriented
Programming

3 MTC-301 T-H: 1:00-2:25
PM

22 B66750

CSC-331 Applications
Programming

3 MTC-109 T-H: 11:00-12:25
PM

28 H99118

CSC-
333A

Computer Arch &
Algorithms

3 MTC-301 M-W-F:
10:00-10:55 AM

22 A77587

CSC-
333B

Comp Arch &
Algorithms

3 MTC-302 T-H: 11:00-12:25
PM

15 A77587

CSC-335 Internet Programming 3 MTC-303 M-W-F:
1:00-1:55PM

25 B66750

CSC-432 Discrete Algorithms 3 MTC-206 T-H: 11:00-12:25
PM

20 B86590

(continued)

2.3 Sample Database

18

Table 2.3 (continued)

course_
id course credit classroom schedule enrollment

faculty_
id

CSC-439 Database Systems 3 MTC-206 M-W-F:
1:00-1:55 PM

18 B86590

CSE-
138A

Introduction to CSE 3 MTC-301 T-H: 1:00-2:25
PM

15 A52990

CSE-
138B

Introduction to CSE 3 MTC-109 T-H: 1:00-2:25
PM

35 J33486

CSE-330 Digital Logic Circuits 3 MTC-305 M-W-F:
9:00-9:55 AM

26 K69880

CSE-332 Foundation of
Semiconductor

3 MTC-305 T-H: 1:00-2:25
PM

24 K69880

CSE-334 Elec. Measurement &
Design

3 MTC-212 T-H: 11:00-12:25
PM

25 H99118

CSE-430 Bioinformatics in
Computer

3 MTC-206 Thu: 9:30-11:00
AM

16 B86590

CSE-432 Analog Circuits Design 3 MTC-309 M-W-F:
2:00-2:55 PM

18 K69880

CSE-433 Digital Signal
Processing

3 MTC-206 T-H: 2:00-3:25
PM

18 H99118

CSE-434 Advanced Electronic
Systems

3 MTC-213 M-W-F:
1:00-1:55 PM

26 B78880

CSE-436 Automatic Control &
Design

3 MTC-305 M-W-F:
10:00-10:55 AM

29 J33486

CSE-437 Operating Systems 3 MTC-303 T-H: 1:00-2:25
PM

17 A77587

CSE-438 Adv Logic &
Microprocessor

3 MTC-213 M-W-F:
11:00-11:55 AM

35 B78880

CSE-439 Special Topics in CSE 3 MTC-206 M-W-F:
10:00-10:55 AM

22 J33486

Table 2.4 Student table

student_
id

student_
name gpa credits major schoolYear email simage

A78835 Andrew
Woods

3.26 108 Computer Science Senior awoods@
college.edu

NULL

A97850 Ashly Jade 3.57 116 Info System
Engineering

Junior ajade@college.
edu

NULL

B92996 Blue Valley 3.52 102 Computer Science Senior bvalley@
college.edu

NULL

H10210 Holes
Smith

3.87 78 Computer
Engineering

Sophomore hsmith@
college.edu

NULL

T77896 Tom Erica 3.95 127 Computer Science Senior terica@
college.edu

NULL

2 Introduction to Databases

awoods@college.edu
awoods@college.edu
ajade@college.edu
ajade@college.edu
bvalley@college.edu
bvalley@college.edu
hsmith@college.edu
hsmith@college.edu
terica@college.edu
terica@college.edu

19

2.3.1 Relational Data Model

Data model is like a blueprint for developing a database. It describes the structure of
the database and various data relationships and constraints on the data. This infor-
mation is used in building tables, keys, and defining relationships. Relational model
implies that a user perceives the database as made up of relations, a database jargon
for tables. It is imperative that all data elements in the tables are represented cor-
rectly. In order to achieve these goals designers use various tools. The most com-
monly used tool is Entity-Relationship Model (ER). A well-planned model will give
consistent results and will allow changes if needed later on. Following section fur-
ther elaborates on the ER model.

Table 2.5 StudentCourse table

s_course_id student_id course_id credit major

1000 H10210 CSC-131D 3 CE
1001 B92996 CSC-132A 3 CS/IS
1002 T77896 CSC-335 3 CS/IS
1003 A78835 CSC-331 3 CE
1004 H10210 CSC-234B 3 CE
1005 T77896 CSC-234A 3 CS/IS
1006 B92996 CSC-233A 3 CS/IS
1007 A78835 CSC-132A 3 CE
1008 A78835 CSE-432 3 CE
1009 A78835 CSE-434 3 CE
1010 T77896 CSC-439 3 CS/IS
1011 H10210 CSC-132A 3 CE
1012 H10210 CSC-331 2 CE
1013 A78835 CSC-335 3 CE
1014 A78835 CSE-438 3 CE
1015 T77896 CSC-432 3 CS/IS
1016 A97850 CSC-132B 3 ISE
1017 A97850 CSC-234A 3 ISE
1018 A97850 CSC-331 3 ISE
1019 A97850 CSC-335 3 ISE
1020 T77896 CSE-439 3 CS/IS
1021 B92996 CSC-230 3 CS/IS
1022 A78835 CSE-332 3 CE
1023 B92996 CSE-430 3 CE
1024 T77896 CSC-333A 3 CS/IS
1025 H10210 CSE-433 3 CE
1026 H10210 CSE-334 3 CE
1027 B92996 CSC-131C 3 CS/IS
1028 B92996 CSC-439 3 CS/IS

2.3 Sample Database

20

2.3.2 Entity-Relationship Model (ER)

ER model was first proposed and developed by Peter Chen in 1976. Since then
Charles Bachman and James Martin have added some refinements the model was
designed to communicate the database design in the form of a conceptual schema.
The ER model is based on the perception that the real world is made up of entities,
their attributes, and relationships. The ER model is graphically depicted as Entity-
Relationship diagrams (ERD). ERDs are a major modeling tool; they graphically
describe the logical structure of the database. ER diagrams can be used with ease to
construct the relational tables and are a good vehicle for communicating the data-
base design to the end user or a developer. The three major components of ERD are
entities, relationships, and attributes.

Entities An entity is a data object, either real or abstract, about which we want to
collect information. For example we may want to collect information about a per-
son, a place, or a thing. An entity in an ER diagram translates into a table. It should
preferably be referred to as an entity set. Some common examples are departments,
courses, and students. A single occurrence of an entity is an instance. There are four
entities in the CSE_Dept database, LogIn, Faculty, Course, and Student. Each entity
is translated into a table with the same name. An instance of the Faculty entity will
be Alice Brown and her attributes.

Relationships A database is made up of related entities. There is a natural associa-
tion between the entities; it is referred to as relationship. For example,

• Students take courses
• Departments offer certain courses
• Employees are assigned to departments

Table

ID Name Ages Address Phone

1000 Tom 36 220 Ave 549-0507

Jim1002 58 101 Main 678-1002

Jeff2010 49 25 Court 678-3211

Kim

Record

23 43 Route 202-55873090

Field

Database

Fig. 2.1 Records and fields in a table

2 Introduction to Databases

21

The number of occurrences of one entity associated with single occurrence of a
related entity is referred to as cardinality.

Attributes Each entity has properties or values called attributes associated with it.
The attributes of an entity map into fields in a table. Database Processing is one
attribute of an entity called Courses. The domain of an attribute is a set of all pos-
sible values from which an attribute can derive its value.

2.4 Identifying Keys

Primary Key and Entity Integrity
An attribute that uniquely identifies one and only one instance of an entity is called
a primary key. Sometimes a primary key consists of a combination of attributes. It
is referred to as a composite key. Entity integrity rule states that no attribute that is a
member of the primary (composite) key may accept a null value.

A faculty_id may serve as a primary key for the Faculty entity, assuming that all
faculty members have been assigned a unique FaultyID. However, caution must be
exercised when picking an attribute as a primary key. Last Name may not make a
good primary key because a department is likely to have more than one person with
the same last name. Primary keys for the CSE_DEPT database are shown in
Table 2.6.

Primary keys provide a tuple level addressing mechanism in the relational data-
bases. Once you define an attribute as a primary key for an entity, the DBMS will
enforce the uniqueness of the primary key. Inserting a duplicate value for primary
key field will fail.

Candidate Key
There can be more than one attribute which uniquely identifies an instance of an
entity. These are referred to as candidate keys. Any one of them can serve as a pri-
mary key. For example, ID Number as well as Social Security Number may make a
suitable primary key. Candidate keys that are not used as primary key are called
alternate keys.

Foreign Keys and Referential Integrity
Foreign keys are used to create relationships between tables. It is an attribute in one
table whose values are required to match those of primary key in another table.
Foreign keys are created to enforce referential integrity which states that you may
not add a record to a table containing a foreign key unless there is a corresponding
record in the related table to which it is logically linked. Furthermore, the referential
integrity rule also implies that every value of foreign key in a table must match the
primary key of a related table or be null. MS Access also makes provision for cas-
cade update and cascade delete

which imply that changes made in one of the related tables will be reflected in the
other of the two related tables.

2.4 Identifying Keys

22

Consider two tables Course and Faculty in the sample database, CSE_DEPT. The
Course table has a foreign key entitled faculty_id which is primary key in the
Faculty table. The two tables are logically related through the faculty_id link.
Referential integrity rules imply that we may not add a record to the Course table
with a faculty_id which is not listed in the Faculty table. In other words there must
be a logical link between the two related tables. Secondly, if we change or delete a
faculty_id in the Faculty table it must reflect in the Course table meaning that all
records in the Course table must be modified using a cascade update or cascade
delete (Tables 2.7).

2.5 Define Relationships

Connectivity
Connectivity refers to the types of relationships that entities can have. Basically, it
can be one-to-one, one-to-many, and many-to-many. In ER diagrams these are indi-
cated by placing 1, M, or N at one of the two ends of the relationship diagram.
Figures 2.2, 2.3, 2.4 and 2.5 illustrate the use of this notation.

Table 2.6 Faculty table

faculty_
id

faculty_
name title office phone college email fimage

A52990 Black
Anderson

Professor MTC-
218

750-
378-
9987

Virginia Tech banderson@
college.edu

NULL

A77587 Debby
Angles

Associate
Professor

MTC-
320

750-
330-
2276

University of
Chicago

dangles@
college.edu

NULL

B66750 Alice
Brown

Assistant
Professor

MTC-
257

750-
330-
6650

University of
Florida

abrown@
college.edu

NULL

B78880 Ying Bai Associate
Professor

MTC-
211

750-
378-
1148

Florida
Atlantic
University

ybai@college.
edu

NULL

B86590 Davis
Bhalla

Associate
Professor

MTC-
214

750-
378-
1061

University of
Notre Dame

dbhalla@
college.edu

NULL

H99118 Jeff Henry Associate
Professor

MTC-
336

750-
330-
8650

Ohio State
University

jhenry@
college.edu

NULL

J33486 Steve
Johnson

Distinguished
Professor

MTC-
118

750-
330-
1116

Harvard
University

sjohnson@
college.edu

NULL

K69880 Jenney
King

Professor MTC-
324

750-
378-
1230

East Florida
University

jking@
college.edu

NULL

2 Introduction to Databases

banderson@college.edu
banderson@college.edu
dangles@college.edu
dangles@college.edu
abrown@college.edu
abrown@college.edu
ybai@college.edu
ybai@college.edu
dbhalla@college.edu
dbhalla@college.edu
jhenry@college.edu
jhenry@college.edu
sjohnson@college.edu
sjohnson@college.edu
jking@college.edu
jking@college.edu

23

• A one-to-one (1:1) relationship occurs when one instance of entity A is related
to only one instance of entity B. For example, user_name in the LogIn table and
user_name in the Student table (Fig. 2.2).
A one-to-many (1:M) relationship occurs when one instance of entity A is asso-
ciated with zero, one, or many instances of entity B. However, entity B is associ-
ated with only one instance of entity A. For example, one department can have
many faculty members; each faculty member is assigned to only one department.
In CSE_DEPT database, one-to-many relationship is represented by faculty_id
in the Faculty table and faculty_id in the Course table, student_id in the Student
table and student_id in the StudentCourse table, course_id in the Course table,
and course_id in the StudentCourse table (Fig. 2.3).

user_name gpa credits student_id
ajade 3.26 108 A97850

awoods 3.57 116 A78835

bvalley 3.52 102 B92996

hsmith 3.87 78 H10210

terica 3.95 127 J77896

user_name pass_word
ajade tryagain

awoods smart

bvalley see

hsmith try

terica excellent

LogIn Student

Fig. 2.2 One-to-one relationship in the LogIn and the Student tables

Table 2.7 Course (Partial data shown), Faculty (Partial data shown)

Course (Partial data shown)
course_id course faculty_id
CSC-132A Introduction to Programming J33486
CSC-132B Introduction to Programming B78880
CSC-230 Algorithms & Structures A77587
CSC-232A Programming I B66750
CSC-232B Programming I A77587
CSC-233A Introduction to Algorithms H99118
CSC-233B Introduction to Algorithms K69880
CSC-234A Data Structure & Algorithms B78880

Faculty (Partial data shown)
faculty_id faculty_name office
A52990 Black Anderson MTC-218
A77587 Debby Angles MTC-320
B66750 Alice Brown MTC-257
B78880 Ying Bai MTC-211
B86590 Davis Bhalla MTC-214
H99118 Jeff Henry MTC-336
J33486 Steve Johnson MTC-118
K69880 Jenney King MTC-324

2.5 Define Relationships

24

• A many-to-many (M:N) relationship occurs when one instance of entity A is
associated with zero, one, or many instances of entity B. And one instance of
entity B is associated with zero, one, or many instances of entity A. For example,
a student may take many courses and one course may be taken by more than one
student, as shown in Fig. 2.4.

In CSE_DEPT database, a many-to-many relationship can be realized by using
the third table. For example, in this case, the StudentCourse that works as the third
table, set a many-to-many relationship between the Student and the Course tables.

This database design assumes that the course table only contains courses taught
by all faculty members in this department for one semester. Therefore each course
can only be taught by a unique faculty. If one wants to develop a Course table that
contains courses taught by all faculty in more than one semester, the third table, say

faculty_id faculty_name office
A52990 Black Anderson MTC-218

A77587 Debby Angles MTC-320

B66750 Alice Brown MTC-257

B78880 Ying Bai MTC-211

B86590 Davis Bhalla MTC-214

H99118 Jeff Henry MTC-336

J33486 Steve Johnson MTC-118

K69880 Jenney King MTC-324

course_id course faculty_id
CSC-132A Introduction to Programming J33486

CSC-132B Introduction to Programming B78880

CSC-230 Algorithms & Structures A77587

CSC-232A Programming I B66750

CSC-232B Programming I A77587

CSC-233A Introduction to Algorithms H99118

CSC-233B Introduction to Algorithms K69880

CSC-234A Data Structure & Algorithms B78880

Faculty Course

Fig. 2.3 One-to-many relationship between Faculty and Course tables

Course

student_id student_name gpa credits
A78835 Andrew

Woods

3.26 108

A97850 Ashly Jade 3.57 116

B92996 Blue Valley 3.52 102

H10210 Holes Smith 3.87 78

T77896 Tom Erica 3.95 127

course_id course faculty_id
CSC-132A Introduction to

Programming

J33486

CSC-132B Introduction to

Programming

B78880

CSC-230 Algorithms & Structures A77587

CSC-232A Programming I B66750

CSC-232B Programming I A77587

CSC-233A Introduction to Algorithms H99118

s_course_id student_id course_id credit major
1000 H10210 CSC-131D 3 CE

1001 B92996 CSC-132A 3 CS/IS

1002 T77896 CSC-335 3 CS/IS

1003 A78835 CSC-331 3 CE

1004 H10210 CSC-234B 3 CE

1005 T77896 CSC-234A 3 CS/IS

1006 B92996 CSC-233A 3 CS/IS

Student

StudentCourse

Fig. 2.4 Many-to-many relationship between Student and Course tables

2 Introduction to Databases

25

FacultyCourse table, should be created to set up a many-to-many relationship
between the Faculty and the Course table since one course may be taught by the
different faculty for the different semester.

The relationships in CSE_DEPT database are summarized in Fig. 2.5.
Database name: CSE_DEPT
Five entities are:

• LogIn
• Faculty
• Course
• Student
• StudentCourse

The relationships between these entities are shown below. P.K. and F.K. repre-
sent the primary key and the foreign key respectively.

Figure 2.6 displays the Microsoft Access relationships diagram among various
tables in the CSE_Dept database. One-to-many relationships is indicated by placing
1 at one end of the link and ∞ at the other. The many-to-many relationship between
the Student and the Course table was broken down to two one- to-many relation-
ships by creating a new StudentCourse table.

2.6 ER Notation

There are a number of ER notations available including Chen’s, Bachman, Crow’s
foot, and a few others. There is no consensus on the symbols and the styles used to
draw ERD’s. A number of drawing tools are available to draw ERDs. These include

one-to-many

user_name pass_word faculty_id student_id faculty_id name office college

student_id name major gpa course_id course credits

s_course_id

faculty_id

student_id course_id

P.K. P.K.

P.K. P.K.

P.K.

F.K. F.K.

F.K.

F.K. F.K.

one-to-many

one-to-many

many-to-many

one-to-many

one-to-many

Student Table
Course Table

Faculty Table LogIn Table

StudentCourse Table

Fig. 2.5 Relationships in CSE_DEPT database

2.6 ER Notation

26

ER Assistant, Microsoft Visio, and Smart Draw, among others. Commonly used
notations are shown in Fig. 2.7.

2.7 Data Normalization

After identifying tables, attributes, and relationships the next logical step in data-
base design is to make sure that the database structure is optimum. Optimum struc-
ture is achieved by eliminating redundancies, various inefficiencies, update and
deletion anomalies that usually occur in the unnormalized or partially normalized
databases. Data normalization is a progressive process. The steps in the normaliza-
tion process are called normal forms. Each normal form progressively improves the
database and makes it more efficient. In other words a database that is in second
normal form is better than the one in the first normal form, and the one in third nor-
mal form is better than the one in second normal form. To be in the third normal
form a database has to be in the first and second normal form. There are fourth and
fifth normal forms but for most practical purposes a database meeting the criteria of
third normal form is considered to be of good design.

Fig. 2.6 Relationships are illustrated using MS Access in the CSE_DEPT database

2 Introduction to Databases

27

2.7.1 First Normal Form (1NF)

A table is in first normal form if values in each column are atomic, that is there are
no repeating groups of data.

The following Faculty table (Table 2.8) is not normalized. Some faculty mem-
bers have more than one telephone number listed in the phone column. These are
called repeating groups.

In order to convert this table to the First Normal Form (INF), the data must be
atomic. In other words the repeating rows must be broken into two or more atomic
rows. Table 2.9 illustrates the Faculty table in 1NF where repeating groups have
been removed. Now it is in first normal form.

Fig. 2.7 Commonly used symbols for ER notation

2.7 Data Normalization

28

2.7.2 Second Normal Form (2NF)

A table is in second normal form if it is already in 1NF and every non-key column
is fully dependent upon the primary key.

This implies that if the primary key consists of a single column then the table in
1NF is automatically in 2NF. The second part of the definition implies that if the key
is composite then none of the non-key columns will depend upon just one of the
columns that participate in the composite key.

The Faculty table in Table 2.9 is in first normal form. However, it has a compos-
ite primary key, made up of faculty_id and office. The phone number depends on a
part of the primary key, the office, and not on the whole primary key. This can lead
to update and deletion anomalies mentioned above.

By splitting the old Faculty table (Fig. 2.8) into two new tables, Faculty and
Office, we can remove the dependencies mentioned earlier. Now the faculty table
has a primary key, faculty_id, and the Office table has a primary key, office. The
non-key columns in both tables now depend only on the primary keys only.

Table 2.8 Unnormalized Faculty table with repeating groups

faculty_id faculty_name office phone

A52990 Black Anderson MTC-218, SHB-205 750-378-9987, 555-255-8897
A77587 Debby Angles MTC-320 750-330-2276
B66750 Alice Brown MTC-257 750-330-6650
B78880 Ying Bai MTC-211, SHB-105 750-378-1148, 555-246-4582
B86590 Davis Bhalla MTC-214 750-378-1061
H99118 Jeff Henry MTC-336 750-330-8650
J33486 Steve Johnson MTC-118 750-330-1116
K69880 Jenney King MTC-324 750-378-1230

Table 2.9 Normalized Faculty table

faculty_id faculty_name office phone

A52990 Black Anderson MTC-218 750-378-9987
A52990 Black Anderson SHB-205 555-255-8897
A77587 Debby Angles MTC-320 750-330-2276
B66750 Alice Brown MTC-257 750-330-6650
B78880 Ying Bai MTC-211 750-378-1148
B78880 Ying Bai SHB-105 555-246-4582
B86590 Davis Bhalla MTC-214 750-378-1061
H99118 Jeff Henry MTC-336 750-330-8650
J33486 Steve Johnson MTC-118 750-330-1116
K69880 Jenney King MTC-324 750-378-1230

2 Introduction to Databases

29

2.7.3 Third Normal Form (3NF)

A table is in third normal form if it is already in 2NF and every non-key column is
non-transitively dependent upon the primary key. In other words all non-key col-
umns are mutually independent, but at the same time they are fully dependent upon
the primary key only.

Another way of stating this is that in order to achieve 3NF no column should
depend upon any non-key column. If column B depends on column A, then A is said
to functionally determine column B; hence the term determinant. Another definition
of 3NF says that the table should be in 2NF and only determinants it contains are
candidate keys.

 Old Faculty table in 1NF
faculty_id faculty_name office phone
A52990 Black Anderson MTC-218 750-378-9987

A52990 Black Anderson SHB-205 555-255-8897

A77587 Debby Angles MTC-320 750-330-2276

B66750 Alice Brown MTC-257 750-330-6650

B78880 Ying Bai MTC-211 750-378-1148

B78880 Ying Bai SHB-105 555-246-4582

B86590 Davis Bhalla MTC-214 750-378-1061

H99118 Jeff Henry MTC-336 750-330-8650

J33486 Steve Johnson MTC-118 750-330-1116

K69880 Jenney King MTC-324 2750-378-1230

New Faculty table New Office table

faculty_id faculty_name
 A52990 Black Anderson

 A52990 Black Anderson

A77587 Debby Angles

B66750 Alice Brown

B78880 Ying Bai

B78880 Ying Bai

B86590 Davis Bhalla

H99118 Jeff Henry

J33486 Steve Johnson

K69880 Jenney King

office phone faculty_id
MTC-218 750-378-9987 A52990

SHB-205 555-255-8897 A52990

MTC-320 750-330-2276 A77587

MTC-257 750-330-6650 B66750

MTC-211 750-378-1148 B78880

SHB-105 555-246-4582 B78880

MTC-214 750-378-1061 B86590

MTC-336 750-330-8650 H99118

MTC-118 750-330-1116 J33486

MTC-324 750-378-1230 K69880

Fig. 2.8 Converting Faulty table into 2NF by decomposing the old table in two, Faculty and Office

2.7 Data Normalization

30

For the Course table in Table 2.10, all non-key columns depend on the primary
key – course_id. In addition name and phone columns also depend on faculty_id.
This table is in second normal form but it suffers from update, addition, and deletion
anomalies because of transitive dependencies. In order to conform to third normal
form we can split this table into two tables, Course and Instructor (Tables 2.11 and
2.12). Now we have eliminated the transitive dependencies that are apparent in the
Course table in Table 2.10.

2.8 Database Components in Some Popular Databases

All databases allow for storage, retrieval, and management of the data. Simple data-
bases provide basic services to accomplish these tasks. Many database providers,
like Microsoft SQL Server and Oracle, provide additional services which necessi-
tate storing many components in the database other than data. These components
such as views, stored procedures, etc., are collectively called database objects. In
this section, we will discuss various objects that make up MS Access, SQL Server,
and Oracle databases.

There are two major types of databases, File Server and Client Server:
In a File Server database, data is stored in a file and each user of the database

retrieves the data, displays the data, or modifies the data directly from or to the file.
In a Client Server database the data is also stored in a file; however, all these opera-
tions are mediated through a master program called a server. MS Access is a File
Server database, whereas Microsoft SQL Server and Oracle are Client Server data-
bases. The Client Server databases have several advantages over the File Server

Table 2.10 The old Course table

course_id course classroom
faculty_
id faculty_name phone

CSC-
131A

Computers in Society MTC-109 A52990 Black
Anderson

750-378-
9987

CSC-
131B

Computers in Society MTC-114 B66750 Alice Brown 750-330-
6650

CSC-
131C

Computers in Society MTC-109 A52990 Black
Anderson

750-378-
9987

CSC-
131D

Computers in Society MTC-109 B86590 Davis Bhalla 750-378-
1061

CSC-131E Computers in Society MTC-301 B66750 Alice Brown 750-330-
6650

CSC-131I Computers in Society MTC-109 A52990 Black
Anderson

750-378-
9987

CSC-
132A

Introduction to
Programming

MTC-303 J33486 Steve Johnson 750-330-
1116

CSC-
132B

Introduction to
Programming

MTC-302 B78880 Ying Bai 750-378-
1148

2 Introduction to Databases

31

databases. These include minimizing chances of crashes, provision of features for
recovery, enforcement of security, better performance, and more efficient use of the
network compared to the file server databases.

2.8.1 Microsoft Access Databases

Microsoft Access Database Engine is a collection of information stored in a system-
atic way that forms the underlying component of a database. Also called a Jet (Joint
Engine Technology), it allows the manipulation of relational database. It offers a
single interface that other software may use to access Microsoft databases. The sup-
porting software is developed to provide security, integrity, indexing, record lock-
ing, etc. By executing MS Access program, MSACCESS.EXE, you can see the
database engine at work and the user interface it provides. Figure 2.9 shows how a
Java application accesses the MS Access database via ACE OLE database provider.

Database File
Access database is made up of a number of components called objects which are
stored in a single file referred to as database file. As new objects are created or more

Table 2.11 The new Course table

course_id course classroom

CSC-131A Computers in Society MTC-109
CSC-131B Computers in Society MTC-114
CSC-131C Computers in Society MTC-109
CSC-131D Computers in Society MTC-109
CSC-131E Computers in Society MTC-301
CSC-131I Computers in Society MTC-109
CSC-132A Introduction to Programming MTC-303
CSC-132B Introduction to Programming MTC-302

Table 2.12 The new Instructor table

faculty_id faculty_name phone

A52990 Black Anderson 750-378-9987
B66750 Alice Brown 750-330-6650
A52990 Black Anderson 750-378-9987
B86590 Davis Bhalla 750-378-1061
B66750 Alice Brown 750-330-6650
A52990 Black Anderson 750-378-9987
J33486 Steve Johnson 750-330-1116
B78880 Ying Bai 750-378-1148
A77587 Debby Angles 750-330-2276

2.8 Database Components in Some Popular Databases

32

data is added to the database, this file gets bigger. This is a complex file that stores
objects like tables, queries, forms, reports, macros, and modules. The Access files
have an .mdb (Microsoft DataBase) extension. Some of these objects help user to
work with the database, others are useful for displaying database information in a
comprehensible and easy-to-read format.

Tables
Before you can create a table in Access, you must create a database container and
give it a name with the extension .mdb. Database creation is simple process and is
explained in detail with an example, later in this chapter. Suffice it to say that a table
is made up of columns and rows. Columns are referred to as fields, which are attri-
butes of an entity. Rows are referred to as records also called tuples.

Queries
One of the main purposes of storing data in a database is that the data may be
retrieved later as needed, without having to write complex programs. This purpose
is accomplished in Access and other databases by writing SQL statements. A group
of such statements is called a query. It enables you to retrieve, update, and display
data in the tables. You may display data from more than one table by using a Join
operation. In addition you may insert or delete data in the tables.

Access also provides a visual graphic user interface to create queries. This
bypasses writing SQL statements and makes it appealing to beginning and not so
savvy users, who can use wizards or GUI interface to create queries. Queries can
extract information in a variety of ways. You can make them as simple or as com-
plex as you like. You may specify various criteria to get desired information, per-
form comparisons, or you may want to perform some calculations and obtain the
results. In essence, operators, functions, and expressions are the building blocks for
Access operation.

Jet 12.0 OLE DB
Provider

Access
Database

Visual Basic
Applications

Jet 12.0 OLE DB
Provider

Access
Database

Visual Basic
Applications

Fig. 2.9 Microsoft Access
database illustration

2 Introduction to Databases

33

2.8.2 SQL Server Databases

The Microsoft SQL Server Database Engine is a service for storing and processing
data in either a relational (tabular) format or as XML documents. Various tasks per-
formed by the Database Engine include:

• Designing and creating a database to hold the relational tables or XML documents
• Accessing and modifying the data stored in the database.
• Implementing Web sites and applications
• Building procedures
• Optimizing the performance of the database

The SQL Server database is a complex entity, made up of multiple components.
It is more complex than MS Access database which can be simply copied and dis-
tributed. Certain procedures have to be followed for copying and distributing an
SQL server database.

SQL Server is used by a diverse group of professionals with diverse needs and
requirements. To satisfy different needs, SQL Server comes in five editions,
Enterprise edition, Standard edition, Workgroup edition, Developer edition, and
Express edition. The most common editions are Enterprise, Standard, and
Workgroup. It is noteworthy that the database engine is virtually the same in all of
these editions.

SQL Server database can be stored on the disk using three types of files – pri-
mary data files, secondary data files, and transaction log files. Primary data files are
created first and contain user-defined objects like tables and views, and system
objects. These files have an extension of .mdf. If the database grows too big for a
disk, it can be stored as secondary files with an extension .ndf. The SQL Server still
treats these files as if they are together. The data file is made up of many objects.
The transaction log files carry .ldf extension. All transactions to the database are
recorded in this file.

Figure 2.10 illustrates the structure of the SQL Server Database. Each Java appli-
cation has to access the server, which in turn accesses the SQL database.

Data Files
A data file is a conglomeration of objects, which includes tables, keys, views, stored
procedures, and others. All these objects are necessary for the efficient operation of
the database.

Tables
The data in a relational database resides in tables. These are the building blocks of
the database. Each table consists of columns and rows. Columns represent various
attributes or fields in a table. Each row represents one record. For example, one
record in the Faculty table consists of name, office, phone, college, title, and email.
Each field has a distinct data type, meaning that it can contain only one type of data
such as numeric or character. Tables are the first objects created in a database.

2.8 Database Components in Some Popular Databases

34

Views
Views are virtual tables, meaning that they do not contain any data. They are stored
as queries in the database, which are executed when needed. A view can contain
data from one or more tables. The views can provide database security. Sensitive
information in a database can be excluded by including non-sensitive information in
a view and providing user access to the views instead of all tables in a database. The
views can also hide the complexities of a database. A user can be using a view that
is made up of multiple tables, whereas it appears as a single table to the user. The
user can execute queries against a view just like a table.

Stored Procedures
Users write queries to retrieve, display, or manipulate data in the database. These
queries can be stored on the client machine or on the server. There are advantages
associated with storing SQL queries on the server rather than on the client machine.
It has to do with the network performance. Usually users use same queries over and
over again, frequently different users are trying to access the same data. Instead of
sending the same queries on the network repeatedly, it improves the network perfor-
mance and executes queries faster if the queries are stored on the server where they
are compiled and saved as stored procedures. The users can simply call the stored
procedure with a simple command like execute stored_procedure A.

Keys and Relationships
A primary key is created for each table in the database to efficiently access records
and to ensure entity integrity. This implies that each record in a table is unique in
some way. Therefore, no two records can have the same primary key. It is defined as
a globally unique identifier. Moreover, a primary key may not have null value, i.e.,
missing data. SQL server creates a unique index for each primary key. This ensures

SQL
Database

Visual Basic
Applications

SQL
Server

SQL
Database

Visual Basic
Applications

SQL Client
Provider

SQL Client
Provider

Fig. 2.10 SQL Server database structure

2 Introduction to Databases

35

fast and efficient access to data. One or more columns can be combined to designate
a primary key.

In a relational database relationships between tables can be logically defined
with the help of foreign keys. A foreign key of one record in a table points specifi-
cally to a primary key of a record in another table. This allows a user to join multiple
tables and retrieve information from more than one table at a time. Foreign keys also
enforce referential integrity, a defined relationship between the tables which does
not allow insertion or deletion of records in a table unless the foreign key of a record
in one table matches a primary key of a record in another table. In other words, a
record in one table cannot have a foreign key that does not point to a primary key in
another table. Additionally, a primary key may not be deleted if there are foreign
keys in another table pointing to it. The foreign key values associated with a primary
key must be deleted first. Referential integrity protects related data, from corrup-
tion, stored in different tables.

Indexes
The indexes are used to find records, quickly and efficiently, in a table just like one
would use an index in a book. SQL server uses two types of indexes to retrieve and
update data – clustered and non-clustered.

Clustered index sorts the data in a table so that the data can be accessed effi-
ciently. It is akin to a dictionary or a phone book where records are arranged alpha-
betically. So one can go directly to a specific alphabet and from there search
sequentially for the specific record. The clustered indexes are like an inverted tree.
The index’s structure is called a B-tree for binary-tree. You start with the root page
at the top and find the location of other pages further down at secondary level, fol-
lowing to tertiary level and so on until you find the desired record. The very bottom
pages are the leaf pages and contain the actual data. There can be only one clustered
index per table because clustered indexes physically rearrange the data.

Non-clustered indexes do not physically rearrange the data as do the clustered
indexes. They also consist of a binary tree with various levels of pages. The major
difference, however, is that the leaves do not contain the actual data as in the clus-
tered indexes, instead they contain pointers that point to the corresponding records
in the table. These pointers are called row locators.

The indexes can be unique where the duplicate keys are not allowed, or not
unique which permits duplicate keys. Any column can be used to access data can be
used to generate an index. Usually, the primary and the foreign key columns are
used to create indexes.

Transaction Log Files
A transaction is a logical group of SQL statements which carry out a unit of work.
Client server database use log file to keep track of transactions that are applied to the
database. For example, before an update is applied to a database, the database server
creates an entry in the transaction log to generate a before picture of the data in a
table and then applies a transaction and creates another entry to generate an after
picture of the data in that table. This keeps track of all the operations performed on

2.8 Database Components in Some Popular Databases

36

a database. Transaction logs can be used to recover data in case of crashes or disas-
ters. Transaction logs are automatically maintained by the SQL Server.

2.8.3 Oracle Databases

Oracle was designed to be platform-independent making it architecturally more
complex than the SQL Server database. Oracle database contains more files than
SQL Server database.

The Oracle DBMS comes in three levels: Enterprise, Standard, and Personal.
Enterprise edition is the most powerful and is suitable for large installations using a
large number of transactions in multi-user environment. Standard edition is also
used by high-level multi-user installations. It lacks some of the utilities available in
Enterprise edition. Personal edition is used in a single user environment for devel-
oping database applications. The database engine components are virtually the
same for all three editions.

Oracle architecture is made up of several components including an Oracle server,
Oracle instance, and an Oracle database. The Oracle server contains several files,
processes, and memory structures. Some of these are used to improve the perfor-
mance of the database and ensure database recovery in case of a crash. The Oracle
server consists of an Oracle instance and an Oracle database. An Oracle instance
consists of background processes and memory structures. Background processes
perform input/output and monitor other Oracle processes for better performance
and reliability. Oracle database consists of data files that provide the actual physical
storage for the data.

Data files
The main purpose of a database is to store and retrieve data. It consists of a collec-
tion of data that is treated as a unit. An Oracle database has a logical and physical
structure. The logical layer consists of tablespaces, necessary for the smooth opera-
tion of an Oracle installation. Data files make up the physical layer of the database.
These consist of three types of files: data files which contain actual data in the
database, redo logfiles which contain records of modifications made to the database
for future recovery in case of failure, and control files which are used to maintain
and verify database integrity. Oracle server uses other files that are not part of the
database. These include parameter file that defines the characteristics of an Oracle
instance, password file used for authentication, and archived redo log files which are
copies of the redo log files necessary for recovery from failure. A partial list of some
of the components follows.

Tables
Users can store data in a regular table, partitioned table, index-organized table, or
clustered table. A regular table is the default table as in other databases. Rows can
be stored in any order. A partitioned table has one or more partitions where rows are
stored. Partitions are useful for large tables which can be queried by several

2 Introduction to Databases

37

processes concurrently. Index organized tables provide fast key-based access for
queries involving exact matches. The table may have index on one or more of its
columns. Instead of using two storage spaces for the table and a B-tree index, a
single storage space is used to store both the B-tree and other columns. A clustered
table or group of tables share the same block called a cluster. They are grouped
together because they share common columns and are frequently used together.
Clusters have a cluster key for identifying the rows that need to be stored together.
Cluster keys are independent of the primary key and may be made up of one or more
columns. Clusters are created to improve performance.

Views
Views are like virtual tables and are used in a similar fashion as in the SQL Server
databases discussed above.

Stored Procedures
In Oracle functions and procedures may be saved as stored program units. Multiple
input arguments (parameters) may be passed as input to functions and procedures;
however, functions return only one value as output, whereas procedures may return
multiple values as output. The advantages to creating and using stored procedures
are the same as mentioned above for SQL server. By storing procedures on the
server individual SQL statements do not have to be transmitted over the network,
thus reducing the network traffic. In addition, commonly used SQL statements are
saved as functions or procedures and may be used again and again by various users
thus saving rewriting the same code over and over again. The stored procedures
should be made flexible so that different users are able to pass input information to
the procedure in the form of arguments or parameters and get the desired output.

Figure 2.11 shows the syntax to create a stored procedure in Oracle. It has three
sections – a header, a body, and an exception section. The procedure is defined in

CREATE OR REPLACE PROCEDURE procedure_name

(parameter datatype, parameter datatype, ….)

IS
declare variables here

BEGIN

PL/SQL OR SQL statements

EXCEPTIONS

exception handlers

END

Header
Section

Body
Section

Exception
Section

Fig. 2.11 Syntax for creating a stored procedure in Oracle

2.8 Database Components in Some Popular Databases

38

the header section. Input and output parameters, along with their data types, are
declared here and transmit information to or from the procedure. The body section
of the procedure starts with a keyword BEGIN and consists of SQL statements. The
exceptions section of the procedure begins with the keyword EXCEPTION and
contains exception handlers which are designed to handle the occurrence of some
conditions that changes the normal flow of execution.

Indexes are created to provide direct access to rows. An index is a tree structure.
Indexes can be classified on their logic design or their physical implementation.
Logical classification is based on application perspective, whereas physical classifi-
cation is based on how the indexes are stored. Indexes can be partitioned or nonpar-
titioned. Large tables use partitioned indexes, which spreads an index to multiple
table spaces thus decreasing contention for index look up and increasing manage-
ability. An index may consist of a single column or multiple columns; it may be
unique or non-unique. Some of these indexes are outlined below.

Function-based indexes precompute the value of a function or expression of
one or more columns and stores it in an index. It can be created as a B-tree or as a
bit map. It can improve the performance of queries performed on tables that
rarely change.

Domain Indexes are application-specific and are created and managed by the
user or applications. Single column indexes can be built on text, spatial, scalar,
object, or LOB data types.

B-tree indexes store a list of row IDs for each key. Structure of a B-tree index is
similar to the ones in the SQL Server described above. The leaf nodes contain
indexes that point to rows in a table. The leaf blocks allow scanning of the index in
either ascending or descending order. Oracle server maintains all indexes when
insert, update, or delete operations are performed on a table.

Bitmap indexes are useful when columns have low cardinality and a large num-
ber of rows. For example, a column may contain few distinct values like Y/N for
marital status, or M/F for gender. A bitmap is organized like a B-tree where the leaf
nodes store a bitmap instead of row IDs. When changes are made to the key col-
umns, bit maps must be modified.

Initialization Parameter files
Oracle server must read the initialization parameter file before starting an oracle
database instance. There are two types of initialization parameter files: static param-
eter file and a persistent parameter file. An initialization parameter file contains a list
of instance parameters, and the name of the database the instance is associated with,
name and location of control files, and information about the undo segments.
Multiple initialization parameter files can exist to optimize performance.

Control Files
A control file is a small binary file that defines the current state of the database.
Before a database can be opened control file is read to determine if the database is
in a valid state or not. It maintains the integrity of the database. Oracle uses a single
control file per database. It is maintained continuously by the server and can be
maintained only by the Oracle server. It cannot be edited by a user or database

2 Introduction to Databases

39

administrator. A control file contains: database name and identifier, time stamp of
database creation, tablespace name, names and location of data files and redo log-
files, current log files sequence number, archive, and backup information.

Redo Log Files
Oracle’s redo log files provide a way to recover data in the event of a database fail-
ure. All transactions are written to a redo log buffer and passed on to the redo
log files.

Redo log files record all changes to the data, provide a recovery mechanism, and
can be organized into groups. A set of identical copies of online redo log files is
called a redo log file group. The Oracle server needs a minimum of two online redo
logfile groups for normal operations. The initial set of redo log file groups and mem-
bers are created during the database creation. Redo log files are used in a cyclic
fashion. Each redo log file group is identified by a log sequence number and is
overwritten each time the log is reused. In other words, when a redo log file is full
then the log writer moves to the second redo log file. After the second one is full first
one is reused.

Password Files
Depending upon whether the database is administered locally or remotely, one can
choose either operating system or password file authentication to authenticate data-
base administrators. Oracle provides a password utility to create password file.
Administrators use the GRANT command to provide access to the database using
the password file.

2.9 Create Microsoft SQL Server 2019 Express
Sample Database

After you finished the installation of SQL Server 2019 Express database and SQL
Server Management Studio (refer to Appendix A), you can begin to use it to connect
to the server and build our database. Go to Start|Microsoft SQL Server Tools
18|Microsoft SQL Server Management Studio 18. A connection dialog is opened
as shown in Fig. 2.12.

Your computer name followed by your server name should be displayed in the
Server name: box. In this case, it is YBSmart\SQL2019Express. The Windows
NT default security engine is used by selecting the Windows Authentication
method from the Authentication box. The User name box contains the name you
entered when you register for your computer. Click the Connect button to connect
your client to the SQL database Server.

The server management studio is opened when this connection is completed,
which is shown in Fig. 2.13.

To create a new database, right click on the Databases folder from the Object
Explorer window, and select the New Database item from the popup menu. Enter

2.9 Create Microsoft SQL Server 2019 Express Sample Database

40

CSE_DEPT into the Database name box in the New Database dialog as the name
of our database, keep all other settings unchanged and then click the OK button.
You can find that a new database named CSE_DEPT is created and located under
the Database folder in the Object Explorer window.

Then you need to create data tables. For this sample database, you need to create
five data tables: LogIn, Faculty, Course, Student, and StudentCourse. Expand
the CSE_DEPT database folder by clicking the plus symbol next to it. Right click
on the Tables folder and select the New→Table item, a new table window is dis-
played, as shown in Fig. 2.14.

Fig. 2.12 Connect to the SQL Server 2019 Express database

Fig. 2.13 The opened server management studio

2 Introduction to Databases

41

2.9.1 Create the LogIn Table

A default data table dbo.Table_1 is created as shown in Fig. 2.14. Three columns
are displayed in this new table: Column Name, Data Type, and Allow Nulls, which
allows you to enter the name, the data type, and a null check mark for each column.
You can check the checkbox if you allow that column to be empty, otherwise do not
check it if you want that column to contain a valid data. Generally for the column
that works as the primary key, you should not make check for the checkbox associ-
ated with that column.

The first table is LogIn table, which has four columns with the following column
names: user_name, pass_word, faculty_id, and student_id. Enter those four
names into four Column Names columns. The data types for these four columns are
all nvarchar(50), which means that this is a varied char type with a maximum let-
ters of 50. Enter those data types into each Data Type column. The top two col-
umns, user_name and pass_word, cannot be empty, so leave those checkboxes
blank and check other two checkboxes.

To make the first column user_name as a primary key, click on the first row and
then go to the Toolbar and select the Primary Key (displayed as a key) tool. In this
way, a symbol of primary key is displayed on the left of this row, which is shown in
Fig. 2.14.

Before we can continue to finish this LogIn table, we need first to save and name
this table. Go to File|Save Table_1 and enter the LogIn as the name for this new
table. Click the OK button to finish this saving. A new table named dbo.LogIn is
added into the new database under the Tables folder in the Object Explorer window.

To add data into this LogIn table, right click on this table (right-click on the
Tables folder and select Refresh if you cannot find this LogIn table) and select
Edit Top 200 Rows item from the popup menu. Enter all login data shown in
Table 2.13 into this table. In fact, you can copy all data rows from Table 2.13 and
paste them to the LogIn table directly. Your finished LogIn table should match one
that is shown in Fig. 2.15.

Fig. 2.14 The new table window

2.9 Create Microsoft SQL Server 2019 Express Sample Database

42

A point is that you must place an NULL for any field that has no value in this
table since it is different with the blank field in the Microsoft Access file database.
Go to the File|Save All item to save this table. Now let’s continue to create the sec-
ond table Faculty.

2.9.2 Create the Faculty Table

Right click on the Tables folder under the CSE_DEPT database folder and select
the Table item to open the design view of a new table, which is shown in Fig. 2.16.

Table 2.13 The data in the LogIn table

user_name pass_word faculty_id student_id

abrown america B66750 NULL
ajade tryagain NULL A97850
awoods smart NULL A78835
banderson birthday A52990 NULL
bvalley see NULL B92996
dangles tomorrow A77587 NULL
hsmith try NULL H10210
terica excellent NULL T77896
jhenry test H99118 NULL
jking goodman K69880 NULL
dbhalla india B86590 NULL
sjohnson jermany J33486 NULL
ybai come B78880 NULL

Fig. 2.15 The finished LogIn table

2 Introduction to Databases

43

For this table, we have eight columns: faculty_id, faculty_name, title, office,
phone, college, email, and fimage. The data types for the columns faculty_id and
faculty_name are nvarchar(50), and all other data types, except the fimage col-
umn, can be either text or nvarchar(50) since all of them are string variables. The
data type for the fimage column is image since all faculty images are stored in this
column. The reason we selected the nvarchar(50) as the data type for the faculty_
id is that a primary key can work for this data type but it does not work for the text.
The finished design-view of the Faculty table should match one that is shown in
Fig. 2.16.

Since we selected the faculty_id column as the primary key, thus click on that
row and then go to the Toolbar and select the Primary Key tool.

Now go to the File menu item and select the Save Table_1, and enter Faculty
into the box for the Choose Name dialog as the name for this table, click OK to
save this table.

Next you need to enter the data into this Faculty table. To do that, first open the
table by right clicking on the dbo.Faculty folder under the CSE_DEPT database
folder in the Object Explorer window, and then select Edit Top 200 Rows item to
open this table. Enter the data that is shown in Table 2.14 into this Faculty table.

Your finished Faculty table should match one that is shown in Fig. 2.17.
Now go to the File menu item and select Save All to save this completed Faculty

data table. Your finished Faculty data table will be displayed as a table named dbo.
Faculty that has been added into the new database CSE_DEPT under the folder
Tables in the Object Explorer window. At this moment just keep NULL for the fim-
age column and we will add actual faculty images later by using Visual Studio.NET
and Devexpress controls.

Fig. 2.16 The design view of the Faculty table

2.9 Create Microsoft SQL Server 2019 Express Sample Database

44

2.9.3 Create Other Tables

In a similar way, create the rest of three tables: Course, Student, and StudentCourse.
Select course_id, student_id, and s_course_id as the primary keys for these tables
(refer to Tables 2.15, 2.16, and 2.17). For the data type selections, follow the direc-
tions below:

Table 2.14 The data in the Faculty table

faculty_
id

faculty_
name title office phone college email fimage

A52990 Black
Anderson

Professor MTC-
218

750-
378-
9987

Virginia Tech banderson@
college.edu

NULL

A77587 Debby
Angles

Associate
Professor

MTC-
320

750-
330-
2276

University of
Chicago

dangles@
college.edu

NULL

B66750 Alice
Brown

Assistant
Professor

MTC-
257

750-
330-
6650

University of
Florida

abrown@
college.edu

NULL

B78880 Ying Bai Associate
Professor

MTC-
211

750-
378-
1148

Florida
Atlantic
University

ybai@college.
edu

NULL

B86590 Davis
Bhalla

Associate
Professor

MTC-
214

750-
378-
1061

University of
Notre Dame

dbhalla@
college.edu

NULL

H99118 Jeff Henry Associate
Professor

MTC-
336

750-
330-
8650

Ohio State
University

jhenry@
college.edu

NULL

J33486 Steve
Johnson

Distinguished
Professor

MTC-
118

750-
330-
1116

Harvard
University

sjohnson@
college.edu

NULL

K69880 Jenney
King

Professor MTC-
324

750-
378-
1230

East Florida
University

jking@
college.edu

NULL

Fig. 2.17 The completed Faculty table

2 Introduction to Databases

banderson@college.edu
banderson@college.edu
dangles@college.edu
dangles@college.edu
abrown@college.edu
abrown@college.edu
ybai@college.edu
ybai@college.edu
dbhalla@college.edu
dbhalla@college.edu
jhenry@college.edu
jhenry@college.edu
sjohnson@college.edu
sjohnson@college.edu
jking@college.edu
jking@college.edu

45

Table 2.15 The data in the Course table

course_
id course credit classroom schedule enrollment

faculty_
id

CSC-
131A

Computers in Society 3 MTC-109 M-W-F:
9:00-9:55 AM

28 A52990

CSC-
131B

Computers in Society 3 MTC-114 M-W-F:
9:00-9:55 AM

20 B66750

CSC-
131C

Computers in Society 3 MTC-109 T-H: 11:00-12:25
PM

25 A52990

CSC-
131D

Computers in Society 3 MTC-109 M-W-F:
9:00-9:55 AM

30 B86590

CSC-
131E

Computers in Society 3 MTC-301 M-W-F:
1:00-1:55 PM

25 B66750

CSC-
131I

Computers in Society 3 MTC-109 T-H: 1:00-2:25
PM

32 A52990

CSC-
132A

Introduction to
Programming

3 MTC-303 M-W-F:
9:00-9:55 AM

21 J33486

CSC-
132B

Introduction to
Programming

3 MTC-302 T-H: 1:00-2:25
PM

21 B78880

CSC-230 Algorithms &
Structures

3 MTC-301 M-W-F:
1:00-1:55 PM

20 A77587

CSC-
232A

Programming I 3 MTC-305 T-H: 11:00-12:25
PM

28 B66750

CSC-
232B

Programming I 3 MTC-303 T-H: 11:00-12:25
PM

17 A77587

CSC-
233A

Introduction to
Algorithms

3 MTC-302 M-W-F:
9:00-9:55 AM

18 H99118

CSC-
233B

Introduction to
Algorithms

3 MTC-302 M-W-F:
11:00-11:55 AM

19 K69880

CSC-
234A

Data Structure &
Algorithms

3 MTC-302 M-W-F:
9:00-9:55 AM

25 B78880

CSC-
234B

Data Structure &
Algorithms

3 MTC-114 T-H: 11:00-12:25
PM

15 J33486

CSC-242 Programming II 3 MTC-303 T-H: 1:00-2:25
PM

18 A52990

CSC-320 Object Oriented
Programming

3 MTC-301 T-H: 1:00-2:25
PM

22 B66750

CSC-331 Applications
Programming

3 MTC-109 T-H: 11:00-12:25
PM

28 H99118

CSC-
333A

Computer Arch &
Algorithms

3 MTC-301 M-W-F:
10:00-10:55 AM

22 A77587

CSC-
333B

Computer Arch &
Algorithms

3 MTC-302 T-H: 11:00-12:25
PM

15 A77587

CSC-335 Internet Programming 3 MTC-303 M-W-F:
1:00-1:55 PM

25 B66750

CSC-432 Discrete Algorithms 3 MTC-206 T-H: 11:00-12:25
PM

20 B86590

(continued)

2.9 Create Microsoft SQL Server 2019 Express Sample Database

46

Table 2.15 (continued)

course_
id course credit classroom schedule enrollment

faculty_
id

CSC-439 Database Systems 3 MTC-206 M-W-F:
1:00-1:55 PM

18 B86590

CSE-
138A

Introduction to CSE 3 MTC-301 T-H: 1:00-2:25
PM

15 A52990

CSE-
138B

Introduction to CSE 3 MTC-109 T-H: 1:00-2:25
PM

35 J33486

CSE-330 Digital Logic Circuits 3 MTC-305 M-W-F:
9:00-9:55 AM

26 K69880

CSE-332 Foundations of
Semiconductor

3 MTC-305 T-H: 1:00-2:25
PM

24 K69880

CSE-334 Elec. Measurement &
Design

3 MTC-212 T-H: 11:00-12:25
PM

25 H99118

CSE-430 Bioinformatics in
Computer

3 MTC-206 Thu: 9:30-11:00
AM

16 B86590

CSE-432 Analog Circuits Design 3 MTC-309 M-W-F:
2:00-2:55 PM

18 K69880

CSE-433 Digital Signal
Processing

3 MTC-206 T-H: 2:00-3:25
PM

18 H99118

CSE-434 Advanced Electronics
Systems

3 MTC-213 M-W-F:
1:00-1:55 PM

26 B78880

CSE-436 Automatic Control and
Design

3 MTC-305 M-W-F:
10:00-10:55 AM

29 J33486

CSE-437 Operating Systems 3 MTC-303 T-H: 1:00-2:25
PM

17 A77587

CSE-438 Advd Logic &
Microprocessor

3 MTC-213 M-W-F:
11:00-11:55 AM

35 B78880

CSE-439 Special Topics in CSE 3 MTC-206 M-W-F:
10:00-10:55 AM

22 J33486

Table 2.16 The data in the Student table

student_
id

student_
name gpa credits major schoolYear email simage

A78835 Andrew
Woods

3.26 108 Computer Science Senior awoods@
college.edu

NULL

A97850 Ashly Jade 3.57 116 Info System
Engineering

Junior ajade@college.
edu

NULL

B92996 Blue Valley 3.52 102 Computer Science Senior bvalley@
college.edu

NULL

H10210 Holes
Smith

3.87 78 Computer
Engineering

Sophomore hsmith@
college.edu

NULL

T77896 Tom Erica 3.95 127 Computer Science Senior terica@
college.edu

NULL

2 Introduction to Databases

awoods@college.edu
awoods@college.edu
ajade@college.edu
ajade@college.edu
bvalley@college.edu
bvalley@college.edu
hsmith@college.edu
hsmith@college.edu
terica@college.edu
terica@college.edu

47

The data type selections for the Course table:

• course_id – nvarchar(50) (Primary key)
• credit – smallint
• enrollment – int
• faculty_id – nvarchar(50)
• All other columns – either nvarchar(50) or text

The data type selections for the Student table:

• student_id – nvarchar(50) (Primary key)
• student_name - nvarchar(50)
• gpa – float

Table 2.17 The data in the StudentCourse table

s_course_id student_id course_id credit major

1000 H10210 CSC-131D 3 CE
1001 B92996 CSC-132A 3 CS/IS
1002 T77896 CSC-335 3 CS/IS
1003 A78835 CSC-331 3 CE
1004 H10210 CSC-234B 3 CE
1005 T77896 CSC-234A 3 CS/IS
1006 B92996 CSC-233A 3 CS/IS
1007 A78835 CSC-132A 3 CE
1008 A78835 CSE-432 3 CE
1009 A78835 CSE-434 3 CE
1010 T77896 CSC-439 3 CS/IS
1011 H10210 CSC-132A 3 CE
1012 H10210 CSC-331 2 CE
1013 A78835 CSC-335 3 CE
1014 A78835 CSE-438 3 CE
1015 T77896 CSC-432 3 CS/IS
1016 A97850 CSC-132B 3 ISE
1017 A97850 CSC-234A 3 ISE
1018 A97850 CSC-331 3 ISE
1019 A97850 CSC-335 3 ISE
1020 T77896 CSE-439 3 CS/IS
1021 B92996 CSC-230 3 CS/IS
1022 A78835 CSE-332 3 CE
1023 B92996 CSE-430 3 CE
1024 T77896 CSC-333A 3 CS/IS
1025 H10210 CSE-433 3 CE
1026 H10210 CSE-334 3 CE
1027 B92996 CSC-131C 3 CS/IS
1028 B92996 CSC-439 3 CS/IS

2.9 Create Microsoft SQL Server 2019 Express Sample Database

48

• credits – int
• simage - image
• All other columns – either nvarchar(50) or text

The data type selections for the StudentCourse table:

• s_course_id – int (Primary key)
• student_id – nvarchar(50)

• course_id – nvarchar(50)
• credit – int
• major – either nvarchar(50) or text

Enter the data that are shown in Tables 2.15, 2.16, and 2.17 into each associated
table, and save each table as Course, Student, and StudentCourse, respectively.

Similar to Faculty table, at this moment just keep NULL for the simage column
in the Student table and we will add actual student images later by using Visual
Studio.NET and Devexpress controls. The finished Course, Student, and
StudentCourse tables are shown in Fig. 2.18, 2.19, and 2.20, respectively.

Fig. 2.18 The completed Course table

2 Introduction to Databases

49

Fig. 2.19 The completed Student table

Fig. 2.20 The completed StudentCourse table

A possible problem you may encounter is that you cannot find the new created Table
under the Tables folder in SSMS 2018 even you complete a table creation. A simple
solution is that you need to refresh that Tables folder by right-clicking on that folder and
select Refresh item from the pop-up menu.

2.9 Create Microsoft SQL Server 2019 Express Sample Database

50

One point you need to note is that you can copy the content of the whole table from
the Microsoft Word tables (Tables 2.15, 2.16 and 2.17) to the associated data table
opened in the Microsoft SQL Server environment. To make these copies and pastes,
first you must select a whole blank row from your destination table – table in the
Microsoft SQL Server database, and then select all data rows from your Microsoft
Word tables by highlighting them and choose the Copy menu item. Next, you need
to paste those rows by clicking that blank row in the Microsoft SQL Server database
and then click the Paste item from the Edit menu item.

2.9.4 Create Relationships Among Tables

Next, we need to setup relationships among these five tables using the Primary and
Foreign Keys. In Microsoft SQL Server 2019 Express database environment, the
relationship between tables can be set by using the Keys folder under each data
table from the Object Explorer window. Now let’s begin to setup the relationship
between the LogIn and the Faculty tables by using Microsoft SQL Server
Management Studio 18.

2.9.4.1 Create Relationship Between the LogIn and the Faculty Tables

The relationship between the Faculty and the LogIn table is one-to-many, which
means that the faculty_id is a primary key in the Faculty table, and it can be mapped
to many faculty_id that are foreign keys in the LogIn table.

To setup this relationship, expand the LogIn table and the Keys folder that is
under the LogIn table in an opened Microsoft SQL Server Management Studio 18.
Currently, only one primary key, PK_LogIn, is existed under the Keys folder.

To add a new foreign key, right click on the Keys folder and select New Foreign
Key item from the popup menu to open the Foreign Key Relationships dialog,
which is shown in Fig. 2.21.

The default foreign relationship is FK_LogIn_LogIn*, which is displayed in the
Selected Relationship box. Right now we want to create the foreign relationship
between the LogIn and the Faculty tables, so change the name of this foreign rela-
tionship to FK_LogIn_Faculty by modifying its name in the (Name) box that is
under the Identity pane, and then press the Enter key from your keyboard.

Then select two tables by clicking on the Tables And Columns Specification
item that is under the General pane. Click the expansion button that is located on
the right of the Tables And Columns Specification item to open the Tables and
Columns dialog, which is shown in Fig. 2.22.

Click the drop-down arrow from the Primary key table combobox and select
the Faculty table since we need the primary key faculty_id from this table, then

2 Introduction to Databases

51

Fig. 2.21 The opened Foreign Key Relationships dialog box

Fig. 2.22 The opened Tables and Columns dialog box

2.9 Create Microsoft SQL Server 2019 Express Sample Database

52

click on the blank row that is just below the Primary key table combobox and
select the faculty_id column. You can see that the LogIn table has been automati-
cally selected and displayed in the Foreign key table combobox. Click the drop-
down arrow from the box that is just under the Foreign key table combobox and
select the faculty_id as the foreign key for the LogIn table. Your finished Tables
and Columns dialog should match one that is shown in Fig. 2.23.

Click on the OK button to close this dialog.
Before we can close this dialog, we need to do one more thing, which is to setup

a cascaded relationship between the Primary key (faculty_id) in the parent table
Faculty and the Foreign keys (faculty_id) in the child table LogIn. The reason we
need to do this is because we want to simplify the data updating and deleting opera-
tions between these tables in a relational database such as CSE_DEPT. You will
have a better understanding about this cascading later when you learn how to update
and delete data against a relational database in Chap. 7.

To do this cascading, scroll down along this Foreign Key Relationships dialog
and expand the item Table Designer, then you can find the INSERT And UPDATE
Specifications item. Expand this item by clicking the small plus icon, two sub items
are displayed, which are:

• Delete Rule
• Update Rule

The default value for both sub items is No Action. Click on the No Action box
for the Delete Rule item and then click on the drop-down arrow, and select the
Cascade item from the list. Perform the same operation for the Update Rule item.

Fig. 2.23 The finished Tables and Columns dialog box

2 Introduction to Databases

53

Your finished Foreign Key Relationships dialog should match one that is shown in
Fig. 2.24.

In this way, we established the cascaded relationship between the Primary key in
the parent table and the Foreign keys in the child table. Later on when you update or
delete any Primary key from a parent table, the related foreign keys in the child
tables will also be updated or deleted without other additional operations. It is con-
venient! Click the Close button to close this dialog.

Go to the File|Save LogIn menu item to open the Save dialog and click the Yes
button to save this relationship. You can select Yes or No to the Save Change Script
dialog box if it appears.

Now right click on the Keys folder under the LogIn table from the Object
Explorer window, and select the Refresh item from the popup menu to refresh this
Keys folder. Immediately you can find a new foreign key named FK_LogIn_
Faculty appears under this Keys folder. This is our new created foreign key that sets
the relationship between our LogIn and Faculty tables. You can also confirm and
find this new created foreign key by right clicking on the Keys folder that is under
the Faculty table.

2.9.4.2 Create Relationship Between the LogIn and the Student Tables

In a similar way, you can create a foreign key for the LogIn table and setup a one-
to- many relationship between the Student and the LogIn tables.

Right click on the Keys folder that is under the dbo.LogIn table and select New
Foreign Key item from the popup menu to open the Foreign Key Relationships
dialog. Change the name to FK_LogIn_Student and press the Enter key from your

Fig. 2.24 The finished Foreign Key Relationships dialog

2.9 Create Microsoft SQL Server 2019 Express Sample Database

54

keyboard. Go to the Tables And Columns Specification item to open the Tables
and Columns dialog, then select the Student table from the Primary key table
combobox and student_id from the box that is under the Primary key table com-
bobox. Select the student_id from the box that is under the Foreign key table
combobox. Your finished Tables and Columns dialog should match one that is
shown in Fig. 2.25.

Click the OK to close this dialog box.
Do not forget to establish the cascaded relationship for Delete Rule and Update

Rule items by expanding the Table Designer and the INSERT And UPDATE
Specifications items, respectively. Click the Close button to close the Foreign Key
Relationships dialog box.

Go to the File|Save LogIn menu item to save this relationship. Click Yes for the
following dialog box to finish this saving. Now right click on the Keys folder that is
under the dbo.LogIn table, and select Refresh item to show our new created for-
eign key FK_LogIn_Student.

2.9.4.3 Create Relationship Between the Faculty and the Course Tables

The relationship between the Faculty and the Course tables is one-to-many, and the
faculty_id in the Faculty table is a Primary key and the faculty_id in the Course
table is a Foreign key.

Right click on the Keys folder under the dbo.Course table from the Object
Explorer window and select the New Foreign Key item from the popup menu.

Fig. 2.25 The completed Tables and Columns dialog

2 Introduction to Databases

55

On the opened Foreign Key Relationships dialog, change the name of this new
relationship to FK_Course_Faculty in the (Name) box and press the Enter key
from the keyboard.

In the opened Tables and Columns dialog box, select the Faculty table from the
Primary key table combobox and select the faculty_id from the box that is just
under the Primary key table combobox. Then select the faculty_id from the box
that is just under the Foreign key table combobox. Your finished Tables and
Columns dialog should match one that is shown in Fig. 2.26.

Click the OK to close this dialog and setup the cascaded relationship for the
Delete Rule and the Update Rule items, and then click the Close button to close the
Foreign Key Relationships dialog box. Go to the File|Save Course menu item and
click Yes for the following dialog box to save this setting.

Now right click on the Keys folder under the dbo.Course table, and select the
Refresh item. Immediately you can find our new created relationship key
FK_Course_Faculty.

2.9.4.4 Create Relationship Between the Student
and the StudentCourse Tables

The relationship between the Student and the StudentCourse tables is one-to-
many, and the student_id in the Student table is a Primary key and the student_id
in the StudentCourse table is a Foreign key.

Fig. 2.26 The finished Tables and Columns dialog

2.9 Create Microsoft SQL Server 2019 Express Sample Database

56

Right click on the Keys folder under the dbo.StudentCourse table from the
Object Explorer window and select the New Foreign Key item from the popup menu.

On the opened Foreign Key Relationships dialog, change the name of this new
relationship to FK_StudentCourse_Student in the (Name) box and press the
Enter key from the keyboard.

In the opened Tables and Columns dialog box, select the Student table from the
Primary key table combobox and select the student_id from the box that is just
under the Primary key table combobox. Then select the student_id from the box
that is just under the Foreign key table combobox. The finished Tables and
Columns dialog should match one that is shown in Fig. 2.27.

Click the OK to close this dialog and setup the cascaded relationship for Delete
Rule and the Update Rule items, and then click the Close button to close the
Foreign Key Relationships dialog box. Go to the File|Save StudentCourse menu
item and click Yes for the following dialog box to save this relationship.

Now right click on the Keys folder under the dbo.StudentCourse table, and
select the Refresh item. Then you can find our created relationship key
FK_StudentCourse_Student.

Fig. 2.27 The finished Tables and Columns dialog

2 Introduction to Databases

57

2.9.4.5 Create Relationship Between the Course
and the StudentCourse Tables

The relationship between the Course and the StudentCourse tables is one-to- many,
and the course_id in the Course table is a Primary key and the course_id in the
StudentCourse table is a Foreign key.

Right click on the Keys folder under the dbo.StudentCourse table from the
Object Explorer window and select the New Foreign Key item from the popup menu.

On the opened Foreign Key Relationships dialog, change the name of this new
relationship to FK_StudentCourse_Course in the (Name) box and press the Enter
key from the keyboard.

In the opened Tables and Columns dialog box, select the Course table from the
Primary key table combobox and select the course_id from the box that is just
under the Primary key table combobox. Then select the course_id from the box
that is just under the Foreign key table combobox. Your finished Tables and
Columns dialog should match one that is shown in Fig. 2.28.

Click the OK to close this dialog and do not forget to establish a cascaded rela-
tionship for the Delete Rule and the Update Rule items, and then click the Close
button to close the Foreign Key Relationships dialog box. Then go to the File|Save
StudentCourse menu item and click Yes for the following dialog box to save this
relationship.

Fig. 2.28 The finished Tables and Columns dialog

2.9 Create Microsoft SQL Server 2019 Express Sample Database

58

Now right click on the Keys folder under the dbo.StudentCourse table, and
select the Refresh item. Then you can find our created relationship key
FK_StudentCourse_Course.

At this point, we complete setting the relationships among our five data tables.
A completed Microsoft SQL Server 2019 Express sample database CSE_DEPT.

mdf can be found from the Springer ftp site (refer to Fig. 1.2 in Chap. 1). The com-
pleted relationships for these tables are shown in Fig. 2.29.

2.9.5 Store Images to the SQL Server 2019 Express Database

When building Faculty and Student tables in Sects. 2.9.2 and 2.9.3, we need to
store faculty and student images into the SQL Server 2019 Express database directly.
Due to the new property of SQL Server 2019 database, an image can be directly
stored into the database column as an image object (in fact, it is a binary data type).

With the help of a product developed by Developer Express Incorporated, exactly
a user interface component, WindowsUI, we can directly insert an image into a SQL

Fig. 2.29 Relationships among tables

2 Introduction to Databases

59

Server database’s column via Microsoft Visual Studio.NET platform without any
coding process. Follow Appendix C to finish the downloading and installation of the
WindowsUI component in your computer.

Now open Visual Studio.NET 2019 and click the link: Continue without code
at the bottom to open the Visual Studio.NET. Go to File|New Project to open the
platform selection page. Then select the Blank Solution and click on the Next but-
ton. Enter SQL Image Solution into the Solution name box and click on the
Create button to generate and save this blank solution in any folder in your computer.

 1) To add a new project, just right click on the new created blank solution in the
Solution Explorer window and select Add|New Project item from the popup
menu to open the Add New Project wizard, as shown in Fig. 2.30.

 2) Make sure to select the Windows Forms App (.NET Framework) Visual
Basic on the left pane as the Template, and click on the Next button to continue.

 3) Enter SQL Image Project into the Project name: box as the name for this
project, and click on the Create button to add this project into our solution.

 4) The added project wizard is shown in Fig. 2.31. Click on the Add New Data
Source link in the Data Sources window located at the lower-left corner (if this
window is not shown up, go to View|Other Windows|Data Sources to select
it), to open the Data Source Configuration Wizard to connect to our designed
SQL Server 2019 Express database CSE_DEPT.

 5) Keep the default Database and DataSet selection on the next two wizards and
click on the Next buttons to come to our database connection page. Check the
Show the connection string… checkbox and click on the New Connection…
button to open the Add Connection wizard, which is shown in Fig. 2.32.

Fig. 2.30 The Add new project wizard

2.9 Create Microsoft SQL Server 2019 Express Sample Database

60

Fig. 2.31 The new added project SQL Image Project

Fig. 2.32 The opened Add Connection wizard

2 Introduction to Databases

61

 6) Click on the drop down arrow on the Server names combo box and select our
server name, YBSMART\SQL2019EXPRESS. You may need to enter this
server name if it is not displayed in this combo box.

 7) Click on the drop down arrow on the Select or enter a database name combo
box and select our database CSE_DEPT from the combo box (Fig. 2.32).

 8) Click the Test Connection button at the lower-left corner to test this connec-
tion. A successful connection message should be displayed if this connection
is fine.

 9) Click on the OK button for both MessageBox and the Add Connection wizard.
Then click on the Next button to continue.

 10) Click on the Next button again on the next page to save our connection string
and open our connected database and dataset, which is shown in Fig. 2.33.

 11) Expand our database and check our Faculty table, and select three columns,
faculty_id, faculty_name, and fimage, by checking them one by one, as shown
in Fig. 2.33. Then click on the Finish button to complete this database connec-
tion and dataset setup process.

 12) Now return to our Visual Basic.NET project page, expand our DataSet and
related Faculty table, CSE_DEPTDataSet and Faculty, in the Data Sources
window. Click on the drop down arrow on the Faculty table combo box and
select the Details item, and then drag this Details item and place it into the
Form window, as shown in Fig. 2.34.

 13) Now go to the Image object added on the Form window, fimage, and click on
an arrow box located at the upper-right corner to open the PictureEdit Tasks

Fig. 2.33 The connected database and dataset CSE_DEPTDataSet

2.9 Create Microsoft SQL Server 2019 Express Sample Database

62

dialog box, and select Stretch from the Size Mode combo box. Then click on
any place on the Form window to close that PictureEdit Tasks dialog box.

 14) Perform a similar operation as we did in step 13, click on the drop down arrow
on the Faculty table combo box and select the GridView item, and then drag
this GridView item and place it into the Form window, as shown in Fig. 2.35.

 15) Now go to File|Save All item to save all of these additions and modifications to
this Form window.

 16) Then click on the Start button (green arrow on the tool bar) to run this Visual
Basic project. As the project runs, the contents of three columns for all faculty

Fig. 2.34 Drag and place three columns in Details format on Faculty table

Fig. 2.35 Drag and place three columns in GridView format on Faculty table

2 Introduction to Databases

63

members in this Faculty table are displayed in both the Details and GridView
except the faculty image fimage, as shown in Fig. 2.36.

 17) To add an image to the fimage box for the selected faculty, click on an arrow for
that faculty and first click (left-click) on the fimage column in the GridView,
and then right-click on the fimage column again. On the popup menu, select the
Load item to try to load and add an image for the selected faculty member.

 18) Browse to the related faculty image, in our case, all faculty images are in the
folder: C:/SQL Java DB Programming\Instructors\Images\Faculty, and
select the associated faculty image, such as Anderson.jpg for the faculty mem-
ber Black Anderson, by clicking on it, and click on the Open button to add it
to the CSE_DEPTDataSet. All faculty images can be found under a folder
Students\Images\ Faculty at the Springer ftp site (refer to Fig. 1.2 in Chap. 1).
One can copy all of these images and save them to one desired folder on your
machine.

 19) Then click on the Save Data button located at the upper-right corner on the tool
bar to save this image into the database. Perform similar operations to add all
faculty images into our sample database CSE_DEPT.mdf.

Your finished Form window is shown in Fig. 2.36. Now you can stop running of
the Visual Basic.NET project SQL Image Project by clicking on the Close
button .

The relationships between each faculty member and related name of image file
are shown in Table 2.18.

Now if you open the Microsoft SQL Server Management Studio and the data-
base CSE_DEPT, select and open the Faculty table with Edit Top 200 Rows item,
you can find that all NULL in the fimage column become to Binary data, as shown
in Fig. 2.37.

In a similar way, you can add all students’ images into the Student table in our
database CSE_DEPT.mdf. All students’ images can be found under a folder

Fig. 2.36 The completed Form for adding faculty images

2.9 Create Microsoft SQL Server 2019 Express Sample Database

64

Students\ Images\Students at the Springer ftp site (Fig. 1.2 in Chap. 1). One can
copy and store them in a folder: C:/SQL Java DB Programming\Students\Images
in your computer. The relationships between each student and related name of
image file are shown in Table 2.19.

You need to create another new project and redo everything as we did above.
Also you need to reconfigure the CSE_DEPTDataSet to select the Student table
only with three columns, student_id, student_name, and simage. Follow steps
below to complete this configuration.

Table 2.18 The image files in the Faculty table

faculty_id faculty_name fimage

A52990 Black Anderson Anderson.jpg
A77587 Debby Angles Angles.jpg
B66750 Alice Brown Brown.jpg
B78880 Ying Bai Bai.jpg
B86590 Davis Bhalla Davis.jpg
H99118 Jeff Henry Henry.jpg
J33486 Steve Johnson Johnson.jpg
K69880 Jenney King King.jpg

Fig. 2.37 The modified fimage column

Table 2.19 The image files in the Student table

student_id student_name simage

A78835 Andrew Woods Woods.jpg
A97850 Ashly Jade Jade.jpg
B92996 Blue Valley Valley.jpg
H10210 Holes Smith Smith.jpg
T77896 Tom Erica Erica.jpg

2 Introduction to Databases

65

 1) In the Visual Basic Form window, right click on the CSE_DEPTDataSet in the
Data Sources window, and select Configure Data Source with Wizard… item
from the popup menu to open that configuration wizard.

 2) Expand the Tables folder and check the Student table with the Faculty table
also checked (no change), and expand the Student table.

 3) Uncheck five columns; gpa, credits, major, schoolYear, and email, and leave
three columns, student_id, student_name, and simage, to be checked.

Your finished Student table in the Configuration Wizard is shown in Fig. 2.38.
Click on the Finish button to complete this configuration.

In the Visual Basic.NET project window, exactly in the SQL Image Project
Form window, replace the Details and GridView of the Faculty table with the
Details and GridView of the Student table by deleting Details and GridView of
the Faculty table first.

Now you can run the project to add all images for all students. Your finished
Form window should match one that is shown in Fig. 2.39.

Two complete projects, SQL Image Project and Student Image Project, can be
found from the folder Class DB Projects\Chapter 2 under the Students folder in
the Springer ftp site (refer to Fig. 1.2 in Chap. 1).

Fig. 2.38 The finished Student table in the Data Source Configuration Wizard

2.9 Create Microsoft SQL Server 2019 Express Sample Database

66

2.10 A Short-Cut: How to Use the Sample Database without
Building It

If some users, for some reasons, do not have time or do not like to create and build
this sample database, CSE_DEPT, with these steps, they can take a short-cut way
to directly use this sample database without spending any time or efforts. The pre-
condition is that the following components must be installed:

• Microsoft SQL Server 2019 Express Database
• Microsoft SQL Server Management Studio

Refer to Appendix A to get more details in how to install Microsoft SQL Server
2019 Express Database and SQL Server Management Studio. Refer to Appendix D
to get more details in how to copy, paste this sample database file and attach it into
the SQL Server 2019 Express Database via the SQL Server Management Studio.

2.11 Chapter Summary

A detailed discussion and analysis of the structure and components about popular
database systems are provided in this chapter. Some key technologies in developing
and designing database are also given and discussed in this part. The procedure and
components used to develop a relational database are analyzed in detail with some

Fig. 2.39 The completed form for adding student images

2 Introduction to Databases

67

real data tables in our sample database CSE_DEPT. The process in developing and
building a sample database is discussed in detail with the following points:

• Defining Relationships
• Normalizing the Data
• Implementing the Relational Database

In the second part of this chapter, a sample SQL Server 2019 Express database,
CSE_DEPT, which is developed with an updated and popular database manage-
ment system, Microsoft SQL Server Management Studio, is provided in detail. This
sample database will be used in the following chapters throughout the whole book.

Homework

 I. True/False Selections

____1. Database development process involves project planning, problem anal-
ysis, logical design, physical design, implementation, and maintenance

____2. Duplication of data creates problems with data integrity.
____3. If the primary key consists of a single column then the table in 1NF is

automatically in 2NF.
____4. A table is in first normal form if there are no repeating groups of data in

any column.
____5. When a user perceives the database as made up of tables, it is called a

Network Model.
____6. Entity integrity rule states that no attribute that is a member of the pri-

mary (composite) key may accept a null value.
____7. When creating data tables for the Microsoft Access database, a blank

field can be kept as a blank without any letter in it.
____8. To create data tables in SQL Server database, a blank field can be kept

as a blank without any letter in it.
____9. The name of each data table in SQL Server database must be prefixed

by the keyword dbo.
___10. In each relational database table, it can contain multiple primary keys,

but only one unique foreign key.

 II. Multiple Choices

 1. There are many advantages to using an integrated database approach over
that of a file processing approach. These include

 (a) Minimizing data redundancy
 (b) Improving security
 (c) Data independence
 (d) All of the above

2.11 Chapter Summary

68

 2. Entity integrity rule implies that no attribute that is a member of the primary
key may accept _______

 (a) Null value
 (b) Integer data type
 (c) Character data type
 (d) Real data type

 3. Reducing data redundancy will lead to _____

 (a) Deletion anomalies
 (b) Data consistency
 (c) Loss of efficiency
 (d) None of the above

 4. ______ keys are used to create relationships among various tables in a
database

 (a) Primary keys
 (b) Candidate keys
 (c) Foreign keys
 (d) Composite keys

 5. In a small university the department of Computer Science has six faculty
members. However, each faculty member belongs to only the computer
science department. This type of relationship is called _________

 (a) One-to-one
 (b) One-to-many
 (c) Many-to-many
 (d) None of the above

 6. The Client Server databases have several advantages over the File Server
databases. These include ________

 (a) Minimizing chances of crashes
 (b) Provision of features for recovery
 (c) Enforcement of security
 (d) Efficient use of the network
 (e) All of the above

 7. One can create the foreign keys between tables ______

 (a) Before any table can be created
 (b) When some tables are created
 (c) After all tables are created
 (d) With no limitations

2 Introduction to Databases

69

 8. To create foreign keys between tables, first one must select the table that
contains a _______ key and then select another table that has a _______ key.

 (a) Primary, foreign
 (b) Primary, primary
 (c) Foreign, primary
 (d) Foreign, foreign

 9. The data type nvarchar(50) in SQL Server database is a string with _______

 (a) Limited length up to 50 letters
 (b) Fixed length of 50 letters
 (c) Certain number of letters
 (d) Varying length

 10. For data tables in SQL Server Database, a blank field must be ________

 (a) Indicated by NULL Avoided
 (b) Kept as a blank
 (c) Either by NULL or a blank
 (d) Indicated by NULL

 III. Exercises

 1. What are the advantages of using an integrated database approach over that
of a file processing approach

 2. Define entity integrity and referential integrity. Describe the reasons for
enforcing these rules.

 3. Entities can have three types of relationships. It can be one-to-one, one-to-
many, and many-to-many. Define each type of relationship. Draw ER dia-
grams to illustrate each type of relationship.

 4. List all steps to create Foreign keys between data tables for SQL Server
2019 Express database in the SQL Server Management Studio. Illustrate
those steps by using a real example. For instance, how to create foreign keys
between the LogIn and the Faculty table.

 5. List all steps to create Foreign keys between data tables for a SQL Server
2019 Express database in the SQL Server Management Studio. Illustrate
those steps by using a real example. For instance, how to create foreign keys
between the StudentCourse and the Course table.

2.11 Chapter Summary

71© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_3

Chapter 3
JDBC API and JDBC Drivers

This chapter discusses the fundamentals of JDBC and JDBC API, which include an
overview of the JDBC and JDBC API, JDBC drivers, and related components used
in JDBC API.

3.1 What Are JDBC and JDBC API?

JDBC is a standard Java Database Connectivity and JDBC API can be considered
as a Java Database Connectivity Application Programming Interface (JDBC API).
All components and techniques of JDBC are embedded and implemented in JDBC
API. Basically, the JDBC API is composed of a set of classes and interfaces used to
interact with databases from Java applications.

Generally, the JDBC API performs the following three functions:

1) Establishes a connection between your Java application and related databases
2) Builds and executes SQL statements
3) Processes the results

Different database vendors provide various JDBC drivers to support their appli-
cations to different databases. The most popular JDBC components are located at
the following packages:

• java.sql: contains the standard JDBC components
• javax.sql: contains the Standard Extension of JDBC, which provides additional

features such as Java Naming and Directory Interface (JNDI) and Java
Transaction Service (JTS)

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_3].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06553-8_3&domain=pdf
https://doi.org/10.1007/978-3-031-06553-8_3

72

• oracle.jdbc: contains the extended functions provided by the java.sql and javax.
sql interfaces

• oracle.sql: contains classes and interfaces that provide Java mappings to SQL
data types

All of these parts are combined together to provide necessary components and
classes to build database applications using Java.

Generally, JDBC API enables users to access virtually any kind of tabular data
sources such as spreadsheets or flat files from a Java application. It also provides
connectivity to a wide scope of SQL or Oracle databases. One of the most important
advantages of using JDBC is that it allows users to access any kind of relational
database in a same coding way, which means that the user can develop one program
with the same coding to access either a SQL Server database or an Oracle database,
or MySQL database without coding modification.

The JDBC 4.0 and JDBC 4.3 specifications contain additional features, such as
extensions to the support to various data types, MetaData components, and improve-
ments on some interfaces.

3.2 JDBC Components and Architecture

The JDBC API is the only part of the entire JDBC product line.
The core of JDBC API is called a JDBC driver, which implements all JDBC

components, including the classes and interfaces, to build a connection and manipu-
late data between your Java application and selected database. Exactly a JDBC
driver, which is a class that is composed of a set of methods, builds a connection and
accesses databases through those methods.

The JDBC API contains two major sets of interfaces: the first is the JDBC API
for application writers (interface to your Java applications) and the second is the
lower-level JDBC driver API for driver writers (interface to your database). JDBC
technology drivers fit into one of four categories. Applications and applets can
access databases via the JDBC API using pure Java JDBC technology-based driv-
ers, as shown in Fig. 3.1.

As we mentioned, the JDBC API is composed of a set of classes and interfaces
used to interact with databases from Java applications. Table 3.1 lists all classes
defined in the JDBC API and their functions, and Table 3.2 shows all interfaces
defined in the JDBC API.

It can be found from Table 3.1 that the most popular classes in JDBC API are top
three classes: DriverManager, DriverPropertyInfo, and Type, and they are widely
implemented in the Java database programming applications.

All interfaces listed in Table 3.2 are popular and widely implemented in the Java
database applications. More detailed discussion and example applications of these
interfaces will be provided in Chap. 5 with real project examples.

3 JDBC API and JDBC Drivers

73

The core of the JDBC API is the JDBC Driver that can be accessed and called
from the DriverManager class method. Depending on the different applications, a
JDBC driver can be categorized into four types: Type I, Type II, Type III, and Type
IV. A more detailed discussion about the JDBC Driver and its types will be given in
Sect. 3.4. An optional way to access the database is to use the DataSource object,
which is a better way to identify and connect to a data source and makes code even
more portable and easier to maintain.

Java

Application

JDBC API

JDBC Driver

Manager or

DataSource

Pure Java

JDBC Driver

Database

Server

Fig. 3.1 The components
and architecture of a
JDBC API

Table 3.1 Classes defined in the JDBC API

Classes Function

DriverManager Handle loading and unloading of drivers and establish a connection to a
database

DriverPropertyInfo All methods defined in this class are used to setup or retrieve properties of a
driver. The properties can then be used by the connection object to connect
to the database

Type The type class is only used to define the constants used for identifying the
SQL types

Date This class contains methods to perform conversion of SQL date formats
and Java date objects

Time This class is similar to the date class, and it contains methods to convert
between SQL time and Java time object

TimeStamp This class provides additional precision to the Java date object by adding a
nanosecond field

3.2 JDBC Components and Architecture

74

3.3 How Does JDBC Work?

As we mentioned in the last section, the JDBC API has three functions: (1) setup a
connection between your Java application and your database; (2) build and execute
SQL statements; and (3) process results. We will discuss these functions in more
detail in this section based on the JDBC architecture shown in Fig. 3.1.

3.3.1 Establish a Connection

JDBC Driver class contains six methods and one of the most important methods is
the connect() method, which is used to connect to the database. When using this
Driver class, a point to be noted is that most methods defined in the Driver class
never be called directly, instead, they should be called via the DriverManager class
methods.

Table 3.2 Interfaces defined in the JDBC API

Interface Function

Driver The primary use of the driver interface is to create the connection objects.
It can also be used for the collection of JDBC driver metadata and JDBC
driver status checking

Connection This interface is used for the maintenance and status monitoring of a
database session. It also provides data access control through the use of
transaction locking

Statement The statement methods are used to execute SQL statements and retrieve
data from the ResultSet object

PreparedStatement This interface is used to execute pre-compile SQL statements. Pre-compile
statements allow for faster and more efficient statement execution, and
more importantly, it allows to run dynamic query with querying
parameters’ variation. This interface can be considered as a subclass of the
statement

CallableStatement This interface is mainly used to execute SQL stored procedures. Both IN
and OUT parameters are supported. This interface can be considered as a
subclass of the statement

ResultSet The ResultSet object contains the queried result in rows and columns
format. This interface also provides methods to retrieve data returned by a
SQL statement execution. It also contains methods for SQL data type and
JDBC data type conversion

ResultSetMetaData This interface contains a collection of metadata information or physical
descriptions associated with the last ResultSet object

DatabaseMetaData This interface contains a collection of metadata regarding the database
used, including the database version, table names, columns, and supported
functions

3 JDBC API and JDBC Drivers

75

3.3.1.1 Using DriverManager to Establish a Connection

The DriverManager class is a set of utility functions that work with the Driver meth-
ods together and manage multiple JDBC drivers by keeping them as a list of drivers
loaded. Although loading a driver and registering a driver are two steps, only one
method call is necessary to perform these two operations. The operational sequence
of loading and registering a JDBC driver is:

1) Call class methods in the DriverManager class to load the driver into the Java
interpreter

2) Register the driver using the registerDriver() method

When loaded, the driver will execute the DriverManager.registerDriver()
method to register itself. The above two operations will never be performed until a
method in the DriverManager is executed, which means that even both operations
have been coded in an application; however, the driver cannot be loaded and regis-
tered until a method such as connect() is first executed.

To load and register a JDBC driver, two popular methods can be used:

1) Use Class.forName() method:

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

2) Create a new instance of the Driver class:

Driver sqlDriver = new com.microsoft.sqlserver.jdbc.SQLServerDriver;

Relatively speaking, the first method is more professional since the driver is both
loaded and registered when a valid method in the DriverManager class is executed.
The second method cannot guarantee that the driver has been registered by using the
DriverManager.

3.3.1.2 Using DataSource Object to Establish a Connection

Another and better way to establish a connection is to use the DataSouce object.
The DataSource interface, introduced in the JDBC 2.0 Standard Extension API,

is a better way to connect to a data source to perform data actions. In JDBC, a data
source is a class that implements the interface javax.sql.DataSource to connect to
more than one desired databases. The getConnection() method is always used
to setup this connection.

A DataSource object is normally registered with a Java Naming and Directory
Interface (JNDI) naming service. This means that an application can retrieve a
DataSource object by name from the naming service independently of the system
configuration.

Perform the following three operations to deploy a DataSource object:

 1. Create an instance of the DataSource class
 2. Set its properties using setter methods
 3. Register it with a JNDI naming service

3.3 How Does JDBC Work?

76

After a valid connection has been setup using the DataSource object, one can use
any data query methods listed in Tables 3.3 and 3.4 to perform data actions against
the desired database.

3.3.2 Build and Execute SQL Statements

Once a valid connection is established and a Connection object is created, the JDBC
driver is responsible for ensuring that an application has consistent and uniform
access to any database. It is also responsible for ensuring that any requests made to
the application are presented to the database in a way that can be recognized by the
database.

To build a SQL statement, one needs to call the method createStatement() that
belongs to the Connection class to create a new Statement object. Regularly, there
are three types of Statement objects widely implemented in the JDBC API;
Statement, PreparedStatement and CallableStatement. The relationship among
these three classes is: the PreparedStatement and CallableStatement classes are the
subclasses of the Statement class.

To execute a SQL statement, one of the following three methods can be called:

1) execmuteQuery()
2) executeUpdate()
3) execute()

All of these methods belong to the Statement and the PreparedStatement classes
and used to access database to perform different data actions.

The differences between these three methods are dependents on the different
data operations and actions. Table 3.3 lists the function for each method and the

Table 3.3 The function of three SQL statements execution methods

Method Function

executeQuery() This method performs data query and returns a ResultSet object that contains
the queried results

executeUpdate() This method does not perform data query, instead it only performs either a
data updating, insertion, or deleting action against the database and returns an
integer that equals the number of rows that have been successfully updated,
inserted, or deleted

execute() This method is a special method, and it can be used either way. All different
data actions can be performed by using this method, such as data query, data
insertion, data updating, and data deleting. The most important difference
between the execute() method and two above methods is that this method can
be used to execute some SQL statements that are unknown at the compile time
or return multiple results from stored procedures. Another difference is that
the execute() method does not return any result itself, and one needs to use
getResultSet() or getUpdateCount() method to pick up the results. Both
methods belong to the statement class

3 JDBC API and JDBC Drivers

77

situation under which the appropriate method should be utilized. Mode detailed
discussion about these three methods and their implementations can be found in
Chap. 5.

3.3.3 Process Results

After the desired SQL statement is executed, you need to retrieve the execution
results. Depending on the different execution methods you called, you need to use
the different methods to pick up the results.

Table 3.4 lists some necessary methods used to pick up the appropriate results
based on the different execution methods utilized.

3.3.3.1 Using ResultSet Object

A ResultSet object will be created after the executeQuery() method is exe-
cuted or a getResultSet() method is executed. A ResultSet object is a data
structure that presents rows and columns returned by a valid query. It maintains a
cursor pointing to its current row of data. Initially, the cursor is positioned before the
first row. One can use the next() method to move the cursor to the next row, and
continue this moving one can scan the entire ResultSet. With a loop, one can use the
appropriate getXXX() method of the ResultSet class to pick up each row in the
ResultSet object. The XXX indicates the corresponding Java data type of the
selected row. A more detailed discussion about these methods will be provided in
Chap. 4.

Table 3.4 The desired method used to pick up the SQL execution results

Execution
method Picking up method

executeQuery() getResultSet(), getXXX(), where XXX equals to the desired data type of
returned result

executeUpdate() getUpdateCount()
This method will return an integer that equals the number of rows that have
been successfully updated, inserted, or deleted

execute() getResultSet(), getUpdateCount()
This method does not return any result itself, and one needs to use
getResultSet() or getUpdateCount() method to pick up the results. Both
methods belong to the statement class

3.3 How Does JDBC Work?

78

3.3.3.2 Using RowSet Object

A RowSet object contains a set of rows from a result set or some other source of
tabular data, like a file or spreadsheet. Because a RowSet object follows the
JavaBeans model for properties and event notification, it is a JavaBeans component
that can be combined with other components in an application. As is compatible
with other Beans, application developers can probably use a development tool to
create a RowSet object and set its properties.

RowSets may have many different implementations to fill different needs. These
implementations fall into two broad categories, connected and disconnected:

1) A connected RowSet is equivalent to a ResultSet, and it maintains a connection
to a data source as long as the RowSet is in use.

2) A disconnected RowSet works as a DataSet in Visual Studio.NET, and it can
connect to a data source to perform the data updating periodically. Most time, it
is disconnected with the data source and uses a mapping memory space as a
mapped database.

While a RowSet is disconnected, it does not need a JDBC driver or the full JDBC
API, so its footprint is very small. Thus a RowSet is an ideal format for sending data
over a network to a thin client.

Because it is not continually connected to its data source, a disconnected RowSet
stores its data in memory. It needs to maintain metadata about the columns it con-
tains and information about its internal state. It also needs a facility for making
connections, for executing commands, and for reading and writing data to and from
the data source. A connected RowSet, by contrast, opens a connection and keeps it
open for as long as the RowSet is being used. A more detailed discussion about the
RowSet object and its implementation will be given in Chap. 5.

Since the JDBC driver is a core for entire JDBC API, we will have a more
detailed discussion about this component in the next section.

3.4 JDBC Driver and Driver Types

The JDBC driver builds a bridge between your Java applications and your desired
database, and works as an intermediate-level translator to perform a double- direction
conversion: convert your high-level Java codes to the low-level native codes to inter-
face to the database, and convert the low-level native commands from the database
to your high-level Java codes.

As we discussed in the last section, a JDBC driver class contains six methods and
one of the most important methods is the connect() method, which is used to con-
nect to the database. When using this Driver class, a point to be noted is that most
methods defined in the Driver class never be called directly, instead, they should be
called via the DriverManager class methods.

3 JDBC API and JDBC Drivers

79

Generally, the JDBC API will not contain any JDBC driver and you need to
download a desired JDBC driver from the corresponding vendor if you want to use
a specified driver. Based on the different configurations, JDBC drivers can be cate-
gorized into the following four types:

3.4.1 Type I: JDBC-ODBC Bridge Driver

Open Database Connectivity (ODBC) is a Microsoft-based database Application
Programming Interface (API) and it aimed to make it independent of programming
languages, database systems, and operating systems. In other words, the ODBC is a
database and operating system independent API and it can access any database in
any platform without problem at all.

Figure 3.2 shows a typical architecture of JDBC-ODBC Bridge Driver applica-
tion. Figure 3.2a is for a Java standard-alone application and 3.2b is a Java 2-tire
application.

Basically, ODBC is built and based on various Call Level Interface (CLI) speci-
fications from the SQL Access Group and X/Open techniques. To access an ODBC
to interface to a desired database, a JDBC-ODBC Bridge is needed and this bridge
works just like a translator or a converter, which interpreters the JDBC requests to
the CLI in ODBC when a request is sent from the JDBC to the ODBC, and perform
an inverse translation (from CLI in ODBC to JDBC) when a result is returned from
the database. The advantage of using Type I driver is simplicity since we do not
need to know the details inside ODBC and transactions between the ODBC and
DBMS. Refer to Fig. 3.2a, it is a typical Java standard-alone application that uses
JDBC-ODBC Bridge Driver to access a local database, and it will work fine.
However, a problem will be exposed if applying this JDBC-ODBC Bridge Driver in

(a) (b)

Java

Application

JDBC-ODBC

Bridge

Database

Interface

ODBC Driver

Client

Network Interface

Java

Application

JDBC-ODBC

Bridge

Database

ServerODBC Driver

Fig. 3.2 JDBC-ODBC Bridge Driver

3.4 JDBC Driver and Driver Types

80

a 2-tier application that is shown in Fig. 3.2b. The problem is that the network stan-
dard security manager will not allow the ODBC that is downloaded as an applet to
access any local files when you build a Java Applet application to access a database
located in a database server. Therefore, it is impossible to build a Java Applet appli-
cation with this JDBC-ODBC Bridge Driver configuration.

3.4.2 Type II: Native-API-Partly-Java Driver

The Native-API-Partly-Java driver makes use of local native libraries to communi-
cate with the database. The driver does this by making calls to the locally installed
native call level interface (CLI) using a native language, either C or C++, to access
the database. The CLI libraries are responsible for the actual communications with
the database server. When a client application makes a database accessing request,
the driver translates the JDBC request to the native method call and passes the
request to the native CLI. After the database processed the request, results will be
translated from their native language back to the JDBC and presented to the client
application. Figure 3.3 shows a Type II driver configuration.

Compared with Type I driver, the communications between the driver and the
database are performed by using the native CLI without needing any translation
between JDBC and ODBC driver, therefore the speed and efficiency of Type II
driver is higher than that of Type I driver. When available, Type II drivers are recom-
mended over Type I drivers.

Client

Network Interface

Java

Application

JDBC Driver

Database

Server

Native Database

Libraries (CLI)

Local Disk

Fig. 3.3 Type II Driver

3 JDBC API and JDBC Drivers

81

3.4.3 Type III: JDBC-Net-All-Java Driver

Basically, the Type III drivers are similar with Type II drivers and the only differ-
ence between them is the replacement of the native database access libraries.

For both Type I and Type II drivers, either the ODBC driver or the native CLI
libraries must be installed and located on the client machine. All communications
between the server processes and the JDBC driver have been through native pro-
gram interface. However, in Type III driver configuration, the native CLI libraries
are placed on a server and the driver uses a network protocol to facilitate communi-
cations between the application and the driver. The result of this modification is to
separate the driver into two parts: (1) a part of JDBC driver that is an all-Java por-
tion can be downloaded to the client and (2) a server portion containing both another
part of JDBC driver and native CLI methods. All communications between the
application and the database server are 100% Java to Java. However, the communi-
cation between the database and the server is still done via a native database
CLI. Figure 3.4 shows this configuration.

It can be found from Fig. 3.4 that the client does not need to perform either
database-specified protocol translation or a Java-to-CLI translation by using Type
III drivers, and this will greatly reduce the working loads for the client machine and
the client piece of a Type III driver only needs to translate requests into the network
protocol to communicate with the database server. Another advantage of using a
Type III driver is that the second part of the Type III driver, which is used to com-
municate with the database native libraries, does not need to be downloaded to the
client, and as a result of this fact, Type III drivers are not subject to the same security
restrictions found as Types I and II did. Since all database-related codes reside on
the server side, a large driver that is capable of connecting to many different data-
bases can be built.

Database ServerClient

Network Interface

Java

Application

JDBC Driver

(Part I)

Database
Native Database

Libraries (CLI)

Local Disk

JDBC Driver

(Part II)

Fig. 3.4 Type III Driver configuration

3.4 JDBC Driver and Driver Types

82

3.4.4 Type IV: Native-Protocol-All-Java Driver

Type IV drivers are totally different with any drivers we have discussed so far. These
types of drivers are capable of communicating directly with the database without
the need for any type of translation since they are 100% Java without using any CLI
native libraries. Figure 3.5 shows a typical Type IV driver configuration.

The key issue in the use of a Type IV driver is that the native database protocol
will be rewritten to convert the JDBC calls into vendor-specific protocol calls, and
the result of this rewritten is that the driver can directly interact with the database
without needing any other translations. Therefore, Type IV drivers are the fastest
drivers compared with all other three-type drivers, Types I ~ III. By using a Type IV
driver, it will greatly simplify database access for applets by eliminating the need
for native CLI libraries.

3.5 JDBC Standard Extension API

Besides the standard JDBC API (or core API), Sun added an extension package
called JDBC 2.0 Standard Extension API to support extended database operations.
This package contains the following components:

1) JDBC DataSource
2) JDBC driver-based connection pooling
3) JDBC RowSet
4) Distributed transactions

We will take a close look at these components and provide a more detailed dis-
cussion about these elements in the following sections.

Server

Client

Network Interface

Java

Application

JDBC Driver
Database

Local Disk

Fig. 3.5 Type IV driver configuration

3 JDBC API and JDBC Drivers

83

3.5.1 JDBC DataSource

In Sect. 3.3.3.2, we have had a brief discussion about the DataSource object.
Because of its specialty and advantage over JDBC drivers and DriverManagers, we
will provide a more detailed discussion about this interface in this part.

As we know, the DataSource interface is introduced in the JDBC 2.0 Standard
Extension API and it is a better way to connect to a data source to perform data
actions. In JDBC, a data source is a class that implements the interface javax.sql.
DataSource to connect to more than one desired databases. The getConnection()
method is always used to setup this connection.

As we discussed in Sect. 3.3.1, to establish a connection by using a JDBC driver,
you need to use the DriverManager to load a desired driver and register that driver
to the driver list. You also need to know exactly the driver name and the driver URLs
to complete this connection. In fact, the DataSource can provide an alternative and
better way to do that connection in a fast and more efficient way.

The advantage of using a DataSource to perform this database connection is: a
DataSource object is normally registered with a Java Naming and Directory
Interface (JNDI) naming service. This means that an application can retrieve a
DataSource object by the name of that DataSource only, without needing to know
the driver name, database name, and driver URLs, even without needing to register
any drivers. In other words, this naming service is independent of the system con-
figurations and databases.

3.5.1.1 Java Naming and Directory Interface

Java Naming and Directory Interface (JNDI) provide naming and directory func-
tionality and service to Java applications. It is defined to be independent of any
specific directory service implementation so that different directories can be
accessed in a common way.

Exactly, the JNDI can be analogous to a file directory that allows users to find
and work with files by name. In this way, the JNDI is used to find the DataSource
using the logical name assigned to it when it is registered with the JNDI.

The association of a name with an object is called a binding process. A DataSource
object stores the attributes that tell it how to connect to a database, and those attri-
butes are assigned when you bind the DataSource instance to its JNDI directory.
The core JNDI interface that performs looking up, binding, unbinding, renaming
objects, creating and destroying subcontexts is the Context interface.

The Context interface represents a naming context, which consists of a set of
name-to-object bindings. It contains methods for examining and updating these
bindings. Table 3.5 shows some most popular methods used by this interface.

In fact, using JNDI can significantly improve the portability of a Java application
by removing the need to hard code a driver name and database name, and it is very
similar to a file directory to improve file accessing by overcoming the need to

3.5 JDBC Standard Extension API

84

reference disk cylinders and sectors. To establish a valid database connection using
the JNDI, the only information you need is the name of the DataSource, yes, that is
all you need and it is so simple and easy, is it not?

3.5.1.2 Deploy and Use a Basic Implementation of DataSource

In this section, we will use a piece of codes to illustrate the implementation of a
DataSource object. Perform the following three operations to deploy a
DataSource object:

1) Create an instance of the DataSource class
2) Set its properties using setter methods
3) Register it with a JNDI naming service

The first step is to create a DataSource object, set its properties, and register it
with a JNDI naming service. A DataSource object is usually created, deployed, and
managed separately from the Java applications that use it. A point to be noted is that
a DataSource object for a particular data source is created and deployed by a devel-
oper or system administrator, not the user. Figure 3.6 shows a piece of example
codes to create a new DataSource object with some properties setting by using some
setters. The class Vendor_DataSource would most likely be supplied by a
driver vendor.

Table 3.5 The most popular methods used in the context interface

Method Function

bind(String name, Object obj) Binds a name to an object
createSubcontext(String
name)

Creates and binds a new context

destroySubcontext(String
name)

Destroys the named context and removes it from the namespace

listBindings(String name) Enumerates the names bound in the named context, along with
the objects bound to them

lookup(String name) Retrieves the named object
unbind(String name) Unbinds the named object
close() Closes this context

Vendor_DataSource ds = new Vendor_DataSource();

ds.setServerName("localhost");

ds.setDatabaseName("CSE_DEPT");

ds.setDescription("CSE_DEPT Database");

Context ctx = new InitialContext();

ctx.bind("jdbc/CSE_DEPT", ds);

Fig. 3.6 An example coding for the creation of a new DataSource object

3 JDBC API and JDBC Drivers

85

In Fig. 3.6, the first coding line is to create a new DataSource object based on the
data source provided by the vendor. The following three lines are used to setup dif-
ferent properties using a setter. The last two lines are used to create an InitialContext
object and to bind and register the new DataSource object ds to the logical name
jdbc/CSE_DEPT with a JNDI naming service.

The JNDI namespace consists of an initial naming context and any number of
subcontexts under it. It is hierarchical, similar to the directory/file structure in many
file systems, with the initial context being analogous to the root of a file system and
subcontexts being analogous to subdirectories. The root of the JNDI hierarchy is the
initial context, here represented by the variable ctx. There may be many subcon-
texts under the initial context, one of which is jdbc, the JNDI subcontext reserved
for JDBC data sources. The logical data source name may be in the subcontext
jdbc or in a subcontext under jdbc. The last element in the hierarchy is the object
being registered, analogous to a file, which in this case is a logical name for a
data source.

The codes shown in Fig. 3.7 show how an application uses this to connect to a
data source.

To get a connection using a DataSource object, create a JNDI Context instance
and use the name of the DataSource object to its lookup() method to try to find
it from a JNDI subcontext jdbc. The returned DataSource object will call its get-
Connection() method to establish a connection to the database.

As soon as a database connection has been established, you can execute any SQL
statements as you want to perform any desired data action against the connected
database.

3.5.2 JDBC Driver-Based Connection Pooling

By using a DataSource object, you can easily setup a connection with your database
and perform any data operation you want. Sound good! Yes, this kind of operation
is good for two-tier database applications without problem. However, a problem
would come if you apply this operation is a three-tier database application. The
main issue is the overhead in transactions between the application server and client.
If you are running in a three-tier database application, each time when you com-
municate between your application server and your database via a database server

Context ctx = new InitialContext();

DataSource ds = (DataSource)ctx.lookup("jdbc/CSE_DEPT");

Connection con = ds.getConnection("myUserName", "myPassWord");

// Execute the SQL statements to perform data actions via database……

Fig. 3.7 An example coding for execution of the database connection via DataSource

3.5 JDBC Standard Extension API

86

to perform a connection or a disconnection, there would be quite a few communica-
tion traffics running between your server and your database, and this will introduce
multiple opening and closing operations to your database and greatly reduce the
efficiency of the database.

To solve this overhead problem, a Connection Pooling API has been provided by
JDBC Standard Extension API. The pooling implementations do not actually close
connections when the client calls the close() method, but instead return the con-
nections to a pool of available connections for other clients to use. This avoids any
overhead of repeatedly opening and closing connections, and allows a large number
of clients to share a small number of database connections.

The connection pooling API is an extension of the regular connection API. The
working principle of using a connection pooling is: when a resource or connection
is no longer needed after a task has been completed, it is not destroyed but is added
into a resource pool instead, making it available when required for a subsequent
operation. In other words, we can temporarily store all unused connections to a con-
nection pool, and reuse them as soon as a new data action is required for the target
database. In this way, we can greatly improve the database performance by cutting
down on the number of new connections that need to be created.

The JDBC API provides a client and a server interface for connection pooling.
The client interface is javax.sql.DataSource, which is what application
code will typically use to acquire a pooled database connection. The server interface
is javax.sql.ConnectionPoolDataSource, which is how most applica-
tion servers will interface with the PostgreSQL JDBC driver. Both interfaces are
defined in the JDBC 2.0 Standard Extension (also known as the JDBC 2.0 Optional
Package).

The server interface for connection pooling, ConnectionPoolDataSource
object, is a factory for PooledConnection objects. All Connection objects that
implement this interface are registered with a JNDI naming service.

To implement a DataSource object to create pooled connections, you need to
perform the following operations:

• Create a ConnectionPoolDataSource object
• Set its properties to the data source that produced connections
• Register ConnectionPoolDataSource object with the JNDI nam-

ing service
• Create a DataSource object
• Set properties to the DataSource object by using setter

Figure 3.8 shows a piece of example codes to illustrate how to use the connection
pooling API to create and deploy a DataSource object that an application can use to
get pooled connections to the database.

The first coding line is used to create a new ConnectionPoolDataSource
object, and this object is equivalent to a pool body to hold unused data sources later.

The following four lines are used to set appropriate properties to this created
object. Then, in the sixth and seventh lines, the created
ConnectionPoolDataSource object is registered with the JNDI naming

3 JDBC API and JDBC Drivers

87

service. The logical name associated with cpds has a subcontext pool added under
the subcontext jdbc, which is similar to adding a subdirectory to another subdirec-
tory in a file system.

Now we need to create our DataSource object implemented to work with it, or in
other words, we can add this DataSource object into our pool, the
ConnectionPoolDataSource object, when it is temporarily unused in an
application. The coding lines between the eighth and the tenth are used to create our
DataSource object ds with the PooledDataSource class. Note in the tenth cod-
ing line, the name of the DataSource is jdbc/pool/CSE_DEPT, which is identi-
cal with the logical name of our ConnectionPoolDataSource object we
created before.

The last two coding lines are used to register our DataSource object with the
JNDI naming service.

Now you can use this connection pooling for your data source object. The point
is that when you finished a task to your current database, you must call the close()
method from your client to inform the server that this database connection will be

ConnectionPoolDataSource cpds = new ConnectionPoolDataSource();

cpds.setServerName("localhost");
cpds.setDatabaseName("CSE_DEPT");

cpds.setPortNumber(5000);

cpds.setDescription("CSE_DEPT Database");

Context ctx = new InitialContext();

ctx.bind("jdbc/pool/CSE_DEPT", cpds);

PooledDataSource ds = new PooledDataSource();

ds.setDescription(“CSE_DEPT database pooled connection source”);

ds.setDataSourceName(“jdbc/pool/CSE_DEPT”);

Context ctx = new InitialContext();

ctx.bind(“jdbc/CSE_DEPT”, ds);

Fig. 3.8 An example coding for the connection pooling DataSource

Connection con = null;

 try {

 con = ds.getConnection();

 // use connection

 }

catch(SQLException e)

 {

 // log error

 }

finally

 {

 if(con != null)

 try {con.close();}catch(SQLException e) {}
 }

Fig. 3.9 An example coding for retrieving and reusing a connection

3.5 JDBC Standard Extension API

88

temporarily unused, and this will allow the Connection Pooling API to add this
unused connection to the ConnectionPoolDataSource object. Later on if
you want to reuse this database, you need to use the codes shown in Fig. 3.9 to get
that connection from the pool.

Another situation to use a DataSource object is when you need to implement
distributed transactions, which means that you need to use multiple databases syn-
chronously in your applications. In that case, use of a DataSource object with built-
 in distributed transaction capabilities is the best solution.

3.5.3 Distributed Transactions

A distributed transaction, sometimes referred to as a global transaction, is a set of
two or more related transactions that must be managed in a coordinated way. The
transactions that constitute a distributed transaction might be in the same database,
but more typically are in different databases and often in different locations. Each
individual transaction of a distributed transaction is referred to as a transac-
tion branch.

In the JDBC 2.0 extension API, distributed transaction functionality is built on
top of connection pooling functionality, which we have discussed in the last section.
This distributed transaction functionality is also built upon the open XA standard
for distributed transactions. (XA is part of the X/Open standard and is not specific
to Java).

3.5.3.1 Distributed Transaction Components and Scenarios

A typical distributed transaction can be composed of the following components and
scenarios:

• A distributed transaction system typically relies on an external transaction man-
ager, such as a software component that implements standard Java Transaction
API (JTA) functionality, to coordinate the individual transactions. Many vendors
will offer XA-compliant JTA modules. This includes Oracle, which is develop-
ing a JTA module based on the Oracle implementation of XA.

• XA functionality is usually isolated from a client application, being implemented
instead in a middle-tier environment such as an application server. In many sce-
narios, the application server and transaction manager will be together on the
middle tier, possibly together with some of the application code as well.

• The term resource manager is often used in discussing distributed transac-
tions. A resource manager is simply an entity that manages data or some other
kind of resource. Wherever the term is used in this chapter, it refers to a database.

By definition XA is a standard protocol that allows coordination, commitment,
and recovery between transaction managers (e.g., CICS, Tuxedo, and even BEA

3 JDBC API and JDBC Drivers

89

Web Logic Server) and resource managers (e.g., databases, message queuing prod-
ucts such as JMS or Web Sphere MQ, mainframe applications, ERP packages).

As with connection pooling API, two classes must be used for a distributed
transaction:

• A XADataSource that produces XAConnections supporting distributed
transactions.

• A DataSource object that is implemented to work with it.

The transaction manager is responsible for making the final decision either to
commit or rollback any distributed transaction. A commit decision should lead
to a successful transaction; rollback leaves the data in the database unaltered. JTA
specifies standard Java interfaces between the transaction manager and the other
components in a distributed transaction: the application, the application server, and
the resource managers.

3.5.3.2 The Distributed Transaction Process

The transaction manager is the primary component of the distributed transaction
infrastructure; however, the JDBC driver and application server components should
have the following characteristics:

• The driver should implement the JDBC 2.0 API (including the Optional Package
interfaces XADataSource and XAConnection) or higher and the JTA interface
XAResource.

• The application server should provide a DataSource class that is implemented to
interact with the distributed transaction infrastructure and a connection pool-
ing module.

The first step of the distributed transaction process is to send a request to the
transaction manager by the application. Although the final commit/rollback deci-
sion treats the transaction as a single logical unit, there can be many transaction
branches involved. A transaction branch is associated with a request to each resource
manager involved in the distributed transaction. Requests to three different
RDBMSs, therefore, require three transaction branches. Each transaction branch
must be committed or rolled back by the local resource manager. The transaction
manager controls the boundaries of the transaction and is responsible for the final
decision as to whether or not the total transaction should commit or rollback. This
decision is made in two phases, called the Two-Phase Commit Protocol.

In the first phase, the transaction manager polls all of the resource managers
(RDBMSs) involved in the distributed transaction to see if any of them is ready to
commit. If a resource manager cannot commit, it responds negatively and rolls back
its particular part of the transaction so that data is not altered.

In the second phase, the transaction manager determines if any of the resource
managers have responded negatively, and, if so, rolls back the whole transaction. If

3.5 JDBC Standard Extension API

90

there are no negative responses, the translation manager commits the whole transac-
tion, and returns the results to the application.

The DataSource implemented to produce connections for distributed transac-
tions is almost always implemented to produce connections that are pooled as well.
The XAConnection interface extends the PooledConnection interface.

To begin a distributed transaction, a XADataSource object should be created
first, and this can be done by creating a new instance of the XATransactionlDS and
setting its properties.

Figure 3.10 shows an example coding for a distributed transaction.
The first coding line is used to create a new XADataSource object, and it pro-

duces XAConnections supporting distributed transactions.
The following four lines are used to set appropriate properties to this cre-

ated object.
Then, in the sixth and seventh lines, the created XADataSource object is reg-

istered with the JNDI naming service. The logical name associated with xads has
a subcontext xa added under the subcontext jdbc, which is similar to adding a
subdirectory to another subdirectory in a file system.

Finally, the DataSource object is created to interact with xads, and other
XADataSource objects are deployed.

Now that instances of the TransactionlDS and XATransactionlDS
classes have been created, an application can use the DataSource to get a connection
to the CSE_DEPT database, and this connection can then be used in any distributed
transactions.

3.5.4 JDBC RowSet

A JDBC RowSet object is one of the JavaBeans components with multiple supports
from JavaBeans and it is a new feature in the java.sql package. By using the
RowSet object, a database query can be performed automatically with the data

XATransactionlDS xads = new XATransactionlDS ();

xads.setServerName("localhost");
xads.setDatabaseName("CSE_DEPT");

xads.setPortNumber(5000);

xads.setDescription("CSE_DEPT Database");

Context ctx = new InitialContext();

ctx.bind("jdbc/xa/CSE_DEPT", xads);

TransactionlDS ds = new TransactionlDS();

ds.setDescription(“CSE_DEPT distributed transaction connection source”);

ds.setDataSourceName(“jdbc/xa/CSE_DEPT”);

Context ctx = new InitialContext();

ctx.bind(“jdbc/CSE_DEPT”, ds);

Fig. 3.10 An example coding for the distributed transaction implementation

3 JDBC API and JDBC Drivers

91

source connection and a query statement creation. In this section, we will provide a
brief introduction about this new feature to reduce the coding load and improve the
efficiency of the data query with the help of this RowSet object. A more detailed
discussion with real project examples will be given in Sect. 6.4.6 in Chap. 6.

3.5.4.1 Introduction to Java RowSet Object

A RowSet object contains a set of rows from a result set or some other source of
tabular data, like a file or spreadsheet. Because a RowSet object follows the
JavaBeans model for properties and event notification, it is a JavaBeans component
that can be combined with other components in an application. As it is compatible
with other Beans, application developers can probably use a development tool to
create a RowSet object and set its properties.

RowSets may have many different implementations to fill different needs. These
implementations fall into two broad categories, connected and disconnected:

1) A connected RowSet is equivalent to a ResultSet, and it maintains a connection
to a data source as long as the RowSet is in use.

2) A disconnected RowSet works as a DataSet in Visual Studio.NET, and it can
connect to a data source to perform the data updating periodically. Most time, it
is disconnected with the data source and uses a mapping memory space as a
mapped database.

While a RowSet is disconnected, it does not need a JDBC driver or the full JDBC
API, so its footprint is very small. Thus a RowSet is an ideal format for sending data
over a network to a thin client.

To make writing an implementation easier, the Java Software division of Sun
Microsystems, Inc., plans to provide reference implementations for five different
styles of RowSets in the future. Among them, two components are very popular and
widely implemented in Java database applications:

1) A CachedRowSet class—a disconnected RowSet that caches its data in mem-
ory; not suitable for very large data sets, but an ideal way to provide thin Java
clients, such as a Personal Digital Assistant (PDA) or Network Computer (NC),
with tabular data.

2) A JDBCRowSet class—a connected RowSet that serves mainly as a thin wrap-
per around a ResultSet object to make a JDBC driver look like a JavaBeans
component.

To effectively apply RowSet objects to perform data actions against desired data-
bases, the following operational sequence should be adopted.

3.5 JDBC Standard Extension API

92

3.5.4.2 Implementation Process of a RowSet Object

Generally, the operational procedure of using a RowSet object to query data can be
divided into the following four steps:

1) Setup and configure a RowSet object
2) Register the RowSet Listeners
3) Set input and output parameters for the query command
4) Traverse through the result rows from the ResultSet

The first step is used to setup and configure the static or dynamic properties of a
RowSet object, such as the connection url, username, password, and running com-
mand, to allow the RowSet object to connect to the data source, pass user parame-
ters into the data source and perform the data query.

The second step allows users to register different Listeners for the RowSet object
with different event sources. The RowSet feature supports multiple listeners to be
registered with the RowSet object. Listeners can be registered using the addRow-
SetListener() method and unregistered through the removeRowSetListener()
method. A listener should implement the javax.sql.RowSetListener inter-
face to register itself as the RowSet listener. Three types of events are supported by
the RowSet interface:

1) cursorMoved event: Generated whenever there is a cursor movement, which
occurs when the next() or previous() methods are called.

2) rowChanged event: Generated when a new row is inserted, updated, or deleted
from the row set.

3) rowsetChanged event: Generated when the whole row set is created or changed.

In this book, the Apache NetBeans IDE 12 is used and the event-listener model
has been setup by NetBeans IDE. So we can skip this step and do not need to take
care of this issue during our coding process in the following chapters.

Step 3 allows users to setup all static or dynamic parameters for the query state-
ment of the RowSet object. Depending on the data type of the parameters used in
the query statement, suitable setXXX() method should be used to perform this
parameter setup process.

The fourth step is used to retrieve each row from the ResultSet object.

3.6 Chapter Summary

This chapter discusses the fundamentals of JDBC and JDBC API, which include an
overview of the JDBC and JDBC API, JDBC drivers, and related components used
in JDBC API.

The JDBC components and architecture are discussed and analyzed in detail in
the first part of this chapter. All classes and interfaces defined in a JDBC API are
discussed and presented with sequence tables. With some basic idea on JDBC and

3 JDBC API and JDBC Drivers

93

its components, the function and operational procedure of using JDBC API to per-
form data actions are described by three key steps:

1) Establish a connection between your Java application and related databases
2) Build and execute SQL statements
3) Process the results

To setup a valid database connection, two popular connection methods are intro-
duced; using the DriverManager class method and using the DataSource object.
Relatively speaking, the second method is simple and easy to be used in real appli-
cations since no detailed data source information is needed for this database
connection.

To build and execute a typical SQL statement, the Statement, PreparedStatement,
and CallableStatement components are discussed and introduced. Both
PreparedStatement and CallableStatement classes are subclasses of the Statement
class; however, both of them have more flexibility compared with the Statement
component.

To process returned query result, different objects, such as ResultSet and RowSet,
are introduced and discussed to provide users a clear picture about those objects and
their functionalities.

Following the JDBC API and JDBC driver discussion, a detailed discussion
about the types of JDBC Drivers is provided. Four popular types of drivers are ana-
lyzed and compared with architectures and their implementations.

Finally, four important components defined in the JDBC Standard Extension
API, DataSource, Connection Pooling, Distributed Transactions, and RowSet are
introduced and discussed with example coding.

The topics discussed in this chapter are prerequisites for the next chapter, and
some components will be discussed and analyzed in more detail to give users a
deeper understanding and a better picture about their roles in real Java database
applications.

Homework
 I. True/False Selections

____1. JDBC is a standard Java Database Connectivity and JDBC API can be
considered as a Java Database Connectivity Application Programming
Interface.

____2. JDBC API is not the only component included in a JDBC.
____3. JDBC API is composed of a set of classes and interfaces used to interact

with databases from Java applications.
____4. JDBC Drivers are implementation dependent, which means that differ-

ent applications need different drivers.
____5. The core of JDBC 4.0 API provides standard JDBC components that are

located at the java.sql package, and some additional components
such as JNDI and JTS are defined in JDBC 4.0 Standard Extension that
is located at the javax.sql package.

3.6 Chapter Summary

94

____ 6. One can establish a database connection by directly calling the Driver
class method connect().

____ 7. To load and register a JDBC driver, two popular methods can be used;
using either Class.forName() method or to create a new instance of the
Driver class.

____ 8. Three components can be used to build a SQL statement: Statement,
Prepared-Statement, and CallableStatement.

____ 9. To pick up the execution results, one can use the executeQuery() and
executeUpdate() methods. The former returns an integer and the latter
returns a ResultSet.

____10. There are four types of JDBC drivers, and Type IV driver is a pure Java
driver with fast running speed and high efficiency in data actions.

 II. Multiple Choices

 1. Generally, the JDBC API performs the following three functions _____

 (a) Connect to database, load JDBC driver, perform the query
 (b) Perform the query, connect to database, load JDBC driver
 (c) Get result from ResultSet, connect to database, load JDBC driver
 (d) Establish a connection to database, execute SQL statements and get

running results

 2. To establish a connection with a DataSource object, you need to ________

 (a) Create a DataSource object, set properties, and use this object
 (b) Set properties, setup a connection, and perform queries
 (c) Create a DataSource object, set properties, and register it with JNDI

naming service
 (d) Register a DataSource object, set properties, and create a

DataSource object

 3. To build and run a SQL statement, following components can be uti-
lized ______

 (a) Statement
 (b) Statement, PreparedStatement
 (c) Statement, PreparedStatement, CallableStatement
 (d) None of them

 4. To execute a SQL statement to get a query result, _________ method(s)
should be used.

 (a) executeQuery()
 (b) executeUpdate()
 (c) execute() and executeUpdate()
 (d) executeQuery() and execute()

3 JDBC API and JDBC Drivers

95

 5. To perform an insert, update or delete operation, the ________ method(s)
should be used.

 (a) executeUpdate()
 (b) executeQuery()
 (c) executeQuery() and execute()
 (d) executeQuery() and executeUpdate()

 6. The ________ method can be used to either pick up a query result or update
a datum.

 (a) executeUpdate()
 (b) execute()
 (c) executeQuery()
 (d) None of them

 7. A distributed transaction is defined as to access _________ data source(s)
at _______ location(s).

 (a) Single, single
 (b) Multiple, same
 (c) Multiple, different
 (d) Single, multiple

 8. The execute() method can _____________.

 (a) Not return any result
 (b) Return some results
 (c) Be used either to return a result or not return any result.
 (d) None of above

 9. A CachedRowSet class is a __________ that caches its data in __________.

 (a) Connected RowSet, database
 (b) Disconnected RowSet, database
 (c) Connected RowSet, memory
 (d) Disconnected RowSet, memory

 10. The ResultSet object can be created by either executing the ___________
or __________ method, which means that the ResultSet instance cannot be
created or used without executing a query operation first.

 (a) executeQuery(), getResultSet()
 (b) getResultSet(), execute()
 (c) createResultSet(), getResultSet()
 (d) buildResultSet(), executeQuery()

3.6 Chapter Summary

96

 III. Exercises

 1. Provide a detailed description about the JDBC API, which includes:

 (a) The definition of the JDBC and JDBC API
 (b) The components defined in a JDBC API, including all classes and

interfaces
 (c) The architecture of the JDBC API
 (d) The regular functions of a JDBC API performed
 (e) The packages of the JDBC API is involved

 2. Provide a brief discussion about database connection using JDBC API,
which includes:

 (a) Two popular methods used to establish a connection
 (b) Operational procedure to establish a connection
 (c) How to use a DataSource object to establish a connection
 (d) Compare two popular method with the DataSource method in estab-

lishing a database connection

 3. Explain the function of three different statement execution methods: exe-
cuteQuery(), executeUpdate() and execute(). For each method, provides a
way to retrieve the execution result.

 4. Provides a brief introduction about four types of JDBC drivers and their
architecture.

 5. Provides a brief introduction about the connection pooling API.

3 JDBC API and JDBC Drivers

97© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_4

Chapter 4
JDBC Application and Design
Considerations

This chapter discusses the application fundamentals of JDBC and JDBC API, which
include the application models and operational procedures of the JDBC API imple-
mented in Java database applications.

4.1 JDBC Application Models

JDBC API supports both two-tier and three-tier models for database accesses. In a
two-tier model, a Java application or an applet can communicate directly with the
database.

In a three-tier model, commands are sent to a middle-tier, which sends the mes-
sages to the database. In return, the result of the database query is sent to the middle-
tier that finally directs it to the application or applet. The presence of a middle-tier
has a number of advantages, such as a tight control over changes done to the
database.

4.1.1 Two-Tier Client-Server Model

In a two-tier client-server model, a Java application can directly communicate with
the database. In fact, the so-called two-tier model means that the Java application
and the target database can be installed in two components with two layers:

• Application layer, which includes the JDBC driver, user interface, and the whole
Java application, installed in a client machine.

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_4].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06553-8_4&domain=pdf
https://doi.org/10.1007/978-3-031-06553-8_4

98

• Database layer, which includes the RDBMS and the database, installed in a data-
base server.

Figure 4.1 shows a typical configuration of a two-tier model.
It can be found from Fig. 4.1 that both Java application and JDBC API are located

at the first layer, or the client machine and the DBMS and database are located at the
second layer or the database server. A DBMS-related protocol is used as a tool to
communicate between these two layers. The interface to the database is handled by
a JDBC driver that is matched to the particular database management system being
used. The JDBC driver has double-side functionality; it passes SQL statement to the
database when a data action request is sent from the client, and returns the results of
executing those statements to the client when the data action is done.

A client-server configuration is a special case of the two-tier model, where the
database is located on another machine called the database server. The Java applica-
tion program runs on the client machine that is connected to the database server
through a network.

Most topics discussed in Chaps. 5, 6, and 7 in this book are about two-tier model
applications. The Java application projects are built in the client machine and com-
municate with the database server through the network to perform all kinds of data
actions. The inherent flexibility of Java JDBC approach to develop database appli-
cations enables you to access a variety of RDBMS systems, including Microsoft
Access, SQL Server, and Oracle.

4.1.2 Three-Tier Client-Server Model

In a three-tier client-server model, a data action request is coming from an applica-
tion GUI and sent to the application server that can be considered as a middle tier,
and the application server that contains the JDBC API then sends SQL statements to
the database located on a database server. When the data action is processed, the
database sends the results back to the application server, which then sends them to
the client. In fact, the so-called three-tier model is common in Web applications, in

Java Application

JDBC API

DBMS &
Database

Client Machine

DBMS-Related Protocol

Database Server

Fig. 4.1 A typical
configuration of a two-tier
model

4 JDBC Application and Design Considerations

99

which the client tier is implemented in a Web browser, the middle-tier is a Web
server, and the database management system runs on a database server. This model
can be represented by the following three layers:

• Client layer, which includes a Web browser with some language-specified virtual
machines, installed in a client machine.

• Application server layer, which includes Java Web applications or Java Web ser-
vices, installed in a Web server. This layer is used to handle the business logic or
application logic. This may be implemented using Java Servlet engines, Java
Server Pages, or Java Server Faces. The JDBC driver is also located in this layer.

• Database layer, which includes the RDBMS and the database, installed in a data-
base server.

Figure 4.2 shows a typical configuration of a three-tier model.
Advantages of using a three-tier configuration over a two-tier counterpart

include:

• Application performance can be greatly improved by separating the application
server and database server.

• Business logic is clearly separated from the database.
• Client application can then use a simple protocol to access the server.

Topics discussed in Chaps. 8 and 9 in this book are about three-tier applications
that use a Web browser as the client, a Java Server Face (JSF) or Java Server Page
(JSP) as the middle-tier, and a relational database management system as the data-
base server.

Now that we have a clear picture about the Java application running models, next
we need to dig a little deeper about the Java database applications.

Java Application
or HTML Browser

DBMS &
Database

Client Machine
(GUI)

DBMS-Related Protocol

Database Server

Application Server

JDBC API
Web Server

HTTP or RMI Calls

Fig. 4.2 A typical
configuration of a three-tier
model

4.1 JDBC Application Models

100

4.2 JDBC Applications Fundamentals

As we discussed in Sect. 3.1 in Chap. 3, to run a Java database application to per-
form data actions against the selected database, a JDBC API needs to perform the
following operations:

1) Establish a connection between your Java application and related databases
2) Build and execute SQL statements
3) Process the results

In fact, to successfully develop and run a Java database application, the above
three operational steps need to be further divided into the following seven steps:

1) Import necessary Java packages, such as java.awt, java.util, javax.swing,
java.sql, and javax.sql

2) Load and register the JDBC driver
3) Establish a connection to the database server
4) Create a SQL statement
5) Execute the built statement
6) Retrieve the executing results
7) Close the statement and connection objects

In all steps listed above, step 1 is a prerequisite step since all JDBC-related com-
ponents and interfaces are defined in the java.sql and javax.sql packages. All GUI-
related components are defined in the java.awt and javax.swing packages, and all
other application-related components are defined in the java.util package. In order
to use any component defined in those packages, you must first import those pack-
ages into your program to provide namespaces and locations for those components.
Otherwise, a compiling error may be encountered since the compiler cannot find
and identify those components when you used them but without providing the
related packages.

In this and the following sections, we will provide a deeper and more detailed
discussion about the data actions on Java database applications based on these seven
fundamental steps.

4.2.1 Loading and Registering Drivers

As we studied in Chap. 3, to establish a valid database connection, first you need to
load and register a JDBC driver. Then you can call the connect() method to estab-
lish a database connection to your desired database.

We provided a brief discussion about the JDBC Driver and DriverManager com-
ponents in Chap. 3. In fact, the core of the JDBC API is the JDBC Driver that can
be accessed and called from the DriverManager class method. However, the Driver
class is under the control of the DriverManager class and the DriverManager is

4 JDBC Application and Design Considerations

101

exactly a manager for the Driver class. When using this Driver class, you cannot call
and run any method defined in the Driver class, instead, you need to call them via
the DriverManager class methods.

The DriverManager class is a set of utility functions that work with the Driver
methods together and manage multiple JDBC drivers by keeping them as a list of
drivers loaded. Although loading a driver and registering a driver are two steps, only
one method call is necessary to perform these two operations. The operational
sequence of loading and registering a JDBC driver is:

1) Call class methods in the DriverManager class to load the driver into the Java
interpreter

2) Register the driver using the registerDriver() method

When loaded, the driver will execute the DriverManager.registerDriver()
method to register itself. The above two operations will never be performed until a
method in the DriverManager is executed, which means that even both operations
have been coded in an application; however, the driver cannot be loaded and regis-
tered until a method such as connect() is first executed.

To load and register a JDBC driver, two popular methods can be used:

1) Use Class.forName() method:

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

2) Create a new instance of the Driver class:

Driver sqlDriver = new com.microsoft.sqlserver.jdbc.SQLServerDriver;

Relatively speaking, the first method is more professional since the driver is both
loaded and registered when a valid method in the DriverManager class is executed.
The second method cannot guarantee that the driver has been registered by using the
DriverManager.

A piece of sample codes that are used to load and register a Microsoft SQL
Server JDBC driver using the first method is shown in Fig. 4.3.

importjava.sql.*;
try
{

//Load and register SQL Server driver
Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}
catch(Exception e) {

System.out.println("Class not found exception!" + e.getMessage());
}

Fig. 4.3 A sample coding for the driver loading and registering

4.2 JDBC Applications Fundamentals

102

In Fig. 4.3, the first coding line is used to import the JDBC API package
java.sql.*.

Then a try…..catch block is used to load and register a Microsoft SQL Server
JDBC Driver. The Class.forName() method is utilized to make sure that our JDBC
Driver is not only loaded but also registered when it is connected by running the
getConnection() method later. The argument of this method, com.microsoft.
sqlserver.jdbc.SQLServerDriver, is the name of this Microsoft SQL Server JDBC
Driver class and it is created by the NetBeans when it is added to a Java database
application project.

The catch block is used to track any possible error for this loading and register-
ing. The related exception information will be displayed if any error occurred.

You can use the second method to replace this method to perform the same driver
loading and registering operation if you like.

4.2.2 Getting Connected

To establish a connection to the desired database, two methods can be used:

1) Using DriverManager.getConnection() method
2) Using Driver.connect() method

Before we can take a closer look at these two methods, first let’s have a quick
review for all methods defined in these two classes, DriverManager and Driver.

4.2.2.1 The DriverManager and Driver Classes

All 12 methods defined in the DriverManager class are shown in Table 4.1.
Four methods in the DriverManager class are widely applied in most database

applications; getConnection(), getDriver(), registerDriver(), and deregister-
Driver(). Note that the getConnection() method has two more overloading meth-
ods with different arguments.

All six methods defined in the Driver class are shown in Table 4.2.
Most popular methods in the Driver class are acceptsURL() and connect().
Most methods defined in the Driver class will not be called directly in most Java

database applications, instead, they will be called indirectly by using the
DriverManager class.

Now let’s have a closer look at these two methods.

4 JDBC Application and Design Considerations

103

4.2.2.2 Using the DriverManager.getConnection() Method

When using the first method DriverManager.getConnection() to establish a data-
base connection, it does not immediately try to do this connection, instead, in order
to make this connection more robust, it performs a two-step process. The getCon-
nection() method first checks the driver and Uniform Resource Locator (URL) by
running a method called acceptsURL() via DriverManager class to test the first
driver in the driver list, if no matched driver returns, the acceptURL() method will
go to test the next driver in the list. This process continues until each driver is tested

Table 4.1 Methods defined in the DriverManager class

Method Function

deregisterDriver(Driver dr) Remove a driver from the driver list
getConnection(String url, Properties
login)

Attempt to establish a connection to the referenced
database

getConnection(String url, String
user, String pswd)

Attempt to establish a connection to the referenced
database

getConnection(String url) Attempt to establish a connection to the referenced
database

getDriver(String url) Locate an appropriate driver for the referenced URL from
the driver list

getDrivers() Get a list of all drivers currently loaded and registered
getLoginTimeout() Get the maximum time (in seconds) a driver will wait for

a connection
getLogStream() Get the current PrintStream being used by the

DriverManager
Println(String msg) Print a message to the current LogStream
registerDriver(Driver dr) Add the driver to the driver list. This is normally done

automatically when the driver is instantiated
setLoginTimeout(int seconds) Set the maximum time (in seconds) that a driver can wait

when attempting to connect to a database before giving
up

setLogStream(PrintStream out) Set the PrintStream to direct logging message to

Table 4.2 Methods defined in the Driver class

Method Function

acceptsURL(String url) Return a true if the driver is able to open a connection to the
database given by the URL

connect(String url, Properties
login)

Check the syntax of the URL and the matched drivers in the
driver list. Attempt to make a database connection to the given
URL

getMajorVersion() Determine the minor revision number of the driver
getMinorVersion() Determine the major revision number of the driver
getPropertyInfo(String url,
Properties login)

Return an array of DriverPropertyInfo objects describing login
properties accepted by the database

jdbcCompliant() Determine if the driver is JDBC COMPLIANT

4.2 JDBC Applications Fundamentals

104

or until a matched driver is found. If a matched driver is found, the Driver.connect()
method will be executed to establish this connection. Otherwise, a SQLException
is raised.

It looks like that this two-step connection is not efficient enough; however, a
more robust connection can be set if more than one driver is available in the
driver list.

The purpose of the acceptsURL() method is to check whether the current driver
is able to open a valid connection to the given URL or not. This method does not
create a real connection or test the actual database connections; instead, it merely
examines the sub-protocol of the URL and determines if it understands its syntax.
In this way, it can effectively reduce the chance of the misconnection and make sure
the correctness of an established connection.

4.2.2.3 Using the Driver.connect() Method

The Driver.connect() method enables you to create an actual connection to the
desired database and returns an associated Connection object. This method accepts
the database URL string and a Properties object as its argument. A URL indicates
the protocol and location of a data source while the properties object normally con-
tains the user login information. One point to be noted is that the only time you can
use this Driver.connect() method directly is that you have created a new instance of
the Driver class.

A null will be returned if an exception is occurred when this Driver.connect()
method is executed, which means that something wrong during this connection
operation.

Comparing the DriverManager.getConnection() method with this Driver.con-
nect() method, the following conclusions can be obtained:

• The DriverManager.getConnection() method can perform checking and test-
ing each driver in the driver list automatically for all loaded drivers. As soon as a
matched driver is found, it can be connected to the database directly by using the
Driver.connect() method. This automatic process will greatly reduce the pro-
cessing time.

• The DriverManager.getConnection() method has looser requirements for the
arguments passed with this method. When applying the Driver.connect()
method, you have to pass two arguments, the URL as a string and the login prop-
erties as a Properties object with strict syntax and grammar requirements.
However, when using the DriverManager.getConnection() method, you can
define login properties as either String, a Properties object, or even a null string,
since the DriverManager can handle the converting these arguments to the appro-
priate Properties object when it is applied.

From this comparison, it can be found that the DriverManager.getConnection()
method is over the Driver.connect() method; therefore, we will use this method to
do our database connection in all example projects in this book.

4 JDBC Application and Design Considerations

105

After a driver has been loaded and registered, the next step is to establish a data-
base connection using a URL. Before we can continue on the database connection,
we need to have a clear picture and understanding about the JDBC connection
Uniform Resource Locator (URL).

4.2.2.4 The JDBC Connection URL

The JDBC URL provides all information for applications to access to a special
resource, such as a database. Generally, a URL contains three parts or three seg-
ments: protocol name, sub-protocol, and subname for the database to be connected.
Each of these three segments has different function when they worked together to
provide unique information for the target database.

The syntax for a JDBC URL can be presented as:
protocol:sub-protocol:subname

The protocol name works as an identifier or indicator to show what kind of pro-
tocol should be adopted when connect to the desired database. For a JDBC driver,
the name of the protocol should be jdbc. The protocol name is used to indicate what
kind of items to be delivered or connected.

The sub-protocol is generally used to indicate the type of the database or data
source to be connected, such as sqlserver or oracle.

The subname is used to indicate the address to which the item supposed to be
delivered or the location of the database is resided. Generally, a subname contains
the following information for an address of a resource:

• Network host name/IP address
• The database server name
• The port number
• The name of the database

An example of a subname for our SQL Server database is:

localhost\\SQL2019EXPRESS:5000

The network host name is localhost, and the server name is SQL2019EXPRESS
and the port number the server used is 5000. You need to use a double slash, either
forward or back, to represent a normal slash in this URL string since this is a DOS
style string.

By combining all three segments together, we can get a full JDBC URL. An
example URL that is using a SQL Server JDBC driver is:

jdbc:sqlserver//localhost\\SQL2019EXPRESS:5000

The database’s name works as an attribute of the connected database.
Now that we have a clear picture about the JDBC URL, next let’s connect our

application to our desired database.

4.2 JDBC Applications Fundamentals

106

4.2.2.5 Establish a Database Connection

Now we have a clear picture and understanding about the fundamentals in
DriverManager and Driver classes as well as related database connection meth-
ods. As we discussed in the previous sections, to connect to a database, two meth-
ods, DriverManager.getConnection() and Driver.connect(), can be used.
However, as we know, the first method is better than the second one, therefore in this
section we will concentrate on the use of the first method to establish a database
connection.

Figure 4.4 shows a piece of example codes to establish a connection using the
DriverManager.getConnection() method. This piece of codes should be a follow
up of the codes shown in Fig. 4.3; in other words, a valid driver has been loaded and
registered before the following connection can be established.

Since the DriverManager.getConnection() method is an overloading method
with three different signatures, here we used two of them and the first one is high-
lighted in bold and the second one is commented out.

To establish a database connection, a valid JDBC URL is defined in the first cod-
ing line with the following components:

• The protocol name jdbc
• The sub-protocol sqlserver
• The subname localhost\\SQL2019EXPRESS:5000
• The database name CSE_DEPT

Then a try…catch block is used to try to establish a connection using the get-
Connection() method with three arguments: URL, username, and password. After
a valid connection is established, a Connection object is returned and this returned
object has the following functions and properties:

1) The Connection object represents an SQL session with the database.

……..
//A driver has been successfully loaded and registered

String url = "jdbc:sqlserver://localhost \\SQLEXPRESS:5000;databaseName=CSE_DEPT;";
//String url = "jdbc:sqlserver://localhost\\SQLEXPRESS:5000;
// databaseName=CSE_DEPT;user=cse;password=mack8000";

//Establish a connection
try{

con = DriverManager.getConnection(url,"cse","mack8000");
//con = DriverManager.getConnection(url);
con.close();

}
catch(SQLException e) {
System.out.println("Could not connect! " + e.getMessage());
e.printStackTrace();
}

Fig. 4.4 An example coding for the database connection

4 JDBC Application and Design Considerations

107

2) The Connection object provides methods for the creation of Statement objects
that will be used to execute SQL statements in the next step.

3) The Connection object also contains methods for the management of the ses-
sion, such as transaction locking, catalog selection, and error handling.

By definition, the responsibility of a Connection object is to establish a valid
database connection with your Java application, and that is all. The Connection
object has nothing to do with the SQL statement execution. The SQL statement
execution is the responsibility of the Statement, PreparedStatement, and
CallableStatement objects. As we mentioned, both PreparedStatement and
CallableStatement are subclasses of the Statement class and they play different roles
for the statement execution.

In the next coding line in Fig. 4.4, a close() method that belongs to the Connection
class is called to try to close a connection. In fact, it is unnecessary to close a con-
nected database in actual applications. However, we used this method here to show
users a complete picture of using the Connection object, which means that you must
close a connection when it is no longer to be used in your application (even in the
connection pooling situation, but it will not be really closed instead it is placed into
a pool), otherwise a running error may be encountered when you reuse this connec-
tion in the future. Therefore, this coding line is only for the testing purpose and
should be removed in a real application.

The catch block is used to detect any possible exception and display them if any
of them occurred.

A Connection class contains 19 methods, and Table 4.3 lists 7 most popular
methods.

Now a valid database connection has been established, and the next step is to
execute the SQL statements to perform data actions against our connected database.

Table 4.3 Methods defined in the Connection interface

Method Function

close() Close the connection to the database
createStatement() Create a Statement object for the execution of static SQL

statements
getMetaData() Retrieve all database related information stored in the

DatabaseMetaData object for the current connection
isClosed() Determine if the referenced Connection has been closed – True

= closed
prepareCall(String sqlString) Create a CallableStatement object for use with SQL stored

procedures
prepareStatement(String
sqlString)

Create a PreparedStatement object for use with SQL dynamic
queries

commit() Immediately commits all transactions to the database. All
updates and changes are made permanent

4.2 JDBC Applications Fundamentals

108

4.2.3 Executing Statements

To successfully execute an appropriate Statement object to perform SQL state-
ments, the following operational sequence should be followed:

1) Creating a Statement object based on the requirement of the data actions
2) Calling the appropriate execution method to run the SQL statements

In a simple word, the Statement object is used for executing a static SQL state-
ment and returning the results stored in a ResultSet object.

4.2.3.1 Overview of Statement Objects and Their Execution Methods

By using the Connection object, three separate statement objects can be created,
and they are:

• Statement object
• PreparedStatement object
• CallableStatement object

Table 4.4 Methods defined in the Statement interface

Method Function

close() Close the Statement and release all resources including the ResultSet
associated with it

execute(String sqlString) Execute an SQL statement that may have an unknown number of
results. Returned a True means that the first set of results from the
sqlString execution is a ResultSet. If the execution resulted in either
no results or an update count, a False is returned

executeQuery(String
sqlString)

Execute an SQL Select statement. A ResultSet object that contained
the query results from the database will be returned

executeUpdate(String
sqlString)

Execute an SQL Update, Insert or Delete statement. An integer will
be returned to indicate the number of rows that have been affected

getMaxRows() Determine the maximum number of rows that can be returned in a
ResultSet object

getMoreResults() Move to the Statements next result. Only in conjunction with the
execute statement and where multiple results are returned by the SQL
statement. A False is returned if the next result is null or the results
are an update count

getResultSet() Return the current result set for the Statement. Only used in
conjunction with execute() method. The current ResultSet object will
be returned

getUpdateCount() Return the number of rows affected by the last SQL statement. Is only
meaningful for INSERT, UPDATE or DELETE statements

setCursorName(String
name)

Set the cursor name to be used by the Statement. Only useful for
databases that support positional updates and deletes

setMaxRows(int rows) Set the maximum number of rows that can be returned in a ResultSet.
If more results are returned by the query, they are truncated

4 JDBC Application and Design Considerations

109

The Statement object is used to execute static SQL queries. The so-called static
statements do not include any IN or OUT parameters in the query string and do not
contain any parameters passing to or from the database.

The Statement interface contains more than 18 methods, and Table 4.4 lists 10
most popular methods.

Among those 10 methods in the Statement interface, three execution methods
including the executeQuery(), executeUpdate() and execute(), and getResultSet()
method are often used in Java database applications.

The PreparedStatement is a subclass of the Statement and it is mainly used to
execute dynamic SQL queries with IN parameter involved. These kinds of

Table 4.5 Methods defined in the PreparedStatement interface

Method Function

clearParameters() Clear all parameters associated with a PreparedStatement. After
execution of this method, all parameters have the value null

execute() Execute the associated SQL Statement when the number of
results returned is unknown. A False is returned if the returned
result is null

executeQuery() Execute an SQL Select statement. A ResultSet object that
contained the query results from the database will be returned

executeUpdate() Execute an SQL Update, Insert or Delete statement. An integer
will be returned to indicate the number of rows that have been
affected

getMetaData() Return a set of meta data for the returned ResultSet object
getParameterMetaData() Return the number, types, and properties of this

PreparedStatement object's parameters
setBoolean(int index,
Boolean value)

Bind a Boolean value to an input parameter

setByte(int index, Byte
value)

Bind a byte value to an input parameter

setDouble(int index, double
value)

Bind a double value to an input parameter

setFloat(int index, float
value)

Bind a floating point value to an input parameter

setInt(int index, int value) Bind an integer value to an input parameter
setLong(int index, long
value)

Bind a long value to an input parameter

setNull(int index, int
sqlType)

Bind a null value to an input parameter

setObject(int index, Object
obj)

Bind an Object to an input parameter. The Object will be
converted to an SQL data type before being sent to the database

setShort(int index, short
value)

Bind a short value to an input parameter

setString(int index, String
value)

Bind a String value to an input parameter

setTime(int index, Time
value)

Bind a Time value to an input parameter

4.2 JDBC Applications Fundamentals

110

statements can be pre-parsed and pre-compiled by the database, and therefore have
faster processing speed and lower running loads for the database server.

The PreparedStatement interface contains more than 20 methods, and Table 4.5
lists 17 most popular methods.

It can be found from Table 4.5 that three execution methods, execute(), execute-
Query(), and executeUpdate(), look like a duplication with those methods defined
in the Statement interface. However, a significant difference is: all of these three
methods defined in the Statement interface have their query strings as an argument
when these methods are executed, which means that the SQL statements have to be
defined in those query strings and should be passed into the database as the argu-
ments of those methods. In contract, all three methods defined in the
PreparedStatement interface have no argument to be passed into the database when
they are executed. This means that the SQL statements have been built and passed
into the database by using the PreparedStatement object before these three meth-
ods are executed.

Two methods belong to the getters that are used to retrieve the metadata for the
ResultSet and the ParameterMetaData objects. Both methods are very useful
when the developer wants to get more detailed structure and properties information
about a returned ResultSet object or ParameterMetaData object.

More than 10 methods defined in the PreparedStatement interface are setter
methods, which means that these methods are used to set up an appropriate value to
an input parameter with different data types. These methods are specially useful
when a dynamic query is built with one or more dynamic input parameters that need
to be determined in the SQL statements.

The CallableStatement is also a subclass of the Statement and the
PreparedStatement classes and it is mainly used to execute the stored procedures
with both IN and OUT parameters involved. As we know, stored procedures are
built and developed inside databases, and therefore have higher running and
responding efficiency in data queries and processing.

This interface is used to execute SQL stored procedures. The JDBC API provides
a stored procedure SQL escape syntax that allows stored procedures to be called in
a standard way for all RDBMSs. This escape syntax has one form that includes a
result parameter and one that does not. If used, the result parameter must be regis-
tered as an OUT parameter. The other parameters can be used for input, output, or
both. Parameters are referred to sequentially, by number or position, with the first
parameter being 1.

 {?= call <procedure-name>[(<arg1>,<arg2>, ...)]}
 {call <procedure-name>[(<arg1>,<arg2>, ...)]}

The IN parameter values are set using the setXXX() methods inherited from the
interface PreparedStatement. The type of all OUT parameters must be registered
prior to executing the stored procedure; their values are retrieved after execution via
the getXXX() methods defined in this CallableStatement interface.

4 JDBC Application and Design Considerations

111

A CallableStatement can return one ResultSet object or multiple ResultSet
objects. Multiple ResultSet objects are handled using operations inherited from the
Statement interface. The CallableStatement interface contains over 30 methods,
Table 4.6 lists 15 most popular methods.

The registerOutParameter() method is an overloading method with two signa-
tures and these methods are used to declare what SQL type the OUT parameter will
return when a CallableStatement method is executed.

By default, only one ResultSet object per Statement object can be open at the
same time. Therefore, if the reading of one ResultSet object is interleaved with the
reading of another, each must have been generated by different Statement objects.

Table 4.6 Methods defined in the CallableStatement interface

Method Function

getBigDecimal(int index, int
scale)

Return the value of parameter specified by the parameter index
number as a BigDecimal

getBoolean(int index) Return the value of parameter specified by the parameter index
number as a Boolean

getByte(int index) Return the value of parameter specified by the parameter index
number as a byte

getBytes(int index) Return the value of parameter specified by the parameter index
number as an array of bytes

getDouble(int index) Return the value of parameter specified by the parameter index
number as a double

getFloat(int index) Return the value of parameter specified by the parameter index
number as a floating point number

getInt(int index) Return the value of parameter specified by the parameter index
number as an integer

getLong(int index) Return the value of parameter specified by the parameter index
number as a long integer

getObject(int index) Return the value of parameter specified by the parameter index
number as an Object. The object type is determined by the
default mapping of the SQL data type to Java data type

getShort(int index) Return the value of parameter specified by the parameter index
number as a short integer

getString(int index) Return the value of parameter specified by the parameter index
number as a String object

getTime(int index) Return the value of parameter specified by the parameter index
number as a Time object

registerOutParameter(int index,
int slqType)

Register the specified output parameter to receive the SQL
data type indicated by the argument passed.

registerOutParameter(int index,
int slqType, int scale)

Register the specified output parameter to receive the SQL
data type indicated by the argument passed. If the output is
registered as either DECIMAL or NUMERIC, the scale of the
value may also be specified

wasNull() Determine if the last value read by a getXXX() method was a
SQL null value. A True is returned if the last read value
contained a null value

4.2 JDBC Applications Fundamentals

112

All execution methods in the Statement interface implicitly close a Statment’s cur-
rent ResultSet object if an open one exists.

The Statement interface contains three important query methods with different
functions; executeQuery(), executeUpdate(), and execute(). For each method, dif-
ferent operations can be performed and different results will be returned.

Generally, the query methods can be divided into two categories; (1) the query
method that needs to perform data query, such as executeQuery(), which returns an
instance of ResultSet that contained the queried results, and (2) the query method
that does not perform data query and only return an integer, such as executeUp-
date(). An interesting method is the execute(), which can be used in either way.

Let’s first concentrate on the creation of the Statement objects based on the dif-
ferent requirements of data actions.

4.2.3.2 Using the Statement Object

As we discussed in the last section, three separate statement objects can be created
based on three different data actions; Statement, PreparedStatement, and
CallableStatement. Let’s discuss how to create a Statement object first.

4.2.3.2.1 Creating the Statement Object

The Statement object is the most common type of object and easy to be used in a
static data query. The shortcoming of using this object is that all SQL statements
must be pre-defined with definite parameters when a Statement object is created. In
other words, by using a Statement object to execute a SQL statement, no parameter
can be passed into or from the database.

The Statement object is created by using the createStatement() method defined
in the Connection interface (refer to Table 4.3). Figure 4.5 shows an example of
creation of a Statement object. The coding line that is used to create a Statement

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";

//Establish a connection
try{

con = DriverManager.getConnection(url,"cse","mack8000");
}
catch(SQLException e) {

System.out.println("Could not connect!" + e.getMessage());}

String query = "SELECT user_name, pass_word FROM LogIn”;
try{

Statement stmt = con.createStatement();
}
catch(SQLException e) {

System.out.println("Error in Statement!" + e.getMessage());}

Fig. 4.5 An example coding for the creation of a Statement object

4 JDBC Application and Design Considerations

113

object has been highlighted in bold. All other lines are prerequisite codes that are
used to load and register a driver, establish a connection using the URL and build a
SQL query string.

4.2.3.2.2 Executing the Statement Object

To execute the created Statement object to perform a data action, you need to call
one of the execution methods defined in the Statement interface shown in
Table 4.4. Figure 4.6 shows an example coding for the execution of a SQL query
with this Statement object.

The coding line that is used to execute a Statement object has been highlighted
in bold. All other lines are prerequisite codes that are used to load and register a
driver, establish a connection using the URL, build a SQL query string, and create a
Statement object. It can be found from this piece of codes that no parameter can be
passed to or from the database when this query is executed. Therefore, the Statement
object can only be used to perform static queries.

To overcome this shortcoming, we need to use PreparedStatement objects to
perform dynamic queries with varied input parameters.

4.2.3.3 Using the PreparedStatement Object

To perform dynamic SQL statements, we need to use a PreparedStatement object.
Generally, to use a PreparedStatement object to perform a dynamic SQL state-
ment includes the following steps:

import java.sql.*;
static Connection con;
try{

//Load and register SQL Server driver
Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}
catch(Exception e) {

System.out.println("Class not found exception!" + e.getMessage());}

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";

//Establish a connection
try{

con = DriverManager.getConnection(url,"cse","mack8000");
}
catch(SQLException e) {

System.out.println("Could not connect!" + e.getMessage());}

String query = "SELECT user_name, pass_word FROM LogIn”;
try{

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(query);

}
catch(SQLException e) {

System.out.println("Error in Statement! " + e.getMessage());}

Fig. 4.6 An example coding for the execution of a Statement object

4.2 JDBC Applications Fundamentals

114

 1) Create a PreparedStatement object
 2) Set data types and values to the associated input parameters in the query string
 3) Call appropriate execution method to perform this dynamic query

Let’s first concentrate on the creation of a PreparedStatement object.

4.2.3.3.1 Creating the PreparedStatement Object

Referring to Table 4.3, the prepareStatement() method defined in the Connection
interface is used to create a PreparedStatement object. An example code to create
a PreparedStatement object looks like:

PreparedStatement pstmt = con.prepareStatement(query);

Unlike Statement objects, the PreparedStatement object takes the SQL state-
ment to be executed as an argument. For dynamic SQL statements that contain input
parameters to be passed into the database, you need to define a position for each
input parameter in the query string. Regularly, a placeholder is used to inform the
database that it can expect a variable in that position. Each placeholder that holds a
position for a variable in the query string is represented by a question mark ‘?’,
which holds a place for the associated variable during compiling time. When com-
piled, the placeholder is part of the statement and therefore appears static to the
compiler. In this way, no matter what value is later assigned to the variable, the
database does not need to recompile the statement. At the run time, you can assign
values to the variables by using any setXXX() method defined in the
PreparedStatement interface shown in Table 4.5.

Before we can call an execution method to run the PreparedStatement to per-
form a dynamic query, let’s first take a look at how to use setXXX() method to
reserve a place for the input parameter with the correct data type settings.

4.2.3.3.2 Setting the Input Parameters

All input parameters used for a PreparedStatement interface must be clearly bound
to the associated IN parameters in a dynamic query string by using a setXXX()
method. This setXXX() method can be divided into three categories based on the
different data types,

 1) The primitive data type method
 2) The object method
 3) The stream method

For the primitive and the object method, the syntax is identical, and the differ-
ence between them is the type of value that is assigned. For the stream method, both
the syntax and the data types are different.

4 JDBC Application and Design Considerations

115

Set Primitive Data Type and Object IN Values
The primitive data type means all built-in data types used in Java programming
language. The syntax of setting a primitive data type or an object value method is,

setXXX(int position, data_type value);

where XXX means the associated value type to be assigned, the position that is
an integer is used to indicate the relative position of the IN parameter in the SQL
statement or the SQL stored procedure, and the value is the actual data value to be
assigned to the IN parameter.

Some popular setXXX() methods defined in the PreparedStatement inter-
face can be found from Table 4.5.

An example of using the setXXX() method is:

 String query = "SELECT product, order_date FROM Order " +
 "WHERE order_id = ? AND customer = ?";
 PreparedStatement pstmt = con.prepareStatement(query);
 setInt(1, 101);
 setString(2, “Tom Johnson”);

Two dynamic parameters are used in the query string and both of them are IN
parameters. The data type of first IN parameter is an integer and the second one is a
String, and both are represented by a placeholder ‘?’. The first setting method,
setInt(1, 101), is to assign an integer value of 101 to the first IN parameter, which
is indicated with a position number of 1, and the second setting method, setString(2,
“Tom Johnson”) is to assign a String value “Tom Johnson” to the second IN
parameter, which is indicated with a position number of 2.

From this example, you can find that there is no difference between setting a
primitive parameter and an object value to the IN parameters in a SQL statement.

Set Object Methods
The setObject() method has three protocols, which are:

setObject(int position, object_type object_value);
setObject(int position, object_type object_value, data_type
desired_data_type);
setobject(int position, object_type object_value, data_type
desired_data_type, int scale);

The first one is straightforward and it contains two parameters; the first one is the
relative position of the IN parameter in the SQL statement, and the second one is the
value of a desired object to be assigned to the IN object.

The second one adds one more input parameter, desired_data_type, and it is
used to indicate a data type to which convert the object to.

4.2 JDBC Applications Fundamentals

116

The third one adds the fourth input parameter, scale, and it is used to make sure
that the object conversion result contains a certain number of digits.

An example of the setObject() method is shown here,

 pstmt.setObject(2, 101);
 pstmt.setObject(2, 101, Type.FLOAT);
 pstmt.setObject(2, 101, Type.FLOAT, 2);

The first method is to set an input parameter, which is the second one in a SQL
statement, to an object (here is an integer) with a value of 101. The next method is
to set the same input to the same object, however, it needs to convert the object
(integer) to a float data type. The final method performs the same operation as the
previous one, but it indicates that the conversion result should contain at least
2 digits.

Since set stream IN methods are not very popular in Java database applications,
we skip this part in this section. If you want to get more detailed information for
these methods, refer to some sections in Chap. 6.

Now let’s begin to call some appropriate execution methods to run this
PreparedStatement object to perform dynamic queries.

4.2.3.3.3 Executing the PreparedStatement Object

As we discussed in Sect. 3.3.2 in Chap. 3, three execution methods can be called to
perform the data action against the database. Refer to Tables 4.4 and 4.5, it can be
found that both Statement and PreparedStatement interfaces contain these three
methods:

• executeQuery()
• executeUpdate()
• execute()

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";

//Establish a connection
try{

con = DriverManager.getConnection(url,"cse","mack8000");
}
catch(SQLException e) {

System.out.println(" Could not connect!" + e.getMessage());}

String query = "SELECT user_name, pass_word FROM LogIn" +
"WHERE user_name = ? AND pass_word = ?";

try{
PreparedStatement pstmt = con.prepareStatement(query);
pstmt.setString(1, “cse”);
pstmt.setString(2, “ mack8000”);

ResultSet rs = pstmt.executeQuery();
}
catch(SQLException e) {

System.out.println("Error in PreparedStatement!" + e.getMessage()); }

Fig. 4.7 A coding example for the execution of a PreparedStatement

4 JDBC Application and Design Considerations

117

The difference between these three methods in both interfaces is that all three
execution methods defined in the Statement interface need an argument, which
works as a query statement passed into the database. However, all three methods
defined in the PreparedStatement interface have no argument, which means that
the query statement has been built and passed to the database by using the
PreparedStatement object when it is created.

Figure 4.7 shows a piece of example codes for calling of the executeQuery()
method to perform a login process.

First the query statement query is created in which two placeholders (?) are used
since we have two dynamic parameters, username and password, to be passed into
our sample database CSE_DEPT.

Then with a try…catch block, a PreparedStatement object is created with the
query statement as an argument. Two setString() methods defined in the
PreparedStatement interface are used to initialize these two dynamic parameters
(username = “cse”, password = “mack8000”). Finally, the executeQuery() method
defined in the PreparedStatement interface is called to run this query statement
and the results are returned and stored in a ResultSet object.

In addition to using the executeQuery() method, the PreparedStatement object
can also use another two methods, executeUpdate() and execute() to perform a
data action. However, those methods have different functionalities and should be
applied in different situations. For more detailed information about these methods,
refer to Sect. 4.2.3.5.

Compared with the Statement interface, the advantage of using a
PreparedStatement interface is that it can perform a dynamic query with some
known or unknown dynamic parameters as inputs. Most time, those dynamic param-
eters are input parameters and can be defined as IN variables. However, you do not
need to specify those parameters with an IN keyword when using a
PreparedStatement interface.

4.2.3.4 Using the CallableStatement Object

As we discussed in the early part of this chapter, the CallableStatement is a sub-
class of both Statement and PreparedStatement, and this interface is mainly used
to call stored procedures to perform a group data actions. The JDBC
CallableStatement method provides a way to allow us to perform a complicated
query. The speed and efficiency of a data query can be significantly improved by
using the stored procedure since it is built in the database side.

The difference between a PreparedStatement and a CallableStatement inter-
face is: unlike the PreparedStatement interface, the CallableStatement interface
has both input and output parameters, which are indicated with IN and OUT key-
words, respectively. In order to setup values for input parameters or get values from
the output parameters, you have to use either a setXXX() method inherited from the
PreparedStatement or a getXXX() method to do that. However, the point is that
before you can use any getXXX() method to pick up the values of output

4.2 JDBC Applications Fundamentals

118

parameters, you must first register the output parameters to allow the
CallableStatement interface to know them.

Generally, the sequence to run a CallableStatement to perform a stored pro-
cedure is:

 1) Build a CallableStatement query string
 2) Create a CallableStatement object
 3) Set the input parameters
 4) Register the output parameters
 5) Execute CallableStatement
 6) Retrieve the running result by using different getXXX() method

Let’s discuss this issue one by one in more detail in the following sections.

4.2.3.4.1 Building a CallableStatement Query String

The CallableStatement interface is used to execute SQL stored procedures. The
JDBC API provides a stored procedure SQL escape syntax that allows stored proce-
dures to be called in a standard way for all RDBMSs. This escape syntax has one
form that includes an output parameter and one that does not. If used, the output
parameter must be registered as an OUT parameter. The other parameters can be
used for input, output, or both. Parameters are referred to sequentially, by number,
with the first parameter being 1.

 {?= call <procedure-name>[<arg1>,<arg2>, ...]}
 {call <procedure-name>[<arg1>,<arg2>, ...]}

Two syntaxes are widely used to formulate a CallableStatement string: the
SQL92 syntax and the Oracle syntax. The SQL92 syntax is more popular in most
applications. We will concentrate on the SQL92 syntax in this section, and take care
of the Oracle syntax later when we build data queries for the Oracle database.

For a standard alone stored procedure or packaged procedure, the SQL92 syntax
can be represented as:

 {call [schema.][package.]procedure_name[(?, ?, …)]}

For standard alone functions or packaged functions, the SQL92 syntax looks like:

 {? = call [schema.][package.]function_name[(?, ?, …)]}

The definition and meaning of elements used in these syntaxes are:

• All elements enclosed inside the square brackets [] means that they are optional.
• The curly braces {} are necessary in building a CallableStatement string and

they must be used to cover the whole string.

4 JDBC Application and Design Considerations

119

• The schema indicates the schema in which the stored procedure is created.
• The package indicates the name of the package if the stored procedure is involved

in a package.
• The procedure_name or the function_name indicate the name of the stored pro-

cedure or the function.
• The question mark ? is the placeholder for either an IN, IN/OUT, or OUT param-

eters used in the stored procedure, or the returned value of a function. The order
of these placeholders, which starts from 1, is very important, and it must be fol-
lowed exactly when using either a setXXX() method to setup input parameters
or register the output parameters for the built CallableStatement string later.

A CallableStatement can either return a ResultSet object and multiple
ResultSet objects by using executeQuery() method or return nothing by using
execute() method. Multiple ResultSet objects are handled using operations inher-
ited from the Statement interface. A suitable getXXX() method is needed to pick
up the running result of a CallableStatement.

Now that we have built a CallableStatement query string, next we need to create
a CallableStatement object to execute the associated method to run stored
procedures.

4.2.3.4.2 Creating the CallableStatement Object

To create a CallableStatement object, you need to use one of methods defined in
the Connection class (refer to Table 4.3), prepareCall(), to do that. When the
SQL92 syntax is used to create this CallableStatement object, it will looks like:

 CallableStatement cstmt = null;
 try{
 String query = "{call dbo.FacultyCourse(?, ?)}";
 cstmt = con.prepareCall(query);
 ………

The operation sequence of this piece of codes to create a new CallableStatement
object is:

 1) A new null CallableStatement object cstmt is first declared.
 2) A try block is used to create the query string with the SQL92 syntax. The name

of the stored procedure to be called is dbo.FacultyCourse() with two argu-

String query = "{call dbo.FacultyCourse(?,?)}";
cstmt = con.prepareCall(query);
cstmt.setString(1,“Jones”);
cstmt.setString(2,“CSC-132B ”);

Fig. 4.8 A coding example for the setting input parameters

4.2 JDBC Applications Fundamentals

120

ments; the first one is an input parameter, faculty_name and the second one is
an output parameter used to store all course_id taught by the selected faculty.
Both parameters are represented by placeholders and they are positional
parameters.

 3) The CallableStatement object is created by calling the prepareCall() method,
which belongs to the Connection class, with the query string as the argument.

Next, let’s take a look at how to setup the input parameter for this object.

4.2.3.4.3 Setting the Input Parameters

We have provided a very detailed introduction in setting the input parameters for the
PreparedStatement object in Sect. 4.2.3.3.2. Refer to that section to get more
detailed description about setting the input parameters for a query string in the
CallableStatement object. Figure 4.8 shows a piece of example codes to set input
parameters for two dynamic parameters, faculty_name and class_name, the data
type for both input parameters is String. Therefore, a setString() method is used.

Now let’s take a look at how to register output parameters for a query string when
using the CallableStatement object to perform a stored procedure call.

4.2.3.4.4 Registering the Output Parameters

After a CallableStatement interface is executed, you need to use the associated
getXXX() method to pick up the running result from the CallableStatement object
since it cannot return any result itself. However, before you can do that, you must
first register any output parameter in the SQL statement to allow the
CallableStatement to know that the output result is involved and stored in the
related output parameters in the SQL statement.

Once an output parameter is registered, the parameter is considered an OUT
parameter and it can contain running results that can be picked up by using the asso-
ciated getXXX() method.

To register an output parameter, the registerOutParameter() method that
belongs to the CallableStatement interface should be used to declare what SQL
type the OUT parameter will return. A point to be noted is that a parameter in a SQL
statement can be defined as both an IN and an OUT at the same time, which means

String query = "{call dbo.FacultyCourse(?,?)}";
cstmt = con.prepareCall(query);
cstmt.setString(1,“Jones”);
cstmt.setString(2,“CSC-132B”);

cstmt.registerOutParameter(2, java.sql.Types.VARCHAR);

Fig. 4.9 A coding example for the registering of the output parameters

4 JDBC Application and Design Considerations

121

that you can setup this parameter as an IN by using the setXXX() method, and also
you can register this parameter as an OUT using the registerOutParameter()
method at the same time. In this way, this parameter can be considered as an IN/
OUT parameter with both the input and the output functions.

The syntax to register an output parameter is:

 registerOutParameter(int position, data_type SQL_data_type);

where the position is still the relative position of the OUT parameter in the SQL
statement, and the SQL_data_type is the SQL data type of the OUT parameter,
which can be found from the JDBC API class, java.sql.TYPE. An example of using
this method is shown in Fig. 4.9.

There are two parameters in this CallableStatement interface in this example.
The first one is an IN parameter, which is set by using the setString() method. The
second one is an IN/OUT parameter, which is first setup by using the setString()
method and then registered by using the registerOutParameter() method with the
data type of VARCHAR. The SQL data type VARCHAR can be mapped to a data
type of String in Java. Refer to Appendix E to get more detailed information about
the data type mapping between the SQL and Java.

An interesting point to this registerOutParameter() method is that all OUT
parameters can be registered by using this syntax except those OUT parameters
with the NUMERIC and DECIMAL data types. The syntax to register those OUT
parameters looks like:

registerOutParameter(int position, data_type SQL_data_type, int scale);

The only difference is that a third parameter scale is added and it is used to indi-
cate the number of digits to the right of the decimal point for the OUT parameter.

4.2.3.4.5 Executing the CallableStatement Object

To run a CallableStatement object, three execution methods can be used: execute-
Query(), executeUpdate(), and execute(). As we discussed in Sect. 4.2.3.1, the
executeQuery() method can return a ResultSet object that contains the running or
query results, and the executeUpdate() method can return an integer to indicate the

String query = "{call dbo.FacultyCourse(?,?)}";
cstmt = con.prepareCall(query);
cstmt.setString(1,“Jones”);
cstmt.setString(2,“CSC-132B”);
cstmt.registerOutParameter(2,java.sql.Types.VARCHAR);

cstmt.execute();

Fig. 4.10 A coding example for running of the CallableStatement object

4.2 JDBC Applications Fundamentals

122

number of rows that have been inserted, updated, or deleted against the target data-
base. However, the execute() method cannot return any running result with itself,
and you need to use associated getXXX() methods to pick up the query or running
result. Another important point of using the execute() method is that it can handle
an unknown result with undefined data type. Refer to Sect. 4.2.3.5 to get more
detailed information about the execute() method.

An example of using the execute() method to run the CallableStatement object
is shown in Fig. 4.10.

After finishing building the query string, creating the CallableStatement object,
and setting and registering input and output parameters, the execute() method is
called to execute this CallableStatement object to perform a stored procedure
processing.

Before we can continue in how to retrieve the running result from the execution
of a Statement, PreparedStatement, or CallableStatement object, we need to
have a closer look at three execution methods.

4.2.3.5 More About the Execution Methods

The three statement objects are used to perform different data actions against the
target database, and the type of statement object to be used is determined by the
parameters of the SQL statement. To make it simple, the following strategy should
be adopted for the given situation:

• For static statements without needing to pass any parameter into the database, a
Statement object can be used to perform this kind of data action.

• For dynamic statements with some input parameters that are needed to be passed
into the target database, a PreparedStatement object should be used to perform
this kind of data action.

• For stored procedures with both input and output parameters needed to be passed
into the target database, a CallableStatement object can be used to perform this
kind of data action.

Similarly to statement objects, the execute method to be used is determined by
the expected output of the SQL statement. There are three types of output that can
be expected from a SQL statement:

• A ResultSet containing data in tabular format with certain rows and columns.
• An integer indicating the number of rows affected by the SQL statement.
• A combination of a ResultSet and an integer.

Each of these output types requires its own special output handling. Accordingly,
three execute methods, executeQuery(), executeUpdate(), and execute(), can be
used for each type of statement object.

Generally, the execute methods can be divided into two categories; (1) the exe-
cute method that needs to perform a data query, such as the executeQuery(), which
returns an instance of ResultSet that contained the queried results, and (2) the

4 JDBC Application and Design Considerations

123

execute method that does not perform a data query and only return an integer, such
as the executeUpdate(). An interesting method is the execute(), which can be used
in either way. In conclusion, the following points should be noted when using any
of these execute methods:

• The executeQuery() method performs data query and returns a ResultSet object
that contains the queried results.

• The executeUpdate() method does not perform data query, instead it only per-
forms either a data updating, insertion, or deleting action against the database
and returns an integer that equals the number of rows that have been successfully
updated, inserted, or deleted.

• The execute() method is a special method, and it can be used either way. All dif-
ferent data actions can be performed by using this method, such as data query,
data insertion, data updating, and data deleting. The most important difference
between the execute() method and two above methods is that the former can be
used to execute some SQL statements that are unknown at the compile time or
return multiple results from stored procedures. Another difference is that the
execute() method does not return any result itself, and one needs to use getRe-
sultSet() or getUpdateCount() method to pick up the results. Both methods
belong to the Statement interface.

A confusion issue may come with the use of the execute() method. As we men-
tioned, since any SQL statement, either known or unknown at the compile time, can
be used with this execute() method, how do we know the execution results? Yes,
that indeed is a problem. However, fortunately, we can solve this problem by using
some testing methods indirectly.

In fact, we can call either getResultSet() or getUpdateCount() method to try to
pick up the running results from execution of the execute() method. The key point is:

• The getResultSet() method will return a null if the running result is an integer,
which is a number of rows that have been affected, either inserted, updated, or
deleted.

• The getUpdateCount() method will return a −1 if the running result is a
ResultSet.

PreparedStatement pstmt = con.prepareStatement(query);
pstmt.setString(1, “faculty_name”);
pstmt.execute();

int updateCount = pstmt.getUpdateCount();

if (updateCount == -1)
System.out.println(" execute() method returned a ResultSet object!");

else
System.out.println(" execute() method returned an integer!");

Fig. 4.11 A coding example to distinguish the returned result

4.2 JDBC Applications Fundamentals

124

Based on these two key points, we can easily determine whether a result is a
ResultSet or an integer. Figure 4.11 shows a piece of example codes to illustrate
how to distinguish what kind of result is returned by using these two methods.

A PreparedStatement object is created and the input parameter is initialized
using the setString() method, and then the execute() method is called to run the
SQL statement. In order to distinguish the running result, first we use the getUp-
dateCount() method to pick up the returned result. A ResultSet object is returned
if a −1 is returned for the execution of the getUpdateCount() method. Otherwise,
an integer is returned to indicate that a data update, insert, or delete action has been
executed and the integer value is equal to the number of rows that have been affected.

Now that we have known how to create and execute different execute methods,
let’s have a closer look at the creation and execution of SQL statements by using
those methods.

4.2.3.6 Creating and Executing SQL Statements

To execute any execution method we discussed in the last sections, exactly is to
execute a string representing an SQL statement. In fact, the SQL statement and the
JDBC representation are exactly the same thing from the point of view of the termi-
nal execution results. However, in some cases, you have to modify the JDBC string
to make sure that the database can receive the correct SQL statement.

All SQL statements can be divided into two categories:

• Data definition language (DDL) statements
• Data manipulation language (DML) statements

The DDL statements are used to create and modify the structure of your database
tables and other objects related to the database. The DML statements are used to
work and manipulate with data in the database tables.

Let’s discuss the creation and execution of SQL statements based on these two
categories in the following sections.

String sqlString = (“ CREATE TABLE LogIn ”
+ “(user_name VARCHAR2(10),“
+ “ pass_word VARCHAR2(10),“
+ “ login_ID int)”;

Statement stmt = con.createStatement();

stmt.execute(sqlString);

Fig. 4.12 A coding example to create a LogIn table using JDBC statement

4 JDBC Application and Design Considerations

125

4.2.3.6.1 Creating and Executing the DDL Statements

Since DDL statements are mainly used for the creation and modification of the
structure of the database tables and related objects, therefore they do not perform
any query and do not affect any rows in the database-related tables. Of course, they
will never return any ResultSet object, neither. However, in order to keep DDL
statements consistent with other types of SQL statements, the DDL statements
always return a 0 in an actual application.

A standard DDL protocol used to create the structure of a table is:

 CREATE TABLE <table name>
 (<attribute name 1> <data type 1>,
 …….
 <attribute name n> <data type n>);

Figure 4.12 shows a piece of example codes to illustrate how to create a LogIn
table using the JDBC statement.

First, the protocol used to create the Login table is assigned to a JDBC statement
string sqlString. The data type for both user_name and pass_word columns are
VARCHAR2, which is a varied-length char. The argument 10 is used to define the
length of those chars. The login_ID is an integer. Then a Statement object is cre-
ated and the execute() method is called to perform the creation of this table with the
sqlString as the argument that is passed to the database.

To add data into a created table, you need to use the DML statements to do
that job.

4.2.3.6.2 Creating and Executing the DML Statements

The DML statements are used to build and complete the body of the database tables.
These statements include the data query statements, insert, update, and delete state-
ments. All of these statements need to return some execution results, either a
ResultSet object or an integer.

A standard DML statement used to insert data into the created data table
looks like:

String sqlString = (“INSERT INTO LogIn ”
+ “VALUES(‘Tom Baker’, ‘come123’, 100078, ‘David Tim’, ‘test55’, 100080)”;

Statement stmt = con.createStatement();

stmt.execute(sqlString);

Fig. 4.13 A coding example to insert data into the LogIn table using JDBC statement

4.2 JDBC Applications Fundamentals

126

 INSERT INTO <table name>
 VALUES (<value 1>, <value 2>, … <value n>);

A standard DML statement used to update data from a created data table
looks like:

 UPDATE <table name>
 SET <attribute> = <expression>
 WHERE <condition>;

Figure 4.13 shows a piece of example codes to illustrate how to add some data
items to the created LogIn table using the JDBC statement.

Figure 4.14 shows a piece of example codes to illustrate how to perform a select
query to retrieve the desired username and password from the LogIn table.

4.2.3.6.3 JDBC Escape Syntax

When JDBC performs a SQL statement, it does not check the SQL grammar and
you can send any SQL statement to your database. This gives you flexibility to allow
you to use some extended functions that are not included in the entry-level SQL92
standard and provided by particular vendors. To support these extensions in a

String query = "SELECT user_name, pass_word FROM LogIn" +
"WHERE user_name = ? AND pass_word = ?";

try {
PreparedStatement pstmt = con.prepareStatement(query);
pstmt.setString(1, “cse ”);
pstmt.setString(2, “ mack8000”);

ResultSet rs = pstmt.executeQuery();
}
catch (SQLException e) {

System.out.println("Error in PreparedStatement! " + e.getMessage());}

Fig. 4.14 A coding example to perform a SQL query using JDBC statement

Table 4.7 Keywords and their syntax supported by JDBC escape syntax

Keyword Function Syntax

Call Execute stored procedures { call procedure_name [arg1, …]}
? = call Execute stored functions { ? = call function_name [arg1, …] }
d Define a date { d ‘yyy-mm-dd’ }
escape Define the databases escape character { escape ‘escape character’ }
fn Execute a scalar function { ‘fn function [arg1, …] }
oj Define an outer join { oj outer-join }
t Define a time { ‘hh:mm:ss’ }
ts Define a time stamp { ‘yyyy-mm-dd hh:mm:ss.f….’ }

4 JDBC Application and Design Considerations

127

database- independent manner, JDBC implements an ODBC-style escape syntax for
many of these extensions. By using escape syntax, applications can achieve total
database independence and still take advantages of the additional functionalities
provided by those extensions.

Escape syntax works much like the escape character, which contains a keyword
and parameters all enclosed in curly braces.

 { keyword [parameter], …. }

As JDBC finds a set of curly braces in an executable string, the driver maps the
enclosed keyword and parameters to the database-specified syntax, and the mapped
syntax is then sent to the database for execution.

JDBC escape syntax supports seven keywords, each of them indicates the type of
extension that is enclosed within the braces. Table 4.7 shows a collection of the
keywords and their syntax.

So far we have discussed most Statement components and interfaces in JDBC
data actions and applications, now let’s take care of retrieving the execution results.

4.2.4 Retrieving Results

Based on the different SQL statements, three execution methods can be used to run
an associated SQL statement. As we discussed in Sect. 4.2.3.1, each execution
method performs different data actions:

• The executeQuery() method is used to run a data query, and the expected return-
ing result is a result set stored in a ResultSet object.

• The executeUpdate() method is used to perform an insert, update, or delete data
action, and the returning result should be an integer that equals the number of
rows that have been affected by running this data manipulation.

• The execute() method can be used in either way, but this method never returns
any result and you need to use special methods to pick up the running results.

Table 4.8 Methods used to determine the types of returned result

Method
Return
value Testing result

getUpdateCount() > 0 The result is an update count
getUpdateCount() = −1 The result is not an update count
getUpdateCount() = 0 Either the update count is zero or a data definition language

(DDL) statement is executed, such as CREATE TABLE.
getResultSet() = null The result is not a ResultSet
getResultSet()
getUpdateCount()

= −1
!= null

The result is a ResultSet

4.2 JDBC Applications Fundamentals

128

To pick up the running results for different methods, the following rules should
be followed:

 1) For the executeQuery() method, the getResultSet() method defined in the
Statement interface should be used since the running result is a result set stored
in a ResultSet object.

Table 4.9 Methods defined in the ResultSet interface

Method Function

close() Close the ResultSet and release all resources associated with it
findColumn(String
colName)

Return the column index number corresponding to the column name
argument

getAsciiStream(int
index)

Retrieve the value of the specified column from the current row as an
ASCII stream. The column can be represented by either the column
index or the column name

getBigDecimal(int
index)

Return the value of the referenced column from the current row as a
BigDecimal object

getBoolean(int index) Return the value of the referenced column from the current row as a
Boolean

getByte(int index) Return the value of the referenced column from the current row as a
byte

getBytes(int index) Return the value of the referenced column from the current row as an
array of bytes

getBlob(int
column_Index)

Retrieves the value of the designated column in the current row of this
ResultSet object as a Blob object in the Java programming language

getBlob(String
column_Name)

Retrieves the value of the designated column in the current row of this
ResultSet object as a Blob object in the Java programming language

getDouble(int index) Return the value of the referenced column from the current row as a
double

getFloat(int index) Return the value of the referenced column from the current row as a
floating point number

getInt(int index) Return the value of the referenced column from the current row as an
integer

getLong(int index) Return the value of the referenced column from the current row as a
long integer

getObject(int index) Return the value of the referenced column from the current row as an
Object. The object type is determined by the default mapping of the
SQL data type

getShort(int index) Return the value of the referenced column from the current row as a
short integer

getString(int index) Return the value of the referenced column from the current row as a
String object

getTime(int index) Return the value of the referenced column from the current row as a
java.sql.Time object

getMetaData() Return a metadata object from the ResultSet object
next() Move the ResultSet row cursor to the next row
wasNull() Determine if the last value read by a getXXX() method was a SQL null

value. A True is returned if the last read value contained a null value

4 JDBC Application and Design Considerations

129

 2) For the executeUpdate() method, the getUpdateCount() method defined in the
Statement interface should be used since the running result is an integer that
equals the number of rows that have been affected.

 3) For the execute() method, since this method can handle both ResultSet and
integer, also it never returns any result, you need to use special methods to
retrieve the running result for the execution of this method.

Relatively speaking, for the first two methods, it is relatively easy to pick the
running result since the result is known and definite. The challenge is the third
method, execute(), since the result of execution of this method can be either a
ResultSet or an integer. Another challenge is that this method can be used where the
SQL statement to be executed is not known at the compile time or there is a possibil-
ity of multiple results being returned by a stored procedure. Unlike the first two
methods, the execute() method never returns any result, and you must use either the
getResultSet() or getUpdateCount() method to retrieve the running results.

To distinguish what kind of result is returned, we can use the method we dis-
cussed in the last section to do that. To handle multiple results, we need to use the
getMoreResults() method defined in the Statement interface (refer to Table 4.4).
When executing this method, a True will be returned if a ResultSet object is
returned. If the result retrieved is an integer, then the getMoreResults() method
returns a False. The confusing issue is that this method will also return a False if no
result is received. In order to solve this confusion, you must use the getUpdate-
Count() method to test the possible results. Table 4.8 shows a full picture with
associated testing condition and possible testing results.

It is easy to get the result of the execution of the executeUpdate() method
since only an integer is returned as the result for this method. However, it needs
more works to do for the result of the execution of the executeQuery() and exe-
cute() methods since a ResultSet object that contains a tabular set is returned. We
will concentrate on the methods used to retrieve and process the actual data con-
tained in the ResultSet object. First let’s have a closer look at the ResultSet
interface.

4.2.4.1 The ResultSet Interface

Data is stored in a ResultSet just as it is returned by the database, exactly, it is stored
in tabular format. Each field of the database can be described by a unique combina-
tion of a row ID and a column ID. A column can be mapped to an array since all data
in a single column have the same data type. Similarly, a row can be mapped to a
Vector since all elements in a single row may have the different data types.

The ResultSet interface has more than 25 methods and Table 4.9 lists some most
often used methods.

All getXXX() methods defined in this ResultSet interface, except the getMeta-
Data(), are overloading methods with two signatures, which means that all of those
methods can pass two types of arguments, either a column index that is an integer

4.2 JDBC Applications Fundamentals

130

or a column name that is a String. To save space, here we only list the first signature
for each of those methods.

Now we have a clear picture about the ResultSet interface, next we need to get
the running results from the execution of an execute method. First, let’s take care of
how to get a ResultSet object after an execute method has been done.

4.2.4.2 Getting and Processing the ResultSet Object

When a SQL data query is executed, the returned result is stored in a ResultSet
object, and this ResultSet object can be created by one of the following two
methods:

• The executeQuery() method
• The getResultSet() method

When an executeQuery() method is executed, the result of the queried data is
stored in a ResultSet object and returned. However, when an execute() method is
used to retrieve a data query result, it will not return any result directly, instead you
need to use the getResultSet() method to create a ResultSet to pick up the
returned result.

Once the ResultSet object is created by using either method, an appropriate
getXXX() method defined in the ResultSet interface can be used to access and
retrieve data. Since the data is in a tabular format, any data can be retrieved by using
the column and row ordinals. Two different ways can be used to select and access
each column and row in a ResultSet object:

 1) Using either column index or column name to select the desired column
 2) Using the cursor that points to the current row to select a desired row

In order to scan the entire table in a ResultSet object, you can use the next()
method defined in the ResultSet interface to move the cursor row by row until the

ResultSet

Row 0 – Empty row

Data - Row 1

Data - Row 2

Data - Row N

Cursor
Row Pointer

ResultSet

Row 0 – Empty row

Data - Row 1

Data - Row 2

Data - Row N

Cursor
Row Pointer

(a) (b)

Fig. 4.15 The structure of a ResultSet with a row pointer positioning diagram

4 JDBC Application and Design Considerations

131

last record. To pick up a specified column from a given row, you can use an appro-
priate getXXX() method defined in the ResultSet interface with a column index or
column name as the argument.

Let’s have a closer look at accessing and processing each row and column from
a ResultSet object with a little more discussion in the following sections.

4.2.4.2.1 Fetching by Row

In a ResultSet object, a cursor is used as a pointer to point to each row, and each row
of data must be processed in the order in which they can be returned. At the begin-
ning time, after an execution method is executed and a ResultSet object is returned,
the cursor points the initial row, which is an empty row (refer to Fig. 4.15). To move
the cursor to point to the first row of data, as we mentioned, the next() method can
be used. Then an appropriate getXXX() method can be used to pick up desired col-
umn from the current row based on the column index or the column name as the
argument of that method. Figure 4.15 shows a structure of a ResultSet object with
a row pointer positioning diagram.

Figure 4.15a shows an initial cursor position of a ResultSet object, in which an
execution method is just completed and a ResultSet object is created. The cursor
now points to the initial row, row 0, and it is an empty row with no data included.

To access and retrieve a row of data, the next() method is executed to move the
cursor to point to the next row, row 1 (shown in Fig. 4.15b), in which the first row
of data is stored. An appropriate getXXX() method can be used to retrieve the
desired column with the column index or column name as the argument. To navigate
through the entire ResultSet and process each row, you can use the next() method
again until the last row. A true will be returned from this next() method if it points
to a row containing data, and a false will be returned if the cursor points to a null
row, which means that the bottom of the ResultSet has been arrived and no more
data available in this object.

In an actual program development and coding process, a while() loop can be
used to execute the next() method to advance the cursor from the current row to

String query = "SELECT user_name, pass_word FROM LogIn" +
"WHERE user_name = ? AND pass_word = ?";

PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setString(1,“ cse ”);
pstmt.setString(2,“ mack8000”);

ResultSet rs = pstmt.executeQuery();

while (rs.next()){
username = rs.getString(1); // username = rs.getString(“ user_name ”);
password = rs.getString(2); // password = rs.getString(“ pass_word ”);

}

Fig. 4.16 An example coding of using the looped next() method

4.2 JDBC Applications Fundamentals

132

point to the next row, until a false is returned, which means that the bottom of the
ResultSet object has been arrived.

Figure 4.16 shows a piece of example codes to illustrate how to use a while()
loop with the next() method to retrieve the related username and password from the
LogIn table in our sample database CSE_DEPT.

Those non-highlighted codes are prerequisite codes used to create an SQL state-
ment query string, create a PreparedStatement object, and set input parameters for
the query string. The codes in bold are key codes used to create a ResultSet object,
perform a while() loop with the next() method to retrieve all related usernames and
passwords from the LogIn table in our sample database. Since most getXXX()
methods defined in the ResultSet interface are overloading methods, alternatively,
you can use the column name as an argument to pick up the desired column. Those
alternative codes are shown on the right side with the comment out symbol in front
of them.

4.2.4.2.2 Fetching by Column

When a valid data row has been retrieved, we need to get each column from that
row. To do that, different getXXX() methods should be used based on the different
data types of the returned data. One can use either the name of a column or the index
of that column to get the data value. Inside the while loop in Fig. 4.16, we used a
column index as the argument for the getString() method to retrieve the username
and password columns from our LogIn table. As you know, the data type for both
the user_name and the pass_word are String in our LogIn table, therefore a get-
String() method is used with the index of each column. A point to be noted is that
the first column has an index of 1, not 0. If the name of each column, not an index,
is used for the getString() method in this while loop, the codes can be re-written as

 while (rs.next()){
 username = rs.getString("user_name");
 password = rs.getString("pass_word");
 }

One of the most important methods in ResultSet class is the getObject(). The
advantage of using this method is that a returned datum, which is stored in a
ResultSet object and its data type is unknown (a datum is dynamically created), can
be automatically converted from its SQL data type to the ideal Java data type. This
method out-perform any other getXXX() method since the data type of returned
data must be known before a suitable getXXX() method can be used to fetch the
returned data.

The findColumn() method is used to find the index of a column if the name of
that column is given, and the close() method is used to close a ResultSet instance.

One of the very useful methods, or a pair of method, getBlob(), is crystal impor-
tant when retrieving an image object from a table in a database. An image object is

4 JDBC Application and Design Considerations

133

stored in a table with a Blob (Binary Large Object) format, thus one needs to use
this method to access the table to retrieve any image object stored in a database.

The getMetaData() method is a very good and convenient method and it allows
users to have a detailed and clear picture about the structure and properties of data
returned to a ResultSet. A ResultSetMetaData object, which contains all pieces of
necessary information about the returned data stored in a ResultSet instance, is
returned when this method is executed. By using different methods of the
ResultSetMetaData interface, we can obtain a clear picture about the returned data.
For example, by using the getColumnCount() method, we can know totally how
many columns have been retrieved and stored in the ResultSet. By using getTable-
Name(), getColumnName(), and getColumnType(), we can know the name of the
data table we queried, the name of column we just fetched and data type of that
column. A more detailed discussion about the ResultSetMetaData component will
be given in the following sections.

4.2.5 Using JDBC MetaData Interfaces

In addition to general and popular data information provided by three statement
interfaces and execution methods, JDBC also provides useful and critical informa-
tion and descriptions about the database, running result set, and parameters related

Table 4.10 Methods defined in the ResultSetMetaData interface

Method Function

getCatalogName(int index) Determine the name of the catalog that contains the referenced
column

getColumnCount() Return the total number of columns contained in the ResultSet
object

getColumnDisplaySize(int
index)

Return the maximum display width for the selected column

getColumnLabel(int index) Return the preferred display name for the selected column
getColumnName(int index) Return the name of the column for the selected column
getColumnType(int index) Return the SQL data type for the selected column
getPrecision(int index) Return the precision used for the selected column
getScale(int index) Return the scale used for the selected column
getSchemaName(int index) Return the name of the schema that contains the selected

column
getTableName(int index) Return the name of the table that contains the selected column
isAutoIncrement(int index) Determine if the column is automatically numbered by the

database (auto-number)
isCurrency(int index) Determine if the column represents currency
isNullable(int index) Determine if the column is able to accept null values
isSigned(int index) Determine if the column contains signed numbers
isWritable(int index) Determine if the column is writable by the user
isReadOnly(int index) Determine if the column is read-only

4.2 JDBC Applications Fundamentals

134

to the JDBC drivers and database applications. All of these properties, structures,
and descriptions can be categorized into three interfaces of so-called metadata inter-
faces, or

 1) ResultSetMetaData interface
 2) DatabaseMetaData interface
 3) ParameterMetaData interface

In the following sections, we will concentrate on these three interfaces to illus-
trate how to use these interfaces to retrieve detailed descriptions and structures as
well as properties related to the data action components, such as ResultSet, data-
base, and parameters to facilitate database applications.

Let’s start from the ResultSetMetaData interface.

4.2.5.1 Using the ResultSetMetaData Interface

In Sect. 4.2.4, we discussed how to retrieve running result stored in a ResultSet
object and important methods of this interface. By using different fetching methods,
either fetching by rows or columns, we can easily retrieve a whole set of returned
results stored in a ResultSet object. However, in some applications, we may need
more detailed information and properties about the returned result set, such as the
total number of columns returned, each column name and data type, as well as some
other structure information related to the returned result set. By using these struc-
ture information and properties, we can get a clear and full picture about the returned

ResultSet, and enable us to retrieve our desired data information more directly
and conveniently. With the help of the metadata provided by the ResultSetMetaData,
you can develop entire database applications without even knowing what RDBMS,
table, or type of data to be accessed.

The ResultSetMetaData interface provides a collection of information about
the structure and properties related to the returned ResultSet object, and this gives
us a possibility to perform the functions we described above. The ResultSetMetaData
interface contains more than 20 methods, and Table 4.10 shows 16 most popular
methods.

It can be found from Table 4.10 that the top 10 methods in a ResultSetMetaData
object are mainly used to retrieve the structure and properties for the specified

ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();

While (rs.next()){
for (int m = 1; m< rsmd.getColumnCount(); m ++)
{

System.out.println(rs.getString(m));
}

}

Fig. 4.17 A coding example of using the getColumnCount() method

4 JDBC Application and Design Considerations

135

column with the column index as an argument. The rest of the methods that return a
Boolean value are used to determine some important properties that describe special
functions provided by the database engine for the selected column. One of the
advantages of using this metadata is that you can build dynamic applications that are
independent of the data source. One possible way to achieve this is to remove the
need for all direct column name references.

Because of the space limitation, we can only provide a brief discussion for some
important methods that are widely implemented in most database applications.

After a data query is executed and a ResultSet object is returned, before we can
retrieve our desired data from the ResultSet, we may need to get some structure
information and properties related to columns we preferred. One of the most impor-
tant properties is the total number of columns returned in the ResultSet object. By
using the getColumnCount() method, we can get not only the total number of
columns, but also the content of each column easily. Figure 4.17 shows a piece of
example codes to illustrate how to use this method to scan the entire ResultSet to
retrieve each column from it.

Table 4.11 Popular methods defined in the DatabaseMetaData interface

Method Function

getCatalogs() Return a ResultSet containing a list of all catalogs
available in the database

getCatalogTerm() Determine what the database-specific name for
Catalog is

getDatabaseProductName() Return the name of the database product
getDatabaseProductVersion() Return the database revision number
getDriverName() Return the name of the driver
getDriverVersion() Return the revision number of the driver
getPrimaryKeys(String catalog, String
schema, String table)

Return a ResultSet describing all of the primary
keys within a table

getProcedures(string catalog, String schPatt,
String proPatt)

Return a ResultSet describing all stored
procedures available in the catalog

getProcedureTerm() Determine the database-specific term for
procedure

getSchemas() Return a ResultSet containing a list of all
schemas available in the database

getSchemaTerm() Determine the database-specific term for schema
getTables(String catalog, String schePatt,
String tablePatt, String[] types)

Return a ResultSet containing a list of all tables
available matching the catalog, schema, and table
type selection criteria

getTableTypes() Return a ResultSet listing the table types
available

getTypeInfo() Return a ResultSet describing all of the standard
SQL types supported by the database

getURL() Return the current URL for the database
getUserName() Return the current user name used by the

database

4.2 JDBC Applications Fundamentals

136

The first coding line is used to create a ResultSet object by executing the exe-
cuteQuery() method. Then a ResultSetMetaData object rsmd is created by call-
ing the getMetaData() method defined the ResultSet interface. To pick up each
returned column, a while loop is used combined with the next() method. By using
this piece of codes, you even do not need to know how many columns returned in
that ResultSet and what are the name for each column, in other words, you do not
have to had prior knowledge about the table and database, you can retrieve all col-
umns with their exact names! Yes, that is easy and fancy.

In some applications, you may need to know some other useful information
about the columns, such as the data type of each column, the width of each column,
the precision and scale of the selected column if a floating point or double data is
stored in that column. To get those properties, you can call the appropriate methods,
such as getColumnType(), getColumnDisplaySize(), getPrecision() and
getScale().

Besides to get some important information and properties about the returned
ResultSet, sometimes we may need to get similar information for the connected
database. In that case, you may need to use the DatabaseMetaData interface.

4.2.5.2 Using the DatabaseMetaData Interface

Compared with other metadata interfaces, the DatabaseMetaData is the largest
metadata interface with over 150 methods. This interface is mainly used for by
those developers who are building database applications that need to be fully
RDBMS-independent, which means that the developers do not need to know any-
thing about the database or do not have prior knowledge about the database they are
using. In this way, the users can discover and retrieve structures and properties of
the RDBMS dynamically as the application runs.

To create a DatabaseMetaData object, one needs to call the getMetaData()
method defined in the Connection interface.

Relatively speaking, the ResultSetMetaData interface allows you to discover
the structure of tables and properties of columns, but the DatabaseMetaData inter-
face enables you to dynamically determine properties of the RDBMS. Table 4.11
shows some 16 most popular and important methods widely implemented by the
DatabaseMetaData interface.

These 16 methods can be divided into 7 groups based on their functionalities:

 1) Catalog Identification Methods
 2) Database Identification Methods
 3) Driver Identification Methods
 4) Stored Procedure-Related Methods
 5) Schema Identification Methods
 6) Table Identification Methods
 7) Database-Related Parameter Methods

4 JDBC Application and Design Considerations

137

To get the name and version of the current database being used, the
getDatabaseProduct- Name() and getDatabaseProductVersion() methods can be
used. Similarly, to get the name and revision number of the JDBC driver being used,
the getDriverName() and getDriverVersion() methods can be executed.

In fact, the DatabaseMetaData interface provides methods that allow you to
dynamically discover properties of a database as the project runs. Many methods in
the DatabaseMetaData return information in the ResultSet component, and one
can get those pieces of information from ResultSet object by calling related meth-
ods such as getString(), getInt() and getXXX(). A kind of SQLException would
be thrown out if the queried item is not available in the MetaData interface.

Overall, the DatabaseMetaData interface provides an easy and convenient way
to allow users to identify and retrieve important structure and properties information
about the database dynamically.

Table 4.12 Popular methods defined in the ParameterMetaData interface

Method Function

getParameterCount() Return the number of parameters in the PreparedStatement
object for which this ParameterMetaData object contains
information

getPrecision(int param) Return the designated parameter's number of decimal digits
getScale(int param) Return the designated parameter's number of digits to the right

of the decimal point
getParameterType(int param) Return the designated parameter's SQL type
getParameterTypeName(int
param)

Return the designated parameter's database-specific type name

getParameterMode(int param) Return the designated parameter's mode
isNullable(int param) Determine whether null values are allowed in the designated

parameter
isSigned(int param) Determine whether values for the designated parameter can be

signed numbers

String query = "SELECT user_name, pass_word FROM LogIn " +
"WHERE user_name = ? AND pass_word = ?";

PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setString(1, “ cse ”);
pstmt.setString(2, “ mack8000”);

ResultSet rs = pstmt.executeQuery();
ParameterMetaData pmmd = pstmt.getParameterMetaData();

System.out.println(“The total number of parameter is“ + pmmd.getParameterCount());

Fig. 4.18 A coding example of using the getParameterCount() method

4.2 JDBC Applications Fundamentals

138

4.2.5.3 Using the ParameterMetaData Interface

The detailed information about the parameters passed into or from the database can
be obtained by calling the getParameterMetaData() method that is defined in the
PreparedStatement interface. Although this interface is not as popular as
ResultSetMetaData and DatabaseMetaData, it is useful in some special
applications.

Basically the ParameterMetaData interface can be defined as: an object that
can be used to get information about the types and properties of the parameters in a
PreparedStatement object. For some queries and driver implementations, the data
that would be returned by a ParameterMetaData object may not be available until
the PreparedStatement has been executed. Some driver implementations may not
be able to provide information about the types and properties for each parameter
marker in a CallableStatement object.

The ParameterMetaData interface contains 7 fields and 9 methods. Table 4.12
shows 10 most popular methods that are widely implemented in most database
applications.

Figure 4.18 shows a piece of example codes to illustrate how to retrieve the total
number of parameters related to a PreparedStatement object.

After a PreparedStatement instance is created, the getParameterMetaData()
method is executed to retrieve the total number of parameters returned in the
ParameterMetaData object.

Finally, let’s handle closing the connection object and releasing used resources
including the statement objects.

4.2.6 Closing the Connection and Statements

After a set of data actions has been performed and the desired data have been
acquired, the Connection object that is used to connect to our target database should
be closed and the related data operational resources including all opened statement
objects used for these data actions should also be released. Otherwise, you may
encounter some possible exceptions when you try to open a database that has been

try{
stmt.close();
if (!con.isClosed())

con.close();
}

catch(SQLException e){
System.out.println("Could not close!" + e.getMessage());
}

Fig. 4.19 A coding example of closing the Connection and Statement objects

4 JDBC Application and Design Considerations

139

opened but without being closed in the previous applications. To these cleanup jobs,
it is very easy with a piece of codes shown in Fig. 4.19.

To do a closing operation, a try…catch block had better be used to track and
monitor this closing process with possible exceptions warning.

4.3 Chapter Summary

The application fundamentals of JDBC and JDBC API, which include the applica-
tion models and operational procedures of the JDBC API implemented in Java data-
base applications, are discussed in detail in this chapter.

Starting with an introduction to two JDBC application models, two-tier and
three-tier models, a detailed illustration and description about these two models are
given in the first part of this chapter. A typical two-tier model contains an applica-
tion server and a database server, in which a Java database application project
resides in an application server and the target database is located at the database
server. The so-called three-tier model places the application onto an application
server that can be considered as a mid-tier, and installs database in a database server.
To run this three-tier model application, the user needs to communicate the applica-
tion server by using a Web browser that can be considered as a top tier with a GUI
being installed in this browser. Then the application server can process requests sent
from the browser via the target database via the database server. Finally, when
requests have been done, results will be returned to the browser by the applica-
tion server.

Following the application models, a complete operational procedure to perform
a standard Java database application is discussed with some example codes, which
includes:

• Load and register a JDBC Driver.
• Connect to the target database using either DriverManager.getConnection()

method or Driver.connect() method.
• Execute an SQL statement by creating and calling an appropriate Statement

object, which include:

• Statement object
• PreparedStatement object
• CallableStatement object

• Distinguish different queries by running associated execute method.
• Execute DDL and DML SQL statements.
• Retrieve the running result by creating and getting a ResultSet object.
• Develop sophisticated Java database applications using different JDBC metadata

interfaces, including the ResultSetMetaData, DatabaseMetaData, and
ParameterMetaData interfaces.

4.3 Chapter Summary

140

• Close the connected database and opened statement objects to release data
resource used for the application.

Combining the contents in this chapter and the last chapter, you should have had
a complete and clear picture about the JDBC fundamentals and application proce-
dure. Beginning from the next chapter, we will introduce and discuss some develop-
ment tools and actual techniques used in Java database applications.

Homework
 I. True/False Selections

____1. JDBC applications are made of two models: two-tier and three-
tier models.

____2. In a three-tier model, the application is located at a Web server and the
database is installed in a database server. The user can access the appli-
cation server through a Web browser with a GUI being installed in the
browser.

____3. To load and register a driver, the creating a new instance of the Driver
class method is a better method compared with the Class.for-
Name() method.

____4. When establish a database connection, the DriverManager.getConnec-
tion() method is a better method compared with the Driver.con-
nect() method.

____5. A JDBC URL is composed of three parts: network host name, the data-
base server name, and the port number.

____6. By using three methods defined in the Connection interface, createS-
tatement(), prepareStatement(), and prepareCall(), one can create
three statement objects: Statement, PreparedStatement, and
CallableStatement.

____7. The Statement object can be used to perform both static and dynamic
data queries.

____8. To create a ResultSet object, you can use either getResultSet() method
or call the executeQuery() method.

____9. The executeQuery() method returns an integer that equals the number
of rows that have been returned, and the executeUpdate() method
returns a ResultSet object containing the running result.

___10. The next() method defined in the ResultSet interface can be used to
move the cursor that points from the current row to the next row in a
ResultSet.

 II. Multiple Choices

 1. The __________ object provides methods for the creation of Statement
objects that will be used to execute SQL statements in the next step.

 (a) Statement
 (b) Connection
 (c) DriverManager
 (d) Driver

4 JDBC Application and Design Considerations

141

 2. The relationship between three statement objects are: the ____________ is
a subclass of the __________ that is a subclass of the __________.

 (a) CallableStatement, PreparedStatement, Statement
 (b) Statement, CallableStatement, PreparedStatement
 (c) PreparedStatement, Statement, CallableStatement
 (d) Statement, PreparedStatement, CallableStatement

 3. The __________ method returns a(n) __________, and the _________
method returns a(n) __________.

 (a) execute(), ResultSet, executeQuery(), integer
 (b) executeQuery(), integer, execute(), nothing
 (c) executeUpdate(), integer, executeQuery(), ResultSet
 (d) execute(), integer, executeUpdate(), ResultSet

 4. The __________ object is used to execute a static SQL query, but the
_________ object is used to execute a dynamic SQL query with IN and
OUT parameters.

 (a) PreparedStatement, Statement
 (b) Statement, PreparedStatement
 (c) CallableStatement, Statement
 (d) Statement, CallableStatement

 5. Both interfaces, PreparedStatement and CallableStatement, are used to per-
form dynamic SQL statements, however, the ________ performs queries
with only _____ parameters but the _______ calls stored procedures with
both ______ and _______ parameters.

 (a) CallableStatement, OUT, PreparedStatement, IN, OUT
 (b) PreparedStatement, IN, CallableStatement, IN, OUT
 (c) CallableStatement, IN, PreparedStatement, IN, OUT
 (d) PreparedStatement, OUT, CallableStatement, IN, OUT

 6. By using __________ method, we can get a collection of information about
the structure and properties of the returned ResultSet object.

 (a) getResultSetMetaData()
 (b) getResultSet()
 (c) getMetaData()
 (d) ResultSetMetaData()

 7. To create a ____________ object, one needs to call the ___________
method defined in the Connection interface.

 (a) ResultSet, getMetaData()
 (b) Statement, getStatement()
 (c) PreparedStatement, getPreparedStatement()
 (d) DatabaseMetaData, getMetaData()

4.3 Chapter Summary

142

 8. The ____________ interface allows you to discover the structure of
tables and properties of columns, but the _______________ interface
enables you to dynamically determine properties of the RDBMS.

 (a) ResultSet, DatabaseMetaData
 (b) ParameterMetaData, ResultMetaData
 (c) DatabaseMetaData, ParameterMetaData
 (d) DatabaseMetaData, ResultSet

 9. When using a CallableStatement object to run a stored procedure, you need
to register the __________ parameters by using the _____________ method.

 (a) IN/OUT, getParameters()
 (b) IN, registerINParameter()
 (c) OUT, registerOUTParameter()
 (d) IN/OUT, registerINOUTParameter()

 10. The placeholder used in the setXXX() and the registerOUTParameter()
methods is used to ___________________.

 (a) Indicate the location of the input or output parameters
 (b) Reserve spaces for input or output parameters
 (c) Inform the compiler to hold memory spaces for those parameters
 (d) All of them

 III. Exercises

 1. Provide a brief description about seven basic steps to use JDBC.
 2. Translate the above seven steps to Java codes.
 3. Provide a detailed description about JDBC three-tier model and its function.
 4. Provides a brief description about the JDBC URL.
 5. Explain the operational sequence of retrieving results from a returned

ResultSet object.
 6. Explain the relationship between three Statement objects, and illustrate

why and how the CallableStatement object can use setXXX() methods
defined in the PreparedStatement interface.

 7. Explain the advantages of using JDBC metadata for Java database
applications.

4 JDBC Application and Design Considerations

143© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_5

Chapter 5
Introduction to Apache NetBeans IDE

Java was originally created by Sun Microsystems to try to overcome some com-
plexities in C++ and to simplify the structure and architecture of applications devel-
oped by using object-oriented programming (OOP) languages such as C++. In the
early days, Java developers need to use separate tools to build, develop, and run a
Java application. The following tools are most popularly used when building a Java
application:

• NotePad or WordPad—used to develop the Java source codes
• Java Compiler—used to compile the Java source codes to the Java bytecodes
• Java Interpreter—used to convert the bytecodes to the machine codes

There is no GUI tool available in the early days, and developers have to use the
Java layout manager to design and build the GUI by using different layouts with
various components, such as buttons, labels, textfields, checkboxes, and radio but-
tons. Even for Web-related Java, applications, such as Applets, must be built by
using different tools, too. This brought a significant inconvenience and complicated
development environment for Java developers in that age.

As more sophisticated and advanced techniques developed, the Java develop-
ment environment and tools have been greatly improved. By combining Java
Software Development Kits (SDK) and GUI components, such as Abstract
Windowing Toolkit (AWT) and Swing API, Sun integrated those components and
tools together to establish and build an Integrated Development Environment (IDE).
This IDE is very similar to Visual Studio.NET, in which all program development
tools and components have been integrated together and categorized into different
packages. Developers can design, develop, build, and run a Java standard-alone or a
Web application easily and conveniently inside this IDE without needing to use dif-
ferent tools.

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_5].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06553-8_5&domain=pdf
https://doi.org/10.1007/978-3-031-06553-8_5

144

The Apache NetBeans IDE is one of the most current and updated IDEs and is
widely implemented in a wide spectrum of Java applications. The Apache NetBeans
IDE is actually written in Java and runs everywhere where a Java Virtual Machine
(JVM) is installed, including Windows, Mac OS, Linux, and Solaris. A Java
Development Kits (JDK) is required for Java development functionality, but is not
required for development in other programming languages.

The Apache NetBeans project consists of an open-source IDE and an application
platform that enable developers to rapidly create web, enterprise, desktop, and
mobile applications using the Java platform, as well as JavaFX, PHP, JavaScript and
Ajax, Ruby and Ruby on Rails, Groovy and Grails, as well as C/C++.

The Apache NetBeans IDE, which was originally called NetBeans IDE released
by Sun Microsystems and later on taken over by Oracle, is a modular, standards-
based integrated development environment (IDE), written in the Java programming
language. The NetBeans project consists of a full-featured open-source IDE written
in the Java programming language and a rich client application platform, which can
be used as a generic framework to build any kind of application.

5.1 Overview of the Apache NetBeans 12

The Apache NetBeans, which exactly contains two parts: the Apache NetBeans IDE
and the Apache NetBeans Platform, is a top-level Apache Project dedicated to pro-
viding rock-solid software development products that address the needs of develop-
ers, users, and the businesses who rely on NetBeans as a basis for their products,
particularly, to enable them to develop these products quickly, efficiently, and easily
by leveraging the strengths of the Java platform and other relevant industry standards.

Like NetBeans IDE, the Apache NetBeans IDE works as a free Java IDE and
provides support for several other languages, such as Java, Maven, Ruby, PHP,
JavaFX, JavaScript, and C/C++, but the latter provides more supports for Web and
Internet applications.

Table 5.1 shows some most popular features provided by Apache NetBeans IDE 12.
The current version of the Apache NetBeans IDE is 12 and it is an IDE to offer

complete support for the entire Java Enterprise Edition (EE) 8 and higher specifics
with improved support for JSF 2.3/Facelets, Java Persistence 2.2, Enterprise
JavaBean (EJB) 3.1 including using EJBs in web applications, RESTful web ser-
vices, and GlassFish v3. It is also recommended for developing with the latest
JavaFX SDK 14, and for creating PHP web applications with the new PHP 7.4
release or with the Symfony Framework.

As we know, the Apache NetBeans projects are composed of an open-source IDE
and an application platform that enables developers to rapidly create web, enter-
prise, desktop, and mobile applications. Let’s have a closer look at these two com-
ponents to have a deeper understanding about this IDE.

Table 5.2 shows the most popular techniques supported by the Apache NetBeans
IDE 12 and application servers adopted by the Apache NetBeans.

5 Introduction to Apache NetBeans IDE

145

Table 5.1 Most popular features supported by Apache NetBeans IDE 12

Project category Features

Java Enterprise Edition 8 Web Projects with Java EE 8 and Java EE 8 Web profiles, EJBs in
web applications
EJB 3.1 support, EJB project file wizard also supports Singleton
session type
RESTful web services (JAX-RS 2.1), GlassFish Metro 2.0 web
services (JAX-WS 2.3), JAXB 2.2.8
Java Persistence JPA 2.2, deployment, debugging, and profiling
with GlassFish v5 application server.

Web Projects with
JavaServer Faces 2.3
(Facelets)

Code completion, error hints, namespace completion,
documentation popups, and tag auto-import for Facelets
Editor support for Facelets libraries, composite components,
expression language, including generators for JSF and HTML
forms
Customizable JSF components palette generates JSF forms and JSF
data tables from entities
New File wizard generates customizable CRUD (create/read/
update/delete) JSF pages from entities
Broader usage of annotations instead of deployment descriptors

JavaFX Added support for the latest JavaFX SDK 14
Improved code completion
Editor Hints: Fix Imports, Surround With, Implements Abstract
Methods, and more
Improved navigation: Hyperlinks, Go to Type, Find Usages

Kenai.com: Connected
Developer

Full JIRA support (plugin from update center)
Project dashboard with more member and project details, improved
search and navigation, easier project sharing
Improved instant messenger integration: Online presence, private
and group chat with Kenai members, easy to add links to code/files/
issues/stack traces to messages
Improved issue tracker integration

PHP Full PHP 7.4 support: namespaces, lambda functions and closures,
syntax
additions:
NOWDOC, ternary conditions, jump labels, __callStatic()
Symfony Framework support: Symfony projects, Symfony
commands, shortcuts, PHP syntax coloring in YAML files
Create a PHP project from a remote PHP application
PHPUnit, Code Coverage, FTP/SFTP integration improvements,
exclude PHP project folders from scanning/indexing

Maven New Project from Maven archetype catalog and improved support
for Java EE 6, Groovy, Scala projects
Customizable dependency exclusion in dependency graph
Maven CheckStyle plugin
"Update from Kenai" action for Kenai.com-hosted Maven projects

(continued)

5.1 Overview of the Apache NetBeans 12

http://kenai.com
http://kenai.com

146

Table 5.1 (continued)

Project category Features

Ruby Support for creating Rails 6.0 apps with dispatchers, JRuby 9.2.9,
Ruby 2.7 debugging, and RSpec 3.7
Improved rename refactoring, type inference, and navigation
Specifying arguments for Rails servers
Run/Debug File with arguments, also for files not part of a project

C and C++ Profiling: New Microstate Accounting indicator, Thread Map view,
Hot Spots view, Memory Leaks view, Sync Problems view
Faster synchronization during remote development
Support for gdbserver attach and easier attaching to already running
processes

Miscellaneous
improvements

Java Debugger: Mark an object in the variables tree with a name to
refer to it in expressions
Database integration: Code completion in SQL Editor now also for
DELETE, DROP, UPDATE statements, and for reserved keywords
Groovy 2.0 & Grails: Improved code completion, including
methods introduced via AST Transformations

Table 5.2 Most popular techniques and application servers supported by Apache NetBeans

Category Supported techniques and application servers

Supported technologies Java EE 8 and higher
JavaFX SDK 14
Java ME SDK 8.0
Struts 1.3.8
Spring 2.5
Hibernate 5.4
Java API for RESTful Web Services (JAX-RS) 2.1
PHP 7.4, 7.3, 7.1
Ruby 2.7
JRuby 9.2.9
Rails 2.3.4
Groovy 2.0
Grails 1.1
VCS
 CVS: 1.11.23
 Subversion: 1.14
 Mercurial: 5.x
 ClearCase V9.x

Tested application servers GlassFish v5
Sun Java System Application Server PE 9.x
WebLogic 14c (14.1.1)
Tomcat 8 & 7
Tomcat 9
JBoss 7.2 & 7.3

5 Introduction to Apache NetBeans IDE

147

5.1.1 The Apache NetBeans Platform

The Apache NetBeans Platform is a broad Swing-based framework on which you
can base large desktop applications. The IDE itself is based on the NetBeans
Platform. The Platform contains APIs that simplify the handling of windows,
actions, files, and many other things typical in applications.

Each distinct feature in a NetBeans Platform application can be provided by a
distinct NetBeans module, which is comparable to a plugin. An Apache NetBeans
module is a group of Java classes that provides an application with a specific feature.

You can also create new modules for Apache NetBeans IDE itself. For example,
you can write modules that make your favorite cutting-edge technologies available
to users of Apache NetBeans IDE. Alternatively, you might create a module to pro-
vide an additional editor feature.

The Apache NetBeans platform offers reusable services common to desktop
applications, allowing developers to focus on the logic specific to their application.
Among the features of the platform are:

• User interface management (e.g., menus and toolbars)
• User settings management
• Storage management (saving and loading any kind of data)
• Window management
• Wizard framework (supports step-by-step dialogs)
• NetBeans Visual Library

The second part of an Apache NetBeans is the NetBeans open-source IDE.

5.1.2 The Apache NetBeans Open-Source IDE

The Apache NetBeans IDE is an open-source integrated development environment
and it supports the development of all Java application types, such as Java Standard
Edition (Java SE) including JavaFX, Java Mobile Edition (Java ME), Web, Enterprise
JavaBean (EJB), and mobile applications, out of the box. This IDE also allows users
to quickly and easily develop Java desktop, mobile, and web applications, as well as
HTML5 applications with HTML, JavaScript, and CSS. The IDE provides a great
set of tools for PHP and C/C++ developers. It is free and open source and has a large
community of users and developers around the world. Among other features are an
Ant-based project system, Maven support, refactorings, and version control.

All the functions of the IDE are provided by modules. Each module provides a
well-defined function, such as support for the Java language, editing, or support for
the Concurrent Versions System (CVS) versioning system, and Java Subversion
(SVN). NetBeans contains all the modules needed for Java development in a single
download, allowing the user to start working immediately. Modules also allow
NetBeans to be extended. New features, such as support for other programming
languages, can be added by installing additional modules. For instance, Sun Studio,
Sun Java Studio Enterprise, and Sun Java Studio Creator from Sun Microsystems
are all based on the NetBeans IDE.

5.1 Overview of the Apache NetBeans 12

148

Three main modules included in the NetBeans IDE and most often used are in
Table 5.3.

Users can choose to download NetBeans IDE bundles tailored to specific devel-
opment needs.

Users can also download and install all other features at a later date directly
through the NetBeans IDE. A complete set of bundles that can be used by users
when they download and install NetBeans IDE onto their computers is shown below:

• Apache NetBeans Base IDE
• Java SE, JavaFX
• Web & Java EE
• Java ME
• Ruby
• C/C++
• PHP (Version 6.5 and later)
• GlassFish
• Apache Tomcat

Figure 5.1 shows a typical structure and architecture of the Apache NetBeans IDE.

Table 5.3 Three main modules included in the Apache NetBeans IDE

Module
name Functions

NetBeans
Profiler

This is a tool for the monitoring of Java applications: It helps you find memory
leaks and optimize speed. Formerly downloaded separately, it is integrated into
the core IDE since version 12.1
The Profiler is based on a Sun Laboratories research project that was named
JFluid. That research uncovered specific techniques that can be used to lower the
overhead of profiling a Java application. One of those techniques is dynamic
bytecode instrumentation, which is particularly useful for profiling large Java
applications. Using dynamic bytecode instrumentation and additional algorithms,
the NetBeans Profiler is able to obtain runtime information on applications that
are too large or complex for other profilers. NetBeans also supports Profiling
Points that let you profile precise points of execution and measure execution time

GUI design
tool

The GUI design-tool enables developers to prototype and design Swing GUIs by
dragging and positioning GUI components
The GUI builder also has built-in support for JSR 296 (Swing Application
Framework), and JSR 295 (Beans Binding technology)

NetBeans
JavaScript
Editor

This module provides extended support for Javascript, Ajax, and Cascading Style
Sheets (CSS)
JavaScript editor features comprise syntax highlighting, refactoring, code
completion for native objects and functions, generation of JavaScript class
skeletons, generation of Ajax callbacks from a template; and automatic browser
compatibility checks
CSS editor features comprise code completion for styles names, quick navigation
through the navigator panel, displaying the CSS rule declaration in a List View
and file structure in a Tree View, sorting the outline view by name, type or
declaration order (List & Tree), creating rule declarations (Tree only), refactoring
a part of a rule name (Tree only)

5 Introduction to Apache NetBeans IDE

149

Now that we have had a clear picture and understanding about the NetBeans
IDE, next we need to configure the Apache NetBeans IDE and build actual projects
in our computers.

5.2 Installing and Confirming the Apache NetBeans IDE

Refer to Appendix B to download and install Apache NetBeans 12 and Java
Development Kit (JDK) 14. Next, we need to check and confirm the installed
NetBeans IDE to make it our desired development environment.

To launch the installed Apache NetBeans IDE 12, double click on the Apache
NetBeans IDE 12 icon on the desktop. To configure this IDE, go to Tools|Plugins
item to check and confirm all installed components used in the Java Applications, as
shown in Fig. 5.2.

As the Plugins wizard appears, click on the Installed tab and check all desired
components installed by this IDE, as shown in Fig. 5.2. The following components
are needed for our projects:

• HTML5
• Java SE
• Tools
• PHP
• JavaFX 2
• Java Web and EE
• Developing NetBeans

Modules

NetBeans IDE

NetBeans Open-Source IDE

User Interface Management

NetBeans Platform

User settings Management

Storage Management

Window Management

Wizard Framework

NetBeans Visual Library

Modules

NetBeans Profiler

GUI Design Tools

NetBeans JavaScript Editor

Fig. 5.1 A typical structure of the Apache NetBeans IDE

5.2 Installing and Confirming the Apache NetBeans IDE

150

• Groovy
• Service Registry
• Base IDE

From this installed list, it can be found that most components or tools have been
activated. Now check both the Base IDE and the Groovy checkboxes to activate
them. In fact, the Base IDE has been activated by default, and this activation action
is just for the Groovy. Click on the Activate button for the next two wizards, and
then the Close button to close this Plugins wizard.

Now that we have installed and confirmed the Apache NetBeans IDE 12, next we
need to explorer it to find all useful features we will use to build our professional
database applications in this integrated development environment.

5.3 Exploring Apache NetBeans IDE 12

By using Apache NetBeans IDE, the developers can design and build Java-related
applications with different categories that are shown below:

• Java applications
• JavaFX applications
• Java Web applications
• Java Enterprise applications
• PHP applications

Fig. 5.2 The launched NetBeans IDE 12

5 Introduction to Apache NetBeans IDE

151

• Maven applications
• Grails applications
• NetBeans modules

To get a clear picture and detailed description about this IDE, first let’s have a
work-through overview for this product and its functionalities.

5.3.1 An Overview of Apache NetBeans IDE 12 GUI

When you first time launch the Apache NetBeans IDE 12, a main menu and some
default windows are displayed, as shown in Fig. 5.3.

The first window or pane located at the upper-left corner is called
Projects|Files|Services window that contains three different kinds of items:

 1) All opened projects
 2) All created files
 3) All database services

These three different items can be displayed and switched by clicking on the cor-
responded tab on the top of this window.

The second window located at the lower-left corner, which is currently hidden, is
called Navigator window that contains all components to enable users to scan and
go through all different objects or parts of a file. In fact, the Navigator window

Fig. 5.3 The opened Apache NetBeans IDE 12

5.3 Exploring Apache NetBeans IDE 12

152

provides structured views of the file you are working with and lets you quickly navi-
gate between different parts of the file.

The Tasks window, which is also hidden, is located at the bottom and it is mainly
used to list all methods in your projects and allow you to enter the codes into those
methods at any time when you building your project.

The Start Page is a main window when the IDE is opened and this window dis-
plays all recent projects you developed. All updated news and tutorials related to the
NetBeans will also be displayed in this window.

Refer to Fig. 5.3, among all menu items, the following items are special items
with the specific functionalities in the NetBeans IDE:

• Navigate: the NetBeans Navigator is used to navigate to any object, file, type of
objects and symbol you created and built in your projects. With the name of each
object or file, you can navigate to any of them as the development stage. Another
important property of using the Navigate menu item is to enable you to inspect
any member and hierarchy of those members defined in your project. In fact, the
Inspect submenu item is used to inspect the members and hierarchy of any Java
class in a convenient popup window that displays base classes, derived classes,
and interfaces. Use filters to control the level of detail that is displayed.

• Source: the NetBeans Source is used to facilitate your source coding develop-
ment by allowing you to insert codes, fix codes, fix imports, show method param-
eters, shift and move codes in your projects.

• Refactor: the NetBeans Refactor allows you to restructure code in your project
without breaking it. For example, when you rename an identifier or move a class
to another package, you do not need to use Search and Replace, instead, the IDE
can identify and update all occurrences instantly.

• Profile: the NetBeans Profiler is a tool for the monitoring of Java applications: It
helps you find memory leaks and optimize speed. The Profiler is based on a Sun
Laboratories research project that was named JFluid. That research uncovered
specific techniques that can be used to lower the overhead of profiling a Java
application. One of those techniques is dynamic bytecode instrumentation,
which is particularly useful for profiling large Java applications. Using dynamic
bytecode instrumentation and additional algorithms, the NetBeans Profiler is
able to obtain runtime information on applications that are too large or complex
for other profilers. NetBeans also supports Profiling Points that let you profile
precise points of execution and measure execution time.

• Team: the NetBeans Team provides the source code management and connected
developer services to enable developers to perform the following functions:

• Source Code Management (Subversion, Mercurial, CVS)
• Local file history
• Integrated Connected Developer features for projects hosted on Kenai.com:

• Source code management (Subversion, Mercurial, and Git)
• Issue tracking (Jira and Bugzilla)
• Team wiki, forums, mailing lists
• Document and downloads hosting

5 Introduction to Apache NetBeans IDE

http://kenai.com

153

In the NetBeans IDE, you always work inside of a project. In addition to source
files, an IDE project contains metadata about what belongs on the Classpath, how
to build and run the project, and so on. The IDE stores project information in a proj-
ect folder which includes an Ant build script and properties file that control the
building and running settings, and a project.xml file that maps Ant targets to
IDE commands.

The Apache Ant is a Java-based building tool used to standardize and automate
building and running environments for development. The IDE's project system is
based directly on Ant. All of the project commands, like Clean and Build Project
and Debug, call targets in the project's Ant script. You can therefore build and run
your project outside the IDE exactly as it is built and run inside the IDE.

It is not necessary to know Ant to work with the IDE. You can set all the basic
compilation and runtime options in the project's Project Properties wizard, and the
IDE automatically updates your project’s Ant script. If you are familiar with Ant,
you can customize a standard project's Ant script or write your own Ant script for a
project.

The Apache NetBeans 12 IDE categories all Java-related applications into differ-
ent groups based on related Template, such as Java with Ant, Java with Maven,
HTML5/JavaScript, and PHP. Under Java with Ant, another four subgroups are
involved:

 1) JavaFX
 2) Java Web
 3) Java Enterprise
 4) NetBeans Modules

Let’s start with a new Java with Ant project since this is a popular type of Java
applications.

5.3.2 Build a New Java with Ant Project

The NetBeans IDE allows you to create and build different projects based on differ-
ent categories by selecting the right template for your project and completing the
remaining wizard steps. First let’s take care of creating a new Java with Ant project.

To create a new Java with Ant project under the Apache NetBeans IDE, go to
File|New Project menu item. A New Project wizard is displayed and shown in
Fig. 5.4.

Under the Java with Ant category, the IDE contains the following standard proj-
ect templates for Java desktop and Web applications:

• Java Application: Creates a new skeleton Java Standard Edition (SE) project
with a main class

• Java Class Library: Creates a skeleton Java class library without a main class

5.3 Exploring Apache NetBeans IDE 12

154

• Java Project with Existing Sources: Creates a Java SE project based on your
own Java sources

• Java Modular Project: Create a new Java SE Modular Application in a standard
IDE project. Multiple modules can be added into the project as Standard projects
using an IDE-Generated Ant building script to build, run and debug the whole
project. Java module is a new feature in Java 9 via the Java Platform Module
System (JPMS)

• Java Free-Form Project: The free-form templates enable you to use an existing
Ant script for a project but require manual configuration

Let’s give a more detailed discussion for each of these projects one by one.

5.3.2.1 Build a Java Application Project

On the opened New Project wizard, select the Java with Ant from the Categories
list and click on the Java Application node from the Projects list to create a new
Java Application Project. Click on the Next to open the New Java Application
wizard, which is shown in Fig. 5.5.

Perform the following operation to set up properties for this new project:

• Enter a desired project name, such as JavaAppProject in this example, into the
Project Name box as the name for this project.

Fig. 5.4 The opened create New Project wizard

5 Introduction to Apache NetBeans IDE

155

• Select a desired location to save this project. In this example, our desired location
is C:\SQL Java DB Programming\Class DB Projects\Chapter 5. You can
select any other valid folder to save your project if you like.

• Uncheck the Create Main Class checkbox since we do not want to use this class
in this application.

• Keep all other default settings and click on the Finish button.

When you finish creating a project, it opens in the IDE with its logical structure
displayed in the Projects window and its file structure displayed in the Files win-
dow, as shown in Fig. 5.6.

 1) The Projects window is the main entry point to your project sources. It shows a
logical view of important project contents such as Java packages and Web pages.
You can right-click on any project node to access a popup menu of commands
for building, running, and debugging the project, as well as opening the Project
Properties dialog box. The Projects window can be opened by choosing
Window > Projects (Ctrl-1).

 2) The Files window shows a directory-based view of your projects, including files
and folders that are not displayed in the Projects window. From the Files win-
dow, you can open and edit your project configuration files, such as the project's
build script and properties file. You can also view build output like compiled
classes, JAR files, WAR files, and generated Javadoc documentation. The Files
window can be opened by choosing the menu item Window > Files (Ctrl-2).

If you need to access files and directories that are outside of your project direc-
tories, you can use the Favorites window. You open the Favorites window by
choosing the menu item Window > Favorites (Ctrl-3). You add a folder or file to

Fig. 5.5 The New Java Application wizard.

5.3 Exploring Apache NetBeans IDE 12

156

the Favorites window by right-clicking on the Favorites window and choosing the
Add to Favorites menu item.

It can be found from Fig. 5.6 that the Java JDK 14 has been installed with the
NetBeans IDE 12 and located in the Libraries folder in this project. If you want to
use other Software Development Kits (SDK), JDK, project, or library with your
projects, you can load them first, and then add them into your library by right-
clicking on the Libraries node and select the associated operational menu item
from the popup menu.

Next we need to add a graphical user interface (GUI) with other necessary GUI
components to our project and use it as a user interface to communicate with our
project during the project runs.

5.3.2.1.1 Add a Graphical User Interface

To proceed with building our interface, we need to create a Java container within
which we will place the other required GUI components. Generally, the most popu-
lar Java GUI containers include:

• JFrame Form (Java Frame Form window)
• JDialog Form (Java Dialog Box Form window)
• JPanel Form (Java Panel Form window)

In this project, we will create a container using the JFrame component. We will
place the container in a new package, which will appear within the Source
Packages node.

Fig. 5.6 The logical and file structures displayed in the Projects and the Files windows

5 Introduction to Apache NetBeans IDE

157

Perform the following operations to complete this GUI adding process:

 1. In the Projects window, right-click on our new created project JavaAppProject
and choose the New > JFrame Form menu item from the popup menu.

 2. Enter JavaAppFrame into the Class Name box as the class name, as shown in
Fig. 5.7.

 3. Enter JavaAppPackage into the Package box as the package name (Fig. 5.7).
 4. Click on the Finish button.

Your finished New JFrame Form wizard should match one that is shown in
Fig. 5.7.

The IDE creates the JavaAppFrame form and the JavaAppFrame class
within the JavaAppProject application, and opens the JavaAppFrame form in the
GUI Builder. The JavaAppPackage package replaces the default package.

When we added the JFrame container, the IDE opened the newly created
ContactEditorUI form in an Editor tab with a toolbar containing several but-
tons, as shown in Fig. 5.8. The ContactEditor form opened in the GUI Builder's
Design view and three additional windows appeared automatically along the IDE’s
edges, enabling you to navigate, organize, and edit GUI forms as you build them.

The GUI Builder's various windows include:

• Design Area. The GUI Builder's primary window for creating and editing Java
GUI forms. The toolbar's Source and Design toggle buttons enable you to
view a class's source code or a graphical view of its GUI components. The addi-
tional toolbar buttons provide convenient access to common commands, such as
choosing between Selection and Connection modes, aligning components, set-
ting component auto-resizing behavior, and previewing forms.

• Navigator Window. Provides a representation of all the components, both visual
and non-visual, in your application as a tree hierarchy. Navigator API is good for

Fig. 5.7 The finished New JFrame Form wizard

5.3 Exploring Apache NetBeans IDE 12

158

clients that want to show some structure or outline of their document in dedicated
window, allowing end user fast navigation and control over the document.
Navigator API also allows its clients to plug in their Swing-based views easily,
which then will be automatically shown in specialized Navigator UI.

• Palette Window. A customizable list of available components containing tabs
for JFC/Swing, AWT, and JavaBeans components, as well as layout managers. In
addition, you can create, remove, and rearrange the categories displayed in the
Palette using the customizer.

• Properties Window. Displays the properties of the component currently selected
in the GUI Builder, Inspector window, Projects window, or
Files window.

Two more points to be emphasized are about the Palette and the Properties
windows.

All Java GUI-related components are located in the Palette window and distrib-
uted in the different packages or namespaces. This Palette window contains the
following GUI-related components based on the different packages:

• Swing Containers: contains all Java container classes
• Swing Controls: contains all Swing-related GUI components
• Swing Menus: contains all Swing-related menu items
• Swing Windows: contains all Swing-related window classes
• AWT: contains all AWT-related GUI components
• Beans: contains all JavaBeans-related GUI components

Fig. 5.8 The opened ContactEditor form

5 Introduction to Apache NetBeans IDE

159

• Java Persistence: contains all Java Persistence-related components

Relatively speaking, AWT-related GUI components are older compared with
those components defined in the Swing package, in which all components are
defined in a model view controller (MVC) style. The java.awt package contains
all basic and fundamental graphic user interface components (AWT). However, the
javax.swing package contains extensions of java.awt, which means that all
components in the javax.swing package have been built into a Model-View-
Controller (MVC) mode with more object-oriented properties (Swing).

The Properties window is used to setup and display all properties about GUI
components you added into the container, such as appearances and physical descrip-
tions. Let’s illustrate how to use this window to setup and show each property for
added GUI-related components on this container in the next section.

5.3.2.1.2 Add Other GUI-Related Components

Next let’s finish this GUI by adding some GUI-related components into this GUI
container. For this application, we want to add:

 1) One JPanel object that can be considered as a kind of container.
 2) Two JTextField objects to retrieve and hold the user’s first and the last name.
 3) Four JLabel objects to display the caption for each JTextFields and the user’s full

name as the Display button is clicked.
 4) Three JButton objects, Display, Clear, and Exit. The Clear button is used to

clean up all contents on two JTextField objects (user’s first and last name), and
the Exit button is used to exit the application.

Now let’s begin to add those components one by one by dragging them from the
Palette window. If you did not see the Palette window in the upper right
corner of the IDE, choose the Windows > IDE Tools > Palette menu item
to open it.

Let’s add the JPanel object first in the following operational sequence:

 1) Start by selecting a JPanel from the Palette window and drop it onto
the JFrame.

 2) While the JPanel is highlighted, go to the Properties window and click on
the ellipsis (...) button next to the Border property to choose a border style.

 3) In the Border dialog, select TitledBorder from the list, and type in
Display Full Name in the Title field, and click on the OK to save the
changes and exit the dialog.

 4) You should now see an empty titled JFrame that says Display Full Name
JPanel object. Now add the rest of GUI-related components, including four
JLabels, two JTextFields and three JButtons, into this JPanel object as you see in
Fig. 5.9.

5.3 Exploring Apache NetBeans IDE 12

160

Next let’s rename all added components and modify JLabel4 by setting the
appropriate property for that label in the Properties window. Perform the fol-
lowing operational sequence:

 1) Double-click on jLabel1 and change the text property to First Name.
 2) Double-click on jLabel2 and change the text to Last Name.
 3) Double-click on jLabel3 and change the text to Full Name.
 4) Click on jLabel4 and click on the ellipsis (...) button next to the Border prop-

erty to choose a border style. In the Border dialog, select Line Border,
and change the border color to dark blue by clicking on the ellipsis (...) button
next to the Color property, and click on the OK to save the changes and exit
the dialog. Then go to the Text property to delete the default text JLabel4 to
make this an empty label. Set the preferredSize property to [100, 20] if you like.

 5) Delete the sample text from jTextField1. You can make the display text editable
by clicking on the Text field, pausing, and then clicking the Text field again.
You may have to resize the jTextField1 to its original size. Repeat this step for
jTextField2.

 6) Change the name of jTextField1 to FirstTextField. To do that change,
right click on the jTextField1 object and select Change Variable Name
menu item from the popup menu, then enter FirstTextField into the New
Name box. Click on the OK to complete this rename operation.

 7) Perform a similar operation to change the Name property of the jTextField2 to
LastTextField, and the Name property of the jLabel4 to
FullNameLabel.

 8) Rename the display text of jButton1 to Display. You can edit a button's
Text property by right-clicking on the button and choosing the Edit Text

Fig. 5.9 A Design Preview
of the GUI Window Form

5 Introduction to Apache NetBeans IDE

161

menu item from the popup menu. Or you can click on the button, pause, and
then click again.

 9) Rename the display text of jButton2 to Clear.
 10) Rename the display text of jButton3 to Exit.
 11) Change the Name property of the jButton1 to DisplayButton, jButton2 to

ClearButton and jButton3 to ExitButton, respectively.

Your Finished GUI should now look like one that is shown in Fig. 5.10.
Next let’s develop the coding for each component to connect our GUI-related

components with our coding to process and respond user’s input and display the
running result.

5.3.2.1.3 Develop the Codes for Three Buttons

In fact, only three JButton objects need to be coding process since both TextField
objects are used to retrieve and hold the user’s input without any other actions in this
application. Similar situation happened to the JLabel4, which is used to display the
running result of this application.

In order to give function to any button, we need to assign an event handler to each
to respond to events. In our case we want to know what happened when a button is
pressed, either by mouse clicking or via keyboard pressing. So we will use
ActionListener responding to ActionEvent.

In the early days, the developers must do the connection between the
ActionListener and ActionEvent manually in an application. Thanks to
NetBeans IDE, in which this Listener and Event model has been setup and

Fig. 5.10 The finished
GUI design window

5.3 Exploring Apache NetBeans IDE 12

162

configured. To setup that connection, what the developer needs to do is just to per-
form a double click on the selected button. Is that easy? Yes, it is. Now let’s do this
Event-Listener action connection with our first button—DisplayButton.

Coding for the Display Button
The function of the Display button is to concatenate the first and the last names
entered by the user and stored in the FirstTextField and the LastTextField
TextFields, and display it in the FullNameLable when this Display button is
clicked by the user as the project runs.

Double click on the Display button, you can open its callback method or event
handler, DisplayButtonActionPerformed(). Enter the codes shown in
Fig. 5.11 into this event handler to concatenate the first and the last names entered
by the user and display it in the FullNameLabel.

Regularly, for most events and the associated event handler methods, you can do
that connection by right clicking on the source object (DisplayButton in this
application), and select the Events menu item from the popup menu. All events
can be triggered by this source object will be displayed in a popup menu. By mov-
ing your cursor to the desired event, all event handlers responding to this event will
be displayed in a popup submenu and you can select the desired event handler to
open it, and a connection between that event and event handler has been setup
simultaneously.

The coding for this Display button ActionPerformed() event handler is
simple, and the setText() method is used to display the concatenated first and
last name with a plus symbol.

Coding for the Clear Button
The function of this Clear button is to cleanup all contents in two TextFields,
FirstTextField and LastTextField, respectively to allow the user to

enter a new name. Double click on the Clear button to open its event handler, and
enter the codes shown in Fig. 5.12 into this event handler.

When this button is clicked by the user, the setText() method is executed
with a null as the argument to clean up three objects’ contents, the
FirstTextField, LastTextField, and FullNameLabel.

Coding for the Exit Button
The function of this button is to stop the running of this project and exit from this
application. To open its event handler, this time we use another way to do that.
Perform the following operations to finish this coding process.

private void DisplayButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:

FullNameLabel.setText(FirstTextField.getText() + " " + LastTextField.getText());

}

Fig. 5.11 The codes for the DisplayButtonActionPerformed() event handler

5 Introduction to Apache NetBeans IDE

163

 1) Right click on the Exit button. From the pop-up menu choose Events >
Action > ActionPerformed. Note that the menu contains many more
events you can respond to! When you select the actionPerformed event,
the IDE will automatically add an ActionListener to the Exit button and
generate a handler method for handling the listener's actionPer-
formed method.

 2) The IDE will open up the Source Code window and scroll to where you imple-
ment the action you want the button to do when the button is pressed.

 3) Enter the codes that are shown in Fig. 5.13 into this event handler.

A system method, exit(), is executed as this button is clicked by the user, and
a 0 is used as an argument to be returned to the operating system to indicate that the
application has been completed successfully. A returned non-zero value indicates
that some exceptions may have been encountered when the application runs.

Before we can run the project to test functions we have built, we need to do one
more coding, which is to locate the GUI window in the center when the project runs.

The NetBeans IDE has a default location for each GUI window, the upper-left
corner, and will display those windows in that location as the project runs. To make
our GUI window located in the center of the screen as the project runs, we need to
put one line coding into the constructor of this class since the first thing we need to
do is to display our GUI window after the project runs. Open the code window by
clicking on the Source button and enter one coding line into the constructor of this
class, which is shown in Fig. 5.14.

A system method setLocationRelativeTo() is used to set this form at
the center of the screen as the project runs. A null argument means that no object
can be referenced or relative to and the JFrame Form is set to the center.

Now we have finished the building process for this project and we are ready to
run it to test functions we have built.

private void ClearButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:

FirstTextField.setText(null);
LastTextField.setText(null);
FullNameLabel.setText(null);

}

Fig. 5.12 The coding for the ClearButtonActionPerformed() event handler

private void ExitButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:

System.exit(0);
}

Fig. 5.13 The coding for the ExitButtonActionPerformed() event handler

5.3 Exploring Apache NetBeans IDE 12

164

5.3.2.1.4 Run the Project

Perform the following operations to run our project:

• Click on the Clean and Build Main Project button to compile and
build our project.

• Choose the Run > Run Main Project menu item.
• If you get a window informing you that Project JavaAppProject does not

have a main class set, then you should select JavaAppPackage.
JavaAppFrame as the main class in the same window and click the OK but-
ton, as shown in Fig. 5.15.

A sample of our running project is shown in Fig. 5.16.
Enter your first and last name into the First Name and Last Name TextFields,

respectively, and click on the Display button. Your full name will be displayed in
the Full Name label, as shown in Fig. 5.16. Try to click on the Clear button to

public class JavaAppProjectFrame extends javax.swing.JFrame {

/** Creates new form JavaAppProjectFrame */
public JavaAppProjectFrame() {

initComponents();
this.setLocationRelativeTo(null); // set the GUI form at the center

}
……..

}

Fig. 5.14 The coding for the constructor of the class JavaAppProjectFrame

Fig. 5.15 Add the JFrame as the main class

5 Introduction to Apache NetBeans IDE

165

see what happened? Then you can click on the Exit button to stop our project. Yes,
that is all for a typical Java Application project.

A complete Java Application project JavaAppProject can be found from the
folder Students\Class DB Projects\Chapter 5, which is located at the Springer site
(refer to Fig. 1.2 in Chap. 1).

5.3.2.2 Build a Java Class Library

As we mentioned, a Java Class Library is only a skeleton Java class library without
a main class and it cannot be executed itself, instead it must be called or used by
other Java applications. Similar to other general libraries, a Java Class Library can
be statically or dynamically bound or connected with an application and to be used
as a utility class.

Since a Java class library cannot be executed itself, we need to create a Java
Application project to call or use that Java class library. Therefore, we need to create
two projects to illustrate how to use a Java class library from a Java application:

• A Java Class Library project in which you will create a utility class.
• A Java Application project with a main class that implements a method from the

library project's utility class.

The function of this Java class library is simple, which is just to add two integers
together and return the sum result to the Java application project and the result will
be displayed in the application project by calling some methods defined in the Java
application project.

First let’s create a Java Class Library project named SumLib().

Fig. 5.16 The running
result of our project

5.3 Exploring Apache NetBeans IDE 12

166

5.3.2.2.1 Create a Java Class Library Project

Perform the following operations to create this new Java Class Library project:

• Choose the File > New Project menu item. Under the Categories,
select the Java with Ant. Under the Projects, select Java Class
Library, and then click on the Next button.

• Enter SumLib into the Project Name field as the name of this class library.
Change the Project Location to any directory as you want on your com-
puter. From now on, this directory is C:\SQL Java DB Programming\Class DB
Projects\Chapter 5.

• Click the Finish button. The SumLib project opens in both the Projects win-
dow and the Files window.

Next we need to create a new Java package and our class file. The Java package
is used as a container or a namespace to hold the class file.

Perform the following operations to finish this Java package and class file:

 1) Right-click on the SumLib project node from the Projects window and choose
the New > Java Class item. Type SumLibClass as the name for the new
class, type org.me.sumlib in the Package field as the package name for this
class file, and click on the Finish button. The SumLibClass.java opens in
the Source Editor.

 2) In the opened SumLibClass.java file, place the cursor on the line after the
class declaration, public class SumLibClass {.

 3) Type or paste the codes shown in Fig. 5.17 as a new method sumapp().
 4) If the code that you pasted in is not formatted correctly, press Alt-Shift-F to

reformat the entire file.
 5) Go to File > Save All menu item to save this file.

This piece of codes is simple and straightforward. The input argument to this
method should be a sequence of integers separated with commas (,), which can be
considered as a String entered by the user as the project runs.

Let’s have a closer look at this piece of codes to see how it works.

public class SumLibClass {
public static int sumapp(String args) {
int sum = 0;

String[] temp;
temp = args.split(",");
int num[] = new int[temp.length];
for(int i = 0; i < temp.length ; i++){
System.out.println(temp[i]);
num[i] = java.lang.Integer.parseInt(temp[i]);
sum = sum + num[i];

}
return sum;

}
}

Fig. 5.17 The codes for the class method sumapp()

5 Introduction to Apache NetBeans IDE

167

First a temporary String array temp is created and it is used to hold the split
input integers. Then the split() method is executed to separate the input argu-
ment into each separate number string. A for loop is used to display each separated
number string and convert each of them to the associated integer number using the
parseInt() method. Since this method is defined in the java.lang.Integer
package, so a full name of the method must be used. A sum operation is performed
to add all integers together and returned to the main() method in the Java applica-
tion project SumApp.

Now that a Java class library project has been created and a Java class file has
been coded, next we need to create our Java Application project to call or use
that class library to perform a two-integer addition operation.

5.3.2.2.2 Create a Java Application Project

Perform the following operations to create a new Java Application project:

• Choose the File > New Project menu item. Under Categories, select
Java with Ant. Under Projects, select Java Application. Then
click on the Next button.

• Enter SumApp into the Project Name field. Make sure the Project
Location is set to C:\SQL Java DB Programming\Class DB Projects\
Chapter 5.

• Enter sumapp.Main as the main class.
• Ensure that the Create Main Class checkbox is checked.
• Click the Finish button. The SumApp project is displayed in the Projects

window and Main.java opens in the Source Editor.

Now we have finished creating two Java projects.
After these two projects have been created, you need to add the Java class library

project to the classpath of the Java application project. Then you can code the appli-
cation. The library project will contain a utility class with a sumapp() method. This
method takes two integers as arguments and then generates a sum based on those
integers. The SumApp project will contain a main class that calls the
sumapp()method and passes the integers that are entered as arguments when the
application is run.

Now let’s configure the compilation classpath in the Java application project to
enable the application to know the location of the class library and execute it to
perform the integer addition operation during the project runs.

5.3.2.2.3 Configure the Compilation Classpath

Since the SumApp Java application is going to depend on a class in SumLib, you
have to add SumLib to the classpath of SumApp. Doing so also ensures that classes
in the SumApp project can refer to classes in the SumLib project without causing

5.3 Exploring Apache NetBeans IDE 12

168

compilation errors. In addition, this enables you to use code completion in the
SumApp project to fill in code based on the SumLib project. In the Apache
NetBeans IDE 12, the classpath is visually represented by the Libraries node.

Perform the following operations to add the SumLib library's utility classes to
the application SumApp project classpath:

 1) In the Projects window, right-click the Libraries node under the
SumApp project and choose Add Project as shown in Fig. 5.18.

 2) Browse to the folder C:\SQL Java DB Programming\Class DB Projects\
Chapter 5 and select the SumLib project folder, as shown in Fig. 5.19. The
Project JAR Files pane shows the JAR files that can be added to the
project. Notice that a JAR file for SumLib is listed even though you have not
actually built the JAR file yet. This JAR file will get built when you build and
run the SumApp project.

 3) Click on the Add Project JAR Files button.
 4) Now expand the Libraries node. The SumLib project's JAR file has been

added to the SumApp project’s classpath.

Before we can run our Java application project to call the Java class library, we
need to add some codes to the Main.java tab in our Java application project.

5.3.2.2.4 Add Codes to the Main.java Tab in the Java Application Project

Now we need to add some code to Main.java. In doing so, you will see the Source
Editor's code completion and code template (abbreviation) features.

1) Select the Main.java tab in the Source Editor. If it isn't already open, expand
SumApp > Source Packages > sumapp in the Projects window and
double- click on the item Main.java.

Fig. 5.18 To add the
SumLib class to the
classpath of the SumApp
project

5 Introduction to Apache NetBeans IDE

169

2) Inside the main() method, replace the comment //TODO code applica-
tion logic here with the following:

 int result = Sum

3) Leave the cursor immediately after Sum. In the next step you will use code
completion to turn Sum into SumLibClass.

4) Press Ctrl-Space to open the code completion box. A short list of possible ways
to complete the word appears. However, the class that you want, SumLibClass
might not be there.

5) Press Ctrl-Space again to display a longer list of possible matches. The
SumLibClass should be in this list.

6) Select the SumLibClass and press the Enter key. The Apache NetBeans IDE
fills in the rest of the class name and also automatically creates an import state-
ment for the class.

7) In the main method, type a period (.) after SumLibClass. The code comple-
tion box opens again.

8) Select the sumapp(String args) int method and press the Enter key. The IDE
fills in the sumapp() method and highlights the input parameters.

Note: The IDE also opens a box above the code completion box that
displays Javadoc information for the selected class or package. Since
there is no Javadoc information for this package, the box displays a
"Cannot find Javadoc"

Fig. 5.19 The Add Project dialog box

5.3 Exploring Apache NetBeans IDE 12

170

 9) Press the Enter key to accept the args as the parameter, and change this
null to args[0]. Type a semicolon (;) at the end of this coding line. The
final line should look like the following line.

 int result = SumLibClass.sumapp(args[0]);

10) Press the Enter key to start a new line. Then type the following coding line.
 System.out.println("The sum = " + result);

11) Go to the File > Save All menu item to save the file.

At this point, we are ready to run our Java application project SumApp to test its
calling function to our Java library file SumLibClass.

5.3.2.2.5 Run the Application Project to Call the Java Library

The output of this application program SumApp.java is based on arguments that
you provide when you run the application. As arguments, you can provide two or
more integers, from which the adding result of those input integers will be gener-
ated. The adding process will be executed by the Java library file sumapp() located
in the SumLibClass library, and the execution result will be returned to and dis-
played in the main() method in the Java application project SumApp.java.

Now let’s run the application. Since this application needs arguments as inputs to
the main() method, therefore we have to use an alternative way to run it. First let’s
perform the following operations to add the arguments for the IDE to use when run-
ning the application:

• Right-click on the SumApp project node, choose the Properties item, and
select the Run node in the dialog's left pane. The main class should already be
set to sumapp.Main.

Fig. 5.20 The completed Project Properties window

5 Introduction to Apache NetBeans IDE

171

• Enter some integers as input arguments to the Arguments field and each inte-
ger should be separated with a comma, such as 12,34,56 and click on the
OK button.

Your finished Project Properties window should match one that is
shown in Fig. 5.20.

Now that we have created the application and provided runtime arguments for
the application, we can test and run the application in two ways: run the application
inside the Apache NetBeans IDE 12, or run the application outside the
NetBeans IDE 12.

To run the application inside the Apache NetBeans IDE 12, Click on the Run
button in the menu item (or F6 key). In the Output window shown in Fig. 5.21, you
should see both the input arguments (12, 34, and 56) and the output result from
the program (The sum = 102).

To run this application outside of the NetBeans IDE, you need first to build and
deploy the application into a JAR file and then run the JAR file from the com-
mand line.

5.3.2.2.6 Build and Deploy the Application

The main build command in the NetBeans IDE is the Clean and Build Main
Project command. This command deletes previously compiled classes and other
build artifacts and then rebuilds the entire project from scratch.

Perform the following operations to build the application:
1) Click on the Run > Clean and Build Main Project (SumApp) menu item

(Shift-F11).

Notes: There is also a Build Main Project command, which
does not delete old building artifacts, but this command is disabled
by default.

Fig. 5.21 The running result shown in the Output window

5.3 Exploring Apache NetBeans IDE 12

172

2) Output from the Ant build script appears in the Output window. If the Output
window does not appear, you can open it manually by choosing Window > Output.

3) When you clean and build your project, the following things occur:
(a) Output folders that have been generated by previous build actions are

deleted (“cleaned”). In most cases, these are the build and dist folders.
(b) The build and dist folders are added to your project folder, or hereafter

referred to as the PROJECT_HOME folder.
(c) All of the sources are compiled into .class files, which are placed into

the PROJECT_HOME/build folder.
(d) A JAR file SumApp.jar containing your project is created inside the

PROJECT_HOME/dist folder.
(e) If you have specified any libraries for the project (SumLib.jar in this

case), a lib folder is created in the dist folder. The libraries are copied
into dist/lib folder.

(f) The manifest file in the JAR is updated to include entries that designate the
main class and any libraries that are on the project's classpath.

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.10.4
Created-By: 14.0.1+7 (Oracle Corporation)
Class-Path: lib/SumLib.jar
X-COMMENT: Main-Class will be added automatically by build
Main-Class: sumapp.Main

After building and deploying the application, now we can run this application
outside the NetBeans IDE. To do that, perform the following operations:

 1) On your system, open a command prompt or terminal window.
 2) In the command prompt, change directories to the SumApp/dist directory.

Note: You can view the contents of the manifest in the IDE's Files
window. After you have built your project, switch to the Files window
and navigate to SumApp/ dist/SumApp.jar. Expand the node for the
JAR file, expand the META-INF folder, and double-click MANIFEST.
MF to display the manifest in the Source Editor.

Fig. 5.22 The running result shown in the Command window

5 Introduction to Apache NetBeans IDE

173

 3) At the command line, type the following statement:

 java -jar SumApp.jar 12,34,56

The application then executes and returns the outputs as shown in Fig. 5.22.

5.3.2.2.7 Distribute the Application to Other Users

Now that you have verified that the application works outside of the IDE, you are
ready to distribute the application and allow other users to use it.

To distribute the application, perform the following operations:

 1) On your system, create a zip file that contains the application JAR file (SumApp.
jar) and the accompanying lib folder that contains SumLib.jar.

 2) Send the file to the people who will use the application. Instruct them to unpack
the zip file, making sure that the SumApp.jar file and the lib folder are in the
same folder.

 3) Instruct the users to follow the steps listed in the last section above to run this
application outside the Apache NetBeans IDE.

Two complete Java projects, Java Class Library project SumLib and Java
Application project SumApp, can be found from the folder Students\Class DB
Projects\Chapter 5, which is located at the Springer site (refer to Fig. 1.2 in
Chap. 1).

You can download these two projects and test them by calling the Java class
library SumLib from the Java application project SumApp.

Next let’s develop and build a Java Project with Existing Sources.

5.3.2.3 Build a Java Project with Existing Sources

To build a Java project with existing sources is mainly used for development of a
new Java project but some existing sources, either GUIs or source codes that had
been built in early Java or current Java JDK, must be involved in this new Java proj-
ect to save developing efforts or the time. For Java projects developed outside of
NetBeans, you can use an "Existing Sources" template in the New Project wizard to
make a NetBeans project. In the wizard, you identify the location of the sources and
specify a location for the NetBeans project metadata. You then use the Project
Properties dialog box to configure the project.

Perform the following operations to set up a NetBeans project for an existing
Java application:

 1) Choose File > New Project (Ctrl-Shift-N).

5.3 Exploring Apache NetBeans IDE 12

174

 2) Choose Java with Ant > Java Project with Existing Sources, then click on
the Next.

 3) In the Name and Location page of the wizard, perform these steps:

 (a) Type a project name as you like.
 (b) (Optional) Change the location of the project folder.
 (c) (Optional) Change the name of the build script used by the IDE. This might

be desirable if there is already a build script called build.xml that is used to
build the sources.

 (d) (Optional) Select the Use Dedicated Folder for Storing Libraries check-
box and specify the location for the libraries folder.

 4) Click on the Next to advance to the Existing Sources page of the wizard.
 5) In the Source Packages Folder pane and click Add Folder. Then navigate to

your sources and select the source roots.
 6) When you add a folder containing source code, you must add the folder that

contains the highest folder in your package tree. For example, in the com.
mycompany.myapp.ui package, you add the folder that contains the com folder.

 7) (Optional) In the Test Package Folders pane, click Add Folder to select the
folder containing the JUnit package folders. Click on the Next button to
continue.

 8) (Optional) In the Includes & Excludes page of the wizard, enter file name pat-
terns for any files that should be included or excluded from the project. By
default, all files in your source roots are included.

 9) Click on the Finish button to complete this process.

The new built project is displayed in both the Projects window and the
Files window.

Because of the simplicity of this kind of Java projects, no example project is
involved in this chapter.

5.3.2.4 Build a Java Free-Form Project

There are also project templates available for Java free-form projects. In so-called
free-form projects, the NetBeans IDE uses targets in an existing Ant script to build,
run, clean, test, and debug your application. If the Ant script does not contain targets
for some of these functions, the functions are unavailable for the project. To imple-
ment these functions you write targets either in your Ant script or in a secondary
Ant script.

In general, it is better to use standard “With Existing Sources” project templates
for importing projects. For Eclipse projects, it is best to use the Import Project fea-
ture, which creates and configures a standard project for you. Standard projects are
easier to maintain in the long term. However, the free-form project templates can be
useful if you have an existing Ant-based project with a complex or idiosyncratic
configuration that cannot be replicated within a standard project. For example, if

5 Introduction to Apache NetBeans IDE

175

you are importing a project with multiple source roots, each of which has a different
classpath, and you cannot split the source roots into different projects, it might be
necessary to use a free-form project template.

Because the scope of this book is about database programming with Java, for
more detailed information to set up free-form projects, refer to Advanced Free-
Form Project Configuration.

5.3.3 Build a Java Web Application Project

Java Platform, either Standard Edition (SE) or Enterprise Edition (EE), provides
rich and flexible tools and components to support Web applications and Web
Services developments. With Java EE, developers can build professional, multitier
and portable applications that can be run at cross-platform environments with
improved efficiency.

We will provide a detailed discussion about the Java Web Applications develop-
ment in Chap. 8 with real project examples. Refer to that chapter to get more detailed
information for building this kind of application in NetBeans IDE.

5.4 Chapter Summary

The basic and fundamental knowledge and implementations of Apache NetBeans
IDE 12 are discussed and presented with some real examples projects in this chap-
ter. The components and architecture of Apache NetBeans IDE 12 are introduced
and analyzed in detail at the beginning of this chapter. Following an overview of
Apache NetBeans IDE 12, a detailed discussion and introduction of the Apache
NetBeans IDE 12 platform is given. A detailed introduction and illustration in how
to download and install Apache NetBeans IDE 12 are provided in this chapter.

Most popular technologies and applications supported by Apache NetBeans IDE
12 are discussed, which include:

• Java Ant Applications
• Java Class Library
• Build a Java Project with Existing Sources
• Build a Java Free-Form Project
• Build a Java Web Application Project

Each of these technologies and implementations is discussed and analyzed in
detail with real project examples, and line-by-line coding illustrations and explana-
tions. Each real sample project has been compiled and built in NetBeans IDE and
can be downloaded and run at user’s computer easily and conveniently.

All of these technologies and their implementations are discussed and illustrated
by using real project examples in this chapter step by step, and line by line. By

5.4 Chapter Summary

176

following these example projects, users can learn and master those key techniques
easily and conveniently with lower learning curves.

All actual example projects discussed and developed in this chapter have been
compiled and built successfully, and stored in the folder Class DB Projects\
Chapter 5 that is located under the Students folder at the Springer ftp site (refer to
Fig. 1.2 in Chap. 1).

Homework
 I. True/False Selections

____1. The Apache NetBeans Platform is a broad Swing-based framework on
which you can base large desktop applications.

____2. Each distinct feature in a NetBeans Platform application can be pro-
vided by a distinct NetBeans module, which is comparable to a plugin.

____3. An Apache NetBeans module is a group of Java classes that provides an
application with a specific feature.

____4. The NetBeans IDE is an open-source integrated development environ-
ment and it only supports the development of all Java application types.

____5. Three main modules included in the NetBeans IDE are: NetBeans
Profiler, GUI Design Tool, and NetBeans JavaScript Editor.

____6. The Apache NetBeans IDE is mainly composed of NetBeans Open-
Source IDE and NetBeans Platform.

____7. A Java Class Library is only a skeleton Java class library without a main
class, but it can be executed itself.

____8. JavaFX, which is a kind of script language, is a Java platform for creat-
ing and delivering rich Internet applications. But starting from JDK 9,
this platform has been removed from the JDK and no longer belongs to
any Java JDK.

____9. Like VisualStudio.NET, one can build a Java Ant Application by adding
a JFrame Form and use the Palette to add any GUI component to
that Form.

___10. The Java EE differs from the Java SE in that it adds libraries which pro-
vide functionality to deploy fault-tolerant, distributed, multi-tier Java
software, based largely on modular components running on an applica-
tion server.

 II. Multiple Choices

 1. Each distinct feature in a NetBeans Platform application can be provided
by a distinct NetBeans module, and an Apache NetBeans module is a:
___________________.

 (a) Java SE application
 (b) Group of classes with specific features
 (c) Java EE Application model and specifications
 (d) Enterprise JavaBeans (EJB) and Java Persistence API (JPA)

5 Introduction to Apache NetBeans IDE

177

 2. The Apache NetBeans IDE is an open-source integrated development envi-
ronment and it supports development of all Java application types, which
include________________.

 (a) Java desktop applications
 (b) Mobile and Web applications
 (c) HTML5 and Java Script applications
 (d) All of them

 3. Three main modules included in the Apache NetBeans IDE are
__________________.

 (a) JEUS 7 application server, JBoss Application Server 6, Caucho
Resin 4.0

 (b) Java EE, Java SE, Maven
 (c) NetBeans Profiler, GUI design tool, NetBeans JavaScript Editor
 (d) PHP, JavaScript, GlassFish

 4. The major Java Bean used to handle or process message is called
_____________.

 (a) Session Bean
 (b) Notification Bean
 (c) Message-Driven Bean
 (d) Manager Bean

 5. The ______________ just work as a View for the Glassfish application
server and setup a connection between the application server and the
Session Bean in the Web tier.

 (a) Java EE 8
 (b) Enterprise Java Beans (EJB)
 (c) Java Server Faces (JSF)
 (d) Java Persistence API

 6. To add new components or tools into the NetBeans IDE, one can use
______________.

 (a) JFrame tool
 (b) Plugins
 (c) PHP tool
 (d) JavaFX

 7. The Apache NetBeans IDE is composed of two components, they are:
______________.

 (a) NetBeans Platform and NetBeans modules
 (b) NetBeans modules and Java EE
 (c) NetBeans Profiler and GUI design tools
 (d) NetBeans open-source IDE and NetBeans platform

5.4 Chapter Summary

178

 8. The most popular Java GUI containers include: ___________________.

 (a) JFrame Form, JDialog Form, JPanel Form
 (b) JPanel Form, JPlugins Form, JCanvas Form
 (c) JPanel Form, JMaven Form, PHP Form
 (d) JFrame Form, JField Form, JDialog Form

 9. To display an image in JFrame Form, one needs to use a
_____________ object.

 (a) JImage
 (b) JPanel
 (c) Canvas
 (d) JPicture

 10. A module can be considered as a(n) ___________ object or unit that can be
combined or bound together to form a ____________________ application.

 (a) Dependent, big and complex
 (b) Dependent, small and easier
 (c) Independent, big and complex
 (d) Independent, small and easier

 III. Exercises

 1. Explain the advantages of using NetBeans Module for Java project
development.

 2. Provide a brief discussion about Apache NetBeans Platform.
 3. Provide a brief description about Apache NetBeans Open Source IDE.
 4. Refer to Sect. 5.3.2, build a similar Java Ant Application named

SumTwoNumbers with the following functions:

 1) Build a GUI by adding a JFrame Form with two TextFields, Num1Field
and Num2Field, one Label ResultLabel and two buttons,
CalculateButton and ExitButton.

 2) Coding to the CalculateButton and ExitButtons’ ActionPerformed()
event handlers to perform summing of two input integers and display
result on the ResultyLabel, as well as exit the project.

5 Introduction to Apache NetBeans IDE

Part I
Building Two-Tier Client-Server

Applications

181

Chapter 6
Query Data from Databases

Similar to querying data in Visual Studio.NET, when query data in the Java NetBeans
IDE environment, two query modes or methods can be utilized: Java Persistence
API (JPA) Wizards and runtime object codes. Traditional Java codes (SDK 1.x) only
allow users to access databases with a sequence of codes, starting from creating a
DriverManager to load the database driver, setting up a connection using the Driver,
creating a query statement object, running the executeQuery object and processing
the received data using a ResultSet object. This coding is not a big deal to the expe-
rienced programmers; however, it may be an issue for the college students or begin-
ners who are new to the Java database programming. However, there is no significant
difference between these two modes; in this chapter, we concentrate on the intro-
ductions and discussions on the second method, the regular Java runtime object
method since it is more popular and widely implemented in our real world.

6.1 Setup Connection Between Microsoft SQL Server
Database and Java Classes

In order to set a map between our Microsoft SQL Server database and Java classes,
we need first to connect our database to NetBeans IDE. By using the NetBeans IDE
connection functions, we can connect to different databases, such as Microsoft
Access, SQL Server, or Oracle Database. This kind of connection belongs to project-
independent connection, which means that no matter whether a project has been
created or not or whether any NetBeans project will use this connection or not, the
connection can be made for the entire IDE.

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_6].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_6

https://doi.org/10.1007/978-3-031-06553-8_6

182

As we discussed in Chap. 3, to access SQL Server Database from Apache
NetBeans 12, a JDBC Driver is needed to provide a bridge or a connection between
the SQL Server database engine and the Java programming language.

This connection can be divided into the following four sections:

 1) Download and install Microsoft SQL Server JDBC Driver
 2) Configure TCP/IP protocol and setup for SQL Server Express
 3) Configure Authentication Mode for SQL Server 2019 Express
 4) Use Apache NetBeans IDE 12 New Database Connection to setup a connection

Now let’s start from the first part.

6.1.1 Download and Install Microsoft SQL Server
JDBC Driver

Go to the site http://msdn.microsoft.com/data/jdbc/ and click on the link Download
JDBC Driver to open the downloading page, as shown in Fig. 6.1. The current ver-
sion of this JDBC Driver is 8.4, which supports Java SE 14. Click on the link:
Download Microsoft JDBC Driver 8.4 for SQL Server (zip) to begin this pro-
cess. The JDBC Driver file named sqljdbc_8.4.1.0_enu.zip is downloaded to the
Download folder in your computer when this downloading process is done.

Now double click on this downloaded zip file to unzip this driver file. Make your
selection for WinZip Update Checking or not to the popup Messagebox, and click
on the Next button and continue this unzip process.

On the next WinZip wizard shown as in Fig. 6.2, make sure that the correct JDBC
Driver is selected and click on the Next and then Unzip button to complete this
unzip process. Click on the Finish button when this unzipping process is done.

Fig. 6.1 The opened download site

6 Query Data from Databases

http://msdn.microsoft.com/data/jdbc/

183

Fig. 6.2 The unzipping process

The SQL Server JDBC Driver is unzipped and stored in a folder sqljdbc_8.4
under your default Unzipped folder in your computer if you did not specify the
location for this unzipping process. One drive file, mssql-jdbc-8.4.1.jre14.jar, can
be found from the subfolder enu and we will use this driver since it is an updated
one and compatible with Java 14. It is recommended to move this sqljdbc_8.4
folder to the system default folder C:\Program Files.

6.1.2 Configure TCP/IP Protocol and Setup for SQL
Server Express

By default, the TCP/IP for SQL Server 2019 Express is disabled when a SQL
Server Express

server is installed in your machine, therefore the JDBC cannot directly connect
to it when a connection command is issued. Also the port used for TCP/IP to listen
to the network has not been established when SQL Server 2019 Express server is
installed in your machine. In order to fix these problems and make the TCP/IP work
properly, we need to perform the following operations to meet our connection
requirements:

 1) Open the SQL Server Configuration Manager by going to Start|Microsoft SQL
Server 2019|SQL Server 2019 Configuration Manager.

 2) Expand the SQL Native Client 11.0 Configuration item and click on the sub-
item Client Protocols, as shown in Fig. 6.3. Check and confirm the Order of the
TCP/IP used for this SQL client, in this case it is TCP/IP 2. Remember this
TCP/IP Order and also make sure that it is Enabled, as shown in Fig. 6.3.

6.1 Setup Connection Between Microsoft SQL Server Database and Java Classes

184

Fig. 6.3 Check the TCP/IP Order used for SQL Server 2019 Express

Fig. 6.4 Enable TCP/IP protocol for SQL Server 2019 Express

 3) Then expand the SQL Server Network Configuration folder and click on the
Protocols for SQL2019EXPRESS sub-item, as shown in Fig. 6.4, to open all
protocols used for this SQL2019EXPRESS server on the right pane. Right click
on the TCP/IP protocol and select Enable to enable it.

 4) Double click on the TCP/IP protocol we just enabled on the right pane to open
the TCP/IP Properties wizard, which is shown in Fig. 6.5a.

 5) Click on the IP Address tab to display all valid IP addresses used for this
machine. By default, all TCP Ports are blanks. Therefore, we need to setup one
port number to the TCP/IP Order that is used for the SQL Server 2019 Express
server manually. Recalled in step 2, the TCP/IP 2 is used for our server. Thus
just setup a desired port number to the TCP Port box under the IP 2, as shown in
Fig. 6.5a. Here we used 5000 as our desired port number. Also enable this IP 2
by selecting Yes for the Enabled property, as shown in Fig. 6.5a.

6 Query Data from Databases

185

Fig. 6.5 The opened TCP/IP Properties wizard

 6) Also still in this TCP/IP Properties wizard, scroll down to the bottom to find
IPAll item, as shown in Fig. 6.5b. Enter 5000 into the TCP Port box to setup a
port number for all dynamic opened ports.

 7) To make this TCP/IP port effective, you should stop the SQL 2019 Server and
then restart it. To do that, click on the SQL Server Services icon and right click
on the SQL Server (SQL2019EXPRESS) item from the right list and select the
Stop item to stop the server. Then right click on this server again and select the
Start item to restart the server. Sometimes you may need to try to restart the
Server one more time to start it.

 8) To test this TCP Port number, open a command window and type: net-
stat –an. A running TCP/IP result window is displayed, as shown in
Fig. 6.6. You can find that one of TCP/IP Ports, port 5000, is working and
it is displayed as a test result as:

TCP 0.0.0.0:5000 0.0.0.0:0 LISTENING

Now you can close the SQL Server Configuration Manager to complete this
TCP/IP configuration.

6.1.3 Configure Authentication Mode for SQL Server
2019 Express

By default, SQL Server 2019 Express uses Windows Authentication Mode to
authenticate connections when it is installed in your machine. However, if this SQL
Authentication Mode is used by SQL Server JDBC Driver as it is connected to the
Apache NetBeans IDE 12. Connection errors, such as

6.1 Setup Connection Between Microsoft SQL Server Database and Java Classes

186

Fig. 6.6 Testing the TCP/IP Port number

Login failed for user '<User name>'. The user is not associated
with a trusted SQL Server connection

may be encountered if this default authentication mode is used for the connec-
tion. Perform the following operations to change the authentication to a mixed mode:

 1) Launch Microsoft SQL Server Management Studio by going to Start|Microsoft
SQL Server Tools 18|Microsoft SQL Server Management Studio 18 item.
Login and connect to your SQL Server using the Window Authentication mode.

 2) Right click on our server icon YBSMART\SQL2019EXPRESS at the top of
the Object Explorer window and click on the Properties from the pop up menu
to open the Server Proerties wizard, which is shown in Fig. 6.7.

 3) Click on the Security item to open the Security page, and check the SQL Server
and Windows Authentication mode radio button to select this mixed mode, as
shown in Fig. 6.7. Then click on the OK button to close this configuration.

 4) In the Object Explorer pane, expand Security/Logins node. Now we want to add
a new user to access this database via the SQL Server Express server.

 5) Right click on the Logins folder and select New Login item to open the
Login – New wizard, which is shown in Fig. 6.8.

 6) Enter a desired username, such as SMART, into the Login name box and check
the SQL Server authentication radio button since we need to use this mode to
connect to the NetBeans using SQL Server JDBC driver. Enter a desired pass-
word, such as Happy2020, into the Password and Confirm password boxes.
Uncheck all four checkboxes under the Confirm password box and select our
sample database CSE_DEPT we developed in Chap. 2 from the Default data-
base combo box.

 7) Still in this Login – New wizard, click on the Server Roles icon from the left
pane to open the Server Roles page, as shown in Fig. 6.9. Check the sysad-

6 Query Data from Databases

187

Fig. 6.7 The opened Server Properties wizard

min checkbox to make this new user as a system administrator to access this
database (refer to Fig. 6.9).

 8) Still in this Login – New wizard, click on the Status icon from the left pane to
open the Status page, and then check the Enabled radio button under the
Login item to enable this new user if it is disabled.

 9) Click on the OK button to complete this authentication configuration.

Now go to File|Save All menu item to save these setups and close the Microsoft
SQL Server Management Studio. Next, let us connect our sample database from
Apache NetBeans IDE 12 using Microsoft SQL Server JDBC Driver.

6.1.4 Use the New Database Connection in Apache NetBeans
to Setup a Connection

Before we can start the Apache NetBeans IDE 12, make sure that the following jobs
have been performed and the following required components have been configured:

6.1 Setup Connection Between Microsoft SQL Server Database and Java Classes

188

Fig. 6.8 The opened Login New wizard

• Make sure that the SQL Server 2019 Express has been running in your host
computer.

To do that checking, open the Microsoft SQL Server 2019 Configuration
Manager, and then click on the SQL Server Services item from the left pane. Make
sure that both SQL Server (SQL2019EXPRESS) in the right pane are in the run-
ning status under the State tab. Close this Configuration Manager when this check-
ing is finished.

Now let’s launch Apache NetBeans IDE 12 to begin this database connection.

 1) Click on the Services tab on the opened NetBeans and expand the Databases
icon from the Object Explorer window. Now we need to add the Microsoft SQL
Server JDBC Driver we downloaded above into the NetBeans IDE system.

 2) Right click on the Drivers folder and select New Driver item to open the New
JDBC Driver wizard, as shown in Fig. 6.10. Click on the Add button to browse
to our driver’s location, C:\Program Files\sqljdbc_8.4|enu, and click on our

6 Query Data from Databases

189

Fig. 6.9 The opened Server Roles page

installed driver mssql-jdbc-8.4.1.jre14.jar, and click on the Open button to
add it into our NetBeans system. Your finished New JDBC Driver dialog box
should match one that is shown in Fig. 6.10.

 3) Click on the OK button to complete this process. Immediately you can find that
a new driver named Microsoft SQL Server 2019 has been added into the
Drivers folder.

 4) Now right click on the new added driver Microsoft SQL Server 2019 and
select the Connect Using item to open the New Database Connection wizard,
as shown in Fig. 6.11.

 5) Enter the following connection parameters into the associated boxes:

 a. localhost to the Host box since we are using a server that is installed in our
local computer as our database server.

 b. 5000 into the Port box since we setup this number as our TCP/IP commu-
nication port number.

 c. CSE_DEPT into the Database box as we built this SQL Server database in
Chap. 2.

 d. CSE_DEPT into the Database box since we developed this SQL Server
database in Chap. 2.

6.1 Setup Connection Between Microsoft SQL Server Database and Java Classes

190

Fig. 6.10 The finished New JDBC Driver dialog box

Fig. 6.11 The Finished New Database Connection wizard

 e. SQL2019EXPRESS into the Instance Name box since the
SQL2019EXPRESS is a default instance name when we install SQL Server
2019 Express server in our machine.

6 Query Data from Databases

191

 f. SMART and Happy2020 into the User Name and Password boxes, respec-
tively since we added a new user with this username and password when we
configure our SQL Server 2019 server in the previous steps.

 g. Check and confirm the contents on the JDBC URL: box, which is a full
URL that will be used to setup this connection.

 6) Your finished New Database Connection wizard is shown in Fig. 6.11.
 7) You can click on the Test Connection button to test this connection. A

Connection Succeeded message should be displayed if everything is fine.
Click on the Next button to open the Database Schema Selection page to setup
the schema for this connection.

 8) Select the dbo from the Select schema combo box on this page, as shown in
Fig. 6.12.

 9) Click on the Next button to confirm this connection with a valid connec-
tion name.

 10) In next page, Choose name for connection, you can find a new database con-
nection URL

jdbc:sqlserver://localhost\SQL2019EXPRESS:5000;databaseName=
CSE_DEPT [SMART on Default schema]

is displayed in the Input connection name box, as shown in Fig. 6.13.

Fig. 6.12 The opened New Connection Wizard

6.1 Setup Connection Between Microsoft SQL Server Database and Java Classes

192

 11) Your finished Choose name for connection page should match one that is
shown in Fig. 6.13. Click on the Finish button to complete this connection and
close this wizard.

The contents inside the square bracket indicate that the user who setups and uses
this connection is SMART, and the dbo is the database schema when we built our
sample database CSE_DEPT in Chap. 2.

Immediately you can find this new connection icon that is located under the
Drivers folder in the Object Explorer window in the NetBeans IDE 12.

Now we have finished connecting to our sample database using Apache NetBeans
IDE 12 Services. Next, let’s discuss how to use Java runtime object method to build
our database application projects.

Fig. 6.13 The finished Choose name for connection page

Note: If you cannot make this connection or an error is returned, try to reboot
your computer to disconnect to the SQL Server 2019 Express since the NetBeans
IDE cannot connect to that database if it is still being used by the SQL Server 2019.

6 Query Data from Databases

193

6.2 Introduction to Runtime Object Method

The so-called Java runtime object method is to develop and build database access-
ing operations using runtime Java codes without touching JPA Wizards and Entity
classes. In other words, no object-to-relational database mapping is needed and the
project can directly access the database using Java codes.

As we discussed in Chap. 4, to access a database to perform data query, the fol-
lowing operational sequence should be followed:

 1) Load and register the database driver using DriverManager class and
Driver methods

 2) Establish a database connection using the Connection object
 3) Create a data query statement using the createStatement() method
 4) Execute the data query statement using the executeQuery() method
 5) Retrieve the queried result using the ResultSet object
 6) Close the statement and connection using the close() method

In JPA Wizards method, the first and the second operations are combined together
using JPA Entity classes. The Query Manager and Query components are also used
in steps 3 through 5 to simplify the query operations. However, in Java runtime
object method, all those operations are performed by developing the Java codes
without touching any JPA Wizards. In the following sections, we will use an exam-
ple project, SQLSelectObject, to illustrate how to use Java runtime object method
to develop and build database query projects to access SQL Server database. To
make these developments easy, we still use Apache NetBeans 12 as our develop-
ment IDE.

6.3 Create a Java Application Project to Access the SQL
Server Database

Perform the following operational steps to create this new Java with Ant Application
project:

• Go to File|New Project to open the New Project wizard. Keep the default selec-
tion Java with Ant in the Categories box, and select Java Application from the
Projects box. Click on the Next button to open the New Java Application wizard.

• Enter SQLSelectObject into the Project Name box and select an appropriate
folder as the location to save this project. In this case, we used C:\SQL Java DB
Programming\Class DB Projects\Chapter 6 as our project location.

• Make sure to uncheck the Create Main Class checkbox. Your finished Java New
Application wizard should match one that is shown in Fig. 6.14.

• Click on the Finish button to create this new Java Application project.

6.3 Create a Java Application Project to Access the SQL Server Database

194

Next we need to create four JFrame Form windows as our graphical user inter-
faces, LogInFrame, SelectionFrame, FacultyFrame, and CourseFrame, to per-
form the data queries to three data tables in our sample database. We also need to
create a JDialog as our message box to display some running-time information.

6.3.1 Create Graphic User Interfaces

First let’s create the LogInFrame Form window. Right click on our new project
SQLSelectObject and select New|JFrame Form item from the popup menu to
open New JFrame Form wizard. Enter the following values to this wizard to create
this new JFrame Form:

 1) LogInFrame to the Class Name box.
 2) SQLSelectObjectPackage into the Package box.
 3) Click on the Finish button.

Add the following GUI components with the appropriate properties shown in
Table 6.1 into this Form. You need to drag each component from the Palette
Windows and place it to the LogInFrame Form, and setup each property in the
Properties Windows.

When setup property for each component, you need first to click on that compo-
nent to select it and then go the Properties Windows to setup an appropriate prop-
erty for that component. To setup a Variable Name for each component, you need
to right click on that component and select Change Variable Name item from the

Fig. 6.14 The finished Java New Application wizard

6 Query Data from Databases

195

Table 6.1 Objects and controls in the LogIn form

Type Variable Name Text

Label Label1 Welcome to CSE Department
Label Label2 User Name
Text Field UserNameField
Label Label3 Pass Word
Text Field PassWordField
Button LogInButton LogIn
Button CancelButton Cancel
Title CSE DEPT LogIn

Fig. 6.15 The finished
LogInFrame Form

pop-up menu, and then enter a desired name into the New Name box for that object.
Your finished LogInFrame Form is shown in Fig. 6.15.

Now let’s create the SelectionFrame Form window.
As we did for the LogIn Form, right click on our project SQLSelectObject from

the Projects window and select New|JFrame Form item from the popup menu to
open New JFrame Form wizard. Enter SelectionFrame into the Class Name box as
the name of our new Frame Form class, and select SQLSelectObjectPackage from
the Package box. Click on the Finish button to complete this creation.

Add the following objects and controls, which are shown in Table 6.2, into this
SelectionFrame Form. One point to be noted is that you need to remove all default
items located inside the model property of the Combo Box ComboSelection. To do
that, click on the ComboSelection combo box from the Design View, and then go
to the model property, click on the three-dot button to open the model pane. Select
all four default items by highlighting them, and press the Delete button from the
keyboard to remove all of those items. A preview of the completed SelectionFrame
Form should match one that is shown in Fig. 6.16.

Next let’s create our FacultyFrame Form window.

6.3 Create a Java Application Project to Access the SQL Server Database

196

Table 6.2 Objects and Controls in the SelectionFrame Form

Type Variable Name Text Model Title

Label Label1 Make Your Selection
ComboBox ComboSelection
Button OKButton OK
Button ExitButton Exit
SelectionFrame CSE DEPT Selection

Fig. 6.16 A preview of the
created
SelectionFrame Form

As we did for the LogIn Form, to create a JFrame Form, right click on our new
created project SQLSelectObject from the Projects window and select New|JFrame
Form item from the popup menu to open New JFrame Form pane. Enter
FacultyFrame into the Class Name box as the name of our

new Frame Form class, and then select the item SQLSelectObjectPackage from
the Package box. Click on the Finish button to complete this creation.

Add the objects and controls shown in Table 6.3 into this FacultyFrame Form.
One point to be noted is that you need to remove all default items located inside the
model property of the Combo Box ComboName and ComboMethod as we did for
the ComboSelection ComboBox above. Perform the similar operations for the
ComboMethod. A preview of the completed FacultyFrame Form should match
one that is shown in Fig. 6.17.

A point to be noted is that when dragging a Canvas control from the Palette and
place it into the FacultyFrame Form window, first you need to right click on the
location where you want to place the Canvas on the FacultyFrame Form and select
Add From Palette > AWT > Canvas item. Then a Canvas icon is displayed in that
location. You can drag this Canvas icon to enlarge it to get the desired size. The
purpose of adding this Canvas is that we need to use it to display a selected faculty
image with it.

Next let’s build our CourseFrame Form window.
Right click on our project SQLSelectObject from the Projects window, select

New|JFrame Form item to open New JFrame Form pane. Enter CourseFrame

6 Query Data from Databases

197

Table 6.3 Objects and controls in the FacultyFrame form

Type Variable Name Text Border Title

Canvas ImageCanvas
Panel jPanel1 Titled

Border
Faculty Name and Query
Method

Label Label1 Faculty
Name

ComboBox ComboName
Label Label2 Query

Method
ComboBox ComboMethod
Panel jPanel2 Titled

Border
Faculty Image

Label Label3 Faculty
Image

Text Field FacultyImageField
Panel jPanel3 Titled

Border
Faculty Information

Label Label4 Faculty ID
Label Label5 Faculty

Name
Label Label6 Title
Label Label7 Office
Label Label8 Phone
Label Label9 College
Label Label10 Email
Text Field FacultyIDField
Text Field FacultyNameField
Text Field TitleField
Text Field OfficeField
Text Field PhoneField
Text Field CollegeField
Text Field EmailField
Button SelectButton Select Button SelectButton
Button InsertButton Insert Button InsertButton
Button UpdateButton Update Button UpdateButton
Button DeleteButton Delete Button DeleteButton
Button BackButton Back Button BackButton
FacultyFrame
Form

FacultyFrame CSE DEPT Faculty

into the Class Name box, and select the SQLSelectObjectPackage from the
Package box. Click on the Finish button to create this new CourseFrame class.

Add the objects and controls shown in Table 6.4 into this CourseFrame Form
window to finish the GUI design for this form.

6.3 Create a Java Application Project to Access the SQL Server Database

198

Fig. 6.17 A preview of the finished FacultyFrame Form window

Your finished CourseFrame Form window should match one that is shown in
Fig. 6.18.

Finally, we need to create a JDialog box to work as our message box to display
any exception or error information.

6.3.2 Use a JDialog as a MessageBox

In order to use this JDialog object as our MessageBox, first we need to create a new
JDialog object based on the JDialog class. Then we need to add some codes to this
class, exactly add codes into the constructor of this class, to make this dialog to be
displayed at the center of the screen as the project runs.

First let’s create a new JDialog object based on its class. Perform the following
operational steps to create this JDialog object:

 1) On the opened Projects window, right click on our project SQLSelectObject and
select the New|Other item to open the New File wizard, as shown in Fig. 6.19.

 2) Select the Swing GUI Forms from the Categories list and OK/Cancel Dialog
Sample Form item from the File Types list, as shown in Fig. 6.19. Click on the
Next button.

 3) Enter MsgDialog to the Class Name box as our dialog box’s name and select
SQLSelectObjectPackage from the Package box to select it as our package in
which our MsgDialog will be developed.

6 Query Data from Databases

199

Table 6.4 Objects and controls in the CourseFrame form

Type Variable Name Text Border Title

Panel jPanel1 Titled Border Faculty Name and Query Method
Label Label1 Faculty Name
ComboBox ComboName
Label Label2 Query Method
ComboBox ComboMethod
Panel jPanel2 Titled Border Course ID List
ListBox CourseList
Panel jPanel3 Titled Border Course Information
Label Label3 Course ID
TextField CourseIDField
Label Label4 Course
TextField CourseField
Label Label5 Schedule
TextField ScheduleField
Label Label6 Classroom
TextField ClassRoomField
Label Label7 Credits
TextField CreditsField
Label Label8 Enrollment
TextField EnrollField
Button SelectButton Select
Button InsertButton Insert
Button UpdateButton Update
Button DeleteButton Delete
Button BackButton Back
JFrame CourseFrame CSE DEPT Course

 4) Click on the Finish button to create this MsgDialog Form.
 5) Click on the Design tab from the top to open the Design View of our new created

MsgDialog box. Reduce the size to an appropriate one, and add one label control
to this dialog by dragging a Label from the Palette window and place it onto our
dialog box.

 6) Right click on this label and select Change Variable Name item from the popup
menu to change it to MsgLabel. Go to the text property to remove the default text.

 7) Set the Font to Bold and size to 12. Enter MsgDialog into the Title box.
 8) A preview of this dialog box is shown in Fig. 6.20.

Next let’s add some codes to this class to enable it to be displayed in the center
of the screen as the project runs. To do that, keep the MsgDialog.java selected in the
Project window and open the Code Window by clicking on the Source tab from the
top and enter this.setLocationRelativeTo(null); just under the initComponents();
method inside the constructor.

6.3 Create a Java Application Project to Access the SQL Server Database

200

Fig. 6.18 The Finished CourseFrame Form window

Fig. 6.19 The opened and finished New File wizard

6 Query Data from Databases

201

Fig. 6.20 A preview of the
designed MessageBox

public class MsgDialog extends javax.swing.JDialog {

public static final int RET_CANCEL = 0;

public static final int RET_OK = 1;
public void setMessage(java.lang.String msg){

MsgLabel.setText(msg);

}

public MsgDialog(java.awt.Frame parent, boolean modal) {
super(parent, modal);
initComponents();
this.setLocationRelativeTo(null);

// Close the dialog when Esc is pressed
String cancelName = "cancel";
InputMap inputMap = getRootPane().getInputMap(JComponent.WHEN_ANCESTOR_OF_FOCUSED_COMPONENT);
inputMap.put(KeyStroke.getKeyStroke(KeyEvent.VK_ESCAPE, 0), cancelName);

Fig. 6.21 Codes for the constructor and the setMessage() method

Then move your cursor just under the line: @SuppressWarnings("unchecked")
and enter the codes shown in Fig. 6.21 to create a new method, setMessage(). Your
finished codes for these two code adding, which have been highlighted, are shown
in Fig. 6.21.

At this point, we have completed building in all graphical user interfaces we need
in this project. Next let’s concentrate on the coding development to perform the data
query for each different data table in our sample SQL Server sample database
CSE_DEPT.

6.3.3 Perform the Data Query for the LogIn Table

The function of this LogInFrame Form is to check and confirm the username and
password entered by the user to make sure that both are correct. The user needs to
enter both username and password, and then click on the LogIn button to begin this
login process. An error message will be displayed if either an invalid username/
password pair has been entered or both boxes are kept empty.

6.3 Create a Java Application Project to Access the SQL Server Database

202

First let’s start from loading and registering the database driver using
DriverManager class and Driver methods. In this section, we want to use Microsoft
SQL Server database as the target database, therefore we will concentrate on the
Microsoft SQL Server JDBC Driver.

6.3.3.1 Load and Register Database Drivers

As we discussed in Chap. 3, the core component or interface of accessing databases
in Java is Java Database Connectivity API (JDBC API), which is composed of two
parts in two packages: JDBC 4.3 core API in java.sql and JDBC Standard Extension
in javax.sql. Both parts are combined together to provide necessary components
and classes to build database applications using Java.

Generally, JDBC API enables users to access virtually any kind of tabular data
source such as spreadsheets or flat files from a Java application. It also provides
connectivity to a wide scope of SQL or Oracle databases. One of the most important
advantages of using JDBC is that it allows users to access any kind of relational
database in a same coding way, which means that the user can develop one program
with the same coding to access either a SQL Server database or an Oracle database,
or even MySQL database without coding modification.

The JDBC 3.0 and JDBC 4.0 specifications contain additional features, such as
extensions to the support to various data types, MetaData components, and improve-
ments on some interfaces.

Exactly, the JDBC API is composed of a set of classes and interfaces used to
interact with databases from Java applications. As we discussed in Chap. 3, the
basic components of JDBC are located at the package java.sql, and the Standard
Extension of JDBC, which provides additional features such as Java Naming and
Directory Interface (JNDI) and Java Transaction Service (JTS), is in the javax.
sql package.

6.3.3.2 Add Microsoft SQL Server JDBC Driver to the Project

Before we can load and register a JDBC driver, first we need to add the Microsoft
SQL Server JDBC Driver we downloaded and installed in Sect. 6.1.1 as a library
file into our current project Libraries node to enable our project to locate and find
it when it is loaded and registered. To do that, follow steps below to finish this add-
ing process:

 1) Expand our project SQLSelectObject from the Projects window and right click
on the Libraries folder.

 2) Click on the Add JAR/Folder item from the popup menu to open the Add JAR/
Folder wizard, which is shown in Fig. 6.22.

 3) Browse to the location where we installed the Microsoft SQL Server JDBC
Driver, which is C:\Program Files\sqljdbc_8.4|enu. Click on the driver mssql-

6 Query Data from Databases

203

jdbc- 8.4.1.jre14.jar, and click on the Open button to add this driver to our proj-
ect Libraries node.

6.3.3.3 Load and Register Microsoft SQL Server JDBC Driver

The first step to build a Java database application is to load and register a JDBC
driver. Two important components, DriverManager and Driver, are used for this
process. As we discussed in

Chap. 3, Driver class contains six methods and one of the most important meth-
ods is the connect() method, which is used to connect to the database. When using
this Driver class, a point to be noted is that most methods defined in the Driver class
are never called directly, instead, they should be called via the DriverManager class
methods.

The DriverManager class is a set of utility functions that work with the Driver
methods together and manage multiple JDBC drivers by keeping them as a list of
drivers loaded. Although loading a driver and registering a driver are two steps, only
one method call is necessary to perform these two operations. The operational
sequence of loading and registering a JDBC driver is:

 1) Call class methods in the DriverManager class to load the driver into the Java
interpreter.

 2) Register the driver using the registerDriver() method.

When loaded, the driver will execute the DriverManager.registerDriver()
method to register itself. The above two operations will never be performed until a
method in the DriverManager is executed, which means that even both operations
have been coded in an application, however, the driver cannot be loaded and regis-
tered until a method such as connect() is first executed.

To load and register a JDBC driver, two popular methods can be used:

 1) Use Class.forName() method:

Fig. 6.22 The opened and finished Add JAR/Folder wizard

6.3 Create a Java Application Project to Access the SQL Server Database

204

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

 2) Create a new instance of the Driver class:

Driver sqlDriver = new com.microsoft.sqlserver.jdbc.SQLServerDriver;

Relatively speaking, the first method is more professional since the driver is both
loaded and registered when a valid method in the DriverManager class is executed.
The second method cannot guarantee that the driver has been registered by using the
DriverManager.

Now let’s develop the codes to load and register the Microsoft SQL Server
JDBC Driver in our LogInFrame class. Open the Code Window of the LogInFrame
by clicking on the Source tab from the top of the window, and enter the codes that
are shown in Fig. 6.23 into this window.

Let’s have a closer look at this piece of codes to see how it works.

 A. Since all JDBC-related classes and interfaces are located in the java.sql pack-
age, thus we need first to import this package into our project.

 B. A class instance con is declared here since we need to use this connection object
in our whole project. A MsgDialog object is also created and we need to use it
in this form.

 C. The setLocationRelativeTo() method is called to setup this LogInFrame Form
at the center of the screen as the project runs. A null argument means that no
object can be referenced or relative to and the JFrame Form is set to the center.

 D. A try…catch block is used to load and register our Microsoft SQL Server
JDBC Driver. The Class.forName() method is utilized to make sure that our
JDBC Driver is not only loaded but also registered when it is connected by run-
ning the getConnection() method in step G later. The argument of this method
is the name of our Microsoft SQL Server JDBC Driver class and it is created by
the NetBeans when we add this driver into our project in Sect. 6.1.1.

 E. The catch block is used to track any possible error for this loading and register-
ing. The related exception information will be displayed if any error occurred.

 F. The connection url, which includes the protocol, subprotocol, and subname of
the data source, is created to define a full set of the information for the database
to be connected. An alternative url, which has been commented out, is also
working and it is another way to build this connection url.

 G. A try…catch block is used to perform the database connection by calling the
getConnection() method. Three arguments are passed into this method; url,
username, and password. Another way to call this method, which has been
 commented out, has only one argument that has combined three arguments
together to make it simple.

 H. The connected database is disconnected by calling the close() method. This
instruction is only for the testing purpose for this LogInFrame Form, and it will
be removed later when we build the formal project since we need to keep this
single database connection for all our four JFrame Form windows until the proj-
ect is terminated.

6 Query Data from Databases

205

package SQLSelectObjectPackage;
import java.sql.*;

public class LogInFrame extends javax.swing.JFrame {
static Connection con;

MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);

/** Creates new form LogInFrame */
public LogInFrame() {

initComponents();
this.setLocationRelativeTo(null);

try

{

//Load and register SQL Server driver

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}

catch (Exception e) {

msgDlg.setMessage("Class not found exception!" + e.getMessage());

msgDlg.setVisible(true);

}

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";

//String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;
// databaseName=CSE_DEPT;user=SMART;password=Happy2020";
//Establish a connection
try {

con = DriverManager.getConnection(url,"SMART","Happy2020");

//con = DriverManager.getConnection(url);
con.close();

}

catch (SQLException e) {

msgDlg.setMessage("Could not connect! " + e.getMessage());

msgDlg.setVisible(true);

e.printStackTrace();

}

}

A

B

C

D

E

F

G

H

I

J

Fig. 6.23 Codes for loading and registering a JDBC Driver

 I. Any possible exception that occurred during this connection will be displayed
by using the catch block.

 J. Prints this Throwable and its backtrace to the standard error stream. This
method prints a stack trace for this Throwable object on the error output
stream that is the value of the field System.err. The first line of output con-
tains the result of the toString() method for this object. Remaining lines
represent data previously recorded by the method fillInStackTrace().

The reason we put this piece of codes that include the loading, registering, and
connecting to our JDBC Driver inside the constructor of this LogInFrame class is
that we need to setup and complete these operations first, or before other data actions
can be performed since a valid database connection is a prerequisite for any data-
base query operation.

Before we can continue to discuss database connection, first let’s have a clear
picture about the JDBC URLs.

6.3 Create a Java Application Project to Access the SQL Server Database

206

6.3.3.3.1 The JDBC Uniform Resource Locators (URLs)

The JDBC url provides all information for applications to access a special resource,
such as a database. Generally, a url contains three parts or three segments: protocol
name, sub-protocol, and subname for the database to be connected. Each of these
three segments has different function when they worked together to provide unique
information for the target database.

The syntax for a JDBC url can be presented as:

protocol:sub-protocol:subname

The protocol name works as an identifier or indicator to show what kind of pro-
tocol should be adopted when connect to the desired database. For a JDBC driver,
the name of the protocol should be jdbc. The protocol name is used to indicate what
kind of items to be delivered or connected.

The sub-protocol is generally used to indicate the type of the database or data
source to be connected, such as sqlserver or oracle.

The subname is used to indicate the address to which the item supposed to be
delivered or the location of the database is resided. Generally, a subname contains
the following information for an address of a resource:

• Network host name/IP address
• The database server name
• The port number
• The name of the database

An example of a subname for our SQL Server database is:

localhost\\SQL2019EXPRESS:5000

The network host name is localhost, and the server name is SQL2019EXPRESS
and the port number the server used is 5000. You need to use a double slash, either
forward or back, to represent a normal slash in this url string since this is a DOS
style string.

By combining all three segments together, we can get a full JDBC url. An exam-
ple url that is using a SQL Server JDBC driver is:

jdbc:sqlserver//localhost\\SQL2019EXPRESS:5000

The database’s name works as an attribute of the connected database.
Now that we have a clear picture about the JDBC url, next let’s connect our

application to our desired database.

6 Query Data from Databases

207

6.3.3.4 Connect to Databases and Drivers

In step G of Fig. 6.23, we showed how to call the getConnection() method that
belongs to the DriverManager class to connect to our sample database from our
Java application. In fact, the retuned Connection object is not only used as a connec-
tion between our application and database, but also used for providing different
ways to create SQL statements and methods for the different session managements,
such as transaction locking, catalog selection, and except handling. The statement
execution is performed by the associated components such as Statement,
PreparedStatement, and CallableStatement.

The Statement object is used to execute static SQL queries. The so-called static
statements do not include any IN or OUT parameters in the query string and do not
contain any parameters passing to or from the database.

The PreparedStatement is used to execute dynamic SQL queries with IN
parameter involved. These kinds of statements can be pre-parsed and pre-compiled
by the database, and therefore have faster processing speed and lower running loads
for the database server.

The CallableStatement is used to execute the stored procedures with both IN
and OUT parameters involved. As we know, stored procedures are built and devel-
oped inside databases, and therefore have higher running and responding efficiency
in data queries and processing.

6.3.3.5 Create and Manage Statement Object

The Statement class contains three important query methods with different func-
tions: executeQuery(), executeUpdate(), and execute(). For each method, both
different operations will be performed and different results can be returned.
Generally, the execute methods can be divided into two categories: 1) the execute
method that needs to perform a data query, such as executeQuery(), which returns
an instance of ResultSet that contained the queried results, and 2) the execute
method that does not perform a data query and only return an integer, such as the
executeUpdate(). An interesting method is the execute(), which can be used in
either way.

• The executeQuery() method performs data query and returns a ResultSet object
that contains the queried results.

• The executeUpdate() method does not perform data query, instead it only per-
forms either a data updating, insertion, or deleting action against the database
and returns an integer that equals the number of rows that have been successfully
updated, inserted, or deleted.

• The execute() method is a special method, and it can be used either way. All dif-
ferent data actions can be performed by using this method, such as data query,
data insertion, data updating, and data deleting. The most important difference
between the execute() method and two above methods is that the former can be

6.3 Create a Java Application Project to Access the SQL Server Database

208

used to execute some SQL statements that are unknown at the compile time or
return multiple results from stored procedures. Another difference is that the
execute() method does not return any result itself, and one needs to use getRe-
sultSet() or getUpdateCount() method to pick up the results. Both methods
belong to the Statement interface.

A confusion issue may come with the using of the execute() method. As we
mentioned, since any SQL statement, either known or unknown at the compile time,
can be used with this execute() method, how do we know the execution results? Yes,
that indeed is a problem. However, fortunately, we can solve this problem by using
some testing methods indirectly.

In fact, we can call either getResultSet() or getUpdateCount() method to try to
pick up the running results from execution of the execute() method. The key point
is that:

• The getResultSet() method will return a null if the running result is an integer,
which is a number of rows that have been affected, either inserted, updated, or
deleted.

• The getUpdateCount() method will return a -1 if the running result is a ResultSet.

Based on these two points, we can determine whether a result is a ResultSet or
an integer.

Now let’s first use the executeQuery() method to perform our data query from
the LogIn table in our sample database. We will illustrate how to use the execute()
method to perform the data query for the FacultyFrame Form in Sect. 6.3.5.

As we mentioned, a static statement does not contain any parameter passing into
or from the database, therefore this kind of statement does not meet our requirement
since we need to pass two parameters, username and password, into our sample
database to perform the login process. To make a data query to our LogIn table to
perform the login process, we need to use the second type of statement,
PreparedStatement.

The advantages of using a PreparedStatement object to build and perform a
dynamic query are that both the query flexibility can be increased and the query
execution speed and efficiency can be significantly improved since the prepared
statement can be pre-compiled and re-run again for a multiple query situation.

6.3.3.6 Use PreparedStatement Object to Perform Dynamic Query

In the Design View of the LogInFrame Form window, double click on the LogIn
button to open its event handler, and enter the codes that are shown in Fig. 6.24 into
this event handler.

Let’s have a closer look at this piece of codes to see how it works.

 A. Two local string variables, username and password, are declared first since we
need to use them to hold the returned queries result later.

6 Query Data from Databases

209

private void LogInButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String username = new String();
String password = new String();
String query = "SELECT user_name, pass_word FROM LogIn " + "WHERE user_name = ? AND pass_word = ?";
try{

PreparedStatement pstmt = con.prepareStatement(query);
pstmt.setString(1, UserNameField.getText());
pstmt.setString(2, PassWordField.getText());
ResultSet rs = pstmt.executeQuery();
while (rs.next()){

username = rs.getString(1);
password = rs.getString(2);

}
}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement! " + e.getMessage());
msgDlg.setVisible(true);

}
if (UserNameField.getText().isEmpty() || PassWordField.getText().isEmpty()) {

msgDlg.setMessage("Enter valid LogIn Information...");
msgDlg.setVisible(true);

}
else if ((username.equals(UserNameField.getText())) && (password.equals(PassWordField.getText()))) {

msgDlg.setMessage("LogIn is Successful! ");
msgDlg.setVisible(true);
this.setVisible(false);
this.dispose();

}
else {

msgDlg.setMessage("LogIn is failed!");
msgDlg.setVisible(true);

}
}

A

B
C

D

E
F

G

H

I

J

Fig. 6.24 The codes for the LogIn button Click event handler

 B. The query string is created with two dynamic parameters that are represented by
using the positional parameter mode.

 C. A try…catch block is used to perform the data query. First, a PreparedStatement
object is created based on the Connection object we obtained from the database
connection in the constructor of this LogInFrame class.

 D. The setString() method of the PreparedStatement class is used to setup two
dynamic parameters. The position of each parameter is indicated with the asso-
ciated index of each parameter. The getText() method is used to get the user-
name and password entered by the user from two text fields, UserNameField
and PassWordField, respectively. A point to be noted is that different setXXX()
methods should be used to perform this setup operation for the different types of
the dynamic parameter. For example, here both username and password are
String, so the setString() method is used. If the type of the parameter is integer,
the setInt() method should be used to finish this parameter setting. Where XXX
means the data type used for the dynamic parameter.

 E. The executeQuery() method that belongs to the Statement class is called to
perform this data query, and the query result is returned to the ResultSet
object rs.

6.3 Create a Java Application Project to Access the SQL Server Database

210

 F. The next() method of the ResultSet class is utilized with a while loop to point
to the next available queried row. This method returned a Boolean value, and a
true indicates that more queried rows are in the ResultSet. A false means that no
more queried row in the ResultySet. The getString() method is used to pick up
each column from the ResultSet until a false is returned from the next() method.
Similarly to the setString() method discussed in step D, different getXXX()
methods should be used to pick up queried column with different data types.
The argument index in the getString() method is used to indicate the position
of the queried column in the ResultSet, which starts from 1, not 0.

 G. The catch block is used to catch and display any possible error for this data
query process.

 H. If both UserName and PassWord text fields are empty, a warning message
should be displayed to allow user to enter valid login information.

 I. If both queried username and password match to those entered by the user,
which means that the login process is successful. A successful message is dis-
played to indicate this. This message only works as a testing purpose and it will
be removed later for the formal development of this project.

 J. A login failed message will be displayed if any error occurred.

Before we can run this piece of codes to test it, make sure to remove or comment
out the code in step H in Fig. 6.23, which is to close the connection to our sample
database. Because when we make connection coding in Fig. 6.23, we need to close
any connection to our sample database if a connection is successful to avoid possi-
ble multiple connections to our database. However, now we want to perform data
queries, therefore we need to connect to our database to do a query since no data
query can be performed if no database connection has been made.

After remove or comment out that con.close() coding line in Fig. 6.23, now we
can build and run this LogInFrame Form to test our coding. Click on the Clean
and Build Main Project button from the toolbar to build our project. Then right
click on our LogInFrame.java file from the Projects window, and select the Run
File item to run this object. A sample of running result is shown in Fig. 6.25.

Enter valid username and password, such as ybai and come, and click on the
LogIn button to begin this login process. A login successful message should be
displayed if this process is fine.

Before we can move to the next section, we need to finish developing the codes
for the Cancel button Click event handler. The function of this handler is to close
the LogInFrame Form window and the database connection if this button is clicked
by the user. Open the Design View of the LogInFrame Form and double click on
the Cancel button to open its event handler, and enter the codes that are shown in
Fig. 6.26 into this event handler.

Let’s have a closer look at this piece of codes to see how it works.

 A. The setVisible() and dispose() methods are called to remove the LogInFrame
Form window from the screen when this button is clicked by the user.

6 Query Data from Databases

211

Fig. 6.25 A running
sample of the
LogInFrame Form

private void CancelButtonActionPerformed(java.awt.event.ActionEvent evt) {

this.setVisible(false);
this.dispose();
try {

con.close();
}
catch (SQLException e) {

msgDlg.setMessage("Could not close!" + e.getMessage());
msgDlg.setVisible(true);

}
}

A

B

C

Fig. 6.26 The codes for the Cancel button Click event handler

 B. Also a try…catch block is used to try to close the database connection. A point
to be noted is that a try…catch block must be used if one wants to perform a
close action to a connected database.

 C. The catch block will track and display any possible exception that occurred for
this close action.

Next let’s discuss how to retrieve the query result by calling ResultSet object.

6.3.3.7 Use ResultSet Object

The ResultSet class contains 25 methods and the most popular methods to be
used are:

• getXXX()
• getMetaData()
• next()
• findColumn()
• close()

6.3 Create a Java Application Project to Access the SQL Server Database

212

The ResultSet object can be created by either executing the executeQuery() or
getResultSet() method, which means that the ResultSet instance cannot be created
or used without executing a query operation first. Similar to a Statement object, a
Connection object must be first created and then the Statement component can be
created and implemented to perform a query.

The queried result or queried data are stored in the ResultSet with a certain for-
mat, and generally in a 2D tabular form with columns and rows. Each column can
be mapped into an array and each row can be considered as a Vector. Therefore, the
easiest way to map a ResultSet is to create an array of Vectors.

When a query operation is performed and a ResultSet instance is created, next
we need to retrieve the queried result from the ResultSet object by using a suitable
getXXX() method. As we mentioned in step D in Fig. 6.24, depending on the
returned data type of the queried result, different method should be used, such as
getInt(), getString(), getByte(), getDouble(), getShort(), and getObject().

Two different ways can be used to get returned data from a ResultSet instance:
fetching by row and fetching by column.

Fetching by Row:

Since the returned data can be stored in a ResultSet in a tabular form, the data can
be picked up in row by row. The next() method in the ResultSet class is specially
used for this purpose. Each row can be selected by using a cursor that can be con-
sidered as a pointer to point to each row. The next() method can move the row
pointer from the current position to the next row. As we discussed in steps E and F
in Fig. 6.24, when a login query is executed, a ResultSet instance rs is created and
returned. Initially the cursor pointed to a row that is just above the first row, and you
have to run the next() method once to allow it to point to the first data row, and then
you can repeat to run this method by using a while loop to scan the whole table until
the last row. A true will be returned by the next() method if a valid row has been
found and pointed to, and a false is returned if the cursor points to null row, which
means that no more valid row can be found and the bottom of the ResultSet has been
touched.

Fetching by Column:

When a valid data row has been retrieved, we need to get each column from that
row. To do that, different getXXX() methods should be used based on the different
data types of the returned data. One can use either the name of a column or the index
of that column to get the data value. In step F on Fig. 6.24, for our LogIn table, both
the user_name and the pass_word are String, therefore a getString() method is
used with the index of each column. A point to be noted is that the first column has
an index of 1, not 0. If the name of each column, not an index, is used for the get-
String() method in step F in Fig. 6.24, the codes can be re-written as

6 Query Data from Databases

213

 while (rs.next()){
 username = rs.getString("user_name");
 password = rs.getString("pass_word");
 }

One of the most important methods in ResultSet class is the getObject() method.
The advantage of using this method is that a returned datum, which is stored in a
ResultSet object and its data type is unknown (a datum is dynamically created), can
be automatically converted from its SQL data type to the ideal Java data type. This
method out-perform any other getXXX() method since the data type of returned
data must be known before a suitable getXXX() method can be used to fetch the
returned data.

The findColumn() method is used to find the index of a column if the name of
that column is given, and the close() method is used to close a ResultSet instance.

The getMetaData() method is a very good and convenient method and it allows
users to have a detailed and clear picture about the structure and properties of data
returned to a ResultSet. A ResultSetMetaData object, which contains all pieces of
necessary information about the returned data stored in a ResultSet instance, is
returned when this method is executed. By using different methods of the
ResultSetMetaData class, we can obtain a clear picture about the returned data. For
example, by using the getColumnCount() method, we can know totally how many
columns have been retrieved and stored in the ResultSet. By using getTableName(),
getColumnName(), and getColumnType(), we can know the name of the data
table we queried, the name of column we just fetched and data type of that column.
A more detailed discussion about the ResultSetMetaData component will be given
in Sects. 6.3.5.2.2 and 6.3.5.2.5.

Now that we have finished the coding development for the LogIn table, we are
ready to perform the data query for the Faculty table using the FacultyFrame Form
window. We need first to develop the codes for the SelectionFrame Form to allow
users to select desired data query.

6.3.4 Develop the Codes for the SelectionFrame Form

Select the SelectionFrame class by clicking on it from the Projects window and
open its Code Window by clicking on the Source tab from the top of the window.
Enter the codes that are shown in Fig. 6.27 into the constructor of this class.

Let’s have a closer look at this piece of codes to see how it works.

 A. The Java JDBC Driver package is imported first since we need to use some
classes located in that package to perform the data query.

 B. A class-level object of the JDialog class dlg is created here since we need to use
this dlg to display some debug and warning messages during the project runs.

6.3 Create a Java Application Project to Access the SQL Server Database

214

package SQLSelectObjectPackage;
import java.sql.*;

public class SelectionFrame extends javax.swing.JFrame {
MsgDialog dlg = new MsgDialog(new javax.swing.JFrame(), true);
public SelectionFrame() {

initComponents();
this.setLocationRelativeTo(null);
this.ComboSelection.addItem("Faculty Information");
this.ComboSelection.addItem("Course Information");
this.ComboSelection.addItem("Student Information");

}

A

B

C

D

Fig. 6.27 The codes for the constructor of the SelectionFrame class

private void OKButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
FacultyFrame facultyFrame = new FacultyFrame();
CourseFrame courseFrame = new CourseFrame();

if (ComboSelection.getSelectedItem()== "Faculty Information"){
facultyFrame.setVisible(true);

} else if (ComboSelection.getSelectedItem()== "Course Information"){
courseFrame.setVisible(true);

} else {
dlg.setMessage("Student Information is selected\n");
dlg.setVisible(true);

}
}

A

B

Fig. 6.28 Codes for the OK button Click event handler

 C. The setLocationRelativeTo() method is called to locate this SelectionFrame
Form at the center of the screen as the project runs. A null argument means that
no object can be referenced or relative to and the JFrame Form is set to the center.

 D. The addItem() method is executed to add three pieces of information into the
Combo Box ComboSelection to allow users to choose one of them as the project
runs. Another method to add these three pieces of information is to directly add
those pieces of information into the model box under the Combo Box Model
Editor, which can be considered as a static adding (before the project runs). In
that way, you do not need to enter these three lines of codes in this constructor.
However, we prefer to use the addItem() method to add those pieces of infor-
mation since it belongs to a dynamic adding.

Next let’s do the coding for the OK and Exit command buttons, exactly for the
event handlers of those buttons. The function for the SelectionFrame Form is: as
the user selected a desired choice from the Combo Box and click the OK button to
query the related information, the related information frame, such as FacultyFrame
Form, CourseFrame Form, or StudentFrame Form, will be displayed to enable users
to make related queries.

Now let’s open the Design View of the SelectionFrame Form by clicking on the
Design tab from the top and double click on the OK button to open its event han-
dler. Enter the codes that are shown in Fig. 6.28 into this handler.

6 Query Data from Databases

215

Let’s have a closer look at this piece of codes to see how it works.

 A. Two objects are created at the beginning of this handler, which include the
FacultyFrame and CourseFrame, since we need to direct the program to the
different frame when an associated frame is selected by the user.

 B. An if selection structure is used to identify each selected item from the
ComboSelection combo box. The MsgDialog is used if the Student Information
item is selected since that Frame has not been built and we will build it later.

The rest coding includes two parts: coding for the Exit button Click event han-
dler and coding for the creating a getter method. As you know, in the Object-
Oriented Programming, in order to use the unique object created in a project, a
popular way is to create a setter and a getter method in the target class. In this way,
when other objects such as JFrames, JDialogs, or JWindows in the same project
want to use the target object, they can call this getter to get the desired target object.

Let’s create codes for both the getter method and the Exit button Click event
handler by entering the codes that are shown in Fig. 6.29 into this
SelectionFrame class.

Let’s have a closer look at this piece of codes to see how it works.

 A. The function of the getter method is simple; as this method is called, the current
SelectionFrame object is obtained by returning this component that is a pointer
point to the current Frame object to the calling object. A point to be noted is that
the accessing mode of this method must be a public since we want this method
to be called by any other objects to get this SelectionFrame object as the proj-
ect runs.

 B. In the Exit button Click event handler, a try…catch block is used to check
whether the database connection we created in the LogInFrame Form window
is still connected to our database by using the isClosed() method. A true will be
returned if that connection has been closed, otherwise a false is returned to indi-
cate that the connection is still active. The close() method of the Connection

public SelectionFrame getSelectionFrame(){
return this;

}

private void ExitButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
try{

if (!LogInFrame.con.isClosed()){ LogInFrame.con.close(); }
}
catch(SQLException e){

dlg.setMessage("Could not close!" + e.getMessage());
dlg.setVisible(true);
}

this.setVisible(false);
this.dispose();
System.exit(0);

}

A

B

C

D

Fig. 6.29 Codes for the getter method and the Exit button Click event handler

6.3 Create a Java Application Project to Access the SQL Server Database

216

class is called to close this connection if a false is returned. As you may remem-
ber, the Connection object con we created in the LogInFrame class is a class
instance, therefore we can directly use the class name to access that instance
without needing to create a new instance.

 C. The catch block is used to track and display any error for this close process.
 D. Then the SelectionFrame Form object is removed from the screen by calling

the setVisible() and dispose() methods. The object this indicates the current
Frame Form object, which is the SelectionFrame. A system exit() method is
called to allow the project to be officially exited from the current process. An
argument 0 means that no error for this exit operation.

At this point, we have completed all coding for the SelectionFrame Form win-
dow. Before we can continue to the next section, we need to modify some codes in
both SelectionFrame and the LogInFrame classes to allow a smooth switching
from either of them.

private void LogInButtonActionPerformed(java.awt.event.ActionEvent evt) {
String username = new String();
String password = new String();
SelectionFrame selFrame = new SelectionFrame().getSelectionFrame();

String query = "SELECT user_name, pass_word FROM LogIn " + "WHERE user_name = ? AND pass_word = ?";
try{

PreparedStatement pstmt = con.prepareStatement(query);
pstmt.setString(1, UserNameField.getText());
pstmt.setString(2, PassWordField.getText());
ResultSet rs = pstmt.executeQuery();
while (rs.next()){

username = rs.getString(1);
password = rs.getString(2);

}
}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
if (UserNameField.getText().isEmpty() || PassWordField.getText().isEmpty()) {

msgDlg.setMessage("Enter the LogIn Information...");
msgDlg.setVisible(true);

} else if ((username.equals(UserNameField.getText())) && (password.equals(PassWordField.getText()))) {
selFrame.setVisible(true);

//msgDlg.setMessage("LogIn is Successful! ");
//msgDlg.setVisible(true);
this.setVisible(false);
this.dispose();

} else {
msgDlg.setMessage("LogIn is failed!");
msgDlg.setVisible(true);

}
}

A

B

C

Fig. 6.30 Modified codes for the LogIn button Click event handler

6 Query Data from Databases

217

6.3.4.1 Modify Codes to Transfer Between SelectionFrame
and LogInFrame

First we need to add some codes into the LogIn button Click event handler in the
LogInFrame class to direct the project to open the SelectionFrame Form window
if the login process is successful. Open the LogIn button event handler and add the
following codes into this handler, which is shown in Fig. 6.30.

Let’s have a closer look at these modified codes to see how they work.

 A. A new instance of the SelectionFrame class selFrame is created. However, the
getter method getSelectionFrame() we built for the SelectionFrame class is
called to retrieve the original SelectionFrame instance and assign it to the new
created instance. In this way, we did not create any new instance of the
SelectionFrame, instead we are still using the original SelectionFrame instance
and it is a unique instance in this project.

 B. Replace the old codes by using the code line selFrame.setVisible(true) to dis-
play our SelectionFrame Form window if the login process is successful. Also
close and dispose this LogInFrame Form window since we have finished the
login process.

 C. Comment out all messages displayed by using the msgDlg object since those
are only used for the testing purpose.

At this point, we have finished all coding jobs for the LogInFrame and the
SelectionFrame. In the following sections, we will discuss how to perform data
query to our Faculty table using the FacultyFrame class.

6.3.5 Perform the Data Query for the Faculty Table

The function of this form is: as the user selected a faculty member from the
ComboName combo box and click the Select button, the detailed information with
an image for the selected faculty should be displayed in seven text fields and a can-
vas. The development of this query can be divided into the following five parts:

 1) Adding some necessary java packages and coding for the constructor of the
FacultyFrame class to perform some initialization processes.

 2) Coding for the Select button Click event handler to run the executeQuery()
method to query data from the Faculty table in our sample database using the
DatabaseMetaData interface and ResultSetMetaData interface.

 3) Coding for the Select button Click event handler to run the execute() method to
query data from our Faculty table in our sample database.

 4) Adding a user-defined method ShowFaculty() to display an image for the
selected faculty in the FacultyFrame Form window.

 5) Coding for the Back button Click event handler to close the FacultyFrame
Form window and return the control to the SelectionFrame Form.

6.3 Create a Java Application Project to Access the SQL Server Database

218

Now let’s start with the first part.

6.3.5.1 Add Java Package and Coding for the Constructor

Since we need to display an image of the selected faculty when a data query is
executed, the java.awt.* package should be imported since some image-related
classes, such as Image, Graphics, and MediaTracker, are located at that Abstract
Windowing Tools (AWT) package.

Open the Code Window of the FacultyFrame class by clicking on the Source
tab from the top of the window and add the codes that are shown in Fig. 6.31 into
this source file.

Let’s have a closer look at this piece of codes to see how it works.

 A. Four java packages, java.awt.*, java.sql.*, java.io.File, and javax.swing.
JFileChooser, are imported at the beginning of this file since we need to use
some classes defined in the first two packages to display the selected faculty
image, and use another two packages for the File Chooser object to allow users
to select desired faculty image.

 B. A JDialog object msgDlg is created here as a class level object because we need
to use it in the whole class of the FacultyFrame to display some debug or warn-
ing messages.

 C. The addItem() method is used to add all three query methods into the Query
Method combo box. In this section, we only use the Runtime Object Method
and the execute() method.

package SQLSelectObjectPackage;
import java.awt.*;

import java.sql.*;

import java.io.File;

import javax.swing.JFileChooser;

public class FacultyFrame extends javax.swing.JFrame {
MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);

/** Creates new form FacultyFrame */
public FacultyFrame() {

initComponents();
this.setLocationRelativeTo(null); // set the faculty Form at the center
ComboMethod.addItem("Runtime Object Method");
ComboMethod.addItem("Java execute() Method");
ComboMethod.addItem("Java Callable Method");
ComboName.addItem("Ying Bai");
ComboName.addItem("Davis Bhalla");
ComboName.addItem("Black Anderson");
ComboName.addItem("Steve Johnson");
ComboName.addItem("Jenney King");
ComboName.addItem("Alice Brown");
ComboName.addItem("Debby Angles");
ComboName.addItem("Jeff Henry");

}

A

B

C

D

Fig. 6.31 Initialization codes for the FacultyFrame class

6 Query Data from Databases

219

 D. Also the addItem() method is utilized to add all eight faculty members into the
Faculty Name combo box.

Now let’s develop codes for the Select button Click event handler to perform the
data query.

6.3.5.2 Query Data using JDBC MetaData Interface

In Sect. 6.3.3.7, we discussed how to use ResultSet component to retrieve the que-
ried result. Relatively speaking, there are some limitations on using the ResultSet
object to get the returned query result. In other words, it is hard to get a clear and
detailed picture about the queried result, such as the structure and properties of the
data stored in the ResultSet. For example, no information about the returned result,
such as the name of the data table, the total number of columns, each column’s
name, and the data type, would be available when using ResultSet object to pick up
the queried result. In order to solve that problem to get detailed knowledge of the
data table structure, we need to use the ResultSetMetaData component.

The JDBC MetaData Interface provides detailed information about the database
and its contents made available by the JDBC API, and it can be divided into the fol-
lowing three categories:

 1) The DatabaseMetaData interface
 2) The ResultSetMetaData interface
 3) The ParameterMetaData interface

Each class has its special functions and operation sequences, and some of them
are related when they are utilized in some specific ways.

6.3.5.2.1 The DatabaseMetaData Interface

The DatabaseMetaData interface contains more than 150 methods and provides
detailed information about the database as a whole body, such as:

• General information about the database
• Data source limitations
• Levels of transaction support
• Feature support
• Information about the SQL objects that source includes

In fact, the DatabaseMetaData interface provides methods that allow you to
dynamically discover properties of a database as the project runs. Many methods in
the DatabaseMetaData return information in the ResultSet component, and one can
get those pieces of information from ResultSet object by calling related methods
such as getString(), getInt(), and getXXX(). A SQLException would be thrown out
if the queried item is not available in the MetaData interface.

6.3 Create a Java Application Project to Access the SQL Server Database

220

6.3.5.2.2 The ResultSetMetaData Interface

The detailed information about the structure of a queried data table can be obtained
by calling the getMetaData() method that belongs to the ResultSetMetaData
class, and a ResultSetMetaData object will be created when the getMetaData()
method is executed. Some popular methods included in the ResultSetMetaData
class are:

• getColumnCount() – returns the total number of columns in the ResultSet
• getColumnName() – returns the column name
• getColumnType() – returns the column data type
• getTableName() – returns the data table name

Similar to DatabaseMetaData interface, the ResultSetMetaData interface
allows users to discover the structure of data tables and properties of columns
in tables.

6.3.5.2.3 The ParameterMetaData Interface

The detailed information about the parameters passed into or from the database can
be obtained by calling the getParameterMetaData() method that belongs to the
PreparedStatement class. Although this interface is not as popular as
ResultSetMetaData and DatabaseMetaData, it is useful in some special
applications.

In this section, we will use the DatabaseMetaData and the ResultSetMetaData
interfaces to illustrate how to improve the data query for our Faculty table.

6.3.5.2.4 Use DatabaseMetaData Interface to Query Database Related
Information

Open the Select button Click event handler of the FacultyFrame class and enter the
codes that are shown in Fig. 6.32 into this event handler.

Let’s have a closer look at this piece of codes to see how it works.

 A. The query string is declared first to query all columns from the Faculty table
based on the selected faculty name.

 B. An if selection structure is used to identify the desired data query method,
Runtime Object Method, which will be used in this section. A prepared query
statement is then created to query the detailed information for the selected fac-
ulty member.

 C. First a try…catch block is utilized to perform the database-related information
query using the DatabaseMetaData interface. A DatabaseMetaData object
dbmd is created by calling the getMetaData() method that belongs to the

6 Query Data from Databases

221

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String query = "SELECT faculty_id, faculty_name, title, office, phone, college, email, fimage " +

"FROM Faculty WHERE faculty_name = ?";
if (ComboMethod.getSelectedItem()=="Runtime Object Method"){

try{
DatabaseMetaData dbmd = LogInFrame.con.getMetaData();
String drName = dbmd.getDriverName();
String drVersion = dbmd.getDriverVersion();
msgDlg.setMessage("DriverName is: " + drName + ", Version is: " + drVersion);
msgDlg.setVisible(true);

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
}

}

A

B

C

D

E

F

Fig. 6.32 The codes for the Select button Click event handler

 Connection class, and detailed information about the connected database is also
returned and assigned to the dbmd object.

 D. Two methods, getDriverName() and getDriverVersion(), are executed to pick
up the retrieved driver name and version and assign them to the associated String
variables.

 E. The msgDlg is used to display retrieved driver name and version.
 F. The catch block is used to collect and display all possible errors during this

query process.

Here the msgDlg is only used for the testing purpose and it can be commented
out as the project is finally built and deployed later. From this example, it is shown
that some useful database-related information can be easily obtained by using the
DatabaseMetaData interface.

6.3.5.2.5 Use ResultSetMetaData Interface to Query Table-Related
Information

Still in the Select button Click event handler of the FacultyFrame class, add the
codes that are in bold and shown in Fig. 6.33 into this handler to apply
ResultSetMetaData interface to obtain the Faculty table-related information.

Let’s take a closer look at this added piece of codes to see how it works.

 A. A PreparedStatement object pstmt is created by calling the prepareState-
ment() method with the prepared query string as the argument.

 B. The setString() method is used to setup the dynamic positional parameter in the
prepared query statement. The actual value of this parameter, which is the
selected faculty member by the user from the ComboName combo box, can be
obtained by calling the getSelectedItem() method.

6.3 Create a Java Application Project to Access the SQL Server Database

222

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
String query = "SELECT faculty_id, faculty_name, title, office, phone, college, email, fimage " +

"FROM Faculty WHERE faculty_name = ?";
if (ComboMethod.getSelectedItem()=="Runtime Object Method"){

try{
DatabaseMetaData dbmd = LogInFrame.con.getMetaData();
String drName = dbmd.getDriverName();
String drVersion = dbmd.getDriverVersion();
msgDlg.setMessage("DriverName is: " + drName + ", Version is: " + drVersion);
msgDlg.setVisible(true);
PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);

pstmt.setString(1, ComboName.getSelectedItem().toString());

ResultSet rs = pstmt.executeQuery();

ResultSetMetaData rsmd = rs.getMetaData();

msgDlg.setMessage("Faculty Table has " + rsmd.getColumnCount() + " Columns");

msgDlg.setVisible(true);

}
}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
}

}

A

B
C

D

E

Fig. 6.33 The codes of using the ResultSetMetaData interface

 C. The executeQuery() method is called to perform the prepared statement to get
the queried result. The returned result is assigned to the ResultSet object rs.

 D. The getMetaData() method is executed to query the detailed information about
the structure of the Faculty table and properties of the columns in that table. The
returned result is assigned to the ResultSetMetaData object rsmd.

 E. The msgDlg is used to test and display the number of columns in the Faculty table.

Although we only use the getColumnCount() method to get the total number of
columns in the Faculty table, in fact, you can use any other method to get more
detailed description about the Faculty table as you like. Also as we mentioned
before, here the msgDlg is only for the testing purpose and it can be commented out
when the final project is debugged and implemented.

Next let’s use this number of columns in our Faculty table to retrieve the detailed
information for the selected faculty member.

Open the Select button Click event handler if it has not been opened, and enter
the codes that are in bold and shown in Fig. 6.34 into this event handler.

Let’s take a closer look at this added piece of codes to see how it works.

 A. First a TextField array is created since we need to combine all seven TextField
objects, FacultyIDField, FacultyNameField, TitleField, OfficeField,
PhoneField, CollegeField, and EmailField, into this array and assign the que-
ried results to these TextField objects one by one later to improve the assign-
ment efficiency. Because the definition of the TextField class is different in the
basic java.awt package and the javax.swing package, thus we need to indicate
that this TextField belongs to the latter by using the whole package path.

6 Query Data from Databases

223

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
javax.swing.JTextField[] f_field = {FacultyIDField, FacultyNameField, TitleField, OfficeField,

PhoneField, CollegeField, EmailField};

String query = "SELECT faculty_id, faculty_name, title, office, phone, college, email, fimage " +
"FROM Faculty WHERE faculty_name = ?";

if (ComboMethod.getSelectedItem()=="Runtime Object Method"){
try{

DatabaseMetaData dbmd = LogInFrame.con.getMetaData();
String drName = dbmd.getDriverName();
String drVersion = dbmd.getDriverVersion();
msgDlg.setMessage("DriverName is: " + drName + ", Version is: " + drVersion);
//msgDlg.setVisible(true);

PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);
pstmt.setString(1, ComboName.getSelectedItem().toString());
ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();
msgDlg.setMessage("Faculty Table has " + rsmd.getColumnCount() + " Columns");
//msgDlg.setVisible(true);

while (rs.next()){

for (int i=1; i <=rsmd.getColumnCount() - 1; i++) {

f_field[i-1].setText(rs.getString(i));

}

}

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
}

}

A

B

C

Fig. 6.34 The codes for the ResultSetMetaData query method

 B. As we did before, a while loop is used with the next() method as the argument
to move the data table cursor from the initial position to the first row position in
the ResultSet object, to allow us to pick up each column. The terminal column
count is minus by one sine the last column is the faculty image and we do not
need to display it on these fields.

 C. A for loop is then used to pick up each column from the returned row and assign
each of them to the associated TextField object in the TextField array f_field.
The upper bound of the columns we used for this for loop is obtained from the
calling of the getColumnCount() method that belongs to the ResultSetMetaData
interface. A point to be noted is that the index used to indicate each column in
the ResultSet object is different from that used in the TextField array. The for-
mer starts from 1, however the latter starts from 0. Therefore, an i=1 is used for
the index in the TextField array.

Now let’s develop codes to display an image for the selected faculty.

6.3.5.3 Display an Image for the Selected Faculty in Canvas

There are different ways to store and display images in a database-related project.
One professional way is to store all images as binary files in a database with all
queried data together. As we did in Chap. 2 when we built our sample database

6.3 Create a Java Application Project to Access the SQL Server Database

224

CSE_DEPT, all faculty members’ images have been stored in the fimage column
as a sequence of binary data in our sample database, exactly in the Faculty table.

In this part, we want to use a File Chooser object to allow users to select a
desired faculty image and display it in a Canvas object, ImageCanvas, we added
into the FacultyFrame Form when we built our FacultyFrame Form instance.

Unlike Visual Studio.NET, such as Visual Basic.NET and Visual C#.NET, there
is no PictureBox class available in the Java to display an image or a picture. One
needs to use a Canvas object as an image holder, a Graphics object as a tool to dis-
play an image, and a MediaTracker class as a monitor to coordinate the image pro-
cessing. In Java, the main package containing the key image processing classes,
such as Image, Toolkit, Graphics, and MediaTracker, is java.awt. Currently, the
Java graphics programming library (AWT) supports GIF and JPEG images. Format
considerations include local color palettes, feature restrictions (compression, color
depth, and interlacing, for example), and dithering.

We divide this section into the following three parts to make the image display-
ing in Java more illustrative and straightforward:

 1) Show the operational sequence to display an image in Java
 2) Create a user-defined method ShowFaculty() to select and display a desired

faculty image
 3) Develop the additional codes to coordinate this image displaying

Now let’s start with the first part.

6.3.5.3.1 Operational Sequence to Display an Image in Java

Regularly, to display an image in Java, two steps are necessary to be performed:

 1) Loading an image from an image file
 2) Displaying that image by drawing it in a Graphics context

For example, to load an image named “faculty.jpg”, use the getImage() method
that belongs to the Toolkit class and it looks as:

 Image img = myWindow.getToolkit().getImage("faculty.jpg");

where MyWindow is a Java GUI container, such as a JFrame, Jdialog, or a
JWindow, in which the image will be displayed. The getToolkit() method that
belongs to the Java GUI container is used to get the Toolkit object. One point to be
noted when this instruction is executed is that both Image and Toolkit classes are
abstract classes, which means that you cannot directly create new instances by
invoking those classes’ constructors. Instead, you have to use some methods related
to those abstract classes to do that.

After an image is loaded, display the image by drawing it in a Graphics context
by using

6 Query Data from Databases

225

 g.drawImage(img, x, y, width, height, imageObserver);

where object g is an instance of the Graphics class.
As you know, every AWT component object has a Graphics context, and the real

drawing is done in the paint() method of a component because paint() is called by
AWT automatically when the image is finished in loading. However, an important
issue is that the image loading is an asynchronous process, which means that the
loading does not necessarily occur until you attempt to display the image via
drawImage(). The last parameter to drawImage() specifies which component to
repaint when the image is finally ready. This is normally the component that calls
drawImage() in the Java GUI container.

In fact, when the first step – loading an image starts, the getImage() method
kicks off a new thread to load and fetch the image, and this thread does not start
immediately or synchronously as you run this loading method. Instead, this thread
will not begin its process until the drawImage() method is called. Therefore, it is
not guaranteed that the required image will be loaded and ready to be displayed as
the drawImage() is executed.

In order to solve this asynchronous problem in the image loading and displaying,
another image-related class, MediaTracker, should be used to monitor and track
the running status of the image loading process. The MediaTracker is a utility class
designed to track the status of media objects. In theory, media objects could include
audio clips and other media as well as images. You can use a media tracker object
by instantiating an instance of MediaTracker for the component that you want to be
monitored, and invoking its addImage() method for each image that you want to
track. Each image can be assigned a unique identifier starting from 1, or groups of
images can be assigned with the same identifier. You can determine the status of an
image or group of images by invoking one of several methods on the MediaTracker
object and passing the identifier as a parameter to the method.

Another way you can use the MediaTracker object is that you can cause
MediaTracker to block and wait until a specified image or group of images com-
pletes loading. We will use this approach in this project to make certain that a
desired faculty image has completed loading before we attempt to draw it.

Before we can start this image displaying process with codes, we need first to
create a user-defined method to identify, select, and display the desired faculty
image via the File Chooser object defined in the Swing windows group.

6.3.5.3.2 Create a User-Defined Method to Select and Display Desired
Faculty Image

Open the Code Window of the FacultyFrame class by clicking on the Source tab
from the top of the window, and enter the codes that are shown in Fig. 6.35 to create
this new method ShowFaculty().

Let’s have a closer look at this piece of codes to see how it works.

6.3 Create a Java Application Project to Access the SQL Server Database

226

private boolean ShowFaculty(Blob bimg) throws SQLException, IOException{
Image img;
int imgId = 1, timeout = 1000;
FileOutputStream imgOutputStream = null;
MediaTracker tracker = new MediaTracker(this);
String imgPath = System.getProperty("user.dir");
String fimgName = ComboName.getSelectedItem().toString() + ".jpg";

try {
imgOutputStream = new FileOutputStream(imgPath + "/" + fimgName);

}catch (FileNotFoundException ex) {
Logger.getLogger(FacultyFrame.class.getName()).log(Level.SEVERE, null, ex);

}
imgOutputStream.write(bimg.getBytes(1, (int)bimg.length()));
imgOutputStream.close();

img = this.getToolkit().getImage(fimgName);
Graphics g = ImageCanvas.getGraphics();
tracker.addImage(img, imgId);
try{

if(!tracker.waitForID(imgId, timeout)){
msgDlg.setMessage("Failed to load image");
msgDlg.setVisible(true);
return false;

}
}catch(InterruptedException e){

msgDlg.setMessage(e.toString());
msgDlg.setVisible(true);
return false;

}
g.drawImage(img, 0, 0, ImageCanvas.getWidth(), ImageCanvas.getHeight(), this);
return true;

}

A

B
C

D

E

F
G
H

I
J

K

L

Fig. 6.35 Detailed codes for the user-defined method ShowFaculty()

 A. Some local variables and objects used in this method are declared and defined
first. The imgId and timeout are used as the ID of the tracked image and the
maximum waiting time for that tracking process. A local Image object img,
which is used to temporarily hold the selected faculty image, is created and
initialized here. Since we need to retrieve our faculty image and store it as an
output stream format, thus a FileOutputStream object, imgOutputStream, is
declared and initialized here to null. A new instance of MediaTracker class,
tracker, is created since we need to use it in this ShowFaculty() method.

 B. In order to store our retrieved faculty image into our current project folder, the
system method, getProperty() with our current directory (user.dir), is used and
this current folder is assigned to a local string variable imgPath.

 C. To get the selected faculty image, we need to get the current selected or queried
faculty name from the Faculty Name combo box, convert this item to a string
and attach a “.jpg” as the image file name. We need to use this faculty image
name later to store and display this selected faculty image in the Canvas.

 D. A try-catch block is used to activate and initialize a new instance for the
FileOutputStream class, imgOutputStream, by attaching our current project
folder with the name of the selected faculty image since we need to store this
image file to that folder, and later on to retrieve it back to display it on our
Canvas in this FacultyFrame Form. The forward slash “/” is necessary to sepa-
rate the current folder with the image name.

6 Query Data from Databases

227

 E. Any possible error, including the file not found exception, is collected by this
catch block.

 F. If this imgOutputStream instance is initialized successfully, our retrieved fac-
ulty image, bimg, which is a Blob and passed argument to this ShowFaculty()
method, is written or stored into our current folder with the selected faculty
image name, fimgName. This writing operation is performed by executing a
method getBytes() with the length of this Blob, which means that the entire
Blob is retrieved and written byte by byte into our current folder with the
image name.

 G. This imgOutputStream should be closed when this writing operation is
completed.

 H. To display the selected faculty image, the getImage() method that belongs to
the abstract class Toolkit is executed to load the selected image. Since the
Toolkit class is an abstract class, we used a method getToolkit() to create it
instead of generating it by invoking its constructor. The getGraphics() method
is called to get a Graphics context and our ImageCanvas works as an image
holder for this faculty image.

 I. The addImage() method that belongs to the MediaTracker class is called to add
our image with its ID into the tracking system.

 J. A try catch block is used to begin this tracking process and the waitForID()
method is called to execute this tracking. If a timeout occurred for this tracking
process, which means that the selected faculty image has not been loaded into
the project, a warning message is displayed using our MsgDialog object.

 K. Any possible exception or error will be caught by the catch block and to be
displayed in our msgDlg dialog.

 L. If no timeout error happened, which means that the selected faculty image has
been loaded into our project and ready to be displayed, the drawImage() method
is executed to display it in the FacultyFrame Form window. We want to display
this image starting from the origin of the Canvas object, which is the upper-left
corner of the canvas (0, 0), with a width and height that are identical with those
of the canvas. Therefore, the getWidth() and getHeight() methods are called to
get both of them from the canvas object. A true is returned to the main program
to indicate that the execution of this method is successful.

Now we have finished coding process for this method. Next let’s finish the cod-
ing process to call this user-defined method to select and display the selected faculty
image by adding the additional codes into the Select button event handler.

6.3.5.3.3 Develop Additional Codes to Coordinate This Image Displaying

Open the Design View of our FacultyFrame Form by clicking on the Design tab
from the top of the window, and double click on the Select button to open its event
handler. Add the codes that are in bold and shown in Fig. 6.36 into this handler.

6.3 Create a Java Application Project to Access the SQL Server Database

228

A

B

C

D

E

F

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
Blob fimgBlob = null;
javax.swing.JTextField[] f_field = {FacultyIDField,FacultyNameField,TitleField,OfficeField, PhoneField,

CollegeField,EmailField};
String query = "SELECT faculty_id, faculty_name, title, office, phone, college, email, fimage " +

"FROM Faculty WHERE faculty_name = ?";
if (ComboMethod.getSelectedItem()=="Runtime Object Method"){

try{
PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);
pstmt.setString(1, ComboName.getSelectedItem().toString());
ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();
while (rs.next()){

for (int i = 1; i <=rsmd.getColumnCount(); i++) {
if (i == rsmd.getColumnCount()){

fimgBlob = rs.getBlob("fimage");
break;

}
f_field[i-1].setText(rs.getString(i));

}
}

} catch (SQLException e) {
msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
}
try {

if (!ShowFaculty(fimgBlob)){

msgDlg.setMessage("No matched faculty image found!");
msgDlg.setVisible(true);

}

} catch (SQLException | IOException ex) {

Logger.getLogger(FacultyFrame.class.getName()).log(Level.SEVERE, null, ex);

}

}

Fig. 6.36 The new added codes to the Select button Click event handler

Let’s have a closer look at these new added codes to see how they perform
their works.

 A. Some new local variable and object are added and declared here, which include
a Blob object, fimgBlob, and it is used to hold the retrieved faculty image that
exactly is a Binary Large Object (Blob) used in Java database programming
techniques.

 B. A modification is made for this for loop, which is that the terminating count
number is changed to our max column number, 8, by removing the original
minus-1 since we need to get the last column, which is the faculty image col-
umn, fimage.

 C. As the for loop works, it picks up all first seven columns and assign them to the
related TextFields to display queried faculty information, until it gets the last
column, which is the faculty image column. Then we need to use getBlob()
method to retrieve this image as a binary large object and assign it to our local
object fimgBlob.

 D. The catch block is used to collect any SQL program-related errors.
 E. The ShowFaculty() method is called with the selected faculty image fimgBlob

as the argument to pick up and display the selected faculty image in the Canvas.

6 Query Data from Databases

229

This method should return a Boolean value to indicate whether it is executed
successfully or not. A true means that this method is executed successfully, oth-
erwise a false is returned and is displayed in our MsgDialog.

 F. Since this ShowFaculty() method contains a Blob object as its argument, thus a
try-catch block is used to throw any possible SQLException error if it did occur.

Another piece of coordinating codes to be added into this FacultyFrame Form is
the related Import commands for all new classes we used, such as FileOutputStream,
IOException, and FileNotFoundException. Add these Imports commands on the
top of this FacultyFrame Form code window, as shown in Fig. 6.37. An easy way to
add these Imports clauses is to right click on the code window, and select the Fix
Imports item from the popup menu.

The final coding job for this FacultyFrame class is the Back button Click event
handler. This coding is very easy and the FacultyFrame object should be closed and
disposed as the user clicks on this button, and the control should be directed to the
SelectionFrame Form to allow users to continue selecting other functions.

6.3.5.4 Develop the Codes for the Back Button Click Event Handler

The coding for this event handler is simple. The FacultyFrame Form window should
be closed and removed from the screen as this button is clicked by the user. Open
the Back button Click event handler and enter the codes that are shown in Fig. 6.38
into this event handler.

Both the setVisible() and the dispose() methods are called to close and remove
this FacultyFrame Form window as this button is clicked.

Now we can build and run our project to test the functionalities of the LogInFrame
Form, SelectionFrame Form, and FacultyFrame Form. Click on the Clean and
Build Main Project button on the toolbar to build our project, and click on the Run
Main Project button from the toolbar to run our project. Select
SQLSelectObjectPackage.LogInFrame as the main class set for our project, and
click on the OK button to run our project.

package SQLSelectObjectPackage;

import java.awt.*;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;
import java.io.IOException;

import java.sql.*;

import java.util.logging.Level;

import java.util.logging.Logger;

/**
*
* @author yingb
*/

Fig. 6.37 The added Imports clauses

6.3 Create a Java Application Project to Access the SQL Server Database

230

private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
this.setVisible(false);
this.dispose();

}

Fig. 6.38 The codes for the Back button Click event handler

Fig. 6.39 A running result of the project

Enter the correct username and password, such as jhenry and test to the
LogInFrame to complete the login process. Select the Faculty Information from
the SelectionFrame Form window to open the FacultyFrame Form window. Select
the default faculty member Ying Bai from the Faculty Name combo box and the
Runtime Object Method from the Query Method combo box, and click on the
Select button to get detailed information for this selected faculty.

Immediately the detailed information of the selected faculty is displayed in seven
text fields with the faculty image, which is shown in Fig. 6.39. You can try to select
other faculty members to perform different queries to test the function of this form.

Click on the Back and the Exit buttons to terminate our project.
But wait for moment, the story is not finished. As we discussed in Sect. 6.3.3.5,

both executeQuery() and execute() methods can be used to perform a data query
operation; however, the execute() method is more popular since it can perform not
only a query-related action, but also a non-query-related action. In the next section,
we will discuss how to use the execute() method to perform a query-related action
against our sample database.

6 Query Data from Databases

231

6.3.5.5 Query Data Using the execute() Method to Perform
a Query-Related Action

As we mentioned in Sect. 6.3.3.5, the execute() method will not return any result
itself, and one needs to use either getResultSet() or getUpdateCount() method to
pick up the results. Both methods belong to the Statement class. The key point is:

• The getResultSet() method will return a null if the running result is an integer,
which is a number of rows that have been affected, either inserted, updated, or
deleted.

• The getUpdateCount() method will return a -1 if the running result is a ResultSet.

Based on these two key points, we can easily determine whether a result is a
ResultSet or an integer.

Now let’s modify the codes in the Select button Click event handler to use the
execute() method to perform this data query. Open the Select button Click event
handler and add the codes that are in bold and shown in Fig. 6.40 into this event
handler.

Let’s have a closer look at this piece of new added codes to see how it works.

 A. If the user selected the Java execute() Method from the Query Method combo
box, a try…catch block is used to create a prepared statement using the prepar-
eStatement() method with the query string as the argument. Then the set-
String() method is used to setup the positional dynamic parameter, which is
obtained from the ComboName combo box and selected by the user.

 B. The execute() method is called to perform this data query. The advantage of
using this method is that both a query-related action and a non-query-related
action can be performed by using this method. The disadvantage of using this
method is that the running result cannot be determined when this method is done
since this method can execute either a data query and return a ResultSet object
or an updating, insertion, and deleting action and return an integer.

 C. Suppose we do not know what kind of data will be returned by running this
execute() method, we assume that a non-query-related action has been per-
formed by calling this method. So we try to use the getUpdateCount() method
to pick up the running result, which is supposed to be an integer.

 D. If the returned result of calling of the getUpdateCount() method is -1, which
means that the running result of the execute() method is not an integer, instead
it is a ResultSet object, The getResultSet() method will be called to pick up
that result.

 E. A while loop combined with the next() method is used to move the cursor to
point to the first row of the data stored in the returned ResultSet object. Also a
for loop is used to pick up each column obtained from the Faculty table and
assign each of them to the associated text field to display them. The eighth’s
column fimage is a faculty image, and it is assigned to the local object fimgBlob
to be temporarily stored in there.

6.3 Create a Java Application Project to Access the SQL Server Database

232

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
Blob fimgBlob = null;
javax.swing.JTextField[] f_field = {FacultyIDField,FacultyNameField,TitleField,OfficeField, PhoneField,

CollegeField,EmailField};
String query = "SELECT faculty_id, faculty_name, title, office, phone, college, email, fimage " +

"FROM Faculty WHERE faculty_name = ?";
if (ComboMethod.getSelectedItem()=="Runtime Object Method"){

try{
PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);
pstmt.setString(1, ComboName.getSelectedItem().toString());
ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();
while (rs.next()){

for (int i = 1; i <=rsmd.getColumnCount(); i++) {
if (i == rsmd.getColumnCount()){

fimgBlob = rs.getBlob("fimage"); break;
}
f_field[i-1].setText(rs.getString(i));

}
}

} catch (SQLException e) {
msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
}
if (ComboMethod.getSelectedItem()=="Java execute() Method"){

try{

PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);

pstmt.setString(1, ComboName.getSelectedItem().toString());

pstmt.execute();

int updateCount = pstmt.getUpdateCount();

if (updateCount == -1){

ResultSet rs = pstmt.getResultSet();
ResultSetMetaData rsmd = rs.getMetaData();

while (rs.next()){

for (int i=1; i <=rsmd.getColumnCount(); i++){

if (i == rsmd.getColumnCount()){

fimgBlob = rs.getBlob("fimage"); break;

}

f_field[i-1].setText(rs.getString(i));

}

}

}

else{

msgDlg.setMessage("execute() method returned an integer!");

msgDlg.setVisible(true);

}

}

catch (SQLException e) {
msgDlg.setMessage("Error in Statement!" + e.getMessage());

msgDlg.setVisible(true); }

}

try {
if (!ShowFaculty(fimgBlob)){

msgDlg.setMessage("No matched faculty image found!");
msgDlg.setVisible(true);

}
} catch (SQLException | IOException ex) {

Logger.getLogger(FacultyFrame.class.getName()).log(Level.SEVERE, null, ex);
}

}

A

B

C

D

E

F

G

Fig. 6.40 The codes for the execute() method

 F. If the returned result from running of the execute() method is not -1, which
means that a non-query-related action has been performed, the msgDlg is used
to display this situation.

6 Query Data from Databases

233

 G. The catch block is used to track and monitor any possible error that occurred
during this query operation and display it if any error has occurred.

Now you can re-build our project and run it to test this piece of new added codes.
Select the Java execute() Method from the Query Method combo box as the
FacultyFrame Form is opened, and click on the Select button to test the function of
this new coding.

Next let’s move to the CourseFrame class to build some data actions using the
Callable Statement method to query detailed information for the courses taught by
the selected faculty and related course information.

6.3.5.6 Query Data Using the CallableStatement Method

The JDBC CallableStatement method provides a way to allow us to call a stored
procedure to perform a complicated query. The speed and efficiency of a data query
can be significantly improved by using the stored procedure since it is built in the
database side. A more detailed discussion of developing and implementing the
CallableStatement method will be given in the next section for the CourseFrame class.

6.3.6 Perform the Data Query for the Course Table

As we discussed, the function of this CourseFrame Form is to allow users to get all
courses taught by the selected faculty member and detailed information for each
course. First, all courses, exactly all course_id, taught by the selected faculty mem-
ber from the Faculty Name combo box will be displayed in the Course ID List
listbox as the user clicks on the Select button. Second, the detailed information for
each course (course_id) selected from the Course ID List listbox will be displayed
in six text fields as each course_id is clicked by the user.

In this section, only two buttons, Select and Back, are used for this CourseFrame
Form and the Insert button will be used later for the data insertion query.

The codes development in this section can be divided into the following four parts:

 1) Importing some necessary Java packages and coding for the constructor of the
CourseFrame class to perform some initialization processes.

 2) Coding for the Select button Click event handler to perform a CallableStatement
to run a stored procedure to query data from the Course table in our sample
database.

 3) Coding for the CourseList box to handle an event when a course_id in the
CourseList box is selected to display the detailed information for that course_id
in six text fields.

 4) Coding for the Back button Click event handler to close the CourseFrame
Form window

6.3 Create a Java Application Project to Access the SQL Server Database

234

and return the control to the SelectionFrame Form.
Now let’s start with the first part.

6.3.6.1 Import Java Packages and Coding
for the CourseFrame Constructor

Open the Code Window of the CourseFrame class by clicking on the Source tab
from the top of the window and add the codes that are shown in Fig. 6.41 into this
source file.

Let’s have a closer look at this piece of codes to see how it works.

 A. The java.sql.* package is added into this file since we need to use some JDBC
API classes and interfaces that are located in that package.

 B. A class-level object msgDlg, which is an instance of the JDialog class, is created
since we need to use it to display some debug and exception information to track
and monitor the running status of our project during its running.

 C. Three query methods are added into the Query Method combo box to enable
users to perform different queries with desired methods. In this project, we only
take care of the third method, JPA Callable Method.

 D. Eight faculty members are also added into the Faculty Name combo box to
allow users to select all courses taught by the different faculty members.

Next let’s have a detailed discussion about the CallableStatement method.

package SQLSelectObjectPackage;
import java.sql.*;

public class CourseFrame extends javax.swing.JFrame {
MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);
/** Creates new form CourseFrame */
public CourseFrame() {

initComponents();
this.setLocationRelativeTo(null);

ComboMethod.addItem("Runtime Object Method");
ComboMethod.addItem("Java execute Method");
ComboMethod.addItem("Java Callable Method");
ComboName.addItem("Ying Bai");
ComboName.addItem("Davis Bhalla");
ComboName.addItem("Black Anderson");
ComboName.addItem("Steve Johnson");
ComboName.addItem("Jenney King");
ComboName.addItem("Alice Brown");
ComboName.addItem("Debby Angles");
ComboName.addItem("Jeff Henry");

}

A

B

C

D

Fig. 6.41 The coding for the constructor of the CourseFrame class

6 Query Data from Databases

235

6.3.6.2 Query Data From Course Table Using CallableStatements

When a faculty member has been selected from the Faculty Name combo box and
the Select button is clicked by the user, all courses (course_id) taught by the selected
faculty member should be displayed in the Course ID List listbox. As we know,
there is no faculty_name column available in the Course table, instead, the only
connection between each course and the faculty who teaches that course is the fac-
ulty_id, which is a foreign key in the Course table. Therefore, in order to get the
course_id that is taught by the selected faculty, two queries are needed to be per-
formed; first, we need to perform a query to the Faculty table to get the faculty_id
based on the selected faculty name, and second, we can perform another query to
the Course table to get all course_id based on the faculty_id obtained from the
first query.

To save time and space, a good solution for these two queries is to combine both
of them into a stored procedure. As you know, stored procedures are developed and
built inside a database. The execution speed and efficiency of stored procedures can
be significantly improved compared with a normal query. In JDBC API, a
CallableStatement interface is used for this purpose.

As we discussed in the last section, compared with the Statement interface, the
advantage of using a PreparedStatement interface is that it can perform a dynamic
query with some known or unknown dynamic parameters as inputs. Most time,
those dynamic parameters are input parameters and can be defined as IN variables.
However, you do not need to specify those parameters with an IN keyword when
using a PreparedStatement interface.

The difference between the PreparedStatement and the CallableStatement
interfaces is: unlike the PreparedStatement interface, the CallableStatement inter-
face has both input and output parameters, which are indicated with IN and OUT
keywords, respectively. In order to setup values for input parameters or get values
for the output parameters, you have to use either a setXXX() method or a getXXX()
method to do that. However, the point is that before you can use any getXXX()
method to pick up the values of output parameters, you must first register the output
parameters to allow the CallableStatement interface to know them.

Generally, the sequence to run a CallableStatement to call a stored procedure is:

 1) Build and formulate the CallableStatement query string
 2) Create a CallableStatement object
 3) Set the input parameters
 4) Register the output parameters
 5) Execute CallableStatement
 6) Retrieve the running result by using different getXXX() methods

Let’s discuss this issue in more detail in the following sections.

6.3 Create a Java Application Project to Access the SQL Server Database

236

6.3.6.2.1 Build and Formulate the CallableStatement Query String

The CallableStatement interface is used to execute SQL stored procedures. The
JDBC API provides a stored procedure SQL escape syntax that allows stored proce-
dures to be called in a standard way for all RDBMSs. This escape syntax has one
form that includes an output parameter and one that does not. If used, the output
parameter must be registered as an OUT parameter. The other parameters can be
used for input, output, or both. Parameters are referred to sequentially, by number,
with the first parameter being 1.

 {?= call <procedure-name>[<arg1>,<arg2>, ...]}
 {call <procedure-name>[<arg1>,<arg2>, ...]}

Two syntaxes are widely used to formulate a CallableStatement string: the
SQL92 syntax and the Oracle syntax. The SQL92 syntax is more popular in most
applications. We will concentrate on the SQL92 syntax in this section, and take care
of the Oracle syntax in some other sources when we build data queries for the
Oracle database.

For a standard alone stored procedure or packaged procedure, the SQL92 syntax
can be represented as:

 {call [schema.][package.]procedure_name[(?, ?, …)]}

For standard alone functions or packaged functions, the SQL92 syntax looks like:

 {? = call [schema.][package.]function_name[(?, ?, …)]}

The definition and meaning of elements used in these syntaxes are:

• All elements enclosed inside the square brackets [] means that they are optional.
• The curly braces {} are necessary in building a CallableStatement string and they

must be used to cover the whole string.
• The schema indicates the schema in which the stored procedure is created.
• The package indicates the name of the package if the stored procedure is involved

in a package.
• The procedure_name or the function_name indicate the name of the stored

procedure or the function.
• The question make ? is the place holder for either an IN, IN/OUT or OUT

parameters used in the stored procedure, or the returned value of a function. The
order of these placeholders, which starts from 1, is very important, and it must be
followed exactly when using either a setXXX() method to setup input parame-
ters or register the output parameters for the built CallableStatement string later.

A CallableStatement can either return a ResultSet object and multiple ResultSet
objects by using executeQuery() method or return nothing by using execute()
method. Multiple ResultSet objects are handled using operations inherited from

6 Query Data from Databases

237

Statement. A suitable getXXX() method is needed to pick up the running result
from the execution of a CallableStatement.

6.3.6.2.2 Create a CallableStatement Object

To create a CallableStatement object, you need to use one of the methods defined in
the Connection class, prepareCall(), to do that. When the SQL92 syntax is used to
create this CallableStatement object, it will look like:

 CallableStatement cstmt = null;
 try{
 String query = "{call dbo.FacultyCourse(?, ?)}";
 cstmt = LogInFrame.con.prepareCall(query);
 ………

The operation sequence of this piece of codes to create a new CallableStatement
object is:

 1) A new null CallableStatement object cstmt is first declared.
 2) A try block is used to create the query string with the SQL92 syntax. The name

of the stored procedure to be called is dbo.FacultyCourse() with two argu-
ments: the first one is an input parameter, faculty_name and the second one is
an output parameter used to store all course_id taught by the selected faculty.
Both parameters are represented by placeholders and they are positional
parameters.

 3) The CallableStatement object is created by calling the prepareCall() method,
which belongs to the Connection class, with the query string as the argument.

Next let’s take a look at how to setup the input parameter for this object.

6.3.6.2.3 Set the Input Parameters

All input parameters used for a CallableStatement interface must be clearly bound
to the associated IN parameters in a stored procedure by using a setXXX() method.
This setXXX() method can be divided into three categories based on the different
data types:

 1) The primitive data type method
 2) The object method
 3) The stream method

For the primitive and the object method, the syntax is identical, and the differ-
ence between them is the type of value that is assigned. For the stream method, both
the syntax and the data types are different.

6.3 Create a Java Application Project to Access the SQL Server Database

238

Set Primitive Data Type and Object IN Values
The primitive data type means all built-in data types used in Java programming
language. The syntax of setting a primitive data type or an object value method is,

 setXXX(int position, data_type value);

where XXX means the associated value type to be assigned, the position that is
an integer is used to indicate the relative position of the IN parameter in the SQL
statement or the SQL stored procedure, and the value is the actual data value to be
assigned to the IN parameter.

Some popular setXXX() methods are:

setBoolean(), setByte(), setInt(), setDouble(), setFloat(),
setLong(), setShort(), setString(),
setObject(), setDate(), setTime() and setTimeStamp()

An example of using the setXXX() method is:

 String query = "SELECT product, order_date FROM Order " +
 "WHERE order_id = ? AND customer = ?";
 PreparedStatement pstmt = con.prepareStatement(query);
 setInt(1, 101);
 setString(2, “Tom Johnson”);

Two dynamic parameters are used in the query string and both of them are IN
parameters. The data type of the first IN parameter is an integer and the second one
is a String, and both are represented by a placeholder ‘?’. The first setting method,
setInt(1, 101), is to assign an integer value of 101 to the first IN parameter, which
is indicated with a position number of 1, and the second setting method, setString(2,
“Tom Johnson”) is to assign a String value “Tom Johnson” to the second IN
parameter, which is indicated with a position number of 2.

From this example, you can find that there is no difference between setting a
primitive parameter and an object value to the IN parameters in a SQL statement.

Set Object Methods
The setObject() method has three protocols, which are:

setObject(int position, object_type object_value);
setObject(int position, object_type object_value, data_type desired_data_type);
setobject(int position, object_type object_value, data_type desired_data_
type, int scale);

The first one is straightforward and it contains two parameters: the first one is the
relative position of the IN parameter in the SQL statement, and the second one is the
value of a desired object to be assigned to the IN object.

The second one adds one more input parameter, desired_data_type, and it is
used to indicate a data type to which convert the object to.

6 Query Data from Databases

239

The third one adds the fourth input parameter, scale, and it is used to make sure
that the object conversion result contains a certain number of digits.

An example of the setObject() method is shown here,

 pstmt.setObject(2, 101);
 pstmt.setObject(2, 101, Type.FLOAT);
 pstmt.setObject(2, 101, Type.FLOAT, 2);

The first method is to set an input parameter, which is the second one in a SQL
statement, to an object (here is an integer) with a value of 101. The next method is
to set the same input to the same object; however, it needs to convert the object
(integer) to a float data type. The final method performs the same operation as the
previous one, but it indicates that the conversion result should contain at least
2 digits.

Set Stream IN Methods
When transferring images between an application and a database, it needs a large
size for the IN parameters. In that situation, an InputStream() method should be
used to perform that kind of operation. The syntax of using this method is:

setXXXStream(int position, data_type input_stream, int number_of_bytes);

where XXX means the InputStream type: ASCII, Binary, or Unicode. The first
parameter is the relative position of the IN parameter in the SQL statement, and the
second parameter is the data stream to be read from. The third parameter indicates
the number of bytes to be read from the data stream at a time.

A simple example of using the InputStream() method is:

FileInputStream picFile = new FileInputStraem(“new_file”);
String query = “INSERT INTO picture (image) VALUES (?) WHERE pic_id = 101 “;
PreparedStatement pstmt = prepareStatement(query);
pstmt.setUnicodeStream(1, picFile, 2048);

This piece of code is used to set the first IN parameter to read 2KB bytes from a
picture file, which is a Unicode file, named picFile at a time.

6.3.6.2.4 Register the Output Parameters

As we discussed in Sect. 6.3.6.2, after a CallableStatement interface is executed,
you need to use the associated getXXX() method to pick up the running result from
the CallableStatement object since it cannot return any result itself. However, before
you can do that, you must first register any output parameter in the SQL statement
to allow the CallableStatement to know that the output result is involved and stored
in the related output parameters in the SQL statement.

6.3 Create a Java Application Project to Access the SQL Server Database

240

Once an output parameter is registered, the parameter is considered an OUT
parameter and it can contain running results that can be picked up by using the asso-
ciated getXXX() method.

To register an output parameter, the registerOutParameter() method that
belongs to the CallableStatement interface should be used to declare what SQL
type the OUT parameter will return. A point to be noted is that a parameter in a SQL
statement can be defined as both an IN and an OUT at the same time, which means
that you can setup this parameter as an IN by using the setXXX() method, and also
you can register this parameter as an OUT using the registerOutParameter()
method at the same time. In this way, this parameter can be considered as an IN/
OUT parameter with both the input and the output functions.

The syntax to register an output parameter is:

 registerOutParameter(int position, data_type SQL_data_type);

where the position is still the relative position of the OUT parameter in the SQL
statement, and the SQL_data_type is the SQL data type of the OUT parameter,
which can be found from the JDBC API class, java.sql.TYPE.

An example of using this method is shown here:

 String query = "{call dbo.FacultyCourse(?, ?)}";
 cstmt = LogInFrame.con.prepareCall(query);
 cstmt.setString(1, ComboName.getSelectedItem().toString());
 cstmt.setString(2, “CSC-230A”);
 cstmt.registerOutParameter(2, java.sql.Types.VARCHAR);

There are two parameters in this CallableStatement interface in this example.
The first one is an IN parameter, which is set by using the setString() method. The
second one is an IN/OUT parameter, which is the first setup by using the setString()
method and then registered by using the registerOutParameter() method with the
data type of VARCHAR. The SQL data type VARCHAR can be mapped to a data
type of String in Java. Refer to Appendix E to get more detailed information about
the data type mapping between the SQL and Java.

An interesting point to this registerOutParameter() method is that all OUT
parameters can be registered by using this syntax except those OUT parameters
with the NUMERIC and DECIMAL data types. The syntax to register those OUT
parameters look like:

registerOutParameter(int position, data_type SQL_data_type, int scale);

The only difference is that a third parameter scale is added and it is used to indi-
cate the number of digits to the right of the decimal point for the OUT parameter.

6 Query Data from Databases

241

6.3.6.2.5 Execute CallableStatement

To run a CallableStatement object, three methods can be used; executeQuery(),
executeUpdate(), and execute(). As we discussed in Sect. 6.3.3.5, the execute-
Query() method can return a ResultSet object that contains the running or query
results; however, the execute() method cannot return any running result with itself,
and you need to use associated getXXX() methods to pick up the query or running
result. Another important point of using the execute() method is that it can handle
an unknown result with undefined data type. Refer to Sects. 6.3.3.5 and 6.3.5.5 to
get more detailed information about the execute() method.

An example of using the execute() method to run the CallableStatement object is:

 String query = "{call dbo.FacultyCourse(?, ?)}";
 cstmt = LogInFrame.con.prepareCall(query);
 cstmt.setString(1, ComboName.getSelectedItem().toString());
 cstmt.registerOutParameter(2, java.sql.Types.VARCHAR);
 cstmt.execute();

Now let’s handle how to retrieve the running result from the execution of a
CallableStatement object.

6.3.6.2.6 Retrieve the Running Result

To pick up the running results from the execution of a CallableStatement object, one
needs to use an associated getXXX() method to do that. Two popular ways to get
back a running result from a CallableStatement are: getXXX() method and getOb-
ject() method. The former is based on the returned data type of the result, and the
latter is more general to get any kind of result.

All of the getXXX() methods and getObject() use the same syntax, which
looks like:

 getXXX(int position);
 getObject(int position);

where XXX indicates the OUT value Java data type and the position is the rela-
tive position of the OUT parameter in the SQL statement. Same syntax is used for
the getObject() method.

An example of using getXXX() method to pick up the running result from the
execution of a CallableStatement object is shown below:

6.3 Create a Java Application Project to Access the SQL Server Database

242

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
if (ComboMethod.getSelectedItem()=="Java Callable Method"){

CallableStatement cstmt;
try{

String query = "{call dbo.FacultyCourse(?, ?)}";
cstmt = LogInFrame.con.prepareCall(query);
cstmt.setString(1, ComboName.getSelectedItem().toString());
cstmt.registerOutParameter(2, java.sql.Types.VARCHAR);
cstmt.execute();
String cResult = cstmt.getString(2);
//String cResult = (String)cstmt.getObject(2);

String[] result = cResult.split(",");
CourseList.setListData(result);

}
catch (SQLException e){

msgDlg.setMessage("Error in CallableStatement! " + e.getMessage());
msgDlg.setVisible(true);

}
}

}

A

B

C

D

E

F

G

H

I

J

K

Fig. 6.42 The codes for the Select button Click event handler

 String query = "{call dbo.FacultyCourse(?, ?)}";
 cstmt = LogInFrame.con.prepareCall(query);
 cstmt.setString(1, ComboName.getSelectedItem().toString());
 cstmt.registerOutParameter(2, java.sql.Types.VARCHAR);
 cstmt.execute();
 String cResult = cstmt.getString(2);

Since the OUT parameter is a String and is located at position of 2, therefore an
argument of 2 is used in the getString() method to pick up the running result. An
alternative way to get the same running result is to use the getObject() method,
which looks like:

 String cResult = (String)cstmt.getObject(2);

The returned result must be casted by using the String data type since an object
can be any data type.

Ok, that is enough for the theoretical discussion, now let’s go to our real staff,
developing the codes for the Select button Click event handler to perform this
CallableStatement object to call a SQL stored procedure to make the course query
from our Course table in our sample database.

6.3.6.3 Coding for the Select Button Click Event Handler to Perform
CallableStatement Query

Open the CourseFrame Form window by clicking on the Design tab from the top
of the window, then open the Select button Click event handler by double clicking
on the Select button. Enter the codes that are shown in Fig. 6.42 into this event
handler.

6 Query Data from Databases

243

Let’s have a closer look at this piece of codes to see how it works.

A. First we need to check whether a Java Callable Method has been selected or not.
If it is, a new null object of the CallableStatement class, cstmt, is created.

B. A try…catch block is used to perform this CallableStatement query. A SQL92
syntax is used to build a query string to try to call a SQL stored procedure dbo.
FacultyCourse, which will be developed in the next section, to query all
courses, exactly all course_id, taught by the selected faculty member. Two
parameters are used in this SQL statement; the first one is an IN parameter,
faculty_name obtained from the Faculty Name combo box ComboName, and
the second one is an OUT parameter that contains all course_id taught by the
selected faculty member.

C. The real CallableStatement object is created by calling the prepareCall()
method and assigned to the null object cstmt we created in step A. One point to
be noted is that the prepareCall() method belongs to the Connection class;
therefore, we need to call our Connection object con, which is a class instance
defined in the LogInFrame class, to perform this creation.

D. The first parameter in this SQL statement is a String faculty_name, which is an
IN parameter and bound using the setString() method. The value of this input
parameter is obtained by calling the getSelectedItem() method from the Faculty
Name combo box ComboName.

E. The second parameter in this query string, which is an OUT parameter and
contains all queried course_id taught by the selected faculty member, is regis-
tered using the registerOutParameter() method. The SQL data type of this
OUT parameter is VARCHAR.

F. The CallableStatement object is executed by calling the execute() method.
G. The getString() method is used to pick up the running result with a position of

2. The SQL data type VARCHAR can be mapped to a String in Java (refer to
Appendix E).

H. An alternative way to pick up this running result is to use the getObject()
method. However, it must be casted to a String object before it can be picked up.

I. The running result stored in the cResult contains all course_id that are sepa-
rated by a comma, so the split() method is executed to separate each of course_
id and assign them to a String array result.

J. The setListData() method is used to add all course_id that are stored in the
String array result into the Course ID List listbox, CourseList, to display them.

K. The catch block is used to catch any possible errors and display them if they
indeed occurred.

Now that we have a clear picture about the coding for the CallableStatement in
the Java side, let’s begin to deal with the stored procedure in the SQL side.

6.3 Create a Java Application Project to Access the SQL Server Database

244

6.3.6.4 Build the SQL Stored Procedure dbo.FacultyCourse

Stored Procedures are nothing more than functions or procedures applied in any
project developed in any programming language. This means that stored procedures
can be considered as functions or subroutines, and they can be called easily with any
arguments and they can also return any data with certain type. One can integrate
multiple SQL statements into a single stored procedure to perform multiple queries
at a time, and those statements will be pre-compiled by the SQL Server to form an
integrated target body. In this way, the pre-compiled body is insulated with your
coding developed in Java environment. You can easily call the stored procedure
from your Java application project as the project runs. The result of using the stored
procedure is that the performance of your data-driven application can be greatly
increased and the data query’s speed can be significantly improved. Also when you
develop a stored procedure, the database server automatically creates an execution
plan for that procedure, and the developed plan can be updated automatically when-
ever a modification is made to that procedure by the database server.

Regularly there are three types of stored procedures: System stored procedures,
extended stored procedures, and custom stored procedures. The system stored pro-
cedures are developed and implemented for administrating, managing, configuring,
and monitoring the SQL server. The extended stored procedures are developed and
applied in the dynamic linked library (dll) format. This kind of stored procedures
can improve the running speed and save the running space since they can be dynam-
ically linked to your project. The custom stored procedures are developed and
implemented by users for their applications.

Some possible ways can be used to create a stored procedure.

 1) Using SQL Server Enterprise Manager
 2) Using Visual Studio.NET – Real-Time Coding Method
 3) Using Visual Studio.NET – Server Explorer

For our current application, I prefer to use the Server Explorer in Visual Studio.
NET. A more complicated but flexible way to create the stored procedure is to use
the real-time coding method from Visual Studio.NET. In this section, we will con-
centrate on the fifth method listed above.

CREATE PROCEDURE [dbo].[Stored Procedure’s name]

@Param1’s name Param1’s data type Input/Output,
@Param2’s name Param2’s data type Input/Output…….

AS

(DECLARE Your local variables…. If you have)
(Your SQL Statements)
RETURN

Fig. 6.43 The structure and syntax of a SQL stored procedure

6 Query Data from Databases

245

CREATE PROCEDURE [dbo].[StudentInfo]

@StudentName VARCHAR(50)

AS

SELECT student_id FROM Student
WHERE name LIKE @StudentName
RETURN

Fig. 6.44 An example of a SQL stored procedure

6.3.6.4.1 Structure and Syntax of a SQL Stored Procedure

The prototype or syntax of creating a SQL stored procedure is shown in Fig. 6.43.
For SQL Server database, the name of the stored procedure is always prefixed by

the schema dbo. A sample stored procedure StudentInfo is shown in Fig. 6.44.
The parameters declared inside the braces are either input or output parameters

used for this stored procedure, and an @ symbol must be prefixed before the param-
eter in the SQL Server database. Any argument sent from the calling procedure to
this stored procedure should be declared in here. The other variables, which are
created by using the keyword DECLARE located after the keyword AS, are local
variables and they can only be used in this stored procedure. The keyword RETURN
is used to return the queried data columns.

6.3.6.4.2 Return Multiple Rows from a SQL Stored Procedure to the Java
CallableStatement

As we know, in a SQL stored procedure, regularly only one piece of data or one row
can be returned to the calling procedure. In order to return multiple rows, a cursor
must be used to hold those multiple data rows. A cursor works as a data table and it
can hold data in a certain format. A problem is that there is no mapped data type for
the cursor in the Java environment! Therefore, we cannot use the cursor to return the
queried result from a SQL stored procedure to our Java applications. When we per-
form a query to our Course table to get multiple courses taught by the selected
faculty, we need to return multiple rows or multiple course_id to our Java
CourseFrame class.

In JDBC API 4.0, it indeed added more components to facilitate the interface
between the SQL Server database and Java applications; however, unfortunately, it
still has not covered this topic. To solve this problem and allow multiple rows to be
returned from a SQL stored procedure to the Java applications, we need to perform
the following operations:

6.3 Create a Java Application Project to Access the SQL Server Database

246

Fig. 6.45 The opened New Stored Procedure window

CREATE PROCEDURE [dbo].[FacultyCourse]

@facultyName VARCHAR(50),
@result VARCHAR(800) OUTPUT

AS
DECLARE @courseID CURSOR
DECLARE @facultyID VARCHAR(50)
DECLARE @courseid1 VARCHAR(100)
DECLARE @courseid2 VARCHAR(100)
DECLARE @courseid3 VARCHAR(100)
DECLARE @courseid4 VARCHAR(100)
DECLARE @courseid5 VARCHAR(100)
DECLARE @message VARCHAR(800)
SET @facultyID = (SELECT faculty_id FROM Faculty
WHERE faculty_name LIKE @facultyName)
SET @courseID = CURSOR FOR (SELECT course_id FROM Course WHERE faculty_id LIKE @facultyID)
OPEN @courseID
FETCH NEXT FROM @courseID INTO @courseid1
FETCH NEXT FROM @courseID INTO @courseid2
FETCH NEXT FROM @courseID INTO @courseid3
FETCH NEXT FROM @courseID INTO @courseid4
IF @@FETCH_STATUS = 0
FETCH NEXT FROM @courseID INTO @courseid5
IF @@FETCH_STATUS = -1

SET @result = @courseid1 + ',' + @courseid2 + ',' + @courseid3 + ',' + @courseid4
ELSE IF @@FETCH_STATUS = 0

SET @result = @courseid1 + ',' + @courseid2 + ',' + @courseid3 + ',' + @courseid4 + ',' + @courseid5
CLOSE @courseID

PRINT ' '
SELECT @message = '----- ResultSet =: ' + @result
PRINT @message
RETURN

A

B

C

D
E

F
G
H

I

J

K

L

M

N

Fig. 6.46 The codes for the stored procedure dbo.FacultyCourse

 1) The data type of the OUT parameter in the SQL statement or in the SQL stored
procedure should be defined as a VARCHAR, which can be mapped to a String
in the Java code.

6 Query Data from Databases

247

 2) Inside the SQL stored procedure, we need to declare a local cursor variable and
use that local cursor to collect the queried multiple rows or multiple course_id.

 3) Fetch each queried row from the cursor into each associated local variable.
 4) Combine all fetched rows into the OUT parameter that has a data type of

VARCHAR.

A key point to build this SQL stored procedure is that our sample database CSE_
DEPT.mdf should have been built and located at the default location, which is C:\
Program Files\Microsoft SQL Server\MSSQL15.SQL2019EXPRESS\MSSQL\
DATA. Refer to Chap. 2 to build this sample database if it has not been built.

Perform the following operational steps to create this stored procedure:

 1) Open the Microsoft Visual Studio.NET 2019 and open the Server Explorer by
going to the View|Server Explorer menu item.

 2) Make sure that our sample database CSE_DEPT has been connected to the
Visual Studio.NET 2019. If not, you need to use the Data Source window to first
connect it by adding a new data source.

 3) The point to be noted is that you need to check the Data Source you are connect-
ing is SQL2019EXPRESS. To do this checking, click on the Advanced button
in the Add Connection wizard and then the Data Source property.

 4) Expand our sample database CSE_DEPT.mdf from the Server Explorer win-
dow, and right click on the Stored Procedures folder, select Add New Stored
Procedure item from the popup menu to open the New Stored Procedure wiz-
ard, which is shown in Fig. 6.45.

 5) Remove all comment-out marks and replace the name of this stored procedure
with the [dbo].[FacultyCourse]. Add the codes that are shown in Fig. 6.46 into
this stored procedure to make it as our target stored procedure.

Let’s have a closer look at this new added piece of codes to see how it works.

 A. Both IN and OUT parameters are first declared in the parameter section. The @
facultyName is an input parameter with a data type of VARCHAR(50) and the
@result is an output parameter with a data type of VARCHAR(800). The key-
word OUTPUT must be attached after the OUT parameter to indicate that this
is an output parameter in this stored procedure.

 B. Two local variables, @courseID and @facultyID, are declared here since we
need to use them inside this stored procedure only. The data type for the first one
is the CURSOR since we need to query multiple rows and store them into this
cursor later. The second one is a VARCHAR variable.

 C. Another five local variables are created and declared after these two local vari-
ables, and each of them is related to one course_id queried from this stored
procedure. As we know, all faculty members in this CSE dept teach either four
or five courses, so the maximum number of course_id should be five. If more
courses were taught by some selected faculty members, the number of these
local variable should also be increased based on the actual courses taught by the
related faculty members.

6.3 Create a Java Application Project to Access the SQL Server Database

248

 D. The local variable @message is used for the testing purpose of this stored
procedure.

 E. As we remember, there is no faculty_name column available in our Course
table and the only relationship between each faculty and each course is made by
the faculty_id column, which is a primary key in the Faculty table, but a for-
eign key in the Course table. In order to get the faculty_id, we need to perform
a query to the Faculty table based on the faculty_name, which is an input to
this stored procedure. Then we can perform another query to the Course table
to get all courses taught by the selected faculty_id obtained from the first query.
So you can see that we need to perform two queries to get our desired course_
id. To save the time and space, here we used a stored procedure to combine these
two queries together to speed up this query process.

 F. Here we used a cursor @courseID to collect multiple rows (course_id) returned
from this query. To perform an assignment operation in SQL, a SET instruction
must be used.

 G. After a query is performed and the result has been stored into the cursor. To
fetch each row from the cursor, the cursor must be first opened.

 H. A FETCH command is used to fetch the first four courses into four local vari-
ables, @courseid1 through @courseid4.

 I. By checking the global variable @@FETCH_STATUS, we can know whether
the last fetch operation is successful or not. If this status returned a 0, which
means that the last fetch is fine, and then we can try to fetch the fifth course into
the local variable @courseid5. Because all faculty members in this CSE dept
teach either four or five courses, therefore the maximum number of queried
courses should be five.

 J. If the fetch status @@FETCH_STATUS returned a -1, which means that the
last fetch is unsuccessful or there is no fifth course to be fetched, we need to
combine only the first four fetched courses into the OUT parameter @result. In
order to make it convenient to separate this combined string in the Java applica-
tion, we combine these fetched rows with a comma mark as a separator.

 K. If the fetch status @@FETCH_STATUS returned a 0, which means that the
last fetch is successful or the fifth course is indeed existed, we can combine all

Fig. 6.47 The updating result of our new created stored procedure

6 Query Data from Databases

249

Fig. 6.48 The running status of the stored procedure

----- ResultSet =: CSC-132B,CSC-234A,CSE-434,CSE-438
(1 row(s) affected)

(1 row(s) affected)

T-SQL Results Message

Fig. 6.49 The running result of the stored procedure

five fetched courses together into the OUT parameter @result, and separate
them with a comma mark.

 L. After all fetches have been completed, the cursor is closed.
 M. To test this stored procedure, we use a SELECT statement to collect the values

of the OUT parameter and
 N. Use the PRINT command to display it.

Now let’s save this procedure and add it into our database by clicking on the
Update icon located at the upper-left corner on this wizard. On the opened Preview
Database Updates wizard, click on the Update Database button to begin this pro-
cess. Immediately you can find that this updating operation is successful, as shown
in Fig. 6.47.

Now let’s run this store procedure to test it in the Server Explorer environment.
Perform the following operations to run this procedure:

 1) Go to the Server Explorer window, and expand the Stored Procedures folder
under our sample database to try to find our new stored procedure, FacultyCourse.

 2) You may need to refresh this Stored Procedures folder by right-clicking on this
folder, and select the Refresh item to find our procedure.

6.3 Create a Java Application Project to Access the SQL Server Database

250

Fig. 6.50 The running result of the CourseFrame Form

 3) Right click on our new stored procedure FacultyCourse and select the Execute
item to run our procedure. The Execute Stored Procedure wizard is shown up, as
shown in Fig. 6.48.

 4) Enter faculty name, Ying Bai, into the Value column for @facultyName box,
and CSC-333 to the Value column for the @result box, as shown in Fig. 6.48,
and click on the OK button to run this procedure.

The running result is shown in the mi-pane, which is shown in Fig. 6.49.
Before we can call this stored procedure from our CourseFrame Form to test the

CallableStatement interface, make sure that you have closed the connection
between our sample database CSE_DEPT.mdf and the Visual Studio.NET 2019.
To do that, right click on our sample database YBSmart\SQL2019EXPRESS.CSE_
DEPT.dbo from the Server Explorer window, and select the Close Connection
item from the popup menu. Otherwise, you may encounter a connection exception
when you run our Java application project.

Now we can test the CallableStatement object we built in our CourseFrame class.
Open our project and the CourseFrame Form window, click on the Clean and Build
Main Project button from the toolbar to build our project. Then click on the Run
Main Project button to run our project.

Enter the suitable username and password, such as jhenry and test, to complete
the login process. Then select the Course Information from the SelectionFrame

6 Query Data from Databases

251

private void CourseListValueChanged(javax.swing.event.ListSelectionEvent evt) {
// TODO add your handling code here:
javax.swing.JTextField[] c_field = {CourseIDField, CourseField, ScheduleField, ClassRoomField,

CreditsField, EnrollField};
if(!CourseList.getValueIsAdjusting()){

String courseid = (String)CourseList.getSelectedValue();
if (courseid != null){

String cQuery = "SELECT course_id, course, schedule, classroom, credit, " +
"enrollment FROM Course WHERE course_id = ?";

try{
PreparedStatement pstmt = LogInFrame.con.prepareStatement(cQuery);
pstmt.setString(1, courseid);
ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();
while (rs.next()){

for (int i=1; i <=rsmd.getColumnCount(); i++) {
c_field[i-1].setText(rs.getString(i));

}
}

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
}

}
}

A

B

C

D

E
F
G
H

I

Fig. 6.51 The coding for the CourseListValueChanged() event handler

Form window to open the CourseFrame Form window. Select the Java Callable
Method from the Query Method combo box, and click on the Select button to run
our CallableStatement object to query all course_id taught by the default faculty
member Ying Bai. A sample running result is shown in Fig. 6.50.

Click on the Close button that is located at the upper-right corner of this
CourseFrame Form window to terminate our project.

Next let’s develop the codes to display the detailed information for each course
shown in the Course ID List listbox.

6.3.6.5 Coding for the CourseList Box to Display Detailed Information
for the Selected Course

The function of this event handler is simple, which is listed below:

 1) After the user selected a faculty member from the Faculty Name combo box, a
Java Callable Method from the Query Method combo box, and clicked on the
Select button, all courses, exactly all course_id, taught by the selected faculty
should be displayed in the Course ID List listbox.

 2) As the user clicks on a course_id from the Course ID List listbox, the detailed
information for the selected course_id should be displayed in six text fields on
the right side.

Based on the function description listed above, the coding for this event handler
is easy and straightforward. Open the Design View of the CourseFrame Form

6.3 Create a Java Application Project to Access the SQL Server Database

252

window by clicking on the Design tab on the top of the window, and right click on
the CourseList listbox and select the Events > ListSelection > valueChanged
item to open its CourseListValueChanged() event handler. Enter the codes that are
shown in Fig. 6.51 into this event handler.

Let’s have a closer look at this piece of codes to see how it works.

 A. A text field array c_field is created here since we need to assign the queried
detailed course information to six text fields to display them, therefore it is easy
to use an array to do that assignment.

 B. Since JList component belongs to the javax.swing package, not java.awt pack-
age, therefore any clicking on an entry in the CourseList box causes the itemSta-
teChanged() method to fire twice: Once when the mouse button is depressed,
and once again when it is released. Therefore, the selected course_id will appear
twice when it is selected. To prevent this from occurring, the getValueIsAdjust-
ing() method is used to make sure that no any item has been adjusted to be dis-
played twice. Then the selected course_id is assigned to a local String variable
courseid by calling the getSelectedValue() method of the CourseList Box class.

 C. Before we can proceed to the query operation, first we need to confirm that the
selected courseid is not a null value. A null value would be returned if the user
did not select any course_id from the CourseList box, instead, the user just
clicked on the Select button to try to find all course_id taught by other faculty
members. Even the user only clicked on the Select button without touching any
course_id in the CourseList box; however, the system still considers that a null
course_id has been selected and thus a null value will be returned. To avoid that
situation from occurring, an if selection structure is used to make sure that no
null value has been returned from the CourseList box. A SQL query string is
created if no null value has been returned.

 D. A try…catch block is used to perform this PreparedStatement query operation.
First, a PreparedStatement object is created with the query string as the argument.

 E. The setString() method is executed to use the real query criterion courseid to
replace the nominal position parameter.

 F. The dynamic query is actually executed by calling the executeQuery() method
and the query result is returned and stored in a ResultSet object.

 G. The getMetaData() method is called to return the detailed information about
the returned ResultSet object, including the column number, column name, and
data type.

private void cmdBackActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
this.setVisible(false);
this.dispose();

}

Fig. 6.52 Coding for the Back button Click event handler

6 Query Data from Databases

253

 H. A while and for loops are used to retrieve the queried columns from the
ResultSet object and assign them one by one to the associated Text Field to
display them.

 I. The catch block is used to track and monitor the running status of this piece of
codes. An error message will be displayed if any exception has occurred.

Next, we need to take care of the coding for the Back button Click event handler
to switch from the CourseFrame Form back to the SelectionFrame Form to allow
users to perform other query operations.

6.3.6.6 Coding for the Back Button Click Event Handler

When this Back button is clicked, the CourseFrame Form should be closed and the
control will be returned to the SelectionFrame Form. Open the Design View of the
CourseFrame Form window by clicking on the Design tab from the top of the win-
dow and double click on the Back button to open its event handler. Enter the codes
that are shown in Fig. 6.52 into this event handler.

The function of this piece of codes is straightforward, the CourseFrame Form
will be closed by calling the setVisible() method with a false argument, and the
dispose() method is used to remove the CourseFrame Form from the screen.

Fig. 6.53 The running result of the CourseFrame Form window

6.3 Create a Java Application Project to Access the SQL Server Database

254

At this point, we have finished all coding jobs for the CourseFrame Form object.
Now we can build and run our project to test its function. Click on the Clean and
Build Main Project button on the top of the window to build our project. Then click
on the Run Main Project button to run the project.

Enter suitable username and password, such as jhenry and test, to the LogInFrame
Form to complete the login process. Select the Course Information item from the
SelectionFrame Form window to open the CourseFrame Form window. Then select
the Java Callable Method from the Query Method combo box, keep the default
faculty member Ying Bai from the Faculty Name combo box, and click on the
Select button. All courses, exactly all course_id, taught by the selected faculty
member are shown in the Course ID List listbox, which is shown in Fig. 6.53.

Click on any course_id from the Course ID List listbox, the detailed course
information about the selected course_id is displayed in six text fields, which is
also shown in Fig. 6.53. Our course query using the CallableStatement with the
stored procedure is successful!

Click on the Back and then Exit buttons to terminate our project.
A complete project SQLSelectObject can be found from the folder Class DB

Projects\Chapter 6 that is located under the Students folder at the Springer ftp site
(see Chap. 1).

Next, let’s discuss how to perform data queries from the Student table in our
sample database using the RowSet object.

6.3.7 Query Data from the Student Table Using the Java
RowSet Object

A RowSet object is one of the JavaBeans components with multiple supports from
JavaBeans and it is a new feature in the java.sql package. By using the RowSet
object, a database query can be performed automatically with the data source con-
nection and a query statement creation.

In this section, we will show readers how to use this new feature to reduce the
coding load and improve the efficiency of the data query with the help of this
RowSet object.

6.3.7.1 Introduction to Java RowSet Object

The JDBC 4.0 API includes many new features in the java.sql package as well
as the new Standard Extension package, javax.sql. This new JDBC API moves
Java applications into the world of heavy-duty database computing. One of the
important features is the RowSet object.

A RowSet object contains a set of rows from a result set or some other source of
tabular data, like a file or spreadsheet. Because a RowSet object follows the

6 Query Data from Databases

255

JavaBeans model for properties and event notification, it is a JavaBeans component
that can be combined with other components in an application. As it is compatible
with other Beans, application developers can probably use a development tool to
create a RowSet object and set its properties.

RowSets may have many different implementations to fill different needs. These
implementations fall into two broad categories, connected and disconnected:

 1) A connected RowSet is equivalent to a ResultSet, and it maintains a connection
to a data source as long as the RowSet is in use.

 2) A disconnected RowSet works as a DataSet in Visual Studio.NET, and it can
connect to a data source to perform the data updating periodically. Most time, it
is disconnected from the data source and uses a mapping memory space as a
mapped database.

While a RowSet is disconnected, it does not need a JDBC driver or the full JDBC
API, so its footprint is very small. Thus a RowSet is an ideal format for sending data
over a network to a thin client.

Because it is not continually connected to its data source, a disconnected RowSet
stores its data in memory. It needs to maintain metadata about the columns it con-
tains and information about its internal state. It also needs a facility for making
connections, for executing commands, and for reading and writing data to and from
the data source. A connected RowSet, by contrast, opens a connection and keeps it
open for as long as the RowSet is being used.

To make writing an implementation easier, the Java Software division of Oracle,
Inc., plans to provide reference implementations for five different styles of RowSets.
The following list of planned implementations gives you an idea of some of the
possibilities.

 1) A CachedRowSet class—a disconnected RowSet that caches its data in memory;
not suitable for very large data sets, but an ideal way to provide thin Java clients,
such as a Personal Digital Assistant (PDA) or Network Computer (NC), with
tabular data

 2) A JDBCRowSet class—a connected RowSet that serves mainly as a thin wrap-
per around a ResultSet object to make a JDBC driver look like a JavaBeans
component

 3) A WebRowSet class—a connected RowSet that uses the HTTP protocol inter-
nally to talk to a Java Servlet that provides data access; used to make it possible
for thin web clients to retrieve and possibly update a set of rows.

 4) A FilteredRowSet is an extension to WebRowSet that provides programmatic
support for filtering its content. This enables you to avoid the overhead of sup-
plying a query and the processing involved. The SQL implementation of
FilteredRowSet is javax.sql.rowset.FilteredRowSet. The Oracle implementa-
tion of FilteredRowSet is oracle.jdbc.rowset.OracleFilteredRowSet. The
OracleFilteredRowSet class in the ojdbc14.jar file implements the standard
JSR-114 interface javax.sql.rowset.FilteredRowSet.

6.3 Create a Java Application Project to Access the SQL Server Database

256

 5) A JoinRowSet is another extension to WebRowSet that consists of related data
from different RowSets. There is no standard way to establish a SQL JOIN
between disconnected RowSets without connecting to the data source. A
JoinRowSet addresses this issue. The SQL implementation of JoinRowSet is the
javax.sql.rowset.JoinRowSet class. The Oracle implementation of JoinRowSet
is the oracle.jdbc.rowset. OracleJoinRowSet class. This class, which is in the
ojdbc14.jar file, implements the standard JSR-114 interface javax.sql.
rowset.JoinRowSet. Any number of RowSet objects, which implement the
Joinable interface, can be added to a JoinRowSet object, provided they can be
related in a SQL JOIN. All five types of RowSet support the Joinable interface.
The Joinable interface provides methods for specifying the columns based on
which the JOIN will be performed, that is, the match columns.

Next, let’s have a closer look at the operational sequence for the RowSet object.

6.3.7.2 The Operational Procedure of Using the JDBC RowSet Object

A compliant JDBC RowSet implementation must implement one or more standard
interfaces specified in this package and may extend the BaseRowSet abstract class.
For example, a CachedRowSet implementation must implement the CachedRowSet
interface and extend the BaseRowSet abstract class. The BaseRowSet class pro-
vides the standard architecture on which all RowSet implementations should be
built, regardless of whether the RowSet objects exist in a connected or disconnected
environment. The BaseRowSet abstract class provides any RowSet implementation
with its base functionality, including property manipulation and event notification
that is fully compliant with JavaBeans component requirements. As an example, all
implementations provided in the reference implementations (contained in the com.
sun.rowset package) use the BaseRowSet class as a basis for their
implementations.

Table 6.5 Features of the BaseRowSet abstract class

Feature Details

Properties Provides standard JavaBeans property manipulation mechanisms to allow
applications to get and set RowSet command and property values. Refer to
the documentation of the javax.sql.RowSet interface (available in the
JDBC 3.0 specification) for more details on the standard RowSet properties.

Event
notification

Provides standard JavaBeans event notifications to registered event listeners.
Refer to the documentation of javax.sql.RowSetEvent interface
(available in the JDBC 3.0 specification) for more details on how to register
and handle standard RowSet events generated by compliant implementations.

Setters for a
RowSet object's
command

Provides a complete set of setter methods for setting RowSet command
parameters.

Streams Provides fields for storing of stream instances in addition to providing a set
of constants for stream type designation

6 Query Data from Databases

http://java.sun.com/j2se/1.5.0/docs/api/javax/sql/rowset/BaseRowSet.html

257

Table 6.5 illustrates the features that the BaseRowSet abstract class provides.
In this application, we will concentrate on the implementation of the

CachedRowSet component since we preferred to use a disconnected RowSet.
Generally, the operational procedure of using a RowSet object to query data can

be divided into the following four steps:

 1) Setup and configure a RowSet object
 2) Register the RowSet Listeners
 3) Set input and output parameters for the query command
 4) Traverse through the result rows from the ResultSet

The first step is used to setup and configure the static or dynamic properties of a
RowSet object, such as the connection url, username, password, and running com-
mand, to allow the RowSet object to connect to the data source, pass user parame-
ters into the data source, and perform the data query.

The second step allows users to register different Listeners for the RowSet object
with different event sources. The RowSet feature supports multiple listeners to be
registered with the RowSet object. Listeners can be registered using the addRow-
SetListener() method and unregistered through the removeRowSetListener()
method. A listener can implement the javax.sql.RowSetListener interface to regis-
ter itself as the RowSet listener. Three types of events are supported by the RowSet
interface:

 1) cursorMoved event: Generated whenever there is a cursor movement, which
occurs when the next() or previous() methods are called.

 2) rowChanged event: Generated when a new row is inserted, updated, or deleted
from the row set.

 3) rowsetChanged event: Generated when the whole row set is created or changed.

In our applications, the Apache NetBeans IDE 12 is used and the event-listener
model has been setup by NetBeans IDE. So we can skip this step and do not need to
take care of this issue during our coding process.

Step 3 allows users to setup all static or dynamic parameters for the query state-
ment of the RowSet object. Depending on the data type of the parameters used in
the query statement, a suitable setXXX() method should be used to perform this
parameter setup process.

The fourth step is used to retrieve each row from the ResultSet object.
A point to be noted when using any RowSet object to perform data query is that

most RowSet classes are abstract classes and cannot be instantiated directly. One
needs to use a suitable RowSet Implementation class to create a RowSet implemen-
tation object to perform a data query. Also a RowSet can be implemented in two
ways, the direct implementation and distributed implementation via a ResultSet. We
will use the first way in our project.

Now let’s follow the four steps listed above to develop a data query operation
using the CachedRowSet object to query data from the Student table in our sample
database CSE_DEPT. First, let’s build a GUI named StudentFrame Form using
Apache NetBeans 12.

6.3 Create a Java Application Project to Access the SQL Server Database

258

Table 6.6 Objects and controls in the StudentFrame form

Type Variable Name Text Border Title

Canvas ImageCanvas
Panel jPanel1 Titled

Border
Student Name and Query
Method

Label Label1 Student
Name

ComboBox ComboName
Label Label2 Query

Method
ComboBox ComboMethod
Panel jPanel2 Titled

Border
Course Selected

ListBox CourseList
Panel jPanel3 Titled

Border
Student Information

Label Label3 Student ID
Text Field StudentIDField
Label Label4 Student

Name
Text Field StudentNameField
Label Label5 School Year
Text Field SchoolYearField
Label Label6 GPA
Text Field GPAField
Label Label7 Major
Text Field MajorField
Label Label8 Credits
Text Field CreditsField
Label Label9 Email
Text Field EmailField
Button SelectButton Select
Button InsertButton Insert
Button UpdateButton Update
Button DeleteButton Delete
Button ExitButton Exit
StudentFrame
Form

StudentFrame CSE DEPT Student

6.3.7.3 Build a Graphical User Interface StudentFrame Form

As we did for the other JFrame Forms, right click on our project SQLSelectObject
from the Projects window, and then select New|JFrame Form item from the popup
menu to open New JFrame Form dialog box. Enter StudentFrame into the Class
Name box as the name for our new class, and select the SQLSelectObjectPackage

6 Query Data from Databases

259

Fig. 6.54 A sample window of the StudentFrame Form

from the Package box, and click on the Finish button to create this new
StudentFrame class.

Add the following objects and controls shown in Table 6.6 into this StudentFrame
Form window to finish the GUI design for this form. Your finished StudentFrame
Form window should match one that is shown in Fig. 6.54.

The function of this StudentFrame Form class is:

 1) As this StudentFrame Form runs, the user can select the desired student and
query method from the Student Name and Query Method combo boxes, respec-
tively. As the Select button is clicked by the user, all courses, exactly all course_
id, taken by the selected student will be displayed in the Course Selected
ListBox. Also the detailed information about the selected student will be dis-
played in six text fields.

 2) When the user clicks on the Exit button, the StudentFrame Form project will be
terminated and the database-related connection will be closed, too.

 3) In this section, we only use the Java JDBC RowSet Method as our data query
method, and the Select and the Exit buttons as our coding objectives.

A point to be noted is that when drag a Canvas control from the Palette and place
it into the StudentFrame Form window, first you need to click on the Canvas from
the Palette. Then you need to click a location where you want to place it in the
StudentFrame. A Canvas icon is displayed in that location you clicked. You must

6.3 Create a Java Application Project to Access the SQL Server Database

260

package SQLSelectObjectPackage;
import java.sql.*;
import javax.sql.rowset.*;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.awt.Graphics;
import java.awt.Image;
import java.awt.MediaTracker;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
public class StudentFrame extends javax.swing.JFrame {

MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);
/** Creates new form StudentFrame */
public StudentFrame() {

initComponents();
this.setLocationRelativeTo(null);
ComboMethod.addItem("Runtime Object Method");
ComboMethod.addItem("CachedRowSet Method");
ComboName.addItem("Tom Erica");
ComboName.addItem("Ashly Jade");
ComboName.addItem("Holes Smith");
ComboName.addItem("Andrew Woods");
ComboName.addItem("Blue Valley");

}

A

B

C

D

Fig. 6.55 The codes for the constructor of the StudentFrame class

drag this Canvas icon to the upper-left direction, never drag it to the lower-right
direction, to enlarge it.

Another point to be noted is that you need to remove all default items located
inside the model property of the combo boxes ComboName and ComboMethod.
To do that, click on each combo box from the Design View, and then go the model
property, click on the three-dot button to open the model pane. Select all four default
items, and press the Delete button from the keyboard to remove all of those items.

6.3.7.4 Coding for the Constructor of the StudentFrame Class

Open the Code Window of the StudentFrame class by clicking on the Source tab
from the top of the window and enter the codes that are shown in Fig. 6.55 into the
top of this window and the constructor of this class. Let’s have a closer look at this
piece of codes to see how it works.

 A. Ten useful java packages are added first since we need to utilize some classes
defined in those packages. The first package, java.sql.*, provides all classes and
interfaces used in JDBC API for SQL Server database. The next two packages
contain all related classes and interfaces used for the CachedRowSet component
and CachedRowSet Implementation classes. As we mentioned, the
CachedRowSet is an abstract class and we have to use its implementation class
to perform any data query.

6 Query Data from Databases

261

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
Blob simgBlob = null;
CachedRowSet rowSet = null;
try{

rowSet = RowSetProvider.newFactory().createCachedRowSet();
}catch (SQLException ex) {

Logger.getLogger(StudentFrame.class.getName()).log(java.util.logging.Level.SEVERE, null, ex); }
String strStudent = "SELECT student_id, student_name, gpa, credits, major, schoolYear, email, simage " +

"FROM Student WHERE student_name = ?";
String strStudentCourse = "SELECT course_id FROM StudentCourse WHERE student_id = ?";
if (ComboMethod.getSelectedItem()== "CachedRowSet Method"){

try{
String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";
rowSet.setUrl(url);
rowSet.setUsername("SMART"); rowSet.setPassword("Happy2020");
rowSet.setCommand(strStudent);
rowSet.setString(1, ComboName.getSelectedItem().toString());
rowSet.execute();
while (rowSet.next()){

StudentIDField.setText(rowSet.getString(1));
StudentNameField.setText(rowSet.getString(2));
GPAField.setText(Float.toString(rowSet.getFloat(3)));
CreditsField.setText(Integer.toString(rowSet.getInt(4)));
MajorField.setText(rowSet.getString(5));
SchoolYearField.setText(rowSet.getString(6));
EmailField.setText(rowSet.getString(7));

} // end while
rowSet.setCommand(strStudentCourse); rowSet.setString(1, StudentIDField.getText());
rowSet.execute();
int i = 0; String Result[] = {null, null, null, null, null, null, null, null};
while (rowSet.next()){

String sResult = rowSet.getString(1);
Result[i] = sResult;
i++;

}
CourseList.setListData(Result);
rowSet.close();
PreparedStatement pstmt = LogInFrame.con.prepareStatement(strStudent);
pstmt.setString(1, ComboName.getSelectedItem().toString());
ResultSet rs = pstmt.executeQuery();
while(rs.next()) simgBlob = rs.getBlob("simage");

}
catch(SQLException e){

msgDlg.setMessage("RowSet is wrong!" + e.getMessage());
msgDlg.setVisible(true);
System.exit(1);

}
}
else{

msgDlg.setMessage("Only CachedRowSet Method is Available ");
msgDlg.setVisible(true);
return;

}
try {

if (!ShowStudent(simgBlob)){
msgDlg.setMessage("No matched student image found!");
msgDlg.setVisible(true);

}
} catch (SQLException | IOException ex) {

Logger.getLogger(FacultyFrame.class.getName()).log(Level.SEVERE, null, ex);
}

}

A

B

C

D
E

F
G
H

I
J
K
L

M
N
O

P

Q

R

S

T

Fig. 6.56 The codes for the Select button Click event handler

 B. One class-level, not class, variable is declared here since we need to use it in our
whole class. The msgDlg is used to track and display any debug and warning
information if any error is encountered during our project runs.

6.3 Create a Java Application Project to Access the SQL Server Database

262

 C. Two query methods are added into the Query Method combo box. In this appli-
cation, we only use the second one, CachedRowSet Method.

 D. Five students’ names are added into the Student Name combo box.

Next, let’s figure out the codes for the Select button Click event handler. When
this button is clicked, the detailed information about the selected student should be
displayed in both seven text fields and the Course Selected listbox.

6.3.7.5 Coding for the Select Button Event Handler to Query Data Using
the CachedRowSet

Open this event handler and enter the codes that are shown in Fig. 6.56 into this
event handler. Let’s have a closer look at this new added piece of codes to see how
it works.

 A. Two local objects, simgBlob and rowSet, are declared first and the first one is
used to hold the retrieved student image and the second is used to create a
CachedRowSet object.

 B. Then a new CachedRowSet object is created with the RowSetFactory class,
newFactory(), which is created by a RowSetProvider. One point to be noted is
that the old syntax used to create this CachedRowSet object, CachedRowSet
rowSet = new CachedRowSetImpl();, is no longer available after JDBC 9.0.
A try-catch block is used for this creation.

 C. As we know, there is no student_name column available in the StudentCourse
table, and the only relationship between a student and a course taken by that
student is the student_id, which is a primary key in the Student table and a
foreign key in the StudentCourse table. In order to pick up all courses taken by
the selected student, we need to perform two queries: first we need to perform a
query to the Student table to get a student_id based on the selected student_
name, and then we can perform another query to the StudentCourse table
based on the student_id to get all courses taken by the selected student. The
first SQL query string, strStudent, is created here with a positional parameter,
student_name.

 D. The second SQL query string strStudentCourse is also created with another
positional parameter, student_id.

 E. If the user selected the CachedRowSet Method, a try…catch block is used to
perform this query using the CachedRowSet implementation component. First,
a database connection with some parameters, such as url, username and pass-
word, is setup since we are using a direct implementation with direct connec-
tion to our sample database. The setCommand() method is used to create an
executable command with the first query string, strStudent, as the argument.

 F. The setString() method is used to setup the real value for the positional param-
eter, student_name, which is obtained from the Student Name combo box,
ComboName.

6 Query Data from Databases

263

 G. The query is actually executed by calling the execute() method to perform the
first query using the CachedRowSet instance.

 H. A while loop is used to repeatedly pick up all seven pieces of information
related to the selected student. The next() method works as the loop condition
and it returns a true as long as a valid row can be found from the returned data
by the execution of the CachedRowSet object. The result of running this next()
method is to move the cursor that points to the initial position to the first row in
the returned data stored in the RowSet. In fact, only one row is returned and
stored in the CachedRowSet object for the first query, and a sequence of
getXXX() methods are used to pick up each column from the RowSet and
assign each of them to the associated text field to be displayed on the
StudentFrame Form.

 I. To execute the second query, the setCommand() method is called again to cre-
ate an executable Command object with the second query string as the argu-
ment. Then the setString() method is called to setup the positional parameter,
student_id, for the second SQL query statement. The actual value for this
parameter can be obtained from the Student ID text field and it has been retrieved
and filled by the first query.

 J. The query is executed by calling the execute() method to perform the second
query using the CachedRowSet instance.

 K. In order to pick up the second query result, which contains multiple rows with
one column, we need to declare a String array Result[] and initialize it with a
null value. This step is necessary, and otherwise a NullPointer exception may
be encountered if this array has not been initialized as the project runs later.

 L. A while loop is used with the next() method as the loop condition. Each time
when the next() method is executed, the cursor in the CachedRowSet object is
moved down one step to point to the next returned row. The getString() method
is used to pick up that row and assign it to the local String variable sResult, and
furthermore, to the String array Result[]. The index in the getString() method
indicates the current column’s number, and this process will be continued until
all rows have been collected and assigned to the Result[] array.

 M. All courses, exactly all course_id, collected and stored in the Result[] array are
assigned to the Course Selected listbox to be displayed in there. The setList-
Data() method is a very useful method and the argument of this method must be
an array when this method is executed.

 N. The CachedRowSet object must be closed when it finished its mission. A close()
method is used to perform this job.

 O. To retrieve the student’s image, we still need to use the ResultSet object since
the CachedRowSet cannot get any Blob from a database and it only can retrieve
back an Object via getObject() method. An issue is that this Object data type
cannot be converted to a Blob type, thus we cannot use the CachedRowSet to
directly get any Blob. For that purpose, a ResultSet object rs is generated and
the first query is executed to pick up all eight pieces of a student’s information.

6.3 Create a Java Application Project to Access the SQL Server Database

264

private boolean ShowStudent(Blob bimg) throws SQLException, IOException{
Image img;
int imgId = 1, timeout = 1000;
FileOutputStream imgOutputStream = null;
MediaTracker tracker = new MediaTracker(this);
String imgPath = System.getProperty("user.dir");
String simgName = ComboName.getSelectedItem().toString() + ".jpg";
try {

imgOutputStream = new FileOutputStream(imgPath + "/" + simgName);
}catch (FileNotFoundException ex) {

Logger.getLogger(StudentFrame.class.getName()).log(Level.SEVERE, null, ex);
}
imgOutputStream.write(bimg.getBytes(1, (int)bimg.length()));
imgOutputStream.close();
img = this.getToolkit().getImage(simgName);
Graphics g = ImageCanvas.getGraphics();
tracker.addImage(img, imgId);
try{

if(!tracker.waitForID(imgId, timeout)){
msgDlg.setMessage("Failed to load image");
msgDlg.setVisible(true);
return false;
}

}catch(InterruptedException e){
msgDlg.setMessage(e.toString());
msgDlg.setVisible(true);
return false;

}
g.drawImage(img, 0, 0, ImageCanvas.getWidth(), ImageCanvas.getHeight(), this);
return true;

}

A

B

C

D
E
F

G
H

I

J

Fig. 6.57 The codes for the ShowStudent() method

private void BackButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
this.setVisible(false);
this.dispose();

}

Fig. 6.58 The codes for the Back button Click event handler

 P. A while() loop is executed to pick up the selected student’s image and it is
assigned to our local Blob variable simgBlob, which will be used later by
ShowStudent() method.

 Q. The catch block is used to collect any possible exceptions and display them if
they did occur.

 R. If users selected another method, Runtime Object Method, to query to our
Student and StudentCourse tables, a message is displayed to indicate that only
one method is available for this application now.

 S. A try-catch block is used to call our user-defined method ShowStudent(),
whose codes will be shown later, to display the selected student’s image in the
Canvas in our StudentFrame Form.

 T. Another catch block is used to collect any possible exceptions and display them
if they did occur.

6 Query Data from Databases

265

Next, let’s build a user-defined method to display a student picture for the
selected student.

6.3.7.6 Display a Student Picture for the Selected Student

As we did for the FacultyFrame class, we can display a student picture as a part of
student information in the Canvas component. The codes are identical with those
codes in our user-defined method ShowFaculty() in Sect. 6.3.5.3.2, and refer to that
section to get more detailed information about this piece of codes. Fig. 6.57 shows
the detailed codes for this method. Only one modification is made for this method,
which is to change the fimgName to the simgName.

At this point, we have almost finished the coding for this StudentFrame class.
Before we can run the project to test the function of this piece of codes, we need to
finish the coding for the Back button, exactly for the Back button Click event han-
dler. Open this event handler and enter the codes that are shown in Fig. 6.58 into this
event handler.

The function of this piece of codes is very simple. The StudentFrame Form win-
dow will be closed and removed from the screen as this button is clicked by the user.

Before we can build and run our entire project to test this StudentFrame Form,
one more job we need to do is to add some connection codes in the SelectionFrame
Form class to enable a smooth transfer between the SelectionFrame Form and the
StudentFrame Form, and to open

Our StudentFrame Form to allow users to perform desired queries to our database.
The exact coding modifications have happened in the OK Button Click event

handler in the SelectionFrame Form. Open that event handler and make two modi-
fications, as shown in Fig. 6.59, for this handler (both coding lines have been high-
lighted in bold):

package SQLSelectObjectPackage;
……
private void OKButtonActionPerformed(java.awt.event.ActionEvent evt) {

// TODO add your handling code here:
FacultyFrame facultyFrame = new FacultyFrame();
CourseFrame courseFrame = new CourseFrame();
StudentFrame studentFrame = new StudentFrame();

if (ComboSelection.getSelectedItem()== "Faculty Information"){
facultyFrame.setVisible(true);

} else if (ComboSelection.getSelectedItem()== "Course Information"){
courseFrame.setVisible(true);

} else {
//dlg.setMessage("Student Information is selected\n");
//dlg.setVisible(true);
studentFrame.setVisible(true);

}
}

A

B

Fig. 6.59 The modified codes for the OK Button click event handler

6.3 Create a Java Application Project to Access the SQL Server Database

266

Fig. 6.60 A running sample of the StudentFrame Form window

 A. Create a new instance for our Studentframe class studentFrame, which will
be used later.

 B. Comment-out two original coding lines, call and open this StudentFrame Form
window by using setVisible(true) method.

Now we have completed all coding job for this StudentFrame class. Now let’s
build and run our project. Click on the Clean and Build Main Project button from
the toolbar to build the project. Then click on the Run Project button (green arrow
button) on the tool bar to run the project.

Complete the login process and select the Student Information item from the
Selection combo box to open the StudentFrame Form, as shown in Fig. 6.60.

Select a student from the Student Name combo box and make sure to select the
CachedRowSet Method from the Query Method combo box. Then click on the
Select button to try to retrieve all pieces of information related to the selected stu-
dent. A sample running result is shown in Fig. 6.60.

Click on the Back button to return to the SelectionFrame Form to allow users to
perform some other queries from other Forms.

A complete project SQLSelectObject can be found from the folder Class DB
Projects\Chapter 6 that is located under the Students folder at the Springer ftp site
(see Fig. 1.2 in Chap. 1).

6 Query Data from Databases

267

In the next section, we will discuss how to use JDBC API and the runtime object
method to perform data query from Oracle databases.

6.4 Chapter Summary

A popular Java database programming method, runtime object method, is discussed
in detail in this chapter with a Java Ant Application example project
SQLSelectObject.

With a lot of coding developments and dynamic parameters setups, a completed
set of techniques in Java database programming are discussed and analyzed, which
include:

• How to perform a dynamic data query using standard JDBC drivers, such as

 1) Load and register database drivers
 2) Connect to databases and drivers
 3) Create and manage PreparedStatement object to perform dynamic query
 4) Use ResultSet object to pick up queried result
 5) Query data using JDBC MetaData interface
 6) The ParameterMetaData interface
 7) Use DatabaseMetaData interface
 8) Use ResultSetMetaData interface
 9) Query data using the CallableStatement method

• Query data using the Java RowSet object

The novel and key technique discussed in this part is the interface between a SQL
stored procedure and a Java CallableStatement interface. Regularly, there is no
mapped partner for the cursor data type in the JDBC data type; in other words, a
cursor applied in the SQL Server stored procedure cannot be returned to a Java
database application since the cursor cannot be mapped to a valid JDBC data type.
In order to solve that problem, we developed a special SQL stored procedure to
perform the conversion between a VARCHAR string and a cursor inside the SQL
stored procedure, and returned a VARCHAR string to the Java database application.

Very detailed discussions in how to build SQL stored procedure are provided in
this part, too, to give readers a full and clear picture in how to do a connection
between a CallableStatement interface and a database stored procedure.

Homework
 I. True/False Selections

____1. One does not need to change the TCP/IP port number when connecting to
a SQL Server 2019 Express database since the default port number
is 1434.

____2. The JDBC Drivers for SQL Server database, Microsoft SQL Server JDBC
Driver 8.4, is a type IV driver.

6.4 Chapter Summary

268

____ 3. A static query is called a Named Query and it is defined statically with
the help of annotation or XML before the entity class is created.

____ 4. Dynamic queries belong to queries in which the query strings are pro-
vided at run-time or created dynamically. All callings to EntityManager.
createQuery(queryString) are actually creating dynamic query objects.

____ 5. Only one way can be used to load and register a JDBC Driver during a
project runs, which is to use the Class.forName() method.

____ 6. When using the getConnection() method in the DriverManager class to
perform a database connection, the connection is made as soon as this
instruction runs.

____ 7. The executeQuery() method will definitely return a query result, but the
executeUpdate() method will never returns any result.

____ 8. When a query is performed and a ResultSet is created, you need to
retrieve the queried result from the ResultSet object by using a suitable
getXXX() method.

____ 9. The advantage of using the getObject() method is that a returned datum,
which is stored in a ResultSet object and its data type is unknown, can be
automatically converted from its SQL data type to the ideal Java data type.

___10. The SQL92 syntax can only be used for calling a SQL stored procedure,
not for an Oracle package or stored procedure.

___11. One has to use the registerOutParameter() method to register any output
parameter in a SQL statement to allow the CallableStatement to know
that there is an OUT parameter in that query and the returned value should
be stored in that parameter.

___12. When using a Java RowSet object to query data, one has to create an
instance of the RowSet Implementation class, not the RowSet class itself
since all RowSet classes are abstract classes.

 II. Multiple Choices

 1. The sequence to perform a data query from a database using a JDBC driver
is _____

 a. Connect to database, load JDBC driver, perform the query, get result
from ResultSet

 b. Perform the query, connect to database, load JDBC driver, get result
from ResultSet

 c. Get result from ResultSet, connect to database, load JDBC driver, per-
form the query

 d. load JDBC driver, connect to database, perform the query, get result
from ResultSet

 2. The difference between a JPQL and a standard SQL query string is that a(n)
_______ is used and prefixed for each clause.

 a. Class name
 b. An abstract schema

6 Query Data from Databases

269

 c. Property name
 d. A object schema

 3. A named query can be considered as a ________ query.

 a. Dynamic
 b. Instance
 c. Object
 d. Static

 4. One needs to use a _______ object as an image holder, a _______ object as
a tool to display an image, and a ________ class as a monitor to coordinate
the image processing.

 a. Canvas, MediaTracker, Graphics
 b. Graphics, MediaTracker, Canvas
 c. Canvas, Graphics, MediaTracker
 d. MediaTracker, Graphics, Canvas

 5. Generally, a connection url contains three parts or three segments;
__________, __________ and _________ for the database to be connected.

 a. Subname, sub-protocol, sub-protocol name
 b. Protocol name, sub-protocol, subname
 c. Protocol name, sub-protocol name, subname
 d. Protocol, sub-protocol, subname

 6. The execute() method can _____________.

 a. Not return any result
 b. Return some results
 c. Be used either to return a result or not return any result
 d. None of above

 7. To distinguish or identify the data type returned by the execute() method,
one needs to __________________ .

 a. Use the getResultSet() method
 b. Use the getUpdateCount() method
 c. Use either of them
 d. Use both of them

 8. The ResultSet object can be created by either executing the ___________ or
__________ method, which means that the ResultSet instance cannot be
created or used without executing a query operation first.

 a. executeQuery(), getResultSet()
 b. getResultSet(), execute()
 c. createResultSet(), getResultSet()
 d. buildResultSet(), executeQuery()

6.4 Chapter Summary

270

 9. The cursor in a ResultSet object can be moved by executing the
____________ method.

 a. move()
 b. first()
 c. next()
 d. last()

 10. A cursor in a SQL Server database can be mapped to an __________________
data type.

 a. jdbc.oracle.CURSOR
 b. oracle.jdbc.OracleTypes.CURSOR
 c. java.sql.ResultSet
 d. jdbc.CURSOR

 11. A ____________ object, which contains all pieces of necessary information
about the returned data stored in a ResultSet instance, is returned when the
___________ method is executed.

 a. getMetaData(), ResultSetMetaData
 b. ResultSet, getMetaData()
 c. getResultSet, ResultSet
 d. ResultSetMetaData, getMetaData()

 12. A CallableStatement can either return a _________ object and multiple
ResultSet objects by using executeQuery() method or return nothing by
using _________ method.

 a. ResultSetMetaData, getResultSet()
 b. Cursor, getCursor()
 c. Object, getObject()
 d. ResultSet, execute()

 III. Exercises

 1. List 6 steps to build a data query from a Java database application project
to a relational database using the Java runtime object method.

 2. Using Java CallableStatement method to develop the data query from the
Student and StudentCourse tables with the StudentFrame class in the
SQLSelectObject project (the project file can be found from the

CREATE PROCEDURE [dbo].[StudentInfo]
@sName VARCHAR(50)

AS
SELECT student_id, student_name, gpa, credits, major, schoolYear, email, simage
FROM Student WHERE student_name = @sName

RETURN 0

Fig. 6.61 The completed stored procedure dbo.StudentInfo

6 Query Data from Databases

271

folder Class DB Projects\Chapter 6 that is located under the Students
folder at the Springer ftp site (see Fig. 1.2 in Chap. 1). The procedures to
develop this data query include the steps listed below:

 a. Build a SQL Server stored procedure [dbo].[StudentInfo] using the
Sever Explorer in Visual Studio.NET 2019.

 b. Develop codes for the StudentFrame class to perform a data query to
stored procedure (adding an else if (ComboMethod.getSelecte-
dItem()== "Java Callable Method") block to the Select button
Click event handler).

Hint:

1) Build a stored procedure dbo.StudentInfo with Visual Studio.NET
2019 as shown in Fig. 6.61. Only one input parameter, sName, which
is the selected student name from the Student Name combo box, is
applied to this procedure.

2) Call this procedure in Java Ant Application project with the
CallableStatement method, exactly with the executeQuery()
method, and retrieve the result with a ResultSet object rs. Then one
can use a while(rs.next()) loop to pick up each column and assign
each of them to the related Text Field in the StudentFrame Form.

 3. Based on Exercise 2, build another stored procedure, dbo.
StudentCourseInfo, in the Visual Studio.NET 2019. Then in the same
project SQLSelectObject, add some codes under the Java Callable
Method, exactly under the codes to call the stored procedure, dbo.
StudentInfo built in Exercise 2, to call the stored procedure, dbo.
StudentCourseInfo, to get all courses, exactly all course_id, taken by
the student based on the selected student_id from the student ID Text
Field, and display them in the CourseList ListBox on the
StudentFrame Form.

Hint:

1) Build a stored procedure dbo.StudentCourseInfo with Visual
Studio.NET 2019 as shown in Fig. 6.62. Only one input parameter,
sID, which is the selected student_id from the Student ID Text
Field, is applied to this procedure.

CREATE PROCEDURE [dbo].[StudentCourseInfo]
@sID VARCHAR(50)

AS
SELECT course_id FROM StudentCourse WHERE student_id = @sID

RETURN 0

Fig. 6.62 The completed stored procedure dbo.StudentCourseInfo

6.4 Chapter Summary

272

2) Call this procedure in Java Ant Application project with the
CallableStatement method, exactly with the executeQuery()
method, and retrieve the result with a ResultSet object rs. Then one
can use a while(rs.next()) loop to pick up each row (course_id) and
assign each of them to a String array, and then use the setListData()
method to add them into the CourseList ListBox in the StudentFrame
Form. Refer to the codes to get these course_id under the
CachedRowSet Method, and they are similar.

 4. Develop a method by adding some codes into the LogIn button. Click
event handler in the LogInFrame class in the project SQLSelectObject
to allow users to try the login process only 3 times. A warning message
should be displayed and the project should be exited after 3 times of try-
ing to login but all of them are failed. A project file SQLSelectObject
can be found from the folder Class DB Projects\Chapter 6 that is
located under the Students folder at the Springer ftp site (see Fig. 1.2 in
Chap. 1).

Hint:

1) Add a new class variable into the LogInFrame class constructor,
static int tryTimes = 0;

2) Inside the LogInButtonActionPerformed() event handler, incre-
ment tryTimes by 1 each time when this handler is triggered.

3) Still inside that handler, using an if block to check whether the try-
Times is > 3? If it is, call the CancelButton Click event handler with
CancelButton.doClick() method to stop this login process.

4) Using a system method System.exit(0); to exit the project.

 5. Adding a Java Execute() Method into the Query Method combo box on
the StudentFrame Form via the constructor of the StudentFrame Form.
Then build codes for this method to query student information from the
Student table in our sample database. A project file SQLSelectObject
can be found from the folder Class DB Projects\Chapter 6 that is
located under the Students folder at the Springer ftp site (see Fig. 1.2 in
Chap. 1).

 6. Figure 6.63 shows a stored procedure, FacultyCourseInfo(), which was
built in the Visual Studio.NET 2019 and used to retrieve all course,

CREATE PROCEDURE [dbo].[FacultyCourseInfo]
@fName VARCHAR(50)

AS
DECLARE @facultyID AS VARCHAR(50)
SET @facultyID = (SELECT faculty_id FROM Faculty WHERE faculty_name = @fName)
SELECT course_id FROM Course WHERE faculty_id = @facultyID

RETURN 0

Fig. 6.63 The completed stored procedure dbo.FacultyCourseInfo

6 Query Data from Databases

273

exactly all course_id, taught by the selected faculty member. Please
develop your codes in the CourseFrame Form class in the
SQLSelectObject project to use Java Callable Method to call this
stored procedure to query all related course_id for the selected faculty
member, and display them in the CourseList ListBox in the
CourseFrame Form.

A project file SQLSelectObject can be found from the folder Class
DB Projects\Chapter 6 that is located under the Students folder at the
Springer ftp site (see Fig. 1.2 in Chap. 1).

Hint:

1) Call this procedure in Java Ant Application project with the
CallableStatement method in the CourseFrame class, exactly with
the execute() method, and retrieve the result with a ResultSet object
rs. Then one can use a while(rs.next()) loop to pick up each row
(course_id) and assign each of them to a String array, and then use
the setListData() method to add them into the CourseList ListBox
in the CourseFrame Form.

2) Develop your codes to replace the original codes inside the Java
Callable Method to call this stored procedure. This stored procedure
has only one input parameter, facultyName, which comes from the
Faculty Name combo box.

6.4 Chapter Summary

275

Chapter 7
Insert, Update, and Delete Data
from Databases

Similar to manipulating data in Visual Studio.NET, when manipulating data in the
Java NetBeans IDE environment, a popular method is always utilized, the Java run-
time object method. Java codes (SDK 1.x) enable users to access databases with a
sequence of codes, starting from creating a DriverManager to load the database
driver, setting up a connection using the Driver, creating a query statement object,
running the executeQuery object, and processing the data using a ResultSet object.
In this chapter, we introduce and use this method to perform the database manipula-
tions to perform data insertions, data updating, and data deletion queries.

In the following sections, we will concentrate on inserting, updating, and delet-
ing data against our sample database using Java runtime method.

7.1 Perform Data Manipulations to SQL Server Database
Using Java Runtime Object

As we did for the data query operations, in this section we will discuss how to per-
form data manipulations using the Java runtime object method. Relatively speaking,
there are some limitations in using the JAPI wizards to do the data manipulations.
For instance, after the mapped entity has been built and the entity manager object
has been created, the data manipulation can only be performed to that specified
entity object or that data table. In other words, a defined or mapped entity object
cannot perform data manipulations to any other entity object or data table.

A good solution to these limitations is to use the Java runtime object to perform
the data manipulations, and this will provide much more flexibilities and

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_7].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_7

https://doi.org/10.1007/978-3-031-06553-8_7

276

controllabilities to the data manipulations against the database and allow a single
object to perform multiple data manipulations against the target database.

Let’s first concentrate on the data insertion to our SQL Server database using the
Java runtime object method.

7.2 Perform Data Insertion to SQL Server Database Using
Java Runtime Object

We have provided a very detailed and clear discussion about the Java runtime object
method in Sect. 6.2 in Chap. 6. Refer to that section to get more details for this topic.
Generally, to use Java runtime object to perform data manipulations against our
target database, the following six steps should be adopted:

 1) Load and register the database driver using DriverManager class and Driver
methods.

 2) Establish a database connection using the Connection object.
 3) Create a data manipulation statement using the createStatement() method.
 4) Execute the data manipulation statement using the executeUpdate() or exe-

cute() method.
 5) Retrieve and check the execution result of the data manipulations.
 6) Close the statement and connection using the close() method.

Generally, SQL Server database is a popular database system and has been
widely implemented in most commercial and industrial applications. In this and the
following sections in this chapter, we will concentrate on this database system to
discuss how to perform data inserting, updating, and deleting operations.

To save time and space, we can use and modify a project SQLSelectObject we
built in Chap. 6 to perform data manipulations against our target database. Perform
the following operations to complete this project transferring:

 1) Open the Windows Explorer, and create a new folder, such as Class DB Project\
Chapter 7, in your root drive.

 2) Open the Apache NetBeans 12, and one can find the project SQLSelectObject
we built in Chap. 6 from the Projects window.

 3) Right click on that project, and select the Copy item from the popup menu to
open the Copy Project wizard.

 4) Change the project name to SQLInsertObject in the Project Name box.
 5) Browse to the folder, Class DB Projects\Chapter 7, which was created above in

step 1, and click on the OK button to select this location as your project location.
 6) Your finished Copy Project wizard should match one that is shown in Fig. 7.1.
 7) Click on the Copy button to complete this copy process.

Now you can find this copied project SQLInsertObject from the Project win-
dow. With this project, we are ready to build our data insertion query to perform data
manipulations to our SQL Server sample database CSE_DEPT.

7 Insert, Update, and Delete Data from Databases

277

Fig. 7.1 The finished Copy Project wizard

In Sects. 6.3.1 and 6.3.3.2 in Chap. 6, we have created a FacultyFrame class and
Faculty JFrame window FacultyFrame. Also the following components have been
added into that project:

• A JDBC driver for SQL Server database has been loaded and registered.
• A valid database connection to that project has been established.
• A PreparedStatement instance has been created and implemented in the Select

button click event handler to perform the data query.

In this section, we want to use the Insert button that has been built in the
FacultyFrame window to perform this data insertion function. This data insertion
action includes inserting a new faculty record with a new or a default faculty image.

7.2.1 Develop the Codes for the Insert Button Event Handler

In Sect. 6.3.3.5 in Chap. 6, we have given a detailed discussion about the dynamic
data query using the PreparedStatement object method. Refer to that section to get
more details about that method. In this section, we will use that object to perform a
dynamic faculty member insertion to the Faculty table in our sample database.

Open the Insert button click event handler, and enter the codes that are shown in
Fig. 7.2 into this handler. Let’s have a close look at this piece of codes to see how
it works.

 A. Some local variables and objects are declared first, which include a local integer
variable numInsert that is used to hold the returned number of inserted row as
the data insert action is performed and a byte array fImage which is used to hold
the selected faculty image to be inserted into the database later.

7.2 Perform Data Insertion to SQL Server Database Using Java Runtime Object

278

private void InsertButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
int numInsert = 0;
byte[] fImage;

if (!chkFaculty()) {
msgDlg.setMessage("Fill all TextFields for a new record!");
msgDlg.setVisible(true);
return;

}
fImage = getFacultyImage();
String InsertQuery = "INSERT INTO Faculty (faculty_id, faculty_name, title, office, phone, " +

"college, email, fimage) VALUES (?, ?, ?, ?, ?, ?, ?, ?)";
try {

PreparedStatement pstmt = LogInFrame.con.prepareStatement(InsertQuery);
pstmt.setString(1, FacultyIDField.getText());
pstmt.setString(2, FacultyNameField.getText());
pstmt.setString(3, TitleField.getText());
pstmt.setString(4, OfficeField.getText());
pstmt.setString(5, PhoneField.getText());
pstmt.setString(6, CollegeField.getText());
pstmt.setString(7, EmailField.getText());
pstmt.setBytes(8, fImage);
numInsert = pstmt.executeUpdate();

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
System.out.println("The number of inserted row = " + numInsert);
ComboName.addItem(FacultyNameField.getText());
InsertButton.setEnabled(false);
clearFaculty();

}

A

B

C

D

E

F

G

H

I

J

K

L

Fig. 7.2 The added codes to the Insert button click event handler

 B. Prior to performing a data insertion, one needs to make sure that all TextFields
that contained seven pieces of new faculty information must be filled. To do that,
a user-defined method, chkFaculty(), is called to check all pieces of informa-
tion to make sure that this insertion is a valid one. A warning message would be
displayed if any field is empty.

 C. Another user-defined method, getFacultyImage(), is executed to select and
obtain a selected faculty image to be inserted into the Faculty table in our sam-
ple database.

 D. An insert query string is created with eight positional dynamic parameters,
which are associated with eight pieces of inserted faculty information. One
point to be noted is that the order of these parameters must be identical with the
order of columns defined in the Faculty table. Otherwise an exception may
occur when this insertion is performed.

 E. A try…catch block is used to initialize and execute the data insertion action.
First a PreparedStatement instance is created using the Connection object that
is located at the LogInFrame class with the insert query string as the argument.

 F. The setString() method is used to initialize seven pieces of inserted faculty
information, which are obtained from seven text fields and entered by the user
as the project runs. Also the setBytes() method must be used to set the faculty
image column, fimage, to insert a new selected faculty image into the database.

7 Insert, Update, and Delete Data from Databases

279

 G. The data insertion function is performed by calling the executeUpdate()
method. The running result of this method, which is an integer that equals to the
number of rows that have been inserted into the database, is assigned to the local
variable numInsert.

 H. The catch block is used to track and collect any possible exception encountered
when this data insertion is executed.

 I. The running result is printed out as a debug purpose.
 J. The new inserted faculty name is attached into the Faculty Name combo box to

enable users to validate this data insertion later.
 K. After this data insertion, the Insert button must be disabled to avoid any possi-

ble duplicated insertion operation to occur. To do that, a system method, setEn-
able(), with a false argument is used for that purpose.

 L. Finally another user-defined method, clearFaculty(), is called to clean up all
pieces of inserted information to make it ready for a validation of this inser-
tion later.

Before we can build and run the project to test the data insertion function, we
should first figure out how to check and validate this data insertion. First let’s take
care of the data checking to make sure that all pieces of new inserted faculty infor-
mation are valid prior to this insertion.

7.2.2 Develop a Method for Data Checking Prior
to Data Insertion

Create a new method named chkFaculty(), and enter the codes that are shown in
Fig. 7.3 into this method. Let’s take a closer look at this piece of codes to see how
it works.

 A. A Java TextField array, f_field[], is declared and initialized with seven TextFields
that will be filled by seven pieces of faculty information later. The purpose of
this setting is to simplify this data checking process later.

 B. A for loop is used to check all TextFields, exactly to use a system method get-
Text(), to do this checking to make sure that all of them are filled without any

private boolean chkFaculty() {
javax.swing.JTextField[] f_field = {FacultyIDField, FacultyNameField, TitleField, OfficeField, PhoneField,

CollegeField, EmailField};

for (int loop = 0; loop <f_field.length; loop++) {
if (f_field[loop].getText() == "") {

return false;
}

}
return true;

}

A

B

Fig. 7.3 The detailed codes for the user-defined method chkFaculty()

7.2 Perform Data Insertion to SQL Server Database Using Java Runtime Object

280

empty one. A false would be returned if any of them is empty to indicate
this error.

Next let’s take care of how to get a selected faculty image to be inserted into the
database.

7.2.3 Develop a Method for Selecting a Valid Faculty Image

When performing this data insertion, in addition to seven pieces of a new faculty
information, a new or a default faculty image should also be involved to this action.
It is crystal to get this image in a simple and easy way to speed up this insertion
action. To that purpose, create another user-defined method getFacultyImage(),
and enter the codes shown in Fig. 7.4 for this method.

Let’s take a closer look at this piece of codes to see how it works.

 A. Some local variables are declared first, which include a byte array fimage and a
File object imgFile. The former is used to hold the selected faculty image, and
the latter is used to keep the selected faculty image in a file format.

 B. A JFileChooser object, imgChooser, is created, and it is used to assist users to
select a desired faculty image via this kind of File Dialog.

 C. To get and save a selected faculty image or a file, the current folder with the path
is necessary, and this folder is our current project folder. The selected faculty
image would be stored in that folder to enable system to pick it up later to get it
to be displayed.

 D. A JFileChooser dialog is opened to allow users to select a desired faculty image.
 E. If this dialog is opened successfully, and a faculty image has been selected, a

property APPROVE_OPTION is returned with a result whose value is
 non- zero. Then a system method getSelectedFile() is executed to return the

private byte[] getFacultyImage() {
byte[] fimage = null;
File imgFile = null;

JFileChooser imgChooser = new JFileChooser();
imgChooser.setCurrentDirectory(new File(System.getProperty("user.home")));
int result = imgChooser.showOpenDialog(this);
if (result == JFileChooser.APPROVE_OPTION) {

imgFile = imgChooser.getSelectedFile();
System.out.println("Selected path: " + imgFile.getAbsolutePath());
System.out.println("Selected file: " + imgFile.toString());

}
try {

fimage = Files.readAllBytes(imgFile.toPath());
} catch (IOException ex) {
Logger.getLogger(FacultyFrame.class.getName()).log(Level.SEVERE, null, ex);

}
return fimage;

}

A

B
C
D
E

F

G

H

I

Fig. 7.4 The detailed codes for the user-defined method getFacultyImage()

7 Insert, Update, and Delete Data from Databases

281

selected image and assign it to the File object, imgFile, which is to be used in
next step.

 F. For the debug purpose, the file name and its path are displayed here.
 G. A try-catch block is used to convert the image from the File format to the byte

array format since this is the format to be allowed and to be used in the fimage
column in the database. To do that, a system method readAllBytes() is used to
do this kind of conversion. The argument of this method is the path of the
selected image file.

 H. A catch block is used to catch and report any possible exceptions if they
occurred.

 I. Finally the converted faculty image in the byte array format is returned.

Before we can handle the last user-defined method clearFaculty(), let’s take a
look at an issue related to the Insert button. As we know, this button is disabled after
a data insertion is done to avoid any possible duplicated insertion in step K in
Fig. 7.2. One question is: When should this button be enabled to allow users to begin
a new insertion?

7.2.4 Find a Way to Enable the Insert Button to Begin a New
Data Insertion

Now let’s try to answer the above question, When should this Insert button be
enabled again to allow users to insert another new record? Based on a fact, which is
that when a new record is to be inserted into a database, the Faculty ID should be a
new value, and it should not be identical with any current faculty_id in the data-
base. This provided us with an idea, which is: as long as a new faculty record is to
be inserted, the Faculty ID TextField, exactly its content, should be updated with a
new value. Yes, that is true and a good solution to this question.

The answer is: the Insert button should be enabled again as long as the content
of the Faculty ID TextField is changed, and this kind of changing can be reflected
and triggered by a TextField event, FacultyIDFieldKeyTyped.

Perform the following operational steps to open this event handler:

 1) Click on the Design tab on the top to open the Design View of the
FacultyFrame Form.

 2) Right click on the Faculty ID TextField, and select the item Events > Key >
keyTyped to open this event handler.

Then enter the codes shown in Fig. 7.5 into this event handler.
Only one line of codes is built here, which is to call the system method setEn-

abled() with the true as an argument to enable this Insert button when the content
of the Faculty ID TextField is changed. With this coding, we solved this issue, and
let’s continue to the next step.

7.2 Perform Data Insertion to SQL Server Database Using Java Runtime Object

282

private void FacultyIDFieldKeyTyped(java.awt.event.KeyEvent evt) {
// TODO add your handling code here:
InsertButton.setEnabled(true);

}
A

Fig. 7.5 The codes inside the FacultyIDFieldKeyTyped event handler

private void clearFaculty() {
javax.swing.JTextField[] f_field = {FacultyIDField, FacultyNameField, TitleField, OfficeField, PhoneField,

CollegeField, EmailField};

for (int loop = 0; loop < f_field.length; loop++){
f_field[loop].setText("");

}
}

A

B

Fig. 7.6 The codes in the method clearFaculty()

7.2.5 Develop a Method for Clearing Original
Faculty Information

In order for us to perform a validation for this new inserted faculty record in the
Faculty table in our sample database, we need to clean up all pieces of original
faculty information stored in the seven TextFields in the FacultyFrame Form. To do
that, we need to build another user-defined method, clearFaculty(), and enter the
codes shown in Fig. 7.6 into this method.

Let’s have a closer look at this piece of codes to see how it works.

 A. A JTextField array is declared and initialized by adding seven TextFields into it.
Each TextField in this array is associated with a TextField used to store and
display a piece of selected faculty information. The purpose of using this array
is to simplify this cleaning process with a for loop shown below.

 B. A for loop is used to scroll all seven TextFields and to set empty strings to them
to clean up each of them.

Next let’s handle the validation process for this data insertion.

7.2.6 Develop the Codes for the Validation
of the Data Insertion

To confirm and validate this data insertion, we can use the codes we built inside the
Select button click event handler without any modifications.

Now we are ready to build and run the project to test the data insertion function.

7 Insert, Update, and Delete Data from Databases

283

7.2.7 Build and Run the Project to Test the Data Insertion

Click on the Clean and Build Main Project button from the toolbar to build the
project. Make sure that our sample SQL Server database CSE_DEPT has been con-
nected to our project.

Now click on the Run Main Project button to run the project. Enter suitable
username and password, such as jhenry and test, to the LogIn frame form, and
select the Faculty Information from the SelectFrame window to open the
FacultyFrame form window. Make sure that the Runtime Object Method has been
selected from the Query Method combo box. Then click on the Select button to
query the default faculty information.

Modify the contents of seven text fields by entering the following credentials into
these TextFields, which is equivalent to a new record of a faculty member:

• Faculty ID: J28544
• Faculty Name: James Carson
• Title: Associate Professor
• Office: MTC-118
• Phone: 750-378-1134
• College: University of Miami
• Email: jcarson@college.edu

Then click on the Insert button to select a desired faculty image for this insertion.
The JFileChooser dialog appeared, as shown in Fig. 7.7. Browse to a desired

folder on your computer, where all faculty images are stored, and click on the Open
button to select that image. In our case, this folder is C:\SQL Java DB Programming\
Students\Images\Faculty. You may select a default faculty image file, Defaulty.

Fig. 7.7 The opened JFileChooser dialog

7.2 Perform Data Insertion to SQL Server Database Using Java Runtime Object

jcarson@college.edu

284

jpg, as we did in this example. All faculty images can be found from a folder
Students\Images\Faculty at the Springer ftp site (refer to Fig. 1.2 in Chap. 1). You
can copy and paste them in your desired folder in your computer.

Now all TextFields contained the original faculty information become blank. To
confirm or validate this data insertion, just go to the Faculty Name combo box, and
scroll down in that box and

you can find that our new inserted faculty member, James Carson, has been
added there. Click

that faculty by clicking on it, and click on the Select button to try to retrieve back
all pieces of information for this inserted faculty. Immediately you can find that all
pieces of information for that inserted faculty are displayed in this FacultyFrame
Form, as shown in Fig. 7.8.

Our data insertion action is successful!
It is recommended to remove this new inserted faculty from the Faculty table to

keep our sample database neat and clean. Next let’s perform the data updating action
against our sample database using the Java runtime object method.

Fig. 7.8 The validation result for the new inserted faculty

7 Insert, Update, and Delete Data from Databases

285

7.3 Perform Data Updating to SQL Server Database Using
Java Runtime Object

Regularly, we do not need to update a faculty_id when we update a faculty record
since a better way to do that is to insert a new faculty record and delete the old one.
The main reason for this is that a very complicated operational process would be
performed if the faculty_id were updated since it is a primary key in the Faculty
table and foreign keys in the Course and the LogIn tables. To update a primary key,
one needs to update foreign keys first in the child tables and then update the primary
key in the parent table. This will make our updating process very complicated and
easy to be confused. In order to avoid this confusion, in this section, we will update
a faculty record by changing any column except the faculty_id, and this is a popular
way to update a table and widely implemented in most database applications.

We still want to work for the Faculty table in our sample database via the
FacultyFrame Form; thus, we do not need to create a brand new project to perform
this data updating action, instead we can use an existed project SQLInsertObject
and add our codes to do this data updating action. Perform the following operations
to make our new project based on that project:

1) Open the Windows Explorer and create a new folder, such as Class DB Project\
Chapter 7, in your root drive if you did not do this.

2) Open the Apache NetBeans 12, and one can find the project SQLInsertObject
we built in the last section from the Projects window.

3) Right click on that project, and select the Copy item from the popup menu to
open the Copy Project wizard.

4) Change the project name to SQLUpdateObject in the Project Name box.
5) Browse to the folder, Class DB Projects\Chapter 7, which was created above

in step 1, and click on the OK button to select this location as your project
location.

6) Click on the Copy button to complete this copy process.

Before we can build codes for the Update button event handler, first let’s per-
form some modifications for the codes in the FacultyFrame constructor.

7.3.1 Modify the Codes Inside the FacultyFrame Constructor

The reason we need to do this modification is that some faculty records in the
Faculty table would be changed after this updating action. Thus we need to update
the faculty members in the Faculty Name combobox, ComboName, to enable
users to check and validate related updating action based on the updated faculty
records. One of the most important updating is the faculty name stored in that
combobox.

7.3 Perform Data Updating to SQL Server Database Using Java Runtime Object

286

public class FacultyFrame extends javax.swing.JFrame {
MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);
/**
* Creates new form FacultyFrame
*/

public FacultyFrame() {
initComponents();
this.setLocationRelativeTo(null); // set the faculty Form at the center

ComboMethod.addItem("Runtime Object Method");
ComboMethod.addItem("Java execute() Method");
ComboMethod.addItem("Java Callable Method");
CurrentFaculty();

}
……

}

A

Fig. 7.9 The modified codes in the FacultyFrame constructor

private void CurrentFaculty() {
ResultSet rs;
try {

PreparedStatement pstmt = LogInFrame.con.prepareStatement("SELECT faculty_name FROM Faculty");
rs = pstmt.executeQuery();
ComboName.removeAllItems();
while (rs.next()){

ComboName.addItem(rs.getString(1));
}
rs.close();

} catch (SQLException ex) {
Logger.getLogger(FacultyFrame.class.getName()).log(Level.SEVERE, null, ex);

}
}

A

B

C

D

E

F
G

Fig. 7.10 The detailed codes in the user-defined method CurrentFaculty()

Open our new project SQLUpdateObject and the FacultyFrame Form, and
enter the codes that are shown in Fig. 7.9 into the constructor of this class.

The only modification is to replace eight coding lines, which are used to add
eight faculty members into this Faculty Name combobox ComboName, with a
new user-defined method CurrentFaculty(), as shown in step A in Fig. 7.9.

The detailed codes for this method are shown in Fig. 7.10. Let’s have a closer
look at the codes in this method to see how it works.

 A. A local ResultSet object, rs, is declared first since we need to use this object to
hold our queried faculty members result.

 B. A try-catch block is used to perform this data query. A database connection is
established via the LogInFrame class, and a new PreparedStatement object,
pstmt, is created with a query string to retrieve all faculty names from our
Faculty table.

 C. The query is executed by calling the executeQuery() method, and the query
result is assigned to our local ResultSet object rs.

 D. Prior to updating all faculty names in the ComboName box, it is cleared to
make this updating action ready with a system method removeAllItems().

7 Insert, Update, and Delete Data from Databases

287

 E. A while() loop is used to repeatedly pick up each faculty name with the next()
method. The retrieved faculty name, rs.getString(1), is added into the
 ComboName box by using a system method addItem(). Since only one col-
umn, faculty_name, is queried from the Faculty table, thus the column num-
ber is 1.

 F. The ResultSet object is closed after this query.
 G. A catch block is used to collect and report any possible exceptions during

that query.

Now let’s develop the codes for the Update button event handler to perform the
data updating action to the Faculty table via the FacultyFrame Form in this project.

7.3.2 Develop the Codes for the Update Button Event Handler

We want to use the Update button built in the FacultyFrame form window to per-
form the faculty updating function, therefore no any modification to this
FacultyFrame form window to be made. Now let’s develop the codes for the Update
button click event handler.

Open this event handler, and enter the codes that are shown in Fig. 7.11 into this
event handler. Let’s have a closer look at this piece of codes to see how it works.

 A. A local variable, numUpdated, and a byte array object, fImage, are created
first. The Integer variable is used to hold the running result of the data updating,

private void UpdateButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
byte[] fImage;
int numUpdated = 0;
fImage = getFacultyImage();
String query = "UPDATE Faculty SET faculty_name=?, title=?, office=?, phone=?, college=?, email=?, fimage=? " +

"WHERE faculty_id= ?";
try {

PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);
pstmt.setString(1, FacultyNameField.getText());
pstmt.setString(2, TitleField.getText());
pstmt.setString(3, OfficeField.getText());
pstmt.setString(4, PhoneField.getText());
pstmt.setString(5, CollegeField.getText());
pstmt.setString(6, EmailField.getText());
pstmt.setBytes(7, fImage);
pstmt.setString(8, FacultyIDField.getText());
numUpdated = pstmt.executeUpdate();

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
System.out.println("The number of updated row = " + numUpdated);
CurrentFaculty();

}

A

B

C

D

E

F

G

H

I

J

K

Fig. 7.11 The developed codes for the Update button click event handler

7.3 Perform Data Updating to SQL Server Database Using Java Runtime Object

288

and the byte array is used to hold a returned faculty image by calling the getFac-
ultyImage() method later.

 B. The user-defined method getFacultyImage() is executed to obtain an updated
faculty image that can be selected by the user. The detailed codes and introduc-
tions to that user-defined method can be found in Sect. 7.2.3.

 C. The updating query string is created with eight positional parameters. The query
criterion is the faculty ID, which is the eighth parameter and placed after the
WHERE clause.

 D. A try…catch block is used to assist this data updating action. First a
PreparedStatement instance is created using the Connection object that is
located at the LogInFrame class with the updating query string as the argument.

 E. A set of setString() methods is used to initialize six pieces of updated faculty
information, which are obtained from six text fields and entered by the user as
the project runs.

 F. A setBytes() method is used to assign a byte array fImage to the fimage column
in the Faculty table as an updated faculty image. This method is very important,
and only a byte array can be used to hold an image to be stored to the related
image column in database.

 G. The eighth input parameter in the query string, faculty_id, is assigned to the
query criterion that is located after the WHERE clause.

 H. The data updating action is performed by calling the executeUpdate() method.
The updating result, which is an integer number that is equal to the number of
rows that have been updated by this data updating action, is returned and
assigned to the local integer variable numUpdated.

 I. The catch block is used to track and collect any possible exception encountered
when this data updating is executed.

 J. The running result is printed out as a debug purpose.
 K. The user-defined method CurrentFaculty() is executed to retrieve all updated

faculty name and add them into the Faculty Name combo box to enable the users
to validate this data updating later.

Now let’s build and run the project to test the data updating action.

7.3.3 Build and Run the Project to Test the Data Updating

Before you can run this project, the following conditions have to be met:

• The SQL Server sample database CSE_DEPT has been connected to this project.
• To check this connection, open the Services window and expand the Databases

node to locate our sample database connection URL, jdbc:sqlserver://local-
host\SQL2019EXPRESS: 5000;databaseName=CSE_DEPT [SMART on
dbo]. Right click on this URL, and select the Connect item to do this connection.

7 Insert, Update, and Delete Data from Databases

289

Click on the Clean and Build Main Project button from the toolbar to build our
project. Then click on the Run Main Project button to run the project.

Enter suitable username and password, such as jhenry and test, to complete the
login process, and select the Faculty Information from the SelectFrame window to
open the FacultyFrame window. Make sure that the Runtime Object Method has
been selected from the Query Method combo box. Then click on the Select button
to query any faculty information. As an example, here select the faculty member
Ying Bai from the ComboName box, and display all pieces of information for this
example faculty member.

To update this faculty record, enter the following information into six Text Fields
(no Faculty ID Text Field) inside the Faculty Information panel as an updated fac-
ulty record.

• Faculty Name: Susan Bai
• Title: Professor
• Office: MTC-215
• Phone: 750-378-1348
• College: Duke University
• Email: sbai@college.com

Click on the Update button to select a desired image for this updated faculty
member, White.jpg. All example faculty image files, including this faculty image,
can be found from a folder Students\Images\Faculty in the Springer ftp site (refer
to Fig. 1.2 in Chap. 1). One can copy those image files from that folder and save
them to your desired folder in your computer.

Now if one goes to the Faculty Name combobox, ComboName, and can find
that the updated faculty name Susan Bai has been added into the Faculty Name
combobox and the original faculty member Ying Bai has been removed from this
box by clicking the drop-down arrow of that box.

One way to validate this data updating is to go to the Output window. You can
find that a running successful message is displayed in that window, as shown in
Fig. 7.12.

Similar to the data insertion action, here we have another two ways to validate
this data updating. One way is to open our Faculty table in our sample database to
confirm this data updating, and the other way is to use the Select button (exactly the
codes inside that button’s click event handler) to do this validation. We prefer to use

Fig. 7.12 The successful data updating message

7.3 Perform Data Updating to SQL Server Database Using Java Runtime Object

sbai@college.com

290

Fig. 7.13 The data updated result

the second way to do this validation. Click on the Select button to try to retrieve this
updated faculty record, and the running result is shown in Fig. 7.13. Our data updat-
ing action is successful!

It is highly recommended to recover that updated faculty record to the original
one to keep our database clean and neat. One can perform a similar updating action
to do this recovery job. Of course, you can also perform this data recovering job
using the Microsoft SQL Server Management Studio if you like.

Next let’s handle the data deletion action against our sample database.

7.4 Perform Data Deleting to SQL Server Database Using
Java Runtime Object

We still want to work for the Faculty table in our sample database via the
FacultyFrame Form; thus, we do not need to create a brand new project to perform
this data updating action; instead we can use an existed project SQLUpdateObject
and add our codes to do this data deleting action. Perform the following operations
to make our new project based on that project:

 1) Open the Windows Explorer and create a new folder, such as Class DB Project\
Chapter 7, in your root drive if you did not do this.

7 Insert, Update, and Delete Data from Databases

291

 2) Open the Apache NetBeans 12, and one can find the project SQLUpdateObject
we built in the last section from the Projects window.

 3) Right click on that project, and select the Copy item from the popup menu to
open the Copy Project wizard.

 4) Change the project name to SQLDeleteObject in the Project Name box.
 5) Browse to the folder, Class DB Projects\Chapter 7, which was created above in

step 1, and click on the OK button to select this location as your project location.
 6) Click on the Copy button to complete this copy process.

Basically, there is no significant difference between the data updating and delet-
ing using Java runtime object method. In this section, we try to use the Delete button
we built in the FacultyFrame Form window to perform this data deletion operation.

7.4.1 Develop the Codes for the Delete Button Event Handler

Open the Delete button click event handler, and enter the codes that are shown in
Fig. 7.14 into this event handler. Let’s have a closer look at this piece of codes to see
how it works.

 A. Two local variables, numDeleted and cFacultyName, are created first, and
these two variables are used to hold the running result of the data deleting action
and the current faculty name.

 B. The deleting query string is created with one positional parameter. The query
criterion is the faculty name that is placed after the WHERE clause.

 C. A try…catch block is used to assist this data deleting action. First a
PreparedStatement instance is created using the Connection object
that is located at the LogInFrame class with the deleting query string as the
argument.

private void cmdDeleteActionPerformed(java.awt.event.ActionEvent evt) {

int numDeleted = 0;
String cFacultyName = null;
String query = "DELETE FROM Faculty WHERE faculty_name = ?";
try {

PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);
pstmt.setString(1, ComboName.getSelectedItem().toString());
cFacultyName = (String)ComboName.getSelectedItem();
numDeleted = pstmt.executeUpdate();

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
System.out.println("The number of deleted row = " + numDeleted);
ComboName.removeItem(cFacultyName);

}

A

B

C
D
E
F

G

H
I

Fig. 7.14 The developed codes for the Delete button click event handler

7.4 Perform Data Deleting to SQL Server Database Using Java Runtime Object

292

 D. The setString() method is used to initialize the positional parameter, which is
the faculty name to be deleted from the Faculty Name combo box.

 E. After this faculty record has been deleted, we need to remove this faculty name
from the Faculty Name combo box. In order to remember the current faculty
name, we need to temporarily store it into our local string variable
cFacultyName.

 F. The data deleting action is performed by calling the executeUpdate() method.
The deleting result, which is an integer number that is equal to the number of
rows that have been deleted by this data deleting action, is returned and assigned
to the local integer variable numDeleted.

 G. The catch block is used to track and collect any possible exception encountered
when this data deleting is executed.

 H. The running result is printed out as a debug purpose.
 I. The deleted faculty name is removed from this Faculty Name combo box.

Now we are ready to build and run the project to test the data deletion function.

7.4.2 Build and Run the Project to Test the Data Deleting

Make sure that our sample database CSE_DEPT has been connected to our project.
To check this connection, open the Services window and expand the Databases
node to locate our sample database connection URL, jdbc:sqlserver://localhost\\
SQL2019EXPRESS:5000;databaseName=CSE_DEPT [SMART on dbo].
Right click on this URL, and select the Connect item to do this connection. You
may need to use the password, Happy2020, to do this connection.

Now click on the Clean and Build Main Project button from the toolbar to
build our project. Then click on the Run Main Project button to run the project.

Enter suitable username and password, such as jhenry and test, to complete the
login process, and select the Faculty Information from the SelectFrame window to
open the FacultyFrame window. Make sure that the Runtime Object Method has
been selected from the Query Method combo box. Then click on the Select button
to query the default faculty information. The default faculty information is displayed.

To test this data deletion function, we can try to delete one faculty member, such
as Ying Bai, from our Faculty table. To do that, select this faculty member from the
Faculty Name combo box, and click on the Delete button. Immediately you can find
that this faculty name has been removed from the Faculty Name combo box. Also
the running result is shown in the Output window, as shown in Fig. 7.15.

To confirm this data deletion, click on the Back and the Exit button to stop our
project. Then open our Faculty table by going to the Services window, and expand
the Databases node, and our connection URL, and finally our sample database
CSE_DEPT. Expand our database schema dbo, and right click on the Faculty
table. Select the View Data item from the popup menu to open our Faculty table.

7 Insert, Update, and Delete Data from Databases

293

Fig. 7.15 The successful data deletion message

Table 7.1 The deleted faculty record in the Faculty table

faculty_
id

faculty_
name title office phone college email fimage

B78880 Ying Bai Associate
Professor

MTC-
211

750-378-
1148

Florida Atlantic
University

ybai@
college.edu

NULL

On the opened Faculty table, you can find that the faculty member Ying Bai has
been removed from this table.

Our data deletion function is successful!
To make our database clean and neat, it is highly recommended to recover this

deleted faculty member and related records in our Faculty, LogIn, Course, and
StudentCourse tables. Refer to Tables 7.1, 7.2, 7.3 and 7.4 to complete these data
recoveries.

An easy way to do this recovery job is to use the Microsoft SQL Server
Management Studio. One can select and copy data with all rows from each table
(Tables 7.1, 7.2, 7.3 and 7.4) and paste them at the bottom line on each opened Table
with Microsoft SQL Management Studio.

Three points to be noted when recovering these data are:

 1) The order to perform these rows’ recovery. The faculty record in the parent table
must be recovered first. In our case, the record in the Faculty table must be
recovered first since it is a parent table. The records in the child tables can be
recovered after the record in the parent table had been completed. Otherwise
some error may be encountered.

 2) The faculty image column, fimage. Now just enter a NULL to that column, and
one can insert the actual image for that faculty when running one of our Visual
Basic.NET projects, SQL Image Project, which was built in Sect. 2.9.5 in
Chap. 2, to complete this recovery process later.

 3) When you finished your copy-paste operations for all of those recovery rows,
click File > Save All in Microsoft SQL Server Management Studio to save all of
these additions.

Another way to do this recovery job is to run one of our projects, SQLInsertObject,
to first insert the deleted faculty record into the Faculty table (parent table) with
image, and then use the Microsoft SQL Server Management Studio to perform

7.4 Perform Data Deleting to SQL Server Database Using Java Runtime Object

ybai@college.edu
ybai@college.edu

294

Table 7.2 The deleted course records in the Course table

course_
id course credit classroom schedule enrollment

faculty_
id

CSC-
132B

Introduction to
Programming

3 TC-302 T-H: 1:00-2:25
PM

21 B78880

CSC-
234A

Data Structure &
Algorithms

3 TC-302 M-W-F:
9:00-9:55 AM

25 B78880

CSE-434 Advanced Electronics
Systems

3 TC-213 M-W-F:
1:00-1:55 PM

26 B78880

CSE-438 Advd Logic &
Microprocessor

3 TC-213 M-W-F:
11:00-11:55 AM

35 B78880

Table 7.3 The deleted login records in the LogIn table

user_name pass_word faculty_id student_id

ybai come B78880 NULL

Table 7.4 The deleted records in the StudentCourse table

s_course_id student_id course_id credit major

1005 T77896 CSC-234A 3 CS/IS
1009 A78835 CSE-434 3 CE
1014 A78835 CSE-438 3 CE
1016 A97850 CSC-132B 3 ISE
1017 A97850 CSC-234A 3 ISE

copy-paste operations to recovery all other records for the child tables (LogIn,
Course, and StudentCourse tables).

As we discussed in Sect. 6.3.3.5 in Chap. 6, in addition to using the executeUp-
date() method to perform data manipulations such as data insertion, updating, and
deleting actions, one can use the execute() method to perform the similar data
manipulations. It is preferred to leave this optional method as a home work and
allow students to handle this issue.

A complete sample project SQLDeleteObject can be found from the folder
Class DB Projects\ Chapter 7 that is located under the Students folder at the
Springer ftp site (refer to Fig. 1.2 in Chap. 1).

Next let’s take care of the data manipulations against the SQL Server database
using the Java Updatable ResultSet method.

7.5 Perform Data Manipulations Using Updatable ResultSet

As we discussed in Sect. 6.3.3.7 in Chap. 6, a ResultSet object can be considered as
a table of data representing a database result set, which is usually generated by
executing a statement that queries the database.

7 Insert, Update, and Delete Data from Databases

295

The ResultSet interface provides getXXX() methods for retrieving column val-
ues from the current row. Values can be retrieved using either the index number of
the column or the name of the column. In general, using the column index will be
more efficient. Columns are numbered from 1. For maximum portability, result set
columns within each row should be read in left-to-right order, and each column
should be read only once.

A default ResultSet object is not updatable with a cursor that moves forward
only. Thus, it is possible to iterate through it only once and from the first row to the
last row. New methods in the JDBC 4.0 API make it possible to produce ResultSet
objects that are scrollable and/or updatable.

Before we can use the ResultSet object to perform data manipulations against
our sample database, let’s first have a clear picture about the ResultSet additional
functionalities and categories supported in JDBC 4.0.

7.5.1 Introduction to ResultSet Enhanced Functionalities
and Categories

ResultSet functionality in JDBC 4.0 includes enhancements for scrollability and
positioning, sensitivity to changes by others, and updatability.

• Scrollability: the ability to move backward as well as forward through a
ResultSet object. Associated with scrollability is the ability to move to any par-
ticular position in the ResultSet, through either relative positioning or absolute
positioning.

• Positioning: the ability to move a specified number of rows forward or backward
from the current row. Absolute positioning enables you to move to a specified
row number, counting from either the beginning or the end of the ResultSet.

• Sensitivity: the ability to see changes made to the database while the ResultSet
is open, providing a dynamic view of the underlying data. Changes made to the
underlying columns values of rows in the ResultSet are visible.

Two parameters can be used to set up those properties of a ResultSet object when
it is created: they are ResultSet type and Concurrency type of a ResultSet. Table 7.5
lists these types and their functions. Under JDBC 4.0, the Connection class has the
following methods that take a ResultSet type and a concurrency type as input to
define a new created ResultSet object:

• Statement createStatement(int resultSetType, int
resultSetConcurrency)

• PreparedStatement prepareStatement(String sql, int resultSet-
Type, int resultSetConcurrency)

• CallableStatement prepareCall(String sql, int resultSetType,
int resultSetConcurrency)

7.5 Perform Data Manipulations Using Updatable ResultSet

296

Table 7.5 The ResultSet type and Concurrency type

ResultSet type Functions
Forward-only This is a JDBC 1.0 functionality. This type of ResultSet is not scrollable, not

positionable, and not sensitive
Scroll-sensitive This type of ResultSet is scrollable and positionable. It is also sensitive to

underlying database changes
Scroll-insensitive This type of result set is scrollable and positionable, but not sensitive to

underlying database changes
Concurrency
type

Functions

Updatable Data updating, insertion, and deleting can be performed on the ResultSet and
copied to the database

Read-only The result set cannot be modified in any way

You can specify one of the following static constant values for ResultSet type:

• ResultSet.TYPE_FORWARD_ONLY
• ResultSet.TYPE_SCROLL_INSENSITIVE
• ResultSet.TYPE_SCROLL_SENSITIVE

And you can specify one of the following static constant values for concur-
rency type:

• ResultSet.CONCUR_READ_ONLY
• ResultSet.CONCUR_UPDATABLE

The following code fragment, in which conn is a valid Connection object and sql
is a defined SQL query string, illustrates how to make a ResultSet that is scrollable
and sensitive to updates by others and that is updatable.

PreparedStatement pstmt = conn.prepareStatement
(sql, ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

After we have a basic and fundamental understanding about the ResultSet and its
enhanced functionalities, now we can go ahead to perform data manipulations
against our sample database using the Updatable ResultSet object.

7.5.2 Perform Data Manipulations Using Updatable
ResultSet Object

Generally, performing data manipulations using updatable ResultSet can be divided
into the following three categories:

• Data insertion
• Data updating
• Data deleting

7 Insert, Update, and Delete Data from Databases

297

Table 7.6 The operational steps of data manipulations using updatable ResultSet

Manipulation
type Steps

Data deleting Single step: Using the deleteRow() method of the ResultSet class.
Data updating Two steps:

1. Update the data in the ResultSet using the associated updateXXX()
methods.
2. Copy the changes to the database using the updateRow() method.

Data insertion Three steps:
1. Move to the insert-row by calling the ResultSet moveToInsertRow()
method.
2. Use the appropriate updateXXX() methods to update data in the
insert-row.
3. Copy the changes to the database by calling the ResultSet insertRow()
method.

Different data manipulations need different operational steps, and Table 7.6 lists
the most popular operational steps for these data manipulations.

It can be found from Table 7.6 that the data deleting is the easiest way to remove
a piece of data from the database since it only needs one step to delete the data from
both the ResultSet and the database. The other two data manipulations, data updat-
ing and insertion, need at least two steps to complete that data manipulations.

The point to be noted is the data insertion action, in which the first step moveTo-
InsertRow() is exactly moved to a blank row that is not a part of the ResultSet but
related to the ResultSet. The data insertion exactly occurred when the insertRow()
method is called and the next commit command is executed.

Let’s start with the data insertion against our sample database first. Since there is
no difference between data manipulation for SQL Server and Oracle database, in the
following sections, we will use the SQL Server database as our target database, and
the same codes can be used for the Oracle database as long as a valid database con-
nection can be set up between our project and the target database.

7.5.2.1 Insert a New Row Using the Updatable ResultSet

To save time and space, we want to use and modify a project SQLDeleteObject we
built in Sect. 7.4 to make it as our new project to perform this data insertion action.
Perform the following operations to make it as our project:

 1) Create a new folder DB Projects\Chapter 7 in your computer if you did not do
that and launch Apache NetBeans IDE 12 and open the Projects window.

 2) Right click on the project SQLDeleteObject we built in Sect. 7.4, and select the
Copy item from the popup menu to open the Copy Project wizard.

 3) Change the project name to SQLUpdatableInsert in the Project Name box.
 4) Browse to the folder, Class DB Projects\Chapter 7, which was created above in

step 1, and click on the OK button to select this location as your project location.

7.5 Perform Data Manipulations Using Updatable ResultSet

298

 5) Click on the Copy button to complete this copy process.

Perform the following coding modifications to the FacultyFrame Form:

 1) Open the constructor of this class, and add one more statement into this
constructor,

ComboMethod.addItem("Java Updatable ResultSet");

 Your modified codes in this constructor should match one that is shown in
Fig. 7.16. The modified part has been highlighted in bold.

 2) Click on the Design button to switch back to the design view of the FacultyFrame
form window, and double click on the Insert button to open its event handler.
Enter the codes that are shown in Fig. 7.17 into this handler to perform data
insertion action against our sample database.

Let’s have a closer look at this piece of modified codes to see how it works.

 A. First we add an if block to distinguish between the Java Updatable ResultSet
method and other query methods to perform this data insertion.

 B. An else if block is added with the same objective as step A.
 C. The query string is created, and it is used to help to use the Updatable ResultSet

object to do this data insertion action. One point to be noted is that because of
the limitation for the Updatable ResultSet under JDBC 4.0, you cannot use a star
(*) following the SELECT to query all columns from the target table; instead
you have to explicitly list all columns for this query. An option is to use the table
aliases such as SELECT f.* FROM TABLE f …… to do this kind of query.

 D. A try…catch block is used to perform this data insertion. A PreparedStatement
is created with two ResultSet parameters, TYPE_SCROLL_SENSITIVE and
CONCUR_UPDATABLE, to define the ResultSet object to enable it to be
scrollable and updatable and enable it to perform data manipulations.

 E. The setString() method is used to initialize the positional parameter in the
query string.

 F. The executeQuery() method is called to perform this query and return the query
result to a new created ResultSet object.

public FacultyFrame() {
initComponents();
this.setLocationRelativeTo(null); // set the faculty Form at the center
ComboMethod.addItem("Java Updatable ResultSet");

ComboMethod.addItem("Runtime Object Method");
ComboMethod.addItem("Java execute() Method");
ComboMethod.addItem("Java Callable Method");
CurrentFaculty();

}

Fig. 7.16 The modified codes for the constructor of the FacultyFrame class

7 Insert, Update, and Delete Data from Databases

299

private void InsertButtonActionPerformed(java.awt.event.ActionEvent evt) {
int numInsert = 0;
byte[] fImage;

if (!chkFaculty()) {
msgDlg.setMessage("Fill all TextFields for a new record!");
msgDlg.setVisible(true);
return;

}
fImage = getFacultyImage();
String InsertQuery = "INSERT INTO Faculty (faculty_id, faculty_name, title, office, phone, " +

"college, email, fimage) VALUES (?, ?, ?, ?, ?, ?, ?, ?)";
if (ComboMethod.getSelectedItem()=="Runtime Object Method") {

try {
PreparedStatement pstmt = LogInFrame.con.prepareStatement(InsertQuery);
pstmt.setString(1, FacultyIDField.getText());
pstmt.setString(2, FacultyNameField.getText());
pstmt.setString(3, TitleField.getText());
pstmt.setString(4, OfficeField.getText());
pstmt.setString(5, PhoneField.getText());
pstmt.setString(6, CollegeField.getText());
pstmt.setString(7, EmailField.getText());
pstmt.setBytes(8, fImage);
numInsert = pstmt.executeUpdate();

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
}

else if (ComboMethod.getSelectedItem()=="Java Updatable ResultSet"){

String query = "SELECT faculty_id, faculty_name, title, office, phone, college, email, fimage " +

"FROM Faculty WHERE faculty_name = ?";

try {

PreparedStatement pstmt = LogInFrame.con.prepareStatement(query,

ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

pstmt.setString(1, ComboName.getSelectedItem().toString());

ResultSet rs = pstmt.executeQuery();

rs.moveToInsertRow();

rs.updateString(1, FacultyIDField.getText());

rs.updateString(2, FacultyNameField.getText());

rs.updateString(3, TitleField.getText());

rs.updateString(4, OfficeField.getText());

rs.updateString(5, PhoneField.getText());

rs.updateString(6, CollegeField.getText());
rs.updateString(7, EmailField.getText());

rs.updateBytes(8, fImage);

rs.insertRow();

rs.moveToCurrentRow(); // Go back to where we came from...

}

catch (SQLException e){

msgDlg.setMessage("Error in Updatable ResultSet! " + e.getMessage());

msgDlg.setVisible(true);

}

}

System.out.println("The number of inserted row = " + numInsert);
ComboName.addItem(FacultyNameField.getText());
InsertButton.setEnabled(false);
clearFaculty();

}

A

B

C

D

E

F

G

H

I
J

K

L

Fig. 7.17 The modified codes for the Insert button click event handler

 G. In order to insert a new row into this ResultSet, the moveToInsertRow() method
is executed to move the cursor of the ResultSet to a blank row that is not a part
of the ResultSet but is related to that ResultSet.

 H. A sequence of updateString() methods are executed to insert desired columns
to the associated columns in the ResultSet. The point to be noted is that different
updateXXX() methods should be used if the target columns have the different

7.5 Perform Data Manipulations Using Updatable ResultSet

300

data types, and the XXX indicate the associated data type, such as Int, Float,
and Double.

 I. For the image column, the system method updateBytes() must be used to insert
or update a faculty image in the Faculty table.

 J. The insertRow() method is executed to update this change to the database.
Exactly, this data updating would not happen until the next Commit command
is executed.

 K. The moveToCurrentRow() method is optional, and it returns the cursor of the
ResultSet to the original position before this data insertion is performed.

 L. The catch block is used to track and collect any possible exception for this data
insertion action.

Now let’s build and run the project to test this data insertion.
Click on the Clean and Build Main Project button to build the project, and

click on the Run Main Project button to run it.
Enter suitable username and password, such as jhenry and test, to complete the

login process, and open the FacultyFrame form window. Make sure that the
Runtime Object Method has been selected from the Query Method combo box.
Then click on the Select button to query a faculty record. For example, select the
faculty member, Ying Bai, to query and display this record.

Modify the content of seven text fields, as shown in Fig. 7.18, which is equivalent
to a new faculty record:

Fig. 7.18 The new inserted faculty record

7 Insert, Update, and Delete Data from Databases

301

• Faculty ID: D55280
• Faculty Name: Charles David
• Title: Assistant Professor
• Office: MTC-335
• Phone: 750-330-3678
• College: University of Alabama
• Email: cdavid@college.edu
• fimage: David.jpg

To insert this new record using the Java Updatable ResultSet method, select the
Java Updatable ResultSet from the Query Method combo box. Then click on the
Insert button to perform this data insertion.

To confirm and validate this data insertion, the easiest way is to use this
FacultyFrame form. Go to the Faculty Name combo box, and you will find that new
inserted faculty name Susan Bai has been added into this box. Select this new
inserted faculty member from that box, and select the Runtime Object Method
from the Query Method combo box followed with a clicking on the

Select button to try to retrieve this new inserted faculty record. The returned
faculty record is displayed, as shown in Fig. 7.19.

Another way to confirm this data insertion is to open the Faculty table in
our sample database to confirm this data insertion. Open the Services window in
the NetBeans IDE, and expand the Databases node and right click on our
SQL Server database URL, jdbc:sqlserver://localhost\SQL2019EXPRESS:

Fig. 7.19 The retrieved new inserted faculty record

7.5 Perform Data Manipulations Using Updatable ResultSet

cdavid@college.edu

302

5000;databaseName= CSE_DEPT [SMART on dbo]; select the Connect item to
connect to our sample database. You may need to use our password Happy2020 to
do this connection. Then expand this connected database, CSE_DEPT and dbo,
and the Tables node, and right click on the Faculty table and select the View Data
to this table. On the opened Faculty table, you can find that the new inserted faculty
member, Charles David, which is highlighted in the Faculty table, has been there
as shown in Fig. 7.20.

Click on the Back and the Exit buttons to terminate our project, and our data
insertion function is successful. It is highly recommended to remove this new
inserted faculty record from our sample database to keep our database clean
and neat.

Next let’s take care of the data updating action using the Updatable
ResultSet object.

As we did for the data insertion, we still want to use this FacultyFrame form
window to update one of faculty members in the Faculty table in our sample data-
base CSE_DEPT.

7.5.2.2 Update a Data Row Using the Updatable ResultSet

Copy the project SQLUpdatableInsert and change its name to
SQLUpdatableUpdate, and save it to your default folder DB Projects\Chapter 7.

Then open this project and double click on the Update button from the
FacultyFrame Form window to open its event handler, and modify the codes that are
shown in Fig. 7.21 to perform the data updating function using the Updatable
ResultSet object.

Let’s have a closer look at this piece of modified codes to see how it works.

Fig. 7.20 The new inserted faculty member

7 Insert, Update, and Delete Data from Databases

303

private void UpdateButtonActionPerformed(java.awt.event.ActionEvent evt) {
byte[] fImage;
int numUpdated = 0;
fImage = getFacultyImage();
if (ComboMethod.getSelectedItem()=="Runtime Object Method") {

String query = "UPDATE Faculty SET faculty_name=?, title=?, office=?, phone=?, college=?, email=?, fimage=? " +
"WHERE faculty_id= ?";

try {
PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);
pstmt.setString(1, FacultyNameField.getText());
pstmt.setString(2, TitleField.getText());
pstmt.setString(3, OfficeField.getText());
pstmt.setString(4, PhoneField.getText());
pstmt.setString(5, CollegeField.getText());
pstmt.setString(6, EmailField.getText());
pstmt.setBytes(7, fImage);
pstmt.setString(8, FacultyIDField.getText());
numUpdated = pstmt.executeUpdate();

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
System.out.println("The number of updated row = " + numUpdated);

}

else if (ComboMethod.getSelectedItem()=="Java Updatable ResultSet") {

String query = "SELECT faculty_name, title, office, phone, college, email, fimage " +

"FROM Faculty WHERE faculty_id = ?";

try {

PreparedStatement pstmt = LogInFrame.con.prepareStatement(query,

ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
pstmt.setString(1, FacultyIDField.getText());

ResultSet rs = pstmt.executeQuery();

if (rs.absolute(1)) {

rs.updateString(1, FacultyNameField.getText());

rs.updateString(2, TitleField.getText());

rs.updateString(3, OfficeField.getText());

rs.updateString(4, PhoneField.getText());

rs.updateString(5, CollegeField.getText());

rs.updateString(6, EmailField.getText());

rs.updateBytes(7, fImage);

rs.updateRow();

}

}

catch (SQLException e){

msgDlg.setMessage("Error in Updatable ResultSet! " + e.getMessage());

msgDlg.setVisible(true);
}

}

CurrentFaculty();
}

A

B

C

D

E

F

G

H

I

J

Fig. 7.21 The modified codes for the Update button click event handler

 A. First we add an if block to distinguish the Runtime Object Method and the
Java Updatable ResultSet method to perform this data updating action.

 B. An else if block is added with the same objective as step A.
 C. The query string is created, and it is used to help to use the Updatable ResultSet

object to do this data updating action.
 D. A try…catch block is used to perform this data updating action. A

PreparedStatement is created with two ResultSet parameters, TYPE_
SCROLL_SENSITIVE and CONCUR_UPDATABLE, to define the ResultSet
object to enable it to be scrollable and updatable and enable it to perform data
manipulations.

7.5 Perform Data Manipulations Using Updatable ResultSet

304

 E. The setString() method is used to initialize the positional parameter in the
query string.

 F. The executeQuery() method is called to perform this query and return the query
result to a new created ResultSet object.

 G. First we need to identify the location of the row to be updated. Exactly, there is
only one row that has been retrieved from our Faculty table and saved in the
ResultSet, which is the default faculty member Ying Bai, and this row will be
updated in this data updating action. Therefore the absolute position for this row
is 1. Then a sequence of updateString() methods are executed to update desired
columns to the associated columns in the ResultSet. The point to be noted is that
different updateXXX() methods should be used if the target columns have the
different data types, and the XXX indicate the associated data type, such as Int,
Float, and Double.

 H. For the image column, the system method updateBytes() must be used to insert
or update a faculty image in the Faculty table.

 I. The updateRow() method is executed to update this change to the database.
Exactly, this data updating would not happen until the next Commit command
is executed. Be aware that by default, the auto-commit flag is set to true so that
any operation run is committed immediately.

 J. The catch block is used to track and collect any possible exception for this data
updating action.

Now let’s build and run the project to test this data updating function.
Click on the Clean and Build Main Project button to build the project, and

click on the Run Main Project button to run it.
Enter suitable username and password, such as jhenry and test, to complete the

login process, and open the FacultyFrame form window. Make sure that the
Runtime Object Method has been selected from the Query Method combo box.
Then click on the Select button to query any faculty information.

To perform updating action with the Java Updatable ResultSet method, select
this method from the Query Method combo box, and change the content of six text
fields (without the Faculty ID field), for example, update a faculty member Ying
Bai to another faculty Susan Bai, as shown in Fig. 7.22, and click on the Update
button to select her image file White.jpg. Your finished updating screen should
match one that is shown in Fig. 7.22.

To confirm this data updating function using the Updatable ResultSet, select the
Runtime Object Method from the Query Method combo box, and go to the
Faculty Name combo box. You can find that the updated faculty member Susan
Bai has been there. Select this faculty name and then click on the Select button to
get this updated result back and displayed in this Form.

The returned faculty record is displayed, as shown in Fig. 7.23.
Click on the Back and the Exit buttons to terminate our project.
Now let’s try to confirm this data updating in the second way, which is to open

the Faculty table to confirm this data manipulation. Open the Services window in
the NetBeans IDE, and expand the Databases node and right click on our sample

7 Insert, Update, and Delete Data from Databases

305

Fig. 7.22 The updated faculty information

Fig. 7.23 The retrieved updated faculty record

database URL, jdbc:sqlserver:// localhost\\SQL2019EXPRESS: 5000;databas-
eName= CSE_DEPT [SMART on dbo]; select the Connect item to connect to our

7.5 Perform Data Manipulations Using Updatable ResultSet

306

sample database. Then expand this connected database, CSE_DEPT, and the
Tables node, and right click on the Faculty table and select the View Data to open
this table. On the opened Faculty table, you can find that the updated faculty mem-
ber, which has been highlighted, has been there as shown in Fig. 7.24. Our data
updating function is successful.

It is highly recommended to recover this updated faculty record to the original
one in our sample database to keep our database clean and neat. One can perform
another updating action to do this recovery job.

Next let’s take care of the data deletion action using the Updatable ResultSet
object. As we did for the data updating, we still want to use this FacultyFrame form
window to delete one of faculty members in the Faculty table in our sample data-
base CSE_DEPT.

7.5.2.3 Delete a Data Row Using the Updatable ResultSet

In this section, we try to delete a faculty record from our Faculty table using the
Updatable ResultSet method. Perform the following operations to copy an existing
project, and make it as our new project SQLUpdatableDelete:

• Copy the project SQLUpdatableUpdate, and change its name to
SQLUpdatableDelete.

• Save it to your default folder DB Projects\Chapter 7.

Double click on the Delete button from the FacultyFrame Form window to open
its event handler, and modify the codes that are shown in Fig. 7.25 to perform the
data deleting function using the Updatable ResultSet method.

Let’s have a closer look at this piece of modified codes to see how it works.

Fig. 7.24 The updated faculty record in the Faculty table

7 Insert, Update, and Delete Data from Databases

307

private void DeleteButtonActionPerformed(java.awt.event.ActionEvent evt) {
int numDeleted = 0;
if (ComboMethod.getSelectedItem()=="Runtime Object Method") {

String query = "DELETE FROM Faculty WHERE faculty_name = ?";
try {

PreparedStatement pstmt = LogInFrame.con.prepareStatement(query);
pstmt.setString(1, ComboName.getSelectedItem().toString());
numDeleted = pstmt.executeUpdate();

}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement!" + e.getMessage());
msgDlg.setVisible(true);

}
System.out.println("The number of deleted row = " + numDeleted);

}

else if (ComboMethod.getSelectedItem()=="Java Updatable ResultSet"){

String query = "SELECT f.* FROM Faculty f WHERE f.faculty_name = ?";

try {

PreparedStatement pstmt = LogInFrame.con.prepareStatement(query,

ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

pstmt.setString(1, ComboName.getSelectedItem().toString());

ResultSet rs = pstmt.executeQuery();

rs.absolute(1);

rs.deleteRow();

}

catch (SQLException e){

msgDlg.setMessage("Error in Updatable ResultSet! " + e.getMessage());

msgDlg.setVisible(true);

}

}

else {

msgDlg.setMessage("Only Runtime & Updatable ResultSet methods available! ");
msgDlg.setVisible(true);

}

CurrentFaculty();
}

A

B

C

D

E

F

G

H

I

J

K

Fig. 7.25 The modified codes for the Delete button click event handler

 A. First we add an if block to distinguish the Runtime Object Method and the
Java Updatable ResultSet method to perform this data deletion action.

 B. An else if block is added with the same objective as step A.
 C. The query string is created, and it is used to help the Updatable ResultSet object

to do this data deleting action. The point to be noted here is that a table alias f is
used to represent the Faculty table and enable this query to retrieve all columns
from that table. You cannot directly use the star (*) to do this query since it is
prohibited in this enhanced ResultSet.

 D. A try…catch block is used to perform this data deleting action. A
PreparedStatement is created with two ResultSet parameters, TYPE_
SCROLL_SENSITIVE and CONCUR_UPDATABLE, to define the ResultSet
object to enable it to be scrollable and updatable and furthermore enable it to
perform data manipulations.

 E. The setString() method is used to initialize the positional parameter in the
query string.

 F. The executeQuery() method is called to perform this query and return the query
result to a new created ResultSet object.

 G. We need first to identify the location of the row to be deleted. In fact, there is
only one row that has been retrieved from our Faculty table and saved in the

7.5 Perform Data Manipulations Using Updatable ResultSet

308

ResultSet, which is the selected faculty member to be removed, and this row
will be deleted from this data deleting action. Therefore the absolute position for
this row is 1.

 H. The deleteRow() method is executed to delete this record from the ResultSet
and the database. In fact, this data deleting would not happen until the next
Commit command is executed. Be aware that by default, the auto-commit flag
is set to true so that any operational run is committed immediately.

 I. The catch block is used to track and collect any possible exception for this data
deletion.

 J. Otherwise if some other methods are selected by the users, a warning message
is displayed to remind users to select a valid method.

 K. Finally the user-defined method, CurrentFaculty(), is called to update the
Faculty Name combo box to enable users to confirm this deleting action later.

Now let’s build and run the project to test this data deleting function.
Click on the Clean and Build Main Project button to build the project, and

click on the Run Main Project button to run it.
Enter suitable username and password, such as jhenry and test, to complete the

login process, and open the FacultyFrame form window. Make sure that the
Runtime Object Method has been selected from the Query Method combo box.
Then click on the Select button to query any faculty information, such as a faculty
named Charles David.

To test this data deleting function using the Updatable ResultSet, select the Java
Updatable ResultSet from the Query Method combo box. Then click on the Delete
button to try to delete this selected faculty member from our sample database. To
simplify this data deleting action and to avoid a completed recovery process, in this
case, we try to delete a faculty member, Charles David, since this faculty is a new
inserted one in Sect. 7.5.2.1 without other related records in any child tables. Select
that faculty from the Faculty Name combo box, and click on the Delete button to
remove this faculty from our sample database.

Click on the Back and the Exit button to terminate our project.
To confirm and validate this data deleting action, one can go to the Faculty Name

combo box to check this member. It can be found that this faculty has been removed
from the faculty name list.

Another way to confirm this data deleting is to open the Faculty table in our
sample database CSE_DEPT. To do that, first open the Services window in the
NetBeans IDE, and expand the Databases node and right click on our SQL Server
database URL, jdbc:sqlserver://localhost \\SQL2019EXPRESS: 5000;databas-
eName= CSE_DEPT [SMART on dbo]; select the Connect item to connect to our
sample database. You may need to use our password Happy2020 to do this connec-
tion. Then expand this connected database, CSE_DEPT and dbo, and the Tables
node, and right click on the Faculty table and select the View Data to this table. On
the opened Faculty table, you can find that the faculty member, Charles David, has
been deleted from the Faculty table.

Our data deleting function is successful.

7 Insert, Update, and Delete Data from Databases

309

A complete project SQLUpdatableDelete that contains the data insertion,
updating, and deleting functions using the Updatable ResultSet object can be found
from the folder Class DB Projects \Chapter 7 located under the Students folder at
the Springer ftp site (refer to Fig. 1.2 in Chap. 1).

Next let’s discuss how to perform the data manipulations using the Callable
statement.

7.6 Perform Data Manipulations Using Callable Statements

In Sects. 6.3.6 and 6.3.6.2 in Chap. 6, we have provided a very detailed discussion
about the data query from the Course table in our sample database using the
CallableStatement method. Some basic and fundamental ideas and techniques using
the CallableStatement method and stored procedures have been given in detail with
some real sample projects. Refer to those sections to get clear pictures and under-
standing about the CallableStatement object. In this section, we will use this method
to perform data manipulations against the Course table in our sample database
CSE_DEPT.

Since the similarity between data manipulations for the SQL Server and the
Oracle databases, we start with the data manipulations against the SQL Server data-
base. First let’s take care of the data insertion to the Course table in our sample SQL
Server database using the CallableStatement method.

7.6.1 Insert Data to the Course Table Using
Callable Statements

In Sect. 6.3.1 in Chap. 6, we have built a project SQLSelectObject with some
graphical user interface (GUI) including the CourseFrame Form window, and we
want to use that CourseFrame Form window in that project with some modifications
to make it as our new project. Copy that project and change its name to
SQLCallableInsert, and save it to the folder Class DB Projects\Chapter 7 on
your computer. We will build the data insertion function with the CallableStatement
method in the following procedures:

 1) Build our stored procedure dbo.InsertNewCourse using the SQL Server
Management Studio 18.

 2) Develop the codes for the Insert button in the CourseFrame Form window to
execute the CallableStatement method to call our stored procedure dbo.
InsertNewCourse to insert this new course record into the Course table in our
sample database.

 3) Confirm and validate this new course insertion using the codes we built for the
Select button event handler.

7.6 Perform Data Manipulations Using Callable Statements

310

Now let’s start from the first step.

7.6.1.1 Develop the Stored Procedure dbo.InsertNewCourse

Recall that when we built our sample database CSE_DEPT in Chap. 2, there is no
faculty name column in the Course table, and the only relationship that existed
between the Faculty and the Course tables is the faculty_id, which is a primary key
in the Faculty table but a foreign key in the Course table. As the project runs, the
user needs to insert new course record based on the faculty name, not the faculty
ID. Therefore, for this new course data insertion, we need to perform two queries
with two tables: first we need to make a query to the Faculty table to get the fac-
ulty_id based on the faculty name selected by the user, and second we can insert a
new course record based on the faculty_id we obtained from our first query into the
Course table. These two queries can be combined into a single stored procedure.

Launch the Microsoft SQL Server Management Studio by going to Start > All
Programs > Microsoft SQL Server Tools 18 > Microsoft SQL Server
Management Studio. Click the Connect button to open this studio server. On the
opened studio, expand the Databases and our sample database CSE_DEPT nodes.
Then expand the Programmability node, and right click on the Stored Procedures
node; select the Stored Procedure from the popup menu to open a new stored pro-
cedure template, as shown in Fig. 7.26.

Fig. 7.26 The new stored procedure template

7 Insert, Update, and Delete Data from Databases

311

-- ==
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: Y. Bai
-- Create date: Dec 23, 2020
-- Description: SQL Server stored procedure
-- ===
CREATE PROCEDURE dbo.InsertNewCourse
-- Add the parameters for the stored procedure here
@FacultyName VARCHAR(50),
@CourseID VARCHAR(50),
@Course text,
@Schedule text,
@Classroom text,
@Credit int,
@Enroll int

AS
BEGIN
-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;

-- Insert statements for procedure here
DECLARE @FacultyID AS VARCHAR(50)
SET @FacultyID = (SELECT faculty_id FROM Faculty WHERE (faculty_name = @FacultyName))
INSERT INTO Course(course_id, course, credit, classroom, schedule, enrollment, faculty_id)
VALUES (@CourseID, @Course, @Credit, @Classroom, @Schedule, @Enroll, @FacultyID)

END
GO

A

B

C

Fig. 7.27 The codes for our new stored procedure

You can use the Ctrl-Shift-M combination keys to enter all parameters for this
stored procedure. However, an easy way to do that is to directly enter all parameters
manually. On the opened new stored procedure template, enter the following codes
that are shown in Fig. 7.27 into this stored procedure template as the body of our
new stored procedure. The new added codes have been highlighted in bold and
indicated in steps A, B, and C, respectively. The codes in green color are comments
for this stored procedure.

Let’s have a closer look at this piece of codes to see how it works.

 A. First one needs to change the stored procedure’s name to dbo.InsertNewCourse.
 B. Seven input parameters to this procedure should be declared with the related

data types.
 C. The intermediate variable FacultyID is declared and queried from the Faculty

table first. Then an Insert command is executed to insert these seven parameters
into the Course table. One point to be noted is that the order of these parameters
must be identical with the order of those data columns in the Course table.

Right click on any location inside our new stored procedure, and select the
Execute item to try to build it. A successful query execution message should be
displayed in the Messages box. Then right click on the Stored Procedures node
from the Object Explorer window, and select the Refresh item to refresh it to get

7.6 Perform Data Manipulations Using Callable Statements

312

Fig. 7.28 The opened Execute Procedure wizard

our new created stored procedure dbo.InsertNewCourse. Right click on our new
stored procedure, and select the Execute Stored Procedure to open the Execute
Procedure wizard, which is shown in Fig. 7.28.

Enter a set of parameters shown in Fig. 7.28 into the associated Value columns
as a new course record, and click on the OK button to run this stored procedure to
test its functionality.

The test result is shown in Fig. 7.29. It can be found that a successful message, 1
row(s) affected, is displayed in the Messages window. One can confirm this new
course insertion by opening the Course table in this Microsoft SQL Server
Management Studio.

It is highly recommended to delete this new inserted course record from our
Course table since we need to keep our sample database clean and neat. Another
point is that we need to call this stored procedure later from our project to perform
this data insertion. In order to avoid a duplicated data insertion, we need to remove
this course record now. You can do this data deletion by opening the Course in this
Microsoft SQL Server Management Studio.

Now close the Microsoft SQL Server Management Studio, and we can continue
to develop the codes for the CallableStatement method in our project to call this
stored procedure to perform a new course insertion action against our sample

7 Insert, Update, and Delete Data from Databases

313

Fig. 7.29 The running result of the stored procedure

database. Click No for a message to ask you to save this procedure running script,
SQLQuery1.sql, if it appeared.

7.6.1.2 Develop the Codes for the Insert Button Click Event Handler

The function of this piece of codes is to call the stored procedure we built in the last
section to perform a new course insertion to the Course table in our sample data-
base. The insertion criterion is the faculty member selected from the Faculty Name
combo box. The new inserted course record can be retrieved and displayed in the
CourseList listbox by clicking on the Select button to confirm this data insertion.

Generally, the sequence to run a CallableStatement to perform a stored pro-
cedure is:

 1) Build and formulate the CallableStatement query string.
 2) Create a CallableStatement object.
 3) Set the input parameters.
 4) Register the output parameters.
 5) Execute CallableStatement.
 6) Retrieve the running result by using different getXXX() method.

Since we do not have any output result to be returned from this stored procedure,
therefore we can skip steps 4 and 6.

Now let’s develop the codes for this event handler to perform the calling of the
stored procedure we built in the last section to perform this data insertion function.

7.6 Perform Data Manipulations Using Callable Statements

314

private void InsertButtonActionPerformed(java.awt.event.ActionEvent evt) {
if (ComboMethod.getSelectedItem()=="Java Callable Method"){

CallableStatement cstmt = null;
try{

String query = "{call dbo.InsertNewCourse(?, ?, ?, ?, ?, ?, ?)}";
cstmt = LogInFrame.con.prepareCall(query);
cstmt.setString(1, ComboName.getSelectedItem().toString());
cstmt.setString(2, CourseIDField.getText());
cstmt.setString(3, CourseField.getText());
cstmt.setString(4, ScheduleField.getText());
cstmt.setString(5, ClassRoomField.getText());
cstmt.setInt(6, Integer.valueOf(CreditsField.getText()));
cstmt.setInt(7, Integer.valueOf(EnrollField.getText()));
cstmt.execute();

}
catch (SQLException e){

msgDlg.setMessage("Error in CallableStatement! " + e.getMessage());
msgDlg.setVisible(true);

}
}

else {
msgDlg.setMessage("Only Java Callable Method is available!");
msgDlg.setVisible(true);

}
}

A

B

C

D
E

F

G

H

Fig. 7.30 The codes for the Insert button click event handler

Double click on the Insert button on the CourseFrame form window to open its
event handler, and enter the codes that are shown in Fig. 7.30 into this handler.

Let’s have a closer look at this piece of codes to see how it works.

 A. An if block is used to distinguish whether the Java Callable Method has been
selected.

 B. If it is, a new CallableStatement instance is declared.
 C. A try…catch block is used to perform this data insertion using the

CallableStatement method. The CallableStatement query string is created. Refer
to Sect. 6.3.6.2.1 in Chap. 6 to get more detailed information about the structure
and protocol of a CallableStatement query string. This is a dynamic query string
with seven pieces of positional inserting information related to a new course;
therefore, seven question marks are used as the position holders for those
parameters.

 D. A new CallableStatement instance is created by calling the prepareCall()
method that is defined in the Connection class.

 E. The dynamic query string is initialized with seven positional parameters, and
the values of those parameters are entered by the user into the associated course-
related text fields.

 F. The CallableStatement instance is executed to call the stored procedure we built
in the last section to insert a new course record into the Course table in our
sample database.

 G. The catch block is used to track and collect any possible exception for this data
insertion process.

 H. If some other method is selected by users, a warning message is displayed to
remind this.

7 Insert, Update, and Delete Data from Databases

315

Two points to be noted are in step E, where all seven input parameters, including
the Credit and Enrollment, are initialized and assigned to the stored procedure:

 1) The order of these input parameters must be identical with that order used in the
stored procedure dbo.InsertNewCourse exactly. Otherwise some data type mis-
match errors may be encountered as the project runs.

 2) For the last two parameters, Credit and Enrollment, both data types are Integer;
thus, the collected contents from these two TextFields must be converted to inte-
gers, and then they can be assigned to the stored procedure. Both parseInt() and
valueOf() methods, which belong to the Integer class, are available for this kind
of conversion.

Now let’s build and run the project to test this data insertion function. Click on
the Clean and Build Main Project button to build the project, and click on the Run
Main Project button to run the project.

Enter suitable username and password, such as jhenry and test, to the LogIn
frame form, and select the Course Information from the SelectFrame window to
open the CourseFrame form window. Make sure that the Java Callable Method has
been selected from the Query Method combo box. Then click on the Select button
to query the default course information for the selected faculty member Ying Bai.

Now enter the following data into seven text fields as a new course record for the
selected faculty member:

Course ID: CSE-549
Course: Fuzzy Systems
Schedule: T-H: 1:30 – 2:45 PM
Classroom: TC-302
Credit: 3
Enrollment: 25

Then click on the Insert button to insert this course record into the Course table
in our sample database.

To confirm and validate this data insertion, click on the Select button to try to
retrieve all courses taught by the selected faculty member Ying Bai. The running
result is shown in Fig. 7.31, and you can see that the new inserted course CSE-549
is indeed added to the database and displayed in the CourseList Listbox.

Click on the Back and the Exit buttons to terminate our project.
Another way to confirm this data insertion is to open the Course table using the

Services window in the Apache NetBeans IDE. To do that, follow the steps below:

 1) Open the Services window and expand the Databases node and connect to our
SQL Server database by right clicking on that URL jdbc:sqlserver://localhost\\
SQL2019EXPRESS: 5000;databaseName= CSE_DEPT [SMART on dbo],
and select the Connect item. You may need to use the password Happy2020 to
complete this connection process.

 2) Then expand our CSE_DEPT database node, dbo schema, and Tables nodes.

7.6 Perform Data Manipulations Using Callable Statements

316

Fig. 7.31 The running result for the data insertion validation

Fig. 7.32 The new inserted new course CSE-549

 3) Right click on the Course table and select the View Data to open this table.
Scroll down along this table, and you can find that the course CSE-549 has been
inserted to the last line on this Course table, as shown in Fig. 7.32.

7 Insert, Update, and Delete Data from Databases

317

Our data insertion using the CallableStatement object is successful.
Next let’s handle the data updating using the CallableStatement object method.

7.6.2 Update Data to the Course Table Using
Callable Statements

Copy the project SQLCallableInsert and change its name to SQLCallableUpdate,
and save it to the folder Class DB Projects\Chapter 7 on your computer. We will
build the data updating function with the CallableStatement method in the following
procedures:

 1) Build our stored procedure dbo.UpdateCourse using the SQL Server
Management Studio.

 2) Develop the codes for the Update button in the CourseFrame Form window to
execute the CallableStatement method to call our stored procedure dbo.
UpdateCourse to update a course record in the Course table in our sample
database.

 3) Confirm and validate this course updating action using the codes we built for the
Select button event handler.

Now let’s start from the first step.

7.6.2.1 Develop the Stored Procedure dbo.UpdateCourse

Generally, we do not need to update a course_id when we update a course record in
the Course table since a better way to do that is to insert a new course record and
delete the old one. The main reason for this is that a very complicated operation
would be performed if the course_id were updated since it is a primary key in the
Course table and foreign keys in the StudentCourse table. To update a primary
key, one needs to update foreign keys first in the child tables and then update the
primary key in the parent table. This will make our updating operation much more
complicated and easy to be confused. In order to avoid this confusion, in this sec-
tion, we will update a course record by changing any other columns except the
course_id, and this is a popular way to update a table and widely implemented in
most database applications.

Launch the Microsoft SQL Server Management Studio by going to Start > All
Programs > Microsoft SQL Server Tools 18 > Microsoft SQL Server
Management Studio. Click the Connect button to open this studio server. On the
opened studio, expand the Databases and our sample database CSE_DEPT nodes.
Then expand the Programmability node and right click on the Stored Procedures
node; select the Stored Procedure from the popup menu to open a new stored pro-
cedure template.

7.6 Perform Data Manipulations Using Callable Statements

318

-- ==
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: Y. Bai
-- ===

CREATE PROCEDURE dbo.UpdateCourse

-- Add the parameters for the stored procedure here
@CourseID VARCHAR(50),

@Course text,

@Schedule text,

@Classroom text,

@Credit int,
@Enroll int

AS
BEGIN
-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.

SET NOCOUNT ON;

-- Insert statements for procedure here
UPDATE Course
SET course = @Course, schedule = @Schedule, classroom = @Classroom,

credit = @Credit, enrollment = @Enroll

WHERE (course_id = @CourseID)

END
GO

A

B

Fig. 7.33 The codes for the dbo.UpdateCourse stored procedure

One way to do this coding is to directly enter all parameters manually. On the
opened new stored procedure template, enter the codes that are shown in Fig. 7.33
into this stored procedure template as the body of our new stored procedure dbo.
UpdateCourse.

Another way to do this UPDATE command (step B in Fig. 7.33) is to use the
Design Query in Editor wizard. Here we try to use this wizard to build the
UPDATE statement for this query.

First one needs to delete the default SELECT statement under the comment:
Insert statements for procedure here, and move your cursor under this comment
to locate the starting position of your UPDATE command.

To open this wizard, right click on any place inside our stored procedure tem-
plate, and select the Design Query in Editor from the popup menu. Click on the
Close button for the Add Table wizard to close this dialog. Perform the following
operations to build this UPDATE statement.

 1) Choose the SELECT …FROM codes from the bottom pane to delete them.
 2) Right click on the bottom pane, and select the Change Type item and select the

Update item from the popup menu.
 3) Right click on the top pane and select the Add Table item. Select the Course

table and click on the Add button. Click on the Close button to close this Add
Table dialog.

 4) Click on the row under the Column in the mid-pane, and select the course item.
 5) In similar way, click on the row under the course item, and select the schedule

item in the Column. Continue in this way to select all other items, classroom,
credit, enrollment, and course_id.

7 Insert, Update, and Delete Data from Databases

319

 6) Uncheck the check box for the row course_id in the Set column, and type a
question mark '?' in the Filter column for the course_id row, and press the Enter
key in your keyboard.

 7) Modify the dynamic parameter’s name from @Param1 to @CourseID.
 8) Enter the updated values to the associated New Value column in the bottom pane

after the SET clause. The point to be noted is that all of these updated values’
names must be identical with those input parameters to the stored procedure we
built in step A in Fig. 7.33.

Your finished Query Designer wizard should match one that is shown in Fig. 7.34.
Click on the OK button to create this UPDATE statement codes that have been
highlighted in the background color at step B in Fig. 7.33.

Let’s have a closer look at this piece of codes to see how it works.

 A. Six input parameters to this stored procedure are declared first with the associ-
ated data types. These parameters must be identical with those parameters in the
CallableStatement query string we will build later to enable the CallableStatement
to recognize them when it is executed to perform the data updating action in our
project.

 B. The UPDATE statement we built using the Query Designer wizard is attached
here, and the query criterion course_id is obtained from the CourseList Listbox.

Right click on any location inside our completed stored procedure, and select the
Execute item to try to build it. A successful building result should be displayed in
the Messages box if everything is fine. Then right click on the Stored Procedures
node in the Object Explorer window, and select the Refresh item to show our new
built stored procedure dbo.UpdateCourse.

Fig. 7.34 The Finished Query Designer wizard

7.6 Perform Data Manipulations Using Callable Statements

320

Now let’s run this stored procedure to test its functionality. Right click on our
new created stored procedure dbo.UpdateCourse from the Object Explorer win-
dow, and select the Execute Stored Procedure item to open the Execute Procedure
wizard. Enter the following data into the associated Value columns to this wizard:

• @CourseID: CSE-549
• @Course: Intelligent Controls
• @Schedule: M-W-F: 11:00 – 11:50 AM
• @Classroom: TC-303
• @Credit: 3
• @Enrollment: 28

Click on the OK button to run this stored procedure. The running result is shown
in Fig. 7.35. It can be found that a successful running message is displayed in the
Messages windows (1 row(s) affected) and the Query executed successfully state-
ment is also displayed in the status bar at the bottom of this window.

It is highly recommended to recover this updated course record to its original
values since we need to call the CallableStatement object to run this stored proce-
dure again when we test our project later. You can do this recovery job in two ways:
(1) perform another updating action using this stored procedure or (2) use the
Microsoft SQL Server Management Studio to open the Course table. Refer to Sect.
7.6.1.2 to get more details for this course to recover this course CSE-549.

Fig. 7.35 The running result of the stored procedure dbo.UpdateCourse

7 Insert, Update, and Delete Data from Databases

321

Now Close the Microsoft SQL Server Management Studio since we have fin-
ished building and testing this stored procedure. Click No in the popup Messagebox
since we do not need to save this running script SQLQuery1.sql.

Now let’s build our codes for the Update button click event handler in the
CourseFrame form to call this stored procedure to perform this data updating action.

7.6.2.2 Develop the Codes for the Update Button Click Event Handler

Open our project SQLCallableUpdate and the CourseFrame Form window in
Design View, and double click on the Update button to open its event handler and
enter the codes that are shown in Fig. 7.36 into this handler.

Let’s have a close look at this piece of codes to see how it works.

 A. An if block is used to distinguish whether the Java Callable Method has been
selected.

 B. If it is, a new CallableStatement instance is declared.
 C. A try…catch block is used to perform this data updating action using the

CallableStatement method. The CallableStatement query string is created. Refer
to Sect. 6.3.6.2 in Chap. 6 to get more detailed information about the structure
and protocol of a CallableStatement query string. This is a dynamic query string
with six pieces of positional updating information related to a new course; there-
fore, six question marks are used as the position holders for those parameters.

 D. A new CallableStatement instance is created by calling the prepareCall()
method that is defined in the Connection class.

 E. The dynamic query string is initialized with six positional parameters, and the
values of those parameters are entered by the user into the associated course-
related text fields. The point to be noted is the last two parameters, which are
credits (Integer) and enrollment (integer), respectively. Therefore the associ-

private void UpdateButtonActionPerformed(java.awt.event.ActionEvent evt) {
if (ComboMethod.getSelectedItem()=="Java Callable Method"){
CallableStatement cstmt;
try{

String query = "{call dbo.UpdateCourse(?, ?, ?, ?, ?, ?)}";
cstmt = LogInFrame.con.prepareCall(query);
cstmt.setString(1, CourseList.getSelectedValue());
cstmt.setString(2, CourseField.getText());
cstmt.setString(3, ScheduleField.getText());
cstmt.setString(4, ClassRoomField.getText());
cstmt.setFloat(5, java.lang.Integer.valueOf(CreditsField.getText()));
cstmt.setInt(6, java.lang.Integer.parseInt(EnrollField.getText()));
cstmt.execute();

}
catch (SQLException e){

msgDlg.setMessage("Error in CallableStatement! " + e.getMessage());
msgDlg.setVisible(true);

}
}

CourseIDField.setText(CourseList.getSelectedValue());
}

A

B

C

D

E

F

G

H

Fig. 7.36 The codes for the Update button click event handler

7.6 Perform Data Manipulations Using Callable Statements

322

ated setXXX() methods need to be used to initialize these two parameters. Since
the Integer class belongs to the java.lang package, here a full name is used for
these classes. You can import this Java.lang package at the top of this coding
window under the Package clause to remove those package names if you like.

 F. The CallableStatement instance is executed to call the stored procedure to
update the selected course record in the Course table in our sample database.

 G. The catch block is used to collect any possible exception for this data updating
process.

 H. Finally the selected course_id from the CourseList Listbox is assigned to the
Course ID field to indicate this updated course.

Now let’s build and run the project to test the data updating function. Click on the
Clean and Build Main Project button to build the project, and click the Run Main
Project button to run the project.

Enter suitable username and password, such as jhenry and test, to the LogIn
frame form, and select the Course Information from the SelectFrame window to
open the CourseFrame form window. Make sure that the Java Callable Method has
been selected from the Query Method combo box. Then click on the Select button
to query the default course information for the selected faculty member Ying Bai.

Now select the course CSE-549 from the CourseList listbox, and enter the fol-
lowing data into six text fields as an updated course record for the selected course
CSE-549:

Course: Intelligent Controls
Schedule: M-W-F: 11:00 – 11:50 AM
Classroom: TC-303
Credit: 3
Enrollment: 28

Then click on the Update button to update this course record in the Course table
in our sample database. To confirm and validate this data updating, click on the
Select button to try to retrieve all courses taught by the selected faculty Ying Bai.
The running result is shown in Fig. 7.37.

Another way to confirm this data updating action is to open the Course table
using the Services window in the NetBeans IDE. To do that, open the Services
window and expand the Databases node, and connect to our SQL Server database
by right clicking on that URL and select the Connect item. Then expand that con-
nected URL and our CSE_DEPT database node, dbo schema, and Tables nodes.
Right click on the Course table, and select the View Data to open this table. Scroll
down along this table, and you can find that the course CSE-549 has been updated
and displayed at the last line on this Course table, as shown in Fig. 7.38.

It is highly recommended to recover this updated course record to its original
values since we want to keep our database clean and neat. You can do this recovery
job in two ways: (1) perform another updating action using this Update button

7 Insert, Update, and Delete Data from Databases

323

Fig. 7.37 The running result of the data updating action

event handler, or (2) use the Microsoft SQL Server Management Studio to open the
Course table. Refer to Sect. 7.6.1.2 to get more details about this course to recover
this course CSE-549.

Next let’s handle the data deleting using the CallableStatement object method.

7.6.3 Delete Data from the Course Table Using
Callable Statements

Copy the project SQLCallableUpdate and change its name to SQLCallableDelete,
and save it to the folder Class DB Projects\Chapter 7 on your computer. We will
build the data deleting function with the CallableStatement method in the following
procedures:

 1) Build our stored procedure dbo.DeleteCourse using the SQL Server
Management Studio.

 2) Develop the codes for the Delete button in the CourseFrame Form window to
execute the CallableStatement method to call our stored procedure dbo.

7.6 Perform Data Manipulations Using Callable Statements

324

Fig. 7.38 The updated course CSE-549 in the Course table.

DeleteCourse to delete a course record from the Course table in our sample
database.

 3) Confirm and validate this course deleting action using the codes we built for the
Select button event handler.

Now let’s start from the first step.

7.6.3.1 Develop the Stored Procedure dbo.DeleteCourse

Launch the Microsoft SQL Server Management Studio by going to Start > All
Programs > Microsoft SQL Server Tools 18 > Microsoft SQL Server
Management Studio. Click the Connect button to open this studio server. On the
opened studio, expand the Databases and our sample database CSE_DEPT nodes.
Then expand the Programmability node, and right click on the Stored Procedures
node; select the Stored Procedure from the popup menu to open a new stored pro-
cedure template.

You can use the Ctrl-Shift-M combination keys to enter all parameters for this
stored procedure. However, an easy way to do that is to directly enter all parameters
manually. On the opened new stored procedure template, enter the codes that are
shown in Fig. 7.39 into this stored procedure template as the body of our new stored
procedure dbo.DeleteCourse. You can create this piece of codes manually or using
the Query Designer as we did in the last section for the stored procedure dbo.
UpdateCourse.

7 Insert, Update, and Delete Data from Databases

325

-- ==
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author: Y. Bai
-- Create date: Dec 24, 2020
-- ===
CREATE PROCEDURE dbo.DeleteCourse

-- Add the parameters for the stored procedure here
@CourseID VARCHAR(50)

AS
BEGIN

-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.
SET NOCOUNT ON;
-- Insert statements for procedure here
DELETE FROM Course

WHERE (course_id = @CourseID)

END
GO

A

B

Fig. 7.39 The codes for the stored procedure dbo.DeleteCourse

Let’s have a closer look at this piece of codes to see how it works.

 A. The only input to this stored procedure is the course_id that is a primary key to
the Course table. Here we use @CourseID as a dynamic parameter for this
stored procedure.

 B. The DELETE statement is created with the @CourseID as this deleting
criterion.

Right click on any location inside our new stored procedure, and select the
Execute item to try to build and save this stored procedure. Then right click on the
Stored Procedures node in the Object Explorer window, and select the Refresh
item to show our new built stored procedure dbo.DeleteCourse.

Now let’s run this stored procedure to test its functionality. Right click on our
new created stored procedure dbo.DeleteCourse from the Object Explorer window,
and select the Execute Stored Procedure item to open the Execute Procedure wiz-
ard. Enter the following data into the associated Value column to this wizard:

• @CourseID: CSE-549

Click on the OK button to run this stored procedure. The running result is shown
in Fig. 7.40. It can be found that a successful running message is displayed in the
Messages windows (1 row affected) and the Query executed successfully state-
ment is also displayed in the status bar at the bottom of this window.

One can check and confirm this data deleting action by opening the Course table
in this SQL Server Management Studio. Perform the following operations to open
this table:

 1) Expand our sample database CSE_DEPT and Tables folder in the Object
Explorer.

7.6 Perform Data Manipulations Using Callable Statements

326

Fig. 7.40 The running result of the stored procedure dbo.DeleteCourse

Table 7.7 The deleted course record in the Course table

course_id course credit classroom schedule enrollment faculty_id

CSE-549 Fuzzy Systems 3 MTC-302 T-H: 1:30-2:45 PM 25 B78880

 2) Right click on the Course table, dbo.Course, and select Edit Top 200 Rows
item from the popup menu to open it.

One can find that the course, CSE-549, has been deleted from this table.
It is highly recommended to recover this deleted course record to its original

values since we need to call the CallableStatement object to run this stored proce-
dure again when we test our

project later. You can do this recovery job inside the Microsoft SQL Server
Management Studio by opening the Course table and inserting this course record at
the bottom line on this table. Refer to Table 7.7 to recover this deleted course record.

Before one can close this Microsoft SQL Server Management Studio, go to File
> Save All to save this recovery job. Click on the Cancel and No buttons for some
messages to ask us to save the procedure running script, SQLQuery1.sql, since we
do not need to keep it.

Now close the Microsoft SQL Server Management Studio since we have finished
building and testing the stored procedure.

Next we need to build our codes for the Delete button click event handler in the
CourseFrame form to call this stored procedure to perform this data deleting action.

7 Insert, Update, and Delete Data from Databases

327

7.6.3.2 Develop the Codes for the Delete Button Click Event Handler

Open the Design View of our project SQLCallableDelete, and double click on the
Delete button on the CourseFrame form window to open its event handler, and enter
the codes that are shown in Fig. 7.41 into this handler. Let’s have a close look at this
piece of codes to see how it works.

 A. An if block is used to distinguish whether the Java Callable Method has been
selected.

 B. If it is, a new CallableStatement instance is declared.
 C. A try…catch block is used to perform this data deleting action using the

CallableStatement method. The CallableStatement query string is created. Refer
to Sect. 6.3.6.2 in Chap. 6 to get more detailed information about the structure
and protocol of a CallableStatement query string. This is a dynamic query string
with one positional parameter related to a new course; therefore, a question
mark is used as the position holder for this parameter.

 D. A new CallableStatement instance is created by calling the prepareCall()
method that is defined in the Connection class.

 E. The dynamic query string is initialized with a positional parameter, and the
value of this parameter is selected by the user from the CourseList Listbox.

 F. The CallableStatement instance is executed to call the stored procedure we built
in the last section to delete the selected course record in the Course table from
our sample database.

 G. The catch block is used to track and collect any possible exception for this data
deleting.

 H. The deleted course_id is removed from the Course ID field to indicate this
deleting action.

Now let’s build and run the project to test this data deleting function. Click on the
Clean and Build Main Project button to build the project, and click on the Run
Main Project button to run the project.

private void cmdDeleteActionPerformed(java.awt.event.ActionEvent evt) {
if (ComboMethod.getSelectedItem()=="Java Callable Method"){

CallableStatement cstmt;
try{

String query = "{call dbo.DeleteCourse(?)}";
cstmt = LogInFrame.con.prepareCall(query);
cstmt.setString(1, CourseList.getSelectedValue());
cstmt.execute();

}
catch (SQLException e){

msgDlg.setMessage("Error in CallableStatement! " + e.getMessage());
msgDlg.setVisible(true);

}
}
CourseIDField.setText(null);

}

A

B

C

D

E

F

G

H

Fig. 7.41 The codes for the Delete button click event handler

7.6 Perform Data Manipulations Using Callable Statements

328

Enter suitable username and password, such as jhenry and test, to the LogIn
frame form, and select the Course Information from the SelectFrame window to
open the CourseFrame form window. Make sure that the Java Callable Method has
been selected from the Query Method combo box. Then click on the Select button
to query the default course information for the selected faculty member Ying Bai.

Now select the course CSE-549 from the CourseList Listbox, and click on the
Delete button to try to delete this course from the Course table in our sample
database.

To confirm and validate this data deletion action, click on the Select button again
to try to retrieve all courses taught by the default faculty Ying Bai. It can be found
that there is no CSE-549 course in the CourseList Listbox, and this means that the
course CSE-549 has been deleted from the Course table. You can also confirm this
data deleting action by opening the Course table using the Services window in the
Apache NetBeans IDE.

At this point, we have finished developing and building data manipulations proj-
ect using CallableStatement object method. A complete project SQLCallableDelete
that contains all three data manipulation actions to SQL Server database can be
found at the folder Class DB Projects \Chapter 7 that is under the Students folder
at the Springer ftp site (refer to Fig. 1.2 in Chap. 1).

7.7 Chapter Summary

Three popular data manipulation methods against the SQL Server database have
been discussed and analyzed in detail with quite a few of real project examples in
this chapter.

This chapter is divided into three parts based on three different data query meth-
ods: insert, update, and delete data to our sample database using the Java runtime
object method. This method provides more flexibility and efficiency in data actions
against different databases. Also in this chapter, two more data manipulation meth-
ods, Updatable ResultSet and CallableStatement, are discussed with real projects
for the SQL Server database.

Detailed introductions and illustrations on building stored procedures under SQL
Server database system are provided with real and step-by-step examples. After
finishing this chapter, readers will be:

• Able to design and build professional data actions against SQL Server database
system using the Java runtime objects.

• Able to design and build popular stored procedures for SQL Server data-
base system.

• Able to design and build professional data actions against SQL Server database
system using Updatable ResultSet methods.

• Able to design and build professional data actions against SQL Server database
system using CallableStatement methods.

7 Insert, Update, and Delete Data from Databases

329

Starting from next chapter, we will discuss the database programming with
Java Applet.

Homework
 I. True/False Selections

____1. To use Java runtime method to insert an image into the SQL Server data-
base, the setString() method should be used.

____2. When using JFileChooser object to select an image, the returned image
is a Java File object, and one needs to convert it to a Byte[] array to be
inserted into a column in a database table.

____3. When converting an image file to a Byte[] array, one can use a system
method, readAllBytes().

____4. To avoid possible duplicated record to be inserted into a database, the
Insert button on a Frame Form should be enabled after a desired record
has been inserted.

____5. By setting the Concurrency Type property as Updatable to a ResultSet
object, that ResultSet object can be used to perform data insertion, updat-
ing, and deleting actions to a database.

____6. To use Updatable ResultSet object to delete a record from a database,
only one step is enough, which is to use the deleteRow() method of the
ResultSet class.

____7. When using Updatable ResultSet object to update a record in a database,
only one step is good enough, which is to call the updateXXX() method.

____8. When performing data manipulations using Java runtime object method,
one can use either executeUpdate() or execute() method.

____9. A default ResultSet object is updatable and has a cursor that can move
either forwardly and backwardly.

___10. To insert a new record into a database using the Updatable ResultSet
method, one needs first to move the cursor to an insert-row that is a blank
row and it is not a part of the ResultSet but related to the ResultSet.

 II. Multiple Choices

 1. When using Updatable ResultSet object to update a record in a database,
two steps are needed, and they are __________________.

 (a) Insert data in ResultSet, and update the data into database.
 (b) Update data in the ResultSet, and copy change to database.
 (c) Delete data from ResultSet, and copy change to database.
 (d) Select data in the ResultSet, and update the data in database.

 2. When building a stored procedure with SQL Server Management Studio,
one needs to build and save the procedure by ________________.

 (a) Going to File > Save All menu item
 (b) Building the procedure
 (c) Executing the procedure
 (d) Updating the procedure

7.7 Chapter Summary

330

 3. When using an Updatable ResultSet to perform data manipulations, two
parameters can be used to set up properties of a ResultSet object; they are
__________________.

 (a) Forward-only, Updatable
 (b) Scroll-sensitive, Read-only
 (c) ResultSet Type, Concurrency Type of a ResultSet
 (d) ResultSet Type, Updatable Type

 4. Which of the following created ResultSet protocol is correct? __________

 (a) Statement createStatement(int resultSetType, int
resultSetConcurrency)

 (b) PreparedStatement prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

 (c) CallableStatement prepareCall(String sql, int resultSetType, int
resultSetConcurrency)

 (d) All of them

 5. To update a record using the Updatable ResultSet, one needs to use ______
steps and they are: _________________________.

 (a) 1, UpdateXXX()
 (b) 2, UpdateXXX() and UpdateRow()
 (c) 3, UpdateXXX(), UpdateCursor() and UpdateRow()
 (d) 4, MoveToRow(), UpdateXXX(), UpdateCursor() and UpdateRow()

 6. To insert a new record using the Updatable ResultSet, one needs to use
______ steps and they are: _________________________ .

 (a) 1, insertRow()
 (b) 2, moveToInsertRow(), insertRow()
 (c) 3, moveToInsertRow(),updateXXX(), insertRow()
 (d) 4, moveToCursor(), moveToInsertRow(), updateXXX(), insertRow()

 7. When building a stored procedure to perform data insertion action, the order
of the input parameters must be __________ with the order of the related
_________.

 (a) Identical, data column
 (b) Different, data column
 (c) Same or different, data row
 (d) Identical, data table

 8. By using which of the following static constant values can we set an
Updatable Result object that has a cursor that can move either forwardly and
backwardly?

 (a) ResultSet.TYPE_FORWARD_ONLY
 (b) ResultSet.TYPE_SCROLL_INSENSITIVE

7 Insert, Update, and Delete Data from Databases

331

 (c) ResultSet.CONCUR_UPDATABLE
 (d) ResultSet.TYPE_SCROLL_SENSITIVE

 9. By using which of the following static constant values can we set an
Updatable Result object whose contents can be updated?

 (a) ResultSet.TYPE_FORWARD_ONLY
 (b) ResultSet.TYPE_SCROLL_INSENSITIVE
 (c) ResultSet.CONCUR_UPDATABLE
 (d) ResultSet.TYPE_SCROLL_SENSITIVE

 10. When building a stored procedure, one can use two ways to build the query
statement, and these two ways are _____________________.

 (a) Manually write the statement, and run the stored procedure.
 (b) Use the Designer Query in Editor, and run the stored procedure.
 (c) Execute the procedure, and save the stored procedure.
 (d) Manually write the statement, and use the Designer Query in Editor.

III. Exercises

1. List six steps to use Java runtime object to perform data manipulations
against our target database.

2. List three steps to insert a new record into a target database using the
Updatable ResultSet method. Convert the pseudo-codes shown below to
the real Java codes (assume that a valid connection conn has been
established).

3. Develop codes for the StudentFrame Form window to insert a new student
record into the Student table in our sample database using the Java run-
time object method. The new student’s record is:

• Student ID: F78569
• Student Name: Williams Ford
• GPA: 3.42
• Credits: 97
• Major: Computer Engineering
• SchoolYear: Junior
• Email: wford@college.edu
• simage: Any student image can be used

Hint1
A sample project SQLInsertObject, which can be found from the folder
Class DB Projects \Chapter 7 under the Students folder in the Springer
ftp site (refer to Fig. 1.2 in Chap. 1), is available. Based on that project,
build your codes in the Insert button event handler on the
StudentFrame Form.

Hint2
1) Add one more method, Java Runtime Method, into the StudentFrame

constructor.

7.7 Chapter Summary

wford@college.edu

332

2) Add one if block in the Insert button event handler to identify the Java
Runtime Method, and build and add your codes inside this block.

3) You may need to use three user-defined methods, chkFaculty(), clear-
Faculty(), and getFacultyImage(), which you can obtain from the
Insert button event handler in the Facultyframe class in the same proj-
ect. It is recommended to change their names to chkStudent(),
clearStudent(), and getStudent(), respectively.

4. Figure 7.42 shows a stored procedure dbo.UpdateFaculty. Develop and
build codes on the FacultyFrame form class to call this stored procedure to
update a faculty record for the Faculty table in our sample SQL Server
database using CallableStatement method. Any faculty’s photo can be used
for this updating action.

Hint1
A sample project SQLCallableUpdate, which can be found from the
folder Class DB Projects\Chapter 7 under the Students folder in the
Springer ftp site (refer to Fig. 1.2 in Chap. 1), is available. Based on that
project, build your codes in the Update button event handler on the
FacultyFrame Form.

SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
CREATE PROCEDURE dbo.UpdateFaculty

-- Add the parameters for the stored procedure here
@FacultyID VARCHAR(50),
@FacultyName VARCHAR(50),
@Title text,
@Office text,
@Phone text,
@College text,
@Email text,
@FImage Image

AS
BEGIN

-- SET NOCOUNT ON added to prevent extra result sets from
-- interfering with SELECT statements.

SET NOCOUNT ON;
-- Insert statements for procedure here
UPDATE Faculty
SET faculty_name = @FacultyName, title = @Title, office = @Office, phone = @Phone,

college = @College, email = @Email, fimage = @FImage
WHERE (faculty_id = @FacultyID)

END
GO

Fig. 7.42 A piece of codes used to insert some data into two tables

7 Insert, Update, and Delete Data from Databases

333

Hint2
Add one if block in the Update button event handler to identify the Java
Callable Method, and build and add your codes inside this block.

Hint3
Refer to the codes in the Update button event handler in the sample project
SQLUpdateObject located at the folder Class DB Projects\Chapter 7
under the Students folder at the Springer ftp site (refer to Fig. 1.2 in Chap.
1). You may also need to use two user-defined methods, getFacultyIm-
age() and CurrentFaculty(), developed in that project.

7.7 Chapter Summary

Part II
Building Three-Tier Client-Server

Applications

337© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_8

Chapter 8
Developing Java Web Applications
to Access Databases

As the rapid development of the Java Web application techniques, today the Java Web
applications are closely related to Java Enterprise Edition platform, and the latter pro-
vides rich and powerful APIs to support developers to build and develop more effi-
cient and productive Web applications with less complexity and developing efforts.

The Java EE platform uses a simplified programming model. XML deployment
descriptors are optional. Instead, a developer can simply enter the information as an
annotation directly into a Java source file, and the Java EE server will configure the
component at deployment and runtime. These annotations are generally used to
embed in a program data that would otherwise be furnished in a deployment descrip-
tor. With annotations, the specification information is put directly in your code next
to the program element that it affects.

In order to have a clear and understandable idea about Java Web applications and
their developments, let’s first have a quick historical review on this topic and this
review is absolutely necessary for beginners who have never built and developed
any Java Web application before. You are not required to understand all details on
the codes in the following review sections, but we expect that you can understand
them based on their functions.

8.1 A Historical Review About Java Web
Application Development

Java Web applications are based on Servlet technique, and the Servlet works as a
Web server that provides all supports such as receiving requests from the client and
sending responses back to the client. Exactly a Servlet is a server class built in Java

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_8].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06553-8_8&domain=pdf
https://doi.org/10.1007/978-3-031-06553-8_8

338

language with all functionalities of a server engine. A Servlet performs its job in the
following ways:

• When a Servlet is created, the init() method is called to do the initialization jobs
for the Web server.

• When a request is received by the Servlet, it creates two objects: request and
response.

• Then the Servlet sends these two objects to the service() method.
• The request object encapsulates the information passed from the HTTP request

coming from the client.
• The service() method is a main responding body and will be used to process the

request and send the response that has been embedded into the response object
back to the client.

The conventional Web applications are built with a Servlet as a Web container
and HTML pages as Web clients.

8.1.1 Using Servlet and HTML Web Pages for Java
Web Applications

The main purpose of using the Servlet is to compensate the shortcoming of using a
Common Gateway Interface (CGI). Unlike the CGI, the Servlet can be used to cre-
ate dynamic Web pages during the server-client communication processes. Two
methods, doGet() and doPost(), are main channels to communicate between the
server and clients.

General uses of Servlet include:

• Processing requests received from clients and responses back to clients
• Creating dynamic Web pages
• Managing state information for applications
• Storing data and information for clients

Generally, the client pages can be divided into two categories: reading-page and
posting-page. The former is used to read data from the user, and the latter is used for
displaying feedback from the server. To interface to the client to get user’s data, in
most time the server calls the getParameter() method that belongs to the request
object to do this job. To send feedback to the client, in most time the server uses
println() method that belongs to the out object. With this pair of methods, a server
can easily communicate with the client and transfer data between them.

By using an example that utilizes these methods to transfer the login information
between a Servlet and a client Web page, we can get a much clearer picture and
deeper understanding for this topic.

Open a Notepad and enter the following codes that are shown in Fig. 8.1 to build
the Login.html file. Save this file with the name of “Login.html” to make it an

8 Developing Java Web Applications to Access Databases

339

HTML file. You have to use double quotation marks to enclose this file name with
the .html extension to let Notepad know that you want to save it as an HTML file.

Double click on this file to run it, and the running result is shown in Fig. 8.2.
Two input text fields are used by users to enable them to enter the desired user-

name and password. The key is the identifier for both text fields, username and
password, which is the name property or attribute of these two text fields. When a
server needs these two pieces of login information, it uses the getParameter()
method defined in the request object with the names of two text fields as identifiers
to get them. Figure 8.3 shows a piece of codes developed in the server side to per-
form this login information picking up operation.

Two variables, uname and pword, are used in the server side to hold the picked
up username and password entered by the user from the client Web page. The get-
Parameter() method is used to do this picking up operation. The identifiers for
these two parameters are the names of two text fields in the HTML page.

With this simple example, you can see how easy it is for server and client to com-
municate for each other. The server can send feedback or post any desired informa-
tion in the client by using the out object that is obtained from creating a new
PrintWriter instance at the first two coding lines in this piece of codes.

Ok, now we have a clear picture about the module of using a Servlet and a client
to build and implement a Java Web application in the early days. To deploy this
login Servlet, we need to locate the Servlet class file to the suitable directory.

Fig. 8.1 The finished Login.html file

8.1 A Historical Review About Java Web Application Development

340

One of shortcomings for this kind of application is that the server and the client
use two different languages, and a converter or a render is necessary to perform this
conversion between these two languages. This will reduce the running speed and
efficiency of the Web application. A solution to this issue is the Java ServerPage
(JSP) technique, which was developed by Sun. With the help of the JSP, parts of
server codes can be extended and embedded into the client side to facilitate the com-
munications between a server and a client.

8.1.2 Using JavaServer Pages Technology for Java
Web Applications

In fact, JavaServer Pages technique provides a way of using Java code within an
HTML page, which means that you can embed a piece of Java codes or a part of
Servlet functions into the codes in the client side with appropriate tags. The

Fig. 8.2 The Login.html
running result

public void doGet(HttpServletRequest request, HttpServletResponse response)
{

response.setContentType(“text/html”);
PrintWriter out = new PrintWriter(response.getWriter());

String uname = request.getParameter(“username”);
String pword = request.getParameter(“password”);

// process the received uname and pword

Fig. 8.3 Using getParameter() method to get data from the client

8 Developing Java Web Applications to Access Databases

341

embedded Java codes will be compiled and executed by the JSP engine in the server
side as the application runs. From this point of view, the JavaServer Pages can be
considered as a part of a Servlet or as an extension of an application server located
at the client side. Although the JSP provides a lot of advantages over Servlets, it is
actually a subclass of the Servlet class and built based on Servlets technology.

The JavaServer Pages can be implemented not only in the HTML files but also in
the following files:

• Script language files, which allow you to specify a block of Java codes.
• JSP directives, which enable you to control the JSP structure and environment.
• Actions, which allow you to specify the executing commands such as loading a

parameter from a client page.

The JSP provides some useful built-in or implicit objects to perform most inter-
facing functions with clients and server. The so-called implicit objects in JSP are
objects that are automatically available in JSP. Implicit objects are Java objects that
the JSP Container provides to a developer to access them in their applications using
JavaBeans and Servlets. These objects are called implicit objects because they are
automatically instantiated. Some popular implicit JSP objects include:

• request
• response
• out
• session
• application
• pageContext
• page
• exception

Among those objects, the request, response, and session are most popular
objects and are often used in the interfacing between clients and servers. Some other
objects such as out and pageContext are mainly used to write output to the client
and to access most built-in objects.

Figure 8.4 shows an example of using the out and the pageContext objects to
write some feedback to the client (the top section) and to get a session object (the
bottom section).

Two popular tags used by JSP to distinguish with other languages are:

• <% …. %>

out.println(“<HTML>”);

out.println(“<HEAD>Hello World</HEAD>”);

out.println(“</HTML>”);

out.close();

HttpSession session = pageContext.getSession();

Fig. 8.4 An example of using the out and the pageContext objects

8.1 A Historical Review About Java Web Application Development

342

• <jsp: …. />

Between these two tags, you can put any Java codes as you want to improve the
execution of the Servlet techniques for Java Web applications.

In fact, you can get a JSP file or page easily by just changing the extension of the
Login.html file, such as from Login.html to Login.jsp. Yes, it is so easy to do this
to get a JSP file.

An example of using a JSP file to display the received user login data is shown in
Fig. 8.5.

Within the tags <% …%>, two lines of Java codes are written, and they are used
to call the getParameter() method to pick up the username and password entered
by the user from the client Web page. You can directly display these received login
data in the client side with the Java local variables uname and pword enclosed with
the JSP tags.

In fact, the JavaServer Pages can handle more complicated jobs such as the busi-
ness logic, JDBC-related database connections, data processing, and JSP pages
switching. Generally, a main or controller JSP takes charge of passing parameters
between the server and clients, forwarding the user to the other target JSP or Web
pages based on the running result of Servlet.

A piece of example codes shown in Fig. 8.6 illustrate how to use a JSP to handle
multiple jobs, including the parameters collections from the client page, database
accessing, and data processing and forwarding from the current page to the target
Java Server pages based on the running results of data processing. Let’s have a
closer look at these codes to see how they work.

 A. The getParameter() method is called to pick up two pieces of login informa-
tion, username and password, which are entered by the user from the client page
and assigned to two local variables uname and pword in the Servlet.

 B. These two picked up login data are displayed in the client side with the JSP tags.
 C. Starting from the JSP tag <%, a piece of Java codes are developed. A SQL

Server database driver is loaded, and this is a type IV JDBC driver.
 D. The SQL Server JDBC URL is assigned to the local variable url.

<HTML>

<HEAD>

<TITLE>Welcome to CSE DEPT LogIn Page</TITLE>

</HEAD>

<BODY>

<%@ Page language=”java” %>

<%

String uname = request.getParameter(“username”);

String pword = request.getParameter(“password”);

%>

User Name = <%=uname%>

Pass Word = <%=pword%>

</BODY>

</HTML>

Fig. 8.5 An example of Java Server Page file

8 Developing Java Web Applications to Access Databases

343

 E. The getConnection() method is executed to establish this database connection.
 F. A query string is created, and it is used to query a matched username and pass-

word from the LogIn table.
 G. The createStatement() method is called to create a Statement object.
 H. The executeQuery() method is executed to perform this query, and the returned

result is assigned to the ResultSet object rs.
 I. A while loop is used to pick up any possible matched username and password.

In fact, only one row is returned, and therefore this loop can run only one time.
 J. If a matched username and password pair is found, the nextPage is assigned to

the Selection.jsp.
 K. Otherwise the nextPage is assigned to the LoginError.jsp.

<HTML>

<HEAD>

<TITLE>Welcome to CSE DEPT LogIn Page</TITLE></HEAD>

<BODY>

<%@ Page language=”java” %>

<%

String uname = request.getParameter(“username”);

String pword = request.getParameter(“password”);

%>

User Name = <%=uname%>

Pass Word = <%=pword%>

<%

try {

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}

catch (Exception e) {

msgDlg.setMessage("Class not found exception!" + e.getMessage());

msgDlg.setVisible(true);

}

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS: 5000;databaseName=

CSE_DEPT;";

try {

con = DriverManager.getConnection(url,"SMART","Happy2020");

}

catch (SQLException e) {

msgDlg.setMessage("Could not connect!" + e.getMessage());

msgDlg.setVisible(true);

e.printStackTrace();

}

Statement stmt = null;

ResultSet rs = null;

String query = “SELECT user_name, pass_word FROM LogIn " +

"WHERE user_name = ‘” + uname + “’ “ + “ AND pass_word = ‘”+pword+”’;”;

stmt = con.createStatement();

rs = stmt.executeQuery(query);

while (rs.next()) {

String c_uname = rs.getString(“user_name”);

String c_pword = rs.getString(“pass_word”);

}

if (c_uname.equals(uname) && c_pword.equals(pword)) {

String nextPage = “Selection.jsp”;

}

else {

String nextPage = “LoginError.jsp”;

}

%>

<jsp:forward page = “<%=nextPage%>” />

A

B

C

D

E

F

G

H

I

J

K

L

Fig. 8.6 A piece of example codes

8.1 A Historical Review About Java Web Application Development

344

 L. The <jsp:forward /> is used to direct the page to an appropriate page based on
the matching result.

A good point of using this JSP technique to handle a lot of JDBC-related codes
or business logics in this JavaServer Page is that the Servlet processing speed and
efficiency can be improved. However, you can find that at the same time a shortcom-
ing is also coming up with this benefit, which is relatively complex in the coding
development. Quite a few codes for the JDBC database accessing and data process-
ing as well as the business logics are involved into this JSP and therefore make it a
big mess during the coding development.

To solve this mess problem and separate the business logics and JDBC-related
database processing from the result displaying in Web pages and make our coding
process easy and clear, three possible ways can be used:

 1) Using a Java help class to handle all business logics and database-related pro-
cessing. In this way, we can separate this login process into two different parts:
the data displaying Web page and JDBC-related database processing or business
logics to make this process more objective and clear based on its functionality.
This Java help class file works just like a bridge or an intermediate layer to help
the JavaServer Pages to perform business-related jobs in a separate file to allow
the JSP to concentrate on the data displaying process. You will see that this Java
help class file can be translated to a Java Bean later.

 2) Using the session implicit object provided by JSP to store and transfer data
between clients and server. This method still belongs to the Java help class cat-
egory. Exactly, the session objects are used in the Java help class to help the data
storage and retrieving between clients and clients and between clients and
the server.

 3) Using Java Beans techniques to cover and handle the JDBC-related database
accessing, data processing, and business logics such as data matching and com-
parison process. The main role of JavaServer Pages is to provide a view to dis-
play the results. A JSP can also need to load the Java Beans, pass the necessary
parameters between Servlet and clients, and forward users to the different target-
ing pages based on the running result.

Let’s have a detailed discussion about these methods one by one.

8.1.3 Using Java Help Class Files for Java Web Applications

To distinguish between the database-related data processing and running results
displaying, we can separate a Java Web application into two parts: the JDBC-related
database processing and the business logics such as checking and confirming a pair
of matched username and password located at a Java help class file and the data and
running results displaying at a Web or a JavaServer page.

8 Developing Java Web Applications to Access Databases

345

Take a look at the codes in Fig. 8.6; you can find that about 80% of those codes
are JDBC-related database processing codes, and 10% are about the data processing
codes. Totally about 90% codes are used to access the database and query for the
data and perform data matching functions. Only 10% codes are HTML codes.

To separate these two kinds of codes into two different files, we can pick up all
JDBC-related codes and put them in a Java help class file, LogInQuery.java, as
shown in Fig. 8.7.

Let’s have a closer look at this piece of codes to see how it works.

 A. Some member data or attributes are defined first inside this class, which include
two private String member data user_name and pass_word, a class level

import java.sql.*;

public class LogInQuery {

private String user_name = null;

private String pass_word = null;

static Connection con;

MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);

public LogInQuery() {

try {

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}

catch (Exception e) {

msgDlg.setMessage("Class not found exception!" + e.getMessage());

msgDlg.setVisible(true);

}

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS: 5000;databaseName=

CSE_DEPT [SMART on dbo]";

try {

con = DriverManager.getConnection(url,"SMART","Happy2020");

}

catch (SQLException e) {

msgDlg.setMessage("Could not connect!" + e.getMessage());

msgDlg.setVisible(true);

e.printStackTrace();

}

}

public String checkLogIn(String uname, String pword) {

String c_uname = null, c_pword = null;

Statement stmt = null;

ResultSet rs = null;

String query = “SELECT user_name, pass_word FROM LogIn " +

"WHERE user_name = ‘” + uname + “’ “ + “ AND pass_word = ‘”+pword+”’;”;

stmt = con.createStatement();

rs = stmt.executeQuery(query);

while (rs.next()) {

c_uname = rs.getString(“user_name”);

c_pword = rs.getString(“pass_word”);

}

if (c_uname.equals(uname) && c_pword.equals(pword)) {

user_name = c_uname;

pass_word = c_pword;

return “Matched”;

}

else {

return “UnMatched”;

}

}

}

A

B

C

D

E

F

G

H

I

J

K

L

Fig. 8.7 The codes for the Java Web help class LogInQuery.java

8.1 A Historical Review About Java Web Application Development

346

 connection variable con, and a dialog box that is used to display some debug
information.

 B. Inside the class constructor, a SQL Server database driver is loaded, and this is
a type IV JDBC driver.

 C. The SQL Server JDBC URL is assigned to the local variable url.
 D. The getConnection() method is executed to establish this database connection.
 E. The Java help method checkLogIn() is declared inside this help class. This

method is a main function to perform the JDBC-related data query and data
matching operations.

 F. Some local variables used in this method are defined first, which include the
Statement and the ResultSet objects.

 G. A query string is created, and it is used to query a matched username and pass-
word from the LogIn table.

 H. The createStatement() method is called to create a Statement object.
 I. The executeQuery() method is executed to perform this query, and the returned

result is assigned to the ResultSet object rs.
 J. A while loop is used to pick up any possible matched username and password.

In fact, only one row is returned, and thus this loop can run only one time. The
getString() method is used to pick up the queried username and password. A
point to be noted is that the arguments of this method, user_name and pass_
word, are both column names in the LogIn table in our database CSE_DEPT,
and they are different with those member data declared at the beginning of this
class even though they have the same names. The retuned username and pass-
word are assigned to two local variables c_uname and c_pword, respectively.

 K. If a pair of matched username and password is found, they are assigned to two
member data user_name and pass_word, and return a “Matched” string to
indicate that this checkLogIn() method is successful and the matched results
are found.

 L. Otherwise an “UnMatched” string is returned to indicate that no matched login
information can be found.

Now let’s do a little modification to our Login.html file and break this file into
two JSP files: index.jsp and LogInQuery.jsp. The reason for us to make it into two
JSP files is that we want to process and display data in two separate files to make it
clear and easy. Generally the index.jsp can be considered as a starting or a home
page as a Web application runs. Figure 8.8 lists the modified codes for our original
Login.html file that will be renamed to index.jsp, and the modified parts have been
highlighted in bold.

Let’s have a closer look at this piece of modified codes to see how it works.

 A. The first modification is that a Form tag is added into this page with a POST
method and an action attribute. Generally a Form tag is used to create a HTML
form to collect user information and send all pieces of those collected informa-
tion to the server when a submit button on this Form is clicked. Therefore a
Form and all submitting buttons on that Form have a coordinate relationship. If
a button is defined as a submit button by its type attribute, all Form data will be

8 Developing Java Web Applications to Access Databases

347

sent to the server whose URL is defined in the action attribute on the Form tag
when this submitting button is clicked by the user. Here we use a Java Server
Page, .\LogInQuery.jsp, as the URL for our target page. Exactly this target
page is used to access our Java help class file to handle all JDBC and data-
related processing and business logics. The .\ symbol is used to indicate that our
JSP file is located at the relatively current folder since this page is a part of the
server functions and will be run at the server side as the whole project runs.

 B. The second modification is to change the type of our Cancel button from sub-
mit to button and add one more attribute onclick for this button. The reason for
us to do this modification is that we want to close our Login.jsp page when this
Cancel button is clicked as the project runs, but we do not want to forward this
button-click event to the server to allow the server to do this close action.
Therefore we have to change the type of this button to button (not submit) to
avoid triggering the action attribute in the Form tag. We also need to add a self.
close() method to the onclick attribute of this button to call the system close()
method to terminate our application. The self means the current page.

 C. The Form close tag is also added when the form arrived to its bottom.

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LogIn Page</title>

</head>
<body>
<%@page language="java" %>
<form method="POST" action=".\LogInQuery.jsp">

<table>
<tr>

<td colspan=2>
<h3>Welcome to CSE DEPT</h3>
</td>

</tr>
<tr>

<td>UserName:</td>
<td><input type="text" name="username">
</td>

</tr>
<tr>

<td>PassWord:</td>
<td><input type="password" name="password">
</td>

</tr>
<tr>

<td colspan=2> </td>
</tr>
<tr>

<td>
<input type="submit" value="LogIn" name="loginButton">
<input type="button" value="Cancel" name="cancelButton" onclick="self.close()">

</td>
</tr>

</table>
</form>

</body>
</html>

A

B

C

Fig. 8.8 The modified Login.html file (now it is index.jsp)

8.1 A Historical Review About Java Web Application Development

348

Now let’s build our LogInQuery.jsp page, which works as a part of server, to
receive and handle the Form data including the login information sent by the index.
jsp page. Figure 8.9 shows the codes for this page. Let’s have a closer look at this
piece of codes to see how it works.

 A. A JSP directive tag is to indicate that this page uses the Java language, and it is
a JSP file.

 B. Some local variable and object are declared first. The string variable nextPage
is used to hold the URL of the next page, and the lquery is a new instance of our
Java help class LogInQuery we built at the beginning of this section.

 C. The getParameter() method is used to pick up the login information entered by
the user in the index.jsp page. The collected login information including the
username and password is assigned to two local string variables u_name and
p_word, respectively.

 D. The checkLogIn() method defined in our Java help class file is called to perform
the database query and the login matching processing. The collected login infor-
mation is used as arguments and passed into this method. The running result of
this method is a string, and it is assigned to the local string variable result.

 E. An if block is used to check the running result of the checkLogIn() method. The
program will be forwarded to a successful page (Selection.jsp) if the login pro-
cess is successful.

 F. Otherwise an error message is printed to indicate that this login process failed.
 G. A JSP forward directive is used to direct the program to the next page.

In summary, to use a JavaServer Page to assist a Java Web application, the fol-
lowing components should be considered and adopted:

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>LogIn Query Page</title>

</head>

<body>

<%@page language="java" %>

<%

String nextPage = null;

LogInQuery lquery = new LogInQuery();

String u_name = request.getParameter("username");

String p_word = request.getParameter("password");

String result = lquery.checkLogIn(u_name, p_word);

if (result.equals("Matched")) {

nextPage = "Selection.jsp";

}

else { out.println("LogIn is failed"); }

%>

<jsp:forward page = "<%=nextPage%>" />

</body>

</html>

A

B

C

D

E

F

G

Fig. 8.9 The codes for the LogInUuery.jsp page

8 Developing Java Web Applications to Access Databases

349

 1) The whole Web application can be divided into two parts:

 (a) The JDBC and database processing-related functions and business logics –
Java help class file (LogInQuery.java).

 (b) The user data input and running result output functions – HTML or
JavaServer Pages (index.jsp and LogInQuery.jsp).

 2) The relationships between these three pages are:

 (a) The index.jsp, which runs on the client side, works as a starting or a home
page as the Web application runs, and it is used to collect the user informa-
tion and sends it to the Web server.

 (b) The LogInQuery.jsp, which can be considered as a part of the application
server and runs at the server side, provides the information passing or trans-
formation functions between the home page and other target pages to collect
the user information, call the Java help class to perform the data and busi-
ness logic processing, and direct the program to the different target pages
based on the data processing results.

 (c) The Java help class file LogInQuery.java, which provides the JDBC and
database processing functions and business logics processing abilities,
works as an intermediate layer between the server and clients to support
above two JSP files. Since this help class file will be called by the
LogInQuery.jsp, it also belongs to the server-side software.

These components and their relationships can be expressed and illustrated in
Fig. 8.10.

Compared with our first Java Web application that utilized the Java Servlet and
HTML page, the Web application that used the JavaServer Pages techniques has a
great improvement on simplification of data collection and processing by using dif-
ferent function-related pages and help class file. However, one defect is that the
JDBC- and database-related functions make the Java help class file LogInQuery.
java very complicated because too many database-related functions must be involved
and executed, such as loading database driver, connecting to the database, creating
query-related objects, building the data query, and collecting the queried results, all
of these operations make this file longer and increase the complex in operations. A
good solution to this is to use the Java persistence API to simplify these operations
and make the file short and simple.

index.jsp

Client

LogInQuery.jsp

Web Server

HTTP

Request

HTTP

Response

Database

Server

LogInQuery.java

Fig. 8.10 The components and their relationships in a JSP Web application

8.1 A Historical Review About Java Web Application Development

350

8.1.4 Using the JSP Implicit Object Session for Java
Web Applications

As we mentioned in Sect. 8.1.2, the session is a JSP implicit object used to facilitate
developers to build professional Java Web applications. The implicit means that
those objects, including the session object, can be created automatically as a new
JSP is executed. The specific property of using a session object is that you can save
user data in some Web pages and retrieve them from other Web pages. This provides
a great and convenient way to transfer data between clients and clients and also
between clients and a server.

In this section, we will use this session object to help us to build our Faculty page
to query and display the desired faculty information from the Faculty table in our
sample database. The structure or architecture of using the session object to coordi-
nate the data query from the Faculty table is shown in Fig. 8.11.

Basically this structure is identical with that we discussed in the last section, and
the only difference is that we use a new Java help class file FacultyBean.java that
is not a real Java Bean class but is very similar to one JavaBean. The reason we did
this is that we do not want to have a big jump between the help class and JavaBean
to make this design difficult.

The FacultyPage.jsp that is our Web client page is shown in Fig. 8.12. Because
of its complexity in HTML and JSP codes, we will leave the building and coding of
this page in our real project later. In fact, we need to use Microsoft Office Publisher
2007 to build a FacultyPage.html file first and then convert it to a FacultyPage.jsp
file. Now we just assume that we have built this page and want to use it in our
Faculty table query process.

Now let’s modify this FacultyPage.jsp to use session object to perform data
storage and retrieving functions between this page and the help class file
FacultyQuery.jsp.

8.1.4.1 Modify the FacultyPage JSP File to Use the Session Object

Perform the modifications shown in Fig. 8.13 to this FacultyPage.jsp file to use the
session object to store and pick up data between client pages. All modified codes
have been highlighted in bold.

FacultyPage.jsp

Client

FacultyQuery.jsp

Web Server
HTTP

Request

HTTP

Response

Database

Server

FacultyBean.java

Fig. 8.11 The architecture of using session object in Web applications

8 Developing Java Web Applications to Access Databases

351

In step A, we add an action attribute to forward all information collected from
this page to our model and controller page FcaultyQuery.jsp that will call our
FacultyBean file to perform the faculty data query process.

Starting from step B until step H, we use the embedded JSP codes to assign the
real queried faculty columns from our Faculty table to the value tag of each text
field in the Facultypage.jsp using the getAttribute() method of the session class.
In this way, as long as the queried faculty row has any change, this modification will
be immediately updated and reflected to each text field in our FacultyPage.jsp
page. In this way, a direct connection or binding between the text fields in our
Facultypage.jsp page and the queried Faculty columns in our help class is
established.

Now let’s take a look at our model and controller page FacultyQuery.jsp.

8.1.4.2 Build the Transaction JSP File FacultyQuery.jsp

The purpose of this file is to transfer data and information between our main dis-
playing page FacultyPage.jsp and our working help class file FacultyBean that
performs all JDBC- and database-related operations and business logics. The codes
for this file are shown in Fig. 8.14.

Let’s take a closer look at this piece of codes to see how it works.

Fig. 8.12 The preview of the FacultyPage.jsp page

8.1 A Historical Review About Java Web Application Development

352

 A. You can embed any import directory using the JSP directive in a HTML or a JSP
file. The format is <%@ page import="java package" %>. In this page, we

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LogIn Query Page</title>

</head>
<body>
<%@page language="java" %>
<form method=post action=".\FacultyQuery.jsp">

<input name=FacultyNameField maxlength=255 size=24
value="<%=session.getAttribute("facultyName") %>" type=text v:shapes="_x0000_s1109">

………

<input name=FacultyIDField maxlength=255 size=26
value="<%=session.getAttribute("facultyId") %>" type=text v:shapes="_x0000_s1110">

………

<input name=NameField maxlength=255 size=26
value="<%=session.getAttribute("facultyName") %>" type=text v:shapes="_x0000_s1106">

………

<input name=OfficeField maxlength=255 size=26
value="<%=session.getAttribute("office") %>" type=text v:shapes="_x0000_s1104">

………

<input name=PhoneField maxlength=255 size=26
value="<%=session.getAttribute("phone") %>" type=text v:shapes="_x0000_s1116">

………

<input name=CollegeField maxlength=255 size=26
value="<%=session.getAttribute("college") %>" type=text v:shapes="_x0000_s1117">

………

<input name=EmailField maxlength=255 size=26
value="<%=session.getAttribute("email") %>" type=text v:shapes="_x0000_s1118">

………

</body>
</html>

A

B

C

D

E

F

G

H

Fig. 8.13 The modifications to the FacultyPage.jsp file

<%@ page import="java.util.*" %>

<%@ page import="JavaWebHibDBOraclePackage.*" %>
<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>FacultyQuery JSP Page</title>

</head>

<body>

<h1>This is the FaculrtQuery JSP Page!</h1>

<%

String fname = request.getParameter("FacultyNameField");

FacultyBean fBean = new FacultyBean();

List fList = fBean.QueryFaculty(fname);

session.setAttribute("facultyId", fBean.getFacultyID());

session.setAttribute("facultyName", fBean.getFacultyName());

session.setAttribute("office", fBean.getOffice());

session.setAttribute("title", fBean.getTitle());

session.setAttribute("college", fBean.getCollege());

session.setAttribute("phone", fBean.getPhone());

session.setAttribute("email", fBean.getEmail());

response.sendRedirect("FacultyPage.jsp");

%>

</body>

</html>

A

B

C

D
E

F

Fig. 8.14 The codes for the model and controller page FacultyQuery.jsp

8 Developing Java Web Applications to Access Databases

353

embed two packages: one is java.util.* since we need to use the List class and
JavaWebHibDBOraclePackage.* since we build our FacultyBean help class
in that package.

 B. The getParameter() method is executed to get the faculty name entered by the
user to the Faculty Name text field in the FacultyPage.jsp page, and this faculty
name is assigned to a local String variable fname.

 C. A new instance of our help class FacultyBean is created.
 D. The main help method QueryFaculty() we built in the FacultyBean is called to

query a faculty record based on the faculty name we obtained from step B.
 E. The setAttribute() method in the session class is executed to store each column

of queried faculty row from the Faculty table with a given name. The getter()
methods defined in the FacultyBean class are executed to pick up each queried
column. The point to be noted is that later on when we need to pick up these
queried columns from the session object in other pages, we need to use the iden-
tical names we used here for each column, such as facultyId, faculty-
Name, title, and so on.

 F. Finally since we need to display all queried columns to the associated text field
in the FacultyPage.jsp page, we use the sendRedirect() method to return to
that page.

Finally let’s take care of the help class file FacultyBean.

8.1.4.3 Build the Help Class FacultyBean

This class is a help class but is very similar to a real Java bean class. The codes of
this class are shown in Fig. 8.15.

Let’s have a closer look at this piece of codes to see how it works.

 A. At the beginning of this class, seven member data or properties of this class are
defined. This is very important in a Java bean class since all data-related transac-
tions between the client pages and Java bean are dependent on these properties.
In other words, all clients could pick up data from a Java bean using those prop-
erties, and a one-to-one relationship existed between each property in the Java
bean class and each queried column in the data table. According to the conven-
tion, all of these properties should be defined in private data type and can be
accessed by using the getter() methods provided in this Java bean class.

 B. A new instance of the Hibernate session class is created and initialized. The
point to be noted is that this Hibernate session object is different with that JSP
implicit session object.

 C. The getCurrentSession() method is executed to get the default Hibernate ses-
sion object.

 D. The detailed definition of the QueryFcaulty() method starts from here with the
method header.

 E. A new java.util.List instance is created and initialized since we need this object
to pick up and hold our queried faculty result. The MsgDislog instance is used

8.1 A Historical Review About Java Web Application Development

354

to display error information in case any exception was encountered during this
query operation.

 F. A try…catch block is used to perform our data query. First a new Transaction
instance tx is created with the beginTransaction() method being executed.

@Stateless

public class FacultyBean {

private String facultyID;

private String facultyName;

private String office;

private String title;

private String phone;

private String college;

private String email;

public Session session = null;

public FacultyBean() {

this.session = HibernateUtil.getSessionFactory().getCurrentSession();

}

public List QueryFaculty(String fname) {

List<Faculty> facultyList = null;
MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);

try {

org.hibernate.Transaction tx = session.beginTransaction();

Query f = session.createQuery ("from Faculty as f where f.facultyName like '"+fname+"'");

facultyList = (List<Faculty>) f.list();

} catch (Exception e) {

msgDlg.setMessage("Query is failed and no matched found!");
msgDlg.setVisible(true);

e.printStackTrace();

}

facultyID = facultyList.get(0).getFacultyId();

facultyName = facultyList.get(0).getFacultyName();

office = facultyList.get(0).getOffice();

title = facultyList.get(0).getTitle();

phone = facultyList.get(0).getPhone();

college = facultyList.get(0).getCollege();

email = facultyList.get(0).getEmail();

return facultyList;

}

public String getFacultyID() {

return this.facultyID;

}

public String getFacultyName() {

return this.facultyName;

}

public String getOffice() {

return this.office;

}
public String getTitle() {

return this.title;

}

public String getPhone() {

return this.phone;

}

public String getCollege() {

return this.college;

}

public String getEmail() {

return this.email;

}

}

A

B

C

D

E

F

G

H

I

J

K

Fig. 8.15 The codes for the FacultyBean help class

8 Developing Java Web Applications to Access Databases

355

 G. Then a query string built with the Hibernate Query Language (HQL) is created,
and this query string will be used to perform the faculty information query later.

 H. The list() method is executed to perform a query to the Faculty table in our
sample database to try to retrieve a matched faculty record based on the selected
faculty name fname. The query result is assigned to and held in a local variable
facultyList that has a List<Faculty> data type.

 I. The catch block is used to track and collect any possible exception during this
query process. An error message will be displayed if this query encountered any
problem.

 J. The facultyList.get(0) method is used to retrieve the first matched row from the
query result. In fact, only one faculty row should be queried and retrieved since
all faculty names are unique in our sample database. A sequence of getter()
methods is used to pick up the associated columns and assign them to the associ-
ated properties in this FacultyBean class. Finally the query result is returned to
the FacultyQuery.jsp page.

 K. Seven getter() methods are defined at the bottom of this class, and they can be
used to pick up all properties defined in this class.

An operational sequence and data transformation structure of the Faculty Name
is shown in Fig. 8.16. In Fig. 8.16, the faculty name is used as an example to illus-
trate how to transfer this data between client and the help class. The operational
sequence is:

 1) First a desired faculty name is entered by the user into the Faculty Name text
field in the FacultyPage.jsp page. This piece of data will be transferred to the
FacultyQuery.jsp page as the Select button is clicked by the user.

 2) In the FcaultyQuery.jsp page, the getParameter() method is used to pick up
this transferred Faculty Name.

Faculty Name

Select

FacultyPage.jsp

Session

value="<%=session.getAttribute("facultyName") %>"

FacultyQuery.jsp

fname = request.getParameter("FacultyNameField");
List fList = fBean.QueryFaculty(fname);
session.setAttribute("facultyName", fBean.getFacultyName());

FacultyBean.java

List QueryFaculty(String fname) {
facultyName = facultyList.get(0).getFacultyName();
public String getFacultyName() {return this.facultyName;}

7

1

2

3

4

5

6

Fig. 8.16 The operational sequence and data transfer structure using the session object

8.1 A Historical Review About Java Web Application Development

356

 3) Then the help method QueryFaculty() in the help class FacultyBean is called to
query a matched faculty record from the Faculty table based on the transferred
faculty name fname.

 4) When the getter() method in the FacultyBean class is executed, the queried fac-
ulty name is returned to the FacultyQuery.jsp page.

 5) One of session methods, setAttribute(), is called to store this queried faculty
name into the JSP implicit object session.

 6) The getAttribute(“facultyName”) method that is assigned to the value tag of
the FacultyName text field will pick up the queried faculty name and display
in this text field in step 7.

By referring to Fig. 8.16, we can get a clear and complete picture about the data
storage and transferring between different pages.

Now if you compile and run these three files, FacultyPage.jsp, FacultyQuery.
jsp and FacultyBean.java, you can get the start page shown in Fig. 8.17. Enter a
desired faculty name such as Ying Bai into the Faculty Name text field, and click on
the Select button; the running result is shown in Fig. 8.18.

As we mentioned at the beginning of this chapter, Java EE provides a set of pow-
erful tools and supports to Java Web applications to access and manipulate data-
bases. One of the most important components provided by Java EE is the Java bean
that works as a separate component to perform database-related operations and
business logics. By combining the JavaServer Faces techniques and Java beans, a
professional Java Web database application can be divided into two separate parts:

Fig. 8.17 The running status of the FacultyPage.jsp

8 Developing Java Web Applications to Access Databases

357

the GUIs that are built with JSF tags in JavaServer Pages that are used for data pre-
sentations and results displaying and Java managed beans used for database-related
operations and business logics. By dividing a Web application into these two sec-
tions, it greatly reduces the development efforts and complexities in the coding
development and organizations of the whole application.

Now let’s take care of using Java beans technology for Java Web applications.

8.1.5 Using Java Beans Technology for Java Web Applications

In recent years, the Java bean technique has been widely applied in Java Web appli-
cations. In fact, a Java bean can be considered as an extended Java help class as we
discussed in the previous sections, and the main purpose of a Java bean is to handle
the JDBC- and database-related operations as well as business logics in a Web
application.

In fact, Java beans are reusable components, and the main purpose of using Java
beans is to separate business logics from the presentations. Exactly, a Java bean is
just an instance of a class.

Once a JavaBean is created and loaded, it can be used by all parts of your appli-
cations based on its scope. The so-called scope defined the section or part of you

Fig. 8.18 The running result of the FacultyPage.jsp

8.1 A Historical Review About Java Web Application Development

358

applications can access and use this bean. Generally, there are four popular scopes
available to a Java Bean object, and the default scope is page scope.

• page scope: The bean is accessible within a JSP page with the <jsp: useBean>
tag or any of the page’s static include files until the page sends response to the
client or forward a request to another page. In other words, as long as the process
happened in the current page, the bean can be accessed and used until the process
has been transferred to other pages.

• request scope: The bean is accessible from any JSP page as long as the same
request is processed in that page until a JSP page sends a response to the client
or forward the request to another page. In other words, the bean can be used until
a different request has been forwarded or a response for that request has been
received, which means that the life time or the scope of that request has been
completed.

• session scope: The bean is accessible from any JSP page in the same session as
the JSP page that creates the bean. A session can be considered as commonplace
where many JSP pages can exist and share. The JSP page in which you create the
Java bean must have a JSP page directive <%@ page % > with the
session = true.

• application scope: The bean can be accessed from any JSP page in the same
application as the JSP page that creates the bean. In other words, any JSP page
can use the bean as long as that page is included in the application in which the
JSP page that creates the bean is included.

It is no difference between creating a help class and creating a Java bean class. In
fact, the help class FacultyBean.java we created in the last section is exactly a Java
bean class.

To use a Java bean, the JSP provide three basic tags for working with beans.

<jsp:useBean id=“bean name” class=“bean class” scope = “page | request
| session |application ”/>

The definitions for these three tags are:

 1) The bean name is just a given name to refer to the used Java bean. You can use
any valid name for this tag.

 2) The bean class is a full name of the Java bean class you created. The so-called
full name means that you need to use both the bean class’s name and the pack-
age’s name in which the bean is located. For example, this bean class should be:
mypackage.mybeanclass if the bean class named mybeanclass is located at the
package mypackage.

 3) The scope indicates the range or the life time the bean can be used. Refer to
those four scopes we discussed above to get more detailed information
about them.

A very useful JSP directive used for Java bean class is <jsp:setProperty />. The
protocol of this directive is:

<jsp:setProperty name = “id” property = “someProperty” value = “someValue” />

8 Developing Java Web Applications to Access Databases

359

Three arguments for this directive are:

 1) The id is the bean name as we discussed in step 1 above.
 2) The someProeprty is exactly the property’s name defined inside the Java bean

class, such as facultyId and facultyName we defined in our FacultyBean.java
class in the last section.

 3) The someValue is the initialized value assigned to a property in the bean class.

A variant for this tag is the property attribute can be replaced by an “ * “. What
this does is that it accepts all the form parameters and thus reduces the need for writ-
ing multiple setProperty tags. The only point to be remembered when you using
this variant is that the form parameters’ names must be the same as those of the bean
properties’ names.

An example of using this setProperty tag is:

<jsp:setProperty name = “dbFaculty” property = “*” />

In this setProperty tag, the id of the Java bean class is dbFaculty. The * in the
property value means that all parameters transferred from another page can be
assigned to the associated properties in the Java bean class.

Now let’s modify the FacultyBean.java to make it a Java bean class to replace
the help class file FacultyBean.java we built in the last section.

8.1.5.1 Modify the Help Class FacultyBean to Make It a Java Bean Class

First we need to create a new Java Session Bean class named FacultyBean in the
NetBeans IDE. Then we need to add seven setter() methods into this bean class.
Your finished Java bean class FacultyBean.java is shown in Fig. 8.19. All modified
codes have been highlighted in bold.

Let’s have a closer look at this piece of modified codes to see how it works.
Starting from step A until step G, seven setter() methods are added into this Java

bean class. All of these setter() methods are used to set up the initial values for
seven properties in this bean.

Next we need to create a new transaction JSP page FacultyBeanQuery.jsp to
make it to transfer data between our new starting page FacultyBeanPage.jsp and
our Java bean class FacultyBean.java. Basically this FacultyBeanQuery.jsp file
has no significant difference with the FacultyQuery.jsp we built in the last section.
The only different part is the way to execute the JDBC- and database-related queries
or business logics. In FacultyQuery.jsp file, we called a Java help class FacultyBean.
java to do those functions. However, in FacultyBeanQuery.jsp, we will call a mod-
ified help class that has been converted to a Java bean FacultyBean.java to perform
these functions.

The codes of the FacultyBeanQuery.jsp file are shown in Fig. 8.20.
Now let’s have a closer look at this piece of codes to see how it works.
Some system-related or user-related packages are imported at the beginning of

this page. The JSP directive <%@ page /> is used to convert those packages and

8.1 A Historical Review About Java Web Application Development

360

embedded into this page. Three packages are imported here: the java.util.* package
contains the List class, the JavaWebHibDBOraclePackage contains our Java bean
class FacultyBean, and the csedept.entity.Faculty is a Hibernate class mapping for
the Faculty table in our sample database CSE_DEPT.

 A. The Java bean class is declared with the JSP tag <jsp:useBean /> with three
tags we discussed at the beginning of this section. The referenced name for this
bean is dbFaculty, which is assigned to the id of the bean. The scope of this
bean is session, and the full name of this bean class is
JavaWebHibDBOraclePackage.FacultyBean.

@Stateless
public class FacultyBean {

private String facultyID;
private String facultyName;
private String office;
private String title;
private String phone;
private String college;
private String email;
public Session session = null;
public FacultyBean() {

this.session = HibernateUtil.getSessionFactory().getCurrentSession();
}
public List QueryFaculty(String fname) {

List<Faculty> facultyList = null;
MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);
………
return facultyList;

}
public String getFacultyID() {

return this.facultyID;
}
………

public void setFacultyID(String facultyID) {
this.facultyID = facultyID;

}
public void setFacultyName(String facultyName) {

this.facultyName = facultyName;
}
public void setOffice(String office) {

this.office = office;
}
public void setTitle(String title) {

this.title = title;
}
public void setPhone(String phone) {

this.phone = phone;
}
public void setCollege(String college) {

this.college = college;
}
public void setEmail(String email) {

this.email = email;
}

}

A

B

C

D

E

F

G

Fig. 8.19 The modified help class – now it is a Java bean class

8 Developing Java Web Applications to Access Databases

361

 B. The setProperty tag is used to set up all parameters passed from the
FacultyBeanPage.jsp page to the associated properties in the bean class
FacultyBean.

 C. The Java codes are starting from a JSP tag, and the faculty name parameter is
retrieved by using the getParanmeter() method and assigned to a local String
variable fname.

 D. The main bean method QueryFaculty() is executed to query a faculty record
based on the retrieved faculty name from the FacultyBeanPage.jsp page. The
result is assigned to a local List variable. In fact, this result is not important in
this application since the columns in the query result have been assigned to the
associated properties in the bean class, and later on we can pick up those col-
umns by calling the getter() methods in the bean class.

 E. Since we want to fill those text fields in our starting page FacultyBeanPage.jsp
with the queried result, we used the sendRedirect() method to return the pro-
cess back to that page.

Now let’s take a look at a new starting page FacultyBeanPage.jsp that will be
used to call the transaction JSP page and Java bean to perform the faculty data query
and display query result in this page. Because of the complexity in building this
page with HTML codes, we leave this coding job to our project development
stage later.

8.1.5.2 Build a New Starting Web Page FacultyBeanPage

The preview of this page is shown in Fig. 8.21.
The difference between this starting page and the starting page FacultyPage.jsp

we built in the last section is in the FcaultyPage.jsp, we used a JSP built-in or
implicit object session to transfer data between this page and the help class.

<%@ page import="java.util.*" %>

<%@ page import="JavaWebHibDBOraclePackage.*" %>

<%@ page import="csedept.entity.Faculty" %>

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>FacultyBeanQuery Page</title>

</head>
<body>

<h1>This is the FacultyBeanQuery Page</h1>
<jsp:useBean id="dbFaculty" scope="session" class="JavaWebHibDBOraclePackage.FacultyBean" />

<jsp:setProperty name="dbFaculty" property="*" />

<%

String fname = request.getParameter("FacultyNameField");

List<Faculty> facultyList = dbFaculty.QueryFaculty(fname);

response.sendRedirect("FacultyBeanPage.jsp");

%>

</body>
</html>

A

B

C

D

E

Fig. 8.20 The codes for the FacultyBeanQuery.jsp page

8.1 A Historical Review About Java Web Application Development

362

However, in the new starting page FacultyBeanPage.jsp, we need to use the prop-
erties defined in the Java bean class to do this data transferring jobs.

Exactly, we need to use the Java bean’s getter() method to replace those session.
getAttribute() methods embedded in the value tag of each text field to retrieve
and display the associated column queried from the Faculty table in our sample
database in each text field in this new starting page.

The codes for this new starting page are shown in Fig. 8.22. The modified parts
have been highlighted in bold.

Let’s have a closer look at this piece of codes to see how it works.

 A. A JSP tag that declared to use a Java bean is put in the beginning of this page to
indicate that a Java bean will be called to perform JDBC- and database-related
queries or business logics, and the result will be retrieved and reflected in this
starting page.

 B. The next page is changed to FacultyBeanQuery.jsp in the action tag of the
form, which means that the page and all data in this starting page will be for-
warded to the next page if any submit button is clicked by the user from this page.

 C. Start from step C until step I; the different Java bean’s getter() methods are
executed to retrieve the matched columns from the queried result and display
them one by one in each associated text field.

Fig. 8.21 The new starting Web page FacultyBeanPage.jsp

8 Developing Java Web Applications to Access Databases

363

From this piece of codes, you can find how easy it is to transfer data between the
starting Web page written in either HTML or JSP and Java bean class by using the
Java bean’s properties.

From examples discussed above, it can be found that the JavaServer Pages tech-
nology did provide a good communication and data passing ways between the
Servlet and client Web pages; however, they did not provide a direct binding and
mapping between the Web page’s components and the server-side codes. This kind
of binding and mapping plays more important roles in today’s complicated and
multitier Web applications. To meet this need, a new technology has been intro-
duced in recent years, which is the JavaServer Faces (JSF) technology.

With this new technology, all Web components can be installed and distributed
in a Web page by using the JSF tags. Also, more important, all of these components
can be bound to the server-side properties and functions using the so-called backing
beans or Java managed beans. By using a Unified Expression Language (EL) value
expression, the value of the property of a mapped or bound Web component can be
easily picked up from a backing bean in the server side.

<jsp:useBean id="dbFaculty" scope="session" class="JavaWebHibDBOraclePackage.FacultyBean" />

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Faculty Query Page</title>

</head>
<body>
<%@page language="java" %>
<form method=post action=".\FacultyBeanQuery.jsp">

<input name=FacultyNameField maxlength=255 size=24
value="<%=dbFaculty.getFacultyName() %>" type=text v:shapes="_x0000_s1109">

………

<input name=FacultyIDField maxlength=255 size=26
value="<%=dbFaculty.getFacultyID() %>" type=text v:shapes="_x0000_s1110">

………

<input name=NameField maxlength=255 size=26
value="<%=dbFaculty.getFacultyName() %>" type=text v:shapes="_x0000_s1106">

………

<input name=OfficeField maxlength=255 size=26
value="<%=dbFaculty.getOffice() %>" type=text v:shapes="_x0000_s1104">

………

<input name=PhoneField maxlength=255 size=26
value="<%=dbFaculty.getPhone() %>" type=text v:shapes="_x0000_s1116">

………

<input name=CollegeField maxlength=255 size=26
value="<%=dbFaculty.getCollege() %>" type=text v:shapes="_x0000_s1117">

………

<input name=EmailField maxlength=255 size=26
value="<%=dbFaculty.getEmail() %>" type=text v:shapes="_x0000_s1118">

………
</body>

</html>

A

B

C

D

E

F

G

H

I

Fig. 8.22 The new starting page FacultyBeanPage.jsp

8.1 A Historical Review About Java Web Application Development

364

8.1.6 Using JavaServer Faces Technology for Java
Web Applications

JavaServer Faces (JSF) provides new techniques and components for building User
Interfaces (UI) for server-side applications. In fact, JSF is a server-side technology
for developing Web applications with rich user interfaces. Before JavaServer Faces,
developers who built Web applications had to rely on building HTML user interface
components with Servlets or JavaServer Pages (JSP pages). This is mainly because
HTML user interface components are the lowest common denominator that Web
browsers support. One of defects of using HTML or JSP techniques to build Web
applications is that such Web applications do not have rich user interfaces, com-
pared with stand-alone fat clients, and therefore less functionality and/or poor
usability is involved in those Web applications. One of possible solutions is to use
Applets to develop rich user interfaces; however, in most cases Web application
developers do not always know whether those Applets are signed or unsigned
applets and whether they can access the local database files or not. This will greatly
limit the roles and implementations of Applets in Java Web database applications.

A good solution is to use JavaServer Face technique that provides a set of rich
GUI components and can be installed and run in the server side. The GUI compo-
nents provided by JSF are represented by a collection of component tags. All com-
ponent tags are defined and stored in the UIComponent class. A
Model-View-Controller mode is applied to the JSF technique.

The JSF technology consists of following main components:

• JSF APIs used to represent UI components, manage state, handle events, and
validate input. The UI components are represented and implemented using JSF
tags. The API has support for internationalization and accessibility.

• A special Servlet class FacesServlet that is located at the server side and
works as a controller to handle all JSF-related events.

• JSP pages that contain rich user interface components represented by customer
tags and work as views. The GUI of a JSF page is one or more JSP pages that
contain JSF component tags.

• Two JSP custom tag libraries used for expressing the JSF user interface (UI)
components within a JSP page and for wiring components to server-side objects.
Page authors can easily add UI components to their pages.

JSF APP

JSF Tags

JSF APP

JSP JSF API

Servlet

Fig. 8.23 High-level
architecture of JSF

8 Developing Java Web Applications to Access Databases

365

• Java bean components used to work as model objects.
• Application configuration resource file faces-config.xml used to define the navi-

gation rules between JSP pages and register the Java backing beans.
• Web deployment descriptor file web.xml used to define the FaceServlet and its

mapping.

JavaServer Face technology is basically built based on JavaServer Page and
Servlet techniques. It uses JSP pages as the GUI and FacesServlet as the Web con-
tainer. A high-level architecture of JSF is shown in Fig. 8.23.

It can be found from Fig. 8.23 that a JSF Web application is composed of JSP
pages representing the user interface components using the JSF custom tag library
and FacesServlet Web container that can be considered as a part of Servlet class and
takes care of the JSF-related events.

JSF defines two standard tag libraries (Core and HTML) that you have to declare
in your JSP pages with the <%@taglib% > directive. Two tag libraries are:

• html_basic.tld: A JSP custom tag library for building JSF applications that ren-
der to an HTML client.

• jsf_core.tld: A JSP custom tag library for representing core actions independent
of a particular render kit.

The JSF core library contains tags that do not depend on any markup language,
while the JSF HTML library was designed for pages that are viewed in a Web
browser. The standard prefixes of the two tag libraries are f for the JSF Core and h
for the JSF HTML. All JSF tags must be nested inside a < f:view> element. The
<f:view> tag allows the JSF framework to save the state of the UI components as
part of the response to a HTTP request.

To use these customer tags to represent JSF components in JSP pages, one needs
to indicate them by using the following two taglib directives on the top of each
JSF file:

• <%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
• <%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

The uri is used to indicate the locations of the customer tag libraries.
JavaServer Face (JSF) pages are just regular JSP pages that use the standard JSF

tag libraries or other libraries based on the JSF API. When using JSF tag compo-
nents to build a JavaServer Page, a component tree or a view is created in the server-
side memory, and this tree will be used by the JSF frameworks to handle the requests
coming from the clients and send responses to the clients. Each JSF tag component
is mapped to a component class defined in the UIComponent class. In fact, each
tag is an instance of the mapped class in the UIComponent.

JSF utilized a Model-View-Controller (MVC) architecture, which means that it
uses Java beans as models to stored application data and JSF GUI as the view and
the Servlet as the controller.

8.1 A Historical Review About Java Web Application Development

http://java.sun.com/jsf/html
http://java.sun.com/jsf/core

366

8.1.6.1 The Application Configuration Resource File faces-config.xml

The navigation from one page to another can be done in two ways. One way is
directly to use the codes by writing the JSP tag such as <jsp:forward /> or the
HTML hyperlink in the JSF file. Another way that is provided by JSF is to use the
application configuration resource file faces-config.xml to build these naviga-
tion rules. The task of defining navigation rules involves defining which page is to
be displayed after the user clicks on a button or a hyperlink. Each <navigation-
rule> element defines how to get from one page as defined by the <form-view-id>
to the other pages of the application. A < navigation-rule> element can contain any
number of <navigation-case> elements that define the page to open next using the
<to-view-id> based on a logical outcome defined by the <from-outcome>. This
outcome is defined by the action attribute of the component that submits the form
(such as the commandButton).

An application configuration resource file, faces-config.xml, is used to
define your Java managed beans, validators, converters, and navigation rules.

Figure 8.24 shows a part of an example of an application configuration resource
file. The configuration resource file is composed of a sequence tag listed below:

Starting from <navigation-rule> tag, a new navigation rule is defined. The
<from-view-id> tag is used to define the navigation source, which is the current
page (Current.jsp). The <navigation-case> tag is used to define one of the naviga-
tion destinations defined by the <to-view-id> tag based on the output of some
clicked buttons or links triggered by the action tag in the current page. Those out-
puts are defined by the <from-outcome> tag.

You can use the design tools such as PageFlow to do this navigation plan
graphically and directly. Refer to Sect. 5.3.5.12 in Chap. 5 to get more detailed
information about using the design tools to build this configuration file graphically.

8.1.6.2 Sample JavaServer Face Page Files

Two JSF files are shown in Figs. 8.25 and 8.26. In Fig. 8.25, a Current.jsp page that
works as a receiving page to get the username is shown and in Fig. 8.26, a Next.jsp
that works as a responding page to select and return a matched password based on
the username to the Current.jsp page.

The function of the Current.jsp page is:

<navigation-rule>

<from-view-id>/Current.jsp</from-view-id>

<navigation-case>

<from-outcome>clickAction</from-outcome>
<to-view-id>/Next.jsp</to-view-id>

</navigation-case>

</navigation-rule>

Fig. 8.24 A part of application configuration resource file

8 Developing Java Web Applications to Access Databases

367

 A. In order to use JSF tags, you need to include the taglib directives to the html and
core tag libraries that refer to the standard HTML renderkit tag library and the
JSF core tag library, respectively.

 B. A body tag with the bgcolor attribute is defined.
 C. A page containing JSF tags is represented by a tree of components whose root

is the UIViewRoot, which is represented by the view tag. All component tags
must be enclosed in the view tag. Other contents such as HTML and other JSP
pages can be enclosed within that tag.

<html>

<head>

<title>Current Page</title>

</head>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<body bgcolor=”white”>
<f:view>

<h:form id="QueryForm" >

<h:inputText id="userName" value="#{QueryBean.userName}"

validator="#{ QueryBean.validate}"/>

<h:commandButton id="Query" action="success"

value="Query" />

<h:message style="color: red; font-family: 'New Century Schoolbook',

serif; font-style: oblique; text-decoration: overline"

id="QueryError" for="userName"/>

</h:form>

</f:view>

</body>

</html>

A

B

C

D

E

F

G

Fig. 8.25 The codes for the Current.jsp page

<html>

<head>

<title>Next Page</title>

</head>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<body bgcolor=”white”>

<f:view>

<h:form id="ResponseForm" >

<h:graphicImage id="ResponseImg" url="/Response.jpg" />

<h:outputText id="QueryResult" value="#{QueryBean.passWord}" />

<h:commandButton id="Back" action="success"

value="Back" />

</h:form>

</f:view>
</body>

</html>

A

B

C

D

Fig. 8.26 The codes for the Next.jsp page

8.1 A Historical Review About Java Web Application Development

368

 D. A typical JSP page includes a form, which is submitted to the next page when a
button is clicked. The tags representing the form components (such as textfields
and buttons) must be nested inside the form tag.

 E. The inputText tag represents an input text field component. The id attribute
represents the ID of the component object represented by this tag, and if it is
missing, then the implementation will generate one. The validator attribute
refers to a method-binding expression pointing to a Java backing bean method
that performs validation on the component’s data. The Java backing bean’s
property userName is bound to the value attribute by using the Unified
Expression Language (EL) value expression.

 F. The commandButton tag represents the button used to submit the data entered
in the text field. The action attribute helps the navigation mechanism to decide
which page to open next. Exactly, the next page has been defined in the applica-
tion configuration resource file faces-config.xml using the <to-view-id>
tag above, which is the Next.jsp.

 G. The message tag displays an error message if the data entered is not valid. The
for attribute refers to the component whose value failed validation.

An interesting thing in step E in this piece of sample codes is that an embedded
backing bean property userName has been bound to the value attribute of the
inputText tag. Recall that we used either the getAttribute() method of a JSP
implicit object session (session.getAttribute()) or the getProperty() method of a
Java bean to hook to the value attribute of this text field tag in the previous sample
codes to enable this text field’s value to be updated automatically. However, in this
JSF file, we directly bind one of backing bean’s properties, userName, with the
value attribute of this text field by using the value-binding expressions that is
called expression language (EL) and have the syntax #{bean-managed-property}
to do this data updating job. One point to be noted is that the JSF EL bindings are
bidirectional when it makes sense. For example, the UI component represented by
the inputText tag can get the value of a bean property userName and present it to
the user as a default value. When the user submits the QueryForm data, the UI
component can automatically update the bean property userName so that the appli-
cation logic can process the new value. You can see how easy it is now to set up a
connection between a component in a JSF page and the related property in the back-
ing bean object when using this binding for a JSF file. In fact, you can bind not only
the bean’s properties but also the bean’s methods, to certain UI components in the
JSP pages.

The codes for the Next.jsp file are shown in Fig. 8.26. The detailed function of
this piece of codes is:

 A. The form id is defined as a ResponseForm.
 B. An image is added into this page with the image id and the image URL. The

forward slash “/” before the image name Response.jpg indicates that this image
is located at the current project folder.

 C. An outputText tag is equivalent to a label in a Web page. The selected password
is assigned to the value attribute using the value-binding expressions that have

8 Developing Java Web Applications to Access Databases

369

the syntax #{bean-managed-property}. In fact, this value has been
bound with a property password in the backing bean QueryBean class.

 D. The commandButton Back is used to direct the page to return to the Current.
jsp page as it is clicked by the user. This returning function has been defined in
the application configuration source file faces-config.xml we dis-
cussed above.

The real tracking issue is that there is no username-password matching process
that occurred in either of these two pages. Yes, that is true! All of those data match-
ing processes or we called them business logics occurred in the backing Java bean
QueryBean class.

When user entered a valid username into the input textbox and clicked the
Submit button in the Current.jsp page, all input data are sent to the next page
Next.jsp. Of course, you can handle this data matching in the Next.jsp page based
on the passed username. However, in order to separate the presentations from busi-
ness logics, JSF uses JSF pages as views and assigns the business logics to the Java
beans who work as controllers to handle those data matching jobs. In fact, since the
userName has been bound to the value attribute of the inputText tag by using the
value-binding expressions that have the syntax #{bean-managed-property},
any change of this data item will be immediately reflected to the associated property
userName defined in the Java bean QueryBean class. The Java bean will perform
the password matching process based on that username and send the matched pass-
word to the passWord property in that bean class. As soon as the Java bean finished
the password matching processing and sent the matched password to the passWord
property, it can be immediately updated and displayed in the outputText QueryResult
in the Next.jsp page using the value-binding expressions #{QueryBean.
passWord}.

8.1.6.3 The Java Bean Class File

The java bean class used in JSF pages is very similar to the FacultyBean class we
built in Sect. 8.1.5.1. Like most Java bean classes, it should contain setter and getter
methods as well as some special methods to process the business logics.

In addition, the Java beans need to be configured in the application configuration
resource file faces-config.xml so that the implementation can automatically create
new instances of the beans as needed. The <managed-bean> element is used to
create a mapping between a bean name and class. The first time the QueryBean is

<managed-bean-name>QueryBean</managed-bean-name>

<managed-bean-class>LogInQuery.QueryBean</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

Fig. 8.27 A piece of sample codes to register a Java bean

8.1 A Historical Review About Java Web Application Development

370

referenced, the object is created and stored in the appropriate scope. You can use the
code elements shown in Fig. 8.27 to register a Java bean in the faces-config.xml file:

Besides to register the Java bean class, you also need to use this configuration file
to configure and define all properties created inside this Java bean. In this example,
only two properties, userName and passWord, have been defined in this Java bean.
Therefore you need to use the <managed-property> element to do this configura-
tion, as shown in Fig. 8.28.

In fact, you do not need to worry about these configurations if you are using an
IDE such as the NetBeans IDE, and the NetBeans IDE can do these configurations
automatically for you as you built the Java bean class file.

Next let’s take a look at the Web deployment descriptor file.

8.1.6.4 The Web Deployment Descriptor File web.xml

Before you can use and access a Servlet such as FacesServlet in the server side from
a Web browser, you need to map the FacesServlet to a path in your deployment
descriptor file web.xml. By using this deployment descriptor file, you can register
Servlet and FacesServlet, register listeners, and map resources to URLs. Figure 8.29
shows a piece of example codes used in the web.xml file for the FacesServlet class.

<managed-property>

<property-name>userName</property-name>

<property-class>string</property-class>

<value>null</value>

</managed-property>

<managed-property>

<property-name>passWord</property-name>

<property-class>string</property-class>

<value>null</value>

</managed-property>

Fig. 8.28 A piece of codes to define all properties in a Java bean class

<web-app>

<display-name>JSF LogIn Application</display-name>

<description>JSF LogIn Application</description>

<!-- Faces Servlet -->

<servlet>

<servlet-name>Faces Servlet</servlet-name>

<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

<load-on-startup> 1 </load-on-startup>

</servlet>

<!-- Faces Servlet Mapping -->

<servlet-mapping>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/login/*</url-pattern>

</servlet-mapping>

Fig. 8.29 An example coding for the Web deployment descriptor file

8 Developing Java Web Applications to Access Databases

371

Most codes in this file will be created automatically if you are using the NetBeans
IDE to build your Web applications.

As we discussed in Sect. 8.1.6.1, regularly JSP pages use the <jsp:useBean> tag
to instantiate JavaBeans. When using the JSF framework, you do not have to specify
the Java bean class names in your Web pages anymore. Instead, you can configure
your bean instances in the application configuration resource file faces-config.xml
using the <managed-bean> element. You may use multiple configuration files if
you develop a large application. In that case, you must add a javax.faces.CONFIG_
FILES parameter in the deployment descriptor file web.xml.

Now that we have worked through all main techniques of JSF, now let’s have a
full picture about the complete running procedure of JSF Web applications.

8.1.6.5 A Complete Running Procedure of JSF Web Applications

As we mentioned, a UI component represented by a JSF tag in a JSP page can be
bound to a Java bean’s property or a Java bean’s method. To separate the presenta-
tions and business logics, we can use JSP pages to present our GUI and the Java
beans to store our data to perform business-related logics. Therefore, we can divide
methods into two categories: data access methods (business methods) and action
methods. The data access methods should be located at the Java bean side, and the
action methods should be located at the JSF page side. Each data access method
defined in the Java bean can be called by an associated action method defined in an
action attribute of a submit button tag in the JSP page if that submit button has been
bound to the action attribute.

Here we use a login process to illustrate the operational procedure using the JSF
technique. Two JSP pages, the LogIn.jsp and Selection.jsp, and a Java bean class,
LogInBean.java, are involved in this procedure. Two JSP pages work as views and
are used to display the input and output login information, and the Java bean works
as a model to handle the database-related processing and business logics. The func-
tional procedure of this example application is:

 1) When the user entered a username/password pair into the Username/Password
input text fields in the LogIn.jsp page and clicked on the LogIn button, a query
request is sent to the Web server with all form data (Username and Password) for
processing.

 2) After the server received the request, if the validation is passed, all form data
(Username and Password) will be stored into the associated properties of the
Java bean.

Table 8.1 The relationship between the data access method and the action method

Data access method Action method JSF page

LogInQuery() LogInBean.LogInAction() LogIn.jsp

8.1 A Historical Review About Java Web Application Development

372

 3) The action method that is bound to the LogIn button will call the data access
method defined in the Java bean to perform the database query to find the
matched login information in the LogIn table.

 4) If the data access method is successful, the next page, Selection.jsp, should be
displayed.

To run this procedure using JSF technique, we need to have a clear picture
between the JSF pages and Java beans and the page-to-page navigation schedule.

8.1.6.5.1 The Java Bean-JSF Page Relationship and Page Navigations

Table 8.1 lists all data access methods and action methods used in this example.
A Java bean can be connected to a JSF page by using the value attribute of an UI

component represented by a JSF tag in that page. Exactly, a property or a method
defined in a Java bean class can be mapped to a value attribute of a UI component
in a JSF page. This relationship can be triggered and set up when a submit button in
the JSF page is clicked by the user and all form data will be sent to the Web server.
Refer to Fig. 8.30: the operational procedure of executing a request is:

 1) The data access method LogInQuery() is defined in the Java bean class
LogInBean and will be called by the action method LogInBean.LogInAction()
defined in the JSF page LogIn.jsp as the user clicks the LogIn button. Since the
action method LogInBean.LogInAction() has been bound to the LogIn com-
mand button, all form data including the Username and Password entered by the
user to the JSF page will be submitted to the FacesServlet as the LogIn button is
clicked by the user.

Username

LogIn

LogIn.jsp

action="#{LogInBean.LogInAction}" />

FacesServlet

1. Validate the form data (username and password).
2. If the validation is failed, sends the form back.
3. If the validation is successful, save form data (username

and password) to the associated properties in the Java
bean class LogInBean.

LogInBean.java
public class LogInBean()
private string userName;
private string passWord;

public string LogInAction()
{

string result = LogInQuery();
if a matched login information found,

return “Selection”;
else

return null;
}
public string LogInQuery()
{

……. Query matched login information from database…
return query_result;

}

7

1

2

3

4

5

6

Password

Selection.jsp Page

8

Fig. 8.30 The operational procedure of executing a request using JSF

8 Developing Java Web Applications to Access Databases

373

 2) After the FacesServlet received the form data, it will validate them and return the
form back to the client if any error is encountered.

 3) Otherwise the validated form data including the Username and Password will be
stored to the associated properties in the Java bean class. Then JSF engine will
call the action method LogInBean.LogInAction() that has been bound to the
LogIn button and, in turn, call the data access method LogInQuery() to perform
database-related query to find matched login information.

 4) After a piece of matched login information has been found, the associated prop-
erties, userName and passWord, which are defined inside the Java bean class,
will be updated by assigning the matched username and password to them. These
updating that occurred in the Java bean side will be immediately reflected to the
value attributes of the Username and Password inputText fields in the JSF page
since they have been bound together. Therefore the content of each inputText tag
will also be updated.

 5) The action method LogInAction() defined in the LogInBean class will also be
called when the LogIn button is clicked by the user since it is bound to the
LogIn button.

 6) The data access method LogInQuery() will be executed to perform database-
related queries and business logics.

 7) Each action method returns a string called “outcome.” JSF uses a navigation
handler to determine what it is supposed to do for each outcome string. If an
action method returns a null, which means that the execution of that method
encountered some problems and the same page must be redisplayed. Otherwise,
the desired next page should be displayed, depending on the returned outcome
string. The default JSF navigation handler uses a set of navigation rules that are
specified in the JSF application configuration file faces-config.xml, which is
shown in Fig. 8.31. In this example, if a piece of matched login information is
found, the action method will return an outcome string “SELECTION”, and the
next page, Selection.jsp, should be displayed.

<faces-config version="2.0"

<managed-bean>
<managed-bean-name>LogInBean</managed-bean-name>

<managed-bean-class>JavaWebDBApp. LogInBean</managed-bean-class>

<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

<navigation-rule>

<from-view-id>/LogIn.jsp</from-view-id>

<navigation-case>

<from-outcome>SELECTION</from-outcome>

<to-view-id>/Selection.jsp</to-view-id>

</navigation-case>

</navigation-rule>

</faces-config>

A

B

C

D

E

F

Fig. 8.31 The application configuration resource file faces-config.xml

8.1 A Historical Review About Java Web Application Development

374

 8) Otherwise, the query failed, and no matched login user information can be found.
The LogInAction() method returns a null to the JSF engine to redisplay the
LogIn page.

The detailed explanation on the codes shown in Fig. 8.31 is listed below:

 A. Our Java managed bean LogInBean is defined using the <managed-bean-
name> tag.

 B. The full class name, including the package name and the bean class name, is
defined by the <managed-bean-class> tag.

 C. The scope of this Java bean is defined by using the <managed-bean-
scope> tag.

 D. The current JSF page LogIn.jsp is defined by using the <from-view-
 id> tag.

 E. The outcome string SELECTION, which is mapped to the next page Selection.
jsp, is defined by using the <from-outcome> tag and should be returned by
the action method LogInAction() if a matched login user has been found.

 F. The name of the next page, Selection.jsp, is defined by using the <to-view-
 id> tag.

The points to be noted for this configuration file are:

 1) Both outcome string and the next page should be defined inside the
<navigation- case> tag, and all navigation pages should be defined inside
the <navigation-rule> tag.

 2) The forward-slash symbol “/” before each page name is used to indicate that
those pages are located at the current location as the JSF project is located.

 3) You can create and edit this configuration file using either the XML editor or the
PageFlow design tool.

In order to use the PageFlow design tool to build the navigation rules in the faces-
config.xml file, sometimes you need to close and reopen the NetBeans IDE to do this.

The codes for a sample LogIn.jsp page are shown in Fig. 8.32. Let’s ave a closer
look at this piece of codes to see how it works.

 A. Two JSF standard customer tag libraries, one is for building JSF applications
that render to an HTML client and another is for representing core actions inde-
pendent of a particular render kit, are declared first at this page using the <%@
taglib% > directive. The uri is used to indicate the valid sites where both librar-
ies are located.

 B. All of JSF tag components are represented by a tree of components whose root
is the UIViewRoot, which is represented by the <f:view> tag. All JSF compo-
nent tags must be enclosed in this <f: view> tag.

 C. A JSP form, which is submitted to the Web server when a button is clicked, is
represented by the <h:form> tag. The tags representing the form components,

8 Developing Java Web Applications to Access Databases

375

such as textfields and buttons, must be nested inside this form tag. The form is
identified by its id; here it is a LogInForm.

 D. An inputText tag is used to represent an input field to allow user to enter one line
of text string, such as a username in this example. This inputText tag is identified
by its id, and the required attribute is set to true. This means that this inputText
cannot be empty and must be filled something by user as the project runs. The
value attribute of this inputText tag is bound to the property userName in the
Java bean class, LogInBean, by using the EL value expression. Two points to be
noted for this tag are (1) the value of this tag’s id must be identical with the
property name userName defined in the Java managed bean LogInBean and (2)
the value attribute of this tag must be bound to the same property userName
defined in the Java managed bean LogInBean class, too. In this way, any updat-
ing made to this property userName in the Java bean can be immediately
reflected to the value of this inputText tag and, furthermore, displayed in this
input field.

 E. A < f:validateLength> tag is used to make sure that the length of this username
is in the range defined by the minimum and maximum attributes.

 F. A similar tag is used for the passWord inputText, and it is bound to the pass-
Word property defined in the Java managed bean LogInBean class. The only
difference between this tag and the userName inputText tag is that
a < h:inputSecret> tag is used to replace the <h:inputText> tag since this is a
way to present a password input style.

 G. A < f:validateLength> tag is also used to validate the length of the passWord
to make sure that it is in the required range.

 H. A < h:commandButton> tag is used to present a submit button component, and
its action attribute is bound to the action method defined in the Java managed
bean LogInBean using the EL value expression “#{LogInBean.LogInAction}”.

Fig. 8.32 The codes of a sample LogIn.jsp page

<html>

<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

<title>LogIn Page</title>

</head>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>

<body>

<f:view>

<h:form id="LogInForm">

<h:inputText id="userName" required="true" value="#{LogInBean.userName}"

size="10" maxlength="40">

<f:validateLength minimum="1" maximum="40"/>

</h:inputText>

<h:inputSecret id="passWord" required="true" value="#{LogInBean.passWord}"

size="10" maxlength="20">

<f:validateLength minimum="6" maximum="20"/>

</h:inputSecret>
<h:commandButton id="LogIn" action="#{LogInBean.LogInAction}"

value="LogIn" />

</h:form>

</f:view>

</body>

</html>

A

B

C

D

E

F

G

H

8.1 A Historical Review About Java Web Application Development

376

Next let’s have a closer look at the codes for our Java Bean class.

8.1.6.5.2 The Detailed Codes for the Java Bean Class

The codes for the Java bean class LogInBean.java are shown in Fig. 8.33. The
functionality of each part of these codes is illustrated below.

 A. Two properties, userName and passWord, are defined first, and these two prop-
erties must be identical with the id attributes defined in the inputText and input-
Secret tags in the JSF page LogIn.jsp we discussed above.

 B. The associated getter methods for these two properties are declared and defined
in steps B and D, respectively.

 C. The associated setter methods for these two properties are defined in steps
C and E.

 F. The action method LogInAction() is defined, and this method has been bound
with the action attribute of the LogIn commandButton tag in the LogIn.jsp
page. This method will be executed as the LogIn button is clicked by the user.

@ManagedBean(name="LogInBean")

@SessionScoped

public class LogInBean {

/** Creates a new instance of LogInBean */

public LogInBean() {

}

private String userName;

private String passWord;

public String getPassWord() {
return passWord;

}

public void setPassWord(String passWord) {

this.passWord = passWord;

}

public String getUserName() {

return userName;

}

public void setUserName(String userName) {

this.userName = userName;

}

public String LogInAction()

{

String result=null;

result = LogInQuery();

return result;

}

public String LogInQuery()

{

// query username from database and assign the queried value to the userName property
// query password from database and assign the queried value to the passWord property
return "SELECTION";

}

}

A

B

C

D

E

F

G

Fig. 8.33 The codes for the Java bean class LogInBean

8 Developing Java Web Applications to Access Databases

377

 G. The data access method LogInQuery() is defined, and this method is used to
perform the database-related query and business logics and return a outcome
string to the JSF page. The JSF page will use its handler to search the returned
outcome string to determine the next page to navigate.

So far, we have provided a very detailed introduction and review about the devel-
opment history of Java Web applications using different components, such as Java
Servlet and HTML pages, JavaServer Pages and help classes, JavaServer Pages and
Java beans, as well as JavaServer Faces and Java bean techniques. In the following
sections, we will provide more detailed discussion for each component and tech-
niques. Following these discussions, we will begin to build and develop real Java
Web application projects to perform data actions against our sample databases.

8.2 Java EE Web Application Model

The Java EE application model begins with the Java programming language and the
Java virtual machine. The proven portability, security, and developer productivity
they provide form the basis of the application model. Java EE is designed to support
applications that implement enterprise services for customers, employees, suppli-
ers, partners, and others who make demands on or contributions to the enterprise.
Such applications are inherently complex, potentially accessing data from a variety
of sources and distributing applications to a variety of clients.

The Java EE application model defines an architecture for implementing services
as multitier applications that deliver the scalability, accessibility, and manageability
needed by enterprise-level applications. This model partitions the work needed to
implement a multitier service into two parts: the business and presentation logic to
be implemented by the developer and the standard system services provided by the
Java EE platform. The developer can rely on the platform to provide solutions for
the hard systems-level problems of developing a multitier service.

The Java EE platform uses a distributed multitiered application model for enter-
prise applications. Application logic is divided into components according to func-
tion, and the various application components that make up a Java EE application are
installed on different machines depending on the tier in the multitiered Java EE
environment to which the application component belongs.

Most Java Web database applications are three-tier client-server applications,
which means that this kind of application can be built in three tiers or three contain-
ers: client container, Web server container, and database server container. Java
Enterprise Java Beans or EJB plays an additional role in business data management
and processing in this three-tier architecture. However in recent years, because of its
complexity and time-consuming development cycles as well as undesired output
performances, some researchers recommend to use Java EE without EJB.

In order to get a clearer picture about these two kinds of architectures, let’s first
concentrate on the difference between them.

8.2 Java EE Web Application Model

378

8.2.1 Java EE Web Applications with and Without EJB

Most Java Web applications can be divided into three tiers: client tier composed of
client machines, Web tier consists of Java EE Server, and EIS tier made of Database
server. The Java Enterprise Java Bean (EJB) also works as a business tier attached
with the Java server layer. This relationship can be represented by different tiers
shown in Fig. 8.34.

In fact in recent years, because of undesired output results and complicated
developing processes, some developers have changed their mind and moved to Java
EE without EJB. This simplification can be illustrated by an architecture shown in
Fig. 8.35.

Compare two architectures shown in Figs. 8.34 and 8.35; it can be found that the
business tier, Enterprise Java Bean, has been removed from the Web layer, and this
greatly simplifies the communications and data transformations between those
related tiers. From the point of practical application view, this will also significantly

Java EE Application

Database

Client Tier

Java EE Server

Database Server

Servlet JSP Pages

Web Tier

Client Machine

Enterprise Beans Business Tier

EIS Tier

Fig. 8.34 An illustration of Java EE three-tier application with EJB

Java EE Application

Database

Client Tier

Java EE Server

Database Server

Servlet JSP Pages

Web Tier

Client Machine

EIS Tier

Fig. 8.35 An illustration of Java EE three-tier application without EJB

8 Developing Java Web Applications to Access Databases

379

reduce the coding development cycles and improve the efficiency of the program’s
executions in real time.

As we know, the popular Java EE components are:

• Application clients and Applets are components that run on the client machine.
• Java Servlet, JavaServer Faces, and JavaServer Pages (JSP) technology compo-

nents are web components that run on the server.
• Enterprise JavaBeans (EJB) components are business components that run on

the server.

As we build a Java Web application using the architecture shown in Fig. 8.35, the
third component, EJB, can be removed from this three-tier architecture.

When building a Java Web application, different modules can be adopted based
on the different applications. A Java EE module consists of one or more Java EE
components for the same container type and, optionally, one component deploy-
ment descriptor of that type. An enterprise bean module deployment descriptor, for
example, declares transaction attributes and security authorizations for an enterprise
bean. A Java EE module can be deployed as a stand-alone module.

The four types of Java EE modules are:

 1) EJB modules, which contain class files for enterprise beans and an EJB deploy-
ment descriptor. EJB modules are packaged as JAR files with a .jar extension.

 2) Web modules, which contain Servlet class files, Web files, supporting class files,
GIF and HTML files, and a Web application deployment descriptor. Web mod-
ules are packaged as JAR files with a .war (Web ARchive) extension.

 3) Application client modules, which contain class files and an application client
deployment descriptor. Application client modules are packaged as JAR files
with a .jar extension.

 4) Resource adapter modules, which contain all Java interfaces, classes, native
libraries, and other documentation, along with the resource adapter deployment
descriptor. Together, these implement the Connector architecture for a particular
EIS. Resource adapter modules are packaged as JAR files with a .rar (resource
adapter archive) extension.

We will concentrate on more deep discussions about Java EE Web application in
the following sections.

8.3 The Architecture and Components of Java
Web Applications

A Web application is a dynamic extension of a web or application server. There are
two types of Web applications:

• Presentation-Oriented: A presentation-oriented Web application generates
interactive Web pages containing various types of markup language (HTML,

8.3 The Architecture and Components of Java Web Applications

380

XHTML, XML, and so on) and dynamic content in response to requests. We will
cover how to develop presentation-oriented Web applications in this chapter.

• Service-Oriented: A service-oriented Web application implements the endpoint
of a Web service. Presentation-oriented applications are often clients of service-
oriented Web applications. We will discuss how to develop service-oriented Web
applications in the next chapter.

In the Java EE platform, Web components provide the dynamic extension capa-
bilities for a Web server. Web components can be either Java Servlets, Web pages,
Web service endpoints, or JSP pages. The interaction between a Web client and a
Web application is illustrated in Fig. 8.36.

Based on Fig. 8.36, a complete request-response message transformation for a
Java Web application between a client and a Web server can be illustrated as below:

 1) The client sends an HTTP request to the Web server.
 2) A Web server that implements Java Servlet and JavaServer Pages technology

converts the request into an HTTPServletRequest object.
 3) The Web component can then generate an HTTPServletResponse or it can pass

the request to another Web component.
 4) Eventually a Web component generates an HTTPServletResponse object.
 5) The Web server converts this object to an HTTP response and returns it to

the client.

The dash lines between the Web components and Java Beans components,
between Java Beans components and Database, are alternative ways to interact with
database via business layer that is supported by the Java Beans components.

In order to get a clear and complete picture about how to control and transmit
these request and response messages between Java EE Web Components, we need
first to have a basic understanding about the Java EE Containers.

Web

Client

HTTPServlet

Request

Web Server

Web

Components

HTTP

Request

HTTPServlet

Response

Java Beans

Components

HTTP

Response

Database

Server

Fig. 8.36 An illustration of the Java Web application

8 Developing Java Web Applications to Access Databases

381

8.3.1 Java EE Containers

Java EE containers are the interfaces between a component and the low-level
platform- specific functionality that supports the component. Before a Web, enter-
prise bean, or application client component can be executed, it must be assembled
into a Java EE module and deployed into its container. Refer to Sect. 8.2 for a
detailed discussion about four types of Java EE modules.

The assembly process involves specifying container settings for each component
in the Java EE application and for the Java EE application itself. Container settings
customize the underlying support provided by the Java EE server, including services
such as security, transaction management, JavaNaming and Directory Interface
(JNDI) lookups, and remote connectivity.

The deployment process installs Java EE application components in the Java EE
containers as illustrated in Fig. 8.37.

The function of each container is listed below:

• Java EE server: The runtime portion of a Java EE product. A Java EE server
provides EJB and web containers.

• Enterprise JavaBeans (EJB) container: Manages the execution of enterprise
beans for Java EE applications. Enterprise beans and their container run on the
Java EE server.

• Web container: Manages the execution of Web pages, Servlets, and some EJB
components for Java EE applications. Web components and their containers run
on the Java EE server.

• Application client container: Manages the execution of application client com-
ponents. Application clients and their container run on the client.

All Web components are under the control of the associated containers, and the
containers take charge of collecting, organizing, and transmitting requests and

Application

Client Container

Client Machine

Web

Browser

Java EE Server

Application

Client

Servlet JSP Pages
Web

Container

Enterprise Beans EJB

Container

Database Server

Fig. 8.37 Java EE server and containers

8.3 The Architecture and Components of Java Web Applications

382

responses between those components. Java EE Web components can be imple-
mented with multiple APIs. Let’s have a brief review about these APIs.

8.3.2 Java EE 8 APIs

In this section, we will give a brief summary of the most popular technologies
required by the Java EE platform and the APIs used in Java EE applications.

8.3.2.1 Enterprise Java Beans API Technology

An Enterprise Java Beans (EJB) component, or enterprise bean, is a body of code
having fields and methods to implement modules of business logic. You can think of
an enterprise bean as a building block that can be used alone or with other enterprise
beans to execute business logic on the Java EE server.

There are two kinds of enterprise beans: session beans and message-driven
beans. A session bean represents a transient conversation with a client. When the
client finishes executing, the session bean and its data are gone. A message-driven
bean combines features of a session bean and a message listener, allowing a busi-
ness component to receive messages asynchronously. Commonly, these are
JavaMessage Service (JMS) messages. Refer to Fig. 5.58 in Chap. 5 to get more
detailed information about the EJB.

In the Java EE 8 platform, new enterprise bean features include the following:

 1) The ability to package local enterprise beans in a. WAR file.
 2) Singleton session beans, which provide easy access to shared state.
 3) A lightweight subset of Enterprise Java Beans functionality that can be provided

within Java EE Profiles such as the Java EE Web Profile.

8.3.2.2 Java Servlet API Technology

A Servlet is a class defined in Java programming language, and it is used to extend
the capabilities of servers that host applications accessed by means of a request-
response programming model. Although Servlets can respond to any type of request,
they are commonly used to extend the applications hosted by Web servers. For such
applications, Java Servlet API technology defines HTTP-specific Servlet classes.

The javax.servlet and javax.servlet.http packages provide interfaces and
classes for writing Servlets. All Servlets must implement the Servlet interface,
which defines life-cycle methods. When implementing a generic service, you can
use or extend the GenericServlet class provided with the Java Servlet API. The
HttpServlet class provides methods, such as doGet() and doPost(), for handling
HTTP-specific services.

8 Developing Java Web Applications to Access Databases

383

The life cycle of a Servlet is controlled by the container in which the Servlet has
been deployed. When a request is mapped to a Servlet, the container performs the
following steps.

 1) If an instance of the Servlet does not exist, the Web container.

 (a) Loads the Servlet class.
 (b) Creates an instance of the Servlet class.
 (c) Initializes the Servlet instance by calling the init() method.

 2) Invokes the service method, passing request and response objects.

If the container needs to remove the Servlet, it finalizes the Servlet by calling the
Servlet’s destroy() method.

You can monitor and react to events in a Servlet’s life cycle by defining listener
objects whose methods get invoked when life-cycle events occur. To use these lis-
tener objects, you must define and specify the listener class.

8.3.2.3 JavaServer Pages API Technology

JavaServer Pages (JSP) is a Java technology that helps software developers serve
dynamically generated web pages based on HTML, XML, or other document types.
Released in 1999 as Sun’s answer to ASP and PHP, JSP was designed to address the
perception that the Java programming environment didn’t provide developers with
enough support for the Web.

Architecturally, JSP may be considered as a high-level abstraction of Java
Servlets. JSP pages are loaded in the server and operated from a structured special
installed Java server packet called a Java EE Web Application, often packaged as a
.war or .ear file archive.

JSP allows Java code and certain pre-defined actions to be interleaved with static
Web markup content, with the resulting page being compiled and executed on the
server to deliver an HTML or XML document. The compiled pages and any depen-
dent Java libraries use Java byte-code rather than a native software format and must
therefore be executed within a Java Virtual Machine (JVM) that integrates with the
host operating system to provide an abstract platform-neutral environment.

JSP syntax is a fluid mix of two basic content forms: scriptlet elements and
markup. Markup is typically standard HTML or XML, while scriptlet elements are
delimited blocks of Java code which may be intermixed with the markup. When the
page is requested, the Java code is executed, and its output is added, in situ, with the
surrounding markup to create the final page. Because Java is a compiled language,
not a scripting language, JSP pages must be compiled to Java byte-code classes
before they can be executed, but such compilation is needed only when a change to
the source JSP file has occurred.

Java code is not required to be complete (self-contained) within its scriptlet ele-
ment block, but can straddle markup content provided the page as a whole is syntac-
tically correct (e.g., any Java if/for/while blocks opened in one scriptlet element

8.3 The Architecture and Components of Java Web Applications

384

must be correctly closed in a later element for the page to successfully compile).
This system of split inline coding sections is called step over scripting because it
can wrap around the static markup by stepping over it. Markup which falls inside a
split block of code is subject to that code, so markup inside an if block will only
appear in the output when the if condition evaluates to true; likewise markup inside
a loop construct may appear multiple times in the output depending upon how many
times the loop body runs.

The JSP syntax adds additional XML-like tags, called JSP actions, to invoke
built-in functionality. Additionally, the technology allows for the creation of JSP tag
libraries that act as extensions to the standard HTML or XML tags. JVM operated
tag libraries provide a platform independent way of extending the capabilities of a
Web server. Note that not all commercial Java servers are Java EE specification
compliant.

JavaServer Pages (JSP) technology lets you put snippets of Servlet code directly
into a text-based document. A JSP page is a text-based document that contains two
types of text: static data (which can be expressed in any text-based format such as
HTML, WML, and XML) and JSP elements, which determine how the page con-
structs dynamic content.

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core function-
ality common to many JSP applications. Instead of mixing tags from numerous
vendors in your JSP applications, you employ a single, standard set of tags. This
standardization allows you to deploy your applications on any JSP container that
supports JSTL and makes it more likely that the implementation of the tags is
optimized.

JSTL has an iterator and conditional tags for handling flow control, tags for
manipulating XML documents, internationalization tags, tags for accessing data-
bases using SQL, and commonly used functions.

JSP pages are compiled into Servlets by a JSP compiler. The compiler either
generates a Servlet in Java code that is then compiled by the Java compiler, or it may
compile the Servlet to byte code which is directly executable. JSPs can also be
interpreted on-the-fly, reducing the time taken to reload changes.

JSP simply puts Java inside HTML pages using JSP tags. You can take any exist-
ing HTML page and change its extension to .jsp instead of .html.

Regardless of whether the JSP compiler generates Java source code for a Servlet
or emits the byte code directly, it is helpful to understand how the JSP compiler

A

B

<%@ page myPage="mypage.jsp" %>
<%@ page import="com.foo.bar" %>
<html>
<head>
<%! int serverInstanceVariable = 1;%>
<% int localStackBasedVariable = 1; %>
<table>
<tr><td><%= toStringOrBlank("expanded inline data " + 1) %></td></tr>

Fig. 8.38 An example of JSP pages

8 Developing Java Web Applications to Access Databases

385

transforms the page into a Java Servlet. For example, consider an input JSP page
shown in Fig. 8.38, and this JSP page can be compiled to create its resulting gener-
ated Java Servlet. The JSP tags <% … % > or < jsp … /> enclose Java expressions,
which are evaluated at the run time by JVM.

Refer to Fig. 8.38. In step A, two JSP coding lines are created to declare a JSP
page and an import component. Then in step B, two Java integer variables are cre-
ated: one is an instance variable and the other one is the Stack-based variable.

8.3.2.4 JavaServer Faces API Technology

JavaServer Faces technology is a server-side component framework for building
Java technology-based Web applications. JavaServer Faces technology consists of
the following:

• An API for representing components and managing their state; handling events,
server-side validation, and data conversion; defining page navigation; supporting
internationalization and accessibility; and providing extensibility for all these
features

• Tag libraries for adding components to Web pages and for connecting compo-
nents to server-side objects

JavaServer Faces technology provides a well-defined programming model and
various tag libraries. These features significantly ease the burden of building and
maintaining Web applications with server-side UIs. With minimal effort, you can
complete the following tasks:

 1) Create a Web page
 2) Drop components onto a Web page by adding component tags
 3) Bind components on a page to server-side data
 4) Wire component-generated events to server-side application code
 5) Save and restore application state beyond the life of server requests
 6) Reuse and extend components through customization

The functionality provided by a JavaServer Faces application is similar to that of
any other Java Web application. A typical JavaServer Faces application includes the
following parts:

• A set of Web pages in which components are laid out.
• A set of tags to add components to the Web page.
• A set of backing beans which are JavaBeans components that define properties

and functions for components on a page.
• A Web deployment descriptor (web.xml file).
• Optionally, one or more application configuration resource files such as a faces-

config.xml file, which can be used to define page navigation rules and configure
beans and other custom objects such as custom components.

8.3 The Architecture and Components of Java Web Applications

386

• Optionally, a set of custom objects created by the application developer. These
objects can include custom components, validators, converters, or listeners.

• A set of custom tags for representing custom objects on the page.

Figure 8.39 describes the interaction between client and server in a typical
JavaServer Faces application. In response to a client request, a Web page is rendered
by the Web container that implements JavaServer Faces technology.

The Web page, Myface.xhtml, is built using JavaServer Faces component tags.
Component tags are used to add components to the view (represented by MyUI in
the diagram), which is the server-side representation of the page. In addition to
components, the Web page can also reference objects such as the following:

 1) Any event listeners, validators, and converters that are registered on the
components

 2) The JavaBeans components that capture the data and process the application-
specific functionality of the components

On request from the client, the view is rendered as a response. Rendering is the
process whereby, based on the server-side view, the Web container generates output
such as HTML or XHTML that can be read by the browser.

8.3.2.5 Java Transaction API

The Java Transaction API (JTA) provides a standard interface for demarcating
transactions.

The Java EE architecture provides a default auto commit to handle transaction
commits and rollbacks. An auto commit means that any other applications that are
viewing data will see the updated data after each database reads or writes operation.
However, if your application performs two separate database access operations that
depend on each other, you will want to use the JTA API to demarcate where the
entire transaction, including both operations, begins, rolls back, and commits.

In Sect. 7.1 in Chap. 7, we have provided a very detailed discussion about the
Java Persistence API on Transaction mechanism and its implementation with some

Web

Browser

Myface.xhtml

Web Container
Access-Page

HTTP Request

MyUI

Renders HTML

HTTP Response

Fig. 8.39 Responding to a client request for a JavaServer Faces page

8 Developing Java Web Applications to Access Databases

387

data manipulations in real projects, such as data inserting, updating, and deleting,
using the JPA wizard. Refer to those parts to get more information for this API.

8.3.2.6 Java Message Service API

The JavaMessage Service (JMS) API is a messaging standard that allows Java EE
application components to create, send, receive, and read messages. It enables dis-
tributed communication that is loosely coupled, reliable, and asynchronous.

Now that we have a basic and clear understanding about the Java EE architecture
and components, now let’s take a look at the Java Web application life cycle.

8.3.3 Java Web Application Life Cycle

A Web application consists of Web components, static resource files such as images,
and helper classes and libraries. The Web container provides many supporting ser-
vices that enhance the capabilities of Web components and make them easier to
develop. However, because a Web application must take these services into account,
the process for creating and running a Web application is different from that of tra-
ditional stand-alone Java classes.

The process for creating, deploying, and executing a Web application can be
summarized as follows:

 1) Develop the Web component code.
 2) Develop the Web application deployment descriptor.
 3) Compile the Web application components and helper classes referenced by the

components.
 4) Optionally package the application into a deployable unit.
 5) Deploy the application into a Web container.
 6) Access a URL that references the Web application.

We will illustrate how to use this life-cycle module to develop and build some
professional Java Web applications in Sect. 8.4.

8.3.4 Java Web Modules

As we discussed in Sect. 8.2.1, four Java EE Web modules are available, and the
Web module is one of them. In the Java EE architecture, Web components and static
Web content files such as images are called web resources. A web module is the
smallest deployable and usable unit of Web resources. A Java EE Web module cor-
responds to a Web application as defined in the Java Servlet specification.

8.3 The Architecture and Components of Java Web Applications

388

In addition to Web components and Web resources, a Web module can contain
other files:

• Server-side utility classes (database beans, shopping carts, and so on). Often
these classes conform to the JavaBeans component architecture.

• Client-side classes (applets and utility classes).

A Web module has a specific structure. The top-level directory of a Web module
is the document root of the application. The document root is where XHTML
pages, client-side classes and archives, and static Web resources, such as images,
are stored.

The document root contains a subdirectory named WEB-INF, which contains the
following files and directories:

• web.xml: The Web application deployment descriptor
• Tag library descriptor files
• classes: A directory that contains server-side classes: Servlets, utility classes,

and JavaBeans components
• tags: A directory that contains tag files, which are implementations of tag

libraries
• lib: A directory that contains JAR archives of libraries called by server-

side classes

If your Web module does not contain any Servlets, filter, or listener components,
then it does not need a Web application deployment descriptor. In other words, if
your Web module only contains XHTML pages and static files, you are not required
to include a web.xml file.

Assembly Root

WEB-INF

JSP Pages,

Static HTML Pages,

Applet classes, etc.

web.xml

sun-web.xml

*.tld

lib

Library

archive files

All service-side

.class files for this

Web module

classes tags

All .tag files

for this Web

module

Fig. 8.40 A Web module structure

8 Developing Java Web Applications to Access Databases

389

You can also create application-specific subdirectories (i.e., package directories)
in either the document root or the WEB-INF/classes/directory.

A Web module can be deployed as an unpacked file structure or can be packaged
in a JAR file known as a Web archive (WAR) file. Because the contents and use of
WAR files differ from those of JAR files, WAR file names use a .war extension. The
Web module just described is portable; you can deploy it into any Web container
that conforms to the Java Servlet Specification.

To deploy a WAR on the Enterprise Server, the file must also contain a runtime
deployment descriptor. The runtime deployment descriptor is an XML file that con-
tains information such as the context root of the Web application and the mapping
of the portable names of an application’s resources to the Enterprise Server’s
resources. The Enterprise Server Web application runtime DD is named sun-web.
xml and is located in the WEB-INF directory along with the Web application
DD. The structure of a Web module that can be deployed on the Enterprise Server
is shown in Fig. 8.40.

To successfully build and implement a Java Web application, one needs to per-
form the following operations to make it a distributable application:

• Packaging Web modules
• Deploying a WAR file
• Testing deployed Web modules
• Listing deployed Web modules
• Updating Web modules
• Undeploying Web modules

We will discuss these operations with more details in the following sections with
some real Java Web application projects.

8.3.5 Java Web Frameworks

A Web application framework is a software framework that is designed to support
the development of dynamic websites, Web applications, and Web services. The
framework aims to alleviate the overhead associated with common activities per-
formed in Web development. For example, many frameworks provide libraries for
database access, template frameworks, and session management, and they often
promote code reuse, too.

As we know, all Web components such as Java Servlets, Web pages, or JSP
pages, are under the control of the associated Web containers. The question is: who
controls those Web containers? The answer is the Web frameworks. A Web frame-
work is a software framework that provides all supports to develop and organize
dynamic sites. Some main features provided by a Web framework include:

• Provide user-friendly graphical user interfaces (GUIs) to Web applications

8.3 The Architecture and Components of Java Web Applications

http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Dynamic_web_page
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Template_(software_engineering)
http://en.wikipedia.org/wiki/Session_(computer_science)
http://en.wikipedia.org/wiki/Code_reuse

390

• Provide managements to Web containers to coordinate requests and responses
transmission between Web server and clients

• Provide security supports to Web servers
• Provide supports to database accessing and mapping
• Provide supports to URL mapping
• Provide supports to update Web templates

Almost all modern Web-development frameworks follow the Model-View-
Controller (MVC) design. Business logic and presentation are separated, and a con-
troller of logic flow coordinates requests from clients and actions taken on the
server. This approach has become a popular style of Web development.

All frameworks use different techniques to coordinate the navigation within the
Web application, such as the XML configuration file, java property files, or custom
properties. All frameworks also differ in the way the controller module is imple-
mented. For instance, EJBs may instantiate classes needed in each request, or Java
reflection can be used to dynamically invoke appropriate action classes. Also,
frameworks may differ conceptually.

Java frameworks are similar in the way they structure data flow. After request,
some action takes place on the application server, and some data populated objects
are always sent to the JSP layer with the response. Data is then extracted from those
objects, which could be simple classes with setter and getter methods, java beans,
value objects, or some collection objects. Modern Java frameworks also simplify a
developer’s tasks by providing automatic Session tracking with easy APIs, database
connection pools, and even database call wrappers. Some frameworks either pro-
vide hooks into other J2EE technologies, such as JMS (Java Messaging Service) or
JMX, or have these technologies integrated. Server data persistence and logging
also could be part of a framework.

The most popular Web frameworks include:

• JavaServer Faces (JSF)
• Apache Wicket
• JBoss Seam
• Spring MVC & WebFlow
• Adobe Flex
• Hibernate
• PHP
• Perl
• Ruby
• ASP.NET
• Struts 2

Two popular Java frameworks used in NetBeans IDE are JavaServer Faces and
Hibernate.

Now that we have both a historical review and detailed discussion for each part
of Java Web applications, let’s concentrate on building and developing real Java
Web database application projects starting from the next section.

8 Developing Java Web Applications to Access Databases

391

8.4 Build Java Web Project to Query SQL Server Database

It is the time for us to do some practical works to build our Web application projects
to show users how to use knowledge we discussed above to apply them in real appli-
cations. First let’s build some useful Web pages to begin our developments.

8.4.1 Create Five Web Pages Using Microsoft Office
Publisher 2007

In this section, we will create five Web pages, LogIn, Selection, Faculty, Course,
and Student, as the GUIs to access and manipulate our sample database via
Web server.

When a Web application starts, the default starting page is index.jsp. However,
in this application, we want to use the LogIn.jsp page as our starting page. Because
of the relative complexity in our five pages, we need to use Microsoft Office
Publisher 2007 as a tool to help us to do this job.

Let’s first handle the LogIn page.

8.4.1.1 Create the LogIn Page

The purpose of this page is to allow users to login to our sample SQL Server data-
base to perform data actions to five tables in our sample database. Exactly this page
is related to the LogIn table to enable users to log in and enter this database.

Launch Microsoft Office Publisher 2007, and click on the Web Sites icon to
open the Web Sites wizard. Scroll down to the bottom of this wizard, and double
click on the Web 984 × 4608px item under the Blank Sizes category as the template
of this page. Perform the following operations to build this page:

 1) Go to Insert > Text Box menu item to add a textbox to the top of this page. Enter
Welcome to CSE DEPT LogIn Page into this textbox as a label for this page.

 2) Highlight the text of the label, and select the Arial Black as the font type and 12
as the font size.

 3) Perform the similar operation as step 1 to create another two textboxes, and enter
User Name and Pass Word as another two labels. Locate these two labels just
under the top label as we did in step 1 above.

 4) Go to Insert > Form Control > TextBox menu item to add two textboxes, and
align each of them after each of two labels, User Name and Pass Word,
respectively.

 5) Right click on the first textbox we added in step 4 above, and select Format
Form Properties item. Enter UserNameField into the text field under the

8.4 Build Java Web Project to Query SQL Server Database

392

Return data with this label as the name of this textbox. Click on the OK button
to complete this naming process.

 6) Perform the similar operation to the second textbox we added in step 4 above,
and name it as PassWordField.

 7) Go to Insert > Form Control > Submit menu item to add a command button
into this page. Uncheck the Button text is same as button type checkbox, and
enter LogIn into the Button text field. Locate this button under two textboxes
we added in steps 4 through 6. Click on the OK button to close this dialog box.

 8) Perform similar operation to add another button, and use Cancel as the button
text for this button.

 9) Go to File > Save As item to save this page as an HTML file. On the opened
Save As dialog, select the Web Page, Filtered (*.htm, *.html) from the Save as
type combo box, and enter LogIn.html to the File name field. Click on the Save
button to save this HTML file to certain location in your root driver, such as C:\
Temp. Click Yes to the message box and OK to the Form Properties dialog to
complete this saving process.

Now go to File > Web Page Preview menu item, and select a browser, such as
Internet Explorer or Microsoft Edges, to take a look at this LogIn page. Your fin-
ished LogIn page should match one that is shown in Fig. 8.41. To convert this
HTML page to a JSP page, open the Notepad, and perform the following operations:

 1) On the opened Notepad, go to File > Open menu item to open the Open dialog
box. Make sure to select All Files from the Files of type combo box at the bot-
tom of this dialog.

 2) Browse to the folder where you saved the LogIn.html file, such as C:\Temp,
select it, and click on the Open button to open this file.

Fig. 8.41 The finished LogIn page

8 Developing Java Web Applications to Access Databases

393

 3) Go to File > Save As menu item to open the Save As dialog box. Then enter
“LogIn.jsp” into the File name field as the name of this page. The point to be
noted is that you must use the double quotation marks to cover this file name to
enable the Notepad to save it as a JSP file. Click on the Save button to save this
JSP file to your desired folder, such as C:\Temp.

 4) Close the Notepad, and we have completed creating our LogIn.jsp file.

Next let’s handle to create our Selection JSP file.

8.4.1.2 Create the Selection Page

The purpose of this page is to allow users to choose other Web pages to perform the
related data actions with the different data tables in our sample database. Therefore
this page can be considered as a main or control page to enable users to browse to
other pages to perform data actions against the related data table in our sample
database.

Launch Microsoft Office Publisher 2007, and click on the Web Sites icon to
open the Web Sites wizard. Scroll down to the bottom of this wizard, and double
click on the Web 984 × 4608px item under the Blank Sizes category as the template
of this page. Click on the Change Page Size button under the Web Site Options tab
if you cannot find this item. Perform the following operations to build this page:

 1) Go to Insert > Text Box menu item to add a textbox to the top of this page.
Enter Make Your Selection into this textbox as a label for this page.

 2) Highlight the text of the label, and select the Arial Black as the font type and
12 as the font size.

 3) Go to Insert > Form Control > List Box menu item to add a listbox control.
Locate this listbox just under the top label as we did in step 1 above.

 4) Right click on the new added listbox, and select Format Form Properties item
to open List Box Properties dialog. Enter ListSelection into the Return data
with this label field as the name of this listbox.

 5) In the Appearance list, click on the Remove buttons three times to delete all
default items from this list.

 6) Click on the Add button to add the first item to this list. On the opened dialog,
enter the Faculty Information into the Item field, and check the Selected radio
button. Make sure that the Item value is same as item text checkbox is checked.
Your finished Add/Modify List Box Item dialog should match one that is
shown in Fig. 8.42. Click on the OK button to close this dialog box.

 7) Click on the Add button to add our second item into this listbox. On the opened
Add/Modify List Box Item dialog, enter Course Information into the Item
field, and make sure that both Not selected radio button and the Item value is
same as item text checkbox are checked. Click on the OK button to close this
dialog box.

 8) Perform the similar operations as we did in step 7 above to add the third item,
Student Information, into this listbox.

8.4 Build Java Web Project to Query SQL Server Database

394

 9) Your finished List Box Properties dialog should match one that is shown in
Fig. 8.43. Click on the OK button to complete this listbox setup process.

 10) Go to Insert > Form Control > Submit menu item to add a command button
into this page. Uncheck the Button text is same as button type checkbox, and
enter OK into the Button text field. Locate this button under the listbox we
added above. Click on the OK button to close this dialog box.

Fig. 8.42 The finished
Add/Modify List Box Item
dialog box

Fig. 8.43 The finished
List Box Properties
dialog box

8 Developing Java Web Applications to Access Databases

395

 11) Perform the similar operation to add another button, and use Exit as the button
text for this button.

 12) Go to File > Save As item to save this page as an HTML file. On the opened
Save As dialog, select the Web Page, Filtered (*.htm, *.html) from the Save
as type combo box, and enter Selection.html to the File name field. Click on
the Save button to save this HTML file to certain location in your root driver,
such as C:\Temp. Click Yes to the message box and OK to the Form Properties
dialog to complete this saving process.

 13) Now go to File > Web Page Preview menu item to take a look at this Selection
page. Your finished Selection page should match one that is shown in Fig. 8.44.

To convert this HTML page to a JSP page, open the Notepad, and perform the
following operations:

 1) On the opened Notepad, go to File > Open menu item to open the Open dialog
box. Make sure to select All Files from the Files of type combo box at the bot-
tom of this dialog.

 2) Browse to the folder where you saved the Selection.html file, such as C:\Temp,
select it, and click on the Open button to open this file.

 3) Go to File > Save As menu item to open the Save As dialog box. Enter “Selection.
jsp” into the File name field as the name of this page. The point to be noted is
that you must use the double quotation marks to cover this file name to enable
the Notepad to save it as a JSP file. Click on the Save button to save this JSP file
to your desired folder, such as C:\Temp.

 4) Close the Notepad, and we have completed creating our Selection.jsp file.

Next let’s handle to create our Faculty JSP file.

Fig. 8.44 The preview of the Selection page

8.4 Build Java Web Project to Query SQL Server Database

396

8.4.1.3 Create the Faculty Page

The purpose of this page is to allow users to access the Faculty table in our sample
database to perform data actions via this page, such as data query, new faculty
records insertion, and faculty member updating and deleting. Because the HTML
and JSP did not provide any combo box control, in this application, we have to use
text box control to replace the combo box control and apply it in this page.

The preview of this Faculty page is shown in Fig. 8.45.
Now let’s start to build this page using Microsoft Office Publisher 2007.
Launch Microsoft Office Publisher 2007, and click on the Web Sites icon to

open the Web Sites wizard. Scroll down to the bottom of this wizard, and double
click on the Web 984 × 4608px item under the Blank Sizes category as the template
of this page. Perform the following operations to build this page:

 1) Go to Insert > Text Box menu item to insert a textbox into this page, and enter
Image into this textbox as an image label.

 2) Go to Insert > Form Control > Textbox menu item to insert a Textbox into this
page, and locate this textbox just to the right of the Image label we added in
step 1 above.

 3) Right click on this inserted Textbox, and select the Format Form Properties
item to open the Text Box Properties dialog, as shown in Fig. 8.46a. Then
enter FacultyImageField into the Return data with this label field, as shown
in Fig. 8.46a. Click on the OK button to close this dialog.

Fig. 8.45 The preview of the Faculty page

8 Developing Java Web Applications to Access Databases

397

 4) Go to Insert > Picture > Empty Picture Frame menu item to insert a blank
picture to this page. Locate this picture under the FacultyImageField textbox
we added in step 2.

 5) Go to Insert > Text Box to insert a new TextBox, and move it to the right of the
picture. Type Faculty Name in this inserted TextBox as the Faculty Name label.

 6) Go to Insert > Form Control > Textbox menu item to insert a Textbox into this
page, and locate this textbox to the right of the Faculty Name label.

 7) Right click on this inserted Textbox, and select the Format Form Properties
item to open the Text Box Properties dialog. Enter FacultyNameField into the
Return data with this label field, as shown in Fig. 8.46b. Click on the OK but-
ton to close this dialog.

 8) Go to Insert > Text Box menu item again to insert another TextBox, and move
it to the right of the picture under the Faculty Name TextBox. Type Faculty ID
into this TextBox, and use it as the Faculty ID label.

 9) Go to Insert > Form Control > Textbox menu item to insert a Textbox into this
page, and move this Textbox to the right of the Faculty ID label.

 10) Change this Textbox’s name to FacultyIDField as we did in step 7 above.
 11) In a similar way, you can finish adding another six Textboxes and the associated

labels, as shown in Fig. 8.45. Use step 7 above to change these six Textboxes’
names to:

 (a) NameField
 (b) TitleField
 (c) OfficeField
 (d) PhoneField
 (e) CollegeField
 (f) EmailField

Fig. 8.46 The FacultyImageField and FacultyNameField textboxes

8.4 Build Java Web Project to Query SQL Server Database

398

 12) You can use Format > Paragraph > Line spacing > Between lines menu
property to modify the vertical distances between each label. In this application,
set this distance to 0.6sp.

 13) Go to Insert > Form Control > Submit menu item to insert five buttons at the
bottom of this page. In the opened Command Button Properties dialog,
uncheck the Button text is same as button type checkbox,
and enter

 (a) Select
 (b) Insert
 (c) Update
 (d) Delete
 (e) Back

into the Button text field for these five buttons one by one. Click on the
OK button to complete these five-button creation process.

 14) Your finished Faculty page in Microsoft Publisher 2007 should match one that
is shown in Fig. 8.47.

 15) Go to File > Save As item to save this page as an HTML file. On the opened
Save As dialog, select the Web Page, Filtered (*.htm, *.html) from the Save
as type combo box, and enter Faculty.html to the File name field. Click on the
Save button to save this HTML file to certain location in your root driver, such
as C:\Temp. Click Yes to the message box and OK to the Form Properties
dialog to complete this saving process.

Fig. 8.47 The finished Faculty page

8 Developing Java Web Applications to Access Databases

399

To convert this HTML page to a JSP page, open the Notepad, and perform the
following operations:

 1) On the opened Notepad, go to File > Open menu item to open the Open dialog
box. Make sure to select All Files from the Files of type combo box at the bot-
tom of this dialog.

 2) Browse to the folder where you saved the Faculty.html file, such as C:\Temp,
select it, and click on the Open button to open this file.

 3) Go to File > Save As menu item to open the Save As dialog box. Enter “Faculty.
jsp” into the File name field as the name of this page. The point to be noted is
that you must use the double quotation marks to cover this file name to enable
the Notepad to save it as a JSP file. Click on the Save button to save this JSP file
to your desired folder, such as C:\Temp.

 4) Close the Notepad, and we have completed creating our Faculty.jsp file.

Next let’s handle to create our Course JSP file.

8.4.1.4 Create the Course Page

The purpose of using this page is to allow users to access and manipulate data in the
Course table in our sample database via the Web server, such as course query, new
course insertion, and course updating and deleting, based on the selected faculty
member from the Faculty Name textbox.

The finished Course page is shown in Fig. 8.48.
Now let’s start to build this page using Microsoft Office Publisher 2007.

Fig. 8.48 The preview of the Course page

8.4 Build Java Web Project to Query SQL Server Database

400

Launch Microsoft Office Publisher 2007, and click on the Web Sites icon to
open the Web Sites wizard. Scroll down to the bottom of this wizard, and double
click on the Web 984 × 4608px item under the Blank Sizes category as the template
of this page. Perform the following operations to build this page:

 1) Go to Insert > Picture > Clip Art menu item to open the Clip Art dialog box.
Make sure to select the geometry in the Search for field, and click on the Go
button to display all clip arts related to geometry. Click on the first one, and add
it into the upper left corner of this page.

 2) Go to Insert > Text Box menu item to insert a textbox into this page, and enter
Faculty Name into this textbox as the Faculty Name label.

 3) Go to Insert > Form Control > Textbox menu item to insert a Textbox into this
page, and locate this textbox just to the right of the Faculty Name label we
added in step 1 above.

 4) Right click on this inserted Textbox, and select the Format Form Properties
item to open the Text Box Properties dialog. Then enter FacultyNameField
into the Return data with this label field. Click on the OK button to close
this dialog.

 5) Go to Insert > Form Control > List Box menu item to add a listbox control.
Locate this listbox just under the top label as we did in step 1 above.

 6) Right click on the new added listbox, and select Format Form Properties item
to open List Box Properties dialog. Enter CourseList into the Return data
with this label field as the name of this listbox.

 7) In the Appearance list, click on the Remove buttons three times to delete all
default items from this list.

 8) Right click on the new added listbox CourseList and select Format Form
Properties item to open List Box Properties dialog. Click on the Add button
to open the Add/Modify List Box Item dialog box. Enter Course ID into the
Item field and check the Selected radio button, and click on the OK button.

 9) Go to Insert > Text Box to insert a new TextBox, and move it to the right of the
listbox. Type Course ID in this TextBox as the Course ID label.

 10) Go to Insert > Form Control > Textbox menu item to insert a Textbox into this
page, and locate this textbox to the right of the Course ID label.

 11) Right click on this inserted Textbox, and select the Format Form Properties
item to open the Text Box Properties dialog. Enter CourseIDField into the
Return data with this label field. Click on the OK button to close this dialog.

 12) In a similar way, you can finish adding another four Textboxes and the associ-
ated labels, as shown in Fig. 8.48. Use step 10 above to change these four
Textboxes’ names to:

 (a) CourseNameField
 (b) ScheduleField
 (c) ClassroomField
 (d) CreditField
 (e) EnrollmentField

8 Developing Java Web Applications to Access Databases

401

 13) You can use Format > Paragraph > Line spacing > Between lines menu
property to modify the vertical distances between each label. In this application,
set this distance to 0.6sp.

 14) Go to Insert > Form Control > Submit menu item to insert five buttons at the
bottom of this page. In the opened Command Button Properties dialog,
uncheck the Button text is same as button type checkbox, and enter

 (a) Select
 (b) Insert
 (c) Update
 (d) Delete
 (e) Back

into the Button text field for these five buttons one by one. Click on the OK
button to complete these five button creation process.

 15) Your finished Faculty page in Microsoft Publisher 2007 is shown in Fig. 8.49.

To convert this HTML page to a JSP page, open the Notepad and perform the
following operations:

 1) On the opened Notepad, go to File > Open menu item to open the Open dialog
box. Make sure to select All Files from the Files of type combo box at the bot-
tom of this dialog.

Fig. 8.49 The finished Course page

8.4 Build Java Web Project to Query SQL Server Database

402

 2) Browse to the folder where you saved the Course.html file, such as C:\Temp,
select it and click on the Open button to open this file.

 3) Go to File > Save As menu item to open the Save As dialog box. Enter
“Course.jsp” into the File name field as the name of this page. The point to be
noted is that you must use the double quotation marks to cover this file name to
enable the Notepad to save it as a JSP file. Click on the Save button to save this
JSP file to your desired folder, such as C:\Temp.

 4) Close the Notepad, and we have completed creating our Course.jsp file.

Next let’s handle to create our last page, Student JSP file.

8.4.1.5 Create the Student Page

Because of the similarity between the Student page and all other pages we discussed
above, here we only provide the necessary information for the names of those con-
trols to be added to this page. A preview of this Student page is shown in Fig. 8.50.

Table 8.2 lists the name of each control in the Student page.
Refer to discussions we made in the previous sections to build this Student page,

and convert it to the Student.jsp page.
At this point, we have finished all five Web pages design and building process.

Next we will begin to code these Web pages and the associated help class or Session
object to perform data queries against our database.

Fig. 8.50 The preview of the Student page

8 Developing Java Web Applications to Access Databases

403

8.4.2 Setup Environments for NetBeans IDE to Build Java
Web Applications

To build Java Web application projects, some basic components are required, and
these components include:

 1) Basic NetBeans IDE
 2) Web server
 3) Java SE JDK
 4) Database drive JDBC

Because of some compatibility issues, the following facts with special attentions
must be paid and emphasized:

 1) Starting Apache NetBeans IDE 9, no any supports are provided or continued for
building any Web-related projects, including Java EE. In order to build any Web
applications, additional Web server and components must be installed and con-
figured by users.

 2) In Apache NetBeans IDE 12, which is the latest version of the IDE, only
GlassFish server is bundled with this IDE, but the latest version of this server is
GlassFish 5, which only supports JDK 8, not the current JDK 14, which was
installed and added into the NetBeans 12 and used by us to build all projects in
the previous Chapters.

 3) A possible solution to that GlassFish server is to use another popular server,
Tomcat. But the issue is that the Apache NetBeans 12 only bundled the GlassFish

Table 8.2 All controls in the Student page

Control Name

Student Name Textbox StudentNameField
Course Selected Listbox CourseList
The Item in the Course Selected Listbox Course ID
Student ID Textbox StudentIDField
Student Name Textbox NameField
GPA Textbox GPAField
Credits Textbox CreditsField
Major Textbox MajorField
School Year Textbox SchoolYearField
Email Textbox EmailField
Select Button Select
Insert Button Insert
Update Button Update
Delete Button Delete
Back Button Back

8.4 Build Java Web Project to Query SQL Server Database

404

server with it, and the users must try to download, install, and configure this
Tomcat server under the NetBeans 12 environment if they want to use this server
with NetBeans 12. Those are very challenging jobs to general users as students
and beyond the scope of this book.

 4) Another problem is the JDK and JDBC driver compatibility issue. For JDK 14,
it supports JDBC 8, but for JDK 8, it does not support JDBC 8; instead it sup-
ports JDBC 4.

Based on all of these facts above, we have to perform the following configura-
tions to our NetBeans IDE with related components to meet the needs to build our
Web applications:

 1) Use NetBeans 8.2 IDE, instead of using Apache NetBeans 12 IDE, since the
former bundled both GlassFish and Tomcat servers into the IDE to facilitate
users to save a lot of trouble workings on installing and configuring the Tomcat
server on the IDE.

 2) To match to the requirements of NetBeans 8.2, the JDK 8, instead of JDK 14, is
used as a Standard Edition (SE) of Java Development Kits (JDK).

 3) To match to the JDK 8, the JDBC 4.2, not JDBC 8, is used to work as a Java
Database Connection (JDBC) component.

As for the compatibility between the JDBC 4.2 and the Microsoft SQL Server
2019 Express database, the good news is that fortunately this JDBC is compatible
with that database.

Thus starting from this Chapter, Chap. 8, we will change our development envi-
ronments, including the NetBeans IDE, Java JDK, and JDBC driver, to those com-
ponents we mentioned above, which can be summarized as:

• Use NetBeans 8.2 IDE to replace the Apache NetBeans 12 IDE.
• Use JDK 8 to replace JDK 14.
• Use JDBC 4.2 to replace JDBC 8.

Now let’s begin our setup process to download, install, and configure those com-
ponents one by one.

8.4.2.1 Download and Install Required Components

As we did for the Apache NetBeans 12 IDE, prior to downloading and installing
NetBeans 8.2 IDE, we need first to download and install JDK 8. Refer to Appendix
F to complete this downloading and installing process for JDK 8.

Refer to Appendix G to download and install JDBC 4.2, and refer to Appendix H
to complete the downloading and installing process for NetBeans 8.2 IDE.

Now we have completed the downloading and installing process for all our
required components; we are ready to build our Web application projects. However,
before we can continue, we need to first configure our NetBeans 8.2 IDE to make it
ready for us to start our project development process.

8 Developing Java Web Applications to Access Databases

405

8.4.2.2 Configure NetBeans IDE 8.2 and Create Our First Web
Application Project

On the desktop, double click on the NetBeans IDE 8.2 icon to open it.

1) On the opened IDE, three tabs are displayed on the left, Projects, Files, and
Services. Click on the Services tab to open the Services pane.

2) Expand the Servers folder, and you can find two Web servers, Tomcat and
GlassFish, have been installed. Right click on the GlassFish Server, and click
on the Remove item from the popup menu to delete this server since we need
to use the Tomcat server for all our projects. Click on the Yes button to confirm
this deletion.

In order to configure the IDE to meet our requirements to build our Java Web
applications, we need to first create a new Web project. We can start creating our
first Web application project as this new project. Perform the following steps to cre-
ate our first Web application project, JavaWebDBJSPSQL in the default folder C:\
Class DB Projects\Chapter 8:

1) On the opened NetBeans IDE, go to File\New Project item to open New
Project wizard.

2) On the opened New Project wizard, select Java Web from the Categories list
and Web Application from the Projects list, as shown in Fig. 8.51. Click on the
Next button.

Enter JavaWebDBJSPSQL into the Project Name box, as shown in Fig. 8.52,
and click on the Next button.

On the next wizard, Server and Settings, which is shown in Fig. 8.53, keep the
default Web server, Apache Tomcat 8.0.27.0, and click on the Next button. The

Fig. 8.51 The opened New Project wizard

8.4 Build Java Web Project to Query SQL Server Database

406

reason why this server is selected as a default one is because we deleted the GlassFish
server and only one server is available now.

On the next wizard, Frameworks, just click on the Finish button to complete
this creating Web application process since we do not need to use any framework on
this project.

Next let’s add the JDBC Driver to access our SQL Server 2019 database. Right
click on our project JavaWebDBJSPSQL from the Projects window, and select
the Properties item to open the project properties wizard, as shown in Fig. 8.54.

Click on the Libraries node, and click on the Add JAR/Folder button to open
the Windows Explorer to locate our installed JDBC Driver.

On the opened Windows Explorer, browse to the location where we installed the
JDBC Driver (refer to Appendix G to download and install this driver). In our case,
it is C:\Program Files\sqljdbc_4.2\enu\jre7\sqljdbc41.jar. Click on this JAR file
to select it, and click on the Open button to add it into our project.

Fig. 8.52 The finished Name and Location wizard

Fig. 8.53 The opened Server and Settings wizard

8 Developing Java Web Applications to Access Databases

407

Your finished Project Properties wizard should match one that is shown in
Fig. 8.55.

Click on the OK button to complete this JDBC driver addition operation.
Now we can continue to build our first Web application project by adding other

required components.

8.4.3 Access and Query the LogIn Table Using JavaServer
Pages and Help Class Files

First let’s use JavaServer Pages and help class file to access and query data from the
LogIn table in our sample SQL Server database CSE_DEPT via the LogIn.jsp
page we built in Sect. 8.4.1.1 in this chapter.

Fig. 8.54 The opened Project Properties wizard

Fig. 8.55 The finished Adding JDBC Driver wizard

8.4 Build Java Web Project to Query SQL Server Database

408

We have provided a very detailed discussion about building and developing Java
Web applications using JavaServer Pages and Java help class file in Sects. 8.1.2 and
8.1.3. Now let’s follow those discussions to coding the LogIn page and creating the
Java help class file LogInQuery.java to perform data query from the LogIn table.

Now we will use this project to build our database application project to perform
the data actions against our sample SQL Server database. Next we need to add all
five Web pages we built in Sects .8.4.1.1, 8.4.1.2, 8.4.1.3, 8.4.1.4 and 8.4.1.5 into
this new project. Perform the following operations to complete this Web pages addi-
tion process:

 1) Launch the Windows Explorer, and go to the folder where we stored those five
Web pages; in this application, it is C:\Temp. Copy all five pages including
LogIn.jsp, Selection.jsp, Faculty.jsp, Course.jsp, and Student.jsp, and then
paste them to our new Web project folder, which is Class DB Projects\Chapter
8\JavaWebDBJSPSQL in this application.

 2) Launch the NetBeans IDE, and open our new Web project
JavaWebDBJSPSQL. Click on the Files tab to open the Files window, and
browse to our Web project folder JavaWebDBJSPSQL. You can find that all
five Web pages have been added into this project. Select all of these five pages
using the Shift key, right click on these five selected pages, and click on the
Copy item from the popup menu.

 3) Click on the Projects tab to open the Projects window, browse to our project
folder and then the Web Pages folder, right click on this folder, and select the
Paste item to paste these five Web Pages to this Web Pages folder.

Next we need to do a little modification to our LogIn.jsp file and break this file
into two JSP files: LogIn.jsp and LogInQuery.jsp. The reason for us to make it
into two JSP files is that we want to process and display data in two separate files to
make these operations clear and easy.

8.4.3.1 Modify the LogIn.jsp Page and Create LogInQuery.jsp File

Now let’s first modify the LogIn.jsp page by double clicking on the LogIn.jsp to
open it and perform the following modifications to this page. The modified parts
have been highlighted in bold and are shown in Fig. 8.56.

Let’s have a closer look at these modifications to see how they work.

 A. The first modification is to the form tag, and an action attribute has been added
into this tag. Generally a form tag is used to create a HTML form to collect
user information and send all pieces of those collected information to the server
when a submit button on this Form is clicked. Therefore a form and all submit-
ting buttons on that form have a coordinate relationship. If a button is defined
as a submit button by its type attribute, all Form data will be sent to the server
whose URL is defined in the action attribute on the form tag when this submit-
ting button is clicked by the user. Here we use a Java Server Page, .\LogInQuery.

8 Developing Java Web Applications to Access Databases

409

jsp, as the URL for our target page. Exactly this target page is used to access our
Java help class file to handle all JDBC- and database-related processing and
business logics. The .\ symbol is used to indicate that our next JSP file is located
at the relatively current folder since this page is a part of the server functions and
will be run at the server side as the whole project runs.

 B. The second modification is to add a name attribute to the LogIn button in order
for it to be identified in the server side later.

 C. The third modification is to change the type of our Cancel button from submit
to button, and add a name and an onclick attribute for this button. The reason
for us to do these modifications is that we want to close our LogIn.jsp page
when this Cancel button is clicked as the project runs, but we do not want to
forward this button-click event to the server to allow the server to do this close
action. Therefore we have to change the type of this button to button (not sub-
mit) to avoid triggering the action attribute in the Form tag. We also need to add
a self.close() method to the onclick attribute of this button to call the system
close() method to terminate our application. The self means the current page.

Go to File > Save item to save these modifications.
Now let’s create and build our LogInQuery.jsp page, which works as a part of

server, to receive and handle the Form data including the login information sent by
the LogIn.jsp page. Right click on our project JavaWebDBJSPSQL from the
Projects window, and select the New > JSP item from the popup menu to open the
New JSP File wizard. If you cannot find the JSP item under the New menu item,
go to Other item and select the Web from the Categories list and the JSP item
from the File Types list. Click on the Next button to open this wizard.

Enter LogInQuery to the File Name field in the opened New JSP File wizard,
and keep all other default settings unchanged. Then click on the Finish button to
create this JSP file. Enter the codes that are shown in Fig. 8.57 into the <body> …
</body> tags in this page.

<html xmlns:v="urn:schemas-microsoft-com:vml"
………
<body style='margin:0'>
<div style='position:absolute;width:10.-2040in;height:1.-1423in'>
<![if !pub]>
<form method=post action=".\LogInQuery.jsp">
………

<input name=UserNameField maxlength=255 size=21 value="" type=text
v:shapes="_x0000_s1028">

………
<input name=PassWordField maxlength=255 size=21 value="" type=text

v:shapes="_x0000_s1029">
………

<input type=submit value=LogIn name="LogInButton" v:shapes="_x0000_s1030">
<input type=button value=Cancel name="cancelButton" onclick="self.close()" v:shapes="_x0000_s1031">
………
</form>
</body>
</html>

A

B

C

Fig. 8.56 The modifications to the LogIn.jsp page

8.4 Build Java Web Project to Query SQL Server Database

410

Let’s have a closer look at this piece of codes to see how it works.

 A. A JSP directive tag is used to indicate that this page uses Java language in this
JSP page.

 B. Some local variables and objects are declared first. The string variable nextPage
is used to hold the URL of the next page, and the lquery is a new instance of our
Java help class LogInQuery.java we will build in the next section.

 C. The getParameter() method is used to pick up the login information entered by
the user in the LogIn.jsp page. The collected login information including the
username and password is assigned to two local string variables u_name and
p_word, respectively.

 D. The checkLogIn() method defined in our Java help class file is called to perform
the database query and the login matching processing. The collected login infor-
mation is used as arguments and passed into this method. The running result of
this method is a string, and it is assigned to the local string variable result.

 E. An if block is used to check the running result of the checkLogIn() method. The
program will be directed to a successful page (Selection.jsp) if a matched login
record is found.

 F. Otherwise an error message is printed out to indicate that this login pro-
cess failed.

 G. The CloseDBConnection() method defined in the help class is called to discon-
nect the connection to our sample database.

 H. A JSP forward directive is used to direct the program to the next page.

Next let’s create and build our Java help class file LogInQuery.java to perform
JDBC- and database-related operations and actions.

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>LogIn Query Page</title>

</head>
<body>
<%@page language="java" %>

<%

String nextPage = null;

LogInQuery lquery = new LogInQuery();

String u_name = request.getParameter("UserNameField");

String p_word = request.getParameter("PassWordField");

String result = lquery.checkLogIn(u_name, p_word);

if (result.equals("Matched"))

nextPage = "Selection.jsp";

else

out.println("LogIn is failed");

lquery.CloseDBConnection();

%>

<jsp:forward page = "<%=nextPage%>" />

</body>
</html>

A

B

C

D

E

F

G

H

Fig. 8.57 The codes for the LogInQuery.jsp page

8 Developing Java Web Applications to Access Databases

411

8.4.3.2 Create the Java Help Class File LogInQuery.java

The purpose of this help class file is to handle the JDBC-related operations and
database-related actions. As we discussed in Sect. 8.1.3, to distinguish between the
database-related data processing and running results displaying, we can separate a
Java Web application into two parts: the JDBC-related database processing and the
business logics such as checking and confirming a pair of matched username and
password located at a Java help class file and the data and running results displaying
at a Web or a JavaServer page.

It looks like that we can use the Java persistence API to perform the database
accessing and query to our LogIn table. However, because the Java persistence API
can only be implemented in a limited number of Java EE containers that provide the
Resource Injection function, we cannot inject the Java persistence API into our nor-
mal Java help class file. Therefore in this part, we have to use the Java runtime
object method to perform database-related actions to check matched username and
password from the LogIn table in our sample database. We can include these
database- related actions into this Java help class file.

Right click on our project JavaWebDBJSPSQL from the Projects window, and
select the New > Java Class item from the popup menu to open the New Java
Class wizard. If you cannot find the Java Class item under the New menu item,
go to Other item and select the Java item from the Categories list and the Java
Class item from the File Types list. Click on the Next button to open this wiz-
ard. On the opened wizard, enter LogInQuery into the Class Name field, and
select JavaWebDBJSPSQLPackage from the Package combo box, as shown in
Fig. 8.58. Click on the Finish button to create this help class file.

Before we can do the coding for this help class, we need first to create a dialog
box in this project. This dialog box works as a message box to provide possible
debug information during the project runs.

Fig. 8.58 The completed New Java Class wizard

8.4 Build Java Web Project to Query SQL Server Database

412

8.4.3.3 Create a Dialog Box as the Message Box

To create a new dialog box form window, perform the following operations:

 1) Right click on our project JavaWebDBJSPSQL from the Projects window, and
select the New > Other item from the popup menu to open the New File wizard.
Select the Swing GUI Forms from the Categories list and OK/Cancel
Dialog Sample Form item from the File Types list. Click on the Next but-
ton to open a new dialog box form.

 2) Enter MsgDialog into the Class Name field, and select the
JavaWebDBJSPSQLPackage from the Package field. Your finished New
Dialog Form wizard should match one that is shown in Fig. 8.59. Click on the
Finish button to create this new dialog box.

 3) A new Java dialog box class file MsgDialog.java is created and located under
the JavaWebDBJSPSQLPackage folder in the Projects window. Click on the
Design button to open its dialog form window. Add a label to this dialog form
window by dragging a Label control from the Palette window, exactly from the
AWT sub-window, and placing it to the dialog form window.

 4) Resize this label to an appropriate size, as shown in Fig. 8.60. Right click on this
label and select the Change Variable Name item from the popup menu to open
the Rename dialog. Enter MsgLabel into the New Name field, and click on the
OK button.

 5) Go to the text property and remove the default text label1 for this label.

Now click on the Source button to open the code window for this dialog box, and
we need to add some codes to this class to enable it to display some necessary mes-
sages as the project runs.

On the opened code window, add the codes that are highlighted in bold and
shown in Fig. 8.61.

Fig. 8.59 The finished New OK/Cancel Dialog Form wizard

8 Developing Java Web Applications to Access Databases

413

The setLocationRelativeTo(null) instruction is used to set this dialog box at the
center of the screen as the project runs. The method setMessage() is used to set up
a user message by calling the setText() method.

Now we have finished creating and building our dialog box form, and let’s begin
to do the coding for our help class file.

8.4.3.4 Develop the Codes for the Help Class File

Double click on this help class LogInQuery.java from the Projects window to
open its code window. Perform the following operations to complete the coding
process for this class:

 1) Import the SQL Server-related package, and create the constructor of this class.
 2) Build the codes for the checkLogIn() method to access and query the LogIn table.
 3) Build the codes for the CloseDBConnection() method to close the connection to

our sample database when this login query is complete.

Let’s do these one by one.

Fig. 8.60 The preview of
the dialog box

public MsgDialog(java.awt.Frame parent, boolean modal) {
super(parent, modal);
initComponents();
this.setLocationRelativeTo(null);

}
public void setMessage(String msg){

MsgLabel.setText(msg);

}

Fig. 8.61 The added codes to the MsgDialog.java class

8.4 Build Java Web Project to Query SQL Server Database

414

8.4.3.4.1 Import SQL Server-Related Package and Create the Class
Constructor

Since we need to query our sample SQL Server database, therefore we need to
import the SQL Server-related package. The class constructor is used to build a
valid connection to our sample database. The detailed codes are shown in Fig. 8.62.

Let’s have a closer look at this piece of codes to see how it works.

 A. The JDBC SQL Server-related package is imported first since we need to use
some JDBC classes defined in that package.

 B. Some attributes or properties of this help class are defined first inside this class,
which include two private String properties user_name and pass_word, a class
level connection variable con, and a dialog box that is used to display some
debug information.

 C. Inside the class constructor, a try….catch block is used to load the JDBC SQL
Server driver, which is a type IV JDBC driver. Refer to Sect. 6.3.3.3 in Chap. 6
to get more detailed information about this driver name.

 D. The catch block is used to collect any possible exceptions that occurred during
this driver loading process.

 E. The JDBC SQL Server URL is assigned to the local variable url. Refer to Sect.
6.3.3.3.1 in Chap. 6 to get more detailed information about this URL.

 F. The getConnection() method that is embedded in a try block is executed to
establish this database connection.

 G. The catch block is used to collect any possible exceptions that occurred during
this database connection process.

package JavaWebDBJSPSQLPackage;
import java.sql.*;

public class LogInQuery {
String user_name;
String pass_word;
static Connection con;
MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);

public LogInQuery() {
try {

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");
}
catch (Exception e) {

msgDlg.setMessage("Class not found exception!" + e.getMessage());
msgDlg.setVisible(true);

}
String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";
try {

con = DriverManager.getConnection(url,"SMART","Happy2020");
}
catch (SQLException e) {

msgDlg.setMessage("Could not connect!" + e.getMessage());
msgDlg.setVisible(true);
e.printStackTrace();

}
}
………

A

B

C

D

E

F

G

Fig. 8.62 The codes of the class constructor

8 Developing Java Web Applications to Access Databases

415

Now let’s build the codes for our two user-defined methods, the checkLogIn()
and CloseDBConnection(). First let’s start with the checkLogIn() method to try to
query the LogIn table to find a match username and password pair.

8.4.3.4.2 Build the Codes for the checkLogIn() Method

The function of this method is to query the LogIn table in our sample database to try
to find a matched username and password pair based on the username and password
entered by the user from the LogIn.jsp page. A “Matched” string will be returned
to the LogInQuery.jsp page if a matched username and password pair is found.
Otherwise, an “Unmatched” string is returned. Based on this returned string, the
LogInQuery.jsp will determine the next page to be opened. If a matched pair has
been found, the Selection.jsp page will be displayed to allow users to select differ-
ent information item to access and query different table in our sample database.
Otherwise, an error message will be displayed to indicate that this login process
failed since no matched login information can be found from our sample database.

In the opened code window of the help class LogInQuery.java, enter the codes
that are shown in Fig. 8.63 under the class constructor, and make it the body of our
checkLogIn() method.

Let’s have a closer look at this piece of codes to see how it works.

 A. The query string, which is a standard SQL statement, is created first with the
actual column names as the query columns. The positional parameters are used
for both username and password dynamic inputs.

 B. Starting from a try block, the prepareStatement() method is called to create a
PreparedStatement object pstmt.

 C. The setter method is used to set two positional parameters in the positional order.

public String checkLogIn(String uname, String pword) {
String query = "SELECT user_name, pass_word FROM LogIn " +

"WHERE user_name = ? AND pass_word = ?";
try{

PreparedStatement pstmt = con.prepareStatement(query);
pstmt.setString(1, uname);
pstmt.setString(2, pword);
ResultSet rs = pstmt.executeQuery();
while (rs.next()){

user_name = rs.getString(1);
pass_word = rs.getString(2);

}
}
catch (SQLException e) {

msgDlg.setMessage("Error in Statement! " + e.getMessage());
msgDlg.setVisible(true);

}
if (user_name.equals(uname) && pass_word.equals(pword))

return "Matched";
else

return "Nomatched";
}

A

B

C

D

E

F

G

H

Fig. 8.63 The codes for the checkLogIn() method

8.4 Build Java Web Project to Query SQL Server Database

416

 D. The executeQuery() method is executed to perform this query, and the returned
result is assigned to the ResultSet object rs.

 E. A while loop is used to pick up any possible matched username and password.
In fact, only one row is returned, and therefore this loop can run only one time.
The getString() method is used to pick up the queried username and password.
The retuned username and password are assigned to two properties, user_name
and pass_word, respectively.

 F. The catch block is used to collect any possible exceptions that occurred during
this database query process.

 G. If a matched username/password pair is found, a "Matched" string will be
returned to the LogInQuery.jsp page.

 H. Otherwise, an "Unmatched" string is returned to indicate that this login
query failed.

Next let’s build the codes for the CloseDBConnection() method.

8.4.3.4.3 Build the Codes for the CloseDBConnection() Method

This method is necessary when a data query is finished and no more data actions are
needed for a database application. A possible running error may be encountered if
one did not disconnect the established connection to a target database and exit the
project.

On the opened code window of the help class LogInQuery.java, enter the codes
that are shown in Fig. 8.64 under the checkLogIn() method to create our
CloseDBConnection() method.

Let’s have a closer look at this piece of codes to see how it works.

 A. A try block is used to handle this database disconnection function. First we
need to check whether a valid connection object existed, which means that the
database is still being connected. The isClosed() method is executed to do this

public void CloseDBConnection()
{

try{
if (con != null)

con.close();
}catch (SQLException e) {

msgDlg.setMessage("Error in close the DB! " + e.getMessage());
msgDlg.setVisible(true);

}
}

A

B

Fig. 8.64 The codes for the CloseDBConnection() method

8 Developing Java Web Applications to Access Databases

417

checking. A false will be returned if a valid connection object existed, which
means that the database is still being connected. In that case, the close() method
is called to disconnect this connection.

 B. The catch block is used to collect any possible exceptions that occurred during
this disconnection process.

Now we have finished all coding development for this login process.
Now we are ready to build and run our Web project to test the login function

using the LogIn.jsp, LogInQuery.jsp and the help class file LogInQuery.java.
Click on the Clean and Build Main Project button to build our project. Then

right click on the LogIn.jsp file from the Projects window, and select Compile File
item from the popup menu to compile our Web pages. Right click on the LogIn.jsp
page again, and select the Run File item from the popup menu to run our project.

If the HTTP Port of the Tomcat server 8080 has been occupied by some other
devices and the page cannot be opened, refer to Appendix I to fix this Port num-
ber issue.

As the LogIn.jsp is displayed, enter a valid username and password, such as
jhenry and test, into the associated fields, as shown in Fig. 8.65.

Click on the LogIn button to call the checkLogIn() method to perform the login
query to find a matched username and password pair. The Selection.jsp page is
displayed to indicate that this login process is successful and a matched username
and password has been found, as shown in Fig. 8.66.

Our login process using the JSP and help class file is successful.
When you run this LogIn.jsp file, a possible bug you may encounter is the data-

base connection error. In that case, you need to open the SQL Server 2019
Configuration Manager and open the SQL Server Services wizard to start the

Fig. 8.65 The displayed LogIn.jsp page

8.4 Build Java Web Project to Query SQL Server Database

418

server SQL2019EXPRESS if it is stopped. Go to Start > All Programs > Microsoft
SQL Server 2019 to find and open that Manager.

Next let’s build and code for the Selection.jsp page. As we mentioned, this page
can be considered as the control page, and it will direct users to the different pages
to perform the different database query functions based on the users’ choices.

8.4.4 Develop the Codes for the Selection Page

To handle the users’ input and direct to the different target pages based on the users’
input, we still want to use the Model-View-Controller (MVC) mode to build this
page. We can use the Selection.jsp page as a view to display the input and output
and create another JSP page SelectionProcess.jsp as the Model and Controller to
process the users’ input and direct to the target page.

Of course, you can combine the MVC mode together to perform displaying and
processing page at a single JSP page file. However, you need to add a hidden field
to the page and use that hidden field as an identifier to indicate whether the page has
been submitted or not. That will make the Selection.jsp page complex in the coding
process. We divide this page building process into two steps: modify the Selection.
jsp page and create the SelectionProcess.jsp page. Let’s first perform some neces-
sary modifications to the Selection.jsp page.

Launch the NetBeans IDE, and open the Selection.jsp page by double clicking
on it from the Projects window, and perform the modifications shown in Fig. 8.67
to this page. All modifications have been highlighted in bold.

Let’s have a closer look at these modifications to see how they work.

Fig. 8.66 The successful page – Selection.jsp page

8 Developing Java Web Applications to Access Databases

419

 A. An action attribute is added to the Form tag, and the destination of this action
is the SelectionProcess.jsp page. The '.\' operator is used to indicate to the Web
controller that the next page, SelectionProcess.jsp, is located at the cur-
rent folder.

 B. The type of the second button, Exit, is changed from the submit to the button
since we do not want to submit any form data to the next page when this button
is clicked. Instead, we want a system method, self.close(), to be executed as this
button is clicked to exit our project. Therefore an onclick attribute is used to
direct the control to this method when this button is clicked.

Now let’s create the selection process page SelectionProcess.jsp.
Open our project JavaWebDBJSPSQL from the Projects window. Perform the

following operations to create this page:

 1) Right click on our project JavaWebDBJSPSQL from the Projects window, and
select the New > JSP item from the popup menu. If you cannot find the JSP item
from the popup menu, go to the Other item to open the New File wizard. Select
the Web from the Categories list and JSP from the File Types list to do this.

………
<div style='position:absolute;width:10.-2040in;height:2.047in'>
<![if !pub]>

<form method=post action=".\SelectionProcess.jsp">
………
<input type=submit value=OK v:shapes="_x0000_s1028">
………

<input type=button value=Exit onclick="self.close()" v:shapes="_x0000_s1029">

<![if !pub]><![endif]><![if !pub]>
</form>
………

A

B

Fig. 8.67 The coding modifications to the Selection.jsp page

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Selection Process Page</title>

</head>
<body>

<%@page language="java" %>

<%

String nextPage = null;

String userSel = request.getParameter("ListSelection");

if (userSel.equals("Faculty Information"))

nextPage = "Faculty.jsp";

else if (userSel.equals("Course Information"))
nextPage = "Course.jsp";

else

nextPage = "Student.jsp";

%>

<jsp:forward page = "<%=nextPage%>" />

</body>
</html>

A

B

C
D

E

Fig. 8.68 The codes for the SelectionProcess.jsp page

8.4 Build Java Web Project to Query SQL Server Database

420

 2) On the opened New JSP File wizard, enter SelectionProcess into the File Name
field, and click on the Finish button.

Now let’s develop the codes for this page. Double click on our new created page
SelectionProcess.jsp from the Projects window to open its code window. On the
opened code window, perform the modifications shown in Fig. 8.68 to this page. All
modification parts have been highlighted in bold.

Let’s have a closer look at this piece of codes to see how it works.

 A. A JSP directive tag is used to indicate that this page uses the Java language, and
it is a JSP file.

 B. A local string variable nextPage is declared first. This variable is used to hold
the URL of the next page, which we will use later to direct the control to the
associated page.

 C. The getParameter() method is used to pick up the selected item by the user
from the selection list in the Selection.jsp page. The argument of the getPa-
rameter() method is the name of the selection list in the Selection.jsp page. The
selected item is then assigned to another local string variable userSel.

 D. An if selection structure is used to check the user’s selection and assign the
associated next page to the local variable nextPage.

 E. Finally a JSP forward directive is used to direct the program to the next page.

Now we can build and run this page to test its function.
Click on the Clean and Build Main Project button to compile and build our

project. First right click on the Selection.jsp page from the Projects window, and
select the Compile File item to compile it, and then right click on the Selection.jsp

Fig. 8.69 The running status of the Faculty.jsp page

8 Developing Java Web Applications to Access Databases

421

page again to select the Run File item from the popup menu to run the project. The
Selection.jsp is displayed, as shown in Fig. 8.66, when the project runs.

Select a desired item, such as Faculty Information, from the Selection listbox,
and click on the OK button. You can find that the Faculty.jsp page is displayed as
shown in Fig. 8.69. You can try to select other item from the listbox to open other
related pages.

Click on the Exit button to terminate our project.
Our Selection page is successful!

8.4.5 Query the Faculty Table Using JavaServer Pages
and JSP Implicit Session Object

In this section, we will discuss how to access and query data from the Faculty table
in our sample database using the JavaServer Pages and JSP implicit session object.

In Sect. 8.1.4, we have provided a detailed discussion about how to use the JSP
implicit session object to query our Faculty table. In this part, we will build a real
project to perform this data query using this object. We divide this discussion into
the following three parts:

 1) Modify the Faculty.jsp page, and use it as a view.
 2) Create a new FacultyProcess.jsp page, and use it as a model and controller page.
 3) Create a help class file FacultyQuery.java to handle data query and related busi-

ness logics.

First let’s modify our view class, Fcaulty.jsp page.

8.4.5.1 Modify the Faculty.jsp Page

The Faculty.jsp page works as a view to provide the displaying function for input
and output. We need to modify this page to enable it to forward the user’s inputs to
the model and controller page and, furthermore, to call the help class to process our
data query. Also this page needs to return to the Selection.jsp page if the user clicks
on the Back button on this page.

Open this page by double clicking on it from the Projects window, and perform
the modifications shown in Fig. 8.70 to this page. All modified coding parts have
been highlighted in bold.

Let’s have a closer look at this piece of modified codes to see how it works.

 A. An action attribute is added to the Form tag to forward all information collected
from this page to the model and controller page FcaultyProcess.jsp that will
call our help class file FacultyQuery.java to perform the faculty data query
process.

8.4 Build Java Web Project to Query SQL Server Database

422

 B. In order to select the correct faculty image based on the faculty member selected
by the user, we need to assign the session.getAttribute() method to the src
attribute under the imagedata tag. The argument of this method should be
defined as a property in our help class file, and a method, getFacultyImage()
defined in that help class file, will be used to select the appropriate faculty image
and assign it to this property.

 C. Starting from step C until step J, we use the embedded JSP codes to assign the
selected faculty image and queried faculty columns from our Faculty table to
the src and the value tags of the associated text field in this Faculty.jsp using
the getAttribute() method of the session class. In this way, as long as the que-
ried faculty row has any change, this modification will be immediately updated
and reflected to each text field in our Faculty.jsp page. Thus, a direct connection
or binding between the text fields in our Faculty.jsp page and the queried
Faculty columns in our help class is established.

 K. From steps K to O, a name attribute is added into each Submit button tag. This
attribute is very important since we need to use it to identify each submit button

<form method=post action=".\FacultyProcess.jsp">
………
<v:imagedata src="" o:title="<EMPTY>"/><v:shadow color="#ccc [4]"/>
………

left:47px;top:67px;width:154px;height:166px'><img width=154 height=166
src="<%=session.getAttribute("facultyImage") %>" v:shapes="_x0000_s1027"><![endif]>
……….

<input name=FacultyNameField maxlength=255 size=18
value="<%=session.getAttribute("facultyName") %>" type=text v:shapes="_x0000_s1029">

………

<input name=FacultyIDField maxlength=255 size=21
value="<%=session.getAttribute("facultyId") %>" type=text v:shapes="_x0000_s1031">

………

<input name=NameField maxlength=255 size=21
value="<%=session.getAttribute("facultyName") %>" type=text v:shapes="_x0000_s1033">

………

<input name=TitleField maxlength=255 size=21
value="<%=session.getAttribute("title") %>" type=text v:shapes="_x0000_s1035">

………

<input name=OfficeField maxlength=255 size=21
value="<%=session.getAttribute("office") %>" type=text v:shapes="_x0000_s1037">

………
<input name=PhoneField maxlength=255 size=21

value="<%=session.getAttribute("phone") %>" type=text v:shapes="_x0000_s1039">
………
<input name=CollegeField maxlength=255 size=21

value="<%=session.getAttribute("college") %>" type=text v:shapes="_x0000_s1041">
………
<input name=EmailField maxlength=255 size=21

value="<%=session.getAttribute("email") %>" type=text v:shapes="_x0000_s1043">
………
<input type=submit value=Select name="Select" v:shapes="_x0000_s1044">
………
<input type=submit value=Insert name="Insert" v:shapes="_x0000_s1045">
………
<input type=submit value=Update name="Update" v:shapes="_x0000_s1046">
………
<input type=submit value=Delete name="Delete" v:shapes="_x0000_s1047">
………
<input type=submit value=Back name="Back" v:shapes="_x0000_s1048">
………

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

Fig. 8.70 The modified codes for the Faculty.jsp page

8 Developing Java Web Applications to Access Databases

423

in the next page, our model and controller page, FacultyProcess.jsp, using the
getParameter() method of the request object to direct the control to the differ-
ent pages to handle different data query and data manipulation actions to the
Faculty table in our sample SQL Server database CSE_DEPT.

Now let’s take a look at our model and controller page FacultyProcess.jsp.

8.4.5.2 Create the FacultyProcess.jsp Page

The purpose of this page is to direct the control to the different help class files based
on the button clicked by the user from the Faculty.jsp page. The following help
class files will be triggered and executed based on the button clicked by the user
from the Faculty.jsp page:

 1) If the user selected and clicked the Select button, the control will be directed to
the faculty data query help class file FacultyQuery.java to perform the faculty
record query function.

 2) If the user clicked the Insert button, the control will be directed to the faculty
data insertion help class file FacultyInsertBean.java to do the faculty record
insertion.

 3) If the user clicked the Update or Delete button, the control will be directed to the
faculty record updating and deleting help class file FacultyUpdateDeleteBean.
java to perform the associated data manipulations.

 4) If the user selected and clicked the Back button, the control will be returned to
the Selection.jsp page to enable users to perform other information query
operations.

Now let’s create this FacultyProcess.jsp page.
Right click on our project JavaWebDBJSPSQL from the Projects window, and

select the New > JSP item from the popup menu to open the New JSP File wizard.
Enter FacultyProcess into the File Name field, and click on the Finish button.

Double click on our new created FacultyProcess.jsp page from the Projects
window, exactly under the Web Pages folder, to open this page. Enter the codes
shown in Fig. 8.71 into this page. The new entered codes have been highlighted
in bold.

Now let’s have a close look at these codes to see how they work.

 A. You can embed any import directory using the JSP directive in a HTML or a JSP
file. The format is <%@ page import="java package" %>. In this page, we
embed one package, JavaWebDBJSPSQLPackage.* since we will build our
Java help class file FacultyQuery.java under that package in the next section.

 B. A new instance of our help class FacultyQuery that will be created in the next
section, fQuery, is created since we need to use properties and methods defined
in that class to perform faculty record query and faculty image selection
functions.

8.4 Build Java Web Project to Query SQL Server Database

424

 C. The getParameter() method defined in the session class is executed to identify
which submit button has been clicked by the user in the Faculty.jsp page. As
you know, totally we have five buttons in the Faculty.jsp page. All Faculty.jsp
form data, including all text fields, image box, and submit buttons, will be sub-
mitted to this FacultyProcess.jsp page when any of five buttons is clicked. If a
button is clicked, the getParameter() method with the name of that clicked
button as the argument of this method will return a non-null value. In this way,
we can identify which button has been clicked. We use a sequence of if … else
if selection structures to check all five buttons to identify the clicked button.

<%@ page import="JavaWebDBJSPSQLPackage.*" %>

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Faculty Process Page</title>

</head>
<body>

<%

FacultyQuery fQuery = new FacultyQuery();

if (request.getParameter("Select")!= null) {

//process the faculty record query
String imgPath = "FImages\\";

String fname = request.getParameter("FacultyNameField");

boolean res = fQuery.QueryFaculty(fname);

if (!res)

response.sendRedirect("Faculty.jsp");

else {

session.setAttribute("facultyId", fQuery.getFacultyID());

session.setAttribute("facultyName", fQuery.getFacultyName());

session.setAttribute("office", fQuery.getOffice());
session.setAttribute("title", fQuery.getTitle());

session.setAttribute("college", fQuery.getCollege());

session.setAttribute("phone", fQuery.getPhone());

session.setAttribute("email", fQuery.getEmail());

}

String fimg = fQuery.getFacultyImage();

if (fimg == null) {

if (request.getParameter("FacultyImageField")!= null)

session.setAttribute("facultyImage", imgPath + request.getParameter("FacultyImageField"));

else

session.setAttribute("facultyImage", "Default.jpg");

}

else

session.setAttribute("facultyImage", imgPath + fimg);

fQuery.setFacultyImage(null);

response.sendRedirect("Faculty.jsp");
}

else if (request.getParameter("Insert")!= null) {

//process the faculty record insertion

}

else if (request.getParameter("Update")!= null) {

//process the faculty record updating

}

else if (request.getParameter("Delete")!= null) {

//process the faculty record deleting

}

else if (request.getParameter("Back") != null) {

fQuery.CloseDBConnection();

response.sendRedirect("Selection.jsp");

}

%>

</body>
</html>

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

Fig. 8.71 The codes for the FacultyProcess.jsp page

8 Developing Java Web Applications to Access Databases

425

 D. A local folder, FImages, is created, and it is used to hold all faculty images to
be queried later. This folder is just under our Web Pages folder in our project.
The purpose of using this folder is to store all faculty image files and make our
projects clean and neat.

 E. If the Select button is clicked by the user, the getParameter() method with this
button’s name as argument will return a non-null value. This means that the user
wants to perform a faculty record query from the Faculty table in our sample
database. Again, the getParameter() method with the name of the faculty name
field, FacultyNameField, is used to pick up a desired faculty name that is
entered by the user from the Faculty.jsp page. The picked up faculty name is
assigned to a local String variable fname.

 F. Then the method QueryFaculty() defined in the help class file FacultyQuery.
java will be called to execute this faculty data query based on the selected fac-
ulty name fname obtained from step E above.

 G. If the QueryFaculty() method is executed unsuccessfully, which means that no
matched faculty record has been found, a false is returned to indicate this situa-
tion. In this case, we need to re-open the Faculty.jsp page to enable the user to
re-enter new faculty data to do another query using the sendRedirect() method
defined in the response class.

 H. Otherwise a matched faculty record has been found, and the query is successful.
The setAttribute() method defined in the session class is used to set up all prop-
erties defined in the help class file using the associated getter methods in
that class.

 I. The getFacultyImage() method, which is defined in the help class file
FacultyQuery.java that will be developed in the next section, is executed to
pick up the correct faculty image file, exactly the correct name of the faculty
image file.

 J. If the getFacultyImage() method returns a null, which means that no matched
faculty image has been found, then we will continue to check whether the user
has entered a new faculty image in the FacultyImageField textbox in the
Faculty.jsp page, and this is a normal case if the user wants to insert a new
faculty record into the Faculty table with a new faculty image. If the getParam-
eter() method returns a non-null value, which means that the user did enter a
new faculty image, exactly the name of a new faculty image, into that field, in
that case, we need to set up the facultyImage property with that name and later
on display that new faculty image based on that property.

 K. Otherwise, it means that no matched faculty image has been found and the user
did not want to enter a new faculty image. In that case, we need to display a
default faculty image by assigning the name of that default faculty image to the
facultyImage property.

 L. If the getFacultyImage() method returns a non-null value, which means that a
matched faculty image’s name has been found, the setAttribute() method is
executed to set up the facultyImage property with that faculty image’s name
attached with the image path, FImages, which is declared in step D, to get a
complete faculty image name.

8.4 Build Java Web Project to Query SQL Server Database

426

 M. The setFacultyImage() method is executed to clean up the content of the prop-
erty of the help class, facultyImage, which is a static String variable and works
as a global variable to store the current faculty image’s name. When a new fac-
ulty image is inserted or updated with a faculty record insertion or updating, the
name of that new faculty image will be assigned to the global variable faculty-
Image. To avoid displaying the same new faculty image in multiple times, we
need to clean up this global variable each time when a faculty record has been
retrieved and displayed.

 N. The sendRedirect() method defined in the response class is executed to redis-
play the Fcaulty.jsp page with the queried result on that page.

 O. If the getParameter(“Insert”) method returns a non-null value, which means
that the Insert button has been clicked by the user in the Faculty.jsp page and
the user wants to insert a new faculty record into the Faculty table in our sample
database, we will build a Java bean class to handle this faculty data inser-
tion later.

 P. Similarly, if the getParameter(“Update”) method returns a non-null value,
which means that the Update button has been clicked by the user in the Faculty.
jsp page and the user wants to update an existing faculty record in the Faculty
table in our sample database, we will build a Java bean class to handle this fac-
ulty data updating action later.

 Q. If the getParameter(“Delete”) method returns a non-null value, which means
that the Delete button has been clicked by the user in the Faculty.jsp page and
the user wants to delete an existing faculty record from the Faculty table in our
sample database, we will build a Java bean class to handle this faculty data
deleting action later.

 R. If the getParameter(“Back”) method returns a non-null value, which means
that the Back button has been clicked by the user in the Faculty.jsp page and
the user wants to return to the Selection.jsp page to perform other data query
operations, the CloseDBConnection() method is firstly executed to close the
connection to our sample database, and then the sendRedirect() method is
called to do this returning function.

Now let’s build our Java help class file FacultyQuery.java to handle all data
query actions, getter methods, class properties, and related business logics.

8.4.5.3 Create the Help Class File FacultyQuery.java

To create our Java help class file FacultyQuery.java to handle the faculty record
query, right click on our project JavaWebDBJSPSQL from the Projects window,
and select the New > Java Class item from the popup menu to open the New Java
Class wizard. Enter FacultyQuery into the Class Name field, and select the
JavaWebDBJSPSQLPackage from the Package combo box. Your finished New
Java Class wizard should match one that is shown in Fig. 8.72. Click on the Finish
button to create this new Java help class file.

8 Developing Java Web Applications to Access Databases

427

Now let’s develop the codes for this new Java help class file. Double click on our
new created Java help class file FacultyQuery.java from the Projects window to
open this file, and enter the codes that are shown in Fig. 8.73 into this file. Because
of the large size of this piece of codes, we divide this coding process into two parts.
The first part is shown in Fig. 8.73, and the second part is shown in Fig. 8.74. The
new entered codes have been highlighted in bold.

Let’s have a close look at these new added codes in Fig. 8.73 to see how they work.

 A. The java.sql.* package is imported first since all SQL Server database-related
classes and methods are defined in that package.

 B. Eight class properties related to the associated columns in the Faculty table in
our sample database are declared first. These properties are very important since
they are directly mapped to the associated columns in the Faculty table. All of
these properties can be accessed by using the associated getter method defined
at the bottom of this class.

 C. A class-level database connection object is created, and a Dialog object is also
created. We will use the latter as a message box to display some debug informa-
tion during the project runs.

 D. A try…catch block is used to load the database JDBC driver. The catch block
is used to track and collect any possible exception during this database driver
loading process.

 E. The database connection URL is defined. Refer to Sect. 6.3.3.3.1 in Chap. 6 to
get more detailed information about this URL definition.

 F. Another try…catch block is used to connect to our sample SQL Server data-
base with desired username and password. The catch block is used to track and
collect any possible exception that occurred during this database connection
process.

 G. The main query method, QueryFaculty(), is defined with the selected faculty
name as the argument. The SQL query statement is firstly created with the fac-
ulty name as the positional dynamic parameter.

Fig. 8.72 The finished New Java Class wizard

8.4 Build Java Web Project to Query SQL Server Database

428

 H. Starting from a try block, the prepareStatement() method is called to create a
PreparedStatement object pstmt.

 I. The setter method is used to set the positional parameter in the positional order.
 J. The executeQuery() method is executed to perform this query, and the returned

result is assigned to the ResultSet object rs.
 K. A while loop is used to pick up a matched faculty record. In fact, only one row

is returned, and therefore this loop can run only one time. The getString()
method is used to pick up each queried column and assign the associated prop-

package JavaWebDBJSPSQLPackage;
import java.sql.*;

public class FacultyQuery {
private static String facultyImage = null;

private String facultyID;

private String facultyName;

private String office;

private String title;

private String phone;

private String college;

private String email;

static Connection con;
MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);

public FacultyQuery() {
try {

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}

catch (Exception e) {

msgDlg.setMessage("Class not found exception!" + e.getMessage());
msgDlg.setVisible(true);

}

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";

try {

con = DriverManager.getConnection(url,"SMART","Happy2020");

}

catch (SQLException e) {

msgDlg.setMessage("Could not connect!" + e.getMessage());

msgDlg.setVisible(true);

e.printStackTrace();

}

}

public boolean QueryFaculty(String fname) {

String query = "SELECT faculty_id, faculty_name, title, office, phone, college, email FROM Faculty " +

"WHERE faculty_name = ?";

try{

PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setString(1, fname);

ResultSet rs = pstmt.executeQuery();

while (rs.next()){

facultyID = rs.getString(1);

facultyName = rs.getString(2);

title = rs.getString(3);

office = rs.getString(4);
phone = rs.getString(5);

college = rs.getString(6);

email = rs.getString(7);

}

return true;

}

catch (SQLException e) {

msgDlg.setMessage("Error in Statement! " + e.getMessage());

msgDlg.setVisible(true);

return false;

}

}

A

B

C

D

E

F

G

H

I

J

K

L

M

N

Fig. 8.73 The first part of the codes for the Java help class file

8 Developing Java Web Applications to Access Databases

429

erty defined at the beginning of this help class. The index used for this get-
String() method should be matched to the order of the queried columns in the
SQL query statement built in step G.

public String getImage(String f_name) {

int maxNumber = 7;

String fImage = null;

String[] fname = { "Ying Bai", "Black Anderson", "Davis Bhalla", "Steve Johnson",

"Jenney King", "Alice Brown", "Debby Angles", "Jeff Henry"};
String[] fimage = { "Bai.jpg", "Anderson.jpg", "Davis.jpg", "Johnson.jpg",

"King.jpg", "Brown.jpg", "Angles.jpg", "Henry.jpg"};

if (facultyImage != null)

return facultyImage;

else {

for (int i=0; i<=maxNumber; i++){

if (fname[i].equals(f_name)){

fImage = fimage[i];

break;

}

}

facultyImage = fImage;

return fImage;

}

}

public void setFacultyImage(String img) {

facultyImage = img;

}

public void CloseDBConnection()
{

try{

if (con != null)

con.close();

}catch (SQLException e) {

msgDlg.setMessage("Error in close the DB! " + e.getMessage());

msgDlg.setVisible(true);

}

}

public String getFacultyID() {

return this.facultyID;

}

public String getFacultyName() {

return this.facultyName;

}

public String getOffice() {

return this.office;

}

public String getTitle() {

return this.title;
}

public String getPhone() {

return this.phone;

}

public String getCollege() {

return this.college;

}

public String getEmail() {

return this.email;

}

public String getFacultyImage() {

String result = getImage(facultyName);

if (result != null)

return this.facultyImage;
else

return null;

}

}

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

Fig. 8.74 The second part of the codes for the Java help class file

8.4 Build Java Web Project to Query SQL Server Database

430

 L. A true is returned to the FacultyProcess.jsp page to indicate that the execution
of this query method is successful.

 M. The catch block is used to collect any possible exception that occurred during
this query process.

 N. A false is returned to the FacultyProcess.jsp page to indicate that this
query failed.

Now let’s handle the second part of the codes of this help class file, which is
shown in Fig. 8.74. Let’s have a closer look at these codes to see how they work.

 A. A local method getImage() is defined inside the class file, and it is used to select
the matched faculty image and returns the name of the matched faculty image.
Some local variables are defined at the beginning of this method, such as the
maximum number of faculty images maxNumber, the string variable fImage
that is used to return the faculty image’s name, and two string arrays, fname[]
and fimage[], which contain all eight faculty members and the associated fac-
ulty images’ names.

 B. If the global variable facultyImage is not null, which means that a new faculty
image has been assigned to this global variable when an insertion or an updating
of a new faculty record has been executed, this new image’s name will be
returned.

 C. Otherwise a for loop is used to check all eight faculty members to try to find the
matched faculty name and the associated faculty image’s name. If a matched
faculty name were found, the loop is broken, and the associated faculty image’s
name is assigned to the variable fImage.

 D. Then the matched faculty image’s name is assigned to the global variable facul-
tyImage, which is a property defined at the beginning of this class.

 E. The matched faculty image’s name is returned to the calling method.
 F. The setter method, setFacultyImage(), is used to assign a new faculty image’s

name to the global variable facultyImage. Since we are working in the Web
server environment, we need to use this global variable to keep a record for our
current faculty image’s name.

 G. The codes for the CloseDBConnection() method are identical with those we
discussed in step Q in the last section.

 H. Starting from step H, including steps I through O, all getter methods are defined,
and they are used to pick up all related properties defined at the beginning of this
class. A null will be returned from the method getFacultyImage() if no matched
faculty image’s name can be found.

Now we have finished all coding process for the Faculty Information query oper-
ations. Before we can run the project to test the function of these codes, we need to
store all faculty image files to our project. You can find all faculty image files at the
folder Images\Faculty under the Students folder that is located at the Springer ftp
site (refer to Fig. 1.2 in Chap. 1). Perform the following operations to complete this
image storage process:

8 Developing Java Web Applications to Access Databases

431

 1) Open the Windows Explorer, and locate our project folder
JavaWebDBJSPSQL\web.

 2) Create a new folder FImages under above folder, like JavaWebDBJSPSQL\web.
 3) Go to the Springer ftp site shown above, and copy all faculty images from the

Images\Faculty folder and paste them into our created folder FImages.

The reason we store all faculty files in this FImages folder is that we can directly
use those images’ names to access and pick them up as the project runs. Also we can
separate all project files under the web folder from those image files to keep our
project clean and neat.

Now we can build and run our project to test its functions. Click on the Clean
and Build Main Project button to build our project. Then right click on the LogIn.
jsp file from the Projects window, and select the Run File item to run our project.

In the opened LogIn page, enter an appropriate username and password, such as
jhenry and test, and click on the LogIn button to perform the login process. If the
login process is successful, select the Faculty Information from the Selection.jsp
page to open the Faculty.jsp page. On the opened Faculty.jsp page, enter a desired
faculty name, such as Ying Bai, into the Faculty Name field, and click on the
Select button to try to query the detailed information for the selected faculty member.

If a matched faculty record is found, the detailed information about that faculty
with a faculty image is displayed in seven fields and the Image box, as shown in
Fig. 8.75.

Fig. 8.75 The running result of the Faculty.jsp page

8.4 Build Java Web Project to Query SQL Server Database

432

You can try to enter other desired faculty names, such as Jenney King or Davis
Bhalla, into the Faculty Name field to query the information related to those fac-
ulty members.

Click on the Back and then Exit button on the Selection.jsp page to terminate
our Web project.

Our Web project and faculty information query are successful!
A complete Web application project JavaWebDBJSPSQL that includes the

login, selection, and faculty information query processes can be found at the folder
Class DB Projects\Chapter 8 under the Students folder in the Springer ftp site
(refer to Fig. 1.2 in Chap. 1).

Next let’s handle to insert new records into the Faculty table using JavaServer
Pages and Java beans technologies.

8.5 Build Java Web Project to Manipulate SQL
Server Database

Now let’s take care of manipulating data against our SQL Server database by using
different methodologies, which include inserting, updating, and deleting records
from our sample database CSE_DEPT via our Web application project.

First let’s take care of inserting a new record into our Faculty table in our sample
database CSE_DEPT. To do that, we need to create a new Web project
JavaWebDBJSPSQL_Insert. In order to save time and space, we can copy and
modify our current project JavaWebDBJSPSQL to make it as our new project.

Perform the following operational steps to create this new project:

Fig. 8.76 The opened Copy Project wizard

8 Developing Java Web Applications to Access Databases

433

 1) In the Projects window, right click on our project JavaWebDBJSPSQL, and
select the Copy item from the popup menu to open the Copy Project wizard, as
shown in Fig. 8.76.

 2) Enter our new project name, JavaWebDBJSPSQL_Insert, into the Project
Name box, and browse to the default project folder, C:\Class DB Projects\
Chapter 8, as the Project Location, which is shown in Fig. 8.76, and click on
the Copy button.

A new project JavaWebDBJSPSQL_Insert is generated and added into our
Projects window. Next let’s build the codes for the related pages to insert some new
records into our database.

8.5.1 Modify the Faculty.jsp Page by Adding A File
Selection Function

In order to insert a new faculty record, especially to insert a new faculty image, into
our sample database, a File Selection function should be added into this Faculty.jsp
page to provide a way to enable users to select a desired faculty image for the new
inserted faculty member. Perform the following operational steps to add this
function:

1) On the opened Faculty.jsp page, scroll down along this file until one of input tags,

<input name=FacultyImageField maxlength=255 size=18 value="" type=text
v:shapes="_x0000_s1026">
is found, which should be around line 384.

2) Enter the following tag located just above the tag shown above.

<input name=Faculty_Image maxlength=50 size=4 value="" type=file
v:shapes="_x0000_s1026">

Your modified Faculty.jsp page should match one that is shown in Fig. 8.77. The
new added tag part has been highlighted in bold.

<form method=post action=".\FacultyProcess.jsp">
………

<![endif]><!--[if gte vml 1]><v:shapetype id="_x0000_t201" coordsize="21600,21600"
o:spt="201" path="m,l,21600r21600,l21600,xe">
<![endif]>

<input name=Faculty_Image maxlength=50 size=4 value="" type=file

v:shapes="_x0000_s1026">

<input name=FacultyImageField maxlength=255 size=18 value="" type=text
v:shapes="_x0000_s1026">
…………

A

Fig. 8.77 The modified codes for the Faculty.jsp page

8.5 Build Java Web Project to Manipulate SQL Server Database

434

Now go to the Projects window and right click on our modified Faculty.jsp file,
and click on the Compile File item to compile this file. Then right click on this file,
and select the Run File item to run this page. The running result is shown in
Fig. 8.78. One File Selection tag is added on the top of Faculty Image TextField,
which can be used to select a faculty image to be inserted.

Next we can begin our code developments for this data insertion action.

8.5.2 Insert New Records to the Faculty Table Using
JavaServer Pages and Java Beans

To use the JavaServer Pages and Java bean techniques to perform inserting new
record into the Faculty table, we need to perform the following operations:

 1) Modify the Java help class file FacultyQuery.java to make it our Java bean file
FacultyInsertBean.java to handle the new faculty record insertion actions.

 2) Modify the model controller page FacultyProcess.jsp to handle the faculty data
collection and insertion operations.

First let’s modify the Java help class file FacultyQuery.java to make it our new
Java bean class FacultyInsertBean.java to handle the new faculty record insertion
actions.

Fig. 8.78 The running result of modified Faculty.jsp page

8 Developing Java Web Applications to Access Databases

435

8.5.2.1 Create a New Java Help Class File FacultyInsertBean.java

To save time and space, we can modify an existing class file FacultyQuery.java
and make it as our new class file FacultyInsertBean.java. Perform the following
operational steps to complete this modification and creation:

 1) Open the Windows Explorer, and browse to our new project
JavaWebDBJSPSQL_Insert, which is located at the folder C:\Class DB
Projects\Chapter 8.

 2) Expand this project subfolder to src > java>JavaWebDBJSPSQLPackage, and
then you can find our class file FacultyQuery.java.

 3) Copy and paste this file in the same folder, and rename the copied file to our new
class file FacultyInsertBean.java.

Now open the NetBeans IDE and our new project JavaWebDBJSPSQL_Insert
as well as our class file FacultyInsertBean.java from the Projects window, exactly
from our package JavaWebDBJSPSQLPackage. Perform the following modifica-
tions to this file to make it our new Java bean class:

package JavaWebDBJSPSQLPackage;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.InputStream;
import java.sql.*;
import java.util.logging.Level;
import java.util.logging.Logger;

public int InsertFaculty(String[] newFaculty) {
int numInsert = 0;
FileInputStream fis = null;
File fimage= new File(newFaculty[7]);

String InsertQuery = "INSERT INTO Faculty (faculty_id, faculty_name, title, office, phone, " +
"college, email, fimage) VALUES (?, ?, ?, ?, ?, ?, ?, ?)";

try{
PreparedStatement pstmt = con.prepareStatement(InsertQuery);
pstmt.setString(1, newFaculty[0]);
pstmt.setString(2, newFaculty[1]);
pstmt.setString(3, newFaculty[2]);
pstmt.setString(4, newFaculty[3]);
pstmt.setString(5, newFaculty[4]);
pstmt.setString(6, newFaculty[5]);
pstmt.setString(7, newFaculty[6]);
try {

fis = new FileInputStream(fimage);
} catch (FileNotFoundException ex) {

Logger.getLogger(FacultyInsertBean.class.getName()).log(Level.SEVERE, null, ex);
}

pstmt.setBinaryStream(8, (InputStream)fis, (int)(fimage.length()));
numInsert = pstmt.executeUpdate();

}
catch (SQLException e) {

msgDlg.setMessage("Error in Insert Statement! " + e.getMessage());
msgDlg.setVisible(true);

}
return numInsert;

}

A

B
C

D

E

F

G

H
I

J

K

Fig. 8.79 The codes for the new created method InsertFaculty()

8.5 Build Java Web Project to Manipulate SQL Server Database

436

 1) Change the class name and the constructor’s name from the FacultyQuery to
the FacultyInsertBean.

 2) Remove the QueryFaculty() method and the getImage() method.
 3) Remove the getFacultyImage(), setFacultyImage() method and the facultyIm-

age property.
 4) Create a new method InsertFaculty(), and enter the codes shown in Fig. 8.79

into this method.

Let’s have a close look at the codes for this method to see how they work.

 A. Some useful Java libraries are imported at the top of this class since we need to
use some components defined in those libraries.

 B. A new InsertFaculty() method is created with a String array as the argument of
this method. The String array contains all eight pieces of new faculty information.

 C. A local integer variable numInsert is used to hold the returned data insertion
result, and regularly it is equal to the number of records that have been inserted
into the Faculty table. A FileInputStream object, fis, is also created, and it works
as a handler of converting our faculty image to a FileInputStream before it can
be written or inserted into our database. A new File object, fimage, is declared
with the name of our faculty image file as the target for this File object since the
String variable, newFaculty[7], contained the name of a selected faculty image
to be inserted into the database.

 D. The insert string is created with eight positional parameters represented by the
question marks in the query string.

 E. A try…catch block is used to perform this faculty record insertion action. First
a PreparedStatement object is created with the query string as the argument.

 F. Then seven elements in the String array newFaculty[], which are equivalent to
seven pieces of new faculty information, are assigned to seven positional param-
eters. The point to be noted is that the order of those seven elements must be
identical with the order of columns represented in the query string and in the
Faculty table in our sample database.

 G. Another try…catch block is used to create a new handler for the converted
FileInputStream object with our faculty image as the input.

 H. The faculty image is inserted by calling the setBinaryStream() method with the
handler of our FileInputStream as the source.

 I. The executeUpdate() method is executed to perform this new record insertion
action. The running result, which is equal to the number of records that have
been successfully inserted into the Faculty table, is returned and assigned to the
local integer variable numInsert.

 J. The catch block is used to track and collect any possible exceptions during this
data insertion action.

 K. Finally the running result is returned to the calling method in the FacultyProcess.
jsp page.

Next let’s modify the model controller page FacultyProcess.jsp to handle the
faculty data collection and insertion operations.

8 Developing Java Web Applications to Access Databases

437

8.5.2.2 Modify the FacultyProcess.jsp Page to Handle Faculty Data
Collection and Insertion

Double click on the FacultyProcess.jsp page from the Projects window in our new
project, and perform the following modifications to this page to use Java bean
FacultyInsertBean.java to perform new faculty record insertion actions:

 1) Move cursor to the else if (request.getParameter("Insert")!= null) block, then
type a JSP ending tag, % > under the else if statement, and click on the Enter
key from the keyboard to get a new line under the else if block.

 2) Open the Palette window by going to Window > IDE Tools > Palette item. In
the opened Palette window, browse to the JSP tab, drag the Use Bean icon, and
place it under the JSP ending tag % > .

 3) On the opened Insert Use Bean dialog, and enter InsertFaculty into the ID field
and JavaWebDBJSPSQLPackage.FacultyInsertBean into the Class filed.
Select the session from the Scope combo box. Your finished Insert Use Bean
dialog should match one that is shown in Fig. 8.80. Click on the OK button to
close this dialog box. A JSP directive that contains the bean id, bean scope, and
class is added to this block.

 4) Add a JSP directive to set up all properties on the Java bean class
FacultyInsertBean.java shown below:

<jsp:setProperty name="InsertFaculty" property="*" />

 5) Add an opening JSP directive to start our Java codes to be built below.

The codes related to steps 1–5 above are shown in the top on Fig. 8.81. Add the
Java codes shown in steps A–G in Fig. 8.81 into this block.

Let’s have a closer look at these codes to see how they work.

 A. A local integer variable res is created, and it is used to hold the running result of
executing the InsertFaculty() method in the Java bean class FacultyInsertBean
with the bean id of InsertFaculty.

Fig. 8.80 The finished Insert Use Bean dialog box

8.5 Build Java Web Project to Manipulate SQL Server Database

438

 B. Eight getParameter() methods are used to pick up eight pieces of new inserted
faculty information stored in the eight fields in the Faculty.jsp page. The col-
lected eight pieces of new faculty information are assigned to eight local String
variables.

 C. A new String array fnew is created, and it is used to hold eight pieces of new
faculty information stored in the eight local String variables.

 D. The InsertFaculty() method defined in our Java bean is executed to insert these
eight pieces of faculty information as a new faculty record into the Faculty table.
The eight pieces of new faculty information are stored in the String array fnew
that works as the argument for this method. The running result of this method is
returned and assigned to the local integer variable res.

 E. If the running result is 0, which means that no any record has been inserted into
the Faculty table and this data insertion action failed, in that case, we need to
redisplay the Faculty.jsp page to enable users to reinsert that faculty record.

 F. If the running result is non-zero, which means that at least one new faculty
record has been inserted into the Faculty table. We need to clean up all seven
fields that contain seven pieces of new inserted faculty information in the
Faculty.jsp page to enable users to either test this insertion or insert the next
faculty record.

else if (request.getParameter("Insert")!= null) {
//process the faculty record insertion

%>

<jsp:useBean id="InsertFaculty" scope="session"
class="JavaWebDBJSPSQLPackage.FacultyInsertBean" />

<jsp:setProperty name="InsertFaculty" property="*" />
<%

int res = 0;
String fid = request.getParameter("FacultyIDField");
String fname = request.getParameter("NameField");
String office = request.getParameter("OfficeField");
String phone = request.getParameter("PhoneField");
String college = request.getParameter("CollegeField");
String title = request.getParameter("TitleField");
String email = request.getParameter("EmailField");
String fImage = request.getParameter("Faculty_Image");
String[] fnew = {fid, fname, title, office, phone, college, email, fImage };

res = InsertFaculty.InsertFaculty(fnew);
if (res == 0) {

response.sendRedirect("Faculty.jsp");
}

else {
request.setAttribute("FacultyIDField", null);
request.setAttribute("NameField", null);
request.setAttribute("OfficeField", null);
request.setAttribute("PhoneField", null);
request.setAttribute("CollegeField", null);
request.setAttribute("TitleField", null);
request.setAttribute("EmailField", null);
response.sendRedirect("Faculty.jsp");

}
InsertFaculty.CloseDBConnection();

}
%>

1

2

3

4

5

A

B

C

D

E

F

G

H

Fig. 8.81 The modified codes for the Insert block in the FacultyProcess.jsp

8 Developing Java Web Applications to Access Databases

439

 G. Also we need to redisplay the Faculty.jsp page to enable users to perform the
next action.

 H. Finally the CloseDBConnection() method is called to disconnect to our
database.

Prior to building and running this Web application, make sure that the new fac-
ulty image to be selected and inserted into our database has been stored in our
default project image folder; in this case, it is C:\Class DB Projects\Chapter 8\
JavaWebDBJSPSQL_Insert\web\FImages.

Now we can build and run our project to test this new faculty record insertion
function. Click on the Clean and Build Main Project button to perform cleaning
up and building our project. Then right click on the LogIn.jsp page from the
Projects window to run our project. Enter the appropriate username and password
to finish the login process, and select the Faculty Information item from the
Selection.jsp page to open the Fcaulty.jsp page.

First enter a faculty member, such as Ying Bai, into the Faculty Name box, and
click on the Select button to query the record for this faculty, then enter seven pieces
of information into the associated seven fields as a new faculty record, and click on
the Browse button on the File Selection box (above the Image TextField) to select
a desired faculty image, White.jpg, which is located at our default project image
folder and belongs to the new inserted faculty member, Susan Bai. The finished
new faculty record is shown in Fig. 8.82.

Click on the Insert button to try to insert this new faculty record into the Faculty
table in our sample database. Immediately you can find that the original faculty
information is displayed, which means that this data insertion is successful.

Fig. 8.82 The entered new faculty information

8.5 Build Java Web Project to Manipulate SQL Server Database

440

To confirm this insertion, two ways could be used. The first way is to use the
Select button in the Faculty.jsp page to retrieve this new inserted record from the
Faculty table. To do that, enter Susan Bai to the Faculty Name field and White.jpg
into the Image TextField, and then click on the Select button. You can find that the
new inserted record is retrieved and displayed in the seven fields with the new fac-
ulty image, as shown in Fig. 8.83. Now click on the Back and Exit button to termi-
nate our project.

The second way to confirm this data insertion is to open the Faculty table by
using either the Microsoft SQL Server Management Studio 18 or our connected
database CSE_DEPT under the Services window in the NetBeans IDE. Here we
prefer to use the second way to confirm this insertion action.

To use the second way to check this data insertion, first we need to connect to our
database. Perform the following operations to do this connection.

 1) In the NetBeans IDE with our project opened, open the Services window.
 2) Right click on the Databases folder and select the New Connection item.
 3) On the opened New Connection Wizard, click on drop-down arrow from the

Driver combo box, and select the New Driver item to open the New JDBC
Driver wizard.

 4) Click on the Add button and browse to our JDBC driver, sqljdbc41.jar, which
is located at the folder C:\Program Files\sqljdbc_4.2\enu\jre7. Select this
driver, and click on the Open button to return to the New JDBC Driver wizard.

Fig. 8.83 The retrieved new inserted faculty record

8 Developing Java Web Applications to Access Databases

441

 5) You can select a desired name for this driver by entering it into the Name box,
such as SQL Server 2019, and click on the OK button to return to the New
Connection Wizard. Click on the Next button to continue.

 6) On the opened New Connection Wizard, enter the following credentials into the
related boxes as the connection parameters:

 (a) Host: localhost
 (b) Port: 5000
 (c) Database: CSE_DEPT
 (d) Instance Name: SQL2019EXPRESS
 (e) User Name: SMART
 (f) Password: Happy2020

Your finished New Connection Wizard should match one that is shown in
Fig. 8.84.

Pay special attention to the content on the JDBC URL box, which is our com-
pleted connection URL, and click on the Test Connection button to make and check
this connection.

A Connection Succeeded message is displayed if this connection is successful.
Click on the Next button to select the database schema. Click on the drop-down
arrow on the Select schema combo box and select the dbo as the schema, and click
on the Next button.

Modify our connection name by cutting off the attached [SMART on Default
schema] to get our final Input connection name as: jdbc:sqlserver://localhost\

Fig. 8.84 The finished New Connection Wizard

8.5 Build Java Web Project to Manipulate SQL Server Database

442

SQL2019EXPRESS:5000; databaseName =CSE_DEPT, and click on the Finish
button to complete this database connection job.

Now that our database is connected, we can open it to check our data inser-
tion action.

On the opened Services window, expand each of the following folders: our data-
base URL, our database CSE_DEPT, the dbo schema, and the Tables folder. Now
right click on our Faculty table, and select the View Data item to open this table.
The opened Faculty table is shown in Fig. 8.85.

You can find that the new inserted faculty member, Susan Bai, has been inserted
to this table, and this record has been highlighted in Fig. 8.85. Our data insertion
using the JavaServer Pages and Java bean is successful! To keep our database clean
and neat, it is recommended to delete this inserted new faculty member from the
Faculty table in our sample database.

8.5.3 Update and Delete Data from the Faculty Table Using
JSP and Java Beans Techniques

To use the JavaServer Pages and Java bean techniques to perform data updating and
deleting actions against the Faculty table, we need to perform the following
operations:

 1) Create a new Java Session bean class FacultyUpdateDeleteBean.java to handle
the data updating and deleting actions.

 2) Modify the model controller page FacultyProcess.jsp to handle the faculty data
collection and manipulations.

Fig. 8.85 The opened Faculty table with new inserted faculty record

8 Developing Java Web Applications to Access Databases

443

Now let’s create a new project JavaWebDBJSPSQL_UpdateDelete based on
our existing project JavaWebDBJSPSQL_Insert. Perform the following opera-
tions to complete this creation:

 1) In the Projects window, right click on the project JavaWebDBJSPSQL_Insert,
and select the Copy item from the popup menu to open the Copy Project wiz-
ard, as shown in Fig. 8.86.

 2) Enter our new project name, JavaWebDBJSPSQL_UpdateDelete, into the
Project Name box, and browse to the default project folder, C:\Class DB
Projects\Chapter 8, as the Project Location, which is shown in Fig. 8.86, and
click on the Copy button.

A new project JavaWebDBJSPSQL_UpdateDelete is generated and added into
our Projects window. Next let’s build the codes for the related pages to update or
delete some records in the Faculty table in our database.

First let’s create our Java session bean class FacultyUpdateDeleteBean.java to
handle the data updating and deleting actions.

8.5.3.1 Create a New Java Session Bean Class

Perform the following operations to create a new Java session bean class:

 1) Right click on our project JavaWebDBJSPSQL_UpdateDelete from the
Projects window, and select the New > Java Class item from the popup menu
to open the New Java Class wizard.

 2) Enter FacultyUpdateDeleteBean into the Class Name field, and select the
JavaWebDBJSPSQL Package from the Package combo box.

 3) Keep all other default settings and click on the Finish button.

Fig. 8.86 The copied project JavaWebDBJSPSQL_UpdateDelete

8.5 Build Java Web Project to Manipulate SQL Server Database

444

On the created FacultyUpdateDeleteBean.java class, we need to create two
new methods UpdateFaculty() and DeleteFaculty(). These two methods are used

package JavaWebDBJSPSQLPackage;
import java.sql.*;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileNotFoundException;
import java.io.InputStream;

import java.util.logging.Level;

import java.util.logging.Logger;

public class FacultyUpdateDeleteBean {

private String facultyID;

private String facultyName;

private String office;
private String title;

private String phone;

private String college;

private String email;

static Connection con;

public FacultyUpdateDeleteBean() {

try {

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}

catch (Exception e) {

System.out.println("Class not found exception!" + e.getMessage());

}

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";

try {

con = DriverManager.getConnection(url,"SMART","Happy2020");

}

catch (SQLException e) {

System.out.println ("Could not connect!" + e.getMessage());

e.printStackTrace();

}

}
public int UpdateFaculty(String[] upFaculty) {

int numUpdated = 0;

FileInputStream fis = null;

File fimage= new File(upFaculty[6]);

String query = "UPDATE Faculty SET faculty_name=?, title=?, office=?, phone=?, college=?," +

"email=?, fimage=? " + "WHERE faculty_id= ?";

try {
PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setString(1, upFaculty[0]); // FacultyNameField
pstmt.setString(2, upFaculty[1]); // TitleField
pstmt.setString(3, upFaculty[2]); // OfficeField
pstmt.setString(4, upFaculty[3]); // PhoneField
pstmt.setString(5, upFaculty[4]); // CollegeField
pstmt.setString(6, upFaculty[5]); // EmailField
try {

fis = new FileInputStream(fimage);

} catch (FileNotFoundException ex) {

Logger.getLogger(FacultyInsertBean.class.getName()).log(Level.SEVERE, null, ex);

}

pstmt.setBinaryStream(7, (InputStream)fis, (int)(fimage.length()));

pstmt.setString(8, upFaculty[7]); // FacultyIDField
numUpdated = pstmt.executeUpdate();

}
catch (SQLException e) {

System.out.println("Error in Statement!" + e.getMessage());

}

return numUpdated;

}

………

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

Fig. 8.87 The first part of the codes of the Java bean class file

8 Developing Java Web Applications to Access Databases

445

to perform the data updating and deleting operations against our sample database.
Figure 8.87 shows the first part of the codes.

Let’s have a closer look at the codes for these two methods to see how they work.

 A. Some useful packages are imported first since all SQL Server database-related
classes and other components are defined in those packages.

 B. Seven class properties related to the associated columns in the Faculty table are
declared first. These properties are very important since they are directly
mapped to the associated columns in the Faculty table. All of these properties
can be accessed by using the associated getter() method defined in the second
coding part of this class. A class-level database connection object is created.

 C. In the constructor of this class, a try…catch block is used to load the database
JDBC driver. The catch block is used to track and collect any possible excep-
tion during this database driver loading process.

 D. The database connection URL is defined. Refer to Sect. 6.3.3.3.1 in Chap. 6 to
get more detailed information about this URL definition.

 E. Another try…catch block is used to connect to our sample SQL Server data-
base with desired username and password. The catch block is used to track and
collect any possible exception that occurred during this database connection
process.

 F. The main data updating method, UpdateFaculty(), is defined with the selected
faculty updating information as the argument. This argument is exactly a String
array that contains all seven pieces of updating faculty information. A local
integer variable numUpdated and the SQL updating statement are firstly cre-
ated with the faculty ID as the positional dynamic parameter.

 G. A FileInputStream object, fis, is created, and it works as a handler of the
InputStream for the updated faculty image later.

 H. A new File object, fimage, is also generated to convert the updated faculty
image that is stored in a string variable, upFaculty[6], to a file object, and it will
be further converted to an InputStream object later to be written into the
Faculty table.

 I. The updated query string is generated with eight positional parameters to make
this updating action ready.

 J. Starting from a try block, the prepareStatement() method is called to create a
PreparedStatement object pstmt.

 K. Six setter methods are used to set the positional parameters in the SQL updating
statement with the positional order. This order must be identical with that
defined in the input argument upFaculty[], which is a String array.

 L. With another try…catch block, a new FileInputStream object, fis, is generated
with the File fimage as the argument to convert that File to a FileInputStream
object and assign it to that new created object. The catch block is used to check
and inspect any possible exception for this File if it cannot be found.

 M. Then the setBinaryStream() method is executed to assign this faculty image
file as a binary stream sequence to the seventh input position parameter, fimage,
to the Update query statement.

8.5 Build Java Web Project to Manipulate SQL Server Database

446

 N. The setString() method is executed to set up the eighth input positional param-
eter, faculty_id, to the query WHERE clause in the Update query statement.

 O. The executeUpdate() method is executed to perform this data updating action,
and the returned result, which is the number of the rows that have been success-
fully updated in the Faculty table, is assigned to the local integer variable
numUpdated.

 P. The catch block is used to track and collect any exceptions during this data
updating operation.

 Q. The data updating result is returned to the calling method.

The second part of the codes for this Java bean class is shown in Fig. 8.88. Let’s
have a closer look at this piece of codes to see how it works.

 A. The codes for the CloseDBConnection() method are identical with those we
discussed in the last section, and the purpose of this method is to close the con-
nection between our Web application and our sample database.

 B. Starting from step B, including steps C through H, seven getter methods are
defined, and they are used to pick up all seven properties defined at the begin-
ning of this class.

In fact, the codes for this Java bean class file are basically identical with those we
built in our Java help class file, which include the loading JDBC driver, defining the

public void CloseDBConnection()

{

try{

if (!con.isClosed())

con.close();
}catch (SQLException e) {

System.out.println("Error in close the DB! " + e.getMessage());

}

}

public String getFacultyID() {

return this.facultyID;

}

public String getFacultyName() {

return this.facultyName;

}

public String getOffice() {

return this.office;

}

public String getTitle() {

return this.title;

}
public String getPhone() {

return this.phone;

}

public String getCollege() {

return this.college;

}

public String getEmail() {

return this.email;

}

}

A

B

C

D

E

F

G

H

Fig. 8.88 The second part of the codes of the Java bean class file

8 Developing Java Web Applications to Access Databases

447

database connection URL, connecting to database, and executing the appropriate
method to perform related data actions against our database.

Next let’s modify the FacultyProcess.jsp page to handle the faculty data collec-
tion and manipulation.

8.5.3.2 Modify the FacultyProcess Page to Handle Faculty Data Updating

Double click on the FacultyProcess.jsp page from the Projects window, and per-
form the following modifications to this page to use Java bean
FacultyUpdateDeleteBean.java to perform the faculty record updating actions:

 1) Move to the else if (request.getParameter("Update")!= null) block, and then
open the Palette window by going to Window > IDE Tools > Palette menu
item. In the opened Palette window, browse to the JSP tab, drag the Use Bean
icon, and place it inside the else if block.

 2) On the opened Insert Use Bean dialog, enter UpdateFaculty into the ID field
and JavaWebDBJSPSQLPackage.FacultyUpdateDeleteBean into the Class
filed. Select the session from the Scope combo box, and then click on the OK

else if (request.getParameter("Update")!= null) {
//process the faculty record updating
%>

<jsp:useBean id="UpdateFaculty" scope="session"

class="JavaWebDBJSPSQLPackage.FacultyUpdateDeleteBean" />

<jsp:setProperty name="UpdateFaculty" property="*" />

<%

int update = 0;

String fname = request.getParameter("NameField");

String office = request.getParameter("OfficeField");
String phone = request.getParameter("PhoneField");

String college = request.getParameter("CollegeField");

String title = request.getParameter("TitleField");

String email = request.getParameter("EmailField");

String f_id = request.getParameter("FacultyIDField");

String fImage = request.getParameter("Faculty_Image");

String[] upf = {fname, title, office, phone, college, email, fImage, f_id };

update = UpdateFaculty.UpdateFaculty(upf);

if (update == 0)

response.sendRedirect("Faculty.jsp");

else {

session.setAttribute("FacultyIDField", null);

session.setAttribute("NameField", null);

session.setAttribute("OfficeField", null);

session.setAttribute("PhoneField", null);

session.setAttribute("CollegeField", null);

session.setAttribute("TitleField", null);

session.setAttribute("EmailField", null);

response.sendRedirect("Faculty.jsp");

}
UpdateFaculty.CloseDBConnection();

}
………

1

2

3

4

A

B

C

D

E

F

G

H

Fig. 8.89 The modified codes for the Update block

8.5 Build Java Web Project to Manipulate SQL Server Database

448

button. A JSP directive that contains the bean id, bean scope, and class is added
to this block.

 3) Add a JSP directive to the Java bean class FacultyUpdateDeleteBean.java
shown below:

<jsp:setProperty name = “UpdateFaculty” property = “*” />

 4) Add the opening and ending JSP directives to enclose those two JSP directives
we added above.

The codes related to steps 1~4 above are shown in the top on Fig. 8.89. Add the
codes shown in steps A~I in Fig. 8.89 into this block.

Let’s have a closer look at these codes to see how they work.

 A. A local integer variable update is created, and it is used to hold the running
result of executing the UpdateFaculty() method in the Java bean class
FacultyUpdateDeleteBean with the bean id of UpdateFaculty.

 B. Eight getParameter() methods are used to pick up eight pieces of updating
faculty information stored in the eight fields in the Faculty.jsp page. The col-
lected eight pieces of new faculty information are assigned to eight local String
variables.

 C. A new String array upf[] is created, and it is used to hold eight pieces of updat-
ing faculty information stored in the eight local String variables.

 D. The UpdateFaculty() method in our Java bean is executed to update a faculty
record with these eight pieces of faculty information in the Faculty table. The
eight pieces of updating faculty information are stored in the String array upf[]
that works as the argument for this method. The running result of this method is
returned and assigned to the local integer variable update.

 E. If the running result is 0, which means that no any record has been updated in
the Faculty table and this data updating action failed, in that case, we need to
redisplay the Faculty.jsp page to enable users to re-update that faculty record.

 F. If the running result is non-zero, which means that at least one faculty record has
been updated in the Faculty table, we may clean up all seven fields that contain
seven pieces of updated faculty information in the Faculty.jsp page to enable
users to either test this updating or update another faculty record.

 G. We need to redisplay the Faculty.jsp page to enable users to perform the
next action.

 H. Finally the CloseDBConnection() method is called to disconnect the connec-
tion to our database.

Prior to building and running this Web application, make sure that the faculty
image to be selected and updated, in this case, it is White.jpg, has been stored in our
default project image folder; in this case, it is C:\Class DB Projects\Chapter 8\
JavaWebDBJSPSQL_UpdateDelete\web\ FImages.

Now we can build and run our project to test this faculty record updating func-
tion. Click on the Clean and Build Main Project button to perform cleaning up
and building our project. Then right click on the LogIn.jsp page from the Projects

8 Developing Java Web Applications to Access Databases

449

window to run our project. Enter the appropriate username and password, such as
jhenry and test, to finish the login process, and select the Faculty Information
item from the Selection.jsp page to open the Fcaulty.jsp page.

To update a faculty record, first let’s perform a query operation to retrieve and
display that faculty record. Enter a faculty name, such as Ying Bai, into the Faculty
Name field, and click on the Select button. All seven pieces of information related
to that faculty are retrieved and displayed in this page. Now enter six pieces of
updating information into the associated six fields without Faculty ID field, as
shown in Fig. 8.90, and click on the Browse button on the File Selector box to
browse and select that updating faculty image, White.jpg, as our updating faculty
image. The finished faculty updating record is shown in Fig. 8.90.

Click on the Update button to try to update this faculty record in the Faculty
table in our sample database. Immediately you can find that the original faculty
information is displayed, which means that this data updating is successful.

To confirm this data updating action, two ways could be used. The first way is to
use the Select button in the Faculty.jsp page to retrieve this updated faculty record
from the Faculty table. To do that, enter Susan Bai to the Faculty Name field and
White.jpg into the Image TextField, and then click on the Select button. You can
find that the updated record is retrieved and displayed in the seven fields with the
updated faculty image, as shown in Fig. 8.91. Now click on the Back and Exit but-
ton to terminate our project.

The second way to confirm this data updating is to open the Faculty table.
Open the Services window, and expand the Databases node and our SQL
Server database URL: jdbc:sqlserver://localhost\SQL2019EXPRESS:5000;

Fig. 8.90 The entered faculty updating information

8.5 Build Java Web Project to Manipulate SQL Server Database

450

databaseName=CSE_DEPT. Right click on this URL, and select the Connect
item to connect to our sample database. Then expand our database CSE_DEPT,
dbo and Tables. Right click on the Faculty table, and select the View Data item to
open this table. You can find that the faculty record with the faculty_id of B78880
has been updated.

Our data updating action using the JavaServer Pages and Java bean is successful!
It is highly recommended to recover this updated faculty record in the Faculty

table since we want to keep our database neat and clean. Apply the data shown in
Table 8.3 to recover this faculty record with a faculty image file Bai.jpg that can be
found from the folder Images\Faculty under the Students folder in the Springer ftp
site (refer to Fig. 1.2 in Chap. 1). You can do this data recovery by using this project
to do another Updating action or the Microsoft SQL Server Management Studio to
open the Faculty table.

Fig. 8.91 The running result of confirming the data updating action

Table 8.3 The original data for faculty member Ying Bai

faculty_
id

faculty_
name office phone college title email fimage

B78880 Ying Bai MTC-
211

750-378-
1148

Florida Atlantic
University

Associate
Professor

ybai@
college.edu

Bai.
jpg

8 Developing Java Web Applications to Access Databases

ybai@college.edu
ybai@college.edu

451

8.5.3.3 Add a Method to the Java Bean to Perform Faculty Data Deleting

To perform the faculty record deleting action, we need to perform the following
operations:

 1) Add a new method to the Java session bean FacultyUpdateDeleteBean to han-
dle the faculty record deleting actions.

 2) Modify the FacultyProcess.jsp page to handle the faculty data collection and
manipulations.

Let’s first add a new method DeleteFaculty() into our Java session bean class
FacultyUpdateDeleteBean to handle the faculty record deleting actions. Create a
new method DeleteFaculty(), and enter the codes shown in Fig. 8.92 into this Java
Bean class file.

Let’s have a closer look at this piece of codes to see how it works.

 A. A local integer variable numDeleted is created, and it is used to hold the run-
ning result of executing the DeleteFaculty() method in the Java bean class
FacultyUpdateDeleteBean.java with the bean id as DeleteFaculty.

 B. The SQL deleting statement is created with the faculty_name as the positional
dynamic parameter.

 C. A try…catch block is used to perform this data deleting action. The prepareS-
tatement() method is called to create a PreparedStatement object pstmt.

 D. The setter method is used to set up the positional dynamic parameter
faculty_name.

 E. The executeUpdate() method is executed to perform this data deleting action,
and the running result, which is the number of the rows that have been success-
fully deleted from the Faculty table, is assigned to the local integer variable
numDeleted.

 F. The catch block is used to track and collect any exceptions during this data
deleting operation.

 G. The data deleting result is returned to the calling method.

………

public int DeleteFaculty(String fname) {
int numDeleted = 0;

String query = "DELETE FROM Faculty WHERE faculty_name = ?";

try {

PreparedStatement pstmt = con.prepareStatement(query);

pstmt.setString(1, fname);

numDeleted = pstmt.executeUpdate();

}
catch (SQLException e) {

System.out.println("Error in Statement!" + e.getMessage());

}

return numDeleted;

}

………

A

B

C

D

E

F

G

Fig. 8.92 The codes for the DeleteFaculty() method

8.5 Build Java Web Project to Manipulate SQL Server Database

452

Now let’s modify the FacultyProcess.jsp page to handle the faculty data collec-
tion and manipulations.

8.5.3.4 Modify the FacultyProcess Page to Handle Faculty Data Deleting

Double click on the FacultyProcess.jsp page from the Projects window to open
this page, and perform the following modifications to this page to use Java bean
FacultyUpdateDeleteBean.java to perform the faculty record deleting actions:

 1) Move to the else if (request.getParameter("Delete")!= null) block, and then
open the Palette window by going to Window > IDE Tools > Palette menu
item. In the opened Palette window, browse to the JSP tab, drag the Use Bean
icon, and place it inside the else if block.

 2) On the opened Insert Use Bean dialog, enter DeleteFaculty into the ID field
and JavaWebDBJSPSQLPackage.FacultyUpdateDeleteBean into the Class
field. Select the session from the Scope combo box. Click on the OK button, and
a JSP directive that contains the bean id, bean scope, and class is added to
this block.

 3) Add a JSP directive to the Java bean class FacultyUpdateDeleteBean.java
shown below:

<jsp:setProperty name="DeleteFaculty" property="*" />

 4) Add the opening and ending JSP directives to enclose those two JSP directives
we added above.

The codes related to steps 1~4 above are shown in the top on Fig. 8.93. Add the
codes shown in steps A~E in Fig. 8.93 into this block.

Let’s have a closer look at these codes to see how they work.

 A. A local integer variable delete is created, and it is used to hold the running result
of executing the DeleteFaculty() method in the Java bean class
FacultyUpdateDeleteBean with the bean id of DeleteFaculty.

………
else if (request.getParameter("Delete")!= null) {

//process the faculty record deleting
%>

<jsp:useBean id="DeleteFaculty" scope="session"

class="JavaWebDBJSPSQLPackage.FacultyUpdateDeleteBean" />

<jsp:setProperty name="DeleteFaculty" property="*" />

<%

int delete = 0;

String fname = request.getParameter("FacultyNameField");

delete = DeleteFaculty.DeleteFaculty(fname);

response.sendRedirect("Faculty.jsp");

DeleteFaculty.CloseDBConnection();

}

………

1

2
3

4

A

B

C

D
E

Fig. 8.93 The modified codes for the Delete block

8 Developing Java Web Applications to Access Databases

453

 B. The getParameter() method is used to pick up the name of the faculty to be
deleted from the Faculty table. The retrieved faculty name is assigned to the
local variable fname.

 C. The DeleteFaculty() method in our Java bean is executed to delete a faculty
record based on the selected faculty name from the Faculty table. The running
result of this method is returned and assigned to the local integer variable delete.

 D. We need to redisplay the Faculty.jsp page to enable users to perform the
next action.

 E. Finally the CloseDBConnection() method is called to disconnect the connec-
tion to our database.

Now we can build and run our project to test this faculty record deleting function.
Click on the Clean and Build Main Project button to perform cleaning up and
building our project. Then right click on the LogIn.jsp page from the Projects win-
dow to run our project. Enter the appropriate username and password, such as
jhenry and test, to finish the login process, and select the Faculty Information
item from the Selection.jsp page to open the Fcaulty.jsp page.

To delete a faculty record, first let’s perform a query operation to retrieve and
display that faculty record. Enter a faculty name, such as Ying Bai, into the Faculty
Name field, and click on the Select button. All seven pieces of information related
to that faculty are retrieved and displayed in this page. Now click on the Delete but-
ton to try to delete this record from our Faculty table.

To confirm this data deleting action, two ways could be used. The first way is to
use the Select button in the Faculty.jsp page to try to retrieve this deleted record
from the Faculty table. To do that, enter the deleted faculty name Ying Bai to the

Fig. 8.94 The confirmation of the faculty data deletion action

8.5 Build Java Web Project to Manipulate SQL Server Database

454

Faculty Name field, and click on the Select button. You can find that all seven fields
are displayed with nulls, as shown in Fig. 8.94, which means that the faculty mem-
ber Ying Bai has been deleted from the Faculty table. Now click on the Back and
Exit button to terminate our project.

The second way to confirm this data deleting is to open the Faculty table in the
NetBeans IDE environment. Open the Services window, and expand the Databases
node to find our SQL Server database URL: jdbc:sqlserver://localhost\
SQL2019EXPRESS:5000; databaseName = CSE_DEPT. Right click on this
URL, and select the Connect item to connect to our sample database. Then expand
our database CSE_DEPT, dbo, and Tables. Right click on the Faculty table, and
select the View Data item to open this table. You can find that the faculty record
with the faculty_id of B78880 has been deleted.

Our data deleting action using the JavaServer Pages and Java bean is successful!
It is highly recommended to recover this deleted faculty record in the Faculty

table since we want to keep our database neat and clean.
One point to be noted is that when we delete a faculty member from the Faculty

table, which is a parent table relative to the child tables, the Course and LogIn
tables, the related records to that deleted faculty in those child tables will also be
deleted since a cascaded deleting relationship has been set up between the parent
and child tables when we built this database in Chap. 2. Therefore the faculty login
record in the LogIn table and all courses taught by that faculty in the Course table
will be deleted when the faculty member is deleted from the Faculty table. Also
because the Course table is a parent table relative to the StudentCourse table, all
courses taken by students and taught by the deleted faculty will be deleted from the
StudentCourse table. To recover these deleted records, one needs to recover all of
those deleted records related to the deleted faculty in those four tables. An easy way
to do this recovery job is to use the Microsoft SQL Server Management Studio. For
your convenience, we show these original records in Tables 8.4, 8.5, 8.6 and 8.7
again, and you can add or insert them back to those four tables to complete this data
recovery.

Another point to be noted is that you must recover the Faculty table first, and
then you can recover other records in other tables since the faculty_id is a primary
key in the Faculty table. An easy way to do this recovery is to use the Insert button
with its method in this project to insert that deleted faculty record based on data in
Table 8.4. Then you can exit our project and use Microsoft SQL Management Studio
to add all other data items for other tables by hand based on data in Tables 8.5, 8.6
and 8.7.

Table 8.4 The deleted faculty record in the Faculty table

faculty_
id

faculty_
name title office phone college email fimage

B78880 Ying Bai Associate
Professor

MTC-
211

750-378-
1148

Florida Atlantic
University

ybai@
college.edu

Bai.
jpg

8 Developing Java Web Applications to Access Databases

ybai@college.edu
ybai@college.edu

455

8.6 Chapter Summary

Most key techniques and knowledge in Java Web database programming are fully
discussed and analyzed in this chapter with real project examples. The most popular
and important techniques in Java Web database programming, such as JavaServer
Pages (JSP), JavaServer Faces (JSF), and Enterprise Java Beans (EJB), are intro-
duced and discussed in detail in different sections in this chapter.

Starting from an introduction to the fundamental Java Web server Servlets and
HTML Web pages, a comprehensive historical review about Java Web application
development and implementations are provided with some example codes. Then an
introduction about the development of JavaServer Pages and Java help classes to
improve the Java Web database applications are given with some pieces of coding
examples.

Table 8.5 The deleted course records in the Course table

course_
id course credit classroom schedule enrollment

faculty_
id

CSC-
132B

Introduction to
Programming

3 MTC-302 T-H: 1:00-2:25
PM

21 B78880

CSC-
234A

Data Structure &
Algorithms

3 MTC-302 M-W-F:
9:00-9:55 AM

25 B78880

CSE-434 Advanced Electronics
Systems

3 MTC-213 M-W-F:
1:00-1:55 PM

26 B78880

CSE-438 Advd Logic &
Microprocessor

3 MTC-213 M-W-F:
11:00-11:55 AM

35 B78880

Table 8.6 The deleted login records in the LogIn table

user_name pass_word faculty_id student_id

ybai come B78880 NULL

Table 8.7 The deleted student course records in the StudentCourse table

s_course_id student_id course_id credit major

1005 T77896 CSC-234A 3 CS/IS
1009 A78835 CSE-434 3 CE
1014 A78835 CSE-438 3 CE
1016 A97850 CSC-132B 3 ISE
1017 A97850 CSC-234A 3 ISE

8.6 Chapter Summary

456

To effectively improve and enhance the efficiency and quality of Java Web data-
base applications, the Java core techniques, Java beans and Java enterprise edition
(Java EE 7), are discussed and analyzed in detail with a few of coding examples.

Following a quick introduction to the Java EE Web application models, three
actual Java Web database projects are introduced and discussed in detail.

The first project JavaWebDBJSPSQL, which is built based on the different
techniques listed above, is used to access the SQL Server 2019 database with the
help of runtime object method. Four popular Web pages, LogInPage.jsp,
SelectionPage.jsp, FacultyPage.jsp, and CoursePage.jsp, which work as Web
views, are built and developed with JSP techniques. The Glassfish v4 that works as
a Web server and the Java help classes and Java beans that work as models are devel-
oped and implemented to provide users a global and detailed picture in the process
of Java Web database application building and development.

The second project JavaWebDBJSPSQL_Insert, which is built based on the
JSP pages and Java EJB techniques, is used to insert new records into the SQL
Server database with the help of Java Beans techniques. The binding relationships
between each attribute of tags in the JSP pages and the associated property in the
Java bean class are built and illustrated in detail with actual example codes and step-
by- step explanations in the coding process.

The third project JavaWebDBJSPSQL_UpdateDelete, which is built based on
the JSP pages and Java EJB techniques, is used to manipulate the SQL Server
database.

Some important techniques and points in developing and building a successful
Web database application are emphasized and highlighted as below:

• Different data actions are performed and illustrated by using the coding process
and line by line explanations, which include the data query, data insertion, and
data updating and deleting.

• The Web project structure and navigation process are developed with the help of
the Web configuration file, faces-config.xml, with actual examples and step-by-
step illustrations.

• The relationships between the Java managed beans and the Java session beans
are fully discussed and analyzed using the actual example codes and line by line
explanations.

• The mapping relationships between each attribute in the tags on our JSP pages
and the associated property in the Java managed beans are explicitly illustrated
with the real coding process.

After finishing this chapter, readers can have a solid understanding and a clear
and a full picture about the Java Web database application, including the Web struc-
tures, components, navigation, and mapping relationships between different objects,
as well as the connections among those components.

It is hard to find a similar book that contains so much details and so clear illustra-
tions on these topics about the Java Web applications from the current market.

8 Developing Java Web Applications to Access Databases

457

Homework
 I. True/False Selections.

 ___ 1. When a Servlet is created, the init() method is called to do the initial-
ization jobs for the Web server.

 ___ 2. When a request is received by the Servlet, it creates two objects: request
and response. Then the Servlet sends these two objects to the service()
method, in which these two objects are further to be processed.

 ___ 3. The conventional Web applications are built with a Servlet as a Web
container and JSF pages as Web clients.

 ___ 4. Unlike a Common Gateway Interface (CGI), a Servlet can be used to
create dynamic Web pages during the server-client communication
processes.

 ___ 5. To interface to the client to get user’s data, in most time the Web server
calls the getParameter() method that belongs to the request object to
do this job.

 ___ 6. The so-called implicit objects in JSP are objects that are automatically
available in JSP because they are automatically instantiated as the
project runs.

 ___ 7. Among those implicit objects, the request, response, and session are
most popular objects and are often used in the interfacing between
clients and servers.

 ___ 8. To use a Java bean, the JSP provide three basic tags for working
with beans,
<jsp:useBean id=”bean name” class=”bean class” scope = “page|req
uest|session|application”/>

 ___ 9. To embed any Java codes into a HTML page, the JSP directive <%@
page /> must be used.

 ___10. The navigation from one page to another can be done in two ways. One
way is directly to use the codes by writing the JSP tag such as
<jsp:forward /> or the HTML hyperlink in the JSF file. Another way
that is provided by JSF is to use the application configuration resource
file faces-config.xml to build these navigation rules.

 II. Multipe Choices.

 1. The <from-view-id> tag is used to define a navigation ______________.

 (a) Source
 (b) Terminal
 (c) Destination
 (d) None of above

 2. To bind a Java bean’s property to an associated attribute of a tag in the JSF
page, one needs to use the ________________.

 (a) Expression language (EL) with the syntax #(managedbean.property)
 (b) Expression language (EL) with the syntax #{managedbean.property}
 (c) Expression language (EL) with the syntax #[managedbean.property]
 (d) Expression language (EL) with the syntax ${managedbean.property}

8.6 Chapter Summary

458

 3. A typical Java bean class should contain __________________.

 (a) All properties
 (b) All properties, setter methods
 (c) All properties, setter and getter methods
 (d) All properties, setter and getter methods as well as user-defined methods

 4. Java beans need to be configured in the Web configuration file faces-config.
xml so that the implementation can automatically create new _________ of
the beans as needed.

 (a) Statement
 (b) Method
 (c) Instance
 (d) Project

 5. Before you can use a Servlet such as FacesServlet in the server side from a
Web browser, you need to map the FacesServlet to a path in your deploy-
ment descriptor file ________.

 (a) Web pages
 (b) WEB INF file
 (c) Web configuration file
 (d) web.xml

 6. To separate the presentations and business logics, we can use ________
pages to present our GUI and the ___________ to store our data to perform
business-related logics.

 (a) HTML, Java help class
 (b) XML, JSF pages
 (c) JSP, Java beans
 (d) JSF, JSP pages

 7. All JSF tag components are represented by a tree of components whose
root is the UIViewRoot, which is represented by the _________ tag. All
JSF component tags must be enclosed in this _________ tag.

 (a) UIComponent
 (b) UITree
 (c) <h:form>
 (d) <f:view>

 8. A JSP form, which is submitted to the Web server when a button is clicked,
is represented by the _________ tag. The tags representing the form com-
ponents, such as textfields and buttons, must be nested inside this tag.

 (a) <f:form>
 (b) <h:form>
 (c) <h:view>
 (d) <f:view>

8 Developing Java Web Applications to Access Databases

459

 9. If the required attribute is set to true, this means that the inputText
_______________.

 (a) Cannot be empty
 (b) Must be filled something by the user
 (c) Both of above
 (d) Neither of above

 10. A Web application is a dynamic extension of a web or application server.
There are two types of Web applications: ______________ and
______________.

 (a) Dynamic, static
 (b) Single-tier, multitier
 (c) Web server, web client
 (d) Presentation-oriented, service-oriented

 III. Exercises.

 1. Provide a brief description about the Java EE three-tier Web application
with EJB.

 2. What is the difference between a Java EE with EJB and a Java EE
without EJB?

 3. What are popular Java EE components?
 4. Provide a brief description to illustrate the interaction between a Web client

and a Web application.
 5. Provide a brief description about the Java EE containers.
 6. Refer to Sect. 8.4.5 to develop a Java Web application WebDBJSPSQL_

Student to query the Student table in our sample SQL Server database
CSE_DEPT using JavaServer pages and JSP implicit session object.

Hint 1: Use an existing Student.jsp page located under the folder HTML
and JSP Pages in the Springer ftp site (refer to Fig. 1.2 in Chap. 1) under
the Students folder. Modify that page based on Sect. 8.4.5.1 to make it a
desired Student.jsp page.
Hint 2: Create a StudentProcess.jsp page based on Sect. 8.4.5.2.
Hint 3: Create a Help or Java Bean class StudentQuery.java based on Sect.
8.4.5.3.
Hint 4: Create a new folder SImages under the project folder,
WebDBJSPSQL_Student\web.
Go to Springer ftp site, and copy all student images from the folder Images\
Students under the Students folder and paste them into our created folder
SImages.
Hint 5: In the NetBeans IDE, open the project Properties wizard, click on
the Libraries node and add the JDBC 4.2 driver by clicking on the Add
JAR/Folder button, and browse to C:\Program Files\sqljdbc_4.2\enu\
jre7\sqljdbc41.jar, select it, and click on the Open button.

8 Developing Java Web Applications to Access Databases

461© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8_9

Chapter 9
Developing Java Web Services to Access
Databases

We provided a very detailed discussion about the Java Web applications in the last
chapter. In this chapter, we will concentrate on another Java Web-related topic—
Java Web Services.

Unlike Java Web applications in which the user needs to access the Web server
through the client browser by sending requests to the server to obtain the desired
information, the Java Web Services provide an automatic way to search, identify,
and return the desired information required by the user through a set of methods
installed in the Web server, and those methods can be accessed by a computer pro-
gram, not the user, via the Internet. Another important difference between the Java
Web applications and Java Web services is that the latter do not provide any graphic
user interfaces (GUIs) and users need to create those GUIs themselves to access the
Web services via the Internet.

When finishing this chapter, you will

• Understand the basic and popular Java Web services models
• Understand the structure and components of SOAP/WSDL-based Java Web

Services, such as Simple Object Access Protocol (SOAP), Web Services
Description Language (WSDL), and Universal Description, Discovery and
Integration (UDDI)

• Create correct SOAP Namespaces for the Web Services to make used names and
identifiers unique in the user’s document

• Create suitable security components to protect the Web methods
• Build the professional Java Web Service projects to access our sample database

to obtain required information
• Build client applications to provide GUIs to consume a Web Service
• Build the professional Java Web Service projects to access our sample database

to insert new information into that database

Supplementary Information The online version contains supplementary material available at
[https://doi.org/10.1007/978-3-031-06553-8_9].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06553-8_9&domain=pdf
https://doi.org/10.1007/978-3-031-06553-8_9

462

• Build the professional Java Web Service projects to access our sample database
to update and delete information against that database

In order to help readers to successfully complete this chapter, first we need to
provide a detailed discussion about the Java Web Services and their components.

9.1 Introduction to Java Web Services

Web services are distributed application components that are externally available.
You can use them to integrate computer applications that are written in different
languages and run on different platforms. Web services are language and platform
independent because vendors have agreed on common Web service standards.

Essentially Web Services can be considered as a set of methods installed in a
Web server and can be called by computer programs installed on the clients through
the Internet. Those methods can be used to locate and return the target information
required by the computer programs. Web Services do not require the use of brows-
ers or HTML, and therefore Web Services are sometimes called application services.

A complete Web services stack Metro, which is developed by the Sun
Microsystems, covers all of a developer’s needs from simple Java Web services
demonstrations to reliable, secured, and transacted web services. Metro includes
Web Services Interoperability Technologies (WSIT). WSIT supports enterprise fea-
tures such as security, reliability, and message optimization. WSIT ensures that
Metro services with these features are interoperable with Microsoft .NET services.
Within Metro, Project Tango develops and evolves the codebase for WSIT.

Several programming models are available to Web service developers. These
models can be categorized into two groups, and both are supported by the
NetBeans IDE:

• REST-based: REpresentational State Transfer is a new way to create and com-
municate with Web services. In REST, resources have Uniform Resource
Identifiers (URIs) and are manipulated through HTTP header operations.

• SOAP/WSDL-based: In traditional Web service models, Web service interfaces
are exposed through Web Services Description Language (WSDL) documents (a
type of XML), which have URLs. Subsequent message exchange is in Simple
Object Access Protocol (SOAP), another type of XML document.

Let’s have a little more discussion about these two kinds of Web services.

9.1.1 REST-Based Web Services

REST-based or RESTful Web services are collections of Web resources identified
by URIs. Every document and every process is modeled as a Web resource with a
unique URI. These Web resources are manipulated by the actions that can be

9 Developing Java Web Services to Access Databases

463

specified in an HTTP header. Neither SOAP, nor WSDL, nor WS-* standards are
used. Instead, message exchange can be conducted in any format—XML, JavaScript
Object Notation (JSON), HTML, etc. In many cases a Web browser can serve as
the client.

HTTP is the protocol in REST. Only four methods are available: GET, PUT,
POST, and DELETE. Requests can be bookmarked and responses can be cached. A
network administrator can easily follow what is going on with a RESTful service
just by looking at the HTTP headers.

REST is a suitable technology for applications that do not require security
beyond what is available in the HTTP infrastructure and where HTTP is the appro-
priate protocol. REST services can still deliver sophisticated functionality. NetBeans
IDE Software as a Service (SaaS) functionality lets you use Facebook, Zillow, and
other third-party-provided services in your own applications.

Project Jersey is the open source reference implementation for building RESTful
Web services. The Jersey APIs are available as the RESTful Web Services plug-in
for NetBeans IDE.

RESTful Web services are services built using the RESTful architectural style.
Building Web services using the RESTful approach is emerging as a popular alter-
native to using SOAP-based technologies for deploying services on the Internet, due
to its lightweight nature and the ability to transmit data directly over HTTP.

The NetBeans IDE supports rapid development of RESTful Web services using
Java Specification Requests (JSR 311), a Java API for RESTful Web Services
(JAX-RS) and Jersey, the reference implementation for JAX-RS.

In addition to building RESTful Web services, the NetBeans IDE also supports
testing, building client applications that access RESTful Web services, and generat-
ing code for invoking Web services (both RESTful and SOAP-based).

Here is the list of RESTful features provided by the NetBeans IDE:

 1) Rapid creation of RESTful Web services from JPA entity classes and patterns
 2) Rapid code generation for invoking Web services such as Google Map, Yahoo

News Search, and StrikeIron Web services by drag-and-dropping components
from the RESTful component palette

 3) Generation of JavaScript client stubs from RESTful Web services for building
RESTful client applications

 4) Test client generation for testing RESTful Web services
 5) Logical view for easy navigation of RESTful Web service implementation

classes in the project
 6) Fully integrated Spring framework, providing Spring transaction handling

A structure and architecture of using RESTful model to build a Web service is
shown in Fig. 9.1.

Next let’s take a look at the SOAP-based Web services.

9.1 Introduction to Java Web Services

464

9.1.2 SOAP-Based Web Services

In SOAP-based Web services, Java utilities create a WSDL file based on the Java
code in the Web service. The WSDL is exposed on the net. Parties interested in
using the Web service create a Java client based on the WSDL. Messages are
exchanged in SOAP format. The range of operations that can be passed in SOAP is
much broader than what is available in REST, especially in security.

SOAP-based Web services are suitable for heavyweight applications using com-
plicated operations and for applications requiring sophisticated security, reliability,
or other WS-* standards-supported features. They are also suitable when a transport
protocol other than HTTP has to be used. Many of Amazon’s Web services, particu-
larly those involving commercial transactions, and the Web services used by banks
and government agencies are SOAP-based.

The Java API for XML Web Services (JAX-WS) is the current model for SOAP-
based Web services in Metro. JAX-WS is built on the earlier Java API for XML
Remote Procedure Call (JAX-RPC) model but uses specific Java EE 5 features, such
as annotations, to simplify the task of developing Web services. Because it uses
SOAP for messaging, JAX-WS is transport neutral. It also supports a wide range of
modular WS-* specifications, such as WS-Security and WS-ReliableMessaging.

When you create a Web service client, you have the option of using either the
JAX-WS or JAX-RPC model. This is because some older JAX-RPC services use a
binding style that is not supported by JAX-WS. These services can only be con-
sumed by JAX-RPC clients.

Web Service

Client

Database

Server

Client Machine

(GUI)

Application Tier

Database Server

Jersey or RESTLet

Resource Request

Handler

Presentation

Layer

HTTP or RMI Calls

Session Beans Business Logic

Layer

Hibernate or

Entity Beans
Data Access

Layer

Client Tier

Data Store Tier

Fig. 9.1 The architecture of a multitier Web services

9 Developing Java Web Services to Access Databases

465

Metro Web services are interoperable with Apache Axis2 Web services. Apache
Axis2 is an open-source implementation of the SOAP submission to the W3C. Two
popular implementations of the Apache Axis2 Web services engine are Apache
Axis2/Java and Apache Axis2/C. In addition, Axis2 not only supports SOAP 1.1 and
SOAP 1.2, but it also has integrated support for RESTful Web services.

Because the SOAP-based Web services are suitable for heavyweight applications
using complicated operations and for applications requiring sophisticated security
and reliability, in this chapter, we will concentrate on this kind of Web services.

9.2 The Structure and Components of SOAP-Based
Web Services

To effectively find, identify, and return the target information required by computer
programs, a SOAP-based Web Service needs the following components:

 1) XML (Extensible Markup Language)
 2) SOAP (Simple Object Access Protocol)
 3) UDDI (Universal Description, Discovery and Integration)
 4) WSDL (Web Services Description Language)

The functionality of each component is listed below:
XML is a text-based data storage language, and it uses a series of tags to define

and store data. Exactly the so-called tags are used to “mark up” data to be exchanged
between applications. The “marked up” data then can be recognized and used by
different applications without any problem. As you know, the Web Services plat-
form is XML + HTTP (Hypertext Transfer Protocol), and the HTTP protocol is the
most popular Internet protocol. However, the XML provides a kind of language that
can be used between different platforms and programming languages to express
complex messages and functions. In order to make the codes used in the Web
Services to be recognized by applications developed in different platforms and pro-
gramming languages, the XML is used for the coding in the Web Services to make
them up line by line.

SOAP is a communication protocol used for communications between applica-
tions. Essentially SOAP is a simple XML-based protocol to help applications devel-
oped in different platforms and languages to exchange information over
HTTP. Therefore, SOAP is a platform-independent and language-independent pro-
tocol, which means that it can be run at any operating systems with any program-
ming languages. Exactly SOAP works as a carrier to transfer data or requests
between applications. Whenever a request is made to the Web server to request a
Web Service ,that request is first wrapped into a SOAP message and sent over the
Internet to the Web server. Similarly, as the Web Service returns the target informa-
tion to the client, the returned information is also wrapped into a SOAP message
and sent over the Internet to the client browser.

9.2 The Structure and Components of SOAP-Based Web Services

466

WSDL is an XML-based language for describing Web Services and how to
access them. In WSDL terminology, each Web Service is defined as an abstract
endpoint or a Port, and each Web method is defined as an abstract operation. Each
operation or method can contain some SOAP messages to be transferred between
applications. Each message is constructed by using the SOAP protocol as a request
is made from the client. WSDL defines two styles for how a Web Service method
can be formatted in a SOAP message: Remote Procedure Call (RPC) and Document.
Both RPC and Document style messages can be used to communicate with a Web
Service using a RPC.

A single endpoint can contain a group of Web methods, and that group of meth-
ods can be defined as an abstract set of operations called a Port Type. Therefore,
WSDL is an XML format for describing network services as a set of endpoints
operating on SOAP messages containing either document-oriented or procedure-
oriented information. The operations and messages are described abstractly and
then bound to a concrete network protocol and message format to define an endpoint.

UDDI is an XML-based directory for businesses to list themselves on the
Internet, and the goal of this directory is to enable companies to find one another on
the Web and make their systems interoperable for e-commerce. UDDI is often con-
sidered as a telephone book’s yellow and white pages. By using those pages, it
allows businesses to list themselves by name, products, locations, or the Web ser-
vices they offer.

Summarily, based on these components and their roles discussed above, we can
conclude:

• The XML is used to tag the data to be transferred between applications.
• SOAP is used to wrap and pack the data tagged in the XML format into the mes-

sages represented in the SOAP protocol.
• WSDL is used to map a concrete network protocol and message format to an

abstract endpoint and describe the Web services available in an WSDL docu-
ment format.

• UDDI is used to list all Web Services that are available to users and businesses.

Figure 9.2 shows a diagram to illustrate these components and their roles in a
Java Web Service process.

By now we have obtained the fundamental knowledge about the SOAP-based
Web Services and their components; next let’s see how to build a Web Service
project.

9.3 The Procedure of Building a Typical SOAP-Based Web
Service Project

Different methods and languages can be used to develop Web Services such as the
C# Web Services, Java Web Services, and Perl Web Services. In this section we only
concentrate on the Java Web Services using the NetBeans IDE. Before we can start

9 Developing Java Web Services to Access Databases

467

to build a real Web Service project, let’s first take a closer look at the procedure of
building a Java Web Service project.

Unlike ASP.NET Web services applications, a Java SOAP-based Web service
project is involved in a Java Web application project in which the Web service can
be deployed based on an appropriate container. Once a Java Web application project
has been created with a desired container, you can create a new Java Web service
project in that Web application project.

Regularly, to build and implement a Java SOAP-based Web service project, you
need to follow the procedures listed below:

 1) Create a new Java Web application project with an appropriate container.
 2) Create a new Java SOAP-based Web service project.
 3) Add desired operations (methods) to the Web service to build the desired func-

tions for the Web service.
 4) Deploy and test the Web service on the selected container.
 5) Create Web service clients to consume the developed Java Web service.

Next let’s use a real simple Web service example WSTestApplication to illus-
trate these steps.

9.3.1 Create a New Java Web Application
Project WSTestApplication

Before we can create a new Web service application project, we need to select our
desired container to deploy our Web service. Generally we can either deploy our
Web service in a Web container or in an EJB container. This depends on our choice
of implementation. If we are creating a Java EE 7 application, we had better used a

Clients Web

Server

Database

Server

Web

Services

Message in

SOAP Format

SOAP-based

Web Services

Database

Prepare

Information

Request in

XML tags

WSDL &

UDDI

Fig. 9.2 A typical process of a SOAP-based Web Service

9.3 The Procedure of Building a Typical SOAP-Based Web Service Project

468

Web container in any case since we can put EJBs directly in a Web application.
However, if we plan to deploy our Web service project to the Tomcat Web Server,
which only has a Web container, we need to create a Web application, not an
EJB module.

After a container has been determined, next we can create a new Java Web appli-
cation project with the selected container. Perform the following operations to cre-
ate this new Web application project WSTestApplication:

 1) Launch NetBeans IDE 8.2, and choose File > New Project (Ctrl-Shift-N).
Select Web Application from the Java Web category.

 2) Name the project WSTestApplication, and click on the Browse button to select
a desired location for the project. In this application, we used the C:\Class DB
Projects\Chapter 9 as our project location. Click on the Next button to continue.

 3) On the next wizard, Server and Settings, click on the Add button to add the
GlassFish 4.1 server since it was deleted from our previous project develop-
ments in Chap. 8.

 4) In the opened Add Server Instance wizard, select the GlassFish Server from
the Server List, and click on the Next button to open the Server Location wiz-
ard, as shown in Fig. 9.3.

 5) Browse to the location where our installed GlassFish server is located by click-
ing the Browse button, as shown in Fig. 9.3. Check I have read and accent the
license agreement checkbox, and click on the Next button to create a
user domain.

 6) On the opened Domain Location wizard, as shown in Fig. 9.4, keep the default
user domain location as shown in Fig. 9.4, and then click on the Finish button
to complete this adding server operation. You can add your username and pass-
word if you like to add some additional security function to access this server.

 7) A Domain creation successful message is displayed if this process is fine.
Click on the No button to skip the viewing of the result step, and continue to the
next step.

Fig. 9.3 The opened Server Location wizard

9 Developing Java Web Services to Access Databases

469

 8) On the Server and Settings wizard, select Java EE 7 Web as the Java EE ver-
sion, and your finished Server and Settings wizard should match one that is
shown in Fig. 9.5. Click on the Next button to continue.

 9) On the next wizard, Framework, just click on the Finish button to complete
this new application creation process since we do not need to use any framework.

Now that a Web application has been created with a selected Web container; next
we can create our new Web service project WSTest.

9.3.2 Create a New Java SOAP-Based Web Service
Project WSTest

The function of this Web service is to add two integers together and return the result.
Perform the following operations to create this new Web service project WSTest:

 1) In the opened Projects window, right click on our new created project
WSTestApplication, and select the New > Other menu item to open the New
File wizard.

 2) Select Web Services from the Categories list and Web Service from the File
Types list, and click on the Next button.

 3) Name the Web service WSTest and type org.wstest into the Package field.
Leave Create Web Service from Scratch selected.

 4) Check the Implement Web Service as Stateless Session Bean checkbox if we
want to use Java beans in this Web service.

Your finished Name and Location wizard should match one that is shown in
Fig. 9.6. Click on the Finish button to complete this process.

Fig. 9.4 The opened Domain Location wizard

9.3 The Procedure of Building a Typical SOAP-Based Web Service Project

470

After a new Web service project WSTest is created, the following components
are added into our Web application WSTestApplication:

 1) A new node named org.wstest with a new Java class WSTest.java has been
added to the Source Packages node in our application. This Java class file
 WSTest.java is the main body of this Web service, and all functions of this Web
service should be performed by adding operations or methods into this class.

 2) A new node named Web Services with a new icon WSTest has been added into
our Web application. This WSTest icon is our target Web service output file that
can be tested later when it is built.

 3) A new file named web.xml has been added into the Configuration Files node
in our project. This file is called the Web deployment descriptor file, and it is
used to define and describe how to deploy our Web service on a server.

Fig. 9.5 The finished Server and Settings wizard

Fig. 9.6 The finished Name and Location wizard

9 Developing Java Web Services to Access Databases

471

 4) Some Metro Web service libraries have also been added into the Libraries node
in our project to provide all supports and assistances to our Web service
developments.

 5) A new node named Enterprise Beans with a new added bean class WSTest has
been added into our project, and this enables us to use any Java beans in our
Web service project.

All of these new added components are shown in Fig. 9.7.
Now we can add new operations or methods into our main body class WSTest.

java to build our Web service to perform the addition function for two integers input
by users via a client.

9.3.3 Add Desired Operations to the Web Service

The goal of this project is to add to the Web service an operation that adds two inte-
ger numbers received from a client. The NetBeans IDE provides a dialog for adding
an operation or a method to a Web service. You can open this dialog either in the
Web service visual designer or in the Web service context menu.

To open this dialog using the Web service visual designer,

• Open our Web service main body file WSTest.java by double clicking on it from
the Projects window.

• Click on the Design button on the top of this window.

Fig. 9.7 New added
components for our new
Web service project

9.3 The Procedure of Building a Typical SOAP-Based Web Service Project

472

To open this dialog using the Web service context menu,

• Find our target Web service output file WSTest from the Web Services node in
the Projects window.

• Right click on that node to open the context menu.

Click on Add Operation menu item in either the visual designer or the context
menu. A dialog box appears where you can define the new operation.

Perform the following operations to add a new addition operation or new method:

 1) In the upper part of the Add Operation dialog box, type Add into the Name
field and type int into the Return Type drop-down list. In the lower part of the
Add Operation dialog box, click on the Add button, and create a parameter of
type int named input1. Then click on the Add button again, and create the sec-
ond parameter of type int called input2. Your finished Add Operation dialog
should match one that is shown in Fig. 9.8.

 2) Click on the OK button to close this dialog. The new added operation is dis-
played in the visual designer if the Design tab is clicked for this service.

 3) Click on the Source button on the top of this window to open the code window
of this Web service main body file, and you can find that our new Web operation
or method Add() has been added into this class, as shown in Fig. 9.9.

 4) In the opened WebMethod Add(), enter the codes shown below into this method:

int result = input1 + input2;
return result;

 5) Your finished codes for this new operation method, which have been highlighted,
are shown in Fig. 9.10. The function of this operation is simple, and it only adds
two input numbers entered by users via a client and returns the result to the client.

Fig. 9.8 The finished Add Operation dialog

9 Developing Java Web Services to Access Databases

473

 6) If you like, you can delete the default Web Method Hello from this service.
Click on the Design tab on the top to open the Design View for this service, and
right click on the hello icon, and select the Remove Operation item, and click
on the Yes button.

At this point, we have finished developing our Web service project, and next we
need to deploy it to the selected Web container and test it with some consuming
projects.

9.3.4 Deploy and Test the Web Service
on the Selected Container

The NetBeans IDE provides a server’s test client to assist us to test our Web service
after it has been successfully deployed. Perform the following operations to deploy
our Web service to our Web container GlassFish:

 1) Right click on our project WSTestApplication from the Projects window, and
choose the Deploy item. The NetBeans IDE will start the application server,
build the application, and deploy the application to the server. You can follow
the progress of these operations in the WSTestApplication (run-deploy) and
the GlassFish Server in the Output window view.

Fig. 9.9 The codes created for the new added operation

9.3 The Procedure of Building a Typical SOAP-Based Web Service Project

474

 2) If everything is fine, a successful deploy result should be obtained and displayed
in the Output window at the bottom.

To test our Web service, perform the following operations:

 1) In the opened Projects window, expand the Web Services node of our project
and right click on our target Web service output file WSTest, and choose the
Test Web Service item.

 2) The NetBeans IDE will display a tester page in your browser if everything is
fine, which is shown in Fig. 9.11.

To test our Web service project, enter 5 and 3 to the two input boxes, and click on
the add button. You can find that a successful running result of our Web service is
displayed with an addition result of 8, which is shown in Fig. 9.12.

One point to be noted is that if you are using the Tomcat Web Server as your
application server, you would not find this tester page, and only a testing successful
page is displayed without the page testing ability available. Also if you are deploy-
ing a Web service built with EJB module, you cannot find this tester page, neither
since the NetBeans IDE will not support this testing function to any EJB module.

Next let’s build a Web service consuming project to consume our Web service.

Fig. 9.10 The finished codes for the new operation method

9 Developing Java Web Services to Access Databases

475

9.3.5 Create Web Service Clients to Consume the Web Service

In fact, you can develop any kind of Java applications as a consuming project to
consume a Web service, such as a general desktop Java application project, a Java
servlet, or a JSP page in a Web application.

To make this client project simple, we prefer to build a simple Java desktop
application project WSTestClient to consume this Web service.

Perform the following operations to create our client project:

Fig. 9.11 The Web Service testing page

Fig. 9.12 The Web Service testing result

9.3 The Procedure of Building a Typical SOAP-Based Web Service Project

476

1) Choose File > New Project menu item to open New Project wizard. Select
Java from the Categories list and Java Application from the Projects list, and
click on the Next button.

2) Name the project WSTestClient, and select an appropriate location for this cli-
ent project. Leave Create Main Class checkbox checked, and accept all other
default settings. Your finished Name and Location wizard should match one
that is shown in Fig. 9.13. Click on the Finish button to complete this new proj-
ect creation process.

3) Right click on our new client project WSTestClient node from the Projects
window, and choose New > Web Service Client item to open the New Web
Service Client wizard.

4) Click on the Browse button that is next to the Project radio button to browse to
our Web service project WSTest, as shown in Fig. 9.14. Click on our Web ser-
vice WSTest and click on the OK button.

5) Your finished New Web Service Client wizard should match one that is shown
in Fig. 9.15. Click on the Finish button to complete this new consuming project
creation process.

Fig. 9.13 The finished Name and Location wizard

Two issues need to be noticed if some errors occurred for this WSDL
Location mapping process: (1) The GlassFish Server must be run first,
(2) The Web Service project WSTest must be deployed first. Complete
these two steps before you can locate this WSDL.

9 Developing Java Web Services to Access Databases

477

6) A new node named Web Service References with the following components
has been added into our client project WSTestClient, as shown in Fig. 9.16:

(a) Our target Web service output file WSTest
(b) Our Web service port file WSTestPort
(c) Our operation Add() method

Now let’s build the codes for this consuming project to consume our Web ser-
vice. Perform the following operations to build the codes for this consuming project:

 1) Double click on our main Java file WSTestClient.java that is located at the
Source Packages\wstestclient node to open the code window of this file.

 2) Enter the codes that are shown in Fig. 9.17 into the main() method on this file.

Fig. 9.14 The Web service browse wizard

Fig. 9.15 The finished New Web Service Client wizard

9.3 The Procedure of Building a Typical SOAP-Based Web Service Project

478

Let’s have a closer look at this piece of codes to see how it works.

 A. A try … catch block is used to call our Web service to perform a two-integer
addition operation.

 B. A new Web service instance service is created based on our Web service class
WSTestService.

 C. The getWSTestPort() method is executed to get the current port used by our
Web service. This port is returned and assigned to a new Port instance port.

 D. Two testing integers are created and initialized with 5 and 7, respectively.
 E. The operation method Add() in our Web service is called to perform this addi-

tion operation. The running result of this method is assigned to a local variable
named result.

Fig. 9.16 The new added Web Service References node and components

A

B

C

D

E

F

G

public class Main {

/**
* @param args the command line arguments
*/

public static void main(String[] args) {
// TODO code application logic here
try {

org.wstest.WSTest_Service service = new org.wstest.WSTest_Service();

org.wstest.WSTest port = service.getWSTestPort();

int a = 5, b = 7;

int result = port.add(a, b);

System.out.println("Result = " + result);

}

catch (Exception ex){

System.out.println("exception" + ex);

}

}
}

Fig. 9.17 The codes for the main() method

9 Developing Java Web Services to Access Databases

479

 F. The result is displayed on the Output window.
 G. Any exception during this Web service calling process will be tracked and dis-

played on the Output window, too.

Now let’s build and run our client project to call the Add() method built in our
Web service to perform this two-integer addition operation.

Click on the Clean and Build Main Project button to build our client project.
Then right click on our project WSTestClient, and select the Run menu item from
the popup menu. The running result is shown in Fig. 9.18.

It can be found that the calling of our Web service is successful and the addition
result of 12 has been returned. Our first Web service project is successful.

At this point, we have gotten a fundamental knowledge and basic understanding
about Java Web services. Now let’s start building some real Java Web services proj-
ects to perform database query and manipulation operations against our sample
database.

9.4 Getting Started with Java Web Services Using
NetBeans IDE

In the following sections, we will develop and build different Java Web services
projects based on the database system, SQL Server 2019 Express, and different
database operations.

A sequence of real Java Web service projects will be developed and built, such as
Web services project, to access and manipulate data against the SQL Server data-
base by adding the different operations or methods to those Web service projects,
respectively. Due to the space limitations, we will concentrate on accessing and
manipulating data against the Faculty table and accessing and manipulating data
against the Course table in our sample SQL Server 2019 database:

 1) Query data from the SQL Server 2019 database with QueryFaculty() operation.
 2) Insert data into the SQL Server 2019 database with InsertFaculty() operation.

Fig. 9.18 The running result of calling our Web service

9.4 Getting Started with Java Web Services Using NetBeans IDE

480

 3) Update and delete data against the SQL Server 2019 database with
UpdateFaculty() and DeleteFaculty() operations.

 4) Query data from the SQL Server 2019 database with QueryCourse() operation.
 5) Query detailed course information from the SQL Server 2019 database with

DetailCourse() operation.
 6) Update and delete data against the SQL Server 2019 database with

UpdateCourse() and DeleteCourse() operations.

For each Web services project, we need to build an associated Web client project
to consume the Web services project to test its function. The following client proj-
ects will be built:

 1) Web client project to consume the Web service to access the SQL Server
database

 2) Web client project to consume the Web service to insert data into the SQL
Server database

 3) Web client project to consume the Web service to update and delete data against
the SQL Server database

 4) Web client project to consume the Web service to query course information
from the SQL Server database

 5) Web client project to consume the Web service to query course details from the
SQL Server database

 6) Web client project to consume the Web service to update and delete course data
against the SQL Server database

As we know, we can develop any kind of client project to consume a Web ser-
vice, either a standard Java desktop application, a JSP page, or a JSF page. We will
develop and build different client projects to consume our Web services to enable
our projects to meet the actual needs in our real world.

9.5 Build Java Web Service Projects to Access SQL
Server Database

In this section, we will discuss how to access and perform queries and manipula-
tions against SQL Server 2019 database using Java Web services. To make our Web
Services project simple, we will use the following components to fulfill this query
and manipulation:

• Build different operations or methods in our Web services as interfaces to com-
municate with Web clients that will be built in the future to perform desired data
actions.

• Use runtime object method to actually access and query our sample SQL Server
2019 database.

The structure and components used in our Web services are shown in Fig. 9.19.

9 Developing Java Web Services to Access Databases

481

Now let’s create our first Web service project WebServiceSQLApp to perform
data query and manipulation against our sample database.

9.5.1 Create a New Java Web Application
Project WebServiceSQLApp

When creating a new Web service application project, we need to select a desired
container to deploy our Web service. Generally we can either deploy our Web ser-
vice in a Web container or in an EJB container. In this application we prefer to use
a Web container since we are creating a Java EE 7 application.

Perform the following operations to create our Web application project
WebServiceSQLApp:

 1) Launch NetBeans IDE 8.2, and choose File > New Project (Ctrl-Shift-N).
Select Web Application from the Java Web category, and click on the
Next button.

 2) Name the project WebServiceSQLApp, and click on the Browse button to
select a desired location for the project. In this application, we used the C:\
Class DB Projects\Chapter 9 as our project location. Click on the Next button
to continue.

 3) Select GlassFish Server as our Web container and Java EE 7 Web as the Java
EE version; your finished Server and Settings wizard should match one that is
shown in Fig. 9.20. Click on the Finish button to complete this new application
creation process.

Now that a Web application has been created with a selected Web container, next
we can create our new Web service project WebServiceSelect.

9.5.2 Create a New Java SOAP-Based Web Service
Project WebServiceSelect

The function of this Web service is to perform data queries and manipulations to our
sample SQL Server 2019 database and return the result. Perform the following oper-
ations to create this new Web service project WebServiceSelect:

Web Services

Web Server
HTTP

Request

HTTP

Response

SQL Server

2019

Database

Java Runtime

Object Method

Database

Server
Java Client

Fig. 9.19 The structure and components used in our Web services

9.5 Build Java Web Service Projects to Access SQL Server Database

482

 1) In the opened Projects window, right click on our new created project
WebServiceSQLApp, and select the New > Other menu item to open the New
File wizard.

 2) Select Web Services from the Categories list and Web Service from the File
Types list, and click on the Next button.

 3) Name the Web service WebServiceSelect and type org.ws.sql into the Package
field. Leave Create Web Service from Scratch selected.

Your finished Name and Location wizard should match one that is shown in
Fig. 9.21. Click on the Finish button to complete this process.

Before we can add any operation to this Web service project, we need first to add
a JDialog class into our project, and we need to use this component to display the
debug information during the testing process for our Web service project.

Next let’s handle the adding new operations and coding for the new added opera-
tions or methods in our Web service.

9.5.3 Add New Operations to Our Web Services to Perform
Data Query

The main purpose of using the Web service in this section is to query data from the
Faculty table in our sample database; therefore, we need to add one new operation
QueryFaculty() to the Web service project.

Perform the following operations to add a new operation QueryFaculty() into
our Web service:

 1) Double click our project source file WebServiceSelect.java from the Projects
window under the Source Packages\org.ws.sql folder to open it, and click on
the Design button on the top of the window to open the Design View of our Web
service project.

Fig. 9.20 The finished Server and Settings wizard

9 Developing Java Web Services to Access Databases

483

 2) Right click on the default operation hello, and click on the Remove Operation
item from the popup menu to delete this operation.

 3) Click on the Add Operation button to open the Add Operation wizard.
 4) Enter QueryFaculty into the Name field, and click on the Browse button that

is next to the Return Type combo box. Type ArrayList into the Type Name
field and select the item ArrayList (java.util) from the list, and click on the
OK button.

 5) Click on the Add button, and enter fname into the Name parameter field. Keep
the default type java.lang.String unchanged, and click on the OK button.

Your finished Add Operation wizard should match one that is shown in Fig. 9.22.
Click on the OK button again to complete this add operation process.

Click on the Source button on the top of this window to open the code window
of our Web service project. On the opened code window, enter the codes that are
shown in Fig. 9.23 into this new added operation.

Let’s have a closer look at this piece of codes to see how it works.

 A. First the java.sql.* package should be imported since we need to use SQL com-
ponents and all components are prototyped and declared in that package.

 B. Then two class-level variables, con and msgDlg, are created. The first variable
is used to hold the connection instance to our sample database, and the second
is used to track and display the debug information when this Web service proj-
ect is tested later.

 C. An ArrayList instance result is created, and this is an array list instance used
to collect and store our query result and return to the consuming project. The
reason we used this ArrayList and not List is that the former is a concrete class
but the latter is an abstract class,

Fig. 9.21 The finished Name and Location wizard

9.5 Build Java Web Service Projects to Access SQL Server Database

484

and a runtime exception may be encountered if an abstract class is used as a
returned object to the calling method.

 D. The SQL query statement is created with a positional parameter as the dynamic
parameter for the query criterion faculty_name.

 E. The user-defined method DBConnection() that will be built later is called to set
up a connection between our Web service and our sample database. A connec-
tion instance con is returned after the execution of this method.

Fig. 9.22 The finished Add Operation wizard

A

B

C

D

E

F

G

H

I

J

K

L

M

import java.sql.*;

@WebService(serviceName = "WebServiceSelect")
public class WebServiceSelect {

Connection con = null;

public class WebServiceSQL {
@WebMethod(operationName = "QueryFaculty")
public ArrayList QueryFaculty(@WebParam(name = "fname") String fname) {

//TODO write your implementation code here:
ArrayList<String> result = new ArrayList<String>();

String query = "SELECT * FROM Faculty WHERE faculty_name = ?";

try {

con = DBConnection(con);

PreparedStatement pstmt =con.prepareStatement(query);

pstmt.setString(1, fname);

ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();

while (rs.next()){

for (int colNum = 1; colNum <= rsmd.getColumnCount() - 1; colNum++)

result.add(rs.getString(colNum));

}

con.close();

return result;

}

catch (Exception ex) {

System.out.println("exception is: " + ex);

return null;

}

}
}

Fig. 9.23 The codes for the new operation QueryFaculty()

9 Developing Java Web Services to Access Databases

485

 F. A new PreparedStatement instance pstmt is declared and created to perform
the query.

 G. The setString() method is used to set up the actual value that is our input faculty
name for the positional parameter faculty_name.

 H. The query is performed by calling the executeQuery() method, and the query
result is returned and stored in a ResultSet object rs.

 I. To get more related information about the queried database, the getMetaData()
method is executed, and the result is stored in a ResultSetMetaData
instance rsmd.

 J. A while and a for loop are used to pick up each column from the queried result
that is stored in the ResultSet object rs. In fact, the while loop only runs one
time since only one matched faculty row will be returned. The getColumn-
Count() method is used as the upper-bound of the for loop, but this upper bound
must be decreased by 1 since totally there are eight (8) columns in the Faculty
table, but we only need to query and pick the first seven (7) columns and the last
column is the faculty image object but it cannot be added into the ArrayList as
a String object. Thus this query only returns the first seven columns in the
matched faculty row.

 K. The close() method is executed to disconnect the connection to our database.
 L. The queried result is returned.
 M. The catch block is used to track and display any exception that occurred during

this data query process, and a null will be returned if this situation really
happened.

During the coding process, you may encounter some in-time compiling errors.
The main reason for those errors is that some packages are missed. To fix these
errors, just right click on any space inside this code window, and select the Fix
Imports item to find and add those missed packages, such as java.sql.*.

Next let’s add another operation to our Web Service project to query and get the
faculty image for the selected faculty member.

9.5.4 Add Another Operation to Our Web Service to Query
Faculty Image

Perform the following operations to add a new operation QueryImage() into our
Web service:

 1) Click on the Design button on the top of the window to open the Design View
of our Web service project file WebServiceSelect.java.

 2) Click on the Add Operation button to open the Add Operation wizard.
 3) Enter QueryImage into the Name field, and click on the Browse button that is

next to the Return Type combo box. Type Image into the Type Name field,
and select the item Image (java.awt) from the list, and click on the OK button.

9.5 Build Java Web Service Projects to Access SQL Server Database

486

 4) Click on the Add button, and enter fname into the Name parameter field. Keep
the default type java.lang.String unchanged, and click on the OK button.

Your finished Add Operation wizard should match one that is shown in Fig. 9.24.
Click on the OK button again to complete this second add operation process.

Click on the Source button on the top of this window to open the code window
of our Web service project. On the opened code window, enter the codes that are
shown in Fig. 9.25 into this new added operation.

Let’s have a closer look at this piece of codes to see how it works.

 A. Some useful packages are first imported into this source window for this opera-
tion. You can right click on this code window and select Fix Imports item from
the popup menu if you do not want to declare these packages yourself.

 B. Some local objects and variables are declared here: the bimg is a Blob object
since we need to retrieve a desired faculty image from the Faculty table and the
image is a Blob format in our database column. The fimg is a type of Image
object since this type of object can be used as a returned object from the Web
Service project. Since this object belongs to the java.awt.Image class, thus a
full package name is used.

 C. The SQL query string is declared with the faculty_name as an input position
parameter.

 D. A try-catch block is used to perform this image query operation. First a con-
nection method DBConnection(), which will be built in the next section, is
executed to connect to our sample database CSE_DEPT.

 E. A new PreparedStatement instance pstmt is declared and created to perform
the query.

Fig. 9.24 The finished Add Operation wizard

9 Developing Java Web Services to Access Databases

487

 F. The setString() method is used to set up the actual value that is our input faculty
name for the positional parameter faculty_name.

 G. The query is performed by calling the executeQuery() method, and the query
result is returned and stored in a ResultSet object rs.

 H. To get more detailed information about the queried database, the getMeta-
Data() method is executed, and the result is stored in a ResultSetMetaData
instance rsmd.

 I. A while and a for loop are used to pick up the queried faculty image stored in the
ResultSet object rs. In fact, the while loop only runs one time since only one
matched faculty row will be returned. The getColumnCount() method is used
as the upper-bound of the for loop, and it should be equal to eight (8) since the
8th column in the Faculty table stored the desired faculty image.

 J. An if selection structure is used to check if the 8th column has been retrieved. If
it is, the getBlob() method is executed to pick up the image in that column and
assigned to the local object bimg, which is Blob type object.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

package org.ws.sql;

import java.awt.Image;

import java.io.InputStream;

import java.util.ArrayList;

import javax.jws.WebService;

import javax.jws.WebMethod;

import javax.jws.WebParam;
import java.sql.*;

import javax.imageio.ImageIO;

@WebMethod(operationName = "QueryImage")

public Image QueryImage(@WebParam(name = "fname") String fname) {

//TODO write your implementation code here:
Blob bimg = null;

java.awt.Image fimg = null;

String query = "SELECT fimage FROM Faculty WHERE faculty_name = ?";

try {

con = DBConnection(con);

PreparedStatement pstmt =con.prepareStatement(query);

pstmt.setString(1, fname);
ResultSet rs = pstmt.executeQuery();

ResultSetMetaData rsmd = rs.getMetaData();

while (rs.next()){

for (int i = 1; i <=rsmd.getColumnCount(); i++) {

if (i == rsmd.getColumnCount()){

bimg = rs.getBlob("fimage");

InputStream in = bimg.getBinaryStream();

fimg = ImageIO.read(in);

break;

}

}

}

con.close();

rs.close();

pstmt.close();

return fimg;
}

catch (Exception ex) {

System.out.println("exception is: " + ex);

return null;

}

}

}

Fig. 9.25 The codes for the second operation QueryImage()

9.5 Build Java Web Service Projects to Access SQL Server Database

488

 K. The system method getBinaryStream() is used to convert this Blob object to an
Image object fimg with another system method read() that belongs to the
ImageIO class.

 L. Then a break instruction skips out and terminates this for loop.
 M. A sequence of cleaning jobs is performed to close all used objects, and the que-

ried faculty image is returned.
 N. The catch block is used to catch and display any possible error during this

image query.

Now let’s build our user-defined method DBConnection() to set up a connection
to our sample database from our Web service project.

9.5.5 Build the User-Defined Method DBConnection()

To make our Web service project simple, we will use the Java runtime object method
to perform this database connection function. In the opened code window of our
Web service project file WebServiceSelect.java, add the codes that are shown in
Fig. 9.26 into this service to create and define this connection method
DBConnection().

Let’s have a closer look at this piece of codes to see how it works.

 A. A try catch block is used to perform this database connection function. First the
SQL Server JDBC driver is loaded using the forName() method.

 B. The catch block is used to track and detect any possible exception for this JDBC
driver loading process. The debug information will be displayed using the
msgDlg object if any exception occurred.

A

B

C

D

E

F

private Connection DBConnection(Connection conn) {

try

{

//Load and register SQL Server driver
Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}

catch (Exception e) {

System.out.println ("Class not found exception!" + e.getMessage());

}

String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";

try {

conn = DriverManager.getConnection(url,"SMART","Happy2020");

}
catch (SQLException e) {

System.out.println ("Could not connect! " + e.getMessage());

e.printStackTrace();

}

return conn;

}

Fig. 9.26 The codes for the user-defined method DBConnection()

9 Developing Java Web Services to Access Databases

489

 C. Our sample SQL Server database connection URL is defined, and it is used to
set up a connection to our sample database. Refer to Sect. 6.3.3.3.1 in Chap. 6
to get more details about this connection URL.

 D. Another try block is used to set up a connection to our sample database using
the getConnection() method that belongs to the DriverManager class with the
username and password as arguments.

 E. The catch block is used to detect and display any possible exception during this
connection process.

 F. The established connection object is returned to the calling method.

At this point, we have finished all coding development for our Web service used
to perform queries to our Faculty table. Now let’s build and deploy our Web service
project.

9.5.6 Deploy the Web Service Project and Test the Data
Query Function

Perform the following operations to build and deploy our Web service project:

 1) Click on the Clean and Build Main Project button to build our Web service.
 2) Right click on our Web application WebServiceSQLApp, and select the Deploy

item to deploy our Web service. If everything is fine, a successful deployment
result should be displayed, as shown in Fig. 9.27.

 3) To test this Web service, right click on our target service output file
WebServiceSelect under the Web Services node in our project, and select the
Test Web Service item.

 4) The tested page is opened and displayed as shown in Fig. 9.28.
 5) Enter a desired faculty name such as Ying Bai into the text field, and click on

the queryImage button. The selected faculty image is returned as [B :
"[B@6a225a6f". Click on the Back button to return the testing page again for
the next testing.

Fig. 9.27 The deployment result of our Web service project

9.5 Build Java Web Service Projects to Access SQL Server Database

490

Two issues need to be noticed if some errors occurred for this
Testing:
1) The JDBC Driver 4.2 must be added into this project. By

checking the Properties of this project and cli cking on the
Libraries node. If not, click on the Add JAR/Folder button and
browse to the location the sqljdbc41.jar is downloaded to add it.

2) The GlassFish Server must be in the running status. Go to
Services window and Servers folder to confirm this.

 6) Enter a desired faculty name such as Ying Bai into the text field, and click on
the queryFaculty button to call our Web service. The running result is shown in
Fig. 9.29.

It can be found that all seven pieces of queried faculty information for the
selected faculty member have been retrieved and the data query for our Faculty
table is successful.

Fig. 9.28 The tested page for our Web service

Next we can develop some Web client projects to consume this Web service to
perform data query from the Faculty table in our sample database. In fact, as we
discussed in Sect. 9.3.5, we can develop different kinds of Web client projects to
consume a Web service. In the following sections, we will discuss two popular cli-
ent projects, Window-based and Web-based clients, to consume our Web service to
perform queries to our Faculty table.

9 Developing Java Web Services to Access Databases

491

First let’s discuss how to build a Window-based client project to consume our
Web service.

9.6 Build a Window-Based Client Project to Consume
the Web Service

To save time and space, we can use a Window-based project SQLSelectObject we
developed in Sect. 6.3 in Chap. 6 to build this client project. The project can be
found from the folder Class DB Projects\Chapter 6 that is located under the
Students folder at the Springer ftp site (refer to Fig. 1.2 in Chap. 1).

9.6.1 Copy the FacultyFrame and MsgDislog
Components as GUIs

Perform the following operations to create a GUI for our Window-based client proj-
ect WinClientSelect to consume our Web service:

 1) Launch NetBeans IDE 8.2, and choose File > New Project item.

Fig. 9.29 The testing result of our Web service project

9.6 Build a Window-Based Client Project to Consume the Web Service

492

 2) Select Java and Java Application from the Categories and the Projects lists,
respectively. Click on the Next button.

 3) Name the project as WinClientSelect, and select a desired folder to save this
project. Uncheck the Create Main Class checkbox. Your finished Name and
Location wizard should match one that is shown in Fig. 9.30. Click on the
Finish button to create this new project.

 4) Go to the Students folder in the Springer ftp site, and load and open the project
SQLSelectObject from the folder Class DB Projects\Chapter 6.

 5) On the opened project, right click on the Faculty Frame file FacultyFrame.java
under the project package node, and select the Refactor > Copy item to copy
this form file.

 6) On the opened Copy Class – FacultyFrame wizard, select our new project
WinClientSelect from the Project combo box, and remove the 1 after the
FacultyFrame from the New Name field. Your finished Copy Class –
FacultyFrame wizard is shown in Fig. 9.31.

Fig. 9.30 The finished Name and Location wizard

Fig. 9.31 The finished Copy Class wizard

9 Developing Java Web Services to Access Databases

493

 7) Click on the Refactor button to make a refactoring copy for this frame file.
 8) Return to our new project WinClientSelect, and you can find that a copied

FacultyFrame.java file has been pasted in the default package in our project.

Perform a similar Refactor operation to copy the MsgDialog.java file, and paste
it into our new client project. Next let’s develop the codes to call our Web service to
perform this faculty data query. However, before we can begin the coding process,
we must first set up or create a Web service reference for our WinClientSelect proj-
ect to enable our project to recognize that Web service and to call it when it is
instructed to do that.

9.6.2 Create a Web Service Reference for Our Window-Based
Client Project

Perform the following operations to set up a Web service reference for our client
project:

 1) First our Web Service project WebServiceSQLApp must be deployed to make
the GlassFish Server to run. To do that, right click on our service project
WebServiceSQLApp, and select the Deploy item from the popup menu to start
deploying it.

 2) Right click on our client project WinClientSelect from the Projects window,
and select the New > Other item to open the New File wizard.

 3) On the opened New File wizard, select Web Services from the Categories and
Web Service Client from the File Types list, respectively. Click on the Next
button to continue.

 4) Click on the Browse button for the Project field, and expand our Web applica-
tion project WebServiceSQLApp, and click on our Web service project
WebServiceSelect to select it. Then click on the OK button to select this Web
service. Your finished Web Service Client wizard should match one that is
shown in Fig. 9.32.

 5) Click on the Finish button to complete this Web service reference setup process.

Immediately you can find a new node named Web Service References has been
created and added into our client project. Expand this node, and you can find the
associated Web service port and our Web service operations QueryFaculty() and
QueryImage() under that node.

Now let’s develop the codes for this project to call the Web service to perform the
data query from the Faculty table in our sample database.

9.6 Build a Window-Based Client Project to Consume the Web Service

494

9.6.3 Develop the Codes to Call Our Web Service Project

The coding process is divided into two parts: modify the original codes and add new
codes. First let’s do some modifications to the original codes in this FacultyFrame
class. Perform the following code modifications to make this project as our Web
consuming project:

 1) Double click on our new copied FacultyFrame.java file from our project to
open it.

 2) Click on the Source button on the top to open the code window.
 3) Open the SelectButtonActionPerformed() method, and remove all codes

inside this method except the first or top two coding lines and the codes in the
last try- catch block.

Now let’s develop codes to perform the faculty data query by calling our Web
service.

On the Design view of the FacultyFrame form window, double click on the
Select button to open its event method SelectButtonActionPerformed(). Then
enter the codes that are shown in Fig. 9.33 into this method. The new added and
modified codes have been highlighted in bold.

Let’s have a closer look at this piece of codes to see how it works.

 A. A java TextField array, JTextField[], is declared first, and all seven related
TextFields used to store a faculty record are initialized to this TextField. The
order of these TextFields must be identical with the order of the columns in our
Faculty table. One point to be noticed is that all of these TextFields must be in

Fig. 9.32 The finished New Web Service Client wizard

9 Developing Java Web Services to Access Databases

495

a single line in the real code window; otherwise an error may be displayed if you
arrange these TextFields in a way that is shown in here. Due to the space limita-
tions, here it separates into two lines.

 B. A new ArrayList instance al is created to receive and hold the query result.
 C. A try catch block is used to call our Web service to perform the faculty data

query operation. First a new Web service instance service is created based on
our Web service class WebServiceSelect_Service. Starting NetBeans IDE 7, a
keyword _Service must be appended after the Web Service name to create a new
service object.

 D. The getWebServiceSelectPort() method is executed to get the current port used
by our Web service. This port is returned and assigned to a new Port instance port.

 E. Before we can call our Web service, make sure that our ArrayList object al is
empty by executing the clear() method.

 F. The queryFaculty() method defined in our Web service is called to perform this
faculty data query. Two points to be noted are:

 1) The argument of this method is a selected faculty name obtained from the
getSelectedItem() method from the Faculty Name combo box ComboName.
Since this method returns an object, a toString() method must be attached
to convert it to a string.

 2) An ArrayList cast must be used to make sure that the returned query result
is in this ArrayList type since an ArrayList<String> type is used in our
Web service project. The query result is assigned to our ArrayList instance al.

 G. A for loop is used to pick up each column from the query result using the get()
method. Two points to be noted are:

A

B

C

D

E

F
G

H

I

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
javax.swing.JTextField[] f_field = {FacultyIDField,FacultyNameField,TitleField,OfficeField,PhoneField,

CollegeField,EmailField};

ArrayList al = new ArrayList();

try {

org.ws.sql.WebServiceSelect_Service service = new org.ws.sql.WebServiceSelect_Service();

org.ws.sql.WebServiceSelect port = service.getWebServiceSelectPort();

al.clear();

al = (ArrayList)port.queryFaculty(ComboName.getSelectedItem().toString());

for (int col = 0; col < al.size(); col++)

f_field[col].setText(al.get(col).toString());

}

catch (Exception ex){

System.out.println("exception: " + ex);

}

try {
if (!ShowFaculty()){

System.out.println.setMessage("No matched faculty image found!");
}

} catch (SQLException | IOException ex) {
Logger.getLogger(FacultyFrame.class.getName()).log(Level.SEVERE, null, ex);

}
}

Fig. 9.33 The modified codes for the SelectButtonActionPerformed() method

9.6 Build a Window-Based Client Project to Consume the Web Service

496

 1) The argument of the get() method indicates the index of each column in the
returned query result that is a single row, and the data type of this method is
an object. Therefore a toString() method must be attached to convert it to
a string.

 2) To assign each column to each item in the f_field array, the setText() method
must be used.

 H. The catch block is used to track and display any possible exception during this
Web service calling process.

 I. The user-defined method ShowFaculty() is modified by removing its argument.
The codes for this method will be built later.

During the coding process, you may encounter some real-time compiling errors.
Most of these errors are introduced by missing some packages that contain classes
or components used in this file. To fix these errors, just right click on this code win-
dow, and select the Fix Imports item to load and import those missed packages to
the top of this code window.

Now let’s build the codes for our user-defined method ShowFaculty() to get and
display a selected faculty image by calling another operation, QueryImage(), built
in our Web Service.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

private boolean ShowFaculty() throws SQLException, IOException{
byte[] bimg = null;
Image img = null;
int imgId = 1, timeout = 1000;
MediaTracker tracker = new MediaTracker(this);
try {

org.ws.sql.WebServiceSelect_Service service = new org.ws.sql.WebServiceSelect_Service();
org.ws.sql.WebServiceSelect port = service.getWebServiceSelectPort();
bimg = port.queryImage(ComboName.getSelectedItem().toString());
ByteArrayInputStream binput = new ByteArrayInputStream(bimg);
img = ImageIO.read(binput);

}
catch (Exception ex){

System.out.println("exception: " + ex);
}

String imgPath = System.getProperty("user.dir");
String fimgName = ComboName.getSelectedItem().toString() + ".jpg";
File outfile = new File(imgPath + "/" + fimgName);
ImageIO.write((RenderedImage) img, "jpg", outfile);
img = this.getToolkit().getImage(fimgName);
Graphics g = ImageCanvas.getGraphics();
tracker.addImage(img, imgId);
try{

if(!tracker.waitForID(imgId, timeout)){
msgDlg.setMessage("Failed to load image");
msgDlg.setVisible(true);
return false;

}
}catch(InterruptedException e){

msgDlg.setMessage(e.toString());
msgDlg.setVisible(true);
return false;

}
g.drawImage(img, 0, 0, ImageCanvas.getWidth(), ImageCanvas.getHeight(), this);
return true;

}

Fig. 9.34 The modified codes for the cmdSelectActionPerformed() method

9 Developing Java Web Services to Access Databases

497

In the opened FacultyFrame.java file, browse to this ShowFaculty() method,
and replace all original codes with those codes shown in Fig. 9.34.

Let’s have a closer look at these modified codes to see how they work.

 A. Some local objects are declared first, which include a byte[] array object bimg
and an Image object img, and both objects are used to hold the created byte[]
image array and converted Image object. Both integer variables, imgId and
timeout, are used to keep the image ID and timeout value when displaying this
image in the Canvas object in our client.

 B. A try catch block is used to call our Web service to perform the faculty data
query operation. First a new Web service instance service is created based on
our Web service class WebServiceSelect_Service. Starting NetBeans IDE 7, a
keyword _Service must be appended after the Web Service name to create a
new service object.

 C. The getWebServiceSelectPort() method is executed to get the current port
used by our Web service. This port is returned and assigned to a new Port
instance port.

 D. Now our Web Service operation, QueryImage(), is called with the selected
faculty name as the argument to retrieve the selected faculty image from our
sample database and assign it to our local variable bimg. One issue is that this
returned object is an Image type when it is defined in our Web Service, but now
we are using byte[] array data type to hold this image. The reason for that is due
to the default conversion by NetBeans IDE.

 E. Two coding lines in this section are used to convert the data type of this returned
image from the byte[] to Image. A ByteArrayInputStream object and
ImageIO.read() method must be used for this conversion.

 F. A catch block is used to detect and report any error for this conversion process.
 G. In order to store our retrieved faculty image into our current project folder, the

system method, getProperty() with our current directory (user.dir), is used,
and this current folder is assigned to a local string variable imgPath.

 H. To get the selected faculty image, we need to get the current selected or queried
faculty name from the Faculty Name combo box, and convert this item to a
string and attach a “.jpg” to the image file name. We need to use the name of this
faculty image later to store and display this selected faculty image in the Canvas.

 I. To save this converted faculty image into our current project folder, a new File
object is generated with the image path and image name. A system method,
ImageIO.write(), is used to complete this image saving job.

 J. To display the selected faculty image, the getImage() method that belongs to
the abstract class Toolkit is executed to load the selected image. Since the
Toolkit class is an abstract class, we used a method getToolkit() to create it
instead of generating it by invoking its constructor. The getGraphics() method
is called to get a Graphics context, and our ImageCanvas works as an image
holder for this faculty image.

 K. The addImage() method that belongs to the MediaTracker class is called to add
our image with its ID into the tracking system.

9.6 Build a Window-Based Client Project to Consume the Web Service

498

 L. A try catch block is used to begin this tracking process, and the waitForID()
method is called to execute this tracking. If a timeout occurred for this tracking
process, which means that the selected faculty image has not been loaded into
the project, a warning message is displayed using our MsgDialog object, and a
False is returned to indicate this error.

 M. Any other possible exception or error will be caught by the catch block and to
be displayed in our msgDlg dialog.

 N. If no timeout error happened, which means that the selected faculty image has
been loaded into our project and ready to be displayed, the drawImage()
method is executed to display it in the FacultyFrame Form window. We want
to display this image starting from the origin of the Canvas object, which is the
upper-left corner of the canvas (0, 0), with a width and height that are identical
with those of the canvas. Therefore, the getWidth() and getHeight() methods
are called to get both of them from the canvas object. A true is returned to the
main program to indicate that the execution of this method is successful.

Before we can build and run our client project to test this faculty query, add one
more coding line, System.exit(0);, to the bottom of the
BackButtonActionPerformed() handler or method on the Source window of this
FacultyFrame class to terminate our project if the Back button is clicked.

9.6.4 Build and Run Our Client Project to Query Faculty Data
via Web Service

Click on the Clean and Build Main Project button to build our client project. If
everything is fine, click on the Run Main Project button to run our client project.

A message box may pop up to ask the main starting class, which is shown in
Fig. 9.35. Select our FacultyFrame class as the starting class, and click on the OK

Fig. 9.35 The Run Project dialog

9 Developing Java Web Services to Access Databases

499

button to run the project. The FacultyFrame form window is displayed, as shown in
Fig. 9.36.

Select a desired faculty member, such as Ying Bai, from the Faculty Name
combo box, and click on the Select button to query the detailed information for this
faculty via our Web service. The queried result is displayed in this form, as shown
in Fig. 9.36.

Our Web service and client projects are very successful!
One important point to be noted is that the Web Service project

WebServiceSQLApp must be deployed first before our Windows Client project
WinClientSelect can be run. Otherwise a dynamic error may be encountered.

A complete Window Client project WinClientSelect can be found from a folder
Class DB Projects\Chapter 9 that is under the Students folder at the Springer ftp
site (refer to Fig. 1.2 in Chap. 1). Next let’s build a Web-based client project to con-
sume our Web service WebServiceSelect to perform the faculty data query action.

9.7 Build a Web-Based Client Project to Consume
the Web Service

To save time and space, we can use some components and frames in a Web applica-
tion project JavaWebDBJSPSQL we developed in Chap. 8 to build our Web-based
client consuming project WebClientSelect in this section. In fact, we will use the

Fig. 9.36 The running result of our client project

9.7 Build a Web-Based Client Project to Consume the Web Service

500

Faculty.jsp file and a Java managed bean class in that project to query faculty data
from our sample SQL Server database.

The structure of this Web-based client project is shown in Fig. 9.37.

9.7.1 Create a Web-Based Client Project WebClientSelect

Perform the following operations to create a new Web application project
WebClientSelect:

 1) Launch NetBeans IDE 8.2, and go to File > New Project item to open the New
Project wizard. Select the Java Web from the Categories list and Web
Application from the Projects list, and then click on the Next button to go to
the next wizard.

 2) Enter WebClientSelct into the Project Name field as this new project’s name.
Make sure that the desired folder in which you want to save this project is
included in the Project Location field, and then click on the Next button.

 3) In the opened Server and Settings wizard, make sure that the GlassFish Server
has been selected as the Web server for this Web application and the Java EE 7
Web has been selected for this application. Click on the Next button to continue.

 4) On the next wizard, Frameworks, just click on the Finish button to complete
this new Web application creation process.

Since we need a Faculty page as a view to query data from the Faculty table in
our sample database, thus we need to add the Faculty.jsp and FacultyProcess.jsp
files we built in the project JavaWebDBJSPSQL in Chap. 8 into our current proj-
ect. Perform the following operations to complete this Web pages addition process:

 1) Open the NetBeans IDE 8.2 and our project JavaWebDBJSPSQL that is
located at the Class DB Projects\Chapter 8 folder under the Students folder at
the Springer ftp site, and copy two files, Faculty.jsp and FacultyProcess.jsp,
from the Web Pages folder.

 2) In the NetBeans IDE, open our new project WebClientSelect, and paste two
copied files in step 1 into the folder Web Pages under our new project
WebClientSelect project.

Java Managed

Bean

Web Server
HTTP

Request

HTTP

Response

SQL Server

2019

Database

Web Services
Database

Server
Web-Based

Client

Fig. 9.37 The architecture of our Web-based client project

9 Developing Java Web Services to Access Databases

501

Next we need to create a Java managed bean class FacultyBean.java and copy
the codes from the managed bean FacultyQuery.java we built in the Web applica-
tion project JavaWebDBJSPSQL and paste them into our managed bean class
FacultyBean.java in our Web-based client project.

9.7.2 Create a Java Managed Bean FacultyBean

Perform the following operations to create this Java managed bean into our current
project:

 1) Right click on our Web-based client project WebClientSelect from the Projects
window, and select New > Java Class item to open the New Java Class wizard.

 2) On the opened wizard, enter FacultyBean into the Class Name field, and enter
webclient into the Package field.

 3) Then click on the Finish button to complete this Java managed bean creation
process.

 4) Double click on our new created managed bean FacultyBean.java to open its
code window.

 5) Now open the Web application project JavaWebDBJSPSQL we built in Chap.
8. You can find and download this project from the folder Class DB Projects\
Chapter 8 under the Students folder at the Springer ftp site (refer to Fig. 1.2 in
Chap. 1).

 6) Expand the package JavaWebDBJSPSQL, and copy all codes inside the man-
aged bean class FacultyQuery.java (exclude the imported packages at the top
of this file).

 7) In our opened managed bean FacultyBean.java, paste all copied codes inside
this class.

Let’s first modify the FacultyBean.java class file to make it as our new Java
Bean class:

 1) Change the class name from FacultyQuery to FacultyBean. Change the con-
structor’s name from FacultyQuery() to FacultyBean().

 2) Remove the class MsgDialog and its object msgDlg coding line since we like
to use System.out.println() to replace it.

 3) Replace all msgDlg.setMessage() and msgDlg.setVisible() with System.out.
println() method.

 4) Remove all original codes inside the FacultyBean constructor.

Now let’s modify the FacultyProcess.jsp file to make it as our new process
page class:

 1) Replace the import package name <%@ page import="JavaWebDBJSPSQL
Package.*" %> with our new package <%@ page import="webclient.*"
%> in coding line 10.

9.7 Build a Web-Based Client Project to Consume the Web Service

https://doi.org/10.1007/978-3-031-06553-8

502

 2) Replace the original constructor coding line (line 19), FacultyQuery fQuery =
new FacultyQuery();, with our new Java Bean class FacultyBean fQuery =
new FacultyBean();.

 3) Click on the Clean and Build Main Project button to compile the project.

Before we can modify and develop the codes for the Java managed bean to per-
form faculty data query, we need first to add a Web reference to our current Web-
based client project to enable our client to recognize our Web service and its
operations.

9.7.3 Create a Web Service Reference for Our Web-Based
Client Project

Perform the following operations to set up a Web service reference for our client
project:

 1) Open and deploy our Web Service project WebServiceSQLApp built in
Sect. 9.5.

 2) Right click on our client project WebClientSelect from the Projects window,
and select the New > Other item to open the New File wizard.

 3) On the opened New File wizard, select Web Services from the Categories and
Web Service Client from the File Types list, respectively. Click on the Next
button to continue.

Fig. 9.38 The finished New Web Service Client wizard

9 Developing Java Web Services to Access Databases

503

 4) Click on the Browse button for the Project field, and expand our Web applica-
tion project WebServiceSQLApp, and click on our Web service project
WebServiceSelect to select it. Then click on the OK button to select this Web
service. Your finished Web Service Client wizard should match one that is
shown in Fig. 9.38.

 5) Click on the Finish button to complete this Web service reference setup process.

Immediately you can find a new node named Web Service References has been
created and added into our client project. Expand this node, and you can find the
associated Web service port and our Web service operations QueryFaculty() and
QueryImage() under that node.

A point to be noted is that you must deploy our Web service project first
before you can add this Web Reference to any client project.

Now let’s modify and develop the codes to the different methods defined in the
Java managed bean FacultyBean one by one to perform data actions against the
Faculty table in our sample database by calling the associated operations defined in
our Web service project.

9.7.4 Build the Codes to Call the Web Service to Perform
Data Query

First let’s concentrate on the QueryFaculty() method. The function of this
method is to:

 1) Call our Web service operation QueryFaculty() to pick up a matched faculty
record from the Faculty table in our sample database.

 2) Assign each queried column to the associated property defined in our Java man-
aged bean class FacultyBean.java.

There are two ways to develop the codes inside the QueryFaculty() method to
call our Web service operation QueryFaculty() to perform the faculty data query:
(1) drag the Web service operation node from the Projects window, and drop it to
inside the QueryFaculty() method and (2) right click on any place inside the
QueryFaculty() method, and select the Insert Code item and choose the Call Web
Service Operation item from the popup menu.

Let’s use the first method as an example to add the codes to call our Web service
operation.

9.7 Build a Web-Based Client Project to Consume the Web Service

504

 1) Remove all original codes inside this FacultyQuery() method.
 2) Expand the Web Service References node under our Web-based client project

WebClientSelect, and continue to expand the sub-service port until our opera-
tion QueryFaculty node.

 3) Open the code window of our Java managed bean class FacultyBean.java, and
browse to the QueryFaculty() method.

 4) Drag our Web service operation QueryFaculty node, and place it inside the
QueryFaculty() method in our managed bean.

A piece of codes is automatically created and added into the bottom on this class,
which has been highlighted in bold and shown in Fig. 9.39.

It is unnecessary to explain the function of this piece of codes line by line since
all of coding lines are used to create a new instance of our Web Service class.

Now let’s do some modifications to this piece of codes and add some codes to
meet our data query requirements. Perform the following operations to make this
piece of codes to perform our desired faculty data query:

 A. Copy top two coding lines A and B, as shown in Fig. 9.39, and paste them into
the top of inside the QueryFaculty() method, as shown in Fig. 9.40.

 B. Create a new instance of Java.util.List, result, to call our Web Service opera-
tion queryFaculty() to get a selected faculty record in a List format.

 C. For the debug purpose, the queried record can be printed and displayed in the
Output window to track this query operation.

 D. Return a true to indicate the success of this query operation.

Now let’s add more codes to this method to complete this query and display
action. Prior to doing this, delete those auto-created codes shown in Fig. 9.39 from
the bottom of this method.

The Completed codes for the QueryFaculty() method are shown in Fig. 9.41.
All new added codes have been highlighted in bold. Let’s have a closer look at this
piece of codes to see how they work.

A

B

C

private static java.util.List<java.lang.Object> queryFaculty(java.lang.String fname) {

org.ws.sql.WebServiceSelect_Service service = new org.ws.sql.WebServiceSelect_Service();
org.ws.sql.WebServiceSelect port = service.getWebServiceSelectPort();

return port.queryFaculty(fname);

}

Fig. 9.39 The automatically added codes by dragging the operation node

A

B

C

D

public boolean QueryFaculty(String fname) {
org.ws.sql.WebServiceSelect_Service service = new org.ws.sql.WebServiceSelect_Service();
org.ws.sql.WebServiceSelect port = service.getWebServiceSelectPort();
java.util.List<java.lang.Object> result = port.queryFaculty(fname);
System.out.println("Result = " + result);

return true;
}

Fig. 9.40 The created codes for the QueryFaculty() method

9 Developing Java Web Services to Access Databases

505

 A. An ArrayList instance al is created first. This local variable al is used to hold
the returned query record in a List format during the project runs.

 B. Two auto-generated coding lines shown in Fig. 9.39, which are illustrated in
steps B and C here, are used to create a new instance of our Web Service class
and a new port instance, and both are used to access to our Web Service to per-
form data query operations later. Starting NetBeans IDE 8.0, a new instance
generation format as shown here must be used to replace the original format.

 C. A try-catch block is used to perform this data query via our Web Service. First
the queryFaculty() operation in our Web service is executed to perform the
faculty data query, and the result is returned and assigned to the local variable
al. One point to be noted is that this returned result must be casted with
ArrayList class since the ArrayList<String> data type is used for this query
result in our Web service operation.

 D. Seven returned columns are assigned to the associated properties defined in this
managed bean FacultyBean.java class and will be displayed in the associated
text field in our JSP page Faculty.jsp since each of those tags has been bound to
each associated property. The get() method is used to pick up each column from
the returned query result and a toString() method is used to convert each col-
umn to a String and assigned each of them to the associated property.

 E. The getter method getFacultyImage() is executed to pick up a matched faculty
image and display it in the faculty image box in our JSP page Faculty.jsp. Refer
to that getter method to get the detailed codes for this method defined in this
Java managed bean.

 F. The catch block is used to track and display any possible exception during this
Web service operation. A false is returned if any error was occurred to indicate
this situation.

A

B

C

D

E
F

G

public boolean QueryFaculty(String fname) {
ArrayList al = new ArrayList();

try { // Call Web Service Operation
org.ws.sql.WebServiceSelect_Service service = new org.ws.sql.WebServiceSelect_Service();
org.ws.sql.WebServiceSelect port = service.getWebServiceSelectPort();

// TODO process result here
al = (ArrayList)port.queryFaculty(fname);

facultyID = al.get(0).toString();
facultyName = al.get(1).toString();
title = al.get(2).toString();
office = al.get(3).toString();
phone = al.get(4).toString();
college = al.get(5).toString();
email = al.get(6).toString();
facultyImage = getFacultyImage();

} catch (Exception ex) {
// TODO handle custom exceptions here
System.out.println("Exception in Query Faculty Table: " + ex);
return false;

}
return true;

}

Fig. 9.41 The completed codes for the QueryFaculty() method

9.7 Build a Web-Based Client Project to Consume the Web Service

506

 G. Otherwise a true is returned to indicate the successful execution of this method.

During the coding process, you may encounter some real-time compiling errors.
Most of these errors are introduced by missing some packages that contain classes
or components used in this file. To fix these errors, just right click on this code win-
dow, and select the Fix Imports item to load and import those missed packages to
the top of this code window.

The last coding job is to modify one coding line in the bottom of the JSP file,
Faculty.jsp, to safely terminate and exit our Web consume client project.

Open this JSP file Faculty.jsp, and browse to the bottom of that file, exactly in
the coding line 520. Replace the original coding line:

<input type=submit value=Back name="Back" v:shapes="_x0000_s1048">

with the following coding line:

<input type=button value=Back onclick="self.close()" v:shapes="_x0000_s1048">

The reason for this changing is because the Faculty.jsp page in our previous
projects will be returned to the Selection.jsp page if this Back button is clicked by
the user, and the Exit button in the Selection.jsp page can be triggered to terminate
our projects. But in this Web Client project, WebClientSelect, we only rebuild and
use the Faculty.jsp page without using any other pages; thus, we need to modify the
code in the Back button event handler to terminate and exit this project.

Now we have finished all coding process for this faculty data query action.
Before we can build and run our project to test its function, we need to copy and
save all images used in this project, including both faculty and students’ image files,
to our current project folder. Perform the following actions to finish this image file
processing:

 1) Open the Images\Faculty folder that is located under the Students folder at the
Springer ftp site (refer to Fig. 1.2 in Chap. 1), and copy all faculty image files
from this folder.

 2) In the NetBeans IDE 8.2, open our project WebClientSelect, and click on the
Files button on the top to open the Files window.

 3) Then right click on the web node under our project WebClientSelect, and select
the New → Folder item to open a New Folder wizard.

 4) Enter FImages into the Folder Name box, and click on the Finish button to
create this new folder.

 5) Then paste all image files into this new added folder FImages under our current
project node WebClientSelect.

Now we are ready to build and run our client project to test its function.

9 Developing Java Web Services to Access Databases

507

9.7.5 Build and Run Our Client Project to Query Faculty Data
via Web Service

Click on the Clean and Build Main Project button to build our client project. If
everything is fine, right click on our JSP page Faculty.jsp from the Projects win-
dow and choose the Compile File item, and then Run File item to run our client
project.

On the opened JSP page, enter a desired faculty name such as Ying Bai into the
Faculty Name field. Then click the Select button to perform a query for this selected
faculty member. The query result is returned and displayed in this page, as shown in
Fig. 9.42.

Our Web client project WebClientSelect used to consume our Web service is
successful! A complete Web client project WebClientSelect can be found from a
folder Class DB Projects\Chapter 9 that is located under the Students folder at the
Springer ftp site (refer to Fig. 1.2 in Chap. 1).

Next let’s discuss how to build a Web service to perform data insertion into our
sample SQL Server database.

Fig. 9.42 The testing result for our Web client project

9.7 Build a Web-Based Client Project to Consume the Web Service

508

9.8 Build Java Web Service to Insert Data into the SQL
Server Database

To perform a faculty record insertion action using our Web service, we need to add
another operation or method called InsertFaculty() into our Web service project
WebServiceSQLApp.

9.8.1 Add a New Operation InsertFaculty() into Our Web
Service Project

First let’s perform a Refactor operation to copy our original Web Service file
WebServiceSelect.java and paste it into the same Web Service project
WebServiceSQLApp with a different name, WebServiceInsert.java, and we need
to use this modified service file as our data insertion service.

Perform the following operational steps to do this refactor function:

 1) Launch NetBeans IDE 8.2 and open our Web service project
WebServiceSQLApp, and select our Web service main class file
WebServiceSelect.java from the Projects window, which is located under the
Source Packages\org.ws.sql folder.

 2) Right click on our main class file WebServiceSelect.java, and select Refactor\
Copy item from the popup menu to open the Copy Class wizard, as shown in
Fig. 9.43.

 3) Change the class name to WebServiceInsert by modifying it in the New
Name box.

 4) Your finished Copy Class wizard should match one that is shown in Fig. 9.43.
Click on the Refactor button to complete this copy class function.

 5) Now you can find that a new copied class file WebServiceInsert.java has been
added into this project under the Source Packages\org.ws.sql folder. Double

Fig. 9.43 The opened Copy Class wizard

9 Developing Java Web Services to Access Databases

509

click on this class file to open it, and click on the Source button on the top to
open its code window.

 6) Change the coding line 20 from @WebService(serviceName =
"WebServiceSelect") to @WebService(serviceName =
"WebServiceInsert").

 7) Now you can clean and build the project to update this copied class file.

Next we need to add a new operation or method to this class file to perform data
insertion function. Perform the following operations to add this operation into our
Web service:

 1) Launch NetBeans IDE 8.2 and open our Web service project
WebServiceSQLApp, and select our Web service class file
WebServiceInsert.java from the Projects window.

 2) Click on the Design button on the top of the window to open the Design View
of our Web service project WebServiceInsert.

 3) Click on the Add Operation button on the upper-right to open the Add
Operation wizard.

 4) Enter InsertFaculty into the Name field, and click on the Browse button that is
next to the Return Type combo box. Type boolean into the Type Name field
and select the item Boolean (java.lang) from the list, and click on the OK button.

 5) Click on the Add button, and enter fdata into the Name parameter field. Then
click on the drop-down arrow of the Type combo box, and select the Choose
item to open the Find Type wizard. Type arraylist into the top field and select
the ArrayList (java.util) data type, and click on the OK button to select an
ArrayList as the data type for the input parameter.

Your finished Add Operation wizard should match one that is shown in Fig. 9.44.
Click on the OK button to complete this new operation creation process.

Click on the Source button on the top of this window to open the code window
of our Web service project. Let’s perform the coding development for this new
added operation. On the opened code window, enter the codes that are shown in

Fig. 9.44 The complete Add Operation wizard

9.8 Build Java Web Service to Insert Data into the SQL Server Database

510

Fig. 9.45 into this new added operation InsertFaculty(). Let’s have a closer look at
this piece of codes to see how it works.

 A. First a local integer variable numInsert is created, and it is used to hold the
running result of inserting a new faculty record into our sample database.

 B. An instance of the FileInputStream class, fis, is generated, and it is used to con-
vert the inserting faculty image to a FileInputStream format and inserted into
the database later.

 C. A new File instance fimage is also declared and initialized with the path or loca-
tion of the inserting faculty image, which is located at the eighth position with
an index of 7 on the input arrayList that contained all eight pieces of inserted
faculty information.

 D. The SQL INSERT command is generated with eight pieces of inserted faculty
information represented by eight position parameters.

 E. A try-catch block is used to start this insertion action. First a valid database con-
nection is established by calling a user-defined method DBConnection().

 F. A new instance of PreparedStatement class, pstmt, is declared with seven set-
String() methods to set up the actual values for seven positional dynamic

@WebMethod(operationName = "InsertFaculty")
public Boolean InsertFaculty(@WebParam(name = "fdata") ArrayList fdata) {

//TODO write your implementation code here:
int numInsert = 0;

FileInputStream fis = null;

File fimage= new File(fdata.get(7).toString());

String query = "INSERT INTO Faculty (faculty_id, faculty_name, title, office, " +
"phone, college, email, fimage) VALUES (?, ?, ?, ?, ?, ?, ?, ?)";

try {

con = DBConnection(con);

PreparedStatement pstmt =con.prepareStatement(query);

pstmt.setString(1, fdata.get(0).toString());

pstmt.setString(2, fdata.get(1).toString());

pstmt.setString(3, fdata.get(2).toString());

pstmt.setString(4, fdata.get(3).toString());

pstmt.setString(5, fdata.get(4).toString());

pstmt.setString(6, fdata.get(5).toString());

pstmt.setString(7, fdata.get(6).toString());

try {

fis = new FileInputStream(fimage);

} catch (FileNotFoundException ex) {

Logger.getLogger(WebServiceInsert.class.getName()).log(Level.SEVERE, null, ex);

}
pstmt.setBinaryStream(8, (InputStream)fis, (int)(fimage.length()));

numInsert = pstmt.executeUpdate();

pstmt.close();

con.close();

if (numInsert != 0)
return true;

else

return false;

}

catch (Exception ex) {

System.out.println("exception is: " + ex);

return false;

}

}

}

A

B
C

D

E

F

G

H

I

J

K

L

M

N

O

Fig. 9.45 The codes for the new operation InsertFaculty()

9 Developing Java Web Services to Access Databases

511

parameters in the inserting query statement. One point to be noted is that the
order of these setString() methods must be identical with the order of columns
in our Faculty table.

 G. Another try-catch block is used to convert the inserted faculty image to the
FileInputStream format and make it ready to be written into the database.

 H. The catch block is used to check any possible exception for this conversion.
 I. The exception information will be recorded into a system log file if it occurred.
 J. The converted faculty image is written into the eighth positional dynamic

parameter via a setBinaryStream() system method.
 K. The inserting action is performed by calling the executeUpdate() method, and

the inserting result is returned and stored in the local integer variable numInsert.
 L. Some used instances, including the PreparedStatement and Connection classes,

are closed since we have completed our data insertion action and need to dis-
connect with our database.

 M. The executeUpdate() method will return an integer to indicate whether this
data insertion is successful or not. If a non-zero value is returned, which means
that at least one row has been inserted into our Faculty table and this data insert-
ing action is successful, a true is returned to the client project.

 N. Otherwise, no any row has been inserted into our sample database and this data
insertion failed. A false is returned for this situation.

 O. The catch block is used to track and display any exception that occurred during
this data inserting operation, and a false will be returned if this situation is really
happened.

You may experience some compiling errors during this coding process, which is
normal, and all of these errors are due to some missed imports packages. To fix them
up, just right click on any place inside the code window, and select the Fix Imports
item from the popup menu.

At this point, we have completed all coding development for the data insertion
action. Now let’s build and run our Web service project to test its function.

9.8.2 Deploy the Web Service Project

Perform the following operations to build and deploy our Web service project:

 1) Click on the Clean and Build Main Project button to build our Web service.
 2) Right click on our Web application WebServiceSQLApp, and select the Deploy

item to deploy our Web service. If everything is fine, a successful deployment
result should be displayed, as shown in Fig. 9.46.

A problem arises when testing this Web service project using the tester page,
which is the input parameter array fdata. As we know, the fdata has a data type of
ArrayList, and it needs to (1) create an ArrayList instance and then and (2) assign a
group of faculty information to that ArrayList object to call this Web service

9.8 Build Java Web Service to Insert Data into the SQL Server Database

512

operation InsertFaculty() to perform the faculty data insertion. However, it is dif-
ficult to do those two operations manually by using this tester page. Therefore we
need to create some Web client projects to consume and test this Web service
project.

Fig. 9.46 The deployment result of our Web service project

Next we can develop some Web client projects to consume this Web service to
perform data insertion to the Faculty table in our sample database. First let’s discuss
how to build a Window-based client project to consume our Web service.

9.9 Build a Window-Based Client Project to Consume
the Web Service

We can still use the Window-based client project WinClientSelect we built in Sect.
9.6 to consume the Web service to perform faculty data inserting action. One point
to be noted is that although a Web reference to our Web service has been established
in Sect. 9.6, we still need to refresh this Web reference since our Web service project
has been modified by adding one more operation InsertFaculty() in our Web

When testing or running a Web project, the default Web browser may
not be available. In that case, go to Tools|Options menu and select the
Internet Explorer as the Web Browser, and No Proxy for the Proxy
Settings under the General tab in NetBeans IDE.

9 Developing Java Web Services to Access Databases

513

service. Otherwise we would still use the original Web service that does not include
this InsertFaculty() operation.

To make things clear, we can copy the project WinClientSelect and rename it as
our new Windows-based client project WinClientInsert and use this project to con-
sume our Web Service project to insert a new faculty record into the Faculty table in
our sample database.

Perform the following operations to complete this renaming project process:

 1) Right click on our original Windows-based client project WinClientSelect, and
select the Copy item from the popup menu to open the Copy Project wizard.

 2) Change the project name to WinClientInsert in the Project Name box, and
click on the Copy button to complete this project copy operation.

Now you may find that our copied project contained some errors with red-color
error indicators. The reason for that is because of our Web Service since we need to
update our Web Service Reference for this new project WinClientInsert.

9.9.1 Refresh the Web Service Reference for Our
Window- Based Client Project

In order to call this InsertFaculty() operation in our Web service project
WebServiceSQLApp, we need to refresh the Web reference in our Window-based
client project to use the updated Web service project. Perform the following opera-
tions to refresh the Web service reference:

 1) Open our Window-based client project WinClientInsert, and expand the Web
Service References node.

 2) Right click on our Web service WebServiceSelect, and choose the Delete item
to remove this old Web reference. Click on the Yes button to confirm this
deletion.

 3) Right click on our Window-based client project WinClientInsert, and select
the New > Web Service Client item to open the New Web Service Client wizard.

 4) On the opened wizard, click on the Browse button that is next to the Project
field, and expand our Web application WebServiceSQLApp. Then choose our
Web service WebServiceInsert by clicking on it, and click on the OK button.

 5) Click on the Finish button to complete this Web service reference refreshing
process.

Now some errors occurred on four coding lines in the main Source file
FacultyFrame.java; two of them are in the SelectButtonActionPerformed() event
method (coding lines 359–360), and another two are in the ShowFaculty() user-
defined method (coding lines 399–400). To fix them, just change the Web Service
name for coding lines 359 and 399 from:

9.9 Build a Window-Based Client Project to Consume the Web Service

514

 org.ws.sql.WebServiceSelect_Service service = new org.ws.sql.
WebServiceSelect_Service();
to: org.ws.sql.WebServiceInsert_Service service = new org.ws.
sql.WebServiceInsert_Service();

and change coding lines 360 and 400 from:

org.ws.sql.WebServiceSelect port = service.getWebServiceSelect
Port();
to:org.ws.sql.WebServiceInsert port = service.getWebServiceInsert
Port();

If you rebuild the project now, those errors would be removed.
Now that we have refreshed or updated the Web service reference for our

Window-based client project WinClientInsert, next let’s develop the codes in our
client project to call that Web service operation InsertFaculty() to perform faculty
data insertion.

private void InsertButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
File imgFile = null;

ArrayList al = new ArrayList();

JFileChooser imgChooser = new JFileChooser();

imgChooser.setCurrentDirectory(new File(System.getProperty("user.home")));

int result = imgChooser.showOpenDialog(this);

if (result == JFileChooser.APPROVE_OPTION) {

imgFile = imgChooser.getSelectedFile();

System.out.println("Selected path: " + imgFile.getAbsolutePath());

System.out.println("Selected file: " + imgFile.toString());
}

al.clear();

al.add(0, FacultyIDField.getText().toString());

al.add(1, FacultyNameField.getText().toString());

al.add(2, TitleField.getText().toString());
al.add(3, OfficeField.getText().toString());

al.add(4, PhoneField.getText().toString());

al.add(5, CollegeField.getText().toString());

al.add(6, EmailField.getText().toString());

al.add(7, imgFile.toString());

try {

org.ws.sql.WebServiceInsert_Service service = new org.ws.sql.WebServiceInsert_Service();

org.ws.sql.WebServiceInsert port = service.getWebServiceInsertPort();

Boolean insert = port.insertFaculty(al);

if (!insert) {

msgDlg.setMessage("The data insertion is failed!");

msgDlg.setVisible(true);

}

else

ComboName.addItem(FacultyNameField.getText());

}
catch (Exception ex){

System.out.println("exception: " + ex);

}

}

A

B

C

D

E

F

G

H

I

J

K

L

M

Fig. 9.47 The codes for the Insert button event method

9 Developing Java Web Services to Access Databases

515

9.9.2 Modify the Design View and Develop the Codes to Call
Our Web Service Project

Open the Window-based client project WinClientInsert, and double click on our
main class FacultyFrame.java to open it. Click on the Design button to open the
graphic user interface. In this client project, we want to use the Insert button in this
form as a trigger to start the faculty data insertion action. Therefore double click on
the Insert button to open its event handler or method InsertButtonActionPerformed(),
and enter the codes that are shown in Fig. 9.47 into this method. Since we need to
allow users to select a desired faculty image to be inserted into our sample database
with a new insertion action, thus a new component, File Chooser, should be added
into this handler. Let’s have a closer look at this piece of codes to see how it works.

 A. Some local objects are first declared, which include a File object, imgFile,
which is used to hold the selected image file, and a new ArrayList instance al,
which is used to pick up and reserve the input new faculty data array.

 B. A Java File Chooser instance, imgChooser, is generated, and it provides a File
Interface GUI to allow users to select a desired faculty image to be inserted into
our database later.

 C. The current directory, which is exactly the folder of our current project, is
selected, and this location will work as a default folder to store all selected fac-
ulty image files later.

 D. The system method, showOpenDialog(), is executed to display this Chooser
GUI to enable users to browse and select a desired faculty image to be inserted
into our database later.

 E. By checking one property, APPROVE_OPTION, one can confirm whether
this GUI’s operation is successful or not. If it is opened and an image has been
selected, a true is returned. Then the selected image can be retrieved by calling
a method, getSelectedFile().

 F. These two coding lines are used to display the path and directory for the selected
faculty image, and they are used for the debugging purpose.

 G. The clear() method is executed to make sure that the ArrayList instance is clean
before a new faculty record is collected.

 H. The add() method is used to pick up and add eight pieces of new faculty infor-
mation into this new ArrayList instance al. These eight pieces of new faculty
information are entered by the user and stored in seven text fields and the File
Chooser in this FacultyFrame window form. The toString() method is used to
convert each piece of new faculty information obtained using the getText()
method that returns an object data type to a String. The index is necessary since
it is used to indicate the position of each parameter in this ArrayList. One point
to be noted is the order of adding these text fields, which must be identical with
order of columns in our Faculty table.

 I. A try catch block is used to perform the calling of our Web service operation
InsertFaculty() to perform this faculty data inserting action. First a new Web

9.9 Build a Window-Based Client Project to Consume the Web Service

516

service instance service is created based on our Web service class
WebServiceInsert_Service. Then the getWebServiceInsertPort() method is
executed to get the current port used by our Web service. This port is returned
and assigned to a new Port instance port.

 J. The Web service operation InsertFaculty() is executed with the ArrayList
instance al that has been filled with eight pieces of new faculty information as
the argument of this method. The running result of that operation is returned and
assigned to a Boolean variable insert.

 K. If the value of the variable insert is false, which means that no any row has been
inserted into our Faculty table and this insertion has been failed, the msgDlg
instance is used to show this situation.

 L. Otherwise if the value of the insert variable is true, which means that this data
insertion is successful, the new inserted faculty name will be added into the
Faculty Name combo box ComboName using the addItem() method.

 M. The catch block is used to track and display any possible exception during this
Web service operation execution.

Now let’s build and run our client project to call and test our Web service to per-
form faculty data inserting action. However, prior to running our client project, one
needs to deploy our Web Service project WebServiceSQLApp to activate our new
operation or Web method InsertFaculty().

Fig. 9.48 The seven pieces of new inserted faculty information

9 Developing Java Web Services to Access Databases

517

9.9.3 Build and Run Our Client Project to Insert Faculty Data
via Web Service

Click on the Clean and Build Main Project button to build our client project. If
everything is fine, click on the Run Main Project button to run our client project.

The FacultyFrame form window is displayed. First let’s perform a faculty query
action. Select a desired faculty member, such as Debby Angles, from the Faculty
Name combo box, and click on the Select button to query the detailed information
for this faculty via our Web service WebServiceApp. The queried result is dis-
played in seven text fields.

Now enter a new faculty record with seven pieces of new faculty information
shown below into seven text fields, which is shown in Fig. 9.48.

• Faculty ID: B86577
• Name: Susan Bai
• Title: Professor
• Office: MTC-314
• Phone: 750-330-1158
• College: Duke University
• Email: sbai@college.edu

Click on the Insert button to open the File Chooser wizard. On the opened File
Chooser wizard, browse to the location where all faculty image files are located; in
this case, it is C:\Images\Faculty, and select the desired image, White.jpg, and
click on the Open button to select this faculty image and insert it into the Faculty
table in our sample database.

To confirm this data insertion, two methods can be used. First we can open our
Faculty table using either the Services window in the NetBeans IDE or the
Microsoft SQL Server Management Studio 2018 to check whether this new faculty
record has been inserted. To do that by using the Services window in the NetBeans
IDE, perform the following operations:

 1) Open the Services window, and expand the Databases node.
 2) Right click on our SQL Server database URL: jdbc:sqlserver://localhost\

SQL2019EXPRESS: 5000; databaseName=CSE_DEPT, and select the
Connect item to try to connect to our database. Enter Happy2020 as password
into the Password box, and click on the OK button.

 3) If one encountered a connection problem due to TCP/IP issue, open the SQL
Server 2019 Configuration Manager to make sure that the SQL Server 2019
Express Server is running. If it is stopped, select the SQL Server Services icon
on the left, and right click on the SQL Server (SQL2019EXPRESS) item on
the right, and select Start item to run this server. You may need to try one more
time to make it running.

 4) After our database has been connected, expand our sample database CSE_
DEPT, dbo, and Tables.

9.9 Build a Window-Based Client Project to Consume the Web Service

sbai@college.edu

518

 5) Right click on the Faculty table, and select the View Data item.

Your opened Faculty table is shown in Fig. 9.49.
It can be found that the new faculty record with the faculty_id of B86577, which

is highlighted in dark color, has been successfully inserted into our database.

Fig. 9.49 The opened Faculty table in the NetBeans IDE

Fig. 9.50 The confirmation of new inserted faculty record

9 Developing Java Web Services to Access Databases

519

The second way to confirm this data insertion, which is simpler, is to use the
Select button in this form to perform a query to try to retrieve the inserted fac-
ulty record.

To do this checking in second way, go to the Faculty Name combo box, and you
can find that the new faculty name Susan Bai has been added into this box. Click it
to select it and click on the Select button, and you can find that seven pieces of new
inserted faculty information with the selected faculty image have been retrieved and
displayed in this form window, as shown in Fig. 9.50. Our data insertion is
successful!

It is highly recommended to remove this new inserted faculty record from our
database since we want to keep our database clean. You can delete this record by
opening and using the Microsoft SQL Server Management Studio 2018.

A complete Windows client project WinClientInsert used to consume our Web
Service to insert a new faculty record into our sample database can be found from a
folder Class DB Projects\Chapter 9, which is located under the Students folder at
the Springer ftp site (refer to Fig. 1.2 in Chap. 1).

Next let’s build a Web-based client project to consume our Web service to insert
a new faculty record into the Faculty table in our sample database.

9.10 Build a Web-Based Client Project to Consume
the Web Service

We can modify a Web-based project JavaWebDBJSPSQL_Insert we built in Sect.
8.5 in Chap. 8 to consume our Web service to perform the faculty data inser-
tion action.

Perform the following operational steps to create our new project
WebClientInsert:

 1) In the Projects window, right click on the project JavaWebDBJSPSQL_
Insert, and select the Copy item from the popup menu to open the Copy
Project wizard.

 2) Enter our new project name, WebClientInsert, into the Project Name box, and
browse to the default project folder, C:\Class DB Projects\Chapter 9, as the
Project Location, and click on the Copy button.

A new project WebClientInsert is generated and added into our Projects window.
First let’s add a Web service reference to our Web-based client project to allow it

to use our Web service operations.

9.10 Build a Web-Based Client Project to Consume the Web Service

520

9.10.1 Add a Web Service Reference to Our Web-Based
Client Project

In order to call the InsertFaculty() operation in our Web service project
WebServiceSQLApp, we need to add the Web reference to our Web-based client
project WebClientInsert to use the updated Web service project. Perform the fol-
lowing operations to add this Web service reference:

 1) Right click on our Web-based client project WebClientInsert, and select the
New > Web Service Client item to open the New Web Service Client wizard.

 2) On the opened wizard, click on the Browse button that is next to the Project
field, and expand our Web application WebServiceSQLApp. Then choose our
Web service WebServiceInsert by clicking on it, and click on the OK button.

 3) Click on the Finish button to complete this Web service reference refreshing
process.

Next let’s develop the codes in our client project to call that Web service opera-
tion InsertFaculty() to perform faculty data insertion.

A

B

C

D

E

F

G

H

I

public FacultyInsertBean() {

}
public int InsertFaculty(String[] newFaculty) {

int numInsert = 1;

ArrayList al = new ArrayList();

MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);

al.clear();

al.add(0, newFaculty[0]);

al.add(1, newFaculty[1]);

al.add(2, newFaculty[2]);

al.add(3, newFaculty[3]);

al.add(4, newFaculty[4]);

al.add(5, newFaculty[5]);

al.add(6, newFaculty[6]);

al.add(7, newFaculty[7]);

try{

org.ws.sql.WebServiceInsert_Service service = new org.ws.sql.WebServiceInsert_Service();

org.ws.sql.WebServiceInsert port = service.getWebServiceInsertPort();

Boolean insert = port.insertFaculty(al);

if (!insert) {
msgDlg.setMessage("The data insertion is failed!");

msgDlg.setVisible(true);

return 0;

}

}

catch (Exception e) {

msgDlg.setMessage("Error in Insert Statement! " + e.getMessage());

msgDlg.setVisible(true);

return 0;

}

return numInsert;

}

Fig. 9.51 The modified codes for the constructor and InsertFaculty() method

9 Developing Java Web Services to Access Databases

521

9.10.2 Develop the Codes to Call Our Web Service Project

The main coding process is in the Java managed bean class FacultyInsertBean.
java and some modifications in the FacultyProcess.jsp file.

First let’s take care of the coding development for the managed bean
FacultyInsertBean.java class file. Open our Web-based client project
WebClientInsert, and double click on the FacultyInsertBean.java from the
Projects window to open this managed bean class file. Let’s first do the coding
modifications for this FacultyInsertBean.java class file.

 1) Remove all original codes inside the constructor of this class file, public
FacultyInsertBean().

 2) Add some new codes shown in Fig. 9.51 into the method InsertFaculty().

Let’s have a closer look at this piece of new added codes to see how it works.

 A. The original codes inside the constructor public FacultyInsertBean() are
totally removed.

 B. Inside the Web method, InsertFaculty(), some local objects and variables are
first declared. An integer variable, numInsert, is generated and initialized to 1.
This variable is used to hold the data insertion result later. Then a new ArrayList
instance al is created and initialized. This variable is used to pick up and reserve
the input new faculty data array. A MsgDialog object is also created, and it is
used to display some debugging information.

 C. The clear() method is executed to make sure that the ArrayList instance is clean
before a new faculty record is collected.

 D. The add() method is used to pick up and add eight pieces of new faculty infor-
mation into this new ArrayList instance al. These eight pieces of new faculty
information are entered by the user in the JSP page FacultyPage.jsp and stored
in eight properties defined in this managed bean.

 E. A try-catch block is used to perform the calling of our Web method to insert this
new faculty record into our sample database. First a new Web service instance
service is created based on our Web service class WebServiceInsert_Service.
Then a system method getWebServiceInsertPort() is executed to get the cur-
rent port used by our Web service. This port is returned and assigned to a new
Port instance port.

 F. The InsertFaculty() operation in our Web service is called with the ArrayList
instance that contains eight pieces of new faculty information as the argument.
The execution result of this faculty data insertion is returned and assigned to the
local Boolean variable insert.

 G. If the returned Boolean variable insert is false, which means that this data inser-
tion failed, the msgDlg instance is used to indicate this situation. A 0 is returned
to the calling method in our FacultyProcess.jsp file to indicate this situation.

 H. The catch block is used to catch any possible exception during this data inser-
tion process. If any error occurred, a 0 is returned to our FacultyProcess.jsp file
to feedback this error.

9.10 Build a Web-Based Client Project to Consume the Web Service

522

 I. Finally the local variable numInsert whose value is set to 1 is returned to our
FacultyProcess.jsp file to indicate a success of this data insertion action.

Next let’s handle the coding modifications to our FacultyProcess.jsp file.
In fact, the only modification is to remove a comment-out symbol for the calling

our InsertFaculty() method in this file. As you may remember, when testing our
data query function by using the Select button and its method in this file, we com-
ment out this data insertion calling function to make our query easier. Now we need
to use this function; thus, just remove this comment-out symbol. Your modified
codes for the data insertion section on this FacultyProcess.jsp file are shown in
Fig. 9.52.

The only modification is to remove the comment-out symbol, as shown in A in
Fig. 9.52, which has been highlighted in bold.

Now let’s build and run our Web client project to call our Web service operation
to perform the faculty data inserting action.

However, prior to building and running our client project to call Web Service
project WebServiceSQLApp to insert any new record into our database, our Web
Service project needs to be built and deployed first. Perform building and deploying
operations to our Web Service project first to make sure that our Web Service is run-
ning and ready to be called.

A

else if (request.getParameter("Insert")!= null) {
//process the faculty record insertion
%>
<jsp:useBean id="InsertFaculty" scope="session" class="JavaWebDBJSPSQLPackage.FacultyInsertBean" />
<jsp:setProperty name="InsertFaculty" property="*" />
<%
int res = 0;
String fid = request.getParameter("FacultyIDField");
String fname = request.getParameter("NameField");
String office = request.getParameter("OfficeField");
String phone = request.getParameter("PhoneField");
String college = request.getParameter("CollegeField");
String title = request.getParameter("TitleField");
String email = request.getParameter("EmailField");
String fImage = request.getParameter("Faculty_Image");
String[] fnew = {fid, fname, title, office, phone, college, email, fImage };
res = InsertFaculty.InsertFaculty(fnew);

if (res == 0) {
response.sendRedirect("Faculty.jsp");
}

else {
session.setAttribute("FacultyIDField", null);
request.setAttribute("NameField", null);
request.setAttribute("OfficeField", null);
request.setAttribute("PhoneField", null);
request.setAttribute("CollegeField", null);
request.setAttribute("TitleField", null);
request.setAttribute("EmailField", null);
response.sendRedirect("Faculty.jsp");

}
InsertFaculty.CloseDBConnection();

}

Fig. 9.52 The modified codes for the Insert section on the FacultyProcess.jsp file

9 Developing Java Web Services to Access Databases

523

9.10.3 Build and Run Our Client Project to Insert Faculty
Data via Web Service

Click on the Clean and Build Main Project button to build our client project. If
everything is fine, right click on our JSP page FacultyPage.jsp from the Projects
window, and choose the Run File item to run our client project.

On the opened JSP page, first let’s perform a faculty record query by entering a
desired faculty name such as Ying Bai into the Faculty Name field, and then click
on the Select button to get details for this faculty member. To insert a new faculty
record, enter seven pieces of new faculty information shown below into the associ-
ated seven text fields, as shown in Fig. 9.53.

• Faculty ID: B86577
• Name: Susan Bai
• Title: Professor
• Office: MTC-314
• Phone: 750-330-1158
• College: Duke University
• Email: sbai@college.edu

Click on the Browse button to open a File Selection dialog to select the desired
faculty image file, White.jpg for this case, and click on the Insert button to call our
Web service operation InsertFaculty() to insert this new faculty record into the
Faculty table in our sample database. Now you can find that the information for

Fig. 9.53 The information for a new inserted faculty member

9.10 Build a Web-Based Client Project to Consume the Web Service

sbai@college.edu

524

original faculty member is displayed again, which means that our data insertion is
successful.

To confirm this data insertion, one way is to perform another query for the new
inserted faculty member, Susan Bai. Perform the following operations to do this
confirming query:

 1) Enter the inserted faculty name, Susan Bai, into the Faculty Name TextField.
 2) Go to the File Chooser, which is shown as a textbox under the Image and

Browse button, and enter White.jpg into that box as the faculty image’s name.
 3) Click on the Select button to try to retrieve that inserted record.

Now you can find that seven pieces of new inserted faculty information with the
selected faculty image have been retrieved and displayed in this page, as shown in
Fig. 9.54.

To do this checking in second way, one can open our Faculty table using either
the Services window in the NetBeans IDE or the Microsoft SQL Server Management
Studio 18 to check whether this new faculty record has been inserted. To do that by
using the Services window in the NetBeans IDE, perform the following operations:

 1) Open the Services window, and expand the Databases node.
 2) Right click on our SQL Server database URL: jdbc:sqlserver://localhost\

SQL2019EXPRESS: 5000; databaseName=CSE_DEPT, and select the
Connect item to connect to our database. Enter Happy2020 as password into
the Password box, and click on the OK button.

 3) If one encountered a connection problem due to TCP/IP issue, open the SQL
Server 2019 Configuration Manager to make sure that the SQL Server 2019

Fig. 9.54 The confirmation of a new faculty record insertion

9 Developing Java Web Services to Access Databases

525

Express Server is running. If it is stopped, select the SQL Server Services icon
on the left, and right click on the SQL Server (SQL2019EXPRESS) item on
the right and select Start item to run this server. You may need to try one more
time to make it running.

 4) After our database has been connected, expand our sample database CSE_
DEPT, dbo, and Tables. Right click on the Faculty table, and select the View
Data item.

 5) Your opened Faculty table is shown in Fig. 9.55.

You can find that the new inserted faculty record has been there.
One point to be noted to make this confirmation query successful is to make sure

that all faculty image files, including the new faculty image to be inserted to our
database, have been stored in a default folder under our project folder. In this case,
it is: C:\...\WebClientInert\web\ FImages.

Regularly it is recommended to remove this new inserted faculty record to keep
our database clean. But now we need to keep this new inserted faculty record since
we can delete it in the next (Sect. 9.11.3) when we test our Web Service project via
Web method DeleteFaculty().

Our Web client project used to consume our Web service WebServiceSQLApp
to insert a new faculty record is successful! A complete Web client project
WebClientInsert can be found from a folder Class DB Projects\Chapter 9 that is
located under the Students folder at the Springer ftp site (refer to Fig. 1.2 in
Chap. 1).

Next let’s discuss how to build a Web service to perform data updating and delet-
ing against our sample SQL Server database.

Fig. 9.55 The opened Faculty table with the new inserted faculty record

9.10 Build a Web-Based Client Project to Consume the Web Service

526

9.11 Build Java Web Service to Update and Delete Data
from the SQL Server Database

To perform data updating and deleting actions against our sample SQL Server data-
base via Web service is straightforward, and we can add two more new operations,
UpdateFaculty() and DeleteFaculty(), into our Web service project
WebServiceSQLApp we built in the previous sections. First let’s concentrate on
the faculty data updating action.

As we discussed in the previous sections, the key point to perform a faculty data
updating is that in most real applications, all pieces of faculty information should be
updated except the faculty_id since it is much easier to insert a new faculty record
with a new faculty_id than updating a record with an updated faculty_id because
of the complexity in cascaded updating relationships we built in Chap. 2 when we
create our sample database. Therefore in this section, we will concentrate on the
updating a faculty record based on an existing faculty_id.

9.11.1 Add a New Operation UpdateFaculty() to Perform
Faculty Data Updating

First let’s perform a Refactor operation to copy one of our original Web Service
files, WebServiceInsert.java, and paste it into the same Web Service project
WebServiceSQLApp with a different name, WebServiceUpdtDelt.java, and we
need to use this modified service file as our data updating and deleting services.

Perform the following operational steps to do this refactor function:

 1) Launch NetBeans IDE 8.2 and open our Web service project
WebServiceSQLApp, and select one of our Web service class files,
WebServiceInsert.java, from the Projects window, which is located under the
Source Packages\org.ws.sql folder.

 2) Right click on our class file WebServiceInsert.java, and select Refactor\Copy
item from the popup menu to open the Copy Class wizard, as shown in Fig. 9.56.

Fig. 9.56 The opened Copy Class wizard

9 Developing Java Web Services to Access Databases

527

 3) Change the class name to WebServiceUpdtDelt by modifying it in the New
Name box.

 4) Your finished Copy Class wizard is shown in Fig. 9.56. Click on the Refactor
button to complete this copy class function.

 5) Now you can find that a new copied class file WebServiceUpdtDelt.java has
been added into this project under the Source Packages\org.ws.sql folder.

 6) Double click on this class file to open it, and click on the Source button on the
top to open its code window. Change the coding line 25 from @WebService
(serviceName = "WebServiceInsert") to @WebService(serviceName =
"WebServiceUpdtDelt").

 7) Now you can clean and build the project to update this copied class file.

Next we need to add a new operation or method to this class file to perform data
insertion function. Perform the following operations to add a new operation
UpdateFaculty() into our Web service project WebServiceSQLApp:

 1) Launch NetBeans IDE 8.2 and open our Web service project
WebServiceSQLApp, and select our Web service class file,
WebServiceUpdtDelt.java, from the Projects window.

 2) Click on the Design button on the top of the window to open the Design View
of our Web service file WebServiceUpdeDelt.java.

 3) Click on the Add Operation button to open the Add Operation wizard.
 4) Enter UpdateFaculty into the Name field (Fig. 9.57), and click on the Browse

button that is next to the Return Type combo box. Type boolean into the Type
Name field and select the item Boolean (java.lang) from the list, and click on
the OK button.

 5) Click on the Add button, and enter fdata into the Name parameter field. Then
click on the drop-down arrow of the Type combo box, and select the Choose
item to open the Find Type wizard. Type arrayList into the top field, and select
the ArrayList (java.util) data type, and click on the OK button to select an
ArrayList as the data type for the input parameter.

Fig. 9.57 The complete Add Operation wizard

9.11 Build Java Web Service to Update and Delete Data from the SQL Server Database

528

Your finished Add Operation wizard should match one that is shown in Fig. 9.57.
Click on the OK button to complete this new operation creation process.

Click on the Source button on the top of this window to open the code window
of our Web service project. Let’s perform the coding developments for this new
added operation.

On the opened code window, enter the codes that are shown in Fig. 9.58 into this
new added operation UpdateFaculty().

Let’s have a closer look at this piece of codes to see how it works.

 A. A local integer variable numUpdated is created first, and this variable is used
to hold the running result of execution of the data updating operation.

 B. An instance of the FileInputStream class, fis, is generated, and it is used to con-
vert the updating faculty image to a FileInputStream format and update to the
database later.

 C. A new File instance fimage is also declared and initialized with the path or loca-
tion of the updating faculty image, which is located at the sixth position with an
index of 6 on the input arrayList that contained all eight pieces of updated
faculty information. A point to be noted is that the seventh position (7) on the
input array is the faculty_id value.

@WebMethod(operationName = "UpdateFaculty")
public Boolean UpdateFaculty(@WebParam(name = "fdata") ArrayList fdata) {
//TODO write your implementation code here:
int numUpdated = 0;

FileInputStream fis = null;

File fimage= new File(fdata.get(6).toString());

String query = "UPDATE Faculty SET faculty_name=?, title=?, office=?, phone=?, college=?," +

"email=?, fimage=? " + "WHERE faculty_id= ?";

try {
con = DBConnection(con);

PreparedStatement pstmt =con.prepareStatement(query);

pstmt.setString(1, fdata.get(0).toString());

pstmt.setString(2, fdata.get(1).toString());

pstmt.setString(3, fdata.get(2).toString());

pstmt.setString(4, fdata.get(3).toString());

pstmt.setString(5, fdata.get(4).toString());

pstmt.setString(6, fdata.get(5).toString());

pstmt.setString(8, fdata.get(7).toString()); // faculty_id

try {

fis = new FileInputStream(fimage);

} catch (FileNotFoundException ex) {

Logger.getLogger(WebServiceUpdtDelt.class.getName()).log(Level.SEVERE, null, ex);

}

pstmt.setBinaryStream(7, (InputStream)fis, (int)(fimage.length()));

numUpdated = pstmt.executeUpdate();
con.close();

if (numUpdated != 0)

return true;

else

return false;

}

catch (Exception ex) {

System.out.println("exception is: " + ex);

return false;

}

}

}

A

B

C

D

E

F

G

H

I

J
K

L

M

N

O

Fig. 9.58 The codes for the new operation UpdateFaculty()

9 Developing Java Web Services to Access Databases

529

 D. The updating query string is created with eight positional parameters. The query
criterion is the faculty_id that is the eighth positional parameter and placed
after the WHERE clause.

 E. A try-catch block is used to perform this data updating action. First a user-
defined method DBConnection() is called to set up a connection between our
Web service and our sample database. A connection instance con is returned
after the execution of this method.

 F. A new PreparedStatement instance pstmt is created to perform this updat-
ing query.

 G. Seven setString() methods are used to set up the actual values for seven posi-
tional dynamic updated parameters in the updating query statement. One point
to be noted is that the order of these setString() methods is not continuous from
1 to 8 because the seventh positional parameter is the updated faculty image,
which will be processed separately, and the eighth positional parameter is the
faculty_id.

 H. Another try-catch block is used to convert the updating faculty image to the
FileInputStream format and make it ready to be written into the database.

 I. The catch block is used to check any possible exception for this conversion. The
exception information will be recorded into a system log file if it occurred.

 J. The converted faculty image is written into the seventh positional dynamic
parameter via a setBinaryStream() system method.

 K. The updating action is performed by calling the executeUpdate() method, and
the updating result is returned and stored in the local integer variable
numUpdated.

 L. The database connection is closed by executing the close() method since we
have completed our data updating action and need to disconnect with our
database.

 M. The executeUpdate() method will return an integer to indicate whether this
data updating is successful or not. If a non-zero value is returned, which means
that at least one row has been updated in our Faculty table and this data updat-
ing action is successful, a true is returned to the client project.

 N. Otherwise, no any row has been updated in our sample database, and this data
updating failed. A false is returned for this situation.

 O. The catch block is used to track and display any exception that occurred during
this data updating process, and a false will be returned if this situation really
happened.

Next let’s take care of the data deleting action against our sample database using
Web service operation DeleteFaculty().

9.11 Build Java Web Service to Update and Delete Data from the SQL Server Database

530

9.11.2 Add a New Operation DeleteFaculty() to Perform
Faculty Data Deleting Action

Perform the following operations to add a new operation DeleteFaculty() into our
Web service project WebServiceSQLApp:

 1) Launch NetBeans IDE 8.2 and open our Web Service project
WebServiceSQLApp, and select our Web service class file WebService
UpdtDelt.java from the Projects window.

 2) Click on the Design button on the top of the window to open the Design View
of our Web service class file WebServiceUpdtDelt.java.

 3) Click on the Add Operation button to open the Add Operation wizard.

Fig. 9.59 The complete Add Operation wizard

@WebMethod(operationName = "DeleteFaculty")
public Boolean DeleteFaculty(@WebParam(name = "fname") String fname) {

//TODO write your implementation code here:
int numDeleted = 0;

String query = "DELETE FROM Faculty WHERE faculty_name = ?";

try {

con = DBConnection(con);

PreparedStatement pstmt =con.prepareStatement(query);

pstmt.setString(1, fname);

numDeleted = pstmt.executeUpdate();

con.close();
if (numDeleted != 0)

return true;

else

return false;

}

catch (Exception ex) {

System.out.println("exception is: " + ex);

return false;

}

}

A

B

C

D
E

F

G

H

I

J

Fig. 9.60 The codes for the new operation DeleteFaculty()

9 Developing Java Web Services to Access Databases

531

 4) Enter DeleteFaculty into the Name field, and click on the Browse button that
is next to the Return Type combo box. Type boolean into the Type Name
field and select the item Boolean (java.lang) from the list, and click on the
OK button.

 5) Click on the Add button, and enter fname into the Name parameter field to add
a new parameter for this operation. Keep the default data type java.lang.String
unchanged for this new added parameter fname.

Your finished Add Operation wizard should match one that is shown in Fig. 9.59.
Click on the OK button to complete this new operation creation process.

Click on the Source button on the top of this window to open the code window
of our Web service project. Let’s perform the coding developments for this new
added operation.

On the opened code window, enter the codes that are shown in Fig. 9.60 into this
new added operation DeleteFaculty().

Let’s have a closer look at this piece of codes to see how it works.

 A. A local integer variable numDeleted is created first, and this variable is used to
hold the running result of execution of the data deleting operation.

 B. The deleting query string is created with one positional parameter, which is the
original faculty name that works as the query criterion and is placed after the
WHERE clause.

 C. A try-catch block is used for this data deleting action. First the user-defined
method DBConnection() is called to set up a connection between our Web ser-
vice and our sample database. A connection instance con is returned after the
execution of this method.

 D. A new PreparedStatement instance pstmt is created to perform this delet-
ing query.

 E. The setString() method is used to set up the actual value for the positional
dynamic parameter in the deleting query statement.

 F. The deleting action is performed by calling the executeUpdate() method, and
the deleting result is returned and stored in the local integer variable numDeleted.

 G. The database connection is closed by executing the close() method since we
have completed our data deleting action and need to disconnect with our
database.

 H. The executeUpdate() method will return an integer to indicate whether this data
deleting is successful or not. If a non-zero value is returned, which means that at
least one row has been deleted from our Faculty table and this data deleting
action is successful, a true is returned to the client project.

 I. Otherwise, no any row has been deleted from our sample database, and this data
deleting failed. A false is returned for this situation.

 J. The catch block is used to track and display any exception that occurred during
this data deleting process, and a false will be returned if this situation really
happened.

9.11 Build Java Web Service to Update and Delete Data from the SQL Server Database

532

At this point, we have completed all coding developments for the data updating
and deleting actions. Now let’s build and run our Web service project to test its
functions.

9.11.3 Deploy and Test the Web Service Project

Perform the following operations to build and deploy our Web service project:

 1) Click on the Clean and Build Main Project button to build our Web service.
 2) Right click on our Web application WebServiceSQLApp, and select the Deploy

item to deploy our Web service. If everything is fine, a successful deployment
result should be displayed.

A problem arises when testing the UpdateFaculty() operation of this Web ser-
vice using the tester page, which is the input parameter array fdata. As we know, the
fdata has a data type of ArrayList, and it needs to (1) create an ArrayList instance
and then (2) assign a group of updated faculty information to that ArrayList object
to call this Web service operation UpdateFaculty() to perform the faculty data
updating. However, it is difficult to do those two operations manually by using this

Fig. 9.61 The tester page for our Web service project WebServiceSQL

9 Developing Java Web Services to Access Databases

533

tester page. Therefore we need to create some Web client projects to consume and
test this updating operation later.

To test the DeleteFaculty() operation, just right click on our Web service output
file WebServiceUpdtDelt under the Web Services node from the Projects window,
and choose the Test Web Service item to open the tester page, which is shown in
Fig. 9.61.

Enter a desired faculty name to be deleted from the Faculty table in our sample
database, such as Susan Bai, into the text field that is next to the deleteFaculty but-
ton, and click on the deleteFaculty button to perform this faculty data delet-
ing action.

The testing result is shown in Fig. 9.62. A true is returned, and this indicates that
our data deleting action is successful.

To confirm this data deleting action, open our Faculty table by going to the
Services window, and expand the Databases node, and our connection URL, and
finally our sample database CSE_DEPT. Expand our database schema dbo, and
right click on the Faculty table. Select the View Data item from the popup menu to
open our Faculty table. On the opened Faculty table, you can find that the faculty
record with the faculty name of Susan Bai has been removed from this table.

Our data deleting action is successful!
But the story is not finished yet. The deleting action for this faculty member,

Susan Bai, who is not an original faculty record in our sample database, is not a real
deleting action. This means that this faculty record is not an original record when
we built our sample database in Chap. 2, but it is inserted later when we testing our
data insertion action in the last section, Sect. 9.10.3. Therefore this faculty member
has no any relational data columns in any other tables in our sample database.

Recall that when we built our sample SQL Server database CSE_DEPT in Chap.
2, we set up different columns in different tables for an original faculty record. For

Fig. 9.62 The testing result of the deleting operation

9.11 Build Java Web Service to Update and Delete Data from the SQL Server Database

534

Table 9.1 The deleted record in the Faculty table

faculty_
id

faculty_
name office phone college title email fimage

B78880 Ying Bai MTC-
211

750-378-
1148

Florida Atlantic
University

Associate
Professor

ybai@
college.edu

Bai.
jpg

Table 9.2 The deleted records in the Course table

course_
id course credit classroom schedule enrollment

faculty_
id

CSC-
132B

Introduction to
Programming

3 MTC-302 T-H: 1:00-2:25
PM

21 B78880

CSC-
234A

Data Structure &
Algorithms

3 MTC-302 M-W-F:
9:00-9:55 AM

25 B78880

CSE-434 Advanced Electronics
Systems

3 MTC-213 M-W-F:
1:00-1:55 PM

26 B78880

CSE-438 Advd Logic &
Microprocessor

3 MTC-213 M-W-F:
11:00-11:55 AM

35 B78880

Table 9.3 The deleted records in the LogIn table

user_name pass_word faculty_id student_id

ybai come B78880 NULL

Table 9.4 The deleted records in the StudentCourse table

s_course_id student_id course_id credit major

1005 T77896 CSC-234A 3 CS/IS
1009 A78835 CSE-434 3 CE
1014 A78835 CSE-438 3 CE
1016 A97850 CSC-132B 3 ISE
1017 A97850 CSC-234A 3 ISE

example, for an original faculty member, Ying Bai, we set up a faculty_id related
to that member in the LogIn table, detailed information with 8 columns in the
Faculty table, some columns in the Course table, and some courses in the
StudentCourse table. These columns made some relationships via some primary or
foreign keys. If this kind of faculty record was deleted from the Faculty table, all
other related columns in other tables would also be deleted.

Recalled that cascaded updating and deleting relationships among our five tables
are set up in Chap. 2 when we built our sample database. Therefore if an original
faculty record, such as Ying Bai, was deleted from the Faculty table, not only that

9 Developing Java Web Services to Access Databases

ybai@college.edu
ybai@college.edu

535

single faculty record whose name is Ying Bai has been deleted from the Faculty
table when we perform this data deleting action, but also all columns related to this
faculty member in other tables, such as the LogIn, Course, and StudentCourse,
have also been deleted because of this cascaded relationship.

If one of the original faculty records, such as Ying Bai, was deleted by this Web
Service tester, it is highly recommended to recover this deleted faculty member and
related records in our Faculty, LogIn, Course, and StudentCourse tables. An easy
way to do this recovery is to use the Microsoft SQL Server Management Studio. For
your convenience, we show these deleted records in Tables 9.1, 9.2, 9.3 and 9.4, and
you can add or insert them back to the related tables to complete this data recovery.

Next we can develop some Web client projects to consume this Web service to
perform data updating and deleting actions to the Faculty table in our sample data-
base. First let’s discuss how to build a Window-based client project to consume our
Web service.

9.12 Build a Window-Based Client Project to Consume
the Web Service

We can use one Window-based client project WinClientInsert we built in Sect. 9.8
to consume the Web service to perform faculty data updating action. One point to be
noted is that although a Web reference to our Web service has been established in
Sect. 9.8, we still need to refresh this Web reference since our Web service project
has been modified by adding two more operations, UpdateFaculty() and
DeleteFaculty(), in our Web service. Otherwise we would still use the original Web
service that does not include these added operations.

To make things clear, we can copy the project WinClientInsert and rename it as
our new Windows-based client project WinClientUpdtDelt and use this project to
consume our Web Service to perform data updating and deleting actions to the
Faculty table in our sample database.

Perform the following operations to complete this renaming project process:

 1) Right click on our original Windows-based client project WinClientInsert, and
select the Copy item from the popup menu to open the Copy Project wizard.

 2) Change the project name to WinClientUpdtDelt in the Project Name box, and
click on the Copy button to complete this project copy operation.

Now you may find that our copied project contained some errors with red-color
error indicators. The reason for that is because of our Web Service since we need to
update our Web Service Reference for this new project WinClientUpdtDelt.

9.12 Build a Window-Based Client Project to Consume the Web Service

536

9.12.1 Refresh the Web Service Reference for Our
Window- Based Client Project

In order to call those Web operations, such as UpdateFaculty() and DeleteFaculty(),
in our Web service project WebServiceSQLApp, we need to refresh the Web refer-
ence in our Window-based client project to use the updated Web service project.

However, prior to do this refreshing action, our Web Service project
WebServiceSQLApp should be deployed first. Only after our Web Service project
is successfully deployed, perform the following operations to refresh the Web ser-
vice reference:

 1) Open our Window-based client project WinClientUpdtDelt, and expand the
Web Service References node.

 2) Right click on our Web service WebServiceInsert, and choose the Delete item
to remove this old Web reference. Click on the Yes button to confirm this
deletion.

 3) Right click on our Window-based client project WinClientUpdtDelt, and select
the New > Web Service Client item to open the New Web Service Client wizard.

 4) On the opened wizard, click on the Browse button that is next to the Project
field, and expand our Web application WebServiceSQLApp. Then choose our
Web service WebServiceUpdtDelt by clicking on it, and click on the OK button.

 5) Click on the Finish button to complete this Web service reference refreshing
process.

Now some errors occurred on six coding lines in the main Source file
FacultyFrame.java; two of them are in the SelectButtonActionPerformed() event
method (coding lines 360 ~ 361), and two of them are in the
InsertButtonActionPerformed() event handler (coding lines 406 ~ 407), and another
two are in the ShowFaculty() user-defined method (coding lines 435 ~ 436). To fix
them, just change the Web Service name for coding lines 360, 406, and 435 from:

org.ws.sql.WebServiceInsert_Service service = new org.ws.sql.
WebServiceInsert_Service();

to:org.ws.sql.WebServiceUpdtDelt_Service service = new org.ws.
sql.WebServiceUpdtDelt_Service();

and change coding lines 361, 407, and 436 from:

org.ws.sql.WebServiceInsert port = service.getWebServiceInsert
Port();
to:org.ws.sql.WebServiceUpdtDelt port = service.getWebServiceUpdt
DeltPort();

If you rebuild the project now, those errors would be removed.

9 Developing Java Web Services to Access Databases

537

Now that we have refreshed or updated the Web service reference for our
Window-based client project WinClientUpdtDelt, next let’s develop the codes in
our client project to call that Web service operations, UpdateFaculty() and
DeleteFaculty(), to perform faculty data updating and deleting actions. First let’s
concentrate on the data updating action.

9.12.2 Build the Codes to Call the UpdateFaculty() Operation

Open our Window-based client project WinClientUpdtDelt, and double click on
our main class FacultyFrame.java to open it. Click on the Design button to open
the graphic user interface. In this client project, we want to use the Update button
in this form as a trigger to start the faculty data updating action. Therefore double
click on the Update button to open its event method UpdateButtonActionPerformed(),
and enter the codes that are shown in Fig. 9.63 into this method.

Let’s have a closer look at this piece of codes to see how it works.

private void UpdateButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
File imgFile = null;

ArrayList al = new ArrayList();

JFileChooser imgChooser = new JFileChooser();

imgChooser.setCurrentDirectory(new File(System.getProperty("user.home")));

int result = imgChooser.showOpenDialog(this);

if (result == JFileChooser.APPROVE_OPTION) {

imgFile = imgChooser.getSelectedFile();

System.out.println("Selected path: " + imgFile.getAbsolutePath());

System.out.println("Selected file: " + imgFile.toString());

}

al.clear();

al.add(0, FacultyNameField.getText());

al.add(1, TitleField.getText());

al.add(2, OfficeField.getText());

al.add(3, PhoneField.getText());

al.add(4, CollegeField.getText());

al.add(5, EmailField.getText());

al.add(6, imgFile.toString());

al.add(7, FacultyIDField.getText());

try {

org.ws.sql.WebServiceUpdtDelt_Service service = new org.ws.sql.WebServiceUpdtDelt_Service();

org.ws.sql.WebServiceUpdtDelt port = service.getWebServiceUpdtDeltPort();
Boolean update = port.updateFaculty(al);

if (!update) {

msgDlg.setMessage("The data updating is failed!");

msgDlg.setVisible(true);

}

else

ComboName.addItem(FacultyNameField.getText());

}

catch (Exception ex){

System.out.println("exception: " + ex);

}

}

A

B

C

D

E

F

G

H

I

J

K

L

M

Fig. 9.63 The complete codes for the UpdateButtonActionPerformed() method

9.12 Build a Window-Based Client Project to Consume the Web Service

538

 A. Some local objects are first declared, which include a File object, imgFile,
which is used to hold the selected image file, and a new ArrayList instance al,
which is used to pick up and reserve the input new faculty data array.

 B. A Java File Chooser instance, imgChooser, is generated, and it provides a File
Interface GUI to allow users to select a desired faculty image to be updated to
our database later.

 C. The current directory, which is exactly the folder of our current project, is
selected, and this location will work as a default folder to store all selected fac-
ulty image files later.

 D. The system method, showOpenDialog(), is executed to display this Chooser
GUI to enable users to browse and select a desired faculty image to be updated
to our database later.

 E. By checking one property, APPROVE_OPTION, one can confirm whether
this GUI’s operation is successful or not. If it is opened and an image has been
selected, a true is returned. Then the selected image can be retrieved by calling
a method, getSelectedFile().

 F. These two coding lines are used to display the path and directory for the selected
faculty image, and they are used for the debugging purpose.

 G. The clear() method is executed to make sure that the ArrayList instance is clean
before a new faculty record is collected.

 H. The add() method is used to pick up and add eight pieces of updated faculty
information into this new ArrayList instance al. These eight pieces of new fac-
ulty information are entered by the user and stored in seven text fields and the
File Chooser in this FacultyFrame window form. The toString() method is used
to convert some piece of new faculty information obtained using the getText()
method that returns an object data type to a String. The index is necessary since
it is used to indicate the position of each parameter in this ArrayList. One point
to be noted is the order of adding these text fields, which must be identical with
order of columns in our Faculty table.

 I. A try catch block is used to perform the calling of our Web service operation
UpdateFaculty() to perform this faculty data updating action. First a new Web
service instance service is created based on our Web service class

private void DeleteButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
try {

org.ws.sql.WebServiceUpdtDelt_Service service = new org.ws.sql.WebServiceUpdtDelt_Service();

org.ws.sql.WebServiceUpdtDelt port = service.getWebServiceUpdtDeltPort();
Boolean delete = port.deleteFaculty(ComboName.getSelectedItem().toString());

if (!delete) {

msgDlg.setMessage("The data deleting is failed!");

msgDlg.setVisible(true);

}

}

catch (Exception ex){

System.out.println("exception: " + ex);

}

}

A

B

C

D

Fig. 9.64 The automatically created codes by NetBeans IDE

9 Developing Java Web Services to Access Databases

539

 WebServiceUpdtDelt_Service. Then the getWebServiceUpdtDeltPort()
method is executed to get the current port used by our Web service. This port is
returned and assigned to a new Port instance port.

 J. The Web service operation updateFaculty() is executed with the ArrayList
instance al that has been filled with eight pieces of updated faculty information
as the argument of this method. The running result of that operation is returned
and assigned to a Boolean variable update.

 K. If the value of the variable update is false, which means that no any row has
been updated in our Faculty table and this updating action has been failed, the
msgDlg instance is used to show this situation.

 L. Otherwise if the value of the update variable is true, which means that this data
updating action is successful, the new updated faculty name will be added into
the Faculty Name combo box ComboName using the addItem() method.

 M. The catch block is used to track and display any possible exception during this
Web service operation execution.

Next let’s build the codes to perform the faculty data deleting action.

9.12.3 Build the Codes to Call the DeleteFaculty() Operation

Open our Window-based client project WinClientUpdtDelt, and double click on
our main class FacultyFrame.java to open it. Click on the Design button to open
the graphic user interface. In this client project, we want to use the Delete button in
this form as a trigger to start the faculty data deleting action. Therefore double click
on the Delete button to open its event method DeleteButtonActionPerformed().

Enter the codes that are shown in Fig. 9.64 into this DeleteButtonActionPerformed()
event handler. Let’s have a closer look at this piece of codes to see how it works.

 A. A try catch block is used to perform the calling of our Web service method
DeleteFaculty() to perform this faculty data deleting action. First a new Web
service instance service is created based on our Web service class
WebServiceUpdtDelt_Service. Then the method getWebServiceUpdtDelt-
Port() is executed to get the current port used by our Web service.

This port is returned and assigned to a new Port instance port.
 B. The Web service operation DeleteFaculty() is executed with the selected faculty

name as the argument of this method. The running result of that operation is
returned and assigned to a Boolean variable delete.

 C. If the value of the variable delete is false, which means that no any row has been
deleted from our Faculty table and this data deleting has been failed, the msgDlg
instance is used to show this situation.

 D. The catch block is used to track and display any possible exception during this
Web service operation execution.

9.12 Build a Window-Based Client Project to Consume the Web Service

540

At this point, we have completed all coding development for our Window-based
client project for the data updating and deleting actions. Now let’s build and run our
client project to call and test our Web service to perform faculty data updating and
deleting actions.

9.12.4 Build and Run Our Client Project to Update and Delete
Faculty Record via Web Service

Make sure to deploy our Web Service project prior to running our Windows client
project to call our Web Service project; otherwise, you may encounter some errors.

Now click on the Clean and Build Main Project button to build our client proj-
ect. If everything is fine, click on the Run Main Project button to run our client
project.

The FacultyFrame form window is displayed. First let’s perform a faculty query
action. Select a desired faculty member, such as Ying Bai, from the Faculty Name
combo box, and click on the Select button to query the detailed information for this
faculty via our Web service WebServiceApp. The queried result is displayed in
seven text fields.

Now enter an updating faculty record with six pieces of updated faculty informa-
tion shown below into six text fields, which is shown in Fig. 9.65.

Fig. 9.65 Six pieces of updated faculty information

9 Developing Java Web Services to Access Databases

541

• Name: Susan Bai
• Title: Professor
• Office: MTC-314
• Phone: 750-330-1158
• College: Duke University
• Email: sbai@college.edu

Fig. 9.66 The updated faculty information

Fig. 9.67 The opened Faculty table in the NetBeans IDE

9.12 Build a Window-Based Client Project to Consume the Web Service

sbai@college.edu

542

Click on the Update button to browse and select the desired updating faculty
image; in this case, it is White.jpg, and then try to call our Web service operation
UpdateFaculty() to update this faculty record in the Faculty table in our sample
database.

To confirm this data updating action, two methods can be used. First we can use
the Select button to retrieve this updated faculty record from our sample database to
confirm this updating action. To do that, go to the Faculty Name combo box, and
you can find that the updated faculty name, Susan Bai, has been added into this box.
Click this name to select it, and click on the Select button. You can find that six
pieces of updated faculty information have been retrieved and displayed in this form
window, as shown in Fig. 9.66. Our data updating is successful!

The second way to confirm this data updating action is to open our Faculty table
using either the Services window in the NetBeans IDE or the Microsoft SQL Server
Management Studio to check whether this faculty record has been updated. To do
that using the Services window in the NetBeans IDE, perform the following
operations:

 1) Open the Services window and expand the Databases node.
 2) Right click on our SQL Server database URL: jdbc:sqlserver://localhost\

SQL2019EXPRESS: 5000; databaseName=CSE_DEPT, and select the
Connect item to try to connect to our database. Enter Happy2020 into the
Password box and click on the OK button.

 3) Expand our sample database CSE_DEPT, dbo, and Tables.
 4) Right click on the Faculty table and select the View Data item.

Your opened Faculty table is shown in Fig. 9.67. It can be found that the faculty
record with the faculty_id of B78880, which is located at row 4 and has been high-
lighted in dark color, has been successfully updated in our database.

However, it is highly recommended to recover this updated faculty record to the
original one to keep our database clean and neat. Refer to Table 9.5 to perform
another data updating action by using the Update button on this FacultyFrame
Form to recover this faculty record to the original one with the faculty name as
Ying Bai.

Next let’s test the faculty record deleting action via our Web service operation
DeleteFaculty(). First let’s perform another updating action to recover the updated
faculty member Ying Bai using the data shown in Table 9.5. Enter these six pieces
of original faculty information into those six text fields and click on the Update button.

Then keep the faculty member Ying Bai selected in the Faculty Name combo
box, and click on the Delete button to try to call our Web service operation
DeleteFaculty() to delete this faculty record from our sample database.

Table 9.5 The original faculty record in the Faculty table

faculty_
id

faculty_
name office phone college title email fimage

B78880 Ying Bai MTC-
211

750-378-
1148

Florida Atlantic
University

Associate
Professor

ybai@
college.edu

Bai.
jpg

9 Developing Java Web Services to Access Databases

ybai@college.edu
ybai@college.edu

543

To confirm this data deleting action, two ways can be used. First you can perform
a faculty data query operation by selecting the deleted faculty member Ying Bai
from the Faculty Name combo box, and click on the Select button to try to retrieve
this faculty record from our database. You can find that the querying faculty record
cannot be found from our sample database and an error information with a null is
displayed, and this means that our data deleting is successful.

Another way to confirm this data deleting is to open the Faculty table in our
sample database.

To make our sample database clean and neat, it is highly recommended to recover
this deleted faculty member and related records in our Faculty, LogIn, Course, and
StudentCourse tables. Perform the following operational steps to recover this fac-
ulty record:

1) Perform a data insertion operation by using the Insert button on this
FacultyFrame Form to insert a new faculty record with faculty name as Ying
Bai. Refer to Table 9.5 to perform this data insertion action.

2) Open and use the Microsoft SQL Server Management Studio 18 to perform
recovery jobs for all other Tables, such as LogIn, Course, and StudentCourse.
You can copy all records and then paste them into the related Tables in Microsoft
SQL Server Management Studio. Refer to original records shown in Tables 9.2,
9.3 and 9.4 in Sect. 9.11.3 to add or insert them to the related tables to complete
this data recovery.

A point to be noted is that as you perform data recovery, the recovery
order is very important. It means that you have to first recovery the
faculty data in the Faculty table, and then the data in other tables since
the Faculty table is a primary table.

A complete Window-based client project WinClientUpdtDelt can be found
from the folder Class DB Projects\Chapter 9 that is located under a folder Students
at the Springer ftp site (refer to Fig. 1.2 in Chap. 1).

Next let’s build a Web-based client project to consume our Web service to insert
a new faculty record into the Faculty table in our sample database.

9.13 Build a Web-Based Client Project to Consume
the Web Service

We can modify a Web-based project JavaWebDBJSPSQL_UpdateDelete we built
in Sect. 8.5.3 in Chap. 8 to make it as our new Web client project to consume our
Web service to perform the faculty data updating and deleting actions.

9.13 Build a Web-Based Client Project to Consume the Web Service

544

Perform the following operational steps to create our new project
WebClientUpdtDelt:

 1) In the Projects window, right click on the project JavaWebDBJSPSQL_
UpdateDelete, and select the Copy item from the popup menu to open the
Copy Project wizard.

 2) Enter our new project name, WebClientUpdtDelt, into the Project Name box,
and browse to the default project folder, C:\Class DB Projects\Chapter 9, as
the Project Location, and click on the Copy button.

A new project WebClientUpdtDelt is generated and added into our
Projects window.

First let’s add a Web Service reference to our Web-based client project to allow
it to use our Web service operations.

9.13.1 Add a Web Service Reference to Our Web-Based
Client Project

In order to call the UpdateFaculty() and DeleteFaculty() operations in our Web
service project WebServiceSQLApp, we need to add a Web reference to our Web-
based client project WebClientUpdtDelt to use the updated Web service project.
Perform the following operations to add this Web service reference:

 1) Deploy our Web Service project WebServiceSQLApp prior to adding it into our
project.

 2) Right click on our Web-based client project WebClientUpdtDelt, and select the
New > Web Service Client item to open the New Web Service Client wizard.

 3) On the opened wizard, click on the Browse button that is next to the Project
field, and expand our Web application WebServiceSQLApp. Then choose our
Web service class WebServiceUpdtDelt by clicking on it, and click on the
OK button.

 4) Click on the Finish button to complete this adding Web service reference
process.

Now that we have added a Web service reference to our Web-based client project
WebClientUpdtDelt, next let’s develop the codes in our client project to call that
Web service operations, UpdateFaculty() and DeleteFaculty(), to perform faculty
data updating and deleting actions. The main coding job is inside the Java Bean
class file, FacultyUpdateDeleteBean.java.

First let’s take care of the data updating operation UpdateFaculty().

9 Developing Java Web Services to Access Databases

545

9.13.2 Develop the Codes to Call Our Web Service Operation
UpdateFaculty()

To make things simple and easy, we can use and modify one of our Java Bean class
files, FacultyUpdateDelete.java, and use it to access our Web Service operational
methods to perform faculty data updating and deleting actions.

Open our Web-based client project WebClientUpdtDelt, and double click on the
FacultyUpdateDelete.java from the Projects window to open this managed bean
class file. The main modification jobs are performed in this class file. Perform the
following operations to complete these modifications:

 1) Remove all codes inside the constructor, FacultyUpdateDeleteBean(), to make
it empty.

 2) Add the codes shown in Fig. 9.68 into the UpdateFaculty() method.

Let’s have a closer look at this piece of new added codes to see how it works.

 A. The codes inside the constructor of this Java Bean class have been removed.
 B. The UpdateFaculty() method is declared with a string array, upFaculty, as the

argument to be passed into this method, in which all eight pieces of updated
information are involved.

A

B

C

D

E

F

G

H

I

J

public FacultyUpdateDeleteBean() {

}
public int UpdateFaculty(String[] upFaculty) {

int numUpdated = 1;

ArrayList al = new ArrayList();

MsgDialog msgDlg = new MsgDialog(new javax.swing.JFrame(), true);

al.clear();

al.add(0, upFaculty[0]); // faculty_name

al.add(1, upFaculty[1]); // title

al.add(2, upFaculty[2]); // office

al.add(3, upFaculty[3]); // phone

al.add(4, upFaculty[4]); // college

al.add(5, upFaculty[5]); // email

al.add(6, upFaculty[6]); // fimage

al.add(7, upFaculty[7]); // faculty_id

try{

org.ws.sql.WebServiceUpdtDelt_Service service = new org.ws.sql.WebServiceUpdtDelt_Service();

org.ws.sql.WebServiceUpdtDelt port = service.getWebServiceUpdtDeltPort();

Boolean update = port.updateFaculty(al);

if (!update) {

msgDlg.setMessage("The data updating is failed!");

msgDlg.setVisible(true);

return 0;

}

}

catch (Exception e) {
msgDlg.setMessage("Error in Update Statement! " + e.getMessage());

msgDlg.setVisible(true);

return 0;

}

return numUpdated;

}

Fig. 9.68 The modified codes for the Update() method

9.13 Build a Web-Based Client Project to Consume the Web Service

546

 C. Some local variables are declared, including an integer variable numUpdated
that will hold the data updating result later and a new ArrayList instance al that
is used to pick up and reserve the input updating faculty data array.

 D. The clear() method is executed to make sure that the ArrayList instance is clean
before a updating faculty record is collected.

 E. A sequence of add() method is used to pick up and add all pieces of updating
faculty information into this new ArrayList instance al. Seven pieces of updat-
ing faculty information are entered by the user in the JSP page FacultyPage.jsp
and stored in seven properties defined in this managed bean. The last parameter,
the eighth one, is the original faculty ID.

 F. A try catch block is used to perform the calling of our Web service operation
UpdateFaculty() to perform this faculty data updating action. First a new Web
service instance service is created based on our Web service class
WebServiceUpdtDelt_Service. Then the getWebServiceUpdtDeltPort()
method is executed to get the current port used by our Web service. This port is
returned and assigned to a new Port instance port.

 G. The UpdateFaculty() operation in our Web service is called with the ArrayList
instance that contains all pieces of updated faculty information as the argument.
The execution result of this faculty data updating is returned and assigned to the
local Boolean variable update.

 H. If the returned Boolean variable update is false, which means that this data
updating failed, the msgDlg instance is used to indicate this situation.

 I. The catch block is used to catch any possible exception during this data updat-
ing process.

 J. Finally the local variable numUpdated is returned to indicate that this data
updating action is successful.

Next let’s build the codes for the Delete() method in this Java bean to call our
Web service operation DeleteFaculty() to perform the faculty data deleting action.

9.13.3 Develop the Codes to Call Our Web Service Operation
DeleteFaculty()

On the opened Java bean class file FacultyUpdateDeleteBean.java under the
Projects window, enter the codes shown in Fig. 9.69 into the Delete() method in
this class to fulfill this data deleting function.

Let’s have a closer look at this piece of new added codes to see how it works.

 A. First a local integer variable, numDeleted, is declared, and this variable is used
to hold our data deleting operation result later.

 B. A try catch block is used to perform the calling of our Web service operation
DeleteFaculty() to perform this faculty data deleting action. First a new Web
service instance service is created based on our Web service class
WebServiceUpdtDelt_Service.

9 Developing Java Web Services to Access Databases

547

A

B

C

D

E

F

public int DeleteFaculty(String fname) {
int numDeleted = 0;

try{

org.ws.sql.WebServiceUpdtDelt_Service service = new org.ws.sql.WebServiceUpdtDelt_Service();

org.ws.sql.WebServiceUpdtDelt port = service.getWebServiceUpdtDeltPort();

Boolean delete = port.deleteFaculty(fname);

if (!delete) {

System.out.println("The data deleting is failed!");

return 0;

}

}

catch (Exception e) {

System.out.println("Error in Delete Statement! " + e.getMessage());

return 0;

}

return numDeleted;

}

Fig. 9.69 The completed codes for the DeleteFaculty() method

Then the getWebServiceUpdtDeltPort() method is executed to get the current
port used by our Web service. This port is returned and assigned to a new Port
instance port.

 C. The deleteFaculty() operation in our Web service is called with the original
faculty name as the argument. The execution result of this faculty data deleting
is returned and assigned to the local Boolean variable delete.

 D. If the returned Boolean variable delete is false, which means that this data delet-
ing failed, a System.out.println() method is used to indicate this situation.

 E. The catch block is used to catch any possible exception during this data deleting
process.

 F. Finally the local variable, numDeleted, is returned to indicate a success of this
data deleting operation.

Before we can build and run our Web client project to call our Web Service to
perform data updating and deleting actions, we need to modify some codes, exactly
two coding lines, in our FacultyProcess.jsp page to allow it to work properly.

Open this File, and browse to coding lines 111 and 124, and comment out these
two lines:

 //UpdateFaculty.CloseDBConnection();
 //DeleteFaculty.CloseDBConnection();

The reason for this comment-out is that we do not need to call this method to
close our database; instead this database closing job has been handled in our Web
Service project.

Now let’s build and run our Web client project to call our Web service operations
to perform the faculty data updating and deleting actions. One point to be noted is
that our Web Service project WebServiceSQLApp must be deployed first before
we can run our client project.

9.13 Build a Web-Based Client Project to Consume the Web Service

548

9.13.4 Build and Run Our Client Project to Update and Delete
Faculty Record via Web Service

First right click on our Web Service WebServiceSQLApp, and select the Deploy to
make it active. Then click the Clean and Build Main Project button to build our
client project. Right click on our FacultyPage.jsp from the Projects window, and
choose the Run File item to run our client project.

On the opened JSP page, first let’s perform a faculty record query by entering a
desired faculty name, such as Ying Bai, into the Faculty Name field, and then click
on the Select button to get details for this faculty member. To update this faculty
record, enter six pieces of updating faculty information shown below into the asso-
ciated six text fields, as shown in Fig. 9.70.

• Name: Susan Bai
• Title: Professor
• Office: MTC-314
• Phone: 750-330-1158
• College: Duke University
• Email: sbai@college.edu

Then click on the Browse button that is on the right of the Image box, and
browse to our desired faculty image folder, in this case, it is C:\...\

Fig. 9.70 Six pieces of updated faculty information

9 Developing Java Web Services to Access Databases

sbai@college.edu

549

WebClientUpdtDelt\web\FImages. Then select the desired faculty image, White.
jpg, and click on the Open button to select this image.

You may need to create this folder under this project and copy all faculty image
files from the Springer ftp site (refer to Fig. 1.2 in Chap. 1) and paste them into
this folder.

Now click on the Update button to try to call our Web service operation
UpdateFaculty() to update this faculty record in the Faculty table in our sample
database.

To confirm this data updating action, two methods can be used. First we can use
the Select button to query this updated faculty record. To do that, enter the updated
faculty image name, White.jpg, into the Image box, which is under the Browse
button, and enter the updated faculty name, Susan Bai, into the Faculty Name box
on the top, and then click on the Select button to try to retrieve back this updated
faculty record from our sample database. Immediately you can find that the updated
faculty record is retrieved and displayed, as shown in Fig. 9.71.

To use the second way to check this updating action, we can open our Faculty
table using either the Services window in the NetBeans IDE or the Microsoft SQL
Server Management Studio to check whether this faculty record has been updated.

To use the second way in the NetBeans IDE, perform the following operations:

 1) Open the Services window and expand the Databases node.
 2) Right click on our SQL Server database URL: jdbc:sqlserver://localhost\

SQL2019EXPRESS: 5000; databaseName=CSE_DEPT, and select the

Fig. 9.71 The confirmation of an updated faculty record

9.13 Build a Web-Based Client Project to Consume the Web Service

550

Connect item to try to connect to our database. Enter Happy2020 into the
Password box, and click on the OK button.

 3) Expand our sample database CSE_DEPT, dbo, and Tables.
 4) Right click on the Faculty table and select the View Data item.

Your opened Faculty table is shown in Fig. 9.72. It can be found that the faculty
record with the faculty_id of B78880, which is located at row 4 and has been high-
lighted in dark color, has been successfully updated in our database.

It is highly recommended to recover this updated faculty record back to the origi-
nal one to keep our database clean and neat. Refer to Table 9.6 to perform another
data updating action by using the Update button to recover this faculty record with
the faculty name as Ying Bai.

Next let’s test the faculty deleting action by calling our Web service operation
DeleteFaculty(). Suppose another faculty updating action has been performed to
recover the faculty member Ying Bai to its original record.

Now type the original faculty name Ying Bai into the Faculty Name field, and
click on the Select button to retrieve this faculty record. Then click on the Delete
button to try to delete this faculty record. To confirm this data deleting action, click
on the Select button again to try to retrieve this faculty record from our sample
database. A null record is returned and displayed in all related TextFields, which
means that the queried faculty record did not exist. Our data deleting is successful!

Table 9.6 The original faculty record in the Faculty table

faculty_
id

faculty_
name office phone college title email fimage

B78880 Ying Bai MTC-
211

750-378-
1148

Florida Atlantic
University

Associate
Professor

ybai@
college.edu

Bai.
jpg

Fig. 9.72 The opened Faculty table in the NetBeans IDE

9 Developing Java Web Services to Access Databases

ybai@college.edu
ybai@college.edu

551

You can also try to open the Faculty table in our sample database by using the
Services window in the NetBeans IDE. The faculty record with faculty name Ying
Bai cannot be found from this table, which means that the queried faculty record has
been deleted from our database.

To make our sample database clean and neat, it is highly recommended to recover
this deleted faculty member and related records in our Faculty, LogIn, Course, and
StudentCourse tables. An easy way to do this recovery is to use our Windows-
based client project WinClientUpdtDelt and the Microsoft SQL Server Management
Studio. Refer to Sect. 9.12.4 to complete this data recovery job.

A complete Web client project WebClientUpdtDelt can be found from a folder
Class DB Projects\Chapter 9 that is located under the Students folder at the
Springer ftp site (refer to Fig. 1.2 in Chap. 1).

9.14 Build Java Web Service Projects to Access Course Table
in Our Sample Database

We have provided very detailed discussions and analyses on accessing and manipu-
lating Faculty table in our sample SQL Server database. Starting from this section,
we will concentrate on accessing and manipulating data in the Course table in our
sample database.

9.14.1 Create a New Java Web Application
Project WebServiceCourseApp

First let’s create a new Java Web Application project. Perform the following opera-
tions to create our new Web application WebServiceCourse:

Fig. 9.73 The finished Server and Settings wizard

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

552

 1) Launch NetBeans IDE 8.2, and choose File > New Project (Ctrl-Shift-N).
Select Web Application from the Java Web category, and click on the
Next button.

 2) Name the project WebServiceCourse, and click on the Browse button to select
a desired location for the project. In this application, we used the C:\Class DB
Projects\Chapter 9 as our project location. Click on the Next button to
continue.

 3) Select GlassFish Server as our Web container and Java EE 7 Web as the Java
EE version; your finished Server and Settings wizard should match one that is
shown in Fig. 9.73. Click on the Next button to go to the next wizard.

 4) In the opened Frameworks wizard, click on the Finish button to complete this
new application creation process.

Now that a Web application has been created with a selected Web container, next
we can create our new Web service project WSCourse.

9.14.2 Create a New Java SOAP-Based Web Service
Project WebServiceCourse

The function of this Web service is to execute related operations in this Web service
and furthermore to call the associated methods defined in our Java session beans to
perform data queries and manipulations to the Course table in our sample database.

Perform the following operations to create this new Web service project
WSCourse:

 1) In the Projects window, right click on our new created project WebService
Course, and select the New > Other menu item to open the New File wizard.

Fig. 9.74 The finished Name and Location wizard

9 Developing Java Web Services to Access Databases

553

 2) Select Web Services from the Categories list and Web Service from the File
Types list, and click on the Next button.

 3) Name the Web service WSCourse and type org.ws.sql into the Package field.
Leave Create Web Service from Scratch selected.

Your finished Name and Location wizard should match one that is shown in
Fig. 9.74. Click on the Finish button to complete this process.

9.14.3 The Organization of Web Service Operations

The main purpose of using our Web service is to query and manipulate data from the
Course table in our sample database. Therefore we need to add some new opera-
tions to the Web service project. We will add five new operations based on the
sequence of five operational tasks on the Course table. This means that we will add
the following five operations into this Web service project to perform related Course
information query and manipulations:

• QueryCourseID(): Query all course_id taught by the selected faculty member.
• QueryCourse(): Query detailed information for selected course_id.
• InsertCourse(): Insert a new course record into the Course table.
• UpdateCourse(): Update an existing course record in the Course table.
• DeleteCourse(): Delete a course record from the Course table.

Next let’s start to build these five Web operations in our Web Service project one
by one. Unlike those operations we built in the last section, here we combined all
operations in one Web Service class file, WSCourse.java.

9.14.4 Create and Build Web Service Operations

Let’s start to create each Web operation and develop the codes for each of them.
First let’s start from the QueryCourseID() method.

Recall that when we built our sample database in Chap. 2, especially when we
built the Course table, there is no faculty_name column available in the Course
table and the only relationship between each course_id and each faculty member is
the faculty_id column in the Course table. This is a many-to-one relationship
between the course_id and the faculty_id in this table, which means that many
courses (course_id) can be taught by a single faculty (faculty_id). However, in the
Faculty table, there is a one-to-one relationship between each faculty_name and
each faculty_id column.

Therefore, in order to query all courses, exactly all course_id, taught by the
selected faculty member, exactly the faculty_name, we need to perform two que-
ries from two tables.

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

554

• First we need to perform a query to the Faculty table to get a matched faculty_id
based on the selected faculty member (faculty_name).

• Then we need to perform another query to the Course table to get all course_id
taught by the selected faculty_id that is obtained from the first query.

In fact, we can combine these two queries into a single JOIN query to simplify
this process.

Based on this discussion, now let’s perform the following operations to add a
new operation QueryCourseID() into our main class file WSCourse.java to per-
form this course_id query.

9.14.4.1 Create and Build the Web Operation QueryCourseID()

Perform the following operations to create a new operation QueryCourseID() in
our main class file WSCourse.java:

 1) Double click on our Web service class file WSCourse.java from the Projects
window to open it.

 2) Click on the Design button on the top of the window to open the Design View
of our Web service project WebServiceCourse.

 3) Click on the Add Operation button to open the Add Operation wizard.
 4) Enter QueryCourseID into the Name field, and click on the Browse button that

is next to the Return Type combo box. Type arrayList into the Type Name
field and select the item ArrayList (java.util) from the list, and click on the
OK button.

 5) Click on the Add button and enter fname into the Name parameter field. Keep
the default type java.lang.String unchanged.

 6) Your finished Add Operation wizard should match one that is shown in
Fig. 9.75.

 7) Click on the OK button to complete this new operation creation process.

Fig. 9.75 The finished Add Operation wizard

9 Developing Java Web Services to Access Databases

555

Now let’s develop the codes for this operation.
Click on the Source button on the top of this window to open the code window

of our Web service project WSCourse.java. On the opened code window, enter the
codes that are shown in Fig. 9.76 into this code window.

Let’s have a closer look at this piece of codes to see how it works.

A

B

C

D

E
F

G

H

I

J

K

L

M
N
O
P
Q

R

S

T

package org.ws.sql;
import java.sql.*;
import java.sql.SQLException;
import java.util.ArrayList;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;
@WebService(serviceName = "WSCourse")

public class WSCourse {
Connection con = null;
private Connection DBConnection(Connection conn) {

try
{

//Load and register SQL Server driver
Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

}
catch (Exception e) {

System.out.println("Class not found exception!" + e.getMessage());
}
String url = "jdbc:sqlserver://localhost\\SQL2019EXPRESS:5000;databaseName=CSE_DEPT;";
try {

conn = DriverManager.getConnection(url,"SMART","Happy2020");
}
catch (SQLException e) {

System.out.println("Could not connect! " + e.getMessage());
e.printStackTrace();

}
return conn;

}
@WebMethod(operationName = "QueryCourseID")

public ArrayList QueryCourseID(@WebParam(name = "fname") String fname) {
//TODO write your implementation code here:
ArrayList<String> result = new ArrayList<String>();

String query = "SELECT Course.course_id, course FROM Course JOIN Faculty " +
"ON (Course.faculty_id = Faculty.faculty_id) AND (Faculty.faculty_name = ?)";

try {
con = DBConnection(con);
PreparedStatement pstmt =con.prepareStatement(query);
pstmt.setString(1, fname);
ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();
while (rs.next()){

for (int colNum = 1; colNum <= rsmd.getColumnCount() - 1; colNum++)
result.add(rs.getString(colNum));

}
con.close();
rs.close();
pstmt.close();
return result;

}
catch (Exception ex) {

System.out.println("exception is: " + ex);
return null;

}
}

}

Fig. 9.76 The codes for the Web service operation QueryCourseID()

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

556

 A. A class level variable, con, which is our database connection object, is declared
first since we need it to work as our database connection object for all of opera-
tions later.

 B. A user-defined method, DBConnection(), is executed to try to connect to our
sample database. Exactly a try-catch block is used to help in performing this
connection process.

 C. First the SQL Server JDBC driver is loaded using the forName() method.
 D. The catch block is used to track and detect any possible exception for this JDBC

driver loading process. The debug information will be displayed using the
System.out.println() method if any exception occurred.

 E. Our sample SQL Server database connection URL is defined, and it is used to
set up a connection to our sample database. Refer to Sect. 6.3.3.3.1 in Chap. 6
to get more details about this connection URL.

 F. Another try block is used to set up a connection to our sample database using
the getConnection() method that belongs to the DriverManager class with the
username and password as arguments.

 G. The catch block is used to detect and display any possible exception during this
connection process.

 H. The established connection object is returned to the calling method.
 I. Our Web operation method, QueryCourseID(), is declared and defined with a

selected faculty name as the argument.
 J. An ArrayList instance result is created, and this variable is an array list instance

used to collect and store our query result and return to the consuming project.
 K. A Joined query statement that combined the first query to the Faculty table and

the second query to the Course table is declared with one position parameter
faculty_name. This definition is a so-called ANSI 92 Standard and used to
simplify multiple query statements.

 L. Another try-catch block is used to perform this query job. First our user-defined
method DBConnection() is called to set up a valid database connection to our
sample database.

 M. A new PreparedStatement instance pstmt is created to perform this query.
 N. The setString() method is used to set up the actual value for the positional

dynamic parameter in the query statement.
 O. The query is performed by calling the executeQuery() method, and the query

result is returned and stored in a ResultSet object rs.
 P. To get more detailed information about the queried database, the getMeta-

Data() method is executed, and the result is stored in a ResultSetMetaData
instance rsmd.

 Q. A while and a for loop are used to pick up all queried course_id stored in the
ResultSet object rs. A for loop is used to pick up each queried course_id and
add it into the ArrayList instance result. The reason we used an ArrayList, not
a List instance, as the returned object is that the former is a concrete class but
the latter is an abstract class, and a runtime exception may be encountered if an
abstract class is used as a returned object to the calling method.

 R. A sequence of cleaning jobs is performed to close all used objects.

9 Developing Java Web Services to Access Databases

557

 S. The queried result stored in the local variable result is returned to the call-
ing method.

 T. The catch block is used to catch and display any possible error during this query

During the coding process, you may encounter some in-time compiling errors.
The main reason for those errors is that some packages are missed. To fix these
errors, just right click on any space inside this code window, and select the Fix
Imports item to find and add those missed packages.

At this point, we have finished all coding process for the course_id query. Now
let’s build and test our Web service to test this course_id query function.

9.14.4.2 Build and Run the Web Service to Test the CourseID
Query Function

Click on the Clean and Build Main Project button on the top of the window to
build our Web service project. Then right click on our Web service application proj-
ect WebServiceCourse, and choose the Deploy item to deploy our Web service.

If everything is fine, expand the Web Services node under our Web service proj-
ect, and right click on our Web service target file WSCourse, and choose the Test
Web Service item to run our Web service project. The running status of our Web
service is shown in Fig. 9.77.

Enter a desired faculty name, such as Jenney King, into the text field, and click
on the queryCourseID button to test this query function. The testing result is shown
in Fig. 9.78.

It can be found from Fig. 9.78 that all course_id taught by the selected faculty
member Jenney King have been retrieved and displayed at the bottom of this page,
and our course_id query via Web service is successful!

Next let’s handle creating and coding process for the second Web service opera-
tion QueryCourse() to query details for the selected course_id.

9.14.4.3 Create and Build the Web Operation QueryCourse()

Perform the following operations to add a new operation QueryCourse() into our
Web service project to perform this course details query:

 1) Double click on our Web service main class file WSCourse.java from the
Projects window to open it.

 2) Click on the Design button on the top of the window to open the Design View
of our Web service project WSCourse.

 3) Click on the Add Operation button to open the Add Operation wizard.
 4) Enter QueryCourse into the Name field, and click on the Browse button that is

next to the Return Type combo box. Type arraylist into the Type Name field,
and select the item ArrayList (java.util) from the list, and click on the
OK button.

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

558

Fig. 9.77 The testing status of our Web Service project

Fig. 9.78 The testing results of our Web Service project

 5) Click on the Add button and enter courseID into the Name parameter field.
Keep the default type java.lang.String unchanged, and click on the OK button
to complete this new operation creation process.

Your finished Add Operation wizard should match one that is shown in Fig. 9.79.

9 Developing Java Web Services to Access Databases

559

Click on the Source button on the top of this window to open the code window
of our Web service project. Let’s perform the coding for this new added operation.

On the opened code window, enter the codes that are shown in Fig. 9.80 into this
new added operation. Let’s have a closer look at this piece of codes to see how
it works.

 A. An ArrayList instance result is created, and this variable is an array list instance
used to collect and store our query result and return to the consuming project.

 B. A single query statement is declared with one dynamic position parameter
course_id. This statement is used to query all course details related to the
selected course_id.

Fig. 9.79 The completed Add Operation wizard

A
B

C
D
E
F
G
H

I

J

K

@WebMethod(operationName = "QueryCourse")
public ArrayList QueryCourse(@WebParam(name = "courseID") String courseID) {

//TODO write your implementation code here:
ArrayList<String> result = new ArrayList<String>();

String query = "SELECT * FROM Course WHERE course_id = ?";
try {

con = DBConnection(con);
PreparedStatement pstmt =con.prepareStatement(query);
pstmt.setString(1, courseID);
ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsmd = rs.getMetaData();
while (rs.next()){

for (int colNum = 1; colNum <= rsmd.getColumnCount() - 1; colNum++)
result.add(rs.getString(colNum));

}
con.close();
rs.close();
pstmt.close();
return result;

}
catch (Exception ex) {

System.out.println("exception is: " + ex);
return null;

}
}

Fig. 9.80 The codes for the Web service operation QueryCourse()

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

560

 C. A try-catch block is used to perform this query job. First our user-defined
method DBConnection() is called to set up a valid database connection to our
sample database.

 D. A new PreparedStatement instance pstmt is created to perform this query.
 E. The setString() method is used to set up the actual value for the positional

dynamic parameter in the query statement.
 F. The query is performed by calling the executeQuery() method, and the query

result is returned and stored in a ResultSet object rs.
 G. To get more detailed information about the queried database, the getMeta-

Data() method is executed and the result is stored in a ResultSetMetaData
instance rsmd.

 H. A while and a for loop are used to pick up all pieces of queried course informa-
tion stored in the ResultSet object rs. The for loop is used to pick up each piece
of detailed course information and add it into the ArrayList instance result. One
issue to be noted is the upper bound of the loop count for this for loop. Here we
did not collect all pieces of detailed course information since the last column in
the Course table is the faculty_id, and we do not need this piece of information
to be displayed in our Course Form when we consume this service later. Thus
the count for the last column is getColumnCount() – 1.

 I. A sequence of cleaning jobs is performed to close all used objects.
 J. The queried result stored in the local variable result is returned to the call-

ing method.
 K. The catch block is used to catch and display any possible error during this

query, and a null is returned to indicate this situation if any of errors really
occurred.

Now let’s build and test this Web Service operation by using the Web
Service Tester.

Click on the Clean and Build Main Project button on the top of the window to
build our Web service project. Then right click on our Web service application proj-
ect WebServiceCourse, and choose the Deploy item to deploy our Web service.

If everything is fine, expand the Web Services node under our Web service proj-
ect, and right click on our Web service target file WSCourse, and choose the Test
Web Service item to run our Web service project. Enter a desired course_id, such
as CSE-434, into the text field, and click on the queryCourse button to test this
query function. The testing result is shown in Fig. 9.81.

It can be found from Fig. 9.81 that all six pieces of detailed course information
related to the selected course_id, except the faculty_id, have been retrieved and
displayed at the bottom of this page, and our course query via Web service is
successful!

Next let’s handle creating and building of our third Web service operation
InsertCourse() to insert a new course record into the Course table in our sample
database.

9 Developing Java Web Services to Access Databases

561

Fig. 9.81 The testing result for our Web Service operation QueryCourse()

9.14.4.4 Create and Build the Web Operation InsertCourse()

One issue to be noted to perform this new course insertion action against our sample
database is that two queries will be performed: (1) query the Faculty table to get the
desired faculty_id based on the input faculty_name and (2) insert a new course
record based on the queried faculty_id from (1). The reason for that is because there
is no faculty_name column available in the Course table and the only foreign key
connecting the Faculty with the Course tables is the faculty_id.

Keep this fact in mind, and let’s start to build this operation. First perform the
following operations to add a new operation InsertCourse() into our Web service
project to perform this course details query:

 1) Double click on our Web service main class file WSCourse.java from the
Projects window to open it.

 2) Click on the Design button on the top of the window to open the Design View of
our Web service project WSCourse.

 3) Click on the Add Operation button to open the Add Operation wizard.
 4) Enter InsertCourse into the Name field, and click on the Browse button that is

next to the Return Type combo box. Type boolean into the Type Name field,
and select the item Boolean (java.lang) from the list, and click on the OK button.

 5) Click on the Add button and enter cdata into the Name parameter field. Then
click on the drop-down arrow of the Type combo box, and select the Choose
item to open the Find Type wizard. Type arrayList into the top field and select

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

562

the ArrayList (java.util) data type, and click on the OK button to select an
ArrayList as the data type for the input parameter.

Your finished Add Operation wizard should match one that is shown in Fig. 9.82.
Click on the OK button to complete this new operation creation process. Next let’s
build the codes for this operation.

Click on the Source button on the top of this window to open the code window
of our Web service project. On the opened code window, enter the codes that are
shown in Fig. 9.83 into this new added operation InsertCourse().

Let’s have a closer look at this piece of new added codes to see how it works.

 A. First some local variables, such as an instance of ResultSet rs, a blank fac-
ulty_id string fid, and an integer variable numInsert, are declared since we
need to use them to hold some of our query results.

 B. A try-catch block is used to do our first query for the Faculty table to get a
desired faculty_id based on the selected faculty_name. First a valid database
connection is established by calling our user-defined method DBConnection().

 C. A PreparedStatement object, pstfid, is generated with a connection object con
and query statement to get the desired faculty_id based on the selected fac-
ulty_name, and the latter is a positional dynamic input parameter.

 D. A system method setString() is executed to set up the input positional dynamic
parameter that is stored in the input arrayList instance, cdata, and exactly it is
located at the first position on that list; thus another system method get(0).
toString() is used to pick it up.

 E. The first query is executed by calling the system method executeQuery(), and
the returned query result is stored in the instance of ResultSet class, rs.

 F. A while() loop with its condition, rs.next(), is executed to pick up the selected
faculty_id by calling another system method getString(). The argument of that
method is the column name of the fculty_id.

 G. The second query statement is created with a standard SQL statement format
with seven input positional dynamic parameters. One point to be noted is that

Fig. 9.82 The completed Add Operation wizard

9 Developing Java Web Services to Access Databases

563

A

B
C
D
E
F

G

H
I

J
K
L

M

N

O

@WebMethod(operationName = "InsertCourse")
public Boolean InsertCourse(@WebParam(name = "cdata") ArrayList cdata) {
//TODO write your implementation code here:
ResultSet rs;
String fid = null;
int numInsert = 0;

try {
con = DBConnection(con);
PreparedStatement pstfid =con.prepareStatement("SELECT faculty_id FROM Faculty WHERE faculty_name = ?");
pstfid.setString(1, cdata.get(0).toString()); // set faculty_name; cdata(0) = faculty_name
rs = pstfid.executeQuery();
while (rs.next()) {

fid = rs.getString("faculty_id");
}

String query = "INSERT INTO Course (course_id, course, credit, classroom, schedule, " +
"enrollment, faculty_id) VALUES (?, ?, ?, ?, ?, ?, ?)";

PreparedStatement pstmt =con.prepareStatement(query); // cdata(0) = faculty_name
pstmt.setString(1, cdata.get(1).toString()); // cdata(1) = course_id
pstmt.setString(2, cdata.get(2).toString()); // cdata(2) = course
pstmt.setString(3, cdata.get(3).toString()); // cdata(3) = credit
pstmt.setString(4, cdata.get(4).toString()); // cdata(4) = classroom
pstmt.setString(5, cdata.get(5).toString()); // cdata(5) = schedule
pstmt.setString(6, cdata.get(6).toString()); // cdata(6) = enrollment
pstmt.setString(7, fid);
numInsert = pstmt.executeUpdate();
con.close();
rs.close();
if (numInsert != 0)

return true;
else

return false;
} catch (SQLException ex) {

Logger.getLogger(WSCourse.class.getName()).log(Level.SEVERE, null, ex);
return false;

}
}

Fig. 9.83 The detailed codes for the operation InsertCourse()

the order of those input positional parameters must be pre-defined with the input
faculty_name as the first one, followed by six pieces of new inserted course
information.

 H. Another PreparedStatement object, pstmt, is declared with the second query
statement.

 I. A sequence of setString() methods is executed to set up and initialize all seven
input positional parameters, which include a new inserted course record and the
selected faculty_name.

 J. The seventh positional dynamic parameter to the second query is the faculty_
id, which is obtained from the first query, not from the input arrayList vari-
able, cdata.

 K. The second query is executed by calling another executeUpdate() method, and
the running result is returned and assigned to the integer variable numInsert.

 L. A sequence of cleaning jobs is performed to close all objects we used for these
queries.

 M. If this data insertion is successful, a non-zero integer value would be returned,
and a true is also returned to the calling method to indicate this situation.

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

564

 N. Otherwise if a zero is returned, which means that this data insertion failed and
no any record has been inserted into our database, a false is returned to indicate
this error.

 O. The catch block is used to monitor and track these query operations. A false
would be returned if any exception occurred.

Now one can click on the Clean and Build Project button to build our Web
Service project to compile and update this new operation. Next let’s build our Web
operation, UpdateCourse().

9.14.4.5 Create and Build the Web Operation UpdateCourse()

Perform the following operations to add a new operation UpdateCourse() into our
Web service project to perform this course updating query:

 1) Double click on our Web service main class file WSCourse.java from the
Projects window to open it.

 2) Click on the Design button on the top of the window to open the Design View
of our Web service project WSCourse.

 3) Click on the Add Operation button to open the Add Operation wizard.
 4) Enter UpdateCourse into the Name field, and click on the Browse button that

is next to the Return Type combo box. Type boolean into the Type Name field,
and select the item Boolean (java.lang) from the list, and click on the OK button.

 5) Click on the Add button and enter cdata into the Name parameter field. Then
click on the drop-down arrow of the Type combo box, and select the Choose
item to open the Find Type wizard. Type arrayList into the top field and select
the ArrayList (java.util) data type, and click on the OK button to select an
ArrayList as the data type for the input parameter.

Your finished Add Operation wizard should match one that is shown in Fig. 9.84.
Next let’s build the codes for this operation.

Fig. 9.84 The completed Add Operation wizard

9 Developing Java Web Services to Access Databases

565

As we discussed in the previous chapters, to update a record in the Course table,
regularly one does not need to update the primary key, course_id; instead one can
insert a new course record with a new course_id into the Course table to simplify
this kind of updating action. The reason for that is because of the cascaded updating
actions. The course_id is a primary key in the Course table, but a foreign key in the
StudentCourse table. Multiple updating actions must be performed in certain order
if this course_id is updated. To make things simple and easy, here we would not
update any course_id when we update a course record, and we only update all other
columns in the Course table based on the original course_id.

Based on the discussion and analysis above, now let’s build the codes for this
operation.

Click on the Source button on the top of this window to open the code window
of our Web service project. On the opened code window, enter the codes that are
shown in Fig. 9.85 into this new added operation UpdateCourse().

Let’s have a closer look at this piece of new added codes to see how it works.

 A. First some local variables, such as an instance of ResultSet rs, a blank fac-
ulty_id string fid, and an integer variable numUpdate, are declared since we
need to use them to hold some of our query results.

A

B
C
D
E
F

G

H
I

J
K

L

M

N

@WebMethod(operationName = "UpdateCourse")
public Boolean UpdateCourse(@WebParam(name = "cdata") ArrayList cdata) {
//TODO write your implementation code here:
ResultSet rs;
String fid = null;
int numUpdate = 0;
try {

con = DBConnection(con);
PreparedStatement pstfid =con.prepareStatement("SELECT faculty_id FROM Faculty WHERE faculty_name = ?");
pstfid.setString(1, cdata.get(0).toString()); // set faculty_name; cdata(0) = faculty_name
rs = pstfid.executeQuery();
while (rs.next()) {

fid = rs.getString("faculty_id");
}
String query = "UPDATE Course SET course = ?, credit = ?, classroom = ?, schedule = ?, " +

"enrollment = ?, faculty_id = ? WHERE course_id = ?";
PreparedStatement pstmt =con.prepareStatement(query); // cdata(0) = faculty_name
pstmt.setString(1, cdata.get(1).toString()); // cdata(1) = course
pstmt.setString(2, cdata.get(2).toString()); // cdata(2) = creit
pstmt.setString(3, cdata.get(3).toString()); // cdata(3) = classroom
pstmt.setString(4, cdata.get(4).toString()); // cdata(4) = schedule
pstmt.setString(5, cdata.get(5).toString()); // cdata(5) = enrollment
pstmt.setString(7, cdata.get(6).toString()); // cdata(6) = course_id
pstmt.setString(6, fid);
numUpdate = pstmt.executeUpdate();
con.close();
rs.close();
if (numUpdate != 0)

return true;
else

return false;
} catch (SQLException ex) {

Logger.getLogger(WSCourse.class.getName()).log(Level.SEVERE, null, ex);
return false;

}
}

Fig. 9.85 Detailed codes for the operation UpdateCourse()

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

566

 B. A try-catch block is used to do our first query for the Faculty table to get a
desired faculty_id based on the selected faculty_name. First a valid database
connection is established by calling our user-defined method DBConnection().

 C. A PreparedStatement object, pstfid, is generated with a connection object con
and query statement to get the desired faculty_id based on the selected fac-
ulty_name, and the latter is a positional dynamic input parameter.

 D. A system method setString() is executed to set up the input positional dynamic
parameter that is stored in the input arrayList instance, cdata, and exactly it is
located at the first position on that list; thus, another system method get(0).
toString() is used to pick it up.

 E. The first query is executed by calling the system method executeQuery(), and
the returned query result is stored in the instance of ResultSet class, rs.

 F. A while() loop with its condition, rs.next(), is executed to pick up the selected
faculty_id by calling another system method getString(). The argument of that
method is the column name of the fculty_id.

 G. The second query statement is created with a standard SQL statement format
with seven input positional dynamic parameters. One point to be noted is that
the order of those input positional parameters must be pre-defined with the input
faculty_name as the first one, followed by six pieces of updated course
information.

 H. Another PreparedStatement object, pstmt, is declared with the second query
statement.

 I. A sequence of setString() methods is executed to set up and initialize all seven
input positional parameters, which include an updated course record and the
selected faculty_name.

 J. The second query is executed by calling a system method executeUpdate(),
and the running result is returned and assigned to the integer variable
numUpdate.

 K. A sequence of cleaning jobs is performed to close all objects we used for these
queries.

 L. If this course updating is successful, a non-zero integer value would be returned,
and a true is also returned to the calling method to indicate this situation.

 M. Otherwise if a zero is returned, which means that this data updating failed and
no any record has been updated in our database, a false is returned to indicate
this error.

 N. The catch block is used to monitor and track these query operations. A false
would be returned if any exception occurred.

Now one can click on the Clean and Build Project button to build our Web
Service project to compile and update this new operation. Finally let’s build our
Web operation, DeleteCourse().

9 Developing Java Web Services to Access Databases

567

9.14.4.6 Create and Build the Web Operation DeleteCourse()

Perform the following operations to add a new operation DeleteCourse() into our
Web service project to perform this course updating query:

 1) Double click on our Web service main class file WSCourse.java from the
Projects window to open it.

 2) Click on the Design button on the top of the window to open the Design View
of our Web service project WSCourse.

 3) Click on the Add Operation button to open the Add Operation wizard.
 4) Enter DeleteCourse into the Name field, and click on the Browse button that is

next to the Return Type combo box. Type boolean into the Type Name field
and select the item Boolean (java.lang) from the list, and click on the OK button.

 5) Click on the Add button and enter cid into the Name parameter field. Keep the
default type, java.lang.String, as the data type for this input parameter. Your
finished Add Operation wizard should match one that is shown in Fig. 9.86.

 6) Click on the OK button to create this new operation.

Next let’s build the codes for this operation.
Click on the Source button on the top of this window to open the code window

of our Web service project. On the opened code window, enter the codes that are
shown in Fig. 9.87 into this new added operation UpdateCourse().

Let’s have a closer look at this piece of new added codes to see how it works.

 A. A local integer variable, numDelete, is declared since we need to use it to hold
our query result.

 B. A try-catch block is used to do our deleting query for the Course table to remove
the desired course record based on the selected course_id. First a valid database
connection is established by calling our user-defined method DBConnection().

Fig. 9.86 The completed Add Operation wizard

9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database

568

 C. A PreparedStatement object, pstmt, is generated with a connection object con
and the deleting statement with a selected course_id as a positional dynamic
input parameter.

 D. A system method setString() is executed to set up the input positional dynamic
parameter cid, which is a desired course_id and works as a query criterion for
this deleting action.

 E. The deleting action is then executed by calling a system method executeUp-
date(), and the running result of this action is returned and assigned to our local
variable intDelete.

 F. A cleaning job is performed to close the connection object we used for this query.
 G. If this course deleting is successful, a non-zero integer value would be returned,

and a true is also returned to the calling method to indicate this situation.
 H. Otherwise if a zero is returned, which means that this data deleting failed and no

any record has been deleted from our database, a false is returned to indicate
this error.

 I. The catch block is used to monitor and track this query operation. A false would
be returned if any exception is occurred.

Now one can click on the Clean and Build Project button to build our Web
Service project to compile and update this new operation.

At this point, we have completed all developments for our Web Service project.
Next we like to build some Windows-based or Web-based projects to consume or
test these operations to perform related database actions to query, insert, and update
and delete desired records from our sample database. First let’s start from the
Windows-based consuming projects.

A

B
C
D
E
F
G

H

I

@WebMethod(operationName = "DeleteCourse")
public Boolean DeleteCourse(@WebParam(name = "cid") String cid) {

//TODO write your implementation code here:
int numDelete = 0;
try {

con = DBConnection(con);
PreparedStatement pstmt =con.prepareStatement("DELETE FROM Course WHERE course_id = ?");
pstmt.setString(1, cid); // set course_id
numDelete = pstmt.executeUpdate();
con.close();
if (numDelete != 0)

return true;
else

return false;
} catch (SQLException ex) {

Logger.getLogger(WSCourse.class.getName()).log(Level.SEVERE, null, ex);
return false;

}
}

Fig. 9.87 Detailed codes for the operation DeleteCourse()

9 Developing Java Web Services to Access Databases

569

9.15 Build Windows-Based Project to Consume the Web
Service Project

To consume our Web Service project, we need to build some Windows-based proj-
ects to call different operations to perform related actions to our database.

To save time and space, we can modify one of our projects, WinClientSelect,
and make it as our new project. Perform the following operational steps to build our
new Windows-based project, WinClientCourse project, to call the related Web
operations to perform appropriate query to the Course table in our sample database.

 1) Open the NetBeans IDE 8.2, and browse to our project WinClientSelect (one
can find and copy this project from a folder Class DB Projects\Chapter 9
under the Students folder in the Springer ftp site (refer to Fig. 1.2 in Chap. 1)).

 2) Right click on this project WinClientSelect, and select the Copy item from the
popup menu.

 3) On the opened Copy Project wizard, change the project name to
WinClientCourse in the Project Name box, select your desired location from
the Project Location box, and click on the Copy button.

 4) Now expand our new project WinClientCourse from the Projects window in
the NetBeans, which is WinClientCourse→Source Packages→<default
package>, and one can find the FacultyFrame.java main class file. Right click
on this file, and select Delete item to remove this file since we do not need this
file in this project. Make sure to check the Safely delete checkbox, and click on
the Refactor button.

 5) Now we need to create our CourseFrame GUI and class file to perform this
course query action. To make it easy, we can use a CourseForm we built in one
of our previous projects, SQLSelectObject, which was built in Chap. 6. One
can find this project from a folder Class DB Projects\Chapter 6 under the
Students folder in the Springer ftp site.

 6) Open the Windows Explorer, and browse and expand that project
SQLSelectObject, which is SQLSelectObject→src→SQLSelectObjectPack
age. Click the folder SQLSelectObjectPackage, and one can find our class file
CourseFrame.form. Copy that file and paste it to our new project
WinClientCourse, exactly under the WinClientCourse→Source
Packages→<default package> folder in the NetBeans IDE 8.2.

 7) Double click on our pasted CourseFrame.java to open it, and perform the fol-
lowing operations to make it as our new class file:

 (a) Remove the top coding line: package SQLSelectObjectPackage;.
 (b) Remove all codes from the SelectButtonActionPerformed() event handler.
 (c) Remove all codes from the CourseListValueChanged() event handler.

Now build our new project by clicking on the Clean and Built Project button on
the top. Next let’s develop the codes for these event handlers to access our Web
operations to perform related queries to the Course table in our sample database.

9.15 Build Windows-Based Project to Consume the Web Service Project

570

9.15.1 Develop the Codes to Query Course Information
from our Web Service Project

In our Web service project WebServiceCourse, we built five operations with five
different data actions against the Course table in our database. Now we need to
develop the codes in our client project to call those five operations to access and
query the Course table in our sample database via five buttons in our client project
WinClientCouse, exactly in this CourseFrame.java class file. Each button has a
one-to-one relationship with the related operation, as shown in Table 9.7.

Let’s start our coding process from the Select button, exactly with its event han-
dler or method SelectButtonActionPerformed(), in our client project.

9.15.2 Build Codes for the Select Button Event Handler
to Query CourseIDs

The function of this method is to query all course_id taught by the selected faculty
member as the Select button is clicked by the user. The queried result will be added
and displayed in the Course ID List box in this CourseFrame form.

On the opened Design view of the CourseFrame form window, double click on
the Select button to open this method or event handler. Enter the codes shown in
Fig. 9.88 into this event handler. Let’s have a closer look at this piece of new added
codes to see how it works.

Table 9.7 The relationship between each button’s method and each operation

Client button and method
Web service
operation Function

Select
SelectButtonActionPerformed()

QueryCourseID() Query all course_
id taught by the
selected faculty

CourseListValueChanged() QueryCourse() Query detailed
information for
selected
course_id

Insert
InsertButtonActionPerformed()

InsertCourse() Insert a new
course record
into the Course
table

Update
UpdateButtonActionPerformed()

UpdateCourse() Update an
existing course
record in the
Course table

Delete
DeleteButtonActionPerformed()

DeleteCourse() Delete a course
record from the
Course table

9 Developing Java Web Services to Access Databases

571

 A. A local variable, al, is created first, and it is an ArrayList instance, and it can be
used to hold the query result, in which all selected course_id is stored.

 B. A try-catch block is used to call our Web service operation QueryCourseID()
to perform this query action. First a new Web service instance service is created
based on our Web service class WSCourse_Service. Then the getWSCourse-
Port() method is executed to get the current port used by our Web service. This
port is returned and assigned to a new Port instance port.

 C. The ArrayLit instance al is first cleaned to make it ready to store all queried
course_id.

 D. The Web service operation QueryCourseID() is called to perform this course
data query to collect all course_id taught by the selected faculty member that is
obtained from the ComboName combo box. The query result is returned and
assigned to the local ArrayList instance al.

 E. A conversion between an ArrayList object and a standard String array object is
performed since we need to add this query result into the CourseList, but the
latter can only accept a String array, not an ArrayList, as an argument to be
added into this list.

 F. The converted query results are sent to the Course ID List variable, CourseList,
to have them displayed in there using the setListData() method.

 G. The catch block is used to track and display any possible exception during this
course_id query process.

Now we have finished all coding process for calling one of our Web service
operations, QueryCourseID(), to query all course_id based on the selected faculty
member. Click on the Clean and Build Project button to build our project.

Before we can run and test our client project, make sure that our Web Service
project WebServiceCourse has been built and deployed successfully.

Click on the Run Main Project button to run our client project to test this
course_id query function. Select the CourseFrame as our main class, and click on
the OK button to the Run Project dialog to run our project.

On the opened client project, keep the default faculty member Ying Bai
unchanged, and click on the Select button to query all course_id taught by this

A

B

C

D

E
F

G

private void SelectButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
ArrayList<String> al = new ArrayList();
try {
org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();
org.ws.sql.WSCourse port = service.getWSCoursePort();
al.clear();
al = (ArrayList)port.queryCourseID(ComboName.getSelectedItem().toString());
String[] alArray = al.toArray(new String[al.size()]);
CourseList.setListData(alArray);
}catch (Exception ex) {

System.out.println("exception: " + ex);
}

}

Fig. 9.88 The complete codes for the SelectButtonActionPerformed() event handler

9.15 Build Windows-Based Project to Consume the Web Service Project

572

selected faculty. Immediately you can find that all four courses or four course_id
taught by this faculty have been returned and displayed in the Course ID List box,
as shown in Fig. 9.89.

You can also try to query course_id for other faculty members by selecting other
faculty member from the Faculty Name combo box. Our client project in querying
course_id is successful.

Next let’s take care of the coding for the CourseListValueChanged() method to
query the detailed course information for a selected course_id from the Course
ID List.

9.15.3 Build Codes for the CourseListValueChanged() Method
to Get Course Details

The function of this method is that when users click a course_id from the Course
ID List box, the detailed course information, including the course title, credit, class-
room, schedule, and enrollment for the selected course_id, will be retrieved and
displayed in six text fields in this CourseFrame Form window.

Fig. 9.89 The running result of calling the Web operation QueryCourseID()

9 Developing Java Web Services to Access Databases

573

Perform the following operations to build the codes for this method to perform
this function:

 1) Open our client project WinClientCourse if it has not been opened, and open
our main GUI CourseFrame.java by double clicking on it.

 2) Click on the Design button on the top of the window to open the GUI window,
and right click on our Course ID List Listbox and select Events > ListSelection
> valueChanged item to open this method or event handler.

 3) Enter the codes shown in Fig. 9.90 into this event handler.

Let’s have a closer look at this piece of new added codes to see how it works.

 A. An ArrayList instance al is created first, and it is used to collect the queried
course details stored in an ArrayList object that will be returned from the execu-
tion of the Web service operation QueryCourse().

 B. A JTextField array cField[] is created and initialized with six text fields in this
CourseFrame Form. The purpose of this array is to store queried course details
and display them in these six text fields.

 C. Since the JList component belongs to the javax.swing package, not java.awt
package, therefore a clicking on an entry in the CourseList box causes the item-
StateChanged() method to fire twice. The first time is when the mouse button
is depressed, and the second time is when it is released. Therefore, the selected
course_id will appear twice when it is selected. To prevent this from occurring,
the getValueIsAdjusting() method is used to make sure that no any item has
been adjusted to be displayed twice. Then the selected course_id is assigned to
a local String variable courseid by calling the getSelectedValue() method of
the CourseList Box class.

A

B
C

D

E

F
G
H

I

private void CourseListValueChanged(javax.swing.event.ListSelectionEvent evt) {
// TODO add your handling code here:
ArrayList<String> al = new ArrayList();
javax.swing.JTextField[] cfield = {CourseIDField, CourseField, CreditsField, ClassRoomField, ScheduleField, EnrollField};

if(!CourseList.getValueIsAdjusting()){
String courseid = (String)CourseList.getSelectedValue();
if (courseid != null){

try {
org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();
org.ws.sql.WSCourse port = service.getWSCoursePort();
al.clear();
al = (ArrayList)port.queryCourse(courseid);
for (int i = 0; i < al.size(); i++)

cfield[i].setText(al.get(i));
}catch (Exception ex) {

System.out.println("exception: " + ex);
}

}
}

}

Fig. 9.90 The completed codes for the CourseListValueChanged() event handler

9.15 Build Windows-Based Project to Consume the Web Service Project

574

 D. Before we can proceed to the course query operation, first we need to confirm
that the selected courseid is not a null value. A null value would be returned if
the user did not select any course_id from the CourseList box, but the user just
clicked on the Select button to try to find all courses taught by a faculty member.
Even the user only clicked on the Select button without touching any course_id
in the CourseList box; however, the system still considers that a null course_id
has been selected, and thus a null value will be returned. To avoid that situation
from occurring, an if selection structure is used to make sure that no null value
has been returned from the CourseList box.

 E. A try-catch block is used to perform the calling to our Web service operation
QueryCourse() to get detailed course information. First a new Web service
instance service is created based on our Web service class WSCourse_Service.
Then the getWSCoursePort() method is executed to get the current port used
by our Web service. This port is returned and assigned to a new Port instance port.

 F. The ArrayList instance al is first cleaned up to make it ready to hold the retrieved
course details in the next step.

 G. The Web service operation QueryCourse() is called to perform this course data
query to collect detailed course information for the selected course_id. The
query result is returned and assigned to the local ArrayList instance al. A cast
(ArrayList) is necessary for this assignment since the data type of al is an
ArrayList<String> in this method.

 H. A for loop is used to pick up each piece of detailed course information and
assign it to each text field in the cField[] array using the setText() method.

 I. The catch block is used to track and display any possible exception during this
course details query process.

At this point, we have finished all coding process for calling to our Web service
operation, QueryCourse(), to query detailed information for a selected course_id.
Click on the Clean and Build Project button to build our project.

Before we can run and test our client project, make sure that our Web Service
project WebServiceCourse has been built and deployed successfully.

Click on the Run Main Project button to run our client project to test this course
details query function.

On the opened client project, keep the default faculty member Ying Bai
unchanged, and click on the Select button to query all course_id taught by this
selected faculty. Immediately you can find that all four courses or four course_id
taught by this faculty have been returned and displayed in the Course ID List box.
Then click on any course_id for which you want to get detailed information from
the CourseList Listbox. The detailed course information for the selected course_id
is retrieved and displayed in five inputText fields, as shown in Fig. 9.91. Figure 9.91
shows an example of course details for a course_id that is CSE-434.

You can try to click the different course_id to get related detailed course infor-
mation. Our client project in querying detailed course information is successful.

Next let’s take care of the coding for the InsertButtonActionPerformed()
method to call our Web Service to insert a new course record into the Course table
in our sample database.

9 Developing Java Web Services to Access Databases

575

9.15.4 Build Codes for the Insert Button Event Handler
to Insert a New Course

The function of this method is to insert a new course record into the Course table in
our sample database as the Insert button is clicked by the user. A new course record
will be inserted into our sample database when this method is complete.

On the opened Design view of the CourseFrame form window, double click on
the Insert button to open this method or event handler. Enter the codes shown in
Fig. 9.92 into this event handler. Let’s have a closer look at this piece of codes to see
how it works.

 A. A local variable, al, is created first. This is a Boolean variable used to hold the
running result of the execution of the Web service operation InsertCourse() to
insert a new course record into the Course table in our sample database.

 B. The ArrayList instance al is cleaned up by using the clear() method to make
sure that the al is empty before it can be used to store any data.

 C. A group of add() methods are used to add seven pieces of new course informa-
tion into the ArrayList instance. One point to be noted is that the order in which

Fig. 9.91 The running result of calling the Web operation QueryCourse()

9.15 Build Windows-Based Project to Consume the Web Service Project

576

to add these course parameters must be identical with the order of the columns
in the Course table in our sample database.

 D. A try-catch block is used to perform the calling to our Web service operation
InsertCourse() to insert a new course record into our database. First a new Web
service instance service is created based on our Web service class WSCourse_
Service. Then the getWSCoursePort() method is executed to get the current
port used by our Web service. This port is returned and assigned to a new Port
instance port.

 E. The Web operation InsertCourse() is called to insert this new course record
stored in the argument al into the Course table via our Web service. The
 execution result that is a Boolean variable is returned and assigned to the local
variable insert.

 F. If a false is returned, which means that this course data insertion has been failed,
the system println() method is used to indicate this situation. Otherwise our
data insertion action is successful.

 G. The catch block is used to track and display any possible exception during this
data insertion process.

Now we have finished the coding process to call our Web service operation
InsertCourse() to insert a new course record into the Course table based on the
selected faculty member. Click on the Clean and Build Main Project button to
build our project. Before running and testing our client project, make sure that our
Web Service project WebServiceCourse has been built and deployed successfully.
Now click on the Run Main Project button to run our client project to test this
course data insertion function.

On the opened client project, keep the default faculty member Ying Bai
unchanged, and click on the Select button to query all course_id taught by this

A

B

C

D

E

F

G

private void InsertButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
ArrayList al = new ArrayList();
al.clear();
al.add(0, ComboName.getSelectedItem().toString()); // faculty_name
al.add(1, CourseIDField.getText());
al.add(2, CourseField.getText());
al.add(3, CreditsField.getText());
al.add(4, ClassRoomField.getText());
al.add(5, ScheduleField.getText());
al.add(6, EnrollField.getText());
try {

org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();
org.ws.sql.WSCourse port = service.getWSCoursePort();
Boolean insert = port.insertCourse(al);
if (!insert)

System.out.println("The data insertion is failed!");
}
catch (Exception ex){

System.out.println("exception: " + ex);
}

}

Fig. 9.92 The completed codes for the InsertButtonActionPerformed() event handler

9 Developing Java Web Services to Access Databases

577

selected faculty. Immediately you can find that all four courses or four course_id
taught by this faculty have been returned and displayed in the Course ID List box.
To insert a new course, enter six pieces of new course information shown below into
six text fields.

• Course ID: CSE-549
• Course: Advanced Fuzzy Systems
• Schedule: T-H: 1:30 – 2:45 PM
• Classroom: MTC-302
• Credit: 3
• Enrollment: 25

Your finished CourseFrame window should match one that is shown in Fig. 9.93.
Click on the Insert button to insert this new course record into the Course table in
our sample database.

To check or confirm this new course insertion action, two ways can be used. The
easy way is to use the Select button, exactly the codes inside the event handler of
this button, to try to retrieve back all courses, exactly all course_id, taught by the
selected faculty member, Ying Bai. To do this, just click on the Select button to
perform a query to get all course_id taught by that faculty member. The running
result is shown in Fig. 9.94.

Fig. 9.93 The new course record to be inserted into our database

9.15 Build Windows-Based Project to Consume the Web Service Project

578

As shown in Fig. 9.94, one can find that the new inserted course, CSE-549, has
been retrieved and displayed in the Course ListBox. Click on that new course_id
from that Course

ListBox; the details about that course are displayed in six TextFields, as shown
in Fig. 9.94. This confirmed that our data insertion action is successful!

The second way is to open the Course table in our sample database to do this
checking. One can use the Databases icon inside the Services window on the
NetBeans IDE to connect to our sample database CSE_DEPT.

Then expand the connected URL, jdbc:sqlserver://localhost\
SQL2019EXPRESS: 5000; database Name=CSE_DEPT → CSE_DEPT →
dbo → Tables → Course, right click on the Course table, and select the View Data
item to open the Course table. Browse to the bottom of this table, and one can find
that our new inserted course, CSE-549, has been added there, as shown in Fig. 9.95.

Next let’s discuss how to perform a course updating action to update an existing
course in our sample database via Web service.

Fig. 9.94 The checking result for our new inserted course record

9 Developing Java Web Services to Access Databases

579

9.15.5 Build Codes for the Update Button Method to Update
Course Records

The function of this method is to update an existing course record as the Update
button is clicked by the user. The existing course record will be updated in the
Course table in our sample Oracle database when this method is complete.

On the opened Design view of the CourseFrame form window, double click on
the Update button to open its event handler. Enter the codes shown in Fig. 9.96 into
this event handler. Let’s have a closer look at this piece of codes to see how it works.

 A. Two local variables, update and al, are created first. The first is a Boolean vari-
able used to hold the running result of execution of the Web service operation
UpdateCourse(), and the second is an ArrayList instance used to store an updat-
ing course record to be updated in the Course table in our sample database later.

 B. The ArrayList instance al is cleaned up by using the clear() method to make
sure that the al is empty before it can store any data.

 C. A group of add() methods are used to add six pieces of updated course informa-
tion into the ArrayList instance. The first parameter is a faculty_name for whom
a course record will be updated, and the seventh parameter is a course_id that
will work as a query criterion and will not be changed. One point to be noted is
that the order in which to add these course parameters must be identical with the

Fig. 9.95 The new inserted course record in our sample database

9.15 Build Windows-Based Project to Consume the Web Service Project

580

order of assigning these parameters to the ArrayList object cdata in our Web
service operation UpdateCourse(). Refer to that operation to make sure that
both orders are identical.

 D. A try-catch block is used to call our Web operation UpdateCourse() to update
an existing course record via our Web service. First a new Web service instance
service is created based on our Web service class WSCourse_Service. Then the
getWSCoursePort() method is executed to get the current port used by our Web
service. This port is returned and assigned to a new Port instance port.

 E. Our Web Service operation UpdateCourse() is executed to try to update the
selected course based on six pieces of updated information. The execution result
that is a Boolean variable is returned and assigned to the local variable update.

 F. If a false is returned, which means that this course data updating failed, the sys-
tem println() method is used to indicate this situation.

 G. The catch block is used to track and display any possible exception during this
data updating process.

Now we have finished the coding process for calling one of our Web service
operations, UpdateCourse(), to update an existing course record in the Course
table based on the selected faculty member. Click on the Clean and Build Main
Project button to build our project. Make sure that our Web Service project
WebServiceCourse has been built and deployed before our client project can be
run. Then click on the Run Main Project button to run our client project to test this
course data updating function.

On the opened client project, keep the default faculty member Ying Bai
unchanged, and click on the Select button to query all course_id taught by this
selected faculty. Immediately you can find that all four courses or four course_id

A

B

C

D

E

F

G

private void UpdateButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
Boolean update = false;
ArrayList al = new ArrayList();

al.clear();
al.add(0, ComboName.getSelectedItem().toString());
al.add(1, CourseField.getText());
al.add(2, CreditsField.getText());
al.add(3, ClassRoomField.getText());
al.add(4, ScheduleField.getText());
al.add(5, EnrollField.getText());
al.add(6, CourseIDField.getText());

try { // Call Web Service Operation
org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();
org.ws.sql.WSCourse port = service.getWSCoursePort();
update = port.updateCourse(al);
if (!update)

System.out.println("Error in course updating...");
} catch (Exception ex) {

System.out.println("exception is: " + ex);
}

}

Fig. 9.96 The completed codes for the UpdateButtonActionPerformed() event handler

9 Developing Java Web Services to Access Databases

581

taught by this faculty have been returned and displayed in the Course ID List box.
To update an existing course CSE-549, enter six pieces of updated course informa-
tion shown below into six text fields.

• Course ID: CSE-549
• Course: Modern Controls
• Schedule: M-W-F: 11:00 – 11:50 AM
• Classroom: MTC-206
• Credit: 3
• Enrollment: 18

Your finished CourseFrame window is shown in Fig. 9.97. Click on the Update
button to update this course record in the Course table in our sample database.

To test this course record updating action, there are more than one way that can
be used. The first way is to connect to our sample database CSE_DEPT and open
the Course table by using the Databases icon in the Services window inside the
NetBeeans IDE to confirm that this course has been updated. But the second way,
which is to select the course_id whose course details have been updated from the
Course ID List Listbox to get course details, is an easier way to confirm this course
data updating.

Fig. 9.97 The updated course information for the course CSE-549

9.15 Build Windows-Based Project to Consume the Web Service Project

582

Now let’s use the second way to test this course data updating. Just click any
other course_id, such as CSC-132B, from the Course ID List Listbox. Then click
on the course_id CSE-549 whose details have been updated, to retrieve all course
details. It can be found that this course is really updated based on the updating infor-
mation shown in Fig. 9.97. Our course data updating by using our Web Service is
successful.

Generally it is recommended to recover this updated course in the Course table
in our sample database to keep our database neat and clean. However, we will keep
this course right now since we need to use this record to perform the course deleting
action in the following section.

9.15.6 Build Codes for the Delete Button Method to Delete
Course Records

The function of this method is to delete an existing course record from our Course
table as the Delete button is clicked by the user. The existing course record will be
permanently deleted from the Course table in our sample Oracle database when this
method is complete.

On the opened Design view of the CourseFrame form window, double click on
the Delete button to open this event handler. Enter the codes shown in Fig. 9.98 into
this event handler. Let’s have a closer look at this piece of codes to see how it works.

 A. Two local variables, delete and cfield[], are created first. The former is a Boolean
variable used to hold the running result of execution of the Web service opera-
tion DeleteCourse(), and the latter is a JTextField array used to hold all
TextFields in our CourseFrame Form. The purpose of using this JTextField

A

B

C

D

E

F

private void DeleteButtonActionPerformed(java.awt.event.ActionEvent evt) {
// TODO add your handling code here:
Boolean delete = false;
javax.swing.JTextField[] cfield = {CourseIDField, CourseField, CreditsField, ClassRoomField, ScheduleField, EnrollField};

try { // Call Web Service Operation
org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();
org.ws.sql.WSCourse port = service.getWSCoursePort();
delete = port.deleteCourse(CourseIDField.getText());
if (!delete)

System.out.println("Error in course deleting...");
else {

for (int i = 0; i < cfield.length; i++)
cfield[i].setText("");

}
} catch (Exception ex) {

System.out.println("exception is: " + ex);
}

}

Fig. 9.98 The completed codes for the DeleteButtonActionPerformed() event handler

9 Developing Java Web Services to Access Databases

583

array is to make it easier to clear all TextFields when this deleting action is
executed.

 B. A try-catch block is used to call our Web operation DeleteCourse() to delete an
existing course record via our Web service. First a new Web service instance
service is created based on our Web service class WSCourse_Service. Then the
getWSCoursePort() method is executed to get the current port used by our Web
service. This port is returned and assigned to a new Port instance port.

 C. The Web service operation DeleteCourse() is called to delete an existing course
record from our Course table based on the selected course_id. The running
result is returned and assigned to the local variable delete.

 D. If a false is returned, which means that this course data deleting has been failed,
the system println() method is used to indicate this situation.

 E. Otherwise this data deleting is successful. A for loop is used to clean up all six
TextFields to indicate this situation, too.

 F. The catch block is used to track and display any possible exception during this
data deleting process.

Now we have finished the coding process for calling and executing our last Web
service operation DeleteCourse() to delete an existing course record from the
Course table based on the selected course_id. Click on the Clean and Build Main
Project button to build our project. Click on the Run Main Project button to run
our client project to test this course data deleting function.

On the opened client project, keep the default faculty member Ying Bai
unchanged, and click on the Select button to query all course_id taught by this
selected faculty. Immediately you can find that all four courses or four course_id
taught by this faculty have been returned and displayed in the Course ID List box.
To delete an existing course CSE-549, just click on this course_id from the Course
ID List Listbox, and click on the Delete button.

To confirm this course deleting action, two ways can be utilized. First you can
open our Course table to check whether this course has been deleted from our data-
base. Another way, it is easier, is to use the Select button to try to retrieve this
deleted course from our database. To do that, just keep the selected faculty member
Ying Bai in the Faculty Name combo box unchanged, and click on the Select but-
ton. It can be found from the returned courses, exactly all course_id taught by the
selected faculty are displayed but without CSE-549. Our course record deleting
using Web service is successful.

At this point, we have finished building and developing a Windows-based project
to consume our Web Service project for the Course table in our sample database. A
complete Window-based client project that is used to consume our Web service to
query and manipulate data against our sample database, WinClientCourse, can be
found from the folder Class DB Projects\Chapter 9 that is under the Students
folder at the Springer ftp site (refer to Fig. 1.2 in Chap. 1).

Next let’s build a Web-based client project to consume this Web service.

9.15 Build Windows-Based Project to Consume the Web Service Project

584

9.16 Build a Web-Based Project to Consume the Web
Service Project WebServiceCourse

To consume our Web Service project, we can also build some Web-based projects to
call different operations to perform related actions to our database. The structure of
this Web-based client project is shown in Fig. 9.99.

The Java Managed bean works as an interface to talk to Web Service to perform
physical query operations to our Course table in our sample database.

9.16.1 Create a Web-Based Client Project WebClientCourse

To save time and space, we can modify one of our projects, WebClientUpdtDelt,
we built in the previous section in this Chapter and make it as our new project. One
can find this project from the Springer ftp site, exactly in the folder Students\Class
DB Projects\Chapter 9 in that site. One can copy and paste that project to your
local drive. Perform the following operational steps to build our new Web-based
project, WebClientCourse.

 1) Open NetBean IDE 8.2 and Projects window, right click on the copied project
WebClient-UpdtDelt, and select the Copy item from the popup menu to open
the Copy Project wizard.

 2) Enter our new project name, WebClientCourse, into the Project Name box,
and browse to the default project folder, C:\Class DB Projects\Chapter 9, as
the Project Location, and click on the Copy button.

A new project WebClientCourse is generated and added into our
Projects window.

First let’s delete one Java bean class file, FacultyUpdateDeleteBean.java,
which is located under the folder, Source Packages|JavaWebDBJSPSQLPackag
e, since we do not need this file.

Then let’s add a Web Service reference to our Web-based client project to allow
it to use our Web service operations.

Java Managed

Bean

Web Server
HTTP

Request

HTTP

Response

SQL Server

Database

Web Services
Database

Server
Web-Based

Client

Fig. 9.99 The architecture of our Web-based client project

9 Developing Java Web Services to Access Databases

585

9.16.2 Add a Web Service Reference to Our Web-Based
Client Project

In order to call any operation in our Web service project WebServiceCourse, we
need to update the Web reference in our Web-based client project WebClientCourse
to direct all calls to our Web service project. Perform the following operations to
update this Web service reference:

 1) Expand our Web Service References folder under our client project, and right
click on the original Web Service project WebServiceUpdtDelt, and select
Delete item to remove it.

 2) Build and deploy our Web Service project WebServiceCourse to make it ready.
 3) Right click on our Web-based client project WebClientCourse, and select the

New > Web Service Client item to open the New Web Service Client wizard.
 4) On the opened wizard, click on the Browse button that is next to the Project

field, and expand our Web application WebServiceCourse. Then choose our
Web service class WSCourse by clicking on it, and click on the OK button.

 5) Click on the Finish button to complete this Web service reference addition
process.

Now that we have added a Web service reference to our Web-based client project
WebClientCourse, next let’s develop the codes in our client project to call that Web
service operations to perform related course data query actions. The main coding
jobs are concentrated on building the transaction JSP file, CourseProcess.jsp, and
Java Managed Bean class file, CourseQuery.java. First let’s do some modifications
to our Course.jsp page.

9.16.3 Modify the Course.jsp Page

The Course.jsp page works as a view to provide the displaying function for input
and output. We need to modify this page to enable it to forward the user’s inputs to
the model and controller page and, furthermore, to call the Java bean class to pro-
cess our data query.

Open this page by double clicking on it from the Projects window, and perform
the modifications shown in Fig. 9.100 to this page. All modified coding parts have
been highlighted in bold. Let’s have a closer look at this piece of modified codes to
see how it works.

 A. Some JSP tags are first declared at the top of this page, including the package
name, Java bean, session, class, and property or method used in this page. The
name of our Java bean class file, CourseQuery.java, and one of methods, get-
CourseID(), are declared, and both of them will be built later.

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

586

 B. A page-level variable al, which is a string array, is also declared and initialized
here. This array variable will be used to hold the queried course_id later.

 C. An action attribute is added to the Form tag to forward all information collected
from this page to the model and controller page CourseProcess.jsp that will
call our Java bean class file CourseQuery.java to perform the course data query
process.

<%@ page import="JavaWebDBJSPSQLPackage.*" %>

<jsp:useBean id="CourseQuery" scope="session" class="JavaWebDBJSPSQLPackage.CourseQuery" />
<jsp:setProperty name="getCourseID" property="*" />

<% String[] al = null; %>

………

<form method=post action=".\CourseProcess.jsp">
………

<%

CourseQuery cQuery = new CourseQuery();
String fname = request.getParameter("FacultyNameField");

boolean res = cQuery.Query_CourseID(fname);

if (!res)

response.sendRedirect("Course.jsp");

else {

al = cQuery.getCourseID();

session.setAttribute("FacultyName", request.getParameter("FacultyNameField"));

}

%>

<select name="CourseList" size=7 v:shapes="_x0000_s1027">
<% for (int i = 0; i < al.length; i++) { %>

<option value="<%=al[i] %>"><%=al[i]%></option>

<%}%>

</select>
………

<input name=CourseIDField maxlength=255 size=22 value="<%=session.getAttribute("CourseID") %>"

type=text v:shapes="_x0000_s1029">
………

<input name=CourseNameField maxlength=255 size=22 value="<%=session.getAttribute("CourseName") %>"

type=text v:shapes="_x0000_s1031">
………

<input name=ScheduleField maxlength=255 size=22 value="<%=session.getAttribute("Schedule") %>"

type=text v:shapes="_x0000_s1033">
………

<input name=ClassroomField maxlength=255 size=22 value="<%=session.getAttribute("ClassRoom") %>"

type=text v:shapes="_x0000_s1035">
………

<input name=CreditField maxlength=255 size=22 value="<%=session.getAttribute("Credit") %>" type=text
v:shapes="_x0000_s1037">
………
<input name=EnrollmentField maxlength=255 size=22 value="<%=session.getAttribute("Enrollment") %>"
type=text v:shapes="_x0000_s1039">
………

<input type=submit value=Select name="Select" v:shapes="_x0000_s1040">
………
<input type=submit value=Insert name="Insert" v:shapes="_x0000_s1041">
………
<input type=submit value=Update name="Update" v:shapes="_x0000_s1042">
………
<input type=submit value=Delete name="Delete" v:shapes="_x0000_s1043">
………
<input type=button value=Back name="Back" onclick="self.close()" v:shapes="_x0000_s1044">
………

<input name=FacultyNameField maxlength=255 size=22 value="<%=session.getAttribute("FacultyName") %>"
type=text v:shapes="_x0000_s1045">
………

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

U

V

W

X

Y

Fig. 9.100 The modified codes for the Course.jsp page

9 Developing Java Web Services to Access Databases

587

 D. Starting from section D, a piece of Java codes is embedded into this JSP file to
speed up the querying process for all collected course_id and display them in
our CourseList box. A symbol pair <%...%> must be used to indicate the start-
ing and the ending of this piece of embedded Java codes. First an instance of our
Java bean class, cQuery, is created.

 E. The selected faculty name, which is stored in the TextField FacultyNameField
in our Course.jsp page, is retrieved by using a system method getParameter()
and assigned to a String variable, fname, which will be used for the next query.

 F. A user-defined method, Query_CourseID(), which will be built later in our
Java bean, is called with the retrieved faculty name as the argument, to query all
course_id for the selected faculty member.

 G. If this query is not successful, the JSP page, Course.jsp, is refreshed and
redisplayed.

 H. Otherwise, all queried course_id is collected by using one user-defined method,
getCourseID(), which will be built in our Java bean class later and stored into
al array.

 I. The selected faculty name is refreshed by calling the system method,
setAttribute().

 J. A Java for loop is embedded here to select each course_id from the al array and
display each of them in the CourseList box via the <option> tag. One point to
be noted is that a pair of <%...%> tag must be used to cover this for loop,
including the opening brace ({).

 K. The value option property is used to add and display each course_id in our
CourseList box. Similarly, a pair of <%...%> tag is used to cover the actual
assignment value of the embedded Java code variable =al[i]. The first value is a
label, and the second one is the actual value of course_id.

 L. The ending brace (}) of this for loop is also covered by a pair of <%...%> tag.
 M. Starting from step M until step R, we use the embedded JSP codes to assign the

queried course columns from our Course table to the value tags of the associ-
ated text field in this Course.jsp using the getAttribute() method of the session
class. In this way, as long as the queried course row has any change, this modi-
fication will be immediately updated and reflected to each text field in our
Course.jsp page. Thus, a direct connection or binding between the text fields in
our Course.jsp page and the queried course columns in our Java bean class is
established.

 S. From steps S to W, a name attribute is added into each Submit button tag. This
attribute is very important since we need to use it to identify each submit button
in the next page, our model and controller page, CourseProcess.jsp, by using
the getParameter() method of the request object to direct the control to handle
different actions to the Course table in our sample SQL Server database.

 X. The type of the Back button is changed to button, and an onclick=”self.close()”
tag is added with this button. The purpose of this changing is to use this button’s
action to close our client page in this client page without forwarding this action
to the next page.

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

588

 Y. Finally the FacultyNameField is also set to be connected to the faculty_name
column in the Faculty table. The reason for this setup is that there is no fac-
ulty_name column in the Course table, and the only connection between a
course and a faculty is faculty_id.

Now let’s take a look at our model and controller page CourseProcess.jsp.

9.16.4 Build the Transaction JSP File CourseProcess.jsp

The purpose of this file is to transfer data and information between our main dis-
playing page Course.jsp and our Java bean class file CourseQuery.java that calls
related Web Service operations to perform all JDBC- and database-related opera-
tions and business logics. Perform the following operations to create this page:

Right click on our project WebClientCourse from the Projects window, and
select the New > JSP item from the popup menu to open the New JSP File wizard.
Enter CourseProcess into the File Name field, keep the default JSP File selection
unchanged, and click on the Finish button.

Double click on our new created CourseProcess.jsp page from the Projects
window, exactly under the Web Pages folder, to open this page. Enter the codes
shown in Fig. 9.101 into this page. The new entered codes have been highlighted
in bold.

Now let’s have a close look at these codes to see how they work.

 A. You can embed any import directory using the JSP directive in a HTML or a JSP
file. The format is <%@ page import="java package" %>. In this page, we
embed one package, JavaWebDBJSPSQLPackage.* since we will build our
Java bean class file CourseQuery.java under that package in the next section.

 B. Some JSP directives are declared first, and they are used to set up the Java bean,
session, class, and property used on this JSP page.

 C. To prepare to perform a query to get course details, an instance of our Java bean
class, cQuery, is created first.

 D. An instance of the RequestDispatcher class, dpt, is declared here, and it is used
to set up a communication channel between the client and the server, exactly
between the Course.jsp page and the Java bean class file CourseQuery.java to
be installed and run in a Web server.

 E. After an instance of the RequestDispatcher class is generated, a system method,
forward(), is used to dispatch all requests from the client and responses from
the server between the client and the server.

 F. If the Select button in the Course.jsp page is clicked and a course_id has been
selected by the user, the system method getParameter() will return a value
“Select” since we defined its value in that page. Then this action will be pro-
cessed. First the selected course_id is retrieved by calling the system method
getParameter() with the CourseList that is the name of our CourseList defined
in the Course.jsp page as an argument.

9 Developing Java Web Services to Access Databases

589

 G. With the retrieved course_id as argument, our user-defined method,
QueryCourse(), which will be built in our Java bean class file CourseQuery.
java, is executed to get course details.

 H. If this execution returns a false, it means that that query failed, and our client
page, Course.jsp, is refreshed and redisplayed to enable users to perform next
actions.

 I. Otherwise, that query is successful, and a sequence of setAttribute() methods
is used to set all six TextFields in our client page with queried course detailed
information. All query methods, such as getCID(), getCourseName(), get-
Credit(), …will be built in our Java bean class file CourseQuery.java later.

 J. From steps J to M, four else if blocks are used for all other query actions, such
as Inserting, Updating, and Deleting a course record. Those actions are
reserved for future developments.

<%@ page import="JavaWebDBJSPSQLPackage.*" %>

<html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Faculty Process Page</title>

</head>
<body>
<jsp:useBean id="getCourseID" scope="session" class="JavaWebDBJSPSQLPackage.CourseQuery" />

<jsp:setProperty name="getCourseID" property="*" />

<%

CourseQuery cQuery = new CourseQuery();

RequestDispatcher dpt = request.getRequestDispatcher("Course.jsp");
dpt.forward(request, response);

if (request.getParameter("Select")!= null) {

//process the course record query

String c_id = request.getParameter("CourseList");

boolean res = cQuery.QueryCourse(c_id);

if (!res)

response.sendRedirect("Course.jsp");
else {

session.setAttribute("CourseID", cQuery.getCID());

session.setAttribute("CourseName", cQuery.getCourseName());

session.setAttribute("Credit", cQuery.getCredit());

session.setAttribute("ClassRoom", cQuery.getClassRoom());

session.setAttribute("Schedule", cQuery.getSchedule());

session.setAttribute("Enrollment", cQuery.getEnrollment());

}

}

else if (request.getParameter("Insert")!= null) {

//process the course record insertion

}

else if (request.getParameter("Update")!= null) {

//process the course record updating

}

else if (request.getParameter("Delete")!= null) {
//process the course record deleting

}

else if (request.getParameter("Back") != null) {

//cQuery.CloseDBConnection();

response.sendRedirect("Selection.jsp");

}

%>

</body>
</html>

A

B

C

D

E

F

G

H

I

J

K

L

M

Fig. 9.101 The codes for the CourseProcess.jsp page

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

590

One important point for this piece of codes is: any clicking on this Select button
triggers two actions: (1) query and retrieve all course_id based on the selected fac-
ulty name, and display them in the CourseList box, and (2) query the course details
based on a selected course_id from the CourseList box and display them in six
TextFields. Due to this dual function of this Select button, when a user performs a
course query, the following actions should be adopted:

 1) When querying, retrieving, and displaying all course_id taught by a selected
faculty member represented by a faculty name, one needs to click on the Select
button by one time.

 2) When querying, retrieving, and displaying all course details based on a selected
course_id in the CourseList box, one needs to click on the Select button by
two times.

The reason for that is because we used only one button to handle two actions to
simplify our GUI design for our Web page; we therefore need to pay something for
that simplification to keep a balance in this world.

In fact, the first single clicking is used to get all course_id based on the selected
faculty member, and the second two-time clicking is used to get all course details
based on the selected course_id on the CourseList box.

Due to the communications between the server and the client, each time when
the server responds to the client, it will first refresh the client page and then sends
the queried information to the client. To avoid a possible responded data losing
because of that refreshing, a two-time clicking on the Select button is a good solu-
tion since it can first trigger the Select button to get all course_id, and immediately
the details for a selected course_id can be retrieved and displayed in six TextFields
after the second clicking for that button prior to a refreshing coming.

Next let’s take care of our Java bean class file CourseQuery.java.

9.16.5 Build the Java Bean Class File CourseQuery.java

To create our Java bean class file CourseQuery.java to handle the course record
query, right click on our project WebClientCourse from the Projects window, and
select the New > Java Class item from the popup menu to open the New Java Class
wizard. Enter CourseQuery into the Class Name field, and select the
JavaWebDBJSPSQLPackage from the Package combo box. Your finished New
Java Class wizard should match one that is shown in Fig. 9.102. Click on the Finish
button to create this new Java bean class file.

Now let’s develop the codes for this new Java bean class file.
Double click on our new created Java help class file CourseQuery.java from the

Projects window to open this file, and enter the codes that are shown in Fig. 9.103
into this file. Because of the large size of this piece of codes, we divide this coding
process into two parts. The first part is shown in Fig. 9.103, and the second part is
shown in Fig. 9.104. The new entered codes have been highlighted in bold.

9 Developing Java Web Services to Access Databases

Fig. 9.102 The new created CourseQuery.java class file

package JavaWebDBJSPSQLPackage;
import java.util.ArrayList;

public class CourseQuery {
private String CourseID;

private String CourseName;

private String Credit;

private String ClassRoom;

private String Schedule;

private String Enrollment;

private String[] alArray;

public CourseQuery() { }
public boolean Query_CourseID(String f_name){

ArrayList<String> al = new ArrayList();

try {

org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();

org.ws.sql.WSCourse port = service.getWSCoursePort();
al.clear();

al = (ArrayList)port.queryCourseID(f_name);

alArray = al.toArray(new String[al.size()]);

}catch (Exception ex) {

System.out.println("exception: " + ex);

return false;

}
return true;

}

public String[] getCourseID() {

return alArray;

}

public boolean QueryCourse(String cid){

ArrayList<String> al = new ArrayList();

try {

org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();

org.ws.sql.WSCourse port = service.getWSCoursePort();

al.clear();

al = (ArrayList)port.queryCourse(cid);

CourseID = al.get(0);

CourseName = al.get(1);

Credit = al.get(2);
ClassRoom = al.get(3);

Schedule = al.get(4);

Enrollment = al.get(5);

return true;

}catch (Exception ex) {

System.out.println("exception: " + ex);

return false;

}

}

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

Fig. 9.103 The first part of the codes for the Java bean file CourseQuery.java

592

Let’s have a close look at these new added codes in Fig. 9.103 to see how
they work.

 A. A Java class, java.util.ArrayList that is included in the java.util package, is
imported into this file since we need to use this component to store collected
course details later.

 B. Our Java bean class is declared with seven member data: the top six are private
String variables with each being mapped to the related TextField in the Course.
jsp page, and the bottom one is a private String[] array, alArray, and it is used
by this file to collect the queried course details and send them back to the
CourseProcess.jsp page later.

 C. Keep the constructor of this Java bean as empty since we do not need to
use it now.

 D. The first course query method, Query_CourseID(), is declared with a selected
faculty name as the argument. The added underscore between the Query and
CourseID is to distinguish this method with an operation, QueryCourseID(),
in our Web Service.

 E. An ArrayList instance, al, is generated, and it is used to store the queried
course_id later.

 F. A try-catch block is used to call our Web operation QueryCourseID() to get
all course_id via our Web service. First a new Web service instance service is
created based on our Web service class WSCourse_Service. Then the get-
WSCoursePort() method is executed to get the current port used by our Web
service. This port is returned and assigned to a new Port instance port.

 G. The ArrayList instance al is cleaned up by using the clear() method to make
sure that the al is empty before it can be used to store any data.

 H. Our Web Service operation QueryCourseID() is executed with a selected fac-
ulty name as the argument, and the query results are assigned to our ArrayList
object al.

public String getCID() {

return this.CourseID;

}

public String getCourseName() {

return this.CourseName;

}

public String getCredit() {

return this.Credit;

}

public String getClassRoom() {

return this.ClassRoom;

}

public String getSchedule() {
return this.Schedule;

}

public String getEnrollment() {

return this.Enrollment;

}

}

A

B

C

D

E

F

Fig. 9.104 The second part of the codes for the Java bean file CourseQuery.java

9 Developing Java Web Services to Access Databases

593

 I. Since we want to use a String[] array to transfer this course_id collection, thus
this ArrayList data type is converted to that String[] array type with a system
method toArray().

 J. The catch block is used to track and detect any possible exception during this
query process, and a false would be returned if any error occurred.

 K. Otherwise this query is successful, and a true is returned.
 L. The user-defined method, getCourseID(), which is equivalent to a getting

method, is executed to return the class-level variable alArray that contains all
queried course_id to our CourseProcess.jsp page for the further process.

 M. Another user-defined method, QueryCourse(), which is used to query the
details for a selected CourseID, is declared with an argument cid, which is an
input course_id. Also an ArrayList instance, al, is generated, and it is used to
store the queried course details later.

 N. A try-catch block is used to call our Web operation QueryCourse() to get all
details for a selected course via our Web service. First a new Web service
instance service is created based on our Web service class WSCourse_Service.
Then the getWSCoursePort() method is executed to get the current port used
by our Web service. This port is returned and assigned to a new Port instance port.

 O. The ArrayList instance al is cleaned up by using the clear() method to make
sure that the al is empty before it can be used to store any data.

 P. Our Web Service operation QueryCourse() is executed with a selected course_
id as the argument, and the query results are assigned to our ArrayList object al.

 Q. A sequence of system methods, get(), is used to pick up each item of the queried
course details in al and assign each of them to the related class variable. One
point to be noted is the order of these assignments, and it must be identical with
the column order in our Course Table in our sample database CSE_DEPT.

 R. A true is returned to indicate that this query is successful.
 S. The catch block is used to track and detect any possible exception during this

query process, and a false would be returned if any error occurred.

Let’s continue to take care of the second part of codes for this Java bean class file
CourseQuery.java. The second part of codes is shown in Fig. 9.104. Let’s have a
close look at these new added codes in Fig. 9.104 to see how they work.

Basically six getting methods are shown here, from steps A to F, and each of
them allows one piece of queried course details, which is stored in each related
class-level variable, such as CourseID, CourseName, Credit, and so on, to be used
by the CourseProcess.jsp page to get and set them on the related TextFields in the
Course.jsp page. Where this is the current class followed by the related class vari-
able separated with a dot operator. Refer to step I in Fig. 9.101, where all of these
six methods are used to set up six related TextFields in the Course.jsp page by
using six system methods setAttribute().

Now we have completed all coding developments for our Web client page, trans-
action JSP page, and Java bean class file. Next let’s build and run our client project
to consume our Web Service to query the Course table in our sample database.

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

594

9.16.6 Build and Run Our Client Project to Query Course
Record via Our Web Service

Prior to building and running our client project, make sure that our Web Service
project WebServiceCourse has been built and deployed successfully.

Perform the following operations to build and run our client project
WebClientCourse:

 1) Click on the Clean and Build Main Project button to build our project, and
exactly build our Java bean class file CourseQuery.java.

 2) Right click on our client page Course.jsp from the Projects window, and select
the Compile File item to compile this page.

 3) Right click on our transaction page CourseProcess.jsp from the Projects win-
dow, and select the Compile File item to compile this page.

 4) Right click on our client page Course.jsp from the Projects window, and select
the Run File item to run our client project.

The running status of our client project is shown in Fig. 9.105.
Enter a valid faculty name, such as Ying Bai, into the Faculty Name box, and

then click on the Select button to query all courses (course_id) taught by this fac-
ulty. All five courses (course_id) are retrieved from our database and displayed in
the CourseList box, as shown in Fig. 9.105.

Fig. 9.105 The running status of our client project

9 Developing Java Web Services to Access Databases

595

Fig. 9.106 The query result for the course details

Now select one course_id from the CourseList box, such as CSC-132B, by
clicking on it, and then click on the Select button by two times; all course details
related to this course_id are displayed in the six TextFields on the right, as shown
in Fig. 9.106.

One can try to check other course_id to get course details for the selected
course_id. Our Web-based client project used to consume our Web Service to query
course information is successful. Click on the Back button to close our project.

Next let’s concentrate on how to insert a new course record into the Course table
in our sample database via our Web-based client project.

9.16.7 Build Our Client Project to Insert New Course Records
via Our Web Service

The main coding jobs for inserting a new course record are concentrated on our
transaction JSP pages CourseProcess.jsp and Java bean class file CourseQuery.
java. Let’s first take care of the coding development for the transaction page
CourseProcess.jsp.

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

596

Double click on this page from the Projects window to open it, and enter the
codes shown in Fig. 9.107 into this page, exactly into the else if (request.
getParameter("Insert")!= null) block.

Let’s have a closer look at this piece of codes to see how it works.

 A. Two JSP directives are declared first, and they are used to set up the Java bean,
session, class, and property used on this JSP page. The Insert_Course() method
will be built in our Java bean class later, and the underscore between the Insert
and the Course is to distinguish this method with a similar operation,
InsertCourse(), in our Web Service. These two directives must not be enclosed
by a pair of <%...%> symbols.

 B. Starting from step B, the following codes will be Java codes to be embedded
into this page; thus an opening symbol <% is used to start this part. Since the
Web operation InsertCourse() in our Service returns a Boolean result, to hold
it, a Boolean variable res is created first.

 C. To set up a new course record that contains seven pieces of new course informa-
tion, seven system methods, getParameter(), are used to pick up each piece of
new course information from the related TextField in our client page, Course.
jsp, and assign each of them to a local String variable.

 D. Then a String[] array is created and initialized with those seven local variables
to make a new course record ready to be sent to the Java bean class.

………

else if (request.getParameter("Insert")!= null) {
//process the course record insertion

%>

<jsp:useBean id="Insert_Course" scope="session" class="JavaWebDBJSPSQLPackage.CourseQuery" />

<jsp:setProperty name="Insert_Course" property="*" />

<%

boolean res = false;

String cid = request.getParameter("CourseIDField");

String cname = request.getParameter("CourseNameField");

String credit = request.getParameter("CreditField");

String classroom = request.getParameter("ClassroomField");

String schedule = request.getParameter("ScheduleField");

String enroll = request.getParameter("EnrollmentField");
String fname = request.getParameter("FacultyNameField");

String[] cnew = {fname, cid, cname, credit, classroom, schedule, enroll};

res = cQuery.Insert_Course(cnew);

if (!res)

response.sendRedirect("Course.jsp");

else {

session.setAttribute("CourseIDField", null);

request.setAttribute("CourseNameField", null);

request.setAttribute("CreditField", null);

request.setAttribute("ClassroomField", null);

request.setAttribute("ScheduleField", null);

request.setAttribute("EnrollmentField", null);
}

}
else if (request.getParameter("Update")!= null) {

//process the course record updating
}

………

A

B

C

D

E

F

G

Fig. 9.107 The codes for the Insert Course block in the CourseProcess.jsp page

9 Developing Java Web Services to Access Databases

597

 E. The Insert_Course() method that will be defined in our Java bean class is
executed with the initialized String[] as the argument. The running result of this
method is returned and assigned to our local Boolean variable res.

 F. If a false is returned, which means that the execution of this method failed, then
the client page, Course.jsp, is refreshed to make it ready for the next operation.

 G. Otherwise the running of that method is successful, and a new course record has
been inserted into the Course table in our sample database; thus, all TextFields
in the client page will be reset to null to recover them to show the original record.

Next let’s handle the coding process in our Java bean class file CourseQuery.
java. Double click on this file from the Projects window, exactly under the folder,
Source Packages\JavaWeb DBJSPSQLPackage, to open it and enter the codes
shown in Fig. 9.108 into the bottom of this file. Let’s have a closer look at this piece
of codes to see how it works.

 A. Two local variables, insert and al, are generated first. The former is a Boolean
variable used to hold the running result of execution of our Web Service opera-
tion, InsertCouse(), and the latter is an instance of the ArrayList class, which is
used to store seven pieces of information for a new inserted course record.

 B. The ArrayList instance al is cleaned up by using the clear() method to make
sure that the al is empty before it can be used to store any data.

 C. A sequence of add() methods is used to add all seven pieces of new course
information into the ArrayList instance al, which will be passed as an argument
for our Web Service operation InsertCourse() later.

………

public boolean Insert_Course(String[] newCourse){
boolean insert = false;

ArrayList al = new ArrayList();

al.clear();

al.add(0, newCourse[0]);

al.add(1, newCourse[1]);

al.add(2, newCourse[2]);

al.add(3, newCourse[3]);
al.add(4, newCourse[4]);

al.add(5, newCourse[5]);

al.add(6, newCourse[6]);

try{

org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();

org.ws.sql.WSCourse port = service.getWSCoursePort();

insert = port.insertCourse(al);

if (!insert) {
System.out.println("The data insertion is failed!");

}

}

catch (Exception e) {

System.out.println("Error in Insert Statement! " + e.getMessage());

return false;

}

return insert;

}

}

A

B

C

D

E

F

G

H

Fig. 9.108 The added codes for the Insert_Course() method in the Java bean

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

598

 D. A try-catch block is used to call our Web operation InsertCourse() to insert a
new course record into our sample database via our Web service. First a new
Web service instance service is created based on our Web service class
WSCourse_Service. Then the getWSCoursePort() method is executed to get
the current port used by our Web service. This port is returned and assigned to a
new Port instance port.

 E. The Web Service operation InsertCourse() is executed with an argument al that
contains seven pieces of new course information, and the running result is
returned and assigned to the local Boolean variable insert.

 F. If the returned Boolean value is false, which means that this data insertion action
failed, a system method println() is used to indicate this situation. Otherwise
this data insertion is successful.

 G. The catch block is used to monitor and check any possible exception during this
insertion process. A false is returned to the calling program if any error really
occurred.

 H. Otherwise a true is returned to indicate the success of this data insertion action.

Now we have finished all coding jobs for this new course insertion action. Let’s
build and run our client project to consume our Web Service to insert a new course
record into the Course table in our sample database.

Prior to building and running our client project, make sure that our Web Service
project WebServiceCourse has been built and deployed successfully.

Perform the following operations to build and run our client project
WebClientCourse:

 1) Click on the Clean and Build Main Project button to build our project, and
exactly build our Java bean class file CourseQuery.java.

 2) Right click on our client page Course.jsp from the Projects window, and select
the Compile File item to compile this page.

 3) Right click on our transaction page CourseProcess.jsp from the Projects win-
dow, and select the Compile File item to compile this page.

 4) Right click on our client page Course.jsp from the Projects window, and select
the Run File item to run our client project.

As the course page is opened, enter a valid faculty name, such as Ying Bai, into
the Faculty Name box, and then click on the Select button to query all courses
(course_id) taught by this faculty. All five courses (course_id) should have been
retrieved from our database and displayed in the CourseList box.

Now let’s test to insert a new course record into the Course table in our sample
database. Keep the selected faculty member, Ying Bai, with no change, and enter
the following six pieces of information as a new course record into the six related
TextFields in this course page:

• Course ID: CSE-565
• Course Name: Machine Learning
• Schedule: T-H: 9:30 – 10:45 AM
• Classroom: MTC-202

9 Developing Java Web Services to Access Databases

599

• Credit: 3
• Enrollment: 16
• Faculty Name: Ying Bai

Now click on the Insert button to try to insert this new course record into the
Course table in our sample database CSE_DEPT. If this insertion action is suc-
cessful, the client page is refreshed to clean all contents on each TextField.

To check and confirm this data insertion, just click on the Select button to retrieve
all courses (course_id) taught by the selected faculty member Ying Bai. One can
find that the new inserted course, CSE-565, is retrieved and displayed in the
CourseList box, as shown in Fig. 9.109.

Select this new inserted course from this CourseList box by clicking on it, and
then click on the Select button by two times; the details about this new inserted
course are displayed in six TextFields, as shown in Fig. 9.109. Click on the Back
button to close our project.

Another way to confirm this data insertion is to open the Course table via the
Services window in the NetBeans IDE. After opening the Services window, expand
the Databases icon, and connect to our sample database by right clicking on our
database URL. Select the Connect item, and enter the password, Happy2020, to
connect to our sample database. After connection, expand the URL\CSE_DEPT.
dbo\Tables. Right click on the Course table, and select the View Data item to open
this table. One can find that the new course is really inserted into this Course table;
exactly, it is located at the bottom line that has been highlighted, as shown in
Fig. 9.110.

Fig. 9.109 The running status and result of inserting a new course record

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

600

Next let’s build and develop the codes for our client project to access our Web
Service to update a selected course in our Course table.

9.16.8 Build Our Client Project to Update Course Records via
Our Web Service

Generally there is no need to update a course_id when updating a course record
since a better way to do that is to insert a new course record and delete the old one.
The main reason for this is that a very complicated cascaded updating process would
be performed if a course_id was updated since it is a primary key in the Course
table but a foreign key in the StudentCourse table. To update a primary key, one
needs to update foreign keys first in the child tables and then update the primary key
in the parent table. This will make our updating process very complicated and easy
to be confused. In order to avoid this confusion, in this section, we will update a
course record by changing any column except the course_id, and this is a popular
way to update a table and widely implemented in most database applications.

Now let’s develop the codes for the Update button in our client project, exactly
in the client page Course.jsp, to update a course record via our Web Service. The
main coding jobs are concentrated on two files, the transaction page CourseProcess.
jsp and our Java bean class file CourseQuery.java. Let’s first take care of the cod-
ing development for the transaction page CourseProcess.jsp.

Fig. 9.110 The opened Course table in our sample database

9 Developing Java Web Services to Access Databases

601

The main function of this piece of codes is to coordinate the updating query and
provide a valid interface between the client page and the Java bean to make that
query smoother.

Double click on this page from the Projects window to open it, and enter the
codes shown in Fig. 9.111 into this page, exactly into the else if (request.
getParameter("Update")!= null) block.

Let’s have a closer look at this piece of codes to see how it works.

 A. Two JSP directives are declared first, and they are used to set up the Java bean,
session, class, and property used on this JSP page. The Update_Course()
method will be built in our Java bean class later, and the underscore between the
Update and the Course is to distinguish this method with a similar operation,
UpdateCourse(), in our Web Service. These two directives must not be enclosed
by a pair of <%...%> symbols.

 B. Starting from step B, the following codes will be Java codes to be embedded
into this page; thus, an opening symbol <% is used to start this part. Since the
Web operation UpdateCourse() in our Web Service returns a Boolean result, to
hold it, a Boolean variable res is created and initialized first.

 C. To set up an updated course record that contains six pieces of updated course
information, seven system methods, getParameter(), are used to pick up each
piece of updated course information (including course_id) from the related

………

else if (request.getParameter("Update")!= null) {
//process the course record updating
%>

<jsp:useBean id="Update_Course" scope="session" class="JavaWebDBJSPSQLPackage.CourseQuery" />

<jsp:setProperty name="Update_Course" property="*" />

<%

boolean res = false;

String cid = request.getParameter("CourseIDField");

String cname = request.getParameter("CourseNameField");

String credit = request.getParameter("CreditField");

String classroom = request.getParameter("ClassroomField");

String schedule = request.getParameter("ScheduleField");

String enroll = request.getParameter("EnrollmentField");

String fname = request.getParameter("FacultyNameField");

String[] cupdate = {fname, cname, credit, classroom, schedule, enroll, cid};

res = cQuery.Update_Course(cupdate);

if (!res)

response.sendRedirect("Course.jsp");

else {

session.setAttribute("CourseIDField", null);

request.setAttribute("CourseNameField", null);

request.setAttribute("CreditField", null);

request.setAttribute("ClassroomField", null);

request.setAttribute("ScheduleField", null);

request.setAttribute("EnrollmentField", null);

}

}
else if (request.getParameter("Delete")!= null) {

//process the course record deleting
}

………

A

B

C

D

E

F

G

Fig. 9.111 The codes for the Update Course block in the CourseProcess.jsp page

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

602

TextField in our client page, Course.jsp, and assign each of them to a local
String variable.

 D. Then a String[] array is created and initialized with those seven local variables
(keep course_id with no change) to make an updated course record ready to be
sent to the Java bean class in the next step.

 E. The Update_Course() method that will be defined in our Java bean class is
executed with the initialized String[] as the argument. The running result of this
method is returned and assigned to our local Boolean variable res.

 F. If a false is returned, which means that the execution of this method failed, then
the client page, Course.jsp, is refreshed to make it ready for the next operation.

 G. Otherwise the running of that method is successful, and the selected course
record has been updated in the Course table in our sample database; thus, all
TextFields in the client page will be reset to null to recover them to show the
original record.

Next let’s handle the coding process in our Java bean class file CourseQuery.
java. Double click on this file from the Projects window, exactly under the folder,
Source Packages\JavaWeb DBJSPSQLPackage, to open it and enter the codes
shown in Fig. 9.112 into the bottom of this file. Let’s have a closer look at this piece
of codes to see how it works.

 A. Two local variables, update and al, are generated first. The former is a Boolean
variable used to hold the running result of execution of our Web Service opera-
tion, UpdateCourse(), and the latter is an instance of the ArrayList class, which
is used to store seven pieces of information for an updated course record.

 B. The ArrayList instance al is cleaned up by using the clear() method to make
sure that the al is empty before it can be used to store any data.

………

public boolean Update_Course(String[] upCourse){

boolean update = false;

ArrayList al = new ArrayList();

al.clear();

al.add(0, upCourse[0]); // faculty_name

al.add(1, upCourse[1]); // course_name

al.add(2, upCourse[2]); // credit

al.add(3, upCourse[3]); // classroom

al.add(4, upCourse[4]); // schedule

al.add(5, upCourse[5]); // enrollment

al.add(6, upCourse[6]); // course_id

try{

org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();

org.ws.sql.WSCourse port = service.getWSCoursePort();

update = port.updateCourse(al);

if (!update)

System.out.println("The data updating is failed!");

}

catch (Exception e) {
System.out.println("Error in Updating Statement! " + e.getMessage());

return false;

}

return update;

}

A

B

C

D

E

F

G

H

Fig. 9.112 The added codes for the Update_Course() method in the Java bean

9 Developing Java Web Services to Access Databases

603

 C. A sequence of add() methods is used to add all six pieces of updated course
information (including course_id) into the ArrayList instance al, which will be
passed as an argument for our Web Service operation UpdateCourse() later.

 D. A try-catch block is used to call our Web operation UpdateCourse() to update
a selected course record in our sample database via our Web service. First a new
Web service instance service is created based on our Web service class
WSCourse_Service. Then the getWSCoursePort() method is executed to get
the current port used by our Web service. This port is returned and assigned to a
new Port instance port.

 E. The Web Service operation UpdateCourse() is executed with an argument al
that contains all pieces of updated course information, and the running result is
returned and assigned to the local Boolean variable update.

 F. If the returned Boolean value is false, which means that this data updating action
failed, a system method println() is used to indicate this situation. Otherwise
this data updating is successful.

 G. The catch block is used to monitor and check any possible exception during this
data updating process. A false is returned to the calling program if any error
really occurred.

 H. Otherwise a true is returned to indicate the success of this data updating action.

Now we have finished all coding jobs for this course updating action. Let’s build
and run our client project to consume our Web Service to update a selected course
record in the Course table in our sample database.

Prior to building and running our client project, make sure that our Web Service
project WebServiceCourse has been built and deployed successfully.

Perform the following operations to build and run our client project
WebClientCourse:

 1) Click on the Clean and Build Main Project button to build our project, and
exactly build our Java bean class file CourseQuery.java.

 2) Right click on our client page Course.jsp from the Projects window, and select
the Compile File item to compile this page.

 3) Right click on our transaction page CourseProcess.jsp from the Projects win-
dow, and select the Compile File item to compile this page.

 4) Right click on our client page Course.jsp from the Projects window, and select
the Run File item to run our client project.

As the course page is opened, enter a valid faculty name, such as Ying Bai, into
the Faculty Name box, and then click on the Select button to query all courses
(course_id) taught by this faculty. All five courses (course_id) should have been
retrieved from our database and displayed in the CourseList box.

Now let’s test to update an existing course record, CSE-565, from the Course
table in our sample database. Keep the selected faculty member, Ying Bai, with no
change, and click on the course CSE-565 from the CourseList box to select it, and
click on the Select button by two times to get details about this course. Then enter

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

604

the following five pieces of information as an updated course record into the six
related TextFields in this course page:

• Course Name: Deep Learning
• Schedule: M-W-F: 2:00 – 2:50 PM
• Classroom: MTC-314
• Credit: 3
• Enrollment: 22
• Faculty Name: Ying Bai

Now click on the Update button to try to update this course record from the
Course table in our sample database CSE_DEPT. If this updating action is suc-
cessful, the client page is refreshed to clean up all contents on each TextField.

To check and confirm this data updating, just click on the Select button to retrieve
all courses (course_id) taught by the selected faculty member Ying Bai. One can
find that the course, CSE-565, has been updated and its result is displayed in the
CourseList box, as shown in Fig. 9.113.

Select this updated course from this CourseList box by clicking on it, and then
click on the Select button by two times; the details about this updated course are
displayed in six TextFields, as shown in Fig. 9.113. Click on the Back button to
close our project.

Fig. 9.113 The updated result for course CSE-565

9 Developing Java Web Services to Access Databases

605

Another way to confirm this data updating is to open the Course table via the
Services window in the NetBeans IDE. After opening the Services window, expand
the Databases icon, and connect to our sample database by right clicking on our
database URL. Select the Connect item, and enter the password, Happy2020, to
connect to our sample database. After connection, expand the URL\CSE_DEPT.
dbo\Tables. Right click on the Course table, and select the View Data item to open
this table. One can find that the course CSE-565 is really updated in this Course
table, and exactly it is located at the bottom line that has been highlighted, as shown
in Fig. 9.114.

Next let’s build and develop the codes for our client project to access our Web
Service to delete a selected course in our Course table.

9.16.9 Build Our Client Project to Delete Course Records via
Our Web Service

Now let’s build the codes for the Delete button in our client project, exactly in the
client page Course.jsp, to delete a course record via our Web Service. The main
coding jobs are still concentrated on two files, the transaction page CourseProcess.
jsp and our Java bean class file CourseQuery.java. Let’s first take care of the cod-
ing development for the transaction page CourseProcess.jsp.

Fig. 9.114 The updated course CSE-565 in the Course table

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

606

The main function of this piece of codes is to coordinate the deleting query and
provide a valid interface between the client page and the Java bean to make that
query smoother.

Double click on this page from the Projects window to open it, and enter the
codes shown in Fig. 9.115 into this page, exactly into the else if (request.
getParameter("Delete")!= null) block.

Let’s have a closer look at this piece of codes to see how it works.

 A. Two JSP directives are declared first, and they are used to set up the Java bean,
session, class, and property used on this JSP page. The Delete_Course() method
will be built in our Java bean class later, and the underscore between the Delete
and the Course is to distinguish this method with a similar operation,
DeleteCourse(), in our Web Service. These two directives must not be enclosed
by a pair of <%...%> symbols.

 B. Starting from step B, the following codes will be Java codes to be embedded
into this page; thus, an opening symbol <% is used to start this part. Since our
Web operation DeleteCourse() in our Web Service returns a Boolean result, to
hold it, a Boolean variable res is created and initialized first.

 C. To set up a course record that will be deleted from the Course table in our
sample database, a system method, getParameter(), is used to pick up the
selected course_id that is related to a course record to be deleted from the
related TextField in our client page, Course.jsp, and assign it to a local String
variable cid.

 D. The Delete_Course() method that will be defined in our Java bean class is exe-
cuted with the initialized cid as the argument. The running result of this method
is returned and assigned to our local Boolean variable res.

………

else if (request.getParameter("Delete")!= null) {
//process the course record deleting
%>

<jsp:useBean id="Delete_Course" scope="session" class="JavaWebDBJSPSQLPackage.CourseQuery" />
<jsp:setProperty name="Delete_Course" property="*" />

<%

boolean res = false;

String cid = request.getParameter("CourseIDField");
res = cQuery.Delete_Course(cid);

if (!res)

response.sendRedirect("Course.jsp");

else {

session.setAttribute("CourseIDField", null);

session.setAttribute("CourseNameField", null);

session.setAttribute("CreditField", null);

session.setAttribute("ClassroomField", null);

session.setAttribute("ScheduleField", null);

session.setAttribute("EnrollmentField", null);

}

}

else if (request.getParameter("Back")!= null) {
//process the course record deleting

}

A

B

C

D

E

F

Fig. 9.115 The codes for the Delete Course block in the CourseProcess.jsp page

9 Developing Java Web Services to Access Databases

607

 E. If a false is returned, which means that the execution of this method failed, then
the client page, Course.jsp, is refreshed to make it ready for the next operation.

 F. Otherwise the running of that method is successful, and the selected course
record has been deleted from the Course table in our sample database; thus, all
TextFields in the client page will be reset to null to recover them to show the
original record.

Next let’s handle the coding process for our Java bean class file CourseQuery.
java. Double click on this file from the Projects window, exactly under the folder,
Source Packages\JavaWeb DBJSPSQLPackage, to open it and enter the codes
shown in Fig. 9.116 into the bottom of this file. Let’s have a closer look at this piece
of codes to see how it works.

 A. A local Boolean variable, delete, is generated first and it is used to hold the run-
ning result of execution of our Web Service operation, DeleteCourse(), later.

 B. A try-catch block is used to call our Web operation DeleteCourse() to delete a
selected course record from our sample database via our Web service. First a
new Web service instance service is created based on our Web service class
WSCourse_Service. Then the getWSCoursePort() method is executed to get
the current port used by our Web service. This port is returned and assigned to a
new Port instance port.

 C. The Web Service operation DeleteCourse() is executed with a String argument
dCourse that is a valid course_id, which is related to a course record to be
deleted from our database.

 D. If the returned Boolean value is false, which means that this data deleting action
failed, a system method println() is used to indicate this situation. Otherwise
this data deleting is successful.

 E. The catch block is used to monitor and check any possible exception during this
data deleting process. A false is returned to the calling program if any error
really occurred.

 F. Otherwise a true is returned to indicate the success of this data deleting action.

………

public boolean Delete_Course(String dCourse){

boolean delete = false;

try{

org.ws.sql.WSCourse_Service service = new org.ws.sql.WSCourse_Service();

org.ws.sql.WSCourse port = service.getWSCoursePort();

delete = port.deleteCourse(dCourse);
if (!delete)

System.out.println("The data deleting is failed!");

}

catch (Exception e) {

System.out.println("Error in Deleting Statement! " + e.getMessage());

return false;

}

return delete;

}

A

B

C

D

E

F

Fig. 9.116 The added codes for the Delete_Course() method in the Java bean

9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse

608

Now we have finished all coding jobs for this course deleting action. Let’s build
and run our client project to consume our Web Service to delete a selected course
record from the Course table in our sample database.

Prior to building and running our client project, make sure that our Web Service
project WebServiceCourse has been built and deployed successfully.

Perform the following operations to build and run our client project
WebClientCourse:

 1) Click on the Clean and Build Main Project button to build our project, and
exactly build our Java bean class file CourseQuery.java.

 2) Right click on our client page Course.jsp from the Projects window, and select
the Compile File item to compile this page.

 3) Right click on our transaction page CourseProcess.jsp from the Projects win-
dow, and select the Compile File item to compile this page.

 4) Right click on our client page Course.jsp from the Projects window, and select
the Run File item to run our client project.

As the course page is opened, enter a valid faculty name, such as Ying Bai, into
the Faculty Name box, and then click on the Select button to query all courses
(course_id) taught by this faculty. All five courses (course_id) should have been
retrieved from our database and displayed in the CourseList box.

Now let’s test to delete an existing course record, CSE-565, from the Course
table in our sample database. Keep the selected faculty member, Ying Bai, with no
change, and click on the course CSE-565 from the CourseList box to select it; click
on the Select button by two times to get details about this course. Then click on the
Delete button to try to remove this course record from the Course table in our
sample database.

To confirm or test this data deleting action, keep the selected faculty member
Ying Bai with no change, and click on the Select button again to try to retrieve back
all courses (course_id) taught by this faculty. Immediately one can find that all five
courses (course_id) are returned and displayed in the CourseList box without
course CSE-565, as shown in Fig. 9.117. This is an evidence that our course
CSE-565 has been deleted successfully from the Course table in our sample
database.

One can also open the Course table in our sample database CSE_DEPT by
opening the Services window in the NetBeans IDE environment. The course
CSE-565 cannot be found from this table, which means that it has been deleted
from this Course table.

It is highly recommended to recover any deleted record to keep our database
clean and neat. An easy way to do this recovery job is to perform another inserting
action via the Insert button on our client page to get this course record to be inserted
into this Course table. Refer to course details displayed in six TextFields shown in
Fig. 9.117 to do this recovery job.

Click on the Back button to exit our client project.

9 Developing Java Web Services to Access Databases

609

9.17 Chapter Summary

A detailed discussion and analysis of the structure and components about Java Web
services are provided in this chapter. Two popular Java Web services, REST-Based
and SOAP-Based services, are discussed in detail with real projects. The procedure
of building a typical SOAP-Based Web service project is introduced with a real
project example.

At Sect. 9.3, an example testing SOAP-Based Web Service project, WSTest, is
discussed and analyzed to provide users a completed picture with detailed proce-
dure to illustrate how to build, deploy, and consume a Web Service project step
by step.

Starting Sect. 9.5, some typical SOAP-Based Web service projects, such as
WebServiceSQLApp and WebServiceCourse that are used to access and manipu-
late data against a SQL Server 2019 database, are discussed and analyzed in detail
with some real project examples.

To consume these kinds of Web services, eight real client projects are developed
and built with detailed coding processes and illustrations:

• WinClientSelect: a Window-Based Web client project to consume the Web ser-
vice WebServiceSQLApp to perform data query to the Faculty table in our
sample SQL Server 2019 Express database

Fig. 9.117 The running and testing result of deleting a course record

9.17 Chapter Summary

610

• WinClientInsert: a Window-Based Web client project to consume the Web ser-
vice WebServiceSQLApp to perform data insertion actions to the Faculty table
in our SQL Server 2019 Express sample database

• WinClientUpdtDelt: a Window-Based Web client project to consume the Web
service WebServiceSQLApp to perform data updating and deleting actions to
the Faculty table in our sample SQL Server 2019 Express database

• WebClientSelect: a Web-Based Web client project to consume the Web service
WebServiceSQLApp to perform data query to the Faculty table in our sample
SQL Server 2019 Express database

• WebClientInsert: a Web-Based Web client project to consume the Web service
WebServiceSQLApp to perform data insertion actions to the Faculty table in
our sample SQL Server 2019 Express database

• WebClientUpdtDelt: a Web-Based Web client project to consume the Web ser-
vice WebServiceSQLApp to perform data updating and deleting actions to the
Faculty table in our sample SQL Server 2019 Express database

• WinClientCourse: a Window-Based Web client project to consume the Web
service WebServiceCourse to perform data query and manipulations to the
Course table in our sample SQL Server 2019 Express database

• WebClientCourse: a Web-Based Web client project to consume the Web service
WebServiceCourse to perform data query and manipulations to the Course
table in our sample SQL Server 2019 Express database

All of these real projects have been tested and debugged and can be used without
modifications. To use these project examples, one needs to install

• Glassfish v4.1.1 Web application server
• Microsoft SQL Server 2019 Express database
• Microsoft SQL Server Management Studio 18
• Microsoft SQL Server JDBC Driver

All of these software tools and drivers can be downloaded and installed on the
users’ computer with free of charge. Refer to Appendices to finish these download-
ing and installation processes.

Homework

 I. True/False Selections

____1. Unlike Java Web applications, the Java Web Services provide an auto-
matic way to search, identify, and return the desired information
required by the user through a set of methods installed in the Web server.

____2. Java Web services provide graphic user interfaces (GUIs) to enable
users to access the Web services via the Internet.

____3. Web Services can be considered as a set of methods installed in a Web
server and can be called by computer programs installed on the clients
through the Internet.

____4. Two popular Java Web services are REST-Based and SOAP-Based ser-
vices, and both are supported by NetBeans IDE.

9 Developing Java Web Services to Access Databases

611

____5. Both Web service models, JAX-WS and JAX-RPC, are popular and
updated models used in Web service developments.

____6. Compared with REST-Based service, SOAP-based Web services are
more suitable for heavyweight applications using complicated opera-
tions and for applications requiring sophisticated security and reliability.

____7. Unlike ASP.NET Web services, a Java SOAP-based Web service project
is involved in a Java Web application project in which the Web service
can be deployed based on an appropriate container.

____8. To access a Web service, one does not have to call any operation defined
in the Web service.

____9. Before one can call a Web service operation, a Web service reference
must have been established for the client project.

___10. It is unnecessary to update a Web service each time when consuming it
in a client project; however, one must deploy that Web service each time
when starting it from NetBeans IDE.

 II. Multiple Choices

 1. In a SOAP-Based Java Web Service, the SOAP means _________________.

 (a) Statement Object Access Protocol
 (b) Simplified Object Access Protocol
 (c) Simple Object Access Protocol
 (d) Structure Object Access Protocol

 2. In a REST-Based Java Web Service, the REST means _________________.

 (a) REpresentational State Transfer
 (b) REpresentational State Transmitter
 (c) REpresentational Status Transfer
 (d) Rapid Essential State Transfer

 3. When using a REST-Based Web service, only four methods are available:
__________.

 (a) INPUT, OUTPUT, POST, and DELETE
 (b) SAVE, PUT, POST, and DELETE
 (c) GET, EXECUTE, POST, and DELETE
 (d) GET, PUT, POST, and DELETE

 4. The protocol used in the REST-Based Web services is ___________.

 (a) FTP
 (b) XML
 (c) HTTP
 (d) TCP/IP

9.17 Chapter Summary

612

 5. To effectively find, identify, and return the target information required by
computer programs, a SOAP-based Web Service needs the following com-
ponents, ___________.

 (a) XML and WSDL
 (b) SOAP, UDDI and WSDL
 (c) UDDI, XML and SOAP
 (d) WSDL, XML, UDDI and SOAP

 6. SOAP is a simple ________-based protocol to help applications developed
in different platforms and languages to exchange information over
____________.

 (a) HTML, HTTP
 (b) XML, HTTP
 (c) FTP, TCP/IP
 (d) XML, Internet

 7. In WSDL terminology, each Web Service is defined as a ________ and
each Web method is defined as an abstract ____________.

 (a) Method, function
 (b) Service, operation
 (c) Endpoint, function
 (d) Port, operation

 8. SOAP is used to wrap and pack the data tagged in the ________ format into
the messages represented in the _________ protocol.

 (a) XML, SOAP
 (b) HTML, HTTP
 (c) FTP, TCP/IP
 (d) SOAP, XML

 9. When building a Java Web service, a _______________ that contains Web
container for the ______________ must be built first.

 (a) Web service, Web application
 (b) Web client, Web consuming project
 (c) Web service, Web client project
 (d) Web application, Web service

 10. To consume a Web service, a _____________ must be established in the
client project.

 (a) Web service reference
 (b) Web service operation
 (c) Web service directory
 (d) All of them

9 Developing Java Web Services to Access Databases

613

 III. Exercises

 1. Provide a brief description about the advantages of using a SOAP-Based
Web service.

 2. Illustrate the structure and components of SOAP-Based Web services.
 3. Provide a brief description about procedures of building a typical SOAP-

Based Web service project.
 4. Provides a brief description about how to establish a Web service reference

for a given client project to enable the latter to consume that Web service.
 5. Explain the operational sequence of adding a Web service operation into a

method in a client project to enable the latter to call that operation.
 6. Use the structure shown in Fig. 9.118 to build a Web Service project

WebServiceStudent, and use the Web Service with Java runtime objects to
perform data actions against the Student table in our SQL Server 2019
Express database.

Hint1: Create a new Web Application project WebServiceStudentApp
first, and then add a Web Service project WebServiceStudent into that Web
Application project.
Hint2: Refer to project WebServiceSQLApp to complete this project.

 7. Develop a Window-based consuming project WinClientStudentSelect to
consume the Web Service project built in above exercise to access and query
data against the Student table in our sample SQL Server 2019 Express
database.

 8. Develop a Window-based consuming project WinClientStudentInsert to
consume the Web Service project built in above exercise to insert new stu-
dent records against the Student table in our sample SQL Server 2019
Express database.

 9. Develop a Web-based consuming project WebClientStudentSelect to con-
sume the Web Service project built above to query data from the Student
table in our sample SQL Server 2019 Express database.

Web Services

Web Server
HTTP

Request

HTTP

Response

SQL Server

2019

Database

Java Runtime

Object Method

Database

Server
Java Client

Fig. 9.118 The structure of building a new Web service project

9.17 Chapter Summary

615© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8

 Appendices

 Appendix A: Install and Configure SQL Server 2019 Express
Database and SQL Server Management Studio

This installation and configuration process is divided into three parts:

• Install SQL Server 2019 Express Database.
• Install SQL Server 2018 Management Studio.
• Configure and Setup SQL Server 2019 Express Connection Parameters.

 Install SQL Server 2019 Express Database

 1. Go to https://www.microsoft.com/en- us/sql- server/sql- server- downloads to
open the Microsoft SQL Server 2019 downloading site, which is shown in
Fig. A.1.

https://doi.org/10.1007/978-3-031-06553-8
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

616

Fig. A.1 The opened downloading page

Fig. A.2 The installation option wizard

 2. Click the Download now button under the Express icon to download an .exe
file SQL2019-SSEI-Expr.exe into your computer or to the Download folder.
Then double click it to open the Installation wizard (Fig. A.2).

Appendices

617

Fig. A.3 The SQL server media download target location page

 3. Select the Custom box by clicking on it to open the SQL Server media down-
load target location page, as shown in Fig. A.3. Click on Installation button to
begin the installation process.

 4. The installation process beings with the file extraction process. An option wiz-
ard or the SQL Server Installation Center wizard is displayed when the
extraction process is done to allow users to select different installations, as
shown in Fig. A.4.

Appendices

618

Fig. A.4 The SQL server installation center wizard

Fig. A.5 The setup wizard

 5. Click the first item, New SQL Server standard alone installation, to install
SQL Server 2019 Express database. The Setup wizard is displayed, as shown
in Fig. A.5.

Appendices

619

Fig. A.6 The intermediate checking results page

 6. Check I accept the license terms checkbox and the Next button to start this
installation.

 7. An intermediate system checking results are shown on next page, as shown in
Fig. A.6. Click on the Next button to continue.

 8. On the Feature Selection page (Fig. A.7), keep all default items and click the
Next button.

Appendices

620

Fig. A.8 The database engine configuration page

Fig. A.7 The database instance feature selection page

 9. In the Instance Configuration page (Fig. A.8), enter SQL2019EXPRESS into
both Named instance and Instance ID boxes, and click on the Next button.

Appendices

621

Fig. A.9 The Java install location page

 10. On the Java Install Location page (Fig. A.9), keep default settings and click
the Next button.

 11. On the next page, Server Configuration page, click the Next button to keep
default settings.

 12. On the next page, Database Engine Configuration page (Fig. A.10), keep
default settings and click on the Next button to continue.

Appendices

622

 13. On the next page, Content to install Microsoft R Open page, click on the
Accept button and the Next button to continue.

 14. On the next page, Content to install Python, just click on the Accept and the
Next button to continue.

 15. The Installation process starts, as shown in Fig. A.11.

Fig. A.10 Database engine configuration page

Appendixes

623

Fig. A.11 The installation process

 16. During the installation process, the Next button is disabled. This button will be
reactivated after the installation is completed.

 17. As the installation process is completed, the Complete wizard is displayed, as
shown in Fig. A.12. Click on the Close button to complete this installation
process.

Appendixes

624

Fig. A.12 The installation is completed

Next, we need to install SQL Server 2018 Management Studio since we need it
to access installed SQL Server Express to create, edit, and build our sample data-
base used for this book.

 Install SQL Server Management Studio

 1. Return to SQL Server Installation Center wizard (Fig. A.4), or go to Start|SQL
Server 2019 Installation Center to open it, select the Installation item from
the left pane and select the item Install SQL Server Management Tools to
begin this installation process. A new Web page, which is shown in Fig. A.13, is
opened to install SQL Server Management Studio (SSMS).

Appendixes

625

Fig. A.13 Opened Web page to install SSMS 18.7.1

 2. Depends on the current version (for our case, the most updated version is SSMS
18.7.1), thus scroll down that page to find a link: Download SQL Server
Management Studio. Then click that link to download an .exe file, SSMS-
Setup-ENU.exe. Double click on this executable file to begin to install this
SSMS when the downloading process is done.

 3. On the opened Installation wizard, click on the Install button to start this pro-
cess, as shown in Fig. A.14. Click the Close button when the installation process
is done.

Appendixes

626

Fig. A.14 The installation processing page

Before we can connect to our installed SQL Server 2019 Express database via
SSMS, we need to configure and setup some important parameters.

 Configure and Setup SQL Server 2019 Express Connection Parameters

 1. Open the SQL Server 2019 Configuration Manager by going to item
Start|SQL Server 2019 Configuration Manager in your computer, as shown
in Fig. A.15.

Fig. A.15 Check the port number used by the SQL server

Appendices

627

 2. Now we need to check the port number used by the SQL Server. In the left pane,
select SQL Server Services icon, and then select the SQL Server
(SQL2019EXPRESS) item on the right pane as shown in Fig. A.15. The port
number of this SQL Server used is indicated as Process ID column. In our case,
it is 8348. Write this number and we will use it later to assign this port to the
TCP/IP and Firewall to allow firewall to pass this port.

 3. Expand the SQL Server Network Configuration icon on the left pane, and
click on the Protocols for SQL2019EXPRESS item, as shown in Fig. A.16.

Fig. A.16 The opened SQL server configuration manager wizard

 4. On the right pane, right-click on the TCP/IP item and select Enable to enable
the TCP/IP communication protocol for this SQL Server port.

 5. Now we need to configure the Firewall installed in your computer to enable it
to know this SQL Server and its port. On the Start menu, type WF.msc, and
then press the Enter key.

 6. In the opened Windows Defender Firewall with Advanced Security wizard,
from the left pane first click on the Inbound Rules icon, and then right-click on
this Inbound Rules icon again, and then click New Rule in the action pane to
open the New Inbound Rule wizard, as shown in Fig. A.17. Check the Port
radio button and click on the Next button.

Appendixes

628

 7. On the opened Protocol and Ports wizard shown in Fig. A.18, enter 8348 into
the Specific local ports textbox and click on the Next button to go to the next
page, Action page.

Fig. A.17 The opened new inbound rule wizard

Appendices

629

Fig. A.18 The opened protocol and ports wizard

 8. In the opened Action page, keep the default selection for the radio button,
Allow the connection, and click on the Next button to go the Profile page.

 9. In the Profile page, keep all default settings and click on the Next button.
 10. In the opened Name page (Fig. A.19), enter SQL Server 2019 Connection into

the Name box and click on the Finish button to complete this setup.

Appendices

630

Fig. A.19 The opened name wizard

 11. Now you can find that this new rule with the name: SQL Server 2019
Connection has been added into this Inbound Rules box on the top of that
wizard, as shown in Fig. A.20. Now you can close the Windows Defender
Firewall with Advanced Security wizard and SQL Server 2019 Configuration
Manager wizard.

Fig. A.20 The completed inbound rules addition

Appendices

631

Before we can test this connection, we need to know the name of your computer
in which the SQL Server is installed. The actual situation is: a SQL Server is
installed in your computer, but your computer also works as a client to communicate
to that SQL Server. Thus both a SQL Server and a client are installed in your single
computer; however, we still need the name of your computer to access the Server. In
other words, any times when one needs to access a Server installed on a computer,
a full name of the Server, which includes both the name of computer and the name
of the Server, is needed.

 1. Open the Control Panel and go to System page to open the System wizard, as
shown in Fig. A.21.

Fig. A.21 The opened system wizard on the control panel

 2. You can find the name of your computer in the Computer name group line (Fig.
A.21). In our case, it is YBSmart.

Now let’s test our SQL Server 2019 Express database connection.
Open the Microsoft SQL Server Management Studio from your computer by

going to Start|Microsoft SQL Server Tools 18|Microsoft SQL Server
Management Studio 18 menu item. The Connect to Server wizard is displayed as
shown in Fig. A.22.

Appendixes

632

Fig. A.22 The started SQL server 2019 express

Enter the database FULL name YBSmart\SQL2019Express into the Server
name box, and keep the default Windows Authentication and username with no
change, as shown in Fig. A.22, and click on the Connect button to connect to the
database. After the SQL Server is found and connected, all folders related to SQL
Server 2019 Express database are displayed, as shown in Fig. A.23.

Fig. A.23 The connected SQL server 2019 express database

Our download and install Microsoft SQL Server 2019 Express, and install and
configure Microsoft SQL Server Management Studio, is complete. Now you may
also close the SQL Server Installation Center wizard if you have not done so.

Appendices

633

 Appendix B: Download and Install JDK 14 and Apache
NetBeans 12

Prior to installing Apache NetBeans 12, a Java Development Kits (JDK) must be
installed. Go to the link: https://www.oracle.com/java/technologies/javase/jdk14-
archive- downloads.html

to install JDK 14.0.1 since this is the most updated version of JDK.

 1. On the opened wizard, scroll down to find Java SE Development Kit 14.0.1.
For most updated cases and applications, one can select to install either JDK
14.0.2 or JDK 14.0.1. Here we are using JDK 14.0.1 as an example to illustrate
the installation process.

 2. Browse to Windows x64 Installer under Java SE Development Kit 14.0.1 tag,
as shown in Fig. B.1, click on that link to begin the downloading process.

Fig. B.1 The opened Java SE JDK downloading wizard

 3. On the next wizard, check the License Agreement checkbox and click on the
Download jdk-14.0.1_windows- x64_bin.exe button to continue.

 4. Complete the LogIn process on the next wizard. You may need to create a new
Oracle account to complete this step. Then the downloading process starts.

 5. Double click on the downloaded file when this process is completed to start the
JDK 14.0.1 installation process.

Appendixes

https://www.oracle.com/java/technologies/javase/jdk14-archive-downloads.html
https://www.oracle.com/java/technologies/javase/jdk14-archive-downloads.html

634

 6. On the next wizard, click on the Next button on the Installation wizard to con-
tinue, as shown in Fig. B.2.

Fig. B.2 The opened Java SE JDK 14.0.1 installation wizard

 7. On the next wizard, keep all the default items and default location, and click on
the Next button again.

 8. The installation process starts, as shown in Fig. B.3.

Fig. B.3 The pre-installation process starts

Appendices

635

 9. When this process is done, click on the Close button to complete this installation
process.

Now let’s start the downloading and installation process for Apache NetBeans 12.

 1. Go to link: https://netbeans.apache.org/download/nb120/nb120.html to open the
downloading and installing page.

 2. Click on the link: Apache- NetBeans- 12.0- bin- windows- x64.exe (SHA- 512,
PGP ASC) to begin this downloading process.

 3. Click on the top link, https://apache.claz.org/netbeans/netbeans/12.0/
Apache- NetBeans- 12.0- bin- windows- x64.exe, which is under the HTTP tag
to start this downloading and installing process (Fig. B.4). It may take a while to
complete this downloading due to the large size of the file (358 MB).

Fig. B.4 The opened wizard for downloading the Apache NetBeans 12

 4. When the downloading process is done, double click on it to open the installing
wizard. Then click on the Next button to keep all default settings with no change
and continue this process.

 5. Check the License Agreement checkbox and Next button to continue.
 6. Click on the Next button on the next wizard to keep the default location and

continue this installation process.
 7. Click on the Install button on the next wizard to start this installation process, as

shown in Fig. B.5.

Appendixes

https://netbeans.apache.org/download/nb120/nb120.html
https://www.apache.org/dyn/closer.cgi/netbeans/netbeans/12.0/Apache-NetBeans-12.0-bin-windows-x64.exe
https://downloads.apache.org/netbeans/netbeans/12.0/Apache-NetBeans-12.0-bin-windows-x64.exe.sha512
https://downloads.apache.org/netbeans/netbeans/12.0/Apache-NetBeans-12.0-bin-windows-x64.exe.asc
https://apache.claz.org/netbeans/netbeans/12.0/Apache-NetBeans-12.0-bin-windows-x64.exe
https://apache.claz.org/netbeans/netbeans/12.0/Apache-NetBeans-12.0-bin-windows-x64.exe

636

 8. When the installation process is done, as shown in Fig. B.6, click on the Finish
button to complete this process.

Fig. B.5 The installation process starts

Appendices

637

Fig. B.6 The installation process finished

Appendices

638

Fig. C.1 The opened site for WindowsUI component

 3. Click on FREE 30-DAY TRIAL button to begin this downloading process. An
executable file: DevExpressUniversalTrialSetup- 20,210,401.exe is downloaded
to your computer under the Downloads folder. Double click on that file to run it.

 4. Click on the Trial Installation button to start the installation process.
 5. Click on all icons, except the WinForms Controls and CodeRush icons (Fig.

C.2), and the Next button to install this component.

 Appendix C: Download and Install DevExpress .NET
UI Controls

When building Faculty and Student tables, we need to store faculty and student
images into the SQL Server 2019 Express database directly. Due to the new prop-
erty of SQL Server 2019 database, an image can be directly stored into the database
column as an image object (in fact, it is a binary data type).

With the help of a product developed by Developer Express Incorporated, exactly
a user interface component, WindowsUI, we can directly insert an image into a SQL
Server database’s column via Microsoft Visual Studio.NET platform without any
coding process.

In order to use this component, one needs to download this WindowsUI. Perform
the following operations to complete this download and installation process.

 1. Go to https://www.devexpress.com/#ui site.
 2. Click on WinForms Suites link (Fig. C.1) to open the 30-day free trial dialog.

Appendices

https://www.devexpress.com/#ui

639

 6. Click on the Accept & Continue button for the next page to continue.
 7. On next page, select either Yes or No, to participate in a customer experience

program, and click the Install button to start this process.
 8. The downloading and installation process starts, as shown in Fig. C.3.

Fig. C.2 Select WinForms controls to install the WindowsUI component

Fig. C.3 The downloading and installation process starts

 9. When the installation is completed, click on the Finish button.

Appendices

640

 Appendix D: How to Use Sample Database

This sample database CSE_DEPT that is related to Microsoft SQL Server 2019 Express
is provided for this book and it can be used by all projects developed in this book.

The sample database file is located under the folder Sample Database that is
located at both the Faculty and Students folder in the Wiley ftp site (refer to Fig.
1.2 in Chap. 1).

To use this sample database file, one needs to follow the instructions discussed
below. The prerequisite to use this sample database is that a Database Management
Studio (DBMS) and Microsoft SQL Server 2019 Express Database must have been
installed in your machine.

Refer to Appendix A to install Microsoft SQL Server Management Studio and
Microsoft SQL Server 2019 Express Database if you have not installed.

D.1 Configure Advanced Security Settings to Access the DATA Folder.
The sample database CSE_DEPT.mdf we created in Chap. 2 contains two files,

CSE_DEPT.mdf and CSE_DEPT_log.ldf. One can copy and paste these two files
into the user’s default SQL Server Database folder in the user’s machine to use this
sample database. However, the default SQL Server Database folder, C:\Programm
Files\Microsoft SQL Server \MSSQL15.SQL2019EXPRESS\MSSQL\DATA, is
not allowed to be accessed by users generally. To perform the copy and paste func-
tion to that folder, one needs to configure the Advanced Security Settings of that
DATA folder to enable users to access the folder to perform those functions.

To configure this Advanced Security Settings, perform the following operations:

 1. Go to the default SQL Server Database folder in the user’s machine, C:\
Programm Files\Microsoft SQL Server \MSSQL15.SQL2019EXPRESS\
MSSQL\DATA.

 2. Right click on the DATA folder and select the Properties item to open the DATA
Properties wizard.

 3. Click on the Security tab and Advanced button to open the Advanced Security
Settings for DATA wizard, which is shown in Fig. D.1.

Appendices

641

Fig. D.1 The opened advanced security settings for DATA wizard

Fig. D.2 The opened Select User or Group wizard

 4. Click on the Change item after the current owner, Administrator (YBSMART\
Administrator) to open the Select User or Group wizard.

 5. Then click on the Advanced button and the Find Now button, as shown in
Fig. D.2.

Appendices

642

 6. Select the Authenticated Users from the bottom list, as shown in Fig. D.2, and
click on the OK button to add this user as a new owner.

 7. Click on the OK button again on return to the Advanced Security Settings wiz-
ard. Then click on the Add button to add this new owner into the Permission
entries list on the bottom.

 8. On the next wizard, the Permission Entry for DATA wizard, which is shown
in Fig. D.3, click on the Select a principal item on the top. Then click on the
Advanced button on the opened Select User or Group wizard, click on the Find
Now button again and select the Authenticated Users item from the bottom list.

Fig. D.3 The opened and finished Permission Entry for DATA wizard

 9. Click on the OK button for next two wizards to return to the Permission Entry
for DATA wizard. Then check the top two checkboxes, Full Control and
Modify, to enable the selected new user, Authenticated Users, to have full
control ability to this DATA folder.

 10. Your finished Permission Entry for DATA wizard should match one that is
shown in Fig. D.3. Click on the OK button to complete this configuration process.

 11. Now you can find that this new owner has been added into the Permission
entries list, as shown in Fig. D.4. Click on the Apply button to make this con-
figuration take effect. Click on the Yes button for the popup Messagebox.

Appendices

643

 12. Click on the OK button to close the DATA Properties wizard.

Now you can access the SQL Server 2019 Database default DATA folder, C:\
Programm Files\Microsoft SQL Server\MSSQL15.SQL2019EXPRESS\
MSSQL\DATA on your machine to perform copy and paste sample database function.

The reason we add this Authenticated Users as a permissive user to access the
SQL Server 2019 Express Database is that this user was selected as a login user
(Windows Authentication) when we connected to that database and created our
sample database CSE_DEPT at Chap. 2. You may need to select your desired user
if you use different user to connect to SQL Server 2019 Express Database server
and create your database.

D.2 Use Microsoft SQL Server 2019 Express Sample Database File.
The sample Microsoft SQL Server 2019 database file CSE_DEPT.mdf can be

found from the folder Sample Database located at the Wiley ftp site (refer to Fig.
1.2 in Chap. 1) under the Students folder. To use this database file in any sample
database programming project that used a SQL Server Data Provider in this book,
you need to perform the following operations (suppose the Microsoft SQL Server
Management Studio has been installed in your machine):

 1. Copy the sample database files CSE_DEPT.mdf and CSE_DEPT_log.ldf from
the folder Sample Database located at the Wiley ftp site (refer to Fig. 1.2 in
Chap. 1) and paste it to the Microsoft SQL Server default database file folder,
C:\Programm Files\Microsoft SQL Server\MSSQL15.SQL2019EXPRESS\
MSSQL\DATA in your machine.

Fig. D.4 The finished Advanced Security Settings for DATA wizard

Appendixes

644

 2. Open the Microsoft SQL Server Management Studio and connect to our SQL
2019 Express database server.

 3. Right click on the Databases folder, and select Attach folder to open the Attach
Database wizard, as shown in Fig. D.5.

Fig. D.5 The opened attach databases wizard

 4. Click on the Add button that is under the Databases to attach Textbox, and
browse to our pasted sample database file CSE_DEPT.mdf that is located at the
default folder shown in step 1, as shown in Fig. D.6. Click on that file to select
it. Then click on the OK button to add it into our database.

Appendices

645

Fig. D.6 The opened database file selection wizard

 5. The resulted wizard is shown in Fig. D.7. Click on the OK button to attach this
database file into our database.

Fig. D.7 The finished attach databases wizard

Appendixes

646

 7. Now expand this attached database CSE_DEPT, you can find all five tables,
dbo.LogIn, dbo.Faculty, dbo.Course, dbo.Student, and dbo.StudentCourse,
under this database.

You can check some tables to confirm this attach action. For example, to check
the Faculty table, just right click on the dbo.Faculty table and select Edit Top 200
Rows item. All faculty members in this table are shown up, as shown in Fig. D.8.

Refer to Sect. 6.1.4 in Chap. 6 to add this database file as a new Data Source into
your sample project if you want to develop a data-driven application using Visual
Studio.NET Design Tools and Wizards method.

Refer to Sect. 6.3.3.3 in Chap. 6 to add this database file as a new Data Source
into your sample project if you want to develop a data-driven application using Run-
Time object method.

 6. Now if you expand the Databases folder from the Microsoft SQL Server
Management Studio, you can find that our sample database CSE_DEPT has
been added into our database server, as shown in Fig. D.8.

Fig. D.8 The attached database CSE_DEPT and tables

Appendices

647

 Appendix E: Data Type Mappings Between SQL Statements
and Java Applications

E1: Java Primitive Data Types Mapped to SQL Data Types (Table E.1).

E2: SQL Data Types Mapped to Java Types.
Data types mapping between the SQL data types and Java types are shown in

Table E.2.

E3: Java Object Types Mapped to SQL Data Types.

Table E.1 Java primitive data types mapped to SQL data types

Java Type SQL Data Type

boolean BIT
Byte[] VARBINARY or LONGVARBINARY
Double DOUBLE
float REAL
int INTEGER
java.lang.Bignum NUMERIC
java.sql.Date DATE
java.sql.Time TIME
java.sql.Timestamp TIMESTAMP
Long BIGINT
String VARCHAR or LONGVARCHAR

Table E.2 Methods defined in the DriverManager class

SQL Data Type Java Type

CHAR String
VARCHAR String
LONGVARCHAR String
NUMERIC java.lang.Bignum
DECIMAL java.lang.Bignum
BIT boolean
TINYINT Integer
SMALLINT Integer
INTEGER Integer
BIGINT Long
REAL Float
FLOAT Double
DOUBLE Double
BINARY Byte[]
VARBINARY Byte[]
LONGVARBINARY Byte[]
DATE java.sql.Date
TIME java.sql.Time
TIMESTAMP java.sql.Timestamp

Appendices

648

Data types mapping between the Java object types and SQL data types are shown
in Table E.3.

E4: SQL Data Types Mapped to Java object Types.
Data types mapping between the SQL data types and Java object types are shown

in Table E.4.

Table E.3 Java object types mapped to SQL data types

Java Type SQL Data Type

Boolean BIT
byte[] VARBINARY or LONGVARBINARY
Double DOUBLE
Float REAL
Integer INTEGER
java.lang.Bignum NUMERIC
java.sql.Date DATE
java.sql.Time TIME
java.sql.Timestamp TIMESTAMP
Long BIGINT
String VARCHAR or LONGVARCHAR

Table E.4 Methods defined in the DriverManager class

SQL Data Type Java Type

CHAR String
VARCHAR String
LONGVARCHAR String
NUMERIC java.lang.Bignum
DECIMAL java.lang.Bignum
BIT Boolean
TINYINT Integer
SMALLINT Integer
INTEGER Integer
BIGINT Long
REAL Float
FLOAT Double
DOUBLE Double
BINARY byte[]
VARBINARY byte[]
LONGVARBINARY byte[]
DATE java.sql.Date
TIME java.sql.Time
TIMESTAMP java.sql.Timestamp

E5: Data Mapping for ResultSet get() Method.
Data mappings for ResultSet get() method are shown in Table E.5.

Appendices

Ta
bl

e
E

.5

D
at

a
m

ap
pi

ng
s

fo
r

R
es

ul
tS

et
 g

et
()

 m
et

ho
d

N
um

er
ic

D
ec

im
al

T
in

yi
nt

B
in

ar
y

V
ar

bi
na

ry
B

it
D

at
e

D
ou

bl
e

Fl
oa

t
R

ea
l

In
te

ge
r

B
ig

in
t

Sm
al

lin
t

C
ha

r
V

ar
ch

ar
T

im
e

T
im

es
ta

m
p

L
on

gv
ar

ch
ar

L
on

gv
ar

bi
na

ry

ge
tB

ig
D

ec
im

al
()

■
■

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

ge
tB

yt
e(

)
▲

▲
■

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

ge
tB

yt
es

()
■

■
▲

ge
tB

oo
le

an
()

▲
▲

▲
▲

▲
■

▲
▲

▲
▲

▲
▲

▲
▲

▲

ge
tD

at
e(

)
■

▲
▲

▲
▲

ge
tD

ou
bl

e(
)

▲
▲

▲
▲

▲
▲

■
■

▲
▲

▲
▲

▲
▲

▲

ge
tF

lo
at

()
▲

▲
▲

▲
▲

▲
▲

▲
■

▲
▲

▲
▲

▲
▲

ge
tI

nt
()

▲
▲

▲
▲

▲
▲

▲
▲

▲
■

▲
▲

▲
▲

▲

ge
tL

on
g(

)
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
■

▲
▲

▲
▲

ge
tO

bj
ec

t(
)

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

ge
tS

ho
rt

()
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

■
▲

▲
▲

ge
tS

tr
in

g(
)

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

■
■

▲
▲

ge
tT

im
e(

)
▲

▲
■

▲
▲

ge
tT

im
eS

ta
m

p(
)

▲
▲

▲
■

▲

ge
tA

sc
iiS

tr
ea

m
()

▲
▲

▲
▲

■
▲

ge
tB

in
ar

yS
tr

ea
m

()
▲

▲
▲

▲
■

▲

ge
tU

ni
co

de
St

re
am

()
▲

▲
■

■

■
 =

 P
re

fe
rr

ed
 g

et
()

 m
et

ho
d

fo
r

th
is

 S
Q

L
 d

at
a

ty
pe

▲
 =

 A
cc

ep
ta

bl
e

da
ta

 ty
pe

 f
or

 th
is

 g
et

()
 m

et
ho

d

650

 Appendix F: Download and Install Java JDK 8

 1. Go to https://www.oracle.com/java/technologies/javase/javase- jdk8- downloads.
html to open the downloading page for JDK 8, as shown in Fig. F.1.

Fig. F.1 The opened downloading page for JDK 8 (Copyrighted by Oracle and used with
permission)

 2. Click on the Accept License checkbox and the Download jdk-8u271-windows-
x64.exe button to begin this downloading process. You may need a login process
to start this process.

 3. When the downloading process is done, click on that downloaded file to run this
installation. On the next wizard, as shown in Fig. F.2, click on the Next button
to start.

Appendices

https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html
https://www.oracle.com/java/technologies/javase/javase-jdk8-downloads.html

651

 4. Click on the Next button on the next wizard to select the default location, C:\
Program Files\Java/jdk1.8.0_271\, to begin this pre-installation process, as
shown in Fig. F.3.

Fig. F.2 The pre-installation process starts (Copyrighted by Oracle and used with permission)

Fig. F.3 The pre-installation process starts (Copyrighted by Oracle and used with permission)

Appendices

652

 5. The pre-installation process starts, as shown.
 6. Click on the Next button on the next wizard to confirm the installation target

location. The installation process starts, as shown in Fig. F.4.

Fig. F.4 The installation process starts (Copyrighted by Oracle and used with permission)

When the installation process is completed, as shown in Fig. F.5, click on the
Close button.

Fig. F.5 The installation process is completed (Copyrighted by Oracle and used with permission)

Appendices

653

 Appendix G: Download and Install JDBC 4.2

 1. Go to https://www.microsoft.com/en- us/download/details.aspx?id=54671 to
open this downloading page, as shown in Fig. G.1.

Fig. G.1 The opened downloading page (Copyrighted by Oracle and used with permission)

 2. Click on the Download button to begin this downloading process.
 3. Check on the sqljdbc_4.2.8112.200_enu.exe checkbox, as shown in Fig. G.2,

and click on the Next button.

Fig. G.2 The opened downloading component selection page (Copyrighted by Oracle and used
with permission)

Appendices

https://www.microsoft.com/en-us/download/details.aspx?id=54671

654

 4. The downloading process starts. Click on the downloaded file to run it as this
process is done.

 5. Click on the Browse button to select a desired location to unzip this file. In our
case, we selected C:\Temp folder to store this unzipped file, which is shown in
Fig. G.3. Then click on the Unzip button to unzip this file.

Fig. G.3 The opened unzip wizard

 6. Click on the Close button to close this unzip process as it is done.
 7. Then go to the C:\Temp folder and the unzipped folder sqljdbc_4.2 is in there.

Copy that entire folder to the C:\Program Files folder in your computer.
 8. Now open the Windows Explorer and browse to the folder, C:\Program Files\

sqljdbc_4.2, you can find that two JDBC driver files, sqljdbc41.jar and
sqljdbc42.jar, are located at two folders, jre7 and jre8, as shown in Fig. G.4. In
our applications, we prefer to use the sqljdbc41.jar.

Appendices

655

Fig. G.4 The location of installed JDBC driver

Appendices

656

Fig. H.1 The opened download page for NetBeans IDE 8.2

 2. Click on the Download button under the All column to download all popular
components on this NetBeans 8.2 IDE.

 3. When the downloading process is done, click it to run this file. The pre-instal-
lation process starts, as shown in Fig. H.2.

Fig. H.2 The pre-installation starts

 Appendix H: Download and Install NetBeans IDE 8.2
and Glassfish Server

 1. Go to https://netbeans.org/downloads/old/8.2/ to open the download page, as
shown in Fig. H.1.

Appendices

https://netbeans.org/downloads/old/8.2/

657

 4. The configuration of the installer process also starts, as shown in Fig. H.3.

Fig. H.3 The configuration of the installation wizard

 5. Then the installation panel appears, as shown in Fig. H.4. Click on the
Customize button to involve the Tomcat server into this installation process.

Fig. H.4 The opened installation panel

Appendices

658

 6. On the opened Customize Installation wizard, as shown in Fig. H.5, check the
checkbox, Apache Tomcat 8.0.27, located at the bottom to bundle this Web
server into this installation. Click on the OK button to continue.

Fig. H.5 The opened cstomize installation wizard

 7. Then click on the Next button to start this installation.
 8. Click on the Accept License checkbox and click on the Next button to continue.
 9. Confirm the installation locations for this IDE and related JDK, as shown in

Fig. H.6, and click on the Next button.

Appendices

659

 10. Confirm the locations to install the GlassFish server and related JDK, as shown
in Fig. H.7, and click on the Next button.

Fig. H.6 The opened installation of NetBeans and JDK locations wizard

Fig. H.7 The opened installation of GlassFish and JDK locations wizard

Appendices

660

 11. On the next wizard, as shown in Fig. H.8, confirm the location of installing the
Tomcat server, and click on the Next button.

Fig. H.8 The default installation location for Tomcat server

 12. Then click on the Install button on the next wizard to start this installation pro-
cess. The installation process is started, as shown in Fig. H.9.

Appendices

661

 13. When the installation process is completed, as shown in Fig. H.10, click on the
Finish button to complete this installation process.

Fig. H.9 The installation process starts

Fig. H.10 The installation completing wizard

Appendices

662

Now open the Windows Explorer, you can find that a folder, Apache Tomcat
8.0.27, has been added under the Program Files folder, as shown in Fig. H.11, in
which the Tomcat server is installed.

Fig. H.11 The installed folder for Apache Tomcat

Remember this folder and we may need to use this location to add the Tomcat
server into our projects later when we configure the NetBeans IDE to build our Web
applications.

Appendices

663

Fig. I.1 The opened Tomcat server Properties wizard

 Appendix I: Modify the HTTP Port Number
for Tomcat Server

In most cases, the default HTTP Port used by the Tomcat server is 8080, and it
works for most applications. However, this port may be occupied by the other
devices in some computers. In that case, in order to enable the Tomcat server to
work properly in your machine, we need to modify this HTTP Port number manually.

First you need to check and confirm the HTTP Port number that is being used by
your Tomcat server. Perform the following operational steps to do this checking:

 1. Open the NetBeans 8.2 IDE if it has not been opened and your Web application
project.

 2. Click on the Services tab to open the Services window on the left.
 3. Then expand the Servers node and right click on the used Tomcat server, in our

case, it is Apache Tomcat or TomEE, and click on the Properties item on the
bottom from the popup menu to open the Properties wizard, as shown in Fig. I.1.

Appendices

664

 4. Change the port number from “8080” to any other desired number, such as
“8084” or “8086” for both lines, as shown in Fig. I.2.

 5. Click on the File > Save item to save this modification.
 6. Close this editable version of this file.

If you experienced some authority or permission issue and cannot open this con-
figuration file, refer to Appendix D to solve this issue.

Fig. I.2 The opened Tomcat server configuration file

 4. You can see the current HTTP Port number in the Server Port box, which in our
case it is 8080 (do not worry about the Shutdown Port).

 5. Click on the Close button to close this wizard.

Keep this HTTP Port number in mind, and you can modify it if you encountered
some port number conflicting error as you run your Web application projects.

Perform the following operations to do this modification:

 1. Go to the location where the configuration file of the Tomcat server is installed
on your machine, in our case, it is C:\Program Files\Apache Software
Foundation\Apache Tomcat 8.0.27\conf.

 2. Then open the Tomcat server configuration file server.xml in the Notepad for-
mat by right clicking on that configuration file and selecting the Open With to
use the Notepad app to open it.

 3. Scroll down along this file to lines 69 and 75, or until you find the port definition
part, which is shown in Fig. I.2.

Appendices

665© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Bai, SQL Server Database Programming with Java,
https://doi.org/10.1007/978-3-031-06553-8

A
Abstract class, 224, 227, 257, 260, 268, 483,

484, 497, 556
Abstract Windowing Toolkit (AWT), 143, 158,

159, 196, 218, 224, 225, 413
acceptsURL() method, 104
Action attribute, 346, 347, 351, 366, 368, 371,

376, 377, 409, 419, 422, 586
ActionListener, 161, 163
Action methods, 371–374, 376, 377
actionPerformed() event, 162, 178
Add Business Method
Add Column
addImage() method, 225, 227, 497
addItem() method, 214, 218, 219, 286,

516, 539
add() method(s), 477, 479, 515, 521, 538, 546,

576, 580, 597, 602
Administration Console tool
Admin Port
Ant-based project, 147, 174
Ant script, 153, 154, 174
Ant targets, 153
Apache Ant, 153, 172
Apache Axis2 Web services, 465
Apache HTTP Web Server
Apache Maven, 145, 147, 151, 177
Apache Tomcat, 148, 406, 651, 652, 657, 658
Application client modules, 379
Application scope, 358
Application server layer, 99
ArrayList class, 505, 597, 602

ArrayList instance, 483, 495, 505, 511, 515,
516, 521, 532, 538, 539, 545, 546,
556, 559, 560, 563, 566, 571–574,
576, 580, 592, 593, 597, 602

ArrayList<String> type, 495
ArrayList type, 495
AS operator, 245
Attributes, 15, 20, 21, 26, 32, 33, 67, 83, 105,

125, 126, 206, 339, 345, 347, 359,
375, 379, 414, 423, 456–458, 587

B
Backing beans, 363, 365, 368, 369, 386
BaseRowSet abstract class, 256, 257
begin() method
beginTransaction() method, 354
bgcolor attribute, 367
BigDecimal class
BigInteger class
Bitmap indexes, 38
Body tag, 367
B-tree, 35, 37, 38
buildSessionFactory() method
Built-in data types, 115, 238
Business tier components, 378, 379

C
CachedRowSet class, 91, 95, 255
CachedRowSet component, 257, 260
CachedRowSetImpl() constructor, 262

Index

https://doi.org/10.1007/978-3-031-06553-8

666

CachedRowSet interface, 256
CallableStatement class, 76, 93, 243
CallableStatement interface, 110, 111, 117,

118, 120, 121, 235–237, 239, 240,
250, 267

CallableStatement query string, 118–119,
235–237, 313, 314, 319, 321, 327

CallableStatement string, 118, 119, 236
Call Enterprise Bean
Call level interface (CLI), 79–82
Candidate Key, 21, 29, 68
Canvas control, 196, 259
Canvas object, 224, 227, 497, 498
Cardinality, 21, 38
Cascade Delete, 21, 22
Cascade Update, 21, 22
Central Maven Repository
CHAR, 41, 125, 642, 643, 645
Class.forName() method, 75, 94, 101, 102,

140, 203, 204, 268
Classpath, 153, 167–168, 172, 175
clear() method, 495, 515, 521, 538, 545, 576,

580, 592, 593, 597, 602
Client layer, 99
Client-server configuration, 98
Client Server Database, 30, 35, 68
Client-tier components, 378
close() method, 86, 87, 107, 132, 193, 204,

213, 215, 263, 276, 333, 347, 410,
417, 485, 529, 531

Clustered index, 35
commandButton tag, 368, 377
commit() method, 107
Common Gateway Interface (CGI), 338, 457
Composite Primary Key, 28
Conceptual Design, 15
Concurrency Type, 295, 296, 329, 330
Concurrent Versions System (CVS), 146,

147, 152
configure() method
Connected RowSet, 78, 91, 95, 255
Connection class, 76, 107, 119, 120, 215, 221,

237, 243, 295, 314, 321, 327, 511
Connection object, 73, 74, 76, 86, 100, 104,

106–108, 138, 193, 204, 207, 209,
212, 215, 243, 276, 278, 288, 291,
296, 333, 417, 428, 445, 489, 556,
563, 566, 568

ConnectionPoolDataSource object, 86–88
Connection Pooling API, 86, 88, 89, 96
Connection URL, 92, 204, 257, 269, 292, 442,

489, 533, 556
Connectivity, 22, 71, 72, 79, 93, 202, 381
connect() method, 74, 78, 100, 203

Container manage persistence (CMP)
Context interface, 83, 84
Control Files, 36, 38, 39
create() method
Create Persistence Unit
createQuery() method, 268
createStatement() method, 112, 193, 276, 333,

343, 346
Criteria API
current() method
cursorMoved event, 92, 257
CURSOR_TYPE

D
Data access methods, 371–373, 377
Data Access Object (DAO)
Database connection URL, 191, 288, 292, 430,

445, 448, 489, 556
Database Engine, 31, 33, 36, 135, 182, 616,

621, 622
Database File, 7, 31, 66, 364, 635,

636, 638–640
Database layer, 98, 99
DatabaseMetaData interface, 134–137, 217,

219–221, 267
Data consistency, 13, 67
Data definition language (DDL), 124, 125,

127, 139
Data file, 14, 33, 36, 39
Data independence, 14, 67
Data integrity, 13, 67
Data manipulation language (DML),

124–126, 139
Data model, 14, 15, 19
Data object, 5, 20
Data sharing, 13
Datasheet View
DataSource interface, 75, 83
Data tool
DBMS-related protocol, 98
dbo.InsertNewCourse, 309–313, 315
DECIMAL, 111, 121, 137, 240, 642,

643, 645
DECLARE, 111, 120, 240, 245, 247, 263,

365, 379, 385, 486
DeleteRow() method, 297, 308, 329
Delete Rule, 52, 54–57
Deployment descriptor, 145, 337, 370, 379,

387–389, 458
Deployment descriptor file web.xml,

365, 370–371
Design Query in Editor wizard, 318
Design scene window

Index

667

Design View, 42, 43, 157, 195, 199, 208, 210,
214, 227, 251, 253, 260, 281, 298,
321, 327, 473, 482, 485, 494, 509,
515–516, 527, 530, 554, 559, 562,
565, 567, 571, 576, 580, 582

destroy() method, 383
Disconnected RowSet, 78, 91, 95, 255–257
dispose() method, 253
Distributed multi-tiered application

model, 377
Distributed transaction, 82, 88–90, 93, 95
Domain Indexes, 38
Domain model
drawImage() method, 225, 227, 498
Driver class, 74, 75, 78, 94, 100–104, 106,

140, 203, 204
Driver.connect() Method, 102, 104–105,

139, 140
DriverManager class, 73–75, 78, 93, 100–103,

193, 202–204, 207, 268, 276, 333,
489, 556, 642, 643

DriverManager.getConnection() method,
102–104, 106, 139, 140

Drop Column
Dynamic query, 74, 107, 110, 113, 114, 116,

117, 208–211, 235, 252, 267, 268,
314, 321, 327

Dynamic SQL statements, 113, 114, 141

E
Editable property
edit() method
Edit Top 200 Rows, 41, 43, 63, 326, 639
@EJB
EJB container, 467, 481
EJB module, 379, 468, 474
Enforce referential integrity, 21, 35
Enterprise Application Clients
Enterprise Archive (EAR) file, 383
Enterprise Edition 6 API Specification, 145
Enterprise information system (EIS), 378, 379
Enterprise JavaBean (EJB), 2, 6, 144, 145,

147, 176, 177, 377–379, 381, 382,
456, 459

Enterprise resource planning (ERP), 89
Enterprise Server, 389
Entities, 15, 20–25, 32, 33, 69, 88, 145,

275, 360
Entity class, 193, 268, 463
Entity Classes from Database, 193
Entity Classes Mapping Files, 193
Entity integrity, 21, 34, 69
Entity integrity rule, 21, 67
Entity Manager, 275

EntityManager API
Entity-Relationship Model, 12, 19–21
EntityTransaction interfaces
equals() method
ER diagram, 20, 22, 69
ER notation, 25–27
execute() method, 76, 95, 108, 119, 122–125,

127, 129, 130, 207, 208, 217, 218,
230–233, 236, 241, 243, 263, 269,
272, 273, 276, 294, 329, 333

Execute Procedure wizard, 312, 320, 325
executeQuery() method, 77, 117, 119, 121,

123, 127, 128, 130, 136, 140, 193,
207–209, 217, 222, 236, 241, 252,
268, 270, 271, 286, 298, 304, 307,
343, 346, 416, 430, 485, 487,
556, 560

executeUpdate() method, 122, 123, 127, 129,
140, 207, 268, 279, 288, 292, 294,
437, 447, 452, 511, 529, 531, 564

exit() method, 216

F
faces-config.xml file, 365, 366, 368–371, 373,

386, 457, 458
FacesServlet, 364, 365, 370, 372, 373, 458
FacesServlet Web container, 365
Faculty Entity Manager
FETCH command, 248
Fetching by Column, 132–133, 212
Fetching by Row, 131–132, 134, 212
@@FETCH_STATUS, 248
Field Properties
Field Size
File Data Source
File Processing System (FPS), 12–13
File Server Database, 30–31, 68
FilteredRowSet, 255
findColumn() method, 132, 213
find() method
First Normal Form (1NF), 26–28, 67
Fix Imports, 145, 152, 229, 485, 486, 496,

506, 511, 557
for attribute, 368
Foreign Key Relationships, 50–57
Foreign Keys, 12, 15, 21, 22, 25, 35, 50–57,

67–69, 235, 248, 262, 285, 310,
317, 534, 561, 565, 601

Form data, 346, 348, 371–373, 409, 410,
420, 425

Form tag, 346, 347, 368, 375, 409, 419,
422, 586

forName() method, 488, 556
Function based indexes, 38

Index

668

G
GenericServlet class, 383
getAttribute() method, 351, 368, 423, 587
getColumnCount() method, 133–135, 213,

222, 223, 485, 487
getColumnName() method, 133, 213, 220
getColumnType() method, 133, 136, 213, 220
getConnection() method, 75, 83, 85, 102, 103,

106, 204, 207, 268, 343, 346, 415,
489, 556

getCurrentSession() method, 353
getDatabaseProductName() method, 135
getDatabaseProductVersion() method,

135, 137
getDriver() method, 102, 103
getDriverName() method, 135, 137, 221
getDriverVersion() method, 135, 137, 221
GET[] function
getGraphics() method, 227, 497
getHeight() method, 227, 498
getImage() method, 224, 225, 227, 436, 497
getInt() method, 111, 128, 137, 212, 219, 644
getMetaData() method, 133, 136, 213, 220,

222, 252, 485, 487, 556, 560
get() method, 495, 496, 505, 641, 645
getMoreResults() method, 129
getObject() method, 213, 241–243, 263, 268
getParameterMetaData() method, 138, 220
getParameter() method, 338–340, 342, 348,

353, 355, 410, 421, 423, 425, 426,
453, 457, 587

getPrecision() method, 133, 136, 137
getProperty() method, 368
getResultList() method
getResultSet() method, 77, 109, 123, 128, 130,

140, 208, 212, 231, 269
getScale() method, 133, 136, 137
getSelectedItem() method, 221, 243, 495
getSelectedValue() method, 252, 573
getSingleResult() method
getString() method, 132, 210, 212, 242, 243,

263, 346, 416, 430
getTableName() method, 133, 213, 220
getter() methods, 353, 355, 361, 362
getText() method, 209, 515, 538
getToolkit() method, 224
getTransaction() method
getUpdateCount() method, 76, 77, 123, 124,

129, 208, 231, 269
getValueIsAdjusting() method, 252, 573
getXXX() method, 77, 111, 117–120, 128,

130–132, 212, 213, 235, 237,
239–241, 268, 313

getWebServiceSQLPort() method

GlassFish v3 server, 144
Global transaction, 88
Graphics context, 224, 225, 227, 497
Groovy and Grails, 144

H
hasNext() method
Hibernate, 146, 355, 360, 390, 391
Hibernate API
Hibernate configuration file
hibernate.cfg.xml
hibernate.current_session_context_class

property
Hibernate framework, 390, 391
Hibernate helper class file
Hibernate jargon
Hibernate libraries
Hibernate mapping files, 360
Hibernate Persistence API
hibernate.query.factory_class property
Hibernate Query Language (HQL), 355
Hibernate Reverse Engineering File
hibernate.reveng.xml
hibernate.show_sql property
HibernateUtil.java helper file
HQL Editor
HQL Query Editor
Hibernate session, 353
Http Data Source
HTTP Port, 7, 418, 657–659
HttpServlet class, 383
HTTPServletRequest object, 380
HTTPServletResponse object, 380
HTTP-specific Servlet classes, 383

I
id attribute, 368, 376
Imagedata tag, 423
Import Project, 174
Indexes, 34, 35, 37, 38, 109, 111, 128–133,

135, 209, 210, 212, 213, 223, 263,
294, 346–349, 391, 430, 496, 510,
515, 528, 538

InitialContext object, 85
Initialization parameter file, 38
init() method, 338, 383, 457
IN parameters, 109, 110, 114, 115, 121, 207,

237–240, 243
inputSecret tags, 376
inputStream() method, 239
InputStream type, 239
inputText tag, 368, 369, 373, 375

Index

669

INSERT And UPDATE Specifications, 52, 54
insertRow() method, 297, 300, 333
Inspector Window, 158
Integer class, 315, 322
Integrated Databases, 12–14
Internet Information Services (IIS)
IP Addresses, 105, 184, 206
isClosed() method, 215, 417
IS command
IS operator
itemStateChanged() method, 252, 573

J
Java Activation Framework
Java API for XML Remote Procedure

(JAXRPC), 464
Java API for XML Web Services

(JAXWS), 464
Java Archive (JAR) file, 155, 168, 171–173,

379, 389, 407
Java Beans, 2, 4, 6, 177, 344, 350, 353,

356–363, 365, 368–377, 381, 390,
426, 433, 435–460, 469, 471, 501,
502, 545–547, 584, 586–598, 601,
602, 604, 606, 607

Java Beans Binding
Java Class Library, 2, 153, 165–173, 175, 176
Java Data objects (JDO)
Java DB Installation
Java Desktop Application, 2, 177, 475, 480
Java Development Kits (JDK), 6, 7, 144, 149,

156, 173, 176, 403–405, 629–633,
646–649, 651, 654, 655

Java Enterprise Bean engine
Java EE 6 APIs
Java EE 6 certified servers
Java EE containers, 381–382, 411, 459
Java EE module, 379, 381
Java EE platform, 337, 377, 380, 382
Java EE platform compliant system
Java EE server, 337, 378, 381, 382
Java EE 6 Software Development Kit (SDK),

144–146, 275
Java EE 6 Web Profile SDK
Java Extension Mechanism
Java frameworks, 390, 391
Java freeform project
JavaFX, 144–150, 153, 176, 177
JavaFX APIs
JavaFX Compiler
JavaFX Composer
JavaFX Composer data source
JavaFX Debugging and Profiling

JavaFX Desktop Business Application, 144
JavaFX Desktop Runtime
JavaFX GUI components
JavaFX GUI design window
JavaFX Kit
JavaFX Mobile applications, 144, 147
JavaFX Mobile Business Application
JavaFX Plugin
JavaFX Runtime
JavaFX Script Editor
JavaFX Script language, 176
JavaFX Software Development Kits

(SDK), 144–146
JavaFX Scene
JavaFX Stage
Java help class, 344–350, 357, 359, 408–412,

425, 427–429, 435–437, 448, 456,
458, 591

Java managed beans, 357, 363, 366, 374–376,
457, 500–505, 521, 584, 586

JavaMessage Service (JMS) API, 387
JavaMessage Service (JMS) messages, 382
Java Micro Edition platform
Java Mobile Edition (Java ME), 146–148
Java Naming and Directory Interface (JNDI),

71, 75, 83–87, 90, 93, 94, 202, 381
Java package, 100, 155, 166, 217–219, 233,

234, 260, 352, 425, 589
Java Persistence API (JPA), 145, 176, 177,

181, 193, 234, 349, 387, 411,
412, 463

Java Persistence API Wizards, 181
Java Persistence Query Language (JPQL), 268
Java project with existing sources,

154, 173–175
Java Runtime Environment
JavaScript Debugger
JavaScript Object Notation (JSON), 463
Java Server Face (JSF), 99, 144, 145, 177,

356, 363–377, 379, 385–386, 390,
391, 456–459, 480

JavaServer Faces framework, 385, 390
Java Server Page (JSP), 2, 4, 6, 99, 340–344,

346–353, 357–359, 361, 363–365,
367, 368, 371, 377, 379, 380,
383–385, 390, 393, 395, 396, 399,
400, 402, 408–433, 435–457, 459,
460, 475, 480, 505–507, 521, 523,
546, 549, 586–590, 594, 596, 597,
601, 606

JavaServer Pages Standard Tag Library
(JSTL), 384

Java Servlet, 99, 255, 349, 377, 379, 380, 383,
385, 388–390, 475

Index

670

Java Servlet API, 382–383
Java session bean, 359, 443, 445–448, 451,

457, 552
Java Specification Requests (JSR 311), 463
Java Standard Edition (Java SE), 147–149,

153, 154, 176, 177, 182, 403,
629, 630

Java Subversion (SVN), 147
Java Swing component
Java-to-CLI translation, 81
Java Transaction API (JTA), 88, 89, 386–387
Java Transaction Service (JTS), 71, 93, 202
Java Versioning Specification
Java Virtual Machine (JVM), 144,

377, 383–385
Java Web application, 2, 4, 5, 99, 150, 175,

337–461, 467–469, 481,
551–552, 610

Java Web server Servlets, 456
Java Web Services, 2, 4, 5, 99, 461–613
JAX-RPC clients, 464
JAX-RPC model, 464
JBoss Application Server, 177
JBoss Hibernate
JButton, 159, 161
JDBC 2.0 Optional Package, 86
JDBC 2.0 Standard Extension API, 75, 82, 83
JDBC 3.0, 202, 256
JDBC 4.0, 72, 93, 202, 254, 295, 298
JDBC API, 2, 3, 5, 71–98, 100, 102, 110, 118,

121, 139, 202, 219, 234–236, 240,
245, 254, 255, 260, 267

JDBC Connection URL, 105
JDBC database connection URL
JDBC DataSource, 82–85
JDBC driver, 2, 3, 71–102, 105, 134, 137, 139,

182, 188–190, 202–206, 213, 255,
267, 268, 277, 342, 346, 404, 407,
408, 415, 429, 441, 445, 448, 488,
556, 649

JDBC Escape Syntax, 126–127
JDBC-Net-All-Java Driver, 81
JDBC-ODBC Bridge Driver, 79–80
JDBC RowSet, 3, 82, 90–92, 256–257, 259
JDBCRowSet class, 91, 255
JDBC Standard Extension API, 82–93
JDBC URL, 105, 106, 140, 142, 191, 205,

206, 342, 346, 442
JDialog class, 198, 213, 234, 482
JDialog Form, 156, 178
JEUS 7 application server, 177
JFluid, 148, 152
JFrame Form, 156, 157, 163, 176, 178,

194–196, 204, 214, 258

JLabel, 159
JNDI Context instance, 85
JNDI subcontext, 85
JoinRowSet, 256
Joint Engine Technology, 31
JPanel Form, 156, 178
JPQL identifier
JPQL library
JPQL query, 268
JPQL string, 268
JSF core library, 365
JSF custom tag library, 365
JSF engine, 373, 374
JSF Form, 145
JSF Form from Entity
JSF HTML library, 365
JSF managed bean
JSF navigation handler, 373
JSF tag libraries, 365
JSF tags, 357, 363–365, 367, 371, 372,

375, 459
JSP compiler, 385
JSP container, 341, 384
JSP directive, 341, 352, 358, 425, 438, 448,

453, 589, 597, 601, 606
JSP directive <%@ page />, 359, 457
JSP directive tag, 348, 410, 420
JSP form, 375, 425, 459
JSP forward directive, 348, 411, 421
JSP implicit object, 350–357, 368
JSP syntax, 383, 384
JSP tag <jsp:useBean />, 360
JSP tags, 342, 360–362, 366, 384, 385,

457, 586
JTextField, 159, 282, 494, 573, 582

L
list() method, 355
ListView control
Local Repository
Local Web site
Logical Design, 14, 15, 67
lookup() method, 85

M
main() method, 167, 169, 170, 477, 478
Many-to-many relationship, 24, 25, 69
Maven based application, 151
Maven POM
Maven Repository
MediaTracker class, 224, 226, 227, 497
Message driven bean, 177, 382

Index

671

Message tag, 368
Metadata annotations
Microsoft Office Publisher 2007,

350, 391–403
Microsoft SQL Server JDBC Driver, 102,

182–183, 187, 188, 202–206,
267, 610

Middle-tier, 88, 97–99
Miscellaneous Properties
Model view controller (MVC), 159, 365, 390,

418, 419
Modify Column
Module Manager
MouseEvent package
moveToInsertRow() method, 297, 299, 333
Multiple ResultSet objects, 111, 119, 236, 270
MySQL database server, 11, 72, 202

N
name attribute, 409, 423, 587
Named parameter
Named query, 268, 269
Native-API-Partly-Java driver, 80
Native-Protocol-All-Java Driver, 82
Navigation destinations, 366
Navigation link
Navigation rules, 365, 366, 373, 374, 386, 458
Navigation source, 366
Navigator window, 151, 157
NetBeans Base IDE, 148
NetBeans module, 147, 151, 153, 176–178
NetBeans Platform, 4, 144, 147, 176–178
NetBeans Profiler, 148, 152, 176, 177
NetBeans Refactor, 152
NetBeans Source, 152
NetBeans Team, 152
NetBeans Visual Library, 147
Network Computer (NC), 91, 255
next() method, 77, 130–132, 136, 140, 210,

212, 223, 231, 263, 286
New JSF Managed Bean
Non-clustered indexes, 35
Not Populated
NullPointer exception, 263
NUMERIC, 33, 111, 121, 240, 642, 643, 645

O
Object Explorer, 39–41, 43, 50, 53–55, 57,

186, 188, 192, 311, 319, 320, 325
Objectrelational mapping (ORM)
OCI drivers
onclick attribute, 347, 409, 410, 420

On Delete Cascade
onMouseClicked event
openSession() method
Open XA standard, 88
Oracle cursor, 270
Oracle Database 10g Express Edition
Oracle database configuration file
Oracle database connection URL
Oracle data source
Oracle JDBC driver
Oracle JDBC thin driver
Oracle package, 268
Oracle stored procedures
Oracle syntax, 118, 236
OracleTopLink
org.hibernate.Query
org.hibernate.Session
OR mapping metadata
out object, 338, 339
OUT parameter, 74, 109–111, 118–121, 141,

207, 236, 240–243, 246–249, 268
outputText tag, 368
Output window, 171, 172, 289, 292, 473, 474,

479, 504

P
PageFlow button
PageFlow editor, 375
PageFlow view
Page scope, 358
paint() method, 225
Palette Window, 158, 159, 194, 199, 413, 438,

448, 452, 453
ParameterMetaData interface, 134, 137–139,

219, 220, 267
ParameterMetaData object, 110, 137, 138
parseInt() method, 167
Password files, 36, 39
persist() method
Persistence context
Persistence unit
persistence.xml file
Persistent parameter file, 38
Personal Digital Assistant (PDA), 91, 255
Personal Home Page (PHP), 144–150, 153,

177, 178, 383, 390
PHP configuration
PHP ending mark
PHP engine
PHP file
PHP runtime
Physical Design, 14, 15, 67
Plain old Java objects (POJOs)

Index

672

PLSQL language
PL/SQL statement, viii, 3, 7, 32, 35, 37, 38,

71, 74, 76–77, 85, 93, 94, 98, 100,
107–110, 112–116, 120–127, 129,
132, 139–141, 207, 208, 238–241,
243, 244, 246, 268, 416, 563,
566, 641–645

PooledConnection interface, 90
PooledConnection objects, 86
Positional parameters, 120, 209, 221, 237,

262, 263, 288, 291, 292, 298, 304,
307, 314, 321, 327, 416, 430, 436,
437, 446, 447, 484, 485, 487, 529,
531, 563, 564, 566

PostgreSQL database, 86
PostgreSQL JDBC driver, 86
Posting-page, 338
POST method, 346
prepareCall() method, 120, 237, 243, 314,

321, 327
PreparedStatement class, 76, 110, 209,

220, 510
PreparedStatement interface, 109, 110,

114–117, 138, 142, 235
Presentation-oriented Web application, 380
Primary data files, 33
Primary Keys, 12, 21, 22, 25, 28–30, 34, 35,

37, 41, 43, 44, 47, 48, 50–57, 67,
68, 135, 248, 262, 285, 310, 317,
325, 455, 565, 601

println() method, 338, 501, 547, 556, 577,
581, 583

ProcedureDefine page
Profiling Points, 148, 152
Project object model (POM)
.properties files, 153, 155
Properties Window, 158–160, 170, 171, 194

Q
Query Designer wizard, 319

R
RDBMSs, 89, 110, 118, 236
Reading page, 338
Redo log files, 36, 39
Refactor button, 493, 508, 527, 569
Reference Table Column List
Reference Table Name\
Referential Integrity, 12, 21, 35, 69
Referential integrity rules, 21, 22
registerDriver() method, 75, 101, 203
registerOutParameter() method, 111, 120, 121,

240, 243, 268

Relational Data Model, 11, 12, 19
Remote Procedure Call (RPC), 464, 466
Remote Web site
removeRowSetListener() method, 92, 257
Rename Column
request object, 338, 339, 423, 457, 587
request scope, 358
required attribute, 375, 459
Resource adapter modules, 379
RESTful Web services, 144–146, 462,

463, 465
ResultSet class, 77, 132, 210–213, 297, 329,

563, 566
ResultSet.CONCUR_READ_ONLY, 296
ResultSet.CONCUR_UPDATABLE, 296, 331
ResultSet Enhanced Functionalities, 295–296
ResultSetMetaData interface, 133–136, 217,

219–223, 267
ResultSet object, 74, 76, 77, 91, 92, 95,

108–112, 117, 119, 121, 123–125,
127–137, 139–142, 181, 193, 207,
209, 211–213, 219, 222, 223, 231,
236, 241, 252, 253, 255, 257, 263,
267–271, 273, 275, 286, 287, 294,
295, 298, 303, 304, 307, 329, 330,
343, 346, 416, 430, 485, 487,
556, 560

ResultSet Type, 295, 296, 330
ResultSet.TYPE_FORWARD_ONLY, 296,

330, 331
ResultSet.TYPE_SCROLL_INSENSITIVE,

296, 330, 331
ResultSet.TYPE_SCROLL_SENSITIVE,

296, 331
Reverse engineering file
rowChanged event, 92, 257
rowsetchanged event, 92, 257
RowSet Listeners, 92, 257
RowSet object, 6, 78, 90–92, 254–268

S
Secondary Ant script, 174
Secondary data files, 33
Second Normal Form, 26, 28–30
selectedItem property
SelectItem class
SelectOneListbox
self.close() method, 347, 410
sendRedirect() method, 353, 361, 425–427
Sequence object, 256, 355
Server Explorer, 244, 247, 249, 250
Server-side utility classes, 388
service() method, 338, 457
Service-oriented Web application, 380

Index

673

Services window, 151, 288, 292, 301, 304,
308, 315, 322, 328, 441, 443, 451,
454, 517, 524, 533, 542, 550, 551,
579, 582, 600, 605, 609, 657

Servlet, 337–342, 344, 363–365, 370,
382–385, 388, 389, 457, 458

Servlet class, 339, 341, 364, 365, 379, 383
Servlet interface, 383
Session bean, 177, 382, 469
Session Beans for Entity Classes
Session class, 351, 353, 423, 425, 587
SessionFactory object
session.getAttribute() methods, 351, 362, 368,

423, 587
Session implicit object, 344
session scope, 358
setAttribute() method, 353, 425, 426
setCommand() method, 262, 263
setFacultyId() method
setInt() method, 209
setListData() method, 243, 263, 272, 273, 572
setLocationRelativeTo() method, 204, 214
setObject() method, 115, 116, 238, 239
setParameters() method
setProperty tags, 359, 361
setString() method, 120, 121, 124, 209, 210,

221, 231, 240, 243, 252, 262, 263,
278, 292, 298, 304, 307, 329, 447,
485, 487, 531, 556, 560

setter() method, 359
setText() method, 162, 413, 496, 574
setVisible() method, 253
setXXX() method, 92, 114, 115, 117, 119,

121, 235–238, 240, 257
Sid, 271
Simple Object Access Protocol (SOAP),

461–466, 611, 612
Singleton session beans, 382
SMALLINT, 47, 642, 643, 645
SOAP-based Web services, 2, 463–479,

481–482, 552–553, 609–613
SOAP Web Services, 461
Software Development Kits (SDK), 143,

156, 181
Source Code Management, 152
Source Editor, 166–168
Source Packages, 156, 168, 174, 470, 477,

482, 508, 526, 527, 569, 570, 584,
597, 602, 607

split() method, 167, 243
Spring Web MVC
SQL Authentication Mode, 185
SQL Server Browser
SQL Server Configuration Manager, 183,

185, 625

SQL Server Express, 182–186, 617
SQL Server JDBC Driver, 105, 183, 185, 186,

206, 488, 556
SQL Server 2008 Management Studio
SQL Server Network Configuration, 184, 618
SQL Stored Procedure, 74, 107, 110, 115, 118,

236, 238, 242–251, 267, 268
SQL92 syntax, 118, 119, 236, 237, 243, 268
Statement class, 76, 77, 93, 107, 207, 209, 231
Statement interface, 108–113, 117, 119, 123,

128, 129, 133, 208, 235
Static data, 112, 384
Static HTML pages, 388
Static parameter file, 38
Stored procedure dbo.DeleteCourse, 323–326
Stored procedure dbo.UpdateCourse,

317–321, 324
Stored procedure DeleteCourse()
Stored procedure UpdateCourse()
Stored Procedures, 4, 6, 30, 33, 34, 37, 76,

110, 117–120, 122, 123, 126, 129,
135, 141, 142, 207, 208, 233,
235–237, 243–250, 254, 267, 268,
270–273, 309–315, 317–322,
324–332, 334

Subname, 105, 106, 204, 206, 269
Subprotocol, 204
Sun GlassFish Enterprise Server v3
Sun Java Studio Creator, 147
Sun Java Studio Enterprise, 147
Sun Studio, 147
Swing API, 143
Swing Application Framework, 148
Swing Containers, 158
Swing Controls, 158
Swing Menus, 158
Swing Windows, 158, 225
Symfony Framework, 144, 145
System.exit() method, 272

T
Table Designer, 52, 54
taglib directives, 365, 367
Tasks window, 152
TCP/IP port number, 186, 267
TCP/IP protocol, 182–185
TCP Ports, 184, 185
Test Libraries
Test Packages, 174
Thin client, 78, 91, 255
Third Normal Form (3NF), 26, 29–30
Three-tier client-server model, 2, 98–99
Three-tier model, 97–99, 139, 140, 142
Tomcat Web Server, 2, 468, 474

Index

674

Toolkit classes, 224, 227, 497
Top link, 629
toString() method, 205, 495, 496, 505, 515, 538
Transaction Association
Transaction log files, 33, 35
Two-Phase Commit Protocol, 89
Two-tier model, 97, 98, 139
type attribute, 346, 409
Type class, 73
Type I driver, 79, 80
Type II driver, 80, 81
Type III driver, 81
Type IV driver, 82, 94, 267

U
UIComponent class, 364, 365
Unified Expression Language (EL), 363, 368,

375, 376, 458
Uniform Resource Identifiers (URIs), 462
Uniform Resource Locator (URL), 103–106,

113, 135, 191, 288, 292, 301, 305,
308, 315, 322, 347, 348, 368, 387,
390, 409, 410, 415, 421, 430, 443,
445, 451, 454, 517, 524, 542, 550,
579, 600, 605

Universal Description, Discovery and
Integration (UDDI), 461, 465,
466, 611

Updatable ResultSet, 4, 294–309,
328–331, 333

Updatable ResultSet object, 296–309, 329
updateRow() method, 297, 304
Update Rule, 52, 54–57
UPDATE statement, 146, 318, 319
updateString() methods, 299, 304
updateXXX() methods, 297, 299, 304, 333
User Interface Module

V
validator attribute, 368
value attribute, 368, 369, 372, 373, 375
Value-binding expressions, 368, 369
ValueChanged() method
VARCHAR, 121, 240, 243, 246, 247, 267,

642, 643, 645
Vector, 129, 212
Views, 14, 30, 33, 34, 37, 59, 124, 146, 148,

152, 155, 157, 158, 177, 247, 292,
295, 302, 306, 308, 316, 322, 341,
344, 364, 365, 369, 371, 375, 379,
386, 418, 421, 422, 443, 451, 454,
456, 459, 463, 473, 500, 518,

525, 533, 542, 550, 579, 586,
600, 605

View tag, 367

W
waitForID() method, 227, 498
Web Archive (WAR) file, 389
Web-based client project, 502
Web container, 338, 365, 381–383, 386, 387,

389, 390, 457, 467–469, 473, 481,
552, 612

Web deployment descriptor, 365, 370–371,
386, 470

Web frameworks, 389–391
Web modules, 379, 388–389
Web operation, 472, 536, 553–571, 574, 577,

580, 582, 592, 593, 597, 601, 602,
606, 607

WebRowSet class, 255
Web service endpoints, 380
Web service instance, 478, 495, 497, 515–516,

521, 538, 539, 546, 547, 571, 574,
577, 580, 582, 592, 593, 597,
603, 607

Web service port, 477, 493, 503
Web Service References, 477, 478, 493,

502–504, 513–514, 519, 520,
535–537, 544–545,
584–586, 611–613

Web Services Clients
Web Services Description Language (WSDL),

461–466, 611, 612
Web Services Interoperability Technologies

(WSIT), 462
Web tier components, 378
web.xml file, 370, 386, 389
Windows Authentication, 39, 628, 636
Windows Authentication Mode, 185, 186

X
XA compliant JTA modules, 88
XAConnections, 89, 90
XADataSource, 89, 90
XA functionality, 88
XAResource, 89
XATransactionlDS, 90
XHTML pages, 388, 389
XML button
XML deployment descriptors, 337
XML editor, 375
XML View
X/Open standard, 88

Index

	Preface
	Copyrights and Trademarks
	Acknowledgment
	Contents
	About the Author
	Chapter 1: Introduction
	1.1 Outstanding Features About This Book
	1.2 Who This Book Is For
	1.3 What This Book Covers
	1.4 How This Book Is Organized and How to Use This Book
	1.5 How to Use the Source Codes and the Sample Database
	1.6 Instructors Materials and Customers Supports

	Chapter 2: Introduction to Databases
	2.1 What Are Databases and Database Programs?
	2.1.1 File Processing System
	2.1.2 Integrated Databases

	2.2 Develop a Database
	2.3 Sample Database
	2.3.1 Relational Data Model
	2.3.2 Entity-Relationship Model (ER)

	2.4 Identifying Keys
	2.5 Define Relationships
	2.6 ER Notation
	2.7 Data Normalization
	2.7.1 First Normal Form (1NF)
	2.7.2 Second Normal Form (2NF)
	2.7.3 Third Normal Form (3NF)

	2.8 Database Components in Some Popular Databases
	2.8.1 Microsoft Access Databases
	2.8.2 SQL Server Databases
	2.8.3 Oracle Databases

	2.9 Create Microsoft SQL Server 2019 Express Sample Database
	2.9.1 Create the LogIn Table
	2.9.2 Create the Faculty Table
	2.9.3 Create Other Tables
	2.9.4 Create Relationships Among Tables
	2.9.4.1 Create Relationship Between the LogIn and the Faculty Tables
	2.9.4.2 Create Relationship Between the LogIn and the Student Tables
	2.9.4.3 Create Relationship Between the Faculty and the Course Tables
	2.9.4.4 Create Relationship Between the Student and the StudentCourse Tables
	2.9.4.5 Create Relationship Between the Course and the StudentCourse Tables

	2.9.5 Store Images to the SQL Server 2019 Express Database

	2.10 A Short-Cut: How to Use the Sample Database without Building It
	2.11 Chapter Summary

	Chapter 3: JDBC API and JDBC Drivers
	3.1 What Are JDBC and JDBC API?
	3.2 JDBC Components and Architecture
	3.3 How Does JDBC Work?
	3.3.1 Establish a Connection
	3.3.1.1 Using DriverManager to Establish a Connection
	3.3.1.2 Using DataSource Object to Establish a Connection

	3.3.2 Build and Execute SQL Statements
	3.3.3 Process Results
	3.3.3.1 Using ResultSet Object
	3.3.3.2 Using RowSet Object

	3.4 JDBC Driver and Driver Types
	3.4.1 Type I: JDBC-ODBC Bridge Driver
	3.4.2 Type II: Native-API-Partly-Java Driver
	3.4.3 Type III: JDBC-Net-All-Java Driver
	3.4.4 Type IV: Native-Protocol-All-Java Driver

	3.5 JDBC Standard Extension API
	3.5.1 JDBC DataSource
	3.5.1.1 Java Naming and Directory Interface
	3.5.1.2 Deploy and Use a Basic Implementation of DataSource

	3.5.2 JDBC Driver-Based Connection Pooling
	3.5.3 Distributed Transactions
	3.5.3.1 Distributed Transaction Components and Scenarios
	3.5.3.2 The Distributed Transaction Process

	3.5.4 JDBC RowSet
	3.5.4.1 Introduction to Java RowSet Object
	3.5.4.2 Implementation Process of a RowSet Object

	3.6 Chapter Summary

	Chapter 4: JDBC Application and Design Considerations
	4.1 JDBC Application Models
	4.1.1 Two-Tier Client-Server Model
	4.1.2 Three-Tier Client-Server Model

	4.2 JDBC Applications Fundamentals
	4.2.1 Loading and Registering Drivers
	4.2.2 Getting Connected
	4.2.2.1 The DriverManager and Driver Classes
	4.2.2.2 Using the DriverManager.getConnection() Method
	4.2.2.3 Using the Driver.connect() Method
	4.2.2.4 The JDBC Connection URL
	4.2.2.5 Establish a Database Connection

	4.2.3 Executing Statements
	4.2.3.1 Overview of Statement Objects and Their Execution Methods
	4.2.3.2 Using the Statement Object
	4.2.3.2.1 Creating the Statement Object
	4.2.3.2.2 Executing the Statement Object

	4.2.3.3 Using the PreparedStatement Object
	4.2.3.3.1 Creating the PreparedStatement Object
	4.2.3.3.2 Setting the Input Parameters
	4.2.3.3.3 Executing the PreparedStatement Object

	4.2.3.4 Using the CallableStatement Object
	4.2.3.4.1 Building a CallableStatement Query String
	4.2.3.4.2 Creating the CallableStatement Object
	4.2.3.4.3 Setting the Input Parameters
	4.2.3.4.4 Registering the Output Parameters
	4.2.3.4.5 Executing the CallableStatement Object

	4.2.3.5 More About the Execution Methods
	4.2.3.6 Creating and Executing SQL Statements
	4.2.3.6.1 Creating and Executing the DDL Statements
	4.2.3.6.2 Creating and Executing the DML Statements
	4.2.3.6.3 JDBC Escape Syntax

	4.2.4 Retrieving Results
	4.2.4.1 The ResultSet Interface
	4.2.4.2 Getting and Processing the ResultSet Object
	4.2.4.2.1 Fetching by Row
	4.2.4.2.2 Fetching by Column

	4.2.5 Using JDBC MetaData Interfaces
	4.2.5.1 Using the ResultSetMetaData Interface
	4.2.5.2 Using the DatabaseMetaData Interface
	4.2.5.3 Using the ParameterMetaData Interface

	4.2.6 Closing the Connection and Statements

	4.3 Chapter Summary

	Chapter 5: Introduction to Apache NetBeans IDE
	5.1 Overview of the Apache NetBeans 12
	5.1.1 The Apache NetBeans Platform
	5.1.2 The Apache NetBeans Open-Source IDE

	5.2 Installing and Confirming the Apache NetBeans IDE
	5.3 Exploring Apache NetBeans IDE 12
	5.3.1 An Overview of Apache NetBeans IDE 12 GUI
	5.3.2 Build a New Java with Ant Project
	5.3.2.1 Build a Java Application Project
	5.3.2.1.1 Add a Graphical User Interface
	5.3.2.1.2 Add Other GUI-Related Components
	5.3.2.1.3 Develop the Codes for Three Buttons
	5.3.2.1.4 Run the Project

	5.3.2.2 Build a Java Class Library
	5.3.2.2.1 Create a Java Class Library Project
	5.3.2.2.2 Create a Java Application Project
	5.3.2.2.3 Configure the Compilation Classpath
	5.3.2.2.4 Add Codes to the Main.java Tab in the Java Application Project
	5.3.2.2.5 Run the Application Project to Call the Java Library
	5.3.2.2.6 Build and Deploy the Application
	5.3.2.2.7 Distribute the Application to Other Users

	5.3.2.3 Build a Java Project with Existing Sources
	5.3.2.4 Build a Java Free-Form Project

	5.3.3 Build a Java Web Application Project

	5.4 Chapter Summary

	Part I: Building Two-Tier Client-Server Applications
	Chapter 6: Query Data from Databases
	6.1 Setup Connection Between Microsoft SQL Server Database and Java Classes
	6.1.1 Download and Install Microsoft SQL Server JDBC Driver
	6.1.2 Configure TCP/IP Protocol and Setup for SQL Server Express
	6.1.3 Configure Authentication Mode for SQL Server 2019 Express
	6.1.4 Use the New Database Connection in Apache NetBeans to Setup a Connection

	6.2 Introduction to Runtime Object Method
	6.3 Create a Java Application Project to Access the SQL Server Database
	6.3.1 Create Graphic User Interfaces
	6.3.2 Use a JDialog as a MessageBox
	6.3.3 Perform the Data Query for the LogIn Table
	6.3.3.1 Load and Register Database Drivers
	6.3.3.2 Add Microsoft SQL Server JDBC Driver to the Project
	6.3.3.3 Load and Register Microsoft SQL Server JDBC Driver
	6.3.3.3.1 The JDBC Uniform Resource Locators (URLs)

	6.3.3.4 Connect to Databases and Drivers
	6.3.3.5 Create and Manage Statement Object
	6.3.3.6 Use PreparedStatement Object to Perform Dynamic Query
	6.3.3.7 Use ResultSet Object

	6.3.4 Develop the Codes for the SelectionFrame Form
	6.3.4.1 Modify Codes to Transfer Between SelectionFrame and LogInFrame

	6.3.5 Perform the Data Query for the Faculty Table
	6.3.5.1 Add Java Package and Coding for the Constructor
	6.3.5.2 Query Data using JDBC MetaData Interface
	6.3.5.2.1 The DatabaseMetaData Interface
	6.3.5.2.2 The ResultSetMetaData Interface
	6.3.5.2.3 The ParameterMetaData Interface
	6.3.5.2.4 Use DatabaseMetaData Interface to Query Database Related Information
	6.3.5.2.5 Use ResultSetMetaData Interface to Query Table-Related Information

	6.3.5.3 Display an Image for the Selected Faculty in Canvas
	6.3.5.3.1 Operational Sequence to Display an Image in Java
	6.3.5.3.2 Create a User-Defined Method to Select and Display Desired Faculty Image
	6.3.5.3.3 Develop Additional Codes to Coordinate This Image Displaying

	6.3.5.4 Develop the Codes for the Back Button Click Event Handler
	6.3.5.5 Query Data Using the execute() Method to Perform a Query-Related Action
	6.3.5.6 Query Data Using the CallableStatement Method

	6.3.6 Perform the Data Query for the Course Table
	6.3.6.1 Import Java Packages and Coding for the CourseFrame Constructor
	6.3.6.2 Query Data From Course Table Using CallableStatements
	6.3.6.2.1 Build and Formulate the CallableStatement Query String
	6.3.6.2.2 Create a CallableStatement Object
	6.3.6.2.3 Set the Input Parameters
	6.3.6.2.4 Register the Output Parameters
	6.3.6.2.5 Execute CallableStatement
	6.3.6.2.6 Retrieve the Running Result

	6.3.6.3 Coding for the Select Button Click Event Handler to Perform CallableStatement Query
	6.3.6.4 Build the SQL Stored Procedure dbo.FacultyCourse
	6.3.6.4.1 Structure and Syntax of a SQL Stored Procedure
	6.3.6.4.2 Return Multiple Rows from a SQL Stored Procedure to the Java CallableStatement

	6.3.6.5 Coding for the CourseList Box to Display Detailed Information for the Selected Course
	6.3.6.6 Coding for the Back Button Click Event Handler

	6.3.7 Query Data from the Student Table Using the Java RowSet Object
	6.3.7.1 Introduction to Java RowSet Object
	6.3.7.2 The Operational Procedure of Using the JDBC RowSet Object
	6.3.7.3 Build a Graphical User Interface StudentFrame Form
	6.3.7.4 Coding for the Constructor of the StudentFrame Class
	6.3.7.5 Coding for the Select Button Event Handler to Query Data Using the CachedRowSet
	6.3.7.6 Display a Student Picture for the Selected Student

	6.4 Chapter Summary

	Chapter 7: Insert, Update, and Delete Data from Databases
	7.1 Perform Data Manipulations to SQL Server Database Using Java Runtime Object
	7.2 Perform Data Insertion to SQL Server Database Using Java Runtime Object
	7.2.1 Develop the Codes for the Insert Button Event Handler
	7.2.2 Develop a Method for Data Checking Prior to Data Insertion
	7.2.3 Develop a Method for Selecting a Valid Faculty Image
	7.2.4 Find a Way to Enable the Insert Button to Begin a New Data Insertion
	7.2.5 Develop a Method for Clearing Original Faculty Information
	7.2.6 Develop the Codes for the Validation of the Data Insertion
	7.2.7 Build and Run the Project to Test the Data Insertion

	7.3 Perform Data Updating to SQL Server Database Using Java Runtime Object
	7.3.1 Modify the Codes Inside the FacultyFrame Constructor
	7.3.2 Develop the Codes for the Update Button Event Handler
	7.3.3 Build and Run the Project to Test the Data Updating

	7.4 Perform Data Deleting to SQL Server Database Using Java Runtime Object
	7.4.1 Develop the Codes for the Delete Button Event Handler
	7.4.2 Build and Run the Project to Test the Data Deleting

	7.5 Perform Data Manipulations Using Updatable ResultSet
	7.5.1 Introduction to ResultSet Enhanced Functionalities and Categories
	7.5.2 Perform Data Manipulations Using Updatable ResultSet Object
	7.5.2.1 Insert a New Row Using the Updatable ResultSet
	7.5.2.2 Update a Data Row Using the Updatable ResultSet
	7.5.2.3 Delete a Data Row Using the Updatable ResultSet

	7.6 Perform Data Manipulations Using Callable Statements
	7.6.1 Insert Data to the Course Table Using Callable Statements
	7.6.1.1 Develop the Stored Procedure dbo.InsertNewCourse
	7.6.1.2 Develop the Codes for the Insert Button Click Event Handler

	7.6.2 Update Data to the Course Table Using Callable Statements
	7.6.2.1 Develop the Stored Procedure dbo.UpdateCourse
	7.6.2.2 Develop the Codes for the Update Button Click Event Handler

	7.6.3 Delete Data from the Course Table Using Callable Statements
	7.6.3.1 Develop the Stored Procedure dbo.DeleteCourse
	7.6.3.2 Develop the Codes for the Delete Button Click Event Handler

	7.7 Chapter Summary

	Part II: Building Three-Tier Client-Server Applications
	Chapter 8: Developing Java Web Applications to Access Databases
	8.1 A Historical Review About Java Web Application Development
	8.1.1 Using Servlet and HTML Web Pages for Java Web Applications
	8.1.2 Using JavaServer Pages Technology for Java Web Applications
	8.1.3 Using Java Help Class Files for Java Web Applications
	8.1.4 Using the JSP Implicit Object Session for Java Web Applications
	8.1.4.1 Modify the FacultyPage JSP File to Use the Session Object
	8.1.4.2 Build the Transaction JSP File FacultyQuery.jsp
	8.1.4.3 Build the Help Class FacultyBean

	8.1.5 Using Java Beans Technology for Java Web Applications
	8.1.5.1 Modify the Help Class FacultyBean to Make It a Java Bean Class
	8.1.5.2 Build a New Starting Web Page FacultyBeanPage

	8.1.6 Using JavaServer Faces Technology for Java Web Applications
	8.1.6.1 The Application Configuration Resource File faces-config.xml
	8.1.6.2 Sample JavaServer Face Page Files
	8.1.6.3 The Java Bean Class File
	8.1.6.4 The Web Deployment Descriptor File web.xml
	8.1.6.5 A Complete Running Procedure of JSF Web Applications
	8.1.6.5.1 The Java Bean-JSF Page Relationship and Page Navigations
	8.1.6.5.2 The Detailed Codes for the Java Bean Class

	8.2 Java EE Web Application Model
	8.2.1 Java EE Web Applications with and Without EJB

	8.3 The Architecture and Components of Java Web Applications
	8.3.1 Java EE Containers
	8.3.2 Java EE 8 APIs
	8.3.2.1 Enterprise Java Beans API Technology
	8.3.2.2 Java Servlet API Technology
	8.3.2.3 JavaServer Pages API Technology
	8.3.2.4 JavaServer Faces API Technology
	8.3.2.5 Java Transaction API
	8.3.2.6 Java Message Service API

	8.3.3 Java Web Application Life Cycle
	8.3.4 Java Web Modules
	8.3.5 Java Web Frameworks

	8.4 Build Java Web Project to Query SQL Server Database
	8.4.1 Create Five Web Pages Using Microsoft Office Publisher 2007
	8.4.1.1 Create the LogIn Page
	8.4.1.2 Create the Selection Page
	8.4.1.3 Create the Faculty Page
	8.4.1.4 Create the Course Page
	8.4.1.5 Create the Student Page

	8.4.2 Setup Environments for NetBeans IDE to Build Java Web Applications
	8.4.2.1 Download and Install Required Components
	8.4.2.2 Configure NetBeans IDE 8.2 and Create Our First Web Application Project

	8.4.3 Access and Query the LogIn Table Using JavaServer Pages and Help Class Files
	8.4.3.1 Modify the LogIn.jsp Page and Create LogInQuery.jsp File
	8.4.3.2 Create the Java Help Class File LogInQuery.java
	8.4.3.3 Create a Dialog Box as the Message Box
	8.4.3.4 Develop the Codes for the Help Class File
	8.4.3.4.1 Import SQL Server-Related Package and Create the Class Constructor
	8.4.3.4.2 Build the Codes for the checkLogIn() Method
	8.4.3.4.3 Build the Codes for the CloseDBConnection() Method

	8.4.4 Develop the Codes for the Selection Page
	8.4.5 Query the Faculty Table Using JavaServer Pages and JSP Implicit Session Object
	8.4.5.1 Modify the Faculty.jsp Page
	8.4.5.2 Create the FacultyProcess.jsp Page
	8.4.5.3 Create the Help Class File FacultyQuery.java

	8.5 Build Java Web Project to Manipulate SQL Server Database
	8.5.1 Modify the Faculty.jsp Page by Adding A File Selection Function
	8.5.2 Insert New Records to the Faculty Table Using JavaServer Pages and Java Beans
	8.5.2.1 Create a New Java Help Class File FacultyInsertBean.java
	8.5.2.2 Modify the FacultyProcess.jsp Page to Handle Faculty Data Collection and Insertion

	8.5.3 Update and Delete Data from the Faculty Table Using JSP and Java Beans Techniques
	8.5.3.1 Create a New Java Session Bean Class
	8.5.3.2 Modify the FacultyProcess Page to Handle Faculty Data Updating
	8.5.3.3 Add a Method to the Java Bean to Perform Faculty Data Deleting
	8.5.3.4 Modify the FacultyProcess Page to Handle Faculty Data Deleting

	8.6 Chapter Summary

	Chapter 9: Developing Java Web Services to Access Databases
	9.1 Introduction to Java Web Services
	9.1.1 REST-Based Web Services
	9.1.2 SOAP-Based Web Services

	9.2 The Structure and Components of SOAP-Based Web Services
	9.3 The Procedure of Building a Typical SOAP-Based Web Service Project
	9.3.1 Create a New Java Web Application Project WSTestApplication
	9.3.2 Create a New Java SOAP-Based Web Service Project WSTest
	9.3.3 Add Desired Operations to the Web Service
	9.3.4 Deploy and Test the Web Service on the Selected Container
	9.3.5 Create Web Service Clients to Consume the Web Service

	9.4 Getting Started with Java Web Services Using NetBeans IDE
	9.5 Build Java Web Service Projects to Access SQL Server Database
	9.5.1 Create a New Java Web Application Project WebServiceSQLApp
	9.5.2 Create a New Java SOAP-Based Web Service Project WebServiceSelect
	9.5.3 Add New Operations to Our Web Services to Perform Data Query
	9.5.4 Add Another Operation to Our Web Service to Query Faculty Image
	9.5.5 Build the User-Defined Method DBConnection()
	9.5.6 Deploy the Web Service Project and Test the Data Query Function

	9.6 Build a Window-Based Client Project to Consume the Web Service
	9.6.1 Copy the FacultyFrame and MsgDislog Components as GUIs
	9.6.2 Create a Web Service Reference for Our Window-Based Client Project
	9.6.3 Develop the Codes to Call Our Web Service Project
	9.6.4 Build and Run Our Client Project to Query Faculty Data via Web Service

	9.7 Build a Web-Based Client Project to Consume the Web Service
	9.7.1 Create a Web-Based Client Project WebClientSelect
	9.7.2 Create a Java Managed Bean FacultyBean
	9.7.3 Create a Web Service Reference for Our Web-Based Client Project
	9.7.4 Build the Codes to Call the Web Service to Perform Data Query
	9.7.5 Build and Run Our Client Project to Query Faculty Data via Web Service

	9.8 Build Java Web Service to Insert Data into the SQL Server Database
	9.8.1 Add a New Operation InsertFaculty() into Our Web Service Project
	9.8.2 Deploy the Web Service Project

	9.9 Build a Window-Based Client Project to Consume the Web Service
	9.9.1 Refresh the Web Service Reference for Our Window-Based Client Project
	9.9.2 Modify the Design View and Develop the Codes to Call Our Web Service Project
	9.9.3 Build and Run Our Client Project to Insert Faculty Data via Web Service

	9.10 Build a Web-Based Client Project to Consume the Web Service
	9.10.1 Add a Web Service Reference to Our Web-Based Client Project
	9.10.2 Develop the Codes to Call Our Web Service Project
	9.10.3 Build and Run Our Client Project to Insert Faculty Data via Web Service

	9.11 Build Java Web Service to Update and Delete Data from the SQL Server Database
	9.11.1 Add a New Operation UpdateFaculty() to Perform Faculty Data Updating
	9.11.2 Add a New Operation DeleteFaculty() to Perform Faculty Data Deleting Action
	9.11.3 Deploy and Test the Web Service Project

	9.12 Build a Window-Based Client Project to Consume the Web Service
	9.12.1 Refresh the Web Service Reference for Our Window-Based Client Project
	9.12.2 Build the Codes to Call the UpdateFaculty() Operation
	9.12.3 Build the Codes to Call the DeleteFaculty() Operation
	9.12.4 Build and Run Our Client Project to Update and Delete Faculty Record via Web Service

	9.13 Build a Web-Based Client Project to Consume the Web Service
	9.13.1 Add a Web Service Reference to Our Web-Based Client Project
	9.13.2 Develop the Codes to Call Our Web Service Operation UpdateFaculty()
	9.13.3 Develop the Codes to Call Our Web Service Operation DeleteFaculty()
	9.13.4 Build and Run Our Client Project to Update and Delete Faculty Record via Web Service

	9.14 Build Java Web Service Projects to Access Course Table in Our Sample Database
	9.14.1 Create a New Java Web Application Project WebServiceCourseApp
	9.14.2 Create a New Java SOAP-Based Web Service Project WebServiceCourse
	9.14.3 The Organization of Web Service Operations
	9.14.4 Create and Build Web Service Operations
	9.14.4.1 Create and Build the Web Operation QueryCourseID()
	9.14.4.2 Build and Run the Web Service to Test the CourseID Query Function
	9.14.4.3 Create and Build the Web Operation QueryCourse()
	9.14.4.4 Create and Build the Web Operation InsertCourse()
	9.14.4.5 Create and Build the Web Operation UpdateCourse()
	9.14.4.6 Create and Build the Web Operation DeleteCourse()

	9.15 Build Windows-Based Project to Consume the Web Service Project
	9.15.1 Develop the Codes to Query Course Information from our Web Service Project
	9.15.2 Build Codes for the Select Button Event Handler to Query CourseIDs
	9.15.3 Build Codes for the CourseListValueChanged() Method to Get Course Details
	9.15.4 Build Codes for the Insert Button Event Handler to Insert a New Course
	9.15.5 Build Codes for the Update Button Method to Update Course Records
	9.15.6 Build Codes for the Delete Button Method to Delete Course Records

	9.16 Build a Web-Based Project to Consume the Web Service Project WebServiceCourse
	9.16.1 Create a Web-Based Client Project WebClientCourse
	9.16.2 Add a Web Service Reference to Our Web-Based Client Project
	9.16.3 Modify the Course.jsp Page
	9.16.4 Build the Transaction JSP File CourseProcess.jsp
	9.16.5 Build the Java Bean Class File CourseQuery.java
	9.16.6 Build and Run Our Client Project to Query Course Record via Our Web Service
	9.16.7 Build Our Client Project to Insert New Course Records via Our Web Service
	9.16.8 Build Our Client Project to Update Course Records via Our Web Service
	9.16.9 Build Our Client Project to Delete Course Records via Our Web Service

	9.17 Chapter Summary

	Appendices
	Appendix A: Install and Configure SQL Server 2019 Express Database and SQL Server Management Studio
	Install SQL Server 2019 Express Database
	Install SQL Server Management Studio
	Configure and Setup SQL Server 2019 Express Connection Parameters

	Appendix B: Download and Install JDK 14 and Apache NetBeans 12
	Appendix C: Download and Install DevExpress .NET UI Controls
	Appendix D: How to Use Sample Database
	Appendix E: Data Type Mappings Between SQL Statements and Java Applications
	Appendix F: Download and Install Java JDK 8
	Appendix G: Download and Install JDBC 4.2
	Appendix H: Download and Install NetBeans IDE 8.2 and Glassfish Server
	Appendix I: Modify the HTTP Port Number for Tomcat Server

	Index

